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Résuḿe

La grande majorit́e des syst̀emes d’extraction de metadonnées haut-niveaùa partir de signaux mu-

sicaux repose sur un modèle implicite de leur “son” outimbre polyphonique. Ce mod̀ele repŕesente

le timbre comme la distribution statistique globale d’attributs spectraux instantanés, calcuĺes sur

des trames de quelques dizaines de millisecondes. L’hypothèse sous-jacente, rarement explicitée,

est que le timbre perçu d’une texture polyphonique correspondà ses attributs instantanés les plus

repŕesent́es statistiquement. Cette thèse remet en cause la validité de cette hypoth̀ese. Pour ce

faire, nous construisons une mesure explicite de la similitude timbrale entre deuxtextures poly-

phoniques, d́eclinée sous un grand nombre de variantes typiques du domaine. Nous montronsque

la pŕecision de telles mesures est limitée et que leur taux d’erreur résiduel n’est pas accidentel. No-

tamment, cette classe de mesures tendà cŕeer de faux-positifs qui sont toujours les même chansons,

indépendamment de la requête de d́epart: deshubs. Leurétudeétablit que l’importance perceptuelle

des attributs instantanés ne d́epend pas de leur saillance statistique par rapportà leur distributioǹa

long-terme. En d’autres termes, nous “entendons” quotidiennement dansla musique polyphonique

des choses qui ne sont pourtant pas présentes de façon significative (statistiquement) dans le signal

sonore, mais qui sont plutôt le ŕesultat de raisonnement cognitifsévolúes, d́ependant par exemple

du contexte d’́ecoute et de la culture de l’auditeur. La musique que nousentendonŝetre du piano est

surtout de la musique que nous nousattendons̀a être du piano. Ces paradoxes statistico-perceptifs

expliquent en grande partie le désaccord entre les modèlesétudíes ici et la perception humaine.
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Abstract

The majority of systems extracting high-level music descriptions from audio signals rely on a com-

mon, implicit model of the global sound orpolyphonic timbreof a musical signal. This model

represents the timbre of a texture as the long-term distribution of its local spectral features. The

underlying assumption is rarely made explicit: the perception of the timbre of a texture is assumed

to result from the most statistically significant feature windows. This thesis questions the validity

of this assumption. To do so, we construct an explicit measure of the timbre similarity between

polyphonic music textures, and variants thereof inspired by previous work in Music Information

Retrieval. We show that the precision of such measures is bounded, and that the remaining error

rate is not incidental. Notably, this class of algorithms tends to create false positives - which we call

hubs- which are mostly always the same songs regardless of the query. Their study shows that the

perceptual saliency of feature observations is not necessarily correlated with their statistical signifi-

cance with respect to the global distribution. In other words, music listenersroutinely “hear” things

that are not statistically significant in musical signals, but rather are the result of high-level cognitive

reasoning, which depends on cultural expectations, a priori knowledge, and context. Much of the

music we hear as being “piano music” is really music thatwe expect to bepiano music. Such statis-

tical/perceptual paradoxes are instrumental in the observed discrepancy between human perception

of timbre and the models studied here.
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Chapter 1
Introduction

The majority of systems extracting high-level music descriptions from audio signals rely on a

common, implicit model of the global sound orpolyphonic timbreof a musical signal. This model

represents timbre as the long-term distribution of the local spectral features, a prototypical imple-

mentation of which being Gaussian Mixture Models of Mel-Frequency Cepstrum Coefficients. The

underlying assumption is rarely made explicit: the perception of the timbre of a texture is assumed

to result from the most statistically significant feature windows.

This thesis questions the validity of this model and this assumption.

To do so, we construct an explicit measure of the timbre similarity between polyphonic music

textures, by mobilizing all the tools and design heuristics typically at use in MusicInformation

Retrieval research. We study the properties of the measure in a series often experiments.

We show clear evidence that the precision of measures based on this dominant paradigm is

bounded by aglass ceilingat precision about 70% (Experiment 1). The remaining error rate is not

incidental, and is indicative of limitations which probably cannot be overcome by variations on the

same theme.

One surprising finding of our study is that algorithms that account for the timedynamics of

1



2 Chapter 1. Introduction

the features, e.g. with dynamic programming or hidden Markov models, are atbest equivalent

to simpler static models. This is at odds with experimental data on the perception ofindividual

instrument notes.Experiment 2 establishes that the polyphonic nature of the data is the main

reason that ruins computational attempts at modelling feature dynamics. This suggests that the

horizontal coding of frames of data in terms of holistic spectral features, without any account of

the synchronicity of sources, is a very inefficient representation of polyphonic musical data, and not

cognitively plausible.

An important and novel finding of our study is that the class of algorithms studied in this work

tend to create false positives which are mostly always the same songs regardless of the query. In

other words, there exist songs, which we callhubs, which are irrelevantly close to all other songs.

We notably establish that:

• hubs are distributed according to a scale-free distribution.

• hubs are not a consequence of poor feature representation of eachindividual frame, but

rather an effect of the modelling of the agglomeration of the many frames of a sound tex-

ture (Experiment 3).

• hubs are not a property of a given modelling strategy (i.e. static vs dynamic,parametric vs

non-parametric, etc.) but rather tend to occur with any type of model (Experiment 4).

• hubs are not an intrinsic property of certain songs, but that different algorithms distribute the

hubs differently on the whole database (Experiment 5).

• the hubness of a given song is not an emerging global property of the distribution of its

frames, but rather can be localised to certain parts of the distribution, notablyoutlier frames

in statistical minority (Experiment 7).

• hubs are not a property of the class of algorithms studied here which appears regardless of

the data being modelled, but only for data with a given amount of heterogeneity, e.g. for

polyphonic music, but not for ecological sound ambiances (Experiment 8).
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This phenomenon of hubs is reminiscent of other isolated reports in different domains, such

as Speaker Recognition or Fingerprint Identification, which intriguingly also typically rely on the

same features and pattern-recognition algorithms. This suggests that this could be an important phe-

nomenon which generalizes over the specific problem of timbre similarity, and indicates a general

structural property of the class of algorithms examined here. This mostly translates the fact that

all data points are not of equal perceptive importance, and that these weights are not necessarily

correlated with the statistical significance with respect to the global distribution.

Finally, we give quantitative evidence supporting the fact that “polyphonictimbre” judgements

are not low-level immediate perceptions, but rather high-level cognitive reasoning, which depends

on cultural expectations, a priori knowledge, and context.Experiment 9 shows that surprisingly

few human-made high-level music descriptions, and notably judgements of instrument classes, are

directly correlated to low-level timbre similarity. Polyphonic textures as found inpopular music

are cultural objects whose perception creates expectations based on music that a particular listener

already knows. Inexperiment 10, we show that human judgements could be approximated only

by accounting for high-level correlations within a large set of possible categories. Some of these

correlations capture psycholinguistical semantic associations (“a powerful song is a strong song”),

but also historical and cultural knowledge (“rock uses guitars”), andmore subjective aspects linked

to perception of timbre (“flute sounds warm”).

In other words, music listeners routinely “hear” things that are not statistically significant in

musical signals. Such paradoxes associated with polyphonic timbre contribute to the discrepancy

between the low-level models of timbre similarity studied in this work and its human perception.
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Chapter 2
Dimensions of Timbre

2.1 Everything but pitch and loudness

Timbreis defined by the American Standards Association (ASA, 1960) as “that attribute of sensa-

tion in terms of which a listener can judge that two sounds having the same loudness and pitch are

dissimilar”. In other words, timbre is defined by what it isn’t (“everything but”). This psychoacous-

tician’s waste-basketdenotes notably the quality of a musical note or sound which distinguishes

different musical instruments. However, even if we tend to categorize sound sources (e.g. the brass

or plucked string musical instrument families), the timbre quality results from an intrinsically non-

categorical perceptual process. Sound classes have inner variabilities which makes the space of

perceptually meaningful sounds a continuum for which it is difficult to find a perceptual coordinate

system. Furthermore, the timbre space is intrinsically multidimensional. Unlike the sensation of

pitch which can be fairly directly correlated with the acoustic property of frequency, or the sensa-

tion of loudness which correlates to the amplitude, the sensation of timbre is the result of multiple

interacting acoustic factors. It is impossible to measure on a single continuum ranging e.g. from the

piano to the trumpet.

9



10 Chapter 2. Dimensions of Timbre

2.2 Psychophysical studies

A considerable amount of effort has been done in quest for the number of dimensions of a mean-

ingful “timbre space” and for the features of the acoustical signal whichbest correlate with these

dimensions. Most of these studies (Plomp, 1976; Grey, 1977; Wessel, 1991; Kendall and Carterette,

1991; Iverson and Krumhansl, 1993; McAdams et al., 1995) have shared the same methodology:

Dissimilarity judgements are collected from a set of human subjects (usually musicians) for a set

of individual, natural instrumental sounds spanning different instrument families. In recent studies

such as Iverson and Krumhansl (1993); Krimphoff et al. (1994); McAdams et al. (1995), synthetic

sounds are also used to create interpolated hybrids between instruments. The similarity ratings

are then analysed with Multidimensional scaling (MDS, see e.g. Borg and Groenen (1997)) in or-

der to find a low-dimensional spatial arrangement of the stimuli in a euclidean space such that the

distances between data points are optimally respected. Although recent studies such as McAdams

et al. (1995) use sophisticated versions of MDS, e.g. with weighted latent classes, in the most simple

cases MDS amounts to solving an eigenvalue problem on the distance matrix.

Figure 2.1 shows the timbre space as constructed by MDS in McAdams et al. (1995). Most

studies found that the distortion of the collected distance matrix is minimized by a three-dimension

arrangement of the data, and give perceptual or acoustic interpretations for each dimension. The

most important dimension has usually been consensually (Grey, 1977; Wessel, 1991; Kendall and

Carterette, 1991; Iverson and Krumhansl, 1993; Krimphoff et al., 1994; McAdams et al., 1995)

correlated to the centroid of the spectral envelope, which measures the spectral energy distribution in

the steady state portion of a tone, and corresponds to perceived “brightness”. The second dimension

is generally associated with the log of the attack-time, i.e. the time between the onsetand the instant

of maximal amplitude. However, this feature was criticized by Iverson and Krumhansl (1993), who

observed that the fact of including or deleting the attack portion of the stimuli had little influence

on the perceptual structure of timbres found by MDS.

The final dimension of the 3D timbre space has been much debated, and beenassociated to
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Figure 2.1: 3D timbre space derived from dissimilarity ratings on 18 timbres by 88 subjects. The
acoustic correlates of the perceptual dimensions are indicated in parentheses. Hashed lines connect
hybrid timbres (vibroneandstriano) to their progenitors (vibraphone/trombone and bowed string/
piano, resp.). Reproduced from McAdams et al. (1995)

diverse temporal and spectral features depending on the author: spectral variation over time (Grey,

1977; Iverson and Krumhansl, 1993), spectral irregularity (“log of the standard deviation of com-

ponent amplitudes from a global spectral envelope derived from a running mean of the amplitudes

of three adjacent harmonics”, Krimphoff et al. (1994)), Spectral Flux (average of the correlations

between amplitude spectra in adjacent time window, McAdams et al. (1995)). The unconvincing

correlation scores achieved by the various proposed features probably simply indicate that this last

dimension corresponds to a residual error of the assumption made by MDS of a euclidean embed-

ding of the data. This is further confirmed by McAdams et al. (1995), who identify several specifici-

ties of individual timbres that explain some large deviations from the ideal euclidean model. Such
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specificities can be either continuous attributes, such as the “raspiness ofthe attack” (a specificity

of trombone sounds), or discrete properties, such as “a suddenly pinched offset with a clunk” (for

harpsichord sounds). These specificities, while not accounted for in the euclidean model because of

their locality to individual timbres, are sufficiently salient to influence the measured dissimilarity of

some timbres.

Several studies have further tried to recreate meaningful timbre space bytesting various distance

measures computed on the signals. Plomp (1976) successfully recreates the same spatial structure

as with human similarity ratings by using distance measures computed on the vectorof energy levels

in an auditory filterbank, which gives further support in favour of the perceptual predominance of

factors related to the spectral envelope. Recent studies (DePoli and Prandoni, 1997; Terasawa et al.,

2005) have proved that Mel-Frequency Cepstrum Coefficients (MFCC, see Chapter 3.1), a particular

encoding of the spectral envelope widely used in the speech recognition community, provide a

good distance that reproduces timbre clusters that are similar to previous MDS studies (DePoli

and Prandoni, 1997) and account for 66% of the perceptual variance in human timbre similarity

judgements for steady state, individual sounds (Terasawa et al., 2005).

2.3 Automatic recognition of monophonic timbres

The psychophysical studies on the perceptive dimensions of musical timbrehave provided motiva-

tion to the automatic computer recognition of musical instruments from audio samplescorrespond-

ing to individual notes (Herrera-Boyer et al., 2003). While early systemstend to use either spectral

information (Brown, 1997) or temporal information (Martin, 1998), most studies since Eronen and

Klapuri (2000) rely on a combination of both aspects. Spectral correlates of timbre are often mea-

sured with Mel-Frequency Coefficients, which are generally found to be the most important features.

Brown (1997) reports near-perfect recognition performance on a small set of saxophone and oboe

sounds, using MFCCs only (with simple gaussian classifiers). On a much larger problem (1500

samples covering the entire pitch ranges of 30 orchestral instruments), Eronen (2001) also identifies
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MFCCs as the best individual classification feature, accounting for 32%precision for individual

instruments (65% for instrument families) when used alone (out of a combinedbest precision of

35% (77%)). The contribution of the MFCC feature can be compared with 10% (35%) precision

achieved by the second-best feature found by Eronen and Klapuri (2000), the standard deviation of

the spectral centroid.

Temporal features however are generally found necessary to combineto spectral cues in order to

reach acceptable recognition performance. While most psychoacoustical studies typically propose

to compute them based on the simple energy envelope of the signal, most automatic recognition

systems propose to base them on relatively complex signal analysis. Martin (1998) calculates a

set of temporal attributes such as vibrato frequency, tremolo, centroid modulation frequency, slope

of onset harmonic skew, etc. on the outputs of a log-lag correlogram, which measures the auto-

correlation with logarithmic lag in each frequency band of a gammatone filterbank, modelling the

frequency resolution of the cochlea (Smith and Abel, 1999). Eronen (2001) base its computations

on the matrix of harmonic amplitude envelopes, obtained from a partial trackingalgorithm in each

band of a Bark filterbank. The amplitude envelopes are then analysed to extract a number of features

such as band-wise rise time, mean, variance, strength and frequency ofamplitude modulation, etc.

Most features extracted from individual, mono-instrument notes can be combined into a unique

feature vector for each sample. The feature vectors corresponding toeach note can then be compared

to one another using simple metrics such as Euclidean distance:

d(si , sj) =
N−1∑

k=0

| fk(si) − fk(sj)| (2.1)

wheresi and sj T and fk(s) is the value of thekth feature for samples. The classification is then

typically done using the K-Nearest Neighbors algorithm (Fujinaga, 1998;Martin, 1998; Eronen and

Klapuri, 2000). The algorithm first stores the feature vectors of all the training examples and then,

for classifying a new instance, finds a set of k nearest training examplesin the feature space, and

assigns the new example to the class that has more examples in the set. However, more complex
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density estimation methods such as Gaussian Mixture Models (Brown, 1997) and classifiers such

as Support Vector Machines (Essid et al., 2004) are often used in an attempt to better models the

decision boundaries between classes. Finally, a number of contributions have emphasized the need

of modelling the dynamic trajectory of local features, relying on complex dynamical models such

as hidden Markov models or recurrent neural networks. Dubnov andFine (1999) propose to con-

sider the sound dynamics as a stochastic process over the feature domain, and to match instrument

samples by estimating cross entropy between the corresponding stochastic models. Eronen (2003)

proposes to use 3-state left-right hidden Markov models, to model the succession of different fea-

ture distributions for onset, steady state and decay. This is motivated e.g. bythe observation that

some instruments are characterized by onset asynchrony, which means that the energy of certain

harmonics rises more quickly than the energy at some other frequencies.

2.4 Towards polyphonic textures

Most of the studies on musical instrument recognition have focused on sound samples corresponding

to clean recordings of a unique note, played by a single instrument, which is an unrealistic context

for possible music applications. On the one hand, the music industry are in demand of models of

timbre perception that are suitable for real-world, complex polyphonic textures of several seconds’

length. On the other hand, the approach of monophonic instrument recognition seems little suited

to the modelisation of such complex textures.

2.4.1 The demand of Electronic Music Distribution

The exploding field of Electronic Music Distribution (EMD, Pachet (2003))is in need of power-

ful content-based management systems to help the end-users navigate huge music title catalogues,

much as they need search engines to find web pages in the Internet. Not only do users want to

find quickly music titles they already know, but they also — and perhaps more importantly — need

systems that help them find titles they do not know yet but will probably like.
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Figure 2.2: A typical EMD system, using predefined genre/ style taxonomies as unique content-
based access mode: web music-seller Amazon.com

Many content-based techniques have been proposed recently to help users navigate in large

music catalogues. The most widely used is collaborative filtering. This technique is based on the

analysis of large numbers of user profiles. When patterns are discovered in user profiles, corre-

sponding music recommendations are issued to the users. Systems such asAmazon.comexploit

these technologies or variants thereof (Pachet et al., 2001; French and Hauver, 2001; Pestoni et al.,

2001) with various degrees of success.

The main drawback of these approaches is that they are essentially content-blind; the music

itself is ignored, and only users tastes are considered. The resulting recommendations are therefore

at best superficially relevant (see Figure 2.2). Other content-based management techniques attempt
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at extracting information directly from the music signal. In the context of Mpeg7 in particular,

many works have addressed the issues of extracting automatically featuresfrom audio signals, such

as tempo (Scheirer, 1998), rhythm or melodies (Gómez et al., 2003). The resulting descriptors can

be used for querying music catalogues by content information rather than by song or artist names,

and as such provide a first layer to content-based music access. Queryby humming is probably the

most spectacular of these approaches (Ghias et al., 1995). However,these are limited essentially by

the difficulty for non-specialists to identify the right descriptors. Query by humming for instance, is

largely dependent of the ability of the user to sing correctly a song. Furthermore, these techniques

by construction only help users to find what they actually look for, and therefore address only a

small fraction - and the easiest one - of the EMD problem.

In this context, the global sound or timbre of a polyphonic texture seems an ideal candidate

to build successful EMD systems. Although it is difficult to define precisely music taste, it is quite

obvious that music taste is often correlated with timbre. Some sounds are pleasing to listeners, other

are not. Some timbres are specific to music periods (e.g. the sound of Chick Corea playing on an

electric piano), others to musical configurations (e.g. the sound of a symphonic orchestra). In any

case, listeners are sensitive to timbre, at least in a global manner, as confirmed by an increasing

amount of user studies of recommendation systems and music libraries (Baumann et al., 2004; Lee

and Downie, 2004).

Moreover, timbre similarity is a very natural way to build relations between music titles. The

very notion of two music titles that sound the same seems to make more sense than, for instance,

query by humming. Indeed, the notion of melodic similarity is problematic, as a change in a single

note in a melody can dramatically impact the way it is perceived (e.g. change from major to minor).

Conversely, small variations in timbre will not affect the timbral quality of a music title, considered

in its globality.

Figures 2.3 to 2.6 illustrate possible examples of similar “polyphonic timbres” as weunderstand

it here.
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Figure 2.3: Timbre similarity between a bossa-nova piece byJoao Gilberto(left) and a folk tune by
English songwriterBert Jansch(right): both consist of a simple acoustic guitar and a gentle male
voice.

2.4.2 The lack of perceptive models

On the other hand, both the conclusions of psychophysical experiments on monophonic timbre

perception and the approach of monophonic instrument computer recognition seem little suited to

the modelisation of such complex polyphonic timbres, for a number of reasonswe list here.

• Polyphony: Kendall and Carterette (1991) is, to the best of our knowledge, the only study

documenting the timbre perception of mixtures of multiple instrument. The authors have col-

lected human dissimilarity judgements for dyads of instruments playing either singletones

(at unison or distant of a major third interval) or simple melodies (again, at unison and in

harmony), and compared the data with the collected distances for the individual instruments

composing the dyads. They found that, to a limited extent, a quasi-linear vectormodel could

explain the perception of timbre combinations on the basis of the vector sum of the positions

of the constituent timbres. This suggests that attributes of timbre inferred by such studies such

as spectral centroid or amplitude variations are perceived for linear combinations of sounds

as the summation of the individual sound attributes. However, many featuresproposed for

individual sounds are not linear functions of the signal, especially temporal descriptors such

as energy variations or rise time, but also e.g. RMS-energy in frequencybands. Therefore



18 Chapter 2. Dimensions of Timbre

Figure 2.4: Timbre similarity between a song bythe Rolling Stones(left) and bythe Beatles(right):
both songs have the sound signature of 1970’s English pop-rock, with lead, rhythm guitars, bass and
drums, and often doubled vocals.

their computed value for mixtures of signals is not a linear combination of their individ-

ual values. This suggests that, even if still conceptually valid for polyphonic timbres, the

features usually computed for monophonic signals cannot be directly applied to polyphonic

signals. They would for instance would require some kind of source separation of the in-

dividual components, which is still a difficult research problem of its own (Plumbley et al.,

2002). Moreover, the findings of Kendall seem at odd with psychoacoustical data on spectral

masking, according to which the perceived interaction of sound sourcesis not the linear sum

of the individual components. This effect can be modeled by a spreading function such that

frequency components in a given frequency band contribute to neighboring bands proportion-

ally to their distance. Figure 2.7 shows a schematic representation of spectral masking, where

the sinusoidal toneC is masked by the excitation pattern of the neighboring, higher-amplitude

toneB. The formulation of a spreading function optimized for speech signals can be found

in Schroeder et al. (1979). Pampalk et al. (2003) and Lidy and Rauber(2005) have notably

studied its application to music signals.

• Asynchronicity: Different sound sources in a musical mixture are typically not synchronized

(except e.g. when playing at unison). A sound segment correspondingto a given note of a
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Figure 2.5: Timbre similarity between a jazz piece byCharlie Haden’s 1976 bandOld and New
Dreams(left) andCharles Mingus’ 1956 sessions on Debut (right), each with a bass-player leader
and dense collective textures from the brass section (saxophone alto, tenor and trumpet).

given instrument is likely to be superimposed with other notes with various time offsets. For

instance, the attack of a piano note extracted from the recording of a jazz trio may superim-

pose with the decay of a double-bass note, and its steady-state may be similarlycorrupted by

several drum onsets. This makes time descriptors such as log-attack time quasi-impossible

to compute meaningfully for polyphonic sound mixtures. Moreover, the largevariability of

offsets between events of individual sound sources makes it very difficult to learn feature

dynamics with e.g. HMMs or Markov chains as proposed by Dubnov and Fine (1999): an ex-

tremely large number of training instances would be needed to describe all possible degrees

of time superpositions of individual notes (drum onset at 10% of piano steady state, drum

onset during piano attack, piano attack during drum decay, etc.).

• Auditory Stream Segregation: Wessel (1991) and Singh and Bregman (1993) have demon-

strated the mutual perceptual influence of timbre and phrase grouping. The way a succession

of notes is perceived and grouped into phrases depends on the timbre ofthe notes. Notes with

similar timbres are typically grouped together, and the perception of simple periodic patterns

may be altered by introducing abrupt timbral changes (Figure 2.8). Reciprocally, two timbres

may be judged differently depending on the metrical function and context of the correspond-
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Figure 2.6: Timbre similarity between theSpice Girls(left) and theAll Saints(right), two British
pop acts of the mid-’90s: 4 female R&B vocalists and catchy dance-pop back-up reminiscent of
Madonna.

ing notes. This suggests that polyphonic textures of several notes (all the more so several

seconds) may be perceived in a different way than the majority perception of each individual

notes.

• Noise: Few psychoacoustical studies so far have documented the timbre perception of noisy

sounds. The MDS experiments of Grey (1977) identified high frequency noise when preced-

ing the attack as an important attribute, but it was later discarded in Iverson and Krumhansl

(1993). One possible explanation is the lack of representations and analysis techniques for

noise sounds, which cannot be described in the framework of steady-state harmonic sounds,

although recent work such as Hanna and Desainte-Catherine (2003) makes this perspective

more of a reality.

• From timbre to sound: The timbre of real-world polyphonic textures cannot be reduced to the

superposition of clean individual timbres of the component instruments. Contemporary popu-

lar music (possibly since the 1960’s) is the result of applying many production techniques on

the original sound captures, such as sound effects (reverberation, chorus,.̇.), informed choices

of sound recording equipments (e.g. lamp amplifiers) and sound engineering practices. Cer-

tain types of music production have often gained a notoriety of their own, e.g.the “Phil
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Figure 2.7: Illustration of the spectral masking effect. The stimulus (left) is composed of three si-
nusoidal tones, presented simultaneously. The auditory representation of the stimulus (right) shows
the excitation pattern provoked by each tone on the basiliar membrane. The spreading of the exci-
tation provoked by sinewaveB masks the perception ofC, but not the perception ofA. Note that
lower frequencies have a stronger masking influence on higher frequencies than vice versa.

Spectorsound” (Figure 2.9), characterized by the so-called “Wall of Sound”,a production

technique that involved very many musicians playing at unison, yielding a dense and lay-

ered effect that was highly influential on 1960’s and 1970’s pop music, includingThe Beatles

andThe Ramones(Ribowski, 1989). Similarly, ECM Jazz label’s motto, the “most beautiful

sound next to silence”, illustrates a concern for a certain quality of soundrecording, which

had an incredible impact on jazz (Delalande, 2001). While extremely salient (positively or

negatively) for the music lover, this transition from (multiple) timbres to a global “sound”

of music has seen few analytical studies, with the notable exception of Berger and Fales

(2003) who investigate the acoustical correlates of the “heaviness” of electric guitar sounds

in Heavy Metalmusic, and conclude that ‘heavier” timbres correlate with a gradual fadingof

high-frequency energy and flatter dynamic envelop.

• Semantic Textures: Polyphonic textures of several seconds’ length area difficult material

for timbre perception studies and computational models because it is generallydifficult to ab-

stract their global timbre/sound percept from higher-level concepts such as music genre, style,

tastes, mood to name but a few. Moreover, while intuition may hint at the contrary, such con-



22 Chapter 2. Dimensions of Timbre

time

frequency

A

A

A

A

A

A

B

B

B

B

B

B

Figure 2.8: Classical Experiment illustrating the influence of timbre on stream segregation. A series
of patterns of 3 ascending notes is presented to the subject. When the timbre distance between adja-
cent notes is small, the repeating ascending pitch line (dark-gray dashed)dominates the perception.
If the distance between timbres ofA notes andB notes increases, the notes are grouped by timbre
similarity and 2 interleaved descending pitch lines are heard (light-gray dotted) (Wessel, 1991).

cepts lack any kind of semiology or theory to explain their relation to musical sound. Musical

genre, for instance, is a ill-defined concept, which is reflected by the inconsistencies of ex-

isting genre taxonomies. Pachet and Cazaly (2000) compare 3 Internet genre taxonomies:

allmusic.com (531 genres), amazon.com (719 genres) and mp3.com (430 genres). Results

show that there is no consensus in the names used in these classifications: only 70 words are

common to the three taxonomies. More importantly, there are no shared definitions: among

these common words, even largely used terms like Rock or Pop do not denotethe same set

of songs. Typical genre definitions reflect dimensions of music such as timbre, harmony or

rhythm (the main difference betweenreggaeandskafor instance is the tempo), but also and

foremost cultural interpretations, which depend on epochs, locations and user communities

(Aucouturier and Pachet, 2003).
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Figure 2.9: Harvey Phillip ”Phil” Spector (b. 1940), a highly influential American record producer
and inventor of the “Wall of Sound” production technique, which became the signature sound of
1970’s rock and roll music.

2.5 Implicit modelling

The lack of psychophysical models for the timbre perception of polyphonictextures has lead re-

searchers to take a pragmatic approach to build the much-needed automatic systems able to extract

high-level descriptions (HLD) of music signals (such as genre). The approach, based on pattern

recognition (Bishop, 1995), is a direct extension of the most simple monophonic instrument recog-

nition systems. The signal is cut into short overlapping frames (typically 50mswith a 50% overlap),

and for each frame, a feature vector is computed. Features usually consists of a generic, all-purpose

spectral representation such as Mel Frequency cepstrum Coefficients (MFCC), since more complex

temporal correlates of timbre identified by psychophysical studies are ill-defined in the case of poly-

phonic textures, as seen above. The timbre of individual sound samples isnot explicitely modelled:

all feature vectors are fed to a classifier which models the global distributions of the features of
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Table 2.1: Number of contributions using the timbre paradigm in the past ISMIRsymposiums
year timbre papers total papers percentage
2000 6 26 23%
2001 9 36 25%
2002 14 58 24%
2003 12 50 24%
2004 23 104 22%
2005 24 114 21%

total 88 388 23%

signals corresponding to each class (e.g. rock or jazz in the case of a genre classification system).

Global distributions for each class can the be used to compute decision boundaries between classes.

A new, unobserved signal is classified by computing its feature vectors, finding the most probable

class for each of them, and taking the overall most represented class forthe whole signal.

This approach for modelling HLD concepts correlated to the global sound of a musical extract is

a widely adopted paradigm in the research community concerned with automatic music description.

Table 2.1 shows an enumeration of paper and poster contributions in the ISMIR conferences since

its creation in 2000. Each year, about a fourth of all papers, and on thewhole 88 papers out of

a total 388, use the approach. Each contribution typically instantiates the samebasic architecture

described above, only with different algorithm variants and parameters.

All contributions use the same underlying rationale of modelling global timbre/sound in order

to extract high-level descriptions. However the spectrum of the targeteddescriptions is rather large:

genre (Tzanetakis et al., 2001), style (Whitman and Smaragdis, 2002), mood (Liu et al., 2003),

speech/music (Scheirer and Slaney, 1997), solo instrument (Vincent and Rodet,2003), singer (Kim

and Whitman, 2002), but also singing language (Tsai and Wang, 2003),type of beat-boxing sounds

(Kapur et al., 2004), potential for commercial success (Dhanaraj andLogan, 2005), etc. Note that

while the “global timbre” paradigm is by far the most represented for HLD extraction systems, sev-

eral other approaches exist that rely e.g. on harmonic features such as pitch histograms (Ermolinskiy

et al., 2001), rhythmic features (Gouyon and Dixon, 2004) or cultural information mined from web

pages (Whitman and Smaragdis, 2002).
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These contributions rely on an implicit model of global timbre, which is based onthe long-term

statistics of frame-based spectral features. The underlying assumption isthat the perception of the

timbre of a texture is assumed to result from the most statistically significant feature windows.

However, the validity of such a model and assumption is difficult to discuss from the existing

corpus of work, because is not examined explicitly:

• Negative results are inconclusive: The evaluation of each contribution does not measure the

precision of the decisions of the models in terms of timbre similarity, but in terms of com-

plex high-level concepts which may be only remotely correlated to timbre. For instance, the

difficulty of a specific genre classification, e.g. between “Classical” and “Jazz”, may reveal

limitations of the underlying timbre model, but also possible inconsistencies in the measured

concepts:Carla Bleyor Gil Evans’ complex orchestral jazz arrangements are timbrally more

similar e.g. toAlban Bergthan toCharlie Parker. Hence, it is difficult to conclude either on

the quality of the timbre model or on the relation between timbre perception and the modelled

high-level concept.

• Positive results are inconclusive: HLD extraction systems all rely on classification techniques

which exploit the distribution of the data to discriminate sets of sounds. The performance of

such systems tell very little on the underlying model of timbre similarity, as it is possible to

model appropriate decision boundaries on a feature space which does not provide a precise

model of similarity, thanks to effective use of training data. Moreover, modern classification

techniques such as ensemble learning (McKay et al., 2005) have the ability toselect different

decision criteria according to sub-parts of the problem, e.g. different duplets of classes being

discriminated. Such classifiers are typically able of good classification results on feature

spaces which would give a poor metric representation of the underlying similarity.

• Individual evaluations are inconclusive: The improvement of HLD extraction systems is ac-

tively pursued in the MIR community. Each contribution typically relies on a slightlymod-

ified timbre model, with its own algorithm variants and parameter settings. The choice of
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such parameters result from little if any systematic evaluation. More generally, attempts at

evaluating different settings in the literature tend to compare individual contributions to one

another, i.e. particular, discrete choices of parameters, instead of directly testing the influence

of the actual parameters. Moreover, each contribution typically measuresthe performance of

its particular implementation on its own custom-built testing database, which makes thecom-

parison of different approaches difficult and unreliable. It is very common that good results

found on a given test database cannot be reproduced by subsequent studies on other databases,

either quantitatively or even qualitatively. For instance, Soltau (1998) reports that Explicit-

Time Modelling with Neural Network (a technique to model the dynamics of the features)

significantly outperforms hidden Markov models on a genre classification task, which does

not occur in Scaringella and Zoia (2005).

2.6 Thesis Overview: Ten Experiments

In this context, we propose toexplicitlymodel polyphonic timbre, by building a algorithmic measure

of thetimbre similarity of polyphonic textures, much like the similarity assessed by psychophysical

experiments on short samples. Our measure is based on the pattern recognition approach shared by

most HLD extraction systems, namely modelling polyphonic timbre as the long-term distribution

of local spectral features.

By focusing on the low-level perceptive mechanism of timbre similarity, we aim at studying

the validity of the approach shared by the contributions described above,without depending on the

unknown correlations that exist at the level of high-level music descriptions. We study the properties

of such models of timbre similarity in a set of 10 experiments, whose conclusionshave implications

on polyphonic timbre, but also on high-level music descriptions built on the timbre rationale. Part

of our results (the existence of so-called hub songs) even seem generalize to pattern-recognition

measures in general.

Each contribution in the literature typically instantiates the same basic architecturedescribed
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above, only with different algorithm variants and parameters. Chapter 3,Dimensions of Timbre

Models, gives a detailed description of the space of such timbre models, in terms of a prototypical

center-of-mass algorithm (“gaussians of MFCCs”), to which we apply a number of transformations

(or so-calleddesign patterns) which we found to re-occur very frequently in the literature (for in-

stance, transformations meant to better model the dynamics of the features).This review sketches a

practicalepistemologyof the field of music pattern recognition, by making more explicit the typical

signal-processing and machine-learning heuristics and know-how at use among its practitioners∗. It

also provides a structured way to explore the space of all possible timbre models, on which we base

our experiments in the remainder of the study.

Experiment 1 tests the validity of the assumptions underlying the pattern recognition approach

to polyphonic timbre, by hill-climbing the algorithmic space described in Chapter 3.In particular,

we question the common assumption found in the literature that error rates reported on implicit

models of timbre are incidental, and that near-perfect results would just extrapolate by fine-tuning

the algorithms parameters. We propose an evaluation framework which targets explicitly the notion

of timbre similarity, instead of derived high-level descriptions, and uses thisframework to evaluate

the precision of very many parameters and algorithmic variants, some of whichhave already been

envisioned in the literature, some others being inspired from typical patternsof research methodolo-

gies observed in the literature. This leads to an absolute improvement over existing algorithms of

about 15% precision. But most importantly, we describe many variants that surprisingly do not lead

to any substancial improvement of the measure’s precision. Moreover, our simulations suggest the

existence of aglass ceilingat precision about 65% which probably cannot be overcome by pursuing

such variations on the same theme.

Experiment 2 further examines one of the most surprising results ofExperiment 1, namely that

algorithms that account for the time dynamics of the features are at best equivalent to simpler static

models. This contradicts experimental data on the perception of individual instrument notes, which

established the importance of dynamics, notably the attack time and fluctuations of the spectral

∗this reflexion on research heuristics used in MIR is largely influenced by the idea behind the automatic discovery
system EDS (Zils and Pachet, 2004)
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envelope. We propose that the difficulty of modelling dynamics of full songs results either from

the complex structure of the temporal succession of notes, or from the vertical polyphonic nature

of individual notes. We discriminate between both hypothesis by comparing the performance of

dynamical algorithms on several specially designed datasets, namely monophonic individual notes,

polyphonic individual notes, and polyphonic multiple-note textures. We conclude that the main

cause of the difficulty of modelling dynamics is the polyphonic nature of the data.

The other important and novel finding ofExperiment 1 is that the class of algorithms studied

in this work tend to create false positives which are mostly always the same songs regardless of

the query. In other words, there exist songs, which we callhubs, which are irrelevantly close to all

other songs. This phenomenon is reminiscent of other isolated reports in different domains, such

as Speaker Recognition or Fingerprint Identification, which intriguingly also typically rely on the

same features and pattern-recognition algorithms. This suggests that this could be an important

phenomenon which generalizes over the specific problem of timbre similarity, and indicates a gen-

eral structural property of the class of algorithms examined here.Experiments 3 to 8 aim at better

understanding the nature and causes of such hub songs.

Experiment 3 establishes that hubs are not a consequence of poor feature representation of each

individual frame, but rather an effect of the modelling of the agglomeration of the many frames of a

sound texture.

Experiment 4 shows that hubs are not a property of a given modelling strategy (i.e. staticvs

dynamic, parametric vs non-parametric, etc.) but rather tend to occur with any type of model.

Experiment 5 shows that hubs are not an intrinsic property of certain songs, but thatdifferent

algorithms distribute the hubs differently on the whole database.

Experiment 6 disproves the hypothesis that hubs result from the fact that a given statistical

model potentially explains very many different time series of features (for instance, static models

such as Gaussian Mixture Models consider all permutations of the original audio data as identical).

Notably, we establish that songs whose models have the greatest varianceare not significantly likely

to be hubs.
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Experiment 7 suggests that the hubness of a given song is not an emerging global property of

the distribution of its frames, but rather can be localised to certain parts of thedistribution. Notably,

not all frames have a uniform influence on the hubness of a song. Outlierframes in statistical

minority seem to have a critical influence on the appearance of a hub.

Experiment 8 finally establishes that hubs are not a property of the class of algorithms studied

here which appears regardless of the data being modelled. Notably, the same algorithms used on

datasets of ecological urban sound ambiances do not engender hubs.A possible critical factor for

the appearance of hubs is the heterogeneity of the modelled signals, which is3-4 times higher for

polyphonic music than for ecological sounds.

The two experiments which conclude this study make a round trip back to high-level music

descriptors. Having explicitly evaluated the validity of polyphonic timbre models and studied a

number of their limitations, we now examine the validity of their use to extract conceptual infor-

mation such as musical genre. We base our study on a yet-unreleased very large and diverse set of

manually collected metadata, made available to Sony CSL by collaborations with the Sony Corpora-

tion. Experiment 9 shows that surprisingly few high-level music descriptors are directly correlated

to timbre. Moreover, different taxons of a given category, such as “Mood Violent” or “Mood Iron-

ical”, have very diverse levels of correlation with timbre (high and low resp.), which is at odds

with typically proposals of classifiers that apply the same decision space forevery taxons within a

category.

However,Experiment 10 shows that there are extreme amounts of correlation between high-

level descriptors, independently of their relation to timbre. Some of these correlations capture

psycholinguistical semantic associations (“a powerful song is a strong song”), but also historical

and cultural knowledge (“rock uses guitars”), and more subjective aspects linked to perception

of timbre (“flute sounds warm”). This suggests that very many high-level cultural descriptions of

musiccanindeed be grounded to timbre similarity, by exploiting such higher-level correlations with

timbre-based attributes. We finally propose a hybrid classification system that implements this idea

in a systematic way.





Chapter 3
Dimensions ofTimbre Models

Very many contributions in automatic music description systems rely on the same implicitmodel

of polyphonic timbre, namely the long-term distribution of local spectral features. Most contribu-

tions instantiate the same algorithmic architecture, only with a wealth of individual variants and

parameter settings. This chapter describes this space of algorithm parameters and variants. We base

our description on a prototypical center-of-mass algorithm (“gaussiansof MFCCs”), to which we

propose to apply a number of transformations (see Figure3.1).

We propose a classification of such transformations in terms ofdesign patterns(in the spirit of

Gamma et al. (1995)), which we found to re-occur very frequently in the literature (for instance,

transformations meant to better model the dynamics of the features). These design patterns make

explicit the heuristics and know-how at use among signal-processing andmachine learning special-

ists, and constitute a first step toward sketching a practicalepistemologyof the growing field of

Music Information Retrieval (MIR).

The description found below also provides a basis for the experiments in theremainder of our

study. Notably, in the next chapter,Experiment 1 will examine the validity of the assumptions

behind all such possible timbre-models, by hill-climbing the algorithmic space described here.

31
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Design
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Figure 3.1: We propose to base our exploration of the space of all possible timbre models on a
prototypical algorithm, to which we apply a number of transformations, ordesign patterns.

3.1 The Prototypical algorithm

We describe here the timbre similarity algorithm on which we will base our experimentations. As

can be seen in Figure 3.2, it follows the same paradigm as the very many contributions on HLD

extraction systems described in Chapter 2.5, namely modelling polyphonic timbre as the long-term

distribution of local spectral features. However, the rationale behind our experiments is to explicitly

model timbre, instead of using it implicitly to extract higher-level, correlated concepts. Therefore,

we do not accumulate all features of the different sets of songs to discriminate in a common classi-

fier, but define a metric to compare the distributions of individual songs to one another.

3.1.1 Feature Extraction

The signal is first cut into frames. For each frame, we estimate the spectralenvelope by computing

a set of Mel Frequency Cepstrum Coefficients. The cepstrum is the inverse Fourier transform of the

log-spectrum logS.

cn =
1
2π

∫ ω=π

ω=−π
logS(ω) exp jωndω (3.1)
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Figure 3.2: The initial algorithm has a classical pattern recognition architecture.

We call mel-cepstrum the cepstrum computed after a non-linear frequencywarping onto a percep-

tual frequency scale, the Mel-frequency scale (Rabiner and Juang (1993)), which reproduces the

non-linearity of the frequency resolution of the human auditory system (lowHertz frequencies are

more easily discriminated than high Hertz frequencies). Hertz frequencyf can be converted to mel

frequencymusing the experimental formula :

m= 1127.01048 ln (1+
f

700
). (3.2)

The cn in Equation 3.1 are called Mel frequency cepstrum coefficients (MFCC), of which

we keep a given numberN. Cepstrum coefficients provide a low-dimensional, smoothed version

of the log spectrum (all the more so precise asN increases), and thus are a good and compact

representation of the spectral shape. As already mentioned, they are widely used as feature for

speech recognition, and have also proved useful in musical instrument recognition (Eronen and

Klapuri, 2000).

3.1.2 Feature Distribution Modelling

We then model the distribution of the MFCCs over all frames using a Gaussian Mixture Model

(GMM). A GMM estimates a probability density function (PDF) as the weighted sum ofM simpler
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Figure 3.3: A Gaussian distribution in dimensiond = 2 centered on the origin and with unitary
variance in each dimension.

Gaussian densities, called components of the mixture. (Bishop (1995)):

p(Ft) =
m=M∑

m=1

wmN(Ft, µm,Σm) (3.3)

wherewm is a mixture coefficient (also called component weight or prior probability),Ft is the

feature vector observed at timet, andN is a Gaussian PDF with meanµm and covariance matrixΣm

:

N(Ft, µm,Σm) =
1

(2π)
d
2 |Σm|

1
2

exp (−1
2

(x− µm)TΣ−1
m (x− µm)) (3.4)

whered is the dimension of the feature vectorFt. Figure 3.3 shows a 3D representation of a

Gaussian distribution in dimensiond = 2, with µ = [0,0] andΣ = I, and Figure 3.4 shows a

mixture model ofM = 2 gaussian components (w1 = w2 = 1, with µ1 = [0,0] andµ2 = [3,0]).

The parameters of the GMM are estimated from the feature vectors with the classic E-M

algorithm (Bishop (1995)).
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Figure 3.4: A Gaussian mixture model distribution in dimensiond = 2, with 2 gaussian components
centered in [0,0] and [3,0].

3.1.3 Distance Measure

Log-likelihood

We can now use these GMMs to match the timbre of different songs, which gives a similarity

measure based on the audio content of the music. The most straightforwardway to compare two

songsA and B on the basis of their respective distributions of feature vectors is to computethe

probability of observing the set of allSA feature vectors ofA using the probability model of the

distribution of the features ofB, i.e.

pB(A) = pB(F A
1 ,F A

2 , . . . ,F A
SA

) (3.5)

=

SA∏

i=1

pB(F A
i ) (3.6)

wherepB(F A
i ) is the probability of theith feature vector of songA computed using Equation 3.3,

using the parametersµ, Σ andw learned from the feature vectors ofB. To avoid double-precision

numeric problems, we equivalently compute

log pB(A) =
SA∑

i=1

log pB(F A
i ) (3.7)
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which is called thelog-likelihood of A given B. This can be made symmetrical to create a well-

behaved distance measure:

d1(A, B) =
1
2

(log pB(A) + log pA(B)) (3.8)

The computation ofd1 needs accessing both the GMM models ofA andB and their respective

MFCC vectors. However, MFCC vectors for all songs are prohibitive tostore in the context of large

databases. A typical 3-minute song is represented by 7751 frames (taking-say- 2048 points with

50% overlap at 44100 Hz), which, given e.g.N = 10 MFCCs per frame, amounts to around 80,000

double precision floating-point numbers (640 Ko). Since the timbre distanceis meant to integrate

into a large scale meta-database architecture, we need to be able to compare the models themselves,

without storing the MFCCs.

Kullback-Leibler divergence

A natural distance measure between two probability distributionspA and pB is given by the

Kullback-Leibler divergence(KL), also calledrelative entropy, or information divergence. It can

be interpreted in information theory as the expected extra message-length per datum that must be

communicated if a code that is optimal for a given (wrong) distribution Q is used, compared to using

a code based on the true distribution P.

dKL(pA‖pB)) =
∫

pA(x) log
pB(x)
pA(x)

dx (3.9)

The KL-divergence has an analytical form in the case of simple gaussiandistributions:

dKL(NA‖NB) =
1
4

tr(ΣAΣ
−1
B − ΣBΣ

−1
A ) + (µA − µB)T(Σ−1

B − Σ−1
A )(µA − µB) (3.10)

wheretr is the “trace” operator. However, no such close form exists for mixtures of several Gaussian

components.
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Figure 3.5: Comparison of the Log-likelihood approach and the MonteCarloapproach for the com-
putation of the Kullback-Leibler divergence between 2 GMMsi and j. The MFCC vectors of each
song are too space-consuming to be stored. Hence, there are 2 possible routes to compute the
probability of the features of songj given the model of songi. RouteA consists in temporarily re-
computing the MFCCs from the signalj for the sake of the distance computation. RouteB consists
in sampling “fake” MFCC points from the already computed GMM ofj, which is naturally much
quicker.

We therefore propose to compute Equation 3.9 by Monte-Carlo approximation(Fishman, 1996),

i.e. to estimate the KL distance by the empirical mean :

˜d(A, B) =
1
n

n∑

i=1

log
pB(xi)
pA(xi)

(3.11)

(wheren is the number of samplesxi drawn according topA). The estimate˜d(A, B) converges to

dKL(A, B) whenn→ ∞ by virtue of the central limit theorem :

lim
n→∞

(
1
n

n∑

i=1

Xi − E(X)) =
1
√

n
N(0, σ2) (3.12)

whereX is the random variable logpB(x)
pA(x) , Xi a realization ofX, E(X) the mean ofX andN(0, σ2) a

normal distribution of mean 0 and varianceσ2 equal to the variance ofX.

More precisely, we sample a large number of pointsSA from modelA, and compute the likeli-
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hood of these samples given modelB. We then make the measure symmetric and normalize :

D(A,B) =
i=DSR∑

i=1

logP(SAi /A) +
i=DSR∑

i=1

logP(SBi /B)

−
i=DSR∑

i=1

logP(SAi /B) −
i=DSR∑

i=1

logP(SBi /A) (3.13)

The precision of the approximation is clearly dependent on the number of samples, which we call

Distance Sample Rate (DSR).

The Monte Carlo approach can be seen as a way to “recreate” temporary, prototypical MFCCs

points from the GMMs, instead of keeping the original MFCCs from the audiosignals (which can’t

be stored realistically). Sampling points from a GMM is naturally much quicker than re-processing

the whole MFCC algorithm on the original signal. Figure 3.5 illustrates a comparison of the 2

approaches.

Sampling from GMMs

The Monte-Carlo approximation of the KL divergence requires to sample points from Gaussian

Mixture Model distributions. To do so:

1. First draw a gaussian component at random among theM components of the GMM, according

to thewm weights (which sum to one
∑M

m=1 wm = 1 , and therefore can be considered as a

discrete probability distribution on the space of components).

2. Then draw a point from the selected gaussian component.

An efficient way to draw points from an individual gaussian distribution uses a source of uniform

pseudo-random numbers, and a mathematic transformation of these numberssuch that their re-

sulting distribution is gaussian. The most basic of such transformations is called theBox-Muller
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transform (Press et al., 1986) :

y1 =
√
−2 ln x1 cos 2πx2 (3.14)

y2 =
√
−2 ln x1 sin 2πx2 (3.15)

Hence,

1. Generate two independent random numbers,x1 and x2 with a uniform distribution (in the

range from 0 to 1), using e.g. the high-qualityMersenne Twisterpseudo random number

generator (Matsumoto and Nishimura, 1998).

2. Then apply the above transformations to get two new independent random numbers which

have a Gaussian distribution with zero mean and a standard deviation of one.

3. Then rescaley1 andy2 to the right mean and variance, usingy′ = σ(y+ µ)

In practice, for numerical stability reasons, the polar form of the Box-Muller transform is preferred:

y1 = x1

√
−2 lnR

R
(3.16)

y2 = x2

√
−2 lnR

R
(3.17)

whereR= x2
1 + x2

2.

3.2 MIR Design Patterns and Heuristics

The algorithm described above is designed as an attempt to explicitly model polyphonic timbre

similarity, in order to test the underlying assumptions of a large class of automaticmusic description

systems. Only a few previous attempts at building audio similarity functions can befound in the

literature. Foote (1997) presents a system that also uses cepstral coefficients as a front-end, but rather

uses a supervised algorithm (tree-based vector quantizer) that learnsthe most distinctive dimensions
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in a given corpus. Adding one song to this corpus requires to redo the learning of the tree, which is

expensive. On the contrary, our system is completely scalable, since it models each song separately.

Welsh et al. (1999) proposes a query by similarity system that is also able to match songs ac-

cording to their timbre. He uses a large set of features (1248 floating-point per song) which are

compared with the euclidean distance. However, his system doesnt address timbre similarity ex-

plicitly: his features model the pitch/tonal content of a song (“returning songs in the same key”),

the noise level (“whether it is pure classical music or noisy, saturated hard rock”) and the rhythm.

The timbral similarity observed in some results by the author (“a pop, male vocalsong produces

results where every song in the top 10 is a male vocal with guitar and drum accompaniment”) ap-

pears therefore as a side-effect of the features above, notably those describing the tonal content of

the pieces. Our system is both more restrictive, and more precise: notably,the features that we use

are meant to be independent of the pitch. We do not try to model music similarity atlarge, but only

timbral similarity, which is is only one similarity relationship among many others (rhythm,melody,

style, structure, etc.), some of which addressed by Welsh. We have argued in Aucouturier and Pa-

chet (2002b) that the interestingness of a music retrieval system probably lies in the confrontation

between several such similarity relationships.

Finally, Logan and Salomon (2001) proposes a similar approach to ours, which also uses Cep-

strum Coefficients, only with a different modelling and a more complex matching algorithm. It

is only since this contribution and our original formulation of the above mentioned algorithm in

Aucouturier and Pachet (2002b) that “timbre similarity” has seen a growinginterest in the Music

Information Retrieval community (Baumann (2003); Baumann and Pohle (2003); Berenzweig et al.

(2003); Herre et al. (2003); Kulesh et al. (2003); Pampalk et al. (2003); Pampalk (2004); Flexer

et al. (2005); Stenzel and Kamps (2005); Vignoli and Pauws (2005)).

A careful inspection of the methodology of each of these contributions as well as the very

many papers implicitly relying on the same model reveals a number of transformations that are

commonly applied to the prototypical algorithm, and a number of heuristics used toguide research

and algorithm design. We attempt here a catalog of suchdesign patterns, in the spirit of Gamma
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et al. (1995). It is often striking that the same patterns have also proved useful in the longer history

of Automatic Speech Recognition (ASR) research, which we will highlight when relevant.

3.2.1 Pattern: Tuning feature parameters

Definition

Finding feature parameter values that improve the quality of the whole algorithm.

Description

A featureis a mathematical transformation of the input musical signal, aiming at reducing its

dimensionality and variability. Good features typically are a measurement of a reduced aspect

of the data which is believed to be relevant to the problem being modelled, or similarly a way

to discard information which is not relevant. In the case of the modelling of musical timbre,

following the insights from the psychoacoustical studies described above, we may want to

only focus on spectral information, but also to discard fine harmonic detailsin the spectrum

that typically vary a great deal with the pitch of the analysed sounds. The distinction between

such feature extraction and the modelling of the extracted features (which may also discard

e.g. dimensions in the feature space) is not always clear cut. Often feature extraction can be

regarded as a fixed transformation of the input data, whereas the model itself contains adaptive

parameters whose values are set as part of a training process (Bishop,1995). However, the

statistical model one uses is crucially dependent on the choice of features. Hence it is often

useful to fine-tune some parameters of the feature extraction algorithm, to adapt e.g. its

accuracy.

A typical parameter in feature extraction influences the dimension of the measurement made

on the data, and thus the dimension of the space (thefeature space) in which statistical mod-

elling is performed. For instance, the number of MFCC coefficients extracted from each frame

directly controls the dimension of the feature vectors. Increasing the dimension of the fea-

tures typically increases the expressiveness of the corresponding representation, thus allowing
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Figure 3.6: Illustration of the influence of feature dimension on a 2 class classification problem.

e.g. to better discriminate different classes of data. Figure 3.6 illustrates a possible 2-class

classification problem, using 2 abstract, one-dimensional featuresX andY. Data points of the

2 classes are represented by dark gray circles and light-gray squares respectively. It appears

that each of the featuresX andY is a poor representation for the problem when considered

individually. For instance, the observation of the value ofX ∈ [a,b] for a point gives no

information about its most likely class: 3 examples of each class are observed within this

range. Similarly, the observation ofY ∈ [c,d] is non informative. However, when consid-

ered jointly, the observation of (X,Y) ∈ [a,b] × [c,d] gives a good indication that the class

of the corresponding point be “circles”. This suggests that increasingthe number of features

is a general law for improving the precision of the modelling. However, we often find that,

beyond a certain point, adding new feature dimensions can actually lead to a reduction in the

precision of the modelling. This phenomenon is known as thecurse of dimensionality. It can

be understood on the same Figure 3.6. The more dimensionsd are available in the feature

space, the more precise a partition of the data space we can obtain. However, the number of

cells such as [a,b] × [c,d] grows exponentially with d. If we keep the number of training



3.2. MIR Design Patterns and Heuristics 43

Table 3.1: Influence of the number of MFCCs on a similarity task, reproduced from Logan and
Salomon (2001).

Number of MFCC Precision5 Precision10
12 3.43 6.53
19 3.44 6.57
29 3.36 6.44

data points constant, and increased, there will come a point where no data will be available

for most cells, and the corresponding representation will be very poor.In Figure 3.6, where

d = 2, only one data example is found in [a,b] × [c,d]. If we incrementd, most cells in

[a,b] × [c,d] × R will be empty, and the precision of the model will collapse.

Example

In Logan and Salomon (2001), the authors test the influence of 3 numbersof MFCCs used

as front end for a timbre similarity measure (later modelling the MFCC distributions with

the kMeans method, and comparing the distributions with Earth Mover’s Distance). Table

3.1 reproduces their results. In the table, the precisions are measured asthe average number

of songs with the same genre as the seed song in the first 5 nearest neighbors of the seed

(“Precision5”) and in the first 10 nearest neighbors (“Precision10”). We observe with the

authors that increasing the dimensionality of the MFCCs from 12 to 19 has a small positive

impact on the precision of the model, but that further increase degrades the precision, as

explained by the curse of dimensionality.

3.2.2 Pattern: Tuning model parameters

Definition

Finding values for parameters of the statistical model that improve the quality ofthe whole

algorithm.

Description

As for features (3.2.1), statistical models used to learn the distribution of the features often
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have a number of fixed parameters that have to be chosen before training. These parameters

typically influence the complexity of the model, i.e. its expressiveness. For instance, the

number of Gaussian componentsM in a Gaussian Mixture Model (GMM) influences the

flexibility of the density estimation that it is able to achieve. It can be theoretically proved

(Bishop, 1995) that a GMM is a universal probability density estimator ifM is allowed to

grow to infinity. However, as above with features, increasing the complexityof a model does

not necessarily improves the precision of the corresponding representation of the systematic

aspect of the data.

Figure 3.7: Illustration of the influence of model complexity on a polynomial regression task. Pic-
tures reproduced from Bishop (1995)

This is best illustrated in the case of a simple polynomial curve fitting, as shown inFigure
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3.7. We generate training data from the function

f (x) = 0.5+ 0.4sin(2πx) (3.18)

and add a small amount of noise. We then try to model the data with a Mth-order polynomial

given by

y(x) =
M∑

i=0

wi x
i (3.19)

Figure 3.7 shows the least-square error estimates of the polynomial for 4 values of the pa-

rameterM ∈ {0,1,3,9}, which controls the complexity/flexibility of the model. Models with

M = 0 andM = 1 give a poor representation off (x), due to their limited flexibility.M = 3

shows a much better fit to the data, and thus a better approximation of the underlying pro-

cessf (x). However, when we further increaseM = 9, the approximation of the underlying

function actually gets worse, although we achieve a perfect fit to the training data. The added

flexibility of the model is spent on modelling non-meaningful noisy variations onthe data,

thus degrading the generalisability of the model to non-previously seen data. Such models

are said to beover-fittedto the data. Therefore, the best performance is typically achieved by

a model whose complexity is neither too small or too large.

Examples

In Nwe and Wang (2004), the authors compare the performance of a vocal segment detector

using 12-dim MFCCs and a hidden Markov model (HMM), for 2 and 10 gaussian mixtures

per state of the HMM, and report and average precision of 81.3% and 74.6% respectively.

The poorer performance of the most flexible model is a clear case of overfitting. In Beren-

zweig et al. (2003), the authors compare the precision of a timbre similarity taskfor different

numbers of clusters in a k-mean model in a 20-dim MFCC space. The metric used to estimate

the precision of the similarity is the average number of queries in a test database for which

the first nearest neighbor is the same as a ground truth similarity measure (“first place agree-
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Table 3.2: Influence of the number of clusters of KMean modelling on the precision of a similarity
task, reproduced from Berenzweig et al. (2003).

Number of clusters First place agreement percentage
8 21%
16 22%
32 23%
64 23%

ment”). The reported results, which we reproduce in Table 3.2, show little influence of the

parameter over the tested range of values.

3.2.3 Pattern: Feature Equivalence

Definition

Replacing a feature by an “equivalent” feature.

Description

Features as they are introduced by various researchers tend to gatherin sets of equivalent

semantics.Temporal featuresespecially contain information about the duration of excitation

of individual notes. From the short-time rms-energy envelope, one can estimate e.g. rise-

time, decay-time, strength and frequency of amplitude modulation, crest factor and detected

exponential decay from the rms-energy curve. As discussed above,such features have proved

important in early psychoacoustic experiments in timbre perception, which focus on record-

ings of individual notes, however they tend to be difficult to use with full-length polyphonic

music. Spectral featuresare considered more robust to polyphonic and complex textures.

Most of them are based on the short-time Fourier transform (STFT), andhave the general

equivalent semantic of characterizing the global “spectral shape”, in acompact and scalable

form. We detail here two notable approaches to model the spectral shape,which lead to the

definition of several equivalent sets of spectral features.

• Spectral Moments: The spectrumFt(w) of each framest of signal is considered as a
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probability distribution which observed values are the frequenciesw and the probabil-

ities to observe them are the normalized amplitudesp(w) = F(w)∑
w F(w) . From this dis-

tribution, one can compute the central moments. The motivation is that the series of

the moments of the distribution can be used to approximate the distribution in a scal-

able way, i.e. the first moments contribute the most to the approximation, and the more

moments, the more precise the approximation. This can notably be achieved (Cramér,

1957) with the Edgeworth series or Gram-Charlier A series, which if we include only

the first two development terms, reads:

F(x) ≃ 1
√

2πσ
exp

[
− (x− µ)2

2σ2

] [
1+
κ3

σ3
h3

( x− µ
σ

)
+
κ4

σ4
h4

( x− µ
σ

)]
(3.20)

whereh3 = (x3 − 3x)/3! andh4 = (xt − 6x2 + 3)/4! (Hermite polynomials), andκ3

andκ4 are the third and fourth cumulants of the distribution.κ3 andκ4 are related to the

central momentsm3 andm4 by:

m3 = κ3 (3.21)

m4 = κ4 + 3κ22 (3.22)

The first moment of the spectrum, namedSpectral Centroid, is the mean value of the

frequency distribution, i.e. the barycenter of the spectrum.

µ =
∑

w

wp(w) (3.23)

The second central moment,Spectral Spreadis the spread of the spectrum its barycenter,

i.e. the variance of the frequency distribution:

σ2 =
∑

w

(w− µ)2p(w) (3.24)
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Similarly, we define theSpectral Skewnessγ1 =
m3
σ3 andSpectral Kurtosisγ2 =

m4
σ4 using

the third and fourth momentsm3 andm4.

• Cepstrum: Another way to encode the shape of the spectrum in a scalable way is to

consider the spectrum valuesFt(w) of each framest as a signal ofw, and to compute its

Fourier transform, i.e. the Fourier transform of the Fourier transform. The infinite series

of Fourier coefficients can be used to reconstruct the original signal, and as illustrated

in Figure 3.8, the truncated series of the first coefficients can be used to approximate

the signal in a scalable way. As already described in 3.1, the Fourier transform of the

(decibel) spectrum is calledcepstrum(an anagram of “spectrum”, formed by reversing

the first four letters). There exist many ways to compute the cepstrum, and many features

built on the cepstrum, such as the notorious Mel-Frequency Cepstrum Coefficients. It

is interesting to note that the MPEG-7 standard (ISO, 2002) formalizes sucha set of

transforms to describe the spectral shape, by definingAudioSpectrumEnvelopeDwhich

is calculated by linear transformation of the STFT Power Spectrum

X = |FT |2N
2 +1

T (3.25)

andAudioSpectrumProjectionD, which is calculated by convertingAudioSpectrumEn-

velopeDto a decibel scale and applying a decorrelating linear transform matrixV

Y = 10log10(X)V (3.26)

This theoretically defines a class of equivalent features{Y}T,V , based on the cepstrum,

among which we find MFCC by choosingT to be the linear-to-Mel frequency map and

V to be the discrete cosine transform (DCT).

Examples

Yang (2002) compares two alternative envelope features, standard MFCC and so-called
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A
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D

Figure 3.8: Reconstruction of a square signal using increasing numbersof its Fourier components
(A:2, B:3, C:4, D:5).

“comb method” which convolves the spectrum with a family of comb filters. Caseyand

Crawford (2004) compares two different instantiation of the MPEG7AudioSpectrumProjec-

tionD, namely standard MFCC versus one built with an octave-based filterbank and a singular

value decomposition. Tzanetakis and Cook (2000); Kapur et al. (2004); West and Cox (2004)

compares a moment-like feature set (Spectral Centroid, Spectral Rolloff, Spectral Flux) to

MFCCs, for various classification problems.

3.2.4 Pattern: Model Equivalence

Definition

Replacing the statistical model by an “equivalent” model

Description

As for features (3.2.3), equivalence classes of statistical models tend to emerge according to

their high-level assumptions. A common partition considers “static” models suchas Gaus-

sian Mixture Models (GMM), histograms, k-Means or k-Nearest Neighbors (kNN), which

estimate the probability distribution of the frames as a whole without taking any account of

their time ordering on the one hand, and “dynamic” models on the other hand, such as hidden



50 Chapter 3. Dimensions ofTimbre Models

Markov models (HMM) or Recurrent Neural Networks (R-NN), which model both the static

distribution of the data and the time evolution of the distribution.

Examples

K-means are used in timbre similarity tasks by Logan and Salomon (2001); Baumann (2003);

Berenzweig et al. (2003); Herrera-Boyer et al. (2003); Pampalk etal. (2003). GMMs are used

in Berenzweig et al. (2003) and Kulesh et al. (2003). Scaringella and Zoia (2005) compares

several dynamical models for a genre classification task, based on MFCC: R-NNs, Explicit-

Time Modelling Neural Networks (Soltau, 1998), and HMMs.

3.2.5 Pattern: Feature Composition

Definition

Modifying a standard feature algorithm chain by inserting an additional mathematical opera-

tion.

Description

It is very common that an author should create a local variant of a standard feature by adding

• pre-processing such as low-pass filtering the signal, or normalizing its energy (e.g.

MFCC(Normalize(x)))

• post-processing such as taking the derivative (so called delta-coefficients) or rescaling

• intra-composition i.e. changing or adding an operation block in the middle of the chain

Examples

In Yang (2002), MFCCs are computed not for each frame at a constantframe-rate, but only on

the frames corresponding to a peak in the signal power (“event frames”). In Jiang et al. (2002),

the authors propose to modify the MFCC algorithm to not only compute the average spectrum

in each frequency band, but also a correlate of the variance, thespectral contrast(namely

the amplitude between the spectral peaks and valleys in each subband). This modifies the
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algorithm to output 2 coefficients (instead of one) for each Mel subband. Additionally, in the

algorithm published in Jiang et al. (2002), the authors replace the Mel filterbank traditionally

used in MFCC analysis by an octave-scale filterbank (C0-C1, C1-C2, etc.), which is assumed

to be more suitable for music. They also decorrelate the spectral contrast coefficients using

the optimal Karhunen-Loeve transform. The derivation of the standard MFCC algorithm to

the SpectralContrast algorithm is illustrated in Figure 3.9.

FFT Mel Bands Mean Log DCTs[n] mfcc

FFT
Octave

 Bands
Mean Log Karhunen

Loeve

Transform

s[n]
spectral

contrast
Range Log

Figure 3.9: Comparison of the standard MFCC algorithm chain (upper diagram) with the Spectral
Contrast algorithm (lower diagram), showing the various insertions/ replacements.

3.2.6 Pattern: Cross-Fertilisation

Definition

Borrowing a technique, often a feature, which was developed and proved successful in pattern

recognition for other domains than music.

Description

Music audio pattern recognition developed out of a large corpus of workdone in the context

of speech signals, for which a scientific and commercial interest was recognized earlier, no-

tably on the impulsion of the 1971 DARPA call on Speech Understanding Research (SUR)

(Kurzweil, 1996). The research effort of the five-year SUR project, which targeted a non

real-time recognition system with 90% sentence accuracy for continuous-speech sentences

using thousand word vocabularies, notably lead to such great advances as dynamic program-

ming (Itakura, 1975), and Markov modelling (Itakura, 1976). Cepstrum(see 3.2.3) has been

the dominant feature for speech recognition, notably since the classic formulation of Mel-
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Frequency Cepstrum Coefficients (MFCCs) by Rabiner (1989). However, it was originally

invented for characterizing the seismic echoes resulting from earthquakes and bomb explo-

sions (Tukey and Healy, 1963). Their success in the speech community logically lead to their

application to music signals, which can be traced back to the best of our knowledge to Foote

(1997), inspired by previous work on Speaker Recognition (Foote andSilverman, 1994). Lo-

gan and Salomon (2001), also coming from Speech Recognition, give a detailed account of

how well the assumptions of MFCCs hold for musical signals. Since then, it is acommon

pattern that features and techniques for timbre and music modelling should be borrowed from

other domains, not only speech recognition, but also sismic data or image processing.

Examples

Kim and Whitman (2002) uses Linear Predictive Coding (LPC) (Rabiner and Juang, 1993) ,

a technique used for Speech Compression, and a variant thereof, to build a singer identifica-

tion system. LPC are functionally equivalent to MFCC, as they encode the spectral envelope

of the signals, however they are believed to be better suited to the sharp formant spectrum

exhibited by voice signals, due to their formulation as a all-pole filter function modelling the

resonances of the vocal tract. Unfortunately, no comparison is given with standard MFCCs.

Deshpande et al. (2001) proposes to consider audio spectrograms asimages, and to extract

features developed in the context of image texture classification (convolution with directional

gaussian filters). Similarly, Casagrande et al. (2005) uses Haar-filters, a technique borrowed

to object image detection, to detect regular geometric patterns in speech and non-speech au-

diospectrograms.

3.2.7 Pattern: Modelling Dynamics

Definition

Modifying the features and/or the model to account for the dynamics of the data.

Description
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The prototypical algorithm described in 3.1 does not take any account oftime scale greater

than the frame size. All frames are typically modelled as a whole, without any account of

their time ordering. It is a common improvement strategy to many contributions to modify

this prototypical algorithm so as to take the dynamics of the data into account. Modifications

may occur at the feature level, by e.g.

• tapped delay line: consecutive feature vectors can be stacked into n-timeslarger feature

vectors, before sending them to the statistical model, thus constructing a flatspatial

embedding of the temporal sequence (see Figure 3.10).

t

Figure 3.10: Tapped delay line to account for the dynamics of the static features.

• derivation: Furui (1986) showed that speech recognition performance can be greatly

improved by adding time derivatives to the basic static features. Delta Coefficients are

computed using the following formula:

dt =

∑Θ
θ=1 θ( ft+θ − ft−θ)

2
∑Θ
θ=1 θ

2
(3.27)

wheredt is a delta coefficient at time t, computed using a time windowΘ. The same

formula can be applied to the delta coefficients to obtain the acceleration coefficients.

The resulting modified feature set contains, for each frame, the static feature values and

their local delta values (see Figure 3.11).

• texture windows: local static features (typically extracted every 50 ms) canbe averaged

over larger-scale windows (typically several seconds), in an attempt to capture the long-
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t

Figure 3.11: Computation of delta coefficients from a sequence of static features.

term nature of sound textures, while still assuring that the features be computed on small

stationary windows. Several statistics can be used on such so-calledtexture windows,

e.g. mean, standard deviation, skewness, range, etc. (see Figure 3.12).

t

Mean

Var{
Figure 3.12: Computation of statistics over texture windows.

• dynamic features: Another strategy to characterize the dynamics of the staticfeatures

is to compute features on the signal constituted by the static feature sequence(which

is considered to be sampled at the original frame-rate). For instance, a high-resolution

STFT can be taken on large frames (of several seconds’ duration), and the low-frequency

variations of the features (e.g. [1− 50Hz]) are taken as features instead of the original

ones (see Figure 3.13).

Dynamic models can also be used to account for the dynamics of static features. Such models

include recurrent neural networks (R-NN), which are typically 2 layernetworks with feedback

from the first layer output to the first layer input, and hidden Markov models, which can be

defined as a set of GMMs (also called states) linked to one another by a matrixof transition
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t

FFT

FFT
FFT

{
Figure 3.13: Computation of dynamic features with FFT over the sequence ofstatic features.

probabilities.

Examples

Use of Delta coefficients for MFCCs feature sets is reported e.g. in Talupur et al. (2000);

Tzanetakis and Cook (2000); Heittola and Klapuri (2002). Tzanetakis and Cook (2002) re-

ports a convincing 15% precision improvement on a genre classification taskwhen using

MFCC texture windows of up to about 40 frames (1 second). Whitman and Ellis(2004) uses

a modulation spectrum constructed by taking the long-term FFT of the MFCC, and aggre-

gating the obtained spectrum for each cepstral coefficient in 6 octave wide bins in [0,50Hz],

while Peeters et al. (2002) directly takes the FFT of the Mel-filtered spectrum, and keeps

only the spectrum values that maximize the mutual information. Scaringella and Zoia (2005)

compares the performances of several static models (support vector machines) with different

dynamic feature schemes, such as texture windows and delay lines, on a genre classification

task. The authors notably conclude that a 1 second delay line performs better (69%) than 1

second texture windows (65%).

3.2.8 Pattern: Higher-level knowledge

Definition

Improving the models by adding a layer of higher-level, non-signal intelligence.

Description
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This pattern can also be observed when reviewing Automatic Speech Recognition (ASR)

research. Over the last 30 years, much effort has been done to refine the signal representa-

tion of phoneme utterances, by the introduction of psychoacoustic models, and the statisti-

cal modelling of the phoneme dynamics, notably using markovian probabilistic frameworks.

However, usable ASR performances could only be reached by combiningsuch low-level tech-

niques with higher-level Natural Language Processing (NLP) architectures such as sentence

parsers and grammar models. Such systems can e.g. be used to disambiguate word boundaries

using contextual information and/or common sense. The point was notoriously demonstrated

by one famous T-shirt worn by Apple Computer researchers, reading:“I helped Apple wreck

a nice beach”, which, when spoken, sounds like “I helped Apple recognize speech”. A review

of NLP techniques and their integration with Speech Recognition can be found in Cole et al.

(1996).

Examples

Nwe and Wang (2004) describe a system to take song structure informationinto account

when classifying vocal/non vocal music. Their observation is that vocal and non vocal signal

segments display intra-song variations, such as signal energy, depending on the “song sec-

tion”: intro, verse, chorus, bridge and outro. Hence, they manually splitthe training data

into several sub-classes corresponding to each section. Using this scheme, they report a small

improvement (2%) over standard approaches. McKay and Fujinaga (2004) propose to use a

hierarchical genre taxonomy to improve automatic genre classification. Models are built both

for broad genre categories, such as Classical or Jazz (“root nodes”), and for more precise

sub-categories such as Jazz/Bebop or Jazz/Swing (“leaf nodes”). As can be seen in Table 3.3,

prefiltering recordings by root genre, before proceeding to the nextlevel of the hierarchy with

the subcategories of the winner root moderately improves the precision over the standard flat

approach in which all categories, root and leaf, are considered at thesame stage.
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Table 3.3: Influence of using hierarchical taxonomies in genre classification. Results reproduced
from McKay and Fujinaga (2004).

Classification type Precision on root genresPrecision on leaf genres
Flat 96% 86%

Hierarchical 98% 90%

3.3 Conclusion

The patterns described in this Chapter translate our personal view of the research made in the field

of Music Information Retrieval. The main objective of this description is rhetorical, as it provides

a way to structure the exploration made in the next chapter of the algorithmic space of typical

models of timbre. All these variations elaborate on the same common assumption, namely that the

perception of polyphonic timbre results from the long-term distribution of local, spectral features.

It is the validity of this assumption that we test in the next Chapter (Experiment 1).

However, we discuss here the possibility of other applications of such a structured view on the

domain. First, MIR patterns have pedagogical value∗. They provide a condensed and transverse

view on the enormous body of literature that emerged in the last 5 years or so. They help linking

contributions to one another, by identifying common methodologies. However,these patterns don’t

truly constitute an analysis method for MIR literature, insofar as they don’t yield any conclusion

other than the fact that therearepatterns.

The patterns described here go some way in the direction of formalizing research creativity and

intuitions. Notably, they support metaphorical reasoning, e.g. “if delta coefficients work to some

extent, I should probably investigate texture windows or hidden Markov models” (pattern 3.2.7).

However, they’re not a truly operational framework, as are design patterns in software engineering.

Notably, they don’t provide prototypical solutions to given problems. Thus they cannot easily be

used to help or even automatize research. However, some of the heuristicsdescribed here are in

the line of the automatized approach of the EDS system (Zils and Pachet, 2004). EDS proposes

to discover new signal-processing features by composition of a set of basic operators, guided by

∗Actually they were used by the author in a course given at ENSEIRB, Bordeaux, France in December 2005, on the
topic of music pattern recognition
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genetic programming.

Such patterns could be seen as a cynical view on the field, carrying the condescending message

of a lack of variety and originality. However, the existence of such a - rather small in fact - number of

patterns in “Signal Software Engineering” is probably little more than a logicalconsequence of the

dominant paradigm of pattern recognition: this pretty much imposes a finite number of variations

around the theme of features and models. This in particular seems a less flexible paradigm than the

Object Oriented approach presiding over design patterns in Software Engineering.

In fact, these patterns tell more about the scientific discourse than the science itself. They

provide a genealogy of prototypical concepts and methods, and could e.g. be used to help generate

“state of art” sections for new papers, or to organize bibliographical collections of papers, such as

the ISMIR repository†.

On the whole, the patterns described in this chapter ask the question of the knowledge repre-

sentation - not of the world under scientific inquiry - but of the domain-specific scientific method

itself. In particular, we would like to see systems that can tap automatically into existing contribu-

tions (papers, code, databases, etc.) to help the research on new problems, by suggesting features or

methods. The field of Music Information Retrieval with its infinity of specific descriptor problems

(new genres, new instruments, new moods, etc.), and its rather constrained and clustered space of

solutions (cf. the patterns above), appears to be a possible candidate for such systems.

†http://www.ismir.net/all-papers.html
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Chapter 4

Experiment 1: The Glass Ceiling

In this chapter, we test the validity of the assumptions underlying the pattern recognition approach

to polyphonic timbre, by hill-climbing the algorithmic space described in Chapter 3.In particular,

we question the common assumption found in the literature that error rates reported on implicit

models of timbre are incidental, and that near-perfect results would just extrapolate by fine-tuning

the algorithms parameters. We describe an evaluation framework which targets explicitly the no-

tion of timbre similarity, instead of derived high-level descriptions. We then use this framework to

evaluate the precision of very many parameters and algorithmic variants, someof which have al-

ready been envisioned in the literature, some others being inspired from typical patterns of research

methodologies observed earlier.

This leads to an absolute improvement over existing algorithms of about 15% precision. But

most importantly, we describe many variants that surprisingly do not lead to any substancial im-

provement of the measure’s precision. Moreover, our simulations suggest the existence of aglass

ceiling at precision about 65% which probably cannot be overcome by pursuing such variations on

the same theme.

61
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4.1 Experiment

We explore the space of polyphonic timbre models by applying transformations(so-calleddesign

patterns) to the prototypical algorithm described in Chapter 3.1. We list here all the variants that

were tested. For a complete description of each variant, please refer to Appendix B.

Parameters of the original algorithm (patterns 3.2.1 and 3.2.2)

We explore the space constituted by the following parameters :

• The sample rate of the music signal (11, 22 or 44kHz).

• The size of the frames on which we compute the MFCCs (from 10ms to 1s).

• The number of the MFCCs extracted from each frame of data (from 10 to 50).

• The number of gaussian components used in the GMM to model the MFCCs (from 10 to

100).

• The number of samples used in Monte-Carlo approximation (from 1 to 10,000).

Replacing MFCC by MPEG-7 Spectral Descriptors (pattern 3.2.3)

We try replacing/appending to the MFCC feature set various combinations of MPEG7-

standardized spectral descriptors based on moments of the spectrum, as described in Section

3.2.3: SpectralCentroid, SpectralSpread, SpectralKurtosis, SpectralSkewness,

SpectralFlatness, SpectralRolloff, SpectralFlux.

Alternative distance measure (pattern 3.2.4)

Some authors (Logan and Salomon (2001); Berenzweig et al. (2003)) propose to compare the

GMMs using the Earth Mover’s distance (EMD), a distance measure meant tocompare histograms

with disparate bins (Rubner et al. (1998)). We evaluate 2 different implementations of EMD against

the Monte Carlo approximation to KL divergence.
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Non-Parametric Modelling (pattern 3.2.4)

We evaluate and fine-tune the parameters of 2 alternative models of the MFCCdistribution than the

baseline GMM algorithm:

• Pampalk’s Spectrum histograms: 2D histogram counting the number of times loudness levels

(out of 10 normalized values) are exceeded in a each frequency band(on 20 Bark bands)

(Pampalk, 2004)

• MFCCs Histograms: based on vector-quantization of the MFCC space (Kohonen, 1995).

Processing commonly used in Speech Recognition (pattern 3.2.5)

MFCCs are a very common front-end used in the Speech Recognition community(Rabiner and

Juang, 1993), and a variety of pre and post-processing has been tried and evaluated for speech

applications. We examine the influence of 6 common operations:

• ZMeanSource: used in speech to remove the effects of A-D conversion.

• Pre-emphasis: used in speech to reduce the effects of the glottal pulses and radiation

impedance and to focus on the spectral properties of the vocal tract.

• Dither: adding a small amount of noise to the signal to avoid numerical problemsdue to

certain kind of waveform data (finite wordlength effects).

• Liftering: used in speech to rescale the MFCC coefficients to have similar magnitude.

• Cepstral mean compensation (CMC): to subtract the effect of the transmission channel.

• 0’th order coefficient: correlated with the signal’s log energy

Alternative MFCC algorithm (pattern 3.2.5)

In Jiang et al. (2002), the authors propose a simple extension of the MFCCalgorithm to not only

compute the average spectrum in each band (or rather the spectral peak), but also a correlate of the
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variance, thespectral contrast(namely the amplitude between the spectral peaks and valleys in each

subband). We evaluate two different implementation of this variant.

Borrowing from Image Texture Analysis (pattern 3.2.6)

We evaluate techniques inspired from those used for the automatic analysis of imagetextures, no-

tably second-order statistics analysis with grey-level co-occurrence matrix (GLCM) as proposed by

Haralick et al. (1973).

Delta and Acceleration Coefficients (pattern 3.2.7)

It is known since Furui (1986) that the performance of a speech recognition system can be greatly

enhanced by adding time derivatives to the basic static parameters. We evaluate the performance of

adding delta and/or acceleration coefficients to the original MFCC dataset, with different parameter

values.

Texture windows (pattern 3.2.7)

Tzanetakis in Tzanetakis and Cook (2002) reports that using a larger scale texture window and com-

puting the means and variances of the features over that window results in significant improvements

in music classification. We evaluate the influence of this variant, for window sizes between 0 and

100 frames.

Hidden Markov models (pattern 3.2.7)

To explicitly model this short-term dynamical behavior of the data, we try replacing the GMMs

by hidden Markov models (HMMs, see Rabiner (1989)), and to fine tune the models’ parameters

(number of gaussian components, number of states).
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Building in knowledge about note structure (pattern 3.2.8)

We investigate here 2 techniques to build in higher-level knowledge about the structure of musical

notes, namely the segmentation between transient and steady state:

• Removing noisy frames: identified with Spectral Flatness (Johnston (1988))

• Note Segmentation: In typical implementations, MFCCs are computed with a constant

frame-rate, and thus may average transient and steady-states of musicalnotes. We investigate

whether synchronizing the MFCC extraction to a preliminary automatic note segmentation

can improve the global modelling of polyphonic timbre similarity.

4.2 Method

4.2.1 Explicit modelling

We conduct our evaluation on anexplicit model of the timbre similarity of polyphonic textures. By

focusing on the low-level perceptive mechanism of timbre similarity, we aim at studying the validity

of the approach shared by the contributions described above, without depending on the unknown

correlations that exist at the level of high-level music descriptions.

4.2.2 Ground Truth

For this study, we have constructed a test database of 350 song items, as an extract from the Cuidado

database (Pachet et al., 2004) which currently has 15,460 mp3 files. It iscomposed of 37 clusters

of songs by the same artist, which were refined by hand to satisfy 3 additional criteria:

• First, clusters are chosen so they are as distant as possible from one another.

• Second, artists and songs are chosen in order to have clusters that are“timbrally” consistent

(all songs in each cluster sound the same).



66 Chapter 4. Experiment 1: The Glass Ceiling

• Finally, we only select songs that are timbrally homogeneous, i.e. there is no big texture

change within each song.

The test database is constructed so that nearest neighbors of a givensong should optimally belong

to the same cluster as the seed song. Details on the design and contents of the database can be found

in Appendix A.

4.2.3 Evaluation Metric

We measure the quality of the measure by counting the number of nearest neighbors belonging to

the same cluster as the seed song, for each song. More precisely, for agiven query on a songSi

belonging to a clusterCSi of sizeNi , the precision is given by :

p(Si) =
card(Sk/CSk = CSi andR(Sk) ≤ Ni)

Ni
(4.1)

whereR(Sk) is the rank of songSk in the query on songSi .

The value we compute is referred to as theR-precision, and has been standardized within the

Text Retrieval Community (Voorhes and Harman, 1999). It is in fact the precision measured after

R documents have been retrieved, whereR is the number of relevant documents. To give a global

R-precision score for a given model, we average the R-precision over all queries (i.e. 350, which is

the number of songs in the test database).

4.3 Tools

On the whole, the different variants and parameters examined in the experiment represent more

than 500 algorithms. Such extensive testing over large, dependent parameter spaces is both diffi-

cult and costly. We describe here our efforts in making this study possible, both through software

architectures, implementations and algorithmic innovations.
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4.3.1 Architecture

Conducting the systematic evaluation of music similarity measures requires the building of a general

architecture which is nearly as complex as a full-fledge EMD system, that is able to e.g. access and

manage the collection of music signals the measures should be tested on, store each result for each

song, compare results to a ground truth etc.

In the context of the European projects Cuidado and SemanticHifi, the music team at SONY

CSL Paris has developed a fully-fledged EMD system, the Music Browser (Pachet et al., 2004) based

on the MCM Java API, which is to our knowledge the first system able to handle the whole chain

of EMD from metadata extraction to exploitation by queries, playlists, etc. Metadata about songs

and artists are stored in a database, and similarities can be computed on-the-fly or pre-computed

into similarity tables. Its open architecture makes it easy to import and compute newsimilarity

measures. Similarity measures themselves are objects stored in the database, for which we can

describe the executables that need to be called, as well as the arguments ofthese executables.

Figure 4.1 shows a screenshot of the Music Browser in a typical experimentation session.

The “Metadata” panel (in the background) shows the list of all metadata available for items of

the “song” type. Metadata appearing in light gray indicate unary descriptors of songs (which

have a single value for a given song). Typical unary descriptors aretimbre models (e.g.

CentroidFlatnessRolloffGLCM which stores the Grey-Level Cooccurrence matrix of a given

song computed from the concatenation of its Spectral Centroid, Flatness and Rolloff, see Section

4.1 and Appendix B.8) and various metrics used for the analysis of experimental results (e.g.Angle

GMM measures the mean Neighbor angle for a given song, which is a measure weuse in Chapter 6

to evaluate the hubness of a song). Metadata appearing in dark gray indicate similarity measures,

which have a single value per duplet of songs. The highlighted distance in Figure 4.1,Distance

Histogram MFCC KMEAN, is a euclidean distance computed between histograms of MFCCs quan-

tized with a KMean algorithm (see Section 4.1 and Appendix B.7.2). The parameters of the selected

metadata can be edited in the right area of the Metadata panel. Additional metadata can be created

from this same panel with a few clicks.
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Figure 4.1: Screenshot of the Music Browser used as an experimentation platform in this study.

The “Search” panel of the Music Browser (in the foreground) showsthe values of the metadata

for the items of a given type. While traditional browsing scenarios would browse content items

such as songs or artists, it is also possible to browse system items such as metadata. Here, we

browse the collection of similarity measures. Furthermore, the genericity meansthat it is possible

to create metadataon metadata. Figure 4.1 shows the example of precision values (Precision R

andPrecision 10) computed for each similarity measure. Such meta-metadata can naturally be

edited in the “Metadata” panel described above and/or implemented anew as standard Java classes

based on the MCM API.
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4.3.2 Implementations

While many authors, such as (Pampalk, 2004), rely on Matlab implementations ofthe various algo-

rithms, it appeared in this study that runtime performances were critical in order to enable the testing

of many algorithm parameters over large ranges of values. Moreover, the above-mentioned need for

a larger database architecture and metadata-management tools posed the additional problem of in-

teroperability between the algorithm implementations and the Java-based tools such as MCM and

the MB. Finally, an additional constraint is the flexibility to modify the implementations inorder to

test variants, which tends to favour proprietary implementations compared to third-party toolboxes.

Therefore, we investigated a number of alternative and faster implementations, both for feature

extraction, distribution modelling and distance computations. Full details and comparison scores

between custom and third party code, as well as different platforms (Matlab, C, Java) can be found

in Appendix C. The best performing implementations, used in the following, arebased on custom-

code in C, called from Java by Java Native Interface (JNI).

4.3.3 Algorithms

Even with fast optimized implementations for distance computations, the task of finding the nearest

neighbors (NN) of a given song among large sets of songs (typically several ten of thousands) is a

very costly operation. This operation is needed both for the exploitation of agiven similarity metric

(“find me songs that sound like X”) and for the repetitive evaluation of algorithmic variants that we

propose to do in this study. This performance bottleneck is one of the principal reasons for the lack

of systematic evaluation found in the literature.

One approach for speeding-up NN search is to use pre-built index structures, such as B+-trees or

KD-trees (Samet, 1989) in euclidean spaces, or M-tree (Ciacca et al., 1997) and the Multi-vantage

point (MVP) tree (Bozkaya and Ozsoyoglu, 1999) for metric spaces. Most of these indexes rely on

the verification of the triangular inequality by the distance measure.

For the purpose of this study, we developed a generic algorithm for fastNN search in metric

spaces which relies neither on an index structure, nor on the verification of the triangle inequality
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by the distance measure. The algorithm exploits an intrinsic property of the class of similarity algo-

rithms that we study here: all exhibit aprecision-cputime tradeoff for some parameterp (tradeoff

parameter), i.e. for which both the precision and the cputime increase withp. It uses successive ap-

proximations of the measure to compute more and more expensive measures onsmaller and smaller

sets. Full details about the algorithm can be found in Appendix D. We achieve speed improvement

factors as high as 30, while still preserving more than 98% precision. These results are instrumental

in the feasability of the large-scale evaluation reported here.

4.4 Results

4.4.1 Best Results

A complete account of the results of the evaluation of the variants listed in Section 4.1 can be found

in Appendix B. We give here the main conclusions of the experiment:

• by hill-climbing the space of timbre models, we are able to increase the precision by more than

15% (absolute) over the original measure we introduced in Aucouturier and Pachet (2002b),

to a maximum of 65,2%R-precision.

• the best performing measure is a fine-tuned version of the prototypical algorithm described

in Chapter 3.1. It compares GMMs of MFCCs with Monte-Carlo approximation of the

Kullback-Leibler distance. The optimal number of MFCCs and GMM components are 20

and 50 respectively, and MFCCs are appended with their 0th order coefficient.

• among common speech processing front-ends, delta coefficients and 0th order MFCC increase

the precision by an unsubstantial extra 2% (absolute).

• dynamic modeling with hidden Markov models, and more complex processing inspired e.g.

by image texture analysis do not increase the precision any further.

The optimal measure as found by this experiment and reported in Aucouturier and Pachet

(2004a) was implemented by Elias Pampalk to win the “Artist Classification” contest at the ISMIR
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Figure 4.2: Precision vs Recall graph for the best measure

2004 Audio Description Contest (seehttp://ismir2004.ismir.net/ISMIR_Contest.html).

4.4.2 Significance

Figure 4.2 shows the precision-recall curve of the best measure (using20MFCCs+ 0th order coeffi-

cient+ 50 GMMs). It appears that the precision decreases linearly with the recall rate (with a slope

of about−5% per 0.1% increase of recall). This suggests that theR-precision value is a meaningful

metric to compare variants to one another, and gives a good indication of howthe algorithms behave

in more realistic applications contexts (e.g. “give me the 5 nearest neighborsof this song”).

While this 63% of precision may appear poor, it is important to note that our evaluation criteria

necessarily underestimates the quality of the measure, as it doesn’t consider relevant matches that

occur over different clusters (false negatives), e.g. a Beethoven piano sonata is timbrally close to a

jazz piano solo).

We should also emphasize that such an evaluation qualifies more as a measureof relative per-

formance (“is this variant useful ?”) rather than as an absolute measure. It is a well-known fact

that precision measures depend critically on the test corpus and on the actual implementation of the

evaluation process.

We do not claim that these results generalize to any other class of music similar-

ity/classification/identification problems. However, as mentioned in Chapter 2, very many high-
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level music description algorithms, such as genre classification, rely on the same paradigm for

polyphonic timbre modelling than we examine here. While the evaluation and comparison of such

systems require to also integrate higher-level correlations and groundtruth such as the categorical

semantics (“how close is rock from pop”), we believe that our results, based on an explicit mod-

elling of timbre similarity, contribute to a better understanding of the low-level aspects of some of

these higher-level algorithms. Moreover, as will be seen in the next sections, the explicit exami-

nation of timbre similarity reveals a number of qualitative problems which are likely toalso affect

higher-level music description algorithms, for which they would be more difficult to diagnose.

4.4.3 Dynamics don’t improve

A very notable result of this experiment is that classical pattern recognitionextensions that take the

data dynamics into account surprisingly fail to improve the precision of the models. This is notably

true for computing first order derivatives of the features (so called “delta coefficients”), computing

mean and variance of the features on intermediate-size “texture windows”,using dynamical models

such as recurrent neural networks or hidden Markov models, and second-order statistical analysis

inspired by image texture classification. Full details about the evaluation of each of these algo-

rithms can be found in Appendix B. Table 4.1 gives a subset of the evaluation scores achieved by

such variants on the test database. This is a surprising observation, which is at odds with experi-

mental evidence on the perception of monophonic instrument notes. The next chapter reports on an

experiment aiming at better understanding this result.

4.4.4 “Everything performs the same”

The experiment show that, except a few critical parameters (sample rate, number of MFCCs), the

actual choice of parameters and algorithms used to implement the similarity measuremake little

difference if any. We notice no substantial improvement by examining the very many variants in-

vestigated here : Complex dynamic modelling performs the same as static modeling. Complex

front-ends, like spectral contrast, performs the same as basic MFCCs. Complex distance measures,
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Table 4.1: R-precision scores achieved for the best algorithm as well as a number ofextensions
aiming at better modelling the dynamics of the data.

algorithm R-Precision

best (20 MFCC+ 50-state GMM) 0.65

DeltaΘ = 10 0.60
AccelerationΘ = 10 0.610

DeltaΘ = 2 0.62
DeltaΘ = 5 0.62

AccelerationΘ = 5 0.62
AccelerationΘ = 1 0.63

DeltaΘ = 1 0.63

Texture Windowwt = 10 0.64
Texture Windowwt = 20 0.65

HMM (5 states) 0.62
HMM (10 states) 0.63
HMM (20 states) 0.62
HMM (30 states) 0.44

Texture CM (GLA-quantized) 0.48
Texture CM (LVQ-quantized) 0.44

such as EMD or ALA as reported in Berenzweig et al. (2003), performsthe same as Monte Carlo,

or even simpler centroid distances as also reported in Berenzweig et al. (2003). This behaviour

has been mentioned before in the published partial comparisons between existing distance mea-

sures: Baumann (Baumann and Pohle (2003)) compares Logan and Salomon (2001), Aucouturier

and Pachet (2002b) and Baumann (2003) and observes that “the different approaches reach similar

performance”. Pampalk in Pampalk et al. (2003) remarks that the cluster organization of Logan and

Salomon (2001) and Aucouturier and Pachet (2002b) are similar. Berenzweig et al. in Berenzweig

et al. (2003) also conclude that the “different training techniques for GMMs (Kmeans or EM)” and

“MFCC or anchor space feature achieve comparable results”.

4.4.5 Existence of a glass ceiling

The experiments reported here also suggest that the precision achievable by variations on the

same classical pattern recognition scheme adopted by most contributions so far (including ours)
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Figure 4.3: Increase inR-precision over the whole parameter space used in this paper

be bounded. Figure 4.3 shows the increase inR-precision achieved by the experiments in this chap-

ter, over a theoretical parameter spaceλ (which abstracts together all the parameters and algorithm

variants investigated here). The curve shows an asymptotic behaviour ataround 65% (although this

actual value depends on our specific implementation, ground truth and test database).

This is at odds with the common assumption found in the literature that the reportederror-rates

are incidental, and that near-perfect results would just extrapolate by fine-tuning the algorithm’s

parameters.

Obviously, this chapter does not cover all possible variants of the same pattern recognition

scheme, as described in Chapter 4. Notably, one should also evaluate other low-level frame repre-

sentations than MFCCs, such as LPCs or wavelets, and feature selection algorithms such as discrimi-

nant analysis. Similarly, newer methods of pattern recognition such as support vector machines have

proved interesting for music classification tasks (Li and Tzanetakis (2003); Maddage et al. (2003))

and could be adapted and tested for similarity tasks. However, the set of features and variants used

here, as well as the investigation of different modelling strategies (static vs dynamic, parametric vs

non-parametric) is likely to capture most of the aspects covered by other variants. This suggests that

the “glass ceiling” revealed in Figure 4.3 may also apply for further implementations of the same

kind.
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4.4.6 False Positives areverybad matches

Even if theR-precision reported here does not account for a number offalse negatives(songs of dif-

ferent clusters that actually sound the same), the manual examination of the best similarity measure

shows that there also remain somefalse positives. Even worse, these bad matches are not “ques-

tionably less similar songs”, but usually areverybad matches, which objectively have nothing to do

with the seed song.

We show here a typical result of a 10-nearest neighbors query on thesongHENDRIX, Jimi - I

Don’t Live Todayusing the best set of parameters found above :

1. HENDRIX, Jimi - I Don’t Live Today

2. HENDRIX, Jimi - Manic Depression

3. MOORE, Gary - Cold Day in Hell

4. HENDRIX, Jimi - Love or Confusion

5. MITCHELL, Joni - Dom Juan’s Reckless Daughter

6. CLASH, The - Give Them Enough Rope

7. CLASH, The - Stay Free

8. MARDI GRAS BB - Bye Bye Babylon

9. HENDRIX, Jimi - Hey Joe

10. HENDRIX, Jimi - Are You Experienced

All songs byHendrix, MooreandThe Clashsound very similar, consisting in the same style of

rock electric guitar, with a strong drum and bass part, and strong, male vocals. However, the song

by Joni Mitchell ranked in 5th position is a calm folk song with an acoustic guitar and a female
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singer, while the 8th item is a big band jazzy tune. Similar bad matches are sometimes reported in

the literature, e.g. in Pampalk et al. (2003) “a 10-second sequence ofBoleroby Ravel(Classical) is

mapped together withLondon Callingby The Clash(Punk Rock)”, but most of the times, the very

poor quality of these matches is hidden out by the averaging of the reportedresults.

4.4.7 Existence of hubs

Interestingly, in our test database, a small number of songs seems to occurfrequently as false posi-

tives. For instance, the fifth neighbor of the Hendric query given above,MITCHELL, Joni - Don

Juan’s Reckless Daughter, is very close to 1 song out of 6 in the database (57 out of 350).

However, the cluster corresponding to it artist only contains 9 songs, i.e.this specific song occurs

more than 6 times more than it should. Among all its occurrences, many are likely tobe false

positives.

This suggests that the 35% remaining errors are not uniformly distributed over the whole

database, but are rather due to a very small number of songs, which we may call “hubs”, which

are close to all other songs. These hubs are especially intriguing as they usually stand out of their

clusters, i.e. other songs of the same cluster as a hub are not usually hubsthemselves.

Chapter 6 is devoted to a further study of the phenomenon of hubs. We conduct a number of

experiments which shows that this is not a boundary effect of our small-database evaluation, but

rather probably a general structural property of the class of algorithmsinvestigated in this work.



Chapter 5
Experiment 2: The Usefulness of

Dynamics

This chapter further examines one of the most surprising results ofExperiment 1, namely that

models that account for the time dynamics of the features are at best equivalent to simpler static

models. This contradicts experimental data on the perception of individual instrument notes. We

propose three possible causes for the difficulty of modelling dynamics of full songs, and discriminate

between them by comparing the performance of dynamical algorithms on several specially designed

datasets. We conclude that the main cause of the difficulty of modelling dynamics is the polyphonic

nature of the data.

5.1 The paradox of Dynamics

One of the surprising conclusions of the evaluation made in Chapter 4 is that classical pattern recog-

nition extensions that take the data dynamics into account surprisingly fail to improve the precision

of the models. This is notably the case for computing first order derivatives of the features (so called

“delta coefficients”) as introduced by Furui (1986), computing mean and variance ofthe features on

intermediate-size “texture windows” (Tzanetakis and Cook, 2002) or using dynamical models such

77
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as recurrent neural networks or hidden Markov models (Rabiner, 1989).

This is surprising, as we have already noted that static models consider frame-permutations of

the same audio signal as identical, while this has a critical influence on their perception. Moreover,

psychophysical experiments as we reported in Chapter 2 have established the importance of dynam-

ics, notably the attack time and fluctuations of the spectral envelope, in the perception of individual

instrument notes.

This probably means that existing pattern-recognition methods do not address the right struc-

tural time-scale, or are unable to learn it from data that is either too sparse or too variable. It has

been recently argued in the MIR community (Ellis, 2005) that although hidden Markov modelling

typically achieves a better fit to the modelled data (in terms of likelihood) than static models such

as GMMs, it does so by capturing non-discriminative baseline temporal correlation, which is not so

different among different songs or genres. The poor improvement, if any, achieved by state-of-art

dynamical models has recently been confirmed by Scaringella and Zoia (2005) on the related task

of musical genre classification.

5.2 Hypothesis

There are 3 main hypothetical causes that explain the difficulty of modelling dynamics in the case

of polyphonic timbre textures:

H1 Either the dynamics of timbre frames are impossible to capture at the time-scale of an individual

note, e.g. because there is too much timing variation from note to note. This is improbable, as

success in doing so has been reported notably in computer-based psychophysics analysis of

timbre perception (Krimphoff et al., 1994) or instrument note recognition (Dubnov and Fine,

1999; Eronen, 2003).

H2 Either its is the dynamics ofpolyphonictimbre frames that is difficult to model. We have al-

ready noted the problems of spectral masking and asynchronicity of several concurrent sound

sources, and how they defeat naı̈ve analysis generalized from the monophonic case.
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H3 Or it is the dynamics ofsuccessive notesat the time-scale of a phrase or a full song that are

difficult to model. It is unclear e.g. whether a HMM attempts to capture fine-graineddynamics

such as the succession of transient and steady-state inside individual notes or rather longer-

term structure like the succession of different instrument timbres.

5.3 Method

We propose to discriminate between these 3 hypotheses by testing the performance of dynamical

algorithms on two databases of individual sound samples:

• one composed of clean, monophonic individual instrument notes (DB1)

• the other obtained from a polyphonic, real-world recording (DB2)

The comparison of the performance of dynamical modelling against static modelling in both

contexts has the potential to disprove some of the above hypotheses. Evidence that dynamical

modelling performs constantly worse than static modelling on both databases would support H1

(and be at odds with previous findings from the literature). H2 will be supported should dynamical

modelling perform better than static on the monophonic dataset (DB1), but not on the polyphonic

one (DB2): this would mean that polyphony ruins attempts at modelling dynamics even within the

constrained time-scale of individual notes. Finally, evidence that dynamical models overperforms

static models for both databases, but not for textures made of successive notes as we established in

Chapter 5, would indicate that the critical factor is the existence of the longer-term structure of e.g.

phrase rhythm and instrument changes.

5.3.1 Databases

Table 5.1 and 5.2 describe the contents of both databases. DB1 was obtained as an extract of the

IRCAM “Studio On Line” database, made available in the context of the Cuidado European Project

(Pachet et al., 2004). It contains 710 short sound samples, categorized in 16 classes corresponding to
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Figure 5.1: Groundtruth for polyphonic samples

the instrument used for their recording. DB2 consists of sound samples obtained from the automatic

analysis of the songThe Beatles - Let it be, using the automatic segmentation algorithm described

in Appendix E. The process yielded 595 samples, which were manually clustered and categorized

into 16 categories, corresponding to the different mixtures of sound sources occurring in the song

(a few samples were discarded because they were either too short, or difficult to categorize). Figure

5.1 shows a screenshot of the Music Browser application, which was used to annotate DB2.

We remark that both database have the same number of classes, and roughly the same size,

which makes their comparison quite reliable. However, DB2 being obtained withautomatic seg-

mentation, samples from the same category may have quite different durations. This may be detri-

mental to dynamical algorithms, which may match samples of the same duration across different
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categories. To control this effect, we create a third database, DB3, which contains the same samples

as DB2, but sub-categorizes the timbre categories according to the samples’ duration: samples that

were categorized as e.g.Piano in DB2 are categorized in DB3 as one of{Piano 100, Piano 200,

...}, where{100,200,...} denotes the duration (in ms) of the sample (averaged to the nearest multiple

of 100ms). The typical sample duration being between 50ms and 1 sec., this creates up to 10 time-

indexed sub-class per original instrument class in DB2. Figure 5.1 showsboth the DB2 and DB3

labels for an extract of the database.

Table 5.1: Composition of the monophonic database.
Class Number of instances

Accordion 37
Alto violin 51

Bass 50
Bassoon 39

Cello 48
Clarinet 44

Flute 38
Guitar 66
Harp 40
Horn 78
Oboe 36
Sax 32

Trombone 38
Trumpet 32

Tuba 35
Violin 46

Total 710

5.3.2 Algorithms

17 algorithmic variants were implemented for each database and their results compared. Table 5.3

describes the parameters of each variant.

The use of dynamic information is embodied by 3 algorithmic variants based on Dynamic Pro-

gramming (DP, see e.g. Crochemore and Rytter (1994)). DP is typically usedfor aligning or com-
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Table 5.2: Composition of the polyphonic database.
Class Number of instances
Drums 119

Electric Guitar 148
Electric Piano 26

Organ 55
Organ & Drums 32

Piano 191
Piano & Tchak 53

Tutti 1 142
Voice & Bass & Drums 71

Voice & Organ & Drums 22
Voice & Piano 116

Voice & Piano & Choir 12
Voice & Piano & Organ 10
Voice & Piano & Tchak 39

Voice & Tutti 1 107
Voice & Tutti 1 & Electric Guitar 43

Total 595

puting the distance between 2 sequence of symbols, such as text, protein orDNA sequences. It

was also used e.g. in Smith et al. (1998) for comparing sequences of musical notes. DP relies

on a symbol-distance, which measures the distance between duplets of symbols in the alphabet

(which may have infinite size), and an edit-operation cost, which penalizes alignment changes in

the sequence (e.g., deletion, insertion, substitution). In our case, we compare sequences of MFCC

frames, using the euclidean distance as symbol distance, and compare 3 values for the edit cost

{10,100,1000}. The smaller the edit-cost, the more tolerant the measure is to modifications of the

time arrangement of successive MFCC frames. This makes it possible to alignclose MFCC frames

at different positions within the samples, i.e. to match sound samples of the same timbre, but with

very different duration. However, this also increases the number of false positives. DP can be viewed

as a manual equivalent of decoding the sequence with an a priori trainedHMM. Note however that

HMM-based similarity (as used for full songs in Chapter 4 and Appendix B.5.3) was impossible

to use in the context of short samples, because of the lack of training data:a typical sample has a

duration of 200 ms, which amounts to 10 frames.
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Table 5.3: Description of the algorithms used to compare monophonic and polyphonic sample sim-
ilarity

DynProg MFCC (edit 10) Dynamic Programming Comparison of MFCC frames (using an
edit cost of 10)

DynProg MFCC (edit 100) Same as above with edit cost of 100
DynProg MFCC (edit 1000) Same as above with edit cost of 1000

MFCC MP7 RMS 1G Monte-Carlo KL comparison of Gaussian Mixture model (using
1 gaussian component) of feature vectors composed of MFCCs
(dim 20), MP7 Spectral descriptors (dim 7) and RMS value (dim
1)

MFCC MP7 RMS 2G Same as above with 2 gaussian components
MFCC MP7 RMS 3G Same as above with 3 gaussian components
MFCC MP7 RMS 4G Same as above with 4 gaussian components

MP7 1G Monte-Carlo KL comparison of Gaussian Mixture model (using 1
gaussian component) of feature vectors composed of MP7 Spec-
tral descriptors (dim 7)

MP7 2G Same as above with 2 gaussian components

MFCC MP7 1G Monte-Carlo KL comparison of Gaussian Mixture model (using
1 gaussian component) of feature vectors composed of MFCCs
(dim 20) and MP7 Spectral descriptors (dim 7)

MFCC MP7 2G Same as above with 2 gaussian components

MFCC RMS 1G Monte-Carlo KL comparison of Gaussian Mixture model (using
1 gaussian component) of feature vectors composed of MFCCs
(dim 20) and RMS value (dim 1)

MFCC RMS 2G Same as above with 2 gaussian components

MFCC 1G Monte-Carlo KL comparison of Gaussian Mixture model (using
1 gaussian component) of feature vectors composed of MFCCs
(dim 20)

MFCC 2G Same as above with 2 gaussian components

Mean MFCC Euclidean Euclidean comparison of the mean of feature vectors composed
of MFCCs (dim 20)

Jehan Euclidean Euclidean comparison of the concatenation of the mean of fea-
ture vectors composed of MFCCs (dim 20), and a set of global
temporal shape descriptors (dim5)
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We compare these dynamical algorithms to a number of static algorithms, based oncom-

binations of features such as MFCC, energy (root-mean square) or Spectral MP7 descriptors

(i.e. SpectralCentroid, SpectralSpread, SpectralKurtosis, SpectralSkewness,

SpectralFlatness, SpectralRolloff, SpectralFlux). Features are compared using sim-

ple average comparison with euclidean distance, or Gaussian Mixture models(i.e. averageand

variance) with up to 4 gaussian components. Note that similarly to HMM-based processing, greater

numbers of components (such as 50 as used for full songs) could not be tested because of the lack

of training data in individual samples.

Finally, a hybrid algorithm inspired by Jehan (2004), compares a featurevector composed of the

average of the MFCCs and a set of global descriptors describing the temporal shape of the samples:

normalized loudness at onset and at offset, maximum loudness and relative location of the maximum

loudness.

5.3.3 Evaluation Procedure

The algorithms are compared by computing their precision after 10 documents are retrieved, and

their R-precision, i.e. their precision after all relevant document are retrieved. Each value measures

the ratio of the number of relevant documents to the number of retrieved documents. The set of

relevant documents for a given sound sample is the set of all samples of thesame category than the

seed. This is identical to the methodology used for Experiment 1 (Chapter 4).

5.4 Results

Table 5.4 shows the evaluation scores of the algorithms described above onboth databases DB1

and DB2. One can see that dynamic algorithms perform up to10% better(absolute) than static

algorithms on the monophonic database. This establishes that the dynamic evolution of instanta-

neous features are an important factor for timbre similarity. This confirms the findings of both

psychophysical experiments on the perception of instrument timbre, and a number of automatic
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instrument classification systems. The best static performances on DB1 areobtained with fairly

involved variants, which typically rely on concatenation of several features, and large Gaussian

Mixture Models.

However, dynamic algorithms perform nearly10% worsethan their static equivalent on the

polyphonic database DB2. It also appears that the best polyphonic performance is achieved with

the most simple static algorithms, such as euclidean comparison of the simple average of MFCCs.

Notably, while increasing the number of gaussian components for theMFCC MP7 RMS family of

algorithms constantly increases the precision on the monophonic dataset (from 0.62% to 0.64 %

R-precision), the same operation degrades the precision (from 0.51% to 0.42%) in the polyphonic

case.

Results on the duration-indexed version of the polyphonic database (DB3) confirm the fact that

dynamical algorithms are helped by keeping the duration constant within a class. Conversely, static

algorithms that do not consider duration are penalized by blindly returning samples which may be

of the correct DB2 class, but not in the correct DB3 class. However,the performance of dynamical

algorithms on DB3 remains more than 25% worse than the static performance on DB2, which

shows that, even at constant duration, dynamical algorithms are poor at capturing essential feature

dynamics.

Overall, the observation that dynamic algorithms overperform their static counterparts on DB1,

but are ranked in inverse order on DB2 gives strong evidence that polyphony ruins attempts at

modelling dynamics even within the constrained time-scale of individual notes. This conclusion

therefore generalizes all the more so to sequences of notes, and explains the poor performance of

dynamical algorithms for the timbre similarity of full songs.

Moreover, polyphony seem to make difficult the training of involved static algorithms such as

several-component GMMs. These perform less accurately than simplistic euclidean comparison of

the mean frame of each segment. As polyphonic samples tend to be longer than monophonic sam-

ples, this is not simply an effect of overfitting complex models to too little training data (see Section

3.2.2), but a property of the data itself. Polyphony, and notably the quasi-random superposition of
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Table 5.4: Comparison of similarity methods for monophonic and polyphonic samples. Best scores
for each dataset appear in bold.

Monophonic (DB1) Polyphonic (DB2) Polyphonic2 (DB3)
Method P10 PR P10 PR P10 PR

DynProg MFCC (edit 10) 0.76 0.46 0.44 0.34 0.24 0.22
DynProg MFCC (edit 100) 0.73 0.46 0.37 0.27 0.35 0.31
DynProg MFCC (edit 1000) 0.70 0.44 0.31 0.17 0.33 0.28

MFCC MP7 RMS 4G 0.64 0.34 0.42 0.31 0.12 0.12
MFCC MP7 RMS 3G 0.63 0.34 0.45 0.32 0.12 0.12
MFCC MP7 RMS 2G 0.62 0.33 0.47 0.35 0.14 0.13
MFCC MP7 RMS 1G 0.62 0.35 0.51 0.37 0.15 0.14
MP7 1G 0.61 0.38 0.36 0.29 0.11 0.11
MFCC MP7 1G 0.61 0.33 0.47 0.35 0.14 0.13
MP7 2G 0.61 0.38 0.36 0.29 0.11 0.11
MFCC MP7 2G 0.59 0.31 0.43 0.33 0.12 0.12
Mean MFCC Euclidean 0.58 0.33 0.50 0.39 0.14 0.13
Jehan Euclidean 0.56 0.32 0.49 0.38 0.21 0.19
MFCC RMS 2G 0.56 0.28 0.48 0.35 0.14 0.13
MFCC RMS 1G 0.55 0.27 0.50 0.37 0.15 0.14
MFCC 2G 0.51 0.26 0.46 0.32 0.14 0.13
MFCC 1G 0.50 0.26 0.47 0.33 0.15 0.13
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asynchronous sources in a given sound sample, probably creates a higher degree of variance from

one sound sample to another than in the monophonic case. This effect could probably be limited if

more data were available, e.g. in the context of classification where models aretrained on a set of

several songs, instead of individual songs as we do here for similarity.





Chapter 6
Experiments 3-8: Understanding Hubs

Probably the most important and novel finding ofExperiment 1 is that the class of algorithms

studied in this work tend to create false positives which are mostly always the same songs regardless

of the query. In other words, there exist songs, which we callhubs, which are irrelevantly close to

all other songs. This phenomenon is reminiscent of other isolated reports indifferent domains, such

as Speaker Recognition or Fingerprint Identification, which intriguingly also typically rely on the

same pattern-recognition algorithms. This suggests that this could an importantphenomenon which

generalizes over the specific problem of timbre similarity, and indicates a general structural property

of the class of algorithms examined here. This chapter reports on a number ofexperiments aiming

at better understanding the nature and causes of hub songs.

6.1 Definition

In this chapter, we callhuba song which occurs frequently as a false positive according to a given

similarity measure. This both implies that

1. a hub appears in the nearest neighbors of most songs in the database

2. most of these appearance do not correspond to any meaningful perceptual similarity.

Each condition in itself is not sufficient to characterize a hub:

89
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1. A given song may occur very many times in the nearest neighbors of other songs, but this

may not be a bug. Depending on the composition of a given databases, somesongs may well

approximate the perceptual center-of-mass of the database. For instance, it may be found that

A Hard Day’s Nightby The Beatlesis a song that bears close timbre similarity to most of

60’s pop music, and therefore could be found to occur very frequently as a nearest neighbor

to many songs in a database composed by a majority of Rock and Pop songs. However, in a

classical music database, the same song would not be a hub.

2. A given song may be a false positive for a given seed song, i.e. be in the first nearest neighbors

of the seed without any actual perceptual similarity. However, different songs may have

different false positives. For instance, a givenBeethovenpiano sonata may be mismatched to

an acoustic guitar piece, but not necessarily mismatched to other songs. A hub is a piece than

is irrelevantly close to very many songs, i.e. a bug which is not local to only a few queries.

6.2 Why this may be an important problem

The existence of objects that tend to be very frequent false positives for pattern recognition algo-

rithm has long been acknowledged in other domains that music. Biometric verification systems,

such as fingerprints, but also speech and speaker recognition systemstypically exhibit striking per-

formance inhomogeneities among users within a population. The statistical significance of such

critical classes of users, in the context of Speaker Verification, was formally shown in Doddington

et al. (1998), by analysing population statistics based on the test data usedfor the NIST 1998 speaker

recognition evaluation. This evaluation includes data from more than 500 speakers and recognition

results from 12 systems. The paper established a speaker taxonomy in termsof animal names:

Goat Goat users are users that are very difficult to recognize, i.e. that are associated with a high

rate of false reject.

Lamb Lambs are those users that are particularly easy to imitate. Randomly chosen users are

exceptionally likely to impersonate a lamb.
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Wolf Wolves are those users who are particularly successful at imitating other speakers. Their

speech is exceptionally likely to be accepted as that of another speaker. (Figure 6.1)

Figure 6.1: So-called “wolf” speakers are exceptionally successful at imitating other speak-
ers with speaker recognition systems. Drawing courtesy of Johan Koolwaaij, retrieved from
http://www.ispeak.nl/

A complete analogy with this taxonomy would call a wolf a song which is constantly closer to

a random songS thanS is to itself. However, the Speaker Recognitionmenagerieis essentially

pointing out the same phenomenon as the hubs observed with our timbre similarity measure: that

high false positive rates are not uniformly distributed in the database, but manifests only in a small

critical population.

Goats and Wolves users are critical to take into account to carefully evaluate system performance

(Koolwaaij and Boves, 1997; Bimbot and Chollet, 1997). Workarounds have been designed to

pragmatically improve system performance, such as the use of cross-validation with cohort speakers

(Rosenberg et al., 1992) or separate processing of pre-filtered “lamb” speakers (Jin and Waibel,

2000). Nevertheless, the reason for the appearance of such classes has rarely been questioned, and
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is generally thought to be an intrinsic property of human users∗.

However, a recent study (Hicklin et al., 2005) in the context of fingerprint recognition suggests

that these properties of wolfiness, goatness, etc.. are not intrinsic properties of the users themselves,

but rather properties of the algorithms. The observation that we make hereof the existence of

“wolf songs’, in the different context of music pieces, seems to corroborate this hypothesis. Thisis

especially interesting as the techniques used for timbre similarity (namely variations on the GMMs

of MFCCs) are typically similar to the ones employed in Speaker/fingerprint recognition systems.

We will show in the remaining of this chapter that we can also observe that the hubness of a given

song is algorithmic-dependent, and that the existence of such critical classes may indicate a more

general structural property of pattern recognition techniques.

6.3 Measures of hubness

Several measures can be used to identify and quantify the “hubness” ofa given song. We describe

here two of such measures. Greater details and alternative measures aregiven in Appendix F.

6.3.1 Number of occurrences

A natural measure of the hubness of a given song is the number of times the song occurs in the first

n nearest neighbors of all the other songs in the database. Table 6.1 shows a few songs in the test

database along with the number of times they occur in the first 10 nearest neighbors over all queries

(N10). This illustrates the predominance of a few songs that occur very frequently. For instance, the

first song,MITCHELL, Joni - Don Juan’s Reckless Daughter is very close to 1 song out of

6 in the database (57 out of 350).

This measure has the following properties:

• Independent of distance: Being based on rank, the number of occurrences of a song is

independent of the range of the values produced by a given distance measure. Therefore, it

∗Note that this would be intriguingly true of human speech but also fingerprints, etc.
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Table 6.1: 15 Most Frequent False Positives
Song N10 card(CS) N10

card(CS)

MITCHELL, Joni - Don Juan’s Reckless Daughter 57 9 6.33
RASTA BIGOUD - Tchatche est bonne 30 7 4.23

MOORE, Gary - Separate Ways 35 9 3.88
PUBLIC ENEMY - Cold Lampin With Flavor 27 8 3.37

GILBERTO, Joao - Tin tin por tin tin 25 8 3.12
CABREL, Francis - La cabane du pêcheur 22 7 3.14

MOORE, Gary - Cold Day In Hell 27 9 3.0
CABREL, Francis - Je t’aimais 20 7 2.86

MOORE, Gary - The Blues Is Alright 25 9 2.77
MARDI GRAS BIG BAND - Funkin’Up Your Mardi Gras 19 7 2.71

RASTA BIGOUD - Kana Diskan 18 7 2.57
BRIDGEWATER, DD - What Is This Thing Called Love 30 12 2.5

Frehel - A la derive 20 8 2.5
ADAMS, Bryan - She’s Only Happy When She’s Dancin’ 20 8 2.5

MITCHELL, Joni - Talk To Me 22 9 2.44

can be used to compare hubs appearing with different algorithms, which we will do e.g. in

Section 6.6.

• Dependant on database: The total number of occurrence of a song is composed both of true

and false positives. As explained earlier, only the latter are characteristicof a hub. This metric

therefore is conservative in the sense that if a high number of occurrence is observed for a

given song in an arbitrary database, it is difficult to conclude whether it is indeed a hub (i.e.

that most of these occurrences correspond to false positives) or a perceptual center-of-mass

(i.e. most of the occurrences are true positives).

• Constant-sum: An important property of the number ofn-occurrencesNn of a song is that

the sum of the values for all songs is constant given a database. Each query only gives the

opportunity forn occurrences to the set of all the other songs, such that the total number of

n-occurrences in a givenN-size database isn ∗ N . Therefore, the meann-occurrence of a

song is equal ton, independently of the database and the distance measure. Alternatively, if

we assume that the distance engenders a uniform, random distribution of thesong, a given
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song has the probabilityp = n
N to occur in then-nearest neighbor of another song, which

indeed gives an expected number of occurrencesE(Nn) = N ∗ p = n. Table 6.2 illustrates the

experimental verification of this property (constant mean) for several distance algorithms.

Table 6.2: Comparison of mean nb of occurrences and mean neighbor angle for songs in the test
database, for several distance algorithms

Measure GMM HMM Delta Acceleration Histogram
N100 100.2 98.7 99.4 99.4 99.6
Neighbor angle (degrees) 58.8 55.6 58.3 57.9 59.9

• Descriptive statistics: This has the notable consequence that the mean valueof Nn is useless

to measure the influence of a given algorithm on the global hubness of a database. One has to

look for other descriptive statistics, such as the variance of the distributionof occurrences, or

the number of songs with more than a given number of occurrences.

6.3.2 Neighbor angle

An operational definition of a hub is that it is a songH which is found to be “close” (though not

perceptually) to duplets of songsA and B which themselves are (perceptually) distant from one

another. Note that songs close to many songs which are themselves close to one another would in-

dicate an acceptable “center-of-mass” situation. Therefore, the hubness of songH can be estimated

by comparing its distances to its neighborsd(H,A) andd(H, B) on the one hand, and the distance

between the neighborsd(A, B) on the other hand. Equivalently, on can measure the angleθ formed

by the segments [H,A] and [H, B]. As seen in Figure 6.2, the angleθ can be expressed in terms of

d(H,A), d(H, B) andd(A, B).

d = d(H, B) sinθ = d(A, B) sinα (6.1)

d′ = d(H,A) − d(H, B) cosθ = d(A, B) cosα (6.2)

⇒ d2 + d′2 = d(H,A)2 + d(H, B)2 − 2d(H,A)d(H, B) cosθ = d(A, B)2 (6.3)
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Figure 6.2: The neighbor angleθ can be expressed in terms ofd(H,A), d(H, B) andd(A, B).

and therefore

h2(H,A, B) = cosθ =
d(A, B)2 − d(H,A)2 − d(H, B)2

2d(H,A)d(H, B)
(6.4)

This is computed for a given songH by drawing a large number of successive duplets of neighbors

(A, B) (such thatA , B , H), and computing the mean value ofh2(H,A, B). We use 1000 successive

random draws.

Measures of neighbor angle have the following properties:

• Independent of database: Unlike measures of the number of occurrence of a song, distance-

based metrics such as neighbor angle are independent of the possible perceptual clusters of a

given database. Thus they can be used to compare algorithms on different databases.

• Dependant on algorithm: Neighbor angle is dependent on the discrimination capacity of the

distance, i.e. the typical distance ratio between what can be considered a close distance, and

what can be considered a large distance.

• Constant-sum: An important property of the neighbor-angle value is that, likethe number of

n-occurrencesNn of a song, the sum of the values for all songs is constant given a database

size. This directly derives from the fact that the angles of a triangle sum toπ radians (in a

euclidean geometry - which is only approximated here in the general case†). Given a set of

N points, the number of angles whose vertex is a given pointX, and are formed by the lines

†This is not a problem in terms of cognitive modelling. Tversky (1977) showed that measures of similarity that
conform to human perception do not satisfy the usual properties of a metric, notably symmetry and triangular inequality
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from X to theN − 1 other points, is equal to the number of combinations of 2 points within

N − 1, i.e. C2
N−1. There areN possible vertexX for such angles, thus there are a total of

NC2
N−1 =

n(n−1)(n−2)
2 angles formed between theN points. It is easy to see thatn(n−1)(n−2)

is divisible by 3∀n. Hence, these angles can be clustered by triplets, so that their supporting

lines form a triangle, and thus sum toπ. Therefore, the sum of all angles formed between

N points equals
NC2

N−1
3 π. Table 6.2 illustrates the experimental verification of this property

(constant mean) for several distance algorithms. The deviation of the meanangle from the

theoretical value 60◦ is both explained by the statistical approximation of the computation of

the angles and by the possible non-euclideanity of the underlying geometry.

• Descriptive statistics: This has the notable consequence that the mean valueof the neighbor

angle is useless to measure the influence of a given algorithm on the global hubness of a

database. Like for occurrence values, one has to look for other descriptive statistics, such as

the number of songs with a mean angle greater than a given limit.

6.3.3 Correlation between measures

As can be seen in Figure 6.3, there is a nearly logarithmic dependency between the number of

occurrences of a given song and its mean neighbor angle. Table 6.3 shows the linear correlation

scores between the logarithm ofN100 and the neighbor angle measure, for several models. The best

fits are achieved for the static models, both parametric and non-parametric. Dynamic models tend

to create more outlier points in the scatter plots, which reduce the correlation scores. It appears

that hub songs tend to be associated to higher values of neighbor angle. However, the logarithmic

dependency makes it difficult to distinguish songs with number of occurrences in the range 100–

200 using their value of neighbor angle. Therefore, in the remaining of thechapter, the rank-based

measure will be preferred when comparing different settings in the same database.
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Figure 6.3: Scatter plot between number of 100-occurrencesN100 and mean neighbor angle for a
distance based on GMM.
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Figure 6.4: Distribution of the songs according to their number of 100-occurrences in the 360-song
test database, with a GMM-based distance.
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Table 6.3: Correlation between the logarithm of the number of 100-occurrencesN100 on the one
hand, and mean neighbor angle on the other hand, for various models

GMM HMM Delta Acceleration Histogram
0.85 0.76 0.73 0.74 0.93

6.4 Power-law Distribution

In this section, we examine the distribution of hub songs in a typical database.Figure 6.4 shows

the distribution of the songs in the test database according to their number of 100-occurrences, for

a GMM-based distance. We observe the following facts:

• The distribution decreases regularly from 50 to the maximum possible value 360 (not

reached). It is skewed left-wise with respect to the theoretical mean value(100).

• The majority of songs have aN100 value in the range [50− 100], which correspond to an

expectable standard behaviour: songs in a given cluster are typically close to songs from the

same cluster (say around 15), and from songs from 2-3 neighboring clusters.

• About 15% of the songs exhibit aN100 value larger than 200 (out of a maximum possible

360). Such songs can reasonably be labelled as hubs.

• Hubness is not a discrete boolean property, but rather a continuous variable. The database

exhibits a continuum of hubs of varying importance, with a couple of songs having aN100

value larger than 300, but also intermediate values in the range [100− 200].

In order to better estimate the hub distribution, we implement the best achieving measure

(GMM-based) on a much larger database that was assembled for the Cuidado project (Pachet et al.,

2004). The database currently contains 15,460 mp3 files. Figure 6.5 shows the distribution of songs

in the Cuidado database according to their number of 100-occurrences.One can observe that a few

songs get upward of 2000 occurrences, whereas most songs only have around a few hundred occur-

rences (more than 6,000 songs have between 150 and 160 occurrences). The distribution is strongly
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Figure 6.5: Distribution of the songs according to their number of 100-occurrences in the Cuidado
15,000-song database, with a GMM-based distance.

reminiscent of a power-law:

P[X = x] = x−γ (6.5)

Figure 6.6 shows the same plot than Figure 6.5, but on a log-log scale the samedistribution

shows itself to be linear. This is the characteristic signature of a power-law.To get a proper fit, the

N100 were binned into exponentially wider bins (thus appearing evenly spaced inthe log domain).

A nearly linear relationship extends over 4 decades ([1−104]) songs, which is why such distribution

have been called “scale-free”, or lacking a “characteristic length scale”. This means that no matter

what range of x one looks at, the proportion of small to large events is the same, i.e. the slope of the

curve on any section of the log-log plot is the same.

A power-law describes a situation where small occurrences are extremelycommon, whereas

large instances are extremely rare. Many man-made and naturally occurring phenomena, including

city sizes, incomes, word frequencies, and earthquake magnitudes, aredistributed according to a

power-law distribution (Bak, 1996). Recently, attention has turned to the internet which seems to

display quite a number of power-law distributions: the number of visits to a site, the number of

pages within a site (Huberman and Adamic, 1999), and the number of links to a page (Albert et al.,
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Figure 6.6: Log-log plot of the distribution of the songs according to their number of 100-
occurrences in the Cuidado 15,000-song database, with a GMM-based distance. The distribution is
approximately linear, which indicates a power-law.

1999), to name a few. Similarly, scale-free distributions have been observed in musical data, notably

in networks of artists that co-occur in playlists from specialized websites (Cano and Koppenberger,

2004).

For all these reasons, the scale-free distribution of networks of timbrally similar songs is a re-

markable, but not utterly surprising phenomenon. If all timbre distances were perceptually relevant

(“no bugs”), then it would an acceptable conclusion that some songs be more “prototypical” than

others, thus translating the distribution of musical and social influences andcommunities inherent

to possibly every human activity. However, as already noted, what we observe here is a distribution

of algorithmic bugs rather than a self-organization of a music space: The most connected songs (ex-

treme hub songs that are close matches to more than a third of a given database) typically appear as

the nearest neighbors of songs to which they do not bear any perceptual similarity. It is yet unclear

whether the scale-free distribution that we observe here is

• the result of a scale-free organisation of an ideal perceptual distancemeasure, which is being

polluted by measurement errors

• the result of a non remarkable ideal distribution, polluted by a scale-free distribution of false-
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positives

• or both

The influence of measurement errors on scale-free distributions could be studied e.g. in the light of

recent results on the robustness of experimental topological analysis ofprotein interaction networks

(Lin and Zhao, 2005).

6.5 Experiment 3: Features or Model ?

6.5.1 Hypothesis

In this section, we investigate whether hubs are a consequence of poor featural representation of

the frames of audio data. We test the hypothesis that hubs exist on full songs, because hubs also

exist on individual MFCC frames, i.e. that there are specific segments of audio data which are close

non-perceptive matches to every other possible frames.

6.5.2 Experiment

We build a database of individual 2048-point hamming-windowed frames ofaudio data, obtained

from the uniform segmentation of a few different songs. The database is made to contain 15,000

frames, so results can be quantitatively compared to the full-song behaviourin the Cuidado database.

Each frame is modelled by 20 MFCCs (incl. 0th order coefficient), which is the feature space used

in the best performing full-song measure. A distance measure is implemented using euclidean dis-

tance, each dimension being normalized to be between 0 and 1, using the 5% and 95% percentile

values. This distance measure was chosen to yield a behaviour similar to MFCCs comparison in

GMM probability estimation (euclidean comparison with mean vector, rescaled byvariance coef-

ficients in each dimension). We compute the 100 nearest neighbors of eachframe in the database,

store them, and compute the nb of 100-occurrence of each frame in the database.



102 Chapter 6. Experiments 3-8: Understanding Hubs

100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

Distribution of number of 100−occurrence of individual MFCC frames in a 15,000 frame database, using normalized euclidean distance.

Nb of 100−occurrences

N
um

be
r 

of
 M

F
C

C
 fr

am
es

Figure 6.7: Distribution of the MFCC frames according to their number of 100-occurrences in a
15,000-frame database, based on normalized euclidean distance.

6.5.3 Results

Figure 6.7 shows the distribution of the MFCC frames according to their numberof 100-

occurrences. The distribution is exponentially decreasing, with a maximumN100 value around 500.

Such small numbers do not indicate the presence of hubs, which is confirmed by manual inspection

of the neighbors of the most re-occurring frames. These frames typicallycorrespond to sounds that

are common to many different songs, such as noise or silence, and thus have more neighbors than

more specific frames (harmonic sounds) that tend to be close to frames of thesame song only. The

maximumN100 value of 500 is less than 10 times smaller than the maximum value obtained for full

songs in the Cuidado database. This indicates that the hub phenomenon is not a direct consequence

of poor featural representation, but rather an effect of the modelling of the agglomeration of the very

many frames in full songs.

6.6 Experiment 4: Influence of modelling

6.6.1 Hypothesis

In this section, we investigate whether hubs are a consequence of a specific algorithmic strategy for

modelling the agglomeration of frames in full songs. We test the hypothesis thathubs appear only
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(or in majority) for a given algorithm.

6.6.2 Experiment

We compare several measures of hubness on our test database for a subset of the algorithms studied

in Chapter 5, chosen to be representative of the principal modelling strategies, namely:

• Static parametric model: 20 MFCCs (incl. 0th coefficient), 50-state GMM, compared by

Monte Carlo. This is the best performing algorithm found in Chapter 5.

• Static non-parametric model: 20 MFCCs (incl. 0th coefficient), vector-quantized to 200 code-

book vectors using LVQ, modelled by histograms compared by euclidean distance (see Ap-

pendix B.7.2).

• Static parametric modelling of first-order dynamics: 20 MFCCs (incl. 0th coefficient), ap-

pended with 20 delta coefficients, 50-state GMM, compared by Monte Carlo (see Appendix

B.5.1).

• Static parametric modelling of second-order dynamics: 20 MFCCs (incl. 0th coefficient),

appended with 20 first-order delta coefficients and 20 second-order acceleration coefficients,

50-state GMM, compared by Monte Carlo (see Appendix B.5.1).

• Dynamic modelling with parametric model: 20 MFCCs (incl. 0th coefficient), modelled with

12-state HMM, using 4 Gaussian components per state, compared by Monte Carlo (see Ap-

pendix B.5.3).

6.6.3 Results

Figure 6.8 shows the distribution of the number of 100-occurrences of songs in the test database, for

the 5 algorithmic variants. Since the number of occurrences is a constant-sum measure, all 5 distri-

butions are centered on the same mean value of 100 (see Section 6.3.1). However, it appears that

the choice of the algorithm has an influence on the shape of the distribution ofoccurrences. While
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Figure 6.8: Distribution of the Number of 100-occurrences of songs in thetest database for several
distance algorithms.

all algorithms produce extreme hubs having high number of occurrences (e.g. N100 > 300), hubs

tend to be smaller for the GMM-based distance than for both the dynamic-based and the histogram-

based ones. Due to the constant-sum effect, algorithms that produce more high-occurrence songs

also produce more low-occurrence songs. This results in a skewed distribution (where very many

low-occurrence songs compensate a few high-occurrence songs) inthe case of the dynamic-based

distances, and a bi-modal distribution for the histogram-based distance, for which very few songs

actually take the mean occurrence value.

This behaviour is confirmed by Table 6.4, which shows the number of songsin the test database

that exhibit high values for both number of 100-occurrences and number of 20-occurrences. The
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5 measures exhibit different proportions of hubs: GMM-based distances produce the fewest, while

Histogram-based distance produce 5 times as many.

The proportion of hubs produced by each algorithm is in agreement with theprecision reported

in Chapter 5: GMM-based distances perform better than (or equivalentto) dynamics, which perform

better than histograms.

Nevertheless, it is difficult to conclude that hubs are a specific property of a given algorithmic

strategy to model the MFCC frames. All algorithms create hubs. Moreover, static modelling create

more hubs than dynamics in the case of Histograms and HMMs, but not in the case of GMM and

HMMs. If anything, it seems that non-parametric (Histograms) create more hubs that parametric

approaches (GMMs, HMMs). This notably rules out possible convergence problems of parametric

estimation (local minima) as a source of bugs.

Table 6.4: Comparison of number of songs exhibiting high number of occurrences in the test
database, for several distance algorithms

Measure GMM HMM Delta Acceleration Histogram
N100 > 200 16 48 49 45 69
N20 > 40 34 41 39 39 42

6.7 Experiment 5: Intrinsic or extrinsic to songs ?

6.7.1 Hypothesis

In this section, we investigate whether hubs are an intrinsic property of given songs, which will act

as hubs independently of the algorithm used to model them. We test the hypothesis that hub songs

are strongly correlated between different algorithmic measures.

6.7.2 Experiment

We compute the correlation between hubness measures for songs modelled with the same five algo-

rithms as above.
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6.7.3 Results

Table 6.5 reports the correlation of the hubness of all songs between various algorithmic models,

using 2 measures of hubness (number of 100-occurrences and the neighbor angle).

Table 6.5: Correlation of the hubness of all songs between various algorithmic models. The hubness
of songs is measured both by the number of 100-occurrences and the neighbor angle (the latter in
parenthesis).

GMM HMM Delta Acceleration Histogram
GMM 1.0 0.78 (0.67) 0.79 (0.69) 0.79 (0.71) 0.42 (0.17)
HMM - 1.0 0.95 (0.96) 0.90 (0.96) 0.47 (0.17)
Delta - - 1.0 0.97 (0.99) 0.46 (0.15)
Acceleration - - - 1.0 0.43 (0.14)
Histogram - - - - 1.0

Both measures reveal the same structure:

• Hubs appearing with GMMs are moderately correlated to HMMs, Delta and Acceleration.

This is illustrated on the scatter plot shown in Figure 6.9

• Hubs appearing with HMMs, Delta and Acceleration are very strongly correlated. This is

illustrated on the scatter plot shown in Figure 6.10

• Hubs appearing with Histograms are strongly decorrelated to those appearing with the other

algorithms.

In more details, Tables 6.6 and 6.7 compare the most frequent hubs for 2 GMM and Histogram-

based distances, here measured with their number of 20-occurrences.It appears that some songs act

as hubs for both measures, e.g.MITCHELL, Joni - Dom Juan’s Reckless Daughter. How-

ever, a vast majority of the hubs are different. Notably, certain songs are important hubs for one

measure and perfectly standard songs for the other. For instance,SUGAR RAY - Fly is a hub for

the GMM-based distance, but not for the one based on Histograms. Similarly, CABREL, Francis

- Samedi soir sur la Terre is only a hub for the histogram distance.

We therefore can conclude that:
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Figure 6.9: Scatter plot of the number of occurrences for songs using GMM-based distance against
HMM-based distance.
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Figure 6.10: Scatter plot of the number of occurrences for songs usingHMM-based distance against
Delta-based distance.
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Table 6.6: Most Frequent False Positives for parametric approach with GMMs
Hubs with{MFCC,GMM} N20 (card(CS))

MITCHELL, Joni - Don Juan’s Reckless Daughter 98(9)
BRIDGEWATER, DD - What A Little Moonlight Can do 79(12)

RASTA BIGOUD - La tchatche est bonne 79(7)
MOORE, Gary - Separate Ways 77(9)

SUGAR RAY - Fly 75(13)
...

CABREL, Francis - Samedi soir sur la Terre 29 (7)

Table 6.7: Most Frequent False Positives for non parametric approachwith Histograms.
Hubs with{VQ,CM} N20(card(CS))

VOCAL SAMPLING - Radio Reloj 153 (13)
MOORE, Gary - The Hurt inside 126 (9)

CABREL, Francis - Samedi soir su la Terre 122 (7)
CABREL, Francis - Corrida 105

MITCHELL, Joni - Dom Juan’s Reckless Daughter 95 (9)
...

SUGAR RAY - Fly 23(13)

• The hubness of a given song is not an intrinsic property of the song, but rather a property of a

given algorithm.

• Dynamics, both via static modelling of dynamical features (delta, acceleration)or via dy-

namic modelling (HMMs) seems to have an influence of the songs that act as hubs. All three

algorithms tend to create the same hubs.

• Parametric modelling tend to create very distinct hubs from non-parametric modelling, so the

dynamical/static aspect is not the only involved factor in the appearance of hubs
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6.8 Experiment 6: The seductive, but probably wrong, hypothesis of

equivalence classes

6.8.1 Hypothesis

An hypothetical explanation for the appearance of hubs can be formulated in terms ofequivalence

classes. The model of the distribution of the feature vectors of a given song, obtained with a given

algorithm (e.g. GMM of MFCCs), can generally be obtained identically from several different

original datasets, since the transformations of feature extraction and distribution modelling are not

bijective operations. Such datasets are said to be equivalent (or invariant) for a given algorithm, and

to belong to the equivalence class of the algorithm.

First, typical feature transformations have invariants, i.e. will yield the same results for different

signals. For instance, the MFCC algorithm has two notable invariants, due to itsuse of the Fourier

transform:

• MFCC(−x) = MFCC(x), since FFT(−x) = FFT(x)

• MFCC(flip(x)) = MFCC(x), since FFT(flip(x))= FFT(x) (complex conjugate) and thus

|FFT(flip(x))| = |FFT(x)|.

While the first transformation doesn’t affect the perceptual audio similarity (except for discontinu-

ities at frame transitions), the second (playing a frame backwards) has a strong effect on timbre,

notably disrupting the structural succession of transients and steady states.

Second, the models themselves also have invariants. For instance, the GMM models of all

permutations of a given set of MFCC frames are identical, since the model doesn’t preserve the

ordering of the data. Similarly, the HMM models of all permutationswithin each HMM stateof

MFCCs frames are identical, since this preserves the global markov transition probability matrix.

By definition, all equivalent datasets for a given model will be perfect matches to one another.

However, model equivalence isn’t a sufficient condition for audio similarity: the operation of frame

permutation, for instance, severely transforms an audio signal.
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models

songs

Figure 6.11: Classes of equivalence defined by static models, such that all permutations of the
frames of the original song yields the same model

Invariants both at the level of features and models obviously combine: forinstance, a signal

played backwards will result in a permutation (reverse order) of frames, each corresponding to a

flipped signal window, and thus yields the same model than the original when using GMMs of

MFCCs. The class of equivalence of a given algorithm can be extremely large. For instance,

there are 8000! frame permutations of a typical 3-minute song, and (2∗ 8000)! permutations when

including the possibility of flipping individual frames.

This model would explain individual bugs. While many signals found in the equivalence class

of a given algorithm will probably sound similar, it may be possible to find a duplet of signals

which sound very different from one another, and yet have identical models. This is made even

more possible when generalizing the equivalence relation (“having the samemodel”) to a pseudo-

equivalence (“having similar models”): the models of 2 very different songs may be close because

there is a duplet of signals, each equivalent to one of the original songs, which sound similar to one

another. This is illustrated in Figure 6.11. In this context also, a hub for a given algorithm is a song

for which the equivalence class of the associated model contains signals that are close to signals in
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the equivalence class of the models of very many other songs in the database.

6.8.2 Experiment

The hypothesis of equivalence classes has 2 necessary conditions, which can be tested experimen-

tally. According to the model of equivalence classes, a song is more likely to be a hub if the equiv-

alence class of its model given the chosen distance algorithm is large. This will happen notably

• if the song’s model, e.g. GMM, has a large variance

• if the modelling algorithm is permissive‡, which is the case of static algorithms (which al-

low frame permutations) compared to dynamical models which constraint the permutation to

respect the frame-to-frame dynamics of the original frame sequence.

Evidence of the first behaviour can be tested by computing the correlation of some measure of

the “diameter” of the GMM model of each song and its degree of hubness, measured e.g. by its

number of occurrences. The “diameter” of a GMM model can be defined by sampling a large num-

ber of points from this model, measuring the standard deviation of these pointsin each dimension,

and summing the deviations together. This is equivalent to measuring the norm of the covariance

matrix of a single-component GMM fitted to the distribution of points. Note that a precise measure

of the width of a GMM is non-trivial to compute from the variance of its individual components

(e.g. summing them, weighted with each component’s prior probability), because this would have

to account for the possible overlap between individual components (i.e. computing the volume of

the intersection between a set of many ellipsoids in a high dimension space).

Evidence of the second behaviour can be looked for by comparing the global proportion of hubs

appearing for static and dynamic algorithms, which was already done in Section 6.6.

‡Note that the complexity of a model, in the framework of supervised learning, has received a rigorous mathematical
formulation in terms of Vapnik-Chervonenkis dimension, which we do notaddress here (Blumer et al., 1989)
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Figure 6.12: Scatter plot of the number of 100-occurrences of songs against the “equivalent vari-
ance” of their GMM model, showing no particular correlation.

6.8.3 Results

Figure 6.12 shows a scatter plot of the number of 100-occurrences of songs against the “equivalent

standard deviation” of their GMM model. This shows that around 70% of the GMMs’ variance lie

around the value 300, independantly of the hubness of the song. The remaining GMMs with higher

variance neither show any particular correlation with their song’s number of occurrence.

Results reported in Section 6.6 show that although static histograms tend to create more hubs

than dynamical models such as HMMs, GMM modelling produces as low as half as many hubs than

its dynamic counterparts.

Both results strongly disprove the hypothesis of equivalent classes, according to which hubs are

explained by unconstrained static algorithms or atypical songs with great variance.

6.9 Experiment 7: On homogeneity

6.9.1 Hypothesis

This section investigates whether the hubness of a given song is a emergingglobal property of the

distribution of its frames, or rather can be localised e.g. to certain frames thatare less discriminant
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then others.

We have already shown that MFCC frames intrinsically don’t exhibit hub behaviours, i.e. one

cannot find a specific frame of audio which is close to any other frame, in aneuclidean framework.

However, this doesn’t make any statement about the discriminative power of MFCC frames: it is

well possible that most MFCC frames be globally close to one another. This has notably been

observed in the domain of speech sounds in Kinnunen et al. (2001). It istherefore possible to

imagine that a large part of the distribution of MFCCs is composed of non-discriminative frames,

and that what is perceptually salient for a human listener may not be statisticallypredominant when

comparing models of the frame distribution.

6.9.2 Experiment

We describe here an experiment to assess whether there exists such a small portion of the frame

distribution which is responsible in majority for the discrimination between non-perceptually close

songs. We propose to explore the distribution of MFCC frames by ranking them by statistical

importance. In the case of a GMM, frames are all the more so likely to be generated by a given

gaussian componentc than the weightwc of the component is high (wc is also called prior probability

of the component).

We define anhomogeneitytransformhk : G 7→ G on the spaceG of all GMMs, wherek ∈ [0,1]

is a percentage value, as:

g2 = hk(g1)

(c1, c2, . . . , cn) ← sort(components of g1, decreasing weight)

define S(i) =
∑i

j=1 weight(c j)

ik ← arg mini∈[1,n] {S(i) ≥ k}

g2← newGMM(ik)

define di =component(g2,i)

di ← ci, ∀i ∈ [1, ik]

weight(di) ← weight(ci)/S(ik),∀i ∈ [1, ik]

return g2
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end hk

From a GMMg trained on the total amount of frames of a given song, the transformhk derives

an homogenized version ofg which only contains its top k% components. The homogenized GMM

accounts for only a subset of the original song’s frames: those that amount to the k% most important

statistical weight. For instance,h99%(g) creates a GMM which doesn’t account for the 1% least

representative frames in the original song.

We apply 11 transformshk for k ∈ [20,40,60,80,90,92,94,96,98,99,100] to the GMMs cor-

responding to the optimal measure found in Chapter 5. Each transform is applied to the whole

database, thus yielding 11 similarity measures, the properties of which we study below.

6.9.3 Results

Variance

Figure 6.13 shows the influence of the homogenization transform on the variance of the resulting

GMM. The variance of the model is evaluated with the sampling procedure already described in

Section 6.8. It appears that the homogenization transform reduces the variance of the models ex-

ponentially. This suggests that the least representative points, which areremoved in the last 5-10%

of the total distribution, account for most of the variance of the global distribution, and probably

represent very different MFCC frames than the ones composing the main mass of the distribution.

Influence on hubs

Figure 6.14 and 6.15 show the influence of the homogenization transform onthe number of hubs

in the database. Hubness is measured in the case of Figure 6.14 by the number of songs in the test

database having a number of 100-occurrences greater than 200, andin the case of Figure 6.15, by

the number of songs with a mean neighbor angle greater than 65◦.

Both metrics indicate that GMM homogenization critically increases the number of big hubs
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Figure 6.13: Influence of the percentage of GMM homogenization on the variance of the resulting
GMM.
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in the database: homogenization withk = 30% creates more than twice as many hubs with more

than 200 occurrences, and more than 5 times as many hubs with angles greater than 65◦. As ho-

mogenization reduces the variance of the models, this gives further experimental disproval of the

hypothesis examined above in Section 6.8. It seems reasonable to interpretthe increase of hubness

when k decreases as a consequence of reducing the amount of discriminative information in the

GMMs (i.e. from representing a given song, down to a more global style ofmusic, down to the even

simpler fact that itis music). This is the same to say that all songs share the same most important

20% of frames.

However, the remaining 80% do not monotonically increase the discrimination ofa given song

from its neighbors. Both figures clearly show a very important increase inthe number of hubs in

the first few percent of homogenization. The extreme number of hubs obtained with k = 30% is

reached as early ask = 92% in the case of the occurrence metric andk = 96% in the case of the

mean angle metric. This is a strong observation: the hubness (or rather non-hubness) of a song

seems to be controlled by an extremelly small amount of critical frames, which represent typically

less than 5% of whole distribution. Moreover, these frames are the least statistically significant ones,

i.e. are modelled by the least important gaussian components in the GMMs. This indicates that the

majority (more than 90%) of the MFCC frames of a given song are a very poor representation of

what discriminates this song from other songs.

Moreover, Figure 6.15 shows that after the extremely rapid peak of hubswhen removing the

first 5% frames, the number of hub songs tend to decrease when k decreases from 90% to 60%, and

then increases again for k smaller than 60%. The minimum value reached atk = 60% is equivalent

to the original value atk = 100%. A similar decreasing behaviour is observable to a smaller extent

with the other metric in Figure 6.14 (with a local minimum atk = 80%), although it is difficult to

establish that this is a statistically significant trend.

The behaviour in Figure 6.15 suggests that there is a population of frames inthe range

[60%,95%] which is mainly responsible for the hub behaviour. While the hubness of songs dimin-

ishes as more frames are included when k increases from 20% to 60% (such frames are increasingly
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Figure 6.15: Influence of the percentage of GMM homogenization on the number of songs with a
mean neighbor angle greater than 65◦

specific to the song being modelled), it suddenly increases when k gets higher than 60%, i.e. this

new 30% information is detrimental for the modelling and tend to diminish the discrimination be-

tween songs. The continuous degradation from 60% to 95% is only eventually compensated by the

inclusion of the final 5% critical frames.

Influence on precision

Figure 6.16 shows the influence of homogenization on theR-precision of the resulting similarity

measure. The figure closely mimics the (inverse) behaviour seen in Figure 6.15, with precision

plummeting when k decreases from 100% to 92%, and then reaching a local maximum again be-

tween 60% and 80%. This gives further support to the observation that not all frames are equally

discriminative, and that there exists a population of frames in the range [60%,95%] which is detri-

mental to the modelling of perceptual similarity.

The influence of non-discriminative frames indicates that timbre models would probably benefit

from some kind of discriminative training (Ulusoy and Bishop, 2005), where frames that don’t

help comparing songs to one another are typically not modelled in individual songs. However, the

framework of supervised training is not particularly well suited to similarity tasks, in which we



118 Chapter 6. Experiments 3-8: Understanding Hubs

20 30 40 50 60 70 80 90 100
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61
Influence of GMM heterogeneity on R−Precision

GMM heterogeneity (%)

R
−

P
re

ci
si

on

Figure 6.16: Influence of the percentage of GMM homogenization on theR-precision of the simi-
larity measure

don’t only want to discriminate but also to compare, and thus should be adapted to our situation.

Appendix B.7.2 illustrates such a case where the direct application of supervised discriminative

algorithms (namely LVQ) does not provide enough basis for comparing different songs accurately.

6.10 Experiment 8: Are hubs a structural property of the algorithms ?

6.10.1 Hypothesis

Section 6.7 establishes that hubness is not an intrinsic property of a givensong, but rather is de-

pendent on the modelling algorithm. In this section, we investigate whether hubsare a structural

property of pattern recognition-based similarity measures, and that they can be observed in any

dataset. This is a relevant question knowing as remarked earlier that hubshave been observed in

this study on timbre similarity, but also in the domain of Speaker and Fingerprint identification.

6.10.2 Experiment

We apply the same modelling technique (GMMs of MFCCs) to compute the perceptual similarity

of another class of audio signals, namely ecological sound textures. We gathered a database of 106
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3-minute urban sound ambiances, recorded in Paris using a omni-directional microphone§. The

recordings are clustered in 4 “general classes”:

• Boulevard: Recordings made on relatively busy boulevards, with predominant traffic noise,

notably buses and car horns.

• Neighborhood: Recordings made on calmer neighborhood streets, with more diffuse traffic,

notably motorcycles, and pedestrian sounds.

• Street Market: Recordings made on street markets in activity, with distant traffic noise and

predominant pedestrian sounds, conversation and auction shouts.

• Park: Recordings made in urban parks, with lower overall energy level,distant and diffuse

traffic noises, and predominant nature sounds, such as water or bird songs.

Recordings are further labeled into 11 “detailed classes”, which correspond to the place and date

of recording of a given environment. For instance, “Parc Montsouris,Paris 14e” is a subclass

of the general “Park” class. Some detailed classes also discriminate takes at identical places and

dates, but with some exceptional salient difference. For instance, “Marché Richard Lenoir, Paris

11e” is a recordings made in a street market on Boulevard Richard Lenoirin Paris, and “March́e

Richard Lenoir (music)” is a recording made on the same day of the same environment, only with

the additional sound of a music band playing in the street. Table 6.8 shows the details of the classes

used, and the number of recordings available in each class.

Each audio recording is modelled with 50-ms frames, 20-MFCCs and 50-stateGMMs. Models

are compared to one another with Monte-Carlo distance using 2000 samples.We measure the

precision of measure using the same framework as for music timbre similarity, i.e. by counting the

number of recordings having the same class as the seed item. We report on the properties of the

resulting similarity function below.

§This material was collected and kindly made available by Boris Defreville from LASA.
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Table 6.8: Composition of the ecological sound database.
Class Detailed Class Number of instances

Boulevard Boulevard Arago 14
Boulevard Boulevard du Trone 5
Boulevard Boulevard des Maréchaux 8

Street Rue de la Santé (14e) 7
Street Rue Reille day1 (14e) 14
Street Rue Reille day2 (14e) 7
Market March́e Glacíere 8
Market March́e Richard Lenoir 22
Market March́e Richard Lenoir (music) 9
Park Parc Montsouris Spring 20
Park Parc Montsouris Summer 8

6.10.3 Results

Precision

Table 6.9 gives the precision of timbre similarity applied to ecological sound textures. It appears

that the results are substantially better than for polyphonic music signals, nearing perfect precision

in the first 5 nearest neighbors even for detailed classes. High precision using the general classes

shows that the algorithm is able to match recordings of different places on the basis of their sound

level (boulevards, streets), and sound quality (pedestrian, birds). High precision on detailed classes

shows that the algorithm is also able to distinguish recordings of the same environment made at

different times (Spring or Summer), or in different contexts (with and without music band). This

result has a natural application to the classification of ecological recordings, e.g. using a simple k-

nearest neighbor strategy, and could prove useful for context-recognition, for instance in the context

of wearable computing (Clarkson et al., 2000).

Table 6.9: Precision of timbre similarity applied to ecological sound textures.
Ground Truth 5-Precision 10-Precision 15-Precision R-Precision
General Class 0.94 0.87 0.77 0.66
Detailed Class 0.90 0.79 0.75 0.74
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Figure 6.17: Comparison of the histograms of number of 20-occurrencesfor the same distance used
on ecological sound ambiances and polyphonic music.

Hubs

Figure 6.17 shows the histogram of the number of 20-occurrences obtained with the above dis-

tance on the database of ecological sound ambiances, compared with the same measure on the

test database of polyphonic music. It appears that the distribution of number of occurrences for

ambiance sounds is more narrow around the mean value of 20, and has a smaller tail than the dis-

tribution for polyphonic music. Notably, there are four times as many audio items with more than

40 20-occurrences in the music dataset than in the ambiance dataset. This is also confirmed by the

manual examination of the similarity results for the ecological ambiances: none of the (few) false

positives re-occur significantly more than random.

This establishes the fact that hubs are not an intrinsic property of the class of algorithm used

here, but rather appear only for a certain classes of signals, among whom polyphonic music, but not

ecological sound ambiances.

Homogeneity

Ecological sound ambiances and polyphonic music are two different datasets for which hubs appear

in the second case, but not in the first. As we will see here, the two classesof signals can notably be

distinguished in terms of their homogeneity.
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Figure 6.18: Influence of the percentage of GMM homogenization on the 10-precision (with general
classes) of the similarity measure used on ecological sound ambiances.

Figure 6.18 shows the influence of the homogeneity transform introduced inSection 6.9.2 on

the precision of the similarity measure applied to ecological sound ambiances. We notice a very

different behaviour than for polyphonic music, for which the filtering of the very first few frames had

a dramatic impact on the precision. In the case of sound ambiances, 99% homogenization is slightly

beneficial to the precision. This suggests that the 1% less significant frames are spurious frames

which are worth smoothing out. Further homogenization down to 60% has a moderate impact on

the precision, which is reduced by about 1% (absolute). This suggests that the frame distribution

is very homogeneous, and doesn’t exhibit critical populations of frameswhich are either extremely

discriminative (such as the [95%,100%] region for polyphonic music), or non-discriminative (such

as the [60%,95%] region for polyphonic music). Ecological ambiances can be discriminated nearly

optimally by considering only the most significant 50% of the frames.

To further assess the different homogeneity between both datasets, we consider an alternative

data transformation,n-folding, which folds an original signal onto itself a number of times (as seen



6.10. Experiment 8: Are hubs a structural property of the algorithms ? 123

1-fold

4-fold

3-fold

2-fold

Figure 6.19: The n-fold transform creates increasingly homogeneous signals by folding a reduced
portion of the original signal.

in Figure 6.19). The output of the 2-fold transform is 50%-sized randomextract from the original,

repeated twice. Similarly, the 3-fold transform is a 33%-sized extract of theoriginal repeated three

times. All signals processed by n-folding from a given signal have the same duration as the original,

but contain less “varied” material. Note that since the duration of the fold (aninteger division of the

total duration) is not a multiple of the frame duration in the general case, n-folding doesn’t simply

duplicates the MFCC frames of the folded extract, but rather creates some limited jitter. The fact

that all n-folded signals have the same number of frames as the original enables to use the same

modelling parameters, notably number of gaussian components (else we wouldhave had to account

for the curse of dimensionality).

We apply n-folding to both datasets (ambiances and music), forn ∈ [1,2,3,4,5,10,20,30,50].

Figure 6.20 shows the influence of folding on the similarityR-precision for both classes of signals

(where both precision curves are normalized with respect to their maximum). N-folding is detri-

mental to the precision for both datasets. However, it appears that ecological sound textures are

typically twice more robust to folding than polyphonic signals. Considering only a tenth of the

audio signals cuts down precision by 15% for sound textures, and by morethan 35% for polyphonic

music. In the extreme case of folding only 3 seconds out of a 3-minutes sound extract (50-folding),

the precision loss is 20% for ecological sounds, but more than 60% for polyphonic music.
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Figure 6.20: Comparison of the influence of k-folding on the precision of the same distance algo-
rithm used on ecological sound ambiances and polyphonic music.

This suggests that frame-based feature distributions for ecological sound textures are statisti-

cally much more self-similar than polyphonic music, i.e. they can be compressed toonly a small

fraction of their duration without much loss in terms of distribution modelling. If we authorize a

10% precision loss, ecological signals can be reduced to around 10-second extract. Polyphonic mu-

sic on the contrary seems to require a large quantity of feature information in order to be properly

modelled and compared: the same 10% tolerance requires more than 1 minute of data. Note that

the former is comparable to the human performance measured in Peltonen et al.(2001) on the task

of recognizing everyday auditory scenes (20 seconds). However,the latter (polyphonic music) is

many times less effective than humans (Perrot, 1999).

The greater heterogeneity of polyphonic music data for pattern recognitionpurpose may explain

the appearance of hubs, and their non-existence for other, more homogeneous classes of signals. It

would be worth investigating the feature-homogeneity of other hub-prone classes of signals, such

as speaker data or fingerprints, to give further support to this hypothesis.



Chapter 7
Experiments 9 & 10: Grounding

The two experiments which conclude this study make a round trip back to high-level music descrip-

tors. In Chapters 5 to 6, we explicitly evaluated the validity of polyphonic timbre models based on

the “GMM of MFCCs” approach described in Chapter 4. We now examine thevalidity of using

such timbre models to extract information such as musical genre. We base ourstudy on a yet-

unreleased very large and diverse set of manually collected metadata, made available to Sony CSL

by collaborations with the Sony Corporation. We show inExperiment 9 that surprisingly few high-

level descriptors are directly correlated to timbre. Moreover, different taxons of a given category,

such as “Mood Violent” or “Mood Ironical”, have very diverse levels of correlation with timbre

(high and low resp.), which is at odds with typically proposals of classifiersthat apply the same

decision space for every taxons. However,Experiment 10shows that there are extreme amounts of

correlation between high-level descriptors, independently of their relation to timbre. Some of these

correlations capture psycholinguistical semantic associations (“a powerful song is a strong song”),

but also historical and cultural knowledge (“rock uses guitars”), andmore subjective aspects linked

to perception of timbre (“flute sounds warm”). This suggests that very manyhigh-level cultural

descriptions of musiccan indeed be grounded to timbre similarity, by exploiting such higher-level

correlations with timbre-based attributes. We propose a hybrid classification system that implements

this idea in a systematic way.

125
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7.1 Experiment 9: Inferring high-level descriptions with timbre simi-

larity

This experiment examines the validity of using models of polyphonic timbre similarity toextract

high-level music descriptions. As reviewed in Chapter 2, the assumption thatconcepts like musical

genre or mood are grounded on the global sound of a given piece of music is common to more than

a fourth of all contributions in the history of MIR research. This assumptionis notably motivated

by the difficulty to address other factors such as harmony or rhythm, but also and foremost cultural

interpretations, which depend on epochs, locations and user communities. This experiment evalu-

ates the precision of an inference mechanism based on the best timbre similaritymeasure obtained

in this work, on a very large and diverse set of manually collected metadata.

7.1.1 Material

We base our study on a yet-unreleased large set of editorial metadata values made available to Sony

CSL by partnerships within the Sony Corporation. The database currentlycontains 4936 songs,

each described by a set of 801 boolean attributes (e.g. “Language English”= true). These attributes

are grouped in 18 categories, which can be found in Table 7.1.

Attribute values were filled in manually by a specialised subcontractor. The high-level descrip-

tions found in the database are very diverse. Some attributes are correlated with some acoustic

aspect of the sound (“Main Instrument”,“Dynamics”), while others seem toresult from a more

cultural view on the music object (“Genre”, “Mood”, “Situation”). Nearlyeach of these broad

categories have seen prior attempts at automatic classification, although oftenwith much smaller

taxonomies. Liu et al. (2003) for instance propose a system to classify themood of a song into 4

taxons: Contentment,Depression, ExuberanceandAnxious. One can see from Table 7.1 that the

database we consider here offers 58 of such mood taxons. Hence, this database is a realistic and

quite thorough coverage of the diversity of descriptors considered in typical MIR systems.

One should note that category taxonomies are not intended for universality: the definition of
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Table 7.1: Categories of the attributes used in the database
Category Nb attributes Example attribute

Aera/Epoch 16 1970-1980
Affiliate 5 Germany

Character 39 Child-oriented
Country 31 Brazil

Dynamics 4 Decreasing
Genre 36 Jazz Standard

Language 15 Spanish
Main Instrument 107 Contra Bass (pizz.)

Metric 14 3/4
Mood 58 Aggressive

Musical Setup 25 String Ensemble
Rhythmics 10 Groovy
Situation 82 City By Night

Special Creative Period 3 Early
Style 176 Bebop

Tempo 8 Slow - Adagio
Text Category 123 Forgiveness

Variant 46 Natural/ Acoustic

attributes such as “Style Alternative Rock” and how they differ from, say, “Style Rock Pop” is a

convention which is only local to the categorizing company, and to which we didn’t have access in

this study. Therefore these attributes are not primarily intended for directinformative display, but

rather for creating a mid-level representation which can be used for matching and recommendation.

For all these reasons, we propose here to analyse this set of attributes as an arbitrary ontology only

defined by the values taken on the database, and not to consider any exterior musical assumption of

what a “Genre” or “Style” should be.

7.1.2 Methods

We propose to infer the value of a given attributeA for a given songS by looking at the values of

A for songs that are timbrally similar toS. More precisely, we define as our observationOS the
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number of songs among the setNS of the 10 nearest neighbors ofS for whichA is true, i.e.

OS = card{Si \ Si ∈ NS ∧A(Si)} (7.1)

If the attributeA is correlated with timbre, large values ofOS are a good indicator thatA(S) is

true. For instance, if 9 out of the 10 nearest neighbors of a given song are “Hard Rock” songs, then it

is very likely that the seed song be a “Hard Rock” song itself. However, we need to compensate this

decision by the fact that attributes are not uniformly distributed in our database subset. For instance,

“Genre Dance Music” istrue for 4123 songs out of 4936, while “Main Instrument Bandoneon” has

only one positive example. We thus defineP(A(S)/OS) the probability thatA be true forS given

the observationOS of a given number of true values in the set of nearest neighbors, andP(A(S)/OS)

the probability thatA be false given the same observation. According to Bayes’ law,

p(A(S)/OS) = p(OS/A(S))
P(A(S))
P(OS)

(7.2)

The likelihood distributionp(OS/A(S)) can easily be estimated by the histogram of the empirical

frequencies of the number of positive neighbors for all songs havingA(S) = true (similarly for

P(A(S)/OS)). Figure 7.1 shows 2 examples of such likelihood distributions computed forattributes

“Character Calm” and “Genre Club/Discotheque”. If we assume a flat prior

P(A(S) = P(A(S) = 0.5 (7.3)

we can estimateA(S) using the maximum likelihood criteria :

A(S) = p(OS/A(S)) > p(OS/A(S)) (7.4)

Using the example given in figure 7.1, we see that under the observation that 4 nearest neighbors

out of 10 have “Character Calm”, we estimate that the seed song has “Character Calm”. However,
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Figure 7.1: Likelihood distributions for 2 attributes “Character Calm” (downward pointing triangle)
and “Genre Club/Discotheque” (upward pointing triangle). Positive likelihoodp(OS/A(S) = true)
appear in solid line, and negative likelihoodp(OS/A(S) = false) in dashed line. The x-axis corre-
sponds to the number of songs havingA(S) = true observed in the first 10 nearest neighbor of the
seed song.

under the same observation that 4 nearest neighbors out of 10 have “Genre Club/Discotheque”, we

estimate that the seed song does not have “Genre Club/Discotheque”, because this observation is in

fact surprisingly small given the large number of songs of “Genre Club/Discotheque” present in the

whole database.

7.1.3 Results

Surprisingly few attributes are correlated with timbre

Figure 7.2 shows the distribution of the precision of the timbre inference process described above

on the set of the 801 boolean attributes in the database. It appears that some attributes are very

correlated to timbre similarity (in the sense defined above), achieving precisions sometimes higher

than 95%. However, there are suprisingly few of such near-perfectcorrespondances. Only 6% of

the attributes in the database are estimated with more than 80% precision, and morethan a half

of the database’s attributes are estimated with less that 65% precision (which hardly better than a

binary random choice, i.e. 50%).



130 Chapter 7. Experiments 9 & 10: Grounding

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

140

160

Distribution of the precision of timbre−inference 
on a set of 800 arbitrary high−level descriptions

Precision of timbre inference

N
um

be
r 

of
 a

ttr
ib

ut
es

Figure 7.2: Distribution of the precision of timbre inference on the set of 800attributes.

Table 7.2 shows the 10 attributes (out of 801) that were the most precisely inferred using tim-

bre similarity. Most attributes correspond to “Styles” which described music with quite extreme

observable features of the signal (e.g. saturated guitar, distorted vocals, high percussivity).

It should be mentioned that the nearest neighbor algorithm defined aboveis not a particularly

flexible classification algorithm, and notably can have difficulties with strongly multimodal distri-

butions (“Songs of category X sound either like A, or like B, or like C”). However, these results

indicate that very few typical high-level music descriptions have a consensual definition in terms of

a prototypical “timbre”.

Not all taxons of a given category behave similarly

Table 7.3 shows the distribution of the categories of the attributes which are inferred with more than

75% precision, while Table 7.4 shows the distribution of the attributes which areinferred with less

than 55% precision.

From these two tables, we observe that many categories include both timbrally-related and un-

related attributes. “Genre unplugged”, “Style Hard Rock” (found in Table 7.3) are strong timbre

correlates (in the sense defined above), mostly because the instances found in the database are very
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Table 7.2: Best inferred attributes.P+ (resp.P−) is the ratio of the number of correctly inferredtrue
(resp.false) values over the total number oftrue (resp.false) values.

Attribute P+ P− Mean Precision

Style Techno (minimal) 0.93 0.99 0.96
Style Rave 0.94 0.98 0.96

Genre Lullaby/Nursery Rhyme 0.91 0.99 0.95
Style Hard Trance 0.92 0.95 0.93

Language Native American 0.88 0.98 0.93
Style Garage 0.87 0.99 0.93

Style Happy Hardcore 0.86 0.98 0.92
Style Metal 0.88 0.96 0.92

Style Hardcore 0.86 0.98 0.92
Style Grunge 0.87 0.95 0.91

Table 7.3: Categories of the best inferred attributes
Category Nb attributes Sample Attributes

Style 48 Jazz (Trad.), Hard Rock
Genre 10 Unplugged, Nightclub Music

Main Instrument 10 Guitar (distortion), Vocals (Spoken; Rap)
Aera/Epoch 9 1950-1960, 1960-1970

Musical Setup 7 Big Band, Rock band
Character 6 Metalic, Warm
Country 6 Cuba, Jamaica
Variant 3 Aggressive, Metallic

Situation 3 Computer Animation, Middle Ages
Mood 2 Aggressive, Negative

Language 1 Native American

prototypical, and timbrally consistent (e.g. salient saturated guitar and strong percussions in Hard

Rock), while “Genre Jingle” and “Style Electronica” (found in Table 7.4) are poor timbre correlates,

possibly because they are very heterogeneous. “Electronica ” for instance spans possibly everything

from HardCore Techno - solely percussive -, electronic pop (artists like Emilie Simon or Air) where

voice is predominant, Intelligent Techno - which uses concrete sound recordings and electronic blips

- and even margin artists like Craig Armstrong which really does symphonic orchestral music.

Table 7.3 and 7.4 also confirm that categories like “TextCategory”, “Situation” or “Mood”

mostly capture cultural and subjective information which are poorly described with timbre. Never-
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Table 7.4: Categories of the worst inferred attributes
Category Nb attributes Sample Attributes

TextCategory 35 Irony, Play on Words
Main Instrument 18 Clarinet, Body Percussion

Style 17 Underground, Electronica
Situation 10 Hollywood, Winter
Variant 6 Thin, Wrong/ Amateurish
Mood 6 Maritime, Funny

Country 5 International, USA
Musical Setup 4 Duo, Girlgroup

Character 3 Child-oriented, Vibrating
Metric 2 6/8, 7/8

Dynamics 1 Decreasing
Genre 1 Jingle/Link

Language 1 African Languages
Tempo 1 Alternating

theless, taxons like “TextCategory Explicit” or “Mood Violent” are very good timbre-correlates.

This is at odds with typically proposals of classifiers that apply the same decision space for every

taxons of a given category. What appears from these results is that only a few taxons, wide-spread

over many diverse categories, can reliably be inferred with timbre.

The paradoxical subjectivity of timbre judgements

It also appears that attributes of the “Main Instrument” category are not particularly well modelled

by timbre. This can be explained by the fact that instruments described by such attributes are usually

not salient throughout the song, if salient at all. This illustrates the subjectivity of the categorization

of music: many of our “timbre” judgements are not low-level immediate perceptions, but rather

high-level cognitive reasoning which accounts for the evidence foundin the signal, but also depends

on cultural expectations, a priori knowledge, interestingness and “remarkability” of an event, etc. A

given song by e.g.Elton Johnmay be labeled as “piano” music, even though one can barely hear

any piano sound on careful inspection, e.g. because it is very distant ina mix with predominant

strings and synthetic pads, or because it is heavily processed with audio effects such as flangers and
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delays. However, the knowledge thatElton Johnis a pianist, or that this particular song bears some

similarity with another piano song (which itself may not have salient piano either...)enables some

kind of “automatic completion” of what is perceived onto what is thought to be perceived. Such

paradoxes or timbre illusions are proper to the perception of complex polyphonic music, and most

notably of “known music” which can be mapped to a space of music pieces a particular listener

already knows. (e.g. “Elton John” finding room in my musical universe among other British pop

singers, but also other pop pianists like Paolo Conte, etc.)

7.2 Experiment 10: The use of context

In this experiment, we investigate whether there exist statistical dependencies between the attributes

in the database, which would reveal the kind of correlations and context-based inference that seems

at play with timbre judgements. To do so, we measure the statistical independence between all pairs

of attributes in the database.

7.2.1 Method

A common way to assess the statistical independence of pairs of attributes - considered here as

random variables- is to use Pearson’sχ2-test (Freedman et al., 1997). This tests the hypothesis

(called thenull hypothesis) that the relative frequencies of occurrence of observed events follow a

flat random distribution (e.g. that hard rock songs are not significantly more likely to talk about

violence than non hard-rock songs).χ2 is calculated by finding the difference between observed

and theoretical frequency for each attribute. The result is normalized bythe size of the popula-

tion, yielding a valueΦ between 0 (corresponding to no association between the variables) and 1

(complete association). Appendix G gives more details about the computation of χ2 andΦ values.
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7.2.2 Results

Tautologies

Tables 7.5 to 7.9 show a classification of the 100 most correlated duplets of attributes on the whole

database, assessed using theΦ coefficient. We observe in Table 7.5 that a number of such correla-

tions translate trivial word-to-word associations between attributes, suchas “TextCategory Christ-

mas” and “Situation Christmas”. These sometimes uncover unexplained redundancies in the at-

tribute taxonomies, such as the co-existence of attributes like “Aera 1980’s” and “Aera 1980-1990”,

but also reveal the existence of logical links between e.g. “Characters”and “Variants” of the same

name (calm, metallic, simple, etc.) with a consistency which is remarkable in the context of massive

manual categorization. This may suggest that such logical links are enforced by the categorizing

company with specially designed GUI or post-processing routines.

Table 7.5: Most correlated duplets of attributes - redundant information
Attribute1 Attribute2 Φ

Language Finish Country Finland 0.93
Textcategory Christmas Situation Christmas 0.81

Country Italy Affiliate Affiliate Italy 0.74
Aera/Epoch 1980-1990 Aera/Epoch 80s 0.72

Genre Live Classic Genre Live 0.72
Aera/Epoch 1970-1980 Aera/Epoch 70s 0.71

Mood aggressive Variant aggressive 0.70
Character pulsating Mood pulsating 0.69

Musical Setup Jazz Band Style Jazz 0.67
Style traditional Country Musical Setup Country Band 0.66

Style Jazz (trad.) Genre Jazz Standard 0.66
Character distorted Variant Distortion 0.65
Character simple Variant simple 0.65
Mood nostalgic Character nostalgic 0.63

Overfitting

Table 7.6 illustrates a caveat which is common to many of the results reported in thischapter, namely

the risk of overfitting. Here, the strong correlation between songs that use Jew’s Harp instrument
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(also called jaw’s harp or gewgaw) and the fact that these songs talk about “bicycle” can only be

explained by the fact that there exists only one song in the database that exhibits this somewhat

odd combination (“Luka Bloom - The Acoustic motorbike”). Similarly, most Spanish songs in the

database are “ska punk” songs, and most appearing jazz standards are played with a transverse

flute. There are a number of techniques to automatically detect such overfits(notably n-fold cross

validation).

Table 7.6: Most correlated duplets of attributes - overfitting
Attribute1 Attribute2 Φ

Main Instruments Jew’s Harp Textcategory Bicycle 1
Affiliate Affiliate Spain Style Ska Rock 0.73

Country Spain Style Ska Rock 0.62
Country Spain Style Punkrock 0.52

Main Instruments transverse fluteGenre Jazz Standard0.50

Exclusions

Table 7.7 illustrates that such analysis is also able to track down negative correlation, i.e. mutual

exclusion relationships. For instance, a single song can’t at the same time have varying and steady

dynamics, or be both vocal and instrumental.

Table 7.7: Most correlated duplets of attributes - negative correlation
Attribute1 Attribute2 Φ

Dynamics dynamic (up+down) Dynamics steady 0.80
Main Instruments male Main Instruments female 0.70

Main Instruments Vocals Language Instrumental 0.61
Language English Language Instrumental 0.58

Intrinsic semantics

Table 7.8 shows a number of associations that result from intrinsic semantic correlations, which

have little to do with the actual musical usage of the words. For instance, the analysis reveals

common-sense relations such as “Christmas” and “Special occasions”, “Well-known” and “Popu-
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lar”, “Strong” and “Powerfull”. Associations such as these and the ones exhibited in Table 7.7 are

less easy to infer a priori than the word-word associations in Table 7.5. Typically, this would use

some kind of lexical reference system where nouns, verbs, adjectives and adverbs are organized

into synonym sets (see e.g. WordNet Fellbaum (1998)). This also illustrates that the manual cate-

gorization process is consistent with psycholinguistics evidences of semantic associations, and that

the specific usage of words that describe music is largely consistent with their generic usage: it is

difficult to think of music that is both strong and not powerful.

Table 7.8: Most correlated duplets of attributes - intrinsic semantic correlation
Attribute1 Attribute2 Φ

Situation Christmas Genre Special Occasions 0.91
Textcategory Christmas Genre Special Occasions 0.89

Genre Well-known music Popularity Popularity high 0.68
Mood strong Character powerful 0.68

Mood bursting Character setting off 0.65
Mood harmonious Character well-balanced 0.60

Situation Sex Mood erotic/sexy 0.56
Character robotic Mood technical 0.55
Textcategory Love Textcategory Relationship 0.55
Situation Fast Ride Situation Action/Fast Cuts/Hectic 0.53

Situation Middle Ages Situation historic 0.52
Mood negative Character mean 0.51

Mood aggressive Character mean 0.51
Mood mechanical Character robotic 0.50
Situation Tropical Country Jamaica 0.50

Situation Computer Animation Situation SciFi/Futuristic 0.50

Extrinsic music knowledge

The correlations observed in Table 7.9 are probably the most interesting and useful in the context

of content-based musical systems. They reveal associations which are not intrinsic properties of

the words used to describe music, but which are extrinsic properties of themusic domain being

described, e.g.

• between musical genres: “Rap” and “Hip hop”
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• between genres and countries: “Bossa Nova” and “Brazil”

• between genres and instruments: “Hip Hop” and “Spoken vocals”

• between genres and epoque: “Rag time” and “1930’s”

• between setups and instruments: “Rock band” and “Electric guitar”

• between genres and mood/character: “Jazz” and “Warm”, “Metal” and “Mean”

• between instruments and countries: “Tabla” and “India”

• between instruments and mood: “Transverse flute” and “Warm”

Some of these relations capture historical or cultural knowledge (“rock uses guitars”), but also more

subjective aspects linked to perception of timbre (“flute sounds warm”).

Conclusion

The results in Tables 7.5 to 7.9 show that there are important amounts of correlation between high-

level descriptors, independently of their relation to timbre. Some of these correlations capture

psycholinguistical semantic associations (“a powerful song is a strong song”), but also historical

and cultural knowledge (“rock uses guitars”), and more subjective aspects linked to perception

of timbre (“flute sounds warm”). This suggests that very many high-level cultural descriptions of

musiccanindeed be grounded to timbre similarity, by exploiting such higher-level correlations with

timbre-based attributes. We now describe a technique, decision trees, ableto do so.

7.2.3 Exploiting correlations with decision trees

A possible way to exploit correlations between attributes is to use decision trees (Quinlan (1993)).

A decision tree predicts the value of a given attribute (thecategoryattribute) on the basis of answers

to questions about the othernon-categoryattributes. In the tree, each node corresponds to a non-

categorical attribute and each arc to a possible value of that attribute. A leafof the tree specifies the
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expected value of the categorical attribute for the records described bythe path from the root to that

leaf. Several efficient algorithms (ID3, C4.5) exist to learn precise, compact and robust decision

trees from training data. In this work, we use the implementation of C4.5 provided by the Weka

library (Witten and Frank (2005)).

Figure 7.3 shows a typical decision tree learned on the attribute database, using the “Variant

natural/acoustic” as categorical attribute to predict, and the whole set of other attributes as non-

categorical attributes. The tree has been automatically pruned to only use 14attributes, and gives

a prediction precision of 0.71 on positive examples and 0.82 on negative examples (using 10-fold

cross validation). Decision trees have been popular in the data mining communitynotably because

of the fact that they produce human-readable decision rules (which a priority order). In the example

given in Figure 7.3, we see that a song is likely to be “natural/acoustic”

• if it is not aggressive

• if it is from the 50’s (where little amplification was used)

• if there is a singer, but not in the “rock” style

• if it’s a folk or a jazz band that performs it

• if not, then if it doesn’t use guitar with distortion, etc.

Note that this tree is only able to predict the value of “Variant natural/acoustic” if we have access

to all the values of the 14 other non-categorical attributes used here. Therefore, this is of little use

as such. However, we will show in the next section that we can use Timbre Similarity Inference to

bootstrap the automatic categorization with estimates of a few timbre-grounded attributes, and then

use these estimates in decision trees to predict non-timbre correlated attributes.

7.3 An operational model for grounding high-level descriptions

Experiment 9 used a technique to infer the value of attributes which are reasonably correlated with

the timbre of the music being described. The technique provides very precise estimates for attributes
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Variant aggressive= true: false (23.0)
Variant aggressive= false

Aera/Epoch 1950-1960= true: true (21.0)
Aera/Epoch 1950-1960= false

Genre Singer/Songwriter= true
Situation Action/Fast Cuts/Hectic= true

Style Rock= true: false (2.0)
Style Rock= false: true (2.0)

Situation Action/Fast Cuts/Hectic= false: true (67.0/7.0)
Genre Singer/Songwriter= false

Musical Setup Folk Band= true: true (25.0/2.0)
Musical Setup Folk Band= false

Style Jazz= true: true (25.0/3.0)
Style Jazz= false

Genre Live Classic= true
Main Instruments Guitar (distortion)= true: false (4.0)
Main Instruments Guitar (distortion)= false: true (29.0/4.0)

Genre Live Classic= false
Situation Fight= true: false (11.0)
Situation Fight= false

Style Soul= true: true (9.0/3.0)
Style Soul= false

Aera/Epoch 1960-1970= true
Variant live= true: true (2.0)
Variant live= false: false (5.0/1.0)

Aera/Epoch 1960-1970= false
Aera/Epoch 1980-1990= true: false (4.0)
Aera/Epoch 1980-1990= false : false:true(10.0/3.0)

Figure 7.3: Decision tree for category “Variant natural/acoustic”, achievingptrue = 0.71 and
pf alse = 0.82. Figures in parenthesis at each leaf show the number of songs well/misclassified
by the corresponding decision rule.
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such as homogeneous genre categories or extreme moods like “aggressive” or “warm”. However,

it fails on cultural or subjective attributes which bear little correlation with the actual sound of the

music being described, such as “TextCategories” or complex moods or characters.Experiment 10

described the correlations existing between attributes, and proposed a technique (decision trees) able

to exploit these correlations to predict values of attributes. This second technique works equally well

on timbre or cultural attributes, however it requires the availability of values for non-categorical at-

tributes, to be used as features for prediction. In this section, we propose to build a hybrid automatic

categorization system which uses timbre inference as a bootstrap for decision trees. First, we use

timbre inference to estimate the values of a few timbre-correlated attributes, andthen use decision

trees to make further prediction of cultural attributes on the basis of the poolof timbre-correlated

attributes.

7.3.1 Algorithm

More precisely, we define the algorithm as an iterative estimation of a set ofN attributesSA =

{Ak, k ∈ [0,N − 1]}. At each iterationi, we produce a set of attribute estimates̃SA
i = {Ãk

i , k ∈

[0,N−1]}, whereÃk
i is the estimate of attributeAk at iterationi. Each attribute estimate is associated

with a precisionp(Ãk
i). At each iterationi, we define asbest(Ãk

i) the best estimate ofAk so far, i.e.

best(Ãk
i) = Ãk

m,m= arg max
j≤i

p(Ãk
j) (7.5)

The algorithm is an iterative process:

• i = 0: The Ãk
0 are built using timbre inference, as described in Experiment 9. Timbre-

correlated attributes are typically estimated with good precisionp(Ãk
0), while cultural and

subjective attributes are poorly estimated.

• ∀i ≥ 1: Ãk
i is built using a decision tree usingAk a categorical attribute, and a set of non-
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categorical attributesFk
i defined as:

Fk
i
= {best(Ãl

i−1)/l , k, p(best(Ãl
i−1)) ≥ θ} (7.6)

where 0≤ θ ≤ 1 is a precision threshold.Fk
i contains the best estimate so far (up to iteration

i − 1) of every attribute other thanAk, provided that its precision be greater thanθ. The

algorithm thus constructs successive estimates for each attribute using decision trees on the

best estimates at previous steps, the whole process being bootstrapped by timbre inference.

• Stop condition: When there is no more improvement of any attribute estimate, i.e. theset of

all best(Ãk
i) reaches a fixed point.

Figure 7.4: An example scenario of iterative attribute estimation

Figure 7.4 illustrates a possible scenario of the above process, using a set of attributes including

“Style Metal”, “Character Warm”, “Style Rap” (which are timbre-correlatedattributes as seen in
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Experiment 9) and “TextCategory Love” and “Setup Female Singer”, which are poor timbre es-

timated (the former being a cultural description, and the latter being too complex tobe precisely

described by timbre). The first set of estimates̃SA
0 is built using timbre inference, and logically

contains good estimates of the timbre-correlated attributes, and poor estimates for the others. At

iteration 2, we estimate each of the attributes using a decision tree on the timbre estimates (only

keeping estimates aboveθ = 0.75). For instance, we estimate “Style Metal” by using a decision

tree on “Character Warm” and “Style Rap”, which yields a poorer estimate that the original timbre

inference. Similarly, we estimate “Setup Female Singer” using a decision tree on“Style Metal”,

“Character Warm” and “Style Rap”: this yields an estimate which is better than theoriginal timbre

inference. At the next iteration, the just produced estimate of “Setup FemaleSinger” (which hap-

pens to be above thresholdθ) is used in a decision tree to give a good estimate of “TextCategory

Love” (as e.g. the knowledge of whether the singer is a female may give someinformation about

the lyric contents of the song). At the next iteration, all best estimates so farare used in a decision

tree to yield an estimate of “Style Metal” which is even better than the original timbre inference (as

it uses some additional cultural information).

7.3.2 Preliminary results

Table 7.10 shows the results of the above algorithm on a set of 45 randomly chosen attributes, using

θ = 0.7. We observe that for 10 attribute estimates, the precision improves by more than 10%

(absolute), and that 15 estimates have a final precision greater than 70%.Cultural attributes such as

“Situation Sailing” or “Situation Love” can be estimated with reasonable precision, whereas their

initial timbre estimate was poor. It also appears that two “Main Instrument” attributes (guitar and

choir), that were surprinsingly bad timbre correlates, have been refined using correlations between

cultural attributes. This is in neat accordance with the paradoxical natureof timbre judgements

mentionned above (see Section 7.1.3).

The overall precision improvement on the set of attributes depends on the overall correlation

of the set of attributes: it is likely that better results could be achieved using e.g. the full set of
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attributes, since it would allow the decision trees to exploit stronger correlations that the one found

here. It also depends on the quality of the original timbre-correlated estimates, which are used for

bootstrap. Here, the randomly chosen set was quite poor on this respect(no initial estimate is greater

than 75%).
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Table 7.9: Most correlated duplets of attributes - extrinsic musical knowledge
Attribute1 Attribute2 Φ

Character warm Genre Jazz Standard 0.84
Country Africa Style Afro 0.80

Style Rap Style Hip Hop 0.80
Style Post Bop Style Bossa Nova 0.79
Style Ska Rock Style Punkrock 0.77

Main Instruments Vocals (Spoken; Rap) Style Rap 0.75
Main Instruments Vocals (Spoken; Rap) Style Hip Hop 0.70

Style Nu Jazz Character collage 0.70
Main Instruments Bandoneon Main Instruments Musette 0.70

Genre Ethnic Music Language other 0.65
Style Ragga Main Instruments Synth Drums 0.62
Style Reggae Country Jamaica 0.62

Country Brazil Style Bossa Nova 0.59
Style Jazz (trad.) Main Instruments saxophone 0.59

Style Latin Main Instruments Latin Percussion 0.57
Mood ironical Style Ska Pop 0.57

Musical Setup Rock Band Main Instruments Guitar (distortion) 0.54
Style Jazz (trad.) Character warm 0.54
Character mean Style Metal 0.53

Musical Setup Big Band Aera/Epoch 1940-1950 0.52
Main Instruments Brass Musical Setup Wind Ensemble (Winds)0.51

Style Reggae Genre Ethnic Music 0.51
Main Instruments transverse flute Character warm 0.51

Character minimalistic Style Techno 0.51
Main Instruments Tabla Country India 0.50

Main Instruments Guitar (distortion) Character distorted 0.50
Genre Revue Style Ragtime 0.49

Genre Comedy/Cartoon Style Ragtime 0.49
Genre Comedy/Cartoon Aera/Epoch 1930-1940 0.49

Style Swing-Fox Style Foxtrot 0.49
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Table 7.10: Set Optimization of 45 attribute estimates

Attribute p(Ãk
0) p( ˜Ak

i f inal) i f inal Improvement

Situation Sailing 0.48 0.71 10 0.23
Situation Flying 0.49 0.64 3 0.15
Situation Rain 0.50 0.64 9 0.14

Main Instrument Guitar 0.60 0.69 4 0.09
Situation Sex 0.59 0.68 11 0.09
Situation Love 0.63 0.70 3 0.07

Textcategory Love 0.61 0.67 11 0.06
Situation Party/Dance 0.60 0.66 6 0.06

Tempo medium - Andante 0.59 0.64 4 0.05
Character slick 0.65 0.69 11 0.04
Aera/Epoch 90s 0.71 0.75 13 0.04

Character well-balanced 0.62 0.66 6 0.04
Rhythmics rhythmic 0.64 0.68 4 0.04
Genre Dancemusic 0.65 0.68 12 0.03

Mood dreamy 0.64 0.67 2 0.03
Style Pop 0.71 0.74 6 0.03

Mood positive 0.58 0.61 6 0.03
Mood harmonious 0.62 0.65 4 0.03

Main Instruments Vocals (Choir) 0.60 0.63 13 0.03
Dynamics dynamic (up+down) 0.61 0.63 5 0.02

Textcategory Associations 0.57 0.59 10 0.02
Variant expressive 0.62 0.64 2 0.02

Musical Setup Pop Band 0.72 0.74 7 0.02
Textcategory Poetry 0.57 0.59 10 0.02
Character friendly 0.65 0.67 6 0.02

Character repeating 0.63 0.64 9 0.01
Rhythmics groovy 0.63 0.64 4 0.01

Mood romantic 0.69 0.70 9 0.01
Textcategory Wisdom 0.58 0.59 4 0.01

Textcategory Romantics 0.65 0.66 14 0.01
Aera/Epoch 1990-2000 0.76 0.76 1 0
Affiliate International 0.72 0.72 1 0

Character creamy 0.72 0.72 1 0
Genre Ballad 0.72 0.72 1 0

Main Instruments Vocals 0.71 0.71 1 0
Main Instruments male 0.71 0.71 1 0

Genre Mainstream 0.71 0.71 1 0
Genre Adult Contemporary (AC) 0.71 0.71 1 0

Mood erotic/sexy 0.70 0.70 1 0
Main Instruments Synthesizer 0.69 0.69 1 0

Language English 0.69 0.69 1 0
Main Instruments SFX (Sound Effects) 0.67 0.67 1 0

Character melodical 0.62 0.62 1 0
Textcategory Conciousness 0.6 0.6 1 0

Variant staccato 0.57 0.57 1 0





Chapter 8
Conclusion: Toward Cognitive Models

The majority of systems extracting high-level music descriptions from audio signals rely on a com-

mon, implicit model of the global sound orpolyphonic timbreof a musical signal. This model

represents timbre as the long-term distribution of the local spectral features, a prototypical imple-

mentation of which being Gaussian Mixture Models of Mel-Frequency Cepstrum Coefficients.

This thesis questions the validity of this model. To do so, we have tried to construct an explicit

measure of the timbre similarity between polyphonic music textures, by mobilizing all the tools and

design heuristics typically at use in Music Information Retrieval research.

With Experiment 1, we showed that the precision of measures based on this approach couldbe

optimized to satisfactory levels. However, we described many variants that surprisingly did not lead

to any substantial improvement of the measure’s precision. Moreover, our simulations suggest the

existence of aglass ceilingat precision about 70%. The remaining error rate is not incidental, and

is indicative of a structural limitation which probably cannot be overcome by such variations on the

same theme.

More precisely, modelling the long-term statistical distribution (accounting fortime or not -

HMMs or GMMs) of the individual “atoms” or “grains” of sound (frames of spectral envelopes),

and comparing their global shape constitutes a strong assumption on the underlying cognitive pro-

cess. While it is clear that the perception of timbre results from an integration of some sort (indi-
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vidual frames cannot be labeled independently, and may “come” from very different textures), other

important aspects of timbre perception are not covered by this approach.

One surprising finding ofExperiment 1 is that algorithms that account for the time dynamics

of the features, e.g. with dynamic programming or hidden Markov models, are at best equivalent

to simpler static models. This is at odds with experimental data on the perception ofindividual

instrument notes.Experiment 2established that the polyphonic nature of the data is the main reason

that ruins computational attempts at modelling feature dynamics. This suggests that the horizontal

coding of frames of data, without any account of source separation and selective attention, is a very

inefficient representation of polyphonic musical data, and not cognitively plausible. On that respect,

more brain-plausible processings such as sparse representations (Georgiev et al., 2005; Daudet,

2006) may provide a fruitful direction for further research.

The most important and novel finding ofExperiment 1 is that the class of algorithms studied

in this work tends to create false positives which are mostly always the same songs regardless of

the query. In other words, there exist songs, which we callhubs, which are irrelevantly close to all

other songs.

We established that:

• hubs are distributed according to a scale-free distribution.

• hubs are not a consequence of poor feature representation of eachindividual frame, but

rather an effect of the modelling of the agglomeration of the many frames of a sound tex-

ture (Experiment 3).

• hubs are not a property of a given modelling strategy (i.e. static vs dynamic,parametric vs

non-parametric, etc.) but rather tend to occur with any type of model (Experiment 4).

• hubs are not an intrinsic property of certain songs, but that different algorithms distribute the

hubs differently on the whole database (Experiment 5).

• the hubness of a given song is not an emerging global property of the distribution of its
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frames, but rather can be localised to certain parts of the distribution, notablyoutlier frames

in statistical minority (Experiment 7).

• hubs are not a property of the class of algorithms studied here which appears regardless of

the data being modelled, but only for data with a given amount of heterogeneity, e.g. for

polyphonic music, but not for ecological sound ambiances (Experiment 8).

This phenomenon of hubs is reminiscent of other isolated reports in different domains, such

as Speaker Recognition or Fingerprint Identification, which intriguingly also typically rely on the

same features and pattern-recognition algorithms. This suggests that this could an important phe-

nomenon which generalizes over the specific problem of timbre similarity, and indicates a general

structural property of the class of algorithms examined here. This of course would require further

investigation, for which this study provides a methodological basis, notably by introducing metrics

to quantify hubness.

The phenomenon of hubs, and notably the evidence of its important sensibilityto certain critical

frames (Experiment 7), also illustrates one deep discrepancy between all computation models of

timbre and human perception. Namely, that all frames are not of equal importance, and that these

weights does not merely result of their long-term frequencies(i.e. the corresponding component’s

prior probabilityπm). The “GMM of MFCC” approach essentially builds anextensionaldescrip-

tion of the object being modelled. While this seems to be a sufficient (and efficient) model for the

perception of environmental audio textures, music categorization appearsto create essentiallyin-

tensionalconstructs, which are poorly modelled by the models studied here. In particular, some

timbres (i.e. here sets of frames) are moresalientthan others : for instance, the first thing than one

may notice while listening to a Phil Collins song is his voice, independently of the instrumental

background (guitar, synthesizer, etc...). This saliency may depend on thecontext or the knowledge

of the listener and is obviously involved in the assessment of similarity.

Experiments 9 and 10give further support in the fact that “timbre” judgements are not low-

level immediate perceptions, but rather high-level cognitive reasoning which accounts for the evi-
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dence found in the signal, but also depends on cultural expectations, a priori knowledge, and context.

Experiment 9 shows that surprisingly few human-made high-level music descriptions, and notably

judgements of instrument classes, are directly correlated to low-level timbre similarity. Polyphonic

textures as found in popular music are cultural objects whose perception creates expectations based

on music that a particular listener already knows. Inexperiment 10, we showed that human judge-

ments could be approximated only by accounting for high-level correlationswithin a large set of

possible categories. Some of these correlations capture psycholinguistical semantic associations (“a

powerful song is a strong song”), but also historical and cultural knowledge (“rock uses guitars”),

and more subjective aspects linked to perception of timbre (“flute sounds warm”). Much of the

music we hear as being “piano music” is really music thatwe expect to bepiano music.

These experiments open the way for more careful investigations of the perceptive paradoxes

proper to polyphonic music timbre, in which listeners “hear” things that are not statistically signifi-

cant in the actual signal, and that the low-level models of timbre similarity studied inthis work are

intrinsically incapable of capturing.
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Résuḿe d́etaillé

Chapitre 1: Introduction

La grande majorit́e des syst̀emes d’extraction de metadonnées haut-niveaùa partir de signaux mu-

sicaux repose sur un modèle implicite de leur “son” outimbre polyphonique. Ce mod̀ele repŕesente

le timbre comme la distribution statistique globale de propriét́es spectrales instantanées (features),

calcuĺees sur des trames de quelques dizaines de millisecondes. Une implémentation prototypique

de cette approche utilise des modèles de ḿelange de gaussiennes et des coefficients cepstraux.

Cette th̀ese remet en cause la validité de ce mod̀ele.

Pour ce faire, nous construisons ici une mesure explicite de la similitude timbraleentre deux

textures polyphoniques. Nous utilisons tout l’attirail méthodologique (outils, algorithmes, heuris-

tiques) developṕe dans le domaine de la reconnaissance de formes appliqué à la musique (Mu-

sic Information Retrieval). Nous étudions les propriét́es de cette mesure dans une série de dix

exṕeriences.

L’ expérience 1montre que la pŕecision des mesures construites sur le paradigme que nous

étudions ici est borńee par unplafond de verreempirique,à environ 70% de R-precision. Le

taux d’erreur ŕesiduel n’est pas accidentel, mais révèle plut̂ot des limitations fondamentales, qui

ne sauraient̂etre ŕesolues par de futures variations sur le même theme.

Une des conclusions de cette expérience est l’apparente inutilité des variantes algorithmiques
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destińeesà mieux mod́eliser la dynamique des attributs instantanés, tels que l’emploi de coefficients

dérivés, ou de mod̀eles de Markov cach́es. Ceci contredit des nombreuses expériences psychoa-

coustiques, qui ont d́emontŕe l’importance de la dynamique pour la perception humaine des timbres

instrumentaux. L’expérience 2montre que cette difficulté à mod́eliser la dynamique des séquences

d’attributs instantańes est due au caractère polyphonique des données, et noǹa leur structure tem-

porelle (en notes, phrases, refrains, etc.). Ce résultat sugǵere que le codage horizontal des trames

audio, qui ne prend pas en compte les différentes sources et leur synchronisation verticale, est une

repŕesentation peu efficace pour la musique polyphonique, et peu plausible cognitivement.

Une de nos observations les plus importantes est que la classe d’algorithmesétudíee ici cŕee

de faux-positifs qui sont presque toujours les mêmes chansons, indépendamment de la requête de

départ. Entre d’autres termes, il existe pour ces algorithmes des chansonsanormalement proches

de toutes les autres chansons: de faux centres de gravité (hubs). Par une śerie d’exṕeriences, nous

établissons ici que

• ces hubs sont distribués selon une loi de puissance, diteà invariance d’́echelle (scale-free).

• les hubs ne sont pas la conséquence d’un mauvais comportement des attributs instantanés pris

individuellement, mais de la modélisation de leur aggloḿerationà long-terme. Entre d’autres

termes, le problème ne vient pas desfeatures, mais des mod̀eles (Expérience 3).

• les hubs ne sont pas la conséquence d’une stratégie d’apprentissage statistique donnée, mais

ont tendancèa apparâıtre pour tous les algorithmes, paramétriques ou non, dynamiques ou

non (Expérience 4).

• le fait d’être un hub n’est pas une propriét́e intrins̀eque d’une chanson donnée. Différents

algorithmes distribuent les hubs de façon différente sur le m̂eme corpus de chansons

(Expérience 5).

• Les hubs ne sont pas la conséquences de modèles peu discriminants. En particulier, les chan-

sons dont la mod́elisation statistique révèle une grande variance ne sont pas particulièrement
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sujettesà devenir des hubs. D’autre part, les modèles dynamiques, plus contraints que les

mod̀eles statiques, créent tout autant de hubs que leurs homologues (Expérience 6).

• l’importance d’un hub donńe n’est pas une propriét́eémergeant globalement de la distribution

de ses attributs instantanés, mais peut̂etre attribúeeà certaines parties de cette distribution,

notamment les valeurs d’attributs en minorité statistique (Expérience 7).

• les hubs ne sont pas une propriét́e intrins̀eque des algorithmeśetudíes ici, qui apparâıtrait

indépendamment des données mod́elisées. En particulier, les hubs apparaissent dans des

corpus de musique polyphonique, mais pas de sons environnementaux. Nous montrons que

la différence entre les signaux “à hubs” et les autres se traduit entre autres par l’hét́eroǵeńeité

statistique de leur distribution (Expérience 8).

Ce ph́enom̀ene de hubs rappelle curieusement des observations déjà faites dans d’autres do-

maines que la musique, notamment en identification biométrique de locuteurs ou d’empreintes

digitales. Le rapprochement est d’autant plus intéressant̀a faire que ces technologies emploient

typiquement les m̂eme techniques algorithmiques que celles que nousétudions ici. Cela incitèa

penser que ce phénom̀ene est une caractéristique importante de ce type d’algorithmes, et que nos

conclusions s’́etendent donc au delà du probl̀eme sṕecifique de la similitude timbrale de signaux

musicaux. Ce ph́enom̀ene traduit une situation géńerale dans laquelle les observations instantanées

n’ont pas toutes la m̂eme importance perceptuelle, qui en particulier ne dépend pas de leur salliance

statistique par rapportà leur distributioǹa long-terme.

Ce point est pŕeciśe dans une dernière partie, òu nous donnons deśeléments quantitatifs nou-

veaux pour apprécier le fait que les jugements humains en matière de timbre polyphoniques ne sont

pas le ŕesultat imḿediat de perceptions bas-niveau, mais plutôt de raisonnement cognitifśevolúes,

dépendant par exemple du contexte d’écoute et de la culture de l’auditeur. L’expérience 9mon-

tre que, de façon surprenante, très peu de ḿetadonńees musicales haut-niveau, et en particulier les

descriptions de l’instrumentation, sont corrélées directement au timbre tel que nous le modélisons

ici. Dans l’expérience 10, nous montrons que ces processus de description ne peuventêtre ap-
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proximés algorithmiquement qu’en prenant en compte des corrélations avec des attributs plus cul-

turels et subjectifs, comme les classes d’émotions. Ces corrélations traduisent des associations

sémantiques de l’ordre de la psycholinguistique (“une chansonpuissante(powerful) est une chan-

son forte (strong)”), mais aussi des connaissances historiques ou culturelles (“le rock utilise de la

guitareélectrique”), et m̂eme des aspects plus subjectifs liésà la perception du timbre (“la flute crée

un sonchaleureux(warm)”).

En d’autres termes, nous “entendons” quotidiennement dans la musique polyphonique des

choses qui ne sont pourtant pas présentes de façon significative (statistiquement) dans le signal

sonore. La musique que nousentendonŝetre du piano est surtout de la musique que nous nous

attendons̀a être du piano. Ces paradoxes statistico-perceptifs, dont l’existence devrait maintenant

êtreétablie de façon rigoureuse, expliquent en grande partie le désaccord entre les modèles algo-

rithmiquesétudíes ici et la perception humaine.
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PARTIE I: EPISTEMOLOGIE

Chapitre 2: Les Dimensions du Timbre

2.1 Tout sauf la hauteur et l’intensité

Le timbre est d́efini par l’American Standards Association comme cet attribut de la perception qui

permetà l’auditeur de distinguer deux sons ayant la même hauteur (pitch) et la m̂eme intensit́e

(loudness). Le timbre est un attribut continu (e.g. un son peutêtreplus ou moins“brillant”), et

multidimensionnel (on ne saurait trouver un mêmeéchelle òu ranger tous les sons allant, par ex., du

pianoà la trompette).

2.2 Etudes psychophysiques

De nombreuseśetudes psychoacoustiques ont tenté d’établir une cartographie de l’espace des tim-

bres musicaux, et d’en identifier les principales dimensions. La plupart utilise des techniques de po-

sitionnement multidimensionnel (multidimensional scaling) de donńees de similitude entre extraits

musicaux, collect́ees sur des sujets humains. Elles concluent majoritairementà l’existence de trois

dimensions principales, corrélées respectivement au centre de gravité spectral (spectral centroid),

au logarithme du temps d’attaque (log-attack time), et aux variations temporelles de l’envelope

spectrale (spectral irregularity, spectral flux).

2.3 Reconnaissance automatique de sons instrumentaux

Ces études ont motiv́e la conception d’un grand nombre de systèmes identifiant automatique-

ment l’instrument de l’enregistrement d’une note individuelle, ou d’une phrase monoinstrumentale.

La plupart de ces systèmes utilisent une combinaison d’attributs temporels (typiquement temps

d’attaque et coefficients de corŕelation) et spectraux (typiquement coefficients cepstraux - voir plus

loin). La strat́egie la plus simple pour comparer ces attributs entre signaux sonores est d’utiliser la

distance euclidienne, et un algorithme de plus proches voisins. Toutefois,de nombreux systèmes
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de classification utilisent maintenant des modèles plus complexes, comme les mélanges de gaussi-

ennes, ou les machinesà vecteurs-support. Enfin, de récentes contributions ont montré l’intér̂et pour

de tels sons instrumentaux d’employer des modèles dynamiques, tels que les modèles de Markov

cach́es, ou des mesures d’entropies sur des séquences d’attributs préalablement quantisés.

2.4 Vers les textures polyphoniques

L’immense majorit́e desétudes pŕećedentes se sont intéresśeesà deséchantillons sonores corre-

spondant̀a des notes individuelles, jouées par un seul instrument. Toutefois, le contexteémergent

de la distributiońelectronique de musique,à la iTunes, et de l’explosion des capacités de stockage

sur les ordinateurs personnels, crée une forte demande de modèles de signaux applicablesà des

textures de plusieurs secondes (voire des morceaux entiers), et fortement polyphoniques. En par-

ticulier, la notion de “timbre polyphonique”, ou de musique qui “sonne comme” e.g. duBoulez,

Madonna, ou Chet Baker, sembleêtre une abstraction bien adaptée à ces nouveaux besoins. Le

“son des musiques” est en particulier une façon naturelle de représenter la pŕeférence d’un utilisa-

teur pour telle ou telléepoque, configuration, style, genre ou esprit musical (“leChick Coreades

anńees 70”,“les musiques de filmsà laOut of Africa”, “tout ce qui sort sur le labelNinja Tunes”,

etc.).

Toutefois, les conclusions desétudes psychoacoustiques, relayées par les systèmes de recon-

naissance mono-instrumentaux, ne s’étendent pas facilement aux textures polyphoniques, pour un

certain nombre de raisons:

• les descripteurs monophoniques, de type centre de gravité spectral, ne sont pasévaluables

de façon additive sur des textures polyphoniques, i.e. la résultant polyphonique n’est pas la

somme pond́eŕee des descripteurs des sources individuelles

• l’asynchronicit́e des sources superposées rend compliqúe le calcul de descripteurs temporels,

comme le temps d’attaque.

• les śequences de plusieurs notes ont une influence contextuelle sur la perception du timbre de
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chaque note, et réciproquement, le timbre a une influence sur la perception des séquences.

• une grande partie du “son” des musiques actuelles tient plus du bruit coloré (guitare saturée,

caisse claire, effets de production), que du signal harmonique traditionnellementétudíe dans

le contexte mono-instrumental.

2.5 Des mod̀eles implicites

Dans ce contexte, la plupart des systèmes d’extraction de ḿetadonńeesà partir de signaux poly-

phoniques ont adoptés la m̂eme approche pragmatique et géńerique, fond́ee sur la mod́elisation de

la distribution statistique globale de propriét́es spectrales instantanées. Cette approche se décline en

une infinit́e de variantes, portant soit sur les attributs utilisés (par exemple les coefficients cepstraux,

ou les attributs MPEG7), soit sur les modèles (paraḿetriques ou non, dynamiques ou non). Ce type

d’algorithmes constitue plus du quart des contributionsà la conf́erence ISMIR (International Con-

ference on Music Information Retrieval) depuis sa création en 2000. Toutefois, toutes ces variantes

se fondent sur la m̂eme hypoth̀ese, rarement explicitée, que la perception du timbre d’une texture

polyphonique correspond̀a la salience statistique de ses attributs instantanés les plus représent́es.

La validité de cette hypoth̀ese est difficile à évaluer d’apŕes le corpus de travaux existants, no-

tamment car

• Chaque contribution n’évalue pas la précision d’un mod̀ele en terme de similarité timbrale,

mais de descriptions plus haut-niveau, comme le genre, dont le lien avec le timbre n’est pas

toujours facileà établir. Par exemple, la difficulté qu’a un mod̀ele donńe à discriminer des

signaux de genre “classique” et “jazz” peut révéler les limitations du mod̀ele timbral sous-

jacent, mais tout autant l’incohérence de la taxonomie utilisée: les arrangements orchestraux

des jazzmenGil EvansouCarla Bleysont timbralement plus proches de compositions d’Alan

Bergou deDebussyque deCharlie Parker.

• De façon syḿetrique, le sucćes d’un mod̀ele donńe sur une t̂ache de classification peutêtre d̂ue

à un ḿecanisme d’apprentissage supervisé efficace, comme un SVM ou un ḿelange d’experts,
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et cemalgréune repŕesentation sous-jacente de la simitude timbrale qui peutêtre limit́ee.

• Finalement, tr̀es peu d’́etudes avant la notre ont comparé différents algorithmes sur une même

base de donńees, ce quíevidemment donne peu de crédit aux affirmations individuelles de

suṕeriorité de tel ou tel algorithme.

Cette th̀ese propose donc d’étudier frontalement la validité de l’approche communèa tous ces

travaux, en construisant une mesure explicite de la similitude timbrale entre deuxtextures poly-

phoniques, sans entacher nos conclusions de corrélations non mâıtrisées entre des concepts plus

haut-niveau comme le genre. Nousétudions les propriét́es de cette mesure dans une série de

dix exṕeriences, dont les conclusions ont des implications pour la modélisation du timbre poly-

phonique, mais aussi pour les systèmes d’extraction plus haut-niveau qui utilise implicitement le

même mod̀ele. Une partie de nos résultats, l’existence de faux centre de gravités ou “hubs”, semble

même se ǵeńeraliser au domaine plus géńeral de la reconnaissance de formes.
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Chapitre 3: Les Dimensions desModèlestimbraux

La majorit́e des syst̀emes d’extraction de ḿetadonńeesà partir de signaux musicaux polyphoniques

sont fond́es sur le m̂eme mod̀ele implicite de timbre, i.e. la distribution statistique globale de pro-

priét́es spectrales instantanées. Cette approche se décline dans la litt́erature en une infinité de vari-

antes. Nous proposons de décrire cet espace de variationsà partir d’un algorithme prototypique

(“le GMM de MFCC”), auquel on applique un certain nombre de transformations,à la manìere des

mod̀eles de conception réutilisables en inǵenierie logicielle (design patterns).

3.1 L’algorithme prototypique

Comme vu pŕećedemment, il s’agit d’une mesure algorithmique de la similitude timbrale globale

entre deux signaux musicaux. La mesure suit le même paradigme que les nombreux systèmes

d’extraction de ḿetadonńees haut-niveau, en ce qu’elle est basée sur la mod́elisation statistique

des distributions globales d’attributs spectraux. Toutefois, elle modélise explicitement la notion de

similitude perceptive, plutôt qu’une cat́egorisation plus haut-niveau dont l’implicite corrélation au

timbre ne serait pas maitrisée.

Le signal est d́ecouṕe en trames. Sur chaque trame, nous estimons l’enveloppe spectrale du sig-

nal en calculant un ensemble de coefficients mel-cepstraux. Le cepstre (une anagramme de “spec-

tre”) est la transforḿee de Fourier inverse du logarithme du spectre. On appelle mel-cepstre le

cepstre calculé apŕes un ŕeéchelonnement du spectre de Fourier sur uneéchelle de fŕequence per-

ceptive, non-lińeaire: l’́echelle Mel. Les coefficients issus de la transformée inverse du spectre sont

appeĺes coefficients mel-cepstraux (Mel-Frequency Cepstrum Coefficients- MFCCs). On en garde

un nombreN. Les coefficients cepstraux produisent une représentation compacte du spectre lissé,

d’autant plus pŕecise queN est grand.

La distribution des coefficients mel-cepstraux (dans un espace de dimensionN) est ensuite

mod́elisée par un mod̀ele de ḿelange de gaussiennes (Gaussian Mixture Model- GMM). Un GMM

est un estimateur paramétrique de distribution de probabilité, sous la forme d’une somme pondéŕee
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de M densit́es gaussiennes appelées composantes du mélange. Les param̀etres du GMM (poids,

moyenne et covariance de chacune desM composantes) sont estimés par un algorithme itératif

d’optimisation de la log-vraisemblance, E-M (pourExpectation - Maximisation).

Chaque chanson est donc modélisée par un GMM, qui peut̂etre compaŕe avec les mod̀eles

d’autres chansons. Nous utilisons pour celà un approximation par Monte-Carlo de la divergence de

Kullback-Leibler, une distance naturelle entre densités de probabilit́e qui n’a pas de forme analy-

tique pour les ḿelanges de gaussiennes. L’estimateur consisteà ǵeńerer un grand nombre de points

n (en dimensionN) à partir de l’un des mod̀eles, et de moyenner le logarithme de la probabilité de

ces points selon l’autre modèle (puis de faire l’oṕeration inverse pour syḿetriser la mesure).

3.2 Transformations et Heuristiques emploýees en MIR

Une étude bibliographique montre qu’à cet algorithme prototypique, ne sont typiquement ap-

pliquées qu’un nombre fini de transformations et d’heuristiques de recherche, dont nous proposons

ici un catalogue. Il est intéressant de constater que ces mêmes heuristiques ont souventét́e utilisées

dans le domaine plus ancien de la reconnaissance automatique de la parole.

Optimiser les paramètres des attributs: Typiquement, cela revientà modifier la dimensionN de

l’espace dans lequel se fait la modélisation. Une plus grande dimension permet souvent de

distinguer des d́etails plus pŕecis, ou de mieux d́ecrire le signal de d́epart. Toutefois, une trop

grande dimension rend la modélisation statistique difficile, car elle exige un nombre expo-

nentiel d’exemples d’apprentissage. Ce phénom̀ene est connu sous le nom de “malédiction

des grandes dimensions” (curse of dimensionality). Le choix des param̀etres optimaux ŕesulte

donc d’un compromis.

Optimiser les paramètres du mod̀ele: De manìere similaire, les param̀etres d’un mod̀ele statis-

tique (par ex. le nombreM de composantes gaussiennesà apprendre dans un GMM) influent

sur le pouvoir d’expression du modèle. Un mod̀ele de plus grande dimension sera capa-

ble de repŕesenter une distribution non triviale de façon plus fidèle. Toutefois, un mod̀ele
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“plus complexe” que la distributioǹa mod́eliser (ce qui peut recevoir une définition formelle,

dans le cadre par ex. de la dimension de Vapnik) risque de sur-représenter les exemples

d’apprentissage et de très mal se ǵeńeraliser à des exemples non encore observés. Ce

probl̀eme est connu sous le nom de sur-apprentissage (overfitting). Là encore, donc, le choix

des param̀etres optimaux d’un mod̀ele ŕesulte d’un compromis.

Remplacer des attributséquivalents: Les attributs utiliśes dans la litt́erature sont souvent re-

grouṕes en ensembleśequivalents, selon le type d’information qu’ils encodentà partir du

signal. Une première taxonomie distingue les attributs temporels (issus par exemple du pro-

fil d’ énergie, comme le temps d’attaque) des attributs spectraux (calculésà partir du spectre

de Fourier). Parmi les attributs spectraux, on peut distinguer les encodages fond́es sur la

décomposition du spectre de Fourier en moments statistiques (centrode -centroid, variance -

spread, asyḿetrie -skewness, aplatissement -kurtosis, etc.) et la d́ecomposition par Fourier

à nouveau, qui produit les coefficients ceptraux.

Remplacer des mod̀eleséquivalents: De façon similaire, des classes d’équivalence de modèles

statistiques tendent̀a émerger̀a l’usage en fonction de leurs hypothèses structurelles sous-

jacentes. Une distinction possible considère les mod̀eles statiques d’un côté, qui ne pren-

nent pas en compte l’ordonnancement temporel des données d’apprentissage (par ex. les

histogrammes, GMM, k-plus-proches-voisins), et les modèles dynamiques de l’autre, qui

mod́elise à la fois la distribution statique et sonévolution dans le temps (par ex. modèles

de Markov cach́es ou ŕeseaux de neurones récurrents). Une autre distinction importante con-

sidère les algorithmes paramétriques d’une part, qui modélise une densité de probabilit́e

comme une fonction dont il faut optimiser les paramètres (par ex. les moyennes et co-

variances d’un GMM), aux modèles d’estimation non-paramétriques qui applique la m̂eme

repŕesentatioǹa tout type de donńees (par ex. un histogramme).

Dériver des attributs par composition fonctionnelle: Il est courant de modifier un attribut stan-

dard en lui appliquant un pré-traitement (tel qu’un filtrage préliminaire du signal), post-
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traitement (en prendre la dérivée) ou en modifiant la chaı̂ne de traitement interḿediaire.

Par ex. l’attribut de contraste spectral (Spectral Contrast) modifie l’algorithme standard

d’extraction des MFCCs en remplaçant la moyenne du spectre faite sur chaque bande de

fréquence Mel par sa variance.

Emprunter à d’autres domaines: Il est courant d’emprunter une technique, typiquement un at-

tribut, à un autre domaine d’application de la reconnaissance de formes, lorsqu’elle s’est

avéŕee efficace. Les MFCCs, omniprésents aujourd’hui pour la musique, sontà l’origine un

emprunt faità la reconnaissance de parole, qui elle même les avait adaptés de techniques

utilisées pour l’analyse de signaux sismiques.

Modéliser la dynamique: De nombreuses publicationsétendent le mod̀ele de base afin de pren-

dre en compte la dynamique temporelle des attributs. La modification peut se faireau niveau

de l’extraction d’attributs, par exemple en substituant les attributs par leur dérivée temporelle

(delta-coefficients), leurs statistiques sur des fenêtres temporelles de plusieurs trames (texture

windows), ou encore leur transforḿee de Fourier̀a l’échelle de plusieurs secondes. La modi-

fication peut aussi porter sur la modélisation statistique des attributs, en utilisant des modèles

dynamiques comme les modèles de Markov cach́es.

Int égrer un raisonnement haut-niveau: Une autre direction de recherche est d’intégrer de tels

algorithmes baśes sur le signal dans un système plus large, qui rajoute une couche de raison-

nement plus haut niveau, par exemple sur la structure temporelleà long-terme. L’exemple typ-

ique de cette stratégie est l’utilisation en reconnaissance de la parole de modèles de grammaire

permettant de d́esambigüıser les d́ecisions faites localementà partir des seules séquences

d’attributs. L’équivalent en musique est de représenter la succession temporelle des notes en

transitoires et́etats stationnaires, ou les changements de tonalités, etc.
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3.3 Conclusion

Ce catalogue d’heuristiques de recherche a une utilité rh́etorique, car nous l’utilisons dans le

chapitre suivant pour structure l’exploration de l’espace des modèles timbraux, afin d’en estimer la

précision. Toutefois, cette présentation a aussi valeur pédagogique, en ce qu’elle aideà appŕehender

l’importante litt́erature du domaine, qui se caractérise par un cheminement très incŕemental d̂u à

une certaine maturité. Enfin, ces heuristiques posent la question d’une formalisation du savoir-faire

sṕecifique au domaine et de la possible automatisation d’un processus d’aideà la recherche,̀a la

manìere du syst̀eme EDS d́evelopṕe à SONY CSL.
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PARTIE II: EXPERIENCES

Chapitre 4: Le plafond de verre (Expérience 1)

Dans ce chapitre, nous testons la validité de l’hypoth̀ese sous-jacente au modèle de timbre implicite-

ment utiliśe par la majorit́e des syst̀emes d’extraction de ḿetadonńees. Pour cela, nous explorons

l’espace des algorithmes décrits pŕećedemment, afin d’en optimiser la précision.

4.1 Exṕerience

Nous impĺementons et testons ici plus de 500 variantes algorithmiques, découlant des heuristiques

décrites plus haut, et que nous résumons ici:

• Param̀etres de l’algorithme original: taux d’échantillonnage, taille des trames, nombreN

de MFCCs extraits de chaque trame, nombreM de composantes gaussiennes, nombren de

tirages pour l’approximation de Monte-Carlo

• Descripteurs spectraux MPEG7: remplacement total ou partiel des MFCCspar les descrip-

teursSpectralCentroid, SpectralSpread, SpectralKurtosis, SpectralSkewness, SpectralFlat-

ness, SpectralRolloff, etSpectralFlux.

• Autre mesure de distance: remplacement de Monte-Carlo par plusieurs variantes de la dis-

tanceEarth Mover.

• Modèles non-paraḿetriques: remplacement des GMMs par plusieurs variantes

d’histogrammes, notamment aprés quantisation vectorielle des MFCCs.

• Pŕe et post-traitement inspirés de la reconnaissance de la parole: opérations deZMeanSource,

Pŕe-emphase,Dither, Liftering, Cepstral Mean Compensationet ajout du coefficient d’ordre

0.

• Variantes de MFCCs: dont plusieurs implémentations de contraste spectral (Spectral Con-

trast).
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• Emprunt à l’analyse de textures picturales: notamment l’emploi de matrices de co-

occurrences

• Coefficients d́erivés et d́erivés-secondes

• Texture Windows: cad la substitution des MFCCs par leurs statistiques sur des fenêtres de

plusieurs secondes.

• Modèles de Markov cach́es: et optimisation de leurs paramètres (nombre d’états, nombre de

composantes gaussiennes parétat).

• Modèles haut-niveau: prenant en compte la notion de note formée d’un transitoire et d’uńetat

stationnaire.

4.2 Méthode

Nous utilisons une base de données de 350 titres construite pour représenter explicitement la notion

de similitude timbrale. La base comprend 37 groupes de chansons du même artiste, optimalement

similaires entre elles, et optimalement distant les uns des autres. La précision d’un algorithme est

définie comme le rapport moyen du nombre de chansons du même groupe que la chanson-requête

S obtenues dans lesk plus proches voisins deS, quandk estégalà la cardinalit́e du groupe deS.

Cette mesure est appeléeR-précision dans la communauté d’Information Retrieval.

4.3 Outils

Au total, plus de 500 variantes algorithmiques ontét́e test́ees, ńecessitant pour chacune le stockage

et l’analyse d’une matrice de similitude complète entre les chansons de la base de données. Cette

étude, d’amplitude ińegaĺeeà notre connaissance, n’est rendu possible que par:

• la conception d’une architecture logicielle dédíee (l’API MCM), et d’une plateforme

d’expérimentation se doublant d’un outil de navigation dans des bases de données musicales

(le Music Browser), ŕealisations collectives du groupe musique de Sony CSL
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• des efforts d’impĺementation des différents algorithmes, pour passer de prototypes Matlabà

des versions optimisées, propríetaires, en C, surpassant en vitesse les différents codes exis-

tants en acćes libre.

• un nouvel algorithme de recherche de plus proches voisins, permettant des gains en vitesse

suṕerieursà 3000%

4.4 Résultats

L’exploration de l’espace des modèles d́ecrits ci-dessus permet d’améliorer laR-précision de plus

de 15% par rapport aux réglages initiaux, pour un maximum de 65.2 %R-précision. La mesure

optimale compare des GMMs deM = 50 composantes, calculés pourN = 20 MFCCs, additionńes

du coefficient d’ordre 0. Les mod̀eles sont comparés par Monte-Carlo, avecn = 2000 tirages

aléatoires.

Ces 65% de pŕecision peuvent sembler un piètre ŕesultat. Il faut toutefois rappeler que le critère

d’évaluation sous-estime la qualité de la mesure en considérant comme incorrects les documents

d’un autre groupe que la chanson-requête, qui peuvent toutefoiŝetre corrects perceptivement. A

titre d’illustration, la mesure optimale trouvée ici aét́e impĺement́ee par Elias Pampalk et a remporté

le concours de classification automatique d’artistes lors de la conférence ISMIR 2004.

Toutefois, le taux d’erreur résiduel n’est pas accidentel, mais révèle plutot des limitations fon-

damentales:

• La mod́elisation dynamique, que ce soit par coefficient d́erivés,texture windows, mod̀eles de

Markov cach́es ou matrices de co-occurrence, n’améliore pas la pŕecision. Ce comportement

est paradoxal, car il est connu depuis les premières exṕeriences psychoacoustiques sur la per-

ception humaine des timbres instrumentaux que les descripteurs dynamiques comme le temps

d’attaque jouent un rôle fondamental. Le chapitre suivant décrit une exṕerience permettant

de mieux comprendre cette observation.

• L’expérimentation montre qu’à part un petit nombre de paramètres cruciaux (comme le taux
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d’échantillonnage), le choix des paramètres et l’utilisation de telle ou telle variante n’a que

peu d’influence sur la précision de la mesure. Les traitements sophistiqués, notamment, sont

au mieuxéquivalents̀a leur homologues plus basiques.

• Ces ŕesultats sugǵerent aussi que la précision d́ecoulant de telles variations sur le même

thème (distribution statistique globale de propriét́es spectrales instantanées) est borńee par

une asymptote empiriquement estiméeà 70% deR-précision.

• Une de nos observations les plus importantes est que la classe d’algorithmesétudíee ici cŕee

de faux-positifs qui sont presque toujours les mêmes chansons, indépendamment de la requête

de d́epart. Entre d’autres termes, il existe pour ces algorithmes des chansonsanormalement

proches de toutes les autres chansons: de faux centres de gravité (hubs). Ce ph́enom̀ene

sembleêtre une caractéristique importante de ce type d’algorithmes, qui s’étend au delà du

probl̀eme sṕecifique de la similitude timbrale entre signaux musicaux. Nous consacrons par

la suite un chapitrèa sonétude plus approfondie.
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Chapitre 5: De l’utilit é de la dynamique (Exṕerience 2)

5.1 Le paradoxe de la mod́elisation dynamique

Une des conclusions les plus surprenantes de notreétude est l’apparente inutilité des variantes al-

gorithmiques destińeesà mieux mod́eliser la dynamique des attributs instantanés, tels que l’emploi

de coefficients d́erivés, ou de mod̀eles de Markov cach́es. Ceci contredit des nombreuses données

exṕerimentales en psychoacoustique, qui ont démontŕe l’importance de la dynamique pour la per-

ception humaine des timbres instrumentaux.

5.2 Hypothèses

Trois causes principales peuvent expliquer les difficultés computationnelles̀a mod́eliser la dy-

namique des attributs instantanés dans le cas de textures polyphoniques:

H1 Soit la dynamique des attributs est impossibleà repŕesenter algorithmiquementà l’intérieur

même d’une note, par ex.̀a cause d’une trop grande variabilité entre notes. Ceci est im-

probable, car la possibilité d’une telle mod́elisation aét́e établie par plusieurs algorithmes

d’identification automatique d’instrument.

H2 Soit d́es lors, c’est la dynamique des trames de signauxpolyphoniquesqui est difficile

à mod́eliser, par ex. à cause du masquage spectral entre plusieurs sources et de leur

désynchronisation.

H3 Soit enfin, c’est la dynamique de lasuccessiondes notes et́evénements musicaux dans une

texture qui est difficile à mod́eliser,à cause par ex. de la structureà long-terme d’une morceau

de musique, comme ses changements d’instrumentation.

5.3 Méthodes

Nous proposons de discriminer ces trois hypothèses en comparant les performances d’algorithmes

statiques et dynamiques sur deux types de signaux:
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• des enregistrements monophoniques, mono-instrumentaux de notes individuelles (DB1)

• des enregistrement polyphoniques de notes individuelles segmentées automatiquementà par-

tir de textures polyphoniques (DB2)

L’hypothèse H1 serait confirḿee si l’on établit que les algorithmes dynamiques sont moins

efficaces que les algorithmes statiques sur DB1 (ce qui serait, au passage, en contradiction avec

les pŕećedents ŕesultats dans la littérature). H2 serait quantà elle confirḿee si la mod́elisation

dynamique est meilleure que la modélisation statique dans le cas monophonique (DB1), mais pas

dans le cas polyphonique (DB2): cela signifierait que la polyphonie ruineles efforts de mod́elisation

temporelle m̂eme dans le cadre restreint de notes individuelles. Finalement, si les algorithmes

dynamiques surpassent les algorithmes statiques sur DB1 et DB2, mais pas dans le cas des textures

de plusieurs notes (comme nous l’avonsétabli au chapitre préd́edent), alors l’hypoth̀ese H3 sera

pref́eŕee.

Nous testons sur chaque base de données un śerie de 17 variantes algorithmiques, dont 3

mod̀eles dynamiques, basés sur la programmation dynamique. La précision des mod̀eles est cal-

culée selon le m̂eme mode que préćedemment (R-précision). Les deux bases de données DB1 et

DB2 comprennent le m̂eme nombre de signaux (700) et le même nombre de classes (16), ce qui

crée des t̂aches de complexité comparable.

5.4 Résultats

La comparaison des résultats sur les deux bases de données montre que les algorithmes dynamiques

sont plus de10% plus précisque leurs homologues statiques sur la base monophonique (DB1).

Ceci confirme les conclusions des préćedenteśetudes sur la classification de sons instrumentaux.

Les meilleurs algorithmes statiques sur DB1 utilisent des modèles assez compliqués (GMM avec

plusieurs composantes gaussiennes), et de larges concaténations d’attributs. Toutefois, les mêmes

algorithmes dynamiques sont plus de10% moins précisque les algorithmes statiques sur la base

polyphonique DB2. Les meilleurs résultats sur DB2 sont obtenus pour de très simples algorithmes,
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comme la comparaison euclidienne de la moyenne des vecteurs MFCC.

Cette exṕerience montre donc que la difficulté à mod́eliser la dynamique des séquences

d’attributs instantańes est d̂ue au caractère polyphonique des données (H2), et noǹa leur struc-

ture temporelle (en notes, phrases, refrains, etc.). Ce résultat sugǵere que le codage horizontal des

trames audio, qui ne prend pas en compte les différentes sources et leur synchronisation verticale,

est une repŕesentation peu efficace pour la musique polyphonique, et peu plausible cognitivement.
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Chapitre 6: Des hubs et de leurs propríetés

Une des conclusions les plus importantes de l’expérience 1est que la classe d’algorithmesétudíee

ici crée de faux-positifs qui sont presque toujours les mêmes chansons, indépendamment de la

reqûete de d́epart. Entre d’autres termes, il existe pour ces algorithmes des chansonsanormalement

proches de toutes les autres chansons: deshubs.

6.1 Définition

On d́efinit comme un “hub” une chanson qui apparaı̂t fréquemment comme faux-positif pour une

mesure de similarité donńee. Cela impliquèa la fois que

1. un hub apparaı̂t dans les plus proches voisins de nombreuses chansons de la base de donńees

2. la plupart de ces apparitions ne révélent pas une similitude perceptuelle avec la chanson-

reqûete

Chacune de ces conditions n’est pas suffisante en soi. Par exemple, une chanson peut apparaı̂tre

souvent dans les voisins de la plupart des requêtes, mais de façon correcte perceptivement: cela

révéle que cette chanson est une sorte de centre de masse perceptif pour la base de donńees. Par

exemple,A Hard Day’s Nightest peut-̂etre une chanson proche perceptivement de toutes les autres

chansons desBeatles. Cela n’en fait pas un hub. Réciproquement, une chanson donnée peut̂etre un

faux-positif pour une reqûete donńee, mais pas pour un grand nombre d’entre elles. Par exemple,A

Hard Day’s Nightpeutêtre estiḿee comme proche d’une sonate pour piano deBeethovenpar une

mesure donńee: c’est un bug, car les deux chansons n’ont aucune similitude perceptive. Toutefois,

cela ne fait pas deA Hard Day’s Nightun hub, s’il n’est associé anormalement qu’à cet exemple

précis.

6.2 Importance du ph́enomène

Ce ph́enom̀ene de hubs rappelle curieusement des observations déjà faites dans d’autres domaines

que la musique, notamment en identification biométrique de locuteurs ou d’empreintes digitales.
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Le rapprochement est d’autant plus intéressant̀a faire que ces technologies emploient typiquement

les m̂eme techniques algorithmiques que celles que nousétudions ici. Cela incitèa penser que

ce ph́enom̀ene est une caractéristique importante de ce type d’algorithmes, et que nos conclusions

s’étendent donc au delà du probl̀eme sṕecifique de la similitude timbrale de signaux musicaux.

6.3 Deux mesures de hubness

Nous proposons deux mesures du degré de hubness pour une chanson:

• le nombre d’occurrences: mesure le nombre de fois qu’une chanson donnée apparâıt dans

lesk plus proches voisins de toutes les autres chansons dans la base de données. On montre

que la moyenne des nombres d’occurrences de toutes les chansons d’une base est́egaleà

k. Si une chanson apparaı̂t notablemment plus que la moyenne, elle peutêtre consid́eŕee

comme un hub. Dans la base de test utilisée dans l’expérience 1, une chanson,Joni Mitchell

- Don Juan’s Reckless Daughter, apparâıt 57 fois dans les 10 plus proches voisins des autres

chansons de la base, soit prés de 6 fois la valeur th́eorique.

• l’angle aux voisins: Un hub peutégalement̂etre d́efini comme une chanson proche de chan-

sons qui sont tr̀eséloigńees entre elles. Le rapport entre la distance aux voisins d’une part,

et la distance entre voisins d’autre part, peut s’exprimer comme un angle, dont le cosinus

se calcule par une simple trigonométrie. On montre que la valeur moyenne des angles aux

voisins d’une base donnée est de 60 degrés. Tout chanson dont l’angle aux voisins moyen est

notablement suṕerieurà 60◦ peut donĉetre consid́eŕee comme un hub.

6.4 Les hubs forment une distributionà invariance d’échelle

La distribution des nombre d’occurrences dans les 100 plus proches voisins sur une base de chan-

sons de 15,000 mp3 montre un profil de loi de puissance. L’immense majorité des chansons ont

autour d’une centaine d’occurrences (ce qui correspondà la valeur moyenne), toutefois, un très pe-

tit nombre de chansons ont un nombre d’occurrence extrêmement grand, jusqu’à 4000, ce qui est
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plus de 400 fois la valeur attendue.

6.5 Les hubs sont une conśequence de la mod́elisation de l’aggloḿeration des at-

tributs, pas des attributs eux-m̂emes (Exṕerience 3)

On montre qu’une base de données de trames individuelles, modélisées avec des MFCCs, et com-

paŕees par simple distance euclidienne, ne géǹere pas de hubs. Pour une base de 15000 trames, le

nombre d’occurrences maximum observé est de 400, ce qui est plus de 10 fois inférieur au nombre

observ́e dans une base composée du m̂eme nombre de séquences de trames correspondantà des

morceaux entiers. Cela indique que les hubs ne sont pas une conséquence d’un mauvais comporte-

ment des attributs individuels, mais de la modélisation de leur aggloḿerationà long-terme.

6.6 Les hubs apparaissent pour tous les algorithmes (Expérience 4)

La comparaison de plusieurs variantes algorithmiques implément́ees dans le cadre de l’expérience

1 montre que tous les algorithmes géǹerent des hubs. En particulier, les modèles non-paraḿetriques

(histogrammes) ǵeǹerent autant (sinon plus) de hubs que leurs homologues paramétriques (GMMs).

Similairement, les variantes “à dynamique” comme les modèles de Markov cach́es ou les coeffi-

cients d́erivés ǵeǹerent plus de hubs que les simples GMMs.

6.7 Le fait d’être un hub n’est pas intrinsèque à une chanson donńee

(Expérience 5)

Le degŕe de hubness des chansons de la base de test ne sont pas fortement corrélés pour différentes

mesures de similitudes. Cela indique que les algorithmes distribue les hubs différemment sur la base

de donńees, et que le fait d’être un hub n’est pas intrinsèqueà une chanson donnée, mais d́epend

de l’algorithme utiliśe. Les hubs ǵeńeŕes par les variantes dynamiques (HMM, delta, accélération)

sont plus corŕelés entre eux qu’avec les hubs géńeŕes par les algorithmes statiques.
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6.8 Les hubs ne sont pas la conséquences de mod̀eles peu discriminants

(Expérience 6)

Une hypoth̀ese śeduisante pour expliquer l’apparition de hubs propose qu’ils soient le résultat de

mod̀eles peu discriminants, et donc promptsà expliquer des données tr̀es h́et́eroclites. De tels

mod̀eles peuvent correspondre par ex. aux chansons dont la modélisation statistique emploie de

fortes variances, ou pour des algorithmes statiques qui considèrent toutes les permutations des

trames de la chanson originale comme rigoureusement identiques. On montre toutefois que les

hubs ne sont pas corrélés aux chansons dont les modèles ont une forte variance, et que les algo-

rithmes statiques (en particulier paramétriques) ne cŕeent pas moins de hubs que leurs homologues

dynamiques plus contraints.

6.9 Le fait d’être un hub peut être localiśe à certaines trames seulement

(Expérience 7)

L’importance d’un hub donńe n’est pas une propriét́e émergeant globalement de la distribution de

ses attributs instantanés, mais peut̂etre attribúeeà certaines parties de cette distribution. On montre

que les 5% de trames les moins représentative statistiquement (cad correspondant aux composantes

gaussiennes de poids les plus faibles dans les GMM) sont extrêmement importantes̀a consid́erer,

et que leur suppression augmente radicalement le nombre de hubs dans la base de donńees. Si

l’on continue d’homoǵeńeiser les GMMs en supprimant les composantes les moins statistiquement

importantes, le nombre de hubs décrôıt à nouveau, jusqu’à un minimum local suitèa la suppression

des 40% de trames les moins importantes. Cela indique qu’il existe une populationde trames dans

la région de poids statistique [60%,95%] qui sont tr̀es peu discriminantes et qui sont en majorité

responsables de l’apparition de hubs.

Ce ph́enom̀ene traduit une situation géńerale dans laquelle les observations instantanées n’ont

pas toutes la m̂eme importance perceptuelle, qui en particulier ne dépend pas de leur saillance statis-

tique par rapport̀a leur distributioǹa long-terme: les trames les plus informantes pour discriminer
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des textures polyphoniques sontégalement les moins représentatives d’un point de vue statistique

(les 5% inf́erieurs), alors qu’une grande population de trames (plus d’un tiers) a un impact tr̀es

négatif sur la mod́elisation, eńetant “proches de tout le reste”.

6.10 Les hubs n’apparaissent pas pour tout type de données (Exṕerience 8)

Nousétablissons enfin que l’apparition de hubs ne dépend pas que de l’algorithme utilisé, mais aussi

du type de signaux modélisés. Notamment, les m̂emes mesures appliquéesà des signaux audio cor-

respondant̀a des ambiances environnementales (enregistrements de parc, boulevards, rue píetonnes,

etc.) ont des pŕecisions jusqu’̀a 30% suṕerieures̀a celles obtenues pour la musique polyphonique,

et n’engendrent pas de hubs. On montre qu’une distinction importante entre ces 2 classes de sig-

naux “̀a hubs” et “sans hubs” peutêtre formuĺee en termes d’homogéńeité temporelle et statistique.

Notamment, les textures environnementales sont bien modélisées m̂eme en ne considérant que de

courts extraits: seulement 10% de précision perdue (relatif) en passant de signaux de 3 minutesà

10 secondes. Au contraire, la modélisation de musique polyphonique néćessite beaucoup plus de

donńees: plus de 60% de précision perdue (relatif) en passant de 3 minutesà 10 secondes.
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Chapitre 7: L’ancrage timbral des jugements śemantiques

7.1 Inférer des descriptions haut-niveau avec le timbre (Exṕerience 9)

Nous examinons ici la validité d’utiliser un mod̀ele de timbre pour extraire des métadonńees musi-

cales haut-niveau. Notréetude repose sur une base de données internèa SONY CSL, qui contient

4936 chansons, chacune décrite avec un ensemble de 801 attributs booléens (par ex. “Language

English= true”). Ces attributs sont regroupés en 18 catégories, qui d́ecrivent des aspects acous-

tiques du son musical (par ex. instrument, dynamique), mais aussi des descriptions pluséditoriales

(language, pays), culturelles ou subjective (genre,émotion, situation). Ces attributs sont unéventail

repŕesentatif des ḿetadonńees typiquement modélisées dans la communautéMIR.

Nousétudions la pŕecision d’un ḿecanisme d’inf́erence de ces attributs reposant uniquement

sur la mesure de similitude timbrale dévelopṕee dans cettéetude. L’algorithme de classification est

inspiŕe des k-plus-proches-voisins: une chanson est classifiée comme par ex. “hard rock” si une

grande partie de ses plus proches voisins au sens de la similitude timbrale sonteux aussi classifíes

comme tel. Plus préciśement, on apprend la densité de probabilit́e du nombre d’occurrences de

chansons d’une catégorieC dans les plus proches voisins d’une chanson dans le cas où cette chanson

appartient̀a C d’une part, et n’y appartient pas d’autre part. La décision pour une chansons non

encore classifíee d’appartenir ou noǹaC se fait ensuite par maximum de vraisemblance (maximum

likelihood) en comptant le nombre de chansons appartenantà C dans les plus proches voisins des.

Les ŕesultats montrent que certains attributs (Style Techno, Genre Metal...) sont extrêmement

bien estiḿes avec la similitude timbrale, avec des précisions parfois suṕerieures̀a 95%. Toutefois,

ces attributs bien corrélés au timbre sont extrêmement rares: seulement 6 % des attributs sont es-

timés avec plus de 80% de précision, et plus de la moitié des attributs obtiennent moins de 65%

(ce qui està peine meilleur qu’une d́ecision binaire faite aléatoirement). Cela indique que très

peu de descriptions musicales haut-niveau ont une définition consensuelle en termes d’un timbre

prototypique.

D’autre part, on observe que tous les taxons d’une catégorie donńee n’ont pas le m̂eme com-
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portement. Les genres “unplugged” ou “hard rock” sont de forts corrélats du timbre, car ils cor-

respondent̀a des signaux très homog̀enes et tyṕes. Toutefois, les genres “jingle” ou “electronica”

sont de pìetres corŕelats timbraux, car ce sont des groupes très h́et́erog̀enes, et mal d́efinis en ter-

mes de couleur sonore. Cela entre en contradiction avec la stratégie habituellement utiliśee enMIR

d’utiliser le même espace de décision pour discriminer tous les taxons d’une catégorie donńee.

Finalement, il apparaı̂t que beaucoup d’attributs de la catégorie “instrument” sont eux-aussi

mal mod́elisés par la similitude timbrale. Cela montre que les jugements humains en matière de

timbre polyphonique ne sont pas le résultat imḿediat de perceptions bas-niveau, mais plutôt de

raisonnements cognitifśevolúes, d́ependant par exemple du contexte d’écoute et de la culture de

l’auditeur.

7.2 Le rôle du contexte et des corŕelations haut-niveau (Exṕerience 10)

Nous montrons ici qu’il existe ńeanmoins de tr̀es importantes corrélations statistiques entre les

attributs, ind́ependamment de leur ancrage sur le timbre, qui révèlent la possibilit́e d’un important

effet de contexte lors des processus de décision. Pour ce faire, nous mesurons l’indépendance

statistique entre tous les couples d’attributs de la base, avec le test du khi-carré (Pearson’sχ2).

Parmi les couples d’attributs les moins indépendants statistiquement, on observe plusieurs types de

corŕelation:

• Tautologies: Un certain nombre de corrélations traduisent des associations triviales de mots

lexicalement proches, comme “TextCategory Christmas” et “Situation Christmas”.

• Sur-apprentissage: des corrélations d̂ues à l’existence d’un tout petit nombre, non

repŕesentatif, de chansons présentant une combinaison particulière d’attributs, par ex. “Toutes

les chansons parlant de bicyclette utilise de la guimbarde”. Ce genre de règles non pertinentes

sont faciles̀a éviter en pratique, par filtrage ou validation croisée.

• Exclusions: des corrélations ńegatives, d’ordre logique: une chanson ne peutêtreà la fois de

tempo “constant”et “varié”, ou “vocale”et “instrumentale”.
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• Associations śemantiques: des corrélations intrins̀eques aux termes utilisés, de l’ordre de la

psycholinguistique, et qui n’ont que peuà voir avec leur utilisation dans un cadre musical.

Par ex. une chanson “puissante” (powerful) est une chanson “forte” (strong), une chanson qui

parle d’“anniversaire” est̀a utiliser lors d’“occasions spéciales”.

• Connaissances musicales: des corrélations qui ne sont pas des propriét́es intrins̀eques des

termes emploýes, mais des propriét́es extrins̀eques propres au domaine musical, par ex. des

connaissances historiques ou culturelles entre genres (“Rap” et “Hip hop”), genres et pays

(“bossa nova” et “Bŕesil”), genres et instruments (“hip hop” et“spoken vocals”), genres et

époques (“rag time” et “1930’s”), et m̂eme des aspects plus subjectifs liésà la perception du

timbre (“la flute cŕee un son “chaleureux” (warm)”).

Ces ŕesultats sugg̀erent que beaucoup de métadonńees musicales haut-niveau peuvent effec-

tivement être ancŕees sur perception du timbre, mais uniquement en exploitant ces corrélations

haut-niveau avec les meilleurs corrélats timbraux.

7.3 Un mod̀ele hybride d’ancrage de descriptions haut-niveau

Nous pŕesentons ici un algorithme qui réalise ce projet, en utilisant une mesure de similitude tim-

brale comme amorçage (bootstrap) pour estimer quelques attributs bien corrélés au timbre, puis en

utilisant des arbres de décision pour estimer d’autres attributs non corrélés directement, mais pour

lesquels il existe des corrélations haut-niveau avec l’ensemble des attributs amorcés timbralement.

Les ŕesultats, pŕeliminaires sur 45 attributs choisis aléatoirement parmi les 801 disponibles,

montre que l’utilisation de corrélations haut-niveau d’ordre culturel permet d’améliorer la pŕecision

des estimations faites uniquement avec le timbre. Dix attributs voient la précision de leur estimation

augmenter de plus de 10%, et 15 attributs ont une précision finale suṕerieureà 75%. En particulier,

deux attributs de la catégorie “instrument” (“guitare” et “choeur”), qui sont de piètres corŕelats

timbraux (60%), sont aḿeliorés en utilisant des corrélations avec d’autre attributs, ce qui illustre la

pertinence de notre approche.
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Conclusion : Vers des mod̀eles cognitifs

Les exṕeriences d́ecrites dans cettéetude illustrent un certain nombre de contradictions entre les

mod̀eles computationnels du timbre polyphonique et sa perception humaine. Notamment, nous

avons constaté que les observations instantanées n’ont pas toutes la même importance perceptuelle,

qui en particulier ne d́epend pas de leur saillance statistique par rapportà leur distributioǹa long-

terme. Cet effet est possiblement̀a l’origine deshubsobserv́es sur tous les algorithmesétudíes

ici. L’approche “GMM de MFCCs” cŕee une repŕesentation de l’objet sonore qui est essentielle-

mentextensionelle. Cela semblêetre un mod̀ele suffisant pour les textures environnementales, qui

d’une certaine façon, sont définies exclusivement par ce qu’elle sont, statistiquement. Toutefois,

nos exṕeriences montrent que la perception de la musique, et particulièrement de textures poly-

phoniques extraites de morceaux connus, est une construction principalementintensionnelle. En

particulier, certains timbres sont plus saillantsà la perception que d’autres: la première chose que

nous percevons d’une chanson d’un artiste donné est souvent le timbre particulier de sa voix, même

si celle-ci n’est pas prédominante d’une point de vue statistique, et non l’accompagnementà base

de guitare, piano ou autres.

En d’autres termes, nous “entendons” quotidiennement dans la musique polyphonique des

choses qui ne sont pourtant pas présentes de façon significative (statistiquement) dans le signal

sonore. La musique que nousentendonŝetre du piano est surtout de la musique que nous nous

attendons̀a être du piano. Ces paradoxes statistico-perceptifs, dont l’existence devrait maintenant

êtreétablie de façon rigoureuse, expliquent en grande partie le désaccord entre les modèles algo-

rithmiquesétudíes ici et la perception humaine.
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Appendix A
Composition of the test database

In the context of large, systematic evaluation of very many algorithm variants, the subjective eval-

uations of each possible similarity variant by human subjects, as was done for the psychophysical

investigations described in Chapter 2, seems unpractical. However, objective evaluation is also

problematic, because of the choice of a ground truth to compare the measureto. Several authors

have proposed solutions for this: Logan and Salomon (2001) consider as a good match a song which

is from the “same album”, “same artist”, “same genre” as the seed song. Pampalk et al. (2003) also

propose to use “styles” (e.g. Third Wave ska revival) and “tones” (e.g. energetic) categories from

theAll Music Guide∗. Berenzweig et al. (2003) push the quest for ground truth one step further by

mining the web to collect human similarity ratings.

For this study, we have constructed a test database of 350 song items, as an extract from the

Cuidado database (Pachet et al., 2004), which currently has 15,460 mp3files. It is composed of 37

clusters of songs by the same artist, which were refined by hand to satisfy 3additional criteria:

• First, clusters are chosen so they are as distant as possible from one another. This is realized

e.g. by choosing artists of very different genres, that span the whole space of music available

in the database (fromBeethovento The Clash).

∗www.allmusic.com
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• Second, artists and songs are chosen in order to have clusters that are“timbrally” consistent

(all songs in each cluster sound the same). This is realized typically by choosing sets of songs

for a given artist that all have a distinguished “sound” signature of a given period of activity of

the artist. For instance, all songs from theBeatlescluster come from their 1963-1964 albums

(Please Please Me, With the Beatles, A Hard Day’s NightandBeatles for Sale), released on

Capitol.

• Finally, we only select songs that are timbrally homogeneous, i.e. there is no big texture

change within each song. This is to account for the fact that we only compute and compare

one timbre model per song, which “merges” all the textures found in the sound. In the case of

more heterogeneous songs (e.g.Queen - Bohemian rhapsody), higher-level models such as

a segmentation step could increase the accuracy of the measure, but suchtechniques are not

considered in this study (see for instance Foote (2000)).

This test database is constructed so that nearest neighbors of a givensong should optimally

belong to the same cluster as the seed song. Table A.1 lists the clusters in the database.



187

Table A.1: Composition of the test database. The “descriptions” were takenfrom the AMG
(www.allmusic.com).

Artist Description Size

ALL SAINTS Dance Pop 9
APHEX TWIN Techno 4

BEATLES British Pop 8
BEETHOVEN Classical Romantic 5

BRYAN ADAMS Pop Rock 8
FRANCIS CABREL French Pop 7

CAT POWER Indie Rock 5
CHARLIE PATTON Delta Blues 10

THE CLASH Punk Rock 21
VARIOUS ARTISTS West Coast Jazz 14
DD BRIDGEWATER Jazz Singer Trio 12

BOB DYLAN Folk 13
ELTON JOHN Piano Pop 5

FREHEL French Prewar Singer 8
GARY MOORE Blues Rock 9
GILBERTO GIL Brazilian Pop 15
JIMI HENDRIX Rock 7

JOAO GILBERTO Jazz Bossa 8
JONI MITCHELL Folk Jazz 9

KIMMO POHJONEN World Accordion 5
MARDI GRAS BB Big Band Blues 7

MILFORD GRAVES Jazz Drum Solo 4
VARIOUS “Musette” Accordion 12

PAT METHENY Guitar Fusion 6
VARIOUS ARTISTS Jazz Piano 15

PUBLIC ENEMY Hardcore Rap 8
QUINCY JONES Latin Jazz 9
RASTA BIGOUD Reggae 7
RAY CHARLES Jazz Singer 8
RHODA SCOTT Organ Jazz 10

ROBERT JOHNSON Delta Blues 14
RUN DMC Hardcore Rap 11

FRANK SINATRA Jazz Crooner 13
SUGAR RAY Funk Metal 13

TAKE 6 Acapella Gospel 10
TRIO ESPERANCA Acapella Brasilian 12
VOCAL SAMPLING Acapella Cuban 13





Appendix B
Experiment 1 - Details

This appendix gives full details aboutExperiment 1 (Chapter 5), in which we explore the space of

polyphonic timbre models by applying transformations (so-calleddesign patterns) to the prototyp-

ical algorithm described in Chapter 4. The evaluation methodology follows thedescription made

in Chapter 5. Notably, we report results using scores ofR-precision (the precision measured after

R documents have been retrieved, whereR is the number of relevant documents) averaged over all

queries in the test database. The complete analysis of these results can be found in Chapter 5.

B.1 Tuning feature and model parameters (patterns 3.2.1 and 3.2.2)

As a first evaluation, we wish to find the best set of parameters for the original algorithm (“GMMs

of MFCCs”). We explore the space constituted by the following parameters :

• Signal Sample Rate (SR): The sample rate of the music signal. In the classic framework

of Fourier analysis, a given sample rateS Rinvalidates all frequencies aboveS R
2 . Humans

can hear vibrations ranging from about 20 Hz to approximately 20 kHz, sosampling that

doesn’t extend this far will have a detrimental effect on the resultant quality. The red book

standard for audio CD is 44,1kHz, and high-quality digital recording equipments typically

offer sample rates up to 96 or 192kHz. The original value used in Aucouturierand Pachet
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(2002b) is 11KHz. This value was chosen mainly to reduce the CPU runtime ofthe prototype

Matlab implementations.

• Number of MFCCs (N): The number of the MFCCs extracted from each frame of data. The

more MFCCs, the more precise the approximation of the signal’s spectrum, which also means

more variability on the data. As we are only interested in the spectral envelopes, not in the

finer, faster details like pitch, a large number may not be appropriate. The original value used

in Aucouturier and Pachet (2002b) is 8.

• Number of Components (M): The number of gaussian components used in theGMM to model

the MFCCs. The more components, the better precision on the model. However,depending

on the dimensionality of the data (i.e. the number of MFCCs), more precise models may be

underestimated. The original value is 3.

• Distance Sample Rate (DSR): The number of points used to sample from the GMMs in order

to estimate the likelihood of one model given another. The more points, the more precision

on the distance, but this increases the required CPU time linearly.

• Window Size :The size of the frames on which we compute the MFCCs.

As this 5-dim space is too big to explore completely, we make the hypothesis that the influence

of SR, DSR, and Window Size are both independent of the influence of N and M. However, it is

clear from the start that N and M are linked: there is an optimal balance to be found between high

dimensionality and high precision of the modeling (curse of dimensionality).

B.1.1 influence of SR

To evaluate SR, we fix N, M and DSR to their default values used in Aucouturier and Pachet (2002b)

(8,3 and 2000 resp.). In Table B.1, we see that the SR has a positive influence on the precision.

This is probably due to the increased bandwidth of the higher definition signals, which enables the

algorithm to use higher frequency components than with low SR.
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Table B.1: Influence of signal’s sample rate
SR R-Precision

11kHz 0.488
22kHz 0.502
44kHz 0.521

Figure B.1: Influence of the distance sample rate

B.1.2 influence of DSR

To evaluate DSR, we fix N= 8, M=3 and SR= 44KHz. In Figure B.1, we see that the DSR has

a positive influence on the precision when it increases from 1 to 1000, and that further increase

has little if any influence. Further tests show that the optimal DSR does not depend on either N or M.

In Appendix D.3, we use this property and the resulting tradeoff between precision and cputime

to greatly optimize the time needed to compute nearest neighbors.

B.1.3 influence of N,M

To explore the influence of N and M, we make a complete exploration of the associated 2-D space,

with N varying from 10 to 50 by steps of 10 and M from 10 to 100 by steps of 10. These boundaries

result from preliminary tests (moving N while M=3, and moving M while N=8) showing that both

default values N=8 and M=3 are not optimal, and that the optimal (N,M) was well above (10,10).

Figure B.2 shows the results of the complete exploration of the (N,M) space.

We can see that too many MFCCs (N ≥ 20) hurt the precision. When N increases, we start to
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Figure B.2: Influence of the number of MFCCs and the number of components

take greater account of the spectrum’s fast variations, which are correlated with pitch. This creates

unwanted variability in the data, as we want similar timbres with different pitch to be matched

nevertheless.

We also notice that increasing the number of components at fixed N, and increasing N at fixed

M is eventually detrimental to the precision as well. This illustrates the curse of dimensionality

mentioned above. The best precisionp = 0.63 is obtained for 20 MFCCs and 50 components.

We can also note that the number of MFCCs is a more critical factor than the number of Gaussian

components :∀M,N , 20, p(N0 = 20,M) ≥ p(N,M). This means we can decrease M to values

smaller than optimum without much hurting the precision, which is an interesting point as the

computational cost of comparing models depends linearly on M.

B.1.4 influence of Windows Size

To evaluate the influence of the window size used to segment the waveforms,we fix N= 20, M=50,

SR=44 KHz and DSR= 2000. In Figure B.3, we see that the window size has a small positive

influence on the precision when it increases from 10 ms to 30ms, but that further increase up to 1

second has a negative effect. This behaviour results from the fact that MFCCs are only meaningful

on stationary frames (larger frames may include more transients and variations) and that larger
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Figure B.3: Influence of the windows size

frames means less data available for the training, which decreases the precision of the models.

B.2 Alternative distance measure (pattern 3.2.4)

Some authors (Logan and Salomon (2001); Berenzweig et al. (2003)) propose to compare the

GMMs using the Earth Mover’s distance (EMD), a distance measure meant tocompare histograms

with disparate bins (Rubner et al. (1998)). EMD computes a general distance between GMMs by

combining individual distances between gaussian components. It is defined as the minimum amount

of work needed to change one set of gaussian components into the other.The notion of “work” is

based on a user-defined distance between individual components. Theimplementation of EMD is

based on a classical solution to thetransportation problem.

The computation of the distance between 2 GMMsI andJ is defined as a minimum flow prob-

lem between a set of suppliers (the gaussian components of GMMI ) and a set of consumers (the

components of GMMJ). Suppliers have an amount of supplywi , which is the mixture coefficient

of the corresponding gaussian component (see Section3.1). Similarly, themixture coefficients of

consumers define their capacity. Shipping a unit of supply from a supplierwi to a consumerw j is

associated with a costci j . We want to find a set of flowsfi j (i.e. the amount of supply shipping from
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GMM I

GMM J
wi

wj

cij

Figure B.4: Earth Mover’s Distance between 2 Gaussian Mixture Models, viewed as a transportation
problem between suppliers (components of GMMI ) and consumers (components of GMMJ).

each supplier to each consumer) that minimizes the overall cost:

cost=
∑

i

∑

j

ci j fi j (B.1)

This is a linear programming problem, subject to the following constraints :

fi j ≥ 0 ∀i, j (B.2)
∑

i

fi j = w j ∀ j (B.3)

∑

j

fi j ≤ wi ∀i (B.4)

Constraint B.3 ensures that supply only flows from suppliers to consumers. Constraint B.4 ensures

that consumers are filled to their full capacity, while Constraint B.4 forces suppliers to send no more

supply than their initial amount. Note that the constraints are compatible since by construction
∑

i wi =
∑

j w j = 1. A simple solution to tha above system can be found by the classic simplex

method (Press et al., 1986).

The costsci j between individual gaussian components can be defined e.g. as the classic Kullback
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Table B.2: Distance function
Distance R-Precision
EMD-KL 0.477
EMD-MA 0.406
DSR=2000 0.488

Leibler distance (as seen in Section 3.1), or the related Mahalanobis distance:

DM(x) =
√

(x− µ)TΣ−1(x− µ) (B.5)

To evaluate the EMD against our sampling scheme using DSR, we fix N= 8, M=3 and SR=

11KHz. We compare EMD with Kullback-Leibler (KL), EMD with Mahalanobis (MA) and sam-

pling with DSR=2000. In Table In B.2, we see that EMD with Mahalanobis distance performs

worst, and that EMD with Kullback Leibler and sampling are equivalent (with aslight advantage

to sampling). The difference between MA and KL is probably due to the fact that MA takes less

account of covariance differences between components (2 gaussian components having same means

and different covariance matrices have a zero Mahalanobis distance).

B.3 Feature Composition (pattern 3.2.5)

B.3.1 Processing commonly used in Speech Recognition

MFCCs are a very common front-end used in the Speech Recognition community(Rabiner and

Juang, 1993), and a variety of pre and post-processing has been tried and evaluated for speech

applications. Here we examine the influence of 6 common operations :

• ZMeanSource: The DC mean is removed from the source waveform before doing the actual

signal analysis. This is used in speech to remove the effects of A-D conversion.
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• Pre-emphasis: It is common practice to pre-emphasize the signal by applyingthe first order

difference equation :

s′n = sn − ksn−1 (B.6)

to the samplessn in each window, withk a preemphasis coefficients, 0< k < 1. Pre-emphasis

is used in speech to reduce the effects of the glottal pulses and radiation impedance and to

focus on the spectral properties of the vocal tract.

• Dither: Certain kind of waveform data can cause numerical problems with certain coding

schemes (finite wordlength effects). adding a small amount of noise to the signal can solve

this. The noise is added to the samples using :

s′n = sn + qRND (B.7)

whereRND is a uniformly distributed normalized random value and q is a scaling factor.

• Liftering: Higher order MFCCs are usually quite small, and this results in a widerange of

variances from low to high order. this may cause problems in distribution modeling. There-

fore it is common practice in speech to rescale the coefficients to have similar magnitude.

This is done by filtering in the cepstrum domain (LiFtering) according to :

c′n = (1+
L
2

sin
πn
L

cn) (B.8)

whereL is a liftering parameter.

• Cepstral mean compensation (CMC): The effect of adding a transmission channel on the

source signal is to multiply the spectrum of the source by a channel transfer function. In

the cepstral log domain, this multiplication becomes an addition which can be removed by

subtracting the cepstral mean.
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• 0’th order coefficient: The 0’th cepstral parameterC0 can be appended to thecn. It is corre-

lated with the signal’s log energy :

E = log
N∑

n=1

s2
n (B.9)

Table B.3 shows the results on the test database. We notice that subtracting the cepstral mean

severely degrade the performance. Pre-emphasis and Dither have little effect compared to the orig-

inal MFCCs. Nevertheless, liftering, normalizing the original signal and appending the 0’th coeffi-

cient all improves the precision of the measure.

We should note here that the finding that including c0 slightly improves the performance is at

odds to some of the results reported in Berenzweig et al. (2003). In any case, the overall influence

(either positive here or negative elsewhere) of this variant is small (a few percent). We further

discuss these results in Chapter 6.

B.3.2 Spectral Contrast

In Jiang et al. (2002), the authors propose a simple extension of the MFCCalgorithm to better

account for music signals. Their observation is that the MFCC computation averages the spectrum

in each sub-band, and thus reflects the average spectral characteristics. However, very different

spectra can have the same average spectral characteristics. Notably, itis important to also keep

track of the relative spectral distribution of peaks (related to harmonic components) and valleys

(related to noise). Therefore, they extend the MFCC algorithm to not only compute the average

spectrum in each band (or rather the spectral peak), but also a correlate of the variance, thespectral

contrast (namely the amplitude between the spectral peaks and valleys in each subband). This

modifies the algorithm to output 2 coefficients (instead of one) for each Mel subband. Additionally,

in the algorithm published in Jiang et al. (2002), the authors replace the Melfilterbank traditionally

used in MFCC analysis by an octave-scale filterbank (C0-C1, C1-C2, etc.), which is assumed to be

more suitable for music. They also decorrelate the spectral contrast coefficients using the optimal
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Table B.3: Influence of Feature Variants
Variant R-Precision

AccelerationΘ = 50 0.179
SpectralMP7 0.514
DeltaΘ = 50 0.522

Cepstral Mean Compensation 0.525
SpectralMP7 0.573
DeltaΘ = 10 0.60

AccelerationΘ = 10 0.610
DeltaΘ = 2 0.624
DeltaΘ = 5 0.625

AccelerationΘ = 5 0.625
Pre Emphasisk = 0.97 0.628

AccelerationΘ = 1 0.628

Original MFCC 0.629

Ditherq = 5% 0.629
Lifter L = 22 0.630
DeltaΘ = 1 0.631

ZMeanSource 0.631
AccelerationΘ = 2 0.631

0’th coefficient 0.652

Best 3 0.605
Best 4 0.609
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Table B.4: Influence of Spectral Contrast
Implementation R-Precision

SC1 0.640
SC2 0.656
SFN 0.636

standard MFCC 0.629

Karhunen-Loevetransform.

We have implemented and evaluated two variants of Spectral Contrast here.For convenience,

both variants use the MFCC Mel filterbank instead of the authors’ Octave filters, and use the

MFCC’s Discrete Cosine Transform to approximate the K-L Transform. This has the advantage

of being data independent, and thus better adapted to the implementation of a similarity task, where

one wish to be able to assess the similarity between any duplet of song without first having to con-

sider the whole available corpus (as opposed to the authors’ supervisedclassification task, where

the KL can be trained on the total data to be classified). Moreover, it has already been reported that

the DCT was a satisfying approximation of the K-L transform in the case of music signals (Logan

(2000). In the first implementation (SC1), the 2Nchan coefficients (whereNchan is the number of

subbands in the filterbank) are all appended in one block, and reducedto N cepstrum coefficients

using the dct. In the second implementation, both streams of data (theNchan peaks and theNchan

Spectral Contrast) are decorrelated separately with the DCT, resulting in 2N cepstral coefficients, as

if we used e.g. delta coefficients.

We see that both front-ends perform about 1% better than standard MFCCs, and that the 2N

implementation performs best. For further improvement, Spectral Contrast could be combined with

traditional Pre/Post Processing as seen above.

B.4 Feature Equivalence (pattern 3.2.3)

We have tried replacing/appending to the MFCC feature set a set of MPEG7-standardized spectral

descriptors based on moments of the spectrum, as described in Section 3.2.3:SpectralCentroid,



200 Chapter B. Experiment 1 - Details

SpectralSpread, SpectralKurtosis, SpectralSkewness, SpectralFlatness,

SpectralRolloff, SpectralFlux. The resulting feature vector (dim 7) was modelled

with M = 20 Gaussian mixture models, bothas isand concatenated with a vector of 20 MFCCs.

Table B.3 shows the performance of both approaches. The MP7-only feature set performs

significantly worse than the best MFCC settings (N = 20, M = 50), but also than a set of MFCCs

with equivalent dimensions (N = 8,M = 20) (Figure B.2). The combined feature vector of MFCC

and MP7 descriptors also performs slightly worse than both the optimal MFCC-only settings.

B.5 Modelling dynamics (pattern 3.2.7)

B.5.1 Delta and Acceleration Coefficients

It is known since Furui (1986) that the performance of a speech recognition system can be greatly

enhanced by adding time derivatives to the basic static parameters. Delta Coefficients are computed

using the following formula :

dt =

∑Θ
θ=1 θ(ct+θ − ct−θ)

2
∑Θ
θ=1 θ

2
(B.10)

wheredt is a delta coefficient at time t, computed using a time windowΘ. The same formula can be

applied to the delta coefficients to obtain the acceleration coefficients.

Table B.3 shows the performance of adding delta and/or acceleration coefficients to the original

MFCC dataset, for various values ofΘ. We notice that computing delta and acceleration coefficients

for large time windows severely degrade the performance. However, appending short-term delta and

acceleration coefficients improves the precision of the measure.

We have tried to combine the best operations in Table B.3 (which is referred toas “Best 3” and

“Best 4”), however this does not further improve the precision. We should also consider fine-tuning

the number of Gaussian components again considering the increase in dimensionality due to the

appending of delta and acceleration coefficients.
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B.5.2 Texture windows

The previous experiment shows that adding some short-term account ofthe MFCC statistics (i.e.

delta or acceleration coefficients) has a positive (although limited) influence on the R-precision. In

this paragraph, we investigate the modelling of the long-term statistics of the feature vectors.

It has been shown that, for modeling music, using a larger scale texture window and comput-

ing the means and variances of the features over that window results in significant improvements

in classification. Tzanetakis in Tzanetakis and Cook (2002) reports a convincing 15% precision

improvement on a genre classification task when using accumulations of up to about 40 frames

(1 second). This technique has the advantage of capturing the long-termnature of sound textures,

while still assuring that the features be computed on small stationary windows (as proved necessary

in section B.1.4)

We report here the evaluation results using such texture windows, for a texture window sizewt

growing from 0 to 100 frames by steps of 10.wt = 0 corresponds to using directly the MFCCs

without any averaging, like in section B.1. Forwt ≥ 0, we compute the mean and average of the

MFCCs on running texture windows overlapping bywt − 1 frames. For an initial signal ofn frames

of N coefficients each, this results inn−wt+1 frames of 2N coefficients :N means andN variances.

We then model the resulting feature set with aM-component GMM. For the experiment, we use the

best parameters obtained from section B.1, i.e.N = 20 andM = 50. Figure B.5 shows the influence

of wt on the R-precision. It appears that using texture windows has no significant influence on the

R-precision of our similarity task, contrary to the classification task reportedby Tzanetakis : the

maximum increase of R-precision is 0.4% forwt = 20, and the maximum loss is 0.4% forwt = 10.

Several directions could be further explored to try to adapt Tzanetakis’suggestion of texture

windows. First, the computation ofN-dimensional means and variances doubles the dimension of

the feature space, hence the optimal number of GMM componentsM should be adapted accordingly.

Second, the use of one single mean (and variance) vector for each window may create a “smearing”

of very dissimilar frames into a non-meaningful average. It is likely that using a small size GMM for

each texture window would increase the precision of the modelling. However, this raises a number
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Figure B.5: Influence of the texture window size

of additional issues which were not studied here, among which :

• Which is the optimal number of gaussians, for each frame, and then for the global model ?

• Should the gaussian centres be tracked between neighboring frames ?

Finally, in the single-component case, the mean of the frame-based means (with no overlap) of a

signal{ai} is trivially equal to the global mean :

1
n

i=n−1∑

i=0

1
m

j=(i+1)m∑

j=im+1

a j =
1

nm

i=nm−1∑

i=0

ai (B.11)

Although the extension of this behaviour in the case of multi-component GMMs cannot be writ-

ten explicitly (as it results from a learning algorithm), this suggests that the real influence of this

processing remains unclear. The extra information captured by texture windows may be more ap-

propriately provided by an explicit segmentation pre-processing, or time-sensitive machine learning

techniques like hidden Markov models, as we investigate in section B.5.3.

B.5.3 Dynamic modeling with hidden Markov models

The fact that appending delta and acceleration coefficients to the original MFCCs slightly improves

the precision of the measure suggests that theshort-term dynamicsof the data may be an important
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factor. Short-term dynamical behavior in timbre may describe e.g. the way steady-state textures

follow noisy transient parts. These dynamics are obviously important to compare timbres, as can

be shown e.g. by listening to reverted guitar sounds used in some contemporary rock songs which

bear no perceptual similarity to normal guitar sounds (same static content, different dynamics).

Longer-term dynamics describe how instrumental textures follow each other, and also account for

the musical structure of the piece (chorus/ verse, etc.). As can be seen in section B.5.1, taking

account of these longer-term dynamics (e.g. by using very large delta coefficients) is detrimental

to the similarity measure, as different pieces with same “sound” can be pretty different in terms of

musical structure.

To explicitly model this short-term dynamical behavior of the data, we try replacing the GMMs

by hidden Markov models (HMMs, see Rabiner (1989)). A HMM is a set ofGMMs (also called

states) which are linked with a transition matrix which indicates the probability of going from state

to another in a Markovian process. During the training of the HMM, done withthe Baum-Welsh

algorithm, we simultaneously learn the state distributions and the markovian process between states.

To compare HMMs with one another, we adapt the Monte Carlo method used forGMMs : we

sample from each model a large numberNS of sequences of sizeNF , and compute the log likelihood

of each of these sequences given the other models, using equation 3.13.The probabilitiesP(SAi /B)

are computed by Viterbi decoding.

Previous experiments with HMMs by the authors (Aucouturier and Sandler,2001a) have shown

that models generalize across the songs, and tend to learn short-term transitions rather than long-

term structure. This suggests that HMMs may be a good way to add some dynamical modeling to

the current algorithm. In figure B.6, we report experiments using a single HMM per song, with a

varying number of states. The output distribution of each state is a 4-component GMM (the number

of component is fixed). To compare the models, we useNS = 200 andNF = 100.

From figure B.6, we see that HMM modeling performs no better than static GMM modeling.

The maximumR-precision of 0.632 is obtained for 12 states. Interestingly, the precision achieved

with this dynamic model with 4*12=48 gaussian components is comparable to the one obtained with



204 Chapter B. Experiment 1 - Details

Figure B.6: Influence of the number of states in HMM modelling

a static GMM with 50 states. This suggests that although dynamics are a usefulfactor to model the

timbre of individual monophonic instrument samples (see for instance Herrera-Boyer et al. (2003)),

it is not a useful addition to model polyphonic mixtures like the ones we are dealing with here.

Probably, the dynamics modeled here by the HMMs are not meaningful, sincethey are a mix from

all the individual sources, which are not synchronised.

B.6 Building in knowledge about note structure (pattern 3.2.8)

We investigate here 2 techniques to build in higher-level knowledge about the structure of musical

notes, namely the segmentation between transient and steady state.

B.6.1 Removing noisy frames

Following the intuition of Jiang et al. (2002), we investigate whether removing the percussive and

noisy frames in the original signal would improve the MFCC modeling of the music signals. As

a pre-processing, we do a first pass on the signal to compute its frame-based Spectral Flatness

(Johnston (1988)), with the following formula :

S FMdb = 10 log10
Gm

Am
(B.12)

whereGm is the geometrical mean andAm the arithmetical mean of the magnitudes of the spectrum

on each window. Spectral Flatness is notably used in Speech to segment voiced and unvoiced sig-
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nals. Here, we discard frames with a high spectral flatness (using the 3σ criteria) before computing

traditional MFCCs on the remaining frames. This crudely amounts to removing thetransient part of

the notes, and keeping the steady states. This is way to bypass the limitations of MFCCs stressed in

Jiang et al. (2002) (poor modeling of the noisy frames), without providingany cure for it, as does

e.g. the Spectral Contrast feature variant investigated above.

B.6.2 Note Segmentation

In typical implementations, MFCCs are computed with a constant frame-rate, and thus may average

potentially very distinct audio events, namely transient and steady-states ofmusical notes. In this

section, we investigate whether synchronizing the MFCC extraction to the higher-level knowledge

of note segmentation can improve the global modelling of polyphonic timbre similarity.

We process each audio file with the custom automatic segmentation algorithm described in

Appendix E. We segment each note found by the algorithm into transient andsteady-state, by

defining the transient as the time it takes to reach 80% of the maximum energy withinthe note.

We then compute one MFCC vector for the transient part, andns MFCC vectors for the steady-

state, using 2048-point overlapping Hamming windows. This amounts to computing MFCCs with a

variable frame-rate, synchronized on the transient parts of the signals.The resulting set of features

is then modelled with 50-state GMMs as above.

B.6.3 Comparison of the 2 approaches

Table B.5 shows a comparison of the performance of the two approaches described here with the

baseline approach. We observe that both front-end perform only slightly better than baseline, the

simple Spectral Flatness filter peaking with an unconvincing 0.7% improvement (absolute). Such

improvements are negligible compared to the considerable runtime degradation,notably for the sec-

ond approach. A possible explanation for these disappointing results is that, even if we carefully

segment predominant notes in a polyphonic context -like we do here-, musical background still con-

tributes a number of non-harmonic, transient and non synchronized events that degrade the MFCC
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representation. Further investigation into this phenomenon can be found in Chapter 6 (Experiment

2).

Table B.5: Influence of Note-structure knowledge
Implementation R-Precision
standard MFCC 0.629

SegMFCC 0.632
SFN 0.636

B.7 Model Equivalence (pattern 3.2.4)

We investigate in this section a number of alternative modelling of the MFCC distribution than the

baseline GMM algorithm.

B.7.1 Pampalk’s Spectrum histograms

In Pampalk (2004), a simple approach to model the statistics of the spectral shape is proposed and

compared to GMM-based models. It is a 2D histogram counting the number of times each loud-

ness level (out of 10 normalized values) is exceeded in a each frequency band (on 20 Bark bands).

The histograms are then compared with simple euclidean distance in dim 200. Theauthors freely

distribute their implementation of this method as a Matlab Toolbox∗. Although computationally ef-

ficient, this method proved significantly worse than the GMM approach in our evaluation framework

(R-precision: 0.34).

B.7.2 MFCCs Histograms

A common alternative to parametric modelling such as Gaussian models is to use non-parametric

algorithms, i.e. which do not require a training stage to estimate optimal values of internal param-

eters such as gaussian mean and variance. A typical non-parametric model is the simple histogram

of the feature data: the data range is divided into a number of bins, and the histograms count the

∗http://www.oefai.at/elias/ma
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number of feature values in each bin. However, as already illustrated in Section 3.2.1, histograms

are extremely subjected to the curse of dimensionality. When the dimension of the feature set in-

creases, the number of bins grows exponentially, which makes the histogram representation of the

data extremely sparse. Typical histograms in dimensions greater than 2 or 3 would not have a sin-

gle non-zero bin in common, which makes them impossible to use for distance computation (and

for pretty much anything else). There have been ample research into adaptive sampling methods

(Bruno et al., 2001; Thaper et al., 2002; Lim et al., 2003), but state-of-the-art solutions don’t man-

age to raise the conceptual barrier higher than dimension 5. None of suchmethods are applicable to

the 20-dimension space of MFCCs. Therefore, we investigate 3 approaches for adapting the MFCC

dataset to the requirements of the histogram method:

• Independent histograms for each dimension: We compute 20 histograms corresponding to

each dimension of the MFCC space. The histogram bins are uniformly distributed between

the 10% and 90% percentile value in each dimension (absolute min and max data points

usually results in spurious values that gives a false estimate of the true data range). Histograms

of corresponding dimensions are compared to one another with simple euclidean distance, and

the set of distances is averaged to give a final distance measure.

• Vector quantization using GLA: The above method makes the assumption that allMFCC di-

mensions are independent, and that the co-occurrence of a tuple of values in each dimension at

given time steps is uninformative. The discrete cosine transform used in theMFCC algorithm

chain is a practical approximation of theKarhunen-Loevetransform (Logan, 2000) which

tends to decorrelate the different dimensions, however this naturally does not imply that they

are independent. In this method, we propose to use vector quantization (VQ) to reduce the

MFCC dataset to a 1-dimension, meaningful codebook, which still preserves its multidimen-

sional distribution. The Global-Lloyd algorithm (GLA) is an unsupervised KMean approach

that aims at best representing the global distribution of points. The distribution of 20-dim

MFCC vectors is clustered by the KMean algorithm (Bishop, 1995), and quantized using the
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cluster centres as codebook vectors: each point in the original distribution is quantized to

the index of the nearest cluster. The resulting 1-dimension signal is therefore a non-uniform

quantization of the original, whose resolution is adapted to the original distribution’s density.

A 1-dim histogram is then built on the quantized signal using a number of bins equal to the

number of codebook vectors. In order to compare the histograms of different songs, a com-

mon codebook must be computed for the whole database, using a global setof feature vectors

that should be as representative as possible of the total feature distribution.

• Vector quantization using LVQ: We investigate the use of a second type of vector quantization

algorithm to reduce the MFCC dataset to a 1-dimension, meaningful codebook for which we

can compute histograms: Learning Vector Quantization (LVQ, see Kohonen(1995)). LVQ

is a supervised method, related to Kohonen maps, which choose codebookvectors that best

account for the boundaries between pre-defined classes. A given number of codebook vectors

is initialised for each class. Then a learning phase cycles iteratively through all data points,

and updates the closest codebook vectormt
c to the current instancext using the rule:

mt+1
c = mt

c + α(x
t −mt

c) (B.13)

if xt andmt
c belong to the same class, and

mt+1
c = mt

c − α(xt −mt
c) (B.14)

if xt andmt
c belong to different classes (with 0< α < 1 a learning rate, which may be constant

or decrease monotonically with time). If we define the following classification method: an

instance x is decided to belong to class to which the nearest codebook vector mc belongs, then

it can be shown that the values for themi that minimize the misclassification error in the above

method are the asymptotic values of themi found by the above learning rule. Therefore, LVQ

does not attempt to find a codebook that well represents thedistributionof each class (like the



B.7. Model Equivalence (pattern 3.2.4) 209

GLA algorithm), but rather that samples theboundariesof each class’s Voronoi region. Like

for the GLA approach, once the sequence of each song’s MFCC has been quantized using

LVQ codebook vectors, a 1-dim histogram can be computed and comparedto the histograms

of other songs. As above, a common codebook must be computed for the whole test database,

so the histograms of different songs can be compared.

Optimization of LVQ settings

We have found that the performance of Vector-Quantization approaches, and notably of LVQ, cru-

cially depends on a number of parameters:

• Codebook size: i.e. number of clusters in GLA quantization, and number of vectors in LVQ

learning

• Training data size: i.e. the number of MFCCs vectors used to represent theglobal distribution

of features for all possible songs. Both KMean clustering and iterative LVQ learning are

too computationally and memory intensive to learn the distribution of all MFCC vectors for

all songs (which would amount in the case of our test database to about 3,000,000 feature

vectors). Hence, this total distribution must be downsampled.

• Training data construction: Both GLA and LVQ need to be trained on a representative subset

of the total MFCC distribution, i.e. a set of MFCC vectors that encompasses very many differ-

ent timbres from very many different types of songs. We propose to use the cluster structure

of the test database (see 4.2.2) to ensure a high diversity of songs: each song cluster in the

database should contribute to the VQ training database. We parameterize the construction of

the training data by 2 factors : the number of songs per cluster (Ns) and the number of frames

per song which should be kept (Nf ). The total training database size is thereforeNsNf per

cluster (with 37 clusters).

The sizes of the optimal codebook and training database are not independent from one another.

More codebook vectors are typically needed to model a larger set of feature vectors. Figure B.7
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Figure B.7: Precision of Histogram comparison using Learning Vector Quantization for varying
number of codebook vectors and training data size (per cluster) (using 100,000 iterations)
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shows an exhaustive search over the space of both parameters, measuring the precision of LVQ-

based histogram comparison, with a constant number of LVQ training iterations (100,000). It ap-

pears that to a certain extent, when the db size increases(from 100 to 800frames per cluster), the

optimal number of codebook vector also increases (from 50 to 500). However, for db sizes above

1000, optimal values are found for 200 codebook vectors. This probably implies that the number

of training iterations becomes too small to sufficiently optimize larger codebooks. The best per-

formance (48,8%R-precision) is obtained for 200 codebook vectors and 2000 training frames per

cluster.

Table B.6 shows the influence of the two parametersNs andNf ruling the construction of the

training dataset. It appears that the crucial factor is the number of different songs from which

the training frames are extracted: more precision is gained by incrementingNs than by keeping it

constant and increasingNf . This suggests that frames extracted from a given song are relatively

redundant for the training process, and that variations between different songs (which may not be

correlated to perceptual variations, e.g. bit-rate and width, amplitude normalization, etc.) are crucial

to document in the training set.

Table B.6: Influence of training data construction for LVQ histogram comparison. The reported
R-precision values are the maximum precision over all possible codebook sizes.

nsongs nframes data size R-Precision
2 200 400 0.444
2 500 1000 0.463

3 200 600 0.464
3 500 1500 0.466

4 200 800 0.479
4 500 2000 0.488

Comparison of the 3 approaches

Table B.7 shows a comparison of the performance of MFCC histogram similarity, using the opti-

mal settings for the 3 approaches. All 3 approaches use 200-bin histograms, which correspond to

200 k-mean clusters in the case of GLA vector quantization and 200 codebook vectors in the case
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of the LVQ. It appears that LVQ performs best for histogram comparison, which is no surprise as

the codebook vectors are constructed to best discriminate the different possible sounds. GLA his-

tograms perform significantly worse, which can be explained by the fact that the majority kMean

clusters may span dense, common-core areas of the feature space, andthus devote little resolution

to the modelling of more informative feature values. Surprisingly, the simple independent approach

has a similar performance to the more complex GLA approach: this further suggests that the mod-

elling power of the GLA algorithm is spent on non-informative data, and thustakes little advantage

of the statistical dependencies between MFCC dimensions. On the whole, the MFCC histogram

approach, while computationally less expensive than Monte-Carlo distance, remains around 15%

less precise than the GMM approach with optimal settings.

Table B.7: Comparison of MFCC histogram comparison using 200 bins, and best settings for vector
quantization methods.

method R-Precision
Indt Hist 0.41
GLA Hist 0.41
LVQ Hist 0.50

B.8 Borrowing from Image Texture Analysis (pattern 3.2.6)

In this section, we investigate a number of techniques inspired from those used for the automatic

analysis of imagetextures.

B.8.1 Image Texture Features

Texture shares this property with musical timbre that it seems to resist simple andconsensual def-

inition. It is the characteristic property of images such as found in Figure B.8which makes them

recognizable as e.g. “wood” or “fabric”, and which lies in repeating patterns of the spatial vari-

ations of the pixel intensities that translates various physical materials, tactile or light reflection

qualities. The modelling of image textures is a much researched area in computervision, and has
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Figure B.8: Two image textures reproduced from MIT VisTex texture repository (MIT, 1995): wood
(left) and fabric (right)

multiple applications for classification, retrieval and synthesis of images. Forrecent reviews of tex-

ture research, see e.g. Tuceryan and Jain (1998); Matsumoto and Nishimura (1998). Similarly to

monophonic timbre recognition research (as reviewed in Chapter 2), much ofthe work in texture

analysis is grounded on classic psychophysical experiments, most notably the work of Julesz et al.

(1973); Julesz (1973). Asking the question “when is a pair of texture images discriminable, given

that they have the same brightness, contrast and color”, Julesz conjecturates the texture images are

not pre-attentively (i.e. effortlessly) discriminable if their second-order statistics are identical. If

two textures do not differ by their first and second order moments, but only by their third-order

statistics (or higher), their discrimination requires a deliberate cognitive effort. Although complex

counter-examples have later been exhibited (Julesz, 1981), second-order moments seem to remain

a very salient feature for texture perception, and is therefore exploitedby numerous proposals for

representing features computationally .

The most well-known and successful feature to exploit the second-order statistics of textures

is probably the gray-level co-occurrence matrix (GLCM) as proposedby Haralick et al. (1973).

The GLCM of a given image estimates the joint probabilityp−→
d
(i, j) that 2 pixels separated by a

displacement vector
−→
d (i.e. at a distanced along a directionθ) have the gray-level intensity value
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Figure B.9: Grey-level co-occurrence matrices corresponding to the two previous image textures:
wood (left) and fabric (right).

i and j. It is computed by quantizing the gray-level values of the image into a numberG of bins.

More precisely, the GLCMhd,θ is a G2 matrix, in which the (i, j) cell is computed by counting

the number of duplets of pixels{(x, y), (x′, y′)} separated by
−→
d and having their valuesf (x, y) and

f (x′, y′) equal toi and j respectively:

hd,θ(i, j) = card{ f (x, y) = i, f (x′, y′) = j} (B.15)

where (x′, y′) = (x, y) + (dcosθ,dsinθ) (B.16)

As GLCM cannot possibly be computed for all values ofd andθ, we usually restrain tod ∈ 1,2

(in pixels) andθ ∈ 0,45,90,135 (in degrees). Figure B.9 shows the GLCM corresponding to the

two image textures in Figure B.8, ford = 2 andθ = 45. The matrices exhibit different shapes

and distributions along the main diagonal, thus revealing different spatial repetition patterns of the

pixels’ grey-level values. If most of the entries in the co-occurrence matrix are concentrated along

the diagonal, the texture is coarse with respect to the displacement vector
−→
d .

As G2-sized GLCMs are too high-dimensional to be compared directly (for computational rea-

sons, but also because they exhibit too much variability), Haralick et al. (1973) have introduced a

large number of 1-dimensional secondary features computed from the GLCM, among which we cite
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here the 6 most common:

Energy
∑G−1

i=0
∑G−1

j=0 h(i, j) (B.17)

Contrast
∑G−1

i=0
∑G−1

j=0 (i − j)2h(i, j) (B.18)

Homogeneity
∑G−1

i=0
∑G−1

j=0
h(i, j)

1+|i− j| (B.19)

InverseDi f f erenceMoment
∑G−1

i=0
∑G−1

j=0
h(i, j)2

1+(i− j)2 (B.20)

Entropy −∑G−1
i=0
∑G−1

j=0 h(i, j) log(h(i, j)) (B.21)

Correlation
∑G−1

i=0
∑G−1

j=0
i jh(i, j)−µxµy

σxσy
(B.22)

whereµx, µy andσx,σy denote the mean and standard deviations of the row and column sums of

the matrix, respectively (i.e. of the marginal distributionspx(i) and py( j)). GLCM features are

typically concatenated into a low-dimension feature vector, and feature vectors of different images

are compared to one another using standard euclidean distance. As an example, Lerski et al. (1993)

describes a successful application of GLCM features in the context of biomedical image recognition.

B.8.2 Application to Audio

We propose here to apply the same techniques to model the statistics of polyphonic audio textures.

Audio signals can be considered as one-dimensional images, each frame of which is equivalent

to a pixel in the previous approach. The displacement vector
−→
d thus reduces to a temporal lagd

between co-occurring frames. We investigate several representation for mimicking the “gray-level”

value of an audio frame. As for first-order histograms described in B.7.2 (and even more crudely),

co-occurrence matrices are practically impossible to compute for dimensions higher than 1. Hence,

only scalar reductions of each frame should be considered.

Individual features

Natural candidates for scalar frame representation are the frame energy (RMS), MPEG7 spectral

moment features such as Spectral Centroid, or individual MFCC (1st order, 2nd order). For a
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given scalar feature, we compute the co-occurrence matrixh(i, j) by counting the number of audio

framesft, ft+d separated byd time steps which have, for the given feature, the quantized valuei and

j respectively. Figure B.10 shows the co-occurrence matrices computed on the frames’ Spectral

Centroid for a number of polyphonic textures, organized by duplets of similar songs (2 Beethoven

piano sonata, 2 acoustic guitar folk pieces and 2 heavy rock tunes). We observe notable similarities

in the structure of the matrices for similar songs, and notable differences between songs of different

kind. Table B.8 shows a comparison of a number of features on which GLCMcan be built. For this

experiment, individual features are quantized using 32 bins, compared using a time-step of 1 frame.

For each GLCM, a vector composed of the 6 Haralick features describedin Equations B.17 to B.22

is extracted, and compared to similarly extracted vectors of other songs using normalized euclidean

distance.

The precision achieved by individual features is typically around 15%, which is comparable to

the individual performance of similar features for e.g. instrument classification tasks (Eronen and

Klapuri, 2000). One can observe that some individual features seem tobe better suited to second-

order analysis than others: Spectral Centroid for instance is a better basis than RMS for computing

frame co-occurrence. Individual features can be combined by concatenating the 6 Haralick features

extracted from each GLCM into a 6n feature vector. One can see that combining MP7 spectral

moments improves the precision. This is even clearer when combining the features of each of the

first 20 MFCCs, which gives a precision of 36%. However, further combining spectral moments-

based and MFCC-based Haralick features doesn not further improve the precision.

Influence of size, time step and distance algorithm

We investigate here the influence of various parameters on the performance of the associated dis-

tance measure :

• Time steps: The lag in frame number used to compute co-occurrence scores. Table B.9 shows

that time steps from 1 to 5 have little average influence on the measure.
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Figure B.10: Spectral Centroid Co-occurrence matrix for a number of polyphonic textures.
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Table B.8: Comparison of features for GLCM feature comparison.
feature R-Precision
RMS 0.11

Spectral Rolloff 0.13
Spectral Flatness 0.14
Spectral Spread 0.15

Spectral Centroid 0.17
SC+SR+SF 0.20

1-order MFCC 0.14
2-order MFCC 0.13

Combined 20 MFCC 0.36
20 MFCC+SC+SR+SF 0.30

Table B.9: Influence of the number of time steps on theR-precision of GLCM comparison based on
the Spectral Flatness descriptor.

Feature 1-frame step 2-frame step 5-frame step
Spectral Flatness 0.140 0.139 0.140

• Number of Bins: The number of discrete values used to quantize the featurevalue represent-

ing each frame, and from which co-occurrences are found. Table B.10 shows that resolutions

from 5 to 64 have little influence on the measure.

Table B.10: Influence of the number of histogram bins on theR-precision of GLCM comparison
based on the Spectral Flatness descriptor.

Feature 5 bins 32 bins 64 bins
Spectral Flatness 0.135 0.14 0.138

• Distance Measure: GLCM feature vectors, using the 6 Haralick featuresdescribed in Equa-

tions B.17 to B.22 are compared with euclidean distance. We test here 3 implementations of

the distance:

– absolute(A), where feature vectors are compared without any normalization:

d(a,b) =
∑

i

(a[i] − b[i])2 (B.23)
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– normalized(N), where feature vectors are first normalized between 0 and 1 in each

dimension, using minima and maxima computed on the whole testing database:

d(a,b) =
∑

i

(aN[i] − bN[i])2 (B.24)

aN[i] =
a[i] −min[i]

max[i]
(B.25)

bN[i] =
b[i] −min[i]

max[i]
(B.26)

– relative (R), where feature vectors are compared with increase ratios (thus relaxing the

need for global bound computation):

d =
∑

i

(a[i] − b[i])2

min(a[i],b[i])
(B.27)

Table B.11 shows that normalized euclidean distance performs best, but that relative distance

can be used when global bound computation is not practical.

Table B.11: Influence of the euclidean implementation on theR-precision of GLCM comparison
based on the Spectral Flatness descriptor.

Features A N R
Spectral Flatness 0.08 0.14 0.12

B.8.3 Vector Quantization

As seen in Section B.8.2, combining Haralick features for GLCMs computed on each dimension of

a 20-dim MFCC set leads to a large improvement over individual features considered alone. How-

ever, this method makes the assumption that all MFCC dimensions are independent, and that the

co-occurrence of a tuple of values in each dimension at given time steps is uninformative. There-

fore, like for 1st-order histograms in Section B.7.2, we propose to use vector quantization (VQ) to

reduce the MFCC dataset to a 1-dimension, meaningful codebook, which still preserves its multi-

dimensional distribution. A unique GLCM can then be computed on the quantizedfeature signal,



220 Chapter B. Experiment 1 - Details

corresponding to a unique set of 6 Haralick features, which can be compared to neighbor vectors

using euclidean distance.

We compare here the 2 VQ methods (GLA and LVQ) introduced in Section B.7.2,with their

optimal settings found above. Table B.12 compares the precision of both methods, in various set-

tings.

Table B.12: Comparison of features for GLCM feature comparison.
Algorithm R-Precision

LVQ GLCM Features 0.06
GLA GLCM Features 0.07

LVQ GLCM direct 0.44
GLA GLCM direct 0.48

LVQ Histogram 0.50
GLA Histogram 0.41

Combined 20 MFCC GLCM Features 0.36

We observe the following facts :

• Haralick features do not work: The classic Haralick features described in Equations B.17 to

B.22 are extremely detrimental to the precision of the measure, when used on quantized data

(7%R-precision).

• VQ better than individual CM: We therefore also investigate the direct Euclidean comparison

of the co-occurrence matrices, without reducing them using Haralick features. The perfor-

mance achieved by this method (48%) is more than 10% greater than that obtained in Section

B.8.2 by combining individual dimensions.

• GLA better than LVQ for co-occurrences: Direct CM comparison showsthat GLA-based

matrices are better representations than LVQ-based matrices.

• Co-occurrences no better than 1st-order: Table B.12 shows a comparison of the performance

of MFCC-based CMs with simple first-order histogram similarity using both vector quantiza-

tion methods. It appears that the best CM distance (using GLA) is no better than the best dis-
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tance based on simple 1st-order histograms (using LVQ) (48% against 50%). It also appears

that, contrary to CM comparison, LVQ performs better than GLA for histogram comparison.

• No improvement over GMMS of MFCCs: On the whole, the Vector Quantization of MFCCs

and their modelling, either static with first order histograms or dynamical using Image Texture

features, while computationally less expensive than GMM modelling, remains around 15%

less precise than the GMM approach with optimal settings, as reported in Section B.1.

B.8.4 Conclusions of texture analysis

Haralick features not meant for Vector Quantization

Haralick features are successful representations for gray-level co-occurrence matrices, because they

mainly describe the distribution spread along the diagonal. However, they are poor features for

co-occurrence matrices based on vector quantized data. Contrary to uniform quantization in one

dimension, the quantized data resulting from vector-quantization of multidimensional features is

non-ordered: neighboring bin values have no relation to one another. Therefore, no particular dis-

tribution can be expected along the main diagonal of the co-occurrence matrix (expect of course the

first diagonal itself, corresponding to self co-occurrence).

Vector Quantization successfully captures multi-dimensional co-occurrences

The fact that the performance of VQ-based CMs is greater than the performance obtained by com-

bining the CMs of individual dimensions shows that Vector Quantization is a meaningful represen-

tation for computing multidimensional co-occurrences.

LVQ not optimal for co-occurrence analysis

However, the specific LVQ-type of vector quantization does not seem to provide a good represen-

tation for computing co-occurrences. LVQ-codebook vectors are optimized to best discriminate the

different possible sounds, and thus exhibit little overlap from texture to texture. GLA-codebook
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Figure B.11: Co-occurrence matrices based on the same set of 20-dim MFCCs using 2 vector
quantization methods: LVQ (left) and GLA (right). The LVQ-based matrix is sparser than the
GLA-based one, thus yielding a poor representation for co-occurrences.

vectors however are unsupervised k-means cluster centers, which tend to spread over the whole dis-

tribution of MFCC points, thus ensuring that the quantized representation overlaps between textures,

and that co-occurrence matrices can be compared with greater precision. Figure B.11 shows two

co-occurrence matrices based on the same set of 20-D MFCCs using the two vector quantization

methods. It illustrates the critical sparsity of LVQ-based CMs, and the more homogeneous density

of GLA-based CMs.

But LVQ is optimal for first-order histograms

Contrary to CM comparison, LVQ performs better than GLA for histogram comparison. The poor

overlap of LVQ basis creates too much sparsity in 2-dimensional co-occurrence analysis, but is

beneficial for 1-dimensional histogram comparison as the codebook vectors are constructed to best

discriminate the different possible sounds. GLA histograms perform significantly worse, which can

be explained by the fact that the majority of k-means clusters may span dense, common-core areas

of the feature space, and thus devote little resolution to the modelling of more informative feature

values.
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Co-occurrence analysis is no better than 1st-order

The best CM distance (using GLA) is no better than the best distance basedon simple 1st-order

histograms (using LVQ) (48% against 50%). This suggests that 2nd-order statistics as analysed by

CM, are not a factor as crucial for the comparison of sound textures asit is for image textures.

This is reminiscent of the identical performance achieved by GMMs and HMMs with the same

number of Gaussian components. This indicates that co-occurrence analysis fails to account for any

meaningful dynamics in audio data, and is at best equivalent to a static modelwith similar degrees

of freedom.

Comparison with the “GMMS of MFCCs” approach

The Vector Quantization of MFCCs and their non-parametric modelling, either static with first order

histograms or dynamical using image texture features, is around 15% less precise than the paramet-

ric approach with GMMs. However, the former is a lot less computationally demanding than the

latter. The computation of distances between GMMs is based an expensive Monte-Carlo estima-

tion of the Kullback Leibler divergence, which is unrealistic to compute on the fly. Hence, GMM

distances between songs need to be pre-computed and stored in large matrices in order to be used

in query systems. Although we have proposed efficient ways to do so in Roy et al. (2005), this

practically rules out the scaling up of such systems to very large music databases (e.g. of several

100,000 music titles). VQ-based histograms and CMs are compared using muchsimpler Euclidean

distances, which are easy to optimize using multidimensional index structures such as KD-trees, and

thus can be computed on the fly for very large database without having to store any precomputed

distance matrix.





Appendix C
Comparison of implementation

performance

While many authors, such as Pampalk (2004), rely on Matlab implementations of the various algo-

rithms, it appeared in this study that runtime performances were critical in order to enable the testing

of many algorithm parameters over large ranges of values. Moreover, the need for large database

architecture and metadata-management tools posed the additional problem ofinteroperability be-

tween the algorithm implementations and the Java-based tools such as MCM and the MB. Finally,

an additional constraint is the flexibility to modify the implementations in order to test variants,

which tends to favour proprietary implementations compared to third-party toolboxes.

Therefore, we investigated a number of alternative and faster implementations, both for feature

extraction, distribution modelling and distance computations, which we compare here.

C.1 Feature Extraction

Several implementations were developed and tested for feature extraction,namely “typically”

MFCC computation.
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• MATLAB custom code: For the first prototype described in Aucouturier and Pachet (2002b),

we developed our own matlab code for MFCC extraction, of which we give here a schema-

tized view:

z=windowing(s,n,inc); % n-size hamming windows

f=rfft(z.’); % real-part fft

[m,a,b]=melbank(nchan,n,fs); % mel filterbank

pw=f(a:b,:).*conj(f(a:b,:)); % power spectrum

y=log(m*pw); % log of filtered spectrum

c=rdct(y).’; % discrete cosine transform

• MATLAB slaney: We tested an alternative matlab implementation of the MFCC algorithm,

provided my Malcolm Slaney’s Auditory Toolbox (Slaney, 1998). More than our custom

code, this implementation relies on Matlab vectorized array manipulation routines,which

supposingly makes it more efficient, but also more difficult to read. An illustrative example

of this rationale is the way the Mel filter bank coefficients are computed:

mfccFilterWeights(chan,:) = ...

(fftFreqs > lower(chan) & fftFreqs <= center(chan)).* ...

triangleHeight(chan).*(fftFreqs-lower(chan))/(center(chan)-lower(chan)) + ...

(fftFreqs > center(chan) & fftFreqs < upper(chan)).* ...

triangleHeight(chan).*(upper(chan)-fftFreqs)/(upper(chan)-center(chan));

The expression(fftFreqs > lower(chan) & fftFreqs <= center(chan)) designs a vector con-

structed by a vectorized logical AND between 2 vectorsa = (fftFreqs > lower(chan)) andb

= (fftFreqs <= center(chan)) which are themselves constructed by vectorized logical com-

parison operators.a is a vector of 0 and 1, of the same size asfftFreqs (which lists all
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sampled frequencies in the spectrum), and containing 0 for all frequenciesbelowlower(chan)

and 1 above.a is intersected withb which similarly contains 0 for all frequencies above

center(chan) and 1 below. This results in a vector containing 1 betweenlower(chan) and

center(chan) and 0 elsewhere. Thanks to vectorized statements, this vector is constructed in

2 comparison operations, and one multiplication, while a naive implementation wouldhave

required 2n comparisons, wheren is the size offftFreqs. This binary vector is then multi-

plied by a linear increasing function of the frequency, and summed piece-wise with a sym-

metric descending linear function, which finally results in a triangular-shaped filter between

lower(chan) andupper(chan).

• Compiled MATLAB: The previous Matlab implementations cannot be easily integrated into

the Java framework described in Section 4.3. However, Matlab provides the option to auto-

matically generate C/C++ code from matlab scripts. The code dynamically links to a large

set of proprietary dlls implementing the various libraries available in the Matlab environment.

From the machine-generated code (which is typically difficult to read), we then can generate

e.g a Windows executable file that can be called from Java through the OS, by invoking the

java.lang.Runtime class’sexec() method. Note that, due to the limited buffer size for

standard input and output streams, the above method has to be combined with athread that

constantly reads and dumps the input, output and error streams of the subprocess for it not to

block, and even deadlock (Monk et al., 2000):

Runtime rt = Runtime.getRuntime(); // get Runtime object depending on native environment

Process proc = rt.exec(myCmdString);// execute the native command, e.g. ‘‘mfcc.exe’’

Thread reader = new Thread(){// constantly reads out the process’s output stream

public run(){

InputStreamReader isr = new InputStreamReader(proc.getInputStream());

BufferedReader br = new BufferedReader(isr);

String line = null;

while ((line = br.readLine()) != null){}

}

};

reader.start();
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• HTK : The Hidden Markov Model Toolkit (HTK, Young et al. (1993)) is atoolkit designed for

speech recognition research, which allows building and manipulating hiddenMarkov mod-

els. It consists of a set of library modules and tools available in C source form. The library

includes a number of speech feature extractors, among which a fast MFCC implementation.

As with compiled matlab code, HTK can be used to compile a Windows executable being

called from the OS via the Java Runtime API. Although the source code of HTKis available,

re-using and modifying the MFCC-part of the code outside of the the whole HTK framework

is difficult, partly because it is integrated in aHCopy module which unifies all feature extrac-

tion processes, and uniquely works on the HTK file format. Hence, this is a case of a fast

implementation that is nevertheless limited in its flexibility in our context.

• Libedso : libedso (standing for “Library of EDS operators”) is a set of library modules

written in C, and developed in Sony CSL for the EDS project (Pachet and Zils, 2003). It

includes many feature extractors, including MFCCs, and reifies a number of data structures

such asedso matrix, meant to simplify the portability from Matlab implementations. As

for the previous implementations,libedso can be used to compile a standalone executable

which can be called from the OS through the Java Runtime API. However, due to the perfect

control on source code and the implementation modularity, it is also possible to call native

libedso code directly from Java, withJava Native Interface(JNI), which is supposingly

more robust and also enables more advances I/O operations thatRuntime.exec(). Both

interfacing options were tested.

Table C.1 reports the runtime in seconds of the various implementations for MFCCextraction.

All test were conducted on the same audio file,The Beatles - A Hard Day’s Night(2min32, stereo,

44100 Hz). 20 MFCCs were extracted from 32 Mel bands, using 50% overlapping 2048-point

hamming windows. One can see that Matlab code performs 4-5 times slower thannative implemen-

tations. A small advantage is gained from vectorized operations in the optimizedSlaney script over
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the custom script, however the benefits of vectorization are lost when using the Matlab compiler.

The compiled version of Slaney’s script actually runs slower than the original Matlab version, which

is probably due to a poor automatic compilation of the vectorized instructions, which above a certain

level of handled complexity, are probably simply unwrapped to a seriesfor loops. The native imple-

mentations of HTK and libedso have similar run-time when called with thejava.lang.Runtime

API. Interfacinglibedso with JNI seems to be associated with a overhead, which makes it slower

than thejava.lang.Runtime versions. However, JNI code has the advantage of greater flexibil-

ity: algorithm variants can be written direclty in Java without the need to write andcompile new

executables.

Table C.1: Comparison of runtime (in seconds) for various implementations of MFCC extraction
(see main text for parameters).

Implementation cpu-time
Matlab (custom) 22.48
Matlab (slaney) 22.01
Compiled Matlab (custom) 18.23
Compiled Matlab (slaney) 23.98
HTK 3.85
libedso (native) 3.87
libedso (JNI) 5.73

C.2 Distribution Modelling

Similarly, we tested various implementations for the distribution modelling stage of the similarity

algorithm, notably Gaussian Mixture Model training with the EM algorithm. These implementa-

tions are also used for the distance computations between models using Monte-Carlo sampling.

• Matlab: The prototype of Aucouturier and Pachet (2002b) relies on a third-party Matlab tool-

box for pattern recognition,Netlab(Nabney, 2001). This implements standard E-M training,

as well as K-Mean initialization for GMM models with either diagonal or complete covari-
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ance matrices.

• Compiled Matlab: As proposed above for MFCC extraction, the Netlab scriptscan be auto-

matically compiled into C code, which can then be built into Windows executables and called

with thejava.lang.Runtime API.

• Torch: Torch is an object-oriented machine-learning library written in C++ (Collobert et al.,

2002). It provides a native implementation of Diagonal-covariance GMM models.

• Libedsm: libedsm (standing for “Library of EDS Models”) is the companion library for

libedso, i.e. a proprietary machine-learning library providing notably plain C implemen-

tations of GMM models. The code offers more flexibility for modification than the Torch

implementation and is optimized for speed, notably due to its specificity (compared tothe

complicated and generic O-O architecture of the TORCH library).

Table C.2 compares the runtime (in seconds) of the various GMM implementations,for both

GMM training and distance computation. All training tests were conducted usingthe same sets

of 20-dim MFCCs extracted fromThe Beatles - A Hard Day’s Night(2min32, stereo, 44100 Hz).

GMMs were trained with 10 gaussian components, using 50 K-Mean iterations(initialisation) and

500 E-M iterations (training). Distance tests report the time to compute distancesfrom the resulting

GMM to a common set of 100 similar 20-components GMMs, using 2000 samples drawn from

each distribution. One can see that Matlab implementations are up to 20 times slowerthan native

implementations, which makes them unrealistic for large-scale testing. There is alarge gap between

runtimes of the Matlab scripts and their Matlab-compiled versions, compared to the improvement

reported in Table C.1 for MFCC extraction. This may be explained by memory management issues:

the Matlab environment itself consumes more memory space than the native runtimeenvironment,

which leaves less space for the memory-intensive training process. Torch performs slightly faster

than ourlibedsm native implementation for the training of individual GMMS, however is surpris-

ingly nearly 3 times slower for distance computations. This may be explained by our inelegant

re-use of the Torch architecture for our specific purpose: collecting the likelihoods of each data
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frame from a Torch models requires to inspect a number of data structuresafter the probabilities

are first computed, while likelihoods are gathered and summed on the fly in ourcustom implemen-

tation. Moreover, our implementation adds a number of Monte-Carlo optimisations(described in

Roy et al. (2005)), which further speeds up the sampling process. Thenumber of GMM training

equals the number of songs in the testing database, while the number of distances computations

between GMMs is quadratic. Therefore, the improved performance on distance computation, at the

expense of slightly less performance for training, is an important factor in favour of thelibedsm

implementation.

Table C.2: Comparison of runtime (in seconds) for various implementations of GMM training and
Monte-Carlo distance between GMMs (see main text for parameters).

Implementation cpu-time (training) cpu-time (distance)
Matlab (Netlab) 487.2 18.25
Compiled Matlab (Netlab) 135.4 11.05
TORCH 2.4 5.96
libedsm (native) 3.06 2.16





Appendix D
Nearest Neighbor Algorithm

Even with fast optimized implementations for distance computations, the task of finding the nearest

neighbors (NN) of a given song among large sets of songs (typically several ten of thousands) is a

very costly operation. This operation is needed both for the exploitation of agiven similarity metric

(“find me songs that sound like X”) and for the repetitive evaluation of algorithmic variants that we

propose to do in this study. This performance bottleneck is one of the principal reasons for the lack

of systematic evaluation found in the literature.

In this appendix, we describe a generic algorithm for fast NN search in metric spaces∗. The

algorithm exploits an intrinsic property of the class of similarity algorithms that we study here: all

exhibit aprecision-cputime tradeoff for some parameterp (tradeoff parameter), i.e. for which both

the precision and the cputime increase withp.

D.1 Tradeoff between Precision and CPU-time

Many candidates exist for the tradeoff parameterp:

• p may be the size of the feature vector. As already described, the number ofMFCCs typically

influences the precision of the measure, but also the dimension of the model, hence the cpu

∗Parts of these results were reported in Roy et al. (2005)
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time both for learning and comparing.

• p may also be the size of the model, e.g. the number of gaussian components in a GMM, or

the bin size of a histogram. The more complex the model, the more precise the measure†, but

also the more expensive the learning and the comparison.

• p can also be found at the model comparison stage. In the case of Monte-Carlo approxima-

tion of the Kullback Leibler distance between GMMs, the more samples are drawn from the

GMMs, the more precise is the approximation by virtue of the central limit theorem,but also

the more expensive are both the sampling and the distance computation.

Note that many other music-related distance measures, such as melodic similarity, also exhibits

such a precision-cputime tradeoff. In the case of dynamic-programming based measures, a possible

choice forp is the size of the alphabet used to describe the items to be compared. For instance,

melodic comparison often rely on some quantization of the pitch, using either the exact pitch, or

more and more approximated intervals, up to a simple{up, down} contour representation. Ito et al.

(2004) shows how the quantization error degrades the precision of a Query-by-humming query.

We propose to exploit the precision-cputime tradeoff of such distance algorithmsA to efficiently

calculate the result of NN queries. We usen successive refinements ofA to compute first cheap,

unprecise distances (i.e.A(p) for p small) on the whole set of possible items, then more and more

expensive and precise distances (i.e.A(p) for p big) on smaller and smaller sets. If the precision

PREC(p) of the distance measure increasesfaster‡ than the cputimeCPU(p), then we will show

that the cumulated cpu time of the successive steps usingA(p0), A(p1), ...,A(pn−1) may be a lot

smaller than the direct computation of the most precise distanceA(pn−1) on the whole set of items.

This approach can be viewed and implemented as a planning wrap-up aroundan existing dis-

tance measure, to speed up the associated nearest neighbor search. We show that dramatic speed-up

can be achieved without modifying the implementation of the underlying distance measure.

†this is not taking into account the curse of dimensionality, see earlier
‡in a sense to be defined in Section D.2
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D.2 Algorithm formulation

We are interested in computing the elements of a setS that satisfy a given criterionc, called the

target criterion. Note that computing the NN of a given item with respect to a given measure is

a particular instance of this schema. The approach we present applies to any target criterion that

can be approximated by a series of criteria with the following property: rough approximations of

the target criterion are easy (fast) to compute, whereas good (precise)approximations of the target

criterion take longer. Moreover, approximations are faster to compute thanthe target criterion itself.

The standard approach to computing the setN of elements ofS that satisfyc is to evaluatec

against every item inS, retaining only those items that satisfyc. Roughly speaking, our approach

consists in starting with a first criterion that can be evaluated quickly, to eliminateirrelevant items,

and then, to progressively evaluate criteria that are better approximationsof the target criterion,

finishing with the target criterion itself, to achieve the task. The idea behind thisstrategy is that

if the precision of the successive criteria increases faster than their computation cost, we can save

a substantial amount of computation time, because criteria that are expensive to evaluate will be

evaluated against fewer items.

D.2.1 Definitions and Assumptions

Let us first introduce some necessary definitions and conventions:

• S is a finite set.

• c is a criterion defined overS

c : S→ {true, f alse} (D.1)

We callc thetargetcriterion.

• c0, c1, ...,cn are criteria defined overS that approximatec with increasing precision, with the

convention thatcn = c.



236 Chapter D. Nearest Neighbor Algorithm

S=N0 N 

S=N0 N1 N2 Nn N 
c0 c1 cn = c

c

Figure D.1: Instead of computingN directly by applyingc, we iteratively compute theNi for i =
0,1, ...,n

• N is the subset ofS containing those elements that satisfyc. The goal of the algorithm is to

computeN.

• Similarly, Ni is the subset ofS that contains those elements that satisfyci−1. By convention,

we defineN0 = S.

• t(ci) < t(ci+1)∀i ∈ [0,n− 1] wheret(ci) denotes the cpu time needed to computeci(x) for any

elementx ∈ S.

Note that the two following properties are a formalization of the class of algorithm presenting a

precision-cputime tradeoff:

Property 1 c0, c1, ..., cn approximate c with increasing precision

Property 2 The cost of computing ci increases with i, i.e. t(ci+1) > t(ci)

The NN-algorithm can be described by a simple idea, illustrated in Figure D.1: instead of

computingN directly by applyingc, we iteratively compute theNi for i = 0,1, ...,n.

Property 3 Nn ⊆ Nn−1 ⊆ ... ⊆ N1 ⊆ N0 = S (i.e. ci+1⇒ ci)

When Property 3 holds on theNi sets, it is straightforward to show thatci(Ni) = ci(S) = Ni+1. In

other words, one can computeNi+1 by applyingci to Ni instead of applyingci toS, thus saving time

sinceNi is smaller thanS.

Figure D.2 illustrates the algorithm. In this figure, we assume thatS = N0 = {x1, x2, ..., xp}

and that thexi are ordered so thatN = {x1, x2, ..., xk} and more generallyNi = {x1, x2, ..., xki }. This
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Figure D.2: Illustration of the algorithm. The cumulated cost of the successive steps appears as the
light gray area, whereas the cost of the direct NN calculation appears as the stripped area.

reordering is made possible by the inclusion relationship between theNi sets assumption. The top

part, with the horizontal arrow labeledc = cn, represents the standard way of computingN, i.e.

evaluatec on every element ofS, and retain only the items that satisfyc. The cost of this approach

is:

t(c)|S| = t(c)|N0| (D.2)

wheret(c) is the time it takes to evaluate function c on one item and|S| is the cardinality ofS. The

rest of the figure illustrates our approach, reading from left to right. The leftmost column of the

figure, labeled “S” is an enumeration ofS. The nearest column, labeled “N1”, can be understood as

follows: we evaluatec0 on every item inS, which yieldsN1, the set of items that satisfyc0. This is

represented by the oblique arrow labeled “c0”. N1 is enumerated vertically in this column. The cost
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of this step is:

t(c0)|S| = t(c0)|N0| (D.3)

Reading Figure D.2 from left to right illustrates that we iteratively applyc0, c1, ...,cn to N0,N1, ...,

Nn. Eventually,cn = c, the target criterion, is evaluated againstNn, yielding N. The overall cost of

this approach is the sum of the cost of each step:

n∑

i=0

t(ci)|Ni | (D.4)

Our approach is interesting only in those situations where:

n∑

i=0

t(ci)|Ni | < t(c)|N0| = t(c).|S| (D.5)

On Figure D.2, the successive sets computed are represented vertically,and the successive criterion

evaluations are represented horizontally. The costs can be visualized graphically if we assume that

the proportions are respected, i.e. that the height of a set is proportional to its cardinality and that the

width of a column is proportional to the cost of the corresponding criterion evaluation. The overall

cost of our approach corresponds to the light gray surface (the upper-left “triangle”), while the cost

of the standard approach is the hashed surface. With this graphical representation, it appears that

if the Ni (the heights) decrease fast enough and that thet(ci) (the widths) simultaneously increase

fast enough with increasingi, the light gray surface will be substantially smaller than the hashed

surface. This is what we discuss in the next section.

D.2.2 Efficiency

Our approach is interesting when it saves time, i.e. when equation D.5 holds. This gives us a set

of necessary conditions for the method to run faster than the standard approach. We will construct
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them recursively onn, starting with the casen = 1. Forn = 1, equation D.5 becomes:

t(c0)|N0| + t(c1)|N1| < t(c).|S| (D.6)

⇒ t(c0) < t(c) |N0|−|N1|
|N0| = t(c) |S|−|N1|

|S| (D.7)

Forn = 2, equation D.5 becomes:

t(c0).|N0| + t(c1).|N1| + t(c2).|N2| < t(c).|S| (D.8)

wherec2 = c. If we assume that equation D.7 holds, we get the sufficient condition:

t(c1) < t(c)
|N1| − |N2|
|N1|

(D.9)

and so on. Finally, we have the following sufficient conditions for our approach to be interesting in

terms of computation time:

t(ci) < t(c)
|Ni | − |Ni+1|
|Ni |

,∀i ∈ [0,n− 1] (D.10)

|Ni | is related to the precision with whichci approximates the target criterionc: the less precise

is ci , the larger is the smaller set of items that satisfyci which contains all items that satisfyc.

Equation D.10 thus requires that at each stepi, the precision of theci ’s increases faster than their

complexity.

D.2.3 Implementation

For a given problem, one thus needs to find a sequence of steps (the successiveci ’s andNi ’s) that

both verifies propertiesP1, P2, andP3 and equation D.10. Equation D.10 holds on the cardinalities

of the successive result sets (theNi sets). Therefore, our approach is worth applying to problem for

which the cardinalities of the result sets can be computed or estimated easily. This is the case for
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the class of similarity measures considered in this work, as will be seen in Section D.3.

For a given setS and a given criterionc, our approach is based on the existence of a series (ci)i

that satisfies propertiesP1, P2, andP3. Such a series can easily be found for the class of criteria that

possess a tradeoff parameterp. Let us assume thatp takes value in a finite setP = {0, ...,n} (using

quantization if needed). In this context, the series (ci)i∈P does not necessarily satisfy equation D.10,

and if it does, there may exist sub-series of (ci)i∈P that allow a more efficient implementation of our

approach. More precisely, given setS and criterion series (ci)i∈P, there exist 2n sub-series (c′i )i∈P′⊆P

of (ci)i∈P, corresponding to different steps of the approach. (Note that if (c′i )i is a sub-series of (ci)i ,

an itemc′j is one of theci with j ≤ i, and similarly,N′j = Ni .) The cost of the approach for (c′i )i

is
∑

i∈P′ t(c
′
i )|N′i |. Among those sub-series, at least one of them is optimal, i.e. there is at leastone

for which minimizing
∑

i∈P′ t(c
′
i )|N′i |. Note that when the optimal sub-series contains only the target

criterionc, our approach equals the standard approach.

To implement the approach optimally, one needs to compute the optimal (c′i )i . In general, one

cannot compute the cost of every 2n sub-series. However, this can be achieved very efficiently using

dynamic programming, as illustrated by the following algorithm:

bestSubSeries(n)

if memValue(n)already computed

return memValue(n)

min ← +∞

for p ← 0 to n− 1

tmp ← bestSubSeries(p)

c ← cost(tmp ∪ {n})

if c < min

result ← tmp ∪ {n}

min ← c

end if

end for

memValue(n) ← result

return result
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end bestSubSeries

cost(listOfIndices)

∑
t(c′i )|N′i | for i in listOfIndices

end cost

D.3 Application to Timbre Similarity

In this section, we apply the algorithm described above to the practical task of calculating the n

nearest neighbor of a song according to a typical timbre similarity measure.

D.3.1 The Precision-Cputime Tradeoff

As seen in Chapter 3.1.3, the prototypical distance compares GMM models usinga Monte Carlo

approximation of the Kullback-Leibler (KL) distance between each duple ofmodels A and B. The

precision of the approximation is clearly dependent on the number of samplesdrawn from the

distributions, which we call Distance Sample Rate (dsr). Figure D.3 (on a semi-logarithmic scale)

shows the influence ofdsr on the precision of the measure (this result is established in Appendix

B.1). We see that the DSR has a positive influence on the precision when it increases from 1 to

2000, and that further increase has little if any influence. Figure D.3 also shows the (rescaled)

cpu time profile, which is a linear function ofdsr. It appears that first, the algorithm exhibits a

precision-cputime tradeoff (using thedsr as tradeoff parameterp), and second that, for smalldsr’s,

the precision of the measure increases faster than its cpu time, which makes it agood candidate for

the NN algorithm presented above.

D.3.2 Formulation of the Problem

We apply the algorithm described in Section 3.1 to the task of computing the 100 nearest neighbors

of an arbitrary seed song in a database containing 15,554 music files, with respect to the target
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Figure D.3: Influence of the distance sample rate on the precision and cpu timeof the timbre simi-
larity algorithm

distanced. In our problem,d is the timbre distance described above usingdsr = 2000, which is

considered to be an ideal setting.

The distance algorithm has a tradeoff parameterp = dsr which takes its integer values inP =

{1, ...,2000}, and we refer to the instances of the distance which usesp asdp. Notably,d = d2000.

The cost of computingdp is linear inp, and the precision ofdp increases withp.

This problem fits into the scheme presented in Section D.2 if one states it as follows:

• S is the collection of music files

• dp is the Monte Carlo approximation of the KL distance withp sampling points

• s is an element ofS

• Np(s) is the set of the 100 nearest neighbors ofs wrt dp. In particular, what we want to

compute isN2000(s), the set of the 100 nearest neighbors ofswrt d = d2000

Given s in S, ∀i ∈ {1, ...,2000}, we define the result setsNi ⊆ S as follows:∀i ∈ {1, ...,2000}, Ni is

the smallest subset ofS such that:

∀x ∈ N2000,∀y ∈ S,di(x, s) ≥ di(y, s)⇒ y ∈ Ni (D.11)
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In terms of information retrieval, if we define the set of relevant documents as N2000(s), we can

observe that

• |Ni | is the number of documents retrieved bydi when recall§ = 1, i.e. when we have retrieved

all the relevant documents.

• |Ni | is inversely related to the precision¶ of the measuredi at recall 1.

precision(di) =
|N2000(s)|
|Ni |

=
100
|Ni |

(D.12)

We can now defineci by:

ci(x) = true⇔ x ∈ Ni(s) (D.13)

Let us demonstrate that propertiesP1, P2 andP3 hold for theci thus defined:

• P1 is satisfied since the cost of computingdp is linear inp

• P2 andP3 are satisfied statistically, since the precision ofdp increases withp and by con-

struction of theNi result sets.

Therefore, one can apply our approach to the problem of computingN2000 for seed songs.

D.3.3 Practical Implementation

In order to find the optimal series of (ci)i that minimizes the total cputime of our approach for a

given query onN2000(s), we need to estimate the|Ni | for a (large) set ofi ∈ {1, ...,2000}. One way

to estimate|Ni | is to actually compute the setNi , i.e.

• applydi−1 on N0 = S in order to sort the songs inS by distance tosaccording todi−1

• find the maximum rank over all songs inN2000. It corresponds to the rank after which all the

items ofN2000(s) have been retrieved, i.e.|Ni |
§Recall is the ratio of the number of relevant documents retrieved to the totalnumber of relevant documents in the

database.
¶The precision is the ratio of the number of relevant documents retrieved tothe total number of documents retrieved
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However, this direct approach has two major problems.

• The set of|Ni | depends on the seed song, so in theory, we have to apply this procedurefor

each seed song before being able to find the optimal sequence of steps. This is unpractical, as

estimating the|Ni(s)| for a givens is itself longer than the direct calculation ofN2000(s) with

the standard approach. Moreover, it’s a chicken and egg problem, as computing the|Ni(s)|

requires to knowN2000(s).

• The P distancesdi are stochastic algorithms based on Monte Carlo, which never return the

same distancedi(s, t) between 2 given songssandt twice (although the variance on the results

obviously decreases asdsr increases). Hence, for a given seed songs, the|Ni(s)|’s themselves

should be averaged over several runs of the above procedure.

To overcome these limitations, we propose to estimate a unique set of|̃Ni | for the whole database, by

applying the above procedure to a few random songs in the database andaveraging the results. This

has the drawback that the successive inclusion property (PropertyP4) is only statistically verified

for the estimated̃|Ni |, and we have no insurance that, for a given seed songs, at a given stepi,

the set of items̃Ni actually contains all the items inN2000(s). It follows that the final set of items

returned by the algorithm after a given series of steps (ci)i is only an estimate˜N2000(s) of the actual

setN2000(s), associated with a precision

p((ci)i , s) =
| ˜N2000(s) ∩ N2000(s)|

|N2000(s)|
(D.14)

Figure D.4 shows the estimated̃|Ni | for i = 1, ...,2000, computed on the test database by av-

eraging theNi(s) over ns = 50 random songs. The darkest curve corresponds to the average

m = 1
ns

∑ns
k=1 |Ni(sk)|, the medium curve corresponds to the summ+ σ of the averagem and the

standard deviationσ of the |Ni(sk)|, and the lightest curve tom+ 2σ.
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Figure D.4: Convergence profile of theNi , averaged over 50 NN timbre queries.

Table D.1: Optimal sequences as predicted by dynamic programming

Strategy Steps (|Ni |,i) cost (% standard)
standard {15554, 2000} 31,080k (100%)
best (mean) {15554, 6}, {4501, 20}, {2710, 60}, {652, 200}, {290, 400}, {218, 2000} 1,028k (3.3%)
best (mean - 25%) {15554, 6}, {3375, 20}, {2032, 60}, {489, 200}, {217, 400}, {163, 2000} 793k (2.6%)
best (mean+ σ) {15554, 6}, {4090, 60}, {894, 200}, {374, 400}, {264, 2000} 1,195k (3.9%)
best (mean+ 2σ) {15554, 6}, {6819, 60}, {1136, 200}, {458, 400}, {310, 2000} 1,532k (4.9%)

D.3.4 Results

We apply our algorithm to the task of calculating the 100 nearest neighbors of a given seed song

according to the timbre similarity described above. Table D.1 shows the optimal sequence of steps

(ci)i obtained with dynamic programming (see Section D.2.3), and the associated cost measured by
∑

i |Ni |t(ci). We compare the results using the 3 sets of estimated|̃Ni | in Figure D.4 and an additional

set obtained by downsizing the|Ni | by 25%. For dynamic programming, we make the assumption

that the cputime is lineart(ci) = α.i + β, with α = 1 andβ = 0. It appears that the optimal sequences

differ slightly whether we consider thẽ|Ni |with or without standard deviation. The optimal sequence

yields an algorithm which is theoretically more than 30 times faster than the standard approach.

Table D.2 shows the measured performance (cputime and precision) of the actual implementa-
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tion of the algorithm for the same sequences of steps. Overall, the cpu performance is very good (we

achieve speed improvement factors greater than 30) while still preservingnear perfect precision (we

retrieve 98% of the 100 true nearest neighbors). We observe that as the |Ni | increase, the precision

of the results increases (we are less subjected to accidently pruning relevant nearest neighbors) but

also the cpu time. We may observe that the achieved cputime rates are lower thanthe theoretical

predictions (about 1% absolute). This can be explained by the following points :

• The optimal sequence found by dynamic programming and its expected performance were

computed using a very simple cpu time modelt(ci) = i. This doesn’t include e.g. the overhead

cost of file I/O (retrieving the GMMs from the database, writing the results, etc.)

• The distance algorithm was not reimplemented to support our recursive approach, i.e. the

same executable is run for the successive values ofdsr. While this makes the algorithm

generic (no need to re-program the distance algorithm it uses), this has an unnecessary cost:

each step adds the overhead of its own system call (the executable is calledfrom Java), ini-

tialization, file I/O (all the needed GMM files are re-opened at each step, while|Ni+1| − |Ni |

files are common between each successive call), Gaussian sampling (at each step,dsri points

are sampled from the Gaussians, while onlydsri+1 − dsri new points are needed). Most of

these overhead costs are not accounted for in the theoretical predictions.

Table D.2: Measured cputime and precision of several sequences of steps (ci)i

Series cpu-time (% stand.) precision
standard 663.75 (100%) 100%
best (mean) 27.07 (4.0%) 98.2%
best (mean - 25%) 20.98 (3.1%) 94.0%
best (mean+ σ) 33.91 (5.1%) 98.9%
best (mean+ 2σ) 39.19 (6.0%) 99.0%



Appendix E
Multiscale segmentation

This appendix describes a segmentation algorithm specifically designed forpolyphonic music. This

algorithm is used in Appendix B.6.2 to synchronize the MFCC extraction frame rate on musical

notes, and in Chapter 5 to build a database of polyphonic samples in order to better understand the

nature of dynamical modelling.

Typical segmentation algorithms (Tzanetakis and Cook, 1999; Rossignol, 1998) first computes

a set of features from the signal cut into frames, and then detect the segment boundaries by looking

for abrupt changes in the trajectory of features. Here, we look for theenergy variations of the

signal. The signal is cut into frames (2048 points at 44100Hz), and for each frame, we compute

the short-term spectrum. The spectrum itself is processed by a Mel filterbank of 20 bands. Each

band’s energy is weighted according to the frequency response of thehuman ear, as described e.g.

in Schroeder et al. (1979). Finally, the energy is summed across all bands. Change detection is

done by smoothing the energy profile by a zero-phase filtering by a Hanning window of sizeSw,

and looking for all the local maxima of the smooth version. The segment boundaries are the deepest

valleys in the raw energy profile between 2 adjacent peaks in the smooth profile.

While this scheme is effective for simple, percussive music, we observe that for non percussive,

richer polyphonic music, the quality of the segmentation depends on the choiceof Sw. In large

events such as a sung note lasting for several seconds (e.g. the final ”-day” in ”Yesterday”), there

247
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Figure E.1: Segmentation of an extract ofThe Beatles - Yesterday. (Top) Segmented energy profile
using a smallSw (150ms) : short events (right) get properly detected, while larger events (left) get
oversegmented. (Bottom) Corresponding smoothed energy profile, usedfor peak detection.
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Figure E.2: Segmentation of an extract ofThe Beatles - Yesterday. (Top) Segmented energy profile
using a largeSw (1s) : large events (left) are appropriately recognized, however smaller events
(right) are missed out. (Bottom) Corresponding smoothed energy profile

may be several small peaks of energy corresponding to the other instruments playing in the back-

ground (e.g. a succession of chords played on the guitar). With a smallSw, all these peaks would

be segmented, and the most meaningful atomic event would be cut into several short identical notes

(see Figure E.1). With a largeSw on the other hand, short meaningful events like isolated guitar

chords get missed out (Figure E.2).

Therefore we propose a multiscale segmentation algorithm, which adapts the size of the con-

volution window to the local shape of the energy profile. More precisely, we compute the STFT

of the energy profile on a running 2-second window (with 90% overlap).As the energy profile is

sampled using 50 overlapping, 2048 point frames (i.e. 43Hz), the FFT describes the frequency con-

tent between 0 and 20Hz, with a frequency resolution finer than 1Hz. We select the predominant

local periodicity of the profile as the barycentre point (spectral centroid) of the spectral distribution
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Figure E.3: (Top) Multiscale segmentation of the same extract, using an adaptive convolution win-
dow size: large windows on the left, and smaller windows on the right. (Bottom) Corresponding
spectrogram of the energy profile, super-imposed (in black) with the spectral centroid of each frame,
used to determine the windows size

within each frame :

sc=
∑

k kS(k)∑
k S(k)

(E.1)

whereS is the magnitude spectrum of a frame. We then smooth the energy profile using aHanning

window sizeSw equal to the inverse of the centroid of the corresponding FFT frame (to ensure con-

tinuity, Hanning window coefficients are normalized so they sum to one regardless of their length).

Figure E.3-Bottom shows the SFFT of the energy profile used in Figure1. Large events corre-

spond to low frequencies in the energy profile, i.e. small centroid frequencies in the spectrogram

(order of 1Hz). Consequently, these zones get smoothed with large Hanning windows (order of 1

sec.). On the other hand, short events in the energy profile correspond to higher frequency con-

tent, higher centroids, and smaller windows size (order of 200ms). FigureE.3-Top illustrates the
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corresponding multiscale segmentation, which preserves large, noisy events as well as short, high

amplitude ones.





Appendix F
Measures of Hubs

Several measures can be used to identify and quantify the “hubness” ofa given song. In Chapter

6, two of such measures are used: number of occurrences and mean neighbor angle. We give

here complete details on these measures, as well as a number of alternatives, and compare them to

one another. Notably, we show that hub songs are not typically correlated with violations of the

triangular inequality.

F.1 Rank-based metrics

A natural measure of the hubness of a given song is the number of times the song occurs in the

first n nearest neighbors of all the other songs in the database. It is easily computed on a sparse

version of a similarity matrix (see Chapter 4) by counting the number of duples containing the song

stored in the matrix. Table 6.1 in Chapter 6 shows a few songs in the test database along with the

number of times they occur in the first 10 nearest neighbors over all queries (N10). This illustrates

the predominance of a few songs that occur very frequently. For instance, the first song,MITCHELL,

Joni - Don Juan’s Reckless Daughter is very close to 1 song out of 6 in the database (57

out of 350).

As was already summarized in Chapter 6, the total number of occurrence ofa song has a number
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of properties:

• Independent of distance: Being based on rank, the number of occurrences of a song is

independent of the range of the values produced by a given distance measure. Therefore, it

can be used to compare hubs appearing with different algorithms, which we will do e.g. in

Section 6.6.

• Dependant on database: The total number of occurrence of a song is composed both of true

and false positives. As explained earlier, only the latter are characteristicof a hub. This metric

therefore is conservative in the sense that if a high number of occurrence is observed for a

given song in an arbitrary database, it is difficult to conclude whether it is indeed a hub (i.e.

that most of these occurrences correspond to false positives) or a perceptual center-of-mass

(i.e. most of the occurrences are true positives).

A way to compensate this limitation is to use a ground truth when available. Table 6.1 com-

pares theN10 to the size of the cluster of each song (card(CS)). One can see e.g. thatDon

Juan... occurs more than 6 times more than it should (e.g. is close to 6 times more songs

than the number of relevant neighbors identified by the ground truth). As our test database has

been designed with songs of a large variety of genres and periods, it is reasonable to assume

that many of the occurrences ofDon Juan... are likely to be false positives. However,

such a ground truth normalization is limited, since perceptually relevant matchescould oc-

cur across different clusters. For instance, “rock” songs from cluster “The Clash”are likely to

occur in the close matches of more songs that the mere Clash songs, since songs of other clus-

ters have related timbres, such as “Brian Adams” or “Gary Moore”. Suchinter-cluster true

positives cannot be identified using our ground truth, and cannot be counted to compensate

the raw number of occurrences.

• Constant-sum: An important property of the number ofn-occurrencesNn of a song is that

the sum of the values for all songs is constant given a database. Each query only gives the

opportunity forn occurrences to the set of all the other songs, such that the total number of
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n-occurrences in a givenN-size database isn ∗ N . Therefore, the meann-occurrence of a

song is equal ton, independently of the database and the distance measure. Alternatively, if

we assume that the distance engenders a uniform, random distribution of thesong, a given

song has the probabilityp = n
N to occur in then-nearest neighbor of another song, which

indeed gives an expected number of occurrencesE(Nn) = N ∗ p = n. Table F.1 illustrates the

experimental verification of this property (constant mean) for several distance algorithms.

Table F.1: Comparison of mean number of occurrences and mean neighborangle for songs in the
test database, for several distance algorithms

Measure GMM HMM Delta Acceleration Histogram
N100 100.2 98.7 99.4 99.4 99.6
Neighbor Angle (degrees) 58.8 55.6 58.3 57.9 59.9

• Descriptive statistics: This has the notable consequence that the mean valueof Nn is useless

to measure the influence of a given algorithm on the global hubness of a database. One has to

look for other descriptive statistics, such as the variance of the distributionof occurrences, or

the number of songs with more than a given number of occurrences.

F.2 Distance-based metrics

An operational definition of a hub is that it is a songH which is found to be “close” (though not

perceptually) to duplets of songsA and B which themselves are (perceptually) distant from one

another. Note that songs close to many songs which are themselves close to one another would in-

dicate an acceptable “center-of-mass” situation. Therefore, the hubness of songH can be estimated

by comparing its distances to its neighborsd(H,A) andd(H, B) on the one hand, and the distance

between the neighborsd(A, B) on the other hand. We propose 3 metrics using this idea:

• Neighbor difference: This measures the difference between the neighbor distance and the

mean distance to the neighbors, using

h1(H,A, B) = d(A, B) − d(H,A) + d(H, B)
2

(F.1)
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This is computed for a given songH by drawing a large number of successive duplets (A, B)

(such thatA , B , H) whereA andB are close neighbors ofH (typically in the firstn nearest

neighbors), and computing the mean value ofh1(H,A, B). We use 1000 successive random

draws.

• Neighbor angle: This measures the angleθ formed by the segments [H,A] and [H, B]. This

attempts to normalize the previous measure by the actual amplitude of the distances. As seen

in Figure F.1, the angleθ can be expressed in terms ofd(H,A), d(H, B) andd(A, B).

d = d(H, B) sinθ = d(A, B) sinα (F.2)

d′ = d(H,A) − d(H, B) cosθ = d(A, B) cosα (F.3)

⇒ d2 + d′2 = d(H,A)2 + d(H, B)2 − 2d(H,A)d(H, B) cosθ = d(A, B)2 (F.4)

H

B

A

d

d'

θ

α

Figure F.1: The neighbor angleθ can be expressed in terms ofd(H,A), d(H, B) andd(A, B).

and therefore

h2(H,A, B) = cosθ =
d(A, B)2 − d(H,A)2 − d(H, B)2

2d(H,A)d(H, B)
(F.5)

As before, this is computed for a given songH by drawing a large number of successive du-

plets of neighbors (A, B) (such thatA , B , H), and computing the mean value ofh2(H,A, B).

We use 1000 successive random draws.

• Triangular Inequality Violation: A final measure based on the ratio of distances to neighbors
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examines whether the distances to a given point violate the triangular inequality(TI), i.e.

d(H,A) + d(H, B) < d(A, B) (F.6)

This is of course impossible for proper mathematical distances, such as e.g.euclidean dis-

tance or Kullback-Leibler divergence. However, many of the metrics considered in Chapter

5, and notably the best-performing one, are not mathematical distances andhave no guarantee

to respect TI. In the next section, we will examine whether potential violations of TI indeed

correspond to hub songs. As before, we draw a large number of successive duplets of neigh-

bors (A, B) (such thatA , B , H), and estimate the probability of violating the TI. We use

1000 successive random draws.

Note that for all three measures, we notably assume that the distance between neighborsd(A, B)

is always perceptually relevant, i.e. that for instance,A andB are not hubs themselves. This only

holds statistically, to the amount of precision of the examined distance measure (e.g. around 70%

for the best algorithms).

Distance-based metrics have the following properties:

• Independent of database: Unlike measures of the number of occurrence of a song, distance-

based metrics are independent of the possible perceptual clusters of a given database. Thus

they can be used to compare algorithms on different databases.

• Dependant on algorithm: However, distance-based metrics are typically dependent on the

distance algorithm. Neighbor difference is trivially dependent of the range of the values.

Neighbor angle, although independent from the actual amplitude of the distance values (by

normalization), is still dependent on the discrimination capacity of the distance,i.e. the typical

distance ratio between what can be considered a close distance, and what can be considered

a large distance. This will be detailed in Section F.3.3, where we will see that thisalso

influences the measure of TI-violation.



258 Chapter F. Measures of Hubs

• Constant-sum: An important property of the neighbor-angle value is that, likethe number of

n-occurrencesNn of a song, the sum of the values for all songs is constant given a database

size. This directly derives from the fact that the angles of a triangle sum toπ radians (in a

euclidean geometry - which is only approximated here in the general case).Given a set of

N points, the number of angles whose vertex is a given pointX, and are formed by the lines

from X to theN − 1 other points, is equal to the number of combinations of 2 points within

N − 1, i.e. C2
N−1. There areN possible vertexX for such angles, thus there are a total of

NC2
N−1 =

n(n−1)(n−2)
2 angles formed between theN points. It is easy to see thatn(n−1)(n−2)

is divisible by 3∀n. Hence, these angles can be clustered by triplets, so that their supporting

lines form a triangle, and thus sum toπ. Therefore, the sum of all angles formed between

N points equals
NC2

N−1
3 π. Table F.1 illustrates the experimental verification of this property

(constant mean) for several distance algorithms. The deviation of the meanangle from the

theoretical value 60◦ is both explained by the statistical approximation of the computation of

the angles and by the possible non-euclideanity of the underlying geometry.

• Descriptive statistics: This has the notable consequence that the mean valueof the Neighbor

Angle is useless to measure the influence of a given algorithm on the global hubness of a

database. Like for occurrence values, one has to look for other descriptive statistics, such as

the number of songs with a mean angle greater than a given limit.

F.3 Correlation between measures

We examine in this section the correlations between the various hubness measures proposed above.

We report the measures on the same set of algorithms that was used in Chapter 6.6.

F.3.1 Number ofN-occurrences

Table F.2 show poor linear correlation between number of occurrences for varying values ofN.

However, Figure F.2 is typical of the kind of scatter plot obtained when onecomponent is part of
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Figure F.2: Scatter plot between number of 100-occurrencesN100 and number of 20-occurrenceN20

for a distance based on HMM.

the other: if one increases the sum, then the parts also increases. The precise relation betweenN100

and N20 depends on the composition of the database, and notably the size of its clusters. If the

database tends to be very densely clustered (e.g. 20 heavy metal songs and 20 symphonic pieces),

then the correlation between values ofN larger than the mean cluster size (say 20) will be high.

Table F.2: Correlation between number of 100-occurrencesN100 and number of 20-occurrenceN20

for various models
GMM HMM Delta Acceleration Histogram
0.66 0.76 0.75 0.77 0.77

F.3.2 Number ofN-occurrences and Neighbor difference and angle

As can be seen in Figures F.3 and F.4, there is a nearly logarithmic dependency between the number

of occurrence of a given song and both its mean Neighbor difference and angle. Table F.3 shows

the linear correlation scores between the logarithm ofN100 and both measures. The best fits are

achieved for the static models, both parametric and non-parametric. Dynamic models tend to create

more outlier points in the scatter plots, which reduce the correlation scores. It appears nevertheless

that hub songs tend to be associated to higher values of Neighbor difference and angle.
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Figure F.3: Scatter plot between number of 100-occurrencesN100 and Mean Neighbor Difference
scores for a distance based on GMM.
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distance based on GMM.
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Table F.3: Correlation between the logarithm of the number of 100-occurrencesN100 on the one
hand, and neighbor difference and mean angle on the other hand, for various models

Measure GMM HMM Delta Acceleration Histogram
Neighbor difference 0.85 0.78 0.66 0.68 0.87
Neighbor angle 0.85 0.76 0.73 0.74 0.93

F.3.3 Number ofN-occurrences and TI violations

Table F.4 shows the linear correlation scores betweenN100 and the probability of violation of tri-

angular inequality for all 5 algorithms. Little correlation (if any) can be foundin most cases, with

the exception of a limited linear fit for HMM-based measures. The GMM-based distance creates

very few TI violations, but however still exhibit some severe hubs, whichcreates null correlation.

The same is true obviously for Histogram-based distance, which use euclidean distance, and thus

do not violate TI by construction. However, HMM-based measures seemto create quite a few TI

violations. These necessarily correspond to high values of neighbor difference and angle, and thus

are associated to high values of nb occurrences (since there is correlation in between the latter).

Delta and Acceleration-based metrics create a few TI violations, however not sufficiently so maybe

that a clear correlation tendency can be observed withN100.

Table F.4: Correlation between the number of 100-occurrencesN100, and TI violation probability
on the other hand, for various models

GMM HMM Delta Acceleration Histogram
0.0 0.74 0.35 0.17 0.0

In any case, TI violation probability appears to be a poor metric for hub quantification: hubs can

appear without TI violation. This can be explained by the fact that the timbre distances typically

have poor discrimination power. Figure F.5 shows the distributions of the distances of all songs to

songs in the clusters “The Clash” and “Accordion Musette”. It appearsthat distances values have a

relatively small range ([75,95]), with a majority of values in the range [80,85]. Therefore, even if

2 neighborsA andB are “optimally” close to a given songH (with e.g. d(A,H) = d(B,H) = 75),

and that these neighbors are “optimally” distant (with e.g.d(A, B) = 95), TI can be preserved while
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Figure F.5: Distribution of the distances to songs of the cluster “The Clash” (left) and “Musette
Accordion” (right), with a GMM-based distance.

H clearly behaves like a hub. The different shapes observed for the clusters in Figure F.5 reveal

the composition of the test database. As already noted, a few clusters like “Gary Moore”, “Brian

Adams”, “Jimi Hendrix” contain songs that are timbrally related (and could begathered under the

umbrella term “rock”). Therefore, the songs in cluster “The Clash” exhibit small distances not only

to songs of the same cluster, but also to a good number of songs from the rock clusters. This explains

that the “Clash” histogram contains a large proportion of “small” distances inthe range [75,85]. On

the other hand, cluster “Musette Accordion” is a pretty isolated group in the test database, and

therefore songs in this cluster are typically quite distant to songs from otherclusters. This explains

that the “Musette” histogram contains a minority of “small’ distances, and a majority of larger

distances in the range [85,95]. For comparison purpose, Figure F.6 shows the distribution of the

distances to songs that exhibit a number of occurrences larger than 180(out of a maximum 360).

One can see that such hub songs have a majority of small distances to other songs in the database,

in the range [75,85].
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Appendix G
Pearson’sχ2-test of independence

We describe here Pearson’sχ2-test used to assess the statistical independence of pairs of attributes

in Chapter 7.χ2 tests the hypothesis (called thenull hypothesis) that the relative frequencies of

occurrence of observed events follow a flat random distribution (e.g. that hard rock songs are not

significantly more likely to talk about violence than non hard-rock songs).χ2 is calculated by

finding the difference between each observed and theoretical frequency, squaring them, dividing

each by the theoretical frequency, and taking the sum of the results:

χ2 =
∑ (O− E)2

E
(G.1)

whereO is an observed frequency andE an expected (theoretical) frequency, asserted by the null

hypothesis.

For example, to test the hypothesis that the two attributes “TextCategory Violence” and “Style

Metal” are independent variables, we use the contingency table shown in Table G.1. The figures in

the right-hand column and the bottom row are called marginal totals and the figure in the bottom

right-hand corner is the grand total.

If the 2 attributes were independent, the theoretical count of, say, violent and metal songs would

265
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Table G.1: Contingency Table for “TextCategory Violence” and “Style Metal”. Values in parenthe-
sis are the theoretical counts under the independence hypothesis.

Violent Non violent Total

Metal 36 (7) 122 (152) 158
Non metal 180 (209) 4598 (4569) 4778

Total 216 4720 4936

be

Ntotalp(metal&violent) = Ntotalp(metal)p(violent) = 4936
158
4936

216
4936

= 6.91 (G.2)

Table G.1 shows such expected counts in parenthesis. Theχ2 value for Table G.1 is therefore

computed as:

χ2 =
(36− 7)2

7
+

(122− 152)2

122
+

(180− 209)2

180
+

(4598− 4569)2

4598
= 132.36 (G.3)

If the null hypothesis is true, theχ2 test follows the probability distribution (called theχ2 distri-

bution) of the random variableX = Z2
1 + Z2

2 where theZi are independent standard normal variables

(zero expected value and unit variance). This distribution can be used tocompute the probability of

observing the counts in Table G.1 if metal and violent contents were independent, which in our case

is less than 0.1%. This probability is lower than conventional criteria for statistical significance, so

normally we would reject the null hypothesis that the 2 attributes are independant. The degrees of

association between duplets of variables are usually assessed and compared by a number of coef-

ficients which are independant from the size of the population and the number of attributes being

compared. The simplest is theΦ coefficient defined by

Φ =

√
χ2

N
(G.4)

whereχ2 is derived from the Pearson test, andN is the grand total number of observations.Φ varies

from 0 (corresponding to no association between the variables) to 1 (complete association).
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Collobert, R., Bengio, S., and Mariéthoz, J. (2002). Torch: a modular machine learning software
library. Technical Report IDIAP-RR 02-46, IDIAP.
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