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Réesung

La grande majoré des systmes d’extraction de metaddres haut-niveaa partir de signaux mu-
sicaux repose sur un meké implicite de leur “son” otimbre polyphoniqueCe moele repesente

le timbre comme la distribution statistique globale d’attributs spectraux ins&s)taalcués sur
des trames de quelques dizaines de millisecondes. L'hgpethous-jacente, rarement explieit

est que le timbre percu d'une texture polyphonique corresposes attributs instantas les plus
repesenkgs statistiguement. Cettegtbe remet en cause la valiitle cette hypottse. Pour ce
faire, nous construisons une mesure explicite de la similitude timbrale entretedures poly-
phoniques, dclinée sous un grand nombre de variantes typiques du domaine. Nous manteons
la precision de telles mesures est ligetet que leur taux d’erreugsiduel n'est pas accidentel. No-
tamment, cette classe de mesures ender de faux-positifs qui sont toujours le&€me chansons,
independamment de la regie de épart: desubs Leurétudeétablit que I'importance perceptuelle
des attributs instanté&s ne épend pas de leur saillance statistique par ragptatir distributiora
long-terme. En d’autres termes, nous “entendons” quotidiennementalamssique polyphonique
des choses qui ne sont pourtant pa&spntes de facon significative (statistiquement) dans le signal
sonore, mais qui sont pldit le resultat de raisonnement cognitégollés, dependant par exemple
du contexte cBcoute et de la culture de I'auditeur. La musique que roisndon&tre du piano est
surtout de la musique que nous naiendonsa étre du piano. Ces paradoxes statistico-perceptifs

expliquent en grande partie I&@shccord entre les mekksétudeés ici et la perception humaine.






Abstract

The majority of systems extracting high-level music descriptions from audiakigely on a com-
mon, implicit model of the global sound golyphonic timbreof a musical signal. This model
represents the timbre of a texture as the long-term distribution of its localrapfsatures. The
underlying assumption is rarely made explicit: the perception of the timbre ofurées assumed
to result from the most statistically significant feature windows. This thegstns the validity
of this assumption. To do so, we construct an explicit measure of the timbre ritiynilatween
polyphonic music textures, and variants thereof inspired by previouk iwavlusic Information
Retrieval. We show that the precision of such measures is bounded, arttiglremaining error
rate is not incidental. Notably, this class of algorithms tends to create falg&@®s which we call
hubs- which are mostly always the same songs regardless of the query. Tuirshows that the
perceptual saliency of feature observations is not necessariljatedavith their statistical signifi-
cance with respect to the global distribution. In other words, music listeaetisiely “hear” things
that are not statistically significant in musical signals, but rather are thi oésigh-level cognitive
reasoning, which depends on cultural expectations, a priori knowjedgd context. Much of the
music we hear as being “piano music” is really music thatexpect to bpiano music. Such statis-
tical/perceptual paradoxes are instrumental in the observed discrepatmeyen human perception

of timbre and the models studied here.
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Chapter

Introduction

The majority of systems extracting high-level music descriptions from auditalsigely on a
common, implicit model of the global sound polyphonic timbreof a musical signal. This model
represents timbre as the long-term distribution of the local spectral featupgototypical imple-
mentation of which being Gaussian Mixture Models of Mel-Frequency QapsBodficients. The
underlying assumption is rarely made explicit: the perception of the timbre ofurées assumed

to result from the most statistically significant feature windows.
This thesis questions the validity of this model and this assumption.

To do so, we construct an explicit measure of the timbre similarity between pmhyp music
textures, by mobilizing all the tools and design heuristics typically at use in MoBcmation
Retrieval research. We study the properties of the measure in a ser@ggsexiperiments.

We show clear evidence that the precision of measures based on this dopamadigm is
bounded by @lass ceilingat precision about 70%Ekperiment 1). The remaining error rate is not
incidental, and is indicative of limitations which probably cannot be overcomahations on the
same theme.

One surprising finding of our study is that algorithms that account for the diymamics of

1
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the features, e.g. with dynamic programming or hidden Markov models, dresatequivalent
to simpler static models. This is at odds with experimental data on the perceptiodivaiual
instrument notes.Experiment 2 establishes that the polyphonic nature of the data is the main
reason that ruins computational attempts at modelling feature dynamics. Tgesss that the
horizontal coding of frames of data in terms of holistic spectral featuréghput any account of
the synchronicity of sources, is a very fieient representation of polyphonic musical data, and not
cognitively plausible.

An important and novel finding of our study is that the class of algorithmgexdud this work
tend to create false positives which are mostly always the same songdlesgasf the query. In
other words, there exist songs, which we ¢albs which are irrelevantly close to all other songs.

We notably establish that:
¢ hubs are distributed according to a scale-free distribution.

e hubs are not a consequence of poor feature representation ofirefidldual frame, but
rather an #&ect of the modelling of the agglomeration of the many frames of a sound tex-

ture Experiment 3).

e hubs are not a property of a given modelling strategy (i.e. static vs dynpariametric vs

non-parametric, etc.) but rather tend to occur with any type of maétgidriment 4).

e hubs are not an intrinsic property of certain songs, but tigreint algorithms distribute the

hubs diferently on the whole databadexperiment 5).

e the hubness of a given song is not an emerging global property of tirébdimn of its
frames, but rather can be localised to certain parts of the distribution, natathlgr frames

in statistical minority Experiment 7).

¢ hubs are not a property of the class of algorithms studied here whiclaopeyardless of
the data being modelled, but only for data with a given amount of heteritgeesy. for

polyphonic music, but not for ecological sound ambian&egériment 8).



This phenomenon of hubs is reminiscent of other isolated reportdfgreiit domains, such
as Speaker Recognition or Fingerprint Identification, which intriguinglg &ipically rely on the
same features and pattern-recognition algorithms. This suggests thautlki®e@n important phe-
nomenon which generalizes over the specific problem of timbre similarity, alichies a general
structural property of the class of algorithms examined here. This mostlsidtas the fact that
all data points are not of equal perceptive importance, and that theéghtsvare not necessarily
correlated with the statistical significance with respect to the global distribution

Finally, we give quantitative evidence supporting the fact that “polyphtimibre” judgements
are not low-level immediate perceptions, but rather high-level cognigasaning, which depends
on cultural expectations, a priori knowledge, and cont&tperiment 9 shows that surprisingly
few human-made high-level music descriptions, and notably judgementgmintent classes, are
directly correlated to low-level timbre similarity. Polyphonic textures as foungopular music
are cultural objects whose perception creates expectations based iorthatia particular listener
already knows. Irexperiment 1Q we show that human judgements could be approximated only
by accounting for high-level correlations within a large set of possiblegeaies. Some of these
correlations capture psycholinguistical semantic associations (“a pavserig is a strong song”),
but also historical and cultural knowledge (“rock uses guitars”),rance subjective aspects linked
to perception of timbre (“flute sounds warm”).

In other words, music listeners routinely “hear” things that are not statigtisgnificant in
musical signals. Such paradoxes associated with polyphonic timbre céatiibthe discrepancy

between the low-level models of timbre similarity studied in this work and its humaepeon.
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Chapter

Dimensions of Timbre

2.1 Everything but pitch and loudness

Timbreis defined by the American Standards Association (ASA, 1960) as “thdiuérof sensa-
tion in terms of which a listener can judge that two sounds having the same ksuane pitch are
dissimilar”. In other words, timbre is defined by what it isn’t (“everything”d. This psychoacous-
tician’s waste-basketlenotes notably the quality of a musical note or sound which distinguishes
different musical instruments. However, even if we tend to categorize sounces (e.g. the brass
or plucked string musical instrument families), the timbre quality results fromtangically non-
categorical perceptual process. Sound classes have inner variabilitich makes the space of
perceptually meaningful sounds a continuum for which it ficlilt to find a perceptual coordinate
system. Furthermore, the timbre space is intrinsically multidimensional. Unlike tisatsam of
pitch which can be fairly directly correlated with the acoustic property ajdescy, or the sensa-
tion of loudness which correlates to the amplitude, the sensation of timbre isstlieaemultiple
interacting acoustic factors. It is impossible to measure on a single continmgingee.g. from the

piano to the trumpet.
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2.2 Psychophysical studies

A considerable amount offfiert has been done in quest for the number of dimensions of a mean-
ingful “timbre space” and for the features of the acoustical signal whedt correlate with these
dimensions. Most of these studies (Plomp, 1976; Grey, 1977; Wes8él, K&ndall and Carterette,
1991; Iverson and Krumhansl, 1993; McAdams et al., 1995) haveedhthe same methodology:
Dissimilarity judgements are collected from a set of human subjects (usuallyiemgidor a set
of individual, natural instrumental sounds spannin@edent instrument families. In recent studies
such as Iverson and Krumhansl (1993); Krimfitet al. (1994); McAdams et al. (1995), synthetic
sounds are also used to create interpolated hybrids between instrumémsimilarity ratings
are then analysed with Multidimensional scaling (MDS, see e.g. Borg aneh@no(1997)) in or-
der to find a low-dimensional spatial arrangement of the stimuli in a euclidessessuch that the
distances between data points are optimally respected. Although recdaasstudh as McAdams
et al. (1995) use sophisticated versions of MDS, e.g. with weighted ldtessiss, in the most simple

cases MDS amounts to solving an eigenvalue problem on the distance matrix.

Figure 2.1 shows the timbre space as constructed by MDS in McAdams eBak)(1Most
studies found that the distortion of the collected distance matrix is minimized byedime=nsion
arrangement of the data, and give perceptual or acoustic interprastétioaach dimension. The
most important dimension has usually been consensually (Grey, 197%elW&891; Kendall and
Carterette, 1991; Iverson and Krumhansl, 1993; Krintpleo al., 1994; McAdams et al., 1995)
correlated to the centroid of the spectral envelope, which measuresitteespnergy distribution in
the steady state portion of a tone, and corresponds to perceivedtttaigh. The second dimension
is generally associated with the log of the attack-time, i.e. the time between thendgke instant
of maximal amplitude. However, this feature was criticized by Iverson amndnkansl (1993), who
observed that the fact of including or deleting the attack portion of the stimadlilittle influence

on the perceptual structure of timbres found by MDS.

The final dimension of the 3D timbre space has been much debated, anddsssiated to
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Figure 2.1: 3D timbre space derived from dissimilarity ratings on 18 timbresBlsuBjects. The
acoustic correlates of the perceptual dimensions are indicated in paresitihtashed lines connect
hybrid timbres Yibroneandstriang) to their progenitors (vibraphofteombone and bowed string
piano, resp.). Reproduced from McAdams et al. (1995)

diverse temporal and spectral features depending on the authotradpariation over time (Grey,
1977; Iverson and Krumhansl, 1993), spectral irregularity (“log efdtandard deviation of com-
ponent amplitudes from a global spectral envelope derived fromrarmgmean of the amplitudes
of three adjacent harmonics”, Krimpfiaet al. (1994)), Spectral Flux (average of the correlations
between amplitude spectra in adjacent time window, McAdams et al. (1996 .uficonvincing
correlation scores achieved by the various proposed featureshpyamply indicate that this last
dimension corresponds to a residual error of the assumption made by M&ualidean embed-
ding of the data. This is further confirmed by McAdams et al. (1995), wantity several specifici-

ties of individual timbres that explain some large deviations from the idedidean model. Such
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specificities can be either continuous attributes, such as the “raspindesatfack” (a specificity
of trombone sounds), or discrete properties, such as “a suddenlygpirdiset with a clunk” (for
harpsichord sounds). These specificities, while not accounted foe ieLitlidean model because of
their locality to individual timbres, are ficiently salient to influence the measured dissimilarity of

some timbres.

Several studies have further tried to recreate meaningful timbre spaesting various distance
measures computed on the signals. Plomp (1976) successfully recreasesrid spatial structure
as with human similarity ratings by using distance measures computed on theofestergy levels
in an auditory filterbank, which gives further support in favour of tieecpptual predominance of
factors related to the spectral envelope. Recent studies (DePoli andd?i, 1997; Terasawa et al.,
2005) have proved that Mel-Frequency Cepstrumflidents (MFCC, see Chapter 3.1), a particular
encoding of the spectral envelope widely used in the speech recognititomgnity, provide a
good distance that reproduces timbre clusters that are similar to previo sildies (DePoli
and Prandoni, 1997) and account for 66% of the perceptual varianicuman timbre similarity

judgements for steady state, individual sounds (Terasawa et al.,.2005)

2.3 Automatic recognition of monophonic timbres

The psychophysical studies on the perceptive dimensions of musical tirabegorovided motiva-
tion to the automatic computer recognition of musical instruments from audio sacgptespond-

ing to individual notes (Herrera-Boyer et al., 2003). While early systiemd to use either spectral
information (Brown, 1997) or temporal information (Martin, 1998), mosti&s since Eronen and
Klapuri (2000) rely on a combination of both aspects. Spectral corsetdtembre are often mea-
sured with Mel-Frequency Céecients, which are generally found to be the most important features.
Brown (1997) reports near-perfect recognition performance anal set of saxophone and oboe
sounds, using MFCCs only (with simple gaussian classifiers). On a much [aaggem (1500

samples covering the entire pitch ranges of 30 orchestral instrumerdagiE(2001) also identifies
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MFCCs as the best individual classification feature, accounting for B@¥ision for individual
instruments (65% for instrument families) when used alone (out of a combiegidprecision of
35% (77%)). The contribution of the MFCC feature can be compared wih (35%) precision
achieved by the second-best feature found by Eronen and Kl&00j, the standard deviation of

the spectral centroid.

Temporal features however are generally found necessary to cotolsipectral cues in order to
reach acceptable recognition performance. While most psychoacdgstidies typically propose
to compute them based on the simple energy envelope of the signal, most aut@oadicition
systems propose to base them on relatively complex signal analysis. ME3I8)(calculates a
set of temporal attributes such as vibrato frequency, tremolo, centroidlatiothufrequency, slope
of onset harmonic skew, etc. on the outputs of a log-lag correlogramhwhéasures the auto-
correlation with logarithmic lag in each frequency band of a gammatone filteribaodelling the
frequency resolution of the cochlea (Smith and Abel, 1999). Eroneblj2fase its computations
on the matrix of harmonic amplitude envelopes, obtained from a partial traalkgogithm in each
band of a Bark filterbank. The amplitude envelopes are then analysetldotexnumber of features

such as band-wise rise time, mean, variance, strength and frequesmyplifude modulation, etc.

Most features extracted from individual, mono-instrument notes canioed into a unique
feature vector for each sample. The feature vectors correspondagtionote can then be compared

to one another using simple metrics such as Euclidean distance:
N-1
d(s, ) = D If(s) - f(s)) (2.1)
k=0

wheres ands; T and fi(s) is the value of th&™" feature for sample. The classification is then
typically done using the K-Nearest Neighbors algorithm (Fujinaga, 1988tin, 1998; Eronen and
Klapuri, 2000). The algorithm first stores the feature vectors of all thiaitrg examples and then,
for classifying a new instance, finds a set of k nearest training exarinptbe feature space, and

assigns the new example to the class that has more examples in the set. Hoveeeeromplex
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density estimation methods such as Gaussian Mixture Models (Brown, 188t assifiers such
as Support Vector Machines (Essid et al., 2004) are often used in ampatie better models the
decision boundaries between classes. Finally, a number of contribuiwasemphasized the need
of modelling the dynamic trajectory of local features, relying on complex oiycel models such
as hidden Markov models or recurrent neural networks. Dubnov-arel(1999) propose to con-
sider the sound dynamics as a stochastic process over the feature darddampzatch instrument
samples by estimating cross entropy between the corresponding stochasis.nteronen (2003)
proposes to use 3-state left-right hidden Markov models, to model thession of diferent fea-
ture distributions for onset, steady state and decay. This is motivated etbe loyservation that
some instruments are characterized by onset asynchrony, which meanisettenergy of certain

harmonics rises more quickly than the energy at some other frequencies.

2.4 Towards polyphonic textures

Most of the studies on musical instrument recognition have focused ol samples corresponding
to clean recordings of a unique note, played by a single instrument, whichusraalistic context
for possible music applications. On the one hand, the music industry are imdeshenodels of
timbre perception that are suitable for real-world, complex polyphonic textof several seconds’
length. On the other hand, the approach of monophonic instrument igoageems little suited

to the modelisation of such complex textures.

2.4.1 The demand of Electronic Music Distribution

The exploding field of Electronic Music Distribution (EMD, Pachet (2008)in need of power-
ful content-based management systems to help the end-users navigataudmig title catalogues,
much as they need search engines to find web pages in the Internet. INaloomsers want to
find quickly music titles they already know, but they also — and perhaps momriamly — need

systems that help them find titles they do not know yet but will probably like.
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Figure 2.2: A typical EMD system, using predefined gehstyle taxonomies as unique content-
based access mode: web music-seller Amazon.com

Many content-based techniques have been proposed recently to kefpnasigate in large
music catalogues. The most widely used is collaborative filtering. This tashmégbased on the
analysis of large numbers of user profiles. When patterns are digcbireuser profiles, corre-
sponding music recommendations are issued to the users. Systems frolazm.conexploit
these technologies or variants thereof (Pachet et al., 2001; Freddheaaver, 2001; Pestoni et al.,

2001) with various degrees of success.

The main drawback of these approaches is that they are essentially tellitidn the music
itself is ignored, and only users tastes are considered. The resultmmgmendations are therefore

at best superficially relevant (see Figure 2.2). Other content-basealg@iment techniques attempt
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at extracting information directly from the music signal. In the context of Mpiegparticular,
many works have addressed the issues of extracting automatically fefatumesudio signals, such
as tempo (Scheirer, 1998), rhythm or melodieéif@z et al., 2003). The resulting descriptors can
be used for querying music catalogues by content information rather thaorly or artist names,
and as such provide a first layer to content-based music access. lyuanynming is probably the
most spectacular of these approaches (Ghias et al., 1995). Hothessr are limited essentially by
the difficulty for non-specialists to identify the right descriptors. Query by humnongnktance, is
largely dependent of the ability of the user to sing correctly a song. Furtire; these techniques
by construction only help users to find what they actually look for, ancetbex address only a

small fraction - and the easiest one - of the EMD problem.

In this context, the global sound or timbre of a polyphonic texture seems ahddedidate
to build successful EMD systems. Although it igfdiult to define precisely music taste, it is quite
obvious that music taste is often correlated with timbre. Some sounds are glealisiteners, other
are not. Some timbres are specific to music periods (e.g. the sound of Chie&t @laying on an
electric piano), others to musical configurations (e.g. the sound of a @mwpbrchestra). In any
case, listeners are sensitive to timbre, at least in a global manner, asnaehfiy an increasing
amount of user studies of recommendation systems and music libraries (Baetran 2004; Lee

and Downie, 2004).

Moreover, timbre similarity is a very natural way to build relations between musis.tiflbe
very notion of two music titles that sound the same seems to make more sensthastahce,
qguery by humming. Indeed, the notion of melodic similarity is problematic, as egehara single
note in a melody can dramatically impact the way it is perceived (e.g. chamgenfiajor to minor).
Conversely, small variations in timbre will noffact the timbral quality of a music title, considered

in its globality.

Figures 2.3 to 2.6 illustrate possible examples of similar “polyphonic timbres” asderstand

it here.
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Figure 2.3: Timbre similarity between a bossa-nova piecéday Gilberto(left) and a folk tune by
English songwriteBert Janschright): both consist of a simple acoustic guitar and a gentle male
voice.

2.4.2 The lack of perceptive models

On the other hand, both the conclusions of psychophysical experimentsonophonic timbre
perception and the approach of monophonic instrument computer recogseton little suited to

the modelisation of such complex polyphonic timbres, for a number of reagolist here.

e Polyphony: Kendall and Carterette (1991) is, to the best of our kn@elethe only study
documenting the timbre perception of mixtures of multiple instrument. The autheesbé
lected human dissimilarity judgements for dyads of instruments playing either $orge
(at unison or distant of a major third interval) or simple melodies (again, aburdsd in
harmony), and compared the data with the collected distances for the iraliindtruments
composing the dyads. They found that, to a limited extent, a quasi-linear vect®l could
explain the perception of timbre combinations on the basis of the vector sura pb#itions
of the constituent timbres. This suggests that attributes of timbre inferracchystudies such
as spectral centroid or amplitude variations are perceived for linearinatiuns of sounds
as the summation of the individual sound attributes. However, many fegitopesed for
individual sounds are not linear functions of the signal, especially temhgescriptors such

as energy variations or rise time, but also e.g. RMS-energy in frequearays. Therefore
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Figure 2.4: Timbre similarity between a songthg Rolling Stonefeft) and bythe Beatlegright):
both songs have the sound signature of 1970’s English pop-rock, waihdeythm guitars, bass and
drums, and often doubled vocals.

their computed value for mixtures of signals is not a linear combination of theividghd

ual values. This suggests that, even if still conceptually valid for polyjghtimbres, the
features usually computed for monophonic signals cannot be directly dpplilyphonic
signals. They would for instance would require some kind of sourceratma of the in-
dividual components, which is still aféiicult research problem of its own (Plumbley et al.,
2002). Moreover, the findings of Kendall seem at odd with psychestazal data on spectral
masking, according to which the perceived interaction of sound soisroes the linear sum

of the individual components. Thigfect can be modeled by a spreading function such that
frequency components in a given frequency band contribute to neiglldmands proportion-
ally to their distance. Figure 2.7 shows a schematic representation of $peasidang, where

the sinusoidal ton€ is masked by the excitation pattern of the neighboring, higher-amplitude
tone B. The formulation of a spreading function optimized for speech signals edaund

in Schroeder et al. (1979). Pampalk et al. (2003) and Lidy and Rg4@2bB6b) have notably

studied its application to music signals.

e Asynchronicity: Diferent sound sources in a musical mixture are typically not synchronized

(except e.g. when playing at unison). A sound segment correspotalangiven note of a
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Figure 2.5: Timbre similarity between a jazz piece ®yarlie Haders 1976 bandOld and New
Dreams(left) andCharles Mingus1956 sessions on Debut (right), each with a bass-player leader
and dense collective textures from the brass section (saxophone adtoatel trumpet).

given instrument is likely to be superimposed with other notes with various tifeets. For
instance, the attack of a piano note extracted from the recording of ajj@zray superim-
pose with the decay of a double-bass note, and its steady-state may be sicoiteufpted by
several drum onsets. This makes time descriptors such as log-attack tisiengpassible
to compute meaningfully for polyphonic sound mixtures. Moreover, the leagability of

offsets between events of individual sound sources makes it véigutti to learn feature
dynamics with e.g. HMMs or Markov chains as proposed by Dubnov arel(E®99). an ex-
tremely large number of training instances would be needed to describesaiblgodegrees
of time superpositions of individual notes (drum onset at 10% of piarexdgtetate, drum

onset during piano attack, piano attack during drum decay, etc.).

e Auditory Stream Segregation: Wessel (1991) and Singh and Bregre&i)(have demon-
strated the mutual perceptual influence of timbre and phrase groupiegvaiha succession
of notes is perceived and grouped into phrases depends on the tintheenoites. Notes with
similar timbres are typically grouped together, and the perception of simpledpepatterns
may be altered by introducing abrupt timbral changes (Figure 2.8). Rexailly, two timbres

may be judged dierently depending on the metrical function and context of the correspond
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Figure 2.6: Timbre similarity between ti&pice Girls(left) and theAll Saints(right), two British
pop acts of the mid-'90s: 4 female R&B vocalists and catchy dance-popugac&miniscent of
Madonna

ing notes. This suggests that polyphonic textures of several notesdathdhe so several
seconds) may be perceived in &dient way than the majority perception of each individual

notes.

¢ Noise: Few psychoacoustical studies so far have documented the timbeptien of noisy
sounds. The MDS experiments of Grey (1977) identified high frequeoisgnvhen preced-
ing the attack as an important attribute, but it was later discarded in lverebKramhansl|
(1993). One possible explanation is the lack of representations andssn@ghniques for
noise sounds, which cannot be described in the framework of stéatdykmrmonic sounds,
although recent work such as Hanna and Desainte-Catherine (2088} tiés perspective

more of a reality.

e Fromtimbre to sound: The timbre of real-world polyphonic textures canmodduced to the
superposition of clean individual timbres of the component instrumentde@qorary popu-
lar music (possibly since the 1960's) is the result of applying many produtithniques on
the original sound captures, such as souiiebts (reverberation, chorus), informed choices
of sound recording equipments (e.g. lamp amplifiers) and sound engin@esictices. Cer-

tain types of music production have often gained a notoriety of their own, taay:Phil
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Figure 2.7: lllustration of the spectral maskin@ieet. The stimulus (left) is composed of three si-
nusoidal tones, presented simultaneously. The auditory representti@nstimulus (right) shows
the excitation pattern provoked by each tone on the basiliar membrane. rEaelisyy of the exci-
tation provoked by sinewavB masks the perception &, but not the perception ok Note that
lower frequencies have a stronger masking influence on higher fremgsethan vice versa.

Spectorsound” (Figure 2.9), characterized by the so-called “Wall of Souaddroduction
technique that involved very many musicians playing at unison, yielding sedand lay-
ered dfect that was highly influential on 1960’s and 1970’s pop music, includ@iimgBeatles
andThe RamonefRibowski, 1989). Similarly, ECM Jazz label's motto, the “most beautiful
sound next to silence”, illustrates a concern for a certain quality of scerwtding, which
had an incredible impact on jazz (Delalande, 2001). While extremely sapesitiely or
negatively) for the music lover, this transition from (multiple) timbres to a glosauhd”

of music has seen few analytical studies, with the notable exception of BangeFales
(2003) who investigate the acoustical correlates of the “heavinesdécifie guitar sounds
in Heavy Metaimusic, and conclude that ‘heavier” timbres correlate with a gradual faafing

high-frequency energy and flatter dynamic envelop.

e Semantic Textures: Polyphonic textures of several seconds’ length difiecult material
for timbre perception studies and computational models because it is gemififatiyit to ab-
stract their global timbysound percept from higher-level concepts such as music genre, style

tastes, mood to name but a few. Moreover, while intuition may hint at the cgngtash con-
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Figure 2.8: Classical Experiment illustrating the influence of timbre on stregnegation. A series

of patterns of 3 ascending notes is presented to the subject. When the tisthned between adja-
cent notes is small, the repeating ascending pitch line (dark-gray dasbmihates the perception.

If the distance between timbres Afnotes andB notes increases, the notes are grouped by timbre
similarity and 2 interleaved descending pitch lines are heard (light-gray Jéwesdsel, 1991).

cepts lack any kind of semiology or theory to explain their relation to musicaidsddusical
genre, for instance, is a ill-defined concept, which is reflected by theéistencies of ex-
isting genre taxonomies. Pachet and Cazaly (2000) compare 3 Intenmet gaxonomies:
allmusic.com (531 genres), amazon.com (719 genres) and mp3.com @Z&)geResults
show that there is no consensus in the names used in these classificatigri® words are
common to the three taxonomies. More importantly, there are no shared defingimong
these common words, even largely used terms like Rock or Pop do not dbaateme set
of songs. Typical genre definitions reflect dimensions of music such asetjirndrmony or
rhythm (the main diference betweereggaeandskafor instance is the tempo), but also and
foremost cultural interpretations, which depend on epochs, locatiahsiser communities

(Aucouturier and Pachet, 2003).
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Figure 2.9: Harvey Phillip "Phil” Spector (b. 1940), a highly influential Aman record producer
and inventor of the “Wall of Sound” production technique, which becarsestgnature sound of
1970's rock and roll music.

2.5 Implicit modelling

The lack of psychophysical models for the timbre perception of polyphiexitires has lead re-
searchers to take a pragmatic approach to build the much-needed autormsiziicssgible to extract
high-level descriptions (HLD) of music signals (such as genre). Tipeoagh, based on pattern
recognition (Bishop, 1995), is a direct extension of the most simple mondaphmstrument recog-
nition systems. The signal is cut into short overlapping frames (typically 5@thsa 50% overlap),
and for each frame, a feature vector is computed. Features usuallgtsafsa generic, all-purpose
spectral representation such as Mel Frequency cepstrulfli€ierts (MFCC), since more complex
temporal correlates of timbre identified by psychophysical studies ardiiiediin the case of poly-
phonic textures, as seen above. The timbre of individual sound sampleisagplicitely modelled:

all feature vectors are fed to a classifier which models the global distrilsutibthe features of



24 Chapter 2. Dimensions of Timbre

Table 2.1: Number of contributions using the timbre paradigm in the past |Syifposiums

year | timbre papers total papers percentage
2000 6 26 23%
2001 9 36 25%
2002 14 58 24%
2003 12 50 24%
2004 23 104 22%
2005 24 114 21%
] total \ 88 \ 388 \ 23% \

signals corresponding to each class (e.g. rock or jazz in the case ofedassification system).
Global distributions for each class can the be used to compute decisioddr@msbetween classes.
A new, unobserved signal is classified by computing its feature vectodsng the most probable

class for each of them, and taking the overall most represented cldbe fwhole signal.

This approach for modelling HLD concepts correlated to the global sobmdwisical extract is
a widely adopted paradigm in the research community concerned with automaticdescription.
Table 2.1 shows an enumeration of paper and poster contributions in tH& I&Mferences since
its creation in 2000. Each year, about a fourth of all papers, and owhbée 88 papers out of
a total 388, use the approach. Each contribution typically instantiates thelbserigearchitecture

described above, only with filerent algorithm variants and parameters.

All contributions use the same underlying rationale of modelling global tifebumd in order
to extract high-level descriptions. However the spectrum of the targletectiptions is rather large:
genre (Tzanetakis et al., 2001), style (Whitman and Smaragdis, 2002} ¢(hioet al., 2003),
speecjmusic (Scheirer and Slaney, 1997), solo instrument (Vincent and R&@#®), singer (Kim
and Whitman, 2002), but also singing language (Tsai and Wang, 20p8)of beat-boxing sounds
(Kapur et al., 2004), potential for commercial success (Dhanarajagdn, 2005), etc. Note that
while the “global timbre” paradigm is by far the most represented for HLDegtion systems, sev-
eral other approaches exist that rely e.g. on harmonic featuresspithtahistograms (Ermolinskiy
et al., 2001), rhythmic features (Gouyon and Dixon, 2004) or cultufatimation mined from web

pages (Whitman and Smaragdis, 2002).
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These contributions rely on an implicit model of global timbre, which is basati@tong-term
statistics of frame-based spectral features. The underlying assumptiai the perception of the
timbre of a texture is assumed to result from the most statistically significantdeaindows.

However, the validity of such a model and assumption fBalilt to discuss from the existing

corpus of work, because is not examined explicitly:

¢ Negative results are inconclusive: The evaluation of each contributies dot measure the
precision of the decisions of the models in terms of timbre similarity, but in termsrof co
plex high-level concepts which may be only remotely correlated to timbre. Btarioe, the
difficulty of a specific genre classification, e.g. between “Classical” ana™Jamy reveal
limitations of the underlying timbre model, but also possible inconsistencies in theuneela
conceptsCarla Bleyor Gil Evans complex orchestral jazz arrangements are timbrally more
similar e.g. toAlban Bergthan toCharlie Parker Hence, it is dificult to conclude either on
the quality of the timbre model or on the relation between timbre perception and thedletb

high-level concept.

¢ Positive results are inconclusive: HLD extraction systems all rely onifilzgon techniques
which exploit the distribution of the data to discriminate sets of sounds. Tlierpemce of
such systems tell very little on the underlying model of timbre similarity, as it is ples&ib
model appropriate decision boundaries on a feature space which dibpowvide a precise
model of similarity, thanks toféective use of training data. Moreover, modern classification
techniques such as ensemble learning (McKay et al., 2005) have the abdélet diferent
decision criteria according to sub-parts of the problem, efferdint duplets of classes being
discriminated. Such classifiers are typically able of good classificatiotsesu feature

spaces which would give a poor metric representation of the underlying styila

¢ Individual evaluations are inconclusive: The improvement of HLD etiva systems is ac-
tively pursued in the MIR community. Each contribution typically relies on a sligmihy-

ified timbre model, with its own algorithm variants and parameter settings. Theechbic
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such parameters result from little if any systematic evaluation. More geneatibynpts at
evaluating diferent settings in the literature tend to compare individual contributions to one
another, i.e. particular, discrete choices of parameters, instead dfydiesting the influence

of the actual parameters. Moreover, each contribution typically meathegerformance of

its particular implementation on its own custom-built testing database, which makasntihe
parison of diferent approachesfticult and unreliable. It is very common that good results
found on a given test database cannot be reproduced by subsetygies on other databases,
either quantitatively or even qualitatively. For instance, Soltau (199&)rtephat Explicit-
Time Modelling with Neural Network (a technique to model the dynamics of thiufes)
significantly outperforms hidden Markov models on a genre classificatién wdsch does

not occur in Scaringella and Zoia (2005).

2.6 Thesis Overview: Ten Experiments

In this context, we propose &xplicitly model polyphonic timbre, by building a algorithmic measure
of thetimbre similarity of polyphonic texturemuch like the similarity assessed by psychophysical
experiments on short samples. Our measure is based on the patterrtiec@gpproach shared by
most HLD extraction systems, namely modelling polyphonic timbre as the long-tistribdtion

of local spectral features.

By focusing on the low-level perceptive mechanism of timbre similarity, we distualying
the validity of the approach shared by the contributions described aldteut depending on the
unknown correlations that exist at the level of high-level music descrigtid/e study the properties
of such models of timbre similarity in a set of 10 experiments, whose conclusamesimplications
on polyphonic timbre, but also on high-level music descriptions built on the &mdironale. Part
of our results (the existence of so-called hub songs) even seemaflemeo pattern-recognition

measures in general.

Each contribution in the literature typically instantiates the same basic architelescebed
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above, only with diferent algorithm variants and parameters. Chapt®iensions of Timbre
Models gives a detailed description of the space of such timbre models, in termsatodypical
center-of-mass algorithm (“gaussians of MFCCs"), to which we applymaber of transformations
(or so-calleddesign patternswhich we found to re-occur very frequently in the literature (for in-
stance, transformations meant to better model the dynamics of the feafurss)eview sketches a
practicalepistemologyf the field of music pattern recognition, by making more explicit the typical
signal-processing and machine-learning heuristics and know-hove ainuisng its practitionetsit
also provides a structured way to explore the space of all possible timbr&snod which we base
our experiments in the remainder of the study.

Experiment 1 tests the validity of the assumptions underlying the pattern recognition approac
to polyphonic timbre, by hill-climbing the algorithmic space described in Chaptér Barticular,
we question the common assumption found in the literature that error ratasectpo implicit
models of timbre are incidental, and that near-perfect results would jtrsipekate by fine-tuning
the algorithms parameters. We propose an evaluation framework whickstaxgdicitly the notion
of timbre similarity, instead of derived high-level descriptions, and usesrtrisework to evaluate
the precision of very many parameters and algorithmic variants, some of Wauehalready been
envisioned in the literature, some others being inspired from typical patierasearch methodolo-
gies observed in the literature. This leads to an absolute improvement éstingealgorithms of
about 15% precision. But most importantly, we describe many variantsut@aisngly do not lead
to any substancial improvement of the measure’s precision. Moreavesjraulations suggest the
existence of glass ceilingat precision about 65% which probably cannot be overcome by pgysuin
such variations on the same theme.

Experiment 2 further examines one of the most surprising resul@xderiment 1, namely that
algorithms that account for the time dynamics of the features are at béghlegtito simpler static
models. This contradicts experimental data on the perception of individstaiment notes, which

established the importance of dynamics, notably the attack time and fluctuations syebtral

*this reflexion on research heuristics used in MIR is largely influenced éydéa behind the automatic discovery
system EDS (Zils and Pachet, 2004)
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envelope. We propose that thefiulty of modelling dynamics of full songs results either from
the complex structure of the temporal succession of notes, or from ttieavgrolyphonic nature
of individual notes. We discriminate between both hypothesis by comparingdtformance of
dynamical algorithms on several specially designed datasets, namely maiwipitiividual notes,
polyphonic individual notes, and polyphonic multiple-note textures. Welode that the main

cause of the diiculty of modelling dynamics is the polyphonic nature of the data.

The other important and novel finding Bkperiment 1 is that the class of algorithms studied
in this work tend to create false positives which are mostly always the sangs segardless of
the query. In other words, there exist songs, which wehaals which are irrelevantly close to all
other songs. This phenomenon is reminiscent of other isolated report§aredt domains, such
as Speaker Recognition or Fingerprint Identification, which intriguinglg &ipically rely on the
same features and pattern-recognition algorithms. This suggests thatuhdsbeoan important
phenomenon which generalizes over the specific problem of timbre similarityndicates a gen-
eral structural property of the class of algorithms examined Hexperiments 3to 8 aim at better
understanding the nature and causes of such hub songs.

Experiment 3 establishes that hubs are not a consequence of poor featuresrgpties of each
individual frame, but rather arffect of the modelling of the agglomeration of the many frames of a
sound texture.

Experiment 4 shows that hubs are not a property of a given modelling strategy (i.e. g$atic
dynamic, parametric vs non-parametric, etc.) but rather tend to occur wittyae of model.

Experiment 5 shows that hubs are not an intrinsic property of certain songs, butlitfiestent
algorithms distribute the hubsftgrently on the whole database.

Experiment 6 disproves the hypothesis that hubs result from the fact that a givastistd
model potentially explains very manyftérent time series of features (for instance, static models
such as Gaussian Mixture Models consider all permutations of the origidad data as identical).
Notably, we establish that songs whose models have the greatest vaniama significantly likely

to be hubs.
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Experiment 7 suggests that the hubness of a given song is not an emerging glopartgrof
the distribution of its frames, but rather can be localised to certain parts didgtndgution. Notably,
not all frames have a uniform influence on the hubness of a song. Oiuiiees in statistical
minority seem to have a critical influence on the appearance of a hub.

Experiment 8 finally establishes that hubs are not a property of the class of algorithaisdtu
here which appears regardless of the data being modelled. Notablynieeasgorithms used on
datasets of ecological urban sound ambiances do not engenderfpbssible critical factor for
the appearance of hubs is the heterogeneity of the modelled signals, wBiehtisies higher for
polyphonic music than for ecological sounds.

The two experiments which conclude this study make a round trip back to highstaisic
descriptors. Having explicitly evaluated the validity of polyphonic timbre modets studied a
number of their limitations, we now examine the validity of their use to extract qinakinfor-
mation such as musical genre. We base our study on a yet-unreleagdargerand diverse set of
manually collected metadata, made available to Sony CSL by collaborations withrta€8rpora-
tion. Experiment 9 shows that surprisingly few high-level music descriptors are directietaied
to timbre. Moreover, dierent taxons of a given category, such as “Mood Violent” or “Moamhir
ical”, have very diverse levels of correlation with timbre (high and low rgsphich is at odds
with typically proposals of classifiers that apply the same decision spae@doy taxons within a
category.

However,Experiment 10 shows that there are extreme amounts of correlation between high-
level descriptors, independently of their relation to timbre. Some of theselations capture
psycholinguistical semantic associations (“a powerful song is a stramgj)sdout also historical
and cultural knowledge (“rock uses guitars”), and more subjectipeds linked to perception
of timbre (“flute sounds warm”). This suggests that very many high-leslial descriptions of
musiccanindeed be grounded to timbre similarity, by exploiting such higher-level coiwakiwith
timbre-based attributes. We finally propose a hybrid classification systeimjple@ments this idea

in a systematic way.






Chapter

Dimensions ofTimbre Models

Very many contributions in automatic music description systems rely on the same impidél
of polyphonic timbre, namely the long-term distribution of local spectral festuMost contribu-
tions instantiate the same algorithmic architecture, only with a wealth of individuants and
parameter settings. This chapter describes this space of algorithm pasameteariants. We base
our description on a prototypical center-of-mass algorithm (“gaussiiv=CCs"), to which we

propose to apply a number of transformations (see Figure3.1).

We propose a classification of such transformations in terndesign patterngin the spirit of
Gamma et al. (1995)), which we found to re-occur very frequently in theatitee (for instance,
transformations meant to better model the dynamics of the features). Tésiga patterns make
explicit the heuristics and know-how at use among signal-processingpackine learning special-
ists, and constitute a first step toward sketching a practipetemologyof the growing field of

Music Information Retrieval (MIR).

The description found below also provides a basis for the experiments ierttender of our
study. Notably, in the next chaptdExperiment 1 will examine the validity of the assumptions

behind all such possible timbre-models, by hill-climbing the algorithmic spaceideddere.

31



32 Chapter 3. Dimensions ofTimbre Models

Prototypical
Algorithm

Design
Pattern

Figure 3.1: We propose to base our exploration of the space of all p@sisitiore models on a
prototypical algorithm, to which we apply a number of transformationgegign patterns

3.1 The Prototypical algorithm

We describe here the timbre similarity algorithm on which we will base our expatatiens. As
can be seen in Figure 3.2, it follows the same paradigm as the very manjbatairs on HLD
extraction systems described in Chapter 2.5, namely modelling polyphonic tisibre bong-term
distribution of local spectral features. However, the rationale behinéxperiments is to explicitly
model timbre, instead of using it implicitly to extract higher-level, correlatecdcepts. Therefore,
we do not accumulate all features of théelient sets of songs to discriminate in a common classi-

fier, but define a metric to compare the distributions of individual songseé@anther.

3.1.1 Feature Extraction

The signal is first cut into frames. For each frame, we estimate the spentelbpe by computing
a set of Mel Frequency Cepstrum Gideients. The cepstrum is the inverse Fourier transform of the
log-spectrum logp.

cn:% f  log S(w) expjwn dw 3.1)

wW=—T
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Figure 3.2: The initial algorithm has a classical pattern recognition archigectu

We call mel-cepstrum the cepstrum computed after a non-linear frequeargyng onto a percep-
tual frequency scale, the Mel-frequency scale (Rabiner and JU&98)), which reproduces the
non-linearity of the frequency resolution of the human auditory systemlifewtz frequencies are
more easily discriminated than high Hertz frequencies). Hertz frequeean be converted to mel

frequencymusing the experimental formula :

f
m= 1127010481 (1+ =), (3.2)

The ¢, in Equation 3.1 are called Mel frequency cepstrumfiicents (MFCC), of which
we keep a given numbéd. Cepstrum coicients provide a low-dimensional, smoothed version
of the log spectrum (all the more so preciseNsncreases), and thus are a good and compact
representation of the spectral shape. As already mentioned, they aly wikd as feature for
speech recognition, and have also proved useful in musical instrumeognition (Eronen and

Klapuri, 2000).

3.1.2 Feature Distribution Modelling

We then model the distribution of the MFCCs over all frames using a Gaussianri Model

(GMM). A GMM estimates a probability density function (PDF) as the weighted LM simpler
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Figure 3.3: A Gaussian distribution in dimensidn= 2 centered on the origin and with unitary
variance in each dimension.

Gaussian densities, called components of the mixture. (Bishop (1995)):

m=M
PIF) = D WinN(Ft, s ) (3.3)
m=1

wherewn, is a mixture cofficient (also called component weight or prior probabilityj,is the

feature vector observed at timeand NV is a Gaussian PDF with meag, and covariance matriXy,

o e 3 P (—%(X = m) " i (X = ) (3.4)
(27)2|Zm|2

N(ﬁuuma Zm) =
whered is the dimension of the feature vect®t. Figure 3.3 shows a 3D representation of a
Gaussian distribution in dimensiah = 2, with u = [0,0] andX = 7, and Figure 3.4 shows a

mixture model ofM = 2 gaussian componentsy(= w, = 1, withuy, = [0, 0] andus = [3,0]).

The parameters of the GMM are estimated from the feature vectors with th&ccsvi

algorithm (Bishop (1995)).
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Figure 3.4: A Gaussian mixture model distribution in dimenglen 2, with 2 gaussian components
centered in [00] and [3 0].

3.1.3 Distance Measure
Log-likelihood

We can now use these GMMs to match the timbre dffedent songs, which gives a similarity
measure based on the audio content of the music. The most straightfavasartd compare two

songsA and B on the basis of their respective distributions of feature vectors is to contipeite
probability of observing the set of a5 feature vectors oA using the probability model of the

distribution of the features d3, i.e.

Pe(A) = pe(FN T3 FE) (3.5)
Sa

= [ [ps@ (3.6)
i=1

where pB(7-‘iA) is the probability of tha™" feature vector of song computed using Equation 3.3,
using the parametegs X andw learned from the feature vectors Bf To avoid double-precision

numeric problems, we equivalently compute

Sa
log ps(A) = ) log pa(F;") (3.7)

i=1
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which is called thdog-likelihood of A given B This can be made symmetrical to create a well-

behaved distance measure:
1
di(A,B) = é(log ps(A) + log pa(B)) (3.8)

The computation ofl; needs accessing both the GMM modelsAaind B and their respective
MFCC vectors. However, MFCC vectors for all songs are prohibitivsdoee in the context of large
databases. A typical 3-minute song is represented by 7751 frames (taking2048 points with
50% overlap at 44100 Hz), which, given e .= 10 MFCCs per frame, amounts to around 80,000
double precision floating-point numbers (640 Ko). Since the timbre distanoeant to integrate
into a large scale meta-database architecture, we need to be able to corapaoel#fs themselves,

without storing the MFCCs.

Kullback-Leibler divergence

A natural distance measure between two probability distributipgsand pg is given by the
Kullback-Leibler divergencéKL), also calledrelative entropy or information divergencelt can

be interpreted in information theory as the expected extra message-lengthatpe that must be
communicated if a code that is optimal for a given (wrong) distribution Q is,usedpared to using

a code based on the true distribution P.

pa(X)
pa(X)

Ak (Pallpe)) = f pa(x) log P2 g (3.9)

The KL-divergence has an analytical form in the case of simple gaudisttibutions:
dxL OV, _1 -1 -1 _ )T (-1 _y-1 _
KLNAINB) = Jtr(ZaZp” — ZBEA7) + (ua — k) (Z5" — Za ) (A — 1B) (3.10)

wheretr is the “trace” operator. However, no such close form exists for mixturesveral Gaussian

components.
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Figure 3.5: Comparison of the Log-likelihood approach and the Monte@agooach for the com-
putation of the Kullback-Leibler divergence between 2 GMiMsd j. The MFCC vectors of each
song are too space-consuming to be stored. Hence, there are 2 possibeto compute the
probability of the features of songgiven the model of song RouteA consists in temporarily re-
computing the MFCCs from the signpfor the sake of the distance computation. RdBiEonsists

in sampling “fake” MFCC points from the already computed GMMjpfvhich is naturally much

quicker.

We therefore propose to compute Equation 3.9 by Monte-Carlo approxin{gtglrman, 1996),

i.e. to estimate the KL distance by the empirical mean :

dAB) = %zn: log 2204 (3.11)

(wheren is the number of samples drawn according t@a). The estimatel(A, B) converges to

dkL (A, B) whenn — o by virtue of the central limit theorem :
lim (1 Zn: Xi — &(X)) 1 N(0,0?) (3.12)
— P — = — y ag .
n—oo N = ! \/ﬁ

whereX is the random variable | Agg X; a realization ofX, §(X) the mean oX andN(0, o?) a

normal distribution of mean 0 and varianeé equal to the variance of.

More precisely, we sample a large number of poifsfrom modelA, and compute the likeli-
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hood of these samples given modelWe then make the measure symmetric and normalize :

i=DSR i=DSR
D(A,B) = Z log P(S/A) + Z logP(S?/B)
i=1 i=1
i=DSR i=DSR
- logP(S7/B) - logP(S?/A) (3.13)
i=1 i=1

The precision of the approximation is clearly dependent on the numbengfies, which we call

Distance Sample Rate (DSR).

The Monte Carlo approach can be seen as a way to “recreate” tempmetotypical MFCCs
points from the GMMs, instead of keeping the original MFCCs from the asidigals (which can't
be stored realistically). Sampling points from a GMM is naturally much quicker tegrocessing
the whole MFCC algorithm on the original signal. Figure 3.5 illustrates a congmaoé the 2

approaches.

Sampling from GMMs

The Monte-Carlo approximation of the KL divergence requires to samplggpfrom Gaussian

Mixture Model distributions. To do so:

1. Firstdraw a gaussian component at random amoniltbemponents of the GMM, according
to thewn, weights (which sum to ongm:lwm = 1, and therefore can be considered as a

discrete probability distribution on the space of components).

2. Then draw a point from the selected gaussian component.

An efficient way to draw points from an individual gaussian distribution usesiece®f uniform
pseudo-random numbers, and a mathematic transformation of these nisublerthat their re-

sulting distribution is gaussian. The most basic of such transformations isl thd®&ox-Muller
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transform (Press et al., 1986) :

yi = +/-2Inx;cos2rx; (3.14)
Yo = 4/=2Inxgsin2rx; (3.15)

Hence,

1. Generate two independent random numbgysand x; with a uniform distribution (in the
range from 0 to 1), using e.g. the high-qualiersenne Twistepseudo random number

generator (Matsumoto and Nishimura, 1998).

2. Then apply the above transformations to get two new independerdmandmbers which

have a Gaussian distribution with zero mean and a standard deviation of one.
3. Then rescalg;, andy, to the right mean and variance, usiyig= o (y + u)

In practice, for numerical stability reasons, the polar form of the Bottévitransform is preferred:

-2InR

Yi = X1 R (316)
-2InR

Y2 = X R (3.17)

whereR = X + 5.

3.2 MIR Design Patterns and Heuristics

The algorithm described above is designed as an attempt to explicitly modghpoig timbre
similarity, in order to test the underlying assumptions of a large class of autamagic description
systems. Only a few previous attempts at building audio similarity functions céoupe in the
literature. Foote (1997) presents a system that also uses cepsffi@ients as a front-end, but rather

uses a supervised algorithm (tree-based vector quantizer) thatfleamsst distinctive dimensions
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in a given corpus. Adding one song to this corpus requires to redo tirérigaf the tree, which is

expensive. On the contrary, our system is completely scalable, since itwaad song separately.

Welsh et al. (1999) proposes a query by similarity system that is also abletth s@ngs ac-
cording to their timbre. He uses a large set of features (1248 floating-peinsong) which are
compared with the euclidean distance. However, his system doesntaditnére similarity ex-
plicitly: his features model the pitdfonal content of a song (“returning songs in the same key"),
the noise level (“whether it is pure classical music or noisy, saturatetirbak”) and the rhythm.
The timbral similarity observed in some results by the author (“a pop, male gooal produces
results where every song in the top 10 is a male vocal with guitar and drunmgeniment”) ap-
pears therefore as a sidffext of the features above, notably those describing the tonal content of
the pieces. Our system is both more restrictive, and more precise: ndkabfgatures that we use
are meant to be independent of the pitch. We do not try to model music similakétsgat but only
timbral similarity, which is is only one similarity relationship among many others (rhytheiody,
style, structure, etc.), some of which addressed by Welsh. We havedairgéucouturier and Pa-
chet (2002b) that the interestingness of a music retrieval system pydkeshin the confrontation

between several such similarity relationships.

Finally, Logan and Salomon (2001) proposes a similar approach to ohish aiso uses Cep-
strum Codicients, only with a diferent modelling and a more complex matching algorithm. It
is only since this contribution and our original formulation of the above merdi@hgorithm in
Aucouturier and Pachet (2002b) that “timbre similarity” has seen a groimtegest in the Music
Information Retrieval community (Baumann (2003); Baumann and Pohlg)2Bérenzweig et al.
(2003); Herre et al. (2003); Kulesh et al. (2003); Pampalk et alDZp0Pampalk (2004); Flexer
et al. (2005); Stenzel and Kamps (2005); Vignoli and Pauws (2005))

A careful inspection of the methodology of each of these contributionsedlsas the very
many papers implicitly relying on the same model reveals a number of transfonsmadiiat are
commonly applied to the prototypical algorithm, and a number of heuristics ugpdde research

and algorithm design. We attempt here a catalog of sledign patternsin the spirit of Gamma
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et al. (1995). Itis often striking that the same patterns have also preafdluin the longer history

of Automatic Speech Recognition (ASR) research, which we will highlighdmutelevant.

3.2.1 Pattern: Tuning feature parameters

Definition

Finding feature parameter values that improve the quality of the whole algorithm.

Description
A featureis a mathematical transformation of the input musical signal, aiming at reducing its
dimensionality and variability. Good features typically are a measuremenedfiaed aspect
of the data which is believed to be relevant to the problem being modelled, or $jmilany
to discard information which is not relevant. In the case of the modelling of musidare,
following the insights from the psychoacoustical studies described ab@/enay want to
only focus on spectral information, but also to discard fine harmonic dataif®e spectrum
that typically vary a great deal with the pitch of the analysed sounds. iStieaion between
such feature extraction and the modelling of the extracted features (whiglals@mdiscard
e.g. dimensions in the feature space) is not always clear cut. Oftendeatmaction can be
regarded as a fixed transformation of the input data, whereas the motiekitgains adaptive
parameters whose values are set as part of a training process (BiSi®&), However, the
statistical model one uses is crucially dependent on the choice of featleese it is often
useful to fine-tune some parameters of the feature extraction algorithmapt adj. its

accuracy.

A typical parameter in feature extraction influences the dimension of the nesasot made
on the data, and thus the dimension of the spacef¢dueire spacein which statistical mod-
elling is performed. For instance, the number of MFCCfioients extracted from each frame
directly controls the dimension of the feature vectors. Increasing the diomeosthe fea-

tures typically increases the expressiveness of the correspongiegeatation, thus allowing
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> X

Figure 3.6: lllustration of the influence of feature dimension on a 2 classifitation problem.

e.g. to better discriminate fiierent classes of data. Figure 3.6 illustrates a possible 2-class
classification problem, using 2 abstract, one-dimensional feaXuaeslY. Data points of the

2 classes are represented by dark gray circles and light-gray sqeapectively. It appears
that each of the features andY is a poor representation for the problem when considered
individually. For instance, the observation of the valueXok [a, b] for a point gives no
information about its most likely class: 3 examples of each class are oldseritlen this
range. Similarly, the observation &f € [c,d] is non informative. However, when consid-
ered jointly, the observation oX(Y) € [a,b] x [c, d] gives a good indication that the class
of the corresponding point be “circles”. This suggests that incredssgumber of features

is a general law for improving the precision of the modelling. However, wendind that,
beyond a certain point, adding new feature dimensions can actually leaddaction in the
precision of the modelling. This phenomenon is known astivee of dimensionalitylt can

be understood on the same Figure 3.6. The more dimendians available in the feature
space, the more precise a partition of the data space we can obtain. Halewveumber of

cells such asd, b] x [c,d] grows exponentially with d. If we keep the number of training
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Table 3.1: Influence of the number of MFCCs on a similarity task, repratiércen Logan and
Salomon (2001).

Number of MFCC| Precision5| Precision10
12 3.43 6.53
19 3.44 6.57
29 3.36 6.44

data points constant, and increaséhere will come a point where no data will be available
for most cells, and the corresponding representation will be very podtigure 3.6, where
d = 2, only one data example is found ia, p] x [c,d]. If we incrementd, most cells in

[a b] x [c,d] x Rwill be empty, and the precision of the model will collapse.

Example

In Logan and Salomon (2001), the authors test the influence of 3 nurobBECCs used
as front end for a timbre similarity measure (later modelling the MFCC distributiatis w
the kMeans method, and comparing the distributions with Earth Mover's Distari@able
3.1 reproduces their results. In the table, the precisions are measubedagrage number
of songs with the same genre as the seed song in the first 5 nearestongighthe seed
(“Precision5”) and in the first 10 nearest neighbors (“Precisionl®e observe with the
authors that increasing the dimensionality of the MFCCs from 12 to 19 haslbmragive
impact on the precision of the model, but that further increase degradgsrehision, as

explained by the curse of dimensionality.

3.2.2 Pattern: Tuning model parameters

Definition
Finding values for parameters of the statistical model that improve the qualiheafhole

algorithm.

Description

As for features (3.2.1), statistical models used to learn the distribution ot#tares often
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have a number of fixed parameters that have to be chosen before traihiege parameters
typically influence the complexity of the model, i.e. its expressiveness. Ftanics, the
number of Gaussian componerits in a Gaussian Mixture Model (GMM) influences the
flexibility of the density estimation that it is able to achieve. It can be theoreticadlyea
(Bishop, 1995) that a GMM is a universal probability density estimatd ifs allowed to
grow to infinity. However, as above with features, increasing the complekaymodel does
not necessarily improves the precision of the corresponding repatieenof the systematic

aspect of the data.

1.0 o M=0
o
[
o U
0.0
o
-1.0
0.0 0.5 1.0 0.0 0.5 1.0
x x
1.0 1.0

0.0

1.0 -1.0

0.0 05 1.0 0.0 05 1.0

X X

Figure 3.7: lllustration of the influence of model complexity on a polynomialaggjon task. Pic-
tures reproduced from Bishop (1995)

This is best illustrated in the case of a simple polynomial curve fitting, as showigure
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3.7. We generate training data from the function
f(X) = 0.5+ 0.4sin(27X) (3.18)

and add a small amount of noise. We then try to model the data with a Mth-aslysiomial
given by
M .
y(X) = Z w;i X (3.19)
i=0

Figure 3.7 shows the least-square error estimates of the polynomial fdudsvaf the pa-
rameterM € {0, 1, 3, 9}, which controls the complexitftexibility of the model. Models with

M = 0 andM = 1 give a poor representation 6fx), due to their limited flexibility.M = 3
shows a much better fit to the data, and thus a better approximation of thdyimgi@ro-
cessf(x). However, when we further increasé = 9, the approximation of the underlying
function actually gets worse, although we achieve a perfect fit to the teailsita. The added
flexibility of the model is spent on modelling non-meaningful noisy variationshendata,
thus degrading the generalisability of the model to non-previously seen 8atdn models

are said to bever-fittedto the data. Therefore, the best performance is typically achieved by

a model whose complexity is neither too small or too large.

Examples
In Nwe and Wang (2004), the authors compare the performance ofehs@gment detector
using 12-dim MFCCs and a hidden Markov model (HMM), for 2 and 10sgaun mixtures
per state of the HMM, and report and average precision @%®land 746% respectively.
The poorer performance of the most flexible model is a clear case ditbugr In Beren-
zweig et al. (2003), the authors compare the precision of a timbre similaritfaadkterent
numbers of clusters in a k-mean model in a 20-dim MFCC space. The metditaisstimate
the precision of the similarity is the average number of queries in a test datiivashich

the first nearest neighbor is the same as a ground truth similarity meastsepfdice agree-
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Table 3.2: Influence of the number of clusters of KMean modelling on theigioa of a similarity
task, reproduced from Berenzweig et al. (2003).

Number of clusters First place agreement percentage
8 21%
16 22%
32 23%
64 23%

ment”). The reported results, which we reproduce in Table 3.2, show littigeinde of the

parameter over the tested range of values.

3.2.3 Pattern: Feature Equivalence

Definition

Replacing a feature by an “equivalent” feature.

Description
Features as they are introduced by various researchers tend to igasie¢s of equivalent
semanticsTemporal featuresspecially contain information about the duration of excitation
of individual notes. From the short-time rms-energy envelope, one stimate e.g. rise-
time, decay-time, strength and frequency of amplitude modulation, crest fawialetected
exponential decay from the rms-energy curve. As discussed atiste features have proved
important in early psychoacoustic experiments in timbre perception, whicts foe record-
ings of individual notes, however they tend to bé&idult to use with full-length polyphonic
music. Spectral featuresre considered more robust to polyphonic and complex textures.
Most of them are based on the short-time Fourier transform (STFT)hawel the general
equivalent semantic of characterizing the global “spectral shape”comgact and scalable
form. We detail here two notable approaches to model the spectral shiiphb, lead to the

definition of several equivalent sets of spectral features.

e Spectral Moments: The spectruiR(w) of each frames; of signal is considered as a
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probability distribution which observed values are the frequengiaad the probabil-

ities to observe them are the normalized amplitudes) = ZVFV(FW&V). From this dis-

tribution, one can compute the central moments. The motivation is that the skries o
the moments of the distribution can be used to approximate the distribution in a scal-
able way, i.e. the first moments contribute the most to the approximation, and tee mor
moments, the more precise the approximation. This can notably be achieae(Cr
1957) with the Edgeworth series or Gram-Charlier A series, which if we dechnly

the first two development terms, reads:

F(x) =

ool |1+ S (52 B2 o

(o

whereh3 = (x3 — 3x)/3! andh4 = (xt — 6x2 + 3)/4! (Hermite polynomials), ands
andx4 are the third and fourth cumulants of the distributiefiandx, are related to the

central momentsy andny by:

Mg = k3 (3.21)

My = kg + 345 (3.22)

The first moment of the spectrum, nam@&pectral Centroidis the mean value of the

frequency distribution, i.e. the barycenter of the spectrum.

U= pr(w) (3.23)

The second central mome®tpectral Spread the spread of the spectrum its barycenter,

i.e. the variance of the frequency distribution:

o? = ) (W p)pw) (3.24)
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Similarly, we define th&pectral Skewnesg = % andSpectral Kurtosig, = % using

the third and fourth momentss andm.

e Cepstrum: Another way to encode the shape of the spectrum in a scalable twa
consider the spectrum valuegw) of each frames; as a signal ofv, and to compute its
Fourier transform, i.e. the Fourier transform of the Fourier transfoitme. imfinite series
of Fourier codicients can be used to reconstruct the original signal, and as illustrated
in Figure 3.8, the truncated series of the firstfio®nts can be used to approximate
the signal in a scalable way. As already described in 3.1, the Fouriefdramef the
(decibel) spectrum is calleckpstrum(an anagram of “spectrum”, formed by reversing
the first four letters). There exist many ways to compute the cepstrum, andfezures
built on the cepstrum, such as the notorious Mel-Frequency Cepstruficads. It
is interesting to note that the MPEG-7 standard (1SO, 2002) formalizesasseh of
transforms to describe the spectral shape, by defiairtjoSpectrumEnvelopebhich

is calculated by linear transformation of the STFT Power Spectrum
X = |FT|2%+1T (3.25)

and AudioSpectrumProjectionBwhich is calculated by convertinrudioSpectrumEn-

velopeDto a decibel scale and applying a decorrelating linear transform matrix
Y = 10log1o(X)V (3.26)

This theoretically defines a class of equivalent feat{ivds v, based on the cepstrum,
among which we find MFCC by choosifigto be the linear-to-Mel frequency map and

V to be the discrete cosine transform (DCT).

Examples

Yang (2002) compares two alternative envelope features, standa@CMind so-called
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Figure 3.8: Reconstruction of a square signal using increasing numbisd-ourier components
(A:2, B:3, C:4, D:5).

“comb method” which convolves the spectrum with a family of comb filters. Casel
Crawford (2004) compares twoftkrent instantiation of the MPEGAudioSpectrumProjec-
tionD, namely standard MFCC versus one built with an octave-based filterlpark singular
value decomposition. Tzanetakis and Cook (2000); Kapur et al. (20@5t and Cox (2004)
compares a moment-like feature set (Spectral Centroid, SpectralfiR@fmectral Flux) to

MFCCs, for various classification problems.

3.2.4 Pattern: Model Equivalence

Definition

Replacing the statistical model by an “equivalent” model

Description
As for features (3.2.3), equivalence classes of statistical models tengerge according to
their high-level assumptions. A common partition considers “static’ models asichaus-
sian Mixture Models (GMM), histograms, k-Means or k-Nearest NeighlfoNN), which
estimate the probability distribution of the frames as a whole without taking anyiatob

their time ordering on the one hand, and “dynamic” models on the other hagctdas hidden
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Markov models (HMM) or Recurrent Neural Networks (R-NN), whichdebboth the static

distribution of the data and the time evolution of the distribution.

Examples
K-means are used in timbre similarity tasks by Logan and Salomon (2001); Bau2203);
Berenzweig et al. (2003); Herrera-Boyer et al. (2003); Pampalk €2003). GMMs are used
in Berenzweig et al. (2003) and Kulesh et al. (2003). Scaringella aiel 2005) compares
several dynamical models for a genre classification task, based on MEBIBIs, Explicit-

Time Modelling Neural Networks (Soltau, 1998), and HMMs.

3.2.5 Pattern: Feature Composition

Definition
Modifying a standard feature algorithm chain by inserting an additional nregtieal opera-

tion.

Description

It is very common that an author should create a local variant of a sthfetture by adding

e pre-processing such as low-pass filtering the signal, or normalizing itg\eife.g.

MFCC(Normaliz€x)))
e post-processing such as taking the derivative (so called deltéaierts) or rescaling

e intra-composition i.e. changing or adding an operation block in the middle ohthia c

Examples

In Yang (2002), MFCCs are computed not for each frame at a coristame-rate, but only on
the frames corresponding to a peak in the signal power (“event framasliang et al. (2002),
the authors propose to modify the MFCC algorithm to not only compute thegerepgctrum
in each frequency band, but also a correlate of the variancesptbetral contras{namely

the amplitude between the spectral peaks and valleys in each subbansynddifies the
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algorithm to output 2 cd@cients (instead of one) for each Mel subband. Additionally, in the
algorithm published in Jiang et al. (2002), the authors replace the Mebé&h&rtraditionally
used in MFCC analysis by an octave-scale filterbakC1, C1-C,, etc.), which is assumed
to be more suitable for music. They also decorrelate the spectral cordefitients using
the optimal Karhunen-Loeve transform. The derivation of the standd&@®lalgorithm to

the SpectralContrast algorithm is illustrated in Figure 3.9.

sinl—»  FFT Mel Bands »  Mean » Log > DCT |—» mfcc
sl—>|  FFT Octave | | \jean » Lo >
Bands d > 9 7| Karhunen spectral
Loeve [—» P
Transh contrast
Range » Log » Eiansionn

Figure 3.9: Comparison of the standard MFCC algorithm chain (upperatiggwith the Spectral
Contrast algorithm (lower diagram), showing the various insertioaplacements.

3.2.6 Pattern: Cross-Fertilisation

Definition
Borrowing a technique, often a feature, which was developed anég@successful in pattern

recognition for other domains than music.

Description

Music audio pattern recognition developed out of a large corpus of danle in the context
of speech signals, for which a scientific and commercial interest wagmezsa earlier, no-
tably on the impulsion of the 1971 DARPA call on Speech UnderstandingaRe#séSUR)
(Kurzweil, 1996). The researcHfert of the five-year SUR project, which targeted a non
real-time recognition system with 90% sentence accuracy for continymesls sentences
using thousand word vocabularies, notably lead to such great advasclynamic program-
ming (Itakura, 1975), and Markov modelling (ltakura, 1976). Cepstfsee 3.2.3) has been

the dominant feature for speech recognition, notably since the classilfition of Mel-
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Frequency Cepstrum Cfirients (MFCCs) by Rabiner (1989). However, it was originally
invented for characterizing the seismic echoes resulting from earthgjaakebomb explo-
sions (Tukey and Healy, 1963). Their success in the speech commundsgllgdead to their
application to music signals, which can be traced back to the best of outdagsvto Foote
(1997), inspired by previous work on Speaker Recognition (Foot&sdmerman, 1994). Lo-
gan and Salomon (2001), also coming from Speech Recognition, giviaiéedeaccount of
how well the assumptions of MFCCs hold for musical signals. Since then, ic@ranon
pattern that features and techniques for timbre and music modelling shoubdrbesed from

other domains, not only speech recognition, but also sismic data or imaggespig.

Examples

Kim and Whitman (2002) uses Linear Predictive Coding (LPC) (RabinérJaiang, 1993) ,
a technique used for Speech Compression, and a variant thereofldta lsinger identifica-
tion system. LPC are functionally equivalent to MFCC, as they encode dutrapenvelope
of the signals, however they are believed to be better suited to the sharpriibspectrum
exhibited by voice signals, due to their formulation as a all-pole filter functionetfind the
resonances of the vocal tract. Unfortunately, no comparison is gitbrstandard MFCCs.
Deshpande et al. (2001) proposes to consider audio spectrogrdmages, and to extract
features developed in the context of image texture classification (convolwuiilo directional
gaussian filters). Similarly, Casagrande et al. (2005) uses Haar;fdtézshnique borrowed
to object image detection, to detect regular geometric patterns in speecbrasgerech au-

diospectrograms.

3.2.7 Pattern: Modelling Dynamics

Definition

Modifying the features aridr the model to account for the dynamics of the data.

Description
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The prototypical algorithm described in 3.1 does not take any accoumhefscale greater
than the frame size. All frames are typically modelled as a whole, without asguat of
their time ordering. It is a common improvement strategy to many contributions to ynodif
this prototypical algorithm so as to take the dynamics of the data into accoudifidétions

may occur at the feature level, by e.g.

e tapped delay line: consecutive feature vectors can be stacked into ndngesfeature
vectors, before sending them to the statistical model, thus constructing spéeal

embedding of the temporal sequence (see Figure 3.10).

e ——]

I______T____ |
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Figure 3.10: Tapped delay line to account for the dynamics of the statiacdésatu

e derivation: Furui (1986) showed that speech recognition perfocmaan be greatly
improved by adding time derivatives to the basic static features. DeltfiCierts are

computed using the following formula:

_ Zg):]_ 9( ft+6 - ft—H)

d
' 259 62

(3.27)

whered; is a delta cofficient at time t, computed using a time wind@®v The same
formula can be applied to the delta ¢@&ents to obtain the acceleration ¢deents.
The resulting modified feature set contains, for each frame, the staticdeaiues and

their local delta values (see Figure 3.11).

e texture windows: local static features (typically extracted every 50 msheaveraged

over larger-scale windows (typically several seconds), in an attempptore the long-
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Figure 3.11: Computation of delta déieients from a sequence of static features.

term nature of sound textures, while still assuring that the features beutednpn small
stationary windows. Several statistics can be used on such so-tattede windows

e.g. mean, standard deviation, skewness, range, etc. (see Figyre 3.12
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Figure 3.12: Computation of statistics over texture windows.

e dynamic features: Another strategy to characterize the dynamics of thefetdtices
is to compute features on the signal constituted by the static feature sedqudmcie
is considered to be sampled at the original frame-rate). For instanceh-adsiglution
STFT can be taken on large frames (of several seconds’ durati@hhe low-frequency
variations of the features (e.g. f150HZ]) are taken as features instead of the original

ones (see Figure 3.13).

Dynamic models can also be used to account for the dynamics of static feefuieh models
include recurrent neural networks (R-NN), which are typically 2 langdworks with feedback
from the first layer output to the first layer input, and hidden Markov nigydehich can be

defined as a set of GMMs (also called states) linked to one another by a wfai@asition
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Figure 3.13: Computation of dynamic features with FFT over the sequerstatiuf features.

probabilities.

Examples

Use of Delta cofficients for MFCCs feature sets is reported e.g. in Talupur et al. (2000);
Tzanetakis and Cook (2000); Heittola and Klapuri (2002). TzanetaldsGook (2002) re-
ports a convincing 15% precision improvement on a genre classificationMiask using
MFCC texture windows of up to about 40 frames (1 second). Whitman andEli31) uses
a modulation spectrum constructed by taking the long-term FFT of the MFQCaggre-
gating the obtained spectrum for each cepstraficment in 6 octave wide bins in [B0HZ],
while Peeters et al. (2002) directly takes the FFT of the Mel-filtered spactamd keeps
only the spectrum values that maximize the mutual information. Scaringella aaq2005)
compares the performances of several static models (support vectoinesjovith diferent
dynamic feature schemes, such as texture windows and delay lines, areactgssification
task. The authors notably conclude that a 1 second delay line perfottas (%) than 1

second texture windows (65%).

3.2.8 Pattern: Higher-level knowledge

Definition

Improving the models by adding a layer of higher-level, non-signal inteligen

Description
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This pattern can also be observed when reviewing Automatic Speech RemodASR)
research. Over the last 30 years, muélort has been done to refine the signal representa-
tion of phoneme utterances, by the introduction of psychoacoustic modelsha statisti-

cal modelling of the phoneme dynamics, notably using markovian probabiliatioefvorks.
However, usable ASR performances could only be reached by comisinitgow-level tech-
niques with higher-level Natural Language Processing (NLP) ar¢bres such as sentence
parsers and grammar models. Such systems can e.g. be used to disaminguibtmavdaries
using contextual information afm common sense. The point was notoriously demonstrated
by one famous T-shirt worn by Apple Computer researchers, reatlihglped Apple wreck

a nice beach”, which, when spoken, sounds like “I helped Apple r@zegpeech”. A review

of NLP techniques and their integration with Speech Recognition can bd fau®ole et al.

(1996).

Examples

Nwe and Wang (2004) describe a system to take song structure informattioaccount
when classifying vocahon vocal music. Their observation is that vocal and non vocal signal
segments display intra-song variations, such as signal energy, degpemdthe “song sec-
tion”: intro, verse, chorus, bridge and outro. Hence, they manually @itraining data
into several sub-classes corresponding to each section. Using teimecthey report a small
improvement (2%) over standard approaches. McKay and Fujina@d)20opose to use a
hierarchical genre taxonomy to improve automatic genre classification. IMacebuilt both
for broad genre categories, such as Classical or Jazz (“roosf)pdad for more precise
sub-categories such as J&=bop or Jaz&wing (“leaf nodes”). As can be seen in Table 3.3,
prefiltering recordings by root genre, before proceeding to theleest of the hierarchy with
the subcategories of the winner root moderately improves the precisiothevstandard flat

approach in which all categories, root and leaf, are considered sathe stage.
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Table 3.3: Influence of using hierarchical taxonomies in genre claggificaResults reproduced
from McKay and Fujinaga (2004).

Classification typg Precision on root genresPrecision on leaf genres
Flat 96% 86%
Hierarchical 98% 90%

3.3 Conclusion

The patterns described in this Chapter translate our personal view afgbarch made in the field
of Music Information Retrieval. The main objective of this description is rheadras it provides
a way to structure the exploration made in the next chapter of the algorithnie spaypical
models of timbre. All these variations elaborate on the same common assumptialy tiaat the
perception of polyphonic timbre results from the long-term distribution ofl)aectral features.
It is the validity of this assumption that we test in the next Chaggpériment 1).

However, we discuss here the possibility of other applications of suclhictsted view on the
domain. First, MIR patterns have pedagogical valu€hey provide a condensed and transverse
view on the enormous body of literature that emerged in the last 5 years dihsg help linking
contributions to one another, by identifying common methodologies. Howiinese patterns don't
truly constitute an analysis method for MIR literature, insofar as they daeld yany conclusion
other than the fact that theage patterns.

The patterns described here go some way in the direction of formalizingrobsereativity and
intuitions. Notably, they support metaphorical reasoning, e.g. “if delt#ficants work to some
extent, | should probably investigate texture windows or hidden Markovefsbdpattern 3.2.7).
However, they're not a truly operational framework, as are desigenns in software engineering.
Notably, they don’t provide prototypical solutions to given problems. sTtiey cannot easily be
used to help or even automatize research. However, some of the hewtegm#ed here are in
the line of the automatized approach of the EDS system (Zils and Pache), 20D& proposes

to discover new signal-processing features by composition of a setsaf bperators, guided by

*Actually they were used by the author in a course given at ENSEIRBjé2arx, France in December 2005, on the
topic of music pattern recognition
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genetic programming.

Such patterns could be seen as a cynical view on the field, carryingnidesoending message
of a lack of variety and originality. However, the existence of such a eramall in fact - number of
patterns in “Signal Software Engineering” is probably little more than a logimasequence of the
dominant paradigm of pattern recognition: this pretty much imposes a finite mwhisariations
around the theme of features and models. This in particular seems a lede fiexddigm than the
Object Oriented approach presiding over design patterns in Softwgiadg&ming.

In fact, these patterns tell more about the scientific discourse than theesdisalf. They
provide a genealogy of prototypical concepts and methods, and couldesused to help generate
“state of art” sections for new papers, or to organize bibliographid&atmns of papers, such as
the ISMIR repository.

On the whole, the patterns described in this chapter ask the question ofcivelge repre-
sentation - not of the world under scientific inquiry - but of the domain-fipescientific method
itself. In particular, we would like to see systems that can tap automatically intiingxeéontribu-
tions (papers, code, databases, etc.) to help the research on néswdly suggesting features or
methods. The field of Music Information Retrieval with its infinity of specificatgsor problems
(new genres, new instruments, new moods, etc.), and its rather condtamidelustered space of

solutions (cf. the patterns above), appears to be a possible candidsiielicsystems.

Thttpy/www.ismir.netall-papers.html
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Chapter

Experiment 1: The Glass Celling

In this chapter, we test the validity of the assumptions underlying the patwgnition approach
to polyphonic timbre, by hill-climbing the algorithmic space described in Chaptar Barticular,
we guestion the common assumption found in the literature that error ratesectpa implicit
models of timbre are incidental, and that near-perfect results would jtrsipekate by fine-tuning
the algorithms parameters. We describe an evaluation framework whiclstasgeicitly the no-
tion of timbre similarity, instead of derived high-level descriptions. We thenthis framework to
evaluate the precision of very many parameters and algorithmic variants,domtéch have al-
ready been envisioned in the literature, some others being inspired fracaltgptterns of research

methodologies observed earlier.

This leads to an absolute improvement over existing algorithms of about 1&€ision. But
most importantly, we describe many variants that surprisingly do not leadytsurstancial im-
provement of the measure’s precision. Moreover, our simulations stufgeexistence of glass
ceiling at precision about 65% which probably cannot be overcome by pgrsuich variations on

the same theme.

61
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4.1 Experiment

We explore the space of polyphonic timbre models by applying transformggonsalleddesign
patterng to the prototypical algorithm described in Chapter 3.1. We list here all thHanta that
were tested. For a complete description of each variant, please refepeméig B.

Parameters of the original algorithm (patterns 3.2.1 and 3.2.2)

We explore the space constituted by the following parameters :

e The sample rate of the music signal (11, 22 or 44kHz).

The size of the frames on which we compute the MFCCs (from 10ms to 1s).

The number of the MFCCs extracted from each frame of data (from 10)to 50

The number of gaussian components used in the GMM to model the MFCQ@s {Bato

100).

The number of samples used in Monte-Carlo approximation (from 1 to 10,000)

Replacing MFCC by MPEG-7 Spectral Descriptors (pattern 3.2.3)

We try replacingappending to the MFCC feature set various combinations of MPEG7-
standardized spectral descriptors based on moments of the spectrurascaibat in Section
3.2.3: SpectralCentroid, SpectralSpread, SpectralKurtosis, SpectralSkewness,

SpectralFlatness, SpectralRolloff, SpectralFlux.

Alternative distance measure (pattern 3.2.4)

Some authors (Logan and Salomon (2001); Berenzweig et al. (2003)pse to compare the
GMMs using the Earth Mover’s distance (EMD), a distance measure meeoirtpare histograms
with disparate bins (Rubner et al. (1998)). We evaluatdf2idint implementations of EMD against

the Monte Carlo approximation to KL divergence.
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Non-Parametric Modelling (pattern 3.2.4)

We evaluate and fine-tune the parameters of 2 alternative models of the BiBtGiGution than the

baseline GMM algorithm:

e Pampalk’s Spectrum histograms: 2D histogram counting the number of timeskaitkvels
(out of 10 normalized values) are exceeded in a each frequency(bareD Bark bands)

(Pampalk, 2004)

e MFCCs Histograms: based on vector-quantization of the MFCC spac®(ieoh 1995).

Processing commonly used in Speech Recognition (pattern 3.2.5)

MFCCs are a very common front-end used in the Speech Recognition comn{Raltjner and
Juang, 1993), and a variety of pre and post-processing has begramdeevaluated for speech

applications. We examine the influence of 6 common operations:
e ZMeanSource: used in speech to remove fheces of A-D conversion.

e Pre-emphasis: used in speech to reduce fiiects of the glottal pulses and radiation

impedance and to focus on the spectral properties of the vocal tract.

e Dither: adding a small amount of noise to the signal to avoid numerical proldemmgo

certain kind of waveform datdiite wordlength gect9.
¢ Liftering: used in speech to rescale the MFCCftioents to have similar magnitude.
e Cepstral mean compensation (CMC): to subtract tfeceof the transmission channel.

e O’th order codficient. correlated with the signal’s log energy

Alternative MFCC algorithm (pattern 3.2.5)

In Jiang et al. (2002), the authors propose a simple extension of the Mio@thm to not only

compute the average spectrum in each band (or rather the spectralipgadtso a correlate of the
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variance, thepectral contras(namely the amplitude between the spectral peaks and valleys in each

subband). We evaluate twofffirent implementation of this variant.

Borrowing from Image Texture Analysis (pattern 3.2.6)

We evaluate techniques inspired from those used for the automatic andlimisge textures no-
tably second-order statistics analysis with grey-level co-occurrentixr@LCM) as proposed by

Haralick et al. (1973).

Delta and Acceleration Codficients (pattern 3.2.7)

It is known since Furui (1986) that the performance of a speeclgrition system can be greatly
enhanced by adding time derivatives to the basic static parameters. Watevhk performance of
adding delta andr acceleration cdicients to the original MFCC dataset, withigirent parameter

values.

Texture windows (pattern 3.2.7)

Tzanetakis in Tzanetakis and Cook (2002) reports that using a la@ertegture window and com-
puting the means and variances of the features over that window resugsificant improvements
in music classification. We evaluate the influence of this variant, for windoes $iztween 0 and

100 frames.

Hidden Markov models (pattern 3.2.7)

To explicitly model this short-term dynamical behavior of the data, we try capathe GMMs
by hidden Markov models (HMMs, see Rabiner (1989)), and to fine tumentbdels’ parameters

(number of gaussian components, number of states).
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Building in knowledge about note structure (pattern 3.2.8)

We investigate here 2 techniques to build in higher-level knowledge abeustiincture of musical

notes, namely the segmentation between transient and steady state:
¢ Removing noisy frames: identified with Spectral Flatness (Johnston (1.988)

e Note Segmentation: In typical implementations, MFCCs are computed with a cbnstan
frame-rate, and thus may average transient and steady-states of motgsal\We investigate
whether synchronizing the MFCC extraction to a preliminary automatic note segtios

can improve the global modelling of polyphonic timbre similarity.

4.2 Method

4.2.1 Explicit modelling

We conduct our evaluation on asxplicit model of the timbre similarity of polyphonic textures. By
focusing on the low-level perceptive mechanism of timbre similarity, we airtudysg the validity
of the approach shared by the contributions described above, witepending on the unknown

correlations that exist at the level of high-level music descriptions.

4.2.2 Ground Truth

For this study, we have constructed a test database of 350 song item&xsaat from the Cuidado
database (Pachet et al., 2004) which currently has 15,460 mp3 filesolisosed of 37 clusters

of songs by the same artist, which were refined by hand to satisfy 3 addiititteaia:
e First, clusters are chosen so they are as distant as possible fromaiheran

e Second, artists and songs are chosen in order to have clusters thanarally” consistent

(all songs in each cluster sound the same).
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e Finally, we only select songs that are timbrally homogeneous, i.e. there igrexure

change within each song.

The test database is constructed so that nearest neighbors of agngsehould optimally belong
to the same cluster as the seed song. Details on the design and contentsatditasel can be found

in Appendix A.

4.2.3 Evaluation Metric

We measure the quality of the measure by counting the number of neardd#barsidpelonging to
the same cluster as the seed song, for each song. More preciselygif@naguery on a song;

belonging to a clustaCs, of sizeN;, the precision is given by :

card(Sk/Cs, = Cs,andR(Sk) < Ni)

p(Si) = N

(4.1)

whereR(Sy) is the rank of songy in the query on song;.

The value we compute is referred to as Rprecision, and has been standardized within the
Text Retrieval Community (Voorhes and Harman, 1999). It is in fact tleeipion measured after
R documents have been retrieved, whBris the number of relevant documents. To give a global
R-precision score for a given model, we average the R-precision tdwpraxies (i.e. 350, which is

the number of songs in the test database).

4.3 Tools

On the whole, the dierent variants and parameters examined in the experiment represent more
than 500 algorithms. Such extensive testing over large, dependenigiaraspaces is bothfi
cult and costly. We describe here oudfoets in making this study possible, both through software

architectures, implementations and algorithmic innovations.
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4.3.1 Architecture

Conducting the systematic evaluation of music similarity measures requires thadpoiie general
architecture which is nearly as complex as a full-fledge EMD system, thaleisab.g. access and
manage the collection of music signals the measures should be tested onastoreseilt for each
song, compare results to a ground truth etc.

In the context of the European projects Cuidado and SemanticHifi, the masicaeSONY
CSL Paris has developed a fully-fledged EMD system, the Music BroWsehgt et al., 2004) based
on the MCM Java API, which is to our knowledge the first system able tolbdahd whole chain
of EMD from metadata extraction to exploitation by queries, playlists, etc. Mé&aabout songs
and artists are stored in a database, and similarities can be computed gneahe+#-computed
into similarity tables. Its open architecture makes it easy to import and computsinmelarity
measures. Similarity measures themselves are objects stored in the databagéchi we can
describe the executables that need to be called, as well as the argunméeteaxecutables.

Figure 4.1 shows a screenshot of the Music Browser in a typical expeidtien session.
The “Metadata” panel (in the background) shows the list of all metadatdable for items of
the “song” type. Metadata appearing in light gray indicate unary descsiftbsongs (which
have a single value for a given song). Typical unary descriptorstiarbre models (e.qg.
CentroidFlatnessRolloffGLCM which stores the Grey-Level Cooccurrence matrix of a given
song computed from the concatenation of its Spectral Centroid, FlatnédRddlioff, see Section
4.1 and Appendix B.8) and various metrics used for the analysis of expgehnesults (e.gAngle
GMM measures the mean Neighbor angle for a given song, which is a measuse\weChapter 6
to evaluate the hubness of a song). Metadata appearing in dark gragténdimilarity measures,
which have a single value per duplet of songs. The highlighted distandguneF4.1 Distance
Histogram MFCC_KMEAN, is a euclidean distance computed between histograms of MFCCs quan-
tized with a KMean algorithm (see Section 4.1 and Appendix B.7.2). The pteesyd the selected
metadata can be edited in the right area of the Metadata panel. Additional taatadde created

from this same panel with a few clicks.
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Figure 4.1: Screenshot of the Music Browser used as an experimentktitorm in this study.

The “Search” panel of the Music Browser (in the foreground) shilve@s/alues of the metadata
for the items of a given type. While traditional browsing scenarios wouleveeocontent items
such as songs or artists, it is also possible to browse system items such datenetdere, we
browse the collection of similarity measures. Furthermore, the genericity nieansis possible
to create metadatan metadata. Figure 4.1 shows the example of precision vaRreg{sion R
andPrecision 10) computed for each similarity measure. Such meta-metadata can naturally be
edited in the “Metadata” panel described above/aniinplemented anew as standard Java classes

based on the MCM API.
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4.3.2 Implementations

While many authors, such as (Pampalk, 2004), rely on Matlab implementatitimes wdirious algo-
rithms, it appeared in this study that runtime performances were critical @ to@nable the testing
of many algorithm parameters over large ranges of values. Moreoeabtive-mentioned need for
a larger database architecture and metadata-management tools posaetititveshgroblem of in-
teroperability between the algorithm implementations and the Java-based tdolassMCM and
the MB. Finally, an additional constraint is the flexibility to modify the implementatiorsder to
test variants, which tends to favour proprietary implementations compareidd<ptrty toolboxes.
Therefore, we investigated a number of alternative and faster implemesstatiath for feature
extraction, distribution modelling and distance computations. Full details andactsop scores
between custom and third party code, as well &&udint platforms (Matlab, C, Java) can be found
in Appendix C. The best performing implementations, used in the followingy@ased on custom-

code in C, called from Java by Java Native Interface (JNI).

4.3.3 Algorithms

Even with fast optimized implementations for distance computations, the task ioffithe: nearest
neighbors (NN) of a given song among large sets of songs (typicalgraleten of thousands) is a
very costly operation. This operation is needed both for the exploitatiogiwka similarity metric
(“find me songs that sound like X”) and for the repetitive evaluation ofrédlgmic variants that we
propose to do in this study. This performance bottleneck is one of the palnei@sons for the lack
of systematic evaluation found in the literature.

One approach for speeding-up NN search is to use pre-built indestates, such as-Btrees or
KD-trees (Samet, 1989) in euclidean spaces, or M-tree (Ciacca et @) 48d the Multi-vantage
point (MVP) tree (Bozkaya and Ozsoyoglu, 1999) for metric spacesstdf these indexes rely on
the verification of the triangular inequality by the distance measure.

For the purpose of this study, we developed a generic algorithm folNfdstearch in metric

spaces which relies neither on an index structure, nor on the verificdtibie triangle inequality
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by the distance measure. The algorithm exploits an intrinsic property of tbe@laimilarity algo-
rithms that we study here: all exhibitpaecision-cputime tradgp for some parametep (tradegf
paramete}, i.e. for which both the precision and the cputime increase witlhuses successive ap-
proximations of the measure to compute more and more expensive meassnasli@n and smaller
sets. Full details about the algorithm can be found in Appendix D. We azk@sed improvement
factors as high as 30, while still preserving more than 98% precision eTbeslts are instrumental

in the feasability of the large-scale evaluation reported here.

4.4 Results

4.4.1 BestResults

A complete account of the results of the evaluation of the variants listed in 8dclican be found

in Appendix B. We give here the main conclusions of the experiment:

¢ by hill-climbing the space of timbre models, we are able to increase the precjsinarke than
15% (absolute) over the original measure we introduced in AucouturgePanhet (2002b),

to a maximum of 65,29%R-precision.

¢ the best performing measure is a fine-tuned version of the prototypicalthlgalescribed
in Chapter 3.1. It compares GMMs of MFCCs with Monte-Carlo approximatibthe
Kullback-Leibler distance. The optimal number of MFCCs and GMM comptanare 20

and 50 respectively, and MFCCs are appended with tfearfler codficient.

e among common speech processing front-ends, deltécieats and & order MFCC increase

the precision by an unsubstantial extra 2% (absolute).

e dynamic modeling with hidden Markov models, and more complex processingedspg.

by image texture analysis do not increase the precision any further.

The optimal measure as found by this experiment and reported in AucaugumiePachet

(2004a) was implemented by Elias Pampalk to win the “Artist Classification” coatdise ISMIR
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Figure 4.2: Precision vs Recall graph for the best measure

2004 Audio Description Contest (sketp://ismir2004.ismir.net/ISMIR_Contest.html).

4.4.2 Significance

Figure 4.2 shows the precision-recall curve of the best measure @BWMECCs+ Oth order cofi-
cient+ 50 GMMs). It appears that the precision decreases linearly with th# ratsa(with a slope
of about-5% per 01% increase of recall). This suggests thatRagrecision value is a meaningful
metric to compare variants to one another, and gives a good indication dhe@igorithms behave
in more realistic applications contexts (e.g. “give me the 5 nearest neigbbitis song”).

While this 63% of precision may appear poor, it is important to note that olmati@n criteria
necessarily underestimates the quality of the measure, as it doesn’tarord@vant matches that
occur over diferent clustersfélse negatives e.g. a Beethoven piano sonata is timbrally close to a
jazz piano solo).

We should also emphasize that such an evaluation qualifies more as a naslagve per-
formance (“is this variant useful ?”) rather than as an absolute meakugea well-known fact
that precision measures depend critically on the test corpus and on thkiagilementation of the
evaluation process.

We do not claim that these results generalize to any other class of music similar-

ity/classificatiofidentification problems. However, as mentioned in Chapter 2, very many high-
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level music description algorithms, such as genre classification, rely orathe paradigm for
polyphonic timbre modelling than we examine here. While the evaluation and cemparf such
systems require to also integrate higher-level correlations and grotindtrah as the categorical
semantics (“how close is rock from pop”), we believe that our resultsed@n an explicit mod-
elling of timbre similarity, contribute to a better understanding of the low-levetetspof some of
these higher-level algorithms. Moreover, as will be seen in the next sectioe explicit exami-
nation of timbre similarity reveals a number of qualitative problems which are likedysto dfect

higher-level music description algorithms, for which they would be mdifecdlt to diagnose.

4.4.3 Dynamics don’t improve

A very notable result of this experiment is that classical pattern recogmtitamsions that take the
data dynamics into account surprisingly fail to improve the precision of theetaodihis is notably
true for computing first order derivatives of the features (so callettddcodficients”), computing
mean and variance of the features on intermediate-size “texture windasist} dynamical models
such as recurrent neural networks or hidden Markov models, armhderder statistical analysis
inspired by image texture classification. Full details about the evaluationcbf &athese algo-
rithms can be found in Appendix B. Table 4.1 gives a subset of the evalustires achieved by
such variants on the test database. This is a surprising observatiof, izlsitodds with experi-
mental evidence on the perception of monophonic instrument notes. Thehagxter reports on an

experiment aiming at better understanding this result.

4.4.4 *“Everything performs the same”

The experiment show that, except a few critical parameters (sample uanben of MFCCs), the
actual choice of parameters and algorithms used to implement the similarity messkedittle
difference if any. We notice no substantial improvement by examining the very vagiants in-
vestigated here : Complex dynamic modelling performs the same as static modetngple®

front-ends, like spectral contrast, performs the same as basic MF@G®I€X distance measures,
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Table 4.1: R-precision scores achieved for the best algorithm as well as a numigetesfsions
aiming at better modelling the dynamics of the data.

] algorithm | R-Precision|
| best (20 MFCGr 50-state GMM)|  0.65 |
Delta® = 10 0.60
Acceleration® = 10 0.610
Delta® = 2 0.62
Delta® =5 0.62
Acceleration® = 5 0.62
Acceleration® = 1 0.63
Delta® =1 0.63
Texture Windoww; = 10 0.64
Texture Windoww; = 20 0.65
HMM (5 states) 0.62
HMM (10 states) 0.63
HMM (20 states) 0.62
HMM (30 states) 0.44
Texture CM (GLA-quantized) 0.48
Texture CM (LVQ-quantized) 0.44

such as EMD or ALA as reported in Berenzweig et al. (2003), perfadhmsame as Monte Carlo,
or even simpler centroid distances as also reported in Berenzweig e0@8)(2This behaviour
has been mentioned before in the published partial comparisons betwiséngedistance mea-
sures: Baumann (Baumann and Pohle (2003)) compares Logan and 84R004), Aucouturier
and Pachet (2002b) and Baumann (2003) and observes that fiitbeedt approaches reach similar
performance”. Pampalk in Pampalk et al. (2003) remarks that the clugtamination of Logan and
Salomon (2001) and Aucouturier and Pachet (2002b) are similar. Beegmet al. in Berenzweig
et al. (2003) also conclude that the flidirent training techniques for GMMs (Kmeans or EM)” and

“MFCC or anchor space feature achieve comparable results”.

4.4.5 Existence of a glass ceiling

The experiments reported here also suggest that the precision adbibyakariations on the

same classical pattern recognition scheme adopted by most contributioas (gecluding ours)
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Figure 4.3: Increase iR-precision over the whole parameter space used in this paper

be bounded. Figure 4.3 shows the increade-precision achieved by the experiments in this chap-
ter, over a theoretical parameter spadgvhich abstracts together all the parameters and algorithm
variants investigated here). The curve shows an asymptotic behaviemauaid 65% (although this

actual value depends on our specific implementation, ground truth anchtabade).

This is at odds with the common assumption found in the literature that the reportedates
are incidental, and that near-perfect results would just extrapolatenéytufning the algorithm’s

parameters.

Obviously, this chapter does not cover all possible variants of the sattexrpaecognition
scheme, as described in Chapter 4. Notably, one should also evaluatioothevel frame repre-
sentations than MFCCs, such as LPCs or wavelets, and feature selégoiothens such as discrimi-
nant analysis. Similarly, newer methods of pattern recognition such asrswpptor machines have
proved interesting for music classification tasks (Li and Tzanetakis j200&Idage et al. (2003))
and could be adapted and tested for similarity tasks. However, the settofde and variants used
here, as well as the investigation offdrent modelling strategies (static vs dynamic, parametric vs
non-parametric) is likely to capture most of the aspects covered by otti@ntg This suggests that
the “glass ceiling” revealed in Figure 4.3 may also apply for further implementatbthe same

kind.
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4.4.6 False Positives argerybad matches

Even if theR-precision reported here does not account for a numbialsd negativegsongs of dif-

ferent clusters that actually sound the same), the manual examination st rhilarity measure

shows that there also remain sofaése positives Even worse, these bad matches are not “ques-

tionably less similar songs”, but usually arerybad matches, which objectively have nothing to do

with the seed song.

We show here a typical result of a 10-nearest neighbors query sotigHENDRIX, Jimi - |

Don't Live Todayusing the best set of parameters found above :

10.

. HENDRIX, Jimi - I Don’t Live Today

. HENDRIX, Jimi - Manic Depression

. MOORE, Gary - Cold Day in Hell

. HENDRIX, Jimi - Love or Confusion

. MITCHELL, Joni - Dom Juan’s Reckless Daughter

. CLASH, The - Give Them Enough Rope

. CLASH, The - Stay Free

. MARDI GRAS BB - Bye Bye Babylon

. HENDRIX, Jimi - Hey Joe

HENDRIX, Jimi - Are You Experienced

All songs byHendrix MooreandThe Clastsound very similar, consisting in the same style of

rock electric guitar, with a strong drum and bass part, and strong, maddsvddowever, the song

by Joni Mitchellranked in 5th position is a calm folk song with an acoustic guitar and a female
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singer, while the 8th item is a big band jazzy tune. Similar bad matches are somedpoesd in
the literature, e.g. in Pampalk et al. (2003) “a 10-second sequerld@arb by Ravel(Classical) is
mapped together withondon Callingby The Clash(Punk Rock)”, but most of the times, the very

poor quality of these matches is hidden out by the averaging of the repesieits.

4.4.7 Existence of hubs

Interestingly, in our test database, a small number of songs seems tdrecgiently as false posi-
tives. For instance, the fifth neighbor of the Hendric query given @ MXTCHELL, Joni - Don
Juan’s Reckless Daughter, is very close to 1 song out of 6 in the database (57 out of 350).
However, the cluster corresponding to it artist only contains 9 songghisspecific song occurs
more than 6 times more than it should. Among all its occurrences, many are likbly talse
positives.

This suggests that the 35% remaining errors are not uniformly distributed tbe whole
database, but are rather due to a very small number of songs, which weath&hubs”, which
are close to all other songs. These hubs are especially intriguing assi@lylustand out of their
clusters, i.e. other songs of the same cluster as a hub are not usualthéoiszlves.

Chapter 6 is devoted to a further study of the phenomenon of hubs. Vdeicios number of
experiments which shows that this is not a bounddfgot of our small-database evaluation, but

rather probably a general structural property of the class of algoritiastigated in this work.



Chapter

Experiment 2: The Usefulness of

Dynamics

This chapter further examines one of the most surprising resulBxpériment 1, namely that
models that account for the time dynamics of the features are at bestakequito simpler static
models. This contradicts experimental data on the perception of individuakimsnt notes. We
propose three possible causes for thfgalilty of modelling dynamics of full songs, and discriminate
between them by comparing the performance of dynamical algorithms orakspecially designed
datasets. We conclude that the main cause of tfiewdlty of modelling dynamics is the polyphonic

nature of the data.

5.1 The paradox of Dynamics

One of the surprising conclusions of the evaluation made in Chapter 4 iddbsioal pattern recog-
nition extensions that take the data dynamics into account surprisingly fail towaghe precision
of the models. This is notably the case for computing first order derigatif/the features (so called
“delta codficients”) as introduced by Furui (1986), computing mean and variante déatures on

intermediate-size “texture windows” (Tzanetakis and Cook, 2002) oguinamical models such

77
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as recurrent neural networks or hidden Markov models (Rabin88)19

This is surprising, as we have already noted that static models conside-frarmutations of
the same audio signal as identical, while this has a critical influence on theéptiem. Moreover,
psychophysical experiments as we reported in Chapter 2 have estdltlistimportance of dynam-
ics, notably the attack time and fluctuations of the spectral envelope, in tbeptien of individual
instrument notes.

This probably means that existing pattern-recognition methods do notsadihes right struc-
tural time-scale, or are unable to learn it from data that is either too spatee wariable. It has
been recently argued in the MIR community (Ellis, 2005) that although hiddenikd® modelling
typically achieves a better fit to the modelled data (in terms of likelihood) than statielssdch
as GMMs, it does so by capturing non-discriminative baseline temponalation, which is not so
different among dierent songs or genres. The poor improvement, if any, achieved byo$tate
dynamical models has recently been confirmed by Scaringella and Zoi&)(@0@he related task

of musical genre classification.

5.2 Hypothesis

There are 3 main hypothetical causes that explain thiedliy of modelling dynamics in the case

of polyphonic timbre textures:

H1 Either the dynamics of timbre frames are impossible to capture at the time-scalmdiadual
note, e.g. because there is too much timing variation from note to note. This isiaipeoas
success in doing so has been reported notably in computer-baseapisysics analysis of
timbre perception (Krimph® et al., 1994) or instrument note recognition (Dubnov and Fine,

1999; Eronen, 2003).

H2 Either its is the dynamics gdolyphonictimbre frames that is licult to model. We have al-
ready noted the problems of spectral masking and asynchronicity absewacurrent sound

sources, and how they defeatveanalysis generalized from the monophonic case.
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H3 Or it is the dynamics ofuccessive notest the time-scale of a phrase or a full song that are
difficult to model. Itis unclear e.g. whether a HMM attempts to capture fine-grdyreimics
such as the succession of transient and steady-state inside individeslonagather longer-

term structure like the succession offdrent instrument timbres.

5.3 Method

We propose to discriminate between these 3 hypotheses by testing therzerferof dynamical

algorithms on two databases of individual sound samples:
e one composed of clean, monophonic individual instrument notes (DB1)
¢ the other obtained from a polyphonic, real-world recording (DB2)

The comparison of the performance of dynamical modelling against staticlimgde both
contexts has the potential to disprove some of the above hypotheses.n&vithat dynamical
modelling performs constantly worse than static modelling on both databaséd support H1
(and be at odds with previous findings from the literature). H2 will be sttpp should dynamical
modelling perform better than static on the monophonic dataset (DB1), banrihe polyphonic
one (DB2): this would mean that polyphony ruins attempts at modelling dynanwecsvethin the
constrained time-scale of individual notes. Finally, evidence that dynamigdels overperforms
static models for both databases, but not for textures made of suecas$ds as we established in
Chapter 5, would indicate that the critical factor is the existence of the lgegarstructure of e.g.

phrase rhythm and instrument changes.

5.3.1 Databases

Table 5.1 and 5.2 describe the contents of both databases. DB1 was olasiae extract of the
IRCAM “Studio On Line” database, made available in the context of the Coidanopean Project

(Pachetetal., 2004). It contains 710 short sound samples, catdjoriz6 classes corresponding to
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& Sony CSL Paris - Music Browser M
Eie Help
Cornection | Search | smiarity | Player | Plavists | New Sonas | Metadata | Messages
[ segment | [ segment tirbre > name tirbre_duration > name start /
meﬁ,mr,r.:,.mw—;‘ The Beatles - Let It Be(31.92 -> 32.36) piano piano_0.4 31.92 (s
‘;;::n‘( > ene’gv“ The Baatles - Let It Ba(32.36 -> 32.52) voice & piano voice & piano_0.1 32.36
parent > file path The Beatles - Let It Be(32.52 -> 33.12) voice & plano voice & plano_0.5 32,52
i 'Ht"f . The Beatles - Let It Be(33.12 -> 33.6) voice & piano voice & piano_0.4 33.12
parent > title name The Beatles - Let It B2(33.6 -> 33.8) voice & piano voice & piano_0.1 36|
FerS rams ‘ ; The Beatles - Let It Be(33.8 -> 34.12) voice & piano voice & plano_0.3 3.8
Fimbre_duraton > name The Beatles - Let It Ba(34.12 -> 34.72) voice & piano voice & piano_0.5 34.12| |
fristan features ] |I7he Beaties - Let 1t Be(34.72 > 35) plano plano_0.2 34.72
narent > tinbre The Beatles - Let It Be(35 -> 35.36) voice & plano voice & plano_0.3 35
The Beatles - Let It Be(35.36 -> 35.76) voice & piano voice & piano_0.3 35.36
ooo | The Beatles - Let It Ba(35.76 -> 36.32) voice & piano voice & piano_0.5 35.76
|lke }“1 ‘ "‘ The Beatles - Let It Be(36.32 -> 36.72) voice & plano voice & piano_0.3 36.32
e heTe The Beatles - Let It Be(36.72 -> 37.12) plano piano_0.3 36.72
oo The Beatles - Let It Ba(37.12 -> 37.56) plano plano_0.4 37.12
= ‘Vvl oy ‘Vv‘ The Beatles - Let It Be(37.96 -> 37.8) plano plano_0.2 37.56
[ [l | The Beatles - Let It Be(37.6 -> 38.4) voice & piano voice & piano_0.5 37.8
timbre_duration > name The Beatles - Let It Ba(38.4 -> 38.8) voice & piano voice & plano_0.3 38.4
ooa | ||The Beatles - Let It Be(38.8 -> 39.36) voice & plana & choir voice & piano & choir_0.5 8.8
fike v] ) | | ||The Beates - Let It Ba(39.36 -> 30.54) voice & piano & choir voice & piano & choir_0.2 39.36
~| ||The Beatles - Let It B2(39.64 -> 40.04) voice & piano & choir voice & piano & chor_0.3 39.64
S The Beatles - Let It Be(40.04 -> 40.52) voice & plano & choir voice & piano & choir_0.4 40.04
oo The Beatles - Let It Be(40.52 -> 40.96) voice & piano & chair voice & piano & choir_0.4 40.52
[= v‘ ) g The Beatles - Let It Be(40.96 -> 41.28) voice & piano & choir voice & piano & char_0.3 40.96
- O 23884 || IThe Beatles - Let It Be(41.28 -> 41.68) vaice & plan & chor voice & plano & chor_0.3 41.20
The Beatles - Let It Be(41.68 -> 42) voice & piano & choir voice & piano & choir_0.3 41.68
The Beatles - Let It Be(42 -> 42.6) voice & piano & choir wvoice & plano & chor_0.5 42
The Beatles - Let It Be(42.6 -> 42.96) voice & plano & choir voice & plano & choir_0.3 42,6
The Beatles - Let It B2(42.96 -> 43.48) voice & piano & chair voice & piano & chor_0.5 42.96
The Beatles - Let It B2(43.48 -> 44.6) voice & piana & choir voice & piano & choir_1.1 43.48
The Beatles - Let It Be(44.6 -> 45.36) organ organ_0.7 44.6
The Beatles - Let It B2(45.36 -> 45.68) voice & piano & organ voice & piano & organ_0.5 45.36
The Beatles - Let It [S35 query results]) voice & piano & organ voice & piano & organ_0.7 45.88
The Beatles - Let It Be(46.64 -> 46.84) voice & plano & organ voice & plano & organ_0.2 46.64
The Beatles - Let It B2(46.64 -> 47.2) voice & piano & argan voice & piano & organ_0.3 46.84
The Beatles - Let It Be(47.2 -> 47.48) voice & piano & organ voice & plano & organ_0.2 47.2
The Beatles - Let It Be(47.48 -> 47.8) voice & plano & organ voice & piano & organ_0.3 47.48
The Beatles - Let It Be(47.8 -> 48.48) voice & piano & organ voice & piano & organ_0.6 47.8
The Beatles - Let It Be(48.48 -> 49.16) voice & piano & organ voice & piano & argan_0.6 48.48
The Beatles - Let It Be(49.16 -> 49.36) voice & plano & organ voice & plano & organ_0.2 49.16 v |

et

Figure 5.1: Groundtruth for polyphonic samples

the instrument used for their recording. DB2 consists of sound sampigset from the automatic
analysis of the son@he Beatles - Let it hausing the automatic segmentation algorithm described
in Appendix E. The process yielded 595 samples, which were manually reldsded categorized
into 16 categories, corresponding to th&eatient mixtures of sound sources occurring in the song
(a few samples were discarded because they were either too shofticultdio categorize). Figure
5.1 shows a screenshot of the Music Browser application, which wastassnotate DB2.

We remark that both database have the same number of classes, ang tbhagiame size,
which makes their comparison quite reliable. However, DB2 being obtainedawttimatic seg-
mentation, samples from the same category may have qdiiezatit durations. This may be detri-

mental to dynamical algorithms, which may match samples of the same duratios difeent



5.3. Method 81

categories. To control thidfect, we create a third database, DB3, which contains the same samples
as DB2, but sub-categorizes the timbre categories according to the sadupstson: samples that
were categorized as e.@ianoin DB2 are categorized in DB3 as one {#fiano.100, Piano.200,

...}, where{100,200,.}. denotes the duration (in ms) of the sample (averaged to the nearest multiple
of 100ms). The typical sample duration being between 50ms and 1 sec. ghies<up to 10 time-
indexed sub-class per original instrument class in DB2. Figure 5.1 shothsthe DB2 and DB3

labels for an extract of the database.

Table 5.1: Composition of the monophonic database.

Class Number of instances
Accordion 37
Alto violin 51

Bass 50

Bassoon 39

Cello 48

Clarinet 44

Flute 38

Guitar 66

Harp 40

Horn 78

Oboe 36

Sax 32
Trombone 38
Trumpet 32
Tuba 35
Violin 46

| Total | 710

5.3.2 Algorithms

17 algorithmic variants were implemented for each database and their resnftareal. Table 5.3
describes the parameters of each variant.
The use of dynamic information is embodied by 3 algorithmic variants based oarilg Pro-

gramming (DP, see e.g. Crochemore and Rytter (1994)). DP is typicallyfosatigning or com-
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Table 5.2: Composition of the polyphonic database.

Class Number of instances
Drums 119
Electric Guitar 148
Electric Piano 26
Organ 55
Organ & Drums 32
Piano 191
Piano & Tchak 53
Tutti 1 142
Voice & Bass & Drums 71
Voice & Organ & Drums 22
\oice & Piano 116
\oice & Piano & Choir 12
\oice & Piano & Organ 10
\oice & Piano & Tchak 39
Voice & Tutti 1 107
Voice & Tutti 1 & Electric Guitar 43
] Total \ 595 \

puting the distance between 2 sequence of symbols, such as text, pro@NAcsequences. It
was also used e.g. in Smith et al. (1998) for comparing sequences of hustiea. DP relies
on a symbol-distance, which measures the distance between duplets oflsymtie alphabet
(which may have infinite size), and an edit-operation cost, which penalizgsreent changes in
the sequence (e.g., deletion, insertion, substitution). In our case, weat®sgguences of MFCC
frames, using the euclidean distance as symbol distance, and compdue$ fea the edit cost
{10,100 1000. The smaller the edit-cost, the more tolerant the measure is to modifications of the
time arrangement of successive MFCC frames. This makes it possible tcllggnMFCC frames
at different positions within the samples, i.e. to match sound samples of the same tinlvihbu
very different duration. However, this also increases the number of false pssiW can be viewed
as a manual equivalent of decoding the sequence with an a priori tid&tl Note however that
HMM-based similarity (as used for full songs in Chapter 4 and Appendix3BWwas impossible
to use in the context of short samples, because of the lack of trainingalttpical sample has a

duration of 200 ms, which amounts to 10 frames.
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Table 5.3: Description of the algorithms used to compare monophonic andchpoliggsample sim-

ilarity

DynProg MFCC (edit 10)

Dynamic Programming Comparison of MFCC frames (using
edit cost of 10)

DynProg MFCC (edit 100)

Same as above with edit cost of 100

DynProg MFCC (edit 1000

Same as above with edit cost of 1000

MFCC_MP7_RMS 1G

Monte-Carlo KL comparison of Gaussian Mixture model (us
1 gaussian component) of feature vectors composed of MH
(dim 20), MP7 Spectral descriptors (dim 7) and RMS value (¢
1)

MFCC_MP7_RMS 2G

Same as above with 2 gaussian components

MFCC_MP7_RMS 3G

Same as above with 3 gaussian components

MFCC_MP7_RMS 4G

Same as above with 4 gaussian components

MP7 1G

Monte-Carlo KL comparison of Gaussian Mixture model (usin
gaussian component) of feature vectors composed of MP7 §
tral descriptors (dim 7)

MP7 2G Same as above with 2 gaussian components

MFCC.MP7 1G Monte-Carlo KL comparison of Gaussian Mixture model (us
1 gaussian component) of feature vectors composed of MR
(dim 20) and MP7 Spectral descriptors (dim 7)

MFCC_MP7 2G Same as above with 2 gaussian components

MFCC.RMS 1G Monte-Carlo KL comparison of Gaussian Mixture model (us
1 gaussian component) of feature vectors composed of MH
(dim 20) and RMS value (dim 1)

MFCC_RMS 2G Same as above with 2 gaussian components

MFCC 1G Monte-Carlo KL comparison of Gaussian Mixture model (us
1 gaussian component) of feature vectors composed of MR
(dim 20)

MFCC 2G Same as above with 2 gaussian components

Mean MFCC Euclidean

Euclidean comparison of the mean of feature vectors comp
of MFCCs (dim 20)

Jehan Euclidean

Euclidean comparison of the concatenation of the mean of
ture vectors composed of MFCCs (dim 20), and a set of gl¢
temporal shape descriptors (dim5)

an
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We compare these dynamical algorithms to a number of static algorithms, bassahen
binations of features such as MFCC, energy (root-mean square) emtr&8pMP7 descriptors
(i.e. SpectralCentroid, SpectralSpread, SpectralKurtosis, SpectralSkewness,
SpectralFlatness, SpectralRolloff, SpectralFlux). Features are compared using sim-
ple average comparison with euclidean distance, or Gaussian Mixture n{odelaverageand
variance) with up to 4 gaussian components. Note that similarly to HMM-basedssing, greater
numbers of components (such as 50 as used for full songs) coulenested because of the lack
of training data in individual samples.

Finally, a hybrid algorithm inspired by Jehan (2004), compares a featater composed of the
average of the MFCCs and a set of global descriptors describing thetalspape of the samples:
normalized loudness at onset andf@$et, maximum loudness and relative location of the maximum

loudness.

5.3.3 Evaluation Procedure

The algorithms are compared by computing their precision after 10 docunrentstdaeved, and
their R-precision, i.e. their precision after all relevant document anevett. Each value measures
the ratio of the number of relevant documents to the number of retrievedrgots. The set of
relevant documents for a given sound sample is the set of all samplessafitteecategory than the

seed. This is identical to the methodology used for Experiment 1 (Chapter 4)

5.4 Results

Table 5.4 shows the evaluation scores of the algorithms described abdettodatabases DB1
and DB2. One can see that dynamic algorithms perform uf0fb better(absolute) than static
algorithms on the monophonic database. This establishes that the dynamitoevofinstanta-
neous features are an important factor for timbre similarity. This confirms tidéngs of both

psychophysical experiments on the perception of instrument timbre, andthbem of automatic
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instrument classification systems. The best static performances on DBbtaired with fairly
involved variants, which typically rely on concatenation of several featuand large Gaussian

Mixture Models.

However, dynamic algorithms perform nead®% worsethan their static equivalent on the
polyphonic database DB2. It also appears that the best polyphoria@mpance is achieved with
the most simple static algorithms, such as euclidean comparison of the simplgeag&EMFCCs.
Notably, while increasing the number of gaussian components foMRGE MP7 RMS family of
algorithms constantly increases the precision on the monophonic datasetQ62% to 0.64 %
R-precision), the same operation degrades the precision (from 0.51%2%in the polyphonic

case.

Results on the duration-indexed version of the polyphonic database @@BR8rm the fact that
dynamical algorithms are helped by keeping the duration constant withinsa €laaversely, static
algorithms that do not consider duration are penalized by blindly returimgpkes which may be
of the correct DB2 class, but not in the correct DB3 class. Howdhermperformance of dynamical
algorithms on DB3 remains more than 25% worse than the static performanc&2nwibich
shows that, even at constant duration, dynamical algorithms are poaptaring essential feature

dynamics.

Overall, the observation that dynamic algorithms overperform their statictermparts on DB1,
but are ranked in inverse order on DB2 gives strong evidence thgphpany ruins attempts at
modelling dynamics even within the constrained time-scale of individual noths cbnclusion
therefore generalizes all the more so to sequences of notes, and sxp&jpoor performance of

dynamical algorithms for the timbre similarity of full songs.

Moreover, polyphony seem to makefatiult the training of involved static algorithms such as
several-component GMMs. These perform less accurately than simplistidean comparison of
the mean frame of each segment. As polyphonic samples tend to be longer thaphoio sam-
ples, this is not simply anfiect of overfitting complex models to too little training data (see Section

3.2.2), but a property of the data itself. Polyphony, and notably the qaadbm superposition of
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Table 5.4: Comparison of similarity methods for monophonic and polyphoniclsanipest scores
for each dataset appear in bold.

Monophonic (DB1)|| Polyphonic (DB2)| Polyphonic2 (DB3)
Method PlO ‘ PR PlO ‘ PR PlO ‘ PR
DynProg MFCC (edit 10) | 0.76 0.46 0.44 0.34 0.24 0.22
DynProg MFCC (edit 100) || 0.73 0.46 0.37 0.27 0.35 0.31
DynProg MFCC (edit 1000} 0.70 0.44 0.31 0.17 0.33 0.28
MFCC_MP7_RMS 4G 0.64 0.34 0.42 0.31 0.12 0.12
MFCC_MP7_RMS 3G 0.63 0.34 0.45 0.32 0.12 0.12
MFCC_MP7_RMS 2G 0.62 0.33 0.47 0.35 0.14 0.13
MFCC_MP7_RMS 1G 0.62 0.35 0.51 0.37 0.15 0.14
MP7 1G 0.61 0.38 0.36 0.29 0.11 0.11
MFCC.MP7 1G 0.61 0.33 0.47 0.35 0.14 0.13
MP7 2G 0.61 0.38 0.36 0.29 0.11 0.11
MFCC_MP7 2G 0.59 0.31 0.43 0.33 0.12 0.12
Mean MFCC Euclidean 0.58 0.33 0.50 0.39 0.14 0.13
Jehan Euclidean 0.56 0.32 0.49 0.38 0.21 0.19
MFCC_RMS 2G 0.56 0.28 0.48 0.35 0.14 0.13
MFCC_RMS 1G 0.55 0.27 0.50 0.37 0.15 0.14
MFCC 2G 0.51 0.26 0.46 0.32 0.14 0.13
MFCC 1G 0.50 0.26 0.47 0.33 0.15 0.13
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asynchronous sources in a given sound sample, probably creatgsea tlegree of variance from
one sound sample to another than in the monophonic case. fldws eould probably be limited if
more data were available, e.g. in the context of classification where modétsiasd on a set of

several songs, instead of individual songs as we do here for similarity.






Chapter

Experiments 3-8: Understanding Hubs

Probably the most important and novel finding Experiment 1 is that the class of algorithms
studied in this work tend to create false positives which are mostly alwayarhe songs regardless
of the query. In other words, there exist songs, which wetuatls which are irrelevantly close to
all other songs. This phenomenon is reminiscent of other isolated repdifieirent domains, such
as Speaker Recognition or Fingerprint Identification, which intriguingly &pically rely on the
same pattern-recognition algorithms. This suggests that this could an imgarear@menon which
generalizes over the specific problem of timbre similarity, and indicates aajstreictural property
of the class of algorithms examined here. This chapter reports on a numisgresfments aiming

at better understanding the nature and causes of hub songs.

6.1 Definition

In this chapter, we calhiuba song which occurs frequently as a false positive according to a given

similarity measure. This both implies that

1. ahub appears in the nearest neighbors of most songs in the database
2. most of these appearance do not correspond to any meaningfappgal similarity.
Each condition in itself is not sticient to characterize a hub:

89
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1. A given song may occur very many times in the nearest neighbors aof sithgs, but this

may not be a bug. Depending on the composition of a given databasesssongzemay well
approximate the perceptual center-of-mass of the database. For éstanay be found that

A Hard Day’s Nightby The Beatless a song that bears close timbre similarity to most of
60’s pop music, and therefore could be found to occur very frequestiyreearest neighbor
to many songs in a database composed by a majority of Rock and Pop sawvgsvet in a

classical music database, the same song would not be a hub.

. A given song may be a false positive for a given seed song, i.e. be finghnearest neighbors

of the seed without any actual perceptual similarity. Howevdiedint songs may have
different false positives. For instance, a giBsethovemiano sonata may be mismatched to
an acoustic guitar piece, but not necessarily mismatched to other songb.igdpiece than

is irrelevantly close to very many songs, i.e. a bug which is not local to ordwajtieries.

6.2 Why this may be an important problem

The existence of objects that tend to be very frequent false positivgmftern recognition algo-

rithm has long been acknowledged in other domains that music. Biometric a&gdficsystems,

such as fingerprints, but also speech and speaker recognition sygpecadly exhibit striking per-

formance inhomogeneities among users within a population. The statistical cagn#i of such

critical classes of users, in the context of Speaker Verification, wasafity shown in Doddington

etal. (1998), by analysing population statistics based on the test dattpudeelNIST 1998 speaker

recognition evaluation. This evaluation includes data from more than 5@Befseand recognition

results from 12 systems. The paper established a speaker taxonomy itemisal names:

Goat Goat users are users that are verjiclilt to recognize, i.e. that are associated with a high

rate of false reject.

Lamb Lambs are those users that are particularly easy to imitate. Randomly cheessnane

exceptionally likely to impersonate a lamb.
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Wolf Wolves are those users who are particularly successful at imitating qikekers. Their

speech is exceptionally likely to be accepted as that of another spdaikere(6.1)

Figure 6.1: So-called “wolf” speakers are exceptionally succesgfumdating other speak-
ers with speaker recognition systems. Drawing courtesy of Johan Kaglwetrieved from
httpy//www.ispeak.n

A complete analogy with this taxonomy would call a wolf a song which is constalubecto
a random song thansS is to itself. However, the Speaker Recognitimenagerigs essentially
pointing out the same phenomenon as the hubs observed with our timbre similaagyneethat
high false positive rates are not uniformly distributed in the database, butests only in a small
critical population.

Goats and Wolves users are critical to take into account to carefully ¢égalystem performance
(Koolwaaij and Boves, 1997; Bimbot and Chollet, 1997). Workarsuhdve been designed to
pragmatically improve system performance, such as the use of crosatimalidith cohort speakers
(Rosenberg et al., 1992) or separate processing of pre-filtered ™lapdakers (Jin and Waibel,

2000). Nevertheless, the reason for the appearance of suchsdtessearely been questioned, and
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is generally thought to be an intrinsic property of human users

However, a recent study (Hicklin et al., 2005) in the context of fingetpecognition suggests
that these properties of wolfiness, goatness, etc.. are not intrinsierfegof the users themselves,
but rather properties of the algorithms. The observation that we makeohd¢he existence of
“wolf songs’, in the diferent context of music pieces, seems to corroborate this hypothesigs This
especially interesting as the techniques used for timbre similarity (namely vasiatiothe GMMs
of MFCCs) are typically similar to the ones employed in Spedikgrerprint recognition systems.
We will show in the remaining of this chapter that we can also observe thautireels of a given
song is algorithmic-dependent, and that the existence of such criticabslassy indicate a more

general structural property of pattern recognition techniques.

6.3 Measures of hubness

Several measures can be used to identify and quantify the “hubneagjieén song. We describe

here two of such measures. Greater details and alternative measuyeear@ Appendix F.

6.3.1 Number of occurrences

A natural measure of the hubness of a given song is the number of timesigpnescurs in the first
n nearest neighbors of all the other songs in the database. Table 6.4 aliew songs in the test
database along with the number of times they occur in the first 10 nearesbogsgver all queries
(N10). Thisillustrates the predominance of a few songs that occur verydrelyu For instance, the
first SOngMITCHELL, Joni - Don Juan’s Reckless Daughter is very close to 1 song out of
6 in the database (57 out of 350).

This measure has the following properties:

¢ Independent of distance: Being based on rank, the number of ecces of a song is

independent of the range of the values produced by a given distarasurae Therefore, it

*Note that this would be intriguingly true of human speech but also fingdéspetc.



6.3. Measures of hubness 93

Table 6.1: 15 Most Frequent False Positives

Song Nio | card(Cs) | oraeg
MITCHELL, Joni - Don Juan’s Reckless Daughter | 57 9 6.33
RASTA BIGOUD - Tchatche est bonne 30 7 4.23
MOORE, Gary - Separate Ways 35 9 3.88
PUBLIC ENEMY - Cold Lampin With Flavor 27 8 3.37
GILBERTO, Joao - Tin tin por tin tin 25 8 3.12
CABREL, Francis - La cabane d@&pheur 22 7 3.14
MOORE, Gary - Cold Day In Hell 27 9 3.0
CABREL, Francis - Je t'aimais 20 7 2.86
MOORE, Gary - The Blues Is Alright 25 9 2.77
MARDI GRAS BIG BAND - Funkin’'Up Your Mardi Gras| 19 7 2.71
RASTA BIGOUD - Kana Diskan 18 7 2.57
BRIDGEWATER, DD - What Is This Thing Called Love 30 12 25
Frehel - A la derive 20 8 25
ADAMS, Bryan - She’s Only Happy When She’s Dancin’ 20 8 2.5
MITCHELL, Joni - Talk To Me 22 9 2.44

can be used to compare hubs appearing wiffedint algorithms, which we will do e.g. in

Section 6.6.

e Dependant on database: The total number of occurrence of a soomgsed both of true
and false positives. As explained earlier, only the latter are charactefistitub. This metric
therefore is conservative in the sense that if a high number of occerisrobserved for a
given song in an arbitrary database, it ifidult to conclude whether it is indeed a hub (i.e.
that most of these occurrences correspond to false positives) oceppgal center-of-mass

(i.e. most of the occurrences are true positives).

e Constant-sum: An important property of the numbenafccurrencedN, of a song is that
the sum of the values for all songs is constant given a database. Bachanly gives the
opportunity forn occurrences to the set of all the other songs, such that the total nuimber o
n-occurrences in a giveiV-size database is* N. Therefore, the meanoccurrence of a
song is equal tm, independently of the database and the distance measure. Alternatively, if

we assume that the distance engenders a uniform, random distribution sufrthea given
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song has the probabilitp = {7 to occur in then-nearest neighbor of another song, which
indeed gives an expected number of occurrei®s) = N = p = n. Table 6.2 illustrates the

experimental verification of this property (constant mean) for sevéstdrtte algorithms.

Table 6.2: Comparison of mean nb of occurrences and mean neightderfangongs in the test
database, for several distance algorithms

Measure GMM | HMM | Delta | Acceleration| Histogram
N100 100.2 | 98.7 | 99.4 99.4 99.6
Neighbor angle (degreeg) 58.8 | 55.6 | 58.3 57.9 59.9

e Descriptive statistics: This has the notable consequence that the meawfvalluis useless
to measure the influence of a given algorithm on the global hubness tdlzada. One has to
look for other descriptive statistics, such as the variance of the distribotioccurrences, or

the number of songs with more than a given number of occurrences.

6.3.2 Neighbor angle

An operational definition of a hub is that it is a soHgwhich is found to be “close” (though not
perceptually) to duplets of songsand B which themselves are (perceptually) distant from one
another. Note that songs close to many songs which are themselves clogeaioodher would in-
dicate an acceptable “center-of-mass” situation. Therefore, the ksilofisondgH can be estimated
by comparing its distances to its neighbd($l, A) andd(H, B) on the one hand, and the distance
between the neighbo§A, B) on the other hand. Equivalently, on can measure the @nglened

by the segmentd, A] and [H, B]. As seen in Figure 6.2, the anglecan be expressed in terms of

d(H, A), d(H, B) andd(A, B).

d= d(H, B) sind = d(A, B) sina (6.1)
d = d(H, A) — d(H, B) cos# = d(A, B) cosa (6.2)

= d®+d?= d(H, A2+ d(H, B)2 - 2d(H, A)d(H, B) cost = d(A, B)? (6.3)
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Figure 6.2: The neighbor anglecan be expressed in termsd{H, A), d(H, B) andd(A, B).

H

and therefore
d(A, B)? — d(H, A)? - d(H, B)?

ha(H, A, B) = cosd = 2d(H, A)d(H, B)

(6.4)

This is computed for a given sond by drawing a large number of successive duplets of neighbors
(A, B) (such thatA # B # H), and computing the mean valuele{H, A, B). We use 1000 successive
random draws.

Measures of neighbor angle have the following properties:

¢ Independent of database: Unlike measures of the number of occeméa song, distance-
based metrics such as neighbor angle are independent of the possiiglgtpal clusters of a

given database. Thus they can be used to compare algorithm&enewli databases.

e Dependant on algorithm: Neighbor angle is dependent on the discriminagiacity of the
distance, i.e. the typical distance ratio between what can be considdestalistance, and

what can be considered a large distance.

e Constant-sum: An important property of the neighbor-angle value is thathikeumber of
n-occurrencedN, of a song, the sum of the values for all songs is constant given a databa
size. This directly derives from the fact that the angles of a triangle sunradians (in a
euclidean geometry - which is only approximated here in the general faSéven a set of

N points, the number of angles whose vertex is a given péirind are formed by the lines

"This is not a problem in terms of cognitive modelling. Tversky (1977msftbthat measures of similarity that
conform to human perception do not satisfy the usual properties ofricpretably symmetry and triangular inequality
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from X to the N — 1 other points, is equal to the number of combinations of 2 points within
N -1, ie. C/2V—l' There areN possible vertexXX for such angles, thus there are a total of
NC/ZV_1 = w angles formed between th\é points. It is easy to see thafn—1)(n—2)

is divisible by 3/n. Hence, these angles can be clustered by triplets, so that their supporting
lines form a triangle, and thus sum 40 Therefore, the sum of all angles formed between
N points equals’%’z"‘ln. Table 6.2 illustrates the experimental verification of this property
(constant mean) for several distance algorithms. The deviation of the amgga from the
theoretical value 60is both explained by the statistical approximation of the computation of

the angles and by the possible non-euclideanity of the underlying geometry.

e Descriptive statistics: This has the notable consequence that the meawivédaeneighbor
angle is useless to measure the influence of a given algorithm on the gldirads of a
database. Like for occurrence values, one has to look for otherijige statistics, such as

the number of songs with a mean angle greater than a given limit.

6.3.3 Correlation between measures

As can be seen in Figure 6.3, there is a nearly logarithmic dependencyepetiie number of
occurrences of a given song and its mean neighbor angle. Table 63 ¢ linear correlation
scores between the logarithmgfoo and the neighbor angle measure, for several models. The best
fits are achieved for the static models, both parametric and non-parametriamiz models tend

to create more outlier points in the scatter plots, which reduce the correlabosssdt appears
that hub songs tend to be associated to higher values of neighbor amglevét, the logarithmic
dependency makes itftlicult to distinguish songs with number of occurrences in the range 100—
200 using their value of neighbor angle. Therefore, in the remaining afitapter, the rank-based

measure will be preferred when comparinfelient settings in the same database.
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Scatter plot of Nb occurrences against mean angle
for GMM-based similarity
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Figure 6.3: Scatter plot between number of 100-occurrehggsand mean neighbor angle for a
distance based on GMM.

Histogram of nb occurrences for GMM-based similarity
T T T T T

Figure 6.4: Distribution of the songs according to their number of 100¥oecces in the 360-song
test database, with a GMM-based distance.
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Table 6.3: Correlation between the logarithm of the number of 100-ocwesdNigp on the one
hand, and mean neighbor angle on the other hand, for various models
GMM | HMM | Delta | Acceleration| Histogram
0.85 | 0.76 | 0.73 0.74 0.93

6.4 Power-law Distribution

In this section, we examine the distribution of hub songs in a typical datalfégeare 6.4 shows
the distribution of the songs in the test database according to their numb@®-afcturrences, for

a GMM-based distance. We observe the following facts:

The distribution decreases regularly from 50 to the maximum possible valde(rg8

reached). It is skewed left-wise with respect to the theoretical mean (&00.

e The majority of songs have ;09 value in the range [56 100], which correspond to an
expectable standard behaviour: songs in a given cluster are typicaly ttidongs from the

same cluster (say around 15), and from songs from 2-3 neighbdtistprs.

e About 15% of the songs exhibit ld;qg value larger than 200 (out of a maximum possible

360). Such songs can reasonably be labelled as hubs.

e Hubness is not a discrete boolean property, but rather a continudablea The database
exhibits a continuum of hubs of varying importance, with a couple of soagmy aNigg

value larger than 300, but also intermediate values in the range{200].

In order to better estimate the hub distribution, we implement the best achievirguraea
(GMM-based) on a much larger database that was assembled for thel@pidgect (Pachet et al.,
2004). The database currently contains 15,460 mp3 files. Figure 6.5 shewistribution of songs
in the Cuidado database according to their number of 100-occurréDoescan observe that a few
songs get upward of 2000 occurrences, whereas most songsamelafound a few hundred occur-

rences (more than 6,000 songs have between 150 and 160 occsjranedistribution is strongly
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Linear scale plot of the distribution of songs by nb of occurrences
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Figure 6.5: Distribution of the songs according to their number of 100foecdes in the Cuidado
15,000-song database, with a GMM-based distance.

reminiscent of a power-law:

P[X=x =x7" (6.5)

Figure 6.6 shows the same plot than Figure 6.5, but on a log-log scale thedsstnimition
shows itself to be linear. This is the characteristic signature of a powerHaget a proper fit, the
N10o Were binned into exponentially wider bins (thus appearing evenly spadéé ing domain).
A nearly linear relationship extends over 4 decades ([@*]) songs, which is why such distribution
have been called “scale-free”, or lacking a “characteristic length 'scBfeés means that no matter
what range of x one looks at, the proportion of small to large events is the,$z. the slope of the

curve on any section of the log-log plot is the same.

A power-law describes a situation where small occurrences are extremmiyon, whereas
large instances are extremely rare. Many man-made and naturally oggoinemomena, including
city sizes, incomes, word frequencies, and earthquake magnitudedistriiguted according to a
power-law distribution (Bak, 1996). Recently, attention has turned to thmgttevhich seems to
display quite a number of power-law distributions: the number of visits to a stkenamber of

pages within a site (Huberman and Adamic, 1999), and the number of links tgeg flbert et al.,
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Figure 6.6: Log-log plot of the distribution of the songs according to themlmer of 100-
occurrences in the Cuidado 15,000-song database, with a GMM-besadog. The distribution is
approximately linear, which indicates a power-law.

1999), to name a few. Similarly, scale-free distributions have been aabgrmusical data, notably
in networks of artists that co-occur in playlists from specialized websitasg@nd Koppenberger,
2004).

For all these reasons, the scale-free distribution of networks of timbiaiifas songs is a re-
markable, but not utterly surprising phenomenon. If all timbre distances perceptually relevant
(“no bugs”), then it would an acceptable conclusion that some songs e “prototypical” than
others, thus translating the distribution of musical and social influences@ancdhunities inherent
to possibly every human activity. However, as already noted, what wered here is a distribution
of algorithmic bugs rather than a self-organization of a music space: Thecomsected songs (ex-
treme hub songs that are close matches to more than a third of a given datgpeslly appear as
the nearest neighbors of songs to which they do not bear any peatsiptilarity. It is yet unclear

whether the scale-free distribution that we observe here is

¢ the result of a scale-free organisation of an ideal perceptual distagasure, which is being

polluted by measurement errors

¢ the result of a non remarkable ideal distribution, polluted by a scale-fsé&&bdtion of false-
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positives
e or both

The influence of measurement errors on scale-free distributions cetlilied e.g. in the light of
recent results on the robustness of experimental topological analysistein interaction networks

(Lin and Zhao, 2005).

6.5 Experiment 3: Features or Model ?

6.5.1 Hypothesis

In this section, we investigate whether hubs are a consequence ofgatoral representation of
the frames of audio data. We test the hypothesis that hubs exist on fgh,sb@ecause hubs also
exist on individual MFCC frames, i.e. that there are specific segmentsglad data which are close

non-perceptive matches to every other possible frames.

6.5.2 Experiment

We build a database of individual 2048-point hamming-windowed framesidio data, obtained
from the uniform segmentation of a fewfidirent songs. The database is made to contain 15,000
frames, so results can be quantitatively compared to the full-song behavtbarCuidado database.
Each frame is modelled by 20 MFCCs (incth@rder codicient), which is the feature space used
in the best performing full-song measure. A distance measure is implemeimgceuslidean dis-
tance, each dimension being normalized to be between 0 and 1, using thed®&%rpercentile
values. This distance measure was chosen to yield a behaviour similar to $/éeDiparison in
GMM probability estimation (euclidean comparison with mean vector, rescalediignce coef-
ficients in each dimension). We compute the 100 nearest neighbors ofraawhin the database,

store them, and compute the nb of 100-occurrence of each frame in tihaskta
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Distribution of number of 100-occurrence of individual MFCC frames in a 15,000 frame database, using normalized euclidean dista
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Figure 6.7: Distribution of the MFCC frames according to their number of déifisrences in a
15,000-frame database, based on normalized euclidean distance.

6.5.3 Results

Figure 6.7 shows the distribution of the MFCC frames according to their nurobe00-
occurrences. The distribution is exponentially decreasing, with a maxiNwggvalue around 500.
Such small numbers do not indicate the presence of hubs, which is cathtiyrreanual inspection

of the neighbors of the most re-occurring frames. These frames typamalgspond to sounds that
are common to many fierent songs, such as noise or silence, and thus have more neighdors th
more specific frames (harmonic sounds) that tend to be close to framessafitteesong only. The
maximumNigg Value of 500 is less than 10 times smaller than the maximum value obtained for full
songs in the Cuidado database. This indicates that the hub phenomenba @inect consequence

of poor featural representation, but rather &e& of the modelling of the agglomeration of the very

many frames in full songs.

6.6 Experiment 4: Influence of modelling

6.6.1 Hypothesis

In this section, we investigate whether hubs are a consequence ofificsgdgorithmic strategy for

modelling the agglomeration of frames in full songs. We test the hypothesibubhatappear only
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(or in majority) for a given algorithm.

6.6.2 Experiment

We compare several measures of hubness on our test databaselieetds the algorithms studied

in Chapter 5, chosen to be representative of the principal modelling sestegmely:

e Static parametric model: 20 MFCCs (incl."@odficient), 50-state GMM, compared by

Monte Carlo. This is the best performing algorithm found in Chapter 5.

e Static non-parametric model: 20 MFCCs (incf! 6oefficient), vector-quantized to 200 code-
book vectors using LVQ, modelled by histograms compared by euclideamclisfaee Ap-

pendix B.7.2).

e Static parametric modelling of first-order dynamics: 20 MFCCs (inél. cOeficient), ap-
pended with 20 delta céiécients, 50-state GMM, compared by Monte Carlo (see Appendix
B.5.1).

e Static parametric modelling of second-order dynamics: 20 MFCCs (irf€l cdefficient),
appended with 20 first-order delta ¢heients and 20 second-order accelerationficients,

50-state GMM, compared by Monte Carlo (see Appendix B.5.1).

e Dynamic modelling with parametric model: 20 MFCCs (incl! €oefficient), modelled with
12-state HMM, using 4 Gaussian components per state, compared by Manbe($&e Ap-
pendix B.5.3).

6.6.3 Results

Figure 6.8 shows the distribution of the number of 100-occurrencesgksa the test database, for
the 5 algorithmic variants. Since the number of occurrences is a constantisasure, all 5 distri-
butions are centered on the same mean value of 100 (see Section 6.3.Bverawnappears that

the choice of the algorithm has an influence on the shape of the distributamtofrences. While
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Histogram of 100occurrences  Histogram of 100occurrences — Histogram of 100occurrences
for GMM-based distance for HMM-based distance for Delta-based distance

150 150 150

100 100 100

50 50 50

0 0
0 100 200 300 0 100 200 300 0 0 100 200 300

Histogram of 100occurrences Histogram of 100occurrences
for Acceleration-based distance  for Histogram-based distance
O 10—

100 100

50 50

0 0
0 100 200 300 0 100 200 300

Figure 6.8: Distribution of the Number of 100-occurrences of songs itetftedatabase for several
distance algorithms.

all algorithms produce extreme hubs having high number of occurreaagsNigp > 300), hubs
tend to be smaller for the GMM-based distance than for both the dynamid-badehe histogram-
based ones. Due to the constant-sufeat, algorithms that produce more high-occurrence songs
also produce more low-occurrence songs. This results in a skeweithutisin (where very many
low-occurrence songs compensate a few high-occurrence sontys) dase of the dynamic-based
distances, and a bi-modal distribution for the histogram-based distamaghich very few songs

actually take the mean occurrence value.

This behaviour is confirmed by Table 6.4, which shows the number of sonigs test database

that exhibit high values for both humber of 100-occurrences and nuaifti#9-occurrences. The
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5 measures exhibit fierent proportions of hubs: GMM-based distances produce the tiewieite
Histogram-based distance produce 5 times as many.

The proportion of hubs produced by each algorithm is in agreement withréogsion reported
in Chapter 5: GMM-based distances perform better than (or equivaleshignamics, which perform
better than histograms.

Nevertheless, it is dlicult to conclude that hubs are a specific property of a given algorithmic
strategy to model the MFCC frames. All algorithms create hubs. Moredatic mmodelling create
more hubs than dynamics in the case of Histograms and HMMs, but not inskeo€&MM and
HMMs. If anything, it seems that non-parametric (Histograms) create mdrse that parametric
approaches (GMMs, HMMs). This notably rules out possible convexg@roblems of parametric

estimation (local minima) as a source of bugs.

Table 6.4: Comparison of number of songs exhibiting high number of czmoes in the test
database, for several distance algorithms

Measure GMM | HMM | Delta | Acceleration| Histogram
NlOO > 200 16 48 49 45 69

Nag > 40 34 41 39 39 42

6.7 Experiment 5: Intrinsic or extrinsic to songs ?

6.7.1 Hypothesis

In this section, we investigate whether hubs are an intrinsic property ef giongs, which will act
as hubs independently of the algorithm used to model them. We test the hsipdtia hub songs

are strongly correlated betweerffdrent algorithmic measures.

6.7.2 Experiment

We compute the correlation between hubness measures for songs modtllde\gsame five algo-

rithms as above.
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6.7.3 Results

Table 6.5 reports the correlation of the hubness of all songs betweusalgorithmic models,
using 2 measures of hubness (hnumber of 100-occurrences andghbareangle).
Table 6.5: Correlation of the hubness of all songs between variousthigar models. The hubness

of songs is measured both by the number of 100-occurrences andighéareangle (the latter in
parenthesis).

GMM HMM Delta Acceleration| Histogram
GMM 1.0 | 0.78(0.67)| 0.79 (0.69)| 0.79 (0.71) | 0.42(0.17)
HMM - 1.0 0.95 (0.96)| 0.90(0.96) | 0.47 (0.17)
Delta - - 1.0 0.97 (0.99) | 0.46 (0.15)
Acceleration| - - - 1.0 0.43 (0.14)
Histogram - - - - 1.0

Both measures reveal the same structure:

e Hubs appearing with GMMs are moderately correlated to HMMs, Delta anélétion.

This is illustrated on the scatter plot shown in Figure 6.9

e Hubs appearing with HMMs, Delta and Acceleration are very stronglyetaied. This is

illustrated on the scatter plot shown in Figure 6.10

e Hubs appearing with Histograms are strongly decorrelated to those agpedth the other

algorithms.

In more details, Tables 6.6 and 6.7 compare the most frequent hubs folh2dalll Histogram-
based distances, here measured with their number of 20-occurréiraggsears that some songs act
as hubs for both measures, eMJ.TCHELL, Joni - Dom Juan’s Reckless Daughter. How-
ever, a vast majority of the hubs ardfdrent. Notably, certain songs are important hubs for one
measure and perfectly standard songs for the other. For instslf@R RAY - Fly is a hub for
the GMM-based distance, but not for the one based on Histograms. SimilsBBEL, Francis
- Samedi soir sur la Terre is only a hub for the histogram distance.

We therefore can conclude that:
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Scatter Plot of NbOccurrences for songs, using GMM-based similarity (Xaxis)
and HMM-based similarity (Yaxis)
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Figure 6.9: Scatter plot of the number of occurrences for songs usig-Based distance against
HMM-based distance.

Scatter Plot of NbOccurrences for songs, using HMM-based similarity (Xaxis)
and Delta-based similarity (Yaxis)
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Figure 6.10: Scatter plot of the number of occurrences for songs Héiti-based distance against
Delta-based distance.
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Table 6.6: Most Frequent False Positives for parametric approach W<

Hubs with{MFCC,GMM} N2g (card(Cs))
MITCHELL, Joni - Don Juan’s Reckless Daughter 98(9)
BRIDGEWATER, DD - What A Little Moonlight Can dg 79(12)
RASTA BIGOUD - La tchatche est bonne 79(7)
MOORE, Gary - Separate Ways 77(9)
SUGAR RAY - Fly 75(13)
CABREL, Francis - Samedi soir sur la Terre 29 (7)

Table 6.7: Most Frequent False Positives for non parametric appva#ithlistograms.

Hubs with{VQ,CM} Noo(card(Cs))
VOCAL SAMPLING - Radio Reloj 153 (13)
MOORE, Gary - The Hurt inside 126 (9)
CABREL, Francis - Samedi soir su la Terre 122 (7)
CABREL, Francis - Corrida 105

MITCHELL, Joni - Dom Juan’s Reckless Daughter 95 (9)

SUGAR RAY - Fly 23(13)

e The hubness of a given song is not an intrinsic property of the songather a property of a

given algorithm.

e Dynamics, both via static modelling of dynamical features (delta, acceleratiovip dy-
namic modelling (HMMs) seems to have an influence of the songs that acbasAllthree

algorithms tend to create the same hubs.

e Parametric modelling tend to create very distinct hubs from non-parametrielingdso the

dynamicalstatic aspect is not the only involved factor in the appearance of hubs
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6.8 Experiment 6: The seductive, but probably wrong, hypothesis of

equivalence classes

6.8.1 Hypothesis

An hypothetical explanation for the appearance of hubs can be forrdutaterms ofequivalence
classes The model of the distribution of the feature vectors of a given songjraztavith a given
algorithm (e.g. GMM of MFCCs), can generally be obtained identically freveral diferent
original datasets, since the transformations of feature extraction anibatistn modelling are not
bijective operations. Such datasets are said to be equivalent (or mydoiaa given algorithm, and
to belong to the equivalence class of the algorithm.

First, typical feature transformations have invariants, i.e. will yield the saswdts for diferent
signals. For instance, the MFCC algorithm has two notable invariants, dueutseitsf the Fourier

transform:
e MFCC(-x) = MFCC(x), since FFT{x) = FFT(x)

e MFCC(flip(x)) = MFCC(x), since FFT(flip(x))= FFT(x) (complex conjugate) and thus
IFFT(flip(x))| = |FFT(X).

While the first transformation doesn’ffact the perceptual audio similarity (except for discontinu-
ities at frame transitions), the second (playing a frame backwards) hHasng sffect on timbre,
notably disrupting the structural succession of transients and steady. state

Second, the models themselves also have invariants. For instance, the Gldélsmb all
permutations of a given set of MFCC frames are identical, since the modshtigreserve the
ordering of the data. Similarly, the HMM models of all permutatiovithin each HMM stateof
MFCCs frames are identical, since this preserves the global markov transibbability matrix.
By definition, all equivalent datasets for a given model will be perfectchres to one another.
However, model equivalence isn’t afBaient condition for audio similarity: the operation of frame

permutation, for instance, severely transforms an audio signal.
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>

Figure 6.11: Classes of equivalence defined by static models, suchlltpatrautations of the
frames of the original song yields the same model

Invariants both at the level of features and models obviously combingngtance, a signal
played backwards will result in a permutation (reverse order) of fraessh corresponding to a
flipped signal window, and thus yields the same model than the original wsieg GMMs of
MFCCs. The class of equivalence of a given algorithm can be extremmgg. laFor instance,
there are 8000! frame permutations of a typical 3-minute song, an@@R0)! permutations when
including the possibility of flipping individual frames.

This model would explain individual bugs. While many signals found in thevatgnce class
of a given algorithm will probably sound similar, it may be possible to find aletupf signals
which sound very dferent from one another, and yet have identical models. This is made even
more possible when generalizing the equivalence relation (“having the rsauahel”) to a pseudo-
equivalence (“having similar models”): the models of 2 verffatent songs may be close because
there is a duplet of signals, each equivalent to one of the original setgsh sound similar to one
another. This is illustrated in Figure 6.11. In this context also, a hub forengilgorithm is a song

for which the equivalence class of the associated model contains sigaidseitliose to signals in
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the equivalence class of the models of very many other songs in the databas

6.8.2 Experiment

The hypothesis of equivalence classes has 2 necessary conditioal,can be tested experimen-
tally. According to the model of equivalence classes, a song is more likely éohb if the equiv-

alence class of its model given the chosen distance algorithm is large. ilitigppen notably

e if the song’s model, e.g. GMM, has a large variance

o if the modelling algorithm is permissivewhich is the case of static algorithms (which al-
low frame permutations) compared to dynamical models which constraint threufadion to

respect the frame-to-frame dynamics of the original frame sequence.

Evidence of the first behaviour can be tested by computing the correldtsmme measure of
the “diameter” of the GMM model of each song and its degree of hubnesssured e.g. by its
number of occurrences. The “diameter” of a GMM model can be defigesdimpling a large num-
ber of points from this model, measuring the standard deviation of these poedash dimension,
and summing the deviations together. This is equivalent to measuring the héine apvariance
matrix of a single-component GMM fitted to the distribution of points. Note thataipe measure
of the width of a GMM is non-trivial to compute from the variance of its indidalaomponents
(e.g. summing them, weighted with each component’s prior probability), be¢hisswould have
to account for the possible overlap between individual components ¢ireputing the volume of

the intersection between a set of many ellipsoids in a high dimension space).

Evidence of the second behaviour can be looked for by comparing thalglmportion of hubs

appearing for static and dynamic algorithms, which was already done in Sédfio

*Note that the complexity of a model, in the framework of supervised legyhias received a rigorous mathematical
formulation in terms of Vapnik-Chervonenkis dimension, which we doaalolress here (Blumer et al., 1989)



112 Chapter 6. Experiments 3-8: Understanding Hubs

Scatter plot of the nb of 100-occurrences of songs against the variance of the corresponding GMM model
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Figure 6.12: Scatter plot of the number of 100-occurrences of saygjast the “equivalent vari-
ance” of their GMM model, showing no particular correlation.

6.8.3 Results

Figure 6.12 shows a scatter plot of the number of 100-occurrencesg$ @gainst the “equivalent
standard deviation” of their GMM model. This shows that around 70% of tH&I& variance lie
around the value 300, independantly of the hubness of the song. Miagnieg GMMs with higher
variance neither show any particular correlation with their song’s nunflegaurrence.

Results reported in Section 6.6 show that although static histograms tend t® @@ hubs
than dynamical models such as HMMs, GMM modelling produces as low asshalaay hubs than
its dynamic counterparts.

Both results strongly disprove the hypothesis of equivalent classasdiieg to which hubs are

explained by unconstrained static algorithms or atypical songs with greahega.

6.9 Experiment 7: On homogeneity

6.9.1 Hypothesis

This section investigates whether the hubness of a given song is a emglaiag property of the

distribution of its frames, or rather can be localised e.g. to certain framearthfdss discriminant
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then others.

We have already shown that MFCC frames intrinsically don’t exhibit hutabeurs, i.e. one
cannot find a specific frame of audio which is close to any other frame, @uelidean framework.
However, this doesn’'t make any statement about the discriminative pdvFOGC frames: it is
well possible that most MFCC frames be globally close to one another. Thisdtably been
observed in the domain of speech sounds in Kinnunen et al. (2001).tHelisfore possible to
imagine that a large part of the distribution of MFCCs is composed of nomidisative frames,
and that what is perceptually salient for a human listener may not be statisfipadlgminant when

comparing models of the frame distribution.

6.9.2 Experiment

We describe here an experiment to assess whether there exists such gostioa of the frame
distribution which is responsible in majority for the discrimination between naogptually close
songs. We propose to explore the distribution of MFCC frames by rankiem thy statistical
importance. In the case of a GMM, frames are all the more so likely to be @fedeby a given
gaussian componeathan the weighiv. of the componentis highw is also called prior probability
of the component).

We define arhomogeneityransformhy : G — G on the spacég of all GMMs, wherek € [0, 1]

is a percentage value, as:

O = h(0)

(C1,Cp,...,Cq) « sort(components of ¢;, decreasing weight)
define S(i) = ¥\_, weigh(c;)

ik « argming ) {S(i) > ki

02 <« newGMM(iy)

define d; =component(g,,1)

d ¢, Vie[l,iy

weight (d)) « weight(c)/S(ix), Vi € [1,ik]

return gp
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end hy

From a GMMg trained on the total amount of frames of a given song, the trandfipiaerives
an homogenized version gfwhich only contains its top k% components. The homogenized GMM
accounts for only a subset of the original song’s frames: those thatrarmwthe k% most important
statistical weight. For instancéggy(g) creates a GMM which doesn’t account for the 1% least
representative frames in the original song.

We apply 11 transformby for k € [20, 40, 60, 80, 90, 92,94, 96, 98,99, 100] to the GMMs cor-
responding to the optimal measure found in Chapter 5. Each transfornplisdhjpo the whole

database, thus yielding 11 similarity measures, the properties of which welstloiv.

6.9.3 Results
Variance

Figure 6.13 shows the influence of the homogenization transform on ttanearof the resulting
GMM. The variance of the model is evaluated with the sampling proceduradgiescribed in
Section 6.8. It appears that the homogenization transform reducesrtaeceaof the models ex-
ponentially. This suggests that the least representative points, whichnaoged in the last 5-10%
of the total distribution, account for most of the variance of the globalibigion, and probably

represent very dierent MFCC frames than the ones composing the main mass of the distribution.

Influence on hubs

Figure 6.14 and 6.15 show the influence of the homogenization transfotirearumber of hubs
in the database. Hubness is measured in the case of Figure 6.14 by the niisth®s in the test
database having a number of 100-occurrences greater than 200, thedcase of Figure 6.15, by
the number of songs with a mean neighbor angle greater tifan 65

Both metrics indicate that GMM homogenization critically increases the numbeg dius
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in the database: homogenization wikth= 30% creates more than twice as many hubs with more
than 200 occurrences, and more than 5 times as many hubs with angles tir@ateé3. As ho-
mogenization reduces the variance of the models, this gives furtherimgne¢al disproval of the
hypothesis examined above in Section 6.8. It seems reasonable to inteegretrease of hubness
when k decreases as a consequence of reducing the amount of diativieninformation in the
GMM s (i.e. from representing a given song, down to a more global styteusic, down to the even
simpler fact that iis music). This is the same to say that all songs share the same most important

20% of frames.

However, the remaining 80% do not monotonically increase the discriminatiamgioen song
from its neighbors. Both figures clearly show a very important increasigeimumber of hubs in
the first few percent of homogenization. The extreme number of hubgedtaithk = 30% is
reached as early as= 92% in the case of the occurrence metric &nd 96% in the case of the
mean angle metric. This is a strong observation: the hubness (or rathéruborss) of a song
seems to be controlled by an extremelly small amount of critical frames, whichsent typically
less than 5% of whole distribution. Moreover, these frames are the letistictlly significant ones,
i.e. are modelled by the least important gaussian components in the GMMs. dicatas that the
majority (more than 90%) of the MFCC frames of a given song are a very nepoesentation of

what discriminates this song from other songs.

Moreover, Figure 6.15 shows that after the extremely rapid peak of Wwhba removing the
first 5% frames, the number of hub songs tend to decrease when lagesifeom 90% to 60%, and
then increases again for k smaller than 60%. The minimum value reacked 2% is equivalent
to the original value at = 100%. A similar decreasing behaviour is observable to a smaller extent
with the other metric in Figure 6.14 (with a local minimumkat 80%), although it is dficult to

establish that this is a statistically significant trend.

The behaviour in Figure 6.15 suggests that there is a population of framte irange
[60%, 95%] which is mainly responsible for the hub behaviour. While the hubrfesengs dimin-

ishes as more frames are included when k increases from 20% to 6084@mes are increasingly
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Influence of GMM heterogeneity on number of songs with high neighbor angle
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Figure 6.15: Influence of the percentage of GMM homogenization on th#auof songs with a
mean neighbor angle greater thari 65

specific to the song being modelled), it suddenly increases when k get liigim 60%, i.e. this
new 30% information is detrimental for the modelling and tend to diminish the discrimmbée
tween songs. The continuous degradation from 60% to 95% is only ellgrdompensated by the

inclusion of the final 5% critical frames.

Influence on precision

Figure 6.16 shows the influence of homogenization onRiprecision of the resulting similarity
measure. The figure closely mimics the (inverse) behaviour seen in Figlbewith precision

plummeting when k decreases from 100% to 92%, and then reaching a lodahuna again be-
tween 60% and 80%. This gives further support to the observation thatlrframes are equally
discriminative, and that there exists a population of frames in the range B&%4 which is detri-

mental to the modelling of perceptual similarity.

The influence of non-discriminative frames indicates that timbre models wooibdply benefit

from some kind of discriminative training (Ulusoy and Bishop, 2005), wheames that don't
help comparing songs to one another are typically not modelled in individnglss However, the

framework of supervised training is not particularly well suited to similarity $ask which we
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Influence of GMM heterogeneity on R-Precision
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Figure 6.16: Influence of the percentage of GMM homogenization oR{pecision of the simi-
larity measure

don’t only want to discriminate but also to compare, and thus should beeatitgpour situation.
Appendix B.7.2 illustrates such a case where the direct application of\espeardiscriminative

algorithms (namely LVQ) does not provide enough basis for comparifigreint songs accurately.

6.10 Experiment8: Are hubs a structural property of the algorithms ?

6.10.1 Hypothesis

Section 6.7 establishes that hubness is not an intrinsic property of a gvey but rather is de-
pendent on the modelling algorithm. In this section, we investigate whetheranalss structural
property of pattern recognition-based similarity measures, and that timepecabserved in any
dataset. This is a relevant question knowing as remarked earlier thahbubdeen observed in

this study on timbre similarity, but also in the domain of Speaker and Fingerpentifctation.

6.10.2 Experiment

We apply the same modelling technique (GMMs of MFCCs) to compute the peatejrnilarity

of another class of audio signals, namely ecological sound texturesativergd a database of 106
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3-minute urban sound ambiances, recorded in Paris using a omni-diréctimmaphone®. The

recordings are clustered in 4 “general classes”:

e Boulevard: Recordings made on relatively busy boulevards, with pradmt trdfic noise,

notably buses and car horns.

e Neighborhood: Recordings made on calmer neighborhood streets, withdiffoise trdfic,

notably motorcycles, and pedestrian sounds.

e Street Market: Recordings made on street markets in activity, with distdiit tnaise and

predominant pedestrian sounds, conversation and auction shouts.

e Park: Recordings made in urban parks, with lower overall energy ldistgnt and dfuse

traffic noises, and predominant nature sounds, such as water or bird songs

Recordings are further labeled into 11 “detailed classes”, which gonekto the place and date
of recording of a given environment. For instance, “Parc Montsol@sijs 14e” is a subclass
of the general “Park” class. Some detailed classes also discriminate taklestical places and
dates, but with some exceptional salierffelience. For instance, “MaretRichard Lenoir, Paris
11e” is a recordings made in a street market on Boulevard Richard LienBaris, and “March
Richard Lenoir (music)” is a recording made on the same day of the samemmént, only with
the additional sound of a music band playing in the street. Table 6.8 showstHils df the classes
used, and the number of recordings available in each class.

Each audio recording is modelled with 50-ms frames, 20-MFCCs and 50&#té4ités. Models
are compared to one another with Monte-Carlo distance using 2000 samfilesneasure the
precision of measure using the same framework as for music timbre similarityy iceuinting the
number of recordings having the same class as the seed item. We repoet proplerties of the

resulting similarity function below.

$This material was collected and kindly made available by Boris Defrevilia ftédSA.
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Table 6.8: Composition of the ecological sound database.

Class Detailed Class Number of instances
Boulevard Boulevard Arago 14
Boulevard Boulevard du Trone 5
Boulevard Boulevard des Mdachaux 8

Street Rue de la Sa@t(14e) 7
Street Rue Reille dayl (14€) 14
Street Rue Reille day2 (14e) 7
Market Marché Glacere 8
Market Marché Richard Lenoir 22
Market | Marché Richard Lenoir (music 9

Park Parc Montsouris Spring 20

Park Parc Montsouris Summer 8

6.10.3 Results

Precision

Table 6.9 gives the precision of timbre similarity applied to ecological soundrésxtut appears
that the results are substantially better than for polyphonic music signatmaearfect precision
in the first 5 nearest neighbors even for detailed classes. High precising the general classes
shows that the algorithm is able to match recordings fiétént places on the basis of their sound
level (boulevards, streets), and sound quality (pedestrian, birdg. piecision on detailed classes
shows that the algorithm is also able to distinguish recordings of the samemngnt made at
different times (Spring or Summer), or inffdrent contexts (with and without music band). This
result has a natural application to the classification of ecological regsding. using a simple k-
nearest neighbor strategy, and could prove useful for contegtingtton, for instance in the context

of wearable computing (Clarkson et al., 2000).

Table 6.9: Precision of timbre similarity applied to ecological sound textures.
Ground Truth | 5-Precision| 10-Precision| 15-Precision| R-Precision
General Class 0.94 0.87 0.77 0.66
Detailed Classg 0.90 0.79 0.75 0.74
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Comparison of the histograms of number of 20-occurrences
for the same distance used on ecological sound textures and polyphonic music
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Figure 6.17: Comparison of the histograms of number of 20-occurréoctse same distance used
on ecological sound ambiances and polyphonic music.

Hubs

Figure 6.17 shows the histogram of the number of 20-occurrences ethtaitth the above dis-
tance on the database of ecological sound ambiances, compared withrthansasure on the
test database of polyphonic music. It appears that the distribution of muwhleecurrences for
ambiance sounds is more narrow around the mean value of 20, and haBea saitdhan the dis-
tribution for polyphonic music. Notably, there are four times as many audio itdthsweore than
40 20-occurrences in the music dataset than in the ambiance dataset. T$oscgrdirmed by the
manual examination of the similarity results for the ecological ambiances: ridhe (few) false
positives re-occur significantly more than random.

This establishes the fact that hubs are not an intrinsic property of the @ladgorithm used
here, but rather appear only for a certain classes of signals, amang pdlyphonic music, but not

ecological sound ambiances.

Homogeneity

Ecological sound ambiances and polyphonic music are téferdint datasets for which hubs appear
in the second case, but not in the first. As we will see here, the two claksigmals can notably be

distinguished in terms of their homogeneity.



122 Chapter 6. Experiments 3-8: Understanding Hubs

Influence of the percentage of GMM homogenization
on the 10-precision of the similarity measure for ecological sound textures
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Figure 6.18: Influence of the percentage of GMM homogenization on tipeedsion (with general
classes) of the similarity measure used on ecological sound ambiances.

Figure 6.18 shows the influence of the homogeneity transform introducgddtion 6.9.2 on
the precision of the similarity measure applied to ecological sound ambianaesiolide a very
different behaviour than for polyphonic music, for which the filtering of thg fiest few frames had
a dramatic impact on the precision. In the case of sound ambiances, 99%dwimation is slightly
beneficial to the precision. This suggests that the 1% less significantdramaespurious frames
which are worth smoothing out. Further homogenization down to 60% has arated@pact on
the precision, which is reduced by about 1% (absolute). This suggesthéehframe distribution
is very homogeneous, and doesn’t exhibit critical populations of framnésh are either extremely
discriminative (such as the [95%00%] region for polyphonic music), or non-discriminative (such
as the [60%95%] region for polyphonic music). Ecological ambiances can be discrigdnsearly

optimally by considering only the most significant 50% of the frames.

To further assess theftkrent homogeneity between both datasets, we consider an alternative

data transformatiom-folding which folds an original signal onto itself a number of times (as seen
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Figure 6.19: The n-fold transform creates increasingly homogeneégnals by folding a reduced
portion of the original signal.

in Figure 6.19). The output of the 2-fold transform is 50%-sized randgiract from the original,
repeated twice. Similarly, the 3-fold transform is a 33%-sized extract dfilgenal repeated three
times. All signals processed by n-folding from a given signal have time shuration as the original,
but contain less “varied” material. Note that since the duration of the folth(ager division of the
total duration) is not a multiple of the frame duration in the general casddmfpdoesn’t simply
duplicates the MFCC frames of the folded extract, but rather creates somalljitide The fact
that all n-folded signals have the same number of frames as the origirtdbsra use the same
modelling parameters, notably number of gaussian components (else wehawaltlad to account
for the curse of dimensionality).

We apply n-folding to both datasets (ambiances and musiac), 11, 2, 3, 4,5, 10, 20, 30, 50].
Figure 6.20 shows the influence of folding on the similaRtprecision for both classes of signals
(where both precision curves are normalized with respect to their maximurldMg is detri-
mental to the precision for both datasets. However, it appears that aadlegund textures are
typically twice more robust to folding than polyphonic signals. Considerinlyg artenth of the
audio signals cuts down precision by 15% for sound textures, and bythrar&5% for polyphonic
music. In the extreme case of folding only 3 seconds out of a 3-minutesl soamract (50-folding),

the precision loss is 20% for ecological sounds, but more than 60% lgphuanic music.
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Normalized Precision for varying degrees of homogeneity
for ecological and musical signals
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Figure 6.20: Comparison of the influence of k-folding on the precision@&tdme distance algo-
rithm used on ecological sound ambiances and polyphonic music.

This suggests that frame-based feature distributions for ecologicatidemtures are statisti-
cally much more self-similar than polyphonic music, i.e. they can be compressediyta small
fraction of their duration without much loss in terms of distribution modelling. If weharize a
10% precision loss, ecological signals can be reduced to arouncdfiesextract. Polyphonic mu-
sic on the contrary seems to require a large quantity of feature informatiacnén w be properly
modelled and compared: the same 10% tolerance requires more than 1 minate.olNdte that
the former is comparable to the human performance measured in Peltone(260a). on the task
of recognizing everyday auditory scenes (20 seconds). Howehestatter (polyphonic music) is
many times lessfeective than humans (Perrot, 1999).

The greater heterogeneity of polyphonic music data for pattern recogpiitipose may explain
the appearance of hubs, and their non-existence for other, more bapmgs classes of signals. It
would be worth investigating the feature-homogeneity of other hub-priasses of signals, such

as speaker data or fingerprints, to give further support to this hygisthe



Chapter

Experiments 9 & 10: Grounding

The two experiments which conclude this study make a round trip back to highateisic descrip-
tors. In Chapters 5 to 6, we explicitly evaluated the validity of polyphonic timbrdeisobased on
the “GMM of MFCCs” approach described in Chapter 4. We now examinerdhidity of using
such timbre models to extract information such as musical genre. We bastudyron a yet-
unreleased very large and diverse set of manually collected metadata avaldble to Sony CSL
by collaborations with the Sony Corporation. We shovkperiment 9 that surprisingly few high-
level descriptors are directly correlated to timbre. Moreoveferint taxons of a given category,
such as “Mood Violent” or “Mood Ironical”, have very diverse levelscorrelation with timbre
(high and low resp.), which is at odds with typically proposals of classifteat apply the same
decision space for every taxons. Howeetperiment 10 shows that there are extreme amounts of
correlation between high-level descriptors, independently of their raladitimbre. Some of these
correlations capture psycholinguistical semantic associations (“a padvgerig is a strong song”),
but also historical and cultural knowledge (“rock uses guitars”),rance subjective aspects linked
to perception of timbre (“flute sounds warm”). This suggests that very rhagty-level cultural
descriptions of musicanindeed be grounded to timbre similarity, by exploiting such higher-level
correlations with timbre-based attributes. We propose a hybrid classificgtansthat implements

this idea in a systematic way.

125
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7.1 Experiment 9: Inferring high-level descriptions with timbre simi-

larity

This experiment examines the validity of using models of polyphonic timbre similarigxti@ct

high-level music descriptions. As reviewed in Chapter 2, the assumptioodhatpts like musical
genre or mood are grounded on the global sound of a given piece @ lm@®mmon to more than
a fourth of all contributions in the history of MIR research. This assumpsorotably motivated
by the dificulty to address other factors such as harmony or rhythm, but also eerddst cultural

interpretations, which depend on epochs, locations and user communttissexXperiment evalu-
ates the precision of an inference mechanism based on the best timbre simikayre obtained

in this work, on a very large and diverse set of manually collected metadata.

7.1.1 Material

We base our study on a yet-unreleased large set of editorial metadata wadde available to Sony
CSL by partnerships within the Sony Corporation. The database curi@ribains 4936 songs,
each described by a set of 801 boolean attributes (e.g. “LanguadjstiEagrue). These attributes
are grouped in 18 categories, which can be found in Table 7.1.

Attribute values were filled in manually by a specialised subcontractor. Tlneléngl descrip-
tions found in the database are very diverse. Some attributes are tatrelth some acoustic
aspect of the sound (“Main Instrument”,“Dynamics”), while others seemesult from a more
cultural view on the music object (“Genre”, “Mood”, “Situation”). Neamach of these broad
categories have seen prior attempts at automatic classification, althoughwafienuch smaller
taxonomies. Liu et al. (2003) for instance propose a system to classifpdbd of a song into 4
taxons: ContentmenbDepression Exuberanceand Anxious One can see from Table 7.1 that the
database we consider herferss 58 of such mood taxons. Hence, this database is a realistic and
quite thorough coverage of the diversity of descriptors consideregioalyMIR systems.

One should note that category taxonomies are not intended for udityersiae definition of
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Table 7.1: Categories of the attributes used in the database

] Category | Nb attributes| Example attribute |
AergEpoch 16 1970-1980
Affiliate 5 Germany
Character 39 Child-oriented
Country 31 Brazil
Dynamics 4 Decreasing
Genre 36 Jazz Standard
Language 15 Spanish
Main Instrument 107 Contra Bass (pizz.
Metric 14 3/4
Mood 58 Aggressive
Musical Setup 25 String Ensemble
Rhythmics 10 Groovy
Situation 82 City By Night
Special Creative Period 3 Early
Style 176 Bebop
Tempo 8 Slow - Adagio
Text Category 123 Forgiveness
Variant 46 Natural/ Acoustic

attributes such as “Style Alternative Rock” and how thefjedtifrom, say, “Style Rock Pop” is a
convention which is only local to the categorizing company, and to which wetdidve access in
this study. Therefore these attributes are not primarily intended for dirketnative display, but

rather for creating a mid-level representation which can be used for ingtehd recommendation.
For all these reasons, we propose here to analyse this set of attrisatesebitrary ontology only
defined by the values taken on the database, and not to consider amgrertesical assumption of

what a “Genre” or “Style” should be.

7.1.2 Methods

We propose to infer the value of a given attribifi€for a given songS by looking at the values of

A for songs that are timbrally similar t8. More precisely, we define as our observaiids the
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number of songs among the 9§ of the 10 nearest neighbors 8ffor which A is true, i.e.

Os = card{S; \ Sj € Ns A A(Si)} (7.0)

If the attributeA is correlated with timbre, large values@g are a good indicator thafi(S) is
true. For instance, if 9 out of the 10 nearest neighbors of a given satidard Rock” songs, then it
is very likely that the seed song be a “Hard Rock” song itself. Howeveneed to compensate this
decision by the fact that attributes are not uniformly distributed in our dagedizbset. For instance,
“Genre Dance Music” isrue for 4123 songs out of 4936, while “Main Instrument Bandoneon” has
only one positive example. We thus defiR@A(S)/Os) the probability thatA be true forS given
the observatiods of a given number of true values in the set of nearest neighbor$ (@) /Os)
the probability thatA be false given the same observation. According to Bayes’ law,

P(A(S))

P(A(S)/Os) = p(Os/A(S)) P(Os)

(7.2)

The likelihood distributionp(Os/A(S)) can easily be estimated by the histogram of the empirical
frequencies of the number of positive neighbors for all songs ha¥i() = true (similarly for
P(A(S)/0s)). Figure 7.1 shows 2 examples of such likelihood distributions computedtfdsutes

“Character Calm” and “Genre Clybiscotheque”. If we assume a flat prior

P(A(S) = P(A(S) = 0.5 (7.3)

we can estimateA(S) using the maximum likelihood criteria :

A(S) = P(Os/AS)) > pOs/A(S)) (7.4)

Using the example given in figure 7.1, we see that under the observatioh tlearest neighbors

out of 10 have “Character Calm”, we estimate that the seed song has t@ratalm”. However,
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Figure 7.1: Likelihood distributions for 2 attributes “Character Calm” (doardhpointing triangle)
and “Genre ClufDiscotheque” (upward pointing triangle). Positive likelihop@s/A(S) = true)
appear in solid line, and negative likelihopfOs/A(S) = falsg in dashed line. The x-axis corre-
sponds to the number of songs haviAgS) = true observed in the first 10 nearest neighbor of the
seed song.

under the same observation that 4 nearest neighbors out of 10 hamee'GluliDiscotheque”, we
estimate that the seed song does not have “Genrg@kdotheque”, because this observation is in
fact surprisingly small given the large number of songs of “Genre fDiiglbotheque” present in the

whole database.

7.1.3 Results
Surprisingly few attributes are correlated with timbre

Figure 7.2 shows the distribution of the precision of the timbre inferenceepsodescribed above
on the set of the 801 boolean attributes in the database. It appearsri@atobutes are very
correlated to timbre similarity (in the sense defined above), achieving pregisametimes higher
than 95%. However, there are suprisingly few of such near-pectectspondances. Only 6% of
the attributes in the database are estimated with more than 80% precision, anthamoeehalf
of the database’s attributes are estimated with less that 65% precision (vendtis better than a

binary random choice, i.e. 50%).
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Distribution of the precision of timbre-inference
on a set of 800 arbitrary high-level descriptions
T T T T
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Figure 7.2: Distribution of the precision of timbre inference on the set ofeédibutes.

Table 7.2 shows the 10 attributes (out of 801) that were the most preciselgeith using tim-
bre similarity. Most attributes correspond to “Styles” which described muglt guite extreme
observable features of the signal (e.g. saturated guitar, distortel$ voicgn percussivity).

It should be mentioned that the nearest neighbor algorithm defined &bowe a particularly
flexible classification algorithm, and notably can havéclilties with strongly multimodal distri-
butions (“Songs of category X sound either like A, or like B, or like C").vwwer, these results
indicate that very few typical high-level music descriptions have a causgefinition in terms of

a prototypical “timbre”.

Not all taxons of a given category behave similarly

Table 7.3 shows the distribution of the categories of the attributes which aregdfwith more than
75% precision, while Table 7.4 shows the distribution of the attributes whicimfared with less
than 55% precision.

From these two tables, we observe that many categories include both timietatiyd and un-
related attributes. “Genre unplugged”, “Style Hard Rock” (found inl@ah3) are strong timbre

correlates (in the sense defined above), mostly because the instamogafthe database are very
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Table 7.2: Best inferred attributeB, (resp.P-) is the ratio of the number of correctly inferrede
(resp.false values over the total number ttie (respfalse values.

Attribute | P, | P_ | Mean Precision
Style Techno (minimal) 0.93| 0.99 0.96
Style Rave 0.94| 0.98 0.96
Genre LullabyNursery Rhyme 0.91| 0.99 0.95
Style Hard Trance 0.92] 0.95 0.93
Language Native American| 0.88 | 0.98 0.93
Style Garage 0.87| 0.99 0.93
Style Happy Hardcore 0.86| 0.98 0.92
Style Metal 0.88| 0.96 0.92
Style Hardcore 0.86| 0.98 0.92
Style Grunge 0.87| 0.95 0.91

Table 7.3: Categories of the best inferred attributes

| Category | Nb attributes| Sample Attributes \
Style 48 Jazz (Trad.), Hard Rock
Genre 10 Unplugged, Nightclub Music
Main Instrument 10 Guitar (distortion), Vocals (Spoken; Rap)
AergEpoch 9 1950-1960, 1960-1970
Musical Setup 7 Big Band, Rock band
Character 6 Metalic, Warm
Country 6 Cuba, Jamaica
Variant 3 Aggressive, Metallic
Situation 3 Computer Animation, Middle Ages
Mood 2 Aggressive, Negative
Language 1 Native American

prototypical, and timbrally consistent (e.g. salient saturated guitar andygpemcussions in Hard
Rock), while “Genre Jingle” and “Style Electronica” (found in Table 7 ) poor timbre correlates,
possibly because they are very heterogeneous. “Electronica ” fanices spans possibly everything
from HardCore Techno - solely percussive -, electronic pop (artigHikilie Simon or Air) where
voice is predominant, Intelligent Techno - which uses concrete souartiags and electronic blips
- and even margin artists like Craig Armstrong which really does symphoniest@l music.

Table 7.3 and 7.4 also confirm that categories like “TextCategory”, “Sitvato “Mood”

mostly capture cultural and subjective information which are poorly destriath timbre. Never-
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Table 7.4: Categories of the worst inferred attributes
| Category | Nb attributes| Sample Attributes |

TextCategory 35 Irony, Play on Words
Main Instrument 18 Clarinet, Body Percussion
Style 17 Underground, Electronica
Situation 10 Hollywood, Winter
Variant 6 Thin, Wrong/ Amateurish
Mood 6 Maritime, Funny
Country 5 International, USA
Musical Setup 4 Duo, Girlgroup
Character 3 Child-oriented, Vibrating
Metric 2 6/8, 7/8
Dynamics 1 Decreasing
Genre 1 JinglgLink
Language 1 African Languages
Tempo 1 Alternating

theless, taxons like “TextCategory Explicit” or “Mood Violent” are very ddonbre-correlates.

This is at odds with typically proposals of classifiers that apply the samdalesizace for every
taxons of a given category. What appears from these results is tlyad &sw taxons, wide-spread

over many diverse categories, can reliably be inferred with timbre.

The paradoxical subjectivity of timbre judgements

It also appears that attributes of the “Main Instrument” category areartitplarly well modelled

by timbre. This can be explained by the fact that instruments describeabwttibutes are usually
not salient throughout the song, if salient at all. This illustrates the swijgaf the categorization

of music: many of our “timbre” judgements are not low-level immediate perceptioat rather
high-level cognitive reasoning which accounts for the evidence fautiee signal, but also depends

on cultural expectations, a priori knowledge, interestingness and fkanidity” of an event, etc. A
given song by e.gElton Johnmay be labeled as “piano” music, even though one can barely hear
any piano sound on careful inspection, e.g. because it is very distanimi with predominant

strings and synthetic pads, or because it is heavily processed with diatitsesuch as flangers and
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delays. However, the knowledge thzton Johnis a pianist, or that this particular song bears some
similarity with another piano song (which itself may not have salient piano eithenables some
kind of “automatic completion” of what is perceived onto what is thought to dregived. Such
paradoxes or timbre illusions are proper to the perception of complex pmtypMmusic, and most
notably of “known music” which can be mapped to a space of music piecediautar listener
already knows. (e.g. “Elton John” finding room in my musical universerapather British pop

singers, but also other pop pianists like Paolo Conte, etc.)

7.2 Experiment 10: The use of context

In this experiment, we investigate whether there exist statistical depensdetieeen the attributes
in the database, which would reveal the kind of correlations and congeetskinference that seems
at play with timbre judgements. To do so, we measure the statistical indeperuktaeen all pairs

of attributes in the database.

7.2.1 Method

A common way to assess the statistical independence of pairs of attributesider@d here as
random variables- is to use Pearsop’stest (Freedman et al., 1997). This tests the hypothesis
(called thenull hypothesiksthat the relative frequencies of occurrence of observed evellas/fa

flat random distribution (e.g. that hard rock songs are not significanthe tikely to talk about
violence than non hard-rock songs)? is calculated by finding the fierence between observed
and theoretical frequency for each attribute. The result is normalizetidogize of the popula-

tion, yielding a valued between 0 (corresponding to no association between the variables) and 1

(complete association). Appendix G gives more details about the computéjidrand® values.
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7.2.2 Results
Tautologies

Tables 7.5 to 7.9 show a classification of the 100 most correlated dupletsilafitagron the whole
database, assessed usingdheodticient. We observe in Table 7.5 that a number of such correla-
tions translate trivial word-to-word associations between attributes, asthextCategory Christ-
mas” and “Situation Christmas”. These sometimes uncover unexplaineddaatties in the at-
tribute taxonomies, such as the co-existence of attributes like “Aera 1$8@IsS’Aera 1980-1990",

but also reveal the existence of logical links between e.g. “Characacs"Variants” of the same
name (calm, metallic, simple, etc.) with a consistency which is remarkable in the tohteassive
manual categorization. This may suggest that such logical links arecedfty the categorizing

company with specially designed GUI or post-processing routines.

Table 7.5: Most correlated duplets of attributes - redundant information

] Attributel \ Attribute?2 | © |
Language Finish Country Finland 0.93
Textcategory Christmasg Situation Christmas 0.81
Country Italy Affiliate Affiliate Italy 0.74
AergEpoch 1980-1990 AergEpoch 80s 0.72
Genre Live Classic Genre Live 0.72
AergEpoch 1970-1980 AergEpoch 70s 0.71
Mood aggressive Variant aggressive 0.70
Character pulsating Mood pulsating 0.69
Musical Setup Jazz Band Style Jazz 0.67
Style traditional Country| Musical Setup Country Band 0.66
Style Jazz (trad.) Genre Jazz Standard | 0.66
Character distorted Variant Distortion 0.65
Character simple Variant simple 0.65
Mood nostalgic Character nostalgic 0.63

Overfitting

Table 7.6 illustrates a caveat which is common to many of the results reportedchéalpier, namely

the risk of overfitting. Here, the strong correlation between songs tlealews’'s Harp instrument
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(also called jaw's harp or gewgaw) and the fact that these songs talk ‘@ioycle” can only be
explained by the fact that there exists only one song in the database kigitethis somewhat
odd combination (“Luka Bloom - The Acoustic motorbike”). Similarly, most Spharsongs in the
database are “ska punk” songs, and most appearing jazz standargiyed with a transverse

flute. There are a number of techniques to automatically detect such oeofidbly n-fold cross

validation).
Table 7.6: Most correlated duplets of attributes - overfitting
] Attributel \ Attribute2 | © |
Main Instruments Jew’s Harp | Textcategory Bicyclg 1
Affiliate Affiliate Spain Style Ska Rock | 0.73
Country Spain Style Ska Rock | 0.62
Country Spain Style Punkrock | 0.52
Main Instruments transverse fluteGenre Jazz Standard0.50
Exclusions

Table 7.7 illustrates that such analysis is also able to track down negatiadation, i.e. mutual
exclusion relationships. For instance, a single song can'’t at the same tmedrging and steady

dynamics, or be both vocal and instrumental.

Table 7.7: Most correlated duplets of attributes - negative correlation
] Attributel \ Attribute2 | @ |
Dynamics dynamic (updown) Dynamics steady 0.80
Main Instruments male Main Instruments female 0.70
Main Instruments Vocals Language Instrumental 0.61
Language English Language Instrumentall 0.58

Intrinsic semantics

Table 7.8 shows a number of associations that result from intrinsic semantetations, which
have little to do with the actual musical usage of the words. For instance, gigsanreveals

common-sense relations such as “Christmas” and “Special occasiasli-Known” and “Popu-
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lar”, “Strong” and “Powerfull”. Associations such as these and thes@xéibited in Table 7.7 are
less easy to infer a priori than the word-word associations in Table 7 ficdlly, this would use
some kind of lexical reference system where nouns, verbs, adjgéetivé adverbs are organized
into synonym sets (see e.g. WordNet Fellbaum (1998)). This also illustizethe manual cate-
gorization process is consistent with psycholinguistics evidences of sieraasociations, and that
the specific usage of words that describe music is largely consistent witlgémeric usage: it is

difficult to think of music that is both strong and not powerful.

Table 7.8: Most correlated duplets of attributes - intrinsic semantic correlation

] Attributel \ Attribute?2 | © |
Situation Christmas Genre Special Occasions | 0.91
Textcategory Christmas Genre Special Occasions | 0.89
Genre Well-known music Popularity Popularity high 0.68
Mood strong Character powerful 0.68
Mood bursting Character settingfd 0.65
Mood harmonious Character well-balanced 0.60
Situation Sex Mood erotigsexy 0.56
Character robotic Mood technical 0.55
Textcategory Love Textcategory Relationship | 0.55
Situation Fast Ride Situation ActioriFast CutfHectic | 0.53
Situation Middle Ages Situation historic 0.52
Mood negative Character mean 0.51
Mood aggressive Character mean 0.51
Mood mechanical Character robotic 0.50
Situation Tropical Country Jamaica 0.50
Situation Computer Animation Situation SciFiFuturistic 0.50

Extrinsic music knowledge

The correlations observed in Table 7.9 are probably the most interestingsaful in the context
of content-based musical systems. They reveal associations whiclotairgrimsic properties of
the words used to describe music, but which are extrinsic properties ohils& domain being

described, e.g.

¢ between musical genres: “Rap” and “Hip hop”
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e between genres and countries: “Bossa Nova” and “Brazil”

e between genres and instruments: “Hip Hop” and “Spoken vocals”

e between genres and epoque: “Rag time” and “1930’s”

e between setups and instruments: “Rock band” and “Electric guitar”

¢ between genres and mgoHbaracter: “Jazz” and “Warm”, “Metal” and “Mean”
e between instruments and countries: “Tabla” and “India”

e between instruments and mood: “Transverse flute” and “Warm”

Some of these relations capture historical or cultural knowledge (“reek guitars”), but also more

subjective aspects linked to perception of timbre (“flute sounds warm”).

Conclusion

The results in Tables 7.5 to 7.9 show that there are important amounts dadorrdetween high-
level descriptors, independently of their relation to timbre. Some of theselatons capture
psycholinguistical semantic associations (“a powerful song is a stramg)sdut also historical
and cultural knowledge (“rock uses guitars”), and more subjectipeds linked to perception
of timbre (“flute sounds warm”). This suggests that very many high-lewiéli@al descriptions of
musiccanindeed be grounded to timbre similarity, by exploiting such higher-level coivakwith

timbre-based attributes. We now describe a technique, decision treeg) dbleo.

7.2.3 Exploiting correlations with decision trees

A possible way to exploit correlations between attributes is to use decisian(@egnlan (1993)).
A decision tree predicts the value of a given attribute @dtegoryattribute) on the basis of answers
to questions about the otheon-categonattributes. In the tree, each node corresponds to a non-

categorical attribute and each arc to a possible value of that attribute. &fléeef tree specifies the
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expected value of the categorical attribute for the records describie ipath from the root to that
leaf. Several fiicient algorithms (ID3, C4.5) exist to learn precise, compact and rolacisidn
trees from training data. In this work, we use the implementation of C4.5 prb\igehe Weka
library (Witten and Frank (2005)).

Figure 7.3 shows a typical decision tree learned on the attribute datalsasg the “Variant
naturalacoustic” as categorical attribute to predict, and the whole set of otherugdsilas non-
categorical attributes. The tree has been automatically pruned to only wtithdtes, and gives
a prediction precision of 0.71 on positive examples and 0.82 on negatiwepdes (using 10-fold
cross validation). Decision trees have been popular in the data mining commatstyly because
of the fact that they produce human-readable decision rules (whigbréyorder). In the example

given in Figure 7.3, we see that a song is likely to be “natacalustic”
o ifitis not aggressive
e ifitis from the 50’s (where little amplification was used)
o if there is a singer, but not in the “rock” style
e ifit's a folk or a jazz band that performs it
¢ if not, then if it doesn’t use guitar with distortion, etc.

Note that this tree is only able to predict the value of “Variant natacalustic” if we have access
to all the values of the 14 other non-categorical attributes used hereefdire this is of little use
as such. However, we will show in the next section that we can use Timbre Biynifderence to
bootstrap the automatic categorization with estimates of a few timbre-groundbdtatty and then

use these estimates in decision trees to predict non-timbre correlated attributes

7.3 An operational model for grounding high-level descriptions

Experiment 9 used a technique to infer the value of attributes which are reasonab&fated with

the timbre of the music being described. The technique provides very@estimates for attributes



7.3. An operational model for grounding high-level descriptions 19

Variant aggressive true: false (23.0)
Variant aggressive false
AergEpoch 1950-1966€ true: true (21.0)
AergEpoch 1950-1966& false
Genre SinggBongwriter= true
Situation ActioriFast CutfHectic= true
Style Rock= true: false (2.0)
Style Rock= false: true (2.0)
Situation ActioriFast CutgHectic= false: true (67.(.0)
Genre SinggBongwriter= false
Musical Setup Folk Bané true: true (25.(2.0)
Musical Setup Folk Bané false
Style Jazz true: true (25.8.0)
Style Jazz false
Genre Live Classie true
Main Instruments Guitar (distortion) true: false (4.0)
Main Instruments Guitar (distortior) false: true (29.@1.0)
Genre Live Classie false
Situation Fight= true: false (11.0)
Situation Fight= false
Style Soul= true: true (9.08.0)
Style Soul= false
AergEpoch 1960-1976 true
Variant live = true: true (2.0)
Variant live = false: false (5.0.0)
AergEpoch 1960-197€& false
AergEpoch 1980-1996 true: false (4.0)
AergEpoch 1980-199¢: false : false:true(10/8.0)

Figure 7.3: Decision tree for category “Variant natfmabustic”, achievingpy,e = 0.71 and
Praise = 0.82. Figures in parenthesis at each leaf show the number of songmiselassified
by the corresponding decision rule.
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such as homogeneous genre categories or extreme moods like “aggjressivarm”. However,

it fails on cultural or subjective attributes which bear little correlation with theacsound of the
music being described, such as “TextCategories” or complex moods i@cthis . Experiment 10
described the correlations existing between attributes, and proposéuhajtex(decision trees) able
to exploit these correlations to predict values of attributes. This secomaite® works equally well
on timbre or cultural attributes, however it requires the availability of valaesdn-categorical at-
tributes, to be used as features for prediction. In this section, we propasild a hybrid automatic
categorization system which uses timbre inference as a bootstrap foiodecees. First, we use
timbre inference to estimate the values of a few timbre-correlated attributethemdse decision
trees to make further prediction of cultural attributes on the basis of thegbdiohbre-correlated

attributes.

7.3.1 Algorithm

More precisely, we define the algorithm as an iterative estimation of a detaifributesSa =
{A, k € [0,N — 1]}. At each iteration, we produce a set of attribute estima@ = {;k‘,k €
[0, N-1]}, whereAvki is the estimate of attribut®&, at iterationi. Each attribute estimate is associated
with a precisiorp(;ki). At each iteration, we define asbes(,&;‘) the best estimate & so far, i.e.

bes{A() = A, m = arg maxp(AJ) (75)

j<i

The algorithm is an iterative process:

e i =0: TheA‘F’ are built using timbre inference, as described in Experiment 9. Timbre-
correlated attributes are typically estimated with good precis(mﬂql‘/)), while cultural and

subjective attributes are poorly estimated.

o Vi > 1: ;k' is built using a decision tree usirk a categorical attribute, and a set of non-
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categorical attribute®,' defined as:
Fii = (bestAI /1 # k, p(bestA’Y) > 6) (7.6)

where 0< 6 < 1 is a precision thresholdf' contains the best estimate so far (up to iteration
i — 1) of every attribute other thaAy, provided that its precision be greater than The
algorithm thus constructs successive estimates for each attribute usisipuaéceces on the

best estimates at previous steps, the whole process being bootstrggpebrke inference.

e Stop condition: When there is no more improvement of any attribute estimate, isetthé

all bes(;;‘) reaches a fixed point.

Style Metal Style Metal Style Metal Style Metal
91% 72% 79% 93%
A
Char.Warm Char.Warm Char.Warm Char.Warm
78% 69% 71% 81%
Text Love Text Love Text Love Text Love
52% 58% 76% 78%
Style Rap Style Rap Style Rap Style Rap
88% 85% 86% 89%
Set.Female Set.Female Set.Female Set.Female

62% 75% 75% 77%

> iterations

Figure 7.4: An example scenario of iterative attribute estimation

Figure 7.4 illustrates a possible scenario of the above process, usingfatdbutes including

“Style Metal”, “Character Warm”, “Style Rap” (which are timbre-correlatdttibutes as seen in
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Experiment 9) and “TextCategory Love” and “Setup Female Singer”, vhie poor timbre es-
timated (the former being a cultural description, and the latter being too complex poecisely
described by timbre). The first set of estima@@ is built using timbre inference, and logically
contains good estimates of the timbre-correlated attributes, and poor estioraties bthers. At
iteration 2, we estimate each of the attributes using a decision tree on the timbretesijomdy
keeping estimates abowe= 0.75). For instance, we estimate “Style Metal” by using a decision
tree on “Character Warm” and “Style Rap”, which yields a poorer estimatahbariginal timbre
inference. Similarly, we estimate “Setup Female Singer” using a decision tr&gtyle Metal”,
“Character Warm” and “Style Rap”: this yields an estimate which is better thaoripi@al timbre
inference. At the next iteration, the just produced estimate of “Setup FeSirager” (which hap-
pens to be above threshaljlis used in a decision tree to give a good estimate of “TextCategory
Love” (as e.g. the knowledge of whether the singer is a female may give isdonmation about
the lyric contents of the song). At the next iteration, all best estimates sodarsed in a decision
tree to yield an estimate of “Style Metal” which is even better than the original timbeeeince (as

it uses some additional cultural information).

7.3.2 Preliminary results

Table 7.10 shows the results of the above algorithm on a set of 45 randbadgrtattributes, using
0 = 0.7. We observe that for 10 attribute estimates, the precision improves by mord @&
(absolute), and that 15 estimates have a final precision greater tharCttral attributes such as
“Situation Sailing” or “Situation Love” can be estimated with reasonable pretisibereas their
initial timbre estimate was poor. It also appears that two “Main Instrument” atésbiguitar and
choir), that were surprinsingly bad timbre correlates, have been ddfisiag correlations between
cultural attributes. This is in neat accordance with the paradoxical nafuimbre judgements
mentionned above (see Section 7.1.3).

The overall precision improvement on the set of attributes depends orvénallacorrelation

of the set of attributes: it is likely that better results could be achieved usingtee full set of
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attributes, since it would allow the decision trees to exploit stronger cornesatiiat the one found
here. It also depends on the quality of the original timbre-correlated estinveltéch are used for
bootstrap. Here, the randomly chosen set was quite poor on this réspédtial estimate is greater

than 75%).
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Table 7.9: Most correlated duplets of attributes - extrinsic musical knowledg

Attributel \ Attribute?2 | @ |
Character warm Genre Jazz Standard 0.84
Country Africa Style Afro 0.80

Style Rap Style Hip Hop 0.80
Style Post Bop Style Bossa Nova 0.79
Style Ska Rock Style Punkrock 0.77

Main Instruments Vocals (Spoken; Rap) Style Rap 0.75
Main Instruments Vocals (Spoken; Rap) Style Hip Hop 0.70
Style Nu Jazz Character collage 0.70

Main Instruments Bandoneon Main Instruments Musette 0.70
Genre Ethnic Music Language other 0.65

Style Ragga Main Instruments Synth Drums | 0.62

Style Reggae Country Jamaica 0.62

Country Brazil Style Bossa Nova 0.59

Style Jazz (trad.) Main Instruments saxophone 0.59

Style Latin Main Instruments Latin Percussion| 0.57

Mood ironical Style Ska Pop 0.57

Musical Setup Rock Band Main Instruments Guitar (distortion)| 0.54
Style Jazz (trad.) Character warm 0.54
Character mean Style Metal 0.53

Musical Setup Big Band AergEpoch 1940-1950 0.52
Main Instruments Brass Musical Setup Wind Ensemble (Winds)0.51

Style Reggae Genre Ethnic Music 0.51

Main Instruments transverse flute Character warm 0.51
Character minimalistic Style Techno 0.51

Main Instruments Tabla Country India 0.50

Main Instruments Guitar (distortion) Character distorted 0.50
Genre Revue Style Ragtime 0.49

Genre Comed{Cartoon Style Ragtime 0.49
Genre Comed{Cartoon AergEpoch 1930-1940 0.49
Style Swing-Fox Style Foxtrot 0.49
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Table 7.10: Set Optimization of 45 attribute estimates

Attribute ‘ P(AL) ‘ P(A ™) ‘ i final ‘ Improvement
Situation Sailing 0.48 0.71 10 0.23
Situation Flying 0.49 0.64 3 0.15

Situation Rain 0.50 0.64 9 0.14
Main Instrument Guitar 0.60 0.69 4 0.09
Situation Sex 0.59 0.68 11 0.09
Situation Love 0.63 0.70 3 0.07
Textcategory Love 0.61 0.67 11 0.06
Situation PartyDance 0.60 0.66 6 0.06
Tempo medium - Andante 0.59 0.64 4 0.05
Character slick 0.65 0.69 11 0.04
AergEpoch 90s 0.71 0.75 13 0.04
Character well-balanced 0.62 0.66 6 0.04
Rhythmics rhythmic 0.64 0.68 4 0.04
Genre Dancemusic 0.65 0.68 12 0.03
Mood dreamy 0.64 0.67 2 0.03
Style Pop 0.71 0.74 6 0.03
Mood positive 0.58 0.61 6 0.03
Mood harmonious 0.62 0.65 4 0.03
Main Instruments Vocals (Choir) 0.60 0.63 13 0.03
Dynamics dynamic (updown) 0.61 0.63 5 0.02
Textcategory Associations 0.57 0.59 10 0.02
Variant expressive 0.62 0.64 2 0.02
Musical Setup Pop Band 0.72 0.74 7 0.02
Textcategory Poetry 0.57 0.59 10 0.02
Character friendly 0.65 0.67 6 0.02
Character repeating 0.63 0.64 9 0.01
Rhythmics groovy 0.63 0.64 4 0.01
Mood romantic 0.69 0.70 9 0.01
Textcategory Wisdom 0.58 0.59 4 0.01
Textcategory Romantics 0.65 0.66 14 0.01
AergEpoch 1990-2000 0.76 0.76 1 0
Affiliate International 0.72 0.72 1 0
Character creamy 0.72 0.72 1 0
Genre Ballad 0.72 0.72 1 0
Main Instruments Vocals 0.71 0.71 1 0
Main Instruments male 0.71 0.71 1 0
Genre Mainstream 0.71 0.71 1 0
Genre Adult Contemporary (AC) 0.71 0.71 1 0
Mood erotigsexy 0.70 0.70 1 0
Main Instruments Synthesizer 0.69 0.69 1 0
Language English 0.69 0.69 1 0
Main Instruments SFX (Soundfiects)| 0.67 0.67 1 0
Character melodical 0.62 0.62 1 0
Textcategory Conciousness 0.6 0.6 1 0
Variant staccato 0.57 0.57 1 0







Chapter

Conclusion: Toward Cognitive Models

The majority of systems extracting high-level music descriptions from audialsigely on a com-
mon, implicit model of the global sound @olyphonic timbreof a musical signal. This model
represents timbre as the long-term distribution of the local spectral featupgototypical imple-
mentation of which being Gaussian Mixture Models of Mel-Frequency QapsGodficients.

This thesis questions the validity of this model. To do so, we have tried to cohatrexplicit
measure of the timbre similarity between polyphonic music textures, by mobilizingeat s and
design heuristics typically at use in Music Information Retrieval research.

With Experiment 1, we showed that the precision of measures based on this approachbeould
optimized to satisfactory levels. However, we described many variantsupaitssngly did not lead
to any substantial improvement of the measure’s precision. Moreovesjraulations suggest the
existence of aglass ceilingat precision about 70%. The remaining error rate is not incidental, and
is indicative of a structural limitation which probably cannot be overcomeubip sariations on the
same theme.

More precisely, modelling the long-term statistical distribution (accountingifee or not -
HMMs or GMMSs) of the individual “atoms” or “grains” of sound (frame§ spectral envelopes),
and comparing their global shape constitutes a strong assumption on thiyimgdeognitive pro-

cess. While it is clear that the perception of timbre results from an integratisonee sort (indi-
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vidual frames cannot be labeled independently, and may “come” froyiferent textures), other
important aspects of timbre perception are not covered by this approach.

One surprising finding oExperiment 1 is that algorithms that account for the time dynamics
of the features, e.g. with dynamic programming or hidden Markov modelst érestiequivalent
to simpler static models. This is at odds with experimental data on the perceptindiaéiual
instrument notesExperiment 2 established that the polyphonic nature of the data is the main reason
that ruins computational attempts at modelling feature dynamics. This suggadisetinorizontal
coding of frames of data, without any account of source separatwselactive attention, is a very
inefficient representation of polyphonic musical data, and not cognitivelsihkeu On that respect,
more brain-plausible processings such as sparse representatiangiééet al., 2005; Daudet,
2006) may provide a fruitful direction for further research.

The most important and novel finding &xperiment 1 is that the class of algorithms studied
in this work tends to create false positives which are mostly always the sarge segardless of
the query. In other words, there exist songs, which wehaals which are irrelevantly close to all
other songs.

We established that:

¢ hubs are distributed according to a scale-free distribution.

e hubs are not a consequence of poor feature representation ofirelidual frame, but
rather an #ect of the modelling of the agglomeration of the many frames of a sound tex-

ture Experiment 3).

e hubs are not a property of a given modelling strategy (i.e. static vs dynpariametric vs

non-parametric, etc.) but rather tend to occur with any type of maétgidriment 4).

¢ hubs are not an intrinsic property of certain songs, but thgreint algorithms distribute the

hubs diferently on the whole databadexperiment 5).

e the hubness of a given song is not an emerging global property of tirébdi®on of its
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frames, but rather can be localised to certain parts of the distribution, natathkgr frames

in statistical minority Experiment 7).

¢ hubs are not a property of the class of algorithms studied here whiclagppgardless of
the data being modelled, but only for data with a given amount of heteritgees. for

polyphonic music, but not for ecological sound ambian&egpériment 8).

This phenomenon of hubs is reminiscent of other isolated reportdtierett domains, such
as Speaker Recognition or Fingerprint Identification, which intriguinglg &fgically rely on the
same features and pattern-recognition algorithms. This suggests thatulisaodmportant phe-
nomenon which generalizes over the specific problem of timbre similarity, alichies a general
structural property of the class of algorithms examined here. This ofeomould require further
investigation, for which this study provides a methodological basis, notahilytinducing metrics
to quantify hubness.

The phenomenon of hubs, and notably the evidence of its important sendddeytain critical
frames Experiment 7), also illustrates one deep discrepancy between all computation models of
timbre and human perception. Namely, that all frames are not of equal impertand that these
weights does not merely result of their long-term frequencies(i.e. thhesgynding component’s
prior probabilityry,). The “GMM of MFCC” approach essentially builds axtensionadescrip-
tion of the object being modelled. While this seems to befacsent (and éicient) model for the
perception of environmental audio textures, music categorization apjpearsate essentially-
tensionalconstructs, which are poorly modelled by the models studied here. In partisome
timbres (i.e. here sets of frames) are msaientthan others : for instance, the first thing than one
may notice while listening to a Phil Collins song is his voice, independently of theumental
background (guitar, synthesizer, etc...). This saliency may depend conkext or the knowledge
of the listener and is obviously involved in the assessment of similarity.

Experiments 9 and 10give further support in the fact that “timbre” judgements are not low-

level immediate perceptions, but rather high-level cognitive reasonimchveitcounts for the evi-
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dence found in the signal, but also depends on cultural expectationstikpowledge, and context.
Experiment 9 shows that surprisingly few human-made high-level music descriptiodsy@ably
judgements of instrument classes, are directly correlated to low-level tirimbilarity. Polyphonic
textures as found in popular music are cultural objects whose perceptiates expectations based
on music that a particular listener already knowsexperiment 1Q we showed that human judge-
ments could be approximated only by accounting for high-level correlatigthén a large set of
possible categories. Some of these correlations capture psycholind@istiantic associations (“a
powerful song is a strong song”), but also historical and culturaiWkedge (“rock uses guitars”),
and more subjective aspects linked to perception of timbre (“flute sounda™yvaMuch of the
music we hear as being “piano music” is really music thatexpect to bpiano music.

These experiments open the way for more careful investigations of ticegime paradoxes
proper to polyphonic music timbre, in which listeners “hear” things that arstatistically signifi-
cant in the actual signal, and that the low-level models of timbre similarity studigsinvork are

intrinsically incapable of capturing.
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Réesune cetaille

Chapitre 1. Introduction

La grande majoré des systmes d’extraction de metadd¥es haut-niveaa partir de signaux mu-
sicaux repose sur un mek implicite de leur “son” otimbre polyphoniqueCe moele repésente
le timbre comme la distribution statistique globale de preips spectrales instantees feature$,
calcukes sur des trames de quelques dizaines de millisecondes. Uieniemphtion prototypique
de cette approche utilise des niébek de rélange de gaussiennes et desflicients cepstraux.

Cette these remet en cause la val@ide ce modle.

Pour ce faire, nous construisons ici une mesure explicite de la similitude tirmdorate deux
textures polyphoniques. Nous utilisons tout I'attiraiétinodologique (outils, algorithmes, heuris-
tiques) developp dans le domaine de la reconnaissance de formes apg@lita musique Nlu-
sic Information Retrieval Nous étudions les propetes de cette mesure dans urggies de dix
experiences.

L’ expérience 1 montre que la f@cision des mesures construites sur le paradigme que nous
étudions ici est boe par unplafond de verreempirique,a environ 70% de R-precision. Le
taux d’erreur esiduel n'est pas accidentel, ma&sle plubt des limitations fondamentales, qui
ne sauraiengtre esolues par de futures variations sur leme theme.

Une des conclusions de cette éxignce est I'apparente inutditdes variantes algorithmiques
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destireesa mieux moéliser la dynamique des attributs instar@sytels que 'emploi de céiecients
déerivés, ou de motles de Markov cad@s. Ceci contredit des nombreusesé&rignces psychoa-
coustigues, qui ont&@monté I'importance de la dynamique pour la perception humaine des timbres
instrumentaux. l&xpérience 2montre que cette fliculté a mockliser la dynamique deg€gquences
d’attributs instanta@s est due au car&ce polyphonigue des doaes, et nora leur structure tem-
porelle (en notes, phrases, refrains, etc.). &miltat suggre que le codage horizontal des trames
audio, qui ne prend pas en compte leatentes sources et leur synchronisation verticale, est une
repesentation peufcace pour la musique polyphonique, et peu plausible cognitivement.

Une de nos observations les plus importantes est que la classe d'algoréhrdés ici cee
de faux-positifs qui sont presque toujours lesmes chansons, iegendamment de la regie de
départ. Entre d’autres termes, il existe pour ces algorithmes des charsmmsalement proches
de toutes les autres chansons: de faux centres de@fantty. Par une érie d'experiences, nous

établissons ici que
e ces hubs sont distrils selon une loi de puissance, ditavariance Bchelle scale-freg.

e les hubs ne sont pas la c@mience d’'un mauvais comportement des attributs instes\fais
individuellement, mais de la métisation de leur agglogrationa long-terme. Entre d’autres

termes, le proldme ne vient pas déeatures mais des mogles Expérience 3.

¢ les hubs ne sont pas la c@&ugience d’'une stragie d’apprentissage statistique déanpmais
ont tendance appardre pour tous les algorithmes, paratriques ou non, dynamigues ou

non [Expérience 4.

e le fait d’étre un hub n’est pas une pro@é intrinseque d’'une chanson dode. Diférents
algorithmes distribuent les hubs de facorffatiente sur le @me corpus de chansons

(Expérience 5.

e Les hubs ne sont pas la c@agsiences de metks peu discriminants. En particulier, les chan-

sons dont la moglisation statistiqueavele une grande variance ne sont pas pargécethent
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sujettesa devenir des hubs. D’autre part, les rate$ dynamiques, plus contraints que les

mockles statiques, eent tout autant de hubs que leurs homologispérience .

e I'importance d’'un hub donan’est pas une prog@ie émergeant globalement de la distribution
de ses attributs instantas, mais peutre attrib@ea certaines parties de cette distribution,

notamment les valeurs d’attributs en minerstatistiqueExpérience 7.

e les hubs ne sont pas une pr@tei intrinseque des algorithmestudis ici, qui apparrait
indépendamment des dokes moédlisees. En particulier, les hubs apparaissent dans des
corpus de musique polyphonique, mais pas de sons environnementaumgatrons que
la difference entre les signaua hubs” et les autres se traduit entre autres patdiogreite

statistique de leur distributiofc&périence §.

Ce plenorene de hubs rappelle curieusement des observatigiasfaltes dans d’autres do-
maines que la musique, notamment en identification biogque de locuteurs ou d’empreintes
digitales. Le rapprochement est d’autant plugiessant faire que ces technologies emploient
typiguement les me techniques algorithmiques que celles que @bugions ici. Cela incité
penser que ce @morrene est une caramistique importante de ce type d’'algorithmes, et que nos
conclusions €tendent donc au deldu probéme sgcifique de la similitude timbrale de signaux
musicaux. Ce penorrene traduit une situatioregérale dans laquelle les observations instaggan
n'ont pas toutes la Bme importance perceptuelle, qui en particulier @eahd pas de leur salliance
statistique par rappott leur distributiora long-terme.

Ce point est gEci€ dans une dereie partie, @ nous donnons degdéments quantitatifs nou-
veaux pour apacier le fait que les jugements humains en gratide timbre polyphoniques ne sont
pas le esultat imnédiat de perceptions bas-niveau, mais@ale raisonnement cognitits/ollés,
dépendant par exemple du contextéadute et de la culture de I'auditeur.ekpérience 9mon-
tre que, de fagcon surprenant&dmeu de tadonges musicales haut-niveau, et en particulier les
descriptions de l'instrumentation, sont gaées directement au timbre tel que nous le &lisons

ici. Dans l'expérience 10 nous montrons que ces processus de description ne pekiverap-
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proximés algorithmiquement qu’en prenant en compte delaiions avec des attributs plus cul-
turels et subjectifs, comme les classeénibtions. Ces cogfations traduisent des associations
sémantiques de 'ordre de la psycholinguistique (“une champsossantgpowerful) est une chan-
sonforte (strong)”), mais aussi des connaissances historiques ou culturdéasdK utilise de la
guitareélectrique”), et @me des aspects plus subjectiésh la perception du timbre (“la flute &e

un sonchaleureuxwarm)”).

En d’autres termes, nous “entendons” quotidiennement dans la musiquehpoigue des
choses qui ne sont pourtant pagsentes de facon significative (statistiquement) dans le signal
sonore. La musique que noestendongtre du piano est surtout de la musique que nous nous
attendonsa étre du piano. Ces paradoxes statistico-perceptifs, dont I'existencaitd@aintenant
étreétablie de facon rigoureuse, expliguent en grande partiédaatord entre les melkks algo-

rithmiquesétudes ici et la perception humaine.
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PARTIE I: EPISTEMOLOGIE

Chapitre 2: Les Dimensions du Timbre

2.1  Tout sauf la hauteur et I'intensite

Le timbre est éfini par I'’American Standards Association comme cet attribut de la peroegutio
permeta l'auditeur de distinguer deux sons ayant lame hauteurpjtch) et la néme intens#
(loudnesy Le timbre est un attribut continu (e.g. un son pétre plus ou moinsbrillant”), et
multidimensionnel (on ne saurait trouver uémeéchelle @ ranger tous les sons allant, par ex., du

pianoa la trompette).

2.2  Etudes psychophysiques

De nombreusestudes psychoacoustiques ont éed€tablir une cartographie de I'espace des tim-
bres musicaux, et d’en identifier les principales dimensions. La plupareudiis techniques de po-
sitionnement multidimensionnemnltidimensional scalingde doniees de similitude entre extraits
musicaux, colle@es sur des sujets humains. Elles concluent majoritaireiniéistence de trois
dimensions principales, c@lées respectivement au centre de géaspectral §pectral centroijl,

au logarithme du temps d’attaquied-attack time, et aux variations temporelles de I'envelope

spectrale gpectral irregularity spectral fluy.

2.3  Reconnaissance automatique de sons instrumentaux

Cesétudes ont moti# la conception d’'un grand nombre de syses identifiant automatique-
ment I'instrument de I'enregistrement d’une note individuelle, ou d’urraggmonoinstrumentale.

La plupart de ces sy@mes utilisent une combinaison d'attributs temporels (typiquement temps
d’'attaque et caficients de coglation) et spectraux (typiquement édeients cepstraux - voir plus
loin). La straégie la plus simple pour comparer ces attributs entre signaux sonorestdistal’la

distance euclidienne, et un algorithme de plus proches voisins. Toutdéoisymbreux sysmes
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de classification utilisent maintenant des raled plus complexes, comme leglanges de gaussi-
ennes, ou les machinasrecteurs-support. Enfin, deaentes contributions ont moatintérét pour
de tels sons instrumentaux d’employer des &lesl dynamiques, tels que les retes de Markov

cacles, ou des mesures d’entropies sur degisnces d'attributs galablement quanés.

2.4  \ers les textures polyphoniques

Limmense majorié desétudes pecadentes se sont iEtesgesa deséchantillons sonores corre-
spondant des notes individuelles, jéas par un seul instrument. Toutefois, le conté&xtergent
de la distributiorélectronique de musiqua,la iTunes et de I'explosion des capage#t de stockage
sur les ordinateurs personnelséerune forte demande de nidels de signaux applicablésdes
textures de plusieurs secondes (voire des morceaux entiers), etéattpolyphoniques. En par-
ticulier, la notion de “timbre polyphonigue”, ou de musique qui “sonne comnmg” duBoulez
Madonna ou Chet Baker sembleétre une abstraction bien adapt ces nouveaux besoins. Le
“son des musiques” est en particulier une fagcon naturelle désepter la g@féerence d’un utilisa-
teur pour telle ou tell@€poque, configuration, style, genre ou esprit musical Ctéck Coreades
anrees 70”,“les musiques de filndsla Out of Africd, “tout ce qui sort sur le labeNinja Tunes,
etc.).

Toutefois, les conclusions désudes psychoacoustiques, ré&ay par les sy8imes de recon-
naissance mono-instrumentaux, netehdent pas facilement aux textures polyphoniques, pour un

certain nombre de raisons:

¢ les descripteurs monophoniques, de type centre de grapéctral, ne sont p&valuables
de facon additive sur des textures polyphoniques, i.eédaltant polyphonique n’est pas la

somme ponédréee des descripteurs des sources individuelles

¢ |'asynchronicié des sources supergas rend complicgile calcul de descripteurs temporels,

comme le temps d’'attaque.

¢ les £quences de plusieurs notes ont une influence contextuelle sur latmrakl timbre de
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chaque note, eéciproquement, le timbre a une influence sur la perception&tpsesces.

e une grande partie du “son” des musiques actuelles tient plus du bruiédglaitare satue,
caisse claire, féets de production), que du signal harmonique traditionnellei@tete dans

le contexte mono-instrumental.

2.5 Des moeles implicites

Dans ce contexte, la plupart des gyses d’extraction de @tadoniesa partir de signaux poly-
phoniques ont adops la néme approche pragmatique &rgrique, fonée sur la modlisation de
la distribution statistique globale de pragiéis spectrales instanteas. Cette approche sedline en
une infinie de variantes, portant soit sur les attributs w@digpar exemple les cfiients cepstraux,
ou les attributs MPEG7), soit sur les négés (parargtriques ou non, dynamiques ou non). Ce type
d’algorithmes constitue plus du quart des contributiaha conérence ISMIR (International Con-
ference on Music Information Retrieval) depuis s@ation en 2000. Toutefois, toutes ces variantes
se fondent sur la Bme hypotbse, rarement expliée, que la perception du timbre d'une texture
polyphonique corresporilla salience statistique de ses attributs inst@stdas plus re@sengs.

La validite de cette hypotise est diicile a évaluer d'apes le corpus de travaux existants, no-

tamment car

e Chaque contribution gvalue pas la g@cision d’'un moéle en terme de similaéttimbrale,
mais de descriptions plus haut-niveau, comme le genre, dont le lien avec le tirabt pas
toujours facilea établir. Par exemple, la fiiculte qu’a un modle donte & discriminer des
signaux de genre “classique” et “jazz” peéikler les limitations du masle timbral sous-
jacent, mais tout autant I'inc@nence de la taxonomie utiéis: les arrangements orchestraux
des jazzmeil Evansou Carla Bleysont timbralement plus proches de compositiodgat

Bergou deDebussyque deCharlie Parker

e De fagon syratrique, le suoes d’'un moeéle don@ sur unedche de classification pegtre die

a un nmécanisme d'apprentissage supeddicace, comme un SVM ou unétange d’experts,
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et cemalgréune repesentation sous-jacente de la simitude timbrale qui @eatlimitee.

e Finalement, s peu détudes avant la notre ont compatifférents algorithmes sur uneéme
base de doréres, ce quévidemment donne peu deédit aux d@irmations individuelles de

superiorité de tel ou tel algorithme.

Cette these propose donc &tudier frontalement la validitde I'approche commuréetous ces
travaux, en construisant une mesure explicite de la similitude timbrale entreteldures poly-
phoniques, sans entacher nos conclusions d&ledions non midrisees entre des concepts plus
haut-niveau comme le genre. Noagudions les propéites de cette mesure dans uréis de
dix expériences, dont les conclusions ont des implications pour laéiisadion du timbre poly-
phonique, mais aussi pour les $sies d’extraction plus haut-niveau qui utilise implicitement le
méme moele. Une partie de nogsultats, I'existence de faux centre de gtesibu “hubs”, semble

méme se gréraliser au domaine plu€géeral de la reconnaissance de formes.
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Chapitre 3: Les Dimensions desModelestimbraux

La majori€é des systmes d’extraction de @tadong@esa partir de signaux musicaux polyphoniques
sont fones sur le me moéle implicite de timbre, i.e. la distribution statistique globale de pro-
prietes spectrales instantees. Cette approche sédine dans la litrature en une infirétde vari-
antes. Nous proposons dédalire cet espace de variatioagartir d’'un algorithme prototypique
(“le GMM de MFCC"), auquel on appligue un certain nombre de transftiong,a la manére des

mockles de conceptioreutilisables en ingnierie logicielle design patterns

3.1  Lalgorithme prototypique

Comme vu pecédemment, il s’agit d'une mesure algorithmique de la similitude timbrale globale
entre deux signaux musicaux. La mesure suit Enma paradigme que les nombreux éysts
d’extraction de ratadonées haut-niveau, en ce qu'elle esté@&masur la moélisation statistique
des distributions globales d’attributs spectraux. Toutefois, elleatigmiexplicitement la notion de
similitude perceptive, pldt qu'une cakgorisation plus haut-niveau dont I'implicite célaition au
timbre ne serait pas maités.

Le signal est @coupe en trames. Sur chaque trame, nous estimons I'enveloppe spectrale du sig-
nal en calculant un ensemble de fiiments mel-cepstraux. Le cepstre (une anagramme de “spec-
tre”) est la transforree de Fourier inverse du logarithme du spectre. On appelle mel-cepstre le
cepstre calc@ apés un géchelonnement du spectre de Fourier sur étteelle de fequence per-
ceptive, non-ligaire: l'eéchelle Mel. Les cd&cients issus de la transfoém inverse du spectre sont
appeés codficients mel-cepstrauMel-Frequency Cepstrum Cgigients- MFCCs). On en garde
un nombreN. Les codicients cepstraux produisent une reggntation compacte du spectrediss
d’autant plus pecise queN est grand.

La distribution des cdécients mel-cepstraux (dans un espace de dimendjoast ensuite
mocklisee par un mogle de nelange de gaussiennéagussian Mixture Model GMM). Un GMM

est un estimateur paraique de distribution de probabéitsous la forme d’'une somme pénee
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de M densiés gaussiennes appek composantes duétange. Les paraétres du GMM (poids,
moyenne et covariance de chacune 8egomposantes) sont estés par un algorithme étatif
d’'optimisation de la log-vraisemblance, E-M (pdxpectation - Maximisation

Chaque chanson est donc rétisee par un GMM, qui peugétre compa avec les magles
d’autres chansons. Nous utilisons poutacah approximation par Monte-Carlo de la divergence de
Kullback-Leibler, une distance naturelle entre deésssile probabilé qui n’a pas de forme analy-
tique pour les ralanges de gaussiennes. L'estimateur conaigierer un grand nombre de points
n (en dimensioN) a partir de I'un des mazles, et de moyenner le logarithme de la probabhdit

ces points selon l'autre metk (puis de faire I'opration inverse pour sy@triser la mesure).

3.2  Transformations et Heuristigues emploges en MIR

Une étude bibliographique montre gu'cet algorithme prototypique, ne sont typiquement ap-
pliquées qu’un nombre fini de transformations et d’heuristiques de rdehatont nous proposons
ici un catalogue. Il est ig@ressant de constater que césames heuristiques ont souvéti utilisees

dans le domaine plus ancien de la reconnaissance automatique de la parole.

Optimiser les parametres des attributs: Typiquement, cela revieatmodifier la dimensioiN de
I'espace dans lequel se fait la mdidation. Une plus grande dimension permet souvent de
distinguer des étails plus pecis, ou de mieux&krire le signal de &part. Toutefois, une trop
grande dimension rend la melisation statistique €icile, car elle exige un nombre expo-
nentiel d’exemples d’apprentissage. C&pbiene est connu sous le nom de “gdiction
des grandes dimensiongUrse of dimensionaliJy Le choix des paragtres optimauxésulte

donc d’'un compromis.

Optimiser les parametres du mockle: De manere similaire, les paraétres d’'un modle statis-
tique (par ex. le nombr® de composantes gaussienaempprendre dans un GMM) influent
sur le pouvoir d’expression du mekk. Un moeéle de plus grande dimension sera capa-

ble de repesenter une distribution non triviale de facon plulitdd Toutefois, un mase
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“plus complexe” que la distributioa mockliser (ce qui peut recevoir unéfihition formelle,
dans le cadre par ex. de la dimension de Vapnik) risque de swrseqter les exemples
d’apprentissage et deés mal se gréralisera des exemples non encore ob&siv Ce
probleme est connu sous le nom de sur-apprentissagefitting. La encore, donc, le choix

des paramatres optimaux d’'un male €sulte d'un compromis.

Remplacer des attributséquivalents: Les attributs utili#s dans la litrature sont souvent re-
groupes en ensemblesquivalents, selon le type d'information qu’ils encodanpartir du
signal. Une prendire taxonomie distingue les attributs temporels (issus par exemple du pro-
fil d’ énergie, comme le temps d'attaque) des attributs spectraux @sdcphrtir du spectre
de Fourier). Parmi les attributs spectraux, on peut distinguer les egendanés sur la
decomposition du spectre de Fourier en moments statistiques (centredgoid variance -
spread asynetrie - skewnessaplatissement kurtosis etc.) et la @&composition par Fourier

a nouveau, qui produit les cieients ceptraux.

Remplacer des moéleséquivalents: De fagon similaire, des classe€duivalence de mades
statistiques tenderit émergera I'usage en fonction de leurs hypéses structurelles sous-
jacentes. Une distinction possible consiel les modles statiques d'undte, qui ne pren-
nent pas en compte I'ordonnancement temporel desé&nd’apprentissage (par ex. les
histogrammes, GMM, k-plus-proches-voisins), et les alesl dynamiques de l'autre, qui
mocklise a la fois la distribution statique et s@volution dans le temps (par ex. nades
de Markov cachs ou eseaux de neuronesaurrents). Une autre distinction importante con-
sidere les algorithmes pardatriques d’'une part, qui métise une dendgit de probabilie
comme une fonction dont il faut optimiser les paitres (par ex. les moyennes et co-
variances d’'un GMM), aux mades d’estimation non-paraftriques qui applique la éme

repesentatiora tout type de dorées (par ex. un histogramme).

Dériver des attributs par composition fonctionnelle: 1l est courant de modifier un attribut stan-

dard en lui appliqguant un prtraitement (tel qu'un filtrage pliminaire du signal), post-
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traitement (en prendre laédvée) ou en modifiant la clae de traitement interediaire.
Par ex. [Iattribut de contraste spectr&8pgctral Contragt modifie I'algorithme standard
d’extraction des MFCCs en remplagant la moyenne du spectre faite aquelbande de

frequence Mel par sa variance.

Emprunter a d’'autres domaines: Il est courant d’'emprunter une technique, typiquement un at-

tribut, & un autre domaine d’application de la reconnaissance de formes, klsaqlest
aerée diicace. Les MFCCs, omnipsents aujourd’hui pour la musique, sartorigine un
emprunt faita la reconnaissance de parole, qui ellenme les avait adaps de techniques

utilisées pour I'analyse de signaux sismiques.

Modeéliser la dynamique: De nombreuses publicatiogsendent le madle de base afin de pren-

dre en compte la dynamique temporelle des attributs. La modification peut sadaireeau
de I'extraction d’attributs, par exemple en substituant les attributs par ésived temporelle
(delta-cogficienty, leurs statistiques sur des fires temporelles de plusieurs tramesture
windows, ou encore leur transforee de Fouriea I'echelle de plusieurs secondes. La modi-
fication peut aussi porter sur la nidibation statistique des attributs, en utilisant des @hesd

dynamiques comme les mdlés de Markov ca@s.

Intégrer un raisonnement haut-niveau: Une autre direction de recherche est dmrter de tels

algorithmes bass sur le signal dans un sgste plus large, qui rajoute une couche de raison-
nement plus haut niveau, par exemple sur la structure tempatelg-terme. L'exemple typ-
ique de cette stragie est 'utilisation en reconnaissance de la parole dettesdle grammaire
permettant de &ambigiser les @cisions faites localemerd partir des seulestguences
d’attributs. L'équivalent en musique est de repenter la succession temporelle des notes en

transitoires eétats stationnaires, ou les changements de tésattc.
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3.3 Conclusion

Ce catalogue d’heuristiques de recherche a uneéutitittorique, car nous l'utilisons dans le
chapitre suivant pour structure I'exploration de I'espace desttesdimbraux, afin d’en estimer la
précision. Toutefois, cette psentation a aussi valeuggagogique, en ce qu’elle aideppehender
l'importante litterature du domaine, qui se cafxiste par un cheminemengt incémental d a
une certaine matuét Enfin, ces heuristiques posent la question d’une formalisation dir-faive
specifigue au domaine et de la possible automatisation d’'un processus d’lEdecherchea la

manire du systme EDS évelopea SONY CSL.
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PARTIE IIl: EXPERIENCES

Chapitre 4: Le plafond de verre (Expérience 1)

Dans ce chapitre, nous testons la vaéidie I'hypottese sous-jacente au nwdd de timbre implicite-
ment utili€ par la majoré des systmes d’extraction de @tadonges. Pour cela, nous explorons

I'espace des algorithmegdrits peccdemment, afin d’en optimiser lagmision.

4.1  Expérience

Nous impEmentons et testons ici plus de 500 variantes algorithmiqéesuthnt des heuristiques

décrites plus haut, et que nowsumons ici:

e Paranétres de l'algorithme original: taux @&hantillonnage, taille des trames, nombte
de MFCCs extraits de chaque trame, nomlikele composantes gaussiennes, nonmbde

tirages pour I'approximation de Monte-Carlo

e Descripteurs spectraux MPEG7: remplacement total ou partiel des Mp&Uss descrip-
teurs SpectralCentroid SpectralSpreadSpectralKurtosis SpectralSkewnes$pectralFlat-

ness SpectralRollg, et SpectralFlux

e Autre mesure de distance: remplacement de Monte-Carlo par plusielastearde la dis-

tanceEarth Mover

e Modeéles non-parastriques: remplacement des GMMs par plusieurs variantes

d’histogrammes, notamment &gsrquantisation vectorielle des MFCCs.

e Pré et post-traitement ins@is de la reconnaissance de la parole&rafjons d&ZMeanSource
Pre-emphaseDither, Liftering, Cepstral Mean Compensati@t ajout du cofficient d’ordre

0.

e Variantes de MFCCs: dont plusieurs irapientations de contraste specti@péctral Con-

trast).
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e Emprunt a l'analyse de textures picturales: notamment I'emploi de matrices de co-

occurrences
o CodTicients erives et @rives-secondes

e Texture Windowscad la substitution des MFCCs par leurs statistiques sur désrésnde

plusieurs secondes.

e Modeles de Markov cad@s: et optimisation de leurs paratres (hombre @&tats, nombre de

composantes gaussiennes @it).

e Modeles haut-niveau: prenant en compte la notion de notedewttun transitoire et d’uatat

stationnaire.

4.2 Méthode

Nous utilisons une base de d@as de 350 titres construite pour repenter explicitement la notion
de similitude timbrale. La base comprend 37 groupes de chansonémie artiste, optimalement
similaires entre elles, et optimalement distant les uns des autresétiaipn d’'un algorithme est
définie comme le rapport moyen du nhombre de chansonsétuergroupe que la chanson-rétgi
S obtenues dans ldsplus proches voisins d&, quandk estégala la cardinalié du groupe dé.

Cette mesure est appgelR-précision dans la communauti’information Retrieval

4.3 Outils

Au total, plus de 500 variantes algorithmiques e#ttesées, @cessitant pour chacune le stockage
et 'analyse d’'une matrice de similitude corat# entre les chansons de la base de desnCette

étude, d'amplitude iagakea notre connaissance, n’est rendu possible que par:

e la conception d'une architecture logicielleediee ('API MCM), et d'une plateforme
d’experimentation se doublant d’un outil de navigation dans des bases deatomusicales

(le Music Browser), galisations collectives du groupe musique de Sony CSL
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e des dforts d'impEmentation des fferents algorithmes, pour passer de prototypes Maitlab
des versions optimées, prop@taires, en C, surpassant en vitesse |&&mdints codes exis-

tants en acgs libre.

¢ un nouvel algorithme de recherche de plus proches voisins, permetaghaas en vitesse

superieursa 3000%

4.4 Resultats

L'exploration de I'espace des melks dcrits ci-dessus permet d'&torer laR-précision de plus
de 15% par rapport auwéglages initiaux, pour un maximum de 65.2R4précision. La mesure
optimale compare des GMMs dé = 50 composantes, cal@d pouN = 20 MFCCs, additionas
du cosdficient d'ordre 0. Les magles sont compéas par Monte-Carlo, avet = 2000 tirages
aléatoires.

Ces 65% de p@cision peuvent sembler urgbie €sultat. Il faut toutefois rappeler que le erg
d’évaluation sous-estime la quélitle la mesure en congidnt comme incorrects les documents
d’'un autre groupe que la chanson-rétg) qui peuvent toutefotre corrects perceptivement. A
titre d'illustration, la mesure optimale troée ici aéte impemenée par Elias Pampalk et a remport
le concours de classification automatique d’artistes lors de l&emde ISMIR 2004.

Toutefois, le taux d’erreurasiduel n'est pas accidentel, magsgle plutot des limitations fon-

damentales:

e La moctlisation dynamique, que ce soit par fia@ent cerivés,texture windowsmodeles de
Markov caclés ou matrices de co-occurrence, n&iore pas la gcision. Ce comportement
est paradoxal, car il est connu depuis les pezas expriences psychoacoustiques sur la per-
ception humaine des timbres instrumentaux que les descripteurs dynamiguas totemps
d’'attaque jouent undle fondamental. Le chapitre suivaréatit une exprience permettant

de mieux comprendre cette observation.

e L'expérimentation montre g&’ part un petit nombre de paratres cruciaux (comme le taux
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d’échantillonnage), le choix des paraires et I'utilisation de telle ou telle variante n'a que
peu d’'influence sur la pcision de la mesure. Les traitements sophigtigmotamment, sont

au mieuxéquivalentsa leur homologues plus basiques.

Ces Esultats suggrent aussi que la gcision @&coulant de telles variations sur leeme
theme (distribution statistique globale de pr@ts spectrales instantes) est boree par

une asymptote empiriquement estied 70% deR-précision.

Une de nos observations les plus importantes est que la classe d’algorituties ici cée

de faux-positifs qui sont presque toujours lesmes chansons, iedendamment de la regjie

de cepart. Entre d'autres termes, il existe pour ces algorithmes des charsamnsalement
proches de toutes les autres chansons: de faux centres de dnavi§. Ce plenorene
sembleétre une caraétistique importante de ce type d'algorithmes, géishd au deél du
probleme sgcifique de la similitude timbrale entre signaux musicaux. Nous consacrons par

la suite un chapitré sonétude plus approfondie.
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Chapitre 5: De I'utilit & de la dynamique (Exg@rience 2)

5.1 Le paradoxe de la moélisation dynamique

Une des conclusions les plus surprenantes de @dtide est I'apparente inutiéitdes variantes al-
gorithmigques destigesa mieux moéliser la dynamique des attributs instar@gntels que I'emploi
de codlicients erives, ou de mogles de Markov cad@s. Ceci contredit des nombreuses deam
experimentales en psychoacoustique, qui cerindnté I'importance de la dynamique pour la per-

ception humaine des timbres instrumentaux.

5.2  Hypotheses

Trois causes principales peuvent expliquer le§ialiltes computationnellea mockliser la dy-

namique des attributs instan&mdans le cas de textures polyphoniques:

H1 Soit la dynamique des attributs est impossidleepésenter algorithmiquemeat I'intérieur
méme d’'une note, par exa cause d’'une trop grande variald@lientre notes. Ceci est im-
probable, car la possibiéitd’'une telle modlisation aéte établie par plusieurs algorithmes

d’identification automatique d’instrument.

H2 Soit dés lors, c’est la dynamique des trames de signpobyphoniquesqui est dificile
a mockliser, par ex. a cause du masquage spectral entre plusieurs sources et de leur

désynchronisation.

H3 Soit enfin, c’'est la dynamique de faccessiordes notes eévenements musicaux dans une
texture qui est diicile a mockliser,a cause par ex. de la structéréong-terme d’une morceau

de musique, comme ses changements d’'instrumentation.

53 Méthodes

Nous proposons de discriminer ces trois hypsts en comparant les performances d’algorithmes

statiques et dynamiques sur deux types de signaux:
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¢ des enregistrements monophoniques, mono-instrumentaux de notes iellidadDB1)

¢ des enregistrement polyphoniques de notes individuelles segeseauitomatiquemeatpar-

tir de textures polyphoniques (DB2)

L'hypothése H1 serait confirge si I'on établit que les algorithmes dynamiques sont moins
efficaces que les algorithmes statiques sur DB1 (ce qui serait, au passagmtmadiction avec
les pecedents esultats dans la ligrature). H2 serait quarit elle confirngée si la moélisation
dynamique est meilleure que la nididation statique dans le cas monophonique (DB1), mais pas
dans le cas polyphonique (DB2): cela signifierait que la polyphonie tesneforts de moélisation
temporelle ”me dans le cadre restreint de notes individuelles. Finalement, si les afggsith
dynamiques surpassent les algorithmes statiques sur DB1 et DB2, mamngds das des textures
de plusieurs notes (comme nous l'avatabli au chapitre @dedent), alors I'hypotbse H3 sera
preferee.

Nous testons sur chaque base de é@snun érie de 17 variantes algorithmiques, dont 3
mockles dynamiques, bas sur la programmation dynamique. L&gision des mogles est cal-
culée selon le @me mode que predemmentR-précision). Les deux bases de dées DB1 et
DB2 comprennent le &me nombre de signaux (700) et I&me nombre de classes (16), ce qui

crée desaches de complexdtcomparable.

54 Reésultats

La comparaison deg&sultats sur les deux bases de dmsimontre que les algorithmes dynamiques
sont plus del0% plus précigjue leurs homologues statiques sur la base monophonique (DB1).
Ceci confirme les conclusions degprdentestudes sur la classification de sons instrumentaux.
Les meilleurs algorithmes statiques sur DB1 utilisent desatesdassez complig@s (GMM avec
plusieurs composantes gaussiennes), et de larges éoatiahs d’attributs. Toutefois, lesémes
algorithmes dynamiques sont plus 88% moins précigjue les algorithmes statiques sur la base

polyphonique DB2. Les meilleur&sultats sur DB2 sont obtenus pour dsstsimples algorithmes,
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comme la comparaison euclidienne de la moyenne des vecteurs MFCC.

Cette exprience montre donc que lafili¢ulte a mockliser la dynamique deséquences
d’attributs instanta@s est de au caraére polyphonique des doees (H2), et nora leur struc-
ture temporelle (en notes, phrases, refrains, etc.) é8dtat suggre que le codage horizontal des
trames audio, qui ne prend pas en compte I&&mintes sources et leur synchronisation verticale,

est une ref@sentation peuficace pour la musique polyphonique, et peu plausible cognitivement.
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Chapitre 6: Des hubs et de leurs propréetés

Une des conclusions les plus importantes d&gérience lest que la classe d’algorithmétudie
ici crée de faux-positifs qui sont presque toujours lessmras chansons, iedendamment de la
reqléte de @épart. Entre d’'autres termes, il existe pour ces algorithmes des chamsonslement

proches de toutes les autres chansonshdbs

6.1  Définition
On cefinit comme un “hub” une chanson qui apgafeéquemment comme faux-positif pour une

mesure de simila@t donrée. Cela impliqué la fois que

1. un hub appaitdans les plus proches voisins de nombreuses chansons de la baseaksd

2. la plupart de ces apparitions nevélent pas une similitude perceptuelle avec la chanson-

reqléte

Chacune de ces conditions n’est paffisante en soi. Par exemple, une chanson peut dfgara
souvent dans les voisins de la plupart des &g, mais de fagcon correcte perceptivement: cela
révéle que cette chanson est une sorte de centre de masse perceptif pase telonmes. Par
exemple A Hard Day’s Nightest peutétre une chanson proche perceptivement de toutes les autres
chansons deBeatles Cela n’en fait pas un hub.&iproquement, une chanson déerpeugtre un
faux-positif pour une recgte donge, mais pas pour un grand nombre d’entre elles. Par exefaple,
Hard Day’s Nightpeutétre estirke comme proche d’une sonate pour pian®dethoverpar une
mesure donee: c’'est un bug, car les deux chansons n’ont aucune similitudeppieeceToutefois,

cela ne fait pas dé& Hard Day’s Nightun hub, s'il n'est assoéianormalement ga’cet exemple

précis.

6.2 Importance du phénomene

Ce ptenonene de hubs rappelle curieusement des observat&jadaites dans d’autres domaines

gue la musigue, notamment en identification bébrgue de locuteurs ou d’empreintes digitales.
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Le rapprochement est d’autant plusargssané faire que ces technologies emploient typiqguement
les méme techniques algorithmiques que celles que udions ici. Cela incité&x penser que
ce plenonene est une cardmistique importante de ce type d’algorithmes, et que nos conclusions

s'etendent donc au detu probéme sgcifique de la similitude timbrale de signaux musicaux.

6.3 Deux mesures de hubness

Nous proposons deux mesures du éedg hubness pour une chanson:

¢ le nombre d'occurrences: mesure le nombre de fois qu’une chansméaelapparia dans
lesk plus proches voisins de toutes les autres chansons dans la base éesdddn montre
gue la moyenne des nombres d'occurrences de toutes les chanspashdie estgalea
k. Si une chanson appdranotablemment plus que la moyenne, elle peuwe considrée
comme un hub. Dans la base de test w@dislans Expérience 1 une chanson]oni Mitchell
- Don Juan’s Reckless Daughtexpparit 57 fois dans les 10 plus proches voisins des autres

chansons de la base, soiéprde 6 fois la valeur #orique.

e I'angle aux voisins: Un hub pe@galemenétre cefini comme une chanson proche de chan-
sons qui sont &séloigrees entre elles. Le rapport entre la distance aux voisins d'une part,
et la distance entre voisins d’autre part, peut s’exprimer comme un aragie)elcosinus
se calcule par une simple trigonétrie. On montre que la valeur moyenne des angles aux
voisins d’'une base doie est de 60 degs. Tout chanson dont I'angle aux voisins moyen est

notablement sugrieura 60 peut donc@tre consiérée comme un hub.

6.4 Les hubs forment une distributiona invariance d’echelle

La distribution des nombre d’occurrences dans les 100 plus procisssyeur une base de chan-
sons de 15,000 mp3 montre un profil de loi de puissance. Limmense réaji@st chansons ont
autour d'une centaine d’occurrences (ce qui correspoiadzaleur moyenne), toutefois, usrpe-

tit nombre de chansons ont un nombre d’occurrencéémément grand, jusga’'4000, ce qui est
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plus de 400 fois la valeur attendue.

6.5 Les hubs sont une coresjuence de la moélisation de I'agglonération des at-

tributs, pas des attributs eux-memes (Exgerience 3)

On montre qu'une base de daes de trames individuelles, nidées avec des MFCCs, et com-
paiees par simple distance euclidienne, Begge pas de hubs. Pour une base de 15000 trames, le
nombre d’'occurrences maximum obserst de 400, ce qui est plus de 10 foigndur au nombre
obsené dans une base comgasdu néme nombre deégjuences de trames correspondaies
morceaux entiers. Cela indique que les hubs ne sont pas unege@mee d’'un mauvais comporte-

ment des attributs individuels, mais de la rabishtion de leur agglogrationa long-terme.

6.6  Les hubs apparaissent pour tous les algorithmes (Expience 4)

La comparaison de plusieurs variantes algorithmiquesémphées dans le cadre de I'edpence
1 montre que tous les algorithmesrgrent des hubs. En particulier, les nétes non-paraétriques
(histogrammes)@rerent autant (sinon plus) de hubs que leurs homologues paigoes (GMMS).
Similairement, les variantesa“dynamique” comme les metks de Markov cad@s ou les coé-

cients erivées gererent plus de hubs que les simples GMMs.

6.7 Le fait d’étre un hub n'est pas intrinseque a une chanson donge

(Expérience 5)

Le degeé de hubness des chansons de la base de test ne sont pas forteratad pour diférentes
mesures de similitudes. Celaindique que les algorithmes distribue les [fi@srdiment sur la base
de doniees, et que le fait @tre un hub n’est pas intriagquea une chanson doée, mais épend
de l'algorithme utili€. Les hubs grérés par les variantes dynamiques (HMM, delta &&ration)

sont plus cor&lées entre eux qu’avec les hubsrgrés par les algorithmes statiques.
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6.8 Les hubs ne sont pas la colguences de moeles peu discriminants

(Expérience 6)

Une hypotlgse gduisante pour expliquer I'apparition de hubs propose qu'ils soierisigltat de
mockles peu discriminants, et donc promptexpliquer des doraes tés teteroclites. De tels
mockles peuvent correspondre par ex. aux chansons dont lalisatibn statistique emploie de
fortes variances, ou pour des algorithmes statiques qui anesititoutes les permutations des
trames de la chanson originale comme rigoureusement identiques. On motéfeisogue les
hubs ne sont pas c@lés aux chansons dont les nédeks ont une forte variance, et que les algo-
rithmes statiques (en particulier para@mques) ne @ent pas moins de hubs que leurs homologues

dynamiques plus contraints.

6.9 Le fait d’étre un hub peut étre locali£ a certaines trames seulement

(Expérience 7)

Limportance d'un hub donmn’est pas une proj@ate émergeant globalement de la distribution de
ses attributs instantés, mais pelgtre attrib&ea certaines parties de cette distribution. On montre
gue les 5% de trames les moins riegentative statistiguement (cad correspondant aux composantes
gaussiennes de poids les plus faibles dans les GMM) soréine&tnent importantess consi@rer,
et que leur suppression augmente radicalement le nombre de hubs dase ldebdonees. Si
I'on continue d’homog@nreiser les GMMs en supprimant les composantes les moins statistiguement
importantes, le nombre de hubsaldt a nouveau, jusqa’un minimum local suita la suppression
des 40% de trames les moins importantes. Cela indique gu’il existe une popdl@tiames dans
la région de poids statistique [6Q@5%] qui sont tes peu discriminantes et qui sont en magorit
responsables de I'apparition de hubs.

Ce plenonene traduit une situationégérale dans laquelle les observations insta@tam’ont
pas toutes la #me importance perceptuelle, qui en particulier @eahd pas de leur saillance statis-

tique par rappora leur distributior& long-terme: les trames les plus informantes pour discriminer
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des textures polyphoniques s@galement les moins reggentatives d’un point de vue statistique
(les 5% in&rieurs), alors qu'une grande population de trames (plus d’'un tiers)impact tes

négatif sur la moélisation, eretant “proches de tout le reste”.

6.10 Les hubs n'apparaissent pas pour tout type de dorées (Exgrience 8)

Nousétablissons enfin que I'apparition de hubs épehd pas que de I'algorithme utéismais aussi
du type de signaux métises. Notamment, les @mes mesures appligesa des signaux audio cor-
respondana des ambiances environnementales (enregistrements de parc, bajlewapitonnes,
etc.) ont des picisions jusqul 30% suprieuresa celles obtenues pour la musique polyphonique,
et n‘'engendrent pas de hubs. On montre qu’une distinction importante argr2 classes de sig-
naux “a hubs” et “sans hubs” peétre formuée en termes d’homeéggité temporelle et statistique.
Notamment, les textures environnementales sont bieréliséds néme en ne cons@tant que de
courts extraits: seulement 10% deegision perdue (relatif) en passant de signaux de 3 miriutes
10 secondes. Au contraire, la m@idation de musique polyphoniquéddssite beaucoup plus de

donrées: plus de 60% de éxision perdue (relatif) en passant de 3 minaté® secondes.
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Chapitre 7: Lancrage timbral des jugements £mantiques

7.1  Inferer des descriptions haut-niveau avec le timbre (Ex@rience 9)

Nous examinons ici la validgtd’utiliser un moeéle de timbre pour extraire destadonges musi-
cales haut-niveau. Not&ude repose sur une base de dmminterné& SONY CSL, qui contient
4936 chansons, chacunédlite avec un ensemble de 801 attributs benk (par ex. “Language
English= true”). Ces attributs sont regroép en 18 ca&gories, qui écrivent des aspects acous-
tiques du son musical (par ex. instrument, dynamique), mais aussi defptiess pluséditoriales
(language, pays), culturelles ou subjective (ge@nagtion, situation). Ces attributs sont&ventail
reptesentatif des @tadonges typiqguement métisees dans la commun&MIR.

Nous étudions la pgcision d'un nicanisme d’infrence de ces attributs reposant uniquement
sur la mesure de similitude timbraléwklopgee dans cettéetude. L'algorithme de classification est
inspiré des k-plus-proches-voisins: une chanson est classihmme par ex. “hard rock” si une
grande partie de ses plus proches voisins au sens de la similitude timbrageigs@uissi classés
comme tel. Plus g@cigement, on apprend la dergsitle probabilé du nombre d’occurrences de
chansons d’'une cagiorieC dans les plus proches voisins d’une chanson dans laizette chanson
appartiena C d’'une part, et n'y appartient pas d’autre part. l&cidion pour une chans@non
encore classifie d'appartenir ou noaC se fait ensuite par maximum de vraisemblamoexXimum
likelihood) en comptant le nombre de chansons apparten@ntlans les plus proches voisinsge

Les ésultats montrent que certains attributs (Style Techno, Genre Metal...) s@rhement
bien estings avec la similitude timbrale, avec deggsions parfois sW@rieuresa 95%. Toutefois,
ces attributs bien cages au timbre sont eX@mement rares: seulement 6 % des attributs sont es-
timés avec plus de 80% deé&mision, et plus de la mo@ides attributs obtiennent moins de 65%
(ce qui esta peine meilleur qu'une&tision binaire faite &atoirement). Cela indique queesr
peu de descriptions musicales haut-niveau ont wfmition consensuelle en termes d’'un timbre
prototypique.

D’autre part, on observe que tous les taxons d’'unégmie don@e n'ont pas le lame com-
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portement. Les genres “unplugged” ou “hard rock” sont de fortsétats du timbre, car ils cor-
respondené des signaux &)s homognes et typs. Toutefois, les genres “jingle” ou “electronica”
sont de petres corglats timbraux, car ce sont des group&s tieterogenes, et mal &finis en ter-
mes de couleur sonore. Cela entre en contradiction avec lagigrdtabituellement utilee enMIR
d’utiliser le meme espace detdision pour discriminer tous les taxons d’'unetgatrie donge.
Finalement, il appaitque beaucoup d’'attributs de la egorie “instrument” sont eux-aussi
mal mocklisés par la similitude timbrale. Cela montre que les jugements humains egrendé
timbre polyphonique ne sont pas lesultat imnédiat de perceptions bas-niveau, mais §tlute
raisonnements cognitifsvollés, &pendant par exemple du contextéabute et de la culture de

I'auditeur.

7.2  Le rdle du contexte et des coglations haut-niveau (Exgerience 10)

Nous montrons ici qu'il existe ganmoins de &s importantes cagtations statistiques entre les
attributs, inépendamment de leur ancrage sur le timbre, gutlent la possibilé d’'un important

effet de contexte lors des processus @eision. Pour ce faire, nous mesurons lépéndance
statistique entre tous les couples d’attributs de la base, avec le test duréh{Rearson’sy?).
Parmi les couples d’attributs les moins @méndants statistiquement, on observe plusieurs types de

corrélation:

e Tautologies: Un certain nombre de dgations traduisent des associations triviales de mots

lexicalement proches, comme “TextCategory Christmas” et “Situation Christmas

e Sur-apprentissage: des daations dies a I'existence d'un tout petit nombre, non
repesentatif, de chansonsgsentant une combinaison partiéué d’attributs, par ex. “Toutes
les chansons parlant de bicyclette utilise de la guimbarde”. Ce geneglés non pertinentes

sont facilesa éviter en pratique, par filtrage ou validation céss

e Exclusions: des cogtations regatives, d'ordre logique: une chanson ne fidrea la fois de

tempo “constant&t“varié”, ou “vocale”et “instrumentale”.
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e Associations @mantiques: des c@lations intringques aux termes utiés, de I'ordre de la
psycholinguistique, et qui n'ont que p@wvoir avec leur utilisation dans un cadre musical.

Par ex. une chanson “puissantpdverfu) est une chanson “forte’sfrong, une chanson qui

parle d“anniversaire” esi utiliser lors d“occasions giales”.

e Connaissances musicales: des elations qui ne sont pas des pr@tes intringques des
termes emplogs, mais des prof@€s extringques propres au domaine musical, par ex. des
connaissances historiques ou culturelles entre genres (“Rap” et ‘Ofif),lgenres et pays
(“bossa nova” et “Besil”), genres et instruments (“hip hop” &poken vocals’), genres et
époques (“rag time” et “1930's”), et @me des aspects plus subjectiésh la perception du

timbre (“la flute cée un son “chaleureuxi@rm)”).

Ces Esultats suggrent que beaucoup deétadonges musicales haut-niveau peuvefiee
tivementétre ancees sur perception du timbre, mais uniquement en exploitant cesatmmns

haut-niveau avec les meilleurs oglats timbraux.

7.3  Un mockle hybride d’ancrage de descriptions haut-niveau

Nous pésentons ici un algorithme guéalise ce projet, en utilisant une mesure de similitude tim-
brale comme amorcagbdotstrap pour estimer quelques attributs bien &#s au timbre, puis en
utilisant des arbres deedision pour estimer d’autres attributs non étgs directement, mais pour
lesquels il existe des cdlations haut-niveau avec I'ensemble des attributs apsdimbralement.
Les resultats, pgliminaires sur 45 attributs choisiséatoirement parmi les 801 disponibles,
montre que l'utilisation de cogetations haut-niveau d’'ordre culturel permet d&lmrer la pécision
des estimations faites uniquement avec le timbre. Dix attributs voienttaspon de leur estimation
augmenter de plus de 10%, et 15 attributs ont uieipion finale sugrieurea 75%. En particulier,
deux attributs de la cagorie “instrument” (“guitare” et “choeur”), qui sont deépies corelats
timbraux (60%), sont agéliorés en utilisant des cdriations avec d’autre attributs, ce qui illustre la

pertinence de notre approche.
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Conclusion : Vers des moeéles cognitifs

Les experiences dcrites dans cettétude illustrent un certain nombre de contradictions entre les
mockles computationnels du timbre polyphonique et sa perception humaine. Notgnmoies
avons constétque les observations instantas n’ont pas toutes laéme importance perceptuelle,
gui en particulier ne &pend pas de leur saillance statistique par rapgptetr distributiora long-
terme. Cet fet est possiblemerit I'origine deshubsobsenés sur tous les algorithmeéfudiés

ici. L'approche “GMM de MFCCs” cge une reg@sentation de I'objet sonore qui est essentielle-
mentextensionelle Cela sembl@tre un moéle sufisant pour les textures environnementales, qui
d’une certaine fagon, sonéfinies exclusivement par ce qu’elle sont, statistiquement. Toutefois,
nos ex@riences montrent que la perception de la musique, et pagtienlent de textures poly-
phoniques extraites de morceaux connus, est une construction pieénegrdintensionnelle En
particulier, certains timbres sont plus saillaatk perception que d’autres: la préme chose que
nous percevons d’'une chanson d'un artiste @oest souvent le timbre particulier de sa voixéme

si celle-ci n'est pas @dominante d’une point de vue statistique, et non I'accompagnearizade

de guitare, piano ou autres.

En d'autres termes, nous “entendons” quotidiennement dans la musigyghpoigue des
choses qui ne sont pourtant paggentes de facon significative (statistiquement) dans le signal
sonore. La musique que noestendongtre du piano est surtout de la musique que nous nous
attendonsa étre du piano. Ces paradoxes statistico-perceptifs, dont I'existencaitd@aintenant
étreétablie de facon rigoureuse, expliquent en grande partiédaatord entre les meks algo-

rithmiquesétudes ici et la perception humaine.
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Appendix

Composition of the test database

In the context of large, systematic evaluation of very many algorithm varit@subjective eval-
uations of each possible similarity variant by human subjects, as was dothe fpsychophysical
investigations described in Chapter 2, seems unpractical. Howevertiebjegaluation is also
problematic, because of the choice of a ground truth to compare the méasiBeveral authors
have proposed solutions for this: Logan and Salomon (2001) consideg@od match a song which
is from the “same album?”, “same artist”, “same genre” as the seed song.alaet@l. (2003) also
propose to use “styles” (e.g. Third Wave ska revival) and “tones”. (emgrgetic) categories from
the All Music Guidé. Berenzweig et al. (2003) push the quest for ground truth one stdeflby
mining the web to collect human similarity ratings.

For this study, we have constructed a test database of 350 song itenmsgstsaat from the

Cuidado database (Pachet et al., 2004), which currently has 15,466lesp3t is composed of 37

clusters of songs by the same artist, which were refined by hand to sasdfjit®onal criteria:

e First, clusters are chosen so they are as distant as possible fromatheraithis is realized
e.g. by choosing artists of veryftirent genres, that span the whole space of music available

in the database (frofBeethovero The Clash.

*www.allmusic.com
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e Second, artists and songs are chosen in order to have clusters ttanbrally” consistent
(all songs in each cluster sound the same). This is realized typically bgicigogets of songs
for a given artist that all have a distinguished “sound” sighature ofengperiod of activity of
the artist. For instance, all songs from Beatlescluster come from their 1963-1964 albums
(Please Please MaNith the BeatlesA Hard Day’s NightandBeatles for Salg released on

Capitol.

¢ Finally, we only select songs that are timbrally homogeneous, i.e. there igrtexure
change within each song. This is to account for the fact that we only ceengmad compare
one timbre model per song, which “merges” all the textures found in thedsdnthe case of
more heterogeneous songs (e@ueen - Bohemian rhapsaoghhigher-level models such as
a segmentation step could increase the accuracy of the measure, btegudhues are not

considered in this study (see for instance Foote (2000)).

This test database is constructed so that nearest neighbors of asgivgrshould optimally

belong to the same cluster as the seed song. Table A.1 lists the clusters in Hasdata
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Table A.1: Composition of the test database. The “descriptions” were tlikem the AMG
(www.allmusic.com).

| Artist \ Description | Size |
ALL SAINTS Dance Pop 9
APHEX TWIN Techno 4
BEATLES British Pop 8
BEETHOVEN Classical Romantic| 5
BRYAN ADAMS Pop Rock 8
FRANCIS CABREL French Pop 7
CAT POWER Indie Rock 5
CHARLIE PATTON Delta Blues 10
THE CLASH Punk Rock 21
VARIOUS ARTISTS West Coast Jazz | 14
DD BRIDGEWATER Jazz Singer Trio | 12
BOB DYLAN Folk 13
ELTON JOHN Piano Pop 5
FREHEL French Prewar Singer 8
GARY MOORE Blues Rock 9
GILBERTO GIL Brazilian Pop 15
JIMI HENDRIX Rock 7
JOAO GILBERTO Jazz Bossa 8
JONI MITCHELL Folk Jazz 9
KIMMO POHJONEN | World Accordion | 5
MARDI GRAS BB Big Band Blues | 7
MILFORD GRAVES Jazz Drum Solo | 4
VARIOUS “Musette” Accordion| 12
PAT METHENY Guitar Fusion 6
VARIOUS ARTISTS Jazz Piano 15
PUBLIC ENEMY Hardcore Rap 8
QUINCY JONES Latin Jazz 9
RASTA BIGOUD Reggae 7
RAY CHARLES Jazz Singer 8
RHODA SCOTT Organ Jazz 10
ROBERT JOHNSON Delta Blues 14
RUN DMC Hardcore Rap 11
FRANK SINATRA Jazz Crooner 13
SUGAR RAY Funk Metal 13
TAKE 6 Acapella Gospel | 10
TRIO ESPERANCA | Acapella Brasilian | 12
VOCAL SAMPLING Acapella Cuban | 13







Appendix

Experiment 1 - Details

This appendix gives full details abolkperiment 1 (Chapter 5), in which we explore the space of
polyphonic timbre models by applying transformations (so-callesign patternsto the prototyp-
ical algorithm described in Chapter 4. The evaluation methodology followsdbkeription made

in Chapter 5. Notably, we report results using scoreR-pfecision (the precision measured after
R documents have been retrieved, whirns the number of relevant documents) averaged over all

queries in the test database. The complete analysis of these results candhefChapter 5.

B.1 Tuning feature and model parameters (patterns 3.2.1 and 3.2.2)

As a first evaluation, we wish to find the best set of parameters for thmalrggorithm (“GMMs

of MFCCs"). We explore the space constituted by the following parameters :

e Signal Sample Rate (SR): The sample rate of the music signal. In the clasaenoak
of Fourier analysis, a given sample r@&&invalidates all frequencies abO\%B. Humans
can hear vibrations ranging from about 20 Hz to approximately 20 kHzaspling that
doesn't extend this far will have a detrimentdileet on the resultant quality. The red book
standard for audio CD is 44kHz, and high-quality digital recording equipments typically

offer sample rates up to 96 or 192kHz. The original value used in AucouamgtiPachet
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(2002b) is 11KHz. This value was chosen mainly to reduce the CPU runtithe pfototype

Matlab implementations.

e Number of MFCCs (N): The number of the MFCCs extracted from eachdraf data. The
more MFCCs, the more precise the approximation of the signal’s spectrun alscmeans
more variability on the data. As we are only interested in the spectral engelopein the
finer, faster details like pitch, a large number may not be appropriate. figiea value used

in Aucouturier and Pachet (2002b) is 8.

e Number of Components (M): The number of gaussian components used3iviliieto model
the MFCCs. The more components, the better precision on the model. Hodepending
on the dimensionality of the data (i.e. the number of MFCCs), more precise modglsema

underestimated. The original value is 3.

¢ Distance Sample Rate (DSR): The number of points used to sample from thes@Giivtier
to estimate the likelihood of one model given another. The more points, the merigipn

on the distance, but this increases the required CPU time linearly.
e Window Size :The size of the frames on which we compute the MFCCs.

As this 5-dim space is too big to explore completely, we make the hypothesiséhafltrence
of SR, DSR, and Window Size are both independent of the influence @fd\NVa However, it is
clear from the start that N and M are linked: there is an optimal balance touoel fbetween high

dimensionality and high precision of the modelimgise of dimensionali}y

B.1.1 influence of SR

To evaluate SR, we fix N, M and DSR to their default values used in Audeutamd Pachet (2002b)
(8,3 and 2000 resp.). In Table B.1, we see that the SR has a positivena#loa the precision.
This is probably due to the increased bandwidth of the higher definitionlsjgmaich enables the

algorithm to use higher frequency components than with low SR.
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Table B.1: Influence of signal’'s sample rate
SR | R-Precision
11kHz 0.488
22kHz 0.502
44kHz 0.521

0,6
05 .¢0$¢ 444 4 4
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0,3
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Figure B.1: Influence of the distance sample rate

B.1.2 influence of DSR

To evaluate DSR, we fix N- 8, M=3 and SR 44KHz. In Figure B.1, we see that the DSR has
a positive influence on the precision when it increases from 1 to 10@Dthet further increase

has little if any influence. Further tests show that the optimal DSR does nendem either N or M.

In Appendix D.3, we use this property and the resulting trgtieetween precision and cputime

to greatly optimize the time needed to compute nearest neighbors

B.1.3 influence of N;M

To explore the influence of N and M, we make a complete exploration of tlheiassd 2-D space,
with N varying from 10 to 50 by steps of 10 and M from 10 to 100 by step$ofThese boundaries
result from preliminary tests (moving N while 8, and moving M while N-8) showing that both
default values N8 and M=3 are not optimal, and that the optimal (N,M) was well above (10,10).
Figure B.2 shows the results of the complete exploration of the (N,M) space.

We can see that too many MFCQs & 20) hurt the precision. When N increases, we start to
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Figure B.2: Influence of the number of MFCCs and the number of comg®nen

take greater account of the spectrum’s fast variations, which arelated with pitch. This creates
unwanted variability in the data, as we want similar timbres witfiedent pitch to be matched
nevertheless.

We also notice that increasing the number of components at fixed N, amddéieg N at fixed
M is eventually detrimental to the precision as well. This illustrates the curse ofndiorality
mentioned above. The best precisipn= 0.63 is obtained for 20 MFCCs and 50 components.
We can also note that the number of MFCCs is a more critical factor than theemwh@aussian
components ¥YM, N # 20, p(Np = 20, M) > p(N, M). This means we can decrease M to values
smaller than optimum without much hurting the precision, which is an interesting psithe

computational cost of comparing models depends linearly on M.

B.1.4 influence of Windows Size

To evaluate the influence of the window size used to segment the wavefeetfig,N = 20, M=50,
SR=44 KHz and DSR= 2000. In Figure B.3, we see that the window size has a small positive
influence on the precision when it increases from 10 ms to 30ms, but ttia¢fincrease up to 1
second has a negativéiect. This behaviour results from the fact that MFCCs are only meaningful

on stationary frames (larger frames may include more transients and vag)adiod that larger
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Figure B.3: Influence of the windows size

frames means less data available for the training, which decreases tisiopre€the models.

B.2 Alternative distance measure (pattern 3.2.4)

Some authors (Logan and Salomon (2001); Berenzweig et al. (2003)pbse to compare the
GMMs using the Earth Mover’s distance (EMD), a distance measure meeoirtpare histograms
with disparate bins (Rubner et al. (1998)). EMD computes a generahdestzetween GMMs by
combining individual distances between gaussian components. It isdleBriee minimum amount
of work needed to change one set of gaussian components into the Tleemotion of “work” is
based on a user-defined distance between individual componenténpleenentation of EMD is

based on a classical solution to tinensportation problem

The computation of the distance between 2 GMMsdJ is defined as a minimum flow prob-
lem between a set of suppliers (the gaussian components of GMMd a set of consumers (the
components of GMMJ). Suppliers have an amount of supply, which is the mixture cd&cient
of the corresponding gaussian component (see Section3.1). Similarlpixhee codficients of
consumers define their capacity. Shipping a unit of supply from a supplieera consumew; is

associated with a cosf;. We want to find a set of flow§; (i.e. the amount of supply shipping from
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Figure B.4: Earth Mover’s Distance between 2 Gaussian Mixture Modelsgd as a transportation
problem between suppliers (components of GMMnNnd consumers (components of GMY

each supplier to each consumer) that minimizes the overall cost:

cost= ZZC”‘ fij (B.1)
i

This is a linear programming problem, subject to the following constraints :

fi >0 Vi,j (B.2)

Dot o=wp V] (B.3)
i

Zfij <w Vi (B.4)
,-

Constraint B.3 ensures that supply only flows from suppliers to consur@enstraint B.4 ensures
that consumers are filled to their full capacity, while Constraint B.4 forappléers to send no more
supply than their initial amount. Note that the constraints are compatible sincenisyroction

2iW = X;w; = 1. A simple solution to tha above system can be found by the classic simplex

method (Press et al., 1986).

The costg;; between individual gaussian components can be defined e.g. as theKidimck
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Table B.2: Distance function
Distance | R-Precision

EMD-KL 0.477
EMD-MA 0.406
DSR=2000 0.488

Leibler distance (as seen in Section 3.1), or the related Mahalanobis distanc

N (8.5)

To evaluate the EMD against our sampling scheme using DSR, we #x8NM=3 and SR
11KHz. We compare EMD with Kullback-Leibler (KL), EMD with Mahalanobl&A&) and sam-
pling with DSR=2000. In Table In B.2, we see that EMD with Mahalanobis distance performs
worst, and that EMD with Kullback Leibler and sampling are equivalent (wiglight advantage
to sampling). The dierence between MA and KL is probably due to the fact that MA takes less
account of covariance filerences between components (2 gaussian components having same means

and diferent covariance matrices have a zero Mahalanobis distance).

B.3 Feature Composition (pattern 3.2.5)

B.3.1 Processing commonly used in Speech Recognition

MFCCs are a very common front-end used in the Speech Recognition comniRalijner and
Juang, 1993), and a variety of pre and post-processing has begramdeevaluated for speech

applications. Here we examine the influence of 6 common operations :

e ZMeanSource: The DC mean is removed from the source waveformebading the actual

signal analysis. This is used in speech to remove fiesets of A-D conversion.
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e Pre-emphasis: It is common practice to pre-emphasize the signal by apthigifigst order

difference equation :

Sh=S—-Ks1 (B.6)

to the samples, in each window, wittk a preemphasis cfiicients, O< k < 1. Pre-emphasis
is used in speech to reduce theets of the glottal pulses and radiation impedance and to

focus on the spectral properties of the vocal tract.

Dither: Certain kind of waveform data can cause numerical problems withilcecoding
schemesfinite wordlength gect9. adding a small amount of noise to the signal can solve

this. The noise is added to the samples using :
S, = S+ qQRND (B.7)
whereRN D is a uniformly distributed normalized random value and q is a scaling factor.

Liftering: Higher order MFCCs are usually quite small, and this results in a wddge of
variances from low to high order. this may cause problems in distribution modéelimere-
fore it is common practice in speech to rescale thdfaments to have similar magnitude.
This is done by filtering in the cepstrum domairitering) according to :

, L . 2n
ch=01+ > sin Tcn) (B.8)

wherelL is a liftering parameter.

Cepstral mean compensation (CMC): Theeet of adding a transmission channel on the
source signal is to multiply the spectrum of the source by a channel transfgtion. In
the cepstral log domain, this multiplication becomes an addition which can be rdrbgve

subtracting the cepstral mean.
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e 0'th order codficient: The 0'th cepstral paramet€p can be appended to tleg. It is corre-

lated with the signal’s log energy :
E= Iogz s (B.9)

Table B.3 shows the results on the test database. We notice that subtraetoggpstral mean
severely degrade the performance. Pre-emphasis and Dither havefiittieoempared to the orig-
inal MFCCs. Nevertheless, liftering, normalizing the original signal armmkading the 0'th coé-
cient all improves the precision of the measure.

We should note here that the finding that including cO slightly improves themeahce is at
odds to some of the results reported in Berenzweig et al. (2003). Inasgy the overall influence
(either positive here or negative elsewhere) of this variant is smallwgoércent). We further

discuss these results in Chapter 6.

B.3.2 Spectral Contrast

In Jiang et al. (2002), the authors propose a simple extension of the MigoGithm to better
account for music signals. Their observation is that the MFCC computaterages the spectrum
in each sub-band, and thus reflects the average spectral chat@steri$owever, very dierent
spectra can have the same average spectral characteristics. Notablypbrtant to also keep
track of the relative spectral distribution of peaks (related to harmonic coergs) and valleys
(related to noise). Therefore, they extend the MFCC algorithm to not ampate the average
spectrum in each band (or rather the spectral peak), but also éatemwéthe variance, thepectral
contrast(namely the amplitude between the spectral peaks and valleys in each dubGduis
modifies the algorithm to output 2 cihieients (instead of one) for each Mel subband. Additionally,
in the algorithm published in Jiang et al. (2002), the authors replace théltdddank traditionally
used in MFCC analysis by an octave-scale filterbay«C,, C1-C», etc.), which is assumed to be

more suitable for music. They also decorrelate the spectral contraicmods using the optimal
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Table B.3: Influence of Feature Variants

Variant R-Precision
Acceleration® = 50 0.179
SpectralMP7 0.514
Delta® = 50 0.522
Cepstral Mean Compensation 0.525
SpectralMP7 0.573
Delta® = 10 0.60
Acceleration® = 10 0.610
Delta® = 2 0.624
Delta® = 5 0.625
Acceleration® = 5 0.625
Pre Emphasik = 0.97 0.628
Acceleration® = 1 0.628

Original MFCC | 0.629 |
Ditherq = 5% 0.629
Lifter L = 22 0.630
Delta® = 1 0.631
ZMeanSource 0.631
Acceleration® = 2 0.631
0'th codficient 0.652
Best 3 0.605
Best 4 0.609
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Table B.4: Influence of Spectral Contrast
Implementation| R-Precision

SC1 0.640
SC2 0.656
SFN 0.636

standard MFCC 0.629

Karhunen-Loevéransform.

We have implemented and evaluated two variants of Spectral ContrastHaereonvenience,
both variants use the MFCC Mel filterbank instead of the authors’ Octavesfileend use the
MFCC'’s Discrete Cosine Transform to approximate the K-L Transformis Tias the advantage
of being data independent, and thus better adapted to the implementation of dtgita&; where
one wish to be able to assess the similarity between any duplet of song witisbhifiing to con-
sider the whole available corpus (as opposed to the authors’ supecléssification task, where
the KL can be trained on the total data to be classified). Moreover, it resdgibeen reported that
the DCT was a satisfying approximation of the K-L transform in the case ofonsignals (Logan
(2000). In the first implementation (SC1), thdlgan codiicients (whereNchan is the number of
subbands in the filterbank) are all appended in one block, and redodédepstrum cofficients
using the dct. In the second implementation, both streams of datdN{thepeaks and th&chan
Spectral Contrast) are decorrelated separately with the DCT, resultingde@stral cofficients, as
if we used e.g. delta céigcients.

We see that both front-ends perform about 1% better than standarCh)Fd that the
implementation performs best. For further improvement, Spectral Contnalsitloe® combined with

traditional Pr@Post Processing as seen above.

B.4 Feature Equivalence (pattern 3.2.3)

We have tried replacingppending to the MFCC feature set a set of MPEG7-standardizedapectr

descriptors based on moments of the spectrum, as described in SectioSBe2&ralCentroid,
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SpectralSpread, SpectralKurtosis, SpectralSkewness, SpectralFlatness,
SpectralRolloff, SpectralFlux. The resulting feature vector (dim 7) was modelled
with M = 20 Gaussian mixture models, baik isand concatenated with a vector of 20 MFCCs.
Table B.3 shows the performance of both approaches. The MP7-oatyréeset performs
significantly worse than the best MFCC settins£ 20, M = 50), but also than a set of MFCCs
with equivalent dimensions\ = 8, M = 20) (Figure B.2). The combined feature vector of MFCC

and MP7 descriptors also performs slightly worse than both the optimal MBf@QCsettings.

B.5 Modelling dynamics (pattern 3.2.7)

B.5.1 Delta and Acceleration Cofficients

It is known since Furui (1986) that the performance of a speeclgrition system can be greatly
enhanced by adding time derivatives to the basic static parameters. Defi@i€ots are computed

using the following formula :
_ Zg):l 0(Ct+o — Ct—p)

d
' 259 62

(B.10)

whered; is a delta cofficient at time t, computed using a time wind@v The same formula can be

applied to the delta cdigcients to obtain the acceleration ¢beents.

Table B.3 shows the performance of adding deltg@nacceleration cdicients to the original
MFCC dataset, for various values®f We notice that computing delta and acceleratiorflotients
for large time windows severely degrade the performance. Howevenapng short-term delta and

acceleration cd@cients improves the precision of the measure.

We have tried to combine the best operations in Table B.3 (which is referaei“®est 3" and
“Best 4”), however this does not further improve the precision. Weikshalso consider fine-tuning
the number of Gaussian components again considering the increase inidimaéitysdue to the

appending of delta and acceleration méents.
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B.5.2 Texture windows

The previous experiment shows that adding some short-term accothre MFCC statistics (i.e.
delta or acceleration cfiicients) has a positive (although limited) influence on the R-precision. In
this paragraph, we investigate the modelling of the long-term statistics of thedeaactors.

It has been shown that, for modeling music, using a larger scale texturewiaod comput-
ing the means and variances of the features over that window results ificsighimprovements
in classification. Tzanetakis in Tzanetakis and Cook (2002) reports\anoomg 15% precision
improvement on a genre classification task when using accumulations of Ugoub 40 frames
(1 second). This technique has the advantage of capturing the longrteune of sound textures,
while still assuring that the features be computed on small stationary windeypsdized necessary
in section B.1.4)

We report here the evaluation results using such texture windows, fatuaidavindow sizen;
growing from 0 to 100 frames by steps of 1@; = O corresponds to using directly the MFCCs
without any averaging, like in section B.1. Fay > 0, we compute the mean and average of the
MFCCs on running texture windows overlappinguy— 1 frames. For an initial signal of frames
of N codlicients each, this results m-w; + 1 frames of A codficients :N means and\ variances.
We then model the resulting feature set withlacomponent GMM. For the experiment, we use the
best parameters obtained from section B.1,Nles 20 andM = 50. Figure B.5 shows the influence
of w; on the R-precision. It appears that using texture windows has no santifitfluence on the
R-precision of our similarity task, contrary to the classification task repdoye@izanetakis : the
maximum increase of R-precision ig106 forw; = 20, and the maximum loss is4% forw; = 10.

Several directions could be further explored to try to adapt Tzanetsikggjestion of texture
windows. First, the computation ®f-dimensional means and variances doubles the dimension of
the feature space, hence the optimal number of GMM compoistwould be adapted accordingly.
Second, the use of one single mean (and variance) vector for eacbmwvingy create a “smearing”
of very dissimilar frames into a non-meaningful average. Itis likely thatgugismall size GMM for

each texture window would increase the precision of the modelling. Howtingraises a number
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Figure B.5: Influence of the texture window size

of additional issues which were not studied here, among which :
e Which is the optimal number of gaussians, for each frame, and then folabal gnodel ?
e Should the gaussian centres be tracked between neighboring frames ?

Finally, in the single-component case, the mean of the frame-based matnsdgwoverlap) of a
signal{a;} is trivially equal to the global mean :

i=n-1 1 j=@+1)m 1 i=nm-1

ZE Z aj:—Za,- (B.11)

1

n = j=im+1 i=0
Although the extension of this behaviour in the case of multi-component GMévieat be writ-
ten explicitly (as it results from a learning algorithm), this suggests that thenfesence of this
processing remains unclear. The extra information captured by textudewsnmay be more ap-

propriately provided by an explicit segmentation pre-processing, or tamsis/e machine learning

techniques like hidden Markov models, as we investigate in section B.5.3.

B.5.3 Dynamic modeling with hidden Markov models

The fact that appending delta and acceleratiorfanents to the original MFCCs slightly improves

the precision of the measure suggests thastwet-term dynamicef the data may be an important
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factor. Short-term dynamical behavior in timbre may describe e.g. the waglysttate textures
follow noisy transient parts. These dynamics are obviously important to @artpnbres, as can
be shown e.g. by listening to reverted guitar sounds used in some conteynpaiasongs which
bear no perceptual similarity to normal guitar sounds (same static cont@etedt dynamics).
Longer-term dynamics describe how instrumental textures follow eacln, @it also account for
the musical structure of the piece (chgruerse, etc.). As can be seen in section B.5.1, taking
account of these longer-term dynamics (e.g. by using very large dedfacgents) is detrimental
to the similarity measure, asftirent pieces with same “sound” can be prettyedent in terms of

musical structure.

To explicitly model this short-term dynamical behavior of the data, we try camiethe GMMs
by hidden Markov models (HMMs, see Rabiner (1989)). A HMM is a seBEbfMs (also called
states) which are linked with a transition matrix which indicates the probability iofjoom state
to another in a Markovian process. During the training of the HMM, done thghBaum-Welsh

algorithm, we simultaneously learn the state distributions and the markoviarspioeveen states.

To compare HMMs with one another, we adapt the Monte Carlo method us&Mbfts : we
sample from each model a large numblerof sequences of sidér, and compute the log likelihood
of each of these sequences given the other models, using equatioﬁlﬁiel;&obabilities?’(Sf“/B)

are computed by Viterbi decoding.

Previous experiments with HMMs by the authors (Aucouturier and Sargfléd,a) have shown
that models generalize across the songs, and tend to learn short-tesitidinarrather than long-
term structure. This suggests that HMMs may be a good way to add sommidghanodeling to
the current algorithm. In figure B.6, we report experiments using a sinl®ier song, with a
varying number of states. The output distribution of each state is a 4-canp@MM (the number
of component is fixed). To compare the models, weNgse= 200 andNg = 100.

From figure B.6, we see that HMM modeling performs no better than static GMieliny.
The maximumR-precision of 0.632 is obtained for 12 states. Interestingly, the precisioieveed

with this dynamic model with 4*1248 gaussian components is comparable to the one obtained with



204 Chapter B. Experiment 1 - Details

R-precision
0,7
pteattret —p ¢y

0.6 -
0.5 \
04

T T T T T T

0 ] 10 15 20 25 30 states

Figure B.6: Influence of the number of states in HMM modelling

a static GMM with 50 states. This suggests that although dynamics are a fastdulto model the
timbre of individual monophonic instrument samples (see for instance tdeB@yer et al. (2003)),
it is not a useful addition to model polyphonic mixtures like the ones we arkngeaith here.

Probably, the dynamics modeled here by the HMMs are not meaningful, thiegare a mix from

all the individual sources, which are not synchronised.

B.6 Building in knowledge about note structure (pattern 3.2.8)

We investigate here 2 techniques to build in higher-level knowledge abestiincture of musical

notes, hamely the segmentation between transient and steady state.

B.6.1 Removing noisy frames

Following the intuition of Jiang et al. (2002), we investigate whether removiag#cussive and
noisy frames in the original signal would improve the MFCC modeling of the mugiaks. As
a pre-processing, we do a first pass on the signal to compute its fresad-ISpectral Flatness

(Johnston (1988)), with the following formula :
SFMyp = 10log g — (B.12)
b G0 4 .

whereGy, is the geometrical mean arg, the arithmetical mean of the magnitudes of the spectrum

on each window. Spectral Flatness is notably used in Speech to segnwt &od unvoiced sig-
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nals. Here, we discard frames with a high spectral flatness (usingthgt8ria) before computing
traditional MFCCs on the remaining frames. This crudely amounts to removirngatigent part of
the notes, and keeping the steady states. This is way to bypass the limitatior€afd\tressed in
Jiang et al. (2002) (poor modeling of the noisy frames), without providimgcure for it, as does

e.g. the Spectral Contrast feature variant investigated above.

B.6.2 Note Segmentation

In typical implementations, MFCCs are computed with a constant frame-ratéhasmay average
potentially very distinct audio events, namely transient and steady-statessidal notes. In this
section, we investigate whether synchronizing the MFCC extraction to therlighel knowledge
of note segmentation can improve the global modelling of polyphonic timbre similarity.

We process each audio file with the custom automatic segmentation algorithnbeésa
Appendix E. We segment each note found by the algorithm into transienstaady-state, by
defining the transient as the time it takes to reach 80% of the maximum energy thi¢hirote.
We then compute one MFCC vector for the transient part, FCC vectors for the steady-
state, using 2048-point overlapping Hamming windows. This amounts to corgpMEQCs with a
variable frame-rate, synchronized on the transient parts of the sigi@gesulting set of features

is then modelled with 50-state GMMs as above.

B.6.3 Comparison of the 2 approaches

Table B.5 shows a comparison of the performance of the two approaekeslid here with the
baseline approach. We observe that both front-end perform onltigligbtter than baseline, the
simple Spectral Flatness filter peaking with an unconvinciff§@improvement (absolute). Such
improvements are negligible compared to the considerable runtime degradatiinly for the sec-
ond approach. A possible explanation for these disappointing resultst ietiea if we carefully
segment predominant notes in a polyphonic context -like we do here-, ahbaitkground still con-

tributes a number of non-harmonic, transient and non synchronizetseat degrade the MFCC
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representation. Further investigation into this phenomenon can be fourithpte® 6 Experiment

2).

Table B.5: Influence of Note-structure knowledge

Implementation| R-Precision
standard MFCQ  0.629
SegMFCC 0.632
SFN 0.636

B.7 Model Equivalence (pattern 3.2.4)

We investigate in this section a number of alternative modelling of the MFCC distribilnan the

baseline GMM algorithm.

B.7.1 Pampalk’s Spectrum histograms

In Pampalk (2004), a simple approach to model the statistics of the specipa shproposed and
compared to GMM-based models. Itis a 2D histogram counting the number «f e loud-
ness level (out of 10 normalized values) is exceeded in a each fregband (on 20 Bark bands).
The histograms are then compared with simple euclidean distance in dim 20@uiftoes freely
distribute their implementation of this method as a Matlab Toalb#&¥hough computationally ef-
ficient, this method proved significantly worse than the GMM approach invaluation framework

(R-precision: 0.34).

B.7.2 MFCCs Histograms

A common alternative to parametric modelling such as Gaussian models is to upanaometric
algorithms, i.e. which do not require a training stage to estimate optimal valuetenfahparam-
eters such as gaussian mean and variance. A typical non-parametricisribéesimple histogram

of the feature data: the data range is divided into a number of bins, andstbgrams count the

*httpy//www.oefai.ateliagma
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number of feature values in each bin. However, as already illustratectctio8&.2.1, histograms
are extremely subjected to the curse of dimensionality. When the dimension efatiued set in-

creases, the number of bins grows exponentially, which makes the histogpaesentation of the
data extremely sparse. Typical histograms in dimensions greater than 2ai@ mot have a sin-
gle non-zero bin in common, which makes them impossible to use for distancautairop (and

for pretty much anything else). There have been ample research inttivadsgmpling methods
(Bruno et al., 2001; Thaper et al., 2002; Lim et al., 2003), but statbesfirt solutions don’t man-
age to raise the conceptual barrier higher than dimension 5. None ofretblods are applicable to
the 20-dimension space of MFCCs. Therefore, we investigate 3 apyme&mr adapting the MFCC

dataset to the requirements of the histogram method:

¢ Independent histograms for each dimension: We compute 20 histograrespmiding to
each dimension of the MFCC space. The histogram bins are uniformly distlilbxe@tween
the 10% and 90% percentile value in each dimension (absolute min and max d#ta po
usually results in spurious values that gives a false estimate of the tru@dgég.rHistograms
of corresponding dimensions are compared to one another with simple endlidemnce, and

the set of distances is averaged to give a final distance measure.

e \ector quantization using GLA: The above method makes the assumption tNEG@IT di-
mensions are independent, and that the co-occurrence of a tuple®s irakach dimension at
given time steps is uninformative. The discrete cosine transform usedMRBE algorithm
chain is a practical approximation of tikarhunen-Loevdransform (Logan, 2000) which
tends to decorrelate thefflirent dimensions, however this naturally does not imply that they
are independent. In this method, we propose to use vector quantizatigrig\Y€duce the
MFCC dataset to a 1-dimension, meaningful codebook, which still preséiymultidimen-
sional distribution. The Global-Lloyd algorithm (GLA) is an unsuperviséddan approach
that aims at best representing the global distribution of points. The distribafi@0-dim
MFCC vectors is clustered by the KMean algorithm (Bishop, 1995), aadtized using the
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cluster centres as codebook vectors: each point in the original distribistiguantized to
the index of the nearest cluster. The resulting 1-dimension signal is dner@ihon-uniform
guantization of the original, whose resolution is adapted to the original distiitsidensity.
A 1-dim histogram is then built on the quantized signal using a number of bl € the
number of codebook vectors. In order to compare the histogramstefatit songs, a com-
mon codebook must be computed for the whole database, using a globfflesgtire vectors

that should be as representative as possible of the total feature distributio

Vector quantization using LVQ: We investigate the use of a second typetafnguantization
algorithm to reduce the MFCC dataset to a 1-dimension, meaningful cokiérowhich we
can compute histograms: Learning Vector Quantization (LVQ, see Koh@gfb)). LVQ
is a supervised method, related to Kohonen maps, which choose codedmioks that best
account for the boundaries between pre-defined classes. A givelnen of codebook vectors
is initialised for each class. Then a learning phase cycles iteratively thralldata points,

and updates the closest codebook venfoto the current instancé using the rule:

t+1

met = ml + a(x - m) (B.13)

if Xt andm, belong to the same class, and

t+1

mgt = m, — a(X - mp) (B.14)

if X' andmi, belong to diferent classes (with @ « < 1 a learning rate, which may be constant
or decrease monotonically with time). If we define the following classification ogethn
instance x is decided to belong to class to which the nearest codebookmwetielongsthen
it can be shown that the values for imethat minimize the misclassification error in the above
method are the asymptotic values of thefound by the above learning rule. Therefore, LVQ

does not attempt to find a codebook that well represendighiebutionof each class (like the
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GLA algorithm), but rather that samples theundariesof each class’s Voronoi region. Like
for the GLA approach, once the sequence of each song’s MFCCdwmas duantized using
LVQ codebook vectors, a 1-dim histogram can be computed and comipaitesi histograms
of other songs. As above, a common codebook must be computed for dhetest database,

so the histograms of flferent songs can be compared.

Optimization of LVQ settings

We have found that the performance of Vector-Quantization appreaahd notably of LVQ, cru-

cially depends on a number of parameters:

e Codebook size: i.e. number of clusters in GLA quantization, and numbezabdbrs in LVQ

learning

e Training data size: i.e. the number of MFCCs vectors used to represagibtie distribution
of features for all possible songs. Both KMean clustering and iteraM@ learning are
too computationally and memory intensive to learn the distribution of all MFCC x&&bo
all songs (which would amount in the case of our test database to aj@@ 800 feature

vectors). Hence, this total distribution must be downsampled.

e Training data construction: Both GLA and LVQ need to be trained on aseptative subset
of the total MFCC distribution, i.e. a set of MFCC vectors that encompassgsnany diter-
ent timbres from very many flerent types of songs. We propose to use the cluster structure
of the test database (see 4.2.2) to ensure a high diversity of songss@ag cluster in the
database should contribute to the VQ training database. We parameterinastreiction of
the training data by 2 factors : the number of songs per clustgrand the number of frames
per song which should be keptl{). The total training database size is thereftiedN; per

cluster (with 37 clusters).

The sizes of the optimal codebook and training database are not indgpdraim one another.

More codebook vectors are typically needed to model a larger set toiréeectors. Figure B.7
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Figure B.7: Precision of Histogram comparison using Learning Vectomtadion for varying
number of codebook vectors and training data size (per cluster) (U8MAAO iterations)
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shows an exhaustive search over the space of both parametersrimge#sel precision of LVQ-
based histogram comparison, with a constant number of LVQ training itesati®®,000). It ap-
pears that to a certain extent, when the db size increases(from 100 foa8@$ks per cluster), the
optimal number of codebook vector also increases (from 50 to 500).et#wfor db sizes above
1000, optimal values are found for 200 codebook vectors. This pipl@plies that the number
of training iterations becomes too small toffstiently optimize larger codebooks. The best per-
formance (48,8%R-precision) is obtained for 200 codebook vectors and 2000 trainimgefsgper
cluster.

Table B.6 shows the influence of the two paramebéysndN¢ ruling the construction of the
training dataset. It appears that the crucial factor is the numberfigfrelt songs from which
the training frames are extracted: more precision is gained by incremewitigan by keeping it
constant and increasing;. This suggests that frames extracted from a given song are relatively
redundant for the training process, and that variations betwdknatit songs (which may not be
correlated to perceptual variations, e.g. bit-rate and width, amplitude noatiatizetc.) are crucial
to document in the training set.

Table B.6: Influence of training data construction for LVQ histogram caiepa. The reported
R-precision values are the maximum precision over all possible codebak siz

nsongs| nframes| data size| R-Precision
2 200 400 0.444
2 500 1000 0.463
3 200 600 0.464
3 500 1500 0.466
4 200 800 0.479
4 500 2000 0.488

Comparison of the 3 approaches

Table B.7 shows a comparison of the performance of MFCC histogram similasityg the opti-
mal settings for the 3 approaches. All 3 approaches use 200-bin kistegwhich correspond to

200 k-mean clusters in the case of GLA vector quantization and 200 cokiekators in the case
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of the LVQ. It appears that LVQ performs best for histogram comparisdich is no surprise as
the codebook vectors are constructed to best discriminate fifeeedtit possible sounds. GLA his-
tograms perform significantly worse, which can be explained by the fattlle majority kMean

clusters may span dense, common-core areas of the feature spatieysaddvote little resolution
to the modelling of more informative feature values. Surprisingly, the simplegriient approach
has a similar performance to the more complex GLA approach: this furthgestsythat the mod-
elling power of the GLA algorithm is spent on non-informative data, and tikess little advantage
of the statistical dependencies between MFCC dimensions. On the whole RGE Mistogram

approach, while computationally less expensive than Monte-Carlo disteamoains around 15%

less precise than the GMM approach with optimal settings.

Table B.7: Comparison of MFCC histogram comparison using 200 bins,estdeéttings for vector
guantization methods.

method | R-Precision
Indt Hist 0.41
GLA Hist 0.41
LVQ Hist 0.50

B.8 Borrowing from Image Texture Analysis (pattern 3.2.6)

In this section, we investigate a number of techniques inspired from theskfoisthe automatic

analysis of imagéextures

B.8.1 Image Texture Features

Texture shares this property with musical timbre that it seems to resist simpasdnsual def-
inition. It is the characteristic property of images such as found in FigureMBi8h makes them
recognizable as e.g. “wood” or “fabric”, and which lies in repeating past@f the spatial vari-
ations of the pixel intensities that translates various physical materials, tactighbreflection

gualities. The modelling of image textures is a much researched area in comigiger and has
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Figure B.8: Two image textures reproduced from MIT VisTex texturesapry (MIT, 1995): wood
(left) and fabric (right)

multiple applications for classification, retrieval and synthesis of imageseEent reviews of tex-
ture research, see e.g. Tuceryan and Jain (1998); Matsumoto arichidiah{1998). Similarly to
monophonic timbre recognition research (as reviewed in Chapter 2), muble @fork in texture
analysis is grounded on classic psychophysical experiments, mostynitalvork of Julesz et al.
(1973); Julesz (1973). Asking the question “when is a pair of texture @mdiscriminable, given
that they have the same brightness, contrast and color”, Julesz coajestthe texture images are
not pre-attentively (i.e. féortlessly) discriminable if their second-order statistics are identical. If
two textures do not dlier by their first and second order moments, but only by their third-order
statistics (or higher), their discrimination requires a deliberate cogniffeete Although complex
counter-examples have later been exhibited (Julesz, 1981), semderdrmoments seem to remain
a very salient feature for texture perception, and is therefore explojtedimerous proposals for

representing features computationally .

The most well-known and successful feature to exploit the secoret-stdtistics of textures
is probably the gray-level co-occurrence matrix (GLCM) as propdsetiaralick et al. (1973).
The GLCM of a given image estimates the joint probabihté'(i, j) that 2 pixels separated by a

displacement vectod (i.e. at a distancd along a directior) have the gray-level intensity value
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Figure B.9: Grey-level co-occurrence matrices corresponding to thetevious image textures:
wood (left) and fabric (right).

i andj. Itis computed by quantizing the gray-level values of the image into a nu@ladmins.
More precisely, the GLCMy, is a G? matrix, in which the  j) cell is computed by counting
the number of duplets of pixelgx,y), (X, y’)} separated b)TZI) and having their value$(x, y) and

f(X,y’) equal toi and j respectively:

hao(i, ) = cardif(xy) =i, f(x.y) =]} (B.15)

where (X,Yy) = (XY)+ (dcosd,dsing) (B.16)

As GLCM cannot possibly be computed for all valuesdadind g, we usually restrain td € 1,2
(in pixels) andg € 0,45,90, 135 (in degrees). Figure B.9 shows the GLCM corresponding to the
two image textures in Figure B.8, far = 2 and6 = 45. The matrices exhibit fierent shapes
and distributions along the main diagonal, thus revealifigidint spatial repetition patterns of the
pixels’ grey-level values. If most of the entries in the co-occurrenceixnare concentrated along
the diagonal, the texture is coarse with respect to the displacement%ctor

As G?-sized GLCMs are too high-dimensional to be compared directly (for cortipn rea-
sons, but also because they exhibit too much variability), Haralick et @r3)lhave introduced a

large number of 1-dimensional secondary features computed from tB&Gamong which we cite
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here the 6 most common:

Energy Yo 2o hd, ) (B.17)

Contrast  %Z25" 55 - 1)?h(, j) (B.18)

Homogeneity o Z?:‘Ol 1h+(|ii{')j| (B.19)

InverseDif ferenceMoment PPNy 12((ii’_j)j2)2 (B.20)
Entropy - X5 £ h(i, j) log(h(i, j)) (B.21)

Correlation PRy W (B.22)

wherepuy, uy andoy,oy denote the mean and standard deviations of the row and column sums of
the matrix, respectively (i.e. of the marginal distributiongi) and py(j)). GLCM features are
typically concatenated into a low-dimension feature vector, and featuterseaxf diferent images
are compared to one another using standard euclidean distance. Aanapiex_erski et al. (1993)

describes a successful application of GLCM features in the contexdimialical image recognition.

B.8.2 Application to Audio

We propose here to apply the same techniques to model the statistics of potyahdio textures.
Audio signals can be considered as one-dimensional images, each ffaméch is equivalent
to a pixel in the previous approach. The displacement vedtdnus reduces to a temporal ldg
between co-occurring frames. We investigate several representationirhicking the “gray-level”
value of an audio frame. As for first-order histograms described in Bah@ ¢ven more crudely),
co-occurrence matrices are practically impossible to compute for dimensgives than 1. Hence,

only scalar reductions of each frame should be considered.

Individual features

Natural candidates for scalar frame representation are the frameygdRiE), MPEG7 spectral

moment features such as Spectral Centroid, or individual MFCC (i&r,02nd order). For a
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given scalar feature, we compute the co-occurrence mitix) by counting the number of audio
framesf;, fi,q Separated byl time steps which have, for the given feature, the quantized valod

j respectively. Figure B.10 shows the co-occurrence matrices computdtedrames’ Spectral
Centroid for a number of polyphonic textures, organized by duplets of sisolags (2 Beethoven
piano sonata, 2 acoustic guitar folk pieces and 2 heavy rock tunes)b¥geve notable similarities
in the structure of the matrices for similar songs, and notalfferdnces between songs offdrent
kind. Table B.8 shows a comparison of a number of features on which Gt&gibe built. For this
experiment, individual features are quantized using 32 bins, compaiegl aitime-step of 1 frame.
For each GLCM, a vector composed of the 6 Haralick features desanltegliations B.17 to B.22
is extracted, and compared to similarly extracted vectors of other songsnaimalized euclidean
distance.

The precision achieved by individual features is typically around 15Picinis comparable to
the individual performance of similar features for e.g. instrument claasiit tasks (Eronen and
Klapuri, 2000). One can observe that some individual features sebmlietter suited to second-
order analysis than others: Spectral Centroid for instance is a bettsithias RMS for computing
frame co-occurrence. Individual features can be combined byatenating the 6 Haralick features
extracted from each GLCM into an@eature vector. One can see that combining MP7 spectral
moments improves the precision. This is even clearer when combining thecieafugach of the
first 20 MFCCs, which gives a precision of 36%. However, furthenlbiming spectral moments-

based and MFCC-based Haralick features doesn not further impreyeehision.

Influence of size, time step and distance algorithm

We investigate here the influence of various parameters on the perfaroatite associated dis-

tance measure :

e Time steps: The lag in frame number used to compute co-occurrence.staesB.9 shows

that time steps from 1 to 5 have little average influence on the measure.
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Beethaven - Allegretto Beethoven - Andante Con Moto

5 10 15 20 25 30 5 10 15 20 25 30

Bob Dylan - Girl From The Motth Country Francis Cabrel - Octobre

£ 10 15 20 25 30 5 10 ] 20 25 30

Bryan Adams - Heat Of The Might Clash - London Calling

Figure B.10: Spectral Centroid Co-occurrence matrix for a numberlgpponic textures.
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Table B.8: Comparison of features for GLCM feature comparison.

feature R-Precision
RMS 0.11
Spectral Rolldt 0.13
Spectral Flatness 0.14
Spectral Spread 0.15
Spectral Centroid 0.17
SC+SR+SF 0.20
1-order MFCC 0.14
2-order MFCC 0.13
Combined 20 MFCC 0.36
20 MFCG+SC+SR+SF 0.30

Table B.9: Influence of the number of time steps onRkgrecision of GLCM comparison based on
the Spectral Flatness descriptor.

Feature 1-frame step 2-frame step 5-frame step
Spectral Flatness  0.140 0.139 0.140

e Number of Bins: The number of discrete values used to quantize the featueerepresent-
ing each frame, and from which co-occurrences are found. Tab@dhdws that resolutions

from 5 to 64 have little influence on the measure.

Table B.10: Influence of the number of histogram bins onRk@ecision of GLCM comparison
based on the Spectral Flatness descriptor.

Feature 5 bins | 32 bins| 64 bins
Spectral Flatness 0.135| 0.14 | 0.138

e Distance Measure: GLCM feature vectors, using the 6 Haralick featie®sibed in Equa-
tions B.17 to B.22 are compared with euclidean distance. We test here 3 impléorentd

the distance:

— absolute(A), where feature vectors are compared without any normalization:

d(a,b) = Z (ali] - bfi])? (B.23)
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— normalized(N), where feature vectors are first normalized between 0 and 1 in each

dimension, using minima and maxima computed on the whole testing database:

d@ab) = > (anli] - buli)? (8.24)
an[i] a[']T:E']”['] (B.25)
bu[i] 'O[']T;'i']”['] (B.26)

— relative (R), where feature vectors are compared with increase ratios (thugethe

need for global bound computation):

(ali] - bli])2
9= 2. ingali, b (B.27)

Table B.11 shows that normalized euclidean distance performs best, trdlétize distance

can be used when global bound computation is not practical.

Table B.11: Influence of the euclidean implementation onRh@ecision of GLCM comparison
based on the Spectral Flatness descriptor.

Features A N R
Spectral Flatness 0.08 | 0.14 | 0.12

B.8.3 Vector Quantization

As seen in Section B.8.2, combining Haralick features for GLCMs computeda@ndimension of
a 20-dim MFCC set leads to a large improvement over individual feataresidered alone. How-
ever, this method makes the assumption that all MFCC dimensions are indepearttethat the
co-occurrence of a tuple of values in each dimension at given time stepsifsnmative. There-
fore, like for 1st-order histograms in Section B.7.2, we propose to ugengaantization (VQ) to
reduce the MFCC dataset to a 1-dimension, meaningful codebook, wilighreserves its multi-

dimensional distribution. A unique GLCM can then be computed on the quarigatgre signal,
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corresponding to a unique set of 6 Haralick features, which can bearechpo neighbor vectors
using euclidean distance.

We compare here the 2 VQ methods (GLA and LVQ) introduced in Section BytI2 their
optimal settings found above. Table B.12 compares the precision of both asethovarious set-

tings.

Table B.12: Comparison of features for GLCM feature comparison.

Algorithm R-Precision
LVQ GLCM Features 0.06
GLA GLCM Features 0.07
LVQ GLCM direct 0.44
GLA GLCM direct 0.48
LVQ Histogram 0.50
GLA Histogram 0.41

] Combined 20 MFCC GLCM Featurefs 0.36 \

We observe the following facts :

e Haralick features do not work: The classic Haralick features destiibEquations B.17 to
B.22 are extremely detrimental to the precision of the measure, when usedotized data

(7% R-precision).

¢ VQ better than individual CM: We therefore also investigate the direct Eetidcomparison
of the co-occurrence matrices, without reducing them using Haralidkriesa The perfor-
mance achieved by this method (48%) is more than 10% greater than that die8ertion

B.8.2 by combining individual dimensions.

e GLA better than LVQ for co-occurrences: Direct CM comparison shtives GLA-based

matrices are better representations than LVQ-based matrices.

e Co-occurrences no better than 1st-order: Table B.12 shows a compefithe performance
of MFCC-based CMs with simple first-order histogram similarity using both vepiantiza-

tion methods. It appears that the best CM distance (using GLA) is no bedtethib best dis-
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tance based on simple 1st-order histograms (using LVQ) (48% againdt BQffso appears

that, contrary to CM comparison, LVQ performs better than GLA for histmgcamparison.

¢ No improvement over GMMS of MFCCs: On the whole, the Vector QuantizatidnFCCs
and their modelling, either static with first order histograms or dynamical usiagé Texture
features, while computationally less expensive than GMM modelling, remaius@rl5%

less precise than the GMM approach with optimal settings, as reported inrSBctio

B.8.4 Conclusions of texture analysis
Haralick features not meant for Vector Quantization

Haralick features are successful representations for gray-lexatcurrence matrices, because they
mainly describe the distribution spread along the diagonal. However, teegcar features for
co-occurrence matrices based on vector quantized data. Contrarjfdonuguantization in one
dimension, the quantized data resulting from vector-quantization of multidimeddmatures is
non-ordered: neighboring bin values have no relation to one anotherefbre, no particular dis-
tribution can be expected along the main diagonal of the co-occurrende (eapect of course the

first diagonal itself, corresponding to self co-occurrence).

Vector Quantization successfully captures multi-dimensional co-aurrences

The fact that the performance of VQ-based CMs is greater than therperfice obtained by com-
bining the CMs of individual dimensions shows that Vector Quantization is aimgil represen-

tation for computing multidimensional co-occurrences.

LVQ not optimal for co-occurrence analysis

However, the specific LVQ-type of vector quantization does not seenoidde a good represen-
tation for computing co-occurrences. LVQ-codebook vectors are omihiizbest discriminate the

different possible sounds, and thus exhibit little overlap from texture to textaké\-codebook
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co-occurrence matrix between co-occurrence matrix between
LVQ codebook vectors KMean codebook vectors

Figure B.11: Co-occurrence matrices based on the same set of 20-d@C#MHEsing 2 vector
guantization methods: LVQ (left) and GLA (right). The LVQ-based matrix iarser than the
GLA-based one, thus yielding a poor representation for co-ocotgsen

vectors however are unsupervised k-means cluster centers, whittotspread over the whole dis-
tribution of MFCC points, thus ensuring that the quantized representatistapg between textures,
and that co-occurrence matrices can be compared with greater predisgune B.11 shows two
co-occurrence matrices based on the same set of 20-D MFCCs usingativedter quantization
methods. It illustrates the critical sparsity of LVQ-based CMs, and the mamr®beneous density

of GLA-based CMs.

But LVQ is optimal for first-order histograms

Contrary to CM comparison, LVQ performs better than GLA for histogrampmarison. The poor
overlap of LVQ basis creates too much sparsity in 2-dimensional co+@mrme analysis, but is
beneficial for 1-dimensional histogram comparison as the codebot&rsese constructed to best
discriminate the dferent possible sounds. GLA histograms perform significantly worsiefvdan
be explained by the fact that the majority of k-means clusters may span dens@on-core areas
of the feature space, and thus devote little resolution to the modelling of morenetive feature

values.
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Co-occurrence analysis is no better than 1st-order

The best CM distance (using GLA) is no better than the best distance bassthple 1st-order
histograms (using LVQ) (48% against 50%). This suggests that 2ret-etatistics as analysed by
CM, are not a factor as crucial for the comparison of sound texturdésiagor image textures.
This is reminiscent of the identical performance achieved by GMMs and dMiith the same
number of Gaussian components. This indicates that co-occurrergsiaifails to account for any
meaningful dynamics in audio data, and is at best equivalent to a static mibdsimilar degrees

of freedom.

Comparison with the “GMMS of MFCCs” approach

The Vector Quantization of MFCCs and their non-parametric modelling, eitéée with first order
histograms or dynamical using image texture features, is around 15% éessegathan the paramet-
ric approach with GMMs. However, the former is a lot less computationally dding than the
latter. The computation of distances between GMMs is based an expensive-Kdarlo estima-
tion of the Kullback Leibler divergence, which is unrealistic to compute on theHence, GMM
distances between songs need to be pre-computed and stored in largesnatder to be used
in query systems. Although we have proposéitent ways to do so in Roy et al. (2005), this
practically rules out the scaling up of such systems to very large music datgfag. of several
100,000 music titles). VQ-based histograms and CMs are compared usingsimydar Euclidean
distances, which are easy to optimize using multidimensional index structateasiD-trees, and
thus can be computed on the fly for very large database without havingréoastg precomputed

distance matrix.






Appendix

Comparison of implementation

performance

While many authors, such as Pampalk (2004), rely on Matlab implementations edrilous algo-
rithms, it appeared in this study that runtime performances were critical @ to@nable the testing
of many algorithm parameters over large ranges of values. Moreoeeneitd for large database
architecture and metadata-management tools posed the additional probleraberability be-
tween the algorithm implementations and the Java-based tools such as MCMaviB tirinally,
an additional constraint is the flexibility to modify the implementations in order to tmsamts,

which tends to favour proprietary implementations compared to third-partyceoedh

Therefore, we investigated a number of alternative and faster implemestdtiath for feature

extraction, distribution modelling and distance computations, which we compege h

C.1 Feature Extraction

Several implementations were developed and tested for feature extrac#iorely “typically”

MFCC computation.

225
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e MATLAB custom code: For the first prototype described in Aucouturiet Bachet (2002b),
we developed our own matlab code for MFCC extraction, of which we gére B schema-

tized view:

z=windowing(s,n,inc); % n-size hamming windows
f=rfft(z.’); % real-part fft
[m,a,b]=melbank(nchan,n,fs); % mel filterbank
pw=f(a:b,:).*conj(f(a:b,:)); % power spectrum
y=log(m*pw); % log of filtered spectrum

c=rdct(y).’; % discrete cosine transform

e MATLAB slaney: We tested an alternative matlab implementation of the MFCC algarith
provided my Malcolm Slaney’s Auditory Toolbox (Slaney, 1998). Morentlmair custom
code, this implementation relies on Matlab vectorized array manipulation routirtesh
supposingly makes it mordiient, but also more dicult to read. An illustrative example

of this rationale is the way the Mel filter bank dheients are computed:

mfccFilterWeights(chan,:) = ...

(fftFreqs > lower(chan) & fftFreqs <= center(chan)).* ...

triangleHeight (chan).*(fftFreqs-lower(chan))/(center(chan)-lower(chan)) + ...
(fftFreqs > center(chan) & fftFregs < upper(chan)).* ...

triangleHeight (chan) . * (upper (chan)-fftFreqs)/(upper(chan)-center(chan));

The expressionfftFreqs > lower(chan) & fftFregs <= center(chan)) designs a vector con-
structed by a vectorized logical AND between 2 vectoks (fftFreqs > lower(chan)) andb
= (fftFregs <= center(chan)) Which are themselves constructed by vectorized logical com-

parison operatorsa is a vector of 0 and 1, of the same size f@sFreqs (Which lists all
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sampled frequencies in the spectrum), and containing O for all frequérel®s1ower (chan)
and 1 above.a is intersected withb which similarly contains 0 for all frequencies above
center(chan) and 1 below. This results in a vector containing 1 betwss#mr (chan) and
center(chan) and 0 elsewhere. Thanks to vectorized statements, this vector is corsiructe
2 comparison operations, and one multiplication, while a naive implementation \Wwauél
required 2 comparisons, where is the size offftFregs. This binary vector is then multi-
plied by a linear increasing function of the frequency, and summed piezewith a sym-
metric descending linear function, which finally results in a triangular-shéfier between

lower (chan) andUpper(chan) .

e Compiled MATLAB: The previous Matlab implementations cannot be easily intediiato
the Java framework described in Section 4.3. However, Matlab providesption to auto-
matically generate fC++ code from matlab scripts. The code dynamically links to a large
set of proprietary dlls implementing the various libraries available in the Mathaboement.
From the machine-generated code (which is typicalfiiadilt to read), we then can generate
e.g a Windows executable file that can be called from Java through they@®aking the
java.lang.Runtime class’sexec() method. Note that, due to the limitedfber size for
standard input and output streams, the above method has to be combinedhvéghdathat
constantly reads and dumps the input, output and error streams of threcesdpfor it not to
block, and even deadlock (Monk et al., 2000):

Runtime rt = Runtime.getRuntime(); // get Runtime object depending on native environment
Process proc = rt.exec(myCmdString);// execute the native command, e.g. ‘‘mfcc.exe’’
Thread reader = new Thread(){// constantly reads out the process’s output stream
public run({
InputStreamReader isr = new InputStreamReader(proc.getInputStream());
BufferedReader br = new BufferedReader(isr);
String line = null;

while ((line = br.readLine()) != null){}

b

reader.start();
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e HTK: The Hidden Markov Model Toolkit (HTK, Young et al. (1993)) is@olkit designed for
speech recognition research, which allows building and manipulating hiddekov mod-
els. It consists of a set of library modules and tools available in C sourne féhe library
includes a number of speech feature extractors, among which a fast MR@ementation.
As with compiled matlab code, HTK can be used to compile a Windows executahblg be
called from the OS via the Java Runtime API. Although the source code ofisl@tailable,
re-using and modifying the MFCC-part of the code outside of the the whole framework
is difficult, partly because it is integrated iH@opy module which unifies all feature extrac-
tion processes, and uniquely works on the HTK file format. Hence, this &sa of a fast

implementation that is nevertheless limited in its flexibility in our context.

e Libedso : 1libedso (standing for “Library of EDS operators”) is a set of library modules
written in C, and developed in Sony CSL for the EDS project (Pachet dad2003). It
includes many feature extractors, including MFCCs, and reifies a nurfiloiata structures
such asedso_matrix, meant to simplify the portability from Matlab implementations. As
for the previous implementationsibedso can be used to compile a standalone executable
which can be called from the OS through the Java Runtime API. Howevetodihe perfect
control on source code and the implementation modularity, it is also possibldl ttatae
libedso code directly from Java, witdava Native Interfac€JNI), which is supposingly
more robust and also enables more advanf@sperations thaRuntime.exec(). Both

interfacing options were tested.

Table C.1 reports the runtime in seconds of the various implementations for MKE4Ztion.
All test were conducted on the same audio flleg Beatles - A Hard Day’s Nigli2min32, stereo,
44100 Hz). 20 MFCCs were extracted from 32 Mel bands, using 508tlapping 2048-point
hamming windows. One can see that Matlab code performs 4-5 times slowerafiaimplemen-

tations. A small advantage is gained from vectorized operations in the optiiaedy script over
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the custom script, however the benefits of vectorization are lost wheg tig#nMatlab compiler.

The compiled version of Slaney’s script actually runs slower than the atiylatlab version, which

is probably due to a poor automatic compilation of the vectorized instructionshwhimve a certain
level of handled complexity, are probably simply unwrapped to a sésietoops. The native imple-
mentations of HTK and libedso have similar run-time when called withjthe .lang.Runtime

API. Interfacinglibedso with NI seems to be associated with a overhead, which makes it slower
than thejava.lang.Runtime versions. However, JNI code has the advantage of greater flexibil-
ity: algorithm variants can be written direclty in Java without the need to writecantpile new
executables.

Table C.1: Comparison of runtime (in seconds) for various implementationd=af®/extraction
(see main text for parameters).

Implementation cpu-time
Matlab (custom) 22.48
Matlab (slaney) 22.01

Compiled Matlab (custom) 18.23
Compiled Matlab (slaney)| 23.98

HTK 3.85
libedso (native) 3.87
libedso (INI) 5.73

C.2 Distribution Modelling

Similarly, we tested various implementations for the distribution modelling stage ofrtfilarity
algorithm, notably Gaussian Mixture Model training with the EM algorithm. Thesdeimenta-

tions are also used for the distance computations between models using G&oliesampling.

e Matlab: The prototype of Aucouturier and Pachet (2002b) relies onarairty Matlab tool-
box for pattern recognitioetlab(Nabney, 2001). This implements standard E-M training,

as well as K-Mean initialization for GMM models with either diagonal or complei&de
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ance matrices.

e Compiled Matlab: As proposed above for MFCC extraction, the Netlab sa@ptde auto-
matically compiled into C code, which can then be built into Windows executabtesadied

with the java.lang.Runtime API.

e Torch: Torchis an object-oriented machine-learning library written in+#C(Collobert et al.,

2002). It provides a native implementation of Diagonal-covariance GMMaisod

e Libedsm: libedsm (standing for “Library of EDS Models”) is the companion library for
libedso, i.e. a proprietary machine-learning library providing notably plain C implemen-
tations of GMM models. The codeffers more flexibility for modification than the Torch
implementation and is optimized for speed, notably due to its specificity (compatbd to

complicated and generic O-O architecture of the TORCH library).

Table C.2 compares the runtime (in seconds) of the various GMM implementdaiorizyth
GMM training and distance computation. All training tests were conducted ubagame sets
of 20-dim MFCCs extracted frorihe Beatles - A Hard Day’s Nigl{fmin32, stereo, 44100 Hz).
GMMs were trained with 10 gaussian components, using 50 K-Mean iterdtiotialisation) and
500 E-M iterations (training). Distance tests report the time to compute disthnoethe resulting
GMM to a common set of 100 similar 20-components GMMs, using 2000 sam@@s1drom
each distribution. One can see that Matlab implementations are up to 20 times Slawerative
implementations, which makes them unrealistic for large-scale testing. Thdexge@ap between
runtimes of the Matlab scripts and their Matlab-compiled versions, compared tmgrovement
reported in Table C.1 for MFCC extraction. This may be explained by memorageanent issues:
the Matlab environment itself consumes more memory space than the native rentimenment,
which leaves less space for the memory-intensive training processh pertorms slightly faster
than ourlibedsm native implementation for the training of individual GMMS, however is surpris
ingly nearly 3 times slower for distance computations. This may be explainedibinelegant

re-use of the Torch architecture for our specific purpose: collectiadikblihoods of each data
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frame from a Torch models requires to inspect a number of data structiteeghe probabilities
are first computed, while likelihoods are gathered and summed on the fly custom implemen-
tation. Moreover, our implementation adds a number of Monte-Carlo optimisdtiessribed in
Roy et al. (2005)), which further speeds up the sampling processniinder of GMM training
equals the number of songs in the testing database, while the number of elsstamsputations
between GMMs is quadratic. Therefore, the improved performance tandescomputation, at the
expense of slightly less performance for training, is an important fact@aviouir of thelibedsm
implementation.

Table C.2: Comparison of runtime (in seconds) for various implementation$dl Gaining and
Monte-Carlo distance between GMMs (see main text for parameters).

Implementation cpu-time (training) | cpu-time (distance)
Matlab (Netlab) 487.2 18.25
Compiled Matlab (Netlab 135.4 11.05
TORCH 2.4 5.96
libedsm (native) 3.06 2.16







Appendix

Nearest Neighbor Algorithm

Even with fast optimized implementations for distance computations, the task iofffithe: nearest
neighbors (NN) of a given song among large sets of songs (typicalgraleten of thousands) is a
very costly operation. This operation is needed both for the exploitatiogiwka similarity metric
(“find me songs that sound like X”) and for the repetitive evaluation of @gmic variants that we
propose to do in this study. This performance bottleneck is one of the palnei@sons for the lack
of systematic evaluation found in the literature.

In this appendix, we describe a generic algorithm for fast NN search triarspaces The
algorithm exploits an intrinsic property of the class of similarity algorithms thattweyshere: all
exhibit aprecision-cputime tradgp for some parametgy (tradeqf parametey, i.e. for which both

the precision and the cputime increase with

D.1 Tradedf between Precision and CPU-time

Many candidates exist for the tradEparametep:

e pmay be the size of the feature vector. As already described, the numMd&QEs typically

influences the precision of the measure, but also the dimension of the medeg the cpu

*Parts of these results were reported in Roy et al. (2005)
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time both for learning and comparing.

e pmay also be the size of the model, e.g. the number of gaussian components ikl a0G6M
the bin size of a histogram. The more complex the model, the more precise thaehgasi

also the more expensive the learning and the comparison.

e p can also be found at the model comparison stage. In the case of MoriteaPproxima-
tion of the Kullback Leibler distance between GMMs, the more samples arendram the
GMMs, the more precise is the approximation by virtue of the central limit thedvahalso

the more expensive are both the sampling and the distance computation.

Note that many other music-related distance measures, such as melodic simitariexhabits
such a precision-cputime trad&an the case of dynamic-programming based measures, a possible
choice forp is the size of the alphabet used to describe the items to be compared. Focenstan
melodic comparison often rely on some quantization of the pitch, using eithexaoe @tch, or
more and more approximated intervals, up to a sinpe down contour representation. Ito et al.
(2004) shows how the quantization error degrades the precision oégy-®@y-humming query.

We propose to exploit the precision-cputime traflebsuch distance algorithnid to efficiently
calculate the result of NN queries. We ussuccessive refinements &f to compute first cheap,
unprecise distances (i.A(p) for p small) on the whole set of possible items, then more and more
expensive and precise distances (i&p) for p big) on smaller and smaller sets. If the precision
PREQp) of the distance measure increagastef than the cputimé&PU(p), then we will show
that the cumulated cpu time of the successive steps ugi{pg), A(p1), ..., A(pn-1) May be a lot
smaller than the direct computation of the most precise distat{pg_1) on the whole set of items.

This approach can be viewed and implemented as a planning wrap-up anowxisting dis-
tance measure, to speed up the associated nearest neighbor seastiovwthat dramatic speed-up

can be achieved without modifying the implementation of the underlying distanasume

"this is not taking into account the curse of dimensionality, see earlier
¥in a sense to be defined in Section D.2
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D.2 Algorithm formulation

We are interested in computing the elements of aSs#tat satisfy a given criterion, called the
target criterion. Note that computing the NN of a given item with respect twengineasure is
a particular instance of this schema. The approach we present applieyg target criterion that
can be approximated by a series of criteria with the following property: hr@mproximations of
the target criterion are easy (fast) to compute, whereas good (prapieximations of the target
criterion take longer. Moreover, approximations are faster to computehbdarget criterion itself.
The standard approach to computing thelSeif elements ofS that satisfyc is to evaluatec
against every item i, retaining only those items that satisfy Roughly speaking, our approach
consists in starting with a first criterion that can be evaluated quickly, to elimimatevant items,
and then, to progressively evaluate criteria that are better approximatighe target criterion,
finishing with the target criterion itself, to achieve the task. The idea behingttategy is that
if the precision of the successive criteria increases faster than theirutatigm cost, we can save
a substantial amount of computation time, because criteria that are expémsvaluate will be

evaluated against fewer items.

D.2.1 Definitions and Assumptions

Let us first introduce some necessary definitions and conventions:
e Sis afinite set.

e cis a criterion defined ove$

c:S — {true, false (D.1)

We callc thetargetcriterion.

e Co, C1, ..., Cy are criteria defined ove$ that approximate with increasing precision, with the

convention that, = c.
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S=No » N
Co Ci Cn=0C
S=N0 —» NI —} N2----- » Nn HN

Figure D.1: Instead of computing directly by applyingc, we iteratively compute th#; for i =
0,1,..,n

¢ N is the subset of containing those elements that satisfyThe goal of the algorithm is to

computeN.

e Similarly, N; is the subset of that contains those elements that satigfy. By convention,

we defineNg = S.

e t(c) < t(ciy1)Vi € [0, n — 1] wheret(c;) denotes the cpu time needed to comp{r) for any

elementx € S.

Note that the two following properties are a formalization of the class of algonitesenting a

precision-cputime tradeio

Property 1 cy, c1, ..., G, approximate ¢ with increasing precision
Property 2 The cost of computing écreases with i, i.e.(ti+1) > t(c)

The NN-algorithm can be described by a simple idea, illustrated in Figure Dstead of

computingN directly by applyinge, we iteratively compute this fori = 0,1, ..., n.
Property 3 Nn € N1 € ... C N1 C Ng=S(i.e. G;1 = G)

When Property 3 holds on th¢ sets, it is straightforward to show thaf{N;) = ¢i(S) = Ni;1. In
other words, one can compuig,1 by applyingc; to N; instead of applying; to S, thus saving time
sinceN; is smaller tharsS.

Figure D.2 illustrates the algorithm. In this figure, we assume &hat Ng = {Xq, X2, ..., Xp}

and that thex are ordered so thaN = {xq, Xo, ..., X} and more generalli; = {xq, X2, ..., X }. This
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Figure D.2: lllustration of the algorithm. The cumulated cost of the sucaestbps appears as the
light gray area, whereas the cost of the direct NN calculation appséine stripped area.

reordering is made possible by the inclusion relationship betweeN;thets assumption. The top
part, with the horizontal arrow labeled = c,, represents the standard way of computhhgi.e.
evaluatec on every element af, and retain only the items that satisfyThe cost of this approach
is:

t(C)IS| = t(c)INo| (D.2)

wheret(c) is the time it takes to evaluate function c on one item [&ds the cardinality ofS. The
rest of the figure illustrates our approach, reading from left to righte [Eftmost column of the
figure, labeled 8" is an enumeration af. The nearest column, labeleN;”, can be understood as
follows: we evaluatey on every item inS, which yieldsN1, the set of items that satisfy. This is

represented by the oblique arrow labeleg’ N; is enumerated vertically in this column. The cost
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of this step is:

t(Co)IS| = t(Co)INo| (D.3)

Reading Figure D.2 from left to right illustrates that we iteratively applycy, ..., Ch t0 Ng,Ny, ...,
Nn. Eventually,c, = c, the target criterion, is evaluated agailgt yielding N. The overall cost of

this approach is the sum of the cost of each step:

n

> t(@)IN (D.4)

i=0
Our approach is interesting only in those situations where:

n

D UGN < tOINol = t(c) 1S (D.5)

i=0

On Figure D.2, the successive sets computed are represented veriodltiie successive criterion
evaluations are represented horizontally. The costs can be visualaguaally if we assume that
the proportions are respected, i.e. that the height of a set is propdttidtsecardinality and that the
width of a column is proportional to the cost of the corresponding critenafuation. The overall
cost of our approach corresponds to the light gray surface (therdef “triangle”), while the cost

of the standard approach is the hashed surface. With this graphicateepation, it appears that

if the N; (the heights) decrease fast enough and that(the(the widths) simultaneously increase
fast enough with increasing the light gray surface will be substantially smaller than the hashed

surface. This is what we discuss in the next section.

D.2.2 Hfciency

Our approach is interesting when it saves time, i.e. when equation D.5 hdigsgiVes us a set

of necessary conditions for the method to run faster than the standaxahappWe will construct
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them recursively om, starting with the case = 1. Forn = 1, equation D.5 becomes:

t(co)INo| + t(c1)IN1| < t(C).|S] (D.6)

= t(co) < t(c) MMl = () S (D.7)

Forn = 2, equation D.5 becomes:
t(Co)-INol + t(C1).INa| + t(C2).IN2| < t(c).|S| (D.8)

wherec; = c. If we assume that equation D.7 holds, we get thfécgant condition:

IN1| — [N2|

N (D.9)

t(cy) <t(c)

and so on. Finally, we have the followingfBaient conditions for our approach to be interesting in
terms of computation time:

Ni| = INial

1(c) < t(©) N vielon-1] (D.10)

IN;| is related to the precision with whiat) approximates the target criteriahthe less precise
is ¢, the larger is the smaller set of items that satigfywhich contains all items that satisty
Equation D.10 thus requires that at each stehe precision of the;'s increases faster than their

complexity.

D.2.3 Implementation

For a given problem, one thus needs to find a sequence of steps (tessivec;’'s and N;’'s) that
both verifies propertieB;, P,, andP3 and equation D.10. Equation D.10 holds on the cardinalities
of the successive result sets (thesets). Therefore, our approach is worth applying to problem for

which the cardinalities of the result sets can be computed or estimated eas#yis e case for
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the class of similarity measures considered in this work, as will be seen in $&c8o

For a given sef and a given criterior, our approach is based on the existence of a segigs (
that satisfies propertid®;, P,, andP3. Such a series can easily be found for the class of criteria that
possess a tradffgparametemp. Let us assume thattakes value in a finite s = {0, ..., n} (using
guantization if needed). In this context, the seriglkl does not necessarily satisfy equation D.10,
and if it does, there may exist sub-series@;{p that allow a more ficient implementation of our
approach. More precisely, given setaind criterion seriest()icp, there exist 2 sub-seriesq)icpcp
of (G)iep, corresponding to dierent steps of the approach. (Note thatfji(is a sub-series oft();,
an itemc; is one of thec; with j < i, and similarly,N = N;.) The cost of the approach for(}i
is Yiep t(C))IN{|. Among those sub-series, at least one of them is optimal, i.e. there is abheast
for which minimizing¥’;cp t(c))IN/|. Note that when the optimal sub-series contains only the target
criterionc, our approach equals the standard approach.

To implement the approach optimally, one needs to compute the optfhiallt general, one
cannot compute the cost of everyib-series. However, this can be achieved véigiently using

dynamic programming, as illustrated by the following algorithm:

bestSubSeries(n)
if memValue(n)already computed
return memValue(n)
min < +oo
for p «0ton-1
tmp < bestSubSeries(p)
c « cost(tmp U {np)
if ¢ < min
result « tmp U {n}
min < ¢
end if
end for
memValue(n) <« result

return result
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end bestSubSeries

cost(listOfIndices)
2 t(c)IN/| for i in listOfIndices

end cost

D.3 Application to Timbre Similarity

In this section, we apply the algorithm described above to the practical fasManlating the n

nearest neighbor of a song according to a typical timbre similarity measure.

D.3.1 The Precision-Cputime Tradedf

As seen in Chapter 3.1.3, the prototypical distance compares GMM modelsaublogte Carlo
approximation of the Kullback-Leibler (KL) distance between each dupteaiels A and B. The
precision of the approximation is clearly dependent on the number of samh@Eles from the
distributions, which we call Distance Sample Ratsr. Figure D.3 (on a semi-logarithmic scale)
shows the influence afsr on the precision of the measure (this result is established in Appendix
B.1). We see that the DSR has a positive influence on the precision whamaages from 1 to
2000, and that further increase has little if any influence. Figure D.3 &lswssthe (rescaled)
cpu time profile, which is a linear function afsr. It appears that first, the algorithm exhibits a
precision-cputime trad€b(using thedsr as tradeff parametep), and second that, for smalkr’s,

the precision of the measure increases faster than its cpu time, which make®d aandidate for

the NN algorithm presented above.

D.3.2 Formulation of the Problem

We apply the algorithm described in Section 3.1 to the task of computing the A08sheeighbors

of an arbitrary seed song in a database containing 15,554 music files, gjfibcteo the target



242 Chapter D. Nearest Neighbor Algorithm

0.6
05 '$¢¢# + 4% 4 &

0.4 —
0,3
o 02
0,1

recision

1 10 100 1000 10000
log(DSR)

Figure D.3: Influence of the distance sample rate on the precision and cpaftthestimbre simi-
larity algorithm

distanced. In our problemd is the timbre distance described above ugiisg = 2000, which is
considered to be an ideal setting.

The distance algorithm has a tradfegarameteip = dsrwhich takes its integer values b =
{1,...,2000, and we refer to the instances of the distance which psesd,. Notably,d = dxgoo
The cost of computind,, is linear inp, and the precision al, increases witlp.

This problem fits into the scheme presented in Section D.2 if one states it assfollow
e Sis the collection of music files

e dp is the Monte Carlo approximation of the KL distance witlsampling points

e sis an element 06

e Np(s) is the set of the 100 nearest neighborssafirt d,. In particular, what we want to

compute isN»go(S), the set of the 100 nearest neighbors@frt d = dypgg

Givensin S, Vi € {1, ..., 2000, we define the result sel§ C S as follows:Vi € {1, ...,2000, N; is

the smallest subset & such that:

¥X € Nogoo, VY € S, di(%,9) = di(y,s) = ye N, (D.11)
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In terms of information retrieval, if we define the set of relevant documentsg(s), we can

observe that

e |Nj| is the number of documents retrieveddyywhen recafl = 1, i.e. when we have retrieved

all the relevant documents.

e |Nj is inversely related to the precisibaf the measure; at recall 1.

IN200d(s)| _ 100

recision(d)) = =
P == =™

(D.12)

We can now defineg; by:
Gi(X) = true & x € Ni(9) (D.13)
Let us demonstrate that propertiég P, andP3 hold for thec; thus defined:

e Plis satisfied since the cost of computitigis linear inp

e P2 andP3 are satisfied statistically, since the precisiordgincreases withp and by con-

struction of thelN; result sets.

Therefore, one can apply our approach to the problem of comphiting for seed song.

D.3.3 Practical Implementation

In order to find the optimal series of;}; that minimizes the total cputime of our approach for a
given query orN2god(S), we need to estimate thi;| for a (large) set of € {1, ...,2003. One way

to estimatgN;| is to actually compute the sk, i.e.

e applydi_1 onNg = S in order to sort the songs i by distance te according tad;_;

¢ find the maximum rank over all songsMNyggo. It corresponds to the rank after which all the

items 0fN2goo(S) have been retrieved, i.6\;|

$Recall is the ratio of the number of relevant documents retrieved to thentatatber of relevant documents in the
database.
IThe precision is the ratio of the number of relevant documents retrievbe total number of documents retrieved
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However, this direct approach has two major problems.

e The set ofiN;| depends on the seed song, so in theory, we have to apply this prodedure
each seed song before being able to find the optimal sequence of stépis. dnpractical, as
estimating théN;(s)| for a givensis itself longer than the direct calculation Nfgoo(s) with
the standard approach. Moreover, it's a chicken and egg problenongsuting thelN;(s)|

requires to knowN2go(S).

e The P distanced); are stochastic algorithms based on Monte Carlo, which never return the

same distancd (s, t) between 2 given songsandt twice (although the variance on the results
obviously decreases dsrincreases). Hence, for a given seed ssrthe|N;(s)|'s themselves

should be averaged over several runs of the above procedure.

To overcome these limitations, we propose to estimate a uniqueﬁkfo’r the whole database, by
applying the above procedure to a few random songs in the databaaeaanding the results. This
has the drawback that the successive inclusion property (Propgrig only statistically verified
for the estimatequ\ﬂ, and we have no insurance that, for a given seed spag a given step,
the set of items\; actually contains all the items iNygo(S). It follows that the final set of items
returned by the algorithm after a given series of stepsié only an estimat®od(s) of the actual

setNygooS), associated with a precision

IN200d(S) N Nogod( )|
IN200d(9)|

p((ci)i, ) = (D.14)

Figure D.4 shows the estimat&dm fori = 1,...,,2000, computed on the test database by av-

eraging theN;(s) over ng = 50 random songs. The darkest curve corresponds to the average

m = nis Zﬂil|Ni(sK)|, the medium curve corresponds to the som o of the averagen and the

standard deviationr of the|N;(s¢)|, and the lightest curve tm+ 20
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Figure D.4: Convergence profile of tinNg, averaged over 50 NN timbre queries.

Table D.1: Optimal sequences as predicted by dynamic programming

Strategy Steps (Nil,i) cost (% standard)
standard {15554, 2000 31,080k (100%)
best (mean) {15554, 6, {4501, 20, {2710, 60, {652, 200, {290, 400, {218, 2000 | 1,028k (3.3%)

2032, 60, {489, 200, {217, 400, {163, 2000 | 793k (2.6%)
894, 200, {374, 400, {264, 2000 1,195k (3.9%)
1136, 200, {458, 400, {310, 2000 1,532k (4.9%)

best (mean o) {15554, 6, {4090, 6
best (mean 20) {15554, 6, {6819, 6

0,
best (mean - 25%) {15554, 6, {3375, 20,
0,
0,

D.3.4 Results

We apply our algorithm to the task of calculating the 100 nearest neighbargiven seed song
according to the timbre similarity described above. Table D.1 shows the optimadsee of steps
(c); obtained with dynamic programming (see Section D.2.3), and the associatedeasired by

>.i INilt(c;). We compare the results using the 3 sets of estimfﬁﬂe'm Figure D.4 and an additional
set obtained by downsizing thi;| by 25%. For dynamic programming, we make the assumption
that the cputime is linedfc) = a.i + B8, with @ = 1 andB = 0. It appears that the optimal sequences
differ slightly whether we consider thig| with or without standard deviation. The optimal sequence
yields an algorithm which is theoretically more than 30 times faster than the stiaygiaoach.

Table D.2 shows the measured performance (cputime and precision) afttia implementa-
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tion of the algorithm for the same sequences of steps. Overall, the cpurparfce is very good (we
achieve speed improvement factors greater than 30) while still presemwargerfect precision (we
retrieve 98% of the 100 true nearest neighbors). We observe that i§|timcrease, the precision
of the results increases (we are less subjected to accidently pruningnet@arest neighbors) but
also the cpu time. We may observe that the achieved cputime rates are lowéndghheoretical

predictions (about 1% absolute). This can be explained by the followiimggpo

e The optimal sequence found by dynamic programming and its expectedrparfce were
computed using a very simple cpu time mot{gl) = i. This doesn’tinclude e.g. the overhead

cost of file JO (retrieving the GMMs from the database, writing the results, etc.)

e The distance algorithm was not reimplemented to support our recurgireah, i.e. the
same executable is run for the successive valuedsaf While this makes the algorithm
generic (no need to re-program the distance algorithm it uses), thimhamacessary cost:
each step adds the overhead of its own system call (the executable isfaaitedava), ini-
tialization, file YO (all the needed GMM files are re-opened at each step, Whilgl — [N
files are common between each successive call), Gaussian samplingh(ategad sr; points
are sampled from the Gaussians, while odr.1 — dsr new points are needed). Most of

these overhead costs are not accounted for in the theoretical presgliction

Table D.2: Measured cputime and precision of several sequencepsisie

Series cpu-time (% stand.) | precision
standard 663.75 (100%) 100%
best (mean) 27.07 (4.0%) 98.2%
best (mean - 25%) 20.98 (3.1%) 94.0%
best (mean o) 33.91 (5.1%) 98.9%
best (mean 207) | 39.19 (6.0%) 99.0%




Appendix

Multiscale segmentation

This appendix describes a segmentation algorithm specifically designeolyphonic music. This
algorithm is used in Appendix B.6.2 to synchronize the MFCC extraction frateean musical
notes, and in Chapter 5 to build a database of polyphonic samples in ordstdpunderstand the
nature of dynamical modelling.

Typical segmentation algorithms (Tzanetakis and Cook, 1999; Rossi@88) first computes
a set of features from the signal cut into frames, and then detect tireeségoundaries by looking
for abrupt changes in the trajectory of features. Here, we look foetlegy variations of the
signal. The signal is cut into frames (2048 points at 44100Hz), andafcin &ame, we compute
the short-term spectrum. The spectrum itself is processed by a Mel filtedf20 bands. Each
band’s energy is weighted according to the frequency response btithan ear, as described e.g.
in Schroeder et al. (1979). Finally, the energy is summed across alsbattange detection is
done by smoothing the energy profile by a zero-phase filtering by a Hamiimdow of sizeSy,,
and looking for all the local maxima of the smooth version. The segment laoi@sdare the deepest
valleys in the raw energy profile between 2 adjacent peaks in the smodille.pro

While this scheme isféective for simple, percussive music, we observe that for non peveuss
richer polyphonic music, the quality of the segmentation depends on the abfo&g In large

events such as a sung note lasting for several seconds (e.g. thedigl ih "Yesterday”), there

247
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e Ve W W o e Y D W G e W o o EereTyay o
4

\W M{'\”ﬂ/\ ]

300 400 500 600 frames
T T 1 T

3!30 ADID 500 BDIU frames
Figure E.1: Segmentation of an extracfldfe Beatles - YesterdagTop) Segmented energy profile
using a smalb,, (150ms) : short events (right) get properly detected, while largernts\sit) get
oversegmented. (Bottom) Corresponding smoothed energy profilefargeebak detection.



249

| | | |
200 300 400 500 frames

| | | |
200 300 400 500 frames

Figure E.2: Segmentation of an extracfldfe Beatles - YesterdagTop) Segmented energy profile
using a largeS,, (1s) : large events (left) are appropriately recognized, however sneaimts
(right) are missed out. (Bottom) Corresponding smoothed energy profile

may be several small peaks of energy corresponding to the other instsuplaying in the back-
ground (e.g. a succession of chords played on the guitar). With a Sgadill these peaks would
be segmented, and the most meaningful atomic event would be cut intolshatadentical notes
(see Figure E.1). With a larg®e,, on the other hand, short meaningful events like isolated guitar
chords get missed out (Figure E.2).
Therefore we propose a multiscale segmentation algorithm, which adapts ¢haf sie con-

volution window to the local shape of the energy profile. More preciseéycampute the STFT

of the energy profile on a running 2-second window (with 90% overl&gs)the energy profile is
sampled using 50 overlapping, 2048 point frames (i.e. 43Hz), the FFEFibes the frequency con-
tent between 0 and 20Hz, with a frequency resolution finer than 1Hz. eldetdhe predominant

local periodicity of the profile as the barycentre point (spectral centadithe spectral distribution
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10

| | | |
200 300 400 500

Figure E.3: (Top) Multiscale segmentation of the same extract, using an\aeagptivolution win-
dow size: large windows on the left, and smaller windows on the right. (BottaameSponding
spectrogram of the energy profile, super-imposed (in black) with thergheentroid of each frame,
used to determine the windows size

within each frame :
o ZkkS(K)
2k S(K)

whereS is the magnitude spectrum of a frame. We then smooth the energy profile udaging

(E.1)

window sizeS,, equal to the inverse of the centroid of the corresponding FFT frame gtoecon-

tinuity, Hanning window coficients are normalized so they sum to one regardless of their length).

Figure E.3-Bottom shows the SFFT of the energy profile used in Figuratjelevents corre-
spond to low frequencies in the energy profile, i.e. small centroid frege®in the spectrogram
(order of 1Hz). Consequently, these zones get smoothed with largeingawindows (order of 1
sec.). On the other hand, short events in the energy profile corr@gpdrigher frequency con-

tent, higher centroids, and smaller windows size (order of 200ms). Fig3rdop illustrates the
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corresponding multiscale segmentation, which preserves large, noists @gewell as short, high

amplitude ones.






Appendix

Measures of Hubs

Several measures can be used to identify and quantify the “hubneagjieén song. In Chapter
6, two of such measures are used: number of occurrences and nmghhaneangle. We give
here complete details on these measures, as well as a number of alteyaatiivesmpare them to
one another. Notably, we show that hub songs are not typically comeldtk violations of the

triangular inequality.

F.1 Rank-based metrics

A natural measure of the hubness of a given song is the number of timesnyescurs in the
first n nearest neighbors of all the other songs in the database. It is easilywamgn a sparse
version of a similarity matrix (see Chapter 4) by counting the number of duplgaining the song
stored in the matrix. Table 6.1 in Chapter 6 shows a few songs in the test siatbag with the
number of times they occur in the first 10 nearest neighbors over allegu@lig). This illustrates
the predominance of a few songs that occur very frequently. For irestéme first song{ITCHELL,
Joni - Don Juan’s Reckless Daughter is very close to 1 song out of 6 in the database (57

out of 350).

As was already summarized in Chapter 6, the total number of occurreacafy has a number

253
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of properties:

¢ Independent of distance: Being based on rank, the number of eccess of a song is
independent of the range of the values produced by a given distarasurae Therefore, it
can be used to compare hubs appearing wiffedint algorithms, which we will do e.g. in

Section 6.6.

e Dependant on database: The total number of occurrence of a sommmsed both of true
and false positives. As explained earlier, only the latter are charactefistitub. This metric
therefore is conservative in the sense that if a high number of ocacgrierobserved for a
given song in an arbitrary database, it ifidult to conclude whether it is indeed a hub (i.e.
that most of these occurrences correspond to false positives) oceppgal center-of-mass

(i.e. most of the occurrences are true positives).

A way to compensate this limitation is to use a ground truth when available. Tabler®-1 c
pares theNig to the size of the cluster of each sormmid(Cs)). One can see e.g. thbbdn
Juan. .. occurs more than 6 times more than it should (e.g. is close to 6 times more songs
than the number of relevant neighbors identified by the ground truth)uAest database has
been designed with songs of a large variety of genres and periodse@ssmable to assume
that many of the occurrences Dbn Juan... are likely to be false positives. However,
such a ground truth normalization is limited, since perceptually relevant matols oc-
cur across dferent clusters. For instance, “rock” songs from cluster “The Clashlikely to
occur in the close matches of more songs that the mere Clash songs, sigeefuother clus-
ters have related timbres, such as “Brian Adams” or “Gary Moore”. Suteh-cluster true
positives cannot be identified using our ground truth, and cannot ln&ted to compensate

the raw number of occurrences.

e Constant-sum: An important property of the numbendafccurrencedN, of a song is that
the sum of the values for all songs is constant given a database. Bachanly gives the

opportunity forn occurrences to the set of all the other songs, such that the total nufmber o
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n-occurrences in a givelV-size database is+ N. Therefore, the mean-occurrence of a

song is equal to, independently of the database and the distance measure. Alternatively, if

we assume that the distance engenders a uniform, random distribution sufrthea given

song has the probabilitp = { to occur in then-nearest neighbor of another song, which

indeed gives an expected number of occurrefid®y) = N = p = n. Table F.1 illustrates the

experimental verification of this property (constant mean) for sevégtdrtte algorithms.

Table F.1: Comparison of mean number of occurrences and mean negjidierfor songs in the
test database, for several distance algorithms

Measure GMM | HMM | Delta | Acceleration| Histogram
N10o0 100.2| 98.7 | 99.4 99.4 99.6
Neighbor Angle (degrees) 58.8 | 55.6 | 58.3 57.9 59.9

e Descriptive statistics: This has the notable consequence that the meawnfvllluis useless

to measure the influence of a given algorithm on the global hubness tdlzeda. One has to

look for other descriptive statistics, such as the variance of the distribottioccurrences, or

the number of songs with more than a given number of occurrences.

F.2 Distance-based metrics

An operational definition of a hub is that it is a soHgwhich is found to be “close” (though not

perceptually) to duplets of songsand B which themselves are (perceptually) distant from one

another. Note that songs close to many songs which are themselves clogeaioother would in-

dicate an acceptable “center-of-mass” situation. Therefore, the &silofisondH can be estimated

by comparing its distances to its neighbd($l, A) andd(H, B) on the one hand, and the distance

between the neighbo§ A, B) on the other hand. We propose 3 metrics using this idea:

¢ Neighbor diference: This measures thdfdrence between the neighbor distance and the

mean distance to the neighbors, using

hu(H, A, B) = d(A, B) —

d(H,A) + d(H, B)

2

(F.1)
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This is computed for a given sord by drawing a large number of successive duplétB}
(such thatA # B # H) whereA andB are close neighbors & (typically in the firstn nearest
neighbors), and computing the mean valuddH, A, B). We use 1000 successive random

draws.

Neighbor angle: This measures the angfermed by the segments$i[ A] and [H, B]. This
attempts to normalize the previous measure by the actual amplitude of the distansegn

in Figure F.1, the anglé can be expressed in termsad{H, A), d(H, B) andd(A, B).

d= d(H, B) sinf = d(A, B) sina (F.2)

d = d(H, A) — d(H, B) cosd = d(A, B) cosa (F.3)

= d?+d?= d(H,A)?+d(H, B — 2d(H, A)d(H, B) cost = d(A, B)? (F.4)
B

u A
H

Figure F.1: The neighbor anghecan be expressed in termsa{H, A), d(H, B) andd(A, B).

and therefore
d(A, B)? — d(H, A)? - d(H, B)?
2d(H, A)d(H, B)

ho(H, A, B) = cost = (F.5)

As before, this is computed for a given sodgoy drawing a large number of successive du-

plets of neighborsA, B) (such thaA # B # H), and computing the mean valuele{H, A, B).

We use 1000 successive random draws.

e Triangular Inequality Violation: A final measure based on the ratio of diststw neighbors
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examines whether the distances to a given point violate the triangular ineddd)ijtye.

d(H, A) + d(H, B) < d(A, B) (F.6)

This is of course impossible for proper mathematical distances, such asuelidean dis-
tance or Kullback-Leibler divergence. However, many of the metricsidened in Chapter
5, and notably the best-performing one, are not mathematical distanckawndo guarantee
to respect TI. In the next section, we will examine whether potential violatd | indeed
correspond to hub songs. As before, we draw a large number ofssice duplets of neigh-
bors A, B) (such thatA # B # H), and estimate the probability of violating the TI. We use

1000 successive random draws.

Note that for all three measures, we notably assume that the distance ewigigborsi(A, B)
is always perceptually relevant, i.e. that for instan&@ndB are not hubs themselves. This only
holds statistically, to the amount of precision of the examined distance measgyreafound 70%
for the best algorithms).

Distance-based metrics have the following properties:

¢ Independent of database: Unlike measures of the number of occeméa song, distance-
based metrics are independent of the possible perceptual clustersvehalgtabase. Thus

they can be used to compare algorithms dfedént databases.

e Dependant on algorithm: However, distance-based metrics are typic@éndent on the
distance algorithm. Neighbor fiierence is trivially dependent of the range of the values.
Neighbor angle, although independent from the actual amplitude of thenckstealues (by
normalization), is still dependent on the discrimination capacity of the distaacthe typical
distance ratio between what can be considered a close distance, anchwhe considered
a large distance. This will be detailed in Section F.3.3, where we will see thaalgos

influences the measure of Tl-violation.
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e Constant-sum: An important property of the neighbor-angle value is thathigeumber of
n-occurrencedN, of a song, the sum of the values for all songs is constant given a databa
size. This directly derives from the fact that the angles of a triangle sunradians (in a
euclidean geometry - which is only approximated here in the general c@sen a set of
N points, the number of angles whose vertex is a given péiand are formed by the lines
from X to the N — 1 other points, is equal to the number of combinations of 2 points within
N-1 ie. Cfv_l. There areN possible vertexXX for such angles, thus there are a total of
NCIZV_l = w angles formed between th\é points. It is easy to see thafn—1)(n—2)
is divisible by 3/n. Hence, these angles can be clustered by triplets, so that their supporting
lines form a triangle, and thus sum 4o Therefore, the sum of all angles formed between
N points equals/%’z"‘ln. Table F.1 illustrates the experimental verification of this property
(constant mean) for several distance algorithms. The deviation of the amega from the
theoretical value 60is both explained by the statistical approximation of the computation of

the angles and by the possible non-euclideanity of the underlying geometry.

e Descriptive statistics: This has the notable consequence that the meanfvddadNeighbor
Angle is useless to measure the influence of a given algorithm on the globaéss of a
database. Like for occurrence values, one has to look for otheriplise statistics, such as

the number of songs with a mean angle greater than a given limit.

F.3 Correlation between measures

We examine in this section the correlations between the various hubnessesgasposed above.

We report the measures on the same set of algorithms that was used inrGh@pte

F.3.1 Number ofN-occurrences

Table F.2 show poor linear correlation between number of occurrecesfying values oiN.

However, Figure F.2 is typical of the kind of scatter plot obtained whencongonent is part of
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Scatter plot between nb 100-occurrences and nb 20—-occurrences
140

120

.
1)
[S)

nb 20-occurrences
@
3
T

-3
<]
T

40

! I I I
150 200 250 300 350
nb 100-occurrences

Figure F.2: Scatter plot between number of 100-occurreNggsand number of 20-occurrendeg
for a distance based on HMM.

the other: if one increases the sum, then the parts also increases. Gise petation betweeN1gg
and Nyg depends on the composition of the database, and notably the size of itssclu$tdre
database tends to be very densely clustered (e.g. 20 heavy metal sdri2fs symphonic pieces),

then the correlation between valuedfarger than the mean cluster size (say 20) will be high.

Table F.2: Correlation between number of 100-occurreizggand number of 20-occurren®eg
for various models

GMM | HMM | Delta | Acceleration| Histogram
0.66 0.76 | 0.75 0.77 0.77

F.3.2 Number of N-occurrences and Neighbor diference and angle

As can be seen in Figures F.3 and F.4, there is a nearly logarithmic depgrmgween the number
of occurrence of a given song and both its mean Neighk®erénce and angle. Table F.3 shows
the linear correlation scores between the logarithnNgf, and both measures. The best fits are
achieved for the static models, both parametric and non-parametric. Dynamétamend to create
more outlier points in the scatter plots, which reduce the correlation scosgspdars nevertheless

that hub songs tend to be associated to higher values of Neightenedice and angle.
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scatter plot between Nb Occurrences and distance difference
for GMM-based similarity
T

Distance difference for GMMbased similarity

L L L L L
50 100 150 200 250 300
Nb Occurrences for GMM-based similarity

Figure F.3: Scatter plot between number of 100-occurrehggsand Mean Neighbor Dierence
scores for a distance based on GMM.

Scatter plot of Nb occurrences against mean angle
for GMM-based similarity
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Figure F.4: Scatter plot between number of 100-occurreNgggand Mean Neighbor Angle for a
distance based on GMM.
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Table F.3: Correlation between the logarithm of the number of 100-ocwesdigp on the one
hand, and neighbor fierence and mean angle on the other hand, for various models

Measure GMM | HMM | Delta | Acceleration| Histogram
Neighbor diterence|| 0.85 | 0.78 | 0.66 0.68 0.87
Neighbor angle 0.85 | 0.76 | 0.73 0.74 0.93

F.3.3 Number of N-occurrences and Tl violations

Table F.4 shows the linear correlation scores betwégig and the probability of violation of tri-
angular inequality for all 5 algorithms. Little correlation (if any) can be foundhost cases, with
the exception of a limited linear fit for HMM-based measures. The GMM+balistance creates
very few Tl violations, but however still exhibit some severe hubs, whiglates null correlation.
The same is true obviously for Histogram-based distance, which use eucliiidance, and thus
do not violate TI by construction. However, HMM-based measures seameate quite a few Tl
violations. These necessarily correspond to high values of neightberatice and angle, and thus
are associated to high values of nb occurrences (since there is torrétabetween the latter).
Delta and Acceleration-based metrics create a few Tl violations, howevsrfficiently so maybe

that a clear correlation tendency can be observed M4t

Table F.4: Correlation between the number of 100-occurreNggs and Tl violation probability

on the other hand, for various models

GMM | HMM | Delta | Acceleration| Histogram
0.0 0.74 | 0.35 0.17 0.0

In any case, Tl violation probability appears to be a poor metric for hubtdigation: hubs can
appear without Tl violation. This can be explained by the fact that the timistardtes typically
have poor discrimination power. Figure F.5 shows the distributions of thendesteof all songs to
songs in the clusters “The Clash” and “"Accordion Musette”. It apptsaisdistances values have a
relatively small range ([7®5]), with a majority of values in the range [38b]. Therefore, even if
2 neighborsA andB are “optimally” close to a given sonlg (with e.g. d(A,H) = d(B,H) = 75),

and that these neighbors are “optimally” distant (with €@, B) = 95), Tl can be preserved while
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Figure F.5: Distribution of the distances to songs of the cluster “The Cldsftj &nd “Musette
Accordion” (right), with a GMM-based distance.

H clearly behaves like a hub. Thefidirent shapes observed for the clusters in Figure F.5 reveal
the composition of the test database. As already noted, a few clusters bkg M@ore”, “Brian
Adams”, “Jimi Hendrix” contain songs that are timbrally related (and coulddibered under the
umbrella term “rock”). Therefore, the songs in cluster “The Clash'ilgkemall distances not only

to songs of the same cluster, but also to a good number of songs frontkheusters. This explains
that the “Clash” histogram contains a large proportion of “small” distanctgeinange [7585]. On

the other hand, cluster “Musette Accordion” is a pretty isolated group in stedetabase, and
therefore songs in this cluster are typically quite distant to songs from ditigers. This explains
that the “Musette” histogram contains a minority of “small’ distances, and a ihajoir larger
distances in the range [885]. For comparison purpose, Figure F.6 shows the distribution of the
distances to songs that exhibit a number of occurrences larger thaoui8gf a maximum 360).
One can see that such hub songs have a majority of small distances toartyeiirsthe database,

in the range [7585].
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Histogram of distances to seed in the
100 nearest neighbors of songs with more than 180 100-Occurrences
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Figure F.6: Distribution of the distances to songs that exhibit a number ebdé€rrences larger
than 180 (out of 360 in the test database), with a GMM-based distance.






Appendix

Pearson’s/?-test of independence

We describe here Pearsog’stest used to assess the statistical independence of pairs of attributes
in Chapter 7.y tests the hypothesis (called thell hypothesisthat the relative frequencies of
occurrence of observed events follow a flat random distribution (eaj.hidrd rock songs are not
significantly more likely to talk about violence than non hard-rock songg)is calculated by
finding the diference between each observed and theoretical frequency, sgtteein, dividing

each by the theoretical frequency, and taking the sum of the results:

BV
V2= Z © EE) (G.1)

whereO is an observed frequency aidan expected (theoretical) frequency, asserted by the null

hypothesis.

For example, to test the hypothesis that the two attributes “TextCategory v&land “Style
Metal” are independent variables, we use the contingency table shovabi@ G.1. The figures in
the right-hand column and the bottom row are called marginal totals and the figthre bottom

right-hand corner is the grand total.

If the 2 attributes were independent, the theoretical count of, say, vimhehmetal songs would

265
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Table G.1: Contingency Table for “TextCategory Violence” and “Style Met¥alues in parenthe-
sis are the theoretical counts under the independence hypothesis.
] | Violent | Non violent | Total |

Metal 36 (7) 122 (152) | 158
Non metal|| 180 (209)| 4598 (4569)| 4778
Total 216 4720 4936
be
N Rviol =N iol —493&216—691 G.2
ol P(Metak:violen) = Niotaip(meta) p(violen) = 4936, -~ = 6 (G2)

Table G.1 shows such expected counts in parenthesis. yTvalue for Table G.1 is therefore

computed as:

> (36-7) (122-152Y (180-209f (4598- 4569¥
X = + + +

7 122 180 2508 13236 (G-3)

If the null hypothesis is true, the? test follows the probability distribution (called thyé distri-
bution) of the random variab¢ = Zf + Zg where theZ; are independent standard normal variables
(zero expected value and unit variance). This distribution can be usedrpute the probability of
observing the counts in Table G.1 if metal and violent contents were indepgnehich in our case
is less than 0.1%. This probability is lower than conventional criteria for statistignificance, so
normally we would reject the null hypothesis that the 2 attributes are indapenthe degrees of
association between duplets of variables are usually assessed andawimpa number of coef-
ficients which are independant from the size of the population and the mwhbéributes being

compared. The simplest is tidecodfticient defined by
L (G.4)

wherey? is derived from the Pearson test, aids the grand total number of observatiodsvaries

from O (corresponding to no association between the variables) to 1 [e@ngssociation).
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