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Abstract

New wearables devices are introduced with novel options for observing personal transport
and mobility in indoor and outdoor spaces. This hardware includes low cost MEMS sensors:
accelerometer, gyroscope, magnetometer, which provide continuously available data contrary
to existing solutions that are based on radio signals. In order to mitigate the propagation
of sensor errors in the position estimate, a pedestrian dead reckoning strategy is commonly
adopted. The processing requires parametric step length models relying on some physiologi-
cal parameters, displacement features and acceleration statistical properties. The coefficients
of these models need frequent adjustment to limit cumulative errors induced by alteration of
gait pattern. A large experimental database providing information about human locomotion
variability is required for this calibration. However, the development of such database is
costly in terms of time and effort, and several gait-affecting factors should be considered,
which highly increases the number of measurement trials. In this thesis, we propose an
alternative way of generating locomotion data that consists in simulating human gait mo-
tion under different conditions. In this scope, a 3D multibody system simulator based on
parametric optimization technique was developed, and improvements were made throughout
this work to get a more realistic walking motion prediction. Joint trajectories during one
step were optimized by minimizing an energy criterion based on actuated torques. Validation
with inertial data from overground walking experiments on one healthy subject showed an
asymmetry in experimental acceleration signals from one step to the next. This suggests
that asymmetric movement are likely to result in a step-level asymmetry of displacement
features. This defeats the general assumption in PDR strategy: the presence of a device
in hand does not impact the gait symmetry and all steps are identical for a fixed walking
speed. This hypothesis is investigated with motion capture experiments with several subjects,
designed to study the influence of a mass carried in hand on the walking gait cycles. Analysis
of variance tests have shown that the presence of a mass in hand changes the gait symmetry
at the step level, and then the proposed optimization process is extended to the stride level in
order to allow observing asymmetric acceleration patterns. Overall, our simulator reproduces
similar fundamental patterns of walking, and the same variation trend of acceleration related
items found in experiments. However, it shows limitations when predicting acceleration data
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related to the hand, due to some modeling assumptions and numerical issues. Therefore, our
simulation approach partially solves for the direct modeling problem in pedestrian navigation,
and improvements on model assumptions are foreseen to predict acceleration signals over a
complete gait cycle more reliably.

Keywords: Handheld devices, MEMS sensors, Multibody system, Parametric optimization,
Step-level symmetry, Walking gait patterns, Human motion analysis, Analysis of variance.
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Chapter 1

Introduction

1.1 General context: Pedestrian navigation technology

Nowadays, the location information is considered to be a crucial requirement for pervasive
computing where the indoor pedestrian localization is becoming a relevant research field of
an enormous potential for many applications with context aware services. In this context, the
market for pedestrian positioning applications has recently grown. Thus far, the majority of
positioning applications are based on global navigation satellite systems (GNSS). Despite
the usage of reliable GNSS-based techniques in outdoor localization, these solutions are
primarily limited to open areas where radio signals transmitted by satellites are steadily
available [16]. In urban canyons, the continuity and accuracy of GNSS services are not
guaranteed since satellite signals are heavily weakened by multipath or even blocked by
artificial infrastructures and dynamic obstacles [16], thus leading to loss of information
on human movement. Therefore, these services are unreliable inside buildings and indoor
spaces, where most location-based services (LBS) users spend 70 - 90% of their time [17, 18].
Hence, a trustworthy indoor navigation solution is strongly demanding [19].

Overcoming this limitation is far more challenging for the use of pedestrian navigation
for commercial purposes, as well as for the ability to continuously track people wherever
they are to solve safety and public healthcare issues such as risks of falls among older
people and monitoring vulnerable patients. Helping subjects affected by a cognitive function
deficit or elderly people suffering from dementia or Alzheimer’s is a good illustration [20].
Certainly, the main consequences of these diseases are memory loss and lack of attention
causing difficult orientation and wandering [20]. Then, permanent tracking and monitor-
ing are required in order to provide efficient assistance in case of necessity or to alert third
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parties when pedestrians wander beyond a determined radius considered as a secure area [20].

The integration of GNSS with other technologies is needed to develop an indoor or mixed
indoor/outdoor alternative with reference to ubiquity, reliability and, of course, costs. Ultra
Wide Band (UWB), Radio-Frequency Identification (RFID), or Radio based positioning
systems using Wireless Fidelity (Wi-Fi), are possible solutions for tracking users indoors.
However, these systems are usually limited to specific environments because they depend on
dedicated infrastructures, which are expensive [21].

An increasing attention to the pedestrian localization issue can also be assigned to the recent
development in affordable wearable computing platforms [22]. Smartphones are the example
of such systems, since they are efficient enough to perform signal acquisition, preprocessing
and run reasonably sensor fusion and real time sophisticated estimation algorithms thanks to
Inertial Measurement Units (IMUs) embedded into it [22]. To overcome GNSS limitation, a
hybridization technique consisting in fusing natural signals such as accelerations, angular
rates, or magnetic sensed by an IMU with GNSS data is a possible approach. One advantage
of this solution is that these signals rely on external forces that are always available in
all environments (indoors, outdoors). GNSS receivers and IMUs are often embedded in
unobtrusive portable devices, which are usually carried in hands or kept in bags.

To estimate body’s position and orientation, a strap down method [23] can be applied
to inertial data. This method can seldom be employed for long period due to prompt
accumulating integration errors ingrained in the low-cost nature of inertial modules, especially
drift and biases affecting their signals [16]. Although additional sensors including magnetic
compasses are often integrated into the inertial systems to mitigate the heading error, an
external reference or source of information is needed. Note that every additional sensor
comes at its own costs such as heightened power consumption, system’s size and weight,
and associated maintenance costs [16]. In order to mitigate the propagation of sensor
errors, a better solution would be the usage of pedestrian dead reckoning (PDR) strategy
which integrates information from biomechanics of walking movement to estimate the linear
pedestrian trajectory [20]. Both methods provide good results when the sensors are attached
to some relatively stable parts of human body (e.g. belt or foot). With foot mounted sensors,
zero velocity phases of the walking gait can be sensed and used to calibrate the sensor errors
[24]. With wrist mounted or handheld sensors, these phases do not exist and the PDR strategy
must be adopted.
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1.2 Pedestrian Dead Reckoning

1.2.1 Presentation of the PDR strategy

PDR approach consists in estimating the current pedestrian’s position denoted pk from the
position at the previous instant pk−1 and from the estimate of a displacement vector dk

between those two instants. When the IMU is attached to the foot, the displacement vector is
directly estimated by an integration process of inertial measurements [25]. When using the
IMU of a smartphone or a connected object, another process is adopted. The displacement
vector dk is estimated from two parameters which are: walking direction set by an angle,
denoted θk, and step length, denoted lk. This process is illustrated in figure 1.1. The recursive
equation defining the horizontal position is then:

pk = pk−1 + lk

(
cos(θk)

sin(θk)

)
(1.1)

The instants tk and tk−1 are called step instants. The vertical position, such as a floor change
inside a building, is achieved by using a barometer coupled to accelerometers.

Chapitre A Introduction 

14 

 ( )
( )1

cos
sin

k
k k k

k

l
θ
θ−

 
= +  

 
p p    (1.1) 

Les instants tk et tk-1 sont appelés les instants de pas. La position verticale, comme par exemple un 
changement d’étage à l’intérieur d’un bâtiment se fait grâce à l’utilisation d’un baromètre couplé 
aux accéléromètres. 

 

Figure 2: Processus de navigation à l'estime à l'aide d'IMMU à la main 

L’estimation de la longueur de pas est une problématique largement traitée [9] [10]. L’estimation 
de la direction est plus difficile à appréhender. Elle a de plus un impact significatif sur l’estimation 
finale de position. Une erreur d’estimation de la direction de marche de seulement 5° sur une marche 
en ligne droite de 100 mètres provoque un décalage final de 8.7 mètres en position. La 
problématique de la direction de marche est qu’elle est en grande partie indépendante de 
l’orientation du smartphone comme illustré sur la Figure 3. 

 

Figure 3: Distinction entre direction de marche et orientation du smartphone 

 

Fig. 1.1 PDR process using IMU in hand [1].

The accuracy of location in pedestrian navigation relies on both step length and walking
heading. Thus, promoting the precision of step length estimation is crucial for improving
pedestrian navigation service since it has a significant impact on the final position estimate.
In other fields of application, such as rehabilitation, gait analysis and sports medicine, step
length and the changing rate of step length are essential features for evaluating motion
intensity and health condition [3].
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1.2.2 Step length estimation

The estimation of step length has been widely addressed in literature [20, 26]. It is performed
using several approaches depending on the sensor’s location. Most of these approaches focus
on inertial data acquired by a sensing device attached to the user’s body i.e. close to the center
of mass (COM), or linked to the leg [22, 27, 28]. Inertial forces experienced by sensors in
these locations directly reflect the gait cycle (GC). Using body fixed sensors, two popular
categories of models are used for step length estimation: biomechanical and parametric
models. On one hand, biomechanical models consider the user’s leg as an inverted pendulum
with the sensor located at its COM [22, 28]. A geometric relationship between the vertical
displacement of the COM and step length is then used. Other models based on geometric
considerations are also proposed in [29, 30]. On the other hand, parametric models use the
accelerometer variance and the step frequency to estimate the step length [26, 31]. When
studying non body fixed sensors, their emplacement is often constrained to locations where
the device is relatively stable during walking. For instance, the device is close to the ear
while phoning [24], or is carried in the user’s pocket [32]. In these scenarios, inertial signal
patterns are similar to those produced by body fixed sensors and analogous approaches can
then be applied.

The arm movements have a high degree of freedom that induces a relative independence
between the motion of the hand, and the characteristics of pedestrian displacement. The
upper limbs constitute important lever arms where movements are amplified in amplitude,
speed and variety. Under these conditions, when the device is carried by hand without any
constraints, estimating the travel distance is much more complex and specific processing is re-
quired. For instance, parasitic motions of the hand that do not reflect the user’s displacement
have to be identified and classified to avoid wrong propagation of user’s position estimate.
Very few studies target the case of handheld sensor and phoning or texting scenarios are
mostly considered [33]. In these specific scenarios, the sensor mainly experiences inertial
forces due to the global motion of the user, similarly to body fixed case.

Overall, when sensors are handheld or wrist mounted, IMU data is first filtered to recognize
the activity completed by the different device carrying modes: static, swinging, texting,
phoning, handbag/trouser and irregular motion modes [34] (cf. figure 1.2). Step frequencies
are then extracted using a Short Time Fourrier Transform (STFT) [35] analysis on the accel-
erations that are filtered in different frequency sub-bands. A binary classifier differentiates
between step and stride frequencies since the coupling of the arm oscillations and the steps
varies with the walking speed [8, 36]. Finally, parametric models that use physiological pa-
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Fig. 1.2 Different carrying modes of the handheld device [2].

rameters (height [20]), step characteristics (frequency [37]) and acceleration signal statistical
characteristics [38], either combined or independently, are adopted for step length estimation.

1.3 Limitations of current step length models

Most of parametric step length models assume that common gait has been performed by
individuals, who are more likely to exhibit highly irregular gait motions when walking at
extreme conditions: under fatigue, when handling an additional mass in hand [2], or due
to the specificity of indoor environments e.g. stepping aside to avoid abstacles, walking
speed decreased with increasing crowd density, etc. These unpredictable irregular motions
can lead into major alteration of gait pattern, which significantly affects the performance of
displacement features estimation, since positioning errors at different steps are induced and
accumulated over the duration of displacement. Thus, the step length models coefficients
should be adjusted frequently. A large experimental database that characterizes the variability
related to human locomotion parameters is needed for this calibration. In the ideal case,
the collected data should provide information about the substantial variation of walking
parameters across different subjects due to intrinsic body morphology and motion pattern,
i.e. inter-subject variation, and about their variation induced by a single user under differ-
ent walking conditions, i.e. intra-subject variation. Hence, a challenging task is to validate
the models accuracy on new subjects rather than the ones these models have been adjusted on.

The development of such a database is costly in terms of time, effort and material. In effect,
many available volunteers must be found in order to collect enough experimental data, and
they have to provide their written consent to perform the trials. The main problems are the
number of subjects that is determinant in evaluating the reliability of the empirical method,
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as well as subjects’ distribution in terms of age, gender, and physiological characteristics
(e.g. height, weight) that have to be sufficiently addressed in order to make the collected
data as broadened as possible. In addition, experimental protocols should include as many
gait-impacting factors as possible (e.g. physiological or sensor-induced), and these factors
have to be well measured and labelled in such datasets [39]. Yet, it is hard to analyze the
coexisting effects of these factors on gait patterns simultaneously. Besides, several settings
of each factor should be considered in order to conduct the evaluation in a generalized and
efficient way [39], which highly increases the number of measurement trials included in the
dataset, and then more effort and longer acquisition time are needed. To overcome these
issues, extended data collected with wide population in the wild [40, 41], i.e. in realistic and
uncontrolled circumstances where several environmental and physiological factors affect gait
patterns, are used to examine the robustness of gait recognition models. However, the major
drawback is that the influence of all particular factors cannot systematically be investigated
since its contributions are unlabelled and are somehow merged within such datasets.

1.4 Thesis contributions

The previously proposed step length models have been only partially successful since they
are linear, simple and mostly based on empirical observations from biomechanics. Although
the biomechanics of normal human walking is well understood [42], little is known about
the involved control strategies. Better understanding human locomotion suggests a profound
need of exploiting transdisciplinary knowhow derived from human motion analysis and
humanoid robotics for better pedestrian linear displacement interpretation. Predictive human
gait simulation is a potential approach in this context. The development of mathematical
models for full-body kinematics and dynamics for digital human walking modeling taking
into account different device carrying modes can help in studying arm swing behavior in-
duced in different walking conditions.

This thesis intends to provide an alternative way to generate the database that could be used
for calibration of pedestrian navigation models, by substituting costly experimental protocols
for simulated human locomotion. Proposing a human gait simulator, taking into account
the correlation between upper limbs and legs movements [8], enables to predict human gait
motion under different walking conditions, i.e. walking velocity and device carrying mode,
and for given anthropometric properties of the user. This approach allows to generate walking
gait acceleration data especially for the hand, while keeping the gait-affecting factors (i.e.
sensor-induced, physiological, environmental) well determined and labelled in the generated
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datasets since they are treated as input parameters in the simulation process.
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Fig. 1.3 Overview of the proposed approach for a better pedestrian navigation solution.

The proposed approach is illustrated in figure 1.3, and the overall objective of this thesis
is to contribute to solving the direct modeling problem, which consists in predicting the
linear accelerations of the handheld device for a given carrying mode and given displacement
characteristics (i.e. step length, step cadence, etc.). The development of a realistic walking
gait simulator for human motion prediction can be employed to build large scale database
useful to find fine correlations between accelerometry data sensed at the hand, and the
features of the user’s displacement. These fine correlations can solve for the inverse problem
of pedestrian navigation in an adaptive manner, by building universal step length models
dedicated to the hand case.

The overall contribution of this work can be divided into separate identifiable contributions
as follows:

- Introducing a 3D rigid skeletal system, whose choices and assumptions are justified by
biomechanical observations on normal human gait.
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- Combining inverse dynamics and optimization method to predict normal human walk-
ing motion over a step, including a single support phase and an instantaneous double
support phase, in swinging mode. The walking gait is assumed to be step symmetric,
and the walking motion over a stride is deduced from the optimized motion over a step,
considering the symmetric property of human body structure.

- Conducting motion capture experiments, with 10 healthy volunteers, to study the step
level symmetry of human walking gait under the presence of a handheld device. It is
shown that the presence of a smartphone mass (190 g) in hand alters the temporal sym-
metry over steps, which has a significant impact on position estimation for pedestrian
navigation applications.

- Extending the optimization process to the stride level, while considering the possible
temporal and spatial asymmetry of walking gait. Swinging and texting modes are
tested in the extended model.

- Performing overground walking experiments with a test subject to evaluate the simula-
tion outputs of both step and stride level human walking simulators.

- Discussing the results found with humanoid robotics tools in a context of autonomous
geolocation.

- Identifying the limitations of the developed simulation tools, and making recommen-
dations for possible improvements to make the model more realistic for human gait
prediction.

1.5 Organization of the thesis

The thesis consists of five main chapters:

- Chapter 2 is devoted to the introduction of the state of the art in modeling human
walking gait. Existing models are divided into simplified and complex gait models,
and the limitations of each type of modeling are detailed. Additionally, the state of the
art on arm swinging during gait and its mathematical modeling is presented.

- Chapter 3 is dedicated to the overground walking experiments conducted to evaluate
the simulation approach. It first presents the estimation of physical properties of
a human test subject using regressions reported in the literature. Then, we present
the aim, the experimental setup and the walking gait features that are extracted for
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validation. Finally, we present the signal processing of the inertial data and the methods
used for step characteristics extraction.

- Chapter 4 broadly presents the modeling approach. First, a 3D anthropometric
model with 19 DOFs is introduced based on biomechanical observations on normal
human walking reported from the literature. Then, human walking motion generation
using differential inclusion formulation, based on inverse dynamics and parametric
optimization, is presented. This method is applied to a walking gait cycle involving a
single step, and simulation outcomes are presented and discussed in comparison with
experimental data.

- Chapter 5 is dedicated to the study of the influence of a mass carried in hand on the
temporal symmetry of the walking gait cycle. First, we present the motion capture
experiments that have been designed for this purpose, as well as the parameters used
to assess the symmetry of the walking gait. Then, experimental data are analyzed
following biomechanical approaches. The analysis results are then presented and
supported by simulation results from a human gait model in the sagittal plane. Finally,
the impact of the induced temporal asymmetry on the estimation of traveled distance
for pedestrian navigation applications is discussed.

- Chapter 6 is dedicated to the extension of the 3D human gait simulator to the stride
level, motivated by the results of the previous chapter. First, modifications on gait cycle
definition, optimization variables, constraint and cost functions are detailed. Then,
we present and discuss the validation results of the stride-level simulator based on
acceleration data related to different body parts.





Chapter 2

State of the art

2.1 State of the art on human walking gait modeling

2.1.1 Simplified gait modeling

A first approach to understanding the behaviour of the entire musculoskeletal system during
normal human walking is to highlight the basic mechanisms involved in this system, using
simple biomechanical models. The advantage of such models is that they only have a
small number of mechanical parameters to be examined. This would then facilitate the
understanding of the relationships between causes and effects. To do this, simple gait models
first reduce the musculoskeletal model to its COM, then the modeling of effects produced
by the musculoskeletal system with simple mechanical elements is used to simulate the
movements of the system during walking. Alexander et al. [43] states that these models can
provide an indication on potential strategies that the neuromusculoskeletal system could use
to perform walking.

2.1.1.1 Inverted pendulum model

The simplest biomechanical model for studying normal walking is the inverted pendulum.
This model consists of a rigid rod representing the subject’s leg and a point mass equal to
the total body mass of the subject [44]. In this model, the mass describes an arc of a circle
above the rigid support leg during the simple support phase, the COM then reaches its highest
point at the middle of stance phase. Cavagna et al. [44] then states that the potential energy
variations are exactly in phase opposite to external kinetic energy variations calculated at
COM. Therefore, at midstance, the potential energy reaches its maximum value and the
kinetic energy reaches its minimum value. It is also highlighted that the pattern of mechanical



12 State of the art

energy variations at the COM is qualitatively similar to the pattern observed during normal
human walking.

The inverted pendulum model is able to predict with reasonable accuracy a large number
of experimental observations on normal walking. More particularly, it has been used to (1)
simulate the duration of oscillation during normal speed walking [5], (2) explain observed
variations in ground reaction force patterns as a function of walking speed [43, 45, 46], (3)
study the dependence of COM vertical movements on leg rigidity during walking [47], and
(4) study the mechanisms of gait stability control in the absence of active muscle control
[48].

Researches in pedestrian navigation estimated step length based on one or two inverted
pendulums to model the leg movement [28, 49]. The stride length can be estimated with a
gyroscope on the thigh, since the forward displacement of the COM can be calculated (cf.
Renaudin [50]). Indeed, in the middle and end of the support phase, the leg is stretched and
its movement during this period can therefore be compared to a simple inverse pendulum
[51]. The calculation of the covered distance is carried out by integrating the measurement
of the angular velocity of the thigh during the mid-stance phase. This integral calculates the
rotation angle of the leg, considered as one segment, around the pelvis during a stride. Then,
a simple trigonometric relationship is used to estimate the traveled distance.

SL= Lss + Lds = 2 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lh� h2
p

+K � S ð7Þ

where L is the subject’s leg length, h is the vertical dis-
placement during one step, K is the proportional con-
stant,15,16 and S is the foot length.

Methods

There are several shortcomings in the current step
length estimation methods. The empirical equation–
based methods require large amounts of training data
for calibration, and the parameters in empirical equa-
tions are different for different subjects. In the model-
based methods, the double integrals cause substantial
accumulation error, and it is difficult to find the accu-
rate start and end points of the integrals for each step.

Our method utilizes a modified inverted pendulum,
as shown in Figure 1(b). And the relationship to
describe this model is the same with equation (7). The
least squares optimization function is used to find the
optimum value of K. There are three main differences
between our method and previous pendulum model-
based method:

1. We add coordinate transformation to obtain
vertical acceleration after median and low-pass
filtering in data preprocessing.

2. Unlike previous studies which focused on find-
ing a right integrating range in each walking
step, we integrate data as a whole without piece-
wise integrations.

3. We use the EMD technique18 to eliminate the
accumulation error due to integration.

Our device is a wearable computer named eButton
which contains a microprocessor, four miniature

cameras, and an inertia measurement unit (IMU) with
a triaxial accelerometer, a triaxial gyroscope, and triax-
ial magnetometer, as shown in Figure 2.19 The eButton
can be worn at different locations on the body, such as
the chest and the waist. The motion data acquired by
the eButton are either stored within a memory card
within the device or transmitted wirelessly to a com-
puter or a mobile device. In this study, we use the verti-
cal component of the waist acceleration to estimate the
step length which is one of the most important para-
meters characterizing walking.

Our method is highlighted as follows. Motion data
are acquired by a triaxial accelerometer and a triaxial
magnetometer inside the eButton during walking. The
acceleration data are filtered by a low-pass filter to sep-
arate the gravity component and the body movement

Figure 1. (a) Inverted pendulum model of the leg movement, where l is the leg length, h is the vertical displacement of the waist,
and h is calculated by double integration of vertical acceleration. (b) Modified inverted pendulum to model walking, where S
represents the foot length.

Figure 2. (a) eButton: a wearable computer which contains a
microprocessor, four miniature cameras, and an inertia
measurement unit (IMU) with a triaxial accelerometer, a triaxial
gyroscope, and a triaxial magnetometer. (b) The circuit board of
the eButton.

Zhao et al. 3

Fig. 2.1 (a) Inverted pendulum model of the leg movement, where l is the leg length, h is
the vertical displacement of the waist, and h is calculated by double integration of vertical
acceleration. (b) Modified inverted pendulum to model walking, where S represents the foot
length [3].

In the case where the acceleration is measured at subject’s waist which is close to the body’s
COM. The problem of step length (SL) estimation is transformed to the problem of how
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to calculate the vertical displacement (h) of each step, and the typical solution is to double
integrate the vertical acceleration a (cf. figure 2.1(a)):

SL = K ×2
√

2lh−h2, h =
∫∫

a(t) dt (2.1)

where l is the leg length and K is a constant determined by calibration.
Zhao et al. [3] aimed at estimating step length using sensors based on an improved inverted
pendulum algorithm to model the anterior-posterior displacement (Lds) during the double
support (DS) phase (cf. figure 2.1(b)):

SL = Lss +Lds = 2×
√

2lh−h2 +K ·S (2.2)

where Lss is the leg displacement during single support (SS), S is the foot length and K is the
proportional constant.
In contrast with previous studies, vertical acceleration was integrated as a whole without
piecewise integrations. The advantage is to avoid finding the start and the end points of the
integrals for each step, which easily results in drift errors.

Among the limitations of using inverted pendulum model for step length estimation is
inefficiency when using sensors that are not attached to the body, as it would be difficult
to deduce the acceleration of the pedestrian’s COM. Another limitation is that vertical
acceleration must be integrated to estimate the vertical displacement of the COM, resulting
in a double integration of the accelerometer measurement errors. And finally the need for
large amounts of training data for calibration of the constant K used in step length calculation
formula.

2.1.1.2 Compass gait model

The compass gait model simulates the COM trajectory of a bipedal system in which the
lower limbs are represented by rigid links without joints at the feet, ankles and knees. The
locomotor system is operated in flexion and extension by joints similar to those of a hip. Each
leg has a point mass, and a third point mass is located in the middle of the segment connecting
the hip joints The model assumes oscillation of the lower contralateral limb propelling the
body forward, and the COM describes a circular arc around the supporting ipsilateral limb
[52] (figure 2.2). Like the inverted pendulum model, the body’s COM reaches its peak
position at midstance. The COM then describes a vertical downward trajectory under the
action of gravity. At the instant of transition between two successive arcs, characterizing the
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phase of double support, the oscillating contralateral member slows down the fall and starts
a support. Simultaneously, at the end of support, the ipsilateral limb begins its oscillation
phase. This results in a second circular arc described by the COM with roles exchanged
between the ipsilateral and contralateral members. In the end, the inverted double pendulum
model allows to generate a series of complete walking cycles [53].44 Modèles mécaniques simplifiés

Figure 2.2 – Modèle compass gait (Inman et al. [1981]).

ipsilatéral et le membre controlatéral. Au final, le modèle double pendule inversé permet

de générer une série de cycle de marche complet (Saunders et al. [1953]).

2.3 Déterminants de la marche

Proportionnellement à la morphologie du sujet et à la longueur du pas, le modèle com-

pass gait surestime la trajectoire verticale du CM d’environ 7 à 10%, ce qui correspond

approximativement au double de l’amplitude de déplacement vertical du CM au cours de

la marche normale. Le coût énergétique d’une personne exécutant une marche en compass

gait serait donc excessivement élevé. De plus, au point d’intersection de deux arcs de cercle

successifs, le changement brusque de direction de l’accélération antéropostérieure du CM

nécessiterait l’application d’une force de contact sur le sol d’une amplitude considérable.

Pour cette raison, en considérant le modèle compass gait, l’introduction de chaque déter-

minant de la marche tels qu’ils sont considérés par Saunders et al. (Saunders et al. [1953])

permettent de se rapprocher de la trajectoire de référence du CM au cours de la marche

normale.

2.3.1 1er déterminant : la rotation du bassin

Au cours de la marche, le pelvis effectue alternativement à chaque articulation de la

hanche une rotation interne et externe par rapport à l’axe vertical au cours de la phase

Fig. 2.2 Compass gait model (Inman et al. [4]).

2.1.1.3 Ballistic and dynamic walking models

The ballistic models and the dynamic walking models represent extensions of the inverted
pendulum and compass gait models. They differ from these models by the possibility of
performing, through simple mathematical models, dynamic walking simulations that can be
tested experimentally on machines. Indeed, these models were initially developed to simulate
normal human walking by bipedal robots [6, 54], with no interest in muscle and joint control,
nor consideration for empirical human behaviour. These models are distinguished by their
ability to generate complete periodic gaits either by taking advantage of the action of gravity,
through actuating forces on knees and/or hips, or through propulsive forces on support foot.

2.1.1.3.1 Ballistic models Based on a compass gait mechanical model, ballistic models
refer to the analysis of the swing phase of gait cycle. Mochon and McMahon [5] showed that
the body’s forward movement during the swing phase can be accomplished in the absence of
any generation of muscle force and only from a set of kinematic conditions i.e. setting the
swinging leg velocity at the instant of toe lift. At that moment, their mathematical model
establishes this set of initial conditions to both generate ground support and the swing of the
contralateral leg (figure 2.3).
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This suggestion has been often debated since, and was 
investigated further by Grieve and Gear (1966) who 
concluded that most swings are performed in times 
considerably less than the natural half-period of either 
the lower leg or the whole leg regarded as a compound 
pendulum. 

Electromyographic traces show that the muscles of 
the swing leg are reasonably silent during the whole 
swing period, except just at the beginning and end. 
Basmajian (1976) stated, “very little electromyo- 
graphic activity appears in any of the muscles during 
normal moderate-speed walking.. . we need only small 
inputs of propulsive force and balancing mechanisms 
to maintain forward progress”. Thus, a ballistic model 
of walking seems plausible on electromyographic, as 
well as dynamic grounds. 

Saunders et al. (1953), in their investigation with 
amputees, concluded that the major determinants of 
human gait are: (1) pelvic rotation, (2) pelvic tilt, (3) 
knee flexion, (4) hip flexion, (5) knee and ankle 
interaction, and (6) lateral pelvic displacement. They 
found that the loss of one of these determinants can be 
compensated by the other five, but the loss of two or 
more deranges gait so seriously that normal walking 
may no longer be accomplished. 

As Saunders et al. (1953) point out, coordinated knee 
and ankle interaction of the stance leg is importantin 
decreasing the vertical excursion of the center of mass 
of the body during a step. Even so, a “compass-gait” 
model of walking, where the stance leg is stiff and the 
whole body is represented as an inverted pendulum, 
has been used successfully by Cavagna et al. (1976) to 
explain the changes of kinetic and potential energies of 
the center of mass of the body that occur in normal 
walking. We take this as evidence for the argument 
that determinants (3) and (4) are more significant than 
determinants (l), (2), (5) and (6) in setting the charac- 
teristics of normal walking. Certainly, forward pr& 
gression would be impossible without determinant (4). 

The model presented here includes only two of the 
six determinants : hip flexion (4) and knee flexion of the 
swing leg (3). To study the contribution of swing leg 
knee flexion to the dynamics of walking, the model is 
first analyzed without movement at the knee so that 
the swing leg is a stiff link. This type of gait is called 
stiff-legged walking. 

MATHEMATICAL MODEL 

The model shown schematically in Fig. 1 consists of 
3 links; one representing the stance leg and two 
representing the thigh and shank of the swing leg. The 
foot of the swing leg is rigidly attached to the distal 
link, as explained below, and therefore does not 
constitute a separate link. Each link is assumed to have 
a distributed mass. The moment ofinertia and location 
of the center of mass of each link is taken from the 
anthropometric data of Dempster (given in the Appen- 
dix). The mass of the foot is lumped into the shank. The 
mass of the trunk, head and arms is represented by a 

d- r--d- 

SC SL 

Fig. 1. Schematic representation of the model. The numbers 
(l), (2) and (3) give, respectively, the position of the model at 
heel strike, toe-off and following heel strike. The angles, 
lengths and positions of the centers of mass of each limb are 
shown in the figure. For meaning of symbols see Appendix. 

point mass at the’hip joint. The lengths, positions of the 
centers of mass and angles of each limb are shown in 
Fig. 1. 

As explained in the Introduction, we will consider 
two special cases of bipedal gait ; stiff-legged walking 
and walking with knee flexion. The equations of 
motion for these two cases are derived by writing 
expressions for the total kinetic and potential energies 
of the system (Fig. 1) and applying Lagrange’s 
equations. 

Stifilegged walking 

For stiff-legged walking, Lagrange’s quations yield 
the following ballistic equations of motion : 

JB - Cd’ sin@-f&) - Cf$ cos(6-4) = U sin 8 

(I) 
K4 + Cd2 sin@-+) - C8’cos(e -4) = - W sin 4, 

(2) 

where the meaning of the symbols is given in the 
Appendix and Fig. 1. 

.We have imposed, in this case, the following boun- 
dary conditions and constraints. Due to the geometry 
of the model, at the beginning and at the end of the 
swing (represented by points (1) and (3). respectively, 
in Fig. 1) both legs must make the same angle with the 
vertical, so that both heels are in ‘contact with the 
ground. This then imposes two kinematic conditions : 
6(O) = - 4(O), and W,) = - #(T,), where T, is the 
time of heel strike. A third kinematic condition is that 
the step length should be qua1 at the beginning and at 
the end of the swing. Since a possible swing is 
determined by 5 parameters (2 initial angles; 2 initial 
angular velocities and the time of swing), with the 3 
equations mentioned so far, we still have 5 - 3 = 2 free 
parameters. 

But there are two more conditions, which might be 
called dynamic constraints. One is that the vertical 
force at the ground must always be positive; otherwise 

Fig. 2.3 Schematic representation of a ballistic walking model (Mochon and McMahon [5]).

During the swing phase, the system moves only under the influence of gravity and the
constraint of a zero mechanical energy variation of the system. The swing phase ends, at
initial contact (IC), in kinematic conditions that allow a new step to begin immediately. The
explicit hypothesis of such a model is that the swing of the leg can be performed in a similar
way to that of a simple pendulum [55], assuming that no muscular torque acts during this
phase. Several studies support this hypothesis and point out that the joint moments of the
swing limb are small compared to the joint moments of the stance limb [56–58]. Other
studies show that electromyographic recordings of the swing limb are also relatively small
[59, 60]. The study of normal walking using ballistic models has also made it possible
to predict a number of walking parameters such as the duration of the swing phase [61],
the kinematics of the swing limb [62] and the constraints required to take off the foot as a
function of walking velocity and step length [5].

2.1.1.3.2 Passive dynamic walking models In the case of passive dynamic models, the
dynamic parameters of the model give the system the ability to generate a stable and periodic
gait on an inclined slope without external energy supply (i.e. actuators) other than the
potential gravitational energy (figure 2.4).

In this type of modeling, gait characteristics (walking speed, step duration and length) depend
on the geometrical and inertial properties of the system and the slope inclination. This
passive system then behaves in a similar way to a simple pendulum since the energy lost
due to contact with the leg extremity with the ground is compensated by an energy gain at
regular intervals. In fact, for this type of mechanical system, the gain in kinetic energy due
to conversion of potential energy during the swing phase is absorbed by the instantaneous
impact at IC. From passive dynamic systems, Mc Geer [6] suggests than the geometric and
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Fig. 2.4 Passive dynamic walking model including legs with arbitrary mass and inertia,
semicircular feet, and a point mass at the hip (McGeer [6]).

inertial parameters of the human body (segment lengths, mass distribution) have an effect on
walking motion that is equally as important as walking control strategies.

2.1.1.3.3 Active dynamic walking models Active dynamic walking models include rigid
support and oscillating legs driven by active torques to allow walking on a flat ground. The
first studies based on this type of modeling were limited to planar displacements [7, 63].
Actuation is performed as a pulse directed along the support leg just before toe lift to simulate
the muscular activity of the plantar flexors at this instant. The aim is to minimize the energy
lost by the system at the impact with the ground of the lower extremity of the leg. The
mechanical energy lost would be reduced by 75% by applying this pulse immediately before
IC [64]. Another type of actuation can be performed as an actuator torque at the hip in the
form of a spring of known stiffness connected to the legs, or by instantaneous joint torques
occurring at the beginning and end of the swing phase (figure 2.5).

of a hypothetical metabolic cost model. The extreme simplicity of
the model should also clearly reveal underlying principles of the
energetic cost of transport, a task difficult to achieve when using a
large number of empirical parameters.

2 Simple Models of Walking
We use three variations of walking models to study hypotheti-

cal metabolic costs. All are based on the principles of passive
dynamic walking, but with the addition of actuation for walking
on level ground. These quasi-passive models include two varia-
tions of @22#, termed the Idealized Simple Model~ISM, see Fig.
2~a!! and the Simple Model~SM, see Fig. 2~b!!, as well as a
model more similar to that of McGeer@18# with more realistic
inertial characteristics, termed the Anthropomorphic Model~AM,
see Fig. 2~c!!. The Idealized Simple Model provides analytical
predictions but relies on linearization and other approximations.
The Simple Model is identical except that it retains all nonlineari-
ties. It requires numerical computations but makes it possible to
test the consequences of the ISM approximations. Finally, the
Anthropomorphic Model is used to test whether the fundamental
principles of the ISM apply to a nonlinear model that is more
physically realistic. We will use dimensionless variables through-
out, with the following base units; overall massM, leg lengthl,
and the gravitational constantg. Time is therefore normalized by
Al /g.

All three models include rigid stance and swing legs connected
by a hinge joint at the pelvis and constrained to planar motion~see
Fig. 2!. Actuation is provided in the form of an impulseP directed
along the stance leg and a springlike hip torque acting between the
legs. Thetoe-off impulseP is applied instantaneously before heel
strike, which is modeled as an instantaneous and perfectly inelas-
tic collision that sets the initial conditions for the following step.
The hip torque can either be produced by a torisional spring of
stiffnessk or by impulsive torques that occur at the beginning and
end of the swing phase, as long as both yield the equivalent swing
leg natural frequencyv[Ak11.

The ISM and SM are irreducibly simple, with legs of zero mass
connecting a massive pelvis of massM and point mass feet of
massm, taking the limit asm/M approaches zero@22#.

Analysis of the ISM yields three simple multiplicative power
laws relating actuation variablesP andv to the resulting speedv,
step periodt, and step length described by the initial leg anglea
~see Fig. 2!. From Kuo@22#,

v;v1/2P1/2 (1a)

t;v21 (1b)

a;v21/2P1/2. (1c)

These approximations were found to apply to both the SM and
AM.

3 A General Model of Metabolic Costs

„a… Two Components of Metabolic Cost. We propose a
general model of metabolic cost of transport~cost normalized by
body weight and distance traveled!, E, that has a component cor-
responding to the metabolic cost of pushing off with the stance leg
~i.e., toe-off!, Etoe, and a component corresponding to forced mo-
tion of the swing leg,Eswing:

E;Etoe1Eswing. (2)

This general model can be used to examine the implications of
several physiological hypotheses for the cost of tuning the swing
leg. A significant feature of this model is that when used with the
idealized simple model~ISM! to predict the speed exponentb, the
prediction is not dependent on the relative proportionality between
Etoe andEswing in the overall metabolic cost, nor on any other free
parameters. When applied to the~nonideal! simplest model~SM!
and anthropomorphic model~AM !, the sensitivity to this same
relative proportionality remains very low, so that the predictions
are quite robust to parameter variations.

The first component of the overall metabolic cost is hypoth-
esized to be directly proportional to the amount of toe-off me-
chanical work performed on the center of mass,Wtoe, which is
itself equal to the amount of negative work performed during heel
strike~see Fig. 3~a!!. The ISM yields a very simple approximation
@22#,

Etoe;Wtoe;av2;v21v3, (3)

whereEtoe is the cost of transport.
For the second component of metabolic cost it is clear~see Fig.

3~a!! that there must be a cost associated with high stiffness
k—otherwise the optimum step length would be very low. Be-

Fig. 1 Metabolic energy costs as a function of speed, v , and
step length, s. Data are from †1‡, replotted in the manner of †2‡.
Also shown is the preferred speed-stride length relationship s
Èv 0.42

„thick solid line … reported by †4‡. Energy contours are
shown as a percentage of a nominal gait, with the cost of
standing subtracted. Note that there is a sharp increase in en-
ergy consumption if speed is increased while keeping step
length constant. At fast speeds and short step lengths, energy
consumption appears to be dominated by step frequency, plot-
ted as dotted line contours „t is the dimensionless step pe-
riod …. Top and right axes are in actual SI units. Bottom and left
axes are in dimensionless units: Step length is normalized by
leg length lÄ0.98 m, and speed is normalized by Agl and is
equal to the square root of a Froude number †16‡. Dimension-
less step period t is normalized by Al Õg .

Fig. 2 Three models of walking: „a… The Idealized Simplest
Model „ISM… consists of point mass pelvis and feet connected
by massless legs, after Garcia et al. †20‡. It employs a linear-
ized analytic solution to the equations of motion. „b… The
Simplest Model „SM… is identical to the ISM except that the
equations of motion are solved numerically. „c… The Anthropo-
morphic Model „AM… is similar to that of McGeer †18‡, with legs
with more realistic inertial parameters as well as curved feet to
improve efficiency. All three models are powered on level
ground by an impulsive push P along the stance leg applied at
toe-off, as well as a springlike hip torque between the legs †22‡.
The SM is used to test the linearizing assumptions of the ISM,
while the AM tests the idealized inertial parameters.
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Fig. 2.5 Active dynamic walking model (Kuo [7]).
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The advantage of this type of actuation is that the swing frequency of the leg can be adjusted.
Other authors [65] have shown that a stable cyclic gait on flat ground can be achieved with
simple phasic muscle contractions controlling the hip joint torque. Kuo [7] points out that the
metabolic cost associated with the foot pulse and hip joint torque can perfectly predict the
relationship between walking speed and step length observed experimentally. By extending
these models into three dimensions, Kuo [63, 66] acknowledges that while active dynamic
walking models maintain their stability in the sagittal plane, this is not the case in the frontal
plane. He nevertheless believes that this instability can be controlled in feedback by the lateral
placement of the foot. He infers that humans should exploit more passive leg dynamics in the
sagittal plane and probably provide more muscle control to stabilize the lateral movement of
the body during walking.

2.1.1.4 Limitations of simplified gait models

2.1.1.4.1 Kinematic approximations In the different simplified gait models, the lower
limbs of the human subject are represented by rigid links of zero mass and constant length
connecting the COM to the center of pressure (COP) of the support foot. The COP is then
considered fixed in the reference frame, and the trajectory of the COM during the support
phase is characterized by a circular arc with a constant radius equal to the length of the
support leg. The consequence of such modeling is that the vertical trajectory of the COM is
overestimated (by 7 to 10%). As Saunders [53] points out, the energy cost generated by a
walking modeled by this type of mechanical representation would be overly high.

2.1.1.4.2 Dynamic approximations Several studies [67, 68] reveal that simplified me-
chanical models of walking cannot accurately predict the vertical reaction force pattern on
the ground. They would produce a force pattern that is not correlated with experiments
performed on subjects. While experimental data from force platforms for comfortable speed
walking show two vertical force peaks and a minimum reached between the peaks, simplified
mechanical models predict only one force peak at midstance, when the support leg is perpen-
dicular to the ground. To improve the simulation of vertical force pattern from these models,
some authors [46, 67–69] represent the supporting leg more realistically by introducing knee
and ankle rotations [67, 69]. Furthermore, Pandy [70] points out that when an individual
bends the knee excessively, the peak of vertical ground reaction force would decrease. On
the contrary, more rigid lower limbs would increase the vertical force peak [71].

2.1.1.4.3 Musculoskeletal simplification Simplified mechanical models make it pos-
sible to analyze global relations between body height and mass, leg stiffness and length,
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walking speed, and the global energetic mechanisms of normal walking [42], but they remain
unsuitable for understanding the different muscle synergies involved during walking. Al-
though ballistic and dynamic models produce complete stable steps, they do not allow many
important details of walking to be studied. For example, active dynamic walking models
emphasize the importance of the propulsion phase of the gait cycle, yet the way muscle
synergies contribute to propulsion can only be studied using very detailed muscle models [72].
Another important limitation is the inability of these models to represent muscle coordination
during double support due to the large number of muscle co-contractions during this phase
[73]. Studies introducing muscles into this type of models [65, 74] have predicted step length
and walk/run transition speed, and reproduced ground reaction forces over the entire gait
cycle. Nevertheless, these studies are subject to important constraints and adjustments e.g.
ground reaction pattern, single support duration. A better understanding of the different
muscle synergies requires an enhanced model with enough actuators to represent all the
muscle groups of lower limbs [42].

2.1.1.4.4 Conservation of mechanical energy The term energy conservation refers to
the exchange of mechanical energy between the kinetic energy and the potential energy gener-
ated by the pendular movements of the system. Energy conservation would be a phenomenon
frequently observed during segmental movements of the human body. This phenomenon
would often appear during cyclical movements such as walking. When the COM moves
downward, a part of its potential energy is used to accelerate the COM along the vertical
axis and is transformed into kinetic energy. When the COM accelerates forward, the kinetic
energy of the COM can be used to raise it and provide work against gravity action. However,
in reality the theoretical effectiveness of this energy exchange varies with walking velocity
[44] and step length [75]. To evaluate the susceptibility of the human body to conserve
mechanical energy during gait, the modeling of the individual by simplified mechanical
systems, considered conservative, has for many years attracted the interest of researchers.
This hypothesis is based on the principle that the bipedal system can be considered as an ideal
pendulum whose characteristics are [76]: (i) the mechanical energy of the system, defined as
the sum of kinetic and potential energies, is constant during gait cycle, (ii) the displacement
of the COM is the consequence of the reciprocal exchanges between the potential energy
and the kinetic energy at the COM, (iii) the variations of kinetic and potential energies at the
COM are exactly in opposition of phase.

The conservative energy properties would then require no muscle work. However, the
validation of this hypothesis should be subject to biomechanical experiments, since the
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analogy between the human leg, even rigid, and an ideal pendulum seems to be a very
simplified representation. Indeed, it seems unrealistic that the rigid support leg of the system
behaves passively. Rather, it would act like a forced pendulum, with internal work exerted to
accelerate/decelerate the body.

2.1.1.4.5 Simplification of the double support phase The simplified gait models simu-
late the trajectory of the COM only during single support phase and represent double support
as the instant of transition between two successive single supports at the contact of the
swinging leg extremity with the ground (IC). The system legs, both in support, form a closed
kinematic chain in double support [77]. The main characteristic of this phase is that it leads
to several solutions for actuation. Thus, for a bipedal system, an optimization problem have
to be defined in order to choose the best possible combination of torques.

2.1.2 Complex gait modeling

Human walking involves complex synchronization and control between multiple body seg-
ments to provide the most energy-efficient and shock-absorbing forward movement possible
[53]. Specific gait features derive from variations in dynamic ranges of motion, muscle
strength, the relative shape, position and function of musculoskeletal and neuromuscular
structures, and capsular and ligamentous constraints on the joints [14]. Although human
walking has been the subject of intense research [10, 53, 78, 79], many aspects remain
ambiguous. While the motion capture and gait analysis technologies can document and
measure details of human walking, they do not have the predictive capabilities needed to
fully understand how different anthropometries and states of health or pathologies affect
human gait. Toward this end, virtual humans based on mathematical models representing
human anthropometry, kinematics, and dynamics were developed. This field, known as
digital human modeling, has a broad range of applications in consumer product evaluation,
and biomedical engineering.

Predicting natural walking motion for a digital bipedal model with given anthropometric
parameters can involve solution of substantial dynamics problems in which joint rotations,
torque profiles, and ground reaction forces are all unknowns. Most of physical constraints
on human walking, such as joint angle and torque limits, and lack of ground penetration are
commonly specified as inequality constraints. These constraints, which can be active at any
given instant, tend to give a realistic and natural walking pattern, but they contribute to the
difficulty in solving the dynamics problem.
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Due to the indeterminacy of the dynamics problem related to human walking, different ap-
proaches have been described in the literature to model human locomotion. These approaches
can be classified into those that solve the dynamics problem, and those that deal strictly with
the kinematics. For instance, statistical database methods deal strictly with kinematics and
are based on searching through pre-established motion databases to find appropriate walking
motions that are then scaled to correspond with the anthropometry of the considered digital
human model [80, 81]. As these methods do not require solving the dynamics equations of
motion, they do not provide articular forces or their related work. Therefore, such methods
cannot evaluate the stability of walking motions or energy expenditure, or even adapt to
walking on inclined slopes. Such methods cannot provide fine details of human locomotion
aspects.

There is a huge variation among human motion generation methods that address the dynamics
of human walking. To better understand the previous works in this field, one can distinguish
between those used for motion planning of robots, and those directed at generating realistic
human gait behaviors. Besides, it is helpful to distinguish between methods that solve the
dynamic problem directly, and those that solve the dynamics in an inverse way.

2.1.2.1 Robotic versus human motion

In robotics, fast solution of the dynamics is required to facilitate real-time control. For
this reason, several equality constraints are imposed on the robotic gait parameters by a
priori specification of limb motions to maintain symmetry of gait stages and static stability
[82], or by specifying trajectories in time of the zero moment point (ZMP)1 and the center
of gravity (COG) projection to ensure overall dynamic equilibrium [83]. Although such
artificial constraints speed up the solution process by reducing the feasible domain, they can
be restrictive to the point where the resulting motions are unnatural, unsmooth, and unable to
adapt to changes in the anthropometric data or the ground conditions.

Alternatively, for human walking motion, works are based on performance optimization with
only natural constraints, which is suitable for generating realistic human gait trajectories.
For numerical simulations, the objective functions measures human performance during gait,
and optimization techniques are used to find feasible joint motion histories that extremise
the objective functions and satisfy the imposed constraints [84, 85]. The major advantage
is that the human movements are dynamically feasible and are not artificially constrained.
Optimization-based human motion generation problems can be considered as numerical

1The zero moment point (ZMP) is discussed in section 4.4.1.2.
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optimal control problems [15]. Although this method is more computationally intensive and
is not adapted to the real-time control and analysis necessary in robotics, it results in more
realistic motions and thus is more suitable for studying the biomechanics of human walking.

2.1.2.2 Forward and inverse dynamics

Both forward and inverse dynamics are used in modeling human locomotion. Forward
dynamics formulation starts with initial conditions and known forces to find the unknown
joint profiles by numerical integration [86–88]. Integrating forces over time intervals to
obtain walking trajectories can be a computationally intensive process. Since the forces are
themselves unknown and must be obtained by numerical integration of the system differential
equations, the approaches utilizing forward dynamics leads to very long simulation times.
In order to deal with the computational intensity of forward dynamics, parallel algorithms
and processing techniques have been massively used [89]. Additionally, realistic initial
values for state variables (e.g. joint positions and rates) and initial guesses for control inputs
(e.g. muscle activations) are needed to obtain reasonable gait patterns [90]. This relies on
the availability of measurement data [88, 91] and compromises the efficiency of forward
dynamics approach as a predictive modeling tool.

In contrast, inverse dynamics is very efficient computationally as it calculates unknown
forces from joint displacement histories, and it does not include numerical integration of
differential equations. Since the joint motion histories associated with walking are unknown,
they are obtained using optimization methods [84, 92, 93]. Initial values for optimization
parameters can be set without the need for measurement data and initial values for the
state variables are unnecessary [94]. When applying inverse dynamics in gait prediction,
simple mathematical functions are used for approximating the generalized coordinates his-
tories [95], where the interpolation function coefficients depend on the optimization variables.

Examples where inverse dynamics formulation have been employed include the planning
of a robotic walking and running using optimization by Chevallereau and Aoustin [84] to
determine the coefficients of polynomial approximation for histories of the joint rotations
and pelvis translations. This study treated walking as a succession of single support phases
and assumed instantaneous double support phases (zero duration) defined by passive impact.
For predicting human motions, the work of Lo et al. [96], which treated human locomotion
and other tasks, provided a meticulous description of an inverse dynamics framework. By
adopting the control points of cubic B-spline curves as design variables, Lo et al. used
a quasi-Newton algorithm to extract joint angle profiles minimizing active joint torques
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during lifting. Saidouni and Bessonet [85] solved for a symmetric gait motion in the sagittal
plane of a 9-DOF model. The gait cycle was composed of repeated single and double
support phases that are symmetric when the right and left feet change roles. By defining the
interpolation points for the B-spline functions as well as the time durations of gait phases as
design variables, the motions for both the single and the double support were simultaneously
optimized to minimize the actuating torque energy. Most of these works considered additional
trajectory constraints to simplify the optimization process, either by imposing a constant
forward velocity of the considered bipedal model [94], or by constraining the motion of some
segments to measured data in order to predict the unmeasured segment rotations [95].

2.1.2.3 Skeletal and musculoskeletal models

For human walking modeling, two categories of models are typically used: (i) skeleton
models in which all muscles effects are simply modeled by torques applied to joints; and
(ii) musculoskeletal models where muscle groups are involved in dynamics equations and
represented by Hill-type elements [89, 90, 97]. Skeletal models are commonly employed in
robotic modeling, and are even used in the modeling of human walking due to their relative
simplicity and computational efficiency [84, 85, 93]. Examples where musculoskeletal
models have been used include an 8-DOF (degree of freedom) 3D model by Yamaguchi and
Zajac [97] to restore unassisted natural gait to paraplegics and a 3D musculoskeletal body
model (with 23 DOFs and 54 muscles) for normal symmetric walking on level ground by
Anderson and Pandy [88]. The problem of forward dynamics optimization when using such
musculoskeletal models is often posed to minimize metabolic energy expenditure per unit of
traveled distance. Terminal posture constraints are typically imposed to ensure repeatability
of the gait cycle, and the simulations results match well with the patterns of ground-reaction
forces, body-segmental displacements, and muscle activations obtained from experiments.

2.1.2.4 Limitations of complex gait models

2.1.2.4.1 Inertial modeling of human body To associate forces with motion, it is nec-
essary to determine inertial properties of body segments: masses, inertia tensors and COMs
positions. Other than expensive medical techniques (gamma ray scanners, magnetic reso-
nance imaging, etc.), there are several methods to estimate Body Segment Inertial Parameters
(BSIPs). The choice of one of these parameters can affect the accuracy of joint torque calcu-
lations [98]. Some methods represent the human body segments based on geometric volumes,
e.g. cylinders, cones, spheres, with uniform density. Measurement or calculation of lengths
and circumferences of body segments are used to calculate their volume [99–101]. It is then
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possible to obtain the inertial variables of segments knowing their density. Inertial modeling
by geometric representation presents some limits since, on the one hand, the density of a
body segment vary with the age of the subject. On the other hand, the mechanical hypothesis
of non-deformability of body segments implies that their inertial properties are considered
unaffected by segments movements [102].

Other methods are based on predictive equations reported in the litterature (Dempster [103];
McConville et al. [104]; Young et al. [105]; Zatsiorsky and Seluyanov [106]) using linear or
non-linear regressions. These predictive equations are limited by the measurement techniques
and by the population on which they are based [107]. Accordingly, the predictive equations
should not be used outside that population. Non-linear regressions should be preferred but
scaling equations, based on total body mass and segment length, are more commonly used
because of their expediency [108].

2.1.2.4.2 Musculoskeletal system redundancy Simulating human motion and interme-
diate postures is a difficult task due to the human musculoskeletal system redundancy and
other biomechanical factors [81, 109]. The concept of motion prediction using multi-objective
optimization techniques provides a feasible approach for predicting intermediate motions
of digital human models with a relatively large number of degrees of freedom. Several
numerical algorithms for implementing task-based posture prediction using multi-objective
optimization techniques have been studied by Yang et al. [110], Mi [111], and Marler [112].
Although viable results have been obtained, the application is limited to kinematics.

Consideration of various effects such as muscle forces, muscle fatigue and anthropometric
data is needed for natural motion and realistic digital human modeling. Accordingly, a
formulation for motion prediction involving all these parameters is required. Essentially,
dynamic equations of motion and constraints have to be satisfied in a defined time interval.
The objectives are diverse indexes of human performance, such as energy expenditure, dis-
comfort, or a combination of them. The subsequent optimization problem is then an optimal
control problem (OCP) [113]. Optimal control theory has been applied to several human
models [52, 89, 114]. Nonetheless, most numerical techniques consider only the control
variables (forces/torques) as unknowns, and the state variables are solved by integration
of the equations of motion [89]. Recently, direct collocation methods has been used for
large-scale neuromuscular control of human motion [115–117].
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Nonlinear optimization techniques are used to solve OCP efficiently [118, 119]. The basic
method is to discretize the system of differential equations, and then to define parametric
representation or finite dimensional approximation for the control and state variables. This
idea results in a transformation of the optimal control problem into a nonlinear programming
problem (NLP) that is solved numerically. Several viable formulations are available, whose
details are listed in Table 2.1. When only the control variables are treated as optimization
variables, while the state variables are not included in the system, this is called state variable
elimination [120]. If both state and control variables are treated as design variables, the
approach is called the direct collocation method [118]. If the control variables are eliminated
from the formulation, i.e. only the state variables are considered as optimization variables,
the approach is called the differential inclusion method [121]. Wang et al. [15] listed the
advantages and disadvantages of these different formulations.

Table 2.1 Different formulations for digital human motion prediction [15].

In state variable elimination, the joint angles, velocities and accelerations are obtained
through numerical integration of the equations of motion in each optimization cycle. Note
that f-1 denotes numerical integration in Table 2.1. Design sensitivity analysis is needed in
this formulation, since the joint profiles are implicit functions of the optimization variables.
Finite difference, adjoint variable method, and direct differentiation method are available to
calculate the derivative information for the constraint and objective functions [89, 122, 123].
These methods include numerical integration, which makes the formulation computationally
very expensive.
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Direct collocation is a computationally efficient alternative to state variable elimination
method for solving dynamic optimization problems [115]. In this formulation, the equations
of motion are treated as equality constraints since both controls and states are parametrized.
The discretized state equations are solved while optimizing the performance criterion, re-
sulting in a non-linear programming problem (NLP) with a large number of optimization
variables as compared to state variable elimination methods. Despite the large number of
variables, it is not necessary to satisfy the equations of motion at each iteration of the opti-
mization process. They only need to be satisfied at the final solution point. Design sensitivity
analysis of the system is not required since the problem functions are all explicit in terms of
the variables. With this formulation, these functions are sparse, i.e. each function depends
on only a few variables. These sparse properties of the functions must be exploited in the
optimization process and, for efficiency, advantage of sparsity of the constraint Jacobians
and Hessians is utilized. The resulting optimization problem is solved using powerful sparse
NLP algorithms, such as sequential quadratic programming (SQP) [124], and interior point
algorithm [125].

When the joint torques are eliminated from the optimization problem so that the unknowns
are the joint profiles or their parametric representations, the used formulation is differential
inclusion. In this formulation, the governing differential equations are not integrated nor
treated as equality constraints. Instead an inverse dynamics procedure is used to determine
the joint torques based on the current joint histories. The equations of motion are automat-
ically satisfied in the optimization process. Using differential inclusion, smaller number
of optimization variables is obtained in comparison with direct collocation method, and
formulations are explicit in terms of variables. The advantage of such a formulation is that
constraints on joint profiles can be treated efficiently [15].

2.2 State of the art on arm swinging during walking and
its mathematical modeling

Humans tend to swing their arms when they walk while the arm swinging plays no obvious
role in human locomotion. It might be costly to use muscles to swing the arms, and it is
unclear whether any potential benefits elsewhere in the body justify these metabolic costs.
Arm swinging and its effect on human walking gait has been an interesting topic of research
over the last decades.
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On one hand, many studies argued that the arm swinging is highly passive and analogous
to the swing of an unforced pendulum [126]. During gait, human motion can be largely
understood as a passive mechanical process. In [48], it is shown that passive-dynamic models
might be used to exhibit complex stable motions and to understand some enigmatic aspects
of human motion. It might be that human locomotion is largely natural and not heavily con-
trolled. Mathematical models indicate that arm swinging may arise simply from translations
of the shoulders [127], although muscle inputs may be necessary for sustained rhythmic
swinging [128].

On the other hand, using experimental data, the authors of [129] make arguments that muscle
activity is needed to produce human-like walking and that the swing phase in gait cycle can-
not be passive. In fact, swing phase kinematics can’t only be generated by gravitation because
the gravitational forces contribution to the total kinetics is very small. Besides, the kinetics
due to gravity do not have the same pattern as a normal swing phase. Other measurements
indicated significant shoulder torques [130], although with reported peaks varying as much
as three-fold, e.g. 3.8 N·m reported by Jackson et al. [131] and 12 N·m by Hinrichs [132].
Muscular effort is also suggested by observations of significant electromyographic activity,
which led to the recommendation that muscular forces dominate upper limbs swinging [133].
How walking may induce arm motion has been mostly studied, but not how arm motion
affects walking, thus giving indication of possible benefits.

There are many possible benefits to arm swinging. Suggested effects include reduced vertical
displacement of the COM [132, 134], and reduction of angular momentum [130, 132, 135],
angular displacement [126, 133] or ground reaction moment [136, 137], all about the verti-
cal axis. Other possible effects include prevention of uncontrolled arm motions [128] and
increased walking stability [138]. Also, arm swinging appears to have some physiological
benefit, as evidenced by reports of increases in the energetic cost of walking when the arms
are prevented from swinging [8, 134, 138].

Collins et al. [8] conducted an interesting experimental study to analyze the effect of human
arm swinging on the metabolic energy consumption and gait mechanics while human subjects
walk in different walking modes. The studied walking modes are normal, bound, held and
anti-normal. First, it was found that vertical ground reaction moment about the COP of
each foot and vertical angular momentum about the COM increase in the order normal,
bound/held (with no significant difference between the two) and anti-normal (see figure 2.6).
On the contrary, it was found that vertical center of mass displacement remains relatively
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unaffected, and is nearly the same for normal and anti-normal conditions, the latter therefore
serving to isolate this effect from the others. Because the vertical ground reaction moment is
transmitted upward from the support foot through the leg and the body, it was hypothesized
that muscular effort may be required to resist that moment. Consequently, it was concluded
that the metabolic cost increases in the same order of normal, bound/held and anti-normal
(see figure 2.7). Finally, the held condition was applied because simulations suggested that it
may actually require effort to prevent the arms from swinging naturally, implying that the
held mode might require greater energy expenditure than bound condition. In contrast, this
work does not experimentally study the effects of walking velocity, which has a strong effect
on human arm swinging during walking.
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Figure 4. Experimental measurements of the mechanical effects of arm swinging during human walking. (a) Vertical ground
reaction moment about the centre of pressure of the stance foot plotted versus time and (b) the peak moments over a stride;
(c) the arms’ contribution to vertical angular momentum versus time and (d) corresponding peak values; (e) whole-body angular
momentum about the vertical versus time and ( f ) corresponding peak values. Trajectories show mean across subjects per con-

dition, and bar graphs show peaks averaged across subjects. Error bars show 1 s.d. and asterisks indicate statistical significance
(p , 0.05). Double support is denoted by a shaded region in plots. In (c), the band labelled ‘rest of body’ represents the vertical
angular momentum of the body not including the arms; the range contains all mean trajectories, which were found to be domi-
nated by the legs. Arm angular momentum increased in the order Normal, Bound/Held, Anti-Normal as expected while angular
momentum of the rest of the body remained roughly constant, resulting in significant increases in whole-body angular momen-

tum. Increased peak vertical moments were necessitated by increased rates of change in whole-body vertical angular momentum.
(a,c,e) Light grey, Normal; mid grey, Bound; dark grey, Held; black, Anti-Normal.
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Figure 4. Experimental measurements of the mechanical effects of arm swinging during human walking. (a) Vertical ground
reaction moment about the centre of pressure of the stance foot plotted versus time and (b) the peak moments over a stride;
(c) the arms’ contribution to vertical angular momentum versus time and (d) corresponding peak values; (e) whole-body angular
momentum about the vertical versus time and ( f ) corresponding peak values. Trajectories show mean across subjects per con-

dition, and bar graphs show peaks averaged across subjects. Error bars show 1 s.d. and asterisks indicate statistical significance
(p , 0.05). Double support is denoted by a shaded region in plots. In (c), the band labelled ‘rest of body’ represents the vertical
angular momentum of the body not including the arms; the range contains all mean trajectories, which were found to be domi-
nated by the legs. Arm angular momentum increased in the order Normal, Bound/Held, Anti-Normal as expected while angular
momentum of the rest of the body remained roughly constant, resulting in significant increases in whole-body angular momen-

tum. Increased peak vertical moments were necessitated by increased rates of change in whole-body vertical angular momentum.
(a,c,e) Light grey, Normal; mid grey, Bound; dark grey, Held; black, Anti-Normal.
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(b)

Fig. 2.6 Peak values of (a) vertical ground reaction moment and (b) vertical angular momen-
tum for normal (Light grey), bound (mid grey), Held (dark grey), and anti-normal (black)
modes (Collins et al. [8]).

Kaddar et al. [9] studied the arm swinging effects on the walking bipedal gaits composed of
impact, single and double support phases. A mathematical approach to study the effect of
arm swinging on the bipedal gait was used. The biped used in this study is inspired from
HYDROID which is a hydraulic robot built by ANR. The mass inertial properties of this robot
approximately correspond to that of an adolescent boy. The two aims of this study are: (i) to
verify the effect of arms on a sthenic criterion during walking and (ii) to determine whether
the optimal movement of the arms is passive or not. Different evolutions of arms are treated:
bound arms, arms having an active motion, and passive arms, where each arm consists of
one-link. The comparison of results for different walking velocities show the importance
of an active movement of the arms. A passive movement of the arms has large amplitude
when the natural frequency of the arms coincides with the frequency of the walking gait.
Adding springs at the shoulders allows adjusting the natural frequency of the arms to that of
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is reduction of vertical displacement of the body centre of

mass (Murray et al. 1967; Hinrichs 1990; Umberger

2008). In our experiment this displacement was not

found to change significantly with arm-swinging con-

dition, perhaps due to the relatively low mass of the

arms. Both Normal and Anti-Normal arm swinging

could have produced the proposed benefits, yet had oppo-

site effects on metabolic rate. This is not surprising,

considering that other studies have found that reduction

of centre of mass displacement can actually increase

metabolic energy expenditure (Ortega & Farley 2005;

Massaad et al. 2007; Gordon et al. 2009). Our results

also contradict the hypothesis that arm swinging is

merely an evolutionary relic of quadrupedalism (Murray

et al. 1967; Jackson et al. 1983), since they corroborate

previous reports of a significant energetic benefit (Park

et al. 2000; Ortega et al. 2008; Umberger 2008). Another

hypothesized explanation is reduced trunk rotation (e.g.

Fernandez-Ballesteros et al. 1965), but our results

showed no change in trunk angular momentum with

different arm-swinging conditions. The parts of the

body with greater ‘rotation’ about the vertical direction

with increasing angular momentum were the legs and

arms, rather than the trunk. Finally, we also found no

clear trends in lower extremity joint work and torques.

These were generally unchanged between Bound, Held

and Anti-Normal conditions, and therefore appear not

to explain the differences in energetic cost.

The more promising explanations are those associated

with whole-body rotation about the vertical. The arms

were found to counter the legs, resulting in reductions

in angular momentum and ground reaction moment

about the vertical. Of the two, we propose that the vertical

moment about the stance foot is more directly related to

energetic cost. This moment is transmitted upward

from the foot, through the leg and to the pelvis, appar-

ently resisted by internal/external rotation moments

produced by muscle along the way and thus requiring

metabolic energy expenditure.

In contrast, there is not an obvious physiological pen-

alty for high angular momentum. It has been proposed

that humans may have an intrinsic goal of minimizing

whole-body angular momentum (e.g. Herr & Popovic

2008) or reducing angular motion about the vertical

(e.g. Elftman 1939) during walking. But walking with

pendular dynamics generally produces non-zero angular

momentum and motion, with little adverse effect. The

human subjects in this study also did not minimize verti-

cal angular momentum, which could have been reduced

further—theoretically to zero—by appropriate motions

of the arms and other parts of the body. Angular momen-

tum is certainly convenient for quantifying the motions of

the arms and legs (figure 4), but we believe its physiologi-

cal relevance to be indirect: its rate of change is related to

the vertical ground reaction moment, which we believe to

be more directly associated with muscular energy

expenditure.

Our results may be used to infer an energetic cost–

benefit balance for arm swinging in walking. Arm

swinging might have two separate effects: a direct cost for

driving arm swing and an indirect benefit for reduced

ground reaction moments. Direct costs might include the

metabolic requirements of shoulder muscles for driving

the arms, presumably minimized when allowing the arms

to swing as naturally as possible. Swinging the arms in

other ways, such as with greater or lesser amplitude, or

even holding them still, could all increase the direct

costs. Our results suggest that the direct cost of holding

the arms in place might be approximately 5 per cent of

the energy used in walking, based on the observed

difference in energy use between Bound and Held con-

ditions (for which lower-limb mechanics were nearly

identical).

Indirect benefits of arm swinging might include

reduced metabolic requirements for leg muscles in produ-

cing torques that resist vertical ground reaction moments.

Our results suggest an indirect benefit of approximately 7

per cent for normal arm swinging, based on the observed

difference in energy use between Normal and Bound

(where direct costs were presumably zero). This value is

consistent with the recently observed reductions of 8

per cent by Umberger (2008) and 6 per cent by Ortega

et al. (2008) in similar conditions. Taking the direct

costs and indirect benefits together, we would expect

overall energy requirements to be minimized when

ground reaction moments are small and arm motions

are close to a passive mode of swinging. Perhaps it is

such an optimum that humans seek in normal gait.

The simulation model used in this study has a number

of limitations. The model does not provide a direct means

for estimating increases in metabolic energy use in human

subjects, but rather predicts trends in ground reaction

moment and angular momentum. Metabolic conse-

quences of these changes must be inferred from a separate

understanding of physiology. The model was also limited

in that arms were represented in a simplified form,

without elbows and with shoulders at the hip. It is poss-

ible that an intervening trunk or a two-link arm could

change some of the arm-swinging dynamics, but the
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Figure 5. Net metabolic rate increased significantly in the
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(p , 0.05).
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Fig. 2.7 Net metabolic rate for different arm swinging modes (Collins et al. [8]).

walking gait. However, the sthenic criterion with the active arms with or without spring is
found to be less than the case with the passive arms for all walking speeds (cf. figure 2.8).
In addition, a recent study (Aoustin and Formalskii [139]) based on a ballistic walking gait
designed for a 3D biped with two identical two-link legs, a torso, and two identical one-link
arms, focused on the optimal swing of the arms. In this study, the biped is controlled with
impulsive torques at the instantaneous double support to obtain a cyclic gait. Simulation
results showed that for a given time period and a given length of the walking gait step, there
is an optimal swinging amplitude of the upper limbs. For this optimal arms motion, the effort
cost functional of impulsive control is minimum.

Most of the previous work considers only one link to model the human arm, which is a
simplification. However, it does provide us some interesting indications on the arm swinging
effects on human walking. Considering a two-link arm would be a closer approximation to
the real human arm, and adding a point mass object (handheld device) at the end effector
(forearm extremity) could be interesting to model a device attached to human hands for a
pedestrian navigation solution.
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Figure 18: Evolution of sthenic criterion versus walking speed.

5. Conclusion and perspectives

For optimal walking gaits, three cases of the biped arms are compared: bound
arm mode, active arm swing and passive arm swing. For all given walking speeds,
the sthenic criterion when the actuated arms swing is lower than that when the
biped has the bound arms. The actuation of the arms reduces the torques required
in the other joints of the biped and therefore a less value of criterion is obtained.
Optimal motion of the arms requires torques in arm joints especially during the
double support phase. This is coherent with the studies on human walking, which
suppose that the arm swinging is not a passive movement and that the deltoid
muscles are active during walking [17, 26].

Yet, polynomial functions were used to obtain joint evolution including arm
evolution. This representation can be unsuitable to model correctly a passive
movement. Therefore, we explored passive arms movements of the biped due
to the dynamics of the locomotor system. Only the locomotor system of the biped
was actuated. Numerical results showed that trajectories with passive movements

30

Fig. 2.8 Sthenic criteria versus walking speed for different arm configurations: passive,
bound, active, and active with springs (Kaddar et al. [9]).





Chapter 3

Experimental extraction of human gait
features

3.1 Introduction

In this chapter, we present overground walking experiments designed to evaluate our simula-
tion approach in modeling cyclic human gait. Walking gait features related to different body
parts were extracted from experimental data of one test subject, and were used as comparison
criteria to assess simulation outputs based on a biped model fitted to the subject.

3.2 Estimation of body segment inertial parameters

In this thesis, we consider a 3D skeletal model of human structure. To make the biped model
fit a given test subject, anatomical definition found in [108] is considered to estimate the
segments lengths. In addition, the regressions of Dumas [108], based on the extensive data of
McConville [104] and Young [105] (Mass distribution and anthropometric characteristics of
adult men and women) are used to estimate the BSIPs (See appendix A). These parameters
correspond for each body segment to its mass, its COM position in the body referential and
its inertias.
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3.3 Overground walking experiments

3.3.1 Experimental walking gait features estimation

3.3.1.1 State of the art on gait features extraction using inertial sensors

The usage of inertial sensors in gait analysis is a promising method for feature extraction, as
they are designed to be light, cheap and portable, and to escape from the need for specific
experimental environment [140]. They are non-invasive, do not alter the motion patterns
[141] and can identify human activity in different environments [142, 143]. The use of 3D
sensors provides more information of human motion in three planes [144]. Inertial sensors
are mainly used for human motion monitoring, as well as activity recognition and advanced
gait analysis [39]. Potential applications of these approaches are healthcare and disease
prevention (i.e. fall detection for elderly people [145], assessment of physical activity pat-
terns to detect gait abnormalities [140]) and sports (i.e. gait speed estimation and step count
[146]). Recently, gait recognition based on inertial sensors for localization purposes has
become indispensable with the appearance of smart devices and wearable systems including
these sensors [39]. Gait patterns can be explicitly identified as physiological properties,
i.e. 3D joint angle estimation [147], detection of gait cycle phases [142], or estimation of
spatio-temporal characteristics (step length, width of walking base, gait symmetry, cadence,
etc.) [148]. These patterns can be also expressed using feature extraction techniques that do
not exactly provide physiological parameters but implicitly contain information on walking
motion [39]. Note that most of the above mentioned applications are only possible with
inertial data acquired by fixed sensing device on a single pre-determined position on the
human skeleton.

Several types of inertial sensors have been employed for gait analysis either combined, or
with other non-inertial sensors [140]. The most used sensor is accelerometer either biaxial
or tri-axial. The object frame for accelerometer measurements is the accelerometer case,
while the reference frame is inertial space, and measurements of specific force are resolved
along the sensitive axes [149]. In general, accelerometers are combined with gyroscopes,
that measure angular rate without an external reference [149], to decrease the error induced
by accelerometer vibration and to constitute an Inertial Measurement Unit (IMU) system
[148] or a self-developed multi-sensors system [142]. IMUs allow computing the position
in local frame by integrating acceleration in the case of strap-down mechanization or by
step detection within the PDR strategy [149]. The trajectory’s directions are given by the
integration of angular rates measured by the gyroscope. Magnetometers are also included in
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IMU systems [141]. When using more inertial sensors, the accuracy of features estimation
is improved thanks to data redundancy and data fusion algorithms [150]. Nevertheless, a
compromise between precision and portability should be considered.

Researchers place these sensors in different parts of the body, e.g. attached to lower limbs
(foot, thigh) to accurately detect gait phases and displacement features, to upper body
(waist, abdomen) or to the arms [140]. The highest locations are ears and head [151]. The
acceleration of the upper parts can better assess the body stability and balance during gait
[152], and contribute to a more sophisticated gait analysis [140].

3.3.1.2 Selected walking gait features

For overground walking experiments, there are two sets of gait features that are extracted
from experimental dataset:

• The displacement features:

• The gait velocity V ;

• The stride characteristics i.e. length (d) defined as the distance between two
consecutive prints of the same foot, width (w) defined as the lateral distance
between the midlines of both feet, and duration (T );

• The step-level symmetry indexes i.e Temporal Symmetry Index [2] and Spatial
Symmetry Index respectively notated TSI and SSI, and defined as:

TSI =
Time duration of step on the device’s side

Total time duration of the stride
(3.1)

SSI =
Length of step on the device’s side

Stride length
(3.2)

Note that stride is defined between two successive initial contacts by same foot, and a
right step is the interval between left IC and following right IC.

• The acceleration features over GC related to different body parts:

• Both feet;

• The waist whose motion reflects the center of mass (COM) kinematics.

• The hand that is carrying the inertial unit.
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3.3.2 Experimental setup

3.3.2.1 Equipment

Two ULISS devices [153] and two PERSY systems [154] designed by IFSTTAR-GEOLOC
Laboratory are used for data collection. Each ULISS device contains a nine-DOF inertial and
magnetic unit, a high sensitivity GNSS receiver, a battery, and a memory card. It weights
0.129 kg which is approximately the mass of a smartphone. Raw inertial data are collected at
200 Hz frequency. During trials, one ULISS device is held in hand by the subject while the
other one is attached to the rear of the belt (cf. Fig. 3.1(b,c)).

PERSY systems has been designed for reference positioning in indoor environments. For this
task, they must be attached to both feet (cf. Fig. 3.1(a)). Novel data fusion algorithms are
used to obtain trajectories with drift errors less than 0.5%, based on results found in [154].
These reference systems are lightweight, wireless, and comprise an internal logging system
and a battery. To obtain the best possible position using MEMS technology, three inertial
and GNSS sensors running at 160 Hz are embedded in each PERSY: a high precision IMU
STIM300 with a gyro ranging up to 800°/s, a magnetometer HMC5983, and an M8T GNSS
receiver. All devices have GNSS running at 5 Hz and autonomy of four hours. All data are
timestamped using GPS time.

(a) (b) (c)

Fig. 3.1 Placement of different devices during walking trials: (a) PERSYs; (b) ULISS 1; (c)
ULISS 2.
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3.3.2.2 Environment

Experiments took place at the site of IFSTTAR institute in Bouguenais, France. Walking
tests were performed indoor in a 55m-long hall, in one of the site’s buildings. Before each
acquisition, magnetometers calibration in outdoor is needed, as well as a static phase of about
one minute to get GPS time for data synchronization. Data collection lasts about 30 minutes
for each subject.

3.3.3 Subjects and scenarios

Nine healthy volunteers participated in data collection with the following gender distribution:
five men and four women. The age ranges from 23 to 57 with an average of 32 years. The
subjects’ heights are between 1.6 m and 1.87 m, and weights range from 53 kg to 94 kg.

(a) (b)

Fig. 3.2 Tested device carrying modes: (a) Swinging; (b) Texting.

The following device carrying modes were tested for straight walking scenarios (cf. figure
3.2):

• Swinging mode (S1): the subject is walking with freely swinging arms, and handling
ULISS 1 in the right hand;

• Texting mode (T): the subject is asked to walk while watching the device in hand so
that right arm configuration is comfortable for texting or reading;

• Swinging mode (S2): the same as (S1), however an additional mass is taped to ULISS
1 (cf. figure 3.3) and the total handled mass is 0.627 kg. The purpose of this scenario
is to test the sensitivity of optimal arm movement to an increased handheld mass.
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Fig. 3.3 The additional mass taped to ULISS device.

Each walking scenario was performed at three walking speeds: comfortable (V2), slow (V1)
and fast (V3) speeds. These different speeds were self-selected by participants relative to
their comfortable pace. To avoid any order effects, subjects were free to select speeds order
and the order of carrying modes within the same gait speed. For each speed/carrying mode
combination, subjects walked twice along the hall, back and forth between the start and
the end of the walkway. The trials were separated by static phases of 10 s. Subjects were
instructed to maintain the same speed and a straightforward direction during each trial.

Note that for this thesis, experimental data for one test subject (26-year old, 1.84 m height
and weighing 85 kg) were considered for validation of the proposed simulation approach.
The whole dataset for all subjects will be used for further work to examine the inter-subject
variation of the generated walking parameters.

3.4 Feature validation process

For each walking condition, selected gait features were calculated for 25 consecutive strides
centered in trials time interval i.e. out of acceleration/deceleration phases. Since there are
two walks by condition, i.e. back and forth, gait features are averaged over 50 strides.

3.4.1 Step characteristics extraction

3.4.1.1 Step detection

Gait cycle is characterized by the occurrence of a stable foot’s point during the flat foot phase,
which corresponds to step events. The Zero Velocity Detection (ZVD) method has widely
been adopted in the navigation field to detect steps. It is applied to extract the step events
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from the acceleration data based on an acceleration moving variance detector and it searches
for the periods when the foot is stationary [24]. The detected step events correspond, for
each foot, to the end of flat foot phase. ZVD was applied to PERSYs specific force in the
navigation frame NED (North-East-Down; cf. figure 3.4). Specific force is projected in NED
using MAGYQ algorithm [155] that estimates attitude angles of the IMU in the navigation
frame.

Y 

X 

Z 

Body frame 

Navigation frame 

Fig. 3.4 The pedestrian and the associated frames: the navigation frame and the body frame.

The variance of the norm of the acceleration vector is calculated over a sliding window and
compared to an adaptive threshold. The variance threshold and the width of the sliding
window are adapted by manual tuning so that there is no under/over detection of steps. For
higher gait velocities, the variance threshold increases and the sliding window is less wide
since stationary phase gets shorter. Note that the same values of width and threshold are
used for a given subject/gait speed combination, regardless the carrying mode (see Table 3.1).
This step detection method is illustrated in figure 3.5, where the blue dots correspond to the
detected stance phases, i.e. the steps. The detection is performed for both the right and left
feet in order to estimate the temporal displacement features.
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Table 3.1 The values of variance threshold and sliding window width for the different gait
speeds

Walking speed
ZVD parameter V1 V2 V3

Variance threshold (m2s−4) 0.32 0.9 1.45
Width of sliding window (ms) 175 125 106
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Fig. 3.5 Step detection using the acceleration-moving variance detector. Red and purple
curves are respectively 3D acceleration norm and 3D acceleration variance signals, the red
line indicates the variance threshold level, and blue dots refer to detected step events.

3.4.1.2 Extraction of displacement features

Once steps are detected, average temporal characteristics were determined for each walking
condition. Step instants were used to calculate stride durations. Since there was no difference
in mean values between left and right steps, stride duration was calculated in terms of the
mean values for both feet. Relative durations between right and left steps detections were
used to calculate TSI indexes.

A developed software was used to calculate reference trajectories of both feet with respect
to a base station located in the test site, based on data collected with each PERSY. These
trajectories allow to obtain footprints coordinates corresponding to step instants. Stride length
was calculated from distances between each two consecutive footprints, averaged on both
feet. Then, gait velocity was determined from mean stride length and duration. Using relative
positions of right footprints with respect to left footprints, as well as walking direction proper
to each stride, step width values and SSI indexes were calculated.
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3.4.2 Inertial data processing

3.4.2.1 Synchronization with simulation data

In order to compare inertial variables profiles from both simulation and experimental data, we
resampled stride time profiles over 100 points from 1 to 100, where 1 denotes the beginning
of the gait cycle while 100 marks its end. Since the step detection method detects the end of
each flat foot phase as shown in figure 3.5, one gait cycle lasts from the beginning of left
rotation subphase about the toe until the end of next flat foot phase of the same foot (see
figure 3.6). Note that while double support phases last nearly 20% of the gait cycle [10], they
were considered as instantaneous in the simulation.

Fig. 3.6 The subdivisions of GC [10].

3.4.2.2 Averaged profiles over a stride

Due to the cyclostationary nature of steady gait, a segmentation of kinematic and inertial
data is conducted in order to calculate averaged patterns that can be compared with profiles
generated by simulation. Acceleration signals collected from different devices can be syn-
chronized and divided into gait cycles. Gait cycles time intervals are then defined between
successive step events of the left foot.

Perturbations caused by small variations in gait velocity can result in temporal variations
in walking patterns. First, the lengths of extracted gait cycles are normalized to the mean
length, while preserving the same shape of each signal pattern. Spline interpolation is used
for this normalization. Second, an optimal matching of stride-specific profiles is needed since
alignment impacts the temporal shape of the averaged pattern. Progressive cycle alignment
is performed by dynamic time warping (DTW) approach [156] so that amplitude attenuation



40 Experimental extraction of human gait features

and phase shift are avoided for aligned signals. Then, averaged signal patterns are obtained
by averaging the corresponding aligned profiles.

3.5 Experimental results

Averaged acceleration profiles related to different body parts are presented in figures 3.7, 3.8
and 3.9, for the walking scenario V2/(S1). These profiles, in addition to acceleration items
depicted in figure 3.10, will be used as evaluation criteria for the simulation outputs.

Figure 3.7 shows 3D acceleration profiles of both feet during gait cycle. Two main peaks of
acceleration are observed in single support: the first occurs at initial swing (about 30% of
single support) serving as a base for swinging leg advancement, and the second occurs at the
landing foot’s initial contact with the ground which marks the end of single support phase.
Peak values of acceleration profiles for both feet significantly increase with the gait velocity,
and within the same velocity, there is no significant impact of carrying mode on these values.

The shape of COM’s vertical acceleration profile (cf. figure 3.8) shows two peaks occurring
in each double support phase and corresponding to front foot heel rotation and rear foot
rotation about the toe. The negative peak amplitude is close to the positive one. Figure 3.10(a)
shows the differences between peak and trough values (i.e. differences between maximum
and minimum values throughout the gait cycle) of COM vertical acceleration for different
walking conditions. Within the same device carrying mode, the peak-trough difference
significantly increases with walking speed. For a given walking velocity, differences in
vertical acceleration items are mainly due to differences between step length values.

For swinging mode scenarios, experimental data show that peaks of 3D acceleration of the
hand occur in double support phases (cf. figure 3.9). The highest acceleration peak (5%
GC) correspond to the maximum backward swing of the loaded arm, while the second peak
(50% GC) coincides with peak forward swing. Minimum acceleration values occur in single
support phases during arm swing motion. Root mean square (RMS) values of hand’s 3D
acceleration for different walking scenarios are shown in figure 3.10(b). A decrease of the
RMS value is observed for the mode (S2) compared to (S1) because of the additional mass
carried by the hand. In addition, there is a significant decrease of RMS levels for the mode
(T) with respect to swinging modes as a result of the constrained arm configuration. Results
also show that, within the same carrying mode, RMS value increases as a function of the gait
velocity.
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Fig. 3.7 3D acceleration norm profile of the right (blue) and left (red) foot during a GC for
the walking condition V2/(S1). The dashed lines indicate SS phases.
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Fig. 3.8 Vertical acceleration profile of the COM during a GC for the walking condition
V2/(S1). The black dashed lines indicate DS phases.
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Chapter 4

3D modeling of human gait

4.1 Introduction

In this chapter, we present a combined inverse dynamics and optimization method to predict
natural human walking in swinging mode. Differential inclusion formulation is adopted in
order to have smaller number of optimization variables and explicit formulations in terms of
variables. Recent studies (Kumar et al. [157], Kaddar et al. [9]) suggested that to predict
human walking with arm swinging, 3D bipedal models should be considered. Therefore, in
contrast to previous studies, the simulator considers a 3D skeletal model with a high number
of DOFs, which choices are made based on biomechanical observations on normal human
gait. Straightforward walking motion is optimized over the step, which is considered as
the gait cycle, since in healthy walking each step is very similar to the next and the overall
pattern of movement repeats [158]. Step characteristics and joint motions are simultaneously
predicted from only one simple gait descriptor: average walking speed, which minimizes the
requirements for experimental data.

4.2 Conception of the 3D biped model equipped with hand-
held device

This section introduces the geometric model of the proposed anthropomorphic bipedal system
used to generate walking movements in a straight forward direction on a flat ground. Choices
and assumptions about this model take into consideration biomechanical observations on
human gait that are detailed in the following.
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4.2.1 Biomechanical observations on normal human walking

In this section, we aim to report observations on normal human walking from biomechanical
and motion analysis literature. These observations will justify our modeling choices in terms
of segments definition and different defined joints DOF.

4.2.1.1 Locomotor part

Walking gait is a motor task that requires a complex sequence of active muscle to maintain
stability and contribute to whole body linear progression.

4.2.1.1.1 Ankle The junction between the foot and the tibia is called ankle, where the
main motions are flexion and extension in the sagittal plane [159]. In combination with heel
rise, the ankle rotation constitutes a major source of forward displacement during single
support phase [10]. In fact, an arc of planar flexion prepares the leg for swing phase; the
ankle flexes, stored energy rolls the limb in forward direction over the toe, and flexes the knee.
Another arc of dorsal flexion ensures foot take-off and advancement. During each stride, the
ankle travels through an average arc of motion of 25° [160]. This motion is critical for body
progression and shock absorption [10]. Besides, Correlations have been identified between
the ankle’s moment and produced power and the gait performance in several populations
[58, 161, 162].

In our proposed model (see section 4.2.2), only abduction-adduction and dorsi/plantar flexion
motions of the ankle are considered. Note that in our gait model, the pronation-supination of
the swing foot is introduced by the pronation-supination of its ipsilateral hip.

4.2.1.1.2 Knee The knee is a very complex connection between the femur and the tibia
that are the main segments of the locomotor part. This joint is characterized by a large range
of motion in the sagittal plane and small arcs of coronal and transverse mobility [10] (cf.
figure 4.1). Knee’s arcs of motion lead to remarkable changes in foot and body locations.
Knee mobility is crucial for normal walking patterns [10]. The limb stability in stance phase
is determined by the knee. In swing phase, the knee flexibility has a significant contribution
to the limb’s forward progression.

The human knee joint is commonly modeled as an idealized joint based on rotations [163],
in most common musculoskeletal models. A planar knee joint is considered in most clinical
models [164]. In our model, the last description is considered. Small arcs of coronal and
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Fig. 4.1 3D knee joint rotations and arcs of motion used in normal walking: sagittal plane
flexion (60°); transverse plane rotation (varying from 4° to 8° depending on subject); and
coronal plane motion (4° abduction and 2° adduction) [10].

transverse mobility are not considered.

Then, in our model, we make the simplifying assumption that the knee makes no transverse
rotation or coronal plane motion during the gait cycle. This reduces the complexity of the
biped model without significantly affecting its validity. Only sagittal motion is considered
for this joint. It represents a great range of motion from 0° to 60° flexion. During each gait
cycle, the knee undergoes two waves of flexion (see figure 4.2) [4, 165–169]. The first wave
(smaller flexion peak of 20°) occurs between loading response and mid stance to contribute
to controlled shock absorption. The latter wave, which is larger with 60° flexion, happens
during initial swing to aid foot clearance. Due to differences in walking velocity, subject
individuality and landmarks chosen to indicate body segments alignment, the limits of knee
flexion and extension vary across studies.

At the heel contact, the knee is relatively extended with a mean flexion of 5°. However,
the normal onset posture may vary from 0° (full extension) to 10° flexion [4]. Faster gait
velocities are associated with higher knee flexion at the time of IC compared to slower
velocities [170].

Following the beginning of loading response, the knee promptly flexes through weight accep-
tance (WA). The velocity of flexion at this time approximately equals that occurring in swing
phase (300°/s). Forefoot contact at 12% of the GC completes the heel rocker and, thus, the
stimulus for knee flexion ceases. At this point, stance knee is at 20° flexion and it is under
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Fig. 4.2 Normal range sagittal plane motion of the knee during a GC. Black line designates
the mean values, dotted lines denotes one standard deviation. Gait phase divisions are
designated by vertical bars (LR: Loading Response, MSt: Mid Stance, TSt: Terminal Stance,
PSw: Pre-Swing, ISw: Initial swing, MSw: Mid Swing, TSw: Terminal Swing) [10].

maximum weight-bearing load.

Walking velocity significantly influences the loading response knee flexion. Slowing the pace
of walking results in a great change. For instance, with comparison to walking at 90 m/min,
the locomotion at 60m/min led to 67% less knee flexion while raising the gait velocity to 120
m/min increased knee flexion by 38% [4].

With the beginning of mid stance, the knee rapidly begins to extend. The rate of motion is,
however, half that of the preceding flexion. Knee joint continues toward extension during
the first half of terminal stance. Minimum stance phase flexion averaging 5° is attained
about halfway in terminal stance (about 39% GC) and persists for a short time before the
joint slightly begins to flex again. At the end of terminal stance (floor contact by the other
foot), the knee is flexed 10°. Knee flexion rapidly rises after the onset of DS configuration
in pre-swing. 40° flexion is reached by the end of the phase (almost 62% GC). This mainly
passive event happens as the trailing leg rolls over the anterior edge of the fore foot.

Knee continues flexing at the same fast rate during initial swing until the swing foot is
opposite the support foot. At this time, maximum knee flexion averages 60°, the peak knee
angle occurring throughout the GC [171]. Murray et al. [168] reported a 70° maximum
flexion based on a strobe system providing only two-dimensional data. To attain this posture
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in pre-swing and initial swing phases, the knee flexes at 350°/s.

During mid swing, as the swing foot advances ahead of the stance leg, less knee flexion is
needed for foot take-off. Then, after a momentary pause, the knee begins to extend as rapidly
as it flexed in the previous phases [170, 172]. Half of the recovery toward peak extension
occurs throughout mid swing. As this phase ends, the foot is parallel with the ground and
the tibia is in vertical position. Knee extension continues at the same prompt rate until foot
extension (0°) is reached just before the end of the swing phase (95% GC approximately).
Then the knee tends to drop into a slight degree of flexion. The final knee position at the end
of terminal swing almost equals 5° flexion.

4.2.1.1.3 Hip The hip is the junction between the locomotor and passenger units. It
differs from other joints in many aspects. Therefore, this joint is designed to overtly provide
3D motion. Hip motion during stance allows the pelvis and trunk to remain erect while the
swing leg is moving forward over the stance limb. Sagittal plane motion involves the largest
range of motion, while in the coronal and transverse planes, the motion is limited but it is
substantial for walking [10].

The hip moves through two arcs of motion during the gait cycle: extension in stance and
flexion during swing. The exchange from one direction to another is progressive. In the
literature, the normal arc of hip motion is reported to range from 40° to 48° [171, 173–175].
Peak hip extension and flexion are considered respectively as 0° and 40° [173, 175]. Hip
motion is defined combining the displacement of the thigh and pelvis. Relatively to vertical
position (0°), the thigh maximum positions are 20° for extension during terminal stance
and 25° for flexion in mid swing [10]. This motion is independent of the pelvic motion and
ensured by the hip sagittal rotation. This motion of the hip significantly contributes to stride
length [62].

In the coronal plane, the hip moves with a small magnitude of abduction and adduction as
the unloaded part of the pelvis follows the swinging leg [10]. Adduction rises to 10° by the
end of loading response as body weight is transferred onto the forward limb. This results
from a combination of the femur displacement and contralateral pelvic drop to ensure power
absorption and limb’s momentum deceleration to prepare for stance [10]. The thigh gets its
neutral position in the coronal plane by the middle of swing phase. In each GC, hip abduction
attains a maximum of 5° just after toe-off. The abductor moment reflects the amplitude of
ground reaction force during stance and counteracts contralateral pelvic drop generated by
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the medial alignment of body weight. Motion pattern is similar to that of the sagittal plane
but relatively small arcs of motion occur in both men and women [168].

During each GC, the limb moves through an arc of internal rotation followed by a similar arc
of external rotation. Maximum internal rotation of the thigh is found at the end of the loading
response and peak external rotation occurs at the beginning of swing [176]. The total arc of
thigh motion in the transverse plane averages 8° [10]. When the arc is added to the pelvic
rotation, total hip rotation averages 15°. Markers show similar magnitude of hip transverse
motion, although there are different values among the different gait laboratories [177].

4.2.1.2 Head-Trunk-Pelvis

4.2.1.2.1 Head and trunk: single rigid body The axial core of the body is composed of
three rigid structures: head, thorax, and pelvis. From a functional point of view, the head and
the neck are considered as a single unit on the top of the trunk. In literature, the definition of
trunk is inconsistent. It may refer to all body segments between the hip joints and the base of
the neck, except the arms and the pelvis [10]. In our study, this interpretation is considered
for gait modeling and analysis.

While the neck allows the head to move independently to expand one’s field of vision, the
head and trunk travel as one unit during normal human gait. Neither segment displays any
observable change in position except that both head and trunk move up and down as the
whole body center of gravity (COG) follows the limbs movements in swing and stance phases
[10]. However, small arcs of displacement in both the sagittal and frontal planes have been
registered by instrumented analysis.

Vertical displacement of head and trunk, shown in figure 4.3, is equal for each segment
and follows a double sinusoidal path. The average amount of vertical position change is
approximately 4.2 cm [53, 178, 179]. This vertical change varies with the human’s walking
speed, with greater amplitude for higher velocities. Thorstensson et al. reported that vertical
trunk excursion varied from 2.7 cm at 90 m/min to 6.8 cm at 150 m/min [179].

Lateral displacement is also the same for head and trunk segments, averaging 4.5 cm between
maximum right and left deviations. However, for each GC, the trajectory in lateral direction
is a single sinusoid [179], (see figure 4.4).
Thus, we can model both trunk and head by a single rigid body.
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Fig. 4.3 Vertical displacement of the trunk indicated by head height. It is highest in mid
single limb stance (SLS) and mid swing and lowest in DS configurations (loading response
and pre-swing) [10].

Fig. 4.4 Lateral displacement of the trunk during walking indicated by head location. It
is midline during DS phases (1, 3 and 5), displacement to left during left SS (4), and
displacement to right during right SS (2) [10].
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4.2.1.2.2 Pelvis The greatest amount of motion in the passenger unit occurs at the pelvis.
It rotates in all three planes during each GC (cf. figure 4.5). These rotations are induced by
the motion of the hip acting like a three DOF ball and socket joint. Small arcs of motion
representing a continuous postural pattern are observed in sagittal and frontal planes (4°). For
normal men walking, the pelvis rotates through a total arc of motion of 10° in the transverse
plane [168]. A significant contribution to the step length of the front leg is ensured by a peak
forward rotation of 5° during terminal swing and IC. A peak backward rotation of 5° occurs
in terminal stance leading to a trailing leg posture. Mid swing and mid stance transition
phases correspond to a null axial rotation of the pelvis.

Fig. 4.5 Arcs of motion of the pelvis during a stride: 4° for Anterior tilt, 4° for contralateral
pelvic drop, and 10° for the transverse rotation [10].

4.2.1.3 Arms

During each stride, reciprocal dynamic arm swing spontaneously takes place. Arm swing
angular momentum in the three anatomical planes is calculated by Elftman [130]. It was
found that arm motion pattern is opposite to that of the rest of the body. This calculation is
challenged by the findings of energy cost analysis. No differences in oxygen usage is found
when walking with free or bound arms [180]. These two results imply that arm swing may
be useful to walking but it is not a crucial element of it. Arms flex and extend during walking
(cf. figure 4.6). Timing offset between the two upper limbs is 50% of GC, with maximal
extension happening when the leg is swinging forward and maximal flexion occurring with
contralateral IC. Each limb (arm and leg) moves across a proportionate arc of motion (40°
for hip, 32° for shoulder [10]). Thus, the arm is giving a specific counterforce to reduce
the whole body rotatory displacement induced by locomotor system mechanics, just as
calculated by Elftman [130]. The amount of extension and flexion varies considerably among
individuals. The total arc of motion increases when walking faster [10].

4.2.1.3.1 Shoulder During moderate velocity walking (92 m/min), the upper arm rotates
with respect to the torso with an average arc of 32°. At the beginning of the stance phase, the
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shoulder has peak extension (24°) and then is positioned in 8° flexion position by the end of
terminal stance at the next foot-ground collision [10] (see figures 4.6 and 4.7).

Fig. 4.6 Natural arm swing during free walking. Maximum backward swing (24°) corresponds
to IC while peak forward swing (8°) corresponds to terminal stance [10].

The total arc of motion increases with faster velocities [10]. For instance, during gaits at
a rapid velocity of 7.7 km/h, the average arc of motion is 39°. At this fast speed, peak
shoulder extension increases (maximum of 31°) while maximum shoulder flexion remains
unchanged (8°) compared to the motion occurring during moderate speed walking (5.5 km/h).
So modeling shoulder rotation in sagittal plane is necessary to have realistic upper limbs
movements’ patterns. Considering our active arm swing hypothesis, the increased upward
rotative acceleration of the shoulder in the sagittal plane leads to increasing its internal
rotation in the transverse plane, as the upper limbs tends to counteract the moments produced
by the swing lower limbs [126]. Chapman et al. [181] observed a decrease in the amplitude
of shoulder transverse rotation with increase in walking velocity when studying walking with
different speeds for 10 young men and 10 young women. This trend is noted for 15 subjects
over 20. No great difference in transverse rotation range is found between men and women.
This transverse rotation is represented in our model by roll angles of each shoulder (q17 and
q21 in figure 4.12).

4.2.1.3.2 Elbow The elbow has a similar excursion pattern as the shoulder. During each
stride, an extension motion occurs in ipsilateral swing phase and a flexion arc is produced
in ipsilateral stance phase [10]. During moderate and rapid gait, the average magnitude of
flexion of the elbow is 30° and 40°, respectively [10]. These ranges are comparable to those
of the shoulder joint. The difference is that the elbow remains in flexion position throughout
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Fig. 4.7 Patterns of shoulder and elbow motion during arm swing for a GC. Horizontal scale
indicates % GC beginning with IC [10].

all the GC. Therefore, the flexion position reach its peak at the time of contralateral foot
contact with the floor (e.g. 47° at 5.5 km/h; 55° at 7.7 km/h; see figure 4.7). Flexion motion
of the elbow is considered in our model (q19 and q23 angles in figure 4.12). Note that during
GC, the transverse rotation of the forearm is introduced by the roll motion of the upper arm
generated by the shoulder joint.

4.2.2 Presentation of the 3D bipedal model

Human gait is a complex dynamic activity since human structure has high DOF, and a
complex mechanical structure [182]. In order to achieve a human-like natural gait, human’s
structure and movements has to be modeled accurately. Since the human’s gait is composed
of dynamic motions of three planes which are sagittal, frontal and transverse (see figure 4.8),
the complete bipedal gait can be obtained only if it is analyzed in two or more planes [182].
In this context, an anthropomorphic bipedal model with 19 DOF is proposed to generate

realistic walking gaits for human locomotion at the level of locomotor members as well as
upper limbs. Such a structure will enable us to get walking movements in the three principal
planes mentioned above.

Each lower member has a set of three main bodies (thigh, leg, foot) connected by joints
replicating six functional mobilities. These mobilities are distributed as three articulations in
the hip, one in the knee, and two in the ankle. The three DOF grouped on the hip joint (ball
joint) allow flexion-extension movements, adduction-abduction and internal-external rotation.
The knee can simply perform flexion-extension movement. For the ankle, only rotations in
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Fig. 4.8 The three reference planes in zoological anatomy in the standard human anatomical
position: frontal, sagittal and transverse planes [10].

the sagittal plane (around pitch axis) and the frontal plane (around roll axis) are allowed.

The proposed linkage of locomotive members by revolute joints, all actuated (active), will
enable to restore three-dimensional walking patterns. This kinematic chain, which defines a
12 DOF locomotor system, will constitute the kinematic model for studying the 3D human
walking for the lower part of human body. This model is inspired from the 14 DOF system
used in [183] to test optimal walking trajectories for robot design. In our application, the
model is simplified to 12 DOF by not considering the ankle rotation in the transverse plane
(about the yaw axis).

The axial core of the model consists of three rigid links: head-neck, trunk, and pelvis. The
head-neck segment is longitudinally defined from the Head Vertex (HV) to the Cervical
Joint Centre (CJC). The trunk refers to body segments between the CJC and the Lumbar
Joint Centre (LJC). As to the pelvis, it is specified from the LJC to the projection of the
Hip Joint Centre (HJC) in sagittal plane. More details about these anatomical definitions
can be found in [4]. The pelvis and torso can have relative rotation about their longitudinal
axis. In contrary, we assume that there is no rotation between the trunk and head-neck
segments. Thus, in our gait model, head-neck and trunk travel as a single unit throughout the
displacement of whole body COM. Note that these two segments are differentiated in the
geometric representation in order to model the distal segments linking the upper extremity of
the trunk to the shoulders centers.
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Each upper limb is modeled by two-link arms i.e. each composed of an upper arm and a
forearm. Each hand is considered as a point mass fixed to the forearm, and its mass and
inertial properties are merged with those of the forearm segment. Shoulders and elbows are
presented respectively by two DOF and one DOF rotoid connections. Abduction-adduction
(coronal plane movements) and flexion-Extension movements (in sagittal plane) can be
performed on the shoulders. Only flexion-Extension movements (in the sagittal plane) are
enabled for elbows.

4.2.2.1 Geometric description of the 3D biped

The studied anthropomorphic model is illustrated in figure 4.11. All links are considered as
rigid, and connected by frictionless joints. All the articulations are revolute. The biped is
composed of a head-neck, torso, pelvis, two identical two-link arms with three DOF, and
two identical three-link legs with three DOF spherical hips ended with feet bodies. Each
knee and elbow contains a one DOF revolute joint. The trunk and pelvis are connected by a
revolute joint with one DOF.

The methodology used to describe the biped morphology is based on setting tools developed
for typical robot manipulators. In SS phase, the base is the support foot and the end effectors
are the oscillating foot, forearms and head end points. Therefore, the model is considered
as a tree structure with four open serial kinematic chains (one chain terminated with the
swing leg, one chain ending in the head and two chains corresponding to the upper limbs),
whose base is the stance foot. We assume that, in SS phase, the stance foot do not take off
or slide over the surface and that it makes no motion around yaw axis. In double support
configurations, the kinematic chain corresponding to the locomotor system become closed.
Thus we have a hybrid structure composed of a parallel structure which bases are the feet
and the end effector is the pelvis, in addition to the three serial chains beginning from the
pelvis through the torso ending in the three end effectors (head and forearms).

The proposed tree structure is composed of 13 main bodies and 13 virtual bodies which allows
to decompose the revolute joints in a chain of joints with one DOF and to depict the distal
links dimensions. Then, the whole system consists of N=26 bodies, denoted C0, . . . ,CN−1

and N −1 revolute joints, j = 1, . . . ,N-1. The body C0 refers to the biped’s support foot. C j

body is articulated by the articulation j i.e. the joint j connects the body C j to Ca( j) body,
where a( j) denotes the index of the predecessor body of C j in the kinematic chain (see figure
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4.9).
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Fig. 4.9 The 3D biped as a tree structure, consisting in N=26 bodies and 25 joints. N j=19
joints are variable and the other five joints are fixed. The fixed joints correspond to the
virtual bodies added to represent end bodies dimensions as well as the segments relating the
trunk to shoulders. The fat bodies represent the main bodies, whereas the thin bodies are
fictional bodies (mass, inertias and dimensions are null), they are required to describe the
biped through series of one DOF joints.

4.2.2.2 System parametrization

The parametrization of the kinematic chain leads to the introduction of a configuration vector
q with N j = 19 joint variables q j. The homogeneous description of the articular chain, with
a minimum number of parameters, requires the establishment of local frames throughout the
tree structure.

The modified convention of Denavit-Hartenberg [184] proposed by Khalil and Kleinfinger
[11] was chosen for geometric modeling of the anthropomorphic biped. For this, a coordinate
system is attached to each segment. The frame (Ok - xk,yk,zk), denoted Rk, is rigidly attached
to the joint k, as shown in figure 4.10. The joint k connects both segments (k-1) and k.
The axis zk represents the axis of the joint k. Additionally, the origin of Rk, denoted Ok is
located at a point where the common normal to zk and zk−1 crosses zk, whereas the normal



56 3D modeling of human gait

common axis defines xk. Moreover, the axis yk is such that the axis xk, yk and zk form a
direct orthonormed system. This coordinate system is called DH frame. Note that the frame
attached to the fixed link (i.e. Os - xs,ys,zs) can be chosen arbitrarily and therefore we can
choose the axis zs towards the displacement direction (see figure 4.11). Once bodies’ frames
are established according to these conventions, the relative position and orientation between
each two successive frames, Rk−1 and Rk can be specified using four parameters known as
DH parameters. These parameters are illustrated in figure 4.10, they are defined as:

• the twist angle αk about xk−1, from zk−1 to zk,

• the body length dk from zk−1 to zk along xk−1,

• the joint offset rk, which is the distance from xk−1 to xk along zk, and

• the joint angle θk, which is the angle between xk−1 to xk about zk.

4.2. Open-loop  Robots 
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Fig. 4.10 The Denavit-Hartenberg notation modified by Khalil and Kleinfinger [11].

According to the type of joints, i.e. prismatic or revolute, rk or θk is the variable parameter
while the other parameters are constant. Since in the case of our model only rotations are
possible, only the parameter θk will be variable.

Based on the above definition of DH parameters, the 4×4 homogeneous transformation
matrix Tk−1

k describing the coordinate transformation from Rk−1 to Rk is given by the
multiplication of the matrices corresponding to elementary transformations:

Tk−1
k = Trans(x,dk)Rot(x,αk)Trans(z,rk)Rot(z,θk) (4.1)
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Thus, the DH matrix Tk−1
k can be expressed as [11]:

Tk−1
k =




cθk −sθk 0 dk

cαksθk cαkcθk −sαk −rksαk

sαksθk sαkcθk cαk rkcαk

0 0 0 1


=

[
Rk−1

k Pk−1
k

0 0 0 1

]
(4.2)

where cθk = cos(θk), sθk = sin(θk), Rk−1
k is the 3×3 orientation matrix defining the ori-

entation of Rk with respect to Rk−1, and Pk−1
k is the 3×1 vector representing the relative

position between the two frames Rk−1 and Rk.

Table 4.1 Modified Denavit-Hartenberg parameters of the 3D biped.

j a( j) α j θ j r j d j

0 s 0 0 0 0
1 0 0 q1 -L1 L2
2 1 π

2 q2 0 0
3 2 0 q3 0 L3
4 3 0 q4 0 L4
5 4 −π

2 q5 − π

2 0 0
6 5 −π

2 q6 0 0
7 6 0 0 0 L5

2
8 7 0 q8 0 L5

2
9 8 π

2 q9 − π

2 0 0
10 9 −π

2 q10 0 0
11 10 0 q11 0 L4
12 11 0 q12 0 L3
13 12 π

2 q13 0 0
14 13 0 0 L1 L2
15 7 0 q15 L6 0
16 15 0 0 L7 0
17 16 π

2 q17 +
π

2 0 -L8
18 17 π

2 q18 0 0
19 18 0 q19 0 -L9
20 19 0 0 0 -L10
21 16 π

2 q21 +
π

2 0 L8
22 21 π

2 q22 0 0
23 22 0 q23 0 -L9
24 23 0 0 0 -L10
25 16 0 0 L11 0
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Fig. 4.11 Local frames related to the main bodies of the 3D biped, according to Khalil-
Kleinfinger convention [12].

According to the Denavit–Hartenberg convention, the DH frames positions are defined in
figure 4.11. The corresponding geometric parameters are presented in Table 4.1. The vector
of the N j+3 generalized coordinates is three DOF for support foot translations (xp, yp and zp)
with

q = q j∈ind j ∈ RN j (4.3)

where ind j = [1,2,3,4,5,6,8,9,10,11,12,13,15,17,18,19,21,22,23] contains the indexes
of actuated joints. The absolute angles q1 and q2 are respectively the roll and pitch angular
positions of the stance leg’s ankle. The variable angles q12 and q13 are respectively the pitch
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and roll motions of the swing leg’s ankle. The variables q3 and q11 describe the joint angles
of the support leg and swing leg knees, respectively. The variable angles q4, q5 and q6 are
the angles defining the spherical joint at the stance leg hip. Similarly, the three DOF swing
leg hip is defined by the variables q8, q9 and q10. The variable q15 is the articular angle to
describe the yaw rotation of the trunk relatively to the pelvis. The variables q17 and q18

describe the roll and pitch motions of the stance leg’s ipsilateral arm (right side pictured
in figure 4.11) with respect to the trunk. The angles q21 and q22 are the joint variables of
the contralateral shoulder, respectively about roll and pitch axes. The variables q19 and q23

denote elbows angles in the sagittal plane. Note that all joints are independently actuated.

Lp and lp define the foot dimensions. Li, i = 1, . . . ,11 denote the biped dimensions (see figure
4.11 and figure 4.12). L1 and L2 define the position of the ankle center with respect to the toe
end. L3 and L4 are the length of each shank and thigh respectively. L5 represents the distance
between hips centers along the transverse axis. L6, L7, and L11 are the longitudinal lengths
of pelvis, trunk, and head-neck segments respectively. The dimensions of the arms and the
forearms are respectively given by L9 and L10. L8 is the distance between each shoulder
center and the trunk segment.

4.3 Gait cycle definition

4.3.1 Gait cycle composed of a single support phase and instantaneous
impact

In the model, we consider that the biped gait is periodical and that the step is considered
as its cycle. The walking cycle is composed of a single support phase (one foot is on the
ground and the other is swinging from the back to the front) and a double support phase at
its end (cf. figure 4.13). Double support phase is supposed to be instantaneous. The initial
configuration is a double support configuration, in which both feet are on the ground, and
oriented in walking direction as we consider straightforward walking gait scenarios. The
absolute frame Rs (Os - xs,ys,zs) is attached to the right foot which is assumed to be the
stance foot during gait cycle.

In initial double support, we assume that the rotation of the pelvis in frontal plane is null.
Besides, the axial rotation of the torso in this instantaneous phase is defined so that it com-
pensates the transverse rotation of the pelvis, in order to keep the head pointing forward.



60 3D modeling of human gait

Fig. 4.12 The 19 DOF human linkage model with joint rotations (denoted by cylinders) and
dimensions (lp, Lp, Li, i = 1, . . . ,11).

Considering a cyclic gait motion over a right step (where the support foot is the right foot) of
length d1 and width w, in a time interval of [0, T1], the configurations during the second step
i.e. left step are deduced using the following transformations:

• Multiplication of configurations vectors by the switching matrix E, that will be pre-
sented in section 4.3.2, to express the symmetric role of legs and arms from one step to
another;
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Fig. 4.13 GC composed of a SS phase and an instantaneous impact.

• Multiplication of coordinates vectors by the following transformation matrix:

Ts s′ =

[
Rs s′ Ps s′

0 0 0 1

]
=




1 0 0 0
0 −1 0 −w
0 0 1 d1

0 0 0 1


 (4.4)

where Ps s′ reflects the translation of reference frame from right foot toe to landed left
foot toe and Rs s′ is the rotation matrix used to direct the ys′ axis of the new reference
frame Rs′ towards the outside of the left foot (cf. figure 4.13).

Note that step length and width are optimized in step-level optimization process and they are
determinant variables in calculating the locomotor system configuration in double support.

4.3.2 Switching matrix

For each step, the position of the reference frame is shifted so that it remains linked to the
stance foot. Thus, we can assume that there is an exchange of role of the biped’s articulations
after the impact. This marks the beginning of next swinging phase. In order to express this
exchange, a switching matrix must be used.
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We first define the switching matrices for the locomotor system and the arms. The 12×12
anti-diagonal matrix describing the exchange of role of legs from a current step j to the next
step j+1 is defined as:

Eloc =

[
06×6 E⊤

l

El 06×6

]
(4.5)

where El is an anti-diagonal matrix of dimension 6×6 expressing the left leg joint angles
providing the same leg configuration as a given right leg joint angles, it is defined as:

El =




02×1 02×3 J2

03×1 −J3 03×2

J1 01×3 01×2


 (4.6)

in which Jn is an anti-diagonal identity matrix of dimension n×n.

Similarly, there is an exchange of role of the arms after the impact and the right arm configu-
ration just before the impact q j,14:16(Tj) is given as function of the left arm configuration
just after the impact q j+1,17:19(t = 0) as:

q j,14:16(Tj) = Ea ·q j+1,17:19(t = 0) (4.7)

where Ea is an anti-diagonal matrix of dimension 3×3 expressing the left arm joint angles
providing the same arm configuration as a given right arm joint angles, it is given by:

Ea =



−1 0 0

0 1 0
0 0 1


 (4.8)

The 6×6 matrix describing the exchange of role of arms from a current step to the next step
is defined as:

Earm =

[
03×3 Ea

Ea 03×3

]
(4.9)

Then, the 19× 19 switching matrix for the whole biped can be expressed as function of
switching matrices for the locomotor system and the arms as:

E =




Eloc 012×1 012×6

01×12 −1 01×6

06×12 06×1 Earm


 (4.10)



4.4 Dynamic and impact models 63

See appendix B for an overview of this matrix with the dimension 19×19.
In order to provide a continuous walking behavior, we use this orthogonal matrix to calculate
the final joint positions of each step from the initial joint positions of the following step:

q1(T 1) = E ·q2(t = 0)

q2(T 2) = E ·q1(t = 0)
(4.11)

Similarly, the joint velocities we get from the impact model are relabeled in order to find the
initial joint velocities for the next step.

4.4 Dynamic and impact models

4.4.1 Dynamic modeling using Newton-Euler formalism

A walking cycle is described by several phases to generate dynamically stable gait patterns,
involving prompt movements of the bodies of the bipedal structure. Therefore, a dynamic
model is necessary to represent the evolution of different body links. Here, we use the
Newton-Euler algorithm to limit the time of computation when solving the dynamic model
of the 3D biped. The formalism of Newton-Euler is based on the balance of forces for each
body.

4.4.1.1 Dynamic model in single support

During single support phases, the support foot in flat contact with the ground cannot move
i.e., there is no sliding or taking off motion. The configuration of the biped in single support
is described by the vector of generalized coordinates:

q = (q1, . . . ,qN j)
⊤ ∈ RN j (4.12)

where (qi)1≤i≤N j defined as in (4.3), denote the relative angles of the articulations.

The inverse dynamic model which defines the relation between the torques (and/or forces)
applied to the actuators and the joint configurations, rates and accelerations, is represented
by the equation of form:

ΓΓΓ = IDM(q, q̇, q̈) (4.13)

where:

- ΓΓΓ = (Γ1, . . . ,ΓN j)
⊤ ∈ RN j is the vector of joint actuation torques;
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- q̇ = (q̇1, . . . , q̇N j)
⊤ ∈ RN j is the vector of joint velocities;

- q̈ = (q̈1, . . . , q̈N j)
⊤ ∈ RN j is the vector of joint accelerations;

4.4.1.2 Zero Moment Point position

4.4.1.2.1 ZMP definition Let us consider a support foot on the ground (figure 4.14). Let
the ankle of the support foot be defined by the point A such that:

0OA = (−L1 0 L2)
⊤ (4.14)

des efforts de liaison. En reprenant les notations de la figure 5, on obtient :

|mx| < fz
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fz(lx + xA) < my < −fzxA
(19)

Le cas (c) de la figure 4 est un cas particulier du cas (b). La liaison est de
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Figure 5 – Forces et moments qui agissent sur le pied d’appui d’un robot
humanöıde [19].

type glissière avec un seul degré de liberté. Le torseur d’interaction s’écrit :

Ta =





0 mx

fy my

fz mz



 (20)

Les conditions de contacts (contact unilatéral et non basculement du pied)
s’écrivent :

fz > 0
fz(lx + xA) < my < −fzxA (21)

Le cas (d) de la figure 4 représente par exemple la liaison entre la main
du robot et une poignée (ou une tige ronde). Cette liaison est de type pivot
glissant avec 2 degrés de liberté. Le torseur d’interaction s’écrit :

Ta =





0 0
fy my

fz mz



 (22)

12

Fig. 4.14 Forces and moments acting on the support foot of a humanoid robot [13].

The action of the biped on the point A is defined by a force fA and a moment mA. If the foot
does not slide on the ground, then the friction forces between the ground and the sole are such
that the components (rx, ry) in the contact plane of the ground reaction force r on the sole of
the foot compensate the horizontal component of the force fA. The vertical component mz of
the moment of ground reaction forces on the sole of the foot m compensates for the vertical
component of the moment mA as well as that of the moment induced by the force fA. Since
the contact between the ground and the foot base is unilateral, the horizontal components of
the active moments can only be compensated for by changing the position of the application
point P of the force r inside the base of support (BOS) at each instant. A necessary and
sufficient condition to ensure that there is no tilting of the humanoid robot’s support foot is
therefore that for the point P of the sole, where the reaction force r is applied, the horizontal
components of m are equal to:

mx = 0

my = 0
(4.15)
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This point P is called Zero Moment Point (ZMP) [13]. It is the point of application of the
resulting force of the distributed loads that characterize the contact between the foot and
the ground. It has a major role in the analysis, synthesis and control of gaits for humanoid
robots. Its first practical application was the realization of the dynamic balance for the biped
WL-10RD during a walking task, in 1984 [185].

4.4.1.2.2 Calculation of ZMP position The resultant of non-contact forces driven by
inertia and gravity RIGF is given by:

RIGF = mg−mẍCOM (4.16)

where ẍCOM is the instantaneous acceleration of the body’s COM, g is the gravitational
acceleration, and m is the body’s total mass.

Fig. 4.15 Forces exerted on the biped during walking: ground reaction forces R0, inertial
force (−mẍCOM), inertial moment (−ḢCOM) and gravity force mg [14].

The resultant moment of RIGF about the ZMP (point xZMP in figure 4.15) is expressed as:

MIGF
ZMP = (xCOM −xZMP)×RIGF − ḢCOM (4.17)

in which xCOM and xZMP are respectively the instantaneous COM and ZMP positions, and
ḢCOM is the rate of angular momentum about xCOM. If the point denoted O is the origin of
a Cartesian coordinate system that lies on the ground plane (cf. figure 4.15), the resultant
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moment about this point, denoted MIGF
O , is given as:

MIGF
O = xCOM ×RIGF − ḢCOM (4.18)

Equation (4.17) can thus be rewritten as:

MIGF
ZMP = MIGF

O −xZMP ×RIGF (4.19)

Since the tipping moment of RIGF about xZMP is null, one can write:

0 = n×MIGF
ZMP

= n×MIGF
O +(n ·xZMP)RIGF − (n ·RIGF)xZMP

(4.20)

where n is a unit vector normal to ground plane. Since ZMP is in the ground plane, n ·xZMP =

0 and the ZMP’s position vector in the Cartesian reference system is obtained from equation
(4.20) as follows:

xZMP =
n×MIGF

O
n ·RIGF (4.21)

4.4.2 Impact modeling

At the end of single support phase, the swinging foot gets in contact with the ground and the
velocity of the previous stance foot may be different from zero. Since the biped’s segments
are rigid and non-deformable, the contact between the foot and the ground is inelastic such
that the legs do not slip. The studied impact model is impulsive [186, 187].

During the impact, the forces are considered with a very high amplitude during an infinitely
small time period ∆t. The impulsive forces are then presented as the integral of the contact
forces during the time interval ∆t. Moreover, ∆t is assumed to be small enough so that there
is no position variation during the impact [188] and the impulsion forces can be defined by a
Dirac function of magnitude equal to impulsive reaction magnitude [189].

Impulsive impact model is used to determine the velocities just after the impact of the swing
foot with the ground, as well as the impulsive forces, for given joint positions and velocities
just before the impact. The following hypotheses are taken into account:

- The impact is instantaneous at the instant the flat contact between the advancing foot
and the ground;

- The biped’s configuration is constant during impact;
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- There is an instantaneous variation of joint velocities at the impact.

The impact model is obtained by integration of dynamics during the infinitesimal time ∆t.
The dynamic model must take into account contact forces on both feet, and consider any
linear and angular velocities of both feet. The previous stance foot may leave the ground
due to the impact. In the following paragraph, we introduce the extended dynamic model
allowing to deduce the impact equations.

4.4.2.1 Dynamic model in double support

The 3D biped has a kinematic model with N j = 19 DoF. In this dynamic model we will
describe the configuration of the biped by (N j + 6) variables to be able to take into account
any velocity of the foot in support. To be consistent with the determination of the dynamic
model with the Newton-Euler approach, we will use in addition to the N j DoF defining the
internal configuration of the biped six DoF which allow to represent the stance foot (right
foot) variables by the Eulerian variables corresponding to its linear and angular velocities:
v0,ω0. The foot’s coordinates will be represented by the vectors x0 and α0 which define
respectively the position and orientation of the frame R0 with respect to the reference frame
Rs.

The biped’s generalized coordinates are expressed by X = (x0;α0;q) ∈ R(N j+6); the biped
velocity is V = (v0;ω0; q̇) ∈ R(N j+6) and its acceleration is V̇ = (v̇0; ω̇0; q̈) ∈ R(N j+6). The
dynamic model in DS phase can be written in the classical form of Lagrange equations:

D(X)V̇+C(V,q)+G(X)+DJ(q)R14 = DΓΓΓΓ+D0R0 (4.22)

where:

- D ∈ R(N j+6)×(N j+6) is the symmetric definite positive inertia matrix;

- C ∈ R(N j+6) is the vector representing Coriolis and centrifugal forces;

- G ∈ R(N j+6) is the vector of gravity;

- DJ
⊤ ∈R6×(N j+6) is the Jacobian matrix reflecting the effects of ground reaction on the

landing foot (left foot);

- DΓ = (06×N j ;IN j×N j) is a matrix of dimension (N j + 6)×N j allowing to take into
consideration the joint torques in the dynamic model. Only the joints q1. . . qN j are
actuated;

- D0 = (I6×6;0N j×6) is a matrix of dimension (N j +6)×6) allowing to take into account
the effects of ground reaction on the stance foot (right foot);
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- R0 = [0f0,
0m0]

⊤ is the wrench of ground reaction forces on the stance foot expressed
by forces and moments applied to the origin of the frame R0 and expressed in Rs;

- R14 = [13f14,
13m14]

⊤ is the wrench of forces exerted by the swing foot on the ground;

4.4.2.2 Impulsive impact model

From the dynamic model (4.22), the impulsive impact model can be obtained by integrating
it during the impact duration which tends to zero. The integration of the vectors C, G, and
ΓΓΓ which have finite values, give a zero result. Then these vectors have no influence on the
impact model. Therefore, the impact model is:

D(X(T ))∆∆∆V = D0I0 −DJI14 (4.23)

where:

- I0 and I14 are the intensity of Dirac delta functions for the forces R0 and R14;

- ∆∆∆V = (V+ −V-) is the variation of velocity at the impact;

- V+ = (v0
+;ω0

+; q̇+) is the velocity of the biped after the impact;

- V- = (v0
-;ω0

-; q̇-) is the velocity of the biped before the impact;

- X(T ) is the biped’s configuration at the impact;

This impact model will be used in a context of optimal movements definition, then some
assumptions have to be made in accordance with the desired biped motion in order to include
them in the constraints related to impulsive forces resulting from the impact model. Thus, we
impose that the foot which swings to touch the ground, remains in contact with the ground
without taking off, sliding and without any rotation.

The flat foot contact with the ground is supposed to be inelastic. Then, the velocity of the
landing foot touching the ground is zero after impact. After the impact, either the previous
stance foot (right foot) takes off the ground or both feet remain on the ground. In the first
case, the velocity of the taking-off foot must be directed upwards just after the impact and its
impulsive ground reaction forces are equal to zeros I0 = 06×1. In the second case, the right
foot velocity must be zero just after the impact. This implies that impulsive ground forces are
produced in both feet and the impulsive ground reactions have vertical components directed
upwards. Since we are interested in walking movements which are composed of simple SS
phases only, the first case is considered and the previous stance foot is allowed to take off.
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The equation (4.23) has (N j +6) equations with (N j +12) unknown variables. Additional
equations based on assumptions on the biped’s behavior at the impact are needed. Previous
studies with planar robots [190] have shown that it is not possible to obtain movements after
impact (with variation of joint velocities) without observing a take-off of the previous support
foot. This corresponds to a zero velocity of the landing foot. An impacting foot with zero
velocity at impact, is a valid solution for our bipedal gait model. There is no impact and the
velocity of the two feet after impact is null. Then we have:

DJ
⊤V+ = 06×1 (4.24)

Equations (4.23) and (4.24) give the impact model:

[
D(X(T )) DJ

DJ
⊤ 06×6

][
V+

I14

]
=

[
D(X(T ))V−

06×1

]
(4.25)

Since D is a definite positive matrix and DJ has full rank, the impulse forces I14 and the
biped’s velocity vector just after the impact V+ are determined by:

[
V+

I14

]
=

[
∆∆∆v

∆∆∆I14

]
V− (4.26)

where:
∆∆∆I14 = (DJ

⊤D−1DJ)
−1DJ

⊤ (4.27)

and:
∆∆∆v =−D−1DJ∆∆∆I14 + IN j+6 (4.28)

4.4.2.3 Calculation of the matrices D and DJ

The calculation of the elements of matrices D and DJ is carried out by the Newton-Euler
algorithm modified by Walker and Orin [191] for the calculation of the direct dynamic
model. This method is based on the formulation provided by the Lagrangian approach on the
dynamic model to reconstruct the elements of the matrices column by column.

For given articular positions q, stance foot coordinates (x0;α0), biped’s velocities V and
accelerations (v̇0; ω̇0; q̈), and for given contact forces R14, it is possible to calculate the
joint torques and forces and moments (Fr,Mr) of ground reaction on the right foot using
the double recursive calculations of Newton-Euler algorithm. We observe that the matrices
DΓ and D0 on the right-hand side of the dynamic model (4.22) have a particularly simple



70 3D modeling of human gait

expression, allowing us to obtain Fr, Mr and ΓΓΓ on the left-hand side of the direct dynamic
model equation:




Fr

Mr

ΓΓΓ


= D(X)




v̇0

ω̇0

q̈


+C(V,q)+G(X)+DJ(q)R14 (4.29)

For the following choice of desired velocities, accelerations, contact forces on the left foot,
and particular gravity acceleration:

(v̇0; ω̇0; q̈) = ei, q̇ = 0N j×1, g = 0, R14 = 06×1 (4.30)

where ei is a unit vector of dimension (N j +6)×1 which the ith element is equal to 1, and the
other are equal to 0, the vector (Fr;Mr;ΓΓΓ) is equal to the ith column of D(X). By assigning
all the successive values of ei for i = 1 to N j +6 to the vector V̇, the matrix D(X) can then
be determined column by column.

The Jacobian matrix DJ(q) can also be obtained by applying the same method with:

(v̇0; ω̇0; q̈) = 0(N j+6)×1, q̇ = 0N j×1, g = 0, R14 = ei (4.31)

where ei is a vector of dimension 6×1.

4.4.2.4 Determination of final velocity parameters

Taking into account the symmetry of biped’s structure, introduced in section 4.3.2, and
according to which the final configuration of the right part of the biped is equal to the initial
configuration of the left one, the joint velocities after the impact between two successive
steps labeled i-1 and i can be determined in function of joint velocities just before the impact.
From the expression (4.26) we have:

V+ = ∆∆∆v




v0

ω0

q̇i−1(Ti−1)




−

(4.32)

Considering the equation (4.32) and the switching matrix E, which describes left and right
joints permutation, the initial velocity vector q̇i(t0 = 0) = (q̇0

i,1, . . . , q̇
0
i,N j

)⊤ can be calculated
by:

q̇i(t0) = ERV+ (4.33)
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where R = (06×(N j+6);IN j×(N j+6)) is a matrix of dimension (N j+6)×(N j+6) allowing to

take into account only the joint velocity variables, since the final velocity vector q̇ f
i−1 =

q̇i−1(Ti−1) = (q̇ f
i−1,1, . . . , q̇

f
i−1,N j

)⊤ is defined as a vector of parameters of dimension N j×1.

4.5 Description of joint motion

A model of a locomotor system, to generate walking gait patterns specific to human loco-
motion, was introduced in section 4.2.2. Such a model, represented by equations of motion
and various constraints related to the dynamics of motion, will directly lead to a problem of
dynamic optimization under constraints. Indeed, such an optimization problem consists in
extracting from the dynamics equations a solution minimizing a performance criterion based
on a set of decision variables. The solution consists, therefore, in generating configurations at
different instants of gait cycle, by a finite number of independent variables, for the generation
of optimal gaits including cyclic steps or strides.

Optimal gaits, thus generated by a finite number of parameters, require the formulation of a
finite dimension problem. The problem of walking gait modeling in steady state is studied.
Conversion to a finite dimension problem consists of representing the decision variables by a
finite number of discrete parameters. This implies expressing the criterion to be minimized
as a function of parameters expressing the configuration variables by interpolation functions.

Interpolation functions are most often spline functions, polynomial functions, trigonometric
functions, Fourier series decompositions, or piecewise-defined functions. C2-class spline
functions were chosen so that we have continuous second derivative functions for accelera-
tions in joint space. This choice also facilitates joints rates and accelerations calculation and
has the benefit of saving computational effort.

For a step of duration T1, we consider N intermediate configurations in single support. Then,
there is (N+1) time intervals between each two consecutive double support configurations.
Intermediate configurations are uniformly spaced in time, then each interval duration is equal
to h = T1

(N+1) .

A trajectory generation problem is solved on the global time interval denoted by Ω =

{t0, tN+1}. On this global interval, a sequence of monotonically increasing time values are
called knots and the number of values in the sequence is equal to N+2. The set of time knots
is {t0, t1, t2, . . . , tN , tN+1} with t0 = 0 and tN+1 = T1. These knots define the discrete set of
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segments that constitute the global time interval as follows:

Ω =
N⋃

k=0

Ωk where {Ωk = t | tk ≤ t < tk+1} (4.34)

In order to approximate a model DoF q j, a spline function φ j(t) is defined on Ω and obtained
by the concatenation of N+1 polynomial functions successively defined on the intervals Ωk,
and connected two by two at time knots tk:

φ j(t) =





ϕ j,0(t) if t ∈ Ω0

ϕ j,1(t) if t ∈ Ω1
...

ϕ j,N(t) if t ∈ ΩN

(4.35)

where ϕ j,0(t),. . . , ϕ j,N(t) are 3rd order polynomials such that:

ϕ j,k(t) =
3

∑
l=0

al
j,k(t − tk)l, k = 0, . . . ,N ∀ t ∈ Ωk (4.36)

where al
j,k are the coefficients expressed as a function of the values at the time knots to be

interpolated.
Considering that for each function φ j(t) there are N+1 polynomials with 4 coefficients,

4(N+1) independent conditions are necessary to define each function φ j(t). These conditions
are then listed:

1. The spline function must provide all the configuration values corresponding to the time
knots. This includes position continuity conditions at intermediate time knots:

{
ϕ j,k(tk) = a0

j,k = q j,k

ϕ j,k(tk+1) = a0
j,k +a1

j,kh+a2
j,kh2 +a3

j,kh3 = q j,k+1
, k = 0, . . . ,N (4.37)

where q j,k is the configuration at the knot tk.

2. Connections between successive polynomials must ensure continuity of velocity and
acceleration at the intermediate knots in single support:

{
ϕ̇ j,k(tk+1) = ϕ̇ j,k+1(tk+1)⇒ a1

j,k +2ha2
j,k +3h2a3

j,k = a1
j,k+1

ϕ̈ j,k(tk+1) = ϕ̈ j,k+1(tk+1)⇒ a2
j,k +3ha3

j,k = a2
j,k+1

, k = 0, . . . ,N −1

(4.38)
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3. The limit conditions, velocities at the initial instant, q̇ j,0, and at the final instant, q̇ j,N+1,
are imposed in such a way that:

{
ϕ̇ j,0(t0) = a1

j,0 = q̇ j,0

ϕ̇ j,N(tN+1) = a1
j,N +2ha2

j,N +3h2a3
j,N = q̇ j,N+1

(4.39)

For each function φ j(t), the conditions from (4.37) to (4.39) represent 4(N+1) equations:
2(N+1) equations for (4.37), 2N equations for (4.38) and two equations for the limit condi-
tions (4.39). Then, these conditions constitute a system of equations that can be rewritten in
matrix form as:

Ai




a0
j,0

a1
j,0

a2
j,0

a3
j,0

a0
j,1
...

a3
j,N−1

a0
j,N

a1
j,N

a2
j,N

a3
j,N




= b j =




q j,0

q j,1
...

q j,N

q j,1

q j,2
...

q j,N+1

02N×1

q̇ j,0

q̇ j,N+1




(4.40)

Where Ai is a (4N+4)×(4N+4) matrix function of the duration h and deduced from the
previous conditions. This results in a linear system of dimension 4N+4. The unique solution,
C j, of the system to be solved can then be determined:

C j = A−1
i b j (4.41)

The configuration variables q j(t) for any t ∈ Ω can then be rewritten as a function of the
4N+4 coefficients C j and time:

q j(t) = φ j(C j, t), t ∈ [t0, tN+1] (4.42)

The vector of biped’s configuration q(t) is then defined by the function Φ as:

q(t) = Φ(C, t) (4.43)
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where
Φ(C, t) = [φ1(C1, t), . . . ,φN j(CN j , t)]

⊤ (4.44)

The matrix C of dimension (4N+4)×N j gathers the vectors C j of the polynomial coefficients.
For a given joint and a given step, these coefficients are defined according to:

- Initial and final double support configurations: two parameters;

- Initial and final velocities: two parameters;

- Intermediate positions in single support: N parameters.

We therefore need 19×(N+4) interpolation parameters for step-level optimization.

4.6 Choice of optimization variables

For a step, the number of variables defining the motion can be significantly reduced with
respect to the number of required parameters for interpolation due to:

- Cyclicity condition expressed by the switching matrix i.e. final joint positions can be
deduced from initial joint position of the next step i+1: 19 variables less;

- The dependence of initial joint velocities on final joint positions and velocities of the
previous step i-1, as illustrated by the impact model: 19 variables less;

- The hypothesis that the axial rotation between the trunk and the pelvis is defined at
initial double support as function of the rotation of the distal segment connecting the
hip centers about the vertical axis (q0

13 =−p5): one variable less;

- The choice of a minimal number of variables to parameterize the legs closed loop
configuration at initial double support (seven parameters instead of 12 parameters; see
figure 4.16): five variables less;

Then, thanks to modeling assumptions, the optimized vector is reduced by 44 variables for
optimization over step. This allows to make the convergence of the optimization process
towards a local minimum less complex and more efficient.

4.6.1 Optimization variables for step-level optimization

For N intermediate configurations, the following variables are optimized during the process
of step-level optimization:

• q(ti), i=1,. . . ,N: Intermediate configurations of the biped in SS phase (N×19 parame-
ters);
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Fig. 4.16 The seven variables determining the locomotor system configuration at initial DS:
five variables for pelvis situation with respect to the stance foot, and two parameters for step
length and width.

• q̇(T1): Final joint velocities of the biped just before the impact (19 parameters);

• (p1, p2, p3): The hips center coordinates in initial DS (three parameters);

• (p4, p5): The pelvis orientations in the sagittal and transverse planes for the initial
double support, respectively (two parameter);

• (p6, p7): The width and length of the step, respectively (two parameters);

• qarm(t = 0): The initial arms configuration in DS (6 parameters);

Thus, for a cyclic walking gait over a step, we have 19N+32 optimization variables that are
the subjects of a cost functional minimization.

4.6.2 Determination of limit configuration parameters

In initial double support configurations, the biped has both feet in flat contact with the ground
(figure 4.16). The parameters of these configurations are dependent. Then, it is more suitable
to define such configurations in function of Cartesian coordinates instead of joint coordinates,
since it allows to have less parameters considering the following assumptions in DS:

- The swing foot (left foot) has vertical coordinate equal to zero since it is on the ground;

- The swing foot has the same orientation as the stance foot (right foot) since we consider
a straight forward walking pattern;
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- There is no roll rotation of the pelvis segment at double support phase. There are only
rotation angles in the sagittal and transverse planes.

Both legs configurations are defined by 12 articular positions q1, . . . ,q12. The configuration
vector at the instant t0 = 0 is q0 = q(t0) = (q0

1, . . . ,q
0
12)

⊤, and we aim to find a minimal set
of parameters PIGM that allows to define a desired situation of the locomotor system. This
formulated problem leads to solve the inverse geometric model (IGM) for each leg of the
biped. To define the specific configuration q0, two desired situations are defined:

- a desired situation that defines the position and orientation of the pelvis, defined by the
situation of the frame R7 (O7, x7, y7, z7) with respect to the frame R0 (O0, x0, y0, z0)
linked to the right foot;

- a desired situation that defines the position and orientation of the left foot, whose
associated frame is defined as R14 (O14, x14, y14, z14).

Taking into account the assumptions in double support, those situations can be parametrized
with only seven variables:

- (p1, p2, p3, p4, p5): parameters defining the position and orientation of the frame linked
to the pelvis (R7) with respect to the reference frame R0, at the initial double support.

- (w,d1): The width and length of the step, respectively.

The number of parameters in this minimal set allows to reduce the number of optimization
variables. Using the first four parameters, the following transformation matrix is calculated:

0T7 =

[
0R7

0P7

0 0 0 1

]
=




0 sin(p4) cos(p4) p1

−cos(p5) cos(p4)sin(p5) −sin(p4)sin(p5) p2

−sin(p5) −cos(p4)cos(p5) sin(p4)cos(p5) p3

0 0 0 1


 (4.45)

where 0P7 = (x7 = p1, j,y7 = p2, j,z7 = p3, j)
⊤ is the vector of cartesian position and 0R7 =

rot(y,θ7 =
π

2 ) · rot(z,φ7 =−p4) · rot(x,ψ7 = p5 − π

2 ) is the the rotation matrix defining the
situation of R7 with respect to R0. φ7, θ7 and ψ7 are respectively the roll, pitch and yaw
angles. Similarly, the position and orientation of the left foot, R14, in the reference R0 is
defined as:

0T14 =

[
0R14

0P14

0 0 0 1

]
=




−1 0 0 0
0 −1 0 −w
0 0 1 −d1

0 0 0 1


 (4.46)



4.6 Choice of optimization variables 77

where 0T14 are the transformation matrix defining the frame R14 with respect to the frame R0.
Assuming that at the instant t0 the left foot is on the floor and oriented in a straight walking
direction, the position vector is 0P14 = (x14 = 0,y14 =−w,z14 =−d1)

⊤ and the orientation
matrix is given by 0R14 = rot(y,θ14 =−π) · rot(z,φ14 = 0) · rot(x,ψ14 =−π).
In order to use the same IGM for both legs, a new frame R f linked to the left foot is defined,
it has the same origin O f = O14 of R14. This frame has the same orientation with respect
to the left foot as that of the frame R0 with respect to the right foot. This implies that the
unit vector y f must be directed towards the outside of the left foot i.e. y f =−y0. Then, the
transformation matrix between the frame R14 and the added frame R f , fT14 is:

fT14 =

[
fR14 03×1

0 0 0 1

]
(4.47)

where fR14 =
fR0

0R14, and fR0 =




1 0 0
0 −1 0
0 0 1


.

Using these transformation matrices, the situation of the pelvis with respect to the left foot
on the ground is given by:

fT7 =
fT14 · 0T14

−1 · 0T7 (4.48)

The configuration vector q(t0) is then obtained by the solution of the MGI:

q0
1:6 = IGMR(p1, p2, p3, p4, p5) (4.49)

and:
q0

7:12 = IGML(w,d1) (4.50)

where the expression (4.49) represents the solution for the right leg satisfying the matrix
(4.45) while (4.50) gives the solution for the left leg according to the matrix (4.48). The
equation (4.50) has a finite number of solutions because it is implicitly imposed that x14 = 0,
φ14 = 0, θ14 = −π , ψ14 = −π . The solution (4.50) for the left leg depends indirectly on
the conditions imposed by the matrix (4.45). Each matrix of (4.45) and (4.48) implies
six equations, three for rotations and three for positions, and is related to six unknown
articular variables, q0

1:6 and q0
7:12 respectively. Then, a unique vector of initial configuration

is obtained:
q0 = (q0

1:6,q
0
7:12)

⊤ (4.51)
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for a minimal set of seven parameters, grouped in the vector:

PIGM = (p1, p2, p3, p4, p5,w,d1)
⊤ (4.52)

Taking into account the symmetry of the locomotor system’s kinematic chain, from one leg
to the other, the inverse problem for the left leg can be expressed in function of the IGM for
the stance leg:

IGML = El · IGMR (4.53)

where El is the anti-diagonal matrix of dimension 6×6 defined in equation (4.6).

4.7 Definition of constraints and cost functions

Infinite number of sets of variables values result in a gait cycle satisfying the nonlinear
constraints that will be listed in paragraph 4.7.1. A constrained optimization algorithm is
used to find an optimal solution minimizing the cost function. The problem can be written as:





Minimize C f (P)

Subject to gk(P)< 0, k = 1,2, . . . , lg
(4.54)

where C f (P) is the cost functional to minimize, gk(P) are the nonlinear inequality constraints,
and lg is the number of constraints. MATLAB function “fmincon" [192] from optimization
toolbox is used to solve this problem. Active set algorithm is used, which is based on SQP
method [193] suitable for highly nonlinear constrained problems.

4.7.1 Constraints

Many constraints have to be imposed to have a human-like gait cycle and possible trajectories:

a) Biomechanical constraints:

• Each actuator has its bounds such that:

| Γ j | −Γ j,max < 0, for j ∈ ind j (4.55)

where Γ j,max is the maximum torque for each actuator.

• Joint rates must not exceed their limits:

| q j | −q j,max < 0, for j ∈ ind j (4.56)
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where q j,max stands for the maximum rate for each joint.

• Lower and upper bounds are imposed for different joints during GC:

q j,min < q j < q j,max, for j ∈ ind j (4.57)

where q j,min and q j,max denote the minimum and maximum joint position limits,
respectively.

b) Stability constraints:

• Constraints on the ground reaction f0
0 = [ f0

0x , f0
0y , f0

0z ]
⊤ for the support foot in

single support phases and the impulsive forces I14 = [I14x, I14y, I14z] of the landing foot
at impacts must be considered. Ground reaction for single support configurations and
the impact forces in instantaneous double support must be inside a friction cone of a
coefficient µ:

√
f0
0y

2
+ f0

0z
2
< µ f0

0x (4.58)
√

I14y
2 + I14z

2 < µI14x (4.59)

• No take-off constraint must be taken into consideration so ground reaction forces
during single support and impact forces at the double support must be directed upward:

f0
0x > 0 (4.60)

I14x > 0 (4.61)

• To satisfy unilateral contact between the support foot and the ground, the ZMP needs
to be constrained inside the BOS. The BOS in single support is the polygon defined by
the four corners of the support foot. Since feet are modeled by rectangles of lp width
and Lp length, the ZMP must satisfy:

−lp

2
< yZMP <

lp

2
(4.62)

−Lp < zZMP < 0 (4.63)

The condition of ZMP must be verified during single support phases and impacts.
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• In order to generate contralateral swing of the arms, the Zero Yawing Moment (ZYM)
constraint [14] keeps the resultant yawing component (in the vertical (x) direction) of
IGF moment about the ZMP under a small upper bound of magnitude (=0.1 N.m in
this study).

The IGF moment about the ZMP is given by:

YIGF =
ns

∑
i=1

(xi
COM −xZMP)×mi(g− ẍi

COM) (4.64)

where xZMP is the ZMP position, xi
COM and ẍi

COM are the ith segment’s COM position
and acceleration, respectively, g is the gravity vector, mi is the ith segment’s mass, ns is
the number of body segments.

c) Geometric constraint at double support configurations:

• The distance between the stance ankle joint center and its ipsilateral hip center
must remain under a maximum limit lmax to avoid singularities at the knee level, and
above a minimum value of lmin to avoid crouch gait, i.e. non human-like gait that is
energetically not efficient, and that may typically be avoided by the minimization of
the sthenic criterion:

lmin < d(O1,O4)< lmax (4.65)

where lmin = 0.92(L3 +L4), lmax = 0.99(L3 +L4), L3 and L4 are respectively shank
and thigh lengths as shown in figure 4.12.

d) Geometric constraints in single support configurations:

• Constraints on the positions of the four corners of the swing foot are imposed in
order to avoid collision between the swing leg and the stance leg or the ground.

• A constraint to avoid collision issue of the upper extremities against the torso is
added.

4.7.2 Cost function

It has been proved that normal arm swinging may need some muscular effort but it decreases
the overall metabolic expenditure of human walking [8]. Then, we aim at minimizing the
joint actuators energy dissipated over a step of duration T1 to travel the distance d1. we
consider a cost functional CΓ,1 that is the integral of the norm of joint torques, approximated
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by a finite sum of torques function values at the chosen time samples [84]:

CΓ,1 =
1
d1

∫ T1

0
ΓΓΓ1(t)⊤ΓΓΓ1(t) dt (4.66)

where ΓΓΓ1 is the N j×1 vector of joint torques during the step.
Additionally, a potential cost functional involves the deviation of the trunk segment from
upright position [14] which is amounted to the following function:

CUT P,1 =
∫ T1

0
(ppp7(t)− ppph(t)) ·ggg dt (4.67)

where ppph is the cartesian coordinates of the hips middle point, ppp7 is the cartesian coordinates
of the 7th Cervicale corresponding in our biped model to the origin O16, ggg = (−9.81,0,0)⊤

is the gravity vector and the operator · denotes the scalar product.

Consequently, the cost functional for a step is given by:

C f =CΓ,1 +ρ ·CUT P,1 (4.68)

where ρ > 0 is a penalty factor.

4.8 Validation with experimental data

4.8.1 Numerical examples of simulation outputs

As shown in figure 4.17, we consider N = 2 intermediate knots and then we have four time
knots for joint trajectory interpolation. For each step i of duration Ti, each joint profile is
approximated at five uniformly spaced instants in each time interval. Since we have (N +1)
time intervals, ns = 5(N+1)+1 = 16 time samples: tk = kTs,i, k = 0, . . . ,ns-1, are considered
for each step where Ts,i =

Ti
ns−1 is the sampling period. At each of these instants, the vector of

constraints is calculated in order to check if they are satisfied during the global time interval.
In simulation tests, we define the following matrices which are the results of trajectory
interpolation corresponding to each step labeled i, i=1,2:

• Qi: The 19×16 matrix containing the vectors of biped’s configuration corresponding
to time samples;

• Q̇i: The 19×16 matrix containing the vectors of joints rates corresponding to time
samples;
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Fig. 4.17 Example of interpolation of joint positions for N = 2 intermediate time knots. The
red/blue dots represent the values from which trajectories are interpolated. The green dots
represent the instants where the constraints are evaluated.

• Q̈i: The 19×16 matrix containing the vectors of joints accelerations corresponding to
time samples;

Note that all matrices for both right (i=1) and left (i=2) steps, are expressed in the same
model of a right step, where the right foot is the stance foot and the frame R0 is linked to
it. Then, the switching matrix must be used to relabel the different joints. For instance, the
3rd line of Q2 corresponds to the inverse of the left knee rotation, and the 19th line of Q2

corresponds to the right elbow rotation, during the left step.

In order to check continuity and cyclicity conditions, right and left shoulders pitch angles
and rates profiles are plotted (see figures 4.18 and 4.19 ) for our specific case: the optimized
variables that correspond to the first step are equal to those corresponding to the left step,
with symmetry indexes equal to 0.5. These profiles are presented on three successive steps in
order to check continuity conditions at the two impact instants corresponding to t = T1 and
t = T = 2T1.
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Fig. 4.18 Right and shoulder pitch angle histories during three consecutive steps following
the sequence right-left-right. The dots correspond to the values at impacts instants.
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Fig. 4.19 Right and shoulder pitch joint velocities histories during three consecutive steps
following the sequence right-left-right. The dots correspond to the values at impacts instants.

From these plots, it can be deduced that these conditions are verified:

- Joint position profiles are continuous during single support phases and at the instants
of impacts;

- Joint velocity profiles are continuous during single support phases;
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- There is a discontinuity of joints velocities at the impact instants. Consequently, joints
accelerations are discontinuous at these instants;

- The joint position and velocity profiles of the right shoulder during the first step are
equal to the profiles that correspond to the left shoulder during the second step, due to
the exchange of role of arms after each impact, and to the fact that a cyclic gait over a
step is considered.

4.8.2 Estimation of selected gait parameters

4.8.2.1 Assessment of natural aspects of walking

In this section, we consider stride profiles of salient variables related to natural aspects
(unloaded swinging case, i.e. a symmetrical gait) of walking. Profiles are extracted from
simulation and compared with kinematic data from motion capture experiments on the same
test subject, which experimental setup will be presented in section 5.2.1.

4.8.2.1.1 Arm motion Appendix C provides right shoulder and elbow motion in the
sagittal plane during gait cycle. The same patterns of arcs of motion are obtained for both
simulation and experimental approaches. The shoulder reaches his maximum extension (20°)
during initial double support phase and then flexes to a peak position in terminal double
support. After holding this position, the shoulder extends through the next single support
phase. In simulation, although the peak flexion remains the same, the total arc of motion
increases with faster gait velocities with values close to experimental ones. A similar pattern
is obtained for the elbow. Flexion arc occurs in ipsilateral foot stance phase and extension
arc is performed during ipsilateral foot swing. Both experimental and simulation profiles
show that the range of motion of the elbow increases for faster walking.

4.8.2.1.2 COM displacement The gait model reproduced the same displacement patterns
in both lateral and vertical directions (appendix D). The COM is displaced following a double
sinusoidal path in vertical direction and single sinusoidal path in lateral direction. The lateral
displacement is increased for low speeds while vertical displacement is greater for faster
velocities. In double support phases, neutral position in lateral direction and minimum
vertical position of the COM are reached. Difference in lateral displacement magnitudes
between both approaches is due to the difference between step width values since lateral
displacement depends on walking base [53].
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4.8.2.2 Step characteristics

Table 4.2 provides step characteristics values over the three overground walking velocities
for both experiments (E) and simulation (S). In both approaches, step length showed an
increasing trend as walking speed increased and higher step cadence is obtained for faster
walking velocities (V2 and V3) compared to low velocity. For simulation, step length and
width results were close to those found in experiments. However, an inverse trend is observed
for optimal step width values.

Table 4.2 Step characteristics across three gait velocities for experimental and simulation
data. (E): experimental data, (S): simulation data.

Step length (cm) Step width (cm) step cadence (s-1)
Gait speed (E) (S) (E) (S) (E) (S)

V1 54.9 57.1 13.2 12.4 1.58 1.51
V2 73.4 68.4 10.5 12.6 1.91 2.05
V3 81.5 79.2 9.9 13.9 2.01 2.08

4.8.2.3 Acceleration features estimation

Preliminary results show a difference in magnitude between acceleration signals from ex-
periments and simulation due to the simplifying assumptions considered in the model, then
a qualitative evaluation of our simulation results is conducted. This evaluation includes
comparison with experimental data based on normalized acceleration patterns, as well as
variation tendencies of some acceleration items across walking velocities. Normalized signals
are obtained by dividing each signal by its maximum value throughout the gait cycle.

4.8.2.3.1 Acceleration profiles Figures 4.20, 4.21 and 4.22 present normalized accelera-
tion profiles related to different body parts, for both experimental and simulation approaches.
Experimental profiles correspond to the speed/carrying mode combination V2/(S1), while
simulation data correspond to the walking scenario V2/unloaded swinging.

Figure 4.20 shows 3D acceleration profiles of both feet for experimentation and simulation.
For both cases, similar shapes of acceleration are observed in single support. In simulation,
a first smaller acceleration peak occurs at initial swing (about 30% of single support), and
the larger acceleration peak occurs at the initial flat foot contact with the ground which
marks the impact instant (50% GC). In contrast to experiments, where a smooth transition
in acceleration signal is observed, there is an abrupt jump in simulation signal from peak
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acceleration to zero at the impact instant, because the double support is considered instanta-
neous. In the experimental signals, the values of peak accelerations of the swinging foot are
slightly different between the two steps. In contrast, these values are identical in simulation
because the definition of the walking gait cycle implies that both legs have exactly the same
movement during the swinging phase.
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Fig. 4.20 3D acceleration profile of the right (blue) and left (red) foot during a GC: (a) exper-
imental data for the walking condition V2/(S1), (b) simulation data (V2/unloaded swinging).
The dashed lines indicate SS phases for (a) and impact instants for (b).

Similar shapes of COM’s vertical acceleration profiles are obtained for simulation and ex-
perimental cases (cf. figure 4.21). In experiments, two peaks occur in each double support
and for simulation, peaks occur at initial and final subphases of single support. A very
small difference in peaks values is mainly due to the difference between joint velocities and
accelerations before and after the instantaneous impact. In contrast, there is a large difference
between each two peaks occurring at the same double support phase. In both approaches, the
negative peaks are attained in single support phases. In simulation, the same COM vertical
acceleration profile is obtained for both single support phases. However, in experiments,
acceleration profiles during these phases are quite different.

Figure 4.21 shows shapes of 3D acceleration of the hand during gait cycle. In experimen-
tal data, peaks of 3D acceleration are observed in double support phases. In simulation,
maximum values of hand’s acceleration are obtained just after the impact instants. In both
experiments and simulation, minimum acceleration values are reached in single support
phases during arm swing motion.
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Fig. 4.21 Vertical acceleration profile of the COM during a GC: (a) experimental data for the
walking condition V2/(S1), (b) simulation data (V2/unloaded swinging). The black dashed
lines indicate DS phases, and red dashed lines indicate impact instants.
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Fig. 4.22 3D acceleration profile of the hand during a GC: (a) experimental data for the
walking condition V2/(S1), (b) simulation data (V2/unloaded swinging). The black dashed
lines indicate DS phases, and red dashed lines indicate impact instants.

4.8.2.3.2 Acceleration items Figure 4.23 shows data related to acceleration parameters
of the COM and hand. It is observed that acceleration items have the same variation trend in
terms of gait velocity. In both experimentation and simulation, these variables increase for
faster gait velocities. This is due to greater arm swing magnitude, and to an increased vertical
displacement of the COM. COM’s vertical acceleration items are lower in simulation than in
experimental case (except for low velocity), which means that the gait model successfully
produces smooth displacement of the COM, even at high gait velocities. In contrast, when
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it comes to the hand, an inverse observation is made: simulation values are higher than
experimental ones, with a two-fold increase.

For hand’s RMS acceleration, the large difference between experimental values and those
of simulation is mainly due to the fact that the double support is considered instantaneous
and to the limited number of intermediate knots considered in simulation (two intermediate
knots). A double support phase with finite duration should be considered in future work to
avoid high acceleration jump at the impact, and a higher number of intermediate knots should
be considered in order to have smoother joint acceleration profiles (for shoulder and elbow
joints) and consequently acceleration related characteristics closer to experimental ones.
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Fig. 4.23 (a) The peak-trough differences of COM’s vertical acceleration and (b) RMS values
of hand’s 3D acceleration according to different gait velocities.

4.9 Conclusions and contributions to autonomous geoloca-
tion

In this chapter, we presented a 3D human gait model capable of coping with some human
gait variability in terms of physical properties and walking speed. To check the validity
of this model, we compared simulation outputs with kinematic profiles and accelerometric
features obtained from walking experiments presented in Chapters 3 and 5. Results showed
that the model reproduces similar fundamental patterns of walking found in experiments.
Furthermore, the same variation trend of acceleration related items in function of gait ve-
locity is observed for both simulation and experimental approaches. Based on these results,
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simulation approach can serve to simultaneously predict user’s displacement characteristics
(e.g. step length) and features of acceleration signals sensed by handheld devices. With
further improvements, if the framework is a able to predict the gaits that constitute normal
locomotion with a high degree of confidence, relationships between both data can be estab-
lished for more accurate step length estimation.

In comparison with previous human walking models, the main contribution of our model is
the accuracy of step length estimation. In fact, in the majority of previous walking models
that optimize gait motion to minimize the energy required, the step length is either predeter-
mined a priori (Aoustin and Formalskii [139], Kim et. al [14]), or constrained by empirical
relationship with the gait speed and leg length (Alexander [46, 194], Minetti et al. [74]).
If instead the step length is optimized during the process, an overly low prediction of step
length is obtained. For instance, Alexander [194] adopted an inverse pendulum model to
predict optimal walking gaits. When this simple mathematical model was used to calculate
costs for different stride lengths, it showed very short strides as optimal. Besides, Kumar et
al. [157] optimized human gait motion in the sagittal plane using an 11-link skeletal model.
For the studied speed range 0.4-1.6 m/s, the optimal step length was no more than 60 - 70%
of its experimental value. In contrast, our 3D gait model successfully predicts the optimal
step length for the tested gait velocities with an estimation error lower than 7%. Note that the
introduced pelvis rotation in transverse plane at double support configuration (the variable
p5 in figure 4.16) had a major contribution to having longer steps as optimum.

Despite the disparities between signals from simulation and experiments, our model con-
tributes to better estimating hand acceleration feature with respect to planar human gait
modeling. For instance, the 2D human gait model in the sagittal plane developed by Kumar
[195], taking into account the same assumptions for double support (i.e. instantaneous impact
with flat foot contact with the ground), produced a very poor prediction of hand acceleration
signals during gait cycle. In fact, the 2D norm of handheld device’s acceleration calculated
from simulation showed a very large acceleration jump at impacts, and the magnitude of 2D
acceleration norm was at least 10 times that of 3D acceleration norm calculated from the
experiments (see appendix F). In contrast, our generated gait cycles showed only a two-fold
increase of acceleration items related to the hand.

In contrast to simulation signals, experimental acceleration patterns related to feet and COM
have shown different profiles for each single support phase. Given the adopted gait cycle
definition, our model is unable to cope with the asymmetry observed in these acceleration
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profiles, since the walking motion of the second step is generated from the optimized first step
motion using the symmetry property of the skeletal structure. The asymmetry in acceleration
signals must be the result of asymmetric movements of the locomotor system limbs from
one step to the other. We suggest that these asymmetric movements are likely to result in a
step-level asymmetry of displacement features.

The temporal aspect of this asymmetry will be investigated in the next chapter to find
out whether the asymmetry level of gait cycle during steady walking, probably caused by
handling a mass in hand, is significant in the context of pedestrian navigation solution. This
investigation will help us to determine if it is necessary to extend the presented optimization
procedure to the stride level, for a more reliable prediction of human walking movements
during gait cycle.



Chapter 5

Study of walking gait asymmetry
induced by a handheld device

5.1 Introduction

One of the disparities found between the proposed gait model and real walking is that
the latter produces asymmetric acceleration patterns for relatively stable parts of human
body. This asymmetry is probably the result of a difference between right and left steps
characteristics (i.e. duration, length). This defeats the general assumption in PDR strategy:
the presence of a device in hand does not impact the gait symmetry and all steps are identical
for a fixed walking speed. This hypothesis, which is commonly used to estimate the traveled
distance, is investigated in this chapter with an experimental study with several subjects,
designed to study the influence of a mass carried in hand on the walking gait cycles. Either a
temporal or spatial step-level asymmetry resulting in a significant error on the estimation of
traveled distance can justify the need of extending the gait model presented in the previous
chapter to the stride level. We choose to make the hypothesis that the presence of a device
in hand may alter the temporal step level symmetry of the walking gait. Experiments are
supported with a walking gait simulator in the sagittal plane designed for a 2D biped with
two identical three-link legs, a head-trunk, and two identical two-link arms linked by actuated
revolute joints. Both approaches results are analyzed to find out whether the step durations
are still equal when holding a 0.19 kg mass in one hand, equivalent to a smartphone mass.
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5.2 Human motion capture experiments

5.2.1 Experimental setup

The experiments were conducted in a motion capture room where a treadmill was installed
(cf. figure 5.1). 17 reflective clusters of markers were placed on each subject’s feet, legs,
pelvis, trunk, head, arms, forearms and hands for getting accurate reference trajectories of
these locations. While each subject walked on a treadmill, an 8-camera (four on the floor
and four close to the ceiling) ART IR tracking system recorded the displacement of the
markers in three-dimensional space at 60 Hz sampling frequency (cf. figure 5.1). Inertial
data were also collected using an ULISS device held by the right hand of the subject. Optical
markers’ assembly was tapped to this device (cf. figure 5.2) in order to project sensor’s data
in motion lab frame. The handheld mass weighed 0.19 kg, which corresponds to the mass of
a smartphone.

Fig. 5.1 Experimental setup of motion capture experiments

Walking on a treadmill is acknowledged as being different from natural walking. It is
demonstrated that the treadmill induces a more symmetric and consistent gait pattern [196–
198]. However, the study requires accurate measurements of the markers’ positions in order
to derive gait features. This was made possible with a qualified motion capture system whose
workspace is limited to approximately 10 m2. Natural walking could not be possible in this
room because only too short distances (in circles) could be traveled by the individuals in this
space. Therefore, the use of a treadmill, located in the center of the motion capture room,
was preferred to test straight walking scenarios. Another advantage of this alternative is that
the study could be conducted for several steady walking speeds.
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Fig. 5.2 Handheld device equipped with an optical markers’ assembly

5.2.2 Subjects and scenarios

Ten healthy individuals, six men and four women, with a 31 year average age (age range
21-52 years), 1.72 m average height (with shoes) and 74.9 kg average mass, volunteered to
participate in this experimentation. All participants were provided written informed consent
(institutional review board ethical process). The trials started after all participants were
acquainted with the treadmill and the device at the three following velocities: V1 = 3.6 km/h
(1 m/s), V2 = 5 km/h (1.39 m/s) and V3 = 5.8 km/h (1.61 m/s). Data record started only after
a participant had reached a steady state at each walking speed. In addition, all participants
were unaware of the specific data processing.

The experiments were conceived to test the influence of holding a connected object in hand
on the gait cycle. Therefore, experiments were conducted for three different device carrying
modes, corresponding to different scenarios. They are:

• the unloaded swinging mode: the participant is naturally walking with no mass in hand,
i.e. the arms are freely oscilating during the walk;

• the loaded swinging mode: the participant is naturally walking while holding the device
in his/her swinging hand;

• the texting mode that corresponds to a body fixed device carrying mode: the participant
is instructed to walk watching his/her device’s screen so that the right upper limbs
configuration is comfortable for reading or texting on the device.

Each scenario was performed for all three testing velocities V1, V2 and V3.
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5.2.3 Parameters used to assess the gait symmetry

First, the ZVD method (presented in section 3.4.1.1) is applied to extract the step events from
the acceleration data. It is obtained by double differentiating the feet markers’ positions,
which are tracked by the motion capture system. In order to remove the noise induced by
the derivation, the data are low-pass filtered with a zero-phase forward and reverse second
order Butterworth filter with a cut-off frequency of 10 Hz. Then, three different features are
defined to analyze the symmetry of the walking gait:

• Step Duration. This is the time elapsed between two successive detected steps. Step
durations are calculated for both legs. Labels are used to differentiate right step
duration from left step duration.

• Temporal Symmetry Index (T SIstep) over step. TSI over step is defined as the ratio of
time duration of the step on the device’s side over the total duration of a stride [2] as
defined in (3.1). This index is useful for studying the temporal step symmetry. For step
symmetric walking gait, TSI over step should be 0.5.

• Temporal Symmetry Index (TSIstride) over stride. Similarly, TSI over stride is defined as
the ratio of time duration of the first stride over the duration of two successive strides.
This index is useful for assessing the step detection method. An accurate step detection
should result in a stride level symmetric gait irrespective of the presence of mass in
one hand [78].

5.3 Evaluation of walking gait step-level symmetry

5.3.1 Experimental results

200 continuous steps (100 continuous strides) were analyzed for each trial using the ZVD
method. To assess the accuracy of this step detection method, TSI over strides were analyzed.
It was found that for all subjects, and across any of the conditions evaluated, the TSIstride

values follow Gaussian distributions and are centered around 0.5, with all standard deviations
remaining below 6.10-3. This result asserts the precision of ZVD method.
The analysis of the walking gait symmetry over steps is conducted using the two-factor
repeated measures analyze of variance (RM ANOVA) [199]. To apply the ANOVA analysis,
all TSIs are expected to follow Gaussian distributions for the different scenarios [199]. This
is effectively observed with the experimental data sets and illustrated in figure 5.3, figure 5.4
and figure 5.5 where the TSIstep and the associated probability density functions are plotted
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Fig. 5.3 Probability density function of the TSIstep for the unloaded swinging mode at 5 km/h
for one typical test participant
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Fig. 5.4 Probability density function of the TSIstep for the loaded swinging mode at 5 km/h
for one test participant
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Fig. 5.5 Probability density function of the TSIstep for the texting mode at 5 km/h for one test
participant



96 Study of walking gait asymmetry induced by a handheld device

for the three different scenarios at 5 km/h for one test subject. A shift of the Gaussian mean
is observed on these three figures between the natural unloaded arm swinging case that is
centered at 0.5 and the two other cases.
In total, 9000 strides were analyzed corresponding to the three carrying modes and the three
walking speeds. RM ANOVA is applied to the TSIstep to assess possible changes of the
walking gait symmetry over steps induced by the presence of a mass in hand. Two RM factors
are considered. They are the device carrying mode factor and the walking speed factor. For
the analysis, the three carrying modes and the three walking speeds are all processed together.
The results of the RM ANOVA are given in Table 5.1.

Table 5.1 Results of the repeated measures analysis (RM ANOVA) applied to TSIstep

influencing factor SS df MS F p
Carrying mode (CM) 9.3×10-4 2 4.65×10-4 5.530 0.013
Walking speed (WS) 8.8×10-5 2 4.42×10-5 0.243 0.7870
CM x WS 7.6×10-4 4 1.90×10-4 2.986 0.0316

In the RM ANOVA analysis, an F-test is used to find out whether the factors of interest affect
the TSIstep. The analysis is conducted using a variance ratio of two sets of TSIstep values. We
used the classical 5% threshold for the p-values below which an effect will be considered
significant. In Table 5.1, it is found that the carrying mode has a significant influence on the
TSIstep, and therefore the gait symmetry, with a 1.34% p value. On the contrary, the analysis
shows that the walking speed factor has no significant influence on the gait symmetry since
the corresponding p value is much greater than 5% (78.7%). The p value for the interaction
of the factors "Carrying mode" and "Walking speed" equals 3.16%, which indicates that the
influence of the carrying mode on the gait symmetry depends on the walking velocity. To
deepen this analysis, the RM ANOVA is conducted on the TSIstep for each walking speed (Vi,
i=1, 2, 3) individually. The results are given in Table 5.2.

Table 5.2 Effect of carrying mode factor on TSIstep for the different gait speeds

Effect of carrying mode factor
Walking speed MS F p

V1=3.6 km/h 5.1×10-4 12.487 3.97×10-4

V2=5 km/h 1.71×10-4 6.639 6.92×10-3

V3=5.8 km/h 1.66×10-4 1.142 0.341

The carrying mode has a significant influence on the gait symmetry at the step level for the
low and medium speeds. The carrying mode effects are essentially the same for the two
velocities (a decrease in TSI value). On the contrary, for the highest walking speed with a
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34.1% p value, no significant effect of the carrying mode on gait step symmetry is observed.

Looking at each test participant, figure 5.6 shows the average TSIstep for all walking speeds
with the three device carrying modes. All TSI numbers are expressed to four significant
digits. A tendency may be concluded for the loaded swinging and texting cases with respect
to unloaded swinging mode. Indeed, average TSIstep decreases for 8 participants out of 10
between the unloaded swinging mode and the two others. The average TSIstep mean value
for all participants in the unloaded swinging mode is 0.4997. In loaded swinging and texting
modes, a 0.4920 and 0.4943 average TSIstep are found respectively.

Unloaded swinging Loaded swinging Texting
0.47

0.48

0.49

0.5

0.51

0.52

0.53

T
S

I s
te

p

 

 

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

Fig. 5.6 Averaged TSIstep of each participant in the three device carrying modes (considering
all the walking velocities). TSIstep mostly decreases for the loaded swinging and texting
cases with respect to unloaded swinging mode.

A post-hoc annalysis using Tukey’s HSD test shows that the unloaded swinging and loaded
swinging modes are significantly different and none of these two modes is significantly
different from the texting case. This is further illustrated in figure 5.7 where the texting and
unloaded swinging modes, in blue and red respectively, overlap.

Note that the asymmetry levels found in experiments are low compared to those found by
clinicians. In fact, the asymmetries observed are of the same order as what is conventionally
observed for healthy people, in normal condition (i.e. a non-pathological person, walking in
unloaded swinging condition at comfortable speed) [200, 201]. This could result from the
use of a treadmill, the large number of strides considered (100 per trial), or the step instant
detection method: we used the ZVD on filtered and differentiated kinematic data instead
of the more classical methods used in biomechanics (e.g. Zeni et al. [202]). Generally, we
have higher asymmetry indexes than the average indexes observed in loaded swinging and
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Fig. 5.7 Tuckey’s HSD test for the three device carrying modes (considering all the walking
velocities). Each group mean is represented by a small circle, and each comparison interval is
represented by a bar extending out from the mean value. Two group means are significantly
different if their intervals are disjoint. They are not significantly different if their intervals
overlap.

texting cases. However, these relatively low gait asymmetries may have a significant impact
on the estimated traveled distance for pedestrian navigation applications, which leads to
accumulative errors throughout the user’s displacement. This impact will be investigated in
section 5.3.3.

5.3.2 Simulation results from a human gait model in the sagittal plane

To support the results of our experimental analysis, the 2D biped model, shown in appendix
E, is fitted to one test subject (mass = 100 kg, height = 1.85 m). DeLeva regressions [203]
are used for BSIPs estimation, and the anatomical definition proposed in the anthropometric
tables [108, 203] are used for segments lengths estimation. Gait motion in the sagittal plane
was predicted using parametric optimization technique. A handheld mass linked to the right
forearm is considered in order to observe the temporal step-level symmetry in different device
carrying modes. The stride is assumed as the gait cycle, and it is also assumed that both
steps have the same length but their durations can be different. When the handheld mass is
set to zero, i.e. unloaded swinging case, a cyclic gait motion is achieved with single support
and instantaneous double support phases that are symmetric with an exchange of role of legs
after each step. In fact, The TSIstep is found to be 0.5 for varying walking velocities within
the speed range 0.4-1.6 m/s.

When switching the load mass to 0.19 kg, the gait cycle is no longer symmetric over steps
in both swinging and texting scenarios. For instance, in loaded swinging mode, TSIstep is
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found to be 0.4984 for the gait velocity V2 (5 km/h) i.e. the durations of both steps (right and
left) are no longer equal. Since the simulation starts from the right step, it is found that right
leg stance phase duration is a bit greater than the left one when a mass is carried in the right
hand.

5.3.3 Impact on the estimation of traveled distance for pedestrian nav-
igation applications

Existing step length models in pedestrian navigation algorithms usually assume that the
walking gait is step/stride symmetric irrespective of the presence of a mass in hand. Our
results have shown that this is not the case. Because pedestrians can change directions at
every step, it would not be sufficient to estimate only stride length. The risk would be to
miss some angular changes in the walking direction and accumulate errors in the estimated
PDR trajectories. Consequently it is interesting to assess the impact of this assumption on
the traveled distance estimate.

5.3.3.1 Position estimation error

Let us quantify the position estimation error due to the walking gait asymmetry in a step
symmetric modeling. An example of step length model is given by [20]. In this model, the
step length s is related to the step frequency f and user’s height h by:

s = h(a f +b)+ c (5.1)

Where {a,b,c} ∈ R is a set of real parameters adjusted to the person. Thus, if all steps are
identical as assumed in PDR navigation algorithms, we have:

∆SD = ∆SG (5.2)

where ∆SD is the right step duration and ∆SG is the left step duration. In this case, the stride
duration is given by:

∆Stride = ∆SD +∆SG = 2∆SD (5.3)

Considering the asymmetry induced by the handheld device, equation (5.2) becomes:

∆SD = TSI.∆Stride (5.4)
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Thus, it is possible to estimate the induced error ε and the error ratio ε% that are given by the
following equations: 




ε = (2− 1
TSI)∆SD = (2TSI−1

TSI )∆SD

ε% =| 2TSI−1
TSI | ×100

(5.5)

5.3.3.2 Predicted errors based on empirical data

In the experiments, TSIstep mean value is µTSI1 = 0.4920 for the loaded swinging mode and
µTSI2 = 0.4943 for the texting mode, representing respectively the error ratios ε1% = 3.25%
and ε2% = 2.3%. For a constant walking velocity, and considering 1 m long strides, the
estimated error over a 100 m traveled distance without considering the gait asymmetry equals
3.25 m and 2.3 m for the loaded swinging and the texting modes respectively. These errors
are significant for pedestrian navigation applications. Since the treadmill tends to make the
gait more symmetric, higher errors are expected for overground walking. This suggests that
the step length models should be improved for the context of handheld sensors.

Table 5.3 Error ratio ε% in % over the traveled distance for each participant and for the
different trials

Loaded Swinging Texting
participant ε%(V1) ε%(V2) ε%(V3) ε%(V1) ε%(V2) ε%(V3)

S1 10.26 3.02 4.00 5.39 2.25 8.47
S2 14.94 0.82 2.34 6.78 5.72 0.56
S3 4.40 2.91 1.25 6.38 3.30 1.54
S4 0.07 1.14 3.66 0.19 3.53 13.38
S5 3.22 3.09 3.73 2.75 0.70 4.00
S6 2.54 2.22 0.50 0.26 0.58 1.92
S7 7.02 0.92 10.47 2.76 1.44 2.70
S8 6.02 0.93 1.23 0.89 0.26 0.21
S9 5.13 1.54 16.86 0.26 9.78 22.09
S10 9.57 4.10 4.95 0.86 8.61 2.53

Mean 6.32 2.07 4.90 2.65 3.61 5.74

In Table 5.3, the position estimation error ratio ε% corresponding to each trial (carrying mode
/ walking speed) is reported for all test participants. These values correspond to the average
TSIstep values. In the loaded swinging mode, the impact on traveled distance estimation
is found to be greater at lower speed (ε%(V1) = 6.32%) than at higher walking velocities.
Indeed, at higher speed, the synchronization between the arms and the legs increases and the
impact of the added mass is found to be less significant. On the contrary, for the texting mode,
the fact of walking with rigid upper limbs has a greater impact on the position estimation
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at higher walking velocities (ε%(V3) = 5.74%). In this scenario, the loaded arm is not
synchronized with the legs movement. This outcome completes the results found in table 5.2.

5.3.3.3 Comparison with predicted errors from simulation

Based on simulation model, the position estimation error ratio is calculated for the walking
velocities V1, V2 and V3 to compare with the results based on the empirical data. The error
ratios corresponding to loaded swinging and texting modes are shown in table 5.4.

Table 5.4 Error ratio ε% in % based on simulation results for all testing speeds and for
different carrying modes

Loaded Swinging Texting
Gait speed V1 V2 V3 V1 V2 V3

ε% 1.94 1.38 1.87 1.08 2.52 3.04

The error ratios calculated based on the conceived human gait model are much lower than
mean values found with experimentation data. This is due to several limitations of the
proposed model. The identified limitations and recommendations for enhancement of the
current model are the following:

• It has been assumed that most features of human walking can be captured by analyzing
it in sagittal plane. This can be true for leg movements. However, the observation of
the positions of the hand markers shows that humans tend to increase their movement
in the horizontal plane with an increase in walking speed. Hence, to study human
walking with arm swinging, 3D model should be considered.

• For the simplicity of walking gait cycle design, double support phases were neglected.
Humans have a well-defined double support phase which should not be neglected to
capture all the features of human walking gait in the simulation.

• The simulation tool is unable to model the cognitive effects of interacting with a device
(dual-task paradigm), interaction with other individuals, and making maneuvers.

5.4 Conclusions and contributions to autonomous geoloca-
tion

The impact of the handheld mass on the walking gait is studied with experimental data
collected with 10 test participants and a 0.19 kg handheld device in a motion capture lab-
oratory. It is shown that the presence of a mass in hand changes the gait symmetry at the
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step level whereas the gait remains stride symmetric. As compared to a naturalistic walking
(i.e. without any mass in hand), it is also found that both carrying modes: mass held in
a swinging hand and in a "texting" hand, have impact on the walking gait. For swinging
mode, the impact of carrying a mass in hand is found to be greater at lower speeds than at
comfortable/faster speeds, which is expected because parasitic motion is more likely to occur
at slow speeds since the energy conservation problem is less constraining. In contrast, an
inverse tendency is observed for texting mode. These findings tend to prove the importance
of natural arm swinging that could be captured with handheld devices.

This study is completed with a walking motion generator based on robotics and designed for
a humanoid with a mass in hand. This generator computes the joints’ trajectories based on
a stride level optimization. Human walking motion is simulated only in the sagittal plane
to compare with 3D experimental data. Globally, the same trend (i.e. modification of the
walking gait symmetry at the step level) is found even if some disparities are observed. The
hypothesis is that they are mainly due to the fact that the model is restricted to the sagittal
plane.

Another important result for the field of pedestrian navigation based on inertial navigation
systems is that the presence of a handheld mass should be considered to adapt step length
models that are used in PDR processing strategy. Indeed, it is commonly assumed in the
literature that all the steps are identical when a human is walking with a handheld device at
a steady velocity. The outcome of this research shows that this assumption is a source of
significant error in the computation of the cumulative traveled distance. Therefore, predicting
gait motion over a stride is more viable to solve for the direct modeling problem of pedestrian
navigation.



Chapter 6

3D human gait simulator extended to
stride level

6.1 Introduction

In the previous chapter, it was proven that, for steady walking, both steps are no longer
identical due to the presence of a mass in hand. The induced asymmetry is significant for the
estimation of traveled distance for pedestrian navigation solutions. Therefore, asymmetric
gait patterns are considered in the new formulation of the optimization problem, and step
lengths and durations for the two sides may be different. The new gait cycle is then defined
as two consecutive steps (i.e. a stride), and modifications on optimization variables, con-
straint and cost functions will be detailed. For loaded swinging and texting scenarios, gait
motions over a stride are predicted for three gait descriptors: average gait velocity, stride
characteristics (length, width), and step-level symmetry indexes. The last two descriptors
have been added compared to the previous model to specify the characteristics of the steps
and to simulate the acceleration of the hand resulting from the induced movement of the
loaded arm. Note that these two descriptors will reduce the solution space for the locomotor
system.

6.2 Gait cycle composed of two consecutive steps with in-
stantaneous impacts

For stride-level optimization, we consider a gait cycle composed of a right single support
phase, an instantaneous double support, a left single support phase, and a second instanta-
neous double support. In both double support phases, we consider the same assumptions
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adopted for the previous gait cycle definition.

We consider a cyclic gait motion over a stride of length d and width w, in the time interval
[0, T ], where T is the stride duration. For an imposed gait velocity V , the stride duration is
given by T = d

V . Then, the duration and length of the step i, respectively Ti and di, i = 1,2,
are determined using the imposed step-level symmetry indexes (TSI, SSI):

T1 = TSI×T, T2 = (1−TSI)×T

d1 = SSI×d, d2 = (1−SSI)×d
(6.1)

Note that both right and left steps have the same width w since steady straightforward gait is
studied.

In order to facilitate gait modeling over a stride, we aim at using the same parameterization
of geometric model for both steps. This implies that the right foot remains as the support foot
with the reference frame Rs linked to it. A left step (left support foot) with a mass carried in
the right hand is dynamically equivalent to a right step with the same mass carried in the left
hand, since in both cases we have the same mass distribution with respect to the structure’s
fixed base (support foot). From this statement, the cycle can be modeled by the following
phases (cf. figure 6.1):

- A right single support phase with the mass carried in the right hand (0 < t < T1);

- An instantaneous impact where the front foot is the left foot distant from the rear foot
by d2 along the zs axis (t = T1);

- A right single support phase with the mass carried in the left hand (T1 < t < T );

- An instantaneous impact where the front foot is the left foot distant from the rear foot
by d1 along the zs axis (t = T ).

Then, the configurations during the second step, i.e. left step, are deduced from the config-
urations of the last two phases listed above, using the same transformations mentioned in
section 4.3.1, while considering the length of the second step d2:

Ts s′ =




1 0 0 0
0 −1 0 −w
0 0 1 d2

0 0 0 1


 (6.2)
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Fig. 6.1 GC composed of two SS phase and two instantaneous impacts (the red dot stands for
the carried mass).

6.3 Optimization variables for stride-level optimization

Since joint histories are interpolated over two steps, 38×(N+4) interpolation parameters are
needed for stride-level optimization. Thanks to modeling assumptions detailed in section 4.6,
the optimized vector is reduced by 88 variables for optimization over stride. Four additional
parameters, which are (p6, j,p7, j), j=1,2, are subtracted from the optimization variables since
the spatial parameters of the steps are predetermined.
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For a cyclic walking gait over a stride, the optimized set comprises for each step the variables
presented in Table 6.1. The number of variables is reduced in texting mode due to the
constrained arm configuration. Corresponding joint rate variables are set to zero and joint
positions are fixed so that the hand has a defined position with respect to the head i.e. The
position of the origin O20 linked to the hand with respect to the origin O16 linked to the head
is 16P20 = (−L8

2 , −2L10
3 , −L7

2 )R16 , where L7, L8, and L10 are respectively the trunk length, the
lateral distance between the head and shoulder joint center, and forearm length.

Table 6.1 Optimization variables corresponding to the step labelled j, j=1,2 and to N
intermediate time knots. (S): Swinging mode, (T): Texting mode.

Number of variables
Set of variables (S) (T)

q j(ti, j), i=1,. . . ,N: Intermediate configurations 19N 16N
q̇ j(Tj): Joint velocities just before the impact 19 16
(p1, j, p2, j, p3, j): Hips center position in initial DS 3 3
(p4, j, p5, j): Initial pitch and yaw orientations of the pelvis 2 2
q j,arm(t = 0): Arms configuration in initial DS 6 3

Thus, for a cyclic walking gait over a stride, we have 38N+60 optimization variables for
swinging mode and 32N+48 optimization variables for texting mode. As for step-level
optimization, “fmincon" function based on the active set algorithm is used to determine the
optimal set of variables.

One can notice that the extension of gait cycle definition to the stride level led to a significant
increase in the number of optimization variables. In an attempt to avoid the convergence to
local minima, we tested an optimization strategy called variables block strategy [204]. This
strategy consists in solving the problem iteratively by dividing variables into blocks according
to their physical significance and optimizing each block mainly in the corresponding sub-
iteration. There are three blocks in our case: joint velocities variables, locomotor system
configuration variables, and upper body configuration variables. By applying variables block
strategy with dynamic adjustment on constraints, optimization results are improved and the
optimized cost functional is lower. However, this strategy is discarded because of its very
long computational time, but it may be considered in future developments. The results that
will be presented in section 6.5 correspond to optimizing all variables simultaneously.



6.4 Specific constraints and cost functions 107

6.4 Specific constraints and cost functions

For the cyclic walking gait over a stride, the constraints in single and double support configu-
rations, listed in section 4.7.1, are imposed for both steps. In texting mode, the biomechanical
and geometric constraints on the constrained arm are not applied. In this scenario, an addi-
tional constraint keeps the same distance between the carried mass and the head.

In stride-level optimization process, we aim at minimizing the joint actuators energy dissi-
pated over a stride of duration T to travel the distance d. For each step labeled j, of period Tj

and length d j, we consider a cost functional CΓ, j given by:

CΓ, j =
1
d j

∫ Tj

0
ΓΓΓ j(t)⊤ΓΓΓ j(t) dt (6.3)

where ΓΓΓ j is the N j×1 vector of joint torques during the step j. The energetic cost function of
the stride CΓ can be expressed in function of cost functionals of both steps CΓ,1 and CΓ,2 as
follows:

CΓ =
1
d

∫ T

0
ΓΓΓ(t)⊤ΓΓΓ(t) dt

=
d1

d
· ( 1

d1

∫ T1

0
ΓΓΓ1(t)⊤ΓΓΓ1(t) dt)+

d2

d
· ( 1

d2

∫ T

T1

ΓΓΓ2(t −T1)
⊤

ΓΓΓ2(t −T1) dt)

= SSI · ( 1
d1

∫ T1

0
ΓΓΓ1(t)⊤ΓΓΓ1(t) dt)+(1−SSI) · ( 1

d2

∫ T2

0
ΓΓΓ2(t)⊤ΓΓΓ2(t) dt)

= SSI ·CΓ,1 +(1−SSI) ·CΓ,2

(6.4)

Note that in the specific case of a step symmetric walking gait, we have SSI = 0.5 and
CΓ,1 =CΓ,2, we thus have CΓ =CΓ,1.

Similarly to step-level optimization, we consider the deviation of the trunk from upright
posture, which is amounted to the following function:

CUT P =
∫ T

0
(ppp7(t)− ppph(t)) ·ggg dt (6.5)

where ppph and ppp7 are the Cartesian coordinates of the hips middle point and the 7th Cervicale,
respectively, ggg is the gravity vector and the operator · denotes the scalar product.
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Consequently, the cost functional for a stride is given by:

C f =CΓ +ρ ·CUT P (6.6)

where ρ > 0 is a penalty factor.

6.5 Validation results

In this section, we present results of the extended human gait model considering the same
numerical parameters as for the step-level simulator, i.e. N = 2 intermediate knots and
ns = 5(N +1)+1 = 16 time samples for each step.

6.5.1 3D acceleration of the feet

Figure 6.2 shows the normalized 3D acceleration profiles of both feet throughout the walking
cycle. One can notice that the durations of simple support are no longer equal for the model
extended to the stride because of the imposed experimental TSI index that is different from
0.5. Although the signal shapes are similar, the temporal and spatial asymmetry between the
two steps induced some differences between the acceleration profiles specific to each foot.
First, there is a difference in acceleration values before/after impact between the two feet.
Second, the relative time of acceleration peak instants during the swing phase changes from
one step to the next (about 30% and 50% for the first and second steps, respectively). The
disparities in signals between the two steps, which are not negligible for the experimental
data, highlights the correlation between arm movement and foot acceleration. Moreover,
optimizing the walking movement over a stride allows to obtain acceleration patterns closer
to experimental ones. Indeed, for the extended model, the base of the first acceleration peak
is wider and the value of the normalized maximum acceleration is higher.

For both simulation and experiments, peak values of acceleration profiles significantly
increase with the gait velocity, and within the same velocity, there is no significant impact of
carrying mode on these values.

6.5.2 COM’s vertical acceleration

Normalized vertical acceleration profiles of the COM are depicted in figure 6.3. In contrast
to the case of step-level optimization, the new gait cycle definition results in a remarkable
difference between the two acceleration peaks occurring before and after each impact instant:
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Fig. 6.2 3D acceleration profile of the right (blue) and left (red) foot during a GC for the
walking condition V2/(S1): (a) experimental data, (b) simulation data (continuous/dashed
curves correspond to optimization over stride/step). The dashed lines indicate SS phases for
(a), and impact instants for (b).

the acceleration peak before the impact remains similar while the acceleration peak after the
impact is largely reduced in the "optimization over stride" simulation. Besides, the magnitude
of vertical acceleration jump at impacts is reduced for the extended simulator with respect
to the previous gait model. Another difference between both models is that for stride-level
simulator, higher magnitudes of negative acceleration are achieved in single support phases.

Figure 6.4 shows the differences between peak and trough values of COM vertical accel-
eration for different walking conditions. Our simulator provides the same variation trend
in terms of gait velocity as in experimentation. Within the same device carrying mode, the
peak-trough difference significantly increases with walking speed. For a given walking
velocity, differences in vertical acceleration items are mainly due to differences between step
length values.
In comparison with step-level optimization, the extended simulator provides lower vertical
acceleration items of the COM, given the walking velocity (e.g. a 44% decrease for the
velocity V2). Therefore, it can be concluded that optimizing gait motion over a stride results
in a smoother trajectory of the COM, but also in a related acceleration item further away
from the experimental data.
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Fig. 6.3 Vertical acceleration profile of the COM during a GC for the walking condition
V2/(S1): (a) experimental data, (b) simulation data. The black dashed lines indicate DS
phases, and red dashed lines indicate impact instants.
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Fig. 6.4 The peak-trough differences of COM vertical acceleration for different walking
conditions: (a) experimental data, (b) simulation data.

6.5.3 Hand’s 3D acceleration

Normalized profiles of 3D acceleration of the right hand are presented in figure 6.5. When
extending the gait cycle definition to the stride, simulation data still show peak acceleration
values just after impacts, and minimum values attained during arm swing. A noticeable
difference between both models is that in stride-level optimization, the small acceleration
peaks during arm swing are smoothed, which gives an acceleration pattern more similar
to that found in experimental data. However, 3D acceleration jumps at impact instants are
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higher in stride-level optimization than in step-level optimization.
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Fig. 6.5 3D acceleration profile of the hand during a GC for the walking condition V2/(S1):
(a) experimental data, (b) simulation data. The black dashed lines indicate DS phases, and
red dashed lines indicate impact instants.

RMS values of hand’s 3D acceleration for different walking scenarios are shown in figure 6.6.
In simulation data, a slight decrease of the RMS value is observed for the mode (S2) compared
to (S1) since the additional mass considerably decreases the optimal swing magnitude of the
loaded arm during gait cycle. In addition, there is a significant decrease of RMS levels for the
mode (T) with respect to swinging modes since the loaded arm configuration is constrained
to stabilize the distance between the hand and the head. Both results show that, within the
same carrying mode, RMS value increases in function of the gait velocity.
For the carrying mode (S1), the extended 3D simulator provides RMS levels of hand’s
acceleration higher than in step-level simulator (unloaded swinging). This increase in RMS
value is more significant for lower velocity (e.g. 130% and 8% increase for the velocities V1

and V3, respectively).

6.6 Conclusions and contributions to autonomous geoloca-
tion

The extended gait cycle definition allows to consider the handheld mass in the skeletal
model, and to simulate loaded swinging modes as well as body fixed device carrying modes
(e.g. texting mode). Results have shown that, for given stride characteristics and symmetry
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Fig. 6.6 RMS values of hand’s 3D acceleration for different walking conditions: (a) experi-
mental data, (b) simulation data.

indexes, the extended simulator allows to observe an asymmetry in acceleration profiles of
feet and COM with respect to step-level simulator. Another interesting contribution is that
the extended model results in a more energy efficient locomotion movements. Figure 6.7
depicts the variation of the sthenic criterion with walking velocity for different simulation
scenarios. We notice a significant decrease of the energy criterion by proceeding to the
stride-level optimization. The difference in energy cost between both gait models is expected,
since metabolic cost depends on both step length and step frequency [7, 205]. The cost of
transport is bigger with short step length than long step length because the hip joint torque
consumes more energy for the leg swinging under the situation of fast walking speed and short
step length [205], and cost per distance increases approximately with the second power of
frequency [7]. This justify the fact that the decrease in sthenic criterion is more remarkable for
the comfortable and rapid walking speeds (64% and 76% decrease rates respectively), since
for these velocities, lower step length and higher step cadence (with respect to experimental
values) are predicted in step-level optimization. Overall, this result supports the observation
made by Zarrugh et al. [206] stating that the natural step length at any given walking speed
is the one that minimizes energy consumption. The high energy cost observed in the case of
step-level optimization is also the result of the implicit constraint of symmetry of walking
movement from one step to the next. Although this constraint significantly reduces the
number of optimization variables and leads to more rapid convergence, the feasible solution
domain of the motion generation problem becomes more restricted. Thus, one can anticipate
a higher optimal criterion value.
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Fig. 6.7 Sthenic criterion versus walking velocity for different simulation scenarios.

Despite the decreased optimal arm swing magnitude, the carrying mode (S2) results in a
slight increase in sthenic criterion with respect to the mode (S1). This indicates the sensitivity
of the energy efficiency of the predicted gait motion to a change in the added mass value. This
constitutes an improvement with respect to 2D human gait modeling studied in [195], where
no remarkable difference in sthenic criterion is observed between unloaded swinging and
loaded swinging (with 0.139 kg in hand) scenarios (see appendix G, figure G.1). In addition,
the energy cost for texting mode is higher than for swinging modes, as found in the case of
planar walking model (cf. figure G.2). This result is consistent with the observation made by
Kaddar et al. [207], stating that the lower cost functional in the case of arms swing can be
explained by the application of more torques to the arm joints that leads to less important
torques in other joints, especially in the stance leg. It also supports the findings of Collins et
al. [8] who reported an increase in metabolic cost when human subjects walk in any other
way than the natural arm swinging behaviour.

The evaluation of simulation outputs with overground walking data collected with one test
subject showed similarities between acceleration profiles related to different body parts. Fur-
thermore, the same variation tendencies of some acceleration items as function of carrying
mode and gait velocity are observed for both data. However, the difference in amplitude
of the acceleration signals linked to the hand persists, resulting in predicted acceleration
features much higher than the experimental values. This issue is inherent to the impulsive
nature of the considered impact model and to the discretization scheme of state variables. In
fact, in the proposed method, the number of control points for spline functions approximation
is the control parameter for the trajectories smoothness in time acting as an implicit con-
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straint. There is no general method of determining the minimum number of intermediate time
knots required to ensure the feasibility of the optimization problem. Though more control
points can increase the smoothness of joint motion and secure the problem feasibility, the
computational cost considerably increases with it.

The main objective of this thesis was to develop a realistic walking simulator to generate upper
body motion data for given displacement features. The simulator successfully reproduces the
kinematic data of human walking for the lower and upper body systems. It also reproduces
the same natural evolutions of hand acceleration during single support phases, in swinging
mode. The main limitation is the difference in amplitude between simulated and experimental
signals, which suggests introducing double support modeling in order to be able to predict
acceleration signals over a complete gait cycle, i.e. including finite double support phases,
and to avoid significant hand acceleration jumps near impact events. Several improvements
were made to our model during this work, in an attempt to get closer to real gait patterns.
However, simplifying assumptions in the definition of the walking cycle (e.g. only flat foot
contact with the ground) and in the skeletal model (e.g. rigid bodies, frictionless rotations
between segments) need to be revisited, and solutions must be considered to limit numerical
issues arising from the discretization of state variables and constraints evaluation, and those
related to motion optimization performance. These possible enhancements can surely lead to
a more reliable modeling framework that will assist in the development of novel autonomous
pedestrian geolocation algorithms.



Chapter 7

General conclusion and perspectives

For indoor positioning, PDR is the most used strategy when it comes to estimate pedestrian
position from inertial data sensed by handheld devices. In PDR process, step length is
estimated using parametric models taking into account some physiological parameters of the
user, displacement features and acceleration statistical properties. These models are suitable
for the common human gait, and alterations of gait pattern induced by irregular motions
lead to increased positioning error at each step. Consequently, frequent adjustment of step
length models coefficients is required. This calibration needs large experimental database that
characterizes inter/intrasubject variation of human gait parameters. The collection of such a
database is costly in terms of time and effort since it should include as many gait-impacting
factors as possible, which highly increase the number of measurement trials. In this thesis,
we aim to introduce a human gait simulator based on a multibody system in order to provide
a simpler way to generate human locomotion database.

We started by reviewing the literature on the various human walking models. This review
guided us in the choice of a simulation methodology, leading to a digital human motion pre-
diction framework. We completed our analysis by reporting observations on normal human
walking from biomechanical and motion analysis literature. Taking these observations into
account, we justified our modeling choices in terms of segments definition and different
defined joints DOF of the skeletal model. Inverse dynamics and optimization method were
combined by adopting differential inclusion formulation which have smaller number of opti-
mization variables and explicit formulations in terms of variables. In order to allow a realistic
prediction of the three-dimensional trajectory of the body segments during walking, several
constraints were imposed in the optimization process including limits on joint positions,
rates and torques, stability and geometric constraints. Straightforward walking motion is
optimized over the step, which is considered as the gait cycle, in such a way as to minimize
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the energy dissipated in the actuators per unit of distance. For unloaded swinging mode, step
characteristics and joint motions are simultaneously predicted only from the average walking
speed.

To evaluate our simulator, simulation outputs were compared with kinematic profiles and
accelerometric features obtained from walking experiments. Results showed that the model
reproduces similar fundamental patterns of walking and the same variation trend of accelera-
tion related items in function of gait velocity observed in experiments. The main contribution
of our model in comparison with previous human walking models is the accuracy of step
length estimation. Besides, our model contributes to better estimating hand acceleration
feature with respect to planar human gait modeling. However, there is a large difference in
hand’s acceleration magnitudes between experimental and simulation data. Another notice-
able disparity is that experimental acceleration patterns related to feet and COM have shown
different profiles for each single support phase. This observation suggests that asymmetric
movements that are likely to result in a step-level asymmetry of displacement features oc-
curred. Therefore, we investigated the temporal aspect of this asymmetry to find out whether
the asymmetry level of gait cycle during steady walking, probably caused by handling a mass
in hand, is significant in the context of pedestrian navigation solution.

The impact of the handheld mass on the walking gait was studied with experimental data
collected with 10 test participants and a 0.19 kg handheld device in a motion capture labora-
tory. It was shown that the presence of a mass in hand or a constrained arm configuration
alters the gait symmetry at the step level. The outcome of this research showed that the
assumption of identical steps is a source of significant error in the computation of the cu-
mulative traveled distance which led us to extend the definition of gait cycle to the stride.
This extension involves modifications on optimization variables, as well as constraints and
cost functions definition. For loaded swinging and texting scenarios, gait motions over
a stride are predicted for average gait velocity, stride characteristics (length, width), and
step-level symmetry indexes. The last two descriptors have been added compared to the
previous model to specify the characteristics of the steps and to simulate the acceleration
of the hand resulting from the induced movement of the loaded arm. Results have shown
that the extended simulator allows to observe an asymmetry in acceleration profiles of feet
and COM with respect to step-level simulator. Another interesting contribution is that the
extended model results in a more energy efficient locomotion movements. The evaluation
of simulation outputs with overground walking data collected with one test subject showed
similarities between acceleration profiles related to different body parts. Furthermore, the
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same variation tendencies of some acceleration items as function of carrying mode and gait
velocity are observed for both data. However, the difference in amplitude of the acceleration
signals linked to the hand persists.

In conclusion, we have proposed a new tool to generate human locomotion data in order to
avoid costly experimental data collection. The current modeling framework partially solves
for the direct modeling problem of pedestrian navigation. Predicting the acceleration fea-
tures of the hand for given displacement features remains challenging given the simplifying
assumptions of the involved robotic tools. Further enhancements on the current simulator are
required to achieve the prediction of gaits constituting human locomotion with a high degree
of confidence. Such a model might then be a valuable tool to viably assist in the development
of novel autonomous pedestrian geolocation algorithms.
Overall, this research shows that combining the three research areas, i.e. robotics, biome-
chanics and pedestrian navigation, is a very interesting way of addressing the challenges
related to the increase of individual’s autonomy using everyday objects.

A first research perspective will be to introduce the double support phase in the gait cycle
definition in order to obtain shapes and amplitudes of acceleration profiles closer to those of
real walking. In addition, including the phase where the stance heel rises from the ground
and the support foot rotates about the toe is a potential enhancement of gait cycle definition.
In fact, Tlalolini et al. [208] revealed that this under-actuated phase is useful to reduce the
criteria cost for fast motions.
Regarding the motion optimization performance, variable block optimization mentioned
in section 6.3 is an efficient strategy which can be adopted to avoid the “overfitting” phe-
nomenon, which means that some variables change too much but others change only a little
from their initial values. However, the smallest possible number of iterations should be
considered to limit the computation time. To improve the convergence of the optimization
algorithm, gradient-based optimization methods can be used to find optimal solutions by
iteratively considering cost/constraint function values and their gradients with respect to
optimization variables [14, 209].
To solve for numerical issues arising from the discretization of state variables, we can increase
the number of time knots for interpolation of joints histories. However, the main drawback
of this solution is that it considerably expands the optimization problem size. An alternative
solution is to optimize the control points for approximation functions along with intermediate
time intervals durations like in the work of Kim et al. [14]. This means that the interpolation
points are no longer uniformly distributed over the swinging phase time interval, instead their
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times are the result of optimization process. Such an alternative widens the feasible solution
domain since it diminishes the possible conflict of the implicit constraint of smoothness in
time with the explicit optimization constraints.
Finally, validation with experimental data of several subjects is also targeted in order to
qualify the framework’s capability of coping with inter-subject variability of gait pattern.
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Appendix B

Inversion matrix

E =




0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0








Appendix C

Arm motion
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Fig. C.1 Shoulder flexion/extension motion during a stride (first step is ipsilateral). Solid line
for experimental data, dashed line for simulation data.
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Fig. C.2 Elbow flexion motion during a stride (first step is ipsilateral). Solid line for
experimental data, dashed line for simulation data.





Appendix D

COM displacement
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Fig. D.1 Vertical displacement of COM during a stride. Solid line for experimental data,
dashed line for simulation data.
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Fig. D.2 COM mediolateral displacement during a stride. Solid line for experimental data,
dashed line for simulation data.





Appendix E

2D biped model

Fig. E.1 2D Biped with two-link arms, one equipped with a handheld device, with its different
DOFs and corresponding actuators [157].





Appendix F

Acceleration of handheld device

  

defined using CSFM and AVM. It must be noted that the 

change in direction of arm swinging at the end of each step 

also contributes to this behavior. Nevertheless, the detection 

of these inflection points in the real acceleration data from the 

IMU sensor can help us predict the frequency of step or stride 

events. 
Figure 10. Comparison between the handheld device characteristics from 

simulation and experiments for swinging mode at 5 km/h 

 

D. Identified Limitations and Future Work 

 The developed simulation tool successfully captures 
some features of human walking in swinging mode, however 
it needs further work to achieve more realistic walking 
simulation. Following are the identified limitations and 
recommendations for future work. 

In this work, it has been assumed that most features of 
human walking can be captured by analyzing it in 2D sagittal 
plane. This is true for leg movements. However, the 
observation of the positions of the hand markers shows that 
humans tend to increase their movement in the horizontal 
plane with an increase in walking speed. Hence, to study 
human walking with arm swinging, 3D model should be 
considered. 

For the simplicity of walking gait cycle design, DS phases 
were neglected. Humans have a well-defined DS phase which 
should not be neglected to capture all the features of human 
walking gait in the simulation. 

Finally, the inertia estimates provided by Modified 
Hanavan model are inaccurate resulting in high acceleration of 
the handheld device in the simulation. This could be improved 
by considering other methods for estimating the mass inertial 
properties of humans.  

V. CONCLUSION 

The research presented in this paper draws inspirations 

from interdisciplinary fields of robotics, biomechanics and 

pedestrian navigation technology and hence the outcomes 

benefit them individually. For the robotics community, a 

simulation testbed for the motion generation of walking gait 

cycles over strides taking into account the arm swinging 

phenomena has been presented. The interesting perspectives 

coming out of this research for the biomechanics community 

are about the effect of small handheld mass on the walking 

gait cycle. It has been found in both simulation and 

experiments that a small handheld mass can affect the step 

symmetry while the walking gait still remains stride 

symmetric. Finally, it definitely provides a very important 

result for improving the pedestrian navigation technology as 

it is commonly assumed in the literature that all the steps are 

identical when a human is walking with a handheld device, 

which now can be seen as a source of error in calculation of 

the net human displacement. Altogether, the three research 

areas can actively come together to increase the autonomy of 

human beings. 
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Fig. F.1 Comparison between the handheld device characteristics from simulation and
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Appendix G

Sthenic criterion

81 

 

 

Figure 79: Criteria vs Walking Speed with and without IMU sensor in hand 

Figure 80 shows the variation of TSI with walking speed for unloaded and insignificantly loaded 

swinging modes. For unloaded swinging mode, we can see that TSI is 0.5 until the walking speed of 

0.8 m/s and then it starts to deviate. For loaded swinging mode, it always deviates. However, no strong 

conclusion can be drawn seeing the behaviour of its variation with walking speed. 

 

Figure 80: TSI variation with Walking Speed for Unloaded and Insignificantly Loaded Swinging 

Modes 
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Fig. G.1 Criteria vs Walking Speed with and without IMU sensor in hand [195].
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Figure 92: Criteria and TSI variation with walking speed for swinging, texting and phoning modes 

4.2. Experimental Results 

In the previous section, we found some very interesting results from the simulation of a 2D biped 

inspired from HYDROID for a cyclic walking gait over a stride. It was very interesting to perform some 

experiments to observe this behaviour in real human walking. Chapter 3 discussed the aim, experimental 

setup, methodology and gait features extraction techniques adopted to analyse the motion capture 

experiment data in different device carrying modes. This section will present the important results from 

the experimentation in different experimental scenarios namely: unloaded swinging mode, loaded 

swinging mode, texting mode and phoning mode. Unloaded swinging mode & phoning mode was 

performed at a walking speed of 5 km/h, loaded swinging mode and texting mode were performed at a 

walking speed of 3.6 km/h and 5 km/h. Section 4.2.1 will present the swinging mode including loaded 

and unloaded cases. Section 4.2.2 will present the body fixed sensor modes which includes texting and 

phoning modes. Section 4.2.3 will present the discussions and inspirations for the improved simulation 

with real human subject. 

4.2.1. Swinging Mode 

Swinging mode experiments involved unloaded and loaded swinging cases. In loaded swinging case, 

the human subject was equipped with handheld sensor with optical marker of approx. 300 g in his right 

hand. The loaded swinging mode experiment was performed at 2 speeds: 3.6 km/h (or 1.00 m/s) and 5 

km/h (or 1.39 m/s). In unloaded swinging mode, the human subject was equipped with a normal optical 

hand marker in both left and right hands and hence the arms were completely symmetric. This was 

performed at a speed of 5 km/h. In this section, we would like to study the effect of side load carriage 

during the swinging mode. We did this by exploring the answers to the following 3 questions: 

• How does the side of load carriage affect the temporal step lengths with respect to the two legs? 

• Can a small mass in one hand affect the symmetry of human walking in swinging mode over 

steps? Does it have any effect over the symmetry of gait cycle over stride? 

• Does it affect the coupling of hand and leg movements? 

72 continous walking steps and 36 strides were analysed for loaded and unloaded swinging case at 5 

km/h. We observed in Section 3.2.5 during the comparison between CSFM and AVM that right step 

duration increases with respect to left step duration if the load is being carried in the right side. This 

was evident from Figure 53. However, right step duration was found to be equal to the left step duration 

in case of unloaded swinging mode. Moreover, with Figure 55, we found that TSI over step was 

0.4988±0.0162 for the unloaded swinging case at 5 km/h and 0.5071±0.0119 for loaded swinging case 

at 5 km/h. The standard deviation was statistically significant only upto 2 decimal places and hence, 

TSI over step was approximated to 0.50 and 0.51 for unloaded and loaded swinging case respectively. 

So we can conclude that even a small mass in one hand can destroy the temporal symmetry index over 

steps. And hence, the walking gait does not remain step symmetric with the introduction of the loading. 
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Fig. G.2 Criteria variation with walking speed for swinging, texting and phoning modes
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Titre : titre (en français)... Estimation et caractérisation du cycle de marche humain à l'aide de dispositifs portables 
............ 

Mots clés :  Dispositifs portables, Système multi-corps, Optimisation paramétrique, Symétrie de pas, Motifs de marche 

humaine, Analyse de variance. 

Résumé : De nouveaux dispositifs portables sont introduits 

pour l'observation de la mobilité des personnes dans les espaces 
intérieurs et extérieurs. Ce matériel comprend des capteurs 
MEMS à bas coût : accéléromètre, gyromètre, magnétomètre, qui 
fournissent en permanence des données disponibles 
contrairement aux solutions existantes basées sur les signaux 
radio. Afin d'atténuer la propagation des erreurs des capteurs 
dans l'estimation de la position, une stratégie de navigation à 
l'estime des piétons est couramment adoptée. Le traitement 
nécessite des modèles paramétriques de longueur de pas 
s'appuyant sur certains paramètres physiologiques, des 
caractéristiques de déplacement et des propriétés statistiques 
d'accélération. Les coefficients de ces modèles doivent être 
ajustés fréquemment pour limiter les erreurs cumulatives induites 
par la variation des allures de marche. Une vaste base de 
données expérimentale fournissant des informations sur la 
variabilité de la locomotion humaine est nécessaire pour cette 
calibration. Cependant, le développement d'une telle base de 
données est coûteux en termes de temps et d'efforts, et plusieurs 
facteurs affectant la marche devraient être considérés, ce qui 
augmente considérablement le nombre d'essais. Dans cette 
thèse, nous proposons une méthode alternative de génération de 
données qui consiste à simuler le mouvement de la marche 
humaine dans différentes conditions. Dans ce but, un simulateur 
multi-corps 3D basé sur une technique d'optimisation 
paramétrique a été développé et des améliorations ont été 
apportées tout au long de ce travail pour obtenir une prévision 
plus réaliste des mouvements de marche. Les trajectoires 
articulaires au cours d'un pas ont été optimisées en minimisant un  

critère d'énergie basé sur les couples actionnés. La validation 
avec des données inertielles provenant d'expérimentations de 
marche au sol sur un sujet sain a montré une asymétrie dans les 
signaux d'accélération expérimentaux d'un pas à l'autre. Cela 
suggère que les mouvements asymétriques sont susceptibles 
d'entraîner une asymétrie des caractéristiques de pas. Cela va à 
l'encontre de l'hypothèse générale de la stratégie PDR : la 
présence d'un dispositif en main n'affecte pas la symétrie de la 
marche et tous les pas sont identiques pour une vitesse de 
marche fixe. Cette hypothèse est étudiée à l'aide d'expériences 
de capture de mouvement sur plusieurs sujets, conçues pour 
étudier l'influence d'une masse portée à la main sur les cycles 
de marche. L'analyse de variance a montré que la présence 
d'une masse en main modifie la symétrie de marche au niveau 
du pas, puis le processus d'optimisation proposé est étendu au 
niveau de la foulée afin de permettre d'observer des profils 
d'accélération asymétrique. Dans l'ensemble, notre simulateur 
reproduit des motifs fondamentaux similaires de la marche et la 
même tendance de variation des caractéristiques liées à 
l'accélération que l'on retrouve dans les expérimentations. 
Cependant, il présente des limites lorsqu'il s'agit de prédire les 
données d'accélération liées à la main, en raison de certaines 
hypothèses de modélisation et de problèmes numériques. Par 
conséquent, notre approche de simulation résout partiellement le 
problème direct de modélisation dans la navigation piétonne, et 
des améliorations par rapport aux hypothèses du modèle sont 
prévues pour une prédiction plus fiable des signaux 
d'accélération sur un cycle de marche complet. 

 

Title : titre (en anglais).....  Walking gait features extraction and characterization using wearable devices..... 

Keywords :  Handheld devices, Multibody system, Parametric optimization, Step-level symmetry,  Walking gait patterns, 

Analysis of variance. 

Abstract :  New wearables devices are introduced with novel 

options for observing personal transport and mobility in indoor and 
outdoor spaces. This hardware includes low cost MEMS sensors: 
accelerometer, gyroscope, magnetometer, which provide 
continuously available data contrary to existing solutions that are 
based on radio signals. In order to mitigate the propagation of 
sensor errors in the position estimate, a pedestrian dead 
reckoning strategy is commonly adopted. The processing requires 
parametric step length models relying on some physiological 
parameters, displacement features and acceleration statistical 
properties. The coefficients of these models need frequent 
adjustment to limit cumulative errors induced by alteration of gait 
pattern. A large experimental database providing information 
about human locomotion variability is required for this calibration. 
However, the development of such database is costly in terms of 
time and effort, and several gait-affecting factors should be 
considered, which highly increases the number of measurement 
trials. In this thesis, we propose an alternative way of generating 
locomotion data that consists in simulating human gait motion 
under different conditions.  In this scope, a 3D multibody system 
simulator based on parametric optimization technique was 
developed, and improvements were made throughout this work to 
get a more realistic walking motion prediction.  Joint trajectories 
during one step were optimized by minimizing an energy  criterion 
 

based on actuated torques. Validation with inertial data from 
overground walking experiments on one healthy subject showed 
an asymmetry in experimental acceleration signals from one 
step to the next. This suggests that asymmetric movement are 
likely to result in a step-level asymmetry of displacement 
features. This defeats the general assumption in PDR strategy: 
the presence of a device in hand does not impact the gait 
symmetry and all steps are identical for a fixed walking speed. 
This hypothesis is investigated with motion capture experiments 
with several subjects, designed to study the influence of a mass 
carried in hand on the walking gait cycles. Analysis of variance 
tests have shown that the presence of a mass in hand changes 
the gait symmetry at the step level, and then the proposed 
optimization process is extended to the stride level in order to 
allow observing asymmetric acceleration patterns. Overall, our 
simulator reproduces similar fundamental patterns of walking, 
and the same variation trend of acceleration related items found 
in experiments. However, it shows limitations when predicting 
acceleration data related to the hand, due to some modeling 
assumptions and numerical issues. Therefore, our simulation 
approach partially solves for the direct modeling problem in 
pedestrian navigation, and improvements on model assumptions 
are foreseen to predict acceleration signals over a complete gait 
cycle more reliably. 
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