
HAL Id: tel-01969339
https://hal.science/tel-01969339

Submitted on 25 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Krylov Subspace Methods for Inverse Problems with
Application to Image Restoration

Mohamed El Guide

To cite this version:
Mohamed El Guide. Krylov Subspace Methods for Inverse Problems with Application to Image
Restoration. Mathematics [math]. Université Cadi Ayyad, Marrakech, 2017. English. �NNT : �.
�tel-01969339�

https://hal.science/tel-01969339
https://hal.archives-ouvertes.fr


Krylov Subspace Methods for Inverse Problems with Application to Image
Restoration

Mohamed El Guide

A DISSERTATION

in

Mathematics

Presented to the Faculties of the University of Cadi Ayyad in Partial Fulfillment of
the Requirements for the Degree of Doctor of Philosophy

26/12/2017

Supervisors of Dissertation

Abdeslem Hafid Bentib, Professor of Mathematics
Khalide Jbilou, Professor of Mathematics

Graduate Group Chairperson

Hassane Sadok, Université du Littoral-Côte-d’Opale
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ABSTRACT

Mohamed El Guide

Abdeslem Hafid Bentbib, Khalide Jbilou

Image restoration often requires the solution of large linear systems of equations with a

very ill-conditioned, possibly singular, matrix and an error-contaminated right-hand side.

The latter represents the available blur and noise-contaminated image, while the matrix

models the blurring. Computation of a meaningful restoration of the available image re-

quires the use of a regularization method. We consider the situation when the blurring

matrix has a Kronecker product structure and an estimate of the norm of the desired

image is available, and illustrate that efficient restoration of the available image can be

achieved by Tikhonov regularization based on the global Lanczos method, and by using

the connection of the latter to Gauss-type quadrature rules. We also investigate the use

of the global Golub-Kahan bidiagonalization method to reduce the given large problem

to a small one. The small problem is solved by employing Tikhonov regularization. A re-

gularization parameter determines the amount of regularization. The connection between

global Golub-Kahan bidiagonalization and Gauss-type quadrature rules is exploited to in-

expensively compute bounds that are useful for determining the regularization parameter

by the discrepancy principle. We will also present an efficient algorithm for solving the

Tikhonov regularization problem of a linear system of equations with multiple right-hand

sides contaminated by errors. The proposed algorithm is based on the symmetric block

Lanczos algorithm, in connection with block Gauss quadrature rules. We will show how

this connection is designed to inexpensively determine a value of the regularization pa-
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rameter when a solution norm constraint is given. Next, we will present four algorithms

for the solution of linear discrete ill-posed problems with several right-hand side vectors.

These algorithms can be applied, for instance, to multi-channel image restoration when

the image degradation model is described by a linear system of equations with multiple

right-hand sides that are contaminated by errors. Two of the algorithms are block ge-

neralizations of the standard Golub-Kahan bidiagonalization method with the block size

equal to the number of channels. One algorithm uses standard Golub-Kahan bidiagonali-

zation without restarts for all right-hand sides. These schemes are compared to standard

Golub-Kahan bidiagonalization applied to each right-hand side independently. Tikhonov

regularization is used to avoid severe error propagation. Applications include the resto-

ration of color images are given. We will finally give efficient algorithms to solve total

variation (TV) regularization of images contaminated by blur and additive noise. The

unconstrained structure of the problem suggests that one can solve a constrained optimi-

zation by transforming the original unconstrained minimization problem to an equivalent

constrained minimization problem. An augmented Lagrangian method is used to handle

the constraints, and an alternating direction method (ADM) is used to iteratively find so-

lutions of the subproblems. The solution of these subproblems are belonging to subspaces

generated by application of successive orthogonal projections onto a class generalized

matrix Krylov subspaces of increasing dimension.
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Introduction

Le travail de cette thèse rentre dans le cadre générale de l’algèbre linéaire et l’analyse

numérique. Le principale objectif est le développement de méthodes numériques matri-

cielles pour la résolution des problèmes inverses de grande taille, ainsi que l’application

de ces méthodes à des problèmes importants qui se produisent dans la science et l’indus-

trie. Les méthodes numériques sont développées, analysées et spécialisées pour résoudre

des problèmes discrets mal-posés de grande taille. Dans cette thèse, nous nous concen-

trons sur des problèmes en deux dimensions. Nous rencontrons de tels problèmes dans

diverses applications et tout particulièrement dans la résolution des équations intégrales

de Fredholm du premier type en deux dimensions avec un noyau séparable [13], ainsi que

la restauration d’images floues et bruitées dans le cas où la fonction de l’étalement du

point est séparable [62].

La restauration de l’image

La restauration d’image est une étape très importante dans le processus de traite-

ment d’image. Cette dernière est nécessaire pour corriger les différents traitements que

peut subir une image, car celle- ci, pendant sa capture peut être, dans la plus part des
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cas, sujette à des dégradations qui conduisent aux manques d’informations utiles qu’elle

contenait et qui sont d’une grande importance.

Au cours des années 50, une grande importance a été attribuée aux techniques numériques

de restauration d’images, et cela est dû essentiellement à la mauvaise qualité des images

que les astronautes prélevaient. Cette qualité est influencée par plusieurs sources de

dégradation qui peuvent être, soit l’appareil de prise de vue, soit l’opérateur, soit l’objectif,

ou même les turbulences atmosphériques. Avec le développement technologique, plusieurs

domaines vitaux (médical, militaire,...etc.) essaient d’en profiter de cette technologie, et

principalement le domaine de l’imagerie, ce qui nécessite automatiquement des outils de

plus en plus sophistiqués qui répondent aux besoins des opérateurs. Lorsqu’on utilise un

appareil photo, nous voulons que l’image enregistrée soit une représentation exacte de la

scène que nous voyons, mais chaque image est plus ou moins floue. Ainsi, la restauration

de l’image est fondamental dans la prise de photos nettes .

La représentation la plus utilisée d’une image numérique est celle d’un tableau à deux

dimensions composé d’un ensemble de lignes et de colonnes. Chaque cellule du tableau, ap-

pelée pixel, contient une valeur quantifiée. Cette valeur est une sémantique dépendant du

type de signal qu’elle code (intensité lumineuse du point, distance à un point de référence,

ou numéro de la région d’appartenance par exemple). Une petite image a environ 2562

à 65536 pixels tandis qu’une image de haute résolution souvent a 5 à 10 millions de

pixels. Le flou s’apparait toujours dans l’enregistrement d’une image numérique, car il est

inévitable que les informations de la scène débordent aux pixels voisins. La restauration

de l’image est le processus d’enlever le flou et le bruit de l’image dégradée pour récupérer

une approximation de l’image originale. Ce domaine de la technologie d’imagerie est de-
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venu de plus en plus important dans de nombreuses applications scientifiques telles que

l’astronomie [15, 7, 68], l’imagerie médicale [15, 60, 94], militaires [15, 83], la surveillance

[15, 83], la microscopie [29, 8] et la technologie de communication vidéo [15, 8].

Par exemple, les scientifiques utilisent des télescopes pour obtenir les images des étoiles et

des planètes lointaines. Toutefois, en raison de la déformation causée par l’atmosphère de

la terre et les rayons de la lumière aléatoire provenant de diverses sources, les astronomes

reçoivent des images floues, comme celle représentée dans la Figure 1.1. De même, les

(a) Image originale (b) Image floue

Figure 1 – Image satellite.

médecins et les technologues médicaux obtiennent des images de l’anatomie humaine et

la physiologie à partir des machines radiologiques tels que X-ray, imagerie par résonance

magnétique (IRM). Puisque le dispositif de la formation de l’image est situé à l’extérieur

du patient, le corps sert de distorsions moyennes, avec le rayonnement aléatoire, peuvent

corrompre les images. En outre, le mouvement du patient peut provoquer plus de flou

dans l’image. Cependant, le bruit et le flou peut être filtré de ces images, ce qui les rend

plus facile à déchiffrer par les médecins.

La surveillance est un autre domaine fortement influencé par les technologies de la res-
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tauration de l’image. Par exemple, les responsables de l’application de la loi et la police

scientifique utilisent des techniques de la restauration numérique pour récupérer des vi-

sages et des plaques d’immatriculation à partir des cassettes vidéo de sécurité de mauvaise

qualité. Plus récemment, des techniques telles que le masque de phase cubique sont utilisés

pour apporter tous les visages dans une foule, peu importe leur proximité de la caméra

[29].

Dans chacune de ces applications, obtenir des images plus claires peut être accompli en

utilisant des programmes informatiques pour effectuer des techniques d’amélioration de

l’image. Ce processus de calcul peut être compliqué, nécessitant des algorithmes pour

résoudre des dizaines de milliers, peut-être des millions d’équations mathématiques. Ce-

pendant, une reconstruction précise et efficace peut être extrêmement avantageuse.

Considérons le modèle linéaire de le restauration d’image donné par l’équation de Fred-

holm du premier type en deux dimensions suivante

∫ ∫
Ω
κ(x, y, s, t)f(s, t)dsdt = g(x, y), (x, y) ∈ Ω′, (0.0.1)

où κ est le noyau, f est l’image originale et g est l’image floue et bruitée. La restauration en

utilisant un système linéaire est l’hypothèse principale dans cette thèse, donc le processus

de dégradation, c’est à dire, l’opération de passer de l’image nette à l’image floue, est

linéaire. Dans les sciences physiques, cette hypothèse est faite parce que, dans de nombreux

cas, le flou est en effet linéaire, ou au moins bien approché par un modèle linéaire. Une

conséquence importante de cette hypothèse est que nous avons un grand nombre d’outils

de l’algèbre linéaire et de calcul matriciel à notre disposition. La clé pour obtenir ce

modèle linéaire est de réarranger les éléments des images X ∈ Rm×n (discrétisation de f)
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et B ∈ Rm×n (discrétisation de g) dans des vecteurs colonnes en empilant les colonnes

de celles-ci en deux vecteurs x et b , à la fois de longueur N = mn. Comme le flou est

supposé une opération linéaire, il doit exister une grande matrice de flou H ∈ RN×N tel

que x et b sont liés par le modèle linéaire

Hx = b. (0.0.2)

L’image disponible, représentée par b, est supposé être contaminé par le flou et le bruit.

Soit e ∈ Rmn le bruit, e est normalisé avec une moyenne et variance nulles. Alors b peut

s’exprimer par b = b̂+ e, où b̂ est le second membre du système linéaire Hx̂ = b̂ associé à

l’image originale x̂. Généralement, la résolution du problème (0.0.2) nécessite un traite-

ment des données de grande taille et alors l’allocation de larges plages de mémoire. Heureu-

sement, dans de nombreuses applications, le noyau satisfait κ(x, y; s, t) = κ(x− s, y − t),

et on dit qu’il est spatialement invariant ou isotrope. Dans ce cas, l’équation intégrale

(0.0.1) est une opération de convolution, et donc κ peut généralement être représenté

par une structure de données compacte lorsque le stockage devient un problème. Les

applications où le noyau est spatialement invariant et alors exploiter la structure de la

matrice H peuvent être trouvées dans [5, 37, 80, 82]. La résolution du problème vecto-

riel (0.0.2) nécessite l’utilisation d’un schéma itératif [87, 57], la partie la plus intensive

de ces méthodes est les multiplications matrice-vecteur avec H, ce qui est supposé être

extrêmement numériquement couteux, donc un schéma de stockage efficace en exploitant

la structure devrait être utilisé. Un cas particulier se produit lorsque κ est séparable, c’est-

à-dire κ(x−s, y−t) = κ1(x−s)κ2(y−t). Si H1 et H2 sont les discrétisations des opérateurs

intégraux κ1 et κ2, respectivement, alors l’opérateur discret correspondant H du noyau
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κ est défini par H = H1 ⊗H2, où ⊗ désigne le produit de Kronecker [55]. L’objectif de

cette thèse est de développer des méthodes numériques efficaces exploitant la structure du

noyau κ. À ce stade, nous supposerons que la matrice floue H est le produit de Kronecker

de deux matrices. Notons qu’il est bien connu que la plupart des matrices de flou ont la

structure de Kronecker ou peuvent être bien approximées par des matrices ayant cette

structure ; voir, par exemple, Kamm et Nagy [71, 72] et Van Loan et Pitsianis [99]. En

inversant la matrice H, une approximation de la solution exacte peut être calculée ; Ce-

pendant, ce n’est pas si simple à cause du mauvais conditionnement de la matrice H. Les

méthodes de régularisation peuvent être utilisées pour calculer une approximation de x.

L’une des méthodes de régularisation les plus connues est la régularisation de Tikhonov.

Régularisation de Tikhonov

Puisque la matrice de flou H est mal conditionnée, le problème de la restauration

d’image sera extrêmement sensible aux perturbations dans le second membre. Afin de

diminuer l’effet du bruit dans les données, nous remplaçons le modèle (0.0.2) par un autre

mieux conditionné. L’une des méthodes de régularisation les plus populaires est celle de

Tikhonov [31, 49]. La méthode remplace le problème (0.0.2) par celui des moindres carrés

suivant

min
x

(
‖Hx− b‖22 + µ‖x‖22

)
, (0.0.3)

où µ > 0 est le paramètre de régularisation. Les équations normales associées à (0.0.3)

sont données par

(HTH + µI)x = HT b, (0.0.4)
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où I est la matrice d’identité de l’ordre approprié et l’exposant T indique la transposition.

Il s’ensuit que (0.0.3) admet la solution unique

xµ := (HTH + µI)−1HT b (0.0.5)

pour tout µ > 0. Dans [46, 47, 25], Gene Golub et ses collaborateurs ont développé

des méthodes élégantes et efficaces basées sur la relation entre l’algorithme de Lanczos,

les polynômes orthogonaux, les quadratures de Gauss et certaines fonctions matricielles

pour calculer les paramètres de régularisation et approximer la solution du problème de

régularisation de Tikhonov. Cependant, cette technique ne s’applique pas dans certains

cas puisque la mise en oeuvre du problème de restauration d’image nécessite typiquement

le traitement des données de très grande taille, donc cette approche peut être échouée

en terme de stockage mémoire et temps d’exécution. Heureusement, ce coût peut être

considérablement réduit en exploitant la structure de Kronecker de la matrice H. Au

Chapitre 3, nous supposerons qu’une estimation de la solution exacte est donnée, et nous

utiliserons cette estimation pour déterminer µ. Cette hypothèse présente l’avantage que,

dans certaines applications, les propriétés physiques du problème déterminent une valeur

optimale pour la contrainte de la norme. C’est le cas, par exemple, de la restauration

d’image où la contrainte de la norme représente l’énergie de l’image cible. Cette approche

pour sélectionner µ est préconisé par Rojas et Sorensen [91].

Puisque de nombreuses matrices floues peuvent être représentées, ou être bien ap-

proximées, par un produit de Kronecker ; voir, par exemple, Kamm et Nagy [71, 72] et

Van Loan et Pitsiani [99]. Nous supposerons que H a une structure de produit de Krone-

cker et nous présentons un algorithme pour approximer la solution exacte en exploitant
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cette structure. Nous montrerons comment la structure de produit Kronecker nous a per-

met d’utiliser la méthode de Lanczos globale. Cette méthode remplace l’évaluation des

produits matrice-vecteur de l’algorithme de Lanczos standard par l’évaluation des pro-

duits matrice-matrice, qui peuvent être exécutés efficacement sur de nombreux ordinateurs

modernes. La méthode de Lanczos globale est décrite dans [67]. Nous allons déterminer

une valeur appropriée du paramètre de régularisation µ en estimant d’abord une certaine

intégrale de Riemann-Stieltjes par des règles de quadrature de type Gauss. Ces règles

peuvent être évaluées à l’aide de l’algorithme de Lanczos globale. Cette idée est une ex-

tension de la méthode de Lanczos standard utilisée pour déterminer µ [25].

Au Chapitre 4, nous utiliserons le discrepancy principle pour choisir le paramètre de

régularisation µ. Cette méthode nécessite qu’une approximation ε de ‖e‖2 soit disponible

et prescrit que µ > 0 soit déterminé de sorte que ‖b −Hxµ‖2 = ηε pour un choix de la

constante η ≥ 1 de la part de l’utilisateur, cette constante est indépendante de ε ; voir

[31, 58, 90] pour des discussions sur cette méthode de choix des paramètres. Nous allons

déterminer une valeur µ > 0 telle que

ε ≤ ‖b−Hxµ‖2 ≤ ηε, (0.0.6)

où la constante η > 1 est indépendante de ε. Le calcul d’une valeur µ telle que la so-

lution associée xµ satisfait (0.0.6) nécessite généralement l’utilisation d’une méthode de

résolution d’une équation non linéaire, typiquement ‖b − Hxµ‖2 doit être évaluée pour

plusieurs valeurs de µ. Cela peut être numériquement couteux quand la matrice H est

de grande taille. Une méthode de résolution basée sur la réduction de H à une matrice

bidiagonale de petite taille à l ’aide de la bidiagonisation de Golub-Kahan (Golub-Kahan
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bidiagonalization ou GKB en anglais) est discutée dans [26]. Cette méthode utilise la

relation entre les quadratures de type Gauss et GKB pour déterminer une approximation

de xµ qui satisfait (0.0.6). C’est alors notre objectif de décrire une méthode analogue

pour la situation où H est le produit Kronecker de deux matrices. Notre approche est

de remplacer la méthode GKB par la méthode de la bidiagonalisation de Golub - Kahan

globale (Global Golub-Kahan bidiagonalization ou GGKB en anglais) décrite par Tou-

tounian et Karimi [95]. L’évaluation des produits matrice-vecteur de grande taille dans

la méthode GKB est remplacée par l’évaluation des produits matrice-matrice de petites

taille par GGKB. Nous allons exploiter la relation entre les règles de quadrature de type

Gauss et la méthode GGKB pour déterminer une valeur µ et une approximation associée

du vecteur xµ qui satisfait (0.0.6).

Au Chapitre 5, nous proposons une nouvelle méthode pour déterminer une valeur appro-

priée du paramètre de régularisation et une solution approximative associée, lors de la

résolution d’un système linéaire d’équations mal conditionnés à plusieurs second membres

contaminés par des erreurs. La méthode proposée est basée sur les algorithmes de Lanc-

zos symétrique par bloc, en relation avec les règles de quadrature de Gauss par bloc pour

approximer de façon qui n’est pas numériquement coûteuse une fonction matricielle de

la forme W T f(H)W , où W ∈ Rn×k, k � n, et H ∈ Rn×n est une matrice symétrique,

apparaissant lors de l’application de la régularisation de Tikhonov.

Le Chapitre 6 traite l’utilisation des méthodes itératives basées sur la bidiagonalisation

standard ou par bloc de type Golub-Kahan, combinées avec la régularisation de Tikho-

nov pour la restauration d’une image de plusieurs canaux à partir d’une version floue et

bruitée. Les applications incluent la restauration d’images couleurs dont la représentation
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RVB (rouge, vert et bleu) utilise trois canaux ; voir [44, 62]. Les méthodes décrites peuvent

également être appliquées à la solution des équations intégrales de Fredholm du premier

type en deux ou plusieurs dimensions et à la restauration des images hyper-spectrale.

Dans ce chapitre, nous nous concentrons sur la restauration d’images de k canaux qui ont

été contaminées par un flou et bruit, et formuler cette tâche de restauration comme un

système linéaire d’équations à k second membres, où chaque bande spectrale correspond

à un canal. Pour simplifier les notations nous assumons que l’image est représentée par un

tableau de n×n pixels dans chacun des k canaux où 1 ≤ k � n2. Soit b(i) ∈ Rn2
le vecteur

qui représentent le flou et le bruit dans l’image contaminée i (le canal i), soit e(i) ∈ Rn2
le

vecteur décrivant le bruit dans ce canal, et soit x̂(i) ∈ Rn2
le vecteur qui indique l’image

inconnue i (canal i) sans flou et bruit. Les quantités correspondantes pour tous ces k

canaux b, x̂, e ∈ Rn2k sont obtenus en empilant les vecteurs b(i), x̂(i), e(i) de chaque canal.

Par exemple, b = [(b(1))T , . . . , (b(k))T ]T .

La régularisation par la variation totale

La régularisation par la variation totale (Total variation ou TV en anglais) est l’une

des stratégies les plus populaires et les plus efficaces pour la restauration d’images. Elle est

bien connue pour préserver les bords et les discontinuités tout en créant des zones lisses.

Rudin, Osher et Fatemi ont introduit TV dans [88]. Une discussion détaillée sur TV a

été présenté dans [20, 23] par Chambolle et al. En raison de la non-differentiabilité et de

la non-linéarité des modèles de régularisation par TV, les méthodes d’optimisation non

linéaires sont nécessaires et elles sont donc plus exigeantes en termes de calcul que la simple
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résolution des problèmes linéaires de régularisation de Tikhonov. Un effort massif a été

fait en proposant des algorithmes efficaces capables de traiter les propriétés non linéaires

des modèles de régularisation par TV ; voir par exemple [101, 19, 50, 54]. Cependant, ces

algorithmes sont toujours soit beaucoup plus lents, soit moins robustes par rapport aux

algorithmes conçus pour la minimisation des problèmes de régularisation de Tikhonov.

Les algorithmes proposés dans le chapitre 7 de cette thèse ont réussi à surmonter cette

difficulté et ont conduit à de nouveaux solveurs pour la minimisation par TV.
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Chapitre 1

Preliminaries

This chapter introduces basic notions and operations in numerical linear algebra that

will be used in the analysis of inverse problems.

1.1 Definitions and theorems

Definition 1.1.1. (Eigenvalues and eigenvectors). Given a square matrix A ∈ Rn×n, an

eigenvector of A is a vector v 6= 0 ∈ Rn such that Av = λv, λ ∈ R. The scalar λ is called

the eigenvalue corresponding to the eigenvector v.

Definition 1.1.2. (Normal matrix). A square matrix A with real coefficients is a normal

matrix if it commutes with its transpose matrix AT , that is to say if AAT = ATA.

Definition 1.1.3. (Orthogonal matrix). A real orthogonal matrix is a square matrix A

with real entries whose columns and rows are orthogonal unit vectors i.e.

ATA = AAT = I, (1.1.1)

where I is the identity matrix.
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This leads to the equivalent characterization : a matrix A is orthogonal if its transpose

is equal to its inverse :

AT = A−1. (1.1.2)

Theorem 1.1.4. (Spectral decomposition). Let A ∈ Rn×n be a real square matrix. Then

there exist an orthogonal matrix Q ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n such that

A = QΛQT (1.1.3)

where Λ contains the eigenvalues of A and the columns of Q are the corresponding (pro-

perly normalized) eigenvectors. The identity (1.1.3) is called the Spectral Decomposition

or Eigendecomposition of the matrix A.

Definition 1.1.5. (Singular values and singular vectors). Given a matrix A ∈ Rm×n, a

scalar σ ≥ 0 is a singular value for A if and only if there exist unit-length vectors u ∈ Rm

and v ∈ Rn such that

Av = σu, ATu = σv. (1.1.4)

The vectors u and v are called left-singular and right-singular vectors for σ, respectively.

Theorem 1.1.6. (Singular value decomposition). Let A ∈ Rm×n be a matrix. Then there

exist an orthogonal matrix U ∈ Rm×m, a diagonal matrix Σ ∈ Rm×n and a unitary matrix

V ∈ Rn×n such that

A = UΣV T (1.1.5)

where Σ contains the singular values of A and the columns of U and V are the corres-

ponding (properly normalized) left and right singular vectors, respectively. The identity

(1.1.5) is called the Singular Value Decomposition (SVD) of the matrix A.
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Theorem 1.1.7. (QR decomposition). Let A be a square matrix. Then A may be decom-

posed as

A = QR, (1.1.6)

where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning QTQ =

I) and R is an upper triangular matrix (also called right triangular matrix). If A is

invertible, then the factorization is unique if we require the diagonal elements of R to be

positive.

1.2 Kronecker product

Definition 1.2.1. (Kronecker product). If H2 is an m × n matrix and H1 = [h
(1)
i,j ] is a

p× q matrix, then the Kronecker product H1 ×H2 is the mp× nq block matrix :

H = H1 ⊗H2 =



h
(1)
1,1H2 h

(1)
1,2H2 · · · h

(1)
1,qH2

h
(1)
2,1H2 h

(1)
2,2H2 · · · h

(1)
2,qH2

...
...

...

h
(1)
p,1H2 h

(1)
p,2H2 · · · h

(1)
p,qH2


. (1.2.1)

Definition 1.2.2. (vec and mat operators) The vec operator transforms a matrix A =

[ai,j ] ∈ Rm×n to a vector a ∈ Rmn by stacking the columns of A from left to right, i.e,

a = [a1,1, a2,1, . . . , am,1, a1,2, a2,2, . . . , am,2, . . . , am,n]T , (1.2.2)

while the inverse operator, mat, transforms a vector (1.2.2) to an associated matrix A =

[ai,j ] ∈ Rm×n. Thus,

vec(A) = a, mat(a) = A.
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Theorem 1.2.3. The Kronecker product satisfies the following relations for matrices

A,B,C,D,X of suitable sizes :

(A⊗B)vec(X) = vec(BXAT ),

(A⊗B)T = AT ⊗BT ,

(AB)⊗ (CD) = (A⊗ C)(B ⊗D).

(1.2.3)

For matrices A,B ∈ Rm×n, we define the inner product

〈A,B〉F := tr(ATB), (1.2.4)

where tr(·) denotes the trace, and we note that

〈A,B〉F = (vec(A))T vec(B).

The Frobenius norm is associated with this inner product,

‖A‖F := 〈A,A〉1/2F ,

and satisfies

‖A‖F = ‖vec(A)‖2. (1.2.5)

Two matrices A,B ∈ Rm×n are said to be F -orthogonal if

〈A,B〉F = 0.

1.3 The � product [14]

Definition 1.3.1. Let A = [A1, A2, ..., Ap] and B = [B1, B2, ..., B`] be matrices of dimen-

sion n × ps and n × `s, respectively, where Ai and Bj (i = 1, ..., p; j = 1, ..., `) are n × s
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matrices. Then the p× ` matrix AT �B is defined by

AT �B =



〈A1, B1〉F 〈A1, B2〉F · · · 〈A1, B`〉F

〈A2, B1〉F 〈A2, B2〉F · · · 〈A1, B`〉F
...

...
...

〈Ap, B1〉F 〈Ap, B2〉F · · · 〈Ap, B`〉F


. (1.3.1)

Proposition 1.3.2. Let A, B, C ∈ Rn×ps, and D ∈ Rn×n, L ∈ Rp×p. Then we have

(A+B)T � C = AT � C +BT � C,

AT � (B + C) = AT �B +AT � C,

AT � (B (L⊗ Is)) =
(
AT �B

)
L.

(1.3.2)

Proposition 1.3.3. (The global QR factorization [14]). Let Z = [Z1, Z2, ..., Zk] be an

n× ks matrix with Zi ∈ Rn×s for i = 1, ..., k. Then Z may be decomposed as

Z = Q (R⊗ Is) , (1.3.3)

where Q = [Q1, ..., Qk] is an n× ks F-orthonormal matrix satisfying QT �Q = Ik and R

is an upper triangular k × k matrix.

Definition 1.3.4. (Hadamard product). The Hadamard product denoted by ◦ of two

matrices, A, B, of the same dimension, is a matrix, with entries given by

(A ◦B)i,j = (A)i,j(B)i,j . (1.3.4)

Proposition 1.3.5. The Hadamard product is commutative, associative and distributive

over addition. That is,

A ◦B = B ◦A, (1.3.5)

A ◦ (B ◦ C) = (A ◦B) ◦ C, (1.3.6)

A ◦ (B + C) = A ◦B +A ◦ C (1.3.7)
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Chapitre 2

A global Lanczos method for Tikhonov regulariza-

tion minimization problems with a solution norm

constraint

2.1 Introduction

Image restoration is the process of removing blur and noise from an available degraded

image to recover an approximation of the unavailable original noise- and blur-free image.

Let the original image be represented by the matrix X̂ ∈ Rm×n, whose entries represent

pixels. The operator vec maps X̂ to the vector x̂ ∈ Rmn defined by stacking the columns of

X̂ from left to right. Blurring is a linear deterministic process which can be modeled by a

matrix H ∈ Rmn×mn ; see, e.g., [2, 6, 18, 62, 64] for discussions on image restoration. Thus,

b̂ = Hx̂ represents a blurred image associated with x̂. The available image, represented

by b ∈ Rmn, is assumed to be contaminated by both blur and noise. Let the entries of the

“noise vector” e ∈ Rmn be normally distributed with zero mean and variance δ2. Then b
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can be expressed as

b = Hx̂+ e. (2.1.1)

The aim of image restoration is to determine an approximation of x̂ by computing an

approximate solution of the linear system of equations

Hx = b. (2.1.2)

If the system is inconsistent, then we consider it a least-squares problem. Blurring matrices

H typically are very ill-conditioned and may be singular. Since b is contaminated by the

error e, straightforward solution of (2.1.2) generally does not yield a useful approximation

of x̂ due to severe propagation of the error e into the computed solution. Let H† denote the

Moore–Penrose pseudoinverse of H and let ‖ · ‖2 be the Euclidean vector norm. Then the

least-squares solution of minimal Euclidean norm of (2.1.2) is given by H†b and, typically,

‖x̂‖2 � ‖H†b‖2 ≈ ‖H†e‖2.

This difficulty can be remedied by replacing (2.1.2) by a nearby problem, whose solution

is less sensitive to the error in b. The replacement is referred to as regularization. One of

the most popular regularization methods is due to Tikhonov [31, 49]. In its simplest form,

Tikhonov regularization replaces the linear system (2.1.2) by the penalized least-squares

problem

min
x∈Rmn

{‖Hx− b‖22 + µ‖x‖22}, (2.1.3)

where µ > 0 is a regularization parameter. The normal equations associated with (2.1.3)

are given by

(HTH + µI)x = HT b, (2.1.4)
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where I is the identity matrix of suitable order and the superscript T denotes transposition.

It follows that (2.1.3) has the unique solution

xµ := (HTH + µI)−1HT b (2.1.5)

for any µ > 0. Our computed restoration of the vector b will be an approximation of a

vector of the form (2.1.5).

Proposition 2.1.1. Assume that HT b 6= 0. Then ‖xµ‖2 is a monotonically decreasing

function of µ and

lim
µ↘0
‖xµ‖2 = ‖H†b‖2, lim

µ→∞
‖xµ‖2 = 0. (2.1.6)

Démonstration. The representation

‖xµ‖22 = xTµxµ = bTH(HTH + µI)−2HT b (2.1.7)

shows that ‖xµ‖2 is a decreasing function of µ > 0. The right-hand side limit (2.1.6) is im-

mediate ; the left-hand side limit follows by substituting the singular value decomposition

of H into (2.1.7).

The quality of the computed restoration depends on the choice of µ > 0. Several

approaches to choosing µ are described in the literature, including the discrepancy prin-

ciple, generalized cross validation, and the L-curve ; see, e.g., [73, 90] for overviews and

discussions. In this chapter, we will assume an estimate of ‖x̂‖2 to be available, and we

will use this estimate to determine µ. Knowledge of the norm of the desired approximate

solution of linear systems (2.1.2) is available in some applications, see, e.g., Ahmad et al.

[1], and this approach to select µ is has received considerable attention in the literature ;

19



see, e.g., [24, 25, 91, 92]. It works well when the relative error ‖e‖2/‖b̂‖2 is not too large ;

see [25] for illustrations.

The organization of this chapter is as follows. Section 2.2 describes how the Kronecker

structure allows the application of the global Lanczos method for solving the normal

equations (2.1.4). The section also shows how upper and lower bounds for ‖xµ‖22 can be

determined by using the relation between the global Lanczos method and certain Gauss-

type quadrature rules. This extends techniques developed by Golub and Meurant [46, 47]

based on the relation between the standard Lanczos method and Gauss-type quadrature

rules to the global Lanczos method. An algorithm for image restoration is presented in

Section 2.3, and Section 2.4 describes a few computed examples. These examples illustrate

the benefit of exploiting the Kronecker product structure of H.

2.2 The global Lanczos algorithm and Gauss quadrature

Let H1 and H2 be the Kronecker factors of the blurring matrix H and introduce the

linear operator

A : Rm×n → Rm×n

A(X) = H2XH
T
1 .

Its transpose is given by AT (X) = HT
2 XH1. Define the symmetric linear operator

Ă(X) = (AT ◦ A)(X),

where ◦ denotes composition.

20



Proposition 2.2.1. Let H have the Kronecker structure (1.2.1) and assume that G :=

AT (B) 6= O. Let µ > 0. Then the equation

(Ă+ µI)(X) = G (2.2.1)

has a unique solution Xµ ∈ Rm×n. Let b := vec(B) and let xµ be given by (2.1.5) with

this vector b. Then

Xµ = mat(xµ). (2.2.2)

Moreover, ‖Xµ‖F is a decreasing function of µ > 0 with

lim
µ↘0
‖Xµ‖F = ‖H†b‖2, lim

µ→∞
‖Xµ‖F = 0. (2.2.3)

Démonstration. We have Ă(X) = HT
2 H2XH

T
1 H1. Therefore (2.2.1) can be written as

HT
2 H2XH

T
1 H1 + µX = HT

2 BH1.

Using the properties (1.2.3), this equation can be expressed as

((H1 ⊗H2)T (H1 ⊗H2) + µI)vec(X) = (H1 ⊗H2)T vec(B),

which is the same as (2.1.4). This establishes (2.2.2). The properties of ‖Xµ‖F now follow

from Proposition 2.1.1.

The matrix X̂ = mat(x̂) represents the unavailable blur- and noise-free image that we

would like to determine. We assume that an estimate of

∆ := ‖X̂‖F (2.2.4)

is known and will compute an approximation of X̂ by solving the constrained least-squares

problem

min
‖X‖F≤∆

‖B −A(X)‖F . (2.2.5)
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The solution of this minimization problem without constraint is equivalent to solving

(2.1.2) when H is nonsingular. The solution of the unconstrained problem typically is of

very large norm due to contamination by propagated error ; see Proposition 2.2.2 below.

If this solution has Frobenius norm larger than or equal to ∆, then the solution of (2.2.5)

satisfies ‖X‖F = ∆. We will assume this to be the case. This solution is described by the

following proposition.

Proposition 2.2.2. Assume that the solution of the minimization problem (2.2.5) without

constraint is of norm larger than ∆. Then the solution of (2.2.5) is the solution of (2.2.1)

for some µ > 0.

Démonstration. By (2.2.2) the solution Xµ of (2.2.1) is equivalent to the solution xµ of

(2.1.3) given by (2.1.5). A proof that xµ is the unique solution of

min
‖x‖2=∆

‖b−Hx‖2 (2.2.6)

for a suitable value of µ > 0 can be established with the aid of Lagrange multipliers ; see

Golub and von Matt [56]. It is easy to see that xµ also is a solution when the constraint

in (2.2.6) is replaced by ‖x‖2 ≤ ∆. The problem so obtained is equivalent to (2.2.5).

We remark that if the solution of (2.2.5) without constraint has Frobenius norm smaller

than or equal to ∆, then we may choose the regularization parameter µ = 0. Let Xµ denote

the solution of (2.2.1) for µ > 0. Introduce the function

φ(µ) := ‖Xµ‖2F . (2.2.7)

We will approximate φ to be able to determine an estimate of ‖Xµ‖F inexpensively. Our

approximation is obtained by expressing (2.2.7) as a Stieltjes integral, and exploiting the
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connection between the global Lanczos method and Gauss-type quadrature rules.

Proposition 2.2.3. Introduce for µ > 0 the function

fµ(t) := (t+ µ)−2. (2.2.8)

Then (2.2.7) can be expressed as

φ(µ) =

∫
fµ(t)dω(t), (2.2.9)

where dω is a measure with support on the nonnegative real axis. Moreover, φ is decreasing

and convex for µ > 0 with

lim
µ↘0

φ(µ) = ‖H†b‖22, lim
µ→∞

φ(µ) = 0. (2.2.10)

Démonstration. It follows from (2.2.7), (2.2.2), (1.2.5), and (2.1.5) that

φ(µ) = ‖xµ‖22 = xTµxµ = bHT (HTH + µI)−2HT b. (2.2.11)

Substituting the spectral factorization

HTH = UΛUT ,

where Λ = diag[λ1, λ2, . . . , λmn] ∈ Rmn×mn and U ∈ Rmn×mn is orthogonal, into the

right-hand side of (2.2.11), with w = [w1, w2, . . . , wmn]T := UTHT b, gives

φ(µ) =

mn∑
j=1

fµ(λj)w
2
j .

The right-hand side is a Stieltjes integral, which can be expressed as (2.2.9). The dis-

tribution function ω associated with the measure dω can be chosen as a nondecreasing

piecewise constant function with nonnegative jumps w2
j at the eigenvalues λj . Since HTH

is positive semidefinite, the support of the measure dω lives on the nonnegative real axis.
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It follows from (2.2.11) that the derivatives of φ satisfy φ′(µ) < 0 and φ′′(µ) > 0,

which shows that φ is decreasing and convex. The limits (2.2.10) are a consequence of

(2.2.3).

It is convenient to define the integral operator

If :=

∫
fµ(t)dω(t) (2.2.12)

and the associated inner product

[p, q] := I(pq) (2.2.13)

for polynomials p and q of low enough degree. We may define orthogonal polynomials

with respect to this inner product and, therefore, also Gauss quadrature rules for the

approximation of (2.2.12). The k-point Gauss quadrature rule Gk is characterized by the

property that

Gkp = Ip, ∀p ∈ P2k−1,

where P2k−1 denotes the set of polynomials of degree at most 2k−1. The remainder term

for this quadrature rule can be expressed as

Ifµ − Gkfµ =
f

(2k)
µ (ξ)

(2k)!

∫ k∏
j=1

(t− tj)2dω(t),

where f
(`)
µ denotes the derivative of order ` of the function (2.2.8), ξ is in the convex hull

of the support of the measure dω, and t1, t2, . . . , tk are the nodes of Gk. Since f
(2k)
µ (ξ) is

positive, it follows that Gkf < If .

Let Rk+1,0 denote the (k+1)-point Gauss–Radau rule for the measure dω with a fixed

node t0 = 0. Then

Rk+1,0p = Ip, ∀p ∈ P2k. (2.2.14)
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The quadrature error is

Ifµ −Rk+1,0fµ =
f

(2k+1)
µ (ξ̃)

(2k + 1)!

∫
(t− t0)

k∏
j=1

(t− t̃j)2dω(t),

where ξ̃ is in the convex hull of the support of the measure dω and the origin, and

t̃1, t̃2, . . . , t̃k are the “free” Gauss–Radau nodes ; see, e.g., [46, 47]. In view of that f
(2k+1)
µ (ξ)

is negative and the support of dω lives on the nonnegative real axis, Rk+1,0f is an upper

bound for If . Indeed, one can show that

Gk−1fµ < Gkfµ < If < Rk+1,0fµ < Rk,0fµ, (2.2.15)

see, e.g., [79] for details.

We conclude that pairs of Gauss and Gauss–Radau quadrature rules Gkfµ andRk+1,0fµ

yield lower and upper bounds for φ(µ). We will now describe how these quadrature rules

can be evaluated by carrying out k steps of the global Lanczos method without explicit

knowledge of the measure dω.

2.2.1 The global Lanczos method

The global Lanczos method can be applied to reduce a large symmetric matrix to a

small tridiagonal one ; see [67]. This method differs from the standard Lanczos method

in that it uses the inner product (1.2.4) between matrices. This makes it possible to

use matrix-matrix products during the execution of the global Lanczos method. These

products can be evaluated efficiently on many computers. Algorithm 1 below executes k

steps of the global Lanczos method applied to Ă with initial matrix V1 = G/‖G‖F of unit

Frobenius norm with G = AT (B).
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Algorithm 1 The global Lanczos algorithm

Input : Let β1 = 0, V0 = O, and V1 = G/‖G‖F .

1. For j = 1, 2, . . . , k

(a) W = Ă(Vj)− βjVj−1,

(b) αj = 〈Vj ,W 〉F ,

(c) W = W − αjVj ,

(d) βj+1 = ||W ||F ,

(e) Vj+1 = W/βj+1,

3. EndFor

The zero matrix V0 ∈ Rm×n does not have to be stored. We assume that all coefficients

βj+1 are positive. This is the generic situation. Otherwise, the algorithm breaks down,

because the recursions cannot be continued. This is a very rare event. We therefore will

not dwell on it further. Thus, under the assumption that all generated coefficients βj+1

are positive, the algorithm determines the matrices

Vk = [V1, V2, . . . , Vk] ∈ Rm×kn, Vk+1 = [V1, V2, . . . , Vk+1] ∈ Rm×(k+1)n,

whose “matrix columns” Vj are F-orthonormal, i.e.,

〈Vi, Vj〉F =


1 i = j,

0 i 6= j.

(2.2.16)

It follows from the recursion formulas of Algorithm 1 and the definition of V1 that

Vj = pj−1(Ă)(G), j = 1, 2, . . . , k + 1, (2.2.17)

for some polynomials pj−1 of precisely degree j−1. We refer to these polynomials as global

Lanczos polynomials. They satisfy the same recursion relations as the matrix columns
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Vj ; see Section 2.2.2 below. Their explicit form is not required, only their existence. The

property (2.2.17) together with the F-orthonormality (2.2.16) of the matrix columns shows

that the set {Vj}k+1
j=1 forms an F-orthonormal basis for the global Krylov subspace

Kk+1(Ă, G) := span{G, Ă(G), . . . , Ăk(G)},

where Ăj = Ăj−1 ◦ Ă for j = 2, 3, . . . , k.

The coefficients α1, α2, . . . , αk and β2, β3, . . . , βk determined by Algorithm 1 define the

symmetric tridiagonal matrix

Tk =



α1 β2

β2 α2
. . .

. . .
. . . βk

βk αk


∈ Rk×k, (2.2.18)

and the recurrence formulas of Algorithm 1 can be expressed as

[Ă(V1), Ă(V2), . . . , Ă(Vk)] = Vk(In ⊗ Tk) + βk+1[O, . . . , O, Vk+1], (2.2.19)

where O ∈ Rm×n denotes the zero matrix.

The scheme of this chapter is based on applying the global Lanczos method to Ă

(Algorithm 1). It is possible to develop an analogous scheme based on applying the glo-

bal Lanczos bidiagonalization method to A and AT . A global Lanczos bidiagonalization

method is described by Toutounian and Karimi [95]. The latter approach would give a

method closely related to the scheme in [25], which is based on the standard Lanczos

bidiagonalization method (also referred to as Golub–Kahan bidiagonalization). We ap-

ply the global Lanczos method because it requires less computer storage than the global
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Lanczos bidiagonalization method for the same number of steps, since the latter generates

two sets of F-orthonormal vectors while the former only determines one set. Since our aim

is to develop a method suitable for large-scale problems, reducing the computer storage

required is important.

2.2.2 Gauss-type rules associated with the global Lanczos method

We first show orthogonality of the polynomials pj−1 determined by (2.2.17). This

provides the link between the global Lanczos method and Gauss quadrature.

Proposition 2.2.4. The polynomials pj−1, j = 1, 2, . . . , defined by (2.2.17) are ortho-

normal with respect to the inner product (2.2.13).

Démonstration. The definition of the measure dω that determines the functional I in

(2.2.13) yields

[pj−1, pi−1] =

∫
pj−1(t)pi−1(t)dω(t) = bHT pi−1(HTH)pj−1(HTH)HT b.

Using the linearity of Ă and the properties (1.2.3) of the Kronecker product, we obtain

that for any polynomial p,

vec(p(Ă)(G)) = p(HTH)vec(G).

Moreover, vec(G) = HT b. It follows that

[pj−1, pi−1] = (vec(pj−1(Ă)(G)))T vec(pi−1(Ă)(G))

= (vec(Vj))
T vec(Vi) = 〈Vj , Vi〉F .

The orthonormality of the polynomials pi−1 is a consequence of (2.2.16).
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It follows from Algorithm 1 or (2.2.19) that the Vj ’s satisfy the three-term recursion

formula

Ă(Vj) = αjVj + βj+1Vj+1 + βjVj−1, j = 1, 2, . . . , k,

and by (2.2.17) the polynomials pj−1 satisfy the same recursions

tpj−1(t) = αjpj−1(t) + βj+1pj(t) + βjpj−2(t), j = 1, 2, . . . , k.

These relations can be expressed as

[p0(t), p1(t), . . . , pk−1(t)]Tk = t[p0(t), p1(t), . . . , pk−1(t)]

− βk+1[0, . . . , 0, pk(t)],

which shows that the zeros of pk are the eigenvalues of Tk. These zeros are the nodes of

the k-point Gauss rule Gk associated with the measure dω. This Gauss rule applied to the

function fµ can be expressed as

Gkfµ = ||G||2F eT1 fµ(Tk)e1. (2.2.20)

Throughout this chapter ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes the jth axis vector. The

simple form of fµ makes it possible to evaluate (2.2.20) without computing the spectral

factorization of Tk. We will return to this below.

The relation between the standard Lanczos method applied to a symmetric matrix and

Gauss quadrature has been exploited by Golub and Meurant [46, 47] ; see also [21, 25].

The application of the relation between the global Lanczos method and Gauss quadra-

ture to determine the regularization parameter in Tikhonov regularization generalizes the

approach in [25] based on the standard Lanczos method.
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The (k + 1)-point Gauss–Radau quadrature rule Rk+1,0 associated with the measure

dω and with a preassigned node t0 = 0 can be represented analogously to (2.2.20). Define

the matrix

Tk+1,0 =

 Tk βk+1ek+1

βk+1e
T
k t̃k+1,k+1

 ∈ R(k+1)×(k+1)

by appending a row and a column to the matrix (2.2.18) to obtain a symmetric matrix

with the last subdiagonal entry defined by (2.2.19) and the last diagonal entry to be

determined. We would like this entry to be such that the matrix Tk+1,0 has the smallest

eigenvalue zero. Note that since βk+1 is positive, the eigenvalues of Tk are in an open

interval contained in the convex hull of the support of the measure dω. In particular, all

eigenvalues of Tk are positive.

A simple way to determine t̃k+1,k+1 so that all eigenvalues of Tk+1,0 are nonnegative

and one eigenvalue vanishes is to compute the bidiagonal Cholesky factor of Tk+1,0 (with

t̃k+1,k+1 chosen large enough to make Tk+1,0 positive definite)

Ck+1,0 =



ρ1

σ2 ρ2

. . .
. . .

σk ρk

σk+1 ρk+1


and set ρk+1 = 0. This determines the matrix Ck+1,0 and the desired matrix Tk+1,0 is

given by

Tk+1,0 = Ck+1,0C
T
k+1,0;

see, e.g., [21, Proposition 3.1] for a proof. Note that the entries ρ1, ρ2, . . . , ρk and σ2, σ3, . . . , σk+1
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of Ck+1,0 are independent of t̃k+1,k+1. The Gauss–Radau rule (2.2.14) can be evaluated

according to

Rk+1,0fµ = ‖G‖2F eT1 fµ(Tk+1,0)e1,

analogously to (2.2.20).

Introduce the functions

φ−k (µ) := Gkfµ, φ+
k+1(µ) := Rk+1,0fµ. (2.2.21)

Then, in view of (2.2.15),

φ−k−1(µ) < φ−k (µ) < φ(µ) < φ+
k+1(µ) < φ+

k (µ). (2.2.22)

Instead of computing φ(µ) for several values of µ, which is expensive for large-scale pro-

blems, we evaluate the upper and lower bounds (2.2.21) for desired values of µ. This is

inexpensive when k is small. The computation of these bounds is discussed in the following

subsection.

2.2.3 Evaluation of φ−k (µ) and φ+
k+1(µ)

We outline the evaluation of the functions φ∓k (µ) and the derivative of φ+
k+1(µ), which

are needed when determining a suitable value of µ by our zero-finder. We have

φ−k (µ) = ‖G‖2F eT1 (Tk + µI)−2e1.

For each value of µ > 0, we solve the system of equations (Tk + µI)zµ = e1 for zµ ∈ Rk.

Since the matrix Tk + µI is symmetric and positive definite when µ > 0, we solve this

system with the aid of Cholesky factorization. Then

φ−k (µ) = ‖G‖2F zTµ zµ.
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Since Tk+µI is tridiagonal, the evaluation of φ−k (µ) requires only O(k) arithmetic floating

point operations (flops) for each value of µ.

We turn to the computation of φ+
k+1(µ). The evaluation can be carried out similarly

as the computation of φ−k (µ) described above, with the matrix Tk replaced by Tk+1,0.

However, since the Cholesky factor Ck+1,0 of Tk+1,0 is available, we outline an approach

that uses this factor. We have

φ+
k+1(µ) = ‖G‖2F eT1 (Ck+1,0C

T
k+1,0 + µI)−2e1. (2.2.23)

Compute the solution of the least-squares problem

min
z∈Rk+1

∥∥∥∥∥∥∥∥
CTk+1,0

µ1/2I

 z − µ−1/2ek+2

∥∥∥∥∥∥∥∥
2

2

. (2.2.24)

Denoting the solution by zµ, we have

φ+
k+1(µ) = ‖G‖2F zTµ zµ.

The structure of the matrix in (2.2.24) makes it possible to compute zµ by QR factorization

of the matrix in only O(k) flops for each value of µ > 0.

Changing the right-hand side in (2.2.24) gives the least-squares problem

min
s∈Rk+1

∥∥∥∥∥∥∥∥
CTk+1,0

µ1/2I

 s− µ−1/2

 0

zµ


∥∥∥∥∥∥∥∥

2

2

,

whose solution, sµ, is used to evaluate the derivative

d

dµ
φ+
k+1(µ) = −2‖G‖2F zTµ sµ. (2.2.25)

This also can be carried out in O(k) flops for each value of µ > 0.
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2.3 Computation of an approximate solution of specified

norm

We describe a method for determining the regularization parameter µ for Tikhonov

regularization (2.1.3). Specifically, we would like to determine µ > 0 so that the computed

solution Xµ satisfies

min
‖X‖F=∆

‖B −A(X)‖F (2.3.1)

with ∆ > 0 defined by (2.2.4). The constraint imposes that the restored image should

have the same “energy” as the target image. Since this section is closely related to [25,

Section 3], we only outline our approach and refer to [25] for further details.

Assume that 0 < ∆ < ‖H†b‖2. Then, by Proposition 2.2.3, the equation

φ(µ) = ∆2 (2.3.2)

has a unique solution 0 < µ∆ <∞, which determines the desired solution Xµ∆ . However,

this equation is expensive to solve for large-scale problems, i.e., when mn is large. Similarly

to the approach in [25], we therefore instead solve

φ+
k+1(µ) = ∆2. (2.3.3)

Proposition 2.3.1. The function φ+
k+1(µ) defined by (2.2.21) is strictly decreasing and

convex for µ > 0. Equation (2.3.3) has a unique solution µk+1 such that 0 < µk+1 < ∞

for any positive finite ∆2.

Démonstration. The fact that φ+
k+1 is strictly decreasing and convex follows from the

representation (2.2.23), which also shows that limµ→∞ φ
+
k+1(µ) = 0. Moreover, since all
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subdiagonal entries of Tk+1,0 are nonvanishing, so do all subdiagonal entries of the Cho-

lesky factor Ck+1,0. Therefore, by (2.2.23), limµ↘0 φ
+
k+1(µ) =∞.

Thus, whenever (2.3.2) has a unique bounded positive solution µ∆, then so does (2.3.3).

We denote the solution of the latter by µk+1. Since both φ(µ) and φ+(µ) are decreasing

convex functions, it follows from (2.2.22) that

µ∆ < µk+1 < µk.

We apply the monotonically and quadratically convergent zero-finder described by

Golub and von Matt [56, equations (75)–(78)] to compute approximations µ
(j)
k+1, j =

1, 2, . . . , of the zero µk+1 of

h+
k+1(µ) := φ+

k+1(µ)−∆2. (2.3.4)

This zero-finder requires repeated evaluation of the function (2.2.23) and its derivative

(2.2.25).

We would like to compute a value of µ such that

η2∆2 ≤ φ(µ) ≤ ∆2, (2.3.5)

where the constant 0 ≤ η ≤ 1 determines how close to ∆ we require the norm of the

computed approximate solution of (2.3.1) to be. We therefore calculate a value of µ such

that

η2∆2 ≤ φ−k (µ), φ+
k+1(µ) ≤ ∆2. (2.3.6)

This value satisfies (2.3.5). Using an initial approximation µ
(0)
k+1 of the desired zero, µk+1,

of (2.3.4), we first seek to satisfy the left-hand side inequality of (2.3.6). It may not
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be possible to satisfy this inequality for small values of k. For instance, φ−k (µ) may be

negative for all µ > 0 when k is small. We increase k by one when the left-hand side

inequality of (2.3.6) cannot be satisfied, until k is large enough so that we can satisfy this

inequality ; see [25] for details. Turning to the right-hand side inequality of (2.3.6), we use

the zero-finder to determine µ
(p)
k such that

1

10
(η2 − 1)∆2 + ∆2 ≤ φ+

k+1(µ
(p)
k ) ≤ ∆2.

In order for η2∆2 ≤ φ−k (µ
(p)
k+1) to hold, we may have to increase k further ; see [25]. Having

computed µ̂ := µ
(p)
k , we determine the associated solution ŷk of (Tk + µ̂I)y = ‖G‖F e1 by

solving the least-squares problem

min
y∈Rk+1

∥∥∥∥∥∥∥∥
 Ck

µ̂1/2I

 y − µ̂−1/2‖G‖F ek+1

∥∥∥∥∥∥∥∥
2

2

.

Finally, our approximate solution of (2.3.1) is determined by

Xµ̂,k = Vk(I ⊗ ŷk).

2.4 Numerical results

This section presents some representative numerical experiments. All computations

were carried out using the MATLAB environment. The computations were carried out

with approximately 15 decimal digits of accuracy. To secure that the global Lanczos

block vectors Vj are numerically orthonormal, we reorthogonalize them with global QR

factorization.
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Algorithm 2 Outline of solution method for (2.3.1)

Input : Set k = 2 and let V1 := G/||G||F ;

1. For j = 1, 2, . . . , k

2. Determine the orthonormal basis {Vj}k+1
j=1 , the tridiagonal matrix Tk, and the last

subdiagonal entry βk+1 of Tk+1,0 using Algorithm 1.

3. Determine an approximation of the zero µ̂ = µk of the function φ+
k+1 as described

above. This may require k to be increased, in which case one returns to step 2.

4. Determine ŷk and Xµ̂,k as described above.

Let x̂ = vec(X̂) denote the error-free exact solution of the linear system equation

(2.1.2) and define

e = vec(E), b̂ = vec(B̂), b = vec(B),

where B̂ = H2X̂H
T
1 and B = B̂+E. The error matrix E has normally distributed entries

with zero mean and is normalized to correspond to a specific noise level

ν =
||E||F
||B̂||F

.

To determine the effectiveness of our approach, we evaluate the relative error

||X̂ −Xk||F
||X̂||F

of the computed approximate solution Xk = Xµ̂,k of equation (2.2.1) obtained with Al-

gorithm 2. The first two examples are concerned with the solution of Fredholm integral

equations of the first kind. Discretization gives matrices that are severely ill-conditioned.

The last two examples discuss image restoration problems.
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Example 1

Let the nonsymmetric matrices H1 and H2, both of size 1500 × 1500, be determined

by the MATLAB programs baart and foxgood in the Regularization Tools package by

Hansen [61]. Specifically, we let H1 = baart(1500) and H2 = foxgood(1500). The compu-

ted condition numbers of these matrices are κ(H1) = 2×1018 and κ(H2) = 3×1013. Since

κ(H) = κ(H1)κ(H2), the matrix H is numerically singular. We determine the right-hand

side matrix B̂ so that the exact solution is the matrix X̂ with all entries unity. Table 2.1

displays the computed regularization parameters and the relative error in approximate

solutions determined by Algorithm 2 with η = 0.99 for different noise levels, as well as

the number of iterations required to satisfy the stopping criterion.

Table 2.1 – Results for Example 1.

Noise level Iterations Regularization parameter Relative error

0.001 8 2.0993× 10−6 8.54× 10−2

0.01 8 2.9595× 10−6 8.79× 10−2

Example 2

In this example, we consider the Fredholm integral equation∫ ∫
Ω
K(x, y, s, t)f(s, t)dsdt = g(x, y), (x, y) ∈ Ω′, (2.4.1)

where Ω = [0, π/2]× [0, π/2] and Ω′ = [0, π]× [0, π]. The kernel is given by

K(x, y, s, t) = k1(x, s)k1(y, t), (x, y) ∈ Ω′, (s, t) ∈ Ω,
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where

g(x, y) = g1(x)g1(y)

and

k1(s, x) = exp(cos(x)), g1(s) = 2sinh(s)/s.

We use the code baart from Regularization Tools [61] to discretize (2.4.1) by a Galerkin

method with orthonormal box functions as test and trial functions to obtain H1 of size

1500 × 1500, and let H = H1 ⊗H1. From the output of the code baart we determine a

scaled approximation X̂ ∈ R1500×1500 of the exact solution f(t, s) = sin(t)sin(s). Table

2.2 shows the computed regularization parameters and the relative error in approximate

solutions determined by Algorithm 2 with η = 0.99 and different noise levels, as well as

the number of iterations required to satisfy the stopping criterion. Figure 2.1 displays the

computed approximate solution X8 obtained when the noise level ν of the available data

(right-hand side) is 0.01.

Table 2.2 – Results for Example 2.

Noise level Iterations Regularization parameter Relative error

0.001 8 9.4480× 10−7 4.57× 10−2

0.01 8 1.7235× 10−6 4.81× 10−2
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Figure 2.1 – Example 2 : Approximation X8 of X̂ determined by Algorithm 2 for noise

level 0.01.

Example 3

We consider an image restoration problem. Then the vector b̂ in (0.0.2) represents

the blurred image, H is a blurring matrix, x̂ represents the exact image and e is a noise

vector. In general, the blurring matrix H is determined by the point spread function (PSF)

[62], which defines how each pixel is blurred, and the boundary conditions, which specify

our assumptions on the scene just outside our image. We assume that the horizontal

and vertical components of the PSF can be separated. Then H can be expressed as a

Kronecker product H = H1 ⊗H2 ; see [62]. The blurred image then is given by H2X̂H
T
1 .

Also when H cannot be written as a tensor product of two matrices, it may be possible

to approximate H quite accurately by such a product. The factors can be determined by

solving the minimization problem

{Ĥ1, Ĥ2} = arg min
H1,H2

‖ H −H1 ⊗H2 ‖F ;
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see [99].

The original image in this example is the peppers image of dimension 256× 256 from

MATLAB ; it is shown in the left-hand side of Figure 2.2. The blurring matrix H is given

by H = H1⊗H2 ∈ R2562×2562
, where H1 = H2 = [hij ] are Toeplitz matrices of dimension

256× 256 with

hij =


1

2r−1 , |i− j| ≤ r,

0, otherwise.

The blurring matrix H models uniform blur. In our example we set r = 5. The blurred

and noisy image of Figure 2.2 is determined by adding noise of noise level ν = 0.001 to the

blurred image H2X̂H
T
1 . Table 2.3 summarizes the results obtained by Algorithm 2 with

η = 0.997. The table also reports results obtained with the method proposed in [25]. This

method utilizes the connection between (standard) Golub–Kahan bidiagonalization and

Gauss quadrature rules for solving large ill-conditioned linear systems of equations (2.1.2).

We refer to this method as GKB. It determines the regularization parameter analogously

to Algorithm 2, and uses a similar stopping criterion, but does not exploit the structure

of H. Table 2.3 shows Algorithm 2 to require less CPU-time (in seconds) than the GKB

method in [25]. The norm of the error in the restored images determined by Algorithm 2

and the GKB method are about the same.

Example 4

The original image of this example is the iograyBorder image of dimension 256×256

from MATLAB ; it is shown in the left-hand side of Figure 2.3. The blurring matrix is

given by H = H1 ⊗ H2 ∈ R2562×2562
, where H1 and H2 are the same matrices as in
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Table 2.3 – Results for Example 3.

Method Iterations µ Relative error CPU time (seconds)

GKB 110 2.65× 10−4 6.79× 10−2 13.29

Algorithm 2 110 2.65× 10−4 6.79× 10−2 4.22

Figure 2.2 – Example 3 : Original image (left), degraded image (center), and restored

image (right) for noise of level 0.001.

Example 3. In this example we set r = 5. The blurred and noisy image of Figure 2.3 is

determined similarly as in Example 3 ; the noise level is 0.001. Table 2.4 summarizes the

results obtained by Algorithm 2 with η = 0.997. The table also compares the number

of iterations and the quality of the computed restored images obtained with Algorithm

2 and the GKB method. We can see that both methods yield restorations of the same

quality and require about the same number of iterations.

41



Figure 2.3 – Example 4 : Original image (left), degraded image (center), and restored

image (right) for noise of level 0.001.

Table 2.4 – Results for Example 4.

Method Iterations µ Relative error

GKB 76 2.89× 10−4 6.58× 10−2

Algorithm 2 75 2.90× 10−4 6.58× 10−2
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Chapitre 3

Global Golub–Kahan bidiagonalization for Tikho-

nov regularization minimization problems with er-

ror norm constraint

3.1 Introduction

In this chapter we also consider the solution of large linear systems of equations (0.0.2)

that arise from the discretization of ill-posed problems. The matrix has a Kronecker pro-

duct structure and the right-hand side is contaminated by measurement error. Problems

of this kind arise, for instance, from the discretization of Fredholm integral equations of

the first kind in two space-dimensions with a separable kernel and in image restoration

problems. Regularization methods, such as Tikhonov regularization, have to be employed

to reduce the propagation of the error in the right-hand side into the computed solution.

We investigate the use of the global Golub-Kahan bidiagonalization method to reduce

the given large problem to a small one. The small problem is solved by employing Tikho-

nov regularization. A regularization parameter determines the amount of regularization.
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The connection between global Golub-Kahan bidiagonalization and Gauss-type quadra-

ture rules is exploited to inexpensively compute bounds that are useful for determining

the regularization. We will assume the unavailable system of equations with error-free

right-hand side,

Hx = b̂, (3.1.1)

to be consistent and denote its solution of minimal Euclidean norm by x̂. It is our aim

to determine an accurate approximation of x̂ by computing an approximate solution of

the available linear system of equations (0.0.2). To reduce the effect of the noise in the

reconstructed data, we will consider this time Tikhonov regularization in the following

form

min
x∈RN

{‖Hx− b‖22 + µ−1‖x‖22}. (3.1.2)

We will comment on the use of µ−1 instead of µ in (3.1.2) below. The minimization

problem (3.1.2) has the unique solution

xµ := (HTH + µ−1I)−1HT b. (3.1.3)

The technique used for choosing a suitable value of µ in this chapter the discrepancy prin-

ciple. For this method, when a bound ε of ‖e‖2 is available, the regularization parameter

µ is commonly chosen so that

‖b−Hxµ‖2 = ηε. (3.1.4)

We would like to determine a value of µ such that

ε ≤ ‖b−Hxµ‖2 ≤ ηε, (3.1.5)

where the constant η > 1 is independent of ε. This chapter continues our exploration of

the application of global Krylov subspace methods to the solution of large-scale problems
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(0.0.2) with a Kronecker structure that was begun in chapter 3. There a scheme for

computing an approximation of x̂ of prescribed norm is described. It was convenient to

base this scheme on the global Lanczos tridiagonalization method and use its connection

to Gauss-type quadrature rules. This chapter focuses on the more common situation

that a bound for the norm of the error e in b is available or can be estimated. Then

the regularization parameter µ > 0 can be determined by the discrepancy principle,

i.e., so that the computed solution satisfies (3.1.5) ; see [31, 58]. The requirement (3.1.5)

on the computed solution makes it natural to apply the GGKB method to develop an

analogue of the approach in [26]. It is then the purpose of this chapter to develop an

analogous method for the situation when H is the Kronecker product of two matrices H1

and H2. In applications of our solution method described in Section 3.5 both the matrices

H1 and H2 are square. Then H is square. This simplifies the notation and, therefore,

only this situation will be considered. However, only minor modifications of the method

are necessary to handle the situation when one or both of the matrices H1 and H2 are

rectangular.

This chapter is organized as follows. Section 3.2 discusses how the Kronecker product

structure can be utilized when determining an approximate solution of (3.1.2) with the

aid of the GGKB method. The connection between the GGKB method and Gauss-type

quadrature rules is reviewed in Section 3.2, and the application of the GGKB method

and Gauss-type quadrature to determine an approximate solution of (3.1.2) that satisfies

(3.1.5) is described in Section 3.4. Numerical examples are presented in Section 3.5.
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3.2 Gauss quadrature for Kronecker structure

Let H1 and H2 be Kronecker factors of the matrix H, and define the linear operator

A : Rm×n → Rm×n

A(X) := H2XH
T
1 .

Its transpose is given by AT (X) := HT
2 XH1. We will need the symmetric linear operator

Ă(X) := (AT ◦ A)(X),

where ◦ denotes composition. It can be expressed as

Ă(X) = HT
2 H2XH

T
1 H1. (3.2.1)

Let B := mat(b) ∈ Rm×n and assume that G := AT (B) 6= O, where O ∈ Rm×n

denotes the zero matrix. Assume that 0 < µ <∞. Then the equation

(Ă+ µ−1I)(X) = G (3.2.2)

has a unique solution Xµ ∈ Rm×n. Using (3.2.1) this equation can be written as

HT
2 H2XH

T
1 H1 + µ−1X = HT

2 BH1.

With the aid of (1.2.3), we can express the above equation in the form

((H1 ⊗H2)T (H1 ⊗H2) + µ−1I)vec(X) = (H1 ⊗H2)T vec(B).

This equation is equivalent to the normal equations associated with (3.1.2). Therefore,

Xµ = mat(xµ).
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Proposition 3.2.1. Let 0 < µ <∞ and let Xµ be the unique solution of (3.2.2). Introduce

the function

φ(µ) := ‖B −A(Xµ)‖2F . (3.2.3)

Let η > 1 be the same as in (3.1.5). Then

ε2 ≤ φ(µ) ≤ η2ε2 (3.2.4)

is equivalent to that xµ = vec(Xµ) satisfies (3.1.5) with b = vec(B).

Proof. Using (1.2.5) and (1.2.3), in order, yields

φ(µ) = ‖B −H2XµH
T
1 ‖2F = ‖vec(B)− vec(H2XµH

T
1 )‖22 = ‖b− (H1 ⊗H2)xµ‖22,

and the proposition follows from H = H1 ⊗H2.

The proposition implies that we can useXµ instead of xµ when determining a value of µ

such that (3.1.5) holds. We will apply the following implementation of the GGKB method

to determine an approximation of Xµ. The GGKB method generates two sequences of

F -orthogonal matrices as well as a bidiagonal matrix.

The above algorithm determines the decompositions

Uk+1(σ1e1 ⊗ In) = B,

[
A(V1),A(V2), . . . ,A(Vk)

]
= Uk+1(C̄k ⊗ In),

[
AT (U1),AT (U2), . . . ,AT (Uk)

]
= Vk(CTk ⊗ In),


(3.2.5)

where ej = [1, 0, . . . , 0]T denotes the first axis vector and O ∈ Rm×n is a zero matrix. The

matrices

Vk = [V1, V2, . . . , Vk] ∈ Rm×kn, Uk+1 = [U1, U2, . . . , Uk+1] ∈ Rm×(k+1)n,
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Algorithm 3 The GGKB method

Input : Set σ1 = ||B||F , U1 = B/σ1, V1 = O

1. For j = 1, 2, . . . , k

(a) Ṽj = AT (Uj)− σjVj

(b) ρj = ‖Ṽj‖F

(c) Vj+1 = Ṽj/ρj

(d) Ũj+1 = A(Vj)− ρjUj

(e) σj+1 = ||Ũj+1||F

(f) Uj+1 = Ũj+1/σj+1

3. EndFor

have F -orthonormal “matrix columns” Vj ∈ Rm×n and Uj ∈ Rm×n, respectively, i.e.,

〈Vi, Vj〉F = 〈Ui, Uj〉F =


1 i = j,

0 i 6= j.

Finally, the matrix Ck ∈ Rk×k is bidiagonal,

Ck =



ρ1

σ2 ρ2

. . .
. . .

σk−1 ρk−1

σk ρk


(3.2.6)

and so is

C̄k =

 Ck

σk+1e
T
k

 ∈ R(k+1)×k.

We remark that the matrix columns U1, U2, U3, . . . , are only required to advance the com-

putations of Algorithm 3. Therefore, they all can be stored in the same memory location.
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Also, the matrix column Ũj+1 can use this location. The matrix columns V1, V2, . . . , Vk

will be used to determine an approximate solution of (3.1.2) and, therefore, cannot be

overwritten. However, the matrix columns Ṽj and Vj+1 may share the same storage loca-

tion.

3.3 Gauss quadrature

This section discusses how the GGKB method is related to quadrature rules of Gauss-

type. The connection follows via the relation between global Lanczos tridiagonalization

and Gauss quadrature. Combining the equations (3.2.5) yields

[Ă(U1), Ă(U2), . . . , Ă(Uk)] = Uk(CkCTk ⊗ In) + σk+1[O, . . . , O, Uk+1]. (3.3.1)

This decomposition also can be determined by applying k steps of the global symmetric

Lanczos (GSL) method to the matrix Ă with initial block vector B. The GSL method

is described in [67] and its relation to Gauss quadrature is discussed in [9]. We therefore

only provide an outline. We remark that the relation between the standard symmetric

Lanczos method and Gauss-type quadrature is well known ; see, e.g., [26, 46, 47].

Proposition 3.3.1. Assume that HT b 6= 0. Then the function (3.2.3) can be expressed

as

φ(µ) = bT (µHHT + I)−2b. (3.3.2)

Proof. The proof of Proposition 3.2.1 shows that the function (3.2.3) can be written

as

φ(µ) = ‖b−Hxµ‖22.
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Substituting (3.1.3) into the right-hand side and using the identity, for µ > 0,

H(HTH + µ−1I)−1HT = I − (µHHT + I)−1 (3.3.3)

gives (3.3.2).

Substituting the spectral factorization HHT = WΛW T , where W ∈ Rmn×mn is or-

thogonal and Λ = diag[λ1, λ2, . . . , λmn] ∈ Rmn×mn, into the right-hand side of (3.3.2)

yields

φ(µ) =
mn∑
j=1

fµ(λj)w
2
j . (3.3.4)

Here [w1, w2, . . . , wmn]T := W T b and

fµ(t) := (µt+ 1)−2.

The expression (3.3.4) is a Stieltjes integral, which we write as

φ(µ) =

∫
fµ(t)dω(t). (3.3.5)

The distribution function ω associated with the measure dω can be chosen as a nondecrea-

sing piecewise constant function with nonnegative jumps w2
j at the eigenvalues λj . Since

HHT is positive semidefinite, the support of the measure dω lives on the nonnegative real

axis.

Define the integral

If :=

∫
f(t)dω(t)

for suitable functions f and let Gk denote the k-point Gauss quadrature rule associated

with dω. It is characterized by the property that

Gkp = Ip ∀p ∈ P2k−1,
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where P2k−1 denotes the set of polynomials of degree at most 2k − 1. The global Lanc-

zos decomposition (3.3.1) provides a way to evaluate this Gauss rule without explicit

knowledge of the measure dω. We have that for suitable functions f ,

Gkf = ‖B‖2F eT1 f(Tk)e1,

where the matrix Tk := CkC
T
k is symmetric and tridiagonal ; see [9] for a proof. Analogous

results that relate standard Golub–Kahan bidiagonalization to Gauss quadrature have

been shown by Golub and Meurant [46, 47] and are applied in [26]. Gautschi [39] provides

a nice fairly recent discussion on Gauss quadrature and orthogonal polynomials ; see also

[38].

We are particularly interested in the Gauss rule

Gkfµ = ‖B‖2F eT1 (µCkC
T
k + I)−2e1. (3.3.6)

Using the remainder formula for Gauss quadrature and the fact that all even-order deri-

vatives of the integrand t→ fµ(t) in (3.3.5) are positive, one can show that, generically,

G1fµ < · · · < Gk−1fµ < Gkfµ < φ(µ); (3.3.7)

see, e.g., [9, 79] for details.

Let Rk+1 denote the (k+ 1)-point Gauss–Radau rule for the measure dω with a fixed

node t0 = 0. Then

Rk+1p = Ip ∀p ∈ P2k.

This rule, when applied to the integration of fµ, can be can expressed as

Rk+1fµ = ‖B‖2F eT1 (µC̄kC̄
T
k + I)−2e1;
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see [9]. The remainder formula for Gauss–Radau quadrature rules and the fact that all

odd-order derivatives of t→ fµ(t) are negative yield that, generically,

φ(µ) < Rk+1fµ < Rkfµ < · · · < R1fµ; (3.3.8)

see, e.g., [9, 79].

We conclude that pairs of Gauss and Gauss–Radau quadrature rules Gkfµ and Rk+1fµ

yield lower and upper bounds, respectively, for φ(µ). We evaluate these rules by first

executing Algorithm 3 and then solving the least-squares problem

min
z∈Rk

∥∥∥∥∥∥∥∥
µ1/2CTk

Ik

 z − ek+1

∥∥∥∥∥∥∥∥
2

2

. (3.3.9)

The solution, denoted by zk, satisfies

(µCkC
T
k + Ik)zk = e1. (3.3.10)

It follows from (3.3.6) that

Gkfµ = ‖B‖2F zTk zk.

The special structure of the least-squares problem (3.3.9) makes it possible to evaluate

Gkfµ in only O(k) arithmetic floating-point operations for each value of µ. Typically Gkfµ

has to be evaluated for several µ-values ; see Section 3.4. The evaluation of Rk+1fµ can be

carried out analogously ; the matrix CTk in (3.3.9) has to be replaced by C̄Tk ; see [9]. The

reason for solving the least-squares problem instead of the associated normal equations

(3.3.10) is that the solution of the former generally is less sensitive to errors in the data

and to round-off errors introduced during the computations.
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3.4 Parameter selection and computation of an approxi-

mate solution

This section describes how the bounds for φ(µ) described in the previous section can

be used to determine a suitable number of steps k of the GGKB method, a value µk of

the regularization parameter, and an approximation xµk,k of the vector xµk , defined by

(3.1.3) with µ = µk, that satisfies (3.1.5).

For a given value of k ≥ 2, we solve the nonlinear equation

Gkfµ = ε2 (3.4.1)

for µ. Because we use the parameter µ in (3.1.2), instead of 1/µ, the left-hand side is a

decreasing convex function of µ. There is a unique solution, denoted by µε, of

φ(µ) = ε2 (3.4.2)

for almost all values of ε > 0 of practical interest and therefore also of (3.4.1) for k

sufficiently large ; see [9, 26] for analyses. Various zero-finders can be applied, including

Newton’s method ; see [78]. The evaluation of each iterate requires the solution of a least-

squares problem (3.3.9). The following result shows that the regularization parameter

determined by solving (3.4.1) provides more regularization than the parameter obtained

by solving (3.4.2).

Proposition 3.4.1. Let µk solve (3.4.1) and let µε solve (3.4.2). Then, generically, µk <

µε.

Proof. It follows from (3.3.2) that φ(µ) is a decreasing and convex function for µ ≥ 0
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with φ(0) = ‖b‖22. Similarly, by (3.3.6), Gkfµ is a decreasing and convex function for µ ≥ 0

with Gkf0 = ‖b‖22. Generically, φ(µ) > Gkfµ for µ > 0 ; cf. (3.3.7). Therefore, typically,

µk < µε. We have equality in the rare event of breakdown of the recursion formulas

for the GGKB method. Assume that the ρk > 0 in (3.2.6). Then the matrix (3.2.6) is

nonsingular and the solution µk of (3.4.1) exists if 0 < ε < ‖b‖2. Let PN (HHT ) denote the

orthogonal projector onto the null space of HHT . Then the solution µε of (3.4.2) exist if

‖PN (HHT )b‖2 < ε < ‖b‖2.

Having computed µk, we check whether

Rk+1fµ ≤ η2ε2 (3.4.3)

holds for µ = µk. If this is the case, then it follows from (3.3.7) and (3.3.8) that (3.2.4)

is valid for µ = µk. If, on the other hand, the inequality (3.4.3) is violated for µ = µk,

then we increase k by one, compute µk+1, and check whether (3.4.3) holds with k + 1

replaced by k + 2 for µ = µk+1. For most problems of interest, the Gauss and Gauss-

Radau approximations (3.3.7) and (3.3.8) converge quite rapidly to φ(µk) as k increases.

Therefore, the bound (3.4.3) typically holds already for a fairly small value of k.

Assume that µk satisfies (3.4.1) and (3.4.3). Then we determine an approximate solu-

tion of (3.1.2) with the aid of the global Golub–Kahan decomposition (3.2.5) as follows.

First we determine the solution yk,µk of

(C̄Tk C̄k + µ−1
k I)y = σ1C̄

T
k e1, σ1 = ‖B‖F . (3.4.4)

It is computed by solving the least-squares problem

min
y∈Rk

∥∥∥∥∥∥∥∥
µ

1/2
k C̄k

I


k

y − σ1µ
1/2
k e1

∥∥∥∥∥∥∥∥
2

.
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Similarly as above, we solve this least-squares problem instead of the associated normal

equations (3.4.4) because of the better numerical properties of the latter. Finally, our

approximate solution of (3.2.2) is determined by

Xk,µk = Vk(yk,µk ⊗ I). (3.4.5)

Proposition 3.4.2. The approximate solution (3.4.5) of (3.2.2) satisfies

ε ≤ ‖B −A(Xk,µk)‖F ≤ ηε. (3.4.6)

Proof. Using the representation (3.4.5), and applying (3.2.5) as well as (1.2.3), shows

that

A(Xk,µk) = Uk+1(C̄k ⊗ In)(yk,µk ⊗ In) = Uk+1(C̄kyk,µk ⊗ In).

Substituting the above expression into (3.4.6) and again using (3.2.5) yields

‖Uk+1(σ1e1 ⊗ In)− Uk+1(C̄kyk,µk ⊗ In)‖2F

= ‖(σ1e1 ⊗ In)− (C̄kyk,µk ⊗ In)‖2F

= ‖σ1e1 − C̄kyk,µk‖
2
2,

where we recall that σ1 = ‖B‖F . We now express yk,µk with the aid of (3.4.4), and apply

the identity (3.3.3) with H replaced by C̄k, to obtain

‖B −A(Xk,µk)‖2F

= σ2
1‖e1 − C̄k(C̄Tk C̄k + µ−1

k Ik)
−1C̄Tk e1‖22

= σ2
1e
T
1 (µkC̄kC̄

T
k + Ik+1)−2e1

= Rk+1fµk .

The proposition now follows from (3.4.3) and the fact that ε2 = Gkfµk ≤ Rk+1fµk .
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Algorithm 4 The GGKB-Tikhonov method

Input : H1, H2, B, ε, η ≥ 1

1. Set k = 2 (k is the number of global Lanczos steps). Let U1 := B/||B||F ;

2. Determine the orthonormal bases {Uj}kj=1 and {Vj}kj=1, and the bidiagonal matrices

Ck and C̄k with Algorithm 2.

3. Determine µk that satisfies (3.4.1) and (3.4.3) as described above. This may require

k to be increased, in which case one returns to step 2.

4. Determine yk,µk and Xk,µk as described above.

The following algorithm summarizes the computation of (3.4.5).

We now comment on the complexity of Algorithm 4. We first mention that the ove-

rall computational cost for Algorithm 4 is dominated by the work required to determine

Uj and Vj at step 2. The computational effort required to determine Uj and Vj is do-

minated by four matrix-matrix products, approximately 4(m + n)N arithmetic floating

point operations (flops). These matrix-matrix operations need less computational cost in

comparison with the cost required for evaluating matrix-vector evaluation with the large

matrix H and its transpose, that is to say approximately 4N2 flop counts.

3.5 Numerical examples

This section presents a few representative numerical experiments. Let x̂ := vec(X̂)

denote the error-free exact solution of the linear system of equations (0.0.2), let B̂ :=

H2X̂H
T
1 and B := B̂ + E, and define

b̂ := vec(B̂), b := vec(B), e := vec(E),
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where the error matrix E has normally distributed entries with zero mean and is norma-

lized to correspond to a specific noise level

ν :=
||E||F
||B̂||F

.

The sizes of the matrices is specified in the examples below.

To determine the effectiveness of our solution method, we evaluate the relative error

||X̂ −Xk||F
||X̂||F

of the computed approximate solution Xk = Xk,µk determined by Algorithm 4. The first

three examples are concerned with the solution of Fredholm integral equations of the first

kind in two space-dimensions with a separable kernel. Discretization gives matrices that

are severely ill-conditioned. The last two examples discuss image restoration problems.

Overviews of image restoration problems can be found in [18, 62].

Example 1.

Let the nonsymmetric matrix H1 and the symmetric matrix H2, both of size 1500 ×

1500, be determined by the MATLAB programs baart and foxgood, respectively, in the

Regularization Tools package by Hansen [61]. These programs provide discretizations of

Fredholm integral equations of the first kind described in [3, 33]. The computed condition

numbers of these matrices are κ(H1) = 3.72 × 1019 and κ(H2) = 1.03 × 1021. Since

κ(H) = κ(H1)κ(H2), the matrix H is numerically singular. The right-hand side matrix

B̂ and the exact solution X̂ also are generated with the aid of the codes baart and

foxgood. Table 3.1 displays the computed regularization parameters and the relative

error in computed approximate solutions determined by Algorithm 4 with η = 1.1 for
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different noise levels, as well as the number of iterations required to satisfy the stopping

criterion.

Table 3.1 – Results for Example 1.

Noise level Iterations µ Relative error

0.01 4 5.77× 102 2.08× 10−1

0.001 7 2.64× 104 1.22× 10−1

Example 2.

Instead of determining an approximate solution of (0.0.2) with Algorithm 4, one could

compute the singular value decompositions (SVDs) of the matrices H1 and H2. The SVD

of the matrix H then can be determined from the SVDs of H1 and H2. We can apply

the SVD of H to determine a suitable regularization parameter µ > 0. Specifically, we

solve the equation ‖b−Hxµ‖2 = ηε for µ by Newton’s method without explicitly forming

the matrices in the SVD of H. Knowing µ allows us to compute the Tikhonov solution

(3.1.3) without explicitly forming the matrices in the SVD of H. This approach of determi-

ning the regularization parameter and computing the corresponding regularized solution

(3.1.3) is attractive due to its simplicity when the matrices H1 and H2 are small. However,

the approach is slow for large matrices H1 and H2. To illustrate this, we solve the same

problem as in Example 1 with a finer discretization. Thus, let H1, H2 ∈ R2000×2000 be

determined by the MATLAB codes baart and foxgood, respectively, from [58]. The ma-

trix B̂ and X̂ are generated in the same manner as in Example 1 with the matrix B such
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that the noise level is ν = 0.01. We let the safety factor for the discrepancy principle be

η = 1.1. Then Algorithm 4 terminates after 4 iterations with the regularization parameter

µ4 = 5.77× 102 and an approximate solution, defined by (3.4.5) with k = 4, with relative

error 2.09× 10−1. The computing time for this experiment is 37.96 seconds.

When we instead use the SVD of H, we obtain the regularization parameter µ = 22.8

and an approximate solution with relative error 2.14 × 10−1. The computing time for

this method is 47.95 seconds. The difference in the values of the regularization parameter

for these approaches depends on that in Algorithm 4 the regularization parameter is

determined for the solution in a subspace of low dimension, while the solution determined

by the SVD approach lives in the whole space.

The computations of this example illustrate that the computations with the global

Golub–Kahan method are faster than using the SVD of H, even when the structure of

the latter is exploited. The difference in computing time is even more pronounced for

larger problems. We remark that also for problems of the size considered in Example 1,

the global Golub–Kahan method is faster than using the SVD of H.

Example 3.

We consider the Fredholm integral equation

∫ ∫
Ω
K(x, y, s, t)f(s, t)dsdt = g(x, y), (x, y) ∈ Ω, (3.5.1)

where Ω = [−π/2, π/2]× [−π/2, π/2]. The kernel is given by

K(x, y, s, t) = k(x, s)k(y, t), (x, y), (s, t) ∈ Ω,
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where

k(s, x) = (cos(s) + cos(x))2(sin(ξ)/ξ)2, ξ = π(sin(s) + sin(x)).

The solution is the sum of two Gaussians in each space dimension.

We discretize (3.5.1) by a Nyström method based on the composite trapezoidal rule

with equidistant nodes in each space-dimension. Code is available at [84]. Specifically,

we determine the nonsymmetric matrix H1 ∈ R1500×1500, from which we obtain the dis-

cretization H = H1 ⊗ H1 of the integral operator (3.5.1), as well as the exact solution

X̂ ∈ R1500×1500 of the discretized problem and the associated exact right-hand side B̂.

Table 3.2 shows the computed regularization parameters and the relative error in approxi-

mate solutions determined by Algorithm 4 with η = 1.01 and different noise levels, as well

as the number of iterations required to satisfy the stopping criterion. Figure 3.1 displays

the computed approximate solution X13 obtained when the noise level of the available

data (right-hand side) is 0.01.

Table 3.2 – Results for Example 3.

Noise level Iterations µ Relative error

0.01 13 2.46× 102 1.59× 10−1

0.001 32 2.67× 104 6.97× 10−2

Example 4.

This and the following examples are concerned with the restoration of images that have

been contaminated by blur and noise. Let the entries of the vector x̂ be pixel values for a
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Figure 3.1 – Example 3 : Approximation X13 of X̂ determined by Algorithm 4 for noise

level 0.01.

desired, but unknown, image. The matrix H is a discretization of a blurring operator and

equation (3.1.1) shows that b̂ represents a blurred, but noise-free, image. The vector b in

(0.0.2) represents the available blur and noise contaminated image associated with x̂. The

blurring matrix H is determined by the point-spread function (PSF), which determines

how each pixel is smeared out (blurred), and by the boundary conditions, which specify

our assumptions on the scene just outside the available image ; see [18, 62] for details.

In some cases the horizontal and vertical components of the PSF can be written as a

product of two functions, one depending on the horizontal coordinate and the other one

on the vertical coordinate, only. In this situation, the blurring matrix H can be expressed

as a Kronecker product H = H1 ⊗ H2. Let the matrix X̂ = mat(x̂) be of suitable size.

Then the blurred image can be represented as H2X̂H
T
1 ; cf. (1.2.3). The blur and noise

contaminated image is represented by the matrix H2X̂H
T
1 + E, where E is the noise

matrix. Also when H cannot be written as a Kronecker product of two matrices, it may

61



be possible to approximate H well by such a Kronecker product ; see [71, 72, 99].

In this example, we seek to restore an image that has been contaminated by blur that

is defined by a Gaussian PSF,

hσ(x, y) =
1

2πσ2
exp
(
− x2 + y2

2σ2

)
,

and by noise. The Dirichlet zero boundary condition is imposed. The blurring matrix then

is the Kronecker product of a symmetric Toeplitz matrices with itself H = H1⊗H1, where

H1 = [hij ] with

hij =


1

σ
√

2π
exp

(
− (i−j)2

2σ2

)
, |i− j| ≤ r,

0 else

The matrix H models atmospheric turbulence blur. We let σ = 2.5 and r = 6.

The original image X̂ ∈ R256×256 is the Enamel image from MATLAB. It is shown in

the left-hand side of Figure 3.2. The associated blurred and noisy image B := H2X̂H
T
1 +E

is shown in the middle of Figure 3.2 ; the noise level is 0.001. The restoration determined

by Algorithm 4 with η = 1.1 is displayed in the right-hand side of the figure.

For comparison, we determine a regularization parameter and an approximate solu-

tion using the numerical method described in [26]. This method uses (standard) Golub–

Kahan bidiagonalization instead of global Golub–Kahan bidiagonalization, and explores

the connection between (standard) Golub–Kahan bidiagonalization and Gauss quadrature

rules for solving large ill-conditioned linear systems of equations (0.0.2) without exploiting

the structure of the matrix H. We refer to this method as GKB in Table 3.3. The table

compares results obtained by Algorithm 4 and GKB, including the relative errors of the

restorations, the number of iterations, and the CPU times required for two noise levels.
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Figure 3.2 – Example 4 : Original image (left), degraded image (center), and restored

image (right) for noise of level 0.001.

Algorithm 4 is seen to require less CPU time than GKB and give about the same quality

of the computed restoration as GKB.

Table 3.3 – Results for Example 4.

Noise level Iterations Method µ Relative error CPU-time (sec)

0.01

14 Algorithm 4 4.66× 103 1.02× 10−1 0.50

14 GKB 4.66× 103 1.02× 10−1 1.35

0.001

62 Algorithm 4 1.71× 104 8.00× 10−2 2.23

62 GKB 1.71× 104 8.02× 10−2 11.44

Example 5.

The original image is the iograyBorder image of dimension 256×256 from MATLAB.

It is shown on the left-hand side of Figure 3.3. The blurring matrix H = H1 ⊗H2 is the

same as in Example 3. The blurred and noisy image shown in the middle of Figure 3.3
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Figure 3.3 – Example 5 : Original image (left), degraded image (center), and restored

image (right) for noise of level 0.01.

has the noise level 0.01. The restored image determined with Algorithm 4 with η = 1 is

shown in the right-hand side of Figure 3.3. The number of iterations, relative errors of

the restored images, and computed regularization parameters are shown in Table 3.4 for

two noise levels.

Table 3.4 – Results for Example 5.

Noise level Iterations µ Relative error CPU time (sec)

0.01 19 4.80× 104 8.85× 10−2 1.09

0.001 75 2.60× 104 7.58× 10−2 2.13
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Chapitre 4

The symmetric block Lanczos algorithm for linear

ill-posed problems

4.1 Introduction

Many applications require the solution of several ill-conditioning systems of equations

with a right hand side contaminated by an additive error,

Hx(i) = b̂(i) + e(i), i = 1, 2, ..., k. (4.1.1)

In recent decades, many iterative methods have been proposed for the solution of linear

ill-posed problems. These iterative methods are based on the connection between the

classical Lanczos algorithm, and Gauss quadrature formulas, for the solution of Tikhonov

regularization of large-scale problems Hx = b, H ∈ Rn×n, b ∈ Rn. With a matrix H of

ill-determined rank. The right hand side b is contaminated by an error e ∈ Rn ; see, e.g.,

[21, 22, 46, 47, 25, 26]. These techniques have been developed by Golub and Meurant in

[46, 47] for approximating elements of a matrix function by Gaussian quadrature in the

spectral domain. When solving (6.3.9), instead of applying these techniques to each ill-
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posed linear system, it is more efficient to use a method for all the systems simultaneously.

Consider the block linear system of equations,

HX = B, B̂ + E, (4.1.2)

where H is an n×n real non singular matrix. X, B̂ and E are n×k rectangular matrices

whose columns are x(1), x(2), ..., x(k), b̂(1), b̂(2), ..., b̂(k) and e(1), e(2), ..., e(k), respectively. Ge-

neralization of the standard methods utilizing the connection between classical Lanczos

algorithm, orthogonal polynomials, and Gauss-type quadrature rules have been develo-

ped. The first class of these methods is based on the block Lanczos methods coinciding

with Gauss-type quadrature rules and anti-Gauss quadrature rules for the symmetric and

nonsymmetric block Lanczos algorithms ; see, for example, [34, 46, 47] and references

therein. The second class is based on the global Lanczos algorithms, with connection to

Gauss-type quadrature rules [9]. In [51, 52, 67, 95] and references therein, a class of me-

thods, based on block Krylov subspace methods, was introduced for the purpose of solving

the following unavailable error-free linear system of equations with multiple right hand

sides,

HX = B̂. (4.1.3)

In the present chapter, we propose a new numerical method, based on the connection

between the block Lanczos algorithm, block Gauss quadrature and anti-Gauss quadrature,

for Tikhonov regularization of large linear system of equations with multiple right hand

sides, where the right hand side matrix is contaminated by an error. Following [9, 25], we

will show how an estimate of the norm of the exact solution can lead to estimate the value

of the regularization parameter and the corresponding regularized solution. The error E is
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absorbed in the right hand side B of (4.1.2), which makes the linear system of equations

of multiple right hand sides (4.1.3) unavailable. We would like to determine the least-

squares solution X̂ of minimal Frobenius norm of the unavailable error-free linear system

of equations with multiple right hand sides, (4.1.3), which assumed to be consistent, by

computing an approximate solution of the available linear system of equations (4.1.2).

Since the coefficient matrix H is ill-conditioned, the problem will be extremely sensitive

to perturbations in the right hand side matrix. In order to diminish the effect of the noise

in the data, we replace the original coefficient matrix by a better conditioned one. One of

the most popular regularization methods is due to Tikhonov [31, 49]. The method replaces

the problem by the new one

Xµ = argmin
X

(
‖HX −B‖2F + µ‖LX‖2F

)
, (4.1.4)

where µ ≥ 0 is the regularization parameter and L is a regularization matrix chosen to

obtain a solution with desirable properties. The matrix L could be the identity matrix or

a discrete form of first or second derivative. In the first case, the parameter µ acts on the

size of the solution, while in the second case µ acts on the smoothness of the solution.

We will only consider the particular case where the matrix L reduces to the identity I.

Therefore, Tikhonov regularization problem in this case is of the following form

Xµ = argmin
X

(
‖HX −B‖2F + µ‖X‖2F

)
. (4.1.5)

Tikhonov regularization problems of the form (4.1.4) can be brought into the form (4.1.5) ;

see [11, 32]. In Tikhonov regularization, the solution of the problem (4.1.5) is computed
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as the unique solution of the following linear least squares problem

Xµ = argmin
X

∥∥∥∥∥∥∥∥
 H

µ1/2I

X −
B

0


∥∥∥∥∥∥∥∥

2

F

, (4.1.6)

in certain situations the best way to solve (4.1.6) numerically is to treat the normal

equations (
HTH + µI

)
X = HTB, (4.1.7)

for a suitable positive value of the regularization parameter µ. The choice of µ affects how

sensitive Xµ is to the error E in the contaminated right-hand side, and how accurately Xµ

approximates X̂. Many techniques for choosing a suitable value of µ have been analyzed

and illustrated in the literature ; see, e.g., [17, 31, 58, 73, 90] and references therein. We

remark that for any µ ≥ 0, the problem (4.1.7) has the unique solution

Xµ =
(
HTH + µI

)−1
HTB. (4.1.8)

The condition number of the matrix HTH+µI is a decreasing function of µ and therefore

the solution Xµ is generally more sensitive to the error E, the smaller µ ≥ 0 is. We will

show how this problem can be remedied by implicitly solving the normal equation without

working on HTH.

In this chapter, we assume that the quantity

∆ := ‖X̂‖F ,

is available and therefore we can use an equivalent formulation of problem (4.1.5), as a

quadratically constrained least squares problem

min
‖X‖F≤∆

‖ B −HX ‖F ; (4.1.9)
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see, e.g., [9, Proposition 2.2] for further details. In the optimization literature, minimiza-

tion problems of the form (4.1.9) arise in the context of trust-region methods.

The organization of this chapter is as follows. Section 4.2 reviews some known facts about

block Gauss quadrature rules, block anti-gauss quadrature and their connection with the

symmetric block Lanczos process. Section 4.3 describes how these connection can be em-

ployed to inexpensively compute an approximate regularizing parameter of µ by solving

a nonlinear equation and then computing the corresponding approximate solution of X.

In section 4.4 we discuss some numerical examples that demonstrate the validity of our

approach and compare our proposed method to some related works.

4.2 Block Lanczos algorithm, block Gauss quadrature, block

anti-Gauss quadrature and matrix functionals

Introduce,

φ(µ) := ‖Xµ‖2F . (4.2.1)

In this chapter we review some results on the connection between the symmetric block

Lanczos tridiagonalization, block Gauss quadrature rules, and block ani-Gauss quadra-

ture rules, then we show how we can exploit this connection to inexpensively determine

an approximation of φ. By substituting (4.1.8) into (4.2.1), the function (4.2.1) can be

expressed as

φ(µ) = tr
(
BTH(HTH + µI)−2HTB

)
.

Introduce the function

fµ(t) := (t+ µ)−2, (4.2.2)

69



the expression (4.2.1) can be now expressed as tr(S), where

S := BTHfµ
(
HTH

)
HTB. (4.2.3)

We provide now an overview of the techniques that will be used to approximate (4.2.3).

We first proceed to write the quantitie S as Stieltjes integral. Introduce the spectral facto-

rization HTH = WΛW T , where W ∈ Rn×n satisfies W TW = In and Λ = diag[λ1, ..., λn],

with λ1 ≤ ... ≤ λn. Defining Υ = [Υ1, ..., Υn] = BTHQ ∈ Rk×n, where Υi ∈ Rk, it follows

that

S = Υfµ(Λ)Υ T =
n∑
i=1

fµ(λi)ΥiΥ
T
i =

∫
fµ(λ)dΥ (λ) := Ifµ, (4.2.4)

where Υ : R → Rk×k is discrete matrix distribution with a jump of size ΥiΥ
T
i at each

eigenvalue λi of HTH.

The quantity S has to be evaluated for several µ-values. This can be expensive, since

in real applications the matrix H is large. However, the computation of low-dimensional

approximation of S for several values of µ can be carried out efficiently by using block

Gauss quadrature rules and block anti-Gauss quadrature. We briefly review some known

facts about block Gauss quadrature rules and block anti-Gauss quadrature and their

connection with block Lanczos process ; see [34] for discussion on these methods. We

define for a real λ, the following k × k orthogonal polynomial,

pi(λ) =
i∑

j=0

λjC
(i)
j ,

where the coefficients C
(i)
j are given k×k real matrices. We also define the following inner

product induced by the measure Υ (λ), which is supposed to be symmetric and positive
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semi-definite,

< p, q >=

∫
p(λ)dΥ (λ)q(λ)T ,

and let pi, i = 1, 2, ... be a sequence of matrix polynomials orthonormal with respect to

this inner product, i.e.,

〈pi, pj〉 = δijIk,

where δij is the Kronecker symbol and Ik is the identity matrix of order k.

The sequence of matrix orthonormal polynomials pi satisfy a block three-term recurrence

of the form

λpj−1(λ) = pj(λ)Γj + pj−1(λ)Ωj + pj−2(λ)ΓTj−1, p0(λ) := Ik, p−1(λ) := 0.

For each j, the recursion coefficients Γj and Ωj are k × k matrices with real entries.

Morever, Ωj is symmetric, and Γj can be chosen to be upper triangular. Defining

Pl(λ) := [p0(λ), ..., p`(λ)] ∈ Rk×k`,

it follows that

λP`(λ) = P`(λ)Jkl + P`(λ)Γ`E
T
` , (4.2.5)

where

Jk` :=



Ω1 ΓT1

Γ1 Ω2 ΓT2

. . .
. . .

. . .

Γ`−2 Ω`−1 ΓT`−1

Γ`−1 Ω`


∈ Rk`×k`.

Throughout this chapter, Ei := [e(i−1)k+1, ..., eik] denotes the block vector of appropriate

dimensions with blocks of size k × k, with the ith block equal to Ik and all other blocks
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equal to 0. Here, Jk` is both a symmetric block-tridiagonal matrix and a banded matrix

of bandwidth 2k+1. The matrix Jk` is computed via a partial block Lanczos tridiagonali-

zation of the matrix HTH without explicit knowledge of the measure measure dΥ . In the

following subsection, we will use the block Lanczos algorithm, which is first introduced for

symmetric matrices, to reduce the symmetric matrix HTH to a small symmetric block-

tridiagonal matrix Jk` and we will show how this algorithm is applied implicitly to HTH,

by applying block Lanczos bidiagonalization to H, which also known as the Golub-Kahan

bidiagonalization.

4.2.1 Partial block Lanczos of the matrix HTH

Algorithm 5 Partial block Lanczos process of the matrix HTH

1. Let P1 ∈ Rn×k be an initial matrix satisfying P T1 P1 = Ik

2. Set P0 := 0 ∈ Rn×k, Γ0 = 0 ∈ Rk×k

3. For j = 1, 2, . . . , `

(a) Ωj = P Tj H
THPj

(b) Rj = HTHPj − PjΩj − Pj−1ΓTj−1

(c) Pj+1Γj = Rj (QR factorization), Pj+1 is orthogonal and Γj is upper triangular

4. EndFor

Let HTB = QR be the QR factorization of HTB, in the context of estimating (4.2.3),

we choose P1 = Q. The block-size k must be optimized considering the matrix size and

the hardware capabilities, while the number of the partial block Lanczos steps ` depends

upon the convergence speed of the algorithm on that particular problem. We will show
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in our numerical results how this algorithm can be executed so that `k � n. The partial

block Lanczos algorithm will break down at step j if Rj is rank deficient. In this case, the

algorithm can be continued by replacing linearly dependent columns of Pj+1 that have

been orthogonalized with respect to all previous Lanczos vector ; see, e.g., [4] for further

details. Breakdowns are very rare events, we therefore will not dwell on it further and

assume that the blocks produced by the block Lanczos process are of full rank ; see, e.g.,

[55, Section 9.2.6] for a discussion on block Lanczos tridiagonalization. If the algorithm

does not break down before step `, then it is easy to verify the following relation

HTHP
(k)
` = P

(k)
` Jk` + P`+1Γ`E

T
` , (4.2.6)

where P
(k)
` = [P1, ..., P`], and Jk` is the matrix from (4.2.5). Moreover, the vector -columns

P
(k)
` form an orthonormal basis of the block Krylov subspace

K`(H
TH,P1) = Range[P1, H

THP1, (H
TH)2P1, ..., (H

TH)`−1P1].

We now describe how the symmetric block-tridiagonal matrix Jk` can be computed via

the partial block Lanczos bidiagonalization to H, which also known as the block Golub-

Kahan bidiagonalization. The latter method replaces matrix-block HTHX evaluations in

the partial block Lanczos algorithm by HTX and HX operations. Application of ` steps

of the block Lanczos bidiagonalization algorithm, given by Golub, Luk, and Overton

in [45] to the matrix H with the initial block P1 with orthonormal columns yields the

decompositions

HP
(k)
` = Q

(k)
` Rk` (4.2.7)

HTQ
(k)
` = P

(k)
` RTk` + FkE

T
k , (4.2.8)
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where P
(k)
` ∈ Rn×`k, Q(k)

` = [Q1, ..., Q`] ∈ Rn×`k, P (k)T

` P
(k)
` = Q

(k)T

l Q
(k)
l = I`k. We refer

to Fk ∈ Rn×k as the residual matrix. It satisfies

P
(k)T

` Fk = 0.

The matrix

Rk` :=



S1 L2

S2 L2

S3
. . .

. . . L`

S`


∈ Rk`×k`, (4.2.9)

is upper block-bidiagonal with upper triangular diagonal blocks Sj ∈ Rk×k and lower

triangular superdiagonal blocks Lj ∈ Rk×k. Thus, Rk` is upper triangular. We refer to

the decompositions (4.2.7)-(4.2.8) as a partial block Lanczos bidiagonalization of H. The

number of block-bidiagonalization steps, `, is assumed to be small enough so that the de-

compositions (4.2.7)-(4.2.8) with the stated properties exist. The matrix (4.2.9) is assumed

to be sufficiently small to allow easy computation of the regularization parameter µ. We

will use the connection between partial block Lanczos bidiagonalization (4.2.7)-(4.2.8) of

H and partial block Lanczos tridiagonalization of the matrix HTH. Multiplying equation

(4.2.7) by HT from the left-hand side yields

HTHP
(k)
` = P

(k)
` RTk`Rk` + FkE

T
k Rk`. (4.2.10)

The symmetric and block-tridiagonal matrix Tk` = RTk`Rk` ∈ Rk`×k` coincides with the

matrix Jk` in (4.2.6), and the expression (5.2.7) is then a partial block Lanczos tridiago-

nalization of HTH with initial block-vector P1.
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4.2.2 Block Gauss quadrature

The integral
∫
fµ(λ)dΥ (λ) is k × k symmetric matrix. We introduce the following `-

block Gauss quadrature rules associated with the matrix distribution Υ . The most general

quadrature formula is of the form

∫
fµ(λ)dΥ (λ) =

∑̀
i=1

Wifµ(Ti)W
T
i , (4.2.11)

where Wi and Ti are symmetric k × k matrices. By diagonalizing each Ti , we can obtain

simpler formula. Let Ti = QiΛiQ
T
i where Qi is the orthonormal matrix of the eigenvectors,

and Λi the diagonal matrix of the eigenvalues of Ti. This gives

∫
fµ(λ)dΥ (λ) =

∑̀
i=1

WiQifµ(Λi)Q
T
i W

T
i

(4.2.11) can be reduced to
k∑
i=1

fµ(ti)uiu
T
i ,

where ti is scalar and ui is a vector with k components. Since our discussion is based on the

connexion between Gauss quadratures and block Lanczos algorithm, it is then convenient

to look at these quadratures in terms of the matrix Jk`. We therefore introduce the spectral

factorization of Jk`,

Jk` = Yk`Θk`Y
T
k` ,

where

Yk` = [y
(`)
1 , ..., y

(`)
k` ], Θk` = diag[θ

(`)
1 , ..., θ

(`)
k` ],

Y` satisfies Y T
` Y` = I`, and θ

(`)
1 ≤ ... ≤ θ

(`)
k` . From (4.2.5), the nodes ti are the zeros of the

determinant of the matrix orthogonal polynomials that is the eigenvalues θ
(`)
i of J` and
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ui is the vector consisting of the k first components of the corresponding eigenvector y
(`)
i .

We then consider the following quadrature formula,

G`fµ :=
k∑̀
i=1

f(θ
(`)
i )u

(`)
i

(
u

(`)
i

)T
.

For the integral (4.2.4), we have the following property,

G`p = Ip,

for any polynomials of degree not exceeding 2`− 1 ; see [34, Theorem 5] for a proof. The

remainder term for this quadrature rule, which is a k × k matrix, can be expressed as

Ifµ − G`fµ =
f

(2`)
µ (η)

(2`)!

∫
s(λ)dΥ (λ), (4.2.12)

where η ∈ [θ1, θ`] and s(x) = (x − θ1)...(x − θ2l`) ; see e.g., [47]. We call G`fµ the `-

block Gauss quadrature rule associated with the matrix distribution Υ . Unfortunately,

the factors of s do not have a constant sign over the interval [λ1, λn] and therefore the

remainder formula is of unknown sign over this interval. We will see how this problem can

be solved by the use of anti-Gauss quadrature in order to provide a quadrature formula

whose error is of opposite sign with respect to the error of a block Gauss rule. It is useful

to note that the `-block Gauss rule affords the elegant and concise matrix

G`fµ =
k∑̀
i=1

fµ(θ
(`)
i )u

(`)
i

(
u

(`)
i

)T
,

=
[
u

(`)
1 , ..., u

(`)
k`

]
fµ(Θk`)

[
u

(`)
1 , ..., u

(`)
k`

]T
, (4.2.13)

= ET1 Y`fµ(Θk`)Y
T
` E1,

= ET1 fµ(Jk`)E1.

Therefore, we can evaluate the Gauss quadrature rule G`fµ without forming the spec-

tral factorization of Jk`
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4.2.3 Block anti-Gauss quadrature

In [34], block anti-Gauss quadrature rules computed via the symmetric block Lanczos

algorithm were used to compute an approximate bound for Ifµ with k > 1 extending

the results introduced by Laurie in [74]. Let H`+1fµ denote the (`+ 1)-block anti Gauss

quadrature rule for the measure Υ . The block anti-Gauss quadrature is a tool to estimate

the error in Gauss quadrature when no useful information with regard to the sign of the

quadrature error can be obtained from the remainder formula. The idea is to construct a

quadrature rule whose error is equal but of opposite sign to the error of block Gauss rule

(4.2.12). The (`+ 1)-block anti-Gauss quadrature rule H`+1fµ associated with the Gauss

rule G`fµ is characterized by

(I −H`+1)f = −(I − G`)f, f ∈ P2`+1. (4.2.14)

where P2`+1 denotes the set of polynomials of degree at most 2`+ 1. Note that (4.2.14) is

exactly the (`+1)-block Gauss quadrature rule with respect to the matrix-valued function

2I − G`, since (4.2.14) implies that

H`+1f = (2I − G`)f, f ∈ P2`+1.

With respect to 2I −G`, we can show that there exists a sequence of polynomials p̃j with

k × k matrix coefficients, orthonormal with respect to the inner product (4.2), satisfying

the following three-term recurrence relation of the form

λp̃j−1(λ) = p̃j(λ)Γ̃j + p̃j−1(λ)Ω̃j + p̃j−2(λ)Γ̃Tj−1, p̃0(λ) := Ik, p̃−1(λ) := 0.

As above, the (`+ 1)-block anti-Gauss quadrature rule affords the matrix representation

H`+1fµ = ET1 fµ(J̃k(`+1))E1 (4.2.15)
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where,

J̃k(`+1) :=



Ω̃1 Γ̃T1

Γ̃1 Ω̃2 Γ̃T2

. . .
. . .

. . .

Γ̃`−1 Ω̃` Γ̃T`

Γ̃` Ω̃`+1


∈ Rk(`+1)×k(`+1),

with almost no work, from the matrix Jk(`+1) associated with the (` + 1)-block Gauss

quadrature rule G`+1fµ, we obtain the matrix J̃k(`+1) associated with the (` + 1)-block

anti-Gauss quadrature rule H`+1fµ,

Ω̃i = Ωi, 1 ≤ i ≤ `

Γ̃i = Γi, 1 ≤ i ≤ `− 1

Γ̃` =
√

2Γ`,

Ω̃`+1 = Ω`+1;

see [34] for further details.

4.3 Computation of an approximate solution of specified

norm

The quadratically constrained least squares formulation (4.1.9) has the advantage

that, in some applications, the physical properties of the problem determine an optimal

value for the norm constraint ∆, where ∆ represents the energy of the exact solution.

Knowledge of the norm of the desired approximate solution of ill-posed linear system of

type (4.1.2) is available in some applications, see e.g, Ahmad et al. [1]. This approach
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works well to determine an optimal value of the regularization parameter when the phy-

sical properties given by the norm constraint ∆ is available. This is the case, for example

in image restoration when the norm constraint represents the energy of the target image.

This idea to select the regularization parameter is considered attractive to many authors

and has received considerable attention in the literature ; see, e.g, [9, 24, 25, 91, 92]. De-

termining the regularization parameter µ∆ can be then achieved by solving the following

nonlinear equation,

φ(µ) = ∆2, (4.3.1)

which also determines the corresponding regularized solution Xµ∆ . The computation of

a µ-value such that (4.3.1) holds generally requires the use of a zero-finding method and

typically φ(µ) has to be evaluated for several µ-values. This can be expensive when the

matrix H is large. In general the available value of ∆ is an estimate of the norm of

the exact solution. Therefore it is not meaningful to solve equation (4.3.1) to very high

accuracy. Instead we will seek to determine a value of µ∆, such that

η2∆2 ≤ φ(µ) ≤ ∆2

where the constant 0 ≤ η ≤ 1 determines how close to ∆ we require the norm of the

computed approximate solution of (4.1.9) to be. The more accurate the estimate is, the

closer we choose η be to one. We exploit the connection between block-Gauss, block anti-

Gauss quadrature rules, and block Lanczos algorithms, to obtain an average integration

rule for If . For each `, approximations of [If ]ij are given by [G`]ij and [H`+1]ij , 1 ≤

i, j ≤ k. The purpose of our proposed numerical method is to keep the number of block
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Lanczos algorithm steps ` small. Formula (4.2.14) suggests that the quadrature rule,

L2l+1fµ :=
1

2
(G`fµ +H`+1fµ), (4.3.2)

yields an approximation of Ifµ at every step `. Recall that the quadrature rule (4.3.2) is

exact for polynomials of degree 2`+ 1. In order for L2`+1fµ to be a good approximation

of Ifµ, the following stopping criteria is used,

E`,µ :=
1

2
‖G`fµ −H`+1fµ‖max < τ (4.3.3)

where τ is an absolute tolerance and ‖B‖max = max1≤i,j≤k|Bij |. We therefore start with

` = 1 and an initial guess µ
(0)
` to determine approximations µ

(j)
` , j = 0, 1, 2, ..., of the

solution, denoted by µ`, of the nonlinear function

φ`(µ) = ∆2, (4.3.4)

where,

φ`(µ) = tr(L2`+1fµ). (4.3.5)

Various zero-finders can be applied, including Newton’s method, cubically and quadrati-

cally convergent zero-finders ; see, e.g., [91] for discussions on these methods. Iterations of

this method are designed to determine a sequence of approximations µ
(j)
` , j = 1, 2, 3, ...,

of µ` such that

η2∆2 ≤ φ`(µ) ≤ ∆2 (4.3.6)

To solve (4.3.4) such that (4.3.6) holds, we use the monotonically and quadratically

convergent zero-finding method [56] by evaluation of the function (4.3.5) and its deri-

vatives. Substituting the expression of G`fµ given by (4.2.14) gives

G`fµ = ET1 (RTk`Rk` + µI)−2E1.
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It follows that

G`fµ = ZTµ Zµ,

where Zµ solves the equation

(RTk`Rk` + µI)Z = E1.

These are the normal equations associated with the least-squares problem

min
Z

∥∥∥∥∥∥∥∥
 Rk`

µ1/2I

Z − µ−1/2

 0

E1


∥∥∥∥∥∥∥∥

2

F

, (4.3.7)

derivatives of tr(G`fµ) at µ is evaluated in the same manner as G`fµ. Let Z` solve (4.3.7)

and introduce

W` = (RTk`Rk` + µI)−1Z`,

which we compute by solving a least-squares problem analogous to (4.3.7). The value

of the derivative is then determined by computing −2ZT` W`. The function tr(L2`+1fµ)

is evaluated analogously. In order for (4.3.3) to hold, we may have to increase ` further.

Specifically, when (4.3.3) does not hold for µ = µ
(p)
` that has been found by the zero-finding

method iterations, we carry out one more block Lanczos step and, therefore determine

approximations µ
(j)
`+1, j = 1, 2, 3, ..., of µ`+1 of the solution, of the nonlinear function

φ`+1(µ) = ∆2,

We assume that for some `, the stopping criteria (4.3.3) is satisfied for µ = µ
(p)
` . We

now want to solve the normal equation

(HTH + µ
(p)
` I)X = HTB,
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Let HTB = QR be the QR factorization of HTB. We want to compute a sequence of

approximations solutions

X` = P
(k)
` Y`, ` = 1, 2, ... (4.3.8)

where P
(k)
` is the orthonormal matrix defined in the decompositions (4.2.6) by application

of ` steps of block Lanczos bidiagonalization algorithm to the matrix H with the initial

block P1 = Q. The approximate solution X` is then determined by the the following

Galerkin equations

P
(k)T

` (HTH + µ
(p)
` I)P

(k)
` Y` = P

(k)T

` HTB,

= P
(k)T

` QR,

= E1R.

We have

P
(k)T

` (HTH + µ
(p)
` I)P

(k)
` Y` = (RTk`Rk` + µ

(p)
` I)Y`

We then compute the solution Y` by solving

(RTk`Rk` + µ
(p)
` I)Y` = E1R. (4.3.9)

Note that (4.3.9) are the normal equations associated to the least-squares problem

min
Yl`

∥∥∥∥∥∥∥∥
 Rk`

µ
(p)1/2

` I

Y` − µ(p)−1/2

`

 0

E1R


∥∥∥∥∥∥∥∥

2

F

, (4.3.10)

We use the QR factorization when solving the low-dimensional least-squares problems

(4.3.7) and (4.3.10).
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Algorithm 6 Outline of solution method for (4.1.9)

Input : H, B, ∆, τ , η, µ : initial guess for the zero-finding method

1. Compute HTB = QR and set P1 := Q ∈ Rn×k,

2. For ` = 1, 2, ... until E`,µ < τ

(a) Determine the matrix with orthonormal columns P
(k)
l and the

block-tridiagonal matrix Rk` by the block Lanczos bidiagonalizatin when

reorthogonalization is carried out

(b) Update the value µ by solving φ`(µ) = ∆2 with the zero-finding method

3. Determine Y` by (4.3.10) and then X` by (4.3.8)

4.4 Numerical results

This section presents some representative numerical experiments. All computations

were carried out using the MATLAB environment on an Intel(R) Core (TM) 2 Duo

CPU T5750 computer with 3 GB of RAM. The computations were carried out with

approximately 16 decimal digits of accuracy. We illustrate the efficiency of the numerical

method described in this chapter by applying Algorithm 6 on a few linear discrete ill-posed

problems.

Example 1

Let us consider the following Fredholm equation of the first kind in two space-dimensions∫ ∫
Ω
κ(x, y, s, t)f(s, t)dsdt = g(x, y), (x, y) ∈ Ω′, (4.4.1)

where κ is the kernel, f is the true object and g is the available data which is contaminated

by measurement errors. Discretizing of the functions and approximating integration with
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a quadrature rule leads to the following large-scale linear relationship

Kf = g, (4.4.2)

where K is an N ×N ill-conditioned matrix with N = mn and some block structure de-

pending on the imposed boundary condition, and f, g ∈ Rmn ; see, e.g, [62] for discussions

on how to construct the big matrix K when the kernel is specified. Typically, the imple-

mentation of the problem (4.4.2) is a memory intensive application with formidable data.

Fortunately, in many applications the kernel satisfies κ(x, y; s, t) = κ(x−s, y−t), and it is

said to be invariant in space or isotropic. In this case, the integration in equation (4.4.1)

is a convolution operation, and thus κ can usually be represented by a compact data

structure when the storage becomes an issue. Applications when the kernel is spatially

invariant and therefore exploiting the matrix data structure can be found in [5, 37, 80, 82].

Solving the problem requires the use of an iterative scheme [87, 57], the most intensive

part of these methods is the matrix-vector multiplications with K, which is assumed to

be extremely large and therefore an efficient storage scheme exploiting structure should

be used. This is the aim of the proposed method in this article. Thus, instead of applying

an iterative method to the large linear system (4.4.2), we apply our Algorithm 6 to an

equivalent linear system of multiple right hand side with a matrix of moderate size.

We let F = mat(f) and G = mat(g). For spatially invariant kernels, we partition F and

G into cell arrays. The dimension of the cell arrays are assumed to be the same as the

cell array containing the kernel. That is, for example, if F and G are partitioned into k

cell arrays of size d× d each, then we transform all the cell arrays in vectors by the linear

operator vec and therefore the corresponding linear system of equation of multiple right
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hand side is given by

H ∗ vec(Xi) = vec(Bi), i = 1, ..., k

where H ∈ Rd2×d2
is defined by the kernel in all the k cell arrays. Xi and Bi are the i-th

region of F and G, respectively . We now partition F and G into appropriate size blocks

based on the size of the invariant kernel κ. In the case of spatially invariant kernels, the

integration in equation (4.4.3) is a convolution operation, and thus the collection of the

convolution of each block with κ can be transformed into linear system with multiple right

hand sides of the form (4.1.2). As a test, we consider a spatially invariant kernel whose

function is given by

k(x, y) =
1

2πσ2
exp

(
− 1

2σ2
(x2 + y2)

)
. (4.4.3)

The test true object in our example is given by f(x, y) = f1(x)f2(y), where

fi(s) =


1 + cos(π3 s) if |s| < 3

0 otherwise,

i = 1, 2.

We use the MATLAB code phillips from [61] to discretize f and obtain a scaled solution

F ∈ RN×N with N = 256, we then partition it to k = N/d2 small blocks (d � N). Let

x̂(i) = vec(X̂i), where X̂i denote the d × d i-th block. By setting X̂ = [x̂(1), x̂(2), ..., x̂(k)],

the error-free right hand-side of (4.1.2) is given by B̂ = HX̂, where H ∈ Rd2×d2
is the

coefficient matrix modelling the convolution operation of each block with the spatially

invariant kernel (4.4.3). In this example, we choose the kernel (4.4.3) to be of size d× d,

where d = 64. By setting σ = 2.5, the MATLAB code kronDecomp from [61] gives a

matrix H = H1 ⊗H2 ∈ R642×642
of condition number equal to 1.3834× 1021, and where

the definition of the Kronecker product of two matrices H = (aij) and B = (bij) of sizes
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n×p and s× q, respectively, is defined as the (ns)× (pq) matrix H⊗B with block entries

aijB. Applications when H has a Kronecker product structure when solving Fredholm

integral equations of the first kind in two space-dimensions with a separable kernel can be

found in [13]. When no error E matrix is added to B̂, Algorithm 6 with η = 0.999999 and

τ = 10−3 requires 2 block Lanczos bidiagonalization with a CPU time of 0.89 s and gives

the approximate solution X2, which satisfies ‖X̂−X2‖F
‖X̂‖F

= 9.99×10−7. The computed value

of µ is 9.89× 10−7. Figure 5.1 displays the true object, the spacially invariant kernel and

the computed approximate solution X2 obtained when no noise is added to the available

data. We next add Gaussian white noise so that the error E has normally distributed

entries with zero mean and is normalized to correspond to a the noise level ‖E‖F /‖B̂‖F =

0.01. Algorithm 6 applied to this noisy system with η = 0.9999 and τ = 10−3 requires

2 block Lanczos bidiagonalization steps with a CPU time of 0.86 s to determine the

approximate solution X2 of relative error ‖X̂−X2‖F
‖X̂‖F

= 2.20 × 10−3. The computed value

of µ is 1.49× 10−4. Figure 5.1 displays the computed approximate solution X2 obtained

when a 0.01 noise level is added to the available data. We compare our approach with

several existing methods which are closely related. The first related method proposed in

[25] utilizes the connection between (standard) Golub-Kahan bidiagonalization and Gauss

quadrature rules for solving large ill-conditioned linear systems of equations (4.4.4). We

refer to this method as GKB. Another recent related method is GLT (Algorithm 2). This

method use the relation between the global Lanczos method and Gauss-type quadrature

rules to solve the problem (4.4.4) when K is given as a Kronecker product for the spatially

invariant case. In Table 4.1, we report more results for comparing the three methods for

two levels of noise. We choose η = 0.9999 for the three methods. Looking at the results
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displayed in Table 4.1 we can state that, for this example, Algorithm 6 exhibits excellent

performance both in terms of quality of the results and computational time.

Table 4.1 – Results for Example 1.

Noise level Method µ R(X) CPU-times(s) l

10−3

Algorithm 6 2.49× 10−4 2.49× 10−4 0.89 2

GLT 1.19× 10−4 7.50× 10−2 7.31 61

GKB 6.09× 10−5 1.93× 10−2 33.46 131

10−2

Algorithm 6 3.96× 10−4 2.30× 10−3 0.87 2

GLT 8.04× 10−4 3.82× 10−2 5.77 51

GKB 7.55× 10−4 4.44× 10−2 21.18 85
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Figure 4.1 – Example 1 : Spatially invariant kernel (left), true object (center), and

approximate solution (right) when no noise is added to the data.

87



Figure 4.2 – Example 1 : Approximate solutions for 0.001 (left) and for 0.01 noise level

(right).

Example 2

As a second test, we consider the spatially invariant kernel whose function is given by

(4.4.3). The test true object in our example is given by g(x, y) = g1(x)g1(y), where

gi(s) = 2sinh(s)/s, i = 1, 2.

We use the MATLAB code baart from [61] to discretize g and obtain a scaled solution

F ∈ RN×N with N = 256, we then partition it to 16 small blocks of sizes 64 × 64.

We construct X̂ and the error-free right hand-side B̂, by the same way as in Example

2. Table 4.2 displays the computed regularization parameters and the relative error in

computed approximate solutions determined by Algorithm 6 with η = 0.98 and τ = 10−3

for different noise levels, as well as the number of block Lanczos steps (BLS) required to

satisfy the stopping criterion.
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Table 4.2 – Results for Example 3.

Noise level BLS Regularization parameter Relative error

0.01 2 2.04× 10−2 2.17× 10−2

0.1 7 2.21× 10−2 7.72× 10−2

Figure 4.3 – Example 2 : True object (left) and approximate solution (right).

Example 3

In this example, we describe an image restoration problem by sectioning the image and

applying the block restoration scheme to illustrate the main advantage of the approach

discussed in this chapter. An efficient way to reduce memory use is to process the image in

blocks. We will see how block processing can produce better results in terms of accuracy

and execution time by comparing our approach with several existing methods that are

closely related to ours. In order to understand this numerical experiment, we first recall

that the model of image restoration is expressed as

Kx = g, g = ĝ + e, (4.4.4)

89



where g is the blurred and noisy image, ĝ is the associated blurred and noise-free image.

K is a blurring matrix and and it models the blurring operation, x is the true image

and e is the additive noise. The blurring matrix K is determined from two ingredients :

the point spread function (PSF) [62], which defines how each pixel is blurred, and the

boundary conditions, which specify our assumptions on the scene just outside our image.

We describe the strategy related to our approach to solve the problem (4.4.4), when a

spatially invariant point spread function is given. That is, the product Kx is usually

considered as a convolution of the associated PSF and the object x. We assume now

that the overall space invarying PSF does not vary across the image, and thus the PSF

can be obtained from any region of the image. Taking into consideration this important

property, it is necessary to exploit the block processing of the image. This discussion leads

us to decompose the blurred and noisy image into sets of patches on which the blur is

assumed to be the same. Given the blurred and noisy image partitioned into small blocks

based on the size of the point spread function, we then assume that every blurred and

noisy subimage is given by convolving the PSF with the exact subimage. Collection of

image restoration problems for each block image will be transformed into a linear system

with multiple right hand sides. In many cases, when processing an image by blocks it

is necessary to overlap the regions in order to minimize edge effects. We now want to

partition the problem (4.4.4) as

Hxi = gi, i = 1, ..., k,

where H is a matrix of moderate size based on the size of the PSF, xi and gi are vectors

obtained by transforming each subimage block of the true image and the blurred and noisy
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image, respectively, by the linear operator vec. k is the overall number of subimages. We

assume that the original image has dimension n × n, therefore K is an N × N matrix,

where N = n2. Let k be the number of divided subimages Xi of equal size d × d. The

corresponding blurred subimages ĝi are obtained by convolving each subimage Xi with

the PSF. By setting xi = vec(Xi), ĝi = vec(ĝi), X = [x1, ..., xk] and Ĝ = [ĝ1, ..., ĝk], the

image restoration problem (4.4.4) is restated by the following form with k right-hand sides

HX = G, G = Ĝ+ E (4.4.5)

where H is the d2×d2 matrix corresponding to the PSF and E is the measurement noise.

At this level, we are now able to us our approach described by Algorithm 6 to solve the

problem (4.4.5). The test image used in our study is the Airplane image of size 256× 256

pixels, shown on the left of Figure 4.4. We then consider a PSF array for out-of-focus blur

[61], where the entries are given by

(PSF)ij =


1

(πr2)
, if (i− k)2 + (j − l)2 ≤ r2,

0 else

where (k, l) is the center of PSF, and r is the radius of the blur. As a test, we set r = 5. We

now want to corrupt the available image by the spatially invariant blur given by the above

PSF. The test image is divided into 64 subimages of small size, where each subimage is

of size 32 × 32 pixels. We convolve each subimage with the PSF and we add a Gaussian

white noise with 10−3 noise level to obtain the blurred and noisy image represented in

the right of Figure 4.4. In the case of spatially invariant blur, the blurring matrix H given

in (4.4.5) can be decomposed as a Kronecker product H = H1 ⊗ H2. It is well known

that many blurring matrices have Kronecker structure or can be approximated well by a
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matrix with this structure ; see [71, 72, 99]. We use the MATLAB code kronDecomp from

[61] to obtain the two matrices, H1 and H2 of size 32 × 32. To minimize edge effect, we

use the reflexive boundary conditions. The performances of the method proposed in this

chapter (Algorithm 6) and the GKB and GLT methods are compared by computing the

peak signal to noise ratio (PSNR) defined by

PSNR(X) = 20log10

(
255

‖X̂ −X‖F

)
,

where 255 is the maximum possible pixel value of the image. We also compute the following

relative error to evaluate the precision of the estimates

R(Xl) =
‖X̂ −Xl‖F
‖X̂‖F

,

where X̂ and X` are the true and restored images, respectively. Using Algorithm 6 with

η = 0.9994 and τ = 10−3 gives the restored image obtained represented on the right of

Figure 4.7. The relative error was R(X`) = 2.62× 10−2 with the PSNR(X`) = 33.88. The

Algorithm 6 was terminated after 5 iterations of block Lanzos bidiagonalization (BLB)

with a CPU time of 1.54 s. The computed optimal value of µ is 2.80 × 10−4. Table 4.3

reports on more results for comparing the quality of the restorations obtained by the

three methods used to solve the present problem in terms of the PSNR and also in the

execution time and relative error for three levels of noise. We observe that Algorithm 6

can deliver better results than the other ones. In Figure 4.5 we plot the values of the

relative error and the regularization parameter versus the number of iterations, obtained

by applying Algorithm 6 when the noise level in the data is 10−3.
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Table 4.3 – Results for Example 3.

Noise level Method µ PSNR R(Xl) CPU-times(s) `

10−4

Algorithm 6 1.86× 10−4 36.61 1.91× 10−2 1.74 5

GLT 1.34× 10−4 34.86 2.34× 10−2 3.52 72

GKB 1.65× 10−4 35.92 2.07× 10−2 16.97 67

10−3

Algorithm 6 2.80× 10−4 33.88 2.62× 10−2 1.54 5

GLT 1.95× 10−4 33.49 2.74× 10−2 3.63 68

GKB 2.65× 10−4 33.24 2.82× 10−2 15.61 62

10−2

Algorithm 6 8.80× 10−3 28.50 4.86× 10−2 0.22 3

GLT 6.80× 10−3 27.57 5.41× 10−2 0.31 6

GKB 7.90× 10−3 27.47 5.74× 10−2 2.19 6

Figure 4.4 – Example 3 : Original image (left), blurred and noisy image (right).
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Figure 4.5 – Example 3 : Values of the relative error (lower graph) and the regularization

parameter (upper graph) versus the number of iterations, with noise level 10−3.
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Figure 4.6 – Example 3 : Behaviour of the relative error versus the number of iterations

for different methods with noise level 10−3.
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Figure 4.7 – Example 3 : Blurred and noisy image (left), restored image (right)
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Chapitre 5

Solution methods for linear discrete ill-posed pro-

blems for color image restoration

5.1 Introduction

This chapter discusses the use of iterative methods based on standard or block Golub–

Kahan-type bidiagonlization, combined with Tikhonov regularization, to the restoration

of a multi-channel image from an available blur- and noise-contaminated version. Applica-

tions include the restoration of color images whose RGB (red, green, and blue) represen-

tation uses three channels ; see [44, 62]. The methods described also can be applied to the

solution of Fredholm integral equations of the first kind in two or more space dimensions

and to the restoration of hyper-spectral images. The latter kind of images generalize color

images in that they allow more than three “colors” ; see, e.g., [77]. For definiteness, we

focus in this section on the restoration of k-channel images that have been contaminated

by blur and noise, and formulate this restoration task as a linear system of equations

with k right-hand side vectors, where each spectral band corresponds to one channel. To
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simplify our notation we assume the image to be represented by an array of n× n pixels

in each one of the k channels, where 1 ≤ k � n2. Let b(i) ∈ Rn2
represent the available

blur- and noise- contaminated image in channel i, let e(i) ∈ Rn2
describe the noise in

this channel, and let x̂(i) ∈ Rn2
denote the desired unknown blur- and noise-free image in

channel i. The corresponding quantities for all k channels b, x̂, e ∈ Rn2k are obtained by

stacking the vectors b(i), x̂(i), e(i) of each channel. For instance, b = [(b(1))T , . . . , (b(k))T ]T .

The degradation model is of the form

b = Hx̂+ e (5.1.1)

with blurring matrix

H = Ak ⊗A ∈ Rn
2k×n2k.

The matrix A ∈ Rn2×n2
represents within-channel blurring, which is assumed to be the

same in all channels, and the small matrixAk ∈ Rk×k models cross-channel blurring. When

Ak = Ik, there is no cross-channel blurring. In this situation, the blurring is said to be

within-channel only and the deblurring problem decouples into k independent deblurring

problems. The degradation model (5.1.1) then can be expressed in the form

B = AX̂ + E, (5.1.2)

where B = [b(1), . . . , b(k)], X̂ = [x̂(1), . . . , x̂(k)], and E = [e(1), . . . , e(k)] are n2 × k “block

vectors”.

When Ak 6= Ik, the degradation model (5.1.1) can be expressed as

B = A(X̂) + E, (5.1.3)
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where the matrices B, X̂, and E are the same as in (6.1.9) and the linear operator A is

defined by

A : Rn
2×k → Rn

2×k

A(X) := AXATk . (5.1.4)

Its transpose is given by AT (X) := ATXAk. For notational simplicity, we denote in the

following both the matrix A in (6.1.9) and the linear operator A in (6.1.10) by A, and we

write A(X) as AX.

The singular values of a blurring A matrix or operator typically “cluster” at the origin,

i.e., A has many singular values of different orders of magnitude close to zero. It follows

that the solution (if it exists) of the linear system of equations

AX = B (5.1.5)

is very sensitive to the error E in B. Linear systems of equations with a matrix of this

kind are commonly referred to as linear discrete ill-posed problems.

Let B̂ denote the (unknown) noise-free block vector associated with B. The system of

equations AX = B̂ is assumed to be consistent. Denote the solution of minimal Frobenius

norm by X̂. We would like to determine an accurate approximation of X̂ given B and A.

This generally is a difficult computational task due to the error E in B and the presence

of tiny positive singular values of A.

Tikhonov regularization reduces the sensitivity of the solution of (5.1.5) to the error

E in B by replacing (5.1.5) by a penalized least-squares problem of the form

min
X∈Rn2×k

{‖AX −B‖2F + µ−1‖X‖2F }, (5.1.6)
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where µ > 0 is the regularization parameter. The normal equations associated with this

minimization problem are given by

(ATA+ µ−1I)X = ATB. (5.1.7)

They have the unique solution

Xµ =
(
ATA+ µ−1I

)−1
ATB (5.1.8)

for any µ > 0. The size of µ determines how sensitive Xµ is to the error in B and how

close Xµ is to the desired solution X̂. We will comment on the use of µ−1 in (5.1.6) instead

of µ below.

The computation of an accurate approximation Xµ of X̂ requires that a suitable value

of the regularization parameter µ be used. Several methods for determining such a µ-

value have been suggested in the literature. These include so-called heuristic methods

that do not require any knowledge of the size of the error E in B, such as the L-curve

criterion, generalized cross validation, and the quasi-optimality criterion ; see, e.g., [22, 36,

42, 58, 69, 70, 90] for discussions and illustrations. We will use the discrepancy principle,

discussed, e.g., in [31], to determine µ in the computed examples reported in Section 5.5.

The discrepancy principle requires that a bound ε > 0 of ‖E‖F be available and prescribes

that µ > 0 be chosen so that the solution (5.1.8) of (5.1.6) satisfies

‖B −AXµ‖F = ηε, (5.1.9)

where η > 1 is a user-specified constant independent of ε. A zero-finder can be applied to

determine a µ-value such that the associated Tikhonov solution (5.1.8) satisfies (5.1.9).

When the matrix A is of small to moderate size, the left-hand side of (5.1.9) easily can

be evaluated by using the singular value decomposition (SVD) of A. However, computation
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of the SVD is impractical when the matrix A is large. We will discuss how an approximate

solution of (5.1.6) can be computed by first evaluating a partial block Golub–Kahan

bidiagonalization (BGKB) of A and then solving (5.1.6) in a subspace so defined.

Alternatively, we may reduce A to a small bidiagonal matrix with the aid of global

Golub–Kahan bidiagonalization (GGKB), which also is a block method, and then apply

the connection between GGKB and Gauss-type quadrature rules to determine upper and

lower bounds for the left-hand side of (5.1.9). This allows the computation of a suitable

value of µ in a simple manner. This approach has previously been applied in [10] ; the

GGKB method was first described in [95]. The BGKB and GGBK block methods are

compared to the application of Golub–Kahan bidiagonalization (with block size one) in

two ways : One approach applies Golub–Kahan bidiagonalization with initial vector b(1)

and generates a solution subspace that is large enough to solve all systems of equations

Ax(i) = b(i), i = 1, . . . , k, (5.1.10)

with Tikhonov regularization. The other approach is to simply solve each one of the

k systems of equations (5.1.10) independently with Golub–Kahan bidiagonalization and

Tikhonov regularization, i.e., by using the algorithm described in [25] k times.

This chapter is organized as follows. Section 5.2 describes the BGKB method and

discusses its application to the solution of (5.1.6). We remark that the bidiagonaliza-

tion method differs from the one described by Golub et al. [45]. The determination of a

regularization parameter such that the computed solution satisfies the discrepancy prin-

ciple is also discussed. Section 6.4 reviews the use of the GGBK method to reduce A.

The connection between this reduction and Gauss-type quadrature rules is exploited to
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compute bounds for the left-hand side of (5.1.9). The solution of (5.1.6) by applying

Golub–Kahan bidiagonalization (with block size one) determined by A and the initial

vector b(1) is described in Section 5.4. Sufficiently many bidiagonalization steps are car-

ried out so that all systems (5.1.10) can be solved with solution subspaces determined

by A and b(1). We also discuss the solution of the k systems (5.1.10) independently by

Golub–Kahan bidiagonalization and Tikhonov regularization as described in [25]. Section

5.5 presents a few numerical examples.

5.2 Solution by partial block Golub–Kahan bidiagonaliza-

tion

Introduce for µ > 0 the function

φ(µ) = ‖B −AXµ‖2F . (5.2.1)

Substituting (5.1.8) into (5.2.1) and using the identity

I −A(ATA+ µ−1I)−1AT = (µAAT + I)−1 (5.2.2)

shows that (5.2.1) can be written as

φ(µ) = tr
(
BT fµ(AAT )B

)
(5.2.3)

with

fµ(t) = (µt+ 1)−2. (5.2.4)

The determination of a value of the regular parameter µ > 0 that satisfies (5.1.9)

generally requires the function φ to be evaluated for several µ-values. Each evaluation

101



of φ is very expensive for large-scale problems. We therefore approximate the expression

BT fµ(AAT )B by a simpler one, which we determine with a few steps of block Golub–

Kahan bidiagonalization as follows. Introduce the QR factorization B = P1R1, where

P1 ∈ Rn2×k has orthonormal columns and R1 ∈ Rk×k is upper triangular. Then ` steps of

the BGKB method applied to A with initial block vector P1 gives the decompositions

AQ
(k)
` = P

(k)
`+1C̄

(k)
` , ATP

(k)
` = Q

(k)
` C

(k)T

` , (5.2.5)

where the matrices P
(k)
`+1 = [P1, . . . , P`+1] ∈ Rn2×(`+1)k and Q

(k)
` = [Q1, . . . , Q`] ∈ Rn2×`k

have orthonormal columns and

C̄
(k)
` :=



L1

R2 L2

. . .
. . .

R` L`

R`+1


∈ Rk(`+1)×k`, (5.2.6)

is lower block bidiagonal with lower triangular diagonal blocks Lj ∈ Rk×k and upper

triangular blocks Rj ∈ Rk×k. Moreover, C
(k)
` is the leading k`× k` submatrix of C̄

(k)
` and

P` is the leading n2 × `k submatrix of P`+1. For block size k = 1, the decompositions

(5.2.5) simplify to the decompositions computed by the algorithm bidiag1 by Paige and

Saunders [87]. In particular, the decompositions (5.2.5) differ from the ones described by

Golub et al. [45], who compute an upper block bidiagonal matrix. In our discussion, we

will assume that ` is small enough so that the triangular matrices Lj , j = 1, . . . , `, and

Rj , j = 2, . . . , `+ 1, are nonsingular.
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It follows from (5.2.5) that the range of the matrix P
(k)
` is the block Krylov subspace

K`(AA
T , B) = Range[P1, AA

TP1, (AA
T )2P1, . . . , (AA

T )`−1P1].

Similarly, the range of the matrix Q
(k)
` is the block Krylov subspace

K`(A
TA,ATB) = Range[ATP1, A

TAATP1, (A
TA)2ATP1, . . . , (A

TA)`−1ATP1].

Multiplying the rightmost equation (5.2.5) by A from the left yields

AATP
(k)
` = P

(k)
`+1C̄

(k)
` C

(k)T

` . (5.2.7)

Therefore,

P
(k)T

` AATP
(k)
` = C

(k)
` C

(k)T

` .

This suggests that fµ(AAT ) may be approximated by fµ(C
(k)
` C

(k)T

` ), which is much easier

to evaluate than fµ(AAT ). It follows from results by Golub and Meurant [46, 47] on the

symmetric block Lanczos algorithm that the expression

G`fµ = RT1 E
T
1 fµ

(
C

(k)
` C

(k)T

`

)
E1R1 (5.2.8)

can be interpreted as an `-block Gauss quadrature rule for the approximation ofBT fµ(AAT )B,

i.e.,

G`f = BT f(AAT )B ∀f ∈ P2`−1,

where P2`−1 denotes the set of all polynomials of degree at most 2`− 1 ; see also [34] for

related discussions. We therefore approximate (5.2.3) by

φ`(µ) = tr(G`fµ) (5.2.9)

and let the regularization parameter be the solution of

φ`(µ) = η2ε2. (5.2.10)
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The following result shows that φ`(µ) is decreasing and convex. This makes it convenient

to compute the solution µ` of (5.2.10) by Newton’s method ; see below.

Proposition 5.2.1. The functions φ(µ) and φ`(µ), defined by (5.2.3) and (5.2.9) for

µ > 0, respectively, satisfy

φ′(µ) < 0, φ′′(µ) > 0, φ′`(µ) < 0, φ′′` (µ) > 0.

Démonstration. The derivative of φ(µ) is given by

φ′(µ) = −2tr(BT (µAAT + I)−3AATB).

It follows from (µAAT + I)−1A = A(µATA+ I)−1 that

φ′(µ) = −2tr(BTA(µATA+ I)−3ATB).

Substituting the spectral factorization ATA = SΛST , STS = I, into the above expression

and letting W = [w1, . . . , wk] = STATB yields

φ′(µ) = −2tr(W T (µΛ + I)−3W ) = −2
k∑
j=1

wTj (µΛ + I)−3wj < 0.

Thus, φ(µ) is a decreasing function of µ. Turning to the second derivative, we have

φ′′(µ) = 6tr(BTAAT (µAAT + I)−4AATB),

and can proceed similarly as above to show that φ′′(µ) > 0.

The derivative of φ`(µ) is given by

φ′`(µ) = tr(RT1 E
T
1 C

(k)
` (µC

(k)T

` C
(k)
` + I)−3C

(k)T

` E1R1), (5.2.11)
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where we again use the identity (µC
(k)
` C

(k)T

` + I)−1C
(k)
` = C

(k)
` (µC

(k)T

` C
(k)
` + I)−1. The

stated properties of φ′`(µ) and φ′′` (µ) can be shown by substituting the spectral factoriza-

tion of C
(k)T

` C
(k)
` into (5.2.11).

Since φ`(µ) is decreasing and convex, Newton’s method converges monotonically and

quadratically to the solution µ` of (5.2.10) for any initial approximate solution µinit < µ`.

This makes it easy to implement the Newton method. For instance, we may use µinit = 0

when φ` and its derivative are suitably defined at µ = 0 ; see [25] for a detailed discussion

of the case when the block size is one.

We note that the function µ→ φ`(1/µ), which corresponds to the regularization term

µ‖X‖2F in (5.1.6), is not guaranteed to be convex. Therefore, Newton’s method has to

be safeguarded when applied to the solution of φ`(1/µ) = ε2. This is the reason for

considering Tikhonov regularization of the form (5.1.6).

Proposition 5.2.2. Let PN (M) denote the orthogonal projector onto the null space N (M)

of the matrix M . Then

φ(0) = tr(BTB), lim
µ→∞

φ(µ) = tr(BTPN (AAT )B),

φ`(0) = tr(BTB), lim
µ→∞

φ`(µ) = tr(RT1 E
T
1 PN (R`R

T
` )E1R1).

Démonstration. The value at zero and limit of φ follow from (5.2.3). The expression (5.2.8)

and the definition of the upper triangular matrix R1 yield

φ`(0) = tr
(
RT1 E

T
1 f0

(
C

(k)
` C

(k)T

`

)
E1R1

)
= tr(RT1 R1) = tr(BTB).

The result for φ`(µ) as µ→∞ follows similarly as for φ.

105



Let the regularization parameter µ` be computed by Newton’s method. We then deter-

mine the corresponding approximate solution by projecting the normal equations (5.1.7)

with µ = µ` onto a smaller space determined by the decompositions (5.2.5). We seek to

determine an approximate solution of the form

Xµ` = Q
(k)
` Yµ` , Yµ` ∈ Rk`×k`, (5.2.12)

by solving the normal equations by a Galerkin method,

(Q
(k)
` )T (ATA+ µ−1

` I)Q
(k)
` Yµ` = (Q

(k)
` )TATB, (5.2.13)

which simplifies to

(C̄
(k)T

` C̄
(k)
` + µ−1

` I)Yµ` = C̄
(k)T

` E1R1. (5.2.14)

We compute the solution Y`,µ by solving a least-squares problem for which (5.2.14) are

the normal equations

min
Y ∈Rk`×k`

∥∥∥∥∥∥∥∥
 C̄

(k)
`

µ
−1/2

` I

Y − µ1/2

`

E1R1

0


∥∥∥∥∥∥∥∥

2

F

. (5.2.15)

Our reason for computing the solution of (5.2.15) instead of (5.2.14) is that solving the

least-squares problem is less sensitive to errors for small values of µ` > 0.

Proposition 5.2.3. Let µ` solve (5.2.10), and let Yµ` solve (5.2.13). Then the associated

approximate solution Xµ` = Q
(k)
` Yµ` of (5.1.6) satisfies

‖AXµ` −B‖
2
F = tr

(
RT1 E

T
1 fµ`(C̄

(k)
` C̄

(k)T

` )E1R1

)
.
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Démonstration. Using the expression of X`,µ and applying (5.2.5) shows that

AXµ` −B = AQ
(k)
` Yµ` −B

= P
(k)
`+1C̄

(k)
` Yµ` − P1R1

= P
(k)
`+1

(
C̄

(k)
` Yµ` − E1R1

)
,

where we recall that B = P1R1. It follows from (5.2.14) that

P
(k)
`+1

(
C̄

(k)
` Yµ` − E1R1

)
= P

(k)
`+1

[(
C̄

(k)
`

(
C̄

(k)T

` C̄
(k)
` + µ−1

` I
)−1

C̄
(k)T

` − I
)
E1R1

]
.

The identity (5.2.2) with A replaced by C̄
(k)
` now yields

‖AXµ` −B‖
2
F = tr

(
RT1 E

T
1 fµ`(C̄

(k)
` C̄

(k)T

` )E1R1

)
.

Algorithm 7 The BGKB-Tikhonov method

Input : A, B, k, ε, η ≥ 1.

1. Compute the QR factorization B = P1R1.

2. For ` = 1, 2, . . . until ‖AXµ` −B‖F ≤ ηε

(a) Determine Q
(k)
` and P

(k)
`+1 and block bidiagonal matrix C

(k)
` by BGKB.

(b) Update the value µ` by solving (5.2.10) with Newton’s method.

3. Determine Yµ` by solving (5.2.15) and then Xµ` by (5.2.12).

5.3 The GGKB method and Gauss-type quadrature

We discuss the application of the GGKB method to compute an approximate solution

of (5.1.6) and review how the method can be used to compute inexpensive upper and lower
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bounds for the discrepancy (5.1.9). These bounds help us to determine the regularization

parameter. This approach of solving (5.1.6) and determining bounds for the discrepancy

has recently been described in [10], where further details can be found.

Application of ` steps of the GGKB method to A with initial block vector B determines

the lower bidiagonal matrix

C̄` =



ρ1

σ2 ρ2

. . .
. . .

σ`−1 ρ`−1

σ` ρ`

σ`+1



∈ R(`+1)×`

as well as the matrices

U
(k)
`+1 = [U1, U2, . . . , U`+1] ∈ Rn

2×(`+1)k, V
(k)
` = [V1, V2, . . . , V`] ∈ Rn

2×`k

with block columns Ui, Vj ∈ Rn2×k, where U1 = s1B and s1 > 0 is a scaling factor.

Introduce the inner product

〈F,G〉 = tr(F TG), F,G ∈ Rn
2×k.

We have ‖F‖F = 〈F, F 〉1/2. The block columns U1, . . . , U`+1 are orthonormal with respect

to this inner product, and so are the block columns V1, . . . , V`. Thus,

〈Ui, Uj〉 = 〈Vi, Vj〉 =


1 i = j,

0 i 6= j.

We assume that ` is small enough so that all nontrivial entries of the matrix C̄` are

positive. This is the generic situation. We denote the leading `× ` submatrix of C̄` by C`.
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The matrices determined satisfy

[
A(V1), A(V2), . . . , A(V`)

]
= U

(k)
`+1(C̄` ⊗ Ik), (5.3.1)

[
AT (U1), AT (U2), . . . , AT (U`)

]
= V

(k)
` (CT` ⊗ Ik). (5.3.2)

Consider the functions (of µ),

G`fµ = ‖B‖2F eT1 (µC`C
T
` + I`)

−2e1, (5.3.3)

R`+1fµ = ‖B‖2F eT1 (µC̄`C̄
T
` + I`+1)−2e1. (5.3.4)

The function (5.3.3) can be interpreted as an `-point Gauss quadrature rule for the ap-

proximation of the expression φ(µ) defined by (5.2.3) ; see, e.g., [10, 36]. Similarly, the

function (5.3.4) may be regarded as an (`+ 1)-point Gauss–Radau quadrature rule with

a fixed node at the origin for the approximation of (5.2.3). The remainder formulas for

Gauss and Gauss–Radau quadrature, together with the observations that the derivatives

of even order of the function (5.2.4) are positive and the derivatives of odd order are

negative, yield the lower and upper bounds

G`fµ ≤ φ(µ) ≤ R`+1fµ; (5.3.5)

see [10] for details.

We determine a suitable value of µ and an associated approximate solution of (5.1.6)

as follows. For ` ≥ 2, we seek to solve the nonlinear equation

G`fµ = ε2 (5.3.6)

for µ > 0 by Newton’s method. One can show similarly as in Section 5.2 that the function

µ→ G`fµ is decreasing and convex. Therefore, assuming that a solution µ = µ` of (5.3.6)
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exists and that the initial approximate solution µinit ≥ 0 is smaller than µ`, Newton’s

method converges quadratically and monotonically to µ`. If there is no solution, then we

increase `. Generally, equation (5.3.6) has a solution already for small values of `.

If the solution µ` of (5.3.6) satisfies

R`+1fµ` ≤ η
2ε2, (5.3.7)

then it follows from (5.3.5) that there is a solution Xµ` of (5.1.6) such that

ε ≤ ‖B −AXµ`‖F ≤ ηε.

If (5.3.7) does not hold for µ`, then we carry out one more GGKB steps and solve

(5.3.6) with ` replaced by `+ 1. Generally, the bound (5.3.7) can be satisfied already for

small values of `, because for any µ > 0, we have generically the inequalities

G`−1fµ < G`fµ < φ(µ) < R`+1fµ < R`fµ;

see [79] for a proof.

Assume now that (5.3.7) holds for µ = µ`. We then compute the approximate solution

Xµ`,` = V
(k)
` (yµ` ⊗ Ik) (5.3.8)

of (5.1.6), where yµ` solves

(C̄T` C̄` + µ−1
` I`)y = d1C̄

T
` e1, d1 = ‖B‖F . (5.3.9)

These are the normal equations associated with the least-squares problem

min
y∈R`

∥∥∥∥∥∥∥∥
µ

1/2
` C̄`

I`

 y − d1µ
1/2
` e1

∥∥∥∥∥∥∥∥
F

. (5.3.10)

We compute yµ` by solving this least-squares problem instead of the normal equations

(5.3.9), because this is beneficial numerically, in particular when µ` > 0 is small.
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Proposition 5.3.1. Let µ` solve (5.3.6) and let yµ` solve (5.3.10). Then the associated

approximate solution (5.3.8) of (5.1.6) satisfies

‖AXµ`,` −B‖
2
F = R`+1fµ` .

Démonstration. The representation (5.3.8) and (5.3.1) show that

AXµ`,` = U
(k)
`+1(C̄` ⊗ Ik)(yµ` ⊗ Ik) = U

(k)
`+1(C̄`yµ` ⊗ Ik).

Using the above expression gives

‖AXµ`,` −B‖
2
F = ‖U (k)

`+1(d1e1 ⊗ Ik)− U
(k)
`+1(C̄`yµ` ⊗ Ik)‖

2
F

= ‖(d1e1 ⊗ Ik)− (C̄`yµ` ⊗ Ik)‖
2
F

= ‖d1e1 − C̄`yµ`‖
2
F ,

where we recall that d1 = ‖B‖F . We now express yµ` with the aid of (5.3.9), and apply

the identity (5.2.2) with A replaced by C̄`, to obtain

‖AXµ`,` −B‖
2
F = d2

1‖e1 − C̄`(C̄T` C̄` + µ−1
` I`)

−1C̄T` e1‖2F

= d2
1e
T
1 (µ`C̄`C̄

T
` + I`+1)−2e1

= R`+1fµ` .

The following algorithm outlines the main steps for computing µ` and Xµ`,` that

satisfy (5.1.9).
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Algorithm 8 The GGKB-Tikhonov method

Input : A, B, k, ε, η ≥ 1.

1. Let U1 := B/||B||F .

2. For ` = 1, 2, . . . until ‖AXµ` −B‖F ≤ ηε

(a) Determine U
(k)
`+1 and V

(k)
` , and the bidiagonal matrices C` and C̄` with GGKB

algorithm.

(b) Determine µ` that satisfies (5.3.6) with Newton’s method.

3. Determine yµ` by solving (5.3.10) and then compute Xµ`,` by (5.3.8).

5.4 Golub–Kahan bidiagonalization for problems with mul-

tiple right-hand sides

We may consider (5.1.5) as k linear discrete ill-posed problems that have the same

matrix A and different right-hand side vectors b(1), . . . , b(k) ; cf. (5.1.10). The solution

of linear systems of equations with multiple right-hand sides that may not be known

simultaneously and a matrix that stems from the discretization of a well-posed problem

has received considerable attention in the literature ; see, e.g., [27, 30, 67, 81, 93] and

references therein. However, the solution of linear discrete ill-posed problems with multiple

right-hand sides that may not be available simultaneously has not. The method described

in this section is based on the analysis and numerical experience reported in [48], where

it is shown that it often suffices to apply only a few steps of (standard) Golub–Kahan

bidiagonalization (GKB) to a matrix A of a linear discrete ill-posed problem to gain

valuable information of subspaces spanned by the right and left singular vectors of A
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associated with the dominant singular values.

Consider the first system of (5.1.10),

Ax(1) = b(1), (5.4.1)

where the right-hand side is the sum of an unknown error-free vector b̂(1) and an error-

vector e(1). Thus, b(1) = b̂(1) +e(1). A bound ‖e(1)‖ ≤ ε(1) is assumed to be known. Let x̂(1)

denote the first column of the matrix X̂ in (6.1.9). We seek to compute an approximation

of x̂(1) by using (standard) partial Golub–Kahan bidiagonalization (GKB) of A with initial

vector b(1).

To explain some properties of the bidiagonalization computed, we introduce the SVD

of A,

A = WΣZT , (5.4.2)

where W,Z ∈ Rn2×n2
are orthogonal matrices and

Σ = diag [σ1, σ2, . . . , σn2 ] ∈ Rn
2×n2

, σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σn2 = 0.

Here r is the rank of A. Let 1 ≤ s ≤ r and let Zs and Ws consist of the first s columns of

Z and W , respectively. Moreover, Σs denotes the leading s× s principal submatrix of Σ.

This gives the best rank-s approximation

As = WsΣsZ
T
s (5.4.3)

of A in the spectral and Frobenius norms.

The computation of the full SVD (5.4.2) is too expensive for large-scale problems

without a particular structure to be practical. The computation of a partial GKB is much
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cheaper. Application of ` steps of GKB yields the decompositions

AV` = U`+1C̄`, ATU` = V`C
T
` , (5.4.4)

where the matrices V` = [v1, v2, . . . , v`] ∈ Rn2×` and U`+1 = [u1, u2, . . . , u`+1] ∈ Rn2×(`+1)

have orthonormal columns, and U` consists of the first ` columns of U`+1. Further,

C̄` ∈ R(`+1)×` is lower bidiagonal and C` is the leading ` × ` submatrix of C̄`. We apply

reorthogonalization of the columns of U`+1 and V` to secure their numerical orthogonality.

It is shown in [48] that for sufficiently many steps `, the spaces range(U`+1) and range(V`)

contain to high accuracy the subspaces range(Ws) and range(Zs), respectively, for s ≥ 1

fixed and not too large. Computed examples in [48] indicate that it often suffices to choose

` ≤ 3s. This result suggests that we can use the same decomposition (5.4.4) for several

right-hand side vectors b(j).

Consider the Tikhonov regularization problem

min
x∈range(V`)

{‖Ax− b(1)‖22 + µ‖x‖22} = min
y∈R`
{‖C̄`y − UT`+1b

(1)‖22 + µ‖y‖22}, (5.4.5)

where x = V`y. We determine the regularization parameter µ > 0 so that the computed

solution yµ satisfies the discrepancy principle

‖‖C̄`yµ − UT`+1b
(1)‖2 = ηε(1). (5.4.6)

If no such µ-value exists, then we increase ` by one and try to solve (5.4.6) with ` replaced

by ` + 1 in (5.4.5) and (5.4.6). The small least-squares problem in the right-hand side

of (5.4.5) is solved by first expressing it in a form analogous to (5.3.10) ; see [25] for

discussions on the solution of (5.4.5) and on properties of the computed solution. We

remark that the vector UT`+1b
(1) can be simplified to e1‖b(1)‖2. The solution yµ of (5.4.5)

determines the approximate solution x
(1)
µ = V`yµ of (5.4.1).
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We turn to the problem

Ax(2) = b(2), (5.4.7)

and compute an approximate solution by solving (5.4.5) with the vector b(1) replaced by

b(2). The vector UT`+1b
(2) has to be explicitly computed. Therefore it is important that the

columns of the matrix U`+1 be numerically orthonormal. If no µ > 0 can be determined so

that (5.4.6) can be satisfied with b(1) replaced by b(2), then we carry out one more step of

Golub–Kahan bidiagonalization (5.4.4) ; otherwise we compute the solution yµ of (5.4.5)

with the available decomposition.

Let µ be such that the discrepancy principle holds. Then we obtain the approximate

solution x
(2)
µ = V`yµ of (5.4.7). We proceed in the same manner to solve Ax(i) = b(i) for

i = 3, 4, . . . , k.

Algorithm 9 The GKB-Tikhonov method

Input : A, k, b(1), b(2), . . . , b(k), ε(1), ε(2), . . . , ε(k), η ≥ 1.

1. Let u1 := b(1)/‖b(1)‖2.

2. Compute AV` = U`+1C̄`, ATU` = V`C
T
`

3. For i = 1, 2, . . . , k

(a) Compute min
yµ∈R`

{‖C̄`yµ − UT`+1b
(i)‖22 + µ‖yµ‖22}

(b) If ‖C̄`yµ − UT`+1b
(i)‖2 > ηε(i)

i. ` := `+ 1

ii. Return to step 5.

(c) Compute x
(i)
µ = V`yµ

We will compare this algorithm and Algorithms 7 and 8 to the following “trivial”
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method that is based on solving each one of the linear discrete ill-posed problems (5.1.10)

independently with the aid of (standard) Golub–Kahan bidiagonalization. Thus, we apply

Algorithm 7 with block size one to each one of the k linear discrete ill-posed problems

(5.1.10) independently. We refer to this scheme as GKB. We expect it to require the most

matrix-vector product evaluations of the methods in our comparison, because we compute

a new partial standard Golub–Kahan bidiagonalization for each one of the vectors b(j),

j = 1, . . . , k. Moreover, this method does not benefit from the fact that on many modern

computers the evaluation of matrix-block-vector products with a large matrix A does not

require much more time than the evaluation of a matrix-vector product with a single

vector for small block sizes ; see, e.g., [40] for discussions on this and related issues.

5.5 Numerical results

This section provides some numerical results to show the performance of Algorithms

7-9 and GKB when applied to the solution of linear discrete ill-posed problems with the

same matrix and different right-hand sides. The first example applies these algorithms to

the solution of linear discrete ill-posed problems with several right-hand sides defined by

matrices that stem from Regularization Tools by Hansen [61], while the second example

discusses the restoration of RGB images that have been contaminated by within-channel

blur and noise. All computations were carried out using the MATLAB environment on

an Pentium(R) Dual-Core CPU T4200 computer with 4 GB of RAM. The computations

were done with approximately 15 decimal digits of relative accuracy.
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Example 1

We would like to solve linear discrete ill-posed problems (5.1.10) with the matrix

A ∈ R702×702
determined by the functions phillips in Regularization Tools [61]. The ma-

trix is a discretization of a Fredholm integral equation of the first kind that describes a

convolution. The function phillips also determines the error-free data vector b̂(1) ∈ R702
and

the associated error-free solution x̂(1) ∈ R702
. The other error-free data vectors b̂(i) ∈ R702

,

i = 2, . . . , k, are obtained by setting x̂(i) = x̂(i−1) +y/2 for i = 2, . . . , k, where y is a vector

obtained by discretization of function of the form α cos(βt) + γ, where α, β, and γ are

scalars. For this example we let α = 1/2, β = 1/3 and γ = 1/4. The error-free right hand

sides are obtained by letting b̂(i) = Ax̂(i) for i = 2, . . . , k, in (5.1.10). The error-vectors

e(i) are scaled to correspond to a specified noise level. This is simulated with

e(i) := δ̃‖b̂(i)‖2ẽ(i),

where δ̃ is the noise level, and the vector ẽ(i) ∈ R702
has normally distributed random

entries with mean zero and variance one.

When the data vectors b(i), i = 1, . . . , k, are available sequentially, the linear discrete

ill-posed problems (5.1.10) can be solved one by one by Algorithms 9 or GKB. If the

data vectors are available simultaneously, then Algorithms 7 and 8 also can be used to

solve (5.1.10). The latter algorithms require that the noise level for each discrete ill-posed

problem (5.1.10) is about the same. This is a reasonable assumption for many applications.

Table 5.1 compares the number of matrix-vector product evaluations and the CPU

time required by Algorithm 7-9 and GKB for k = 10 and noise-contaminated data vectors

b(i) corresponding to the noise levels δ̃ = 10−2 and δ̃ = 10−3. For the discrepancy principle,
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we chose η = 1.1. The displayed relative error in the computed solutions is the maximum

error for each one of the k problems (5.1.10). The number of matrix-vector products

(MVP) shown is the number of matrix-vector product evaluations with A and AT with

a single vector. Thus, each iteration step of Algorithms 7 and 8 adds 2k matrix-vector

product evaluations to the count. The number of matrix-vector product evaluations does

not give an accurate idea of the computing time required. We therefore also present

timings for the algorithms. The Tables 5.2 and 5.3 are analogous to Table 5.1. They differ

from the latter in that the matrix A ∈ R702×702
is determined by the function baart for

Table 5.2 and the function shaw for Table 5.3. The vectors b(i) are determined analogously

as for the phillips test problem. Both functions are from [61] and compute discretizations

of Fredholm integral equations of the first kind.

Noise level Method MVP Relative error CPU-time (sec)

10−3

Algorithm 7 100 1.46× 10−2 3.87

Algorithm 8 200 1.31× 10−2 7.63

Algorithm 9 16 2.28× 10−2 1.52

GKB 162 1.43× 10−2 13.22

10−2

Algorithm 7 80 2.54× 10−2 3.08

Algorithm 8 120 2.61× 10−2 4.67

Algorithm 39 10 2.52× 10−2 1.01

GKB 140 2.60× 10−2 11.50

Table 5.1 – Results for the phillips test problem.
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Noise level Method MVP Relative error CPU-time (sec)

10−3

Algorithm 7 40 4.27× 10−2 1.61

Algorithm 8 80 5.62× 10−2 3.31

Algorithm 9 8 5.20× 10−2 0.81

GKB 80 5.46× 10−2 7.11

10−2

Algorithm 7 40 5.02× 10−2 1.51

Algorithm 8 60 7.36× 10−2 2.57

Algorithm 9 8 5.77× 10−2 0.83

GKB 62 6.78× 10−2 5.63

Table 5.2 – Results for the baart test problem.
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Noise level Method MVP Relative error CPU-time (sec)

10−3

Algorithm 7 100 5.20× 10−2 3.88

Algorithm 8 200 4.42× 10−2 7.57

Algorithm 9 14 3.98× 10−2 1.30

GKB 184 4.72× 10−2 14.93

10−2

Algorithm 7 40 1.82× 10−1 1.52

Algorithm 8 100 1.55× 10−1 4.36

Algorithm 9 10 1.27× 10−1 0.98

GKB 100 1.55× 10−1 8.84

Table 5.3 – Results for the shaw test problem.
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Tables 5.1-5.3 show Algorithm 9 to require the fewest matrix-vector product evalua-

tions and to give approximate solutions of comparable or higher quality than the other

algorithms. Algorithms 7 and 8 require about the same number of matrix-vector product

evaluations, but the former algorithm demands less CPU time because it implements a

block method.

Example 2

This example illustrates the performance of Algorithms 7-9 and GKB when applied to

the restoration of 3-channel RGB color images that have been contaminated by blur and

noise. The corrupted image is stored in a block vector B with three columns. The desired

(and assumed unavailable) image is stored in the block vector X̂ with three columns. The

blur-contaminated, but noise-free image associated with X̂, is stored in the block vector

B̂. The block vector E represents the noise in B, i.e., B := B̂ + E. We define the noise

level

ν =
||E||F
||B̂||F

.

To determine the effectiveness of our solution methods, we evaluate the relative error

Relative error =
||X̂ −Xµ` ||F
||X̂||F

,

where Xµ` denotes the computed restoration.

We consider the within-channel blurring only. Hence the blurring matrix A3 in (5.1.4)

is the 3×3 identity matrix. The blurring matrix A in (5.1.4), which describes the blurring

within each channel, models Gaussian blur and is determined by the following Gaussian
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PSF,

hσ(x, y) =
1

2πσ2
exp
(
− x2 + y2

2σ2

)
.

The blurring matrix A is a symmetric block Toeplitz matrix with Toeplitz blocks. It is

generated with the MATLAB function blur from [61]. This function has two parameters,

the half-bandwidth of the Toeplitz blocks r and the variance σ of the Gaussian PSF. For

this example we let σ = 2 and r = 4. The original (unknown) RGB image X̂ ∈ 256×256×3

is the papav256 image from MATLAB. It is shown in the left-hand side of Figure 5.1.

The associated blurred and noisy image B = AX̂ + E is shown in the right-hand side

of the figure. The noise level is ν = 10−3. Given the contaminated image B, we would

like to recover an approximation of the original image X̂. Table 5.4 compares the number

of matrix-vector product evaluations, the computing time, and the relative errors in the

computed restorations. We use the discrepancy principle with η = 1.1 to determine the

regularization parameter.

The restoration obtained with Algorithm 7 for noise level ν = 10−3 is shown in the

left-hand side of Figure 5.2. The discrepancy principle for this algorithm and this noise

level is satisfied after ` = 70 steps of the BGKB method. This corresponds to 3× 2× 70

matrix-vector product evaluations.

The restoration determined by Algorithm 7 is shown in the right-hand side of Figure

5.2. The GGKB method requires ` = 66 steps to satisfy the discrepancy principle. Algo-

rithm 8 is the fastest, but yields restorations of lower quality than the other algorithms

for this example.
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Table 5.4 – Results for Example 2.

Noise level Method MVP Relative error CPU-time (sec)

10−3

Algorithm 7 420 4.44× 10−2 9.52

Algorithm 8 396 4.46× 10−2 6.30

Algorithm 9 68 2.81× 10−1 3.76

GKB 628 4.16× 10−2 15.02

10−2

Algorithm 7 102 6.72× 10−2 1.88

Algorithm 8 90 6.71× 10−2 1.38

Algorithm 9 18 2.88× 10−1 0.77

GKB 124 6.57× 10−2 2.53

Figure 5.1 – Example 2 : Original image (left), blurred and noisy image (right).
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Figure 5.2 – Example 2 : Restored image by Algorithm 7 (left), restored image by

Algorithm 8 (right).
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Chapitre 6

A genaralized Krylov subspace method for TV re-

gularization

6.1 Introduction

In this chapter we consider the solution of the following matrix equation

B = H2XH
T
1 , (6.1.1)

where B is generally contaminated by noise. H1 and H2 are matrices of ill-determined

rank, which makes the solution X very sensitive to perturbations in B. Discrete ill-posed

problems of the form (6.1.1) arise, for instance, from the discretization of Fredholm integral

equations of the first kind in two space-dimensions,

∫ ∫
Ω
K(x, y, s, t)f(s, t)dsdt = g(x, y), (x, y) ∈ Ω′, (6.1.2)

where Ω and Ω′ are rectangles in R2 and the kernel is separable

K(x, y, s, t) = k1(x, s)k2(y, t), (x, y) ∈ Ω′, (s, t) ∈ Ω,
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The aim of this chapter is to solve this problem with application to one single channel and

multichannel images. For single channel images we seek to recover an unknown vector from

limited information. This problem is mathematically formulated as the following model

b = Hx (6.1.3)

where x ∈ Rmn is a vector denoting the unknown solution, b ∈ Rmn is a vector denoting

the observed data contaminated by noise and H ∈ Rmn×mn is a linear map. The problem

arises, for instance in image restoration [2, 6, 18, 62, 64]. In this chapter we focus on the

solution of (6.1.1) with application to image restoration in which x represents the unknown

sharp image that is to be estimated from its blurry and noisy observation b. The matrix

H is the blurring operator characterized by a PSF describing this blur. Due to the ill-

conditioning of the matrix H and the presence of the error e, the problem (6.1.1) cannot

be easily solved which mean that minimization of only the fidelity term typically yields a

meaningless computed solution. Therefore, to stabilize the recovered image, regularization

is needed. There are several techniques to regularize the linear inverse problem given by

equation (6.1.1) ; see, for example, [96, 43, 88, 98]. All of these techniques stabilize the

restoration process by adding a regularization term, depending on some priori knowledge

about the unknown image, resulting in the model

min
x
{‖Hx− b‖pp + µ‖Φ(x)‖qq}. (6.1.4)

where Φ(x) is the regularizer that enforces the priori knowledge and the parameter µ is

used to balance the two terms. This problem is referred to as `p−`q minimization problem.

Different choices of Φ(x), p and q lead to a wide variety of regularizers. Among them we

find the well known Tikhonov regularization, where Φ is the identity matrix (Φ = I),
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p = 2 and q = 2, see for example [96]. If the goal is to enforce sparsity on the solution,

one can also consider Φ = I, p = 2 and q = 1. Another well-known class of regularizers

are based on total variation (TV), which is a better choice if the goal is to preserve sharp

edges. In this case one let Φ to be the discrete gradient operator, see [88]. The problem

(6.1.4) has been studied in many papers to propose nonlinear optimization algorithms

that can deal with the nonlinear properties of this problem ; see for example [97, 100].

These techniques are computationally demanding if the main cost of computation is the

matrix-vector multiplication (MVM). It is our main goal to recover a good approximation

of the unknown sharp image at low computational cost. Because of some unique features

in images, we seek an image restoration algorithm that utilizes blur information, exploits

the spatially invariant properties. For this reason we suppose that the PSF is identical in

all parts of the image and separates into horizontal and vertical components. Then the

matrix H is a tensor of two matrices H1 and H2. By using the properties (1.2.3), the

equation (6.1.3) can be rewritten as

B = H2XH
T
1 , (6.1.5)

where X = mat(x) and B = mat(b), Which yields the model (6.1.1). Recovering multi-

channel images from their blurry and noisy observations can be seen as a linear system

of equations with multiple right-hand sides. The most commonly multichannel images is

the RGB representation, which uses three channels ; see [44, 62]. It should be pointed out

that the algorithms proposed in this chapter can be applied to the solution of Fredholm

integral equations of the first kind in two or more space dimensions and to the restoration

of hyper-spectral images. The latter kind of images generalize color images in that they
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allow more than three “colors” ; see, e.g., [77]. If the channels are represented by m × n

pixels, the full blurring model is described by the following form

b = Hx, (6.1.6)

where b and x in Rkmn, represent the blurred and noisy multichannel image and the

original image respectively. For an image with k channels, they are given by

b = [b(1); b(2); ...; b(k)], x = [x(1);x(2); ...;x(k)],

where b(i) and x(i) in Rmn are obtained by stacking the columns of each channel on top

of each other. The kmn× kmn multichannel blurring matrix H is given by

H = H1 ⊗H2, (6.1.7)

The matrix H2 ∈ Rmn×mn represents the same within-channel blurring in all the k chan-

nels. The matrix H1 of dimension k × k models the cross-channel blurring, which is the

same for all pixels in the case of a spatially invariant blur. If H1 = I, the blurring is

said to be within-channel. If no colour blurring arises (i.e., H1 = I), then k independent

deblurring problems are solved ; hence the spatially invariant blurring model is given by

bi = H2xi, i = 1, ..., k. (6.1.8)

In this case, the goal is to model the blurring of k channels image as a linear system

of equations with k right-hand sides. For this reason we let B and X in Rmn×k to be

denoted by
[
b(1), b(2), ..., b(k)

]
and

[
x(1), x(2), ..., x(k)

]
, respectively. The optical blurring is

then modeled by

B = H2X, (6.1.9)
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which yields the model (6.1.1) with H1 = I. When the spatially invariant cross-channel

is present (i.e., H1 6= I) and by using the Kronecker product properties, the following

blurring model is to be solved

B = H2XH
T
1 , (6.1.10)

which also yields the model (6.1.1). Introduce the linear operator

H : Rp×q → Rp×q

H(X) = H2XH
T
1 .

Its transpose is given by HT (X) = HT
2 XH1. The problem (6.1.1) can be then expressed

as

B = H(X).

The total variation regularization is known to be the most popular and effective tech-

niques for the images restoration. Given an image defined as a function u : Ω −→ R,

where Ω is a bounded open subset of R2, the total variation (TV) of u can be defined as

TVk(u) =

∫
Ω
‖∇u(x)‖kdx, (6.1.11)

where ∇ denotes the gradient of u and ‖.‖k is a norm in R2. When u is represented by

m× n image X, a discrete form of (6.1.11) is always used, given by

TV1(X) =
m∑
i=1

n∑
j=1

(
| (D1,nX)ij |+ | (D1,mX)ij |

)
(6.1.12)

in the anisotropic total variation case, or

TV2(X) =
m∑
i=1

n∑
j=1

√(
(D1,nX)2

ij + (D1,mX)2
ij

)
(6.1.13)
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in the isotropic total variation case. D1,m and D1,n denote the finite difference approxi-

mations of the horizontal and vertical first derivative operators, respectively, and they are

defined as follows D1,n

D1,m

X =

 CX

XCT

 , (6.1.14)

where

C :=


−1 1

. . .
. . .

−1 1

 ∈ Rd−1×d,

where d is the number of pixels in each row and column of the image considered. For

the ill-posed image restoration problem (6.1.1), the resulting matrices H1 and H2 are

ill-conditioned. By regularization of the problem (6.1.1), we solve as a special case one of

the following matrix problems :

min
X

(
‖H(X)−B‖2F + µTVk(X)

)
, k = 1, 2 (6.1.15)

or

min
X

(‖H(X)−B‖1,1 + µTVk(X)) k = 1, 2. (6.1.16)

where ‖.‖1,1 is the `1 norm. Problems (6.1.15) and (6.1.16) are refereed to as TV/L2 and

TV/L1 minimization, respectively.

6.2 TV/L2 minimization problem

In this section we consider the solution of the following TV/L2 minimization problem

min
X

(
‖H(X)−B‖2F + µTV2(X)

)
. (6.2.1)

130



The model (6.2.1) is very difficult to solve directly due to the non-differentiability and

non-linearity of the TV term. It is our goal to develop an efficient TV minimization scheme

to handle this problem. The core idea is based on augmented Lagrangian method (ALM)

[59, 85] and alternating direction method (ADM) [53]. The idea of ALM is to transform

the unconstrained minimization task (6.2.1) into an equivalent constrained optimization

problem, and then add a quadratic penalty term instead of the constraint violation with

the multipliers. The idea of ADM is to decompose the transformed minimization pro-

blem into three easier and smaller subproblems such that some involved variables can

be minimized separately and alternatively. Let us begin by considering the equivalent

equality-constrained problem of (6.2.1). We first notice that the minimization problem

(6.2.1) can be rewritten as

min
X,M(n),M(m)

‖H(X)−B‖2F + µ
m∑
i=1

n∑
j=1

‖Mi,j‖2

 , (6.2.2)

subject to D1,nX = M (n), D1,mX = M (m).

whereMi,j =
[
(D1,nX)ij , (D1,mX)ij

]
. If we setM

(n)
i,j = (D1,nX)ij andM

(m)
i,j = (D1,mX)ij

This constrained problem can be also formulated as

min F (X) +G(Y ), (6.2.3)

subject to DX = Y,

where,

F (X) = ‖H(X)−B‖2F , G(Y ) = µ

m∑
i=1

n∑
j=1

‖Mi,j‖2, D =

D1,n

D1,m

 , Y =

M (n)

M (m)


The augmented Lagrangian function of (6.2.3) is defined as

Lβ (X,Y, Z) = F (X) +G(Y ) + 〈DX − Y,Z〉+
β

2
‖DX − Y ‖2F , (6.2.4)
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where Z ∈ R2m×n is the Lagrange multiplier of the linear constraint and β > 0 is the

penalty parameter for the violation of this linear constraint.

To solve the nonlinear problem (6.2.1), we find the saddle point of the Lagrangian (6.2.4)

by using the ADM method. The idea of this method is to apply an alternating minimiza-

tion iterative procedure, namely, for k = 0, 1, ..., we solve

(Xk+1, Yk+1) = arg min
X

Lβ(X,Y, Zk). (6.2.5)

The Lagrange multiplier is updated by

Zk+1 = Zk + β (DXk+1 − Yk+1) . (6.2.6)

6.2.1 Solving the Y-problem

Given X, Yk+1 can be obtained by solving

min
Y

µ
m∑
i=1

n∑
j=1

‖Mi,j‖2 +
β

2
‖DX − Y ‖2F + 〈DX − Y, Zk〉F , (6.2.7)

which is equivalent to solve

min
Y

µ

m∑
i=1

n∑
j=1

‖Mi,j‖2 +
β

2

∥∥∥∥∥∥∥∥
M (n)

M (m)

−
D1,nX

D1,mX

− 1

β

Z
(1)
k

Z
(2)
k


∥∥∥∥∥∥∥∥

2

F

, (6.2.8)

which is also equivalent to solve the so-called M-subproblem

min
Mi,j

m∑
i=1

n∑
j=1

µ‖Mi,j‖2 +
β

2

∣∣∣M (n)
ij −Kij

∣∣∣2
F

+
β

2

∣∣∣M (m)
ij − Lij

∣∣∣2
F

(6.2.9)

where Kij = (D1,nX)ij + 1
β

(
Z

(1)
k

)
ij

and Lij = (D1,mX)ij + 1
β

(
Z

(2)
k

)
ij

. To solve (6.2.9)

we use following well-known two dimensional shrinkage formula [75]

Shrink(y, γ, δ) = max

{∥∥∥y +
γ

δ

∥∥∥
2
− 1

δ
, 0

}
y + γ/δ

‖y + γ/δ‖2
, (6.2.10)
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where the convention 0·(0/0) = 0 is followed. The solution of (6.2.9) is then given by

Mi,j = max

{
‖Ti,j‖2 −

µ

β
, 0

}
Ti,j
‖Ti,j‖2

, (6.2.11)

where Ti,j =

[
(D1,nXk)i,j + 1

β

(
Z

(1)
k

)
i,j
, (D1,mXk)i,j + 1

β

(
Z

(2)
k

)
i,j

]
.

For the anisotropic case we solve the following problem

min
Mi,j

m∑
i=1

n∑
j=1

µ‖Mi,j‖1 +
β

2

∣∣∣M (n)
ij −Kij

∣∣∣2
F

+
β

2

∣∣∣M (m)
ij − Lij

∣∣∣2
F
, (6.2.12)

which can be also solved by the one dimensional shrinkage formula. This gives

M
(n)
ij = max

{
Kij −

µ

β
, 0

}
.sign (Kij) , (6.2.13)

M
(m)
ij = max

{
Lij −

µ

β
, 0

}
.sign (Lij) . (6.2.14)

6.2.2 Solving the X-problem

Given Y , Xk+1 can be obtained by solving

min
X

β

2
‖DX − Y ‖2F + 〈DX − Y,Zk〉F + ‖H(X)−B‖2F . (6.2.15)

This problem can be also solved by considering the following normal equation

HT
1 H1XH

T
2 H2 + βDTDX = HT

1 BH2 +DT (βY − Zk) . (6.2.16)

The linear matrix equation can be rewritten in the following form

A1XA2 +A3XA4 = Ek, k = 1, ..., (6.2.17)

whereA1 = HT
1 H1,A2 = HT

2 H2,A3 = βDTD,A4 = I and Ek = HT
1 BH2+DT (βY − Zk).

The equation (6.2.17) is refereed to as the generalized Sylvester matrix equation. We will

see in section 6.4 how to compute approximate solutions to those matrix equations
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6.2.3 Convergence analysis of TV/L2 problem

For the vector case, many convergence results have been proposed in the literature ; see

for instance [41, 65]. For completeness, we give a proof here for the matrix case. A function

Ψ is said to be proper if the domain of Ψ denoted by domΨ := {U ∈ Rp×q,Ψ(U) <∞}

is not empty. For the problem (6.2.3), F and G are closed proper convex functions.

According to [35, 89], the problem (6.2.3) is solvable, i.e., there exist X∗ and Y∗, not

necessarily unique that minimize (6.2.3). Let W = Ω × Y × Rp×q, where Ω and Y are

given closed and convex nonempty sets. The saddle-point problem is equivalent to finding

(X∗, Y∗, Z∗) ∈ W such that

Lβ(X∗, Y∗, Z) ≤ Lβ(X∗, Y∗, Z∗) ≤ Lβ(X,Y, Z∗), ∀ (X,Y, Z) ∈ W. (6.2.18)

The properties of the relation between the saddle-points of Lβ and L0 and the solution

of (6.2.3) are stated by the following theorem from [41]

Theorem 6.2.1. (X∗, Y∗, Z∗) is a saddle-point of L0 if and only if (X∗, Y∗, Z∗) is a

saddle-point of Lβ ∀β > 0. Moreover (X∗, Y∗) is a solution of (6.2.3).

We will see in what follows how this theorem can be used to give the convergence of

(Xk+1, Yk+1). It should be pointed out that the idea of our proof follows the convergence

results in [16].

Theorem 6.2.2. Assume that (X∗, Y∗, Z∗) is a saddle-point of Lβ ∀β > 0. The sequence

(Xk+1, Yk+1, Zk+1) generated by Algorithm 10 satisfies

1. lim
k→+∞

F (Xk+1) +G(Yk+1) = F (X∗) +G(Y∗),
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2. lim
k→+∞

‖DXk+1 − Yk+1‖F = 0,

Proof In order to show the convergence of this theorem, it suffice to show that the

non-negative function

F k =
1

β
‖Zk − Z∗‖2F + β‖Xk −X∗‖2F (6.2.19)

decreases at each iteration. Let us define Sk, Mk and M∗ as

Sk = DXk − Yk, Mk = F (Xk) +G(Yk), M∗ = F (X∗) +G(Y∗).

In the following we show

F k+1 ≤ F k − β‖Sk+1‖2F − β‖Yk+1 − Yk‖2F . (6.2.20)

Since (X∗, Y∗, Z∗) is a saddle-point of Lβ ∀β > 0, it follows from Theorem 6.2.1 that

(X∗, Y∗, Z∗) is also a saddle-point of L0. This is characterized by

L0(X∗, Y∗, Z) ≤ L0(X∗, Y∗, Z∗) ≤ L0(X,Y, Z∗), ∀ (X,Y, Z) ∈ W. (6.2.21)

From the second inequality of (6.2.21), we have

M∗ −Mk+1 ≤ 〈Sk+1, Z∗〉F . (6.2.22)

Since Xk+1 is a minimizer of Lβ ∀β > 0, the optimality conditions reads

2HT (H(Xk+1)−B) +DT (Zk + β(DXk+1 − Yk)) = 0. (6.2.23)

By plugging Zk = Zk+1 − β(DXk+1 − Yk+1) and rearranging we obtain

2HT (H(Xk+1)−B) +DT (Zk+1 − β(Yk+1 − Yk)) = 0, (6.2.24)
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which means that Xk+1 minimizes

F (X) + 〈Zk+1 + β(Yk+1 − Yk), DX〉F . (6.2.25)

It follows that

F (Xk+1)− F (X∗) ≤ 〈Zk+1 + β(Yk+1 − Yk), DX∗〉F − 〈Zk+1 + β(Yk+1 − Yk), DXk+1〉F .

(6.2.26)

A similar argument shows that

G(Yk+1)−G(Y∗) ≤ 〈Zk+1, Yk+1〉 − 〈Zk+1, Y∗〉F . (6.2.27)

Adding (6.2.26) and (6.2.27) and using DX∗ = Y∗ implies

Mk+1 −M∗ ≤ −〈Sk+1, Yk+1〉F − 〈β(Yk+1 − Yk), Sk+1 + (Yk+1 − Y∗)〉F . (6.2.28)

Adding (6.2.22) and (6.2.28) gives

2 〈Sk+1, Zk+1 − Zk〉F + 2 〈β(Yk+1 − Yk), Sk+1〉F + 2 〈β(Yk+1 − Yk), (Yk+1 − Y∗)〉F ≤ 0

(6.2.29)

Substituting Zk+1 = Zk + βSk+1 gives

2 〈Sk+1, Zk+1 − Zk〉F = 2 〈Sk+1, Zk − Z∗〉F + β‖Sk+1‖2F + β‖Sk+1‖2F . (6.2.30)

Since Sk+1 = 1
β (Zk+1 − Zk), it follows

2 〈Sk+1, Zk − Z∗〉F + β‖Sk+1‖2F =
2

β
〈Zk+1 − Zk, Zk − Z∗〉F +

1

β
‖Zk+1 − Zk‖2F (6.2.31)

Substituting Zk+1−Zk = (Zk+1−Z∗)− (Zk −Z∗), the right hand side of (6.2.31) can be

written as

1

β

(
‖Zk+1 − Z∗‖2F − ‖Zk − Z∗‖2F

)
. (6.2.32)
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Substituting Yk+1 − Y∗ = (Yk+1 − Yk) + (Yk+1 − Y∗) shows that

β‖Sk+1‖2F +2 〈β(Yk+1 − Yk), Sk+1〉F +2 〈β(Yk+1 − Yk), (Yk+1 − Y∗)〉F can be expressed as

β‖Sk+1 + (Yk+1 − Yk)‖2F + β‖Yk+1 − Yk‖2F + 2β 〈Yk+1 − Yk, Yk − Y∗〉F . (6.2.33)

Substituting Yk+1−Yk = (Yk+1−Y∗)− (Yk−Y∗) in the last two terms shows that (6.2.33)

can be expressed as

β‖Sk+1 + (Yk+1 − Yk)‖2F + β
(
‖Yk+1 − Y∗‖2F − ‖Yk − Y∗‖2F

)
(6.2.34)

Using (6.2.32) and (6.2.34) shows that (6.2.29) can be expressed as

F k − F k+1 ≥ β‖Sk+1 + (Yk+1 − Yk)‖2F . (6.2.35)

To show (6.2.20), it is now suffice to show that 2β 〈Sk+1, Yk+1 − Yk〉F ≥ 0. Since (Xk, Yk, Zk)

and (Xk+1, Yk+1, Zk+1) are also minimizers of Lβ, we have as in (6.2.27)

G(Yk+1)−G(Yk) ≤ 〈Zk+1, Yk+1〉F − 〈Zk+1, Yk〉F , (6.2.36)

and

G(Yk)−G(Yk+1) ≤ 〈Zk, Yk〉F − 〈Zk, Yk+1〉F . (6.2.37)

By addition,

〈Yk+1 − Yk, Zk+1 − Zk〉 ≥ 0. (6.2.38)

Substituting Zk+1 − Zk = βSk+1 shows that 2β 〈Sk+1, Yk+1 − Yk〉 ≥ 0. From (6.2.20) it

follows that

β

∞∑
k=0

(
‖Sk+1‖2F − β‖Yk+1 − Yk‖2F

)
≤ F 0, (6.2.39)

which implies that Sk+1 −→ 0 and Yk+1 − Yk −→ 0 as k −→ ∞. It follows then from

(6.2.22) and (6.2.28) that lim
k→+∞

F (Xk+1) +G(Xk+1) = F (X∗) +G(X∗),
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6.3 TV/L1 minimization problem

In this section we consider the following regularized minimization problem

min
X
‖H(X)−B‖1,1 + µTV2(X) (6.3.1)

We first notice that the minimization problem (6.3.1) can be rewritten as

min
X

‖H(X)−B‖1,1 + µ
m∑
i=1

n∑
j=1

‖Mi,j‖2

 , (6.3.2)

then, the constraint violation of the problem (6.3.1) can be written as follows

min
X,R,M(n),M(m)

‖R−B‖1,1 + µ
m∑
i=1

n∑
j=1

‖Mi,j‖2

 , (6.3.3)

subject to D1,nX = M (n), D1,mX = M (m), R = H(X).

This constrained problem can be also reformulated as

min F (R) +G(Y ), (6.3.4)

subject to DX = Y, H(X) = R

where,

F (R) = ‖R−B‖1,1, G(Y ) = µ
m∑
i=1

n∑
j=1

‖Mi,j‖2, D =

D1,n

D1,m

 , Y =

M (n)

M (m)

 ,

The problem now fits the framework of the augmented Lagrangian method [59, 85] which

puts a quadratic penalty term instead of the constraint in the objective function and

introducing explicit Lagrangian multipliers at each iteration into the objective function.

The augmented Lagrangian function of (6.3.4) is defined as follows

L (X,R, Y, Z,W ) = (6.3.5)

F (R) +G(Y ) +
β

2
‖DX − Y ‖2F + 〈DX − Y,Z〉F +

ρ

2
‖H(X)−R‖2F + 〈H(X)−R,W 〉F
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Z ∈ R2m×n and W ∈ Rm×n are the Lagrange multipliers of the linear constraint

DX = Y and R = H(X) , respectively. The parameters β > 0 and ρ > 0 are the penalty

parameters for the violation of the linear constraint.

Again, we use the ADM method to solve the nonlinear problem (6.3.1), by finding the

saddle point of the Lagrangian (6.3.5). Therefore, for k = 0, 1, ... we solve

(Xk, Rk, Yk) = arg min
X,R,Y

Lβ,ρ(X,R, Y, Zk,Wk). (6.3.6)

The Lagrange multipliers are updated by

Zk+1 = Zk + β (DXk − Yk) ,

Wk+1 = Wk + ρ (H(Xk)−Rk) . (6.3.7)

Next, we will see how to solve the problems (6.3.6), to determine the iterates Xk, Yk and

Rk

6.3.1 Solving the X-problem

Given Y and R, Xk can be obtained by solving the minimization problem

min
X

β

2
‖DX − Y ‖2F + 〈DX − Y,Zk〉F +

ρ

2
‖H(X)−R‖2F + 〈H(X)−R,Wk〉F (6.3.8)

The problem (6.3.8) is now continuously differentiable at X. Therefore, it can be solved

by considering the following normal equation

ρHT
1 H1XH

T
2 H2 + βDTDX = HT

1 (ρR−Wk)H2 +DT (βY − Zk) . (6.3.9)

The linear matrix equation (6.3.9) can be rewritten in the following form

A1XA2 +A3XA4 = Ek, (6.3.10)
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where A1 = ρHT
1 H1, A2 = HT

2 H2, A3 = βDTD, A4 = I and Ek = HT
1 (ρR−Wk)H2

+DT (βY − Zk).

The equation (6.3.10) is refereed to as the generalized Sylvester matrix equation.

6.3.2 Solving the R-problem

Given X, the iterate Rk can be obtained by solving the minimization problem

min
R
‖R−B‖1,1 +

ρ

2
‖H(X)−R‖2F + 〈H(X)−R,Wk〉F . (6.3.11)

Therefore, by using the following well-known one-dimensional Shrinkage formula [75]

Shrink(y, γ, δ) = max

{∣∣∣y +
γ

δ

∣∣∣− 1

δ
, 0

}
.sign

(
y +

γ

δ

)
, (6.3.12)

the minimizer of (6.3.11) is then given by

max

{∣∣∣∣H(X)−B +
1

ρ
W

∣∣∣∣− 1

ρ
, 0

}
.sign

(
H(X)−B +

1

ρ
W

)
. (6.3.13)

6.3.3 Solving the Y-problem

Given X and R, we compute the iterates Yk by solving the problem

min
Y

µ

m∑
i=1

n∑
j=1

‖Mi,j‖2 +
β

2
‖DX − Y ‖2F + 〈DX − Y,Zk〉F . (6.3.14)

This solution can be obtained by equation (6.2.11), since the minimization problem

(6.3.14) is the same as that of TV/L2.

6.3.4 Convergence analysis of TV/L1 problem

In this subsection we study the convergence of Algorithm 11 used to solve the TV/L1

problem. Note that the convergence study for TV/L2 does not hold for TV/L1 problem
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since in general β 6= ρ in (6.3.5). For the problem (6.3.4), F and G are closed proper

convex functions. According to [35, 89], the problem (6.3.4) is solvable, i.e., there exist R∗

and Y ∗, not necessarily unique that minimize (6.3.4). LetW = Ω×Y×X×R2m×n×Rm×n,

where Ω, X and Y are given closed and convex nonempty sets. The saddle-point problem

is equivalent to finding (X∗, R∗, Y∗, Z∗,W∗) ∈ W such that

Lβ,ρ(X∗, R∗, Y∗, Z,W ) ≤ Lβ,ρ(X∗, R∗, Y∗, Z∗,W∗) ≤ Lβ,ρ(X,R, Y, Z∗,W∗),

∀ (X,R, Y, Z,W ) ∈ W. (6.3.15)

The properties of the relation between the saddle-points of Lβ,ρ and the solution of (6.3.4)

are stated by the following theorem from [102]

Theorem 6.3.1. X∗ is a solution of (6.3.1) if and only if there exist (R∗, Y∗) ∈ Y × X

and (Y∗, Z∗) ∈ R2m×n ×Rm×n such that (X∗, R∗, Y∗, Z∗,W∗) is a saddle-point of (6.3.15)

The convergence of ADM for TV/L1 has been well studied in the literature in the

context of vectors ; see, e.g., [102]. Our TV/L1 problem is a model with matrix variables,

it is our aim to give a similar convergence results for the matrix case

Theorem 6.3.2. Assume that (X∗, R∗, Y∗, Z∗,W∗) is a saddle-point of Lβ,ρ. The sequence

(Xk, Rk, Yk, Zk,Wk) generated by Algorithm 11 satisfies

1. lim
k→+∞

F (Rk) +G(Yk) = F (R∗) +G(Y∗),

2. lim
k→+∞

‖DXk − Yk‖F = 0,

3. lim
k→+∞

‖H(Xk)−Rk‖F = 0.
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Proof From the first inequality of (6.3.15) it follows that ∀(Z,W ) ∈ R2m×n×Rm×n

〈DX∗ − Y∗, Z∗〉F +〈H(X∗)−B −R∗,W∗〉F ≤ 〈DX∗ − Y∗, Z〉F +〈H(X∗)−B −R∗,W 〉F ,

(6.3.16)

which obviously implies that

DX∗ = Y∗,

H(X∗) = R∗. (6.3.17)

Let us define the following quantities

Zk = Zk − Z∗, W k = Wk −W∗, Xk = Xk −X∗, Rk = Rk −R∗, Y k = Yk − Y∗.

With the relationship (6.3.17) together with (6.3.7), we can define

Zk+1 = Zk + β
(
DXk − Y k

)
(6.3.18)

W k+1 = W k + ρ
(
H(Xk)−Rk

)
(6.3.19)

In order to show the convergence, it suffice to show that
(
β‖Zk‖2F + ρ‖W k‖2F

)
decreases

at each iteration. In the following we show that

(
β‖Zk‖2F + ρ‖W k‖2F

)
−

(
β‖Zk+1‖2F + ρ‖W k+1‖2F

)
(6.3.20)

≥ β2ρ‖DXk − Y k‖2F + βρ2‖H(Xk)−Rk‖2F . (6.3.21)

For (X,R, Y ) = (Xk, Rk, Yk) in (6.3.15) , the second equality implies

〈
DTZ∗, Xk −X∗

〉
F

+ β
〈
DT (Y∗ −DX∗), Xk −X∗

〉
F

(6.3.22)

+ 〈W∗,−H(Xk −X∗)〉F + ρ 〈Z∗ −H(X∗),−H(Xk −X∗)〉F ≥ 0,

F (Rk)− F (R∗) + 〈W∗, Rk −R∗〉F + ρ 〈R∗ −H(X∗), Rk −R∗)〉F ≥ 0, (6.3.23)
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G(Yk)−G(Y∗) + 〈Z∗, Yk − Y∗〉F + β 〈Y∗ −DX∗, Yk − Y∗)〉F ≥ 0. (6.3.24)

Since (Xk, Rk, Yk) is also a saddle-point of Lβ,ρ, for (X,R, Y ) = (X∗, R∗, Y∗) the second

equality of (6.3.15) implies

〈
DTZk, X∗ −Xk

〉
F

+ β
〈
DT (Yk −DXk), X∗ −Xk

〉
F

(6.3.25)

+ 〈Wk,−H(X∗ −Xk)〉F + ρ 〈Zk −H(Xk),−H(X∗ −Xk)〉F ≥ 0,

F (R∗)− F (Rk) + 〈Wk, R∗ −Rk〉F + ρ 〈Rk −H(Xk), R∗ −Rk)〉 ≥ 0, (6.3.26)

G(Y∗)−G(Yk) + 〈Zk, Y∗ − Yk〉F + β 〈Yk −DXk, Y∗ − Yk)〉 ≥ 0. (6.3.27)

By addition , regrouping terms, and multiplying through by βρ gives

−βρ
〈
Zk, DXk − Y k

〉
−βρ

〈
W k,H(Xk)− Zk

〉
≥ β2ρ‖DXk−Y k‖2F +βρ2‖H(Xk)−Rk‖2F

(6.3.28)

It is now suffice to show that

(
β‖Zk‖2F + ρ‖W k‖2F

)
−

(
β‖Zk+1‖2F + ρ‖W k+1‖2F

)
(6.3.29)

≥ −βρ
〈
Zk, DXk − Y k

〉
− βρ

〈
W k,H(Xk)− Zk

〉
To show this, we see that (6.3.18) is equivalent to

√
ρZk+1 =

√
ρZk + β

√
ρ
(
DXk − Y k

)
(6.3.30)√

βW k+1 =
√
βW k + ρ

√
β
(
H(Xk)−Rk

)
the result follows then from the equality

(
β‖Zk‖2F + ρ‖W k‖2F

)
−
(
β‖Zk+1‖2F + ρ‖W k+1‖2F

)
(6.3.31)

= −2βρ
〈
Zk, DXk − Y k

〉
− 2βρ

〈
W k,H(Xk)− Zk

〉
− β2ρ‖DXk − Y k‖2F − βρ2‖H(Xk)−Rk‖2F
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It follows that

∞∑
k=0

(
β2ρ‖DXk − Y k‖2F + βρ2‖H(Xk)−Rk‖2F

)
≤
(
β‖Z0‖2F + ρ‖W 0‖2F

)
, (6.3.32)

which implies that DXk − Y k −→ 0 and H(Xk)−Rk −→ 0 as k −→∞.

To show lim
k→+∞

F (Rk) + G(Yk) = F (R∗) + G(Y∗), we first see that the second inequality

of (6.3.15) implies

F (R∗) +G(Y∗)− F (Rk)−G(Yk) ≤ 〈W∗,H(Xk)−Rk〉F + 〈Z∗, DXk − Yk〉F

+ β‖DXk − Yk‖2F + ‖H(Xk)−Rk‖2F (6.3.33)

in the other hand, by addition of (6.3.25), (6.3.26) and (6.3.27) we obtain

F (Rk) +G(Yk)− F (R∗)−G(Y∗) ≤ −〈Wk,H(Xk)−Rk〉F − 〈Zk, DXk − Yk〉F

− β‖DXk − Yk‖2F − ‖H(Xk)−Rk‖2F , (6.3.34)

thus we have lim
k→+∞

F (Rk) +G(Yk) = F (R∗) +G(Y∗), i.e., objective convergence.

6.4 Generalized matrix Krylov subspace for TV/L1 and

TV/L2 regularizations

In this section we will see how to generalize the generalized Krylov subspace (GKS)

method proposed in [78] to solve the generalized Sylvester matrix equation (6.2.17). In

[78] GKS was introduced to solve Tikhonov regularization problems with a generalized

regularization matrix. The method was next generalized in [76] to iteratively solve a

sequence of weighted `2−norms. It is our aim to use the fashion of the GKS method to

iteratively solve the sequence of generalized Sylvester matrix equation (6.2.17). Let us
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first introduce the following linear matrix operator

A : Rm×n → Rm×n

A(X) := A1XA2 +A3XA4.

the problem (6.2.17) can be then expressed as follows

A (X) = Ek, k = 0, 1, ... (6.4.1)

We start with the solution X1 of the following linear matrix equation

A (X) = E0 (6.4.2)

We search for an approximation of the solution by solving the following minimization

problem,

min
X
‖A (X)− E0‖F (6.4.3)

Let X0 be an initial guess of X1 and P0 = A (X) − E0 the corresponding residual. We

use the modified global Arnoldi algorithm [66] to construct an F-orthonormal basis Vm =

[V1, V2, ..., Vm] of the following matrix Krylov subspace

Km (A, P0) = span
{
P0,A (P0) , ...,Am−1 (P0)

}
. (6.4.4)

This gives the following relation

A (Vm) = Vm+1 (Hm ⊗ In) , (6.4.5)

where Hm ∈ R(m+1)×m is an upper Hessenberg matrix. We search for an approximated

solution Xm
1 of X1 belonging to X0 + Km (A, P0). This shows that Xm

1 can be obtained

as follows

Xm
1 = X0 + Vm(ym ⊗ In), (6.4.6)
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where ym is the solution of the following reduced minimization problem

min
y∈Rm

‖Hmy − ‖P0‖F e1‖ , (6.4.7)

where e1 denotes the first unit vector of Rm+1.

Now we turn to the solutions of

A (X) = Ek, k = 1, 2, ... (6.4.8)

For example, in the beginning of solving A (X) = E1, we reuse the F-orthonormal vectors

Vm and we expand it to Vm+1 = [Vm, Vnew], where Vnew is obtained normalizing the

residual as follows

Vnew =
P1

‖P1‖F
, P1 = A (X1)− E1. (6.4.9)

We can then continue with A (X) = Ek, k = 2, 3, ... in a similar manner. Thus, at each

iteration we generate the following new vector that has to be added to the generalized

matrix Krylov subspace already generated to solve all the previous matrix equation,

Vnew =
Pk
‖Pk‖F

, Pk = A (Xk)− Ek. (6.4.10)

The idea of reusing these vectors to solve the next matrix equation, generates matrix

subspaces refereed to as generalized matrix Krylov subspaces of increasing dimension [12].

Note that at each iteration, the residual Pk is orthogonal to Vk, since it is parallel to the

gradient of the function (6.2.15) evaluated at Xk. Let Vk be the F-orthonormal basis of the

generalized matrix Krylov subspaces at iteration k. When solving A (X) = Ek, given Xk

and the corresponding residual Pk, in order to minimize the residual in the generalized

matrix Krylov subspaces spanned by Vk, we need to solve the following minimization
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problem

min
X∈span(Vk)

‖Pk −A (X)‖F , (6.4.11)

The approximate solution of (6.4.11) is then given by Xk+1 = Vk (y ⊗ In). By means of

the Kronecker product, we can recast (6.4.11) to a vector least-squares problem. Hence,

replacing the expression of Xk+1 into (6.4.11) yields the following minimization problem

min
yk
‖Pk − [A(V1), ...,A(Vk),A(Vnew)] (y ⊗ In)‖F , (6.4.12)

The problem (6.4.12) can be solved by the updated version of the global QR decomposition

[14]. To use the global QR decomposition, we first need to define the � product. Let

A = [A1, A2, ..., Ap] and B = [B1, B2, ..., B`] be matrices of dimension n× ps and n× `s,

respectively, where Ai and Bj (i = 1, ..., p; j = 1, ..., `) are n× s matrices. Then the p× `

matrix AT �B is defined by

AT �B =



〈A1, B1〉F 〈A1, B2〉F · · · 〈A1, B`〉F

〈A2, B1〉F 〈A2, B2〉F · · · 〈A1, B`〉F
...

...
...

〈Ap, B1〉F 〈Ap, B2〉F · · · 〈Ap, B`〉F


. (6.4.13)

Let QA (RA ⊗ In) be the global QR of [A(V1),A(V2), ...,A(Vk)], where QA = [Q1, ..., Qk]

is an m×kn F-orthonormal matrix satisfying QTA�QA = Ik and RA is an upper triangular

k × k matrix. The global QR decomposition of [A(V1), ...,A(Vk),A(Vnew)] is defined as

follows

[A(V1), ...,A(Vk),A(Vnew)] = [QA, Qnew]


 RA rA

0 ra

⊗ In
 , (6.4.14)
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where Qnew, rA and ra are updated as follows

rA = QTA � A(Vnew), Q = A(Vnew)−QA (rA ⊗ In) (6.4.15)

ra = ‖Q‖F , Qnew = Q/ra.

Algorithm 10 TV/L2 for (6.1.15)

Inputs : H1, H2, C, B, ε

Initialization : X0 = B, Y0 = DX0, Z0 = 0

Parameters : µ, β

1. Generate matrix Krylov subspace Vm using modified global Arnoldi’s process. Set

X1 = Xm
1 , where Xm

1 is obtained by (6.4.6)

2. For k = 1, ... until convergence, do

3. Update Yk by (6.2.11) and Zk by (6.2.6)

4. Calculate Pk = A (Xk)− Ek, where Ek = HT (B) +DT (βYk − Zk)

5. Calculate Vnew = Pk
‖Pk‖F

and save Vk+1 = [Vk, Vnew]

6. Update Xk+1 by solving min
X∈span(Vk+1)

‖Pk −A (X)‖F with the updated global QR

decomposition

7. End the iteration if ‖Xk+1 −Xk‖F / ‖Xk‖F < ε

6.5 Numerical results

This section provides some numerical results to show the performance of Algorithms

TV/L1 and TV/L2 when applied to the restoration of blurred and noisy images. The
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Algorithm 11 TV/L1 for (6.1.16)

Inputs : H1, H2, C, B, ε

Initialization : R0 = A (X0)−B, Y0 = DX0, Z0 = 0, W0 = 0

Parameters : µ, β, ρ

1. Generate matrix Krylov subspace Vm using modified global Arnoldi’s process. Set

X1 = Xm
1 , where Xm

1 is obtained by (6.4.6)

2. For k =, 1, ... until convergence, do

3. Update Rk by (6.3.13) and Update Yk by (6.2.11)

4. Update Zk and Wk by (6.3.7)

5. Calculate Pk = A (Xk)− Ek, where Ek = HT (ρRk −Wk) +DT (βYk − Zk)

6. Calculate Vnew = Pk
‖Pk‖F

and save Vk+1 = [Vk, Vnew]

7. Update Xk+1 by solving min
X∈span(Vk+1)

‖Pk −A (X)‖F with the updated global QR

decomposition

8. End the iteration if ‖Xk+1 −Xk‖F / ‖Xk‖F < ε
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first example applies TV/L1 to the restoration of blurred image contaminated Gaussian

blur salt-and-pepper noise while the second example apply the TV/L1 model when also a

color image is contaminated by Gaussian blur salt-and-pepper noise. The third example

discusses TV/L2 when applied to the restoration of an image that have been contaminated

by Gaussian blur and by additive zero-mean white Gaussian noise. All computations were

carried out using the MATLAB environment on an Pentium(R) Dual-Core CPU T4200

computer with 3 GB of RAM. The computations were done with approximately 15 decimal

digits of relative accuracy. To determine the effectiveness of our solution methods, we

evaluate the Signal-to-Noise Ratio (SNR) defined by

SNR(Xk) = 10log10

‖X̂ − E(X̂)‖2F
‖Xk − X̂‖2F

where E(X̂) denotes the mean gray-level of the uncontaminated image X̂. The parameters

are chosen empirically to yield the best reconstruction. In all the examples we generate the

matrix Krylov subspace V1 using only one step of the modified global Arnoldi’s process.

Example 1

In this example the original image is the gray-scale mrin6.png image of dimension

256× 256 from Matlab and it is shown in Figure 6.1. The blurring matrix H is given by

H = H1 ⊗ H2 ∈ R2562×2562
, where H1 = H2 = [hij ] and [hij ] is the Toeplitz matrix of

dimension 256× 256 given by

hij =


1

σ
√

2π
exp

(
− (i−j)2

2σ2

)
, |i− j| ≤ r,

0 otherwise

The blurring matrix H models a blur arising in connection with the degradation of digital

images by atmospheric turbulence blur. We let σ = 1 and r = 4. The blurred and noisy
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image of Figure 6.2 has been built by the product H2X̂H
T
1 and by adding salt-and-pepper

noise of different intensity. The recovery of the image via TV1/L1 and TV2/L1 models

is terminated as soon as ‖Xk+1 −Xk‖F / ‖Xk‖F < 10−3. Table 6.1 report results of the

performances of the TV models for different percentages of pixels corrupted by salt-and-

pepper noise. In Figures 6.3-6.4 we show the resorted images obtained applying TV/L1

algorithm for 30% noise level.

Parameters TV1 TV2

Noise % µ β ρ Iter SNR time Iter SNR time

10 0.05 50 5 56 23.55 10.23 141 22.64 42.55

20 0.1 50 5 51 21.38 8.69 106 20.16 27.16

30 0.2 50 5 48 19.21 7.68 87 17.66 19.73

Table 6.1 – Comparison of TV1/L1 and TV2/L1

models for the restoration of mrin6.png test image corrupted by Gaussian blur and

different salt-and-pepper noise.

6.5.1 Example 2

This example illustrates the performance of TV/L1 algorithm when applied to the

restoration of 3-channel RGB color images that have been contaminated by blur and salt

and peppers noise. The corrupted image is stored in a block vector B with three columns.

The desired (and assumed unavailable) image is stored in the block vector X̂ with three

columns. The blur-contaminated, and noisy image associated with X̂, is stored in the

block vector B.
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Figure 6.1 – Original image Figure 6.2 – Corrupted

Figure 6.3 – TV1 (SNR=19.21) Figure 6.4 – TV2 (SNR=17.66)

We consider the within-channel blurring only. Hence the blurring matrix H1 in (6.1.1)

is the 3×3 identity matrix. The blurring matrix H2 in (6.1.1), which describes the blurring

within each channel, models Gaussian blur and is determined with the MATLAB function

blur from [61]. This function has two parameters, the half-bandwidth of the Toeplitz blocks

r and the variance σ of the Gaussian PSF. For this example we let σ = 1 and r = 4.

The original (unknown) RGB image X̂ ∈ 256 × 256 × 3 is the papav256 image from
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MATLAB. It is shown in Figure 6.5. The associated blurred and noisy image B with 30%

noise level is shown in Figure 6.6. Given the contaminated image B, we would like to

recover an approximation of the original image X̂. The recovery of the image via TV1/L1

and TV2/L1 models is terminated as soon as ‖Xk+1 −Xk‖F / ‖Xk‖F < 10−2. Table 6.2

compares the results obtained by TV1/L1 and TV2/L1 models.

The restorations obtained with TV1/L1 and TV2/L1 for noise level 30% are shown in

Figure 6.7 and the Figure 6.8, respectively.

Parameters TV1 TV2

Noise % µ β ρ Iter SNR time Iter SNR time

10 0.1 80 5 13 24.66 9.01 14 24.32 9.73

20 0.125 80 5 17 23.00 12.64 17 22.71 12.36

30 0.125 80 5 19 20.90 13.35 19 21.13 13.89

Table 6.2 – Comparison of TV1/L1 and TV2/L1

models for the restoration of papav256.png test colour image corrupted by Gaussian

blur and different salt-and-pepper noise.

6.5.2 Example 3

In this example we present the experimental results recovered by Algorithm 10 for

the reconstruction of a cross-channel blurred image. We consider the same original RGB

image and the same within-channel blurring matrix H1, as in Example 2, with the same

parameters. The cross-channel blurring is determined by a matrix H2. In our example we
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Figure 6.5 – Original image Figure 6.6 – Corrupted

Figure 6.7 – TV1 (SNR=20.90) Figure 6.8 – TV2 (SNR=21.13)
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let H2 to be

H2 =


0.7 0.2 0.1

0.25 0.5 0.25

0.15 0.1 0.75

 .

This matrix is obtained from [62]. The cross-channel blurred image without noise is repre-

sented by H1X̂H
T
2 and it is shown in Figure (6.9) . The associated blurred and noisy image

B with 30% noise level is shown in Figure (6.10). The cross-channel blurred and noisy

image has been reconstructed using Algorithm 10 as soon as ‖Xk+1 −Xk‖F / ‖Xk‖F <

10−2. The restored images obtained with TV/L1 models are shown in Figures (6.12)-

(6.11).

6.5.3 Example 4

In this example we consider the restoration of the gray-scale mrin6.png image de-

graded by the same blurring matrices H1 and H2 defined in Example 1 with σ = 2 and

r = 4, and by additive zero-mean white Gaussian noise with different different noise le-

vels. This noise level is defined as follows ν = ||E||F
||B̂||F

, where E denotes the block vector

that represents the noise in B, i.e., B := B̂ +E, and B̂ is the noise-free image associated

with original image X̂. For this kind of noise, we consider the TV1/L2 and TV2/L2 mo-

dels. The recovery of the image via TV1/L1 and TV2/L1 models is terminated as soon as

‖Xk+1 −Xk‖F / ‖Xk‖F < 10−3. In Table 6.3, we compare the results obtained by TV1/L2

and TV2/L2 for different noise levels. Figure 6.14 shows the image degraded by 0.01 noise

level. Figure 6.15 and Figure 6.16 show the restored images obtained by TV1/L2 and

TV2/L2, respectively.
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Figure 6.9 – Blurred image Figure 6.10 – Blurred and noisy image

Figure 6.11 – TV1 (SNR=19.50) Figure 6.12 – TV2 (SNR=19.90)

Parameters TV1 TV2

Noise % µ β Iter SNR time Iter SNR time

0.001 0.0001 0.1 53 18.32 9.30 52 18.32 10.10

0.01 0.001 30 20 15.70 2.65 21 15.60 2.60

Table 6.3 – Comparison of TV1/L2 and TV2/L2

models for the restoration of imrin6.png test image corrupted by Gaussian blur and

different white Gaussian noise level.
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Figure 6.13 – Original image Figure 6.14 – Corrupted

Figure 6.15 – TV1 (SNR=15.70) Figure 6.16 – TV2 (SNR=15.60)

6.5.4 Example 5

In this example, we consider the Fredholm integral equation

∫ ∫
Ω
K(x, y, s, t)f(s, t)dsdt = g(x, y), (x, y) ∈ Ω, (6.5.1)

where Ω = [−6, 6]× [−6, 6]. Its kernel, solution, and right-hand side are given by

K(x, y, s, t) = k1(x, s)k1(y, t), (x, y) ∈ Ω, (s, t) ∈ Ω,

f(x, y) = f1(x)f1(y),
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g(x, y) = g1(x)g1(y),

where

f1(s) :=


1 + cos(π3 s), |s| ≤ π

3 ,

0, otherwise.

k1(s, x) := f1(s− x)

g1(s) := (6− |s|)
(

1 +
1

2
cos
(π

3
s
))

+
9

2π
sin
(π

3
|s|
)
.

We use the code phillips from Regularization Tools [61] to discretize (6.5.1) by a Galer-

kin method with orthonormal box functions as test and trial functions to obtain H1 and

H2 of size 500. From the output of the code phillips we determine a scaled approxima-

tion X̂ ∈ R500×500 of the exact solution f(x, y). Figure 6.17 displays this exact solution.

To determine the effectiveness of our approach, we evaluate the relative error

Re =
||X̂ −Xk||F
||X̂||F

of the computed approximate solution Xk obtained with Algorithm 10. Table 6.4 shows

the relative error in approximate solutions determined by Algorithm 10 for different noise

levels, as well as the number of iterations required to satisfy ‖Xk+1 −Xk‖F / ‖Xk‖F <

10−3. Figure 6.18 displays the computed approximate solution obtained when the noise

level is 0.1.
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Parameters TV1 TV2

Noise % µ β Iter Re time Iter Re time

0.001 0.0001 0.1 12 4.01× 10−2 9.05 9 4.71× 10−2 6.52

0.01 0.001 30 13 3.99× 10−2 9.63 13 3.98× 10−2 9.66

0.1 0.1 40 15 4.07× 10−2 10.94 15 4.07× 10−2 11.38

Table 6.4 – Comparison of TV1/L2 and TV2/L2

models for the solution of (6.5.1) with different white Gaussian noise level.

Figure 6.17 – True object Figure 6.18 – Approximate solution
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Chapitre 7

Conclusion

In this chapter, we provide a brief review of the main results described in this thesis.

In this thesis, we analyzed different algorithms to the solution of huge ill-posed li-

near problems coming from many applications. The obtained numerical results show the

effectiveness of the proposed algorithms.

In Chapter 2, a new method for the inexpensive computation of a suitable value of the

regularization parameter and an associated regularized solution of large linear discrete ill-

posed problems is described. The method is based on global Lanczos tridiagonalization and

applies Gauss-type quadrature rules to estimate pertinent quantities. Computed examples

illustrate the effectiveness of the method.

In Chapter 3, an iterative scheme based on the global Golub–Kahan bidiagonalization

method for the approximate solution of the Tikhonov minimization problem is presented

when the matrix coefficients matrix has a Kronecker structure. The method exploits the

relation between global Golub–Kahan bidiagonalization and Gauss-type quadrature to

inexpensively determine the regularization parameter so that the discrepancy principle is

satisfied. The Kronecker structure makes it possible to replace matrix-vector product eva-
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luations in the scheme [26] by matrix-matrix product computations. The latter products

execute more efficiently than the former on many computers.

In chapter 4, we have illustrated how block Lanczos algorithm, block Gauss quadra-

ture, block anti-Gauss quadrature and matrix functional can be applied to inexpensively

compute the regularization parameter for Tikhonov regularization, under the assumption

that a constraint on the norm of the solution is known. The numerical experiments per-

formed so far show that our approach is advantageous for large ill-posed linear problems.

Indeed, it determines a monotonically decreasing sequence of values of the regularization

parameter by carrying a few steps of block Lanczos algorithm.

Chapter 5 discusses four approaches to the solution of linear discrete ill-posed pro-

blems with multiple right-hand sides. GKB method is clearly the least attractive of the

algorithms considered. The relative merits of the other algorithms depends on how accu-

rately the noise level is known, whether the noise-contamination of all data vectors b(i),

i = 1, . . . , k, correspond to about he same noise level, and on the computer architecture.

In Chapter 6, we have introduced new algorithms to efficiently solve the TV/L1 and

TV/L2 minimization problems. The proposed algorithms are based on orthogonal pro-

jections onto generalized Krylov subspaces of increasing dimensions. We tested our algo-

rithms to the restoration of blurred and noisy grayscale and color images. The obtained

numerical results indicates that subspaces of quite small dimensions are sufficient for the

determination of high quality restorations.
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