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Introduction

Le travail de cette thèse rentre dans le cadre générale de l'algèbre linéaire et l'analyse numérique. Le principale objectif est le développement de méthodes numériques matricielles pour la résolution des problèmes inverses de grande taille, ainsi que l'application de ces méthodes à des problèmes importants qui se produisent dans la science et l'industrie. Les méthodes numériques sont développées, analysées et spécialisées pour résoudre des problèmes discrets mal-posés de grande taille. Dans cette thèse, nous nous concentrons sur des problèmes en deux dimensions. Nous rencontrons de tels problèmes dans diverses applications et tout particulièrement dans la résolution des équations intégrales de Fredholm du premier type en deux dimensions avec un noyau séparable [START_REF] Bouhamidi | An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure[END_REF], ainsi que la restauration d'images floues et bruitées dans le cas où la fonction de l'étalement du point est séparable [START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF].

La restauration de l'image

La restauration d'image est une étape très importante dans le processus de traitement d'image. Cette dernière est nécessaire pour corriger les différents traitements que peut subir une image, car celle-ci, pendant sa capture peut être, dans la plus part des 1 cas, sujette à des dégradations qui conduisent aux manques d'informations utiles qu'elle contenait et qui sont d'une grande importance.

Au cours des années 50, une grande importance a été attribuée aux techniques numériques de restauration d'images, et cela est dû essentiellement à la mauvaise qualité des images que les astronautes prélevaient. Cette qualité est influencée par plusieurs sources de dégradation qui peuvent être, soit l'appareil de prise de vue, soit l'opérateur, soit l'objectif, ou même les turbulences atmosphériques. Avec le développement technologique, plusieurs domaines vitaux (médical, militaire,...etc.) essaient d'en profiter de cette technologie, et principalement le domaine de l'imagerie, ce qui nécessite automatiquement des outils de plus en plus sophistiqués qui répondent aux besoins des opérateurs. Lorsqu'on utilise un appareil photo, nous voulons que l'image enregistrée soit une représentation exacte de la scène que nous voyons, mais chaque image est plus ou moins floue. Ainsi, la restauration de l'image est fondamental dans la prise de photos nettes .

La représentation la plus utilisée d'une image numérique est celle d'un tableau à deux dimensions composé d'un ensemble de lignes et de colonnes. Chaque cellule du tableau, appelée pixel, contient une valeur quantifiée. Cette valeur est une sémantique dépendant du type de signal qu'elle code (intensité lumineuse du point, distance à un point de référence, ou numéro de la région d'appartenance par exemple). Une petite image a environ 2562 à 65536 pixels tandis qu'une image de haute résolution souvent a 5 à 10 millions de pixels. Le flou s'apparait toujours dans l'enregistrement d'une image numérique, car il est inévitable que les informations de la scène débordent aux pixels voisins. La restauration de l'image est le processus d'enlever le flou et le bruit de l'image dégradée pour récupérer une approximation de l'image originale. Ce domaine de la technologie d'imagerie est de-venu de plus en plus important dans de nombreuses applications scientifiques telles que l'astronomie [START_REF] Banham | Digital Image Restoration[END_REF][START_REF] Berry | The Handbook of Astronomical Image Processing[END_REF][START_REF] Van | Bringing Fuzzy Field into Focus : Image Help for the Hubble[END_REF], l'imagerie médicale [START_REF] Banham | Digital Image Restoration[END_REF][START_REF] Hamler | 3D Iterative Restoration of Tomosynthetic Images[END_REF][START_REF] Schweiger | Computational Aspects of Diffuse Optical Tomography[END_REF], militaires [START_REF] Banham | Digital Image Restoration[END_REF][START_REF] Nguyen | Effcient Generalized Cross Validation with Applications to Parametric Image Restoration and Resolution Enhancement[END_REF], la surveillance [START_REF] Banham | Digital Image Restoration[END_REF][START_REF] Nguyen | Effcient Generalized Cross Validation with Applications to Parametric Image Restoration and Resolution Enhancement[END_REF], la microscopie [START_REF] Mackenzie | Novel Imaging Systems Rely on Focus-Free Optics[END_REF][START_REF] Bertero | Boccacci Introduction to Inverse Problems in Imaging[END_REF] et la technologie de communication vidéo [START_REF] Banham | Digital Image Restoration[END_REF][START_REF] Bertero | Boccacci Introduction to Inverse Problems in Imaging[END_REF].

Par exemple, les scientifiques utilisent des télescopes pour obtenir les images des étoiles et des planètes lointaines. Toutefois, en raison de la déformation causée par l'atmosphère de la terre et les rayons de la lumière aléatoire provenant de diverses sources, les astronomes reçoivent des images floues, comme celle représentée dans la Figure 1 médecins et les technologues médicaux obtiennent des images de l'anatomie humaine et la physiologie à partir des machines radiologiques tels que X-ray, imagerie par résonance magnétique (IRM). Puisque le dispositif de la formation de l'image est situé à l'extérieur du patient, le corps sert de distorsions moyennes, avec le rayonnement aléatoire, peuvent corrompre les images. En outre, le mouvement du patient peut provoquer plus de flou dans l'image. Cependant, le bruit et le flou peut être filtré de ces images, ce qui les rend plus facile à déchiffrer par les médecins.

La surveillance est un autre domaine fortement influencé par les technologies de la res-tauration de l'image. Par exemple, les responsables de l'application de la loi et la police scientifique utilisent des techniques de la restauration numérique pour récupérer des visages et des plaques d'immatriculation à partir des cassettes vidéo de sécurité de mauvaise qualité. Plus récemment, des techniques telles que le masque de phase cubique sont utilisés pour apporter tous les visages dans une foule, peu importe leur proximité de la caméra [START_REF] Mackenzie | Novel Imaging Systems Rely on Focus-Free Optics[END_REF].

Dans chacune de ces applications, obtenir des images plus claires peut être accompli en utilisant des programmes informatiques pour effectuer des techniques d'amélioration de l'image. Ce processus de calcul peut être compliqué, nécessitant des algorithmes pour résoudre des dizaines de milliers, peut-être des millions d'équations mathématiques. Cependant, une reconstruction précise et efficace peut être extrêmement avantageuse.

Considérons le modèle linéaire de le restauration d'image donné par l'équation de Fredholm du premier type en deux dimensions suivante l'image originale x. Généralement, la résolution du problème (0.0.2) nécessite un traitement des données de grande taille et alors l'allocation de larges plages de mémoire. Heureusement, dans de nombreuses applications, le noyau satisfait κ(x, y; s, t) = κ(x -s, y -t), et on dit qu'il est spatialement invariant ou isotrope. Dans ce cas, l'équation intégrale (0.0.1) est une opération de convolution, et donc κ peut généralement être représenté par une structure de données compacte lorsque le stockage devient un problème. Les applications où le noyau est spatialement invariant et alors exploiter la structure de la matrice H peuvent être trouvées dans [START_REF] Brianzi | Estatico Improvement of space-invariant image deblurring by preconditioned Landweber iterations[END_REF][START_REF] Faber | Motion correction of PET brain images through deconvolution : I. Theoretical development and analysis in software simulations[END_REF][START_REF] Mcnown | Hunt Approximate shift-invariance by warping shiftvariant systems[END_REF][START_REF] Nagy | Kronecker product approximation for image restoration with reflexive boundary conditions[END_REF]. La résolution du problème vectoriel (0.0.2) nécessite l'utilisation d'un schéma itératif [START_REF] Paige | An algorithm for sparse linear equations and sparse least squares[END_REF][START_REF] Hanke | On Lanczos based methods for the regularization of discrete ill-posed problems[END_REF], la partie la plus intensive de ces méthodes est les multiplications matrice-vecteur avec H, ce qui est supposé être extrêmement numériquement couteux, donc un schéma de stockage efficace en exploitant la structure devrait être utilisé. Un cas particulier se produit lorsque κ est séparable, c'està-dire κ(x-s, y-t) = κ 1 (x-s)κ 2 (y-t). Si H 1 et H 2 sont les discrétisations des opérateurs intégraux κ 1 et κ 2 , respectivement, alors l'opérateur discret correspondant H du noyau κ est défini par H = H 1 ⊗ H 2 , où ⊗ désigne le produit de Kronecker [START_REF] Golub | Matrix Computations[END_REF]. L'objectif de cette thèse est de développer des méthodes numériques efficaces exploitant la structure du noyau κ. À ce stade, nous supposerons que la matrice floue H est le produit de Kronecker de deux matrices. Notons qu'il est bien connu que la plupart des matrices de flou ont la structure de Kronecker ou peuvent être bien approximées par des matrices ayant cette structure ; voir, par exemple, Kamm et Nagy [START_REF] Kamm | Kronecker product and SVD approximations in image restoration[END_REF][START_REF] Kamm | Kronecker product approximations for restoration image with reflexive boundary conditions[END_REF] et Van Loan et Pitsianis [START_REF] Van Loan | Approximation with Kronecker products[END_REF]. En inversant la matrice H, une approximation de la solution exacte peut être calculée ; Cependant, ce n'est pas si simple à cause du mauvais conditionnement de la matrice H. Les méthodes de régularisation peuvent être utilisées pour calculer une approximation de x.

L'une des méthodes de régularisation les plus connues est la régularisation de Tikhonov.

Régularisation de Tikhonov

Puisque la matrice de flou H est mal conditionnée, le problème de la restauration d'image sera extrêmement sensible aux perturbations dans le second membre. Afin de diminuer l'effet du bruit dans les données, nous remplaçons le modèle (0.0.2) par un autre mieux conditionné. L'une des méthodes de régularisation les plus populaires est celle de Tikhonov [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Groetsch | The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind[END_REF]. La méthode remplace le problème (0.0.2) par celui des moindres carrés Il s'ensuit que (0.0.3) admet la solution unique

x µ := (H T H + µI) -1 H T b (0.0.5) pour tout µ > 0. Dans [START_REF] Golub | Matrices, moments and quadrature[END_REF][START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF][START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF], Gene Golub et ses collaborateurs ont développé des méthodes élégantes et efficaces basées sur la relation entre l'algorithme de Lanczos, les polynômes orthogonaux, les quadratures de Gauss et certaines fonctions matricielles pour calculer les paramètres de régularisation et approximer la solution du problème de régularisation de Tikhonov. Cependant, cette technique ne s'applique pas dans certains cas puisque la mise en oeuvre du problème de restauration d'image nécessite typiquement le traitement des données de très grande taille, donc cette approche peut être échouée en terme de stockage mémoire et temps d'exécution. Heureusement, ce coût peut être considérablement réduit en exploitant la structure de Kronecker de la matrice H. Au Chapitre 3, nous supposerons qu'une estimation de la solution exacte est donnée, et nous utiliserons cette estimation pour déterminer µ. Cette hypothèse présente l'avantage que, dans certaines applications, les propriétés physiques du problème déterminent une valeur optimale pour la contrainte de la norme. C'est le cas, par exemple, de la restauration d'image où la contrainte de la norme représente l'énergie de l'image cible. Cette approche pour sélectionner µ est préconisé par Rojas et Sorensen [START_REF] Rojas | A trust-region approach to regularization of largescale discrete forms of ill-posed problems[END_REF].

Puisque de nombreuses matrices floues peuvent être représentées, ou être bien approximées, par un produit de Kronecker ; voir, par exemple, Kamm et Nagy [START_REF] Kamm | Kronecker product and SVD approximations in image restoration[END_REF][START_REF] Kamm | Kronecker product approximations for restoration image with reflexive boundary conditions[END_REF] et Van Loan et Pitsiani [START_REF] Van Loan | Approximation with Kronecker products[END_REF]. Nous supposerons que H a une structure de produit de Kronecker et nous présentons un algorithme pour approximer la solution exacte en exploitant cette structure. Nous montrerons comment la structure de produit Kronecker nous a permet d'utiliser la méthode de Lanczos globale. Cette méthode remplace l'évaluation des produits matrice-vecteur de l'algorithme de Lanczos standard par l'évaluation des produits matrice-matrice, qui peuvent être exécutés efficacement sur de nombreux ordinateurs modernes. La méthode de Lanczos globale est décrite dans [START_REF] Jbilou | Oblique projection methods for linear systems with multiple right-hand sides[END_REF]. Nous allons déterminer une valeur appropriée du paramètre de régularisation µ en estimant d'abord une certaine intégrale de Riemann-Stieltjes par des règles de quadrature de type Gauss. Ces règles peuvent être évaluées à l'aide de l'algorithme de Lanczos globale. Cette idée est une extension de la méthode de Lanczos standard utilisée pour déterminer µ [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF].

Au Chapitre 4, nous utiliserons le discrepancy principle pour choisir le paramètre de régularisation µ. Cette méthode nécessite qu'une approximation ε de e 2 soit disponible et prescrit que µ > 0 soit déterminé de sorte que b -Hx µ 2 = ηε pour un choix de la constante η ≥ 1 de la part de l'utilisateur, cette constante est indépendante de ε ; voir [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Hansen | Rank-Deficient and Discrete Ill-Posed Problems[END_REF][START_REF] Reichel | Old and new parameter choice rules for discrete ill-posed problems[END_REF] pour des discussions sur cette méthode de choix des paramètres. Nous allons déterminer une valeur µ > 0 telle que ε ≤ b -Hx µ 2 ≤ ηε, (0.0.6) où la constante η > 1 est indépendante de ε. Le calcul d'une valeur µ telle que la solution associée x µ satisfait (0.0.6) nécessite généralement l'utilisation d'une méthode de résolution d'une équation non linéaire, typiquement b -Hx µ 2 doit être évaluée pour plusieurs valeurs de µ. Cela peut être numériquement couteux quand la matrice H est de grande taille. Une méthode de résolution basée sur la réduction de H à une matrice bidiagonale de petite taille à l 'aide de la bidiagonisation de Golub-Kahan (Golub-Kahan bidiagonalization ou GKB en anglais) est discutée dans [START_REF] Calvetti | Tikhonov regularization of large linear problems[END_REF]. Cette méthode utilise la relation entre les quadratures de type Gauss et GKB pour déterminer une approximation de x µ qui satisfait (0.0.6). C'est alors notre objectif de décrire une méthode analogue pour la situation où H est le produit Kronecker de deux matrices. Notre approche est de remplacer la méthode GKB par la méthode de la bidiagonalisation de Golub -Kahan globale (Global Golub-Kahan bidiagonalization ou GGKB en anglais) décrite par Toutounian et Karimi [START_REF] Toutounian | Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides[END_REF]. L'évaluation des produits matrice-vecteur de grande taille dans la méthode GKB est remplacée par l'évaluation des produits matrice-matrice de petites 

La régularisation par la variation totale

La régularisation par la variation totale (Total variation ou TV en anglais) est l'une des stratégies les plus populaires et les plus efficaces pour la restauration d'images. Elle est bien connue pour préserver les bords et les discontinuités tout en créant des zones lisses.

Rudin, Osher et Fatemi ont introduit TV dans [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. Une discussion détaillée sur TV a été présenté dans [START_REF] Chan | Recent developments in total variation image restoration[END_REF][START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF] Les algorithmes proposés dans le chapitre 7 de cette thèse ont réussi à surmonter cette difficulté et ont conduit à de nouveaux solveurs pour la minimisation par TV.

Chapitre 1 Preliminaries

This chapter introduces basic notions and operations in numerical linear algebra that will be used in the analysis of inverse problems. where I is the identity matrix.

Definitions and theorems

This leads to the equivalent characterization : a matrix A is orthogonal if its transpose is equal to its inverse : The vectors u and v are called left-singular and right-singular vectors for σ, respectively.

A T = A -1 . ( 1 
Theorem 1.1.6. (Singular value decomposition). Let A ∈ R m×n be a matrix. Then there exist an orthogonal matrix U ∈ R m×m , a diagonal matrix Σ ∈ R m×n and a unitary matrix

V ∈ R n×n such that A = U ΣV T (1.1.5)
where Σ contains the singular values of A and the columns of U and V are the corresponding (properly normalized) left and right singular vectors, respectively. The identity (1.1.5) is called the Singular Value Decomposition (SVD) of the matrix A.

Theorem 1.1.7. (QR decomposition). Let A be a square matrix. Then A may be decomposed as

A = QR, (1.1.6)
where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning Q T Q = I) and R is an upper triangular matrix (also called right triangular matrix). If A is invertible, then the factorization is unique if we require the diagonal elements of R to be positive.

Kronecker product

Definition 1.2.1. (Kronecker product). If H 2 is an m × n matrix and H 1 = [h (1) 
i,j ] is a p × q matrix, then the Kronecker product H 1 × H 2 is the mp × nq block matrix : while the inverse operator, mat, transforms a vector (1.2.2) to an associated matrix A = [a i,j ] ∈ R m×n . Thus,

H = H 1 ⊗ H 2 =             h (1) 1,1 H 2 h (1) 1,2 H 2 • • • h (1) 1,q H 2 h (1) 2,1 H 2 h (1) 2,2 H 2 • • • h (1) 2,q H 2 . . . . . . . . . h (1) p,1 H 2 h (1) p,2 H 2 • • • h (1) p,q H 2             . ( 1 
vec(A) = a, mat(a) = A.
Theorem 1.2.3. The Kronecker product satisfies the following relations for matrices A, B, C, D, X of suitable sizes :

(A ⊗ B)vec(X) = vec(BXA T ), (A ⊗ B) T = A T ⊗ B T , (AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D).
(1.2.3)

For matrices A, B ∈ R m×n , we define the inner product

A, B F := tr(A T B), (1.2.4) 
where tr(•) denotes the trace, and we note that

A, B F = (vec(A)) T vec(B).
The Frobenius norm is associated with this inner product,

A F := A, A 1/2 F ,
and satisfies

A F = vec(A) 2 . (1.2.5) Two matrices A, B ∈ R m×n are said to be F -orthogonal if A, B F = 0.
1.3 The product [START_REF] Bouyouli | Convergence properties of some block Krylov subspace methods for multiple linear systems[END_REF] Definition 1. 

A T B =             A 1 , B 1 F A 1 , B 2 F • • • A 1 , B F A 2 , B 1 F A 2 , B 2 F • • • A 1 , B F . . . . . . . . . A p , B 1 F A p , B 2 F • • • A p , B F             . (1.3.1) Proposition 1.3.2. Let A, B, C ∈ R n×ps , and D ∈ R n×n , L ∈ R p×p .
Then we have

(A + B) T C = A T C + B T C, A T (B + C) = A T B + A T C, A T (B (L ⊗ I s )) = A T B L. (1.3.2) Proposition 1.3.3. (The global QR factorization [14]). Let Z = [Z 1 , Z 2 , ..., Z k ] be an n × ks matrix with Z i ∈ R n×s for i = 1, ..., k.
Then Z may be decomposed as

Z = Q (R ⊗ I s ) , (1.3.3) 
where 

Q = [Q 1 , ..., Q k ] is an n × ks F-orthonormal matrix satisfying Q T Q = I k
(A • B) i,j = (A) i,j (B) i,j . (1.3.4) Proposition 1.3.5.
The Hadamard product is commutative, associative and distributive over addition. That is,

A • B = B • A, (1.3.5) A • (B • C) = (A • B) • C, (1.3.6) A • (B + C) = A • B + A • C (1.3.7)
Chapitre 2

A global Lanczos method for Tikhonov regularization minimization problems with a solution norm constraint

Introduction

Image restoration is the process of removing blur and noise from an available degraded image to recover an approximation of the unavailable original noise-and blur-free image.

Let the original image be represented by the matrix X ∈ R m×n , whose entries represent pixels. The operator vec maps X to the vector x ∈ R mn defined by stacking the columns of X from left to right. Blurring is a linear deterministic process which can be modeled by a matrix H ∈ R mn×mn ; see, e.g., [START_REF] Andrews | Digital Image Restoration[END_REF][START_REF] Bertero | Introduction to Inverse Problems in Imaging[END_REF][START_REF] Chalmond | Modeling and Inverse Problems in Image Analysis[END_REF][START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF][START_REF] Jain | Fundamentals of Digital Image Processing[END_REF] for discussions on image restoration. Thus, b = H x represents a blurred image associated with x. The available image, represented by b ∈ R mn , is assumed to be contaminated by both blur and noise. Let the entries of the "noise vector" e ∈ R mn be normally distributed with zero mean and variance δ 2 . Then b can be expressed as

b = H x + e. (2.1.1)
The aim of image restoration is to determine an approximation of x by computing an approximate solution of the linear system of equations 

Hx = b. ( 2 
x 2 H † b 2 ≈ H † e 2 .
This difficulty can be remedied by replacing (2.1.2) by a nearby problem, whose solution is less sensitive to the error in b. The replacement is referred to as regularization. One of the most popular regularization methods is due to Tikhonov [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Groetsch | The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind[END_REF]. In its simplest form, Tikhonov regularization replaces the linear system (2.1.2) by the penalized least-squares problem

min x∈R mn { Hx -b 2 2 + µ x 2 2 }, (2.1.3)
where µ > 0 is a regularization parameter. The normal equations associated with (2.1.3) are given by

(H T H + µI)x = H T b, (2.1.4)
where I is the identity matrix of suitable order and the superscript T denotes transposition.

It follows that (2.1.3) has the unique solution

x µ := (H T H + µI) -1 H T b (2.1.5)
for any µ > 0. Our computed restoration of the vector b will be an approximation of a vector of the form (2.1.5). 

x µ 2 = H † b 2 , lim µ→∞ x µ 2 = 0. (2.1.6)
Démonstration. The representation

x µ 2 2 = x T µ x µ = b T H(H T H + µI) -2 H T b (2.1.7)
shows that x µ 2 is a decreasing function of µ > 0. The right-hand side limit (2.1.6) is immediate ; the left-hand side limit follows by substituting the singular value decomposition of H into (2.1.7).

The quality of the computed restoration depends on the choice of µ > 0. Several approaches to choosing µ are described in the literature, including the discrepancy principle, generalized cross validation, and the L-curve ; see, e.g., [START_REF] Kindermann | Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems[END_REF][START_REF] Reichel | Old and new parameter choice rules for discrete ill-posed problems[END_REF] for overviews and discussions. In this chapter, we will assume an estimate of x 2 to be available, and we will use this estimate to determine µ. Knowledge of the norm of the desired approximate solution of linear systems (2.1.2) is available in some applications, see, e.g., Ahmad et al. [START_REF] Ahmad | An admissible solution approach to inverse electrocardiography[END_REF], and this approach to select µ is has received considerable attention in the literature ; see, e.g., [START_REF] Calvetti | Tikhonov regularization with nonnegativity constraint[END_REF][START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF][START_REF] Rojas | A trust-region approach to regularization of largescale discrete forms of ill-posed problems[END_REF][START_REF] Rojas | An interior-point trust-region-based method for largescale non-negative regularization[END_REF]. It works well when the relative error e 2 / b 2 is not too large ; see [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF] for illustrations. 

The global Lanczos algorithm and Gauss quadrature

Let H 1 and H 2 be the Kronecker factors of the blurring matrix H and introduce the linear operator

A : R m×n → R m×n A(X) = H 2 XH T 1 .
Its transpose is given by A T (X) = H T 2 XH 1 . Define the symmetric linear operator

Ȃ(X) = (A T • A)(X),
where • denotes composition. 

( Ȃ + µI)(X) = G (2.2.1)
has a unique solution X µ ∈ R m×n . Let b := vec(B) and let x µ be given by (2.1.5) with this vector b. Then

X µ = mat(x µ ). (2.2.2)
Moreover, X µ F is a decreasing function of µ > 0 with

lim µ 0 X µ F = H † b 2 , lim µ→∞ X µ F = 0. (2.2.3) Démonstration. We have Ȃ(X) = H T 2 H 2 XH T 1 H 1 . Therefore (2.2.1
) can be written as

H T 2 H 2 XH T 1 H 1 + µX = H T 2 BH 1 .
Using the properties (1.2.3), this equation can be expressed as

((H 1 ⊗ H 2 ) T (H 1 ⊗ H 2 ) + µI)vec(X) = (H 1 ⊗ H 2 ) T vec(B),
which is the same as (2.1.4). This establishes (2.2.2). The properties of X µ F now follow from Proposition 2.1.1.

The matrix X = mat( x) represents the unavailable blur-and noise-free image that we would like to determine. We assume that an estimate of

∆ := X F (2.2.4)
is known and will compute an approximation of X by solving the constrained least-squares problem min 

X F ≤∆ B -A(X) F . ( 2 
φ(µ) = x µ 2 2 = x T µ x µ = bH T (H T H + µI) -2 H T b. (2.2.11) 
Substituting the spectral factorization

H T H = U ΛU T ,
where Λ = diag[λ 1 , λ 2 , . . . , λ mn ] ∈ R mn×mn and U ∈ R mn×mn is orthogonal, into the right-hand side of (2.2.11), with w = [w 1 , w 2 , . . . , w mn ] T := U T H T b, gives

φ(µ) = mn j=1 f µ (λ j )w 2 j .
The right-hand side is a Stieltjes integral, which can be expressed as (2.2.9). The distribution function ω associated with the measure dω can be chosen as a nondecreasing piecewise constant function with nonnegative jumps w 2 j at the eigenvalues λ j . Since H T H is positive semidefinite, the support of the measure dω lives on the nonnegative real axis.

It follows from (2.2.11) that the derivatives of φ satisfy φ (µ) < 0 and φ (µ) > 0, which shows that φ is decreasing and convex. The limits (2.2.10) are a consequence of (2.2.3).

It is convenient to define the integral operator

If := f µ (t)dω(t) (2.2.12)
and the associated inner product [p, q] := I(pq) (2.2.13)

for polynomials p and q of low enough degree. We may define orthogonal polynomials with respect to this inner product and, therefore, also Gauss quadrature rules for the approximation of (2.2.12). The k-point Gauss quadrature rule G k is characterized by the property that

G k p = Ip, ∀p ∈ P 2k-1 ,
where P 2k-1 denotes the set of polynomials of degree at most 2k -1. The remainder term for this quadrature rule can be expressed as

If µ -G k f µ = f (2k) µ (ξ) (2k)! k j=1 (t -t j ) 2 dω(t),
where f ( ) µ denotes the derivative of order of the function (2.2.8), ξ is in the convex hull of the support of the measure dω, and t 1 , t 2 , . . . , t k are the nodes of G k . Since f

(2k) µ (ξ) is positive, it follows that G k f < If .
Let R k+1,0 denote the (k + 1)-point Gauss-Radau rule for the measure dω with a fixed node t 0 = 0. Then R k+1,0 p = Ip, ∀p ∈ P 2k .

(2.2.14)

The quadrature error is

If µ -R k+1,0 f µ = f (2k+1) µ ( ξ) (2k + 1)! (t -t 0 ) k j=1 (t -tj ) 2 dω(t),
where ξ is in the convex hull of the support of the measure dω and the origin, and t1 , t2 , . . . , tk are the "free" Gauss-Radau nodes ; see, e.g., [START_REF] Golub | Matrices, moments and quadrature[END_REF][START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF]. In view of that f

(2k+1) µ (ξ)
is negative and the support of dω lives on the nonnegative real axis, R k+1,0 f is an upper bound for If . Indeed, one can show that

G k-1 f µ < G k f µ < If < R k+1,0 f µ < R k,0 f µ , (2.2.15) 
see, e.g., [START_REF] Lopez Lagomasino | Matrices, moments, and rational quadrature[END_REF] for details.

We conclude that pairs of Gauss and Gauss-Radau quadrature rules G k f µ and R k+1,0 f µ yield lower and upper bounds for φ(µ). We will now describe how these quadrature rules can be evaluated by carrying out k steps of the global Lanczos method without explicit knowledge of the measure dω.

The global Lanczos method

The global Lanczos method can be applied to reduce a large symmetric matrix to a small tridiagonal one ; see [START_REF] Jbilou | Oblique projection methods for linear systems with multiple right-hand sides[END_REF]. This method differs from the standard Lanczos method in that it uses the inner product (1.2.4) between matrices. This makes it possible to use matrix-matrix products during the execution of the global Lanczos method. These products can be evaluated efficiently on many computers. Algorithm 1 below executes k steps of the global Lanczos method applied to Ȃ with initial matrix

V 1 = G/ G F of unit
Frobenius norm with G = A T (B).

Algorithm 1 The global Lanczos algorithm

Input : Let β 1 = 0, V 0 = O, and V 1 = G/ G F .
1. For j = 1, 2, . . . , k

(a) W = Ȃ(V j ) -β j V j-1 , (b) α j = V j , W F , (c) W = W -α j V j , (d) β j+1 = ||W || F , (e) V j+1 = W/β j+1 ,

EndFor

The zero matrix V 0 ∈ R m×n does not have to be stored. We assume that all coefficients β j+1 are positive. This is the generic situation. Otherwise, the algorithm breaks down, because the recursions cannot be continued. This is a very rare event. We therefore will not dwell on it further. Thus, under the assumption that all generated coefficients β j+1 are positive, the algorithm determines the matrices

V k = [V 1 , V 2 , . . . , V k ] ∈ R m×kn , V k+1 = [V 1 , V 2 , . . . , V k+1 ] ∈ R m×(k+1)n ,
whose "matrix columns" V j are F-orthonormal, i.e.,

V i , V j F =        1 i = j, 0 i = j.
(2.2.16)

It follows from the recursion formulas of Algorithm 1 and the definition of V 1 that

V j = p j-1 ( Ȃ)(G), j = 1, 2, . . . , k + 1, (2.2.17)
for some polynomials p j-1 of precisely degree j -1. We refer to these polynomials as global Lanczos polynomials. They satisfy the same recursion relations as the matrix columns 

V j ;
T k =             α 1 β 2 β 2 α 2 . . . . . . . . . β k β k α k             ∈ R k×k , (2.2.18) 
and the recurrence formulas of Algorithm 1 can be expressed as

[ Ȃ(V 1 ), Ȃ(V 2 ), . . . , Ȃ(V k )] = V k (I n ⊗ T k ) + β k+1 [O, . . . , O, V k+1 ], (2.2.19) 
where O ∈ R m×n denotes the zero matrix.

The scheme of this chapter is based on applying the global Lanczos method to Ȃ (Algorithm 1). It is possible to develop an analogous scheme based on applying the global Lanczos bidiagonalization method to A and A T . A global Lanczos bidiagonalization method is described by Toutounian and Karimi [START_REF] Toutounian | Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides[END_REF]. The latter approach would give a method closely related to the scheme in [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF], which is based on the standard Lanczos bidiagonalization method (also referred to as Golub-Kahan bidiagonalization). We apply the global Lanczos method because it requires less computer storage than the global Lanczos bidiagonalization method for the same number of steps, since the latter generates two sets of F-orthonormal vectors while the former only determines one set. Since our aim is to develop a method suitable for large-scale problems, reducing the computer storage required is important.

Gauss-type rules associated with the global Lanczos method

We first show orthogonality of the polynomials p j-1 determined by (2.2.17). This provides the link between the global Lanczos method and Gauss quadrature.

Proposition 2.2.4. The polynomials p j-1 , j = 1, 2, . . . , defined by (2.2.17) are orthonormal with respect to the inner product (2.2.13).

Démonstration. The definition of the measure dω that determines the functional I in (2.2.13) yields

[p j-1 , p i-1 ] = p j-1 (t)p i-1 (t)dω(t) = bH T p i-1 (H T H)p j-1 (H T H)H T b.
Using the linearity of Ȃ and the properties (1.2.3) of the Kronecker product, we obtain that for any polynomial p,

vec(p( Ȃ)(G)) = p(H T H)vec(G). Moreover, vec(G) = H T b. It follows that [p j-1 , p i-1 ] = (vec(p j-1 ( Ȃ)(G))) T vec(p i-1 ( Ȃ)(G)) = (vec(V j )) T vec(V i ) = V j , V i F .
The orthonormality of the polynomials p i-1 is a consequence of (2.2.16).

It follows from Algorithm 1 or (2.2.19) that the V j 's satisfy the three-term recursion formula

Ȃ(V j ) = α j V j + β j+1 V j+1 + β j V j-1 , j = 1, 2, . . . , k,
and by (2.2.17) the polynomials p j-1 satisfy the same recursions tp j-1 (t) = α j p j-1 (t) + β j+1 p j (t) + β j p j-2 (t), j = 1, 2, . . . , k.

These relations can be expressed as

[p 0 (t), p 1 (t), . . . , p k-1 (t)]T k = t[p 0 (t), p 1 (t), . . . , p k-1 (t)] -β k+1 [0, . . . , 0, p k (t)],
which shows that the zeros of p k are the eigenvalues of T k . These zeros are the nodes of the k-point Gauss rule G k associated with the measure dω. This Gauss rule applied to the function f µ can be expressed as

G k f µ = ||G|| 2 F e T 1 f µ (T k )e 1 .
(2.2.20)

Throughout this chapter e j = [0, . . . , 0, 1, 0, . . . , 0] T denotes the jth axis vector. The simple form of f µ makes it possible to evaluate (2.2.20) without computing the spectral factorization of T k . We will return to this below.

The relation between the standard Lanczos method applied to a symmetric matrix and Gauss quadrature has been exploited by Golub and Meurant [START_REF] Golub | Matrices, moments and quadrature[END_REF][START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF] ; see also [START_REF] Calvetti | Estimation of the L-curve via Lanczos bidiagonalization[END_REF][START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF].

The application of the relation between the global Lanczos method and Gauss quadrature to determine the regularization parameter in Tikhonov regularization generalizes the approach in [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF] based on the standard Lanczos method.

The (k + 1)-point Gauss-Radau quadrature rule R k+1,0 associated with the measure dω and with a preassigned node t 0 = 0 can be represented analogously to (2.2.20). Define the matrix

T k+1,0 =     T k β k+1 e k+1 β k+1 e T k t k+1,k+1     ∈ R (k+1)×(k+1)
by appending a row and a column to the matrix (2.2.18) to obtain a symmetric matrix with the last subdiagonal entry defined by (2.2.19) and the last diagonal entry to be determined. We would like this entry to be such that the matrix T k+1,0 has the smallest eigenvalue zero. Note that since β k+1 is positive, the eigenvalues of T k are in an open interval contained in the convex hull of the support of the measure dω. In particular, all eigenvalues of T k are positive.

A simple way to determine t k+1,k+1 so that all eigenvalues of T k+1,0 are nonnegative and one eigenvalue vanishes is to compute the bidiagonal Cholesky factor of T k+1,0 (with t k+1,k+1 chosen large enough to make T k+1,0 positive definite)

C k+1,0 =                 ρ 1 σ 2 ρ 2 . . . . . . σ k ρ k σ k+1 ρ k+1                
and set ρ k+1 = 0. This determines the matrix C k+1,0 and the desired matrix T k+1,0 is given by 

T k+1,0 = C k+1,0 C T k+1
R k+1,0 f µ = G 2 F e T 1 f µ (T k+1,0 )e 1 ,
analogously to (2.2.20).

Introduce the functions

φ - k (µ) := G k f µ , φ + k+1 (µ) := R k+1,0 f µ . (2.2.21)
Then, in view of (2.2.15),

φ - k-1 (µ) < φ - k (µ) < φ(µ) < φ + k+1 (µ) < φ + k (µ). (2.2.22)
Instead of computing φ(µ) for several values of µ, which is expensive for large-scale problems, we evaluate the upper and lower bounds (2.2.21) for desired values of µ. This is inexpensive when k is small. The computation of these bounds is discussed in the following subsection.

Evaluation of φ

- k (µ) and φ + k+1 (µ)
We outline the evaluation of the functions φ ∓ k (µ) and the derivative of φ + k+1 (µ), which are needed when determining a suitable value of µ by our zero-finder. We have

φ - k (µ) = G 2 F e T 1 (T k + µI) -2 e 1 .
For each value of µ > 0, we solve the system of equations (T k + µI)z µ = e 1 for z µ ∈ R k .

Since the matrix T k + µI is symmetric and positive definite when µ > 0, we solve this system with the aid of Cholesky factorization. Then

φ - k (µ) = G 2 F z T µ z µ .
Since T k +µI is tridiagonal, the evaluation of φ - k (µ) requires only O(k) arithmetic floating point operations (flops) for each value of µ.

We turn to the computation of φ + k+1 (µ). The evaluation can be carried out similarly as the computation of φ - k (µ) described above, with the matrix T k replaced by T k+1,0 .

However, since the Cholesky factor C k+1,0 of T k+1,0 is available, we outline an approach that uses this factor. We have

φ + k+1 (µ) = G 2 F e T 1 (C k+1,0 C T k+1,0 + µI) -2 e 1 . ( 2 

.2.23)

Compute the solution of the least-squares problem min

z∈R k+1     C T k+1,0 µ 1/2 I     z -µ -1/2 e k+2 2 2 . (2.2.24) 
Denoting the solution by z µ , we have

φ + k+1 (µ) = G 2 F z T µ z µ .
The structure of the matrix in (2.2.24) makes it possible to compute z µ by QR factorization of the matrix in only O(k) flops for each value of µ > 0.

Changing the right-hand side in (2.2.24) gives the least-squares problem min

s∈R k+1     C T k+1,0 µ 1/2 I     s -µ -1/2     0 z µ     2 2
, whose solution, s µ , is used to evaluate the derivative

d dµ φ + k+1 (µ) = -2 G 2 F z T µ s µ . (2.2.25)
This also can be carried out in O(k) flops for each value of µ > 0.

Computation of an approximate solution of specified norm

We describe a method for determining the regularization parameter µ for Tikhonov regularization (2.1.3). Specifically, we would like to determine µ > 0 so that the computed solution X µ satisfies min

X F =∆ B -A(X) F (2.3.1)
with ∆ > 0 defined by (2.2.4). The constraint imposes that the restored image should have the same "energy" as the target image. Since this section is closely related to [25,

Section 3], we only outline our approach and refer to [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF] for further details.

Assume that 0 < ∆ < H † b 2 . Then, by Proposition 2.2.3, the equation

φ(µ) = ∆ 2 (2.3.2)
has a unique solution 0 < µ ∆ < ∞, which determines the desired solution X µ ∆ . However, this equation is expensive to solve for large-scale problems, i.e., when mn is large. Similarly to the approach in [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF], we therefore instead solve 

φ + k+1 (µ) = ∆ 2 . ( 2 
φ + k+1 (µ) = ∞.
Thus, whenever (2.3.2) has a unique bounded positive solution µ ∆ , then so does (2.3.3).

We denote the solution of the latter by µ k+1 . Since both φ(µ) and φ + (µ) are decreasing convex functions, it follows from (2.2.22) that

µ ∆ < µ k+1 < µ k .
We apply the monotonically and quadratically convergent zero-finder described by

Golub and von Matt [56, equations ( 75)-( 78)] to compute approximations µ

(j) k+1 , j = 1, 2, . . . , of the zero µ k+1 of h + k+1 (µ) := φ + k+1 (µ) -∆ 2 . (2.3.4) 
This zero-finder requires repeated evaluation of the function (2.2.23) and its derivative (2.2.25).

We would like to compute a value of µ such that

η 2 ∆ 2 ≤ φ(µ) ≤ ∆ 2 , (2.3.5) 
where the constant 0 ≤ η ≤ 1 determines how close to ∆ we require the norm of the computed approximate solution of (2.3.1) to be. We therefore calculate a value of µ such that

η 2 ∆ 2 ≤ φ - k (µ), φ + k+1 (µ) ≤ ∆ 2 . (2.3.6)
This value satisfies (2.3.5). Using an initial approximation µ (0) k+1 of the desired zero, µ k+1 , of (2.3.4), we first seek to satisfy the left-hand side inequality of (2.3.6). It may not be possible to satisfy this inequality for small values of k. For instance, φ - k (µ) may be negative for all µ > 0 when k is small. We increase k by one when the left-hand side inequality of (2.3.6) cannot be satisfied, until k is large enough so that we can satisfy this inequality ; see [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF] for details. Turning to the right-hand side inequality of (2.3.6), we use the zero-finder to determine µ

(p) k such that 1 10 (η 2 -1)∆ 2 + ∆ 2 ≤ φ + k+1 (µ (p) k ) ≤ ∆ 2 .
In order for

η 2 ∆ 2 ≤ φ - k (µ (p)
k+1 ) to hold, we may have to increase k further ; see [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF]. Having

computed µ := µ (p)
k , we determine the associated solution y k of (T k + µI)y = G F e 1 by solving the least-squares problem min

y∈R k+1     C k µ 1/2 I     y -µ -1/2 G F e k+1 2 2 
.

Finally, our approximate solution of (2.3.1) is determined by

X µ,k = V k (I ⊗ y k ).

Numerical results

This section presents some representative numerical experiments. All computations were carried out using the MATLAB environment. The computations were carried out with approximately 15 decimal digits of accuracy. To secure that the global Lanczos block vectors V j are numerically orthonormal, we reorthogonalize them with global QR factorization.

1. For j = 1, 2, . . . , k 2. Determine the orthonormal basis {V j } k+1 j=1 , the tridiagonal matrix T k , and the last subdiagonal entry β k+1 of T k+1,0 using Algorithm 1.

3.

Determine an approximation of the zero µ = µ k of the function φ + k+1 as described above. This may require k to be increased, in which case one returns to step 2.

4. Determine y k and X µ,k as described above.

Let x = vec( X) denote the error-free exact solution of the linear system equation To determine the effectiveness of our approach, we evaluate the relative error The last two examples discuss image restoration problems.

|| X -X k || F || X|| F of the computed approximate solution X k = X µ,k of equation (2.

Example 1

Let the nonsymmetric matrices H 1 and H 2 , both of size 1500 × 1500, be determined by the MATLAB programs baart and foxgood in the Regularization Tools package by

Hansen [START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF]. Specifically, we let H 1 = baart(1500) and H 2 = foxgood(1500). The computed condition numbers of these matrices are κ(H 1 ) = 2 × 10 18 and κ(H 2 ) = 3 × 10 13 . Since

κ(H) = κ(H 1 )κ(H 2 )
, the matrix H is numerically singular. We determine the right-hand side matrix B so that the exact solution is the matrix X with all entries unity. Table 2.1 displays the computed regularization parameters and the relative error in approximate solutions determined by Algorithm 2 with η = 0.99 for different noise levels, as well as the number of iterations required to satisfy the stopping criterion. 

Example 2

In this example, we consider the Fredholm integral equation

Ω K(x, y, s, t)f (s, t)dsdt = g(x, y), (x, y) ∈ Ω , (2.4.1) 
where

Ω = [0, π/2] × [0, π/2] and Ω = [0, π] × [0, π].
The kernel is given by

K(x, y, s, t) = k 1 (x, s)k 1 (y, t), (x, y) ∈ Ω , (s, t) ∈ Ω, where g(x, y) = g 1 (x)g 1 (y)
and

k 1 (s, x) = exp(cos(x)), g 1 (s) = 2sinh(s)/s.
We use the code baart from Regularization Tools [START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF] to discretize (2.4.1) by a Galerkin method with orthonormal box functions as test and trial functions to obtain H 1 of size 1500 × 1500, and let

H = H 1 ⊗ H 1 .
From the output of the code baart we determine a scaled approximation X ∈ R 1500×1500 of the exact solution f (t, s) = sin(t)sin(s). Table 2.2 shows the computed regularization parameters and the relative error in approximate solutions determined by Algorithm 2 with η = 0.99 and different noise levels, as well as the number of iterations required to satisfy the stopping criterion. 

Example 3

We consider an image restoration problem. Then the vector b in (0.0.2) represents the blurred image, H is a blurring matrix, x represents the exact image and e is a noise vector. In general, the blurring matrix H is determined by the point spread function (PSF) [START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF], which defines how each pixel is blurred, and the boundary conditions, which specify our assumptions on the scene just outside our image. We assume that the horizontal and vertical components of the PSF can be separated. Then H can be expressed as a

Kronecker product H = H 1 ⊗ H 2 ; see [START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF]. The blurred image then is given by

H 2 XH T 1 .
Also when H cannot be written as a tensor product of two matrices, it may be possible to approximate H quite accurately by such a product. The factors can be determined by solving the minimization problem

{ Ĥ1 , Ĥ2 } = arg min H 1 ,H 2 H -H 1 ⊗ H 2 F ;
see [START_REF] Van Loan | Approximation with Kronecker products[END_REF].

The original image in this example is the peppers image of dimension 256 × 256 from MATLAB ; it is shown in the left-hand side of Figure 2.2. The blurring matrix H is given by

H = H 1 ⊗ H 2 ∈ R 256 2 ×256 2 , where H 1 = H 2 = [h ij ] are Toeplitz matrices of dimension 256 × 256 with h ij =        1 2r-1 , |i -j| ≤ r, 0, otherwise. 
The blurring matrix H models uniform blur. In our example we set r = 5. The blurred and noisy image of Figure 2.2 is determined by adding noise of noise level ν = 0.001 to the blurred image H 2 XH T 1 . Table 2.3 summarizes the results obtained by Algorithm 2 with η = 0.997. The table also reports results obtained with the method proposed in [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF]. This method utilizes the connection between (standard) Golub-Kahan bidiagonalization and Gauss quadrature rules for solving large ill-conditioned linear systems of equations (2.1.2).

We refer to this method as GKB. It determines the regularization parameter analogously to Algorithm 2, and uses a similar stopping criterion, but does not exploit the structure of H. Table 2.3 shows Algorithm 2 to require less CPU-time (in seconds) than the GKB method in [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF]. The norm of the error in the restored images determined by Algorithm 2 and the GKB method are about the same.

Example 4

The original image of this example is the iograyBorder image of dimension 256 × 256 from MATLAB ; it is shown in the left-hand side of Figure 2.

The blurring matrix is

given by

H = H 1 ⊗ H 2 ∈ R 256 2 ×256 2
, where H 1 and H 2 are the same matrices as in 2.4 summarizes the results obtained by Algorithm 2 with η = 0.997. The table also compares the number of iterations and the quality of the computed restored images obtained with Algorithm 2 and the GKB method. We can see that both methods yield restorations of the same quality and require about the same number of iterations. We investigate the use of the global Golub-Kahan bidiagonalization method to reduce the given large problem to a small one. The small problem is solved by employing Tikhonov regularization. A regularization parameter determines the amount of regularization.

The connection between global Golub-Kahan bidiagonalization and Gauss-type quadrature rules is exploited to inexpensively compute bounds that are useful for determining the regularization. We will assume the unavailable system of equations with error-free right-hand side,

Hx = b, (3.1.1)
to be consistent and denote its solution of minimal Euclidean norm by x. It is our aim to determine an accurate approximation of x by computing an approximate solution of the available linear system of equations (0.0.2). To reduce the effect of the noise in the reconstructed data, we will consider this time Tikhonov regularization in the following form min

x∈R N { Hx -b 2 2 + µ -1 x 2 2 }. (3.1.2)
We will comment on the use of µ -1 instead of µ in (3.1.2) below. The minimization problem (3.1.2) has the unique solution

x µ := (H T H + µ -1 I) -1 H T b. (3.1.3)
The technique used for choosing a suitable value of µ in this chapter the discrepancy principle. For this method, when a bound ε of e 2 is available, the regularization parameter

µ is commonly chosen so that b -Hx µ 2 = ηε. (3.1.4)
We would like to determine a value of µ such that

ε ≤ b -Hx µ 2 ≤ ηε, (3.1.5)
where the constant η > 1 is independent of ε. This chapter continues our exploration of the application of global Krylov subspace methods to the solution of large-scale problems (0.0.2) with a Kronecker structure that was begun in chapter 3. There a scheme for computing an approximation of x of prescribed norm is described. It was convenient to base this scheme on the global Lanczos tridiagonalization method and use its connection to Gauss-type quadrature rules. This chapter focuses on the more common situation that a bound for the norm of the error e in b is available or can be estimated. Then the regularization parameter µ > 0 can be determined by the discrepancy principle, i.e., so that the computed solution satisfies (3.1.5) ; see [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Hansen | Rank-Deficient and Discrete Ill-Posed Problems[END_REF]. The requirement (3.1.5) on the computed solution makes it natural to apply the GGKB method to develop an analogue of the approach in [START_REF] Calvetti | Tikhonov regularization of large linear problems[END_REF]. It is then the purpose of this chapter to develop an analogous method for the situation when H is the Kronecker product of two matrices H 1 and H 2 . In applications of our solution method described in Section 3.5 both the matrices H 1 and H 2 are square. Then H is square. This simplifies the notation and, therefore, only this situation will be considered. However, only minor modifications of the method are necessary to handle the situation when one or both of the matrices H 1 and H 2 are rectangular.

This chapter is organized as follows. Section 3.2 discusses how the Kronecker product structure can be utilized when determining an approximate solution of (3.1.2) with the aid of the GGKB method. The connection between the GGKB method and Gauss-type quadrature rules is reviewed in Section 3.2, and the application of the GGKB method and Gauss-type quadrature to determine an approximate solution of (3.1.2) that satisfies 

Gauss quadrature for Kronecker structure

Let H 1 and H 2 be Kronecker factors of the matrix H, and define the linear operator

A : R m×n → R m×n A(X) := H 2 XH T 1 .
Its transpose is given by A T (X) := H T 2 XH 1 . We will need the symmetric linear operator

Ȃ(X) := (A T • A)(X),
where • denotes composition. It can be expressed as

Ȃ(X) = H T 2 H 2 XH T 1 H 1 . (3.2.1) 
Let B := mat(b) ∈ R m×n and assume that G := A T (B) = O, where O ∈ R m×n denotes the zero matrix. Assume that 0 < µ < ∞. Then the equation

( Ȃ + µ -1 I)(X) = G (3.2.2)
has a unique solution X µ ∈ R m×n . Using (3.2.1) this equation can be written as

H T 2 H 2 XH T 1 H 1 + µ -1 X = H T 2 BH 1 .
With the aid of (1.2.3), we can express the above equation in the form

((H 1 ⊗ H 2 ) T (H 1 ⊗ H 2 ) + µ -1 I)vec(X) = (H 1 ⊗ H 2 ) T vec(B).
This equation is equivalent to the normal equations associated with (3.1.2). Therefore,

X µ = mat(x µ ).
Proposition 3.2.1. Let 0 < µ < ∞ and let X µ be the unique solution of (3.2.2). Introduce the function

φ(µ) := B -A(X µ ) 2 F . (3.2.3)
Let η > 1 be the same as in (3.1.5). Then

ε 2 ≤ φ(µ) ≤ η 2 ε 2 (3.2.4
)

is equivalent to that x µ = vec(X µ ) satisfies (3.1.5) with b = vec(B).
Proof. Using (1.2.5) and (1.2.3), in order, yields

φ(µ) = B -H 2 X µ H T 1 2 F = vec(B) -vec(H 2 X µ H T 1 ) 2 2 = b -(H 1 ⊗ H 2 )x µ 2 2 ,
and the proposition follows from

H = H 1 ⊗ H 2 .
The proposition implies that we can use X µ instead of x µ when determining a value of µ such that (3.1.5) holds. We will apply the following implementation of the GGKB method to determine an approximation of X µ . The GGKB method generates two sequences of F -orthogonal matrices as well as a bidiagonal matrix.

The above algorithm determines the decompositions

U k+1 (σ 1 e 1 ⊗ I n ) = B, A(V 1 ), A(V 2 ), . . . , A(V k ) = U k+1 ( Ck ⊗ I n ), A T (U 1 ), A T (U 2 ), . . . , A T (U k ) = V k (C T k ⊗ I n ),                    (3.2.5)
where e j = [1, 0, . . . , 0] T denotes the first axis vector and O ∈ R m×n is a zero matrix. The matrices

V k = [V 1 , V 2 , . . . , V k ] ∈ R m×kn , U k+1 = [U 1 , U 2 , . . . , U k+1 ] ∈ R m×(k+1)n , Algorithm 3
The GGKB method

Input : Set σ 1 = ||B|| F , U 1 = B/σ 1 , V 1 = O 1. For j = 1, 2, . . . , k (a) Ṽj = A T (U j ) -σ j V j (b) ρ j = Ṽj F (c) V j+1 = Ṽj /ρ j (d) Ũj+1 = A(V j ) -ρ j U j (e) σ j+1 = || Ũj+1 || F (f ) U j+1 = Ũj+1 /σ j+1 3. EndFor have F -orthonormal "matrix columns" V j ∈ R m×n and U j ∈ R m×n , respectively, i.e., V i , V j F = U i , U j F =        1 i = j, 0 i = j.
Finally, the matrix C k ∈ R k×k is bidiagonal,

C k =                 ρ 1 σ 2 ρ 2 . . . . . . σ k-1 ρ k-1 σ k ρ k                 (3.2.6)
and so is

Ck =     C k σ k+1 e T k     ∈ R (k+1)×k .
We remark that the matrix columns U 1 , U 2 , U 3 , . . . , are only required to advance the computations of Algorithm 3. Therefore, they all can be stored in the same memory location.

Also, the matrix column Ũj+1 can use this location. The matrix columns V 1 , V 2 , . . . , V k will be used to determine an approximate solution of (3.1.2) and, therefore, cannot be overwritten. However, the matrix columns Ṽj and V j+1 may share the same storage location.

Gauss quadrature

This section discusses how the GGKB method is related to quadrature rules of Gausstype. The connection follows via the relation between global Lanczos tridiagonalization and Gauss quadrature. Combining the equations (3.2.5) yields

[ Ȃ(U 1 ), Ȃ(U 2 ), . . . , Ȃ(U k )] = U k (C k C T k ⊗ I n ) + σ k+1 [O, . . . , O, U k+1 ]. (3.3.1) 
This decomposition also can be determined by applying k steps of the global symmetric Lanczos (GSL) method to the matrix Ȃ with initial block vector B. The GSL method is described in [START_REF] Jbilou | Oblique projection methods for linear systems with multiple right-hand sides[END_REF] and its relation to Gauss quadrature is discussed in [START_REF] Bentbib | A global Lanczos method for image restoration[END_REF]. We therefore only provide an outline. We remark that the relation between the standard symmetric Lanczos method and Gauss-type quadrature is well known ; see, e.g., [START_REF] Calvetti | Tikhonov regularization of large linear problems[END_REF][START_REF] Golub | Matrices, moments and quadrature[END_REF][START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF].

Proposition 3.3.1. Assume that H T b = 0. Then the function (3.2.3) can be expressed as φ(µ) = b T (µHH T + I) -2 b. (3.3.2)
Proof. The proof of Proposition 3.2.1 shows that the function (3.2.3) can be written as

φ(µ) = b -Hx µ 2 2 .
where P 2k-1 denotes the set of polynomials of degree at most 2k -1. The global Lanczos decomposition (3.3.1) provides a way to evaluate this Gauss rule without explicit knowledge of the measure dω. We have that for suitable functions f ,

G k f = B 2 F e T 1 f (T k )e 1 ,
where the matrix T k := C k C T k is symmetric and tridiagonal ; see [START_REF] Bentbib | A global Lanczos method for image restoration[END_REF] for a proof. Analogous results that relate standard Golub-Kahan bidiagonalization to Gauss quadrature have been shown by Golub and Meurant [START_REF] Golub | Matrices, moments and quadrature[END_REF][START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF] and are applied in [START_REF] Calvetti | Tikhonov regularization of large linear problems[END_REF]. Gautschi [START_REF] Gautschi | Orthogonal Polynomials : Approximation and Computation[END_REF] provides a nice fairly recent discussion on Gauss quadrature and orthogonal polynomials ; see also [START_REF] Gautschi | The interplay between classical analysis and (numerical) linear algebra -a tribute to Gene H. Golub[END_REF].

We are particularly interested in the Gauss rule

G k f µ = B 2 F e T 1 (µC k C T k + I) -2 e 1 . (3.3.6) 
Using the remainder formula for Gauss quadrature and the fact that all even-order derivatives of the integrand t → f µ (t) in (3.3.5) are positive, one can show that, generically,

G 1 f µ < • • • < G k-1 f µ < G k f µ < φ(µ); (3.3.7)
see, e.g., [START_REF] Bentbib | A global Lanczos method for image restoration[END_REF][START_REF] Lopez Lagomasino | Matrices, moments, and rational quadrature[END_REF] for details.

Let R k+1 denote the (k + 1)-point Gauss-Radau rule for the measure dω with a fixed node t 0 = 0. Then

R k+1 p = Ip ∀p ∈ P 2k .
This rule, when applied to the integration of f µ , can be can expressed as

R k+1 f µ = B 2 F e T 1 (µ Ck CT k + I) -2 e 1 ;
see [START_REF] Bentbib | A global Lanczos method for image restoration[END_REF]. The remainder formula for Gauss-Radau quadrature rules and the fact that all odd-order derivatives of t → f µ (t) are negative yield that, generically,

φ(µ) < R k+1 f µ < R k f µ < • • • < R 1 f µ ; (3.3.8)
see, e.g., [START_REF] Bentbib | A global Lanczos method for image restoration[END_REF][START_REF] Lopez Lagomasino | Matrices, moments, and rational quadrature[END_REF].

We conclude that pairs of Gauss and Gauss-Radau quadrature rules G k f µ and R k+1 f µ yield lower and upper bounds, respectively, for φ(µ). We evaluate these rules by first executing Algorithm 3 and then solving the least-squares problem min

z∈R k     µ 1/2 C T k I k     z -e k+1 2 2 . 
(3.3.9)

The solution, denoted by z k , satisfies

(µC k C T k + I k )z k = e 1 . (3.3.10) 
It follows from (3.3.6) that

G k f µ = B 2 F z T k z k .
The special structure of the least-squares problem (3.3.9) makes it possible to evaluate 

G k f µ in only O(k)

Parameter selection and computation of an approximate solution

This section describes how the bounds for φ(µ) described in the previous section can be used to determine a suitable number of steps k of the GGKB method, a value µ k of the regularization parameter, and an approximation x µ k ,k of the vector x µ k , defined by

(3.1.3) with µ = µ k , that satisfies (3.1.5).
For a given value of k ≥ 2, we solve the nonlinear equation

G k f µ = ε 2 (3.4.1)
for µ. Because we use the parameter µ in (3.1.2), instead of 1/µ, the left-hand side is a decreasing convex function of µ. There is a unique solution, denoted by µ ε , of

φ(µ) = ε 2 (3.4.2)
for almost all values of ε > 0 of practical interest and therefore also of (3.4.1) for k sufficiently large ; see [START_REF] Bentbib | A global Lanczos method for image restoration[END_REF][START_REF] Calvetti | Tikhonov regularization of large linear problems[END_REF] for analyses. Various zero-finders can be applied, including Newton's method ; see [START_REF] Lampe | Large-scale Tikhonov regularization via reduction by orthogonal projection[END_REF]. The evaluation of each iterate requires the solution of a leastsquares problem (3. 

P N (HH T ) b 2 < ε < b 2 .
Having computed µ k , we check whether First we determine the solution y k,µ k of

R k+1 f µ ≤ η 2 ε 2 (3.
( CT k Ck + µ -1 k I)y = σ 1 CT k e 1 , σ 1 = B F . (3.4.4)
It is computed by solving the least-squares problem min

y∈R k     µ 1/2 k Ck I     k y -σ 1 µ 1/2 k e 1 2 .
Similarly as above, we solve this least-squares problem instead of the associated normal equations (3.4.4) because of the better numerical properties of the latter. Finally, our approximate solution of (3.2.2) is determined by 

X k,µ k = V k (y k,µ k ⊗ I). ( 3 
A(X k,µ k ) = U k+1 ( Ck ⊗ I n )(y k,µ k ⊗ I n ) = U k+1 ( Ck y k,µ k ⊗ I n ).
Substituting the above expression into (3.4.6) and again using (3.2.5) yields

U k+1 (σ 1 e 1 ⊗ I n ) -U k+1 ( Ck y k,µ k ⊗ I n ) 2 F = (σ 1 e 1 ⊗ I n ) -( Ck y k,µ k ⊗ I n ) 2 F = σ 1 e 1 -Ck y k,µ k 2 2 ,
where we recall that σ 1 = B F . We now express y k,µ k with the aid of (3.4.4), and apply the identity (3.3.3) with H replaced by Ck , to obtain

B -A(X k,µ k ) 2 F = σ 2 1 e 1 -Ck ( CT k Ck + µ -1 k I k ) -1 CT k e 1 2 2 = σ 2 1 e T 1 (µ k Ck CT k + I k+1 ) -2 e 1 = R k+1 f µ k .
The proposition now follows from (3.4.3) and the fact that 3. Determine µ k that satisfies (3.4.1) and (3.4.3) as described above. This may require k to be increased, in which case one returns to step 2.

ε 2 = G k f µ k ≤ R k+1 f µ k . 1. Set k = 2 (
4. Determine y k,µ k and X k,µ k as described above.

The following algorithm summarizes the computation of (3.4.5).

We now comment on the complexity of Algorithm 4. We first mention that the overall computational cost for Algorithm 4 is dominated by the work required to determine U j and V j at step 2. The computational effort required to determine U j and V j is dominated by four matrix-matrix products, approximately 4(m + n)N arithmetic floating point operations (flops). These matrix-matrix operations need less computational cost in comparison with the cost required for evaluating matrix-vector evaluation with the large matrix H and its transpose, that is to say approximately 4N 2 flop counts.

Numerical examples

This section presents a few representative numerical experiments. Let x := vec( X)

denote the error-free exact solution of the linear system of equations (0.0.2), let B := where the error matrix E has normally distributed entries with zero mean and is normalized to correspond to a specific noise level

ν := ||E|| F || B|| F .
The sizes of the matrices is specified in the examples below.

To determine the effectiveness of our solution method, we evaluate the relative error Overviews of image restoration problems can be found in [START_REF] Chalmond | Modeling and Inverse Problems in Image Analysis[END_REF][START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF].

|| X -X k || F || X|| F of the computed approximate solution X k = X k,µ k determined

Example 1.

Let the nonsymmetric matrix H 1 and the symmetric matrix H 2 , both of size 1500 × 1500, be determined by the MATLAB programs baart and foxgood, respectively, in the Regularization Tools package by Hansen [START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF]. These programs provide discretizations of Fredholm integral equations of the first kind described in [START_REF] Baart | The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems[END_REF][START_REF] Fox | The numerical solution of non-singular linear integral equations[END_REF]. for these approaches depends on that in Algorithm 4 the regularization parameter is determined for the solution in a subspace of low dimension, while the solution determined by the SVD approach lives in the whole space. The computations of this example illustrate that the computations with the global Golub-Kahan method are faster than using the SVD of H, even when the structure of the latter is exploited. The difference in computing time is even more pronounced for larger problems. We remark that also for problems of the size considered in Example 1, the global Golub-Kahan method is faster than using the SVD of H.

Example 3.

We consider the Fredholm integral equation

Ω K(x, y, s, t)f (s, t)dsdt = g(x, y), (x, y) ∈ Ω, (3.5.1) 
where

Ω = [-π/2, π/2] × [-π/2, π/2].
The kernel is given by

K(x, y, s, t) = k(x, s)k(y, t), (x, y), (s, t) ∈ Ω,
where k(s, x) = (cos(s) + cos(x)) 2 (sin(ξ)/ξ) 2 , ξ = π(sin(s) + sin(x)).

The solution is the sum of two Gaussians in each space dimension.

We discretize (3.5.1) by a Nyström method based on the composite trapezoidal rule with equidistant nodes in each space-dimension. Code is available at [START_REF] Neuman | Algorithms for range restricted iterative methods for linear discrete ill-posed problems[END_REF]. Specifically, we determine the nonsymmetric matrix H 1 ∈ R 1500×1500 , from which we obtain the dis- Example 4.

cretization H = H 1 ⊗ H 1 of
This and the following examples are concerned with the restoration of images that have been contaminated by blur and noise. Let the entries of the vector x be pixel values for a our assumptions on the scene just outside the available image ; see [START_REF] Chalmond | Modeling and Inverse Problems in Image Analysis[END_REF][START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF] for details.

In some cases the horizontal and vertical components of the PSF can be written as a product of two functions, one depending on the horizontal coordinate and the other one on the vertical coordinate, only. In this situation, the blurring matrix H can be expressed as a Kronecker product H = H 1 ⊗ H 2 . Let the matrix X = mat( x) be of suitable size.

Then the blurred image can be represented as H 2 XH T 1 ; cf. (1.2.3). The blur and noise contaminated image is represented by the matrix H 2 XH T 1 + E, where E is the noise matrix. Also when H cannot be written as a Kronecker product of two matrices, it may be possible to approximate H well by such a Kronecker product ; see [START_REF] Kamm | Kronecker product and SVD approximations in image restoration[END_REF][START_REF] Kamm | Kronecker product approximations for restoration image with reflexive boundary conditions[END_REF][START_REF] Van Loan | Approximation with Kronecker products[END_REF].

In this example, we seek to restore an image that has been contaminated by blur that is defined by a Gaussian PSF,

h σ (x, y) = 1 2πσ 2 exp - x 2 + y 2 2σ 2 ,
and by noise. The Dirichlet zero boundary condition is imposed. The blurring matrix then is the Kronecker product of a symmetric Toeplitz matrices with itself H = H 1 ⊗H 1 , where

H 1 = [h ij ] with h ij =        1 σ √ 2π exp -(i-j) 2 2σ 2 , |i -j| ≤ r,

else

The matrix H models atmospheric turbulence blur. We let σ = 2.5 and r = 6. For comparison, we determine a regularization parameter and an approximate solution using the numerical method described in [START_REF] Calvetti | Tikhonov regularization of large linear problems[END_REF]. This method uses (standard) Golub-Kahan bidiagonalization instead of global Golub-Kahan bidiagonalization, and explores the connection between (standard) Golub-Kahan bidiagonalization and Gauss quadrature rules for solving large ill-conditioned linear systems of equations (0.0.2) without exploiting the structure of the matrix H. We refer to this method as GKB in Table 3.3. The table compares results obtained by Algorithm 4 and GKB, including the relative errors of the restorations, the number of iterations, and the CPU times required for two noise levels. posed linear system, it is more efficient to use a method for all the systems simultaneously.

Consider the block linear system of equations,

HX = B, B + E, (4.1.2)
where H is an n × n real non singular matrix. X, B and E are n × k rectangular matrices whose columns are x (1) , x (2) , ..., x (k) , b (1) , b (2) , ..., b (k) and e (1) , e (2) , ..., e (k) , respectively. Generalization of the standard methods utilizing the connection between classical Lanczos algorithm, orthogonal polynomials, and Gauss-type quadrature rules have been developed. The first class of these methods is based on the block Lanczos methods coinciding with Gauss-type quadrature rules and anti-Gauss quadrature rules for the symmetric and nonsymmetric block Lanczos algorithms ; see, for example, [START_REF] Fenu | Block Gauss and anti-Gauss quadrature with application to networks[END_REF][START_REF] Golub | Matrices, moments and quadrature[END_REF][START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF] and references therein. The second class is based on the global Lanczos algorithms, with connection to Gauss-type quadrature rules [START_REF] Bentbib | A global Lanczos method for image restoration[END_REF]. In [START_REF] El Guennouni | The block Lanczos method for linear systems with multiple right-hand sides[END_REF][START_REF] El Guennouni | A block BiCGSTAB algorithm for multiple linear systems[END_REF][START_REF] Jbilou | Oblique projection methods for linear systems with multiple right-hand sides[END_REF][START_REF] Toutounian | Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides[END_REF] and references therein, a class of methods, based on block Krylov subspace methods, was introduced for the purpose of solving the following unavailable error-free linear system of equations with multiple right hand sides,

HX = B. (4.1.3)
In the present chapter, we propose a new numerical method, based on the connection between the block Lanczos algorithm, block Gauss quadrature and anti-Gauss quadrature, for Tikhonov regularization of large linear system of equations with multiple right hand sides, where the right hand side matrix is contaminated by an error. Following [START_REF] Bentbib | A global Lanczos method for image restoration[END_REF][START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF], we will show how an estimate of the norm of the exact solution can lead to estimate the value of the regularization parameter and the corresponding regularized solution. The error E is absorbed in the right hand side B of (4.1.2), which makes the linear system of equations of multiple right hand sides (4.1.3) unavailable. We would like to determine the leastsquares solution X of minimal Frobenius norm of the unavailable error-free linear system of equations with multiple right hand sides, (4.1.3), which assumed to be consistent, by computing an approximate solution of the available linear system of equations (4.1.2).

Since the coefficient matrix H is ill-conditioned, the problem will be extremely sensitive to perturbations in the right hand side matrix. In order to diminish the effect of the noise in the data, we replace the original coefficient matrix by a better conditioned one. One of the most popular regularization methods is due to Tikhonov [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Groetsch | The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind[END_REF]. The method replaces the problem by the new one

X µ = argmin X HX -B 2 F + µ LX 2 F , (4.1.4) 
where µ ≥ 0 is the regularization parameter and L is a regularization matrix chosen to obtain a solution with desirable properties. The matrix L could be the identity matrix or a discrete form of first or second derivative. In the first case, the parameter µ acts on the size of the solution, while in the second case µ acts on the smoothness of the solution.

We will only consider the particular case where the matrix L reduces to the identity I.

Therefore, Tikhonov regularization problem in this case is of the following form

X µ = argmin X HX -B 2 F + µ X 2 F . (4.1.5)
Tikhonov regularization problems of the form (4.1.4) can be brought into the form (4.1.5) ; see [START_REF] Åa | A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations[END_REF][START_REF] Eldèn | Algorithms for the regularization of ill-conditioned least squares problems[END_REF]. In Tikhonov regularization, the solution of the problem (4.1.5) is computed as the unique solution of the following linear least squares problem

X µ = argmin X     H µ 1/2 I     X -     B 0     2 F , (4.1.6) 
in certain situations the best way to solve (4.1.6) numerically is to treat the normal equations

H T H + µI X = H T B, (4.1.7) 
for a suitable positive value of the regularization parameter µ. The choice of µ affects how sensitive X µ is to the error E in the contaminated right-hand side, and how accurately X µ approximates X. Many techniques for choosing a suitable value of µ have been analyzed

and illustrated in the literature ; see, e.g., [START_REF] Brezinski | Error estimates for the regularization of least squares problems[END_REF][START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Hansen | Rank-Deficient and Discrete Ill-Posed Problems[END_REF][START_REF] Kindermann | Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems[END_REF][START_REF] Reichel | Old and new parameter choice rules for discrete ill-posed problems[END_REF] and references therein. We remark that for any µ ≥ 0, the problem (4.1.7) has the unique solution

X µ = H T H + µI -1 H T B. (4.1.8)
The condition number of the matrix H T H + µI is a decreasing function of µ and therefore the solution X µ is generally more sensitive to the error E, the smaller µ ≥ 0 is. We will show how this problem can be remedied by implicitly solving the normal equation without working on H T H.

In this chapter, we assume that the quantity

∆ := X F ,
is available and therefore we can use an equivalent formulation of problem (4.1.5), as a quadratically constrained least squares problem min

X F ≤∆ B -HX F ; (4.1.9)
see, e.g., [9, Proposition 2.2] for further details. In the optimization literature, minimization problems of the form (4.1.9) arise in the context of trust-region methods.

The organization of this chapter is as follows. Section 4.2 reviews some known facts about block Gauss quadrature rules, block anti-gauss quadrature and their connection with the symmetric block Lanczos process. Section 4.3 describes how these connection can be employed to inexpensively compute an approximate regularizing parameter of µ by solving a nonlinear equation and then computing the corresponding approximate solution of X.

In section 4.4 we discuss some numerical examples that demonstrate the validity of our approach and compare our proposed method to some related works. In this chapter we review some results on the connection between the symmetric block Lanczos tridiagonalization, block Gauss quadrature rules, and block ani-Gauss quadrature rules, then we show how we can exploit this connection to inexpensively determine an approximation of φ. By substituting (4.1.8) into (4.2.1), the function (4.2.1) can be expressed as

φ(µ) = tr B T H(H T H + µI) -2 H T B .
Introduce the function

f µ (t) := (t + µ) -2 , (4.2.2)
the expression (4.2.1) can be now expressed as tr(S), where

S := B T Hf µ H T H H T B. (4.2.3)
We provide now an overview of the techniques that will be used to approximate (4.2.3).

We first proceed to write the quantitie S as Stieltjes integral. Introduce the spectral facto-

rization H T H = W ΛW T , where W ∈ R n×n satisfies W T W = I n and Λ = diag[λ 1 , ..., λ n ],
with

λ 1 ≤ ... ≤ λ n . Defining Υ = [Υ 1 , ..., Υ n ] = B T HQ ∈ R k×n , where Υ i ∈ R k , it follows that S = Υ f µ (Λ)Υ T = n i=1 f µ (λ i )Υ i Υ T i = f µ (λ)dΥ (λ) := If µ , (4.2.4) 
where Υ : R → R k×k is discrete matrix distribution with a jump of size

Υ i Υ T i at each eigenvalue λ i of H T H.
The quantity S has to be evaluated for several µ-values. This can be expensive, since in real applications the matrix H is large. However, the computation of low-dimensional approximation of S for several values of µ can be carried out efficiently by using block Gauss quadrature rules and block anti-Gauss quadrature. We briefly review some known facts about block Gauss quadrature rules and block anti-Gauss quadrature and their connection with block Lanczos process ; see [START_REF] Fenu | Block Gauss and anti-Gauss quadrature with application to networks[END_REF] for discussion on these methods. We define for a real λ, the following k × k orthogonal polynomial,

p i (λ) = i j=0 λ j C (i) j ,
where the coefficients C (i) j are given k × k real matrices. We also define the following inner product induced by the measure Υ (λ), which is supposed to be symmetric and positive semi-definite, < p, q >= p(λ)dΥ (λ)q(λ) T , and let p i , i = 1, 2, ... be a sequence of matrix polynomials orthonormal with respect to this inner product, i.e.,

p i , p j = δ ij I k ,
where δ ij is the Kronecker symbol and I k is the identity matrix of order k.

The sequence of matrix orthonormal polynomials p i satisfy a block three-term recurrence of the form

λp j-1 (λ) = p j (λ)Γ j + p j-1 (λ)Ω j + p j-2 (λ)Γ T j-1 , p 0 (λ) := I k , p -1 (λ) := 0.
For each j, the recursion coefficients Γ j and Ω j are k × k matrices with real entries.

Morever, Ω j is symmetric, and Γ j can be chosen to be upper triangular. Defining P l (λ) := [p 0 (λ), ..., p (λ)] ∈ R k×k , it follows that

λP (λ) = P (λ)J kl + P (λ)Γ E T , (4.2.5) 
where

J k :=                 Ω 1 Γ T 1 Γ 1 Ω 2 Γ T 2 . . . . . . . . . Γ -2 Ω -1 Γ T -1 Γ -1 Ω                 ∈ R k ×k .
Throughout this chapter, E i := [e (i-1)k+1 , ..., e ik ] denotes the block vector of appropriate dimensions with blocks of size k × k, with the ith block equal to I k and all other blocks equal to 0. Here, J k is both a symmetric block-tridiagonal matrix and a banded matrix of bandwidth 2k + 1. The matrix J k is computed via a partial block Lanczos tridiagonalization of the matrix H T H without explicit knowledge of the measure measure dΥ . In the following subsection, we will use the block Lanczos algorithm, which is first introduced for symmetric matrices, to reduce the symmetric matrix H T H to a small symmetric blocktridiagonal matrix J k and we will show how this algorithm is applied implicitly to H T H, by applying block Lanczos bidiagonalization to H, which also known as the Golub-Kahan bidiagonalization.

Partial block Lanczos of the matrix H T H

Algorithm 5 Partial block Lanczos process of the matrix H T H 1. Let P 1 ∈ R n×k be an initial matrix satisfying

P T 1 P 1 = I k 2. Set P 0 := 0 ∈ R n×k , Γ 0 = 0 ∈ R k×k 3. For j = 1, 2, . . . , (a) 
Ω j = P T j H T HP j (b) R j = H T HP j -P j Ω j -P j-1 Γ T j-1
(c) P j+1 Γ j = R j (QR factorization), P j+1 is orthogonal and Γ j is upper triangular

EndFor

Let H T B = QR be the QR factorization of H T B, in the context of estimating (4.2.3), we choose P 1 = Q. The block-size k must be optimized considering the matrix size and the hardware capabilities, while the number of the partial block Lanczos steps depends upon the convergence speed of the algorithm on that particular problem. We will show in our numerical results how this algorithm can be executed so that k n. The partial block Lanczos algorithm will break down at step j if R j is rank deficient. In this case, the algorithm can be continued by replacing linearly dependent columns of P j+1 that have been orthogonalized with respect to all previous Lanczos vector ; see, e.g., [START_REF] Baglama | Dealing with linear dependence during the iterations of the restarted block Lanczos methods[END_REF] for further details. Breakdowns are very rare events, we therefore will not dwell on it further and assume that the blocks produced by the block Lanczos process are of full rank ; see, e.g., [55, Section 9.2.6] for a discussion on block Lanczos tridiagonalization. If the algorithm does not break down before step , then it is easy to verify the following relation

H T HP (k) = P (k) J k + P +1 Γ E T , (4.2.6) 
where P (k) = [P 1 , ..., P ], and J k is the matrix from (4.2.5). Moreover, the vector -columns We now describe how the symmetric block-tridiagonal matrix J k can be computed via the partial block Lanczos bidiagonalization to H, which also known as the block Golub-Kahan bidiagonalization. The latter method replaces matrix-block H T HX evaluations in the partial block Lanczos algorithm by H T X and HX operations. Application of steps of the block Lanczos bidiagonalization algorithm, given by Golub, Luk, and Overton in [START_REF] Golub | A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix[END_REF] to the matrix H with the initial block P 1 with orthonormal columns yields the decompositions

P (k) form
HP (k) = Q (k) R k (4.2.7) H T Q (k) = P (k) R T k + F k E T k , (4.2.8) 
where

P (k) ∈ R n× k , Q (k) = [Q 1 , ..., Q ] ∈ R n× k , P (k) T P (k) = Q (k) T l Q (k) l = I k .
We refer to F k ∈ R n×k as the residual matrix. It satisfies

P (k) T F k = 0.
The matrix 

R k :=                 S 1 L 2 S 2 L 2 S 3 . . . . . . L S                 ∈ R k ×k , ( 4 
H T HP (k) = P (k) R T k R k + F k E T k R k . (4.2.10)
The symmetric and block-tridiagonal matrix 

T k = R T k R k ∈ R k

Block Gauss quadrature

The integral f µ (λ)dΥ (λ) is k × k symmetric matrix. We introduce the followingblock Gauss quadrature rules associated with the matrix distribution Υ . The most general quadrature formula is of the form

f µ (λ)dΥ (λ) = i=1 W i f µ (T i )W T i , (4.2.11) 
where W i and T i are symmetric k × k matrices. By diagonalizing each T i , we can obtain simpler formula. Let

T i = Q i Λ i Q T i
where Q i is the orthonormal matrix of the eigenvectors, and Λ i the diagonal matrix of the eigenvalues of T i . This gives

f µ (λ)dΥ (λ) = i=1 W i Q i f µ (Λ i )Q T i W T i (4.2.11) can be reduced to k i=1 f µ (t i )u i u T i ,
where t i is scalar and u i is a vector with k components. Since our discussion is based on the connexion between Gauss quadratures and block Lanczos algorithm, it is then convenient to look at these quadratures in terms of the matrix J k . We therefore introduce the spectral factorization of J k ,

J k = Y k Θ k Y T k ,
where

Y k = [y ( ) 1 , ..., y ( ) k ], Θ k = diag[θ ( ) 1 , ..., θ ( ) k ],
Y satisfies Y T Y = I , and θ ( )

1 ≤ ... ≤ θ ( )
k . From (4.2.5), the nodes t i are the zeros of the determinant of the matrix orthogonal polynomials that is the eigenvalues θ ( ) i of J and u i is the vector consisting of the k first components of the corresponding eigenvector y

( ) i .
We then consider the following quadrature formula,

G f µ := k i=1 f (θ ( ) i )u ( ) i u ( ) i T .
For the integral (4.2.4), we have the following property,

G p = Ip,
for any polynomials of degree not exceeding 2 -1 ; see [START_REF] Fenu | Block Gauss and anti-Gauss quadrature with application to networks[END_REF]Theorem 5] for a proof. The remainder term for this quadrature rule, which is a k × k matrix, can be expressed as

If µ -G f µ = f (2 ) µ (η) (2 )! s(λ)dΥ (λ), (4.2.12) 
where η ∈ [θ 1 , θ ] and s(x) = (x -θ 1 )...(x -θ 2l ) ; see e.g., [START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF]. We call G f µ theblock Gauss quadrature rule associated with the matrix distribution Υ . Unfortunately, the factors of s do not have a constant sign over the interval [λ 1 , λ n ] and therefore the remainder formula is of unknown sign over this interval. We will see how this problem can be solved by the use of anti-Gauss quadrature in order to provide a quadrature formula whose error is of opposite sign with respect to the error of a block Gauss rule. It is useful to note that the -block Gauss rule affords the elegant and concise matrix

G f µ = k i=1 f µ (θ ( ) i )u ( ) i u ( ) i T , = u ( ) 1 , ..., u ( ) k f µ (Θ k ) u ( ) 1 , ..., u ( ) k T , (4.2.13) = E T 1 Y f µ (Θ k )Y T E 1 , = E T 1 f µ (J k )E 1 .
Therefore, we can evaluate the Gauss quadrature rule G f µ without forming the spectral factorization of J k

Block anti-Gauss quadrature

In [START_REF] Fenu | Block Gauss and anti-Gauss quadrature with application to networks[END_REF], block anti-Gauss quadrature rules computed via the symmetric block Lanczos algorithm were used to compute an approximate bound for If µ with k > 1 extending the results introduced by Laurie in [START_REF] Laurie | Anti-Gaussian quadrature formulas[END_REF]. Let H +1 f µ denote the ( + 1)-block anti Gauss quadrature rule for the measure Υ . The block anti-Gauss quadrature is a tool to estimate the error in Gauss quadrature when no useful information with regard to the sign of the quadrature error can be obtained from the remainder formula. The idea is to construct a quadrature rule whose error is equal but of opposite sign to the error of block Gauss rule (4.2.12). The ( + 1)-block anti-Gauss quadrature rule H +1 f µ associated with the Gauss rule G f µ is characterized by 

(I -H +1 )f = -(I -G )f, f ∈ P 2 +1 . ( 4 
H +1 f = (2I -G )f, f ∈ P 2 +1 .
With respect to 2I -G , we can show that there exists a sequence of polynomials pj with k × k matrix coefficients, orthonormal with respect to the inner product (4.2), satisfying the following three-term recurrence relation of the form

λp j-1 (λ) = pj (λ) Γj + pj-1 (λ) Ωj + pj-2 (λ) ΓT j-1 , p0 (λ) := I k , p-1 (λ) := 0.
As above, the ( + 1)-block anti-Gauss quadrature rule affords the matrix representation

H +1 f µ = E T 1 f µ ( Jk( +1) )E 1 (4.2.15)
where,

Jk( +1) :=                 Ω1 ΓT 1 Γ1 Ω2 ΓT 2 . . . . . . . . . Γ -1 Ω ΓT Γ Ω +1                 ∈ R k( +1)×k( +1) ,
with almost no work, from the matrix J k( +1) associated with the ( + 1)-block Gauss quadrature rule G +1 f µ , we obtain the matrix Jk( +1) associated with the ( + 1)-block anti-Gauss quadrature rule

H +1 f µ , Ωi = Ω i , 1 ≤ i ≤ Γi = Γ i , 1 ≤ i ≤ -1 Γ = √ 2Γ , Ω +1 = Ω +1 ;
see [START_REF] Fenu | Block Gauss and anti-Gauss quadrature with application to networks[END_REF] for further details.

Computation of an approximate solution of specified norm

The quadratically constrained least squares formulation (4.1.9) has the advantage that, in some applications, the physical properties of the problem determine an optimal value for the norm constraint ∆, where ∆ represents the energy of the exact solution.

Knowledge of the norm of the desired approximate solution of ill-posed linear system of type (4.1.2) is available in some applications, see e.g, Ahmad et al. [START_REF] Ahmad | An admissible solution approach to inverse electrocardiography[END_REF]. This approach works well to determine an optimal value of the regularization parameter when the physical properties given by the norm constraint ∆ is available. This is the case, for example in image restoration when the norm constraint represents the energy of the target image.

This idea to select the regularization parameter is considered attractive to many authors and has received considerable attention in the literature ; see, e.g, [START_REF] Bentbib | A global Lanczos method for image restoration[END_REF][START_REF] Calvetti | Tikhonov regularization with nonnegativity constraint[END_REF][START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF][START_REF] Rojas | A trust-region approach to regularization of largescale discrete forms of ill-posed problems[END_REF][START_REF] Rojas | An interior-point trust-region-based method for largescale non-negative regularization[END_REF]. Determining the regularization parameter µ ∆ can be then achieved by solving the following nonlinear equation,

φ(µ) = ∆ 2 , (4.3.1)
which also determines the corresponding regularized solution X µ ∆ . The computation of a µ-value such that (4.3.1) holds generally requires the use of a zero-finding method and typically φ(µ) has to be evaluated for several µ-values. This can be expensive when the matrix H is large. In general the available value of ∆ is an estimate of the norm of the exact solution. Therefore it is not meaningful to solve equation (4.3.1) to very high accuracy. Instead we will seek to determine a value of µ ∆ , such that

η 2 ∆ 2 ≤ φ(µ) ≤ ∆ 2
where the constant 0 ≤ η ≤ 1 determines how close to ∆ we require the norm of the computed approximate solution of (4.1.9) to be. The more accurate the estimate is, the closer we choose η be to one. We exploit the connection between block-Gauss, block anti-Gauss quadrature rules, and block Lanczos algorithms, to obtain an average integration rule for If . For each , approximations of

[If ] ij are given by [G ] ij and [H +1 ] ij , 1 ≤ i, j ≤ k.
The purpose of our proposed numerical method is to keep the number of block Lanczos algorithm steps small. Formula (4.2.14) suggests that the quadrature rule,

L 2l+1 f µ := 1 2 (G f µ + H +1 f µ ), (4.3.2)
yields an approximation of If µ at every step . Recall that the quadrature rule (4.3.2) is exact for polynomials of degree 2 + 1. In order for L 2 +1 f µ to be a good approximation of If µ , the following stopping criteria is used,

E ,µ := 1 2 G f µ -H +1 f µ max < τ (4.3.3)
where τ is an absolute tolerance and B max = max 1≤i,j≤k |B ij |. We therefore start with = 1 and an initial guess µ (0) to determine approximations µ (j) , j = 0, 1, 2, ..., of the solution, denoted by µ , of the nonlinear function

φ (µ) = ∆ 2 , (4.3.4) 
where,

φ (µ) = tr(L 2 +1 f µ ). (4.3.5)
Various zero-finders can be applied, including Newton's method, cubically and quadratically convergent zero-finders ; see, e.g., [START_REF] Rojas | A trust-region approach to regularization of largescale discrete forms of ill-posed problems[END_REF] for discussions on these methods. Iterations of this method are designed to determine a sequence of approximations µ (j) , j = 1, 2, 3, ..., of µ such that

η 2 ∆ 2 ≤ φ (µ) ≤ ∆ 2 (4.3.6)
To solve (4.3.4) such that (4.3.6) holds, we use the monotonically and quadratically convergent zero-finding method [START_REF] Golub | Quadratically constrained least squares and quadratic problems[END_REF] by evaluation of the function (4.3.5) and its derivatives. Substituting the expression of G f µ given by (4.2.14) gives

G f µ = E T 1 (R T k R k + µI) -2 E 1 . G f µ = Z T µ Z µ ,
where Z µ solves the equation

(R T k R k + µI)Z = E 1 .
These are the normal equations associated with the least-squares problem min

Z     R k µ 1/2 I     Z -µ -1/2     0 E 1     2 F , (4.3.7)
derivatives of tr(G f µ ) at µ is evaluated in the same manner as G f µ . Let Z solve (4.3.7)

and introduce

W = (R T k R k + µI) -1 Z ,
which we compute by solving a least-squares problem analogous to (4.3.7). The value of the derivative is then determined by computing -2Z T W . The function tr(L 2 +1 f µ ) is evaluated analogously. In order for (4.3.3) to hold, we may have to increase further.

Specifically, when (4.3.3) does not hold for µ = µ (p) that has been found by the zero-finding method iterations, we carry out one more block Lanczos step and, therefore determine approximations µ (j) +1 , j = 1, 2, 3, ..., of µ +1 of the solution, of the nonlinear function

φ +1 (µ) = ∆ 2 ,
We assume that for some , the stopping criteria (4.3.3) is satisfied for µ = µ (p) . We now want to solve the normal equation

(H T H + µ (p) I)X = H T B,
Let H T B = QR be the QR factorization of H T B. We want to compute a sequence of approximations solutions 

X = P (k) Y , = 1 
P (k) T (H T H + µ (p) I)P (k) Y = P (k) T H T B, = P (k) T QR, = E 1 R.
We have

P (k) T (H T H + µ (p) I)P (k) Y = (R T k R k + µ (p) I)Y
We then compute the solution Y by solving

(R T k R k + µ (p) I)Y = E 1 R. (4.3.9)
Note that (4.3.9) are the normal equations associated to the least-squares problem min 

Y l     R k µ (p) 1/2 I     Y -µ (p) -1/2     0 E 1 R     2 F , ( 4 

Numerical results

This section presents some representative numerical experiments. All computations were carried out using the MATLAB environment on an Intel(R) Core (TM) 2 Duo CPU T5750 computer with 3 GB of RAM. The computations were carried out with approximately 16 decimal digits of accuracy. We illustrate the efficiency of the numerical method described in this chapter by applying Algorithm 6 on a few linear discrete ill-posed problems.

Example 1

Let us consider the following Fredholm equation of the first kind in two space-dimensions

Ω κ(x, y, s, t)f (s, t)dsdt = g(x, y), (x, y) ∈ Ω , (4.4.1)
where κ is the kernel, f is the true object and g is the available data which is contaminated by measurement errors. Discretizing of the functions and approximating integration with a quadrature rule leads to the following large-scale linear relationship

Kf = g, (4.4.2)
where K is an N × N ill-conditioned matrix with N = mn and some block structure depending on the imposed boundary condition, and f, g ∈ R mn ; see, e.g, [START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF] for discussions on how to construct the big matrix K when the kernel is specified. Typically, the implementation of the problem (4.4.2) is a memory intensive application with formidable data.

Fortunately, in many applications the kernel satisfies κ(x, y; s, t) = κ(x -s, y -t), and it is said to be invariant in space or isotropic. In this case, the integration in equation (4.4.1) is a convolution operation, and thus κ can usually be represented by a compact data structure when the storage becomes an issue. Applications when the kernel is spatially invariant and therefore exploiting the matrix data structure can be found in [START_REF] Brianzi | Estatico Improvement of space-invariant image deblurring by preconditioned Landweber iterations[END_REF][START_REF] Faber | Motion correction of PET brain images through deconvolution : I. Theoretical development and analysis in software simulations[END_REF][START_REF] Mcnown | Hunt Approximate shift-invariance by warping shiftvariant systems[END_REF][START_REF] Nagy | Kronecker product approximation for image restoration with reflexive boundary conditions[END_REF].

Solving the problem requires the use of an iterative scheme [START_REF] Paige | An algorithm for sparse linear equations and sparse least squares[END_REF][START_REF] Hanke | On Lanczos based methods for the regularization of discrete ill-posed problems[END_REF], the most intensive part of these methods is the matrix-vector multiplications with K, which is assumed to be extremely large and therefore an efficient storage scheme exploiting structure should be used. This is the aim of the proposed method in this article. Thus, instead of applying an iterative method to the large linear system (4.4.2), we apply our Algorithm 6 to an equivalent linear system of multiple right hand side with a matrix of moderate size.

We let F = mat(f ) and G = mat(g). For spatially invariant kernels, we partition F and G into cell arrays. The dimension of the cell arrays are assumed to be the same as the cell array containing the kernel. That is, for example, if F and G are partitioned into k cell arrays of size d × d each, then we transform all the cell arrays in vectors by the linear operator vec and therefore the corresponding linear system of equation of multiple right hand side is given by

H * vec(X i ) = vec(B i ), i = 1, ..., k
where H ∈ R d 2 ×d 2 is defined by the kernel in all the k cell arrays. X i and B i are the i-th region of F and G, respectively . We now partition F and G into appropriate size blocks based on the size of the invariant kernel κ. In the case of spatially invariant kernels, the integration in equation (4.4.3) is a convolution operation, and thus the collection of the convolution of each block with κ can be transformed into linear system with multiple right hand sides of the form (4.1.2). As a test, we consider a spatially invariant kernel whose function is given by

k(x, y) = 1 2πσ 2 exp - 1 2σ 2 (x 2 + y 2 ) . (4.4.3)
The test true object in our example is given by f (x, y) = f 1 (x)f 2 (y), where

f i (s) =        1 + cos( π 3 s) if |s| < 3 0 otherwise, i = 1, 2.
We use the MATLAB code phillips from [START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF] to discretize f and obtain a scaled solution F ∈ R N ×N with N = 256, we then partition it to k = N/d 2 small blocks (d N ). Let

x (i) = vec( X i )
, where X i denote the d × d i-th block. By setting X = [ x (1) , x (2) , ..., x (k) ],

the error-free right hand-side of ( 

Example 2

As a second test, we consider the spatially invariant kernel whose function is given by (4.4.3). The test true object in our example is given by g(x, y) = g 1 (x)g 1 (y), where

g i (s) = 2sinh(s)/s, i = 1, 2.
We use the MATLAB code baart from [START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF] to discretize g and obtain a scaled solution F ∈ R N ×N with N = 256, we then partition it to 16 small blocks of sizes 64 × 64.

We construct X and the error-free right hand-side B, by the same way as in Example 2. Table 4.2 displays the computed regularization parameters and the relative error in computed approximate solutions determined by Algorithm 6 with η = 0.98 and τ = 10 -3

for different noise levels, as well as the number of block Lanczos steps (BLS) required to satisfy the stopping criterion. 

Example 3

In this example, we describe an image restoration problem by sectioning the image and applying the block restoration scheme to illustrate the main advantage of the approach discussed in this chapter. An efficient way to reduce memory use is to process the image in blocks. We will see how block processing can produce better results in terms of accuracy and execution time by comparing our approach with several existing methods that are closely related to ours. In order to understand this numerical experiment, we first recall that the model of image restoration is expressed as

Kx = g, g = g + e, (4.4.4) 
image, respectively, by the linear operator vec. k is the overall number of subimages. We assume that the original image has dimension n × n, therefore K is an N × N matrix, where N = n 2 . Let k be the number of divided subimages X i of equal size d × d. The corresponding blurred subimages g i are obtained by convolving each subimage X i with the PSF. By setting x i = vec(X i ),

g i = vec( g i ), X = [x 1 , ..., x k ] and G = [ g 1 , ..., g k ],
the image restoration problem (4.4.4) is restated by the following form with k right-hand sides

HX = G, G = G + E (4.4.5)
where H is the d 2 × d 2 matrix corresponding to the PSF and E is the measurement noise.

At this level, we are now able to us our approach described by Algorithm 6 to solve the problem (4.4.5). The test image used in our study is the Airplane image of size 256 × 256 pixels, shown on the left of Figure 4.4. We then consider a PSF array for out-of-focus blur [START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF], where the entries are given by

(PSF) ij =        1 (πr 2 ) , if (i -k) 2 + (j -l) 2 ≤ r 2 , 0 else
where (k, l) is the center of PSF, and r is the radius of the blur. As a test, we set r = 5. We now want to corrupt the available image by the spatially invariant blur given by the above PSF. The test image is divided into 64 subimages of small size, where each subimage is of size 32 × 32 pixels. We convolve each subimage with the PSF and we add a Gaussian white noise with 10 -3 noise level to obtain the blurred and noisy image represented in the right of Figure 4.4. In the case of spatially invariant blur, the blurring matrix H given in (4.4.5) can be decomposed as a Kronecker product H = H 1 ⊗ H 2 . It is well known that many blurring matrices have Kronecker structure or can be approximated well by a matrix with this structure ; see [START_REF] Kamm | Kronecker product and SVD approximations in image restoration[END_REF][START_REF] Kamm | Kronecker product approximations for restoration image with reflexive boundary conditions[END_REF][START_REF] Van Loan | Approximation with Kronecker products[END_REF]. We use the MATLAB code kronDecomp from [START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF] to obtain the two matrices, H 1 and H 2 of size 32 × 32. To minimize edge effect, we use the reflexive boundary conditions. The performances of the method proposed in this chapter (Algorithm 6) and the GKB and GLT methods are compared by computing the peak signal to noise ratio (PSNR) defined by PSNR(X) = 20log 10 255

X -X F ,
where 255 is the maximum possible pixel value of the image. We also compute the following relative error to evaluate the precision of the estimates

R(X l ) = X -X l F X F ,
where X and X are the true and restored images, respectively. Using Algorithm 6 with η = 0.9994 and τ = 10 -3 gives the restored image obtained represented on the right of with a CPU time of 1.54 s. The computed optimal value of µ is 2.80 × 10 -4 . Table 4.3 reports on more results for comparing the quality of the restorations obtained by the three methods used to solve the present problem in terms of the PSNR and also in the execution time and relative error for three levels of noise. We observe that Algorithm 6 can deliver better results than the other ones. In Figure 4.5 we plot the values of the relative error and the regularization parameter versus the number of iterations, obtained by applying Algorithm 6 when the noise level in the data is 10 -3 . Solution methods for linear discrete ill-posed problems for color image restoration

Introduction

This chapter discusses the use of iterative methods based on standard or block Golub-Kahan-type bidiagonlization, combined with Tikhonov regularization, to the restoration of a multi-channel image from an available blur-and noise-contaminated version. Applications include the restoration of color images whose RGB (red, green, and blue) representation uses three channels ; see [START_REF] Galatsanos | Least squares restoration of multichannel images[END_REF][START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF]. The methods described also can be applied to the solution of Fredholm integral equations of the first kind in two or more space dimensions and to the restoration of hyper-spectral images. The latter kind of images generalize color images in that they allow more than three "colors" ; see, e.g., [START_REF] Li | Coupled segmentation and denoising/deblurring for hyperspectral material identification[END_REF]. For definiteness, we focus in this section on the restoration of k-channel images that have been contaminated by blur and noise, and formulate this restoration task as a linear system of equations with k right-hand side vectors, where each spectral band corresponds to one channel. To of the SVD is impractical when the matrix A is large. We will discuss how an approximate solution of (5.1.6) can be computed by first evaluating a partial block Golub-Kahan bidiagonalization (BGKB) of A and then solving (5.1.6) in a subspace so defined.

Alternatively, we may reduce A to a small bidiagonal matrix with the aid of global Golub-Kahan bidiagonalization (GGKB), which also is a block method, and then apply the connection between GGKB and Gauss-type quadrature rules to determine upper and lower bounds for the left-hand side of (5.1.9). This allows the computation of a suitable value of µ in a simple manner. This approach has previously been applied in [START_REF] Bentbib | Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems[END_REF] ; the GGKB method was first described in [START_REF] Toutounian | Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides[END_REF]. The BGKB and GGBK block methods are compared to the application of Golub-Kahan bidiagonalization (with block size one) in two ways : One approach applies Golub-Kahan bidiagonalization with initial vector b (1) and generates a solution subspace that is large enough to solve all systems of equations

Ax (i) = b (i) , i = 1, . . . , k, (5.1.10) 
with Tikhonov regularization. The other approach is to simply solve each one of the k systems of equations (5.1.10) independently with Golub-Kahan bidiagonalization and Tikhonov regularization, i.e., by using the algorithm described in [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF] k times.

This chapter is organized as follows. Section 5.2 describes the BGKB method and discusses its application to the solution of (5.1.6). We remark that the bidiagonalization method differs from the one described by Golub et al. [START_REF] Golub | A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix[END_REF]. The determination of a regularization parameter such that the computed solution satisfies the discrepancy principle is also discussed. Section 6.4 reviews the use of the GGBK method to reduce A.

The connection between this reduction and Gauss-type quadrature rules is exploited to compute bounds for the left-hand side of (5.1.9). The solution of (5.1.6) by applying Golub-Kahan bidiagonalization (with block size one) determined by A and the initial vector b (1) is described in Section 5.4. Sufficiently many bidiagonalization steps are carried out so that all systems (5.1.10) can be solved with solution subspaces determined by A and b (1) . We also discuss the solution of the k systems (5.1.10) independently by Golub-Kahan bidiagonalization and Tikhonov regularization as described in [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF]. Section 5.5 presents a few numerical examples.

Solution by partial block Golub-Kahan bidiagonalization

Introduce for µ > 0 the function

φ(µ) = B -AX µ 2 F . (5.2.1) 
Substituting (5.1.8) into (5.2.1) and using the identity

I -A(A T A + µ -1 I) -1 A T = (µAA T + I) -1 (5.2.2) 
shows that (5.2.1) can be written as

φ(µ) = tr B T f µ (AA T )B (5.2.3) with f µ (t) = (µt + 1) -2 . (5.2.4)
The determination of a value of the regular parameter µ > 0 that satisfies (5.1.9)

generally requires the function φ to be evaluated for several µ-values. Each evaluation of φ is very expensive for large-scale problems. We therefore approximate the expression B T f µ (AA T )B by a simpler one, which we determine with a few steps of block Golub-Kahan bidiagonalization as follows. Introduce the QR factorization B = P 1 R 1 , where P 1 ∈ R n 2 ×k has orthonormal columns and R 1 ∈ R k×k is upper triangular. Then steps of the BGKB method applied to A with initial block vector P 1 gives the decompositions

AQ (k) = P (k) +1 C(k) , A T P (k) = Q (k) C (k) T , (5.2.5) 
where the matrices

P (k) +1 = [P 1 , . . . , P +1 ] ∈ R n 2 ×( +1)k and Q (k) = [Q 1 , . . . , Q ] ∈ R n 2 × k have orthonormal columns and C(k) :=                 L 1 R 2 L 2 . . . . . . R L R +1                 ∈ R k( +1)×k , (5.2.6) 
is lower block bidiagonal with lower triangular diagonal blocks L j ∈ R k×k and upper

triangular blocks R j ∈ R k×k . Moreover, C (k) is the leading k × k submatrix of C(k) and
P is the leading n 2 × k submatrix of P +1 . For block size k = 1, the decompositions (5.2.5) simplify to the decompositions computed by the algorithm bidiag1 by Paige and Saunders [START_REF] Paige | An algorithm for sparse linear equations and sparse least squares[END_REF]. In particular, the decompositions (5.2.5) differ from the ones described by Golub et al. [START_REF] Golub | A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix[END_REF], who compute an upper block bidiagonal matrix. In our discussion, we will assume that is small enough so that the triangular matrices L j , j = 1, . . . , , and R j , j = 2, . . . , + 1, are nonsingular.

It follows from (5.2.5) that the range of the matrix P (k) is the block Krylov subspace

K (AA T , B) = Range[P 1 , AA T P 1 , (AA T ) 2 P 1 , . . . , (AA T ) -1 P 1 ].
Similarly, the range of the matrix Q (k) is the block Krylov subspace

K (A T A, A T B) = Range[A T P 1 , A T AA T P 1 , (A T A) 2 A T P 1 , . . . , (A T A) -1 A T P 1 ].
Multiplying the rightmost equation (5.2.5) by A from the left yields

AA T P (k) = P (k) +1 C(k) C (k) T . ( 5.2.7) 
Therefore,

P (k) T AA T P (k) = C (k) C (k) T .
This suggests that f µ (AA T ) may be approximated by

f µ (C (k) C (k) T
), which is much easier to evaluate than f µ (AA T ). It follows from results by Golub and Meurant [START_REF] Golub | Matrices, moments and quadrature[END_REF][START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF] on the symmetric block Lanczos algorithm that the expression

G f µ = R T 1 E T 1 f µ C (k) C (k) T E 1 R 1 (5.2.8)
can be interpreted as an -block Gauss quadrature rule for the approximation of

B T f µ (AA T )B, i.e., G f = B T f (AA T )B ∀f ∈ P 2 -1 ,
where P 2 -1 denotes the set of all polynomials of degree at most 2 -1 ; see also [START_REF] Fenu | Block Gauss and anti-Gauss quadrature with application to networks[END_REF] for related discussions. We therefore approximate (5.2.3) by

φ (µ) = tr(G f µ ) (5.2.9)
and let the regularization parameter be the solution of

φ (µ) = η 2 2 .
(5.2.10)

The following result shows that φ (µ) is decreasing and convex. This makes it convenient to compute the solution µ of (5.2.10) by Newton's method ; see below.

Proposition 5.2.1. The functions φ(µ) and φ (µ), defined by (5.2.3) and (5.2.9) for µ > 0, respectively, satisfy

φ (µ) < 0, φ (µ) > 0, φ (µ) < 0, φ (µ) > 0.
Démonstration. The derivative of φ(µ) is given by

φ (µ) = -2tr(B T (µAA T + I) -3 AA T B).
It follows from (µAA w T j (µΛ + I) -3 w j < 0.

T + I) -1 A = A(µA T A + I) -1 that φ (µ) = -2tr(B T A(µA T A + I) -3 A T B).

Substituting the spectral factorization

Thus, φ(µ) is a decreasing function of µ. Turning to the second derivative, we have

φ (µ) = 6tr(B T AA T (µAA T + I) -4 AA T B),
and can proceed similarly as above to show that φ (µ) > 0.

The derivative of φ (µ) is given by

φ (µ) = tr(R T 1 E T 1 C (k) (µC (k) T C (k) + I) -3 C (k) T E 1 R 1 ), (5.2.11) 
where we again use the identity (µC

(k) C (k) T + I) -1 C (k) = C (k) (µC (k) T C (k) + I) -1 .
The stated properties of φ (µ) and φ (µ) can be shown by substituting the spectral factoriza-

tion of C (k) T C (k) into (5.2.11).
Since φ (µ) is decreasing and convex, Newton's method converges monotonically and quadratically to the solution µ of (5.2.10) for any initial approximate solution µ init < µ .

This makes it easy to implement the Newton method. For instance, we may use µ init = 0 when φ and its derivative are suitably defined at µ = 0 ; see [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF] for a detailed discussion of the case when the block size is one.

We note that the function µ → φ (1/µ), which corresponds to the regularization term µ X 2 F in (5.1.6), is not guaranteed to be convex. Therefore, Newton's method has to be safeguarded when applied to the solution of φ (1/µ) = 2 . This is the reason for considering Tikhonov regularization of the form (5.1.6). 

lim µ→∞ φ (µ) = tr(R T 1 E T 1 P N (R R T ) E 1 R 1 ).
Démonstration. The value at zero and limit of φ follow from (5.2.3). The expression (5.2.8) and the definition of the upper triangular matrix R 1 yield

φ (0) = tr R T 1 E T 1 f 0 C (k) C (k) T E 1 R 1 = tr(R T 1 R 1 ) = tr(B T B).
The result for φ (µ) as µ → ∞ follows similarly as for φ.

Let the regularization parameter µ be computed by Newton's method. We then determine the corresponding approximate solution by projecting the normal equations (5.1.7) with µ = µ onto a smaller space determined by the decompositions (5.2.5). We seek to determine an approximate solution of the form

X µ = Q (k) Y µ , Y µ ∈ R k ×k , (5.2.12) 
by solving the normal equations by a Galerkin method,

(Q (k) ) T (A T A + µ -1 I)Q (k) Y µ = (Q (k) ) T A T B, (5.2.13) 
which simplifies to

( C(k) T C(k) + µ -1 I)Y µ = C(k) T E 1 R 1 . (5.2.14) 
We compute the solution Y ,µ by solving a least-squares problem for which (5.2.14) are the normal equations min 

Y ∈R k ×k     C(k) µ -1/2 I     Y -µ 1/2     E 1 R 1 0     2 F . ( 5 
X µ = Q (k) Y µ of (5.1.6) satisfies AX µ -B 2 F = tr R T 1 E T 1 f µ ( C(k) C(k) T )E 1 R 1 .
Démonstration. Using the expression of X ,µ and applying (5.2.5) shows that

AX µ -B = AQ (k) Y µ -B = P (k) +1 C(k) Y µ -P 1 R 1 = P (k) +1 C(k) Y µ -E 1 R 1 ,
where we recall that B = P 1 R 1 . It follows from (5.2.14) that

P (k) +1 C(k) Y µ -E 1 R 1 = P (k) +1 C(k) C(k) T C(k) + µ -1 I -1 C(k) T -I E 1 R 1 .
The identity (5.2.2) with A replaced by C(k) now yields

AX µ -B 2 F = tr R T 1 E T 1 f µ ( C(k) C(k) T )E 1 R 1 .

Algorithm 7

The BGKB-Tikhonov method Input : A, B, k, , η ≥ 1.

1. Compute the QR factorization B = P 1 R 1 . 3. Determine Y µ by solving (5.2.15) and then X µ by (5.2.12).

For

5.3

The GGKB method and Gauss-type quadrature

We discuss the application of the GGKB method to compute an approximate solution of (5.1.6) and review how the method can be used to compute inexpensive upper and lower bounds for the discrepancy (5.1.9). These bounds help us to determine the regularization parameter. This approach of solving (5.1.6) and determining bounds for the discrepancy has recently been described in [START_REF] Bentbib | Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems[END_REF], where further details can be found.

Application of steps of the GGKB method to A with initial block vector B determines the lower bidiagonal matrix

C =                      ρ 1 σ 2 ρ 2 . . . . . . σ -1 ρ -1 σ ρ σ +1                      ∈ R ( +1)×
as well as the matrices

U (k) +1 = [U 1 , U 2 , . . . , U +1 ] ∈ R n 2 ×( +1)k , V (k) = [V 1 , V 2 , . . . , V ] ∈ R n 2 × k
with block columns U i , V j ∈ R n 2 ×k , where U 1 = s 1 B and s 1 > 0 is a scaling factor.

Introduce the inner product

F, G = tr(F T G), F, G ∈ R n 2 ×k .
We have F F = F, F 1/2 . The block columns U 1 , . . . , U +1 are orthonormal with respect to this inner product, and so are the block columns V 1 , . . . , V . Thus,

U i , U j = V i , V j =        1 i = j, 0 i = j.
We assume that is small enough so that all nontrivial entries of the matrix C are positive. This is the generic situation. We denote the leading × submatrix of C by C .

exists and that the initial approximate solution µ init ≥ 0 is smaller than µ , Newton's method converges quadratically and monotonically to µ . If there is no solution, then we increase . Generally, equation (5.3.6) has a solution already for small values of .

If the solution µ of (5.3.6) satisfies

R +1 f µ ≤ η 2 2 , (5.3.7) 
then it follows from (5.3.5) that there is a solution X µ of (5.1.6) such that

≤ B -AX µ F ≤ η .
If (5.3.7) does not hold for µ , then we carry out one more GGKB steps and solve (5.3.6) with replaced by + 1. Generally, the bound (5.3.7) can be satisfied already for small values of , because for any µ > 0, we have generically the inequalities

G -1 f µ < G f µ < φ(µ) < R +1 f µ < R f µ ;
see [START_REF] Lopez Lagomasino | Matrices, moments, and rational quadrature[END_REF] for a proof.

Assume now that (5.3.7) holds for µ = µ . We then compute the approximate solution

X µ , = V (k) (y µ ⊗ I k ) (5.3.8)
of (5.1.6), where y µ solves

( CT C + µ -1 I )y = d 1 CT e 1 , d 1 = B F .
(5.3.9)

These are the normal equations associated with the least-squares problem

min y∈R     µ 1/2 C I     y -d 1 µ 1/2 e 1 F .
(5.3.10)

We compute y µ by solving this least-squares problem instead of the normal equations

(5.3.9), because this is beneficial numerically, in particular when µ > 0 is small. 

AX µ , = U (k) +1 ( C ⊗ I k )(y µ ⊗ I k ) = U (k) +1 ( C y µ ⊗ I k ).
Using the above expression gives

AX µ , -B 2 F = U (k) +1 (d 1 e 1 ⊗ I k ) -U (k) +1 ( C y µ ⊗ I k ) 2 F = (d 1 e 1 ⊗ I k ) -( C y µ ⊗ I k ) 2 F = d 1 e 1 -C y µ 2 F ,
where we recall that d 1 = B F . We now express y µ with the aid of (5.3.9), and apply the identity (5.2.2) with A replaced by C , to obtain

AX µ , -B 2 F = d 2 1 e 1 -C ( CT C + µ -1 I ) -1 CT e 1 2 F = d 2 1 e T 1 (µ C CT + I +1 ) -2 e 1 = R +1 f µ .
The following algorithm outlines the main steps for computing µ and X µ , that satisfy (5.1.9). associated with the dominant singular values.

Consider the first system of (5.1.10),

Ax (1) = b (1) , (5.4.1)

where the right-hand side is the sum of an unknown error-free vector b (1) and an errorvector e (1) . Thus, b (1) = b (1) + e (1) . A bound e (1) ≤ (1) is assumed to be known. Let x (1) denote the first column of the matrix X in (6.1.9). We seek to compute an approximation of x (1) by using (standard) partial Golub-Kahan bidiagonalization (GKB) of A with initial vector b (1) .

To explain some properties of the bidiagonalization computed, we introduce the SVD of A,

A = W ΣZ T , (5.4.2) 
where W, Z ∈ R n 2 ×n 2 are orthogonal matrices and

Σ = diag [σ 1 , σ 2 , . . . , σ n 2 ] ∈ R n 2 ×n 2 , σ 1 ≥ σ 2 ≥ . . . ≥ σ r > σ r+1 = . . . = σ n 2 = 0.
Here r is the rank of A. Let 1 ≤ s ≤ r and let Z s and W s consist of the first s columns of Z and W , respectively. Moreover, Σ s denotes the leading s × s principal submatrix of Σ.

This gives the best rank-s approximation

A s = W s Σ s Z T s (5.4.3)
of A in the spectral and Frobenius norms.

The computation of the full SVD (5.4.2) is too expensive for large-scale problems without a particular structure to be practical. The computation of a partial GKB is much we chose η = 1.1. The displayed relative error in the computed solutions is the maximum error for each one of the k problems (5.1.10). The number of matrix-vector products (MVP) shown is the number of matrix-vector product evaluations with A and A T with a single vector. Thus, each iteration step of Algorithms 7 and 8 adds 2k matrix-vector product evaluations to the count. The number of matrix-vector product evaluations does not give an accurate idea of the computing time required. We therefore also present timings for the algorithms. The Tables 5.2 and 5.3 are analogous to 

Example 2

This example illustrates the performance of Algorithms 7-9 and GKB when applied to the restoration of 3-channel RGB color images that have been contaminated by blur and noise. The corrupted image is stored in a block vector B with three columns. The desired (and assumed unavailable) image is stored in the block vector X with three columns. The blur-contaminated, but noise-free image associated with X, is stored in the block vector B. The block vector E represents the noise in B, i.e., B := B + E. We define the noise level

ν = ||E|| F || B|| F .
To determine the effectiveness of our solution methods, we evaluate the relative error

Relative error = || X -X µ || F || X|| F ,
where X µ denotes the computed restoration.

We consider the within-channel blurring only. Hence the blurring matrix A 3 in (5. 1.4) is the 3 × 3 identity matrix. The blurring matrix A in (5.1.4), which describes the blurring within each channel, models Gaussian blur and is determined by the following Gaussian PSF,

h σ (x, y) = 1 2πσ 2 exp - x 2 + y 2 2σ 2 .
The blurring matrix A is a symmetric block Toeplitz matrix with Toeplitz blocks. It is generated with the MATLAB function blur from [START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF]. This function has two parameters, the half-bandwidth of the Toeplitz blocks r and the variance σ of the Gaussian PSF. The aim of this chapter is to solve this problem with application to one single channel and multichannel images. For single channel images we seek to recover an unknown vector from limited information. This problem is mathematically formulated as the following model b = Hx (6.1.3) where x ∈ R mn is a vector denoting the unknown solution, b ∈ R mn is a vector denoting the observed data contaminated by noise and H ∈ R mn×mn is a linear map. The problem arises, for instance in image restoration [START_REF] Andrews | Digital Image Restoration[END_REF][START_REF] Bertero | Introduction to Inverse Problems in Imaging[END_REF][START_REF] Chalmond | Modeling and Inverse Problems in Image Analysis[END_REF][START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF][START_REF] Jain | Fundamentals of Digital Image Processing[END_REF]. In this chapter we focus on the solution of (6.1.1) with application to image restoration in which x represents the unknown sharp image that is to be estimated from its blurry and noisy observation b. The matrix H is the blurring operator characterized by a PSF describing this blur. Due to the illconditioning of the matrix H and the presence of the error e, the problem (6.1.1) cannot be easily solved which mean that minimization of only the fidelity term typically yields a meaningless computed solution. Therefore, to stabilize the recovered image, regularization is needed. There are several techniques to regularize the linear inverse problem given by equation (6.1.1) ; see, for example, [START_REF] Tikhonov | Solution of ill-posed problems[END_REF][START_REF] Goldstein | The split Bregman L1 regularized problems[END_REF][START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Vogel | Fast, robust total variation-based reconstruction of noisy blurred images[END_REF]. All of these techniques stabilize the restoration process by adding a regularization term, depending on some priori knowledge about the unknown image, resulting in the model

min x { Hx -b p p + µ Φ(x) q q }. (6.1.4)
where Φ(x) is the regularizer that enforces the priori knowledge and the parameter µ is used to balance the two terms. This problem is referred to as pq minimization problem.

Different choices of Φ(x), p and q lead to a wide variety of regularizers. Among them we find the well known Tikhonov regularization, where Φ is the identity matrix (Φ = I), p = 2 and q = 2, see for example [START_REF] Tikhonov | Solution of ill-posed problems[END_REF]. If the goal is to enforce sparsity on the solution, one can also consider Φ = I, p = 2 and q = 1. Another well-known class of regularizers are based on total variation (TV), which is a better choice if the goal is to preserve sharp edges. In this case one let Φ to be the discrete gradient operator, see [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. The problem (6.1.4) has been studied in many papers to propose nonlinear optimization algorithms that can deal with the nonlinear properties of this problem ; see for example [START_REF] Vogel | Computational Methods for Inverse Problems[END_REF][START_REF] Wright | Sparse Reconstruction by Separable Approximation[END_REF].

These techniques are computationally demanding if the main cost of computation is the matrix-vector multiplication (MVM). It is our main goal to recover a good approximation of the unknown sharp image at low computational cost. Because of some unique features in images, we seek an image restoration algorithm that utilizes blur information, exploits the spatially invariant properties. For this reason we suppose that the PSF is identical in all parts of the image and separates into horizontal and vertical components. Then the matrix H is a tensor of two matrices H 1 and H 2 . By using the properties (1.2.3), the equation (6.1.3) can be rewritten as

B = H 2 XH T 1 , (6.1.5) 
where X = mat(x) and B = mat(b), Which yields the model (6.1.1). Recovering multichannel images from their blurry and noisy observations can be seen as a linear system of equations with multiple right-hand sides. The most commonly multichannel images is the RGB representation, which uses three channels ; see [START_REF] Galatsanos | Least squares restoration of multichannel images[END_REF][START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF]. It should be pointed out that the algorithms proposed in this chapter can be applied to the solution of Fredholm integral equations of the first kind in two or more space dimensions and to the restoration of hyper-spectral images. The latter kind of images generalize color images in that they in the isotropic total variation case. D 1,m and D 1,n denote the finite difference approximations of the horizontal and vertical first derivative operators, respectively, and they are defined as follows

    D 1,n D 1,m     X =     CX XC T     , (6.1.14) 
where

C :=         -1 1 . . . . . . -1 1         ∈ R d-1×d ,
where d is the number of pixels in each row and column of the image considered. For the ill-posed image restoration problem (6.1.1), the resulting matrices H 1 and H 2 are ill-conditioned. By regularization of the problem (6.1.1), we solve as a special case one of the following matrix problems : .1.16) where . 1,1 is the 1 norm. Problems (6.1.15) and (6.1.16) are refereed to as TV/L2 and TV/L1 minimization, respectively.

min X H(X) -B 2 F + µTV k (X) , k = 1, 2 (6.1.15) or min X ( H(X) -B 1,1 + µTV k (X)) k = 1, 2. ( 6 

TV/L2 minimization problem

In this section we consider the solution of the following TV/L2 minimization problem min X H(X) -B 2 F + µTV 2 (X) . (6.2.1)

The model (6.2.1) is very difficult to solve directly due to the non-differentiability and non-linearity of the TV term. It is our goal to develop an efficient TV minimization scheme to handle this problem. The core idea is based on augmented Lagrangian method (ALM) [START_REF] Hestenes | Multiplier and gradient methods[END_REF][START_REF] Powell | A method for nonlinear constraints in minimization problems, Optimization[END_REF] and alternating direction method (ADM) [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite-element approximations[END_REF]. The idea of ALM is to transform the unconstrained minimization task (6.2.1) into an equivalent constrained optimization problem, and then add a quadratic penalty term instead of the constraint violation with the multipliers. The idea of ADM is to decompose the transformed minimization problem into three easier and smaller subproblems such that some involved variables can be minimized separately and alternatively. Let us begin by considering the equivalent equality-constrained problem of (6.2.1). We first notice that the minimization problem (6.2.1) can be rewritten as min

X,M (n) ,M (m)   H(X) -B 2 F + µ m i=1 n j=1 M i,j 2   , (6.2.2) 
subject to D 1,n X = M (n) , D 1,m X = M (m) .
where

M i,j = (D 1,n X) ij , (D 1,m X) ij . If we set M (n) i,j = (D 1,n X) ij and M (m) i,j = (D 1,m X) ij
This constrained problem can be also formulated as

min F (X) + G(Y ), (6.2.3) 
subject to DX = Y, where,

F (X) = H(X) -B 2 F , G(Y ) = µ m i=1 n j=1 M i,j 2 , D =     D 1,n D 1,m     , Y =     M (n) M (m)    
The augmented Lagrangian function of (6.2.3) is defined as

L β (X, Y, Z) = F (X) + G(Y ) + DX -Y, Z + β 2 DX -Y 2 F , (6.2.4) 
where Z ∈ R 2m×n is the Lagrange multiplier of the linear constraint and β > 0 is the penalty parameter for the violation of this linear constraint.

To solve the nonlinear problem (6.2.1), we find the saddle point of the Lagrangian (6.2.4) by using the ADM method. The idea of this method is to apply an alternating minimization iterative procedure, namely, for k = 0, 1, ..., we solve

(X k+1 , Y k+1 ) = arg min X L β (X, Y, Z k ). (6.2.5)
The Lagrange multiplier is updated by 

Z k+1 = Z k + β (DX k+1 -Y k+1 ) . ( 6 
M i,j 2 + β 2     M (n) M (m)     -     D 1,n X D 1,m X     - 1 β     Z (1) k Z (2) k     2 F , (6.2.8) 
which is also equivalent to solve the so-called M-subproblem min

M i,j m i=1 n j=1 µ M i,j 2 + β 2 M (n) ij -K ij 2 F + β 2 M (m) ij -L ij 2 F (6.2.9)
where

K ij = (D 1,n X) ij + 1 β Z (1) k ij and L ij = (D 1,m X) ij + 1 β Z (2) k ij
. To solve (6.2.9)

we use following well-known two dimensional shrinkage formula [START_REF] Li | An Efficient Algorithm For Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing[END_REF] Shrink(y, γ, δ)

= max y + γ δ 2 - 1 δ , 0 y + γ/δ y + γ/δ 2 , ( 6 
.2.10)

Convergence analysis of TV/L2 problem

For the vector case, many convergence results have been proposed in the literature ; see for instance [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF][START_REF] He | A new inexact alternating directions method for monotone variational inequalities[END_REF]. For completeness, we give a proof here for the matrix case. A function Ψ is said to be proper if the domain of Ψ denoted by domΨ := {U ∈ R p×q , Ψ(U ) < ∞} is not empty. For the problem (6.2.3), F and G are closed proper convex functions.

According to [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF][START_REF] Rockafellar | Convex Analysis[END_REF], the problem (6. 

(X * , Y * , Z * ) ∈ W such that L β (X * , Y * , Z) ≤ L β (X * , Y * , Z * ) ≤ L β (X, Y, Z * ), ∀ (X, Y, Z) ∈ W. (6.2.18) 
The properties of the relation between the saddle-points of L β and L 0 and the solution of (6.2.3) are stated by the following theorem from [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF] Theorem 6. 

F (X k+1 ) + G(Y k+1 ) = F (X * ) + G(Y * ), 2. lim k→+∞ DX k+1 -Y k+1 F = 0,
Proof In order to show the convergence of this theorem, it suffice to show that the non-negative function 

F k = 1 β Z k -Z * 2 F + β X k -X * 2 
S k = DX k -Y k , M k = F (X k ) + G(Y k ), M * = F (X * ) + G(Y * ).
In the following we show

F k+1 ≤ F k -β S k+1 2 
F -β Y k+1 -Y k 2 F . (6.2.20) 
Since (X * , Y * , Z * ) is a saddle-point of L β ∀β > 0, it follows from Theorem 6.2.1 that (X * , Y * , Z * ) is also a saddle-point of L 0 . This is characterized by

L 0 (X * , Y * , Z) ≤ L 0 (X * , Y * , Z * ) ≤ L 0 (X, Y, Z * ), ∀ (X, Y, Z) ∈ W. (6.2.21)
From the second inequality of (6.2.21), we have

M * -M k+1 ≤ S k+1 , Z * F . (6.2.22) Since X k+1 is a minimizer of L β ∀β > 0, the optimality conditions reads 2H T (H(X k+1 ) -B) + D T (Z k + β(DX k+1 -Y k )) = 0. (6.2.23) By plugging Z k = Z k+1 -β(DX k+1 -Y k+1
) and rearranging we obtain

2H T (H(X k+1 ) -B) + D T (Z k+1 -β(Y k+1 -Y k )) = 0, ( 6 
.2.24)

TV/L1 minimization problem

In this section we consider the following regularized minimization problem min

X H(X) -B 1,1 + µTV 2 (X) (6.3.1)
We first notice that the minimization problem (6.3.1) can be rewritten as

min X   H(X) -B 1,1 + µ m i=1 n j=1 M i,j 2   , (6.3.2) 
then, the constraint violation of the problem (6.3.1) can be written as follows min

X,R,M (n) ,M (m)   R -B 1,1 + µ m i=1 n j=1 M i,j 2   , (6.3.3) subject to D 1,n X = M (n) , D 1,m X = M (m) , R = H(X).
This constrained problem can be also reformulated as min F (R) + G(Y ), (6.3.4) subject to DX = Y, H(X) = R where,

F (R) = R -B 1,1 , G(Y ) = µ m i=1 n j=1 M i,j 2 , D =     D 1,n D 1,m     , Y =     M (n) M (m)     ,
The problem now fits the framework of the augmented Lagrangian method [START_REF] Hestenes | Multiplier and gradient methods[END_REF][START_REF] Powell | A method for nonlinear constraints in minimization problems, Optimization[END_REF] which puts a quadratic penalty term instead of the constraint in the objective function and introducing explicit Lagrangian multipliers at each iteration into the objective function.

The augmented Lagrangian function of (6.3.4) is defined as follows L (X, R, Y, Z, W ) = (6.3.5) 

F (R) + G(Y ) + β 2 DX -Y 2 F + DX -Y, Z F + ρ 2 H(X) -R 2 F + H(X) -R,
(X * , R * , Y * , Z * , W * ) ∈ W such that L β,ρ (X * , R * , Y * , Z, W ) ≤ L β,ρ (X * , R * , Y * , Z * , W * ) ≤ L β,ρ (X, R, Y, Z * , W * ), ∀ (X, R, Y, Z, W ) ∈ W. (6.3.15)
The properties of the relation between the saddle-points of L β,ρ and the solution of (6.3.4) are stated by the following theorem from [START_REF] Wu | Augmented Lagrangian method for total variation restoration with non-quadratic fidelity[END_REF] Theorem 6.3.1. X * is a solution of (6.3.1) if and only if there exist

(R * , Y * ) ∈ Y × X and (Y * , Z * ) ∈ R 2m×n × R m×n such that (X * , R * , Y * , Z * , W * ) is a saddle-point of (6.3.15)
The convergence of ADM for TV/L1 has been well studied in the literature in the context of vectors ; see, e.g., [START_REF] Wu | Augmented Lagrangian method for total variation restoration with non-quadratic fidelity[END_REF]. Our TV/L1 problem is a model with matrix variables, it is our aim to give a similar convergence results for the matrix case Let us define the following quantities

Theorem 6.3.2. Assume that (X * , R * , Y * , Z * , W * ) is a saddle-point of L β,ρ . The sequence (X k , R k , Y k , Z k , W k )
Z k = Z k -Z * , W k = W k -W * , X k = X k -X * , R k = R k -R * , Y k = Y k -Y * .
With the relationship (6.3.17) together with (6.3.7), we can define 

Z k+1 = Z k + β DX k -Y k (6.
+ W k , -H(X * -X k ) F + ρ Z k -H(X k ), -H(X * -X k ) F ≥ 0, F (R * ) -F (R k ) + W k , R * -R k F + ρ R k -H(X k ), R * -R k ) ≥ 0, (6.3.26) G(Y * ) -G(Y k ) + Z k , Y * -Y k F + β Y k -DX k , Y * -Y k ) ≥ 0. (6.3.27)
By addition , regrouping terms, and multiplying through by βρ gives 

-βρ Z k , DX k -Y k -βρ W k , H(X k ) -Z k ≥ β 2 ρ DX k -Y k 2 F + βρ 2 H(X k ) -R k
≥ -βρ Z k , DX k -Y k -βρ W k , H(X k ) -Z k
To show this, we see that (6.3.18) is equivalent to

√ ρZ k+1 = √ ρZ k + β √ ρ DX k -Y k (6.3.30) βW k+1 = βW k + ρ β H(X k ) -R k
the result follows then from the equality

β Z k 2 F + ρ W k 2 F -β Z k+1 2 F + ρ W k+1 2 F (6.3.31) = -2βρ Z k , DX k -Y k -2βρ W k , H(X k ) -Z k -β 2 ρ DX k -Y k 2 F -βρ 2 H(X k ) -R k problem min X∈span(V k ) P k -A (X) F , (6.4.11) 
The approximate solution of (6.4.11) is then given by X k+1 = V k (y ⊗ I n ). By means of the Kronecker product, we can recast (6.4.11) to a vector least-squares problem. Hence, replacing the expression of X k+1 into (6.4.11) yields the following minimization problem min

y k P k -[A(V 1 ), ..., A(V k ), A(V new )] (y ⊗ I n ) F , (6.4.12) 
The problem (6.4.12) can be solved by the updated version of the global QR decomposition image of Figure 6.2 has been built by the product H 2 XH T 1 and by adding salt-and-pepper noise of different intensity. The recovery of the image via T V 1 /L1 and T V 2 /L1 models is terminated as soon as X k+1 -X k F / X k F < 10 -3 . Table 6.1 report results of the performances of the T V models for different percentages of pixels corrupted by salt-andpepper noise. In Figures different salt-and-pepper noise.

A T B =             A 1 , B 1 F A 1 , B 2 F • • • A 1 , B F A 2 , B 1 F A 2 , B 2 F • • • A 1 , B F . . . . . . . . . A p , B 1 F A p , B 2 F • • • A p , B F             . ( 6 

Example 2

This example illustrates the performance of TV/L1 algorithm when applied to the restoration of 3-channel RGB color images that have been contaminated by blur and salt and peppers noise. The corrupted image is stored in a block vector B with three columns.

The desired (and assumed unavailable) image is stored in the block vector X with three columns. The blur-contaminated, and noisy image associated with X, is stored in the block vector B. and T V 2 /L1 models is terminated as soon as X k+1 -X k F / X k F < 10 -2 . Table 6 blur and different salt-and-pepper noise.

Example 3

In this example we present the experimental results recovered by Algorithm 10 for the reconstruction of a cross-channel blurred image. We consider the same original RGB image and the same within-channel blurring matrix H 1 , as in Example 2, with the same parameters. The cross-channel blurring is determined by a matrix H 2 . In our example we , where E denotes the block vector that represents the noise in B, i.e., B := B + E, and B is the noise-free image associated with original image X. For this kind of noise, we consider the T V 1 /L2 and T V 2 /L2 models. The recovery of the image via T V 1 /L1 and T V 2 /L1 models is terminated as soon as X k+1 -X k F / X k F < 10 -3 . In Table 6.3, we compare the results obtained by T V 1 /L2 and T V 2 /L2 for different noise levels. Figure 6.14 shows the image degraded by 0.01 noise level. We use the code phillips from Regularization Tools [START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF] to discretize (6.5.1) by a Galerkin method with orthonormal box functions as test and trial functions to obtain H 1 and H 2 of size 500. From the output of the code phillips we determine a scaled approximation X ∈ R 500×500 of the exact solution f (x, y). Figure 6.17 displays this exact solution.

To determine the effectiveness of our approach, we evaluate the relative error Re = || X -X k || F || X|| F of the computed approximate solution X k obtained with Algorithm 10. Table 6.4 shows the relative error in approximate solutions determined by Algorithm 10 for different noise levels, as well as the number of iterations required to satisfy X k+1 -X k F / X k F < 10 -3 . Figure 6.18 displays the computed approximate solution obtained when the noise level is 0.1.

Chapitre 7 Conclusion

In this chapter, we provide a brief review of the main results described in this thesis.

In this thesis, we analyzed different algorithms to the solution of huge ill-posed linear problems coming from many applications. The obtained numerical results show the effectiveness of the proposed algorithms.

In Chapter 2, a new method for the inexpensive computation of a suitable value of the regularization parameter and an associated regularized solution of large linear discrete illposed problems is described. The method is based on global Lanczos tridiagonalization and applies Gauss-type quadrature rules to estimate pertinent quantities. Computed examples illustrate the effectiveness of the method.

In Chapter 3, an iterative scheme based on the global Golub-Kahan bidiagonalization method for the approximate solution of the Tikhonov minimization problem is presented when the matrix coefficients matrix has a Kronecker structure. The method exploits the relation between global Golub-Kahan bidiagonalization and Gauss-type quadrature to inexpensively determine the regularization parameter so that the discrepancy principle is satisfied. The Kronecker structure makes it possible to replace matrix-vector product eva-luations in the scheme [START_REF] Calvetti | Tikhonov regularization of large linear problems[END_REF] by matrix-matrix product computations. The latter products execute more efficiently than the former on many computers.

In chapter 4, we have illustrated how block Lanczos algorithm, block Gauss quadrature, block anti-Gauss quadrature and matrix functional can be applied to inexpensively compute the regularization parameter for Tikhonov regularization, under the assumption that a constraint on the norm of the solution is known. The numerical experiments performed so far show that our approach is advantageous for large ill-posed linear problems.

Indeed, it determines a monotonically decreasing sequence of values of the regularization parameter by carrying a few steps of block Lanczos algorithm.

Chapter 5 discusses four approaches to the solution of linear discrete ill-posed problems with multiple right-hand sides. GKB method is clearly the least attractive of the algorithms considered. The relative merits of the other algorithms depends on how accurately the noise level is known, whether the noise-contamination of all data vectors b (i) , i = 1, . . . , k, correspond to about he same noise level, and on the computer architecture.

In Chapter 6, we have introduced new algorithms to efficiently solve the TV/L1 and TV/L2 minimization problems. The proposed algorithms are based on orthogonal projections onto generalized Krylov subspaces of increasing dimensions. We tested our algorithms to the restoration of blurred and noisy grayscale and color images. The obtained numerical results indicates that subspaces of quite small dimensions are sufficient for the determination of high quality restorations.
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 11 Figure 1 -Image satellite.
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  κ(x, y, s, t)f (s, t)dsdt = g(x, y), (x, y) ∈ Ω , (0.0.1) où κ est le noyau, f est l'image originale et g est l'image floue et bruitée. La restauration en utilisant un système linéaire est l'hypothèse principale dans cette thèse, donc le processus de dégradation, c'est à dire, l'opération de passer de l'image nette à l'image floue, est linéaire. Dans les sciences physiques, cette hypothèse est faite parce que, dans de nombreux cas, le flou est en effet linéaire, ou au moins bien approché par un modèle linéaire. Une conséquence importante de cette hypothèse est que nous avons un grand nombre d'outils de l'algèbre linéaire et de calcul matriciel à notre disposition. La clé pour obtenir ce modèle linéaire est de réarranger les éléments des images X ∈ R m×n (discrétisation de f ) et B ∈ R m×n (discrétisation de g) dans des vecteurs colonnes en empilant les colonnes de celles-ci en deux vecteurs x et b , à la fois de longueur N = mn. Comme le flou est supposé une opération linéaire, il doit exister une grande matrice de flou H ∈ R N ×N tel que x et b sont liés par le modèle linéaire Hx = b. (0.0.2) L'image disponible, représentée par b, est supposé être contaminé par le flou et le bruit. Soit e ∈ R mn le bruit, e est normalisé avec une moyenne et variance nulles. Alors b peut s'exprimer par b = b + e, où b est le second membre du système linéaire H x = b associé à

  0 est le paramètre de régularisation. Les équations normales associées à (0.0.3) sont données par (H T H + µI)x = H T b, (0.0.4) où I est la matrice d'identité de l'ordre approprié et l'exposant T indique la transposition.

  (i) ∈ R n 2 le vecteur qui indique l'image inconnue i (canal i) sans flou et bruit. Les quantités correspondantes pour tous ces k canaux b, x, e ∈ R n 2 k sont obtenus en empilant les vecteurs b (i) , x (i) , e (i) de chaque canal. Par exemple, b = [(b (1) ) T , . . . , (b (k) ) T ] T .
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 111 (Eigenvalues and eigenvectors). Given a square matrix A ∈ R n×n , an eigenvector of A is a vector v = 0 ∈ R n such that Av = λv, λ ∈ R. The scalar λ is called the eigenvalue corresponding to the eigenvector v. Definition 1.1.2. (Normal matrix). A square matrix A with real coefficients is a normal matrix if it commutes with its transpose matrix A T , that is to say if AA T = A T A. Definition 1.1.3. (Orthogonal matrix). A real orthogonal matrix is a square matrix A with real entries whose columns and rows are orthogonal unit vectors i.e. A T A = AA T = I, (1.1.1)

.1. 2 )

 2 Theorem 1.1.4. (Spectral decomposition). Let A ∈ R n×n be a real square matrix. Then there exist an orthogonal matrix Q ∈ R n×n and a diagonal matrix Λ ∈ R n×n such that A = QΛQ T (1.1.3) where Λ contains the eigenvalues of A and the columns of Q are the corresponding (properly normalized) eigenvectors. The identity (1.1.3) is called the Spectral Decomposition or Eigendecomposition of the matrix A. Definition 1.1.5. (Singular values and singular vectors). Given a matrix A ∈ R m×n , a scalar σ ≥ 0 is a singular value for A if and only if there exist unit-length vectors u ∈ R m and v ∈ R n such that Av = σu, A T u = σv. (1.1.4)

3 . 1 .

 31 Let A = [A 1 , A 2 , ..., A p ] and B = [B 1 , B 2 , ..., B ] be matrices of dimension n × ps and n × s, respectively, where A i and B j (i = 1, ..., p; j = 1, ..., ) are n × s matrices. Then the p × matrix A T B is defined by

  and R is an upper triangular k × k matrix. Definition 1.3.4. (Hadamard product). The Hadamard product denoted by • of two matrices, A, B, of the same dimension, is a matrix, with entries given by
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 211 Assume that H T b = 0. Then x µ 2 is a monotonically decreasing function of µ and lim µ 0

Proposition 2 . 2 . 1 .

 221 Let H have the Kronecker structure (1.2.1) and assume that G := A T (B) = O. Let µ > 0. Then the equation

( 2 .

 2 1.2) and define e = vec(E), b = vec( B), b = vec(B), where B = H 2 XH T 1 and B = B + E. The error matrix E has normally distributed entries with zero mean and is normalized to correspond to a specific noise level ν = ||E|| F || B|| F .

2 . 1 )

 21 obtained with Algorithm 2. The first two examples are concerned with the solution of Fredholm integral equations of the first kind. Discretization gives matrices that are severely ill-conditioned.

Figure 2 .

 2 1 displays the computed approximate solution X 8 obtained when the noise level ν of the available data (right-hand side) is 0.01.
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 21 Figure 2.1 -Example 2 : Approximation X 8 of X determined by Algorithm 2 for noise

Figure 2 . 2 -

 22 Figure 2.2 -Example 3 : Original image (left), degraded image (center), and restored

Figure 2 . 3 -

 23 Figure 2.3 -Example 4 : Original image (left), degraded image (center), and restored

Chapitre 3 Global

 3 Golub-Kahan bidiagonalization for Tikhonov regularization minimization problems with error norm constraint3.1 IntroductionIn this chapter we also consider the solution of large linear systems of equations (0.0.2) that arise from the discretization of ill-posed problems. The matrix has a Kronecker product structure and the right-hand side is contaminated by measurement error. Problems of this kind arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel and in image restoration problems. Regularization methods, such as Tikhonov regularization, have to be employed to reduce the propagation of the error in the right-hand side into the computed solution.

( 3 . 1 . 5 )

 315 is described in Section 3.4. Numerical examples are presented in Section 3.5.

  arithmetic floating-point operations for each value of µ. Typically G k f µ has to be evaluated for several µ-values ; see Section 3.4. The evaluation of R k+1 f µ can be carried out analogously ; the matrix C T k in (3.3.9) has to be replaced by CT k ; see [9]. The reason for solving the least-squares problem instead of the associated normal equations (3.3.10) is that the solution of the former generally is less sensitive to errors in the data and to round-off errors introduced during the computations.

  3.9). The following result shows that the regularization parameter determined by solving (3.4.1) provides more regularization than the parameter obtained by solving (3.4.2). Proposition 3.4.1. Let µ k solve (3.4.1) and let µ ε solve (3.4.2). Then, generically, µ k < µ ε . Proof. It follows from (3.3.2) that φ(µ) is a decreasing and convex function for µ ≥ 0 with φ(0) = b 2 2 . Similarly, by (3.3.6), G k f µ is a decreasing and convex function for µ ≥ 0 with G k f 0 = b 2 2 . Generically, φ(µ) > G k f µ for µ > 0 ; cf. (3.3.7). Therefore, typically, µ k < µ ε . We have equality in the rare event of breakdown of the recursion formulas for the GGKB method. Assume that the ρ k > 0 in (3.2.6). Then the matrix (3.2.6) is nonsingular and the solution µ k of (3.4.1) exists if 0 < ε < b 2 . Let P N (HH T ) denote the orthogonal projector onto the null space of HH T . Then the solution µ ε of (3.4.2) exist if

  4.3) holds for µ = µ k . If this is the case, then it follows from (3.3.7) and (3.3.8) that (3.2.4) is valid for µ = µ k . If, on the other hand, the inequality (3.4.3) is violated for µ = µ k , then we increase k by one, compute µ k+1 , and check whether (3.4.3) holds with k + 1 replaced by k + 2 for µ = µ k+1 . For most problems of interest, the Gauss and Gauss-Radau approximations (3.3.7) and (3.3.8) converge quite rapidly to φ(µ k ) as k increases. Therefore, the bound (3.4.3) typically holds already for a fairly small value of k. Assume that µ k satisfies (3.4.1) and (3.4.3). Then we determine an approximate solution of (3.1.2) with the aid of the global Golub-Kahan decomposition (3.2.5) as follows.

2 .

 2 k is the number of global Lanczos steps). Let U 1 := B/||B|| F ; Determine the orthonormal bases {U j } k j=1 and {V j } k j=1 , and the bidiagonal matrices C k and Ck with Algorithm 2.

H 2

 2 XH T 1 and B := B + E, and define b := vec( B), b := vec(B), e := vec(E),

  by Algorithm 4. The first three examples are concerned with the solution of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel. Discretization gives matrices that are severely ill-conditioned. The last two examples discuss image restoration problems.

  The computed condition numbers of these matrices are κ(H 1 ) = 3.72 × 10 19 and κ(H 2 ) = 1.03 × 10 21 . Since κ(H) = κ(H 1 )κ(H 2 ), the matrix H is numerically singular. The right-hand side matrix B and the exact solution X also are generated with the aid of the codes baart and foxgood. Table3.1 displays the computed regularization parameters and the relative error in computed approximate solutions determined by Algorithm 4 with η = 1.1 for different noise levels, as well as the number of iterations required to satisfy the stopping criterion.

  the integral operator (3.5.1), as well as the exact solution X ∈ R 1500×1500 of the discretized problem and the associated exact right-hand side B.
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 31 Figure 3.1 -Example 3 : Approximation X 13 of X determined by Algorithm 4 for noise

  The original image X ∈ R 256×256 is the Enamel image from MATLAB. It is shown in the left-hand side of Figure 3.2. The associated blurred and noisy image B := H 2 XH T 1 +E is shown in the middle of Figure 3.2 ; the noise level is 0.001. The restoration determined by Algorithm 4 with η = 1.1 is displayed in the right-hand side of the figure.
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 32 Figure 3.2 -Example 4 : Original image (left), degraded image (center), and restored

  The original image is the iograyBorder image of dimension 256×256 from MATLAB. It is shown on the left-hand side of Figure 3.3. The blurring matrix H = H 1 ⊗ H 2 is the same as in Example 3. The blurred and noisy image shown in the middle of Figure 3.3
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 33 Figure 3.3 -Example 5 : Original image (left), degraded image (center), and restored

4. 2

 2 Block Lanczos algorithm, block Gauss quadrature, block anti-Gauss quadrature and matrix functionals

.3. 10 ) 1 .

 101 We use the QR factorization when solving the low-dimensional least-squares problems (4.3.7) and (4.3.10). Compute H T B = QR and set P 1 := Q ∈ R n×k , 2. For = 1, 2, ... until E ,µ < τ (a) Determine the matrix with orthonormal columns P (k) l and the block-tridiagonal matrix R k by the block Lanczos bidiagonalizatin when reorthogonalization is carried out (b) Update the value µ by solving φ (µ) = ∆ 2 with the zero-finding method 3. Determine Y by (4.3.10) and then X by (4.3.8)
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 41 Figure 4.1 -Example 1 : Spatially invariant kernel (left), true object (center), and

Figure 4 . 2 -

 42 Figure 4.2 -Example 1 : Approximate solutions for 0.001 (left) and for 0.01 noise level
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 43 Figure 4.3 -Example 2 : True object (left) and approximate solution (right).
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 47 Figure 4.7. The relative error was R(X ) = 2.62 × 10 -2 with the PSNR(X ) = 33.88. The

Figure 4 . 4 -

 44 Figure 4.4 -Example 3 : Original image (left), blurred and noisy image (right).
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 145 Figure 4.5 -Example 3 : Values of the relative error (lower graph) and the regularization parameter (upper graph) versus the number of iterations, with noise level 10 -3 .
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 46 Figure 4.6 -Example 3 : Behaviour of the relative error versus the number of iterations for different methods with noise level 10 -3 .
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 47 Figure 4.7 -Example 3 : Blurred and noisy image (left), restored image (right)

  A T A = SΛS T , S T S = I, into the above expression and letting W = [w 1 , . . . , w k ] = S T A T B yields φ (µ) = -2tr(W T (µΛ + I) -3 W ) = -2 k j=1

Proposition 5 . 2 . 2 .

 522 Let P N (M ) denote the orthogonal projector onto the null space N (M ) of the matrix M . Then φ(0) = tr(B T B), lim µ→∞ φ(µ) = tr(B T P N (AA T ) B), φ (0) = tr(B T B),

  = 1, 2, . . . until AX µ -B F ≤ η (a) Determine Q (k) and P (k)+1 and block bidiagonal matrix C (k) by BGKB.(b) Update the value µ by solving (5.2.10) with Newton's method.
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 531 Let µ solve (5.3.6) and let y µ solve(5.3.10). Then the associated approximate solution (5.3.8) of (5.1.6) satisfiesAX µ , -B 2 F = R +1 f µ .Démonstration. The representation (5.3.8) and (5.3.1) show that

  For this example we let σ = 2 and r = 4. The original (unknown) RGB image X ∈ 256×256×3 is the papav256 image from MATLAB. It is shown in the left-hand side of Figure 5.1.The associated blurred and noisy image B = A X + E is shown in the right-hand side of the figure. The noise level is ν = 10 -3 . Given the contaminated image B, we would like to recover an approximation of the original image X. Table5.4 compares the number of matrix-vector product evaluations, the computing time, and the relative errors in the computed restorations. We use the discrepancy principle with η = 1.1 to determine the regularization parameter.The restoration obtained with Algorithm 7 for noise level ν = 10 -3 is shown in the left-hand side of Figure5.2. The discrepancy principle for this algorithm and this noise level is satisfied after = 70 steps of the BGKB method. This corresponds to 3 × 2 × 70 matrix-vector product evaluations.The restoration determined by Algorithm 7 is shown in the right-hand side of Figure5.2. The GGKB method requires = 66 steps to satisfy the discrepancy principle. Algorithm 8 is the fastest, but yields restorations of lower quality than the other algorithms for this example.
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 5152 Figure 5.1 -Example 2 : Original image (left), blurred and noisy image (right).

F

  (R k ) + G(Y k ) = F (R * ) + G(Y * ), 2. lim k→+∞ DX k -Y k F = 0, 3. lim k→+∞ H(X k ) -R k F = 0.Proof From the first inequality of(6.3.15) it follows that ∀(Z, W ) ∈ R 2m×n × R m×n DX * -Y * , Z * F + H(X * ) -B -R * , W * F ≤ DX * -Y * , Z F + H(X * ) -B -R * , W F ,(6.3.16) which obviously implies thatDX * = Y * , H(X * ) = R * .(6.3.17)

3 . 18 ) 2 F + ρ W k 2 FZ k 2 F + ρ W k 2 F-β Z k+1 2 F + ρ W k+1 2 F( 6 . 3 . 20 )≥ β 2 ρ DX k -Y k 2 F 2 F

 318222222632022 W k+1 = W k + ρ H(X k ) -R k (6.3.19)In order to show the convergence, it suffice to show that β Z k decreases at each iteration. In the following we show thatβ + βρ 2 H(X k ) -R k . (6.3.21) For (X, R, Y ) = (X k , R k , Y k ) in(6.3.15) , the second equality impliesD T Z * , X k -X * F + β D T (Y * -DX * ), X k -X * F (6.3.22) + W * , -H(X k -X * ) F + ρ Z * -H(X * ), -H(X k -X * ) F ≥ 0, F (R k ) -F (R * ) + W * , R k -R * F + ρ R * -H(X * ), R k -R * ) F ≥ 0, (6.3.23) G(Y k ) -G(Y * ) + Z * , Y k -Y * F + β Y * -DX * , Y k -Y * ) F ≥ 0. (6.3.24) Since (X k , R k , Y k ) is also a saddle-point of L β,ρ , for (X, R, Y ) = (X * , R * , Y * ) the secondequality of (6.3.15) impliesD T Z k , X * -X k F + β D T (Y k -DX k ), X * -X k F(6.3.25) 

2 F( 6 . 3 . 28 )Z k 2 F + ρ W k 2 F-β Z k+1 2 F + ρ W k+1 2 F

 263282222 It is now suffice to show that β (6.3.29) 
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 14 . To use the global QR decomposition, we first need to define the product. Let A = [A 1 , A 2 , ..., A p ] and B = [B 1 , B 2 , ..., B ] be matrices of dimension n × ps and n × s, respectively, where A i and B j (i = 1, ..., p; j = 1, ..., ) are n × s matrices. Then the p × matrix A T B is defined by

.4. 13 )

 13 Let Q A (R A ⊗ I n ) be the global QR of [A(V 1 ), A(V 2 ), ..., A(V k )], where Q A = [Q 1 , ..., Q k ] is an m×kn F-orthonormal matrix satisfying Q T A Q A = I k and R A is an upper triangular k × k matrix. The global QR decomposition of [A(V 1 ), ..., A(V k ), A(V new )] is defined as follows [A(V 1 ), ..., A(V k ), A(V new )] = [Q A , Q new ]
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 61663 Figure 6.1 -Original image
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 65667682 Figure 6.5 -Original image

  same blurring matrices H 1 and H 2 defined in Example 1 with σ = 2 and r = 4, and by additive zero-mean white Gaussian noise with different different noise levels. This noise level is defined as follows ν = ||E|| F || B|| F

Figure 6 .

 6 15 and Figure 6.16 show the restored images obtained by T V 1 /L2 and T V 2 /L2, respectively.
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 69610611 Figure 6.9 -Blurred image
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  see Section 2.2.2 below. Their explicit form is not required, only their existence. The The coefficients α 1 , α 2 , . . . , α k and β 2 , β 3 , . . . , β k determined by Algorithm 1 define the

	property (2.2.17) together with the F-orthonormality (2.2.16) of the matrix columns shows
	that the set {V j } k+1 j=1 forms an F-orthonormal basis for the global Krylov subspace
	K k+1 ( Ȃ, G) := span{G, Ȃ(G), . . . , Ȃk (G)},
	where Ȃj = Ȃj-1 • Ȃ for j = 2, 3, . . . , k.
	symmetric tridiagonal matrix

  Note that the entries ρ 1 , ρ 2 , . . . , ρ k and σ 2 , σ 3 , . . . , σ k+1 of C k+1,0 are independent of t k+1,k+1 . The Gauss-Radau rule (2.2.14) can be evaluated according to

	,0 ;
	see, e.g., [21, Proposition 3.1] for a proof.

Table 2 .

 2 

	Noise level Iterations Regularization parameter Relative error
	0.001	8	2.0993 × 10 -6	8.54 × 10 -2
	0.01	8	2.9595 × 10 -6	8.79 × 10 -2

1 -Results for Example 1.

Table 2 .

 2 

	Noise level Iterations Regularization parameter Relative error
	0.001	8	9.4480 × 10 -7	4.57 × 10 -2
	0.01	8	1.7235 × 10 -6	4.81 × 10 -2

2 -Results for Example 2.

Table 2 .

 2 3 -Results for Example 3.

	Method	Iterations	µ	Relative error CPU time (seconds)
	GKB	110	2.65 × 10 -4	6.79 × 10 -2	13.29
	Algorithm 2	110	2.65 × 10 -4	6.79 × 10 -2	4.22

Table 2 .

 2 4 -Results for Example 4.

	Method	Iterations	µ	Relative error
	GKB	76	2.89 × 10 -4	6.58 × 10 -2
	Algorithm 2	75	2.90 × 10 -4	6.58 × 10 -2

  .4.5) Proposition 3.4.2. The approximate solution (3.4.5) of (3.2.2)satisfies ε ≤ B -A(X k,µ k ) F ≤ ηε.

	(3.4.6)
	Proof. Using the representation (3.4.5), and applying (3.2.5) as well as (1.2.3), shows
	that

Table 3 .

 3 1 -Results for Example 1. This approach of determining the regularization parameter and computing the corresponding regularized solution (3.1.3) is attractive due to its simplicity when the matrices H 1 and H 2 are small. However, the approach is slow for large matrices H 1 and H 2 . To illustrate this, we solve the same problem as in Example 1 with a finer discretization. Thus, let H 1 , H 2 ∈ R 2000×2000 be determined by the MATLAB codes baart and foxgood, respectively, from[START_REF] Hansen | Rank-Deficient and Discrete Ill-Posed Problems[END_REF]. The matrix B and X are generated in the same manner as in Example 1 with the matrix B such that the noise level is ν = 0.01. We let the safety factor for the discrepancy principle be η = 1.1. Then Algorithm 4 terminates after 4 iterations with the regularization parameter µ 4 = 5.77 × 10 2 and an approximate solution, defined by (3.4.5) with k = 4, with relative error 2.09 × 10 -1 . The computing time for this experiment is 37.96 seconds.When we instead use the SVD of H, we obtain the regularization parameter µ = 22.8 and an approximate solution with relative error 2.14 × 10 -1 . The computing time for this method is 47.95 seconds. The difference in the values of the regularization parameter

	Noise level Iterations	µ	Relative error
	0.01	4	5.77 × 10 2	2.08 × 10 -1
	0.001	7	2.64 × 10 4	1.22 × 10 -1
	Example 2.			

Instead of determining an approximate solution of (0.0.2) with Algorithm 4, one could compute the singular value decompositions (SVDs) of the matrices H 1 and H 2 . The SVD of the matrix H then can be determined from the SVDs of H 1 and H 2 . We can apply the SVD of H to determine a suitable regularization parameter µ > 0. Specifically, we solve the equation b -Hx µ 2 = ηε for µ by Newton's method without explicitly forming the matrices in the SVD of H. Knowing µ allows us to compute the Tikhonov solution (3.1.3) without explicitly forming the matrices in the SVD of H.

Table 3 .

 3 2 shows the computed regularization parameters and the relative error in approxi-

mate solutions determined by Algorithm 4 with η = 1.01 and different noise levels, as well as the number of iterations required to satisfy the stopping criterion. Figure

3

.1 displays the computed approximate solution X 13 obtained when the noise level of the available data (right-hand side) is 0.01.

Table 3 .

 3 2 -Results for Example 3.

	Noise level Iterations	µ	Relative error
	0.01	13	2.46 × 10 2	1.59 × 10 -1
	0.001	32	2.67 × 10 4	6.97 × 10 -2

Table 3 .

 3 3 -Results for Example 4.

	Noise level Iterations	Method	µ	Relative error CPU-time (sec)
	14	Algorithm 4 4.66 × 10 3	1.02 × 10 -1	0.50
	0.01				
	14	GKB	4.66 × 10 3	1.02 × 10 -1	1.35
	62	Algorithm 4 1.71 × 10 4	8.00 × 10 -2	2.23
	0.001				
	62	GKB	1.71 × 10 4	8.02 × 10 -2	11.44
	Example 5.				

Table 3 .

 3 4 -Results for Example 5.

	Noise level Iterations	µ	Relative error CPU time (sec)
	0.01	19	4.80 × 10 4	8.85 × 10 -2	1.09
	0.001	75	2.60 × 10 4	7.58 × 10 -2	2.13

Table 4 .

 4 4.1.2) is given by B = H X, where H ∈ R d 2 ×d 2 is the coefficient matrix modelling the convolution operation of each block with the spatially invariant kernel (4.4.3). In this example, we choose the kernel (4.4.3) to be of size d × d, where d = 64. By setting σ = 2.5, the MATLAB code kronDecomp from [61] gives a matrix H = H 1 ⊗ H 2 ∈ R 64 2 ×64 2 of condition number equal to 1.3834 × 10 21 , and where the definition of the Kronecker product of two matrices H = (a ij ) and B = (b ij ) of sizes displayed in Table4.1 we can state that, for this example, Algorithm 6 exhibits excellent performance both in terms of quality of the results and computational time. 1 -Results for Example 1.

	Noise level	Method	µ	R(X)	CPU-times(s)	l
		Algorithm 6 2.49 × 10 -4 2.49 × 10 -4	0.89	2
	10 -3	GLT	1.19 × 10 -4 7.50 × 10 -2	7.31	61
		GKB	6.09 × 10 -5 1.93 × 10 -2	33.46	131
		Algorithm 6 3.96 × 10 -4 2.30 × 10 -3	0.87	2
	10 -2					

GLT 8.04 × 10 -4 3.82 × 10 -2 5.77 51 GKB 7.55 × 10 -4 4.44 × 10 -2 21.18 85

Table 4 .

 4 2 -Results for Example 3.

	Noise level BLS Regularization parameter Relative error
	0.01	2	2.04 × 10 -2	2.17 × 10 -2
	0.1	7	2.21 × 10 -2	7.72 × 10 -2

Table 4 .

 4 3 -Results for Example 3.

	Noise level	Method	µ	PSNR	R(X l )	CPU-times(s)	
		Algorithm 6 1.86 × 10 -4	36.61	1.91 × 10 -2	1.74	
	10 -4	GLT	1.34 × 10 -4	34.86	2.34 × 10 -2	3.52	72
		GKB	1.65 × 10 -4	35.92	2.07 × 10 -2	16.97	67
		Algorithm 6 2.80 × 10 -4	33.88	2.62 × 10 -2	1.54	
	10 -3	GLT	1.95 × 10 -4	33.49	2.74 × 10 -2	3.63	68
		GKB	2.65 × 10 -4	33.24	2.82 × 10 -2	15.61	62
		Algorithm 6 8.80 × 10 -3	28.50	4.86 × 10 -2	0.22	
	10 -2	GLT	6.80 × 10 -3	27.57	5.41 × 10 -2	0.31	
		GKB	7.90 × 10 -3	27.47	5.74 × 10 -2	2.19	

  Let µ solve (5.2.10), and let Y µ solve (5.2.13). Then the associated approximate solution

	.2.15)
	Our reason for computing the solution of (5.2.15) instead of (5.2.14) is that solving the
	least-squares problem is less sensitive to errors for small values of µ > 0.
	Proposition 5.2.3.

Table 5

 5 .1. They differ from the latter in that the matrix A ∈ R 70 2 ×70 2 is determined by the function baart for

Table 5 .

 5 2 and the function shaw for Table5.3. The vectors b (i) are determined analogously as for the phillips test problem. Both functions are from[START_REF] Hansen | Regularization tools version 4.0 for MATLAB 7.3[END_REF] and compute discretizations of Fredholm integral equations of the first kind.

	Noise level	Method	MVP Relative error CPU-time (sec)
		Algorithm 7	100	1.46 × 10 -2	3.87
		Algorithm 8	200	1.31 × 10 -2	7.63
	10 -3			
		Algorithm 9	16	2.28 × 10 -2	1.52
		GKB	162	1.43 × 10 -2	13.22
		Algorithm 7	80	2.54 × 10 -2	3.08
		Algorithm 8	120	2.61 × 10 -2	4.67
	10 -2			
		Algorithm 39	10	2.52 × 10 -2	1.01
		GKB	140	2.60 × 10 -2	11.50

Table 5 .

 5 1 -Results for the phillips test problem.

	Noise level	Method	MVP Relative error CPU-time (sec)
		Algorithm 7	40	4.27 × 10 -2	1.61
		Algorithm 8	80	5.62 × 10 -2	3.31
	10 -3			
		Algorithm 9	8	5.20 × 10 -2	0.81
		GKB	80	5.46 × 10 -2	7.11
		Algorithm 7	40	5.02 × 10 -2	1.51
		Algorithm 8	60	7.36 × 10 -2	2.57
	10 -2			
		Algorithm 9	8	5.77 × 10 -2	0.83
		GKB	62	6.78 × 10 -2	5.63

Table 5 .

 5 2 -Results for the baart test problem.

	Noise level	Method	MVP Relative error CPU-time (sec)
		Algorithm 7	100	5.20 × 10 -2	3.88
		Algorithm 8	200	4.42 × 10 -2	7.57
	10 -3			
		Algorithm 9	14	3.98 × 10 -2	1.30
		GKB	184	4.72 × 10 -2	14.93
		Algorithm 7	40	1.82 × 10 -1	1.52
		Algorithm 8	100	1.55 × 10 -1	4.36
	10 -2			
		Algorithm 9	10	1.27 × 10 -1	0.98
		GKB	100	1.55 × 10 -1	8.84

Table 5 .

 5 3 -Results for the shaw test problem.

	Tables 5.1-5.3 show Algorithm 9 to require the fewest matrix-vector product evalua-
	tions and to give approximate solutions of comparable or higher quality than the other
	algorithms. Algorithms 7 and 8 require about the same number of matrix-vector product
	evaluations, but the former algorithm demands less CPU time because it implements a
	block method.

Table 5 .

 5 4 -Results for Example 2.

	Noise level	Method	MVP Relative error CPU-time (sec)
		Algorithm 7	420	4.44 × 10 -2	9.52
		Algorithm 8	396	4.46 × 10 -2	6.30
	10 -3			
		Algorithm 9	68	2.81 × 10 -1	3.76
		GKB	628	4.16 × 10 -2	15.02
		Algorithm 7	102	6.72 × 10 -2	1.88
		Algorithm 8	90	6.71 × 10 -2	1.38
	10 -2			
		Algorithm 9	18	2.88 × 10 -1	0.77
		GKB	124	6.57 × 10 -2	2.53

  2.3) is solvable, i.e., there exist X * and Y * , not necessarily unique that minimize (6.2.3). Let W = Ω × Y × R p×q , where Ω and Y are given closed and convex nonempty sets. The saddle-point problem is equivalent to finding

  We will see in what follows how this theorem can be used to give the convergence of (X k+1 , Y k+1 ). It should be pointed out that the idea of our proof follows the convergence results in[START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. Assume that (X * , Y * , Z * ) is a saddle-point of L β ∀β > 0. The sequence

	Theorem 6.2.2. (X k+1 , Y k+1 , Z k+1 ) generated by Algorithm 10 satisfies
	1. lim k→+∞

2.1. (X * , Y * , Z * ) is a saddle-point of L 0 if and only if (X * , Y * , Z * ) is a saddle-point of L β ∀β > 0. Moreover (X * , Y *

) is a solution of (6.2.3).

  Let us define S k , M k and M * as

	F	(6.2.19)
	decreases at each iteration.	

  W F since in general β = ρ in(6.3.5). For the problem (6.3.4), F and G are closed proper convex functions. According to[START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF][START_REF] Rockafellar | Convex Analysis[END_REF], the problem (6.3.4) is solvable, i.e., there exist R * and Y * , not necessarily unique that minimize(6.3.4). Let W = Ω×Y ×X ×R 2m×n ×R m×n , where Ω, X and Y are given closed and convex nonempty sets. The saddle-point problem is equivalent to finding

Table 6 .

 6 6.3-6.4 we show the resorted images obtained applying TV/L1 algorithm for 30% noise level. 1 -Comparison of T V 1 /L1 and T V 2 /L1

		Parameters	TV 1	TV 2
	Noise %	µ	β ρ Iter SNR time Iter SNR time
	10	0.05 50 5	56 23.55 10.23 141 22.64 42.55
	20	0.1 50 5	51 21.38 8.69	106 20.16 27.16
	30	0.2 50 5	48 19.21 7.68	87 17.66 19.73

Table 6 .

 6 .2 compares the results obtained by T V 1 /L1 and T V 2 /L1 models.The restorations obtained with T V 1 /L1 and T V 2 /L1 for noise level 30% are shown in Figure6.7 and the Figure6.8, respectively. 2 -Comparison of T V 1 /L1 and T V 2 /L1

		Parameters	TV 1	TV 2
	Noise %	µ	β ρ Iter SNR time Iter SNR time
	10	0.1	80 5	13 24.66 9.01	14 24.32 9.73
	20	0.125 80 5	17 23.00 12.64	17 22.71 12.36
	30	0.125 80 5	19 20.90 13.35	19 21.13 13.89

Table 6 .

 6 90) 3 -Comparison of T V 1 /L2 and T V 2 /L2different white Gaussian noise level.

		Parameters	TV 1	TV 2
	Noise %	µ	β	Iter SNR time Iter SNR time
	0.001	0.0001 0.1	53 18.32 9.30	52 18.32 10.10
	0.01	0.001 30	20 15.70 2.65	21 15.60 2.60

Acknowledgments

The expression (3.3.4) is a Stieltjes integral, which we write as φ(µ) = f µ (t)dω(t).

(3.3.5)

The distribution function ω associated with the measure dω can be chosen as a nondecreasing piecewise constant function with nonnegative jumps w 2 j at the eigenvalues λ j . Since HH T is positive semidefinite, the support of the measure dω lives on the nonnegative real axis.

Define the integral

for suitable functions f and let G k denote the k-point Gauss quadrature rule associated with dω. It is characterized by the property that

Chapitre 4

The symmetric block Lanczos algorithm for linear ill-posed problems

Introduction

Many applications require the solution of several ill-conditioning systems of equations with a right hand side contaminated by an additive error, i) , i = 1, 2, ..., k. In recent decades, many iterative methods have been proposed for the solution of linear ill-posed problems. These iterative methods are based on the connection between the classical Lanczos algorithm, and Gauss quadrature formulas, for the solution of Tikhonov regularization of large-scale problems Hx = b, H ∈ R n×n , b ∈ R n . With a matrix H of ill-determined rank. The right hand side b is contaminated by an error e ∈ R n ; see, e.g., [START_REF] Calvetti | Estimation of the L-curve via Lanczos bidiagonalization[END_REF][START_REF] Calvetti | L-curve curvature bounds via Lanczos bidiagonalization[END_REF][START_REF] Golub | Matrices, moments and quadrature[END_REF][START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF][START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF][START_REF] Calvetti | Tikhonov regularization of large linear problems[END_REF]. These techniques have been developed by Golub and Meurant in [START_REF] Golub | Matrices, moments and quadrature[END_REF][START_REF] Golub | Matrices, Moments and Quadrature with Applications[END_REF] for approximating elements of a matrix function by Gaussian quadrature in the spectral domain. When solving (6.3.9), instead of applying these techniques to each ill-n × p and s × q, respectively, is defined as the (ns) × (pq) matrix H ⊗ B with block entries

Applications when H has a Kronecker product structure when solving Fredholm integral equations of the first kind in two space-dimensions with a separable kernel can be found in [START_REF] Bouhamidi | An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure[END_REF]. When no error E matrix is added to B, Algorithm 6 with η = 0.999999 and τ = 10 -3 requires 2 block Lanczos bidiagonalization with a CPU time of 0.89 s and gives the approximate solution X 2 , which satisfies X-X 2 F X F = 9.99 × 10 -7 . The computed value of µ is 9.89 × 10 -7 . Figure 5.1 displays the true object, the spacially invariant kernel and the computed approximate solution X 2 obtained when no noise is added to the available data. We next add Gaussian white noise so that the error E has normally distributed entries with zero mean and is normalized to correspond to a the noise level E F / B F = 0.01. Algorithm 6 applied to this noisy system with η = 0.9999 and τ = 10 -3 requires 2 block Lanczos bidiagonalization steps with a CPU time of 0.86 s to determine the approximate solution X 2 of relative error X-X 2 F X F = 2.20 × 10 -3 . The computed value of µ is 1.49 × 10 -4 . Figure 5.1 displays the computed approximate solution X 2 obtained when a 0.01 noise level is added to the available data. We compare our approach with several existing methods which are closely related. The first related method proposed in [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF] utilizes the connection between (standard) Golub-Kahan bidiagonalization and Gauss quadrature rules for solving large ill-conditioned linear systems of equations (4.4.4). We refer to this method as GKB. Another recent related method is GLT (Algorithm 2). This method use the relation between the global Lanczos method and Gauss-type quadrature rules to solve the problem (4.4.4) when K is given as a Kronecker product for the spatially invariant case. In Table 4.1, we report more results for comparing the three methods for two levels of noise. We choose η = 0.9999 for the three methods. Looking at the results where g is the blurred and noisy image, g is the associated blurred and noise-free image.

K is a blurring matrix and and it models the blurring operation, x is the true image and e is the additive noise. The blurring matrix K is determined from two ingredients :

the point spread function (PSF) [START_REF] Hansen | Deblurring Images : Matrices, Spectra, and Filtering[END_REF], which defines how each pixel is blurred, and the boundary conditions, which specify our assumptions on the scene just outside our image.

We describe the strategy related to our approach to solve the problem (4.4.4), when a spatially invariant point spread function is given. That is, the product Kx is usually considered as a convolution of the associated PSF and the object x. We assume now that the overall space invarying PSF does not vary across the image, and thus the PSF can be obtained from any region of the image. Taking into consideration this important property, it is necessary to exploit the block processing of the image. This discussion leads us to decompose the blurred and noisy image into sets of patches on which the blur is assumed to be the same. Given the blurred and noisy image partitioned into small blocks based on the size of the point spread function, we then assume that every blurred and noisy subimage is given by convolving the PSF with the exact subimage. Collection of image restoration problems for each block image will be transformed into a linear system with multiple right hand sides. In many cases, when processing an image by blocks it is necessary to overlap the regions in order to minimize edge effects. We now want to partition the problem (4.4.4) as

where H is a matrix of moderate size based on the size of the PSF, x i and g i are vectors obtained by transforming each subimage block of the true image and the blurred and noisy simplify our notation we assume the image to be represented by an array of n × n pixels in each one of the k channels, where 1 ≤ k n 2 . Let b (i) ∈ R n 2 represent the available blur-and noise-contaminated image in channel i, let e (i) ∈ R n 2 describe the noise in this channel, and let x (i) ∈ R n 2 denote the desired unknown blur-and noise-free image in channel i. The corresponding quantities for all k channels b, x, e ∈ R n with blurring matrix

The matrix A ∈ R n 2 ×n 2 represents within-channel blurring, which is assumed to be the same in all channels, and the small matrix A k ∈ R k×k models cross-channel blurring. When

A k = I k , there is no cross-channel blurring. In this situation, the blurring is said to be within-channel only and the deblurring problem decouples into k independent deblurring problems. The degradation model (5.1.1) then can be expressed in the form

where B = [b (1) , . . . , b (k) ], X = [ x (1) , . . . , x (k) ], and E = [e (1) , . . . , e (k) ] are n 2 × k "block vectors".

When A k = I k , the degradation model (5.1.1) can be expressed as

where the matrices B, X, and E are the same as in (6.1.9) and the linear operator A is defined by

Its transpose is given by A T (X) := A T XA k . For notational simplicity, we denote in the following both the matrix A in (6.1.9) and the linear operator A in (6.1.10) by A, and we write A(X) as AX.

The singular values of a blurring A matrix or operator typically "cluster" at the origin, i.e., A has many singular values of different orders of magnitude close to zero. It follows that the solution (if it exists) of the linear system of equations

is very sensitive to the error E in B. Linear systems of equations with a matrix of this kind are commonly referred to as linear discrete ill-posed problems.

Let B denote the (unknown) noise-free block vector associated with B. The system of equations AX = B is assumed to be consistent. Denote the solution of minimal Frobenius norm by X. We would like to determine an accurate approximation of X given B and A.

This generally is a difficult computational task due to the error E in B and the presence of tiny positive singular values of A.

Tikhonov regularization reduces the sensitivity of the solution of (5.1.5) to the error E in B by replacing (5.1.5) by a penalized least-squares problem of the form min

where µ > 0 is the regularization parameter. The normal equations associated with this minimization problem are given by

(5.1.7)

They have the unique solution

for any µ > 0. The size of µ determines how sensitive X µ is to the error in B and how close X µ is to the desired solution X. We will comment on the use of µ -1 in (5.1.6) instead of µ below.

The computation of an accurate approximation X µ of X requires that a suitable value of the regularization parameter µ be used. Several methods for determining such a µvalue have been suggested in the literature. These include so-called heuristic methods that do not require any knowledge of the size of the error E in B, such as the L-curve criterion, generalized cross validation, and the quasi-optimality criterion ; see, e.g., [START_REF] Calvetti | L-curve curvature bounds via Lanczos bidiagonalization[END_REF][START_REF] Fenu | GCV for Tikhonov regularization via global Golub-Kahan decomposition[END_REF][START_REF] Gazzola | On Krylov projection methods and Tikhonov regularization[END_REF][START_REF] Hansen | Rank-Deficient and Discrete Ill-Posed Problems[END_REF][START_REF] Kindermann | Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems[END_REF][START_REF] Kindermann | Discretization independent convergence rates for noise level-free parameter choice rules for the regularization of ill-conditioned problems[END_REF][START_REF] Reichel | Old and new parameter choice rules for discrete ill-posed problems[END_REF] for discussions and illustrations. We will use the discrepancy principle, discussed, e.g., in [START_REF] Engl | Regularization of Inverse Problems[END_REF], to determine µ in the computed examples reported in Section 5.5.

The discrepancy principle requires that a bound > 0 of E F be available and prescribes that µ > 0 be chosen so that the solution (5.1.8) of (5.1.6) satisfies

where η > 1 is a user-specified constant independent of . A zero-finder can be applied to determine a µ-value such that the associated Tikhonov solution (5.1.8) satisfies (5.1.9).

When the matrix A is of small to moderate size, the left-hand side of (5.1.9) easily can be evaluated by using the singular value decomposition (SVD) of A. However, computation

The matrices determined satisfy

Consider the functions (of µ),

(5.3.4)

The function (5.3.3) can be interpreted as an -point Gauss quadrature rule for the approximation of the expression φ(µ) defined by (5.2.3) ; see, e.g., [START_REF] Bentbib | Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems[END_REF][START_REF] Fenu | GCV for Tikhonov regularization via global Golub-Kahan decomposition[END_REF]. Similarly, the function (5.3.4) may be regarded as an ( + 1)-point Gauss-Radau quadrature rule with a fixed node at the origin for the approximation of (5.2.

3). The remainder formulas for

Gauss and Gauss-Radau quadrature, together with the observations that the derivatives of even order of the function (5.2.4) are positive and the derivatives of odd order are negative, yield the lower and upper bounds

see [START_REF] Bentbib | Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems[END_REF] for details.

We determine a suitable value of µ and an associated approximate solution of (5.1.6) as follows. For ≥ 2, we seek to solve the nonlinear equation

for µ > 0 by Newton's method. One can show similarly as in Section 5.2 that the function µ → G f µ is decreasing and convex. Therefore, assuming that a solution µ = µ of (5.3.6)

Algorithm 8

The GGKB-Tikhonov method Input : A, B, k, , η ≥ 1.

+1 and V (k) , and the bidiagonal matrices C and C with GGKB algorithm.

(b) Determine µ that satisfies (5.3.6) with Newton's method.

3. Determine y µ by solving (5.3.10) and then compute X µ , by (5.3.8).

Golub-Kahan bidiagonalization for problems with multiple right-hand sides

We may consider (5.1.5) as k linear discrete ill-posed problems that have the same matrix A and different right-hand side vectors b (1) , . . . , b (k) ; cf. (5.1.10). The solution of linear systems of equations with multiple right-hand sides that may not be known simultaneously and a matrix that stems from the discretization of a well-posed problem has received considerable attention in the literature ; see, e.g., [START_REF] Chan | Analysis of projection methods for solving linear systems with multiple right-hand sides[END_REF][START_REF] Guennouni | A block version of BiCGSTAB for linear systems with multiple right-hand sides[END_REF][START_REF] Jbilou | Oblique projection methods for linear systems with multiple right-hand sides[END_REF][START_REF] Meng | A block GCROT(m,k) method for linear systems with multiple right-hand sides[END_REF][START_REF] Saad | On the Lanczos method for solving symmetric linear systems with several right-hand sides[END_REF] and references therein. However, the solution of linear discrete ill-posed problems with multiple right-hand sides that may not be available simultaneously has not. The method described in this section is based on the analysis and numerical experience reported in [START_REF] Gazzola | On the Lanczos and Golub-Kahan reduction methods applied to discrete ill-posed problems[END_REF], where it is shown that it often suffices to apply only a few steps of (standard) Golub-Kahan bidiagonalization (GKB) to a matrix A of a linear discrete ill-posed problem to gain valuable information of subspaces spanned by the right and left singular vectors of A cheaper. Application of steps of GKB yields the decompositions

where the matrices

have orthonormal columns, and U consists of the first columns of U +1 . Further, C ∈ R ( +1)× is lower bidiagonal and C is the leading × submatrix of C . We apply reorthogonalization of the columns of U +1 and V to secure their numerical orthogonality.

It is shown in [START_REF] Gazzola | On the Lanczos and Golub-Kahan reduction methods applied to discrete ill-posed problems[END_REF] that for sufficiently many steps , the spaces range(U +1 ) and range(V ) contain to high accuracy the subspaces range(W s ) and range(Z s ), respectively, for s ≥ 1 fixed and not too large. Computed examples in [START_REF] Gazzola | On the Lanczos and Golub-Kahan reduction methods applied to discrete ill-posed problems[END_REF] indicate that it often suffices to choose ≤ 3s. This result suggests that we can use the same decomposition (5.4.4) for several right-hand side vectors b (j) .

Consider the Tikhonov regularization problem min

where x = V y. We determine the regularization parameter µ > 0 so that the computed solution y µ satisfies the discrepancy principle

If no such µ-value exists, then we increase by one and try to solve (5.4.6) with replaced by + 1 in (5.4.5) and (5.4.6). The small least-squares problem in the right-hand side of (5.4.5) is solved by first expressing it in a form analogous to (5.3.10) ; see [START_REF] Calvetti | Tikhonov regularization with a solution constraint[END_REF] for discussions on the solution of (5.4.5) and on properties of the computed solution. We remark that the vector U T +1 b (1) can be simplified to e 1 b (1) 2 . The solution y µ of (5.4.5) determines the approximate solution x

(1) µ = V y µ of (5.4.1).

We turn to the problem

and compute an approximate solution by solving (5.4.5) with the vector b (1) replaced by b (2) . The vector U T +1 b (2) has to be explicitly computed. Therefore it is important that the columns of the matrix U +1 be numerically orthonormal. If no µ > 0 can be determined so that (5.4.6) can be satisfied with b (1) replaced by b (2) , then we carry out one more step of Golub-Kahan bidiagonalization (5.4.4) ; otherwise we compute the solution y µ of (5.4.5)

with the available decomposition.

Let µ be such that the discrepancy principle holds. Then we obtain the approximate solution x

(2) µ = V y µ of (5.4.7). We proceed in the same manner to solve Ax (i) = b (i) for i = 3, 4, . . . , k.

Algorithm 9 The GKB-Tikhonov method

Input : A, k, b (1) , b (2) , . . . , b (k) , (1) , (2) , . . . , (k) , η ≥ 1.

ii. Return to step 5.

We will compare this algorithm and Algorithms 7 and 8 to the following "trivial" method that is based on solving each one of the linear discrete ill-posed problems (5.1.10) independently with the aid of (standard) Golub-Kahan bidiagonalization. Thus, we apply Algorithm 7 with block size one to each one of the k linear discrete ill-posed problems (5.1.10) independently. We refer to this scheme as GKB. We expect it to require the most matrix-vector product evaluations of the methods in our comparison, because we compute a new partial standard Golub-Kahan bidiagonalization for each one of the vectors b (j) , j = 1, . . . , k. Moreover, this method does not benefit from the fact that on many modern computers the evaluation of matrix-block-vector products with a large matrix A does not require much more time than the evaluation of a matrix-vector product with a single vector for small block sizes ; see, e.g., [START_REF] Gallivan | Parallel Algorithms for Matrix Computations[END_REF] for discussions on this and related issues.

Numerical results

This section provides some numerical results to show the performance of Algorithms 

Example 1

We would like to solve linear discrete ill-posed problems (5.1.10) with the matrix i) are scaled to correspond to a specified noise level. This is simulated with

where δ is the noise level, and the vector e (i) ∈ R 70 2 has normally distributed random entries with mean zero and variance one.

When the data vectors b (i) , i = 1, . . . , k, are available sequentially, the linear discrete ill-posed problems (5.1.10) can be solved one by one by Algorithms 9 or GKB. If the data vectors are available simultaneously, then Algorithms 7 and 8 also can be used to solve (5.1.10). The latter algorithms require that the noise level for each discrete ill-posed problem (5.1.10) is about the same. This is a reasonable assumption for many applications.

Table 5.1 compares the number of matrix-vector product evaluations and the CPU time required by Algorithm 7-9 and GKB for k = 10 and noise-contaminated data vectors b (i) corresponding to the noise levels δ = 10 -2 and δ = 10 -3 . For the discrepancy principle, Chapitre 6

A genaralized Krylov subspace method for TV regularization

Introduction

In this chapter we consider the solution of the following matrix equation

where B is generally contaminated by noise. H 1 and H 2 are matrices of ill-determined rank, which makes the solution X very sensitive to perturbations in B. Discrete ill-posed problems of the form (6.1.1) arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions,

where Ω and Ω are rectangles in R 2 and the kernel is separable K(x, y, s, t) = k 1 (x, s)k 2 (y, t), (x, y) ∈ Ω , (s, t) ∈ Ω, allow more than three "colors" ; see, e.g., [START_REF] Li | Coupled segmentation and denoising/deblurring for hyperspectral material identification[END_REF]. If the channels are represented by m × n pixels, the full blurring model is described by the following form b = Hx, (6.1.6)

where b and x in R kmn , represent the blurred and noisy multichannel image and the original image respectively. For an image with k channels, they are given by b = [b (1) ; b (2) ; ...; b (k) ], x = [x (1) ; x (2) ; ...; x (k) ],

where b (i) and x (i) in R mn are obtained by stacking the columns of each channel on top of each other. The kmn × kmn multichannel blurring matrix H is given by

The matrix H 2 ∈ R mn×mn represents the same within-channel blurring in all the k channels. The matrix H 1 of dimension k × k models the cross-channel blurring, which is the same for all pixels in the case of a spatially invariant blur. If H 1 = I, the blurring is said to be within-channel. If no colour blurring arises (i.e., H 1 = I), then k independent deblurring problems are solved ; hence the spatially invariant blurring model is given by

In this case, the goal is to model the blurring of k channels image as a linear system of equations with k right-hand sides. For this reason we let B and X in R mn×k to be denoted by b (1) , b (2) , ..., b (k) and x (1) , x (2) , ..., x (k) , respectively. The optical blurring is then modeled by B = H 2 X, (6.1.9) which yields the model (6.1.1) with H 1 = I. When the spatially invariant cross-channel is present (i.e., H 1 = I) and by using the Kronecker product properties, the following blurring model is to be solved 6.1.10) which also yields the model (6.1.1). Introduce the linear operator

Its transpose is given by H T (X) = H T 2 XH 1 . The problem (6.1.1) can be then expressed as

The total variation regularization is known to be the most popular and effective techniques for the images restoration. Given an image defined as a function u :

where Ω is a bounded open subset of R 2 , the total variation (TV) of u can be defined as .11) where ∇ denotes the gradient of u and . k is a norm in R 2 . When u is represented by m × n image X, a discrete form of (6.1.11) is always used, given by

in the anisotropic total variation case, or

where the convention 0•(0/0) = 0 is followed. The solution of (6.2.9) is then given by

where

.

For the anisotropic case we solve the following problem min

which can be also solved by the one dimensional shrinkage formula. This gives

Solving the X-problem

Given Y , X k+1 can be obtained by solving min

This problem can be also solved by considering the following normal equation

.2.16)

The linear matrix equation can be rewritten in the following form

.17)

where

The equation (6.2.17) is refereed to as the generalized Sylvester matrix equation. We will see in section 6.4 how to compute approximate solutions to those matrix equations which means that X k+1 minimizes

It follows that

.2.26)

A similar argument shows that

Adding (6.2.26) and (6.2.27) and using

Since

, the right hand side of (6.2.31) can be written as

in the last two terms shows that (6.2.33) can be expressed as

Using (6.2.32) and (6.2.34) shows that (6.2.29) can be expressed as

To show (6.2.20), it is now suffice to show that 2β

and (X k+1 , Y k+1 , Z k+1 ) are also minimizers of L β , we have as in (

and

By addition,

which implies that S k+1 -→ 0 and Y k+1 -Y k -→ 0 as k -→ ∞. It follows then from (6.2.22) and (6.2.28) that lim k→+∞

Z ∈ R 2m×n and W ∈ R m×n are the Lagrange multipliers of the linear constraint DX = Y and R = H(X) , respectively. The parameters β > 0 and ρ > 0 are the penalty parameters for the violation of the linear constraint.

Again, we use the ADM method to solve the nonlinear problem (6.3.1), by finding the saddle point of the Lagrangian (6.3.5). Therefore, for k = 0, 1, ... we solve

The Lagrange multipliers are updated by

Next, we will see how to solve the problems (6.3.6), to determine the iterates X k , Y k and R k

Solving the X-problem

Given Y and R, X k can be obtained by solving the minimization problem min

The problem (6.3.8) is now continuously differentiable at X. Therefore, it can be solved by considering the following normal equation

The linear matrix equation (6.3.9) can be rewritten in the following form

where

The equation (6.3.10) is refereed to as the generalized Sylvester matrix equation.

Solving the R-problem

Given X, the iterate R k can be obtained by solving the minimization problem .3.14) This solution can be obtained by equation (6.2.11), since the minimization problem (6.3.14) is the same as that of TV/L2.

Convergence analysis of TV/L1 problem

In this subsection we study the convergence of Algorithm 11 used to solve the TV/L1 problem. Note that the convergence study for TV/L2 does not hold for TV/L1 problem It follows that

To show lim k→+∞

, we first see that the second inequality of (6.3.15) implies

in the other hand, by addition of (6.3.25), (6.3.26) and (6.3.27) we obtain In this section we will see how to generalize the generalized Krylov subspace (GKS) method proposed in [START_REF] Lampe | Large-scale Tikhonov regularization via reduction by orthogonal projection[END_REF] to solve the generalized Sylvester matrix equation (6.2.17). In [START_REF] Lampe | Large-scale Tikhonov regularization via reduction by orthogonal projection[END_REF] GKS was introduced to solve Tikhonov regularization problems with a generalized regularization matrix. The method was next generalized in [START_REF] Lanza | A generalized Krylov subspace method for pq minimization[END_REF] to iteratively solve a sequence of weighted 2 -norms. It is our aim to use the fashion of the GKS method to iteratively solve the sequence of generalized Sylvester matrix equation (6.2.17). Let us first introduce the following linear matrix operator

the problem (6.2.17) can be then expressed as follows

We start with the solution X 1 of the following linear matrix equation

We search for an approximation of the solution by solving the following minimization problem, min

Let X 0 be an initial guess of X 1 and P 0 = A (X) -E 0 the corresponding residual. We use the modified global Arnoldi algorithm [START_REF] Jbilou | Global FOM and GMRES algorithms for matrix equations[END_REF] to construct an F-orthonormal basis

, ..., V m ] of the following matrix Krylov subspace K m (A, P 0 ) = span P 0 , A (P 0 ) , ..., A m-1 (P 0 ) . (6.4.4) This gives the following relation

where H m ∈ R (m+1)×m is an upper Hessenberg matrix. We search for an approximated solution X m 1 of X 1 belonging to X 0 + K m (A, P 0 ). This shows that X m 1 can be obtained as follows

where y m is the solution of the following reduced minimization problem min y∈R m H m y -P 0 F e 1 , (6.4.7)

where e 1 denotes the first unit vector of R m+1 . Now we turn to the solutions of

For example, in the beginning of solving A (X) = E 1 , we reuse the F-orthonormal vectors V m and we expand it to

where V new is obtained normalizing the residual as follows

We can then continue with A (X) = E k , k = 2, 3, ... in a similar manner. Thus, at each iteration we generate the following new vector that has to be added to the generalized matrix Krylov subspace already generated to solve all the previous matrix equation,

The idea of reusing these vectors to solve the next matrix equation, generates matrix subspaces refereed to as generalized matrix Krylov subspaces of increasing dimension [START_REF] Bouhamidi | A note on the numerical approximate solution for generalized Sylvester Matrix equations[END_REF].

Note that at each iteration, the residual P k is orthogonal to V k , since it is parallel to the gradient of the function (6.2.15) evaluated at X k . Let V k be the F-orthonormal basis of the generalized matrix Krylov subspaces at iteration k. When solving A (X) = E k , given X k and the corresponding residual P k , in order to minimize the residual in the generalized matrix Krylov subspaces spanned by V k , we need to solve the following minimization where Q new , r A and r a are updated as follows

Algorithm 10 TV/L2 for (6.1.15)

1. Generate matrix Krylov subspace V m using modified global Arnoldi's process. Set 

6. Update X k+1 by solving min X∈span(V k+1 ) P k -A (X) F with the updated global QR decomposition 7. End the iteration if X k+1 -X k F / X k F < ε

Numerical results

This section provides some numerical results to show the performance of Algorithms TV/L1 and TV/L2 when applied to the restoration of blurred and noisy images. The