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Summary
The following report describes the research that I have performed or directed over the last 20 years covering
the period from my PhD thesis (A. Röbel 1993) until today. After an introduction discussing the evolution
and invariants of my research activities in chapter 1, the research I have performed before joining IRCAM
is presented in a short summary in chapter 2. The main part of the report will then describe my research
on spectral domain analysis, modelling, and transformation of sound that has been conducted at IRCAM
during the last 13 years.
First, the specificities of the research environment at IRCAM and the general objectives of my research
activities will be briefly discussed in chapter 3. Then, signal analysis and signal transformation using the
short time Fourier transform (STFT) and extensions of the phase vocoder algorithm are covered in chap-
ter 4. Advanced methods for STFT based signal processing that are currently developed and not yet used
in practical applications will be presented in chapter 5. The three methods covered include: signal adap-
tive resolution, texture transformation and source separation. My research on sinusoidal modelling taking
into account non-stationary sinusoidal components is presented in chapter 6. Research results related to
source-filter models, notably spectral envelope estimation and instrument timbre modelling, are described
in chapter 7. The research related to the problem of fundamental frequency estimation for sounds contain-
ing single or multiple quasi harmonic sources are described in chapter 8. The following chapter 9 discusses
my research on speech signal processing, covering the three research problems: glottal pulse parameter
estimation, voice conversion, and singing synthesis.
Activities related to the development of signal processing libraries are described in chapter 10. In the final
chapter of this document (chapter 11) I will discuss the four major directions that I expect to be important
for my research during the next five years.

Résumé
Ce rapport décrit les recherches que j’ai réalisées ou dirigées pendant les 20 dernières années depuis ma
thèse (A. RÖBEL 1993) jusqu’à aujourd’hui. Après une introduction, qui discute les évolutions et les in-
variantes de mes activités de recherche dans le chapitre 1, les recherches effectuées avant mon arrivée à
l’IRCAM sont résumées brièvement dans le chapitre 2. Les chapitres suivants traitent ensuite du sujet prin-
cipal de ce rapport, de mes recherches sur l’analyse, la modélisation et la transformation du signal sonore
utilisant les représentations dans le domaine spectral, que j’ ai effectuées pendant les dernières 13 années à
l’IRCAM.
D’abord, la spécificité du milieu de la recherche à l’IRCAM et les objectifs généraux de mes activités de
recherche sont décrits dans le chapitre 3. L’analyse et la transformation du signal utilisant la transformée
de Fourier à court terme (TFCT) et des extensions de l’algorithme du vocodeur de phase sont couverts par
le chapitre 4. Des méthodes avancées du traitement du signal basé sur la représentation TFCT qui sont ac-
tuellement en cours de développement et qui ne sont pas encore utilisées dans des application pratique sont
présentées dans le chapitre chapitre 5. Les trois méthodes y discutées sont : la représentation et transforma-
tion avec résolution temps-fréquence adaptée au signal, la transformation des textures, et la séparation des
sources. Mes recherches sur la modélisation sinusoïdale en tenant compte des composantes sinusoïdales
non stationnaire sont présentées dans le chapitre 6. Les résultats de recherche liés aux modèles source-
filtre : l’estimation de l’enveloppe spectrale et la modélisation du timbre de l’instrument, sont décrits dans
le chapitre 7. Mes recherches concernant l’estimation de la fréquence fondamentalle des sons contenant
une ou plusieurs sources quasi harmoniques sont décrites dans le chapitre 8. Le chapitre 9 discute de mes
recherches sur le traitement des signaux de parole, en particulier les problèmes de la caractérisation de
source glottique, de conversion du locuteur, et de synthèse de chant.
Les activités liées au développement de bibliothèques pour le traitement du signal sont décrites dans le cha-
pitre 10. Le dernier chapitre de ce document (chapitre 11) présente les quatre grands axes que je considère
comme importantes pour mes recherches pendant les cinq prochaines années.
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CHAPTER 1

INTRODUCTION

The present report covers the time period starting with my PhD thesis (A. Röbel 1993) until today. It is
natural that over a time span of 20 years the research topics evolve. Starting with a rather fundamental
research problem in the PhD thesis (A. Röbel 1993) I changed to investigate more practically oriented
signal models during the period as assistant professor at the Technical University of Berlin, and to an even
stronger application oriented research direction at IRCAM. There are nevertheless a few constants that did
not evolve over time.
Sound has been at the centre of my research since my master thesis. This is clearly a strong personal
preference, which however will not be discussed further. Then, there is a relatively strong interest in the
application of mathematics that can be observed in all my research activities. To establish the links between
the purely theoretical world of mathematical theorems and conclusions and the real world is traditionally
an approach that was used in physics. Today this method has been extended to many application domains
(e.g. economics, computer science, statistics, game theory) including as well (digital) signal processing,
and Fourier - or other signal transformations. The benefit here is the fact that given the preconditions of
mathematical theorems are met, mathematical reasoning can be used to develop and test hypothesis, before
experimental evaluation. When it comes to sound processing, then the important benefit of spectral domain
processing is a rough structural similarity to the auditory system that decomposes sound waves into spectral
bands as well.
One can speculate about the reason for this organization of the auditory system, may be the resulting spec-
tral representation can be encoded most efficiently [Lewicki 2002]. For signal transformation, however,
the efficiency of the sound representation is much less important than the coherence between the sound
parameterization and the properties of the underlying physical sound source. It is relatively straightfor-
ward to see that coherent sound transformation is easiest if the different modes of vibration are resolved
into individual sinusoidal components (A. Röbel 2010a). These considerations have led me to centre my
research on spectral domain signal processing. This means signal processing after transformation of the
signal into one of the many spectral domain representations or models, as the sinusoidal model, that derive
from these representations. The constant frequency resolution of the STFT based representation is espe-
cially favourable for the quasi harmonic sounds that are encountered in music and speech, and therefore,
the STFT representation plays a central role in the following report.
The main focus on spectral domain representation cannot and should not preclude work on time domain
representations. This is especially the case for speech signal processing, where it is important to take into
account the irregularities of the glottal pulse sequence, which can be achieved more easily if at least part
of the sound model is handled in the time domain. Examples of this kind of representation will be briefly
discussed in chapter 9.
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CHAPTER 2

EARLY RESEARCH ACTIVITIES

The research topic I was working on during my PhD thesis and for the time directly after the PhD was
related to a problem I had worked on during my master studies, and that had emerged a few years earlier:
the reconstruction of the state space of nonlinear dynamical systems using delayed time series of the sys-
tems output signal [Takens 1981]. The basic theory that I was interested in at that time was the theory of
nonlinear dynamical systems notably systems exhibiting chaotic behavior and the discovery that a recon-
struction of the state space of any nonlinear stationary system can be obtained by means of constructing
vectors from delayed samples of a sufficiently long time series of the output of the system [Parker and
Chua 1987]. The problem I had investigated in my thesis was to learn the system’s nonlinear dynamics in
the reconstructed state space using adaptive nonlinear functions, notably artificial neural networks [Bishop
1995], and the method I had established during the thesis was able to faithfully reproduce chaotic dynam-
ics from stationary time series (A. Röbel 1993). A main problem of the method was the extremely high
computational costs for training the nonlinear models. To counter these costs I had developed a method
to reduce the training data by means of dynamically selecting the most important and difficult data points
from the available training data sets (A. Röbel 1994a,b). It is interesting to note that the algorithm I had
proposed selects training data points that bear some resemblance with the support vectors in support vector
regression [Smola and Schölkopf 2004] notably when using iterative procedures or chunked versions of the
dataset to construct the support vector machine. The difference is, however, that in my algorithm I used the
selected vectors to train the regression function while in support vector regression the regression function
is directly based on the support vectors.
After the PhD Thesis I went through a number of different positions that will be described in the following
sections.

2.1 GMD
The first position after my PhD was a PostDoc position at the GMD1 in Berlin. There I worked under
direction of Dr. G. Kock and Prof. S. Jaehnichen in a research group dedicated to artificial neural networks.
Time series prediction with neural networks [Refenes 1995; Weigend and Gershenfeld 1993] was a very
active area of research and the application of the nonlinear predictors for the synthesis of musical time
series was seen as a very interesting extension of the group activities.
On of the problems I investigated at the GMD was the question of the estimation of characteristic measures
of the system attractor (its dimension and its Lyapunov exponents) from the trained model (A. Röbel
1995a,c). Moreover I investigated into the application of the model for nonlinear prediction of real world
time series (A. Röbel 1996), especially the prediction of ozone air pollution levels (van Praagh 1995).
With respect to the application of the model to sounds generated by monophonic musical instruments I
studied the use of a virtual control variable that did allow separating the time varying attractors of non-
stationary dynamical systems (non-autonomous systems) into a sequence of autonomous attractors and I
had made some successful experiments with individual notes of musical instruments (A. Röbel 1995b).
I demonstrated that the control variable that I had proposed to unfold the non-stationary dynamics into a
sequence of evolving attractors could be used for local time scale modification and time reversal (A. Röbel
1995b). I was able to successfully apply the model to speech signals (A. Röbel 1997). It is interesting to note

1today the GMD is part of the Fraunhofer Institute for Open Communication Systems (FOKUS)
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that a very similar approach for the representation of time evolution has recently been used to represent time
evolution of musical instrument timbre in our work on modelling the timbre space of musical instruments
(see section 7.2).

2.2 Assistant professor for communication sciences
After about one and a half years at the GMD I left to join the department for communications science of
the TU Berlin as an assistant professor. The position included the responsibility to teach the field of digital
audio signal processing to the students of the communications science department and the sound engineer-
ing students from the high school of arts of Berlin. When I entered the department the research interests
were very diverse but mostly kept a strong connection to sound engineering. The activities covered room
acoustics, 3d sound field reproduction, multi channel recording, data compression, multi media, psychoa-
coustics and information theory. Accordingly, during my time at the electronic studio of the department of
communication science, I started to work on more traditional sound modelling techniques, like sinusoidal
models, and investigated into advanced signal processing techniques related to blind signal deconvolution,
AD conversion and noise shaping, sound synthesis and sound transformation.
With respect to the learning of dynamic models I tried to improve my understanding of the behaviour of
the model when applied to non-stationary dynamics. This was essential for example for the understanding
of complete musical notes. I followed the procedure for the interpolation of 2 source vector fields that
had been described in [Mettin and Mayer-Kress 1996] and which I could directly apply to the trained
dynamical models to generate new interpolated attractor dynamics. It turned out that the interpolation
procedure that I had implicitly used to model non-stationary dynamics was capable to generate attractors
with intermediate sound characteristics (A. Röbel 1998a,b, 1999b). The main inconvenience was the fact
that attractor changes that could be related to changes of the phase relations of the individual partials
of an harmonic sound could during interpolation give rise to both: amplitude and frequency variations.
Further studies revealed another problem that was related to the way the model would represent weakly
inharmonic sounds. This problem was related to the fact that the modelling of time varying dynamics
of musical sounds did suffer from the inherent ambiguity between high-dimensional attractors and time
varying low-dimensional attractors (A. Röbel 2001c).
The problems related to the training of dynamical models for highly non-stationary systems, notably mu-
sical instruments, led me to search for representations with stronger prior constraints, that would require
less training to track time varying dynamics. The most prominent candidate were non-stationary sinusoidal
models. Accordingly, I started to investigate non-stationary signal models based on a sinusoidal represen-
tation [McAulay and Quatieri 1986; Xavier Rodet 1998; X. J. Serra and Smith 1990]. The model I was
developing was integrating a set of continuous parameter contours and was designed to estimate the time
varying parameter contours directly (A. Röbel 1999a). One of the main hypothesis was that the fact that
the parameter contours can be estimated over long segments, the separability condition that is required for
example for the application of reassignment methods [Auger and Flandrin 1995] could be relaxed. The
investigation of non-stationary sinusoidal models was later continued at IRCAM and will be discussed in
section 6.1.

2.3 Research scholarship at CCRMA
After about 4 years of work as assistant professor at the TU I had the possibility to take a sabbatical and I
chose to do this in form of a research scholarship at CCRMA (RP1). During this scholarship I investigated
into fundamental properties of the estimation of the sinusoidal model with continuous parameter contours,
and developed the theoretical foundations that allowed creating an experimental system (Wright et al. 2000)
that was finalized later at IRCAM2.

2see section 6.1
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CHAPTER 3

RESEARCH AT IRCAM

Before the subsequent chapters will describe the research that I have performed or directed during the time
I have worked at IRCAM, the present chapter will describe the context of my research activities at IRCAM.
First, this chapter will describe the research objectives that were central to nearly all the different research
topics I have been working on during the last 13 years. And then it will provide a sort of technological
context that is a summary of the technologies that had been developed at IRCAM by the time when I started
to work there and that would at some point fall under my responsibility.

3.1 Research objectives
Scientific research at IRCAM has a clear mission: support the artistic and creative projects in music. This
mission is achieved through different means. On one hand, composers and musical assistants (the RIM
or réalisateur en informatique musical) may request new solutions for problems they encounter in their
projects, on the other hand, scientific research may open new means (algorithms for conversion of speaker
gender) that evoke new creative ideas and may act as a sort of inspiration for composers. This constant two
way interaction with creative users, has important consequences for the scientific research at IRCAM. First,
research results have to be implemented in a form that makes them usable by the creative users at IRCAM.
The algorithms to be developed have to deliver high quality results not only in the controlled situation of a
scientific experiment but also in situations where creative users try to explore the limits of the methods. The
applications to be developed should preferably be self contained and independent of additional software
such that Matlab implementations are generally not sufficient. As a consequence I invested a non negligible
part of my work into development activities and these activities will be described briefly in chapter 10.
Second, the algorithms that are developed are constantly evaluated and used in different contexts and often
under extreme conditions by users that are rather critical with respect to sound quality. The exposure to
concrete use cases generates valuable feedback such that algorithms can be continuously improved.
The analysis/synthesis team of IRCAM was directed by Xavier Rodet. This team is specialized in sound
signal processing covering sound analysis and synthesis methods, signal models and signal representations,
as well as specific problems related to speech or music signal analysis or transformation. When entering the
analysis/synthesis team I became responsible for sound signal transformation and supporting technologies
(phase vocoder and sinusoidal modelling, fundamental frequency estimation, STFT representation).

3.1.1 Sound transformation with intuitive controls
The term sound transformation covers many signal processing technics that are outside the scope of the
research performed in the analysis/synthesis team: gain change, filtering, mixing, limiting, are good ex-
amples. The sound transformation problems that are treated in the following are characterized by the fact
that the specification of the transformation is not given in terms of time domain or frequency domain op-
erators, but in terms of a high-level descriptor, like sound duration. The transformation is then expected
to change the specific descriptor respecting as much as possible the physical characteristics of the sound
source without using an explicit physical model.
This kind of sound transformations leads to intuitive controls in the sense that all human beings develop
their understanding of sounds by means of experience with real world sound sources. We all know how
it sounds if a flute or a guitar is played slow or fast, more or less loud. An implementation of these kind
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of transformations however is very complicated, because sound sources do not react linearly to changes
of control parameters. As a simple example consider the flute and guitar note mentioned above. Playing
longer notes on a flute will generally require non constant time stretch factors during attack and sustain.
A similar problem exists for pitch changes. For physically coherent pitch modification the timbre of the
instrument needs to be taken into account1.
The perceptually relevant parameters of the sinusoidal components that have to be modified for physically
coherent signal transformation are well known (instantaneous amplitude and frequency, and for certain
signals the phase relations between sinusoids). These parameters can be exposed by means of a spectral
domain signal representation. For noise components, the wind noise of a flute for example, a complete
description of the perceptually relevant signal parameters was not known by the time I started to work on
sound transformation. This constraint knowledge is an important reason for the fact most of the research
on sound transformation with high-level controls has focussed on making things right for the sinusoidal
components, and as well a reason for the fact that most of the research I have done in the last 13 years is
related to sinusoidal components.
It is only a few years ago that perceptual experiments have revealed the set of statistical signal descriptors
that are relevant for perception of noise and sound texture signals [J. McDermott et al. 2009; J. H. Mc-
Dermott and E. P. Simoncelli 2011] and accordingly, research has now started to take into account these
statistical descriptors for transformation of sound textures and noises 2.

3.2 Technological context
At IRCAM there did exist a number of sound transformation technologies that were either based on addi-
tive signal models or on the phase vocoder [Dolson 1986; Flanagan and Golden 1966]. The phase vocoder
implementation at IRCAM was called SuperVP (Super Vocodeur de Phase) and it was extremely well
received by the users (visiting composers, musical assistants (RIM) and the community of the IRCAM
Forum). This success was partly due to the graphical user interface AudioSculpt that allowed visualization
and editing of the spectral representation of the phase vocoder program as well as due to the numerous
sound transformations that were available. The sound quality after transformation however was not con-
sidered sufficient. One of the main problems were severe timbre transformations whenever significant time
stretching was applied 3.
The additive signal model was also used at IRCAM and improving this model was part of my responsibility
as well, this however, was less important because compared to the state of the art the implementation
existing at IRCAM was considered very efficient [Freed et al. 1992; G. Peeters and X. Rodet 1999; Xavier
Rodet 1998; X. Rodet and P. Depalle 1992]. Unfortunately, the adaptive additive model I had developed so
far presented a number of drawbacks for the users at IRCAM. First the optimization of the non-stationary
adaptive sinusoidal model that I had developed was extremely time consuming and it was clear that the
algorithm would always remain costly. Second it was considered to require a relatively high investment
into research and development to obtain a robust and practically useful application. Third it was not evident
that, compared to existing algorithms, the algorithm would provide significant benefits with respect to
possible sound transformations that would justify the investment. Therefore, while I was asked to continue
research and development of the existing algorithms for estimation and synthesis of sinusoidal models the
research into the adaptive algorithm was considered to have lower priority,
Besides signal modelling and transformation there was research to be done in the area of signal analysis.
These analysis were often motivated by the use of the results for sound transformation and manipulation.
An essential problem was the estimation of the fundamental frequency, which is one of the perceptually
most essential parameters of musical sounds. Accordingly, at IRCAM there did exist a long history of
research related to fundamental frequency estimation [Doval and X. Rodet 1991, 1993] and I was expected
to continue this research.

1see section 7.2
2see section 5.2 for related research efforts.
3see section 4.1
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CHAPTER 4

SOUND PROCESSING USING STFT
REPRESENTATION

Related projets

(SW2) A. Roebel et al. (2000). SuperVP: command line tool and c++ library for audio treat-
ment in real time or non real time based on an extended phase vocoder. A. Roebel: Scientific
direction and software development since 2000, F. Cornu: software development since 2007,
P. Depalle: initial version before 2000.

This chapter will describe my research activities related to sound analysis and transformation using either
an STFT representation or, derived from the STFT, a phase vocoder representation [Dolson 1986] of the
sound signal. The work on phase vocoder based sound manipulation has been initiated at IRCAM by P.
Depalle who deserves credit for many of the initial ideas and fundamental concepts that were leading to
the first implementation of the phase vocoder based sound manipulation software SuperVP in 1993.
When I took responsibility of the project in 2000, the phase vocoder implementation did support time
varying pitch and time stretch operations, as well as numerous frequency domain filters. Moreover, there
was a nonlinear extended cross-synthesis module operational. As mentioned already, the sound quality
obtained for time stretching operations was not satisfactory.
The improvement of the phase vocoder algorithm was my first research project at IRCAM. At the beginning
I reviewed the mathematical foundations for STFT based signal processing and the phase vocoder1. Based
on the understanding of the phase vocoder algorithm as an implicit sinusoidal model the fundamental
weaknesses of the algorithm can be predicted easily. For the processing and transformation of quasi-
stationary sinusoidal components one can expect to achieve very high quality results as soon as the phase
synchronization between neighbouring bins is established. But for signal components that are not (or
not well) covered by the sinusoidal model, notably onsets or noise, or sequences of pulses that require
specific phase relations to keep their perceptual properties, sound transformation can be expected to result
in artefacts. One of the central objectives of my research at IRCAM was to extend the phase vocoder based
sound processing such that it could handle as many of these sound classes with very high quality. The
results I have obtained so far will be discussed in the present chapter. Ongoing research activities will then
be discussed in chapter 5. The presentation will cover the following topics:

• Sinusoids: According to the findings in [J. Laroche and Dolson 1999a; Puckette 1995], the spectral
STFT bins contributing to a single sinusoid cannot be treated independently. This problem will be
discussed in section 4.1,

• Transients: Parameter changes of the different sound sources that take place within a single analysis
window require phase synchronization between all STFT bins that are affected by the parameter
change. An extension of the phase vocoder coherently dealing with these kind of changes is described
in section 4.2,

• Pulsed excitation: Speech signals are generated by a quasi periodic sequence of pulses that gives rise
to a quasi harmonic set of sinusoids with a rather particular relation of phases between these sinusoids

1These mathematical foundations have later been published in form of lecture material (A. Röbel 2006c) following my stay as
Edgar-Varèse guest professor at the Technical University of Berlin.
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[Quatieri and McAulay 1992]. Neglecting these phase relations leads to more or less strong artefacts
in transformed speech sounds. My work on the shape invariant signal transformation in the phase
vocoder is described in section 4.4.

• Noise and sound textures: Because of the fact that perceptually these components are less important
for most music instruments and for speech the problems related to perceptually transparent trans-
formation (time stretching) of these sound components have been neglected for a rather long time.
After the most important problems with sinusoidal components and transients have been solved, the
manipulation of sound textures and noises has triggered dedicated research efforts that are described
in section 5.2.

Besides the research directly related to extending the sound quality obtained with the phase vocoder another
line of research is related to supporting methods. This line of research covers:

• Sinusoids/Noise classification: The distinction of noise and sinusoidal components is an important
pre-processing step that is essential for the shape invariant signal transformation described in sec-
tion 4.4. The algorithm for detection of sinusoidal components is described in subsection 4.3.1.

• Parameter selection: selecting the proper window size remains one of the major problems for the use
of the STFT signal processing algorithms. As a solution to this problem I have initiated research on
algorithms with automatic determination of the window size which will be described in section 5.1.

• Frequency domain transposition: The very high quality and rather efficient implementation of the
phase vocoder in SuperVP has triggered considerable interest in using SuperVP in real time. To
reduce the inherent latency related to the time stretching and resampling based approach to transpo-
sition an frequency domain implementation has been developed that is described in section 4.5.

Closely related to the present topic is the section about envelope estimation. However, due the strong
relation between spectral envelop estimation and source filter modelling this topic will be discussed in the
chapter 7.

4.1 Intra sinusoidal phase synchronization
As has been mentioned before, time stretching sinusoidal components with a classical phase vocoder does
not lead to perceptually convincing results. This can be explained by the fact that the individual bins of
the STFT that contribute to the same sinusoidal component are treated independently [Puckette 1995]. As
a result of incoherencies due to inevitable analysis and processing errors, the phase coherence of the dif-
ferent bins will be lost over time. This desynchronization will result in cancelation of the contributions of
the different bins such that the amplitude of the sinusoidal components will not be preserved. Different
solutions to this problem had been described. The method proposed in [Puckette 1995] relies on averaging
phases of neighbouring bins, but does not work for all cases. The method described in [J. Laroche and
Dolson 1999a; Mark Dolson 2000] selects a master bin within each spectral peak, updates only the master
bin with the phase vocoder algorithm and preserves the phase differences of all other bins in that peak.
This can be seen as an implicite implementation of the FFT based synthesis of sinusoids [P. Depalle and
X. Rodet 1995; Goodwin and X. Rodet 1994], where sinusoids are constructed from the spectral peaks. In
an experimental investigation, I found that while the computational costs of the proposed solution are very
small, it does not avoid synchronization problems completely. Therefore, I adopted an alternative approach
that consisted of an refined selection of the bins to synchronize for a spectral peak and a reconstruction of
spectral peaks from a sinusoidal model following the approach in [Goodwin and X. Rodet 1994]. Initialy
only stationary sinusoidal eaks wer considered but the approach was later extended to take into account the
frequency slope of the underlying sinusoids as described in section 4.5. Due to the fact that the number of
bins to be treated with the phase vocoder algorithm is significantly increased, the new method is computa-
tionally a bit more costly than the method proposed in [J. Laroche and Dolson 1999a; Mark Dolson 2000].
The results obtained with this new bin synchronization strategy however, were perceptually very satisfy-
ing. Similar to the method presented in [J. Laroche and Dolson 1999a] time stretching of chirp signals with
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the new method does only have a very minor effect on the chirp amplitude, such that the phase vocoder
implementation behaves nearly equivalent as an explicit sinusoidal model.

4.2 The phase vocoder algorithm for transient signal segments
Industrial licences

(LI2) A. Roebel and X. Rodet (2004). MakeMusic. Library for time stretching and pitch shift-
ing with transient preservation for music signals,
(LI4) A. Roebel (2005). Roni Music. Library for time scaling and pitch shifting with transient
preservation for music signals,
(LI5) Axel Roebel (2008). NeoCraft. Library for transposition and time-scaling with transient
preservation for music signals
(LI8) Axel Roebel (2009a). MXP4. Library for time scaling and pitch shifting with transient
preservation for music signals
(LI9) Axel Roebel (2009b). UniversSons - MachFive 3. Library for time scaling and pitch
shifting with transient preservation for music signals
(LI12) Axel Roebel (2010b). IRCAMTools-TRaX. Development of a professional audio plugin
for music and voice transformation with high level controls and high sound quality, in collab-
oration with the French software development company Flux in Orléans
(LI11) Axel Roebel (2010a). OhmForce. Use of supervp library for sample precise time scal-
ing with transient preservation for music signals

The synchronization of the bins contributing to individual sinusoidal components was a significant step
towards a general high-quality time-scaling algorithm. The improvements obtained for the transformation
of quasi stationary sinusoids were very satisfying, but at the same time, they put the other problems of
the phase vocoder algorithm into focus. This concerned notably the problem related to the processing
of transient signal components. In the present context transient signal components are characterized by
changes of signal characteristics within the time duration of the analysis window. The most important and
problematic example are note onsets, that on one hand are perceptually very important and that on the other
hand are completely destroyed in the classical phase vocoder algorithm if the onset takes place within a
single analysis frame. Accordingly, the literature on transient signal preservation often treats the terms
transient and onset as equivalent, while strictly speaking the transient signal class contains not only onsets
but also many more cases (pitch transitions).
The detection, extraction and independent processing of transient signal components had become an impor-
tant question and related research results began to appear around 2000. Some of the research was aiming to
establish onset preservation strategies for the phase vocoder or similar approaches [Bonada 2000; Duxbury
et al. 2001, 2002]. The basic idea was to use onset detection algorithms to determine transient segment
of the signal, to reinitialize phases at the beginning of these time segments, and to suppress any transfor-
mation for a short segment to avoid artefacts due to phase modifications in the transient segments. Other
researchers were aiming to improve transient representation in explicit sinusoidal models like for example
the sinusoids and noise and transients model in [Levine and Smith 1998], or the Loris system proposed by
[Fitz et al. 2000].
At IRCAM, the main interest was related to improve the phase vocoder algorithm such that artefacts related
to the processing of note onsets would be reduced. The analysis of the algorithms proposed in [Bonada
2000; Duxbury et al. 2001] revealed two major problems. The first was related to the fact that the transient
classification was using only temporal information. A time segment could therefore be only either transient
or non transient and this prevents proper handling of time segments containing onsets and stationary notes
at the same time. Another drawback of the proposed extensions was the fact that a local modification of
user control parameters was required leading to complicated compensation strategies to preserve the overall
transformation requested by the user.
The objective for this research was therefore, to find a method that would allow an appropriate treatment
of note onsets and, at the same time, minimize adverse effects on stationary components happening syn-
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chronously with the onsets events. Moreover, the desired algorithm would not require the modification of
user supplied transformation parameters proposed in [Bonada 2000; Duxbury et al. 2001].
If no modification of transformation parameters is allowed then onset preservation comes down to reinitial-
ization of the phases of all spectral bins that are part of a transient component at an appropriate position.
Accordingly, two problems had to be solved:

1. detection: an appropriate transient detection algorithm had to be developed that would detect a tran-
sient event and that would establish a spectral mask that allows separating transient signal compo-
nents.

2. preservation: the appropriate time for phase reinitialization had to be found that would allow optimal
reconstitution of the original signal onset.

4.2.1 Onset position
To find an appropriate onset preservation strategy I used as test case a restricted class of transient signals
consisting of sinusoids with onsets that are formed by a linear amplitude increase followed by saturation.
Concerning the optimal position for phase initialization there exist two arguments that both, a priori, require
the phase reinitialization to take place if the onset is close to the window centre.
The first reason concerns the exact reconstruction of the onset during synthesis. Because the transient will
be reproduced without any error only in the frame in that the phases of the transient bins are reinitialized
the reinitialization should take place when the impact of the reconstructed transient on the output signal is
largest. Due to the existing analysis and synthesis windows the maximum impact will be achieved if the
onset position is close to the centre of the analysis window.
The second argument is concerned with the position of the onset in the transformed signal. Reinitialization
of the phases will produce the transient at the very same position where it was located in the analysis
window. During time stretching the frame position will reflect the transformed time scale. The signal
evolution within the analysis frame however, is not adapted and any existing offset of the onset from the
frame centre of the original frame would therefore require additional modifications to adapt the onset
position to the transformed signal. Unfortunately, the required adaptation may be very complicated or even
impossible notably when during a time stretching operation of the signal the offset of the onset from the
frame centre needs to be increased. In this case it can happen that part of the onset has to be moved outside
of the frame, which would require very complicated operations. To avoid the need to reposition the onset
the phase reinitialization should take place when the onset position is in the centre of the window.
A note has to be made regarding the onset position. The appropriate position to be used is the perceived
onset position. Unfortunately, perceived onset positions can not be determined without ambiguity directly
from the signal itself. This is true already for the restricted class of onsets that was studied here, but even
more for real world note onsets that have a much more complicated time structure. In general it can be
assumed that the perceived onset time depends on the form of the onset, the spectral content of the noite
but as well on the musical context. Accordingly, in a recent study the perceived attack time was modelled
by means of a probability distribution instead of a single position [M. J. Wright 2008]. Given that profound
problems exist for the precise estimation of perceived attack times, I decided to simplify the problem by
means of using objective measures to represent the time position of the transient events.
The experimental investigation of the impact of the time position of the phase reset for the restricted class
of onsets revealed that the onset is reconstructed with a rather small error, when the phase reinitialization
is done at the moment when the centre of the linear ramp is in the centre of the analysis frame (A. Röbel
2003a,b).

4.2.2 Detection of transient components
There exist many approaches to detect attack transients [Bello et al. 2005]. Most of the algorithms known
by 2003 where based on the evolution of the signal energy (spectral flux) in frequency bands [Bonada
2000; A. Klapuri 1999; Levine 1998; Masri and Bateman 1996]. Some of these algorithms [Bonada 2000;
A. Klapuri 1999] did use psychoacoustic arguments for the selection of bandwidths and thresholds. Other
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detection functions were based on variations in the frequency trajectories of individual bins [Duxbury et
al. 2001, 2002]. Some of the algorithms that require knowledge about the future signal evolution [Boeck
et al. 2012; Lacoste and Eck 2007] impose inacceptable latency into the algorithm and can therefore not be
accepted for on the fly detection of transient components in the phase vocoder. There have been very few
algorithms that tried to determine precise frequency masks of onset events [Duxbury et al. 2001; X. Rodet
and Jaillet 2001]. These algorithms did use detection functions working on individual bins. Detection
thresholds are generally fixed, but in some cases the detection threshold takes into account the signal
properties [Duxbury et al. 2001, 2002]. Since 2003 new algorithms with new detection functions based
on variants of the spectral flux have been proposed [Bello et al. 2004; Boeck et al. 2012; Dixon 2006;
S. Hainsworth and M. Macleod 2003], none of these is aiming to detect the time frequency positions of
individual transient spectral components such that a separation of transient and non transient components
can be performed in a signal frame.
While high spectral resolution was desirable for the transient masks the direct use of individual spectral
bins [X. Rodet and Jaillet 2001] seems not necessary due to the fact that DFT bins are generally highly
correlated. Moreover, an individual bin may give only limited information about the time evolution of the
related signal component. A classical example is a chirp signal. The energy of a chirp signal is located at
one end of the analysis window for one part of the spectral peak and on the other end of the analysis window
for another part of the spectral peak. Given the algorithm to be developed aims preservation of note onsets
a chirp signal, or a part of it, should not be confused with an onset. Spectral peaks represent the smallest
spectral components that can be readily accessed, and they are not subject to the chirp/onset confusion
mentioned before. Accordingly, I decided to use individual spectral peaks as the smallest spectral units to
be used for the creation of onset masks.
A rather interesting approach for the solution of the detection problem was the technique proposed in the
Loris system [Fitz et al. 2000]. There the problem of the representation of sinusoidal attacks was solved in
a rather elegant manner by means of deriving the information about the sinusoidal onset locations directly
from individual spectral peaks using the reassignment technique [Auger and Flandrin 1995]. The reassign-
ment technique allows to calculate the mean-time [Cohen 1995] of the signal related to any sub-band of
a DFT spectrum and in the Loris system this technique was applied to individual spectral peaks. Spectral
peaks representing onsets can be detected by means of detecting peaks with mean-time above a thresh-
old right of the window center. Unfortunately, many noise peaks exhibit mean-time above the threshold
and therefore the transient detection cannot be based on the evaluation of individual peaks. For onsets
of musical notes or drumbeats, however, there will generally exist multiple transient peaks with similar
mean-time. Accordingly, I developed a statistical model that allows to detect the significant increase of te
number spectral peaks with mean-time above the threshold and that allows to distinguish the appearance
of transient peaks due to background noise from the sudden increase of the number of transient peaks due
to a note onset event.

4.2.3 Onset preservation

Combining the two results: the algorithm for the detection of transient events and the algorithm for reseting
the phase of transient events in polyphonic sounds requires the determination of the time position for that
the phases of the onset events should be reset. Given that for the onset detection we already use the peak
mean-time it is most straight-forward to use the mean-time as well for the determination of the time at that
the pashes should be reset. Given that the spectral information related to the onset cannot be used before
the phases of the spectral peaks contributing to the onset are reset, the signal present in front of an onset is
artificially continued to avoid systematic silence in front of onsets.

4.2.4 Results

The algorithms that have been discussed in this section have been evaluated from two perspectives. The
first one is the detection of onsets and the second one is the extraction and preservation of onsets and other
transients from sound signals.
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Onset detection

The algorithm was not specifically targeting the detection of note onsets as any abrupt change of the signal
characteristics (fingering noise on guitar strings) should be detected to prevent denaturation of the signal
during time stretching, it nevertheless turned out to provide state of the art performance when applied to
onset detection problem. The onset detection algorithm has been evaluated repeatedly during MIREX eval-
uation campaigns [IMIRSEL 2005, 2006, 2007, 2009, 2010, 2011]. The algorithm turned out to perform
very well and the best results I have obtained in 2011 belong to the best results reported over the MIREX
history especially when confined to the category of algorithms that are causal.
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Figure 4.1: Comparison of an original castanet sound (top) with the same sound time stretched by a factor
2.5 obtained with standard phase vocoder (centre) and the new transient preservation algorithm (bottom).

Transient preservation

Processing attack transients in the phase vocoder with the proposed algorithm results in significant im-
provements of attack quality. The algorithm has been integrated into SuperVP the phase vocoder appli-
cation of IRCAM and is therefore available in all applications that use the SuperVP library or executable
section 10.2. Due to the fact that the algorithm is selectively processing spectral peaks it is well suited for
processing polyphonic sounds. To give a visual idea of the effect of the transient preservation I have chosen
a monophonic castanet sound. The upper part of Figure 4.1 shows the time signal of a single beat within a
sequence of castanet sounds. Beneath the result that has been obtained after time stretching the signal with
a standard phase vocoder by a factor of 2.5 is shown. The destruction of the attack event is obvious. At the
bottom of the figure the same signal has been time stretched by the same factor with transient preservation
switched on. The attack is preserved and the sound characteristics of the attack are very close to the original
attack. Some sound examples demonstrating the transient preservation and transient extraction capabilities
of the algorithm are available online (A. Lithaud et al. 2008, see examples 5. and 6.).
The transient processing algorithm proposed above has been evaluated in a listening test in [Grofit and
Lavner 2008]. Grofit and Lavner compared the results obtained with our algorithm (A. Röbel 2003a) with
the results produced according to [Bonada 2000] and there own time domain based algorithm. The signals
that have been used are a weakly polyphonic note sequence played with a pipa2, an extract of polyphonic
melodic rock music without vocals, an extract of a mildly polyphonic electric guitar and an extract of Bob

2chinese plucked string instrument with four strings
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Dylan playing Blowing in the wind using a western guitar a harmonica and singing voice. As expected
both frequency domain algorithms consistently and significantly outperformed the time domain algorithm
in all cases. When comparing the two frequency domain algorithms one finds that for three out of four
signals the algorithm described above received the highest ranking. Bonada’s algorithm obtains better
performance only for the Dylan extract. Because the Dylan song is the only sample with voice and because
voice transformation with spectral domain models is problematic (see section 4.4) we conjecture that the
phase vocoder implementation of Bonada may have less problems with voice. It is unclear, however, what
may be the reason for this advantage.

4.3 Classification of sinusoidal and noise components
Related projets

(PD3) Miroslav Zivanovic (2003). Detection, estimation and extraction of non-stationary si-
nusoids in noise: application to musical signals. Visting PostDoc Researcher at IRCAM, Jan.
2003 - Juin. 2003,
(PhD2) C. Yeh (2008). “Multiple Fundamental Frequency Estimation of Polyphonic Record-
ings”. Director X. Rodet, supervision A. Röbel. PhD thesis. Université Paris 6 (UPMC),
(PD4) Miroslav Zivanovic (2006). Improving state of the art strategies for automatic detec-
tion and classification of signal components into sinusoidal and noise components. Visting
PostDoc Researcher at IRCAM, Sep. 2006 - Fev. 2007.

The research on transient preservation had 2 important results. First, it demonstrated that it was possible
to detect, and extract transient signal components in polyphonic signals. And based on this detection an
algorithm had been devised, that allowed to significantly improve the perceived quality of time stretched
sound signals with note onsets. Given that transient signal components had been made accessible directly
in the STFT spectra the next question that emerged was related to the detection of the two other classes of
signal components (sinusoids and noise) in the DFT spectra. At first this was a rather fundamental research
problem not related directly to any application, but as will become clear later, this research had considerable
impact in at least the two areas: speech transformation (section 4.4) and polyphonic fundamental frequency
estimation (section 8.2). A considerable part of the research in this area has been done in collaboration
with M. Zivanovic, who came as a Post doc researcher to IRCAM twice (PD3; PD4). Another part of this
work has been done in collaboration with by C. Yeh in the context of his PhD thesis on the estimation of
fundamental frequencies in polyphonic sounds (C. Yeh 2008; C. Yeh and A. Röbel 2006a,b).
The problem to be solved was to distinguish sinusoidal and noise components such that these components
could be separated in a DFT spectrum and then individually treated. Unfortunately, as there are many
different types of signal representations based on different classes of sinusoids the distinction between si-
nusoidal and noise components is somewhat ambiguous. This can be seen easily by means of considering
the STFT representation of a signal. The STFT uses a superposition of a set of time windowed stationary si-
nusoidal components to represent arbitrary signals. Accordingly, a noise signal can be represented without
error by means of a superposition of sinusoidal components. This is similar as the ambiguity related to the
representation of an periodically AM modulated stationary sinusoid that can equivalently be represented
by means of a set of stationary sinusoids with appropriate amplitudes, frequencies and phases. Given these
ambiguities it is important as first step to properly define the two signal classes to be distinguished. The
basic idea is similar to the approach that was used for the transient signals. There the transient signal class
was defined in relation to the length of the analysis window. Similarly for the present case the ambiguity
can be resolved by means of establishing additional constraints that are based on the resolution for the
Fourier representation as follows: A sinusoidal component should be isolated and resolved as a individual
spectral peak in the DFT spectrum. This constraint implies two important characteristics of the class of
sinusoidal components:

1. A sinusoidal component is required to have sufficiently slow frequency and amplitude modulation to
give rise to an individual spectral peak.

2. The amplitude of a sinusoidal component has to be sufficiently above the background noise and other
sinusoidal components in the respective frequency band.
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Given the additional constraint the objective then becomes to find spectral peaks that represent windowed
sinusoids with limited amplitude and frequency modulation. The fact that again spectral peaks are used
to segregate the signal spectrum has the additional benefit that the sinusoid and noise classification can be
combined easily with the existing transient/non-transient classification.
A study of existing methods revealed that despite the fact that sinusoidal modelling and sinusoidal param-
eter estimation is a technique that is widely used for signal processing the distinction between sinusoidal
and noise components in a DFT spectrum are considered in only very few publications [S. W. Hainsworth
et al. 2001; Lagrange et al. 2002; Thomson 1982]. The majority of applications for sinusoidal modelling are
based on the classical approach that estimates the complete sinusoidal trajectories and classifies sinusoids
according to properties of the trajectories [X. J. Serra and Smith 1990]. The formation of the complete
sinusoidal parameter trajectories, however, requires a high latency, which is a problem for real time ap-
plications. Moreover it adds the burden of trajectory forming to applications like the phase vocoder that
otherwise don’t require this processing step. Even if today there exist a few methods for the detection of
non-stationary sinusoids from individual frames, all these algorithms require either the estimation of sinu-
soidal parameters including frequency and amplitude slopes, [Lagrange et al. 2002; Wells and D. Murphy
2007, 2010] or the use of multiple dedicated analysis windows [Thomson 1982; Wells and D. Murphy
2010], which makes the detection rather costly.

4.3.1 Sinusoidal signal class
The first step in this research was to precisely define the two signal component classes that would be
considered for detection. It is common for sinusoidal models to consider sinusoids with slowly varying
amplitude and frequency parameters [McAulay and Quatieri 1986; X. J. Serra and Smith 1990], (A. Röbel
2006a). For an investigation into the properties of the spectral peak classes, however, this requirement is
not sufficient. To completely define the space of sinusoidal components we had to select concrete limits
of the amplitude and frequency modulation rate and depths, and we had to specify a concrete form of the
modulation laws. Following the discussion in (M. Zivanovic et al. 2007, 2008) we selected a sinusoid with
sinusoidal amplitude and frequency modulation embedded in white noise as our reference sinusoid signal.
Accordingly we used the following mathematical representation for our class of sinusoidal signals

x(n) = (1 +A
AM

cos(⌦

AM

n+ �)) cos(!0n+A
FM

sin(⌦

FM

n+ ↵)) + r(n) (4.1)

where r(n) represents the additive white Gaussian noise. A
AM

and ⌦

AM

are depth and rate of the ampli-
tude modulation and A

FM

and ⌦

FM

the respective values for the frequency modulation. The modulation
parameters need to be limited such that the DFT spectrum contains its dominant peak around the sinusoidal
frequency. The limits are discussed in (M. Zivanovic et al. 2007, 2008). ↵ and � are arbitrary phase offsets
that allow to control the phase relation between frequency and amplitude modulation and !0 is the centre
frequency of the sinusoid which should not effect the descriptors of the sinusoidal class.

4.3.2 Descriptor definitions
To avoid any costly analysis in this study we have used only peak descriptors that don’t make use of any
parameters related to a sinusoidal model. The list of descriptors that were used can be found in (A. Röbel
et al. 2004; M. Zivanovic et al. 2004), they all describe properties of the signal related to the spectral
peak. Here I will discuss only the normalized peak bandwidth descriptor B

L

. The mean frequency !̄ and
the bandwidth B give a rough idea of the concentration of the spectral density along the frequency grid.
Considering L to be the number of samples in the spectral peak then the normalized bandwidth descriptor
B

L

can be defined as:
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P
k

k|X(k)|2P
k

|X(k)|2 , (4.2)

B
L

=

B

L
=

P
k

(k � !̄)2|X(k)2|
L
P

k

|X(k)2| . (4.3)

where the summation is done over all the bins in the spectral peak under investigation.
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Figure 4.2: Results for sinusoids and noise classification. Distributions of normalized band width descriptor
B

L

(left) and noise floor estimated from a spectrum of polyphonic music (right).

For deriving the classification thresholds for the descriptors we did rely on a worst-case signal. The related
test signal is a single AMFM-sinusoid in noise where both frequency and amplitude change in a sinusoidal
manner. To resemble natural vibrato signals, the period of the frequency modulation is two times the period
of the amplitude modulation. The characteristics of the test signal are:

• for amplitude modulation: modulation index 0.5,

• for frequency modulation: 200 Hz of frequency deviation.

The analysis window is a 50ms Hanning window and the frequency modulation period is 100ms. For
calculating the DFT we use 4096-point FFT with the sample rate being 44100Hz. This scenario roughly
reproduces the analysis conditions for the tenth harmonic of a 333Hz pitch tone under half tone vibrato
extent. The performance depends on the level of the background noise. Here we will present the two cases
of no noise, and peak SNR of 25db. Peak SNR represents average ratio between the maximum amplitude
of the sinusoidal signal and the mean noise level.
The distribution of the B

L

descriptor for the peak classes that have been obtained for the test signal is
shown in Figure 4.2. For the sinusoidal distributions the descriptors were applied only to the largest peak
in the spectrum for a total of 1100 time frames. The noise distributions were obtained by analysing all the
peaks in the DFT of a white noise signal. To derive the sidelobe distributions we analysed all the sidelobe
peaks of a stationary noise-free sinusoid. For ease of comparison all distributions are displayed normalized
such that their maximum value is equal to one. As the threshold levels we are going to determine aim to
preserve fractions of the distributions, this normalization does not affect the results.
From Figure 4.2 one sees that the B

L

distributions for noise and the sinusoidal class that is considered
have only very small overlap. An interesting question that comes up is what the descriptor B

L

measures
to achieve this nice performance. A first element to understanding this descriptor can be derived from the
bandwidth formula given in [Cohen 1995, p. 16]. For any signal s(t) = A(t)e(�(t)) with Fourier transform
S(w) being normalized such that

R
S(w)2dw = 1 the bandwidth B is given by

B2
=

Z
(w � w̄)S(w)2dw =

Z
(

A0
(t)

A(t)
)

2A(t)2dt+

Z
(�0

(t)� w̄)2A(t)2dt. (4.4)

This shows that for continuous signals (and similar for discrete signals) the bandwidth is related to the
amplitude variation and the variance of the phase slope with respect to its mean. If we apply this to the
signal related to our peak then we understand that the bandwidth B is related to variation of amplitude and
phase slope over time. To understand the normalization by L consider a signal containing two stationary
sinusoids with frequency difference L. The bandwidth for this signal will be B = L/4 which in fact is the
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maximum bandwidth a signal confined within a band of bandwidth L can have. Combining these results
we can conclude that the normalized bandwidth descriptor characterises the amplitude and frequency mod-
ulation of the signal related to an observed peak with respect to the amplitude and frequency modulation
of a signal with maximum bandwidth covering the same band.

4.3.3 Noise floor estimation
The work on the separation of sinusoidal and noise components has continued in the context of the estima-
tion of multiple fundamental frequencies in polyphonic music (PhD2). One of the common errors we had
observed during our work on multiple f0 estimation was the fact that F0 were inserted that explained mostly
noise components. Therefore, the objective in that case was to detect signal components that should be ex-
plained by a fundamental frequency. The fundamental problem here is the fact that sinusoidal components
will often overlap each other in polyphonic music. In fact none of the previously mentioned algorithms
for sinusoidal component detection does allow to detect overlapping sinusoidal components. To be able to
handle this case the constraint for the sinusoidal components would have to be relaxed, because by con-
struction these sinusoids are no longer resolved. Because we did not expect to be able to find features
that would allow separating overlapped sinusoids from noise, we changed the strategy and established a
two-step approach instead. What distinguishes the overlapping sinusoids from noise in polyphonic music
is the fact that these sinusoids are outliers with respect to the amplitude distribution of the noise. To be able
to detect these outliers we assume that the noise spectrum follows a Rayleigh distribution. We can then test
the amplitude distribution of the spectrum in different bands and compare the skewness of the measured
spectrum with the skewness of the Rayleigh distribution, which is approximately S

ray

= 0.6311 (C. Yeh
and A. Röbel 2006a; C. Yeh et al. 2010). The basic idea of the algorithm was to first detect resolved sinu-
soidal components and to remove those from the spectrum using sinusoidal parameters estimated according
to [M. Abe and Smith 2005] or (A. Röbel 2008). In the residual spectrum we evaluated all the bands with
respect to the skewness and removed outliers in all those bands that had an exceedingly large skewness.
For initially large positive skewness removing outliers will generally reduce the skewness. If this is not
the case we did consider the band incompatible with a noise hypothesis in which case we consider it to be
generated by overlapping sinusoids. The algorithm takes care of non-white residual spectra by means of
normalization of the noise by its estimated frequency dependent noise level. An example of an estimated
noise floor for a spectrum of polyphonic music is given in Figure 4.2.
While it is clear that the noise floor estimate achieved is very approximate, especially for very high poly-
phonies, it nevertheless establishes a means to distinguish important and less important parts of the spec-
trum and it was one of the elements that contributed significantly to our performance in polyphonic pitch
estimation.

4.4 Shape invariant processing
Related projects

(MA9) G. Champion (2004). “Application du modele additif shape invariant pour la transfor-
mation de la voix”. Rapport DEA Master ATIAM, supervision A. Roebel. MA thesis. Univer-
sité Paris VI Pierre et Marie-Curie,
(MF2) Axel Roebel and Joshua Fineberg (2006-2007). Creation of voices for the opera Lolita
of J. Fineberg. Transformation of the voice of the main actor into girls singing voices.

Industrial licenses

(LI12) Axel Roebel (2010b). IRCAMTools-TRaX. Development of a professional audio plugin
for music and voice transformation with high level controls and high sound quality, in collab-
oration with the French software development company Flux in Orléans,
(LI6) Axel Roebel et al. (2008). Xtranormal. Library for voice transformation,
(LI10) Axel Roebel et al. (2010). Xtranormal. Library for voice transformation with high level
control.
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It is well known that the phase vocoder algorithm does not produce high quality results when applied to
speech signals. The reason is the loss of the phase coherence of the harmonic sinusoids that will occur when
the signal is processed (notably time stretched) without taking care of the phase relationships between the
different sinusoids. This problem has been solved for the sinusoidal model in form of a shape invariant
transformation proposed in [Quatieri and McAulay 1992]. A similar solution for the phase vocoder was
presented in [J. Laroche 2003]. The increased interest in speech signal transformation at IRCAM led me
to think about means to implement a shape invariant signal processing mode in our phase vocoder imple-
mentation. If possible, the algorithm should not require any additional information, like the fundamental
frequency that was required for the algorithm proposed in [J. Laroche 2003].
The first steps of this research was an investigation into shape invariant processing with sinusoidal models
(MA9). The idea was to establish a working system that could be used to compare results obtained later
with a phase vocoder implementation. Moreover I wanted to study different means to establish vertical
phase synchronization in the sinusoidal model. The results obtained were very convincing, and based
on the experiences with shape invariant sinusoidal models I started to study means that would allow a
modification of the phase vocoder algorithm. The shape invariant treatment tries to preserve the shape of
the waveform and therefore it assumes at least a quasi-periodic signal. While this condition does not hold
for all speech signals it nevertheless is a reasonable assumption for many speech signals, especially those
that are not extremely expressive. For the shape invariant transformation in the phase vocoder we therefore
suppose that the signal consists of voiced and unvoiced segments, and that the voiced signal segments are
quasi periodic3.
The phase coherence problem in the phase vocoder, as well as in the sinusoidal models, comes from the
fact that frequency estimates of individual partials are used to predict the phase in the transformed sig-
nal. Small errors in the frequency estimates lead to slight phase deviation between different harmonics
and those will accumulate over time leading to completely desynchronized phases. The method for shape
invariant processing in the phase vocoder is very different from the solution proposed for sinusoidal mod-
els (A. Röbel 2010b). The standard phase vocoder is assuming non-harmonic sinusoids and in this case
all sinusoids have to be updated independently. If the signal is quasi-periodic, then the procedure can be
simplified significantly. In this case coherent phase update does not require integration of the frequencies
over the complete sound. Instead phase modification can be done similar to basic synchronous overlap add
schemes (SOLA) [Roucos and Wilgus 1985]. The principle ideas are then that for subsequent frames an
optimal displacement position is determined such that cross correlation between the two frames is max-
imized. The correlation is done using only the sinusoidal components as determined by the algorithm
described in section 4.3. If the correlation coefficient is high then the original phase of the input frame is
used to time shift the frame to the desired position. The use of the original frame phase as a start position
for the phase adaptation has the very nice side effect that the noise modulation in the high frequency region
of voiced frames remains preserved which contributes to the high quality of the sounds produced during
time stretching. If the correlation between the sinusoidal components of successive frames is too low, or if
there aren’t any sinusoidal components, then the standard phase vocoder phase update algorithm is used.
While the standard phase vocoder is not designed to handle noise correctly, no better alternatives existed
at that time. For noise signals the standard phase vocoder works better than doing overlap add without
any phase adaptation. For a more appropriate scheme of noise processing in the phase vocoder I refer to
ongoing research described in section 5.2 and W.-H. Liao et al. 2012. The results of that research may allow
us in a near future to improve the handling of unvoiced segments in the phase vocoder.

4.4.1 Applications and Results
The shape invariant processing in SuperVP (SHIP) achieves a very significant improvement of the sound
quality of transformed speech signals. The effect of the shape invariant transformation on a speech signal
is demonstrated in Figure 4.3. In a few perceptual evaluations it has been compared to speech processing
with TD-PSOLA [Moulines and Charpentier 1990], STRAIGHT [Kawahara 1997], and sinusoidal models
[Y. Stylianou 2001]. Results strongly depend on the transformation and the speech examples but have to be

3For more refined speech transformation approaches we refer the reader to the section on glottal source parameter modification
section 9.1
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Figure 4.3: Example of a transformed waveform after time stretching by factor 2. The complete waveform
(left) and the high frequency band (right) both exhibit clearly the preservation of the waveform.

seen on the background that the SHIP algorithm does no require any further analysis (like pitch markers). A
rather weak point of the SHIP algorithm is the fact that the voiced/unvoiced frequency cannot be increased
freely leading to too much unvoiced signal components when transposition down is requested. A similar
problem has been discussed for FD PSOLA [Moulines and Charpentier 1990]. Transposition up yields
generally much better results. The SHIP algorithm has been used in many artistic and commercial film
projects that will be discussed in chapter 9.

4.5 Frequency domain transposition
Related projects

(RP2) Projet ANR - Sample Orchestrator – 2006-2009 (2006). Task 3.1: Enhanced phase
vocoder analysis and transformations in real time applications.

Industrial licenses

(LI9) Axel Roebel (2009b). UniversSons - MachFive 3. Library for time scaling and pitch
shifting with transient preservation for music signals,
(LI10) Axel Roebel et al. (2010). Xtranormal. Library for voice transformation with high level
control,
(LI12) Axel Roebel (2010b). IRCAMTools-TRaX. Development of a professional audio plu-
gin for music and voice transformation with high level controls and high sound quality, in
collaboration with the French software development company Flux in Orléans,

This research has been performed in the context of the sample orchestrator project (RP2) that had one its
sub tasks dedicated to improve use of the phase vocoder based sound analysis and transformation for real
time applications. One of the important problems of the phase vocoder based algorithm for transposition
in real time applications is the fact that it induces computational costs that depend on the transposition
parameter. The problem is clearly exposed in [J. Laroche and Dolson 1999b]. I summarize here the results:
Costs are related to the number of frames that have to be processed to produce a certain number of samples.
Costs grow inversely with time compression factor and proportionally with transposition factor for factors
> 1. For man to children conversion (section 9.2) or speech to singing conversion (subsection 9.3.1) pitch
shifting of 2 octaves or more can be required. Managing real-time applications with costs changing by a
factor 2 or more is very difficult and therefore a solution was requested by many users at IRCAM.
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The solution proposed in [J. Laroche and Dolson 1999b] is based on doing the transposition by means of
shifting spectral peaks directly in the spectral domain representation. In that algorithm each spectral peak
is supposed to be related to a sinusoidal component that generates the peak and the transposed spectrum is
generated by means of shifting spectral peaks according to the estimated source frequency of the underlying
sinusoidal component and the target frequency given by the time stretching factor and the source frequency.
Shifting spectral peaks instead of scaling the frequency spectrum has the major advantage that the size of
the signal segment does not change [Moulines and Jean Laroche 1995]. The source frequency is either
determined by the centre frequency of the spectral bin containing the maximum amplitude of the peak or
by means of finding the location of the maximum amplitude using the standard procedure for estimation of
sinusoidal frequencies by means of quadratic interpolation of amplitudes [Amatriain et al. 2002].
The use of the algorithm proposed in [J. Laroche and Dolson 1999b] is problematic due to the fact that the
algorithm is protected by patents [Jean Laroche and Mark Dolson 2003]. Therefore, I had to use alternative
means and decided to use a method patented by IRCAM much earlier [P. Depalle and X. Rodet 1995; X.
Rodet and P. Depalle 1992] that was dealing with the synthesis of sinusoidal components in the spectral
domain. The basic idea is to go one step further in the analysis than Laroche and Dolson in [J. Laroche
and Dolson 1999b] and to extract a complete set of sinusoidal parameters for all sinusoidal peaks (see the
method discussed in section 4.3), and then to resynthesize these peaks in the spectral domain by means
copying them from a pre-calculated set of sinusoidal peaks. The pre-calculated sinusoidal peaks are stored
with sufficient frequency resolution such that they can be placed with minor artefacts on arbitrary target
positions. The advantage of this system is the fact that the handling of non stationary sinusoids can take
into account parameter estimates with reduced bias ([M. Abe and Smith 2004], (A. Röbel 2006b, 2007a,b,
2008)) and can modify the frequency slopes during transposition.
The quantitative evaluation of the algorithm on synthetic examples with known sinusoidal parameters has
shown that the coherence of the synthesized spectra leads to significantly lower error of the transformed
sinusoidal components when compared with the desired target components. The error measured against
the known target sinusoidal component is up to 20dB smaller. On the other hand the perceptual evaluation
has shown that the existing error in Laroche’s method is perceptually not very important.
The research on the basic algorithm for spectral domain transposition is only a very small part of the
research that is necessary to integrate the new algorithm into the phase vocoder framework. Many of the
processing and analysis functions (e.g. section 4.2, section 4.4) required extensions and redesign to achieve
nearly transparent results with both methods for transposition. This process converged to an acceptable
result around 2010 such that the modified phase vocoder was available for two of our software projects
(LI10; LI12). As a final remark it has to be said that the original approach to transposition has a number of
advantages that lead to the fact that the quality obtained with transposition by means of resampling sounds
slightly better. The two main differences are:

1. spectral domain transposition up will result in spectral holes for noise components that are perceptu-
ally very annoying,

2. spectral domain transposition of transient peaks will preserve all amplitude contours and all phase
relations within the individual spectral peaks, but scale the frequency distance in between spectral
peaks. In contrast to this with traditional time domain transposition the spectrum of transient com-
ponents are scaled coherently for all bins. In the first case the waveform will be changed in a rather
unpredictable manner, while in the latter case it will be stretched or compressed. Perceptually, the
simple scaling of the signal waveform seems to be preferred.

For these two problems appropriate solutions that better approach the quality of the time domain transpo-
sition with the extended phase vocoder algorithm are still to be found.
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CHAPTER 5

ADVANCED TOPICS IN STFT BASED
SOUND REPRESENTATION AND

TRANSFORMATION

All the problems related to STFT representations and phase vocoder based transformations that have been
discussed so far stay rather close to the initial idea of the algorithm improving the results gradually by
means of extending the classes of signals that can be manipulated (speech) or by means of improving the
results obtained for one of the different classes of components that may be present in the signal.
In the following three sections I will discuss research directions that I have started during the last few years
and that try to make a more radical change to the algorithm. While initial results have been obtained for
all these topics most of them have not been developed so far that they would allow deployment for signal
transformation in a user application. Over a few years I hope to be able to incorporate these new approaches
into our algorithms such that they will become useful for music and sound production.
In the first of the following sections section 5.1 I will discuss research on time frequency representation
with adaptive resolution that addresses the important problem of fixed time frequency resolution that is
present in todays sound processing algorithms.
The section section 5.2 will address the problem of manipulating sounds that are outside of the scope of
the models used for STFT based algorithms discussed so far. These are sounds that are not dominated by
either tonal sources such that the sinusoidal model that is at the centre of the phase vocoder does no longer
apply.
In the chapter on future research section 11.2 I will discuss research on manipulating individual sources in
polyphonic music an approach that is now available in commercial software1.

5.1 Adaptive time-frequency resolution
Related projects

(RP2) Projet ANR - Sample Orchestrator – 2006-2009 (2006). Task 3.1: Enhanced phase
vocoder analysis and transformations in real time applications,
(PhD6) M. Liuni (2012). “Automatic Adaptation of Sound Analysis and Synthesis”. Directors
X. Rodet, et M. Romito, supervision A. Röbel. PhD thesis. Università di Firenze, Italie/Université
Paris 6 (UPMC), France,

One of the key problems of the existing STFT or phase vocoder based signal transformation algorithms is
the fact that the results of the transformation depend critically on the time and frequency resolution of the
internal STFT representation. This resolution is controlled by the size of the analysis window. Many users,
especially those without any background in signal processing, try to avoid adapting the window size, some
users even work with a fixed window size for all sounds. Even if a user is willing to invest into finding the
optimal window the problem is not solved because the same sound may require different time frequency

1see Melodyne DNA http://www.celemony.com/cms/index.php?id=dna.
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resolutions at different times or in different bands. An example problem would be a piece of music con-
taining spectrally dense guitar or piano chords in one segment and a rapid sequence of individual notes in
another. The first segment requires long windows but the second segment short ones. A solution to this
situation would be to allow the window size of the representation to vary over time. If these two segments
happen at the same time but such that only weak spectral overlap exists between the different sources the
problem is solvable with frequency dependent windows. Finally if they overlap spectrally then the only
possible solution consists in separating the sources to achieve an appropriate parameterization of the rep-
resentation for both sources. This last case can not be solved by means of changing the time frequency
resolution and will be discussed separately in section 11.2. Before starting the discussion of our research
on adaptive time-frequency resolution I have to note that adaptive resolution has to be distinguished from
wavelet representations as proposed for example in [Bonada 2000; Evangelista et al. 2012]. Those have
non-uniform time frequency resolution, which however, is nevertheless constant and not adapted to the
signal2

Research related to signal representation and signal transformation with adaptive resolution has to deal
with 2 problems. The first problem comes from the fact that the time varying resolution has to be specified.
When today users do not want to select a scalar window size parameter for a given sound, one cannot
assume that they would define a time varying or even frequency dependent resolution. Therefore, the
first research problem is related to the automatic selection of an optimal time (and frequency) dependent
window size.
For monophonic sound signals this problem can be addressed quite simply at least for harmonic sounds by
means of linking the window size to the fundamental frequency of the sound. For polyphonic sounds the
problem becomes much more involved and accordingly, this problem was the subject of the PhD thesis of
Marco Liuni (M. Liuni 2012). In this thesis we investigated into algorithms for adapting time frequency
resolution based besides other measures on the Rényi entropy of time frequency distributions and on the
other hand into signal reconstruction from non uniform and non constant time frequency representations.
Based on recent advances related to analysis/resynthesis with non-stationary Gabor frames [Dörfler 2011]
and in collaboration with Monika Doerfler and Ewa Matusiak we have shown that perfect reconstruction
from representations with non-stationary time frequency resolution cannot be achieved efficiently if reso-
lution changes in both directions (time and frequency). For this case efficient approximations have been
presented in (Marco Liuni et al. 2013) together with a rough understanding about the error bounds.
The second problem concerns only signal transformation algorithms. As the window size is no longer con-
stant, the algorithms will need to take into account new degrees of freedom in the spectral representation.
At least three levels of complexity can be distinguished

a. window size can change over time: Problems may arise when peaks need to be connected between
frames with different resolution.

b. window size and DFT size change over time: The problem is basically very similar to the case a, be-
sides the fact that the relation between bin position and frequency is no longer fixed. This problem
is more a problem related to the development, because invariants that were present in the previous
version of the algorithm are no longer valid.

c. time frequency resolution changes with time and frequency: Besides the problems mentioned under
case (a) and (b) now additionally new strategies for manipulation of the peaks covering changes of
frequency resolution have to be developed. This such that both representations produce coherent
results (see for example [Bonada 2000]).

Research with respect to the representation and transformation with window size changing over time has
been done in the (RP2) project (Vinet et al. 2011). In that project monophonic sounds where assumed
(solo instruments and speech) and the window size was coupled to the f0 analysis removing all burden for
window size selection from a potential user or algorithm. It turns out that the extension of the algorithms

2In [Bonada 2000] band sizes are slightly adaptive but this serves to improve connection of components between bands only, and
not to change resolution.
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remains relatively straightforward as long as the DFT size is kept fixed and only a few parts of the algo-
rithms require changes. The consistency of the representation is in fact ensured by means of the phase
locking within sinusoidal peaks.
Initial experiments related to transformation of polyphonic music using time dependent time frequency
resolution derived automatically with the methods developed in the thesis of Marco Liuni (PhD6) have been
performed in the same thesis (Marco Liuni et al. 2013). The experimental investigation has demonstrated
that the adaptive resolution can achieve results that are equivalent or better than the results obtained with
fixed resolution. Signal transformation under case c (time frequency resolution changes dynamically with
time and frequency) has not yet been studied. As a next step the simplest case of adaptive resolution
covering only time variation will be developed such that it can be used and evaluated in the context of
everyday projects (AudioSculpt). If practical experience confirms the experimental results a next step
would be to extend the phase vocoder algorithms to the cases b (time varying DFT size) and c (time
varying frequency dependent resolution).

5.2 Sound textures
Related projects

(RP8) Projet ANR - PHYSIS, Physically informed and semantically controllable interactive
sound synthesis – 2012-2015 (2012). Direction des travaux sur low level sound representation
(WP3),
(PhD12) W. H. Liao (ongoing). “Modelling and transformation of sound textures and environ-
mental sounds”. Directors X. Rodet et A. Su, supervision A. Roebel. PhD thesis. Université
Paris 6 (UPMC) and National Cheng Kung University, Tainan, Taiwan,
(MA19) Hugo Saulnier (2013). “Synthesis of Sound Textures”. Stage Master 2 ATIAM, su-
pervision A. Roebel and S. O’Leary. MA thesis. Université Paris VI Pierre et Marie-Curie.

Due to the overwhelming importance of music and speech signals for human communication nearly all of
the existing sound transformation methods make at some point the assumption that sinusoidal components
are present in the sound signal. This can be explicit as for example in the additive model [Amatriain
et al. 2002] or the phase vocoder [Dolson 1986; J. Laroche and Dolson 1999a], or more subtle in the
PSOLA method [Moulines and Charpentier 1990] where the window size is adapted to the local period
and where time stretching or pitch shifting is achieved by means of creating regular pulses. There are
however other classes of sounds not dominated by sinusoidal components and that contain a rather strong
degree of randomness. These kind of sounds are often denoted as a sound textures, however, without there
existing a formal and generally accepted definition of what is a sound texture [Strobl et al. 2006]3. One of
the early and probably most influential working definitions has been given in [Saint-Arnaud 1995; Saint-
Arnaud and Popat 1998]. There sound textures are defined loosely to be constituted of atomic events, that
are not necessarily time limited (turbulent wind noise) but that appear according to a high-level pattern
that can be periodic (motor sounds) or random (rain), or both (waves). The high-level pattern and the
fine structure of the sound should be time invariant when long time scales are observed. Randomness is
generally considered an important factor. This definition is accompanied by examples that indicate that the
number of atomic events is generally high, such that the events fuse into a common texture stream.
For these kind of sounds synthesis algorithms have been developed that allow synthesizing long sequences
from short examples using either source-filter models in time and frequency domain [Athineos and D. El-
lis 2003; Zhu and Wyse 2004], time domain superposition or granular synthesis [Lu et al. 2004; Diemo
Schwarz and Norbert Schnell 2010], multi resolution representation [Dubnov et al. 2002; O’Regan and
Kokaram 2007; Saint-Arnaud and Popat 1998], or components based synthesis [Verron 2010]. Most of
these algorithms are based on some sort of replaying of the original sound using random variations to avoid
the perception of repetition. The founding arguments for the existing methods are either the physical or
the statistical properties of the sound generation process that in most cases was very close to the generative
model discussed in [Saint-Arnaud 1995; Saint-Arnaud and Popat 1998]. Experimental evidence for the

3This is not very astonishing as the same holds true for example for music.
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signal characteristics that are related to the perception of sound textures was not yet available. Recently, a
detailed investigation into the relations between the signal characteristics and the perceived sound texture
has been performed [J. McDermott et al. 2009; J. H. McDermott and E. P. Simoncelli 2011] providing
insight into the statistics that have to be preserved to allow the recognition of sound textures. As a result of
this study McDermott conjectures that moments (mean, variance, skewness and kurtosis) as well as cross
correlation coefficients of signals energy in auditory filter bands as well as the same set of statistics for
the modulation bands of the auditory filter signals are essential for texture recognition. This result is very
important because it gives new insights into the perception of stationary aperiodic sounds, and these new
insights will certainly lead to new approaches for synthesis and transformation of sound textures. While it
seems clear that the proposed set of statistics will not be final the basis for developing sound textures syn-
thesis and transformation algorithms has now become similar to the situation existing for periodic sounds
for that the perceptually important characteristics (amplitude, frequency, and in some cases phase) are know
for a very long time.
Based on the results of [J. McDermott et al. 2009; J. H. McDermott and E. P. Simoncelli 2011] I have started
to investigate into new means for signal transformation. The main objective of this research is to find signal
processing algorithms that allow manipulating or simply preserving perceptually relevant statistical sound
characteristics. The first step in this direction is the PhD Thesis of Wei-Hsiang Liao (PhD12) where we
investigate into using STFT based signal representation for noise and sound texture manipulation.
The use of the STFT is in contrast to many of the existing approaches that use wavelet based representations
to better match the properties of the human auditory perception. The STFT representation however allows
us to simplify the mathematical relations, and potentially to make use of existing technologies like tran-
sient and sinusoids detection. Moreover, in the long run, it simplifies the integration of the results back into
existing algorithms such that the transformation of aperiodic components in music and speech signals may
benefit eventually from the results obtained. The first problem that has been studied was directly related to
the problem of time stretching or pitch shifting noise in the phase vocoder. We have investigated into the
correlations of the STFT coefficients for STFT representation of noise and developed an algorithm for time
stretching of Gaussian noises (W.-H. Liao et al. 2012) achieving significantly improved quality for time
stretched noise. This initial algorithm requires only very few statistical descriptors of the STFT sub-bands
to be preserved (variance, auto-correlation function, cross-correlation function). In the subsequent steps we
investigate into time stretching of stationary environmental sound textures (Wei-Hsiang Liao et al. 2013).
For the moment and at least for all the textures that were tried the algorithms allow generating long non
repeating sequences of textures from examples of about 5-7s.
In a related project Hugo Saulnier (MA19) has investigated into using the algorithm proposed in [J. H. Mc-
Dermott and E. P. Simoncelli 2011] for interpolation/morphing of sound textures. McDermott’s algorithm
uses a sound representation that is highly motivated by the auditory system. The comparison of the current
version of our STFT based algorithm with the algorithm proposed by McDermott based on a representation
using auditory bands and modulation spectra 4 has revealed that the STFT based algorithm is one order of
magnitude faster than the version based on the auditory model [J. McDermott et al. 2009; J. H. McDermott
and E. P. Simoncelli 2011]. Moreover, the convergence seems to be improved due to a more consistent
implementation of the optimization procedure. Initial evaluation in informal listening tests has revealed
that the quality of the sound textures generated with the STFT based algorithm is generally similar or bet-
ter than the results obtained by McDermott’s method. All results obtained so far are preliminary as the
research is still in a rather early stage.
All these research activities are closely linked to the ANR project Physis (RP8) which is centred on the
modelling, transformation and real-time synthesis of diegetic sounds for interactive virtual worlds (video
games, simulations, serious games...) and augmented reality. IRCAMs contribution is oriented in two
directions. The first objective is an automatic decomposition of textures into components (audio events
with similar characteristics like little explosions in fire) together with statistical models that describe the
appearance of these components. The interest of components based approaches is the fact that these would
potentially allow synchronizing audio events with events in the visual scene. NMF based algorithms have
been studied as potentially interesting approaches for the decomposition of the textures. For the moment,
however, these algorithm have produced either bad signal representation or strongly dissected components.

4Thanks to J. McDermott for giving us access to his original implementation.
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Second, we investigate into efficient manipulation of the perceptually relevant features [J. McDermott et al.
2009; J. H. McDermott and E. P. Simoncelli 2011] using time frequency representations of sounds. This
research is done in the thesis of Wei-Hsiang Liao (PhD12).

5.3 Source separation
Related projets

(MA14) F. Rigaud (2010). “Séparation de la partie percussive d’un morceau de musique”.
Stage Master 2 ATIAM, supervision M. Lagrange, A. Roebel and G. Peeters. MA thesis. Uni-
versity Paris VI – Pierre et Marie-Curie,
(PhD9) T. M. Wang (ongoing). Visting PhD student at IRCAM in 2011, Research on sepa-
ration of drum signals from polyphonic music, supervision A. Roebel, C. Yeh, M. Lagrange.
PhD thesis. National Cheng Kung University, Tainan, Taiwan,
(MA16) A. Bonnefoy (2012). “Transcription de la partie percussive d’un morceau de musique”.
Stage Master 2 ATIAM, supervision M. Lagrange, A. Roebel and G. Peeters. MA thesis. Uni-
versité Paris VI Pierre et Marie-Curie,
(RP7) Yuki Mitsufuji and Axel Roebel (2011-2012). Collaborative research project with Sony
Japan. Source separation in multichannel audio recordings.
(RP5) Projet FP7-ICT-2011, 3DTVS, 3DTV Content Search – 2011-2014 (2011). Direction
des travaux sur 3D Audio & Multi Modal Content Analysis and Description (WP4)
(RP4) Chunghsin Yeh et al. (2010-2012). Automatic midi annotation of polyphonic music.
Ableton. 2010-2012
(MA20) Jordi Pons Puig (2013). “Source separation for music signals”. MA thesis. Universitat
Politècnica de Catalunya · BarcelonaTech (UPC),

Audio source separation is a problem that has been investigated quite extensively in the literature. Early ap-
proaches were based on ICA [Cardoso 1997] but the related techniques were not easily applicable, because
they do not allow searching for specific sources and because they pose severe constraints on the num-
ber of independent sources that can be separated. More recently nonnegative tensor factorization (NTF)
and nonnegative tensor deconvolution (NTD) techniques have been proposed [Lee and Seung 2000]. These
techniques can be used with dictionaries that are adapted to separate specific sources as for example musical
instruments and seem therefore to have great potential for extracting musical instruments from polyphonic
music [Dessein et al. 2012; Virtanen 2007]. Moreover they allow to combine the information available
in multiple channels such that the redundancy present in multichannel recordings can easily be exploited
[Févotte and Ozerov 2010; FitzGerald et al. 2005, 2008; Ozerov and Févotte 2010].
My research interests related to source separation have their origin in the Audio2Note project. There was
on one hand the question whether the audio transcription provided by the A2N algorithm could be used
for extraction of the individual notes. And on the other hand the objective to suppress the drum track from
polyphonic music to eventually improve the note transcription. Unfortunately, due to time constraints,
the signal separation part had been dropped from the A2N project so that the research was interrupted in a
rather early stage. Consequently the research on music signal separation has been and is performed without
dedicated funding. As these research efforts have started recently, the results are considered as preliminary
studies.
A first investigation into drum separation has been performed in the master thesis of François Rigaud (F.
Rigaud 2010). In this thesis we developed a new detection function for drum beat events in the spectral
domain by means of onset detection coupled with a rather simple criterion concerning the amplitude evolu-
tion after the instrument onset. Signal separation was then performed by means of binary masking (). The
method has been refined later by means of including information about harmonic structure that should not
be present in a drum onset (PhD9). In the master thesis of Antoine Bonnefoy (MA16) we investigated into
the performance of NMF based algorithms, notably convolutive NMF or nonnegative matrix deconvolution
(NMD), for drum transcription on the sounds separated before by the drum extraction algorithm.
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5.3.1 Multichannel audio
Due to the redundancy in the sound signals one can expect that sound separation using multi channel audio
signals would allow achieving improved quality of the separated signals when compared to single channel
cases. Many of the musical signals are stereo and therefore it would be very interesting to be able to benefit
from the additional information.
A first attempt in this direction was undertaken in the collaborative research project proposed by Sony
Inc. Japan (RP7). In this project a visiting researcher, Y. Mitsufuji, investigated into techniques for source
separation using multichannel audio recordings. As a result of this collaboration with Y. Mitsufuji we have
developed a sound source separation method that can be tuned to extract sources in a selected direction by
means of providing spatial cues similar to beam forming with a microphone array using however only a
stereo signal (Y. Mitsufuji and A. Röbel 2013)5.
Signal separation in multichannel audio is a central question in the 3DTVS project (RP5) in that the anal-
ysis synthesis team is responsible for detecting and indexing different audio events in 3D TV multichannel
audio scenes. In this project I work with Marco Liuni on approaches based on non-negative matrix fac-
torization for detection of selected real world sound events (moving cars, flying helicopters, gunshots) in
the 3D TV multichannel audio. Methods based on matrix factorization have been shown to provide good
results for detection of overlapping audio events in music [Dessein et al. 2012] and everyday sound events
[Cotton and Daniel PW Ellis 2011]. Building on these results the idea of the 3DTVS project was to in-
vestigate into the use of extensions of the NMF framework for multichannel audio, nonnegative tensor
factorization (NTF) and nonnegative tensor deconvolution (NTD) [FitzGerald et al. 2005], to the problem
of audio event detection. One of the main problems with the existing approaches is the fact that the mixing
position of the sources is assumed to be fixed. One of our contributions in this area is the development
of segmental or online versions of NTF and NTD audio event detection algorithms similar to [Duan et al.
2012]. The term online here refers to the fact that the audio stream is cut into segments (with a duration
of 2s). Currently we develop more refined methods allowing the continuous tracking of objects across the
channel matrix. Another contribution is a new adaptive detection method that avoids having to select fixed
detection thresholds and significantly improves detection performance across different movies.
The initial experimental results with the simple class of gunshot audio events have demonstrated the very
significant detection improvement that can be obtained when using the nonnegative tensor deconvolution
with multichannel audio. Compared to NMF on a single channel audio downmix of the multichannel audio
the NTF algorithm working on multichannel audio improved the detection accuracy by 50% in F-measure
from 0.52 to 0.79. The introduction of target basis covering multiple analysis frames (NTD) improved
further to 0.86 F-measure. Experiments with the detection of running cars are currently under study. Initial
results seem to indicate similar improvements as with gunshots.
While the detection of general real world sound events like cars and gunshots might seem a bit far from
IRCAM’s central interests I would like to note that the research performed in the 3DTVS project has given
us the opportunity to gather important experience with recent matrix factorization technics and to develop
software for signal separation that in turn will be applied to problems like music instrument separation.
An initial study in this area will be performed in the master thesis of Jordi Pons Puig (MA20) starting in
September 2013 that will be described in the chapter on future work in section 11.2.

5A patent application has been submitted.

24



CHAPTER 6

SINUSOIDAL MODELLING

Sinusoidal modelling is one of the key technics for music and speech sound analysis and transformation.
Besides the work on implicit sinusoidal models (signal representations based on sinusoidal models without
representing sinusoids explicitly like the phase vocoder) and the use of sinusoidal models for instrument
models and fundamental frequency analysis I have invested some effort into more fundamental work related
to the parameter analysis of non-stationary sinusoids. Due to space constraints I will give a more detailed
discussion for only one of the research topics from this area that I consider to be the most interesting and
innovative contribution and will shortly summarize my research on other questions related to sinusoidal
parameter estimation at the end of the section.

6.1 Adaptive trajectory model
Related projets

(RP1) A. Roebel (2000). Adaptive additive synthesis of non-stationary sounds. Research schol-
arship at CCRMA, DFG project, Ref RO2277/1-1,
(RP2) Projet ANR - Sample Orchestrator – 2006-2009 (2006). Task 3.1: Enhanced phase
vocoder analysis and transformations in real time applications

A mathematical formulation of a non-stationary sinusoidal model is given by

x(n) =
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All the M + 1 partials have time varying amplitude A
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(n) and a phase function '
i

(n) that generally has
varying slope (time varying frequency). The creation of sinusoidal model for a given signal requires the
determination of the sinusoids that are present in the signal and the determination of parameter trajectories
for those sinusoids. Nearly all the existing algorithms for sinusoidal modelling approach the problem in
two steps. In a first step the peaks of the discrete Fourier spectrum of the windowed time signal are detected
and then, in the second step, the sinusoidal parameter trajectories are formed by means of connecting these
peaks [Amatriain et al. 2002; X. J. Serra and Smith 1990]. In most cases the parameter evolution is assumed
to be sufficiently slow such that for the estimation of amplitude and frequency parameters the time variation
can be ignored [Marques and Almeida 1986; McAulay and Quatieri 1986; X. J. Serra and Smith 1990].
The two-step approach has clear disadvantages, as it requires independent detection and tracking of sinu-
soidal candidates limiting the performance of each of the two stages by the fact that the results of the other
stage are not taken into account. The motivation for my research on sinusoidal modelling with continuous
parameter trajectories was to establish a method that would avoid this two-step approach.
The basic idea was to integrate tracking and parameter estimation into an adaptive algorithm that would
adapt continuous parameter contours of sinusoidal components by means of minimization of the error
when comparing the model to the observed signal. Very few similar approaches exist even today. An
example is [Ding and Qian 1997], where a very similar problem is addressed using however a model that
was significantly more contained as it requires the sinusoids to stay close to a centre frequency. Another
example is [Day and Godsill 2002] that uses a Bayesian framework to estimate parameters for harmonically
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organized note models. Note, however, that these note models are limited to have frequency trajectories
with limited modulation extend, which can be considered too constraint to allow any practical applications.
The sinusoidal phase and amplitude parameter trajectories of the adaptive algorithm were represented us-
ing B-splines [Day and Godsill 2002; de Boor 1987; Ding and Qian 1997]. This allows the parameter
trajectories to be piecewise polynomial functions p(n) of arbitrary order o that are expressed by linear
superposition of B-splines of the same order following

p
o

(n) =
X

i

B
i

b
i

(n). (6.2)

Here B
i

is the weighting parameter of the i-th B-spline of order o, b
i

(n). Note that B-splines are functions
with local support; hence they are non-zero only in a connected and bounded region. The description of the
polynomial trajectories by means of B-splines renders the mathematical treatment simple and straightfor-
ward, but no results were available that could direct the proper choice of the B-spline parameters (segment
size, and spline order). As important result of my investigation I could show that the frequency resolution
of the representation is determined by the Fourier spectrum of the basic splines b

i

(n) in a very similar man-
ner as it is determined by the spectrum of the analysis window for the STFT based sinusoidal parameter
estimation (A. Röbel 2001a,b, 2006a). This is a very important result for the proposed model, because it
allows controlling the selection of the parameter trajectory model based on theoretically sound principles.
Moreover I could demonstrate experimentally that by means of regularization of the parameter trajecto-
ries the bounds of the estimation error can be lowered, which is due to the fact that the signal segment
that is used is effectively increased. The computational complexity of the method is unfortunately rather
high, such that it could not be used for practical applications. It is interesting to note however, that due to
recent results related to polynomial sinusoidal parameter contour estimation with the distribution deriva-
tive method [Betser 2009] there seems now to exist a non-iterative method that may allow to estimate the
continuous parameter contours for example in form of B-splines directly.
Aside this investigation into adaptive approaches to sinusoidal modelling I did research on the improve-
ment of the estimation of parameters of non-stationary sinusoids. The estimation of the basic sinusoidal
parameters amplitude, phase and frequency has received a lot of research efforts. As mentioned above the
classic estimators simply neglected the time variation of the parameters. More recent analysis methods
take the time variation of these parameters into account and allow reducing the analysis error [M. Abe and
Smith 2005; Betser 2009; Marchand and Philippe Depalle 2008; Marques and Almeida 1989; G. Peeters
and X. Rodet 1999; Peleg and Porat 1991; Wen and Mark Sandler 2009]. For onsets of sinusoids other
models have been proposed [Fitz et al. 2000; Levine 1998; Levine and Smith 1998]. In my own contribu-
tions I was aiming to estimate the frequency slope of a non-stationary sinusoid (A. Röbel 2006b, 2007a,b,
2008).
Other problems related to sinusoidal modelling that I have been working on, notably in collaboration with
Chunghsin Yeh, was the question how the superposition of multiple sinusoids should be integrated into
the polyphonic fundamental frequency estimator (Chunghsin Yeh and Axel Roebel 2009). While the phase
vocoder in its original form does not make use of an explicit sinusoidal model recent forms of frequency
domain transposition [J. Laroche and Dolson 1999b] that significantly improve the efficiency of the phase
vocoder transposition benefit from explicit sinusoidal models. In the context of the ANR project (RP2) I
have notably shown that taking into account the frequency slope of the sinusoidal components allows to
improve the objective coherence of transformed sinusoidal components (Vinet et al. 2011).
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CHAPTER 7

SOURCE FILTER MODEL

The source filter model is of major importance for the transformation of sound. This importance is related
to the fact that the model allows segregating the sound signal into two parts, the excitation signal and the
resonator filter, that both have direct links to physical properties of real world sound sources. Accordingly,
by means of exposing these two parts in a signal transformation method we provide means for rather intu-
itive transformation of sound signals. The source represents the excitation signal that relates to perceptual
sound characteristics like pitch, noise level, inharmonicity. All of these are determined by physical prop-
erties of the exciting oscillator. The filter represents the resonator that describes the sound colour, which
means here the way its energy is distributed in the frequency domain.
In the following two sections I will discuss my research related to the estimation of the filter component
generally denoted as spectral envelope section 7.1, and research on modelling the timbre space of musical
instruments sound with an extended source filter model section 7.2. The use of the source filter model for
speech transformation will be discussed in the chapter on chapter 9.

7.1 Spectral envelop estimation
Related projects

(PhD5) Fernando Villavicencio (2010a). “Conversion de la voix de haute qualité”. Director X.
Rodet, supervision A. Röbel. PhD thesis. Paris : Université Paris 6 (UPMC).
moreover see sections on voice conversion (section 9.2), and speech to singing transformation
(subsection 9.3.1.

The availability for an efficient and robust estimation of the spectral envelope became important first for
my work on speech signal transformation. While the use of the AR model for spectral envelope estimation
of speech has a physical foundation [Markel and Gray 1976], unfortunately for the important case of voiced
sound segments the estimates that are obtained using the AR model are strongly biased. The bias can be
reduced significantly as long as the model order is known and the spectral peaks that define the envelope
are properly selected [El-Jaroudi and Makhoul 1991]. The need for the selection of the peaks as well as
the determination of an appropriate model order however is a critical problem. This problem motivated
the research into the True Envelope (TE) envelope estimator that had been initially proposed in [Imai and
Y. Abe 1979]. The TE estimator is based on iterative cepstral smoothing. It automatically selects the set of
peaks that are coherent with the model order and investigation into the TE estimator did show that despite
the iterative procedure this estimator could be implemented extremely efficient. Moreover I was able to
show that an appropriate order can be derived from the fundamental frequency of the sound signal taking
into account the fact that the spectral envelop is sampled by the spectral peaks such that the sampling
theorem can be used to select an adequate number of cepstral coefficients that perform near optimal band
limited interpolation of the sampled envelope (A. Röbel and X. Rodet 2005a; A. Röbel et al. 2007). The
experimental investigation into the comparison of the TE and standard LPC as well as bias corrected DAP
estimators has been done in collaboration Fernando Villavicencio, who later used the TE estimator for
advanced voice conversion1 in his PhD thesis (PhD5). The TE estimator is one of the key technologies for
the gender transformation of speech signals (see chapter 9).

1see section 9.2
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7.2 Instrument models
Related projects

(PhD1) J. J. Burred (2008). “From Sparse Models to Timbre Learning: New Methods for Mu-
sical Source Separation”. Visiting PhD student at IRCAM in 2006, Research on modeling
of spectral envelopes of musical instruments for musical source separation, supervision A.
Roebel. PhD thesis. Communication Systems Group, Technical University of Berlin,
(RP3) ANR project - Sample Orchestrator II – 2010-2013 (2010). Supervision of research on
modeling timbre spaces of musical instruments by means of extended parameterized source
filter models (WP2),
(MA15) H. Hahn (2010). “Generalisierte, grundtonabhängige Modelle für quasi-harmonische
Instrumente”. Magisterarbeit (Master), supervision A. Roebel. MA thesis. Technische Univer-
sität Berlin, Allemagne,
(PhD8) H. Hahn (ongoing). “Synthèse et transformation des sons basés sur des modèles de
type source-filtre étendu pour les instruments de musique”. Director X. Rodet, supervision A.
Roebel. PhD thesis. Université Paris 6 (UPMC).

The question of the representation of the timbre space of a musical instrument arises in different contexts:

1. Sound source identification: For polyphonic pitch (see section 8.2) and instrument sound separation
(see section 5.3) the knowledge of the spectral envelope of the playing musical instruments would
allow establishing constraints on the sound sources and therefore could potentially lead to improved
detection and or separation performance.

2. Sound transposition: Today’s sound transformation algorithms (see chapter 4) allow transpositions
of more than a factor 2 without introducing artefacts. The problem here is related to the fact that
the transformed signals do not merge acoustically with the untransformed sounds of the same sound
source because for real world sound sources the sound colour will change with the pitch. The prob-
lem exists for musical instruments as well as for speech. For the former this situation creates severe
constraints for the use of signal transformation algorithms for example in software samplers.

To address these situations I investigated into the possibilities to establish instrument models that describe
the timbre space of either a single instrument or a class of instruments over the full pitch and intensity range.
The development of this kind of model is a very ambitious task, and especially for sound source identifica-
tion the impact of room acoustics and constitutes an important problem for the use of an instrument model.
Considering sound transposition there exist only few results that allow describing the instrument dependent
transformations that have to be applied during transposition of individual notes. Dudas has investigated into
the optimal relation between transposition factors for the pitch and spectral envelope [Dudas 2002]. Recent
advances in physical modelling of the wave propagation in the trumpet have shown that the nonlinear ef-
fects accompanying level changes can be modelled with a high degree of precision by means of a simple
structure of filters and instantaneous nonlinear operations [Hélie and Roze 2008; Hélie and Smet 2008].
These models, however, are not available for all instruments and the question of adapting these models to
particular instruments has not yet been addressed.
My contributions to the first problem have been developed in the context of the PhD thesis of Juan-José
Burred (PhD1). The problem of this thesis was to use a priori information of the sources to improve sound
source separation for music. I supervised J.J. Burred during his stay at IRCAM during which we developed
a representation of the timbre space of musical instruments that was used in the thesis for source separation
and was evaluated as well for instrument recognition (J. J. Burred et al. 2006; J. J. Burred et al. 2010; Juan
José Burred and Axel Roebel 2010; Juan José Burred et al. 2009). The prototype curves in the instrument
model space representing the average timbre evolution over individual notes for the different instruments
are displayed in Figure 7.1. The diameter of the tubes represents the standard deviation � over the set of
notes of each instrument. For better visualization the diameter is scaled by 0.1 to avoid the overlap that
otherwise is present between the different instrument prototypes. Due to space constraints I will not discuss
the details of the instrument prototypes. I note however, that the investigation revealed the importance to
find a representation that allows to efficiently take into account spectral features that are attached to partial
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Figure 7.1: Average instrument note prototype curves in instrument timbre space. The width of the tubes
represents 10% of the instrument specific variance.

position and therefore move with the fundamental frequency (even partials missing in clarinet) and features
that are related to frequency and do not move with fundamental frequency (formant like features).

The research related to the second problem was performed in the master thesis of Henrik Hahn (MA15),
and later in his PhD thesis (PhD8) in the ANR Project Sample Orchestrator II (SOR2) (RP3). The idea
was to derive an extended source filter model of the timbre space of an individual musical instrument
parameterized by intensity and pitch. The target application in the SOR2 project was the use of these
models to extend the sound possibilities of sampling based synthesis applications by means of improved
signal transformations. To achieve this the model was expected to correctly predict the instrument timbre
as a function of pitch and intensity.

The instrument models are built by means of analysing a corpus of individual notes recorded from a single
instrument, similar to what is used in sample based midi synthesizers. From this set two parameterized
models of the spectral envelops of the noise and the sinusoidal components have to be constructed. In
both cases the envelope is controlled by the parameters: pitch f0, global intensity L that encodes the final
note intensity (e.g. pp, mf, ff), and local intensity l that is used to establish the energy time envelope of
a complete note. The local and global intensity are redundant, however they are necessary because the
sound samples used in a midi sampler are generally normalized in energy so that the energy cannot be used
to distinguish between note intensities. The note intensity is therefore derived from the instrument note
annotations that are used to organize the instrument samples in the sampler database.
The spectral envelope models for both noise and tonal sound components need to be derived. Following
a rather classical additive model we start in a first step to separate sinusoidal and noise components and
each of the notes is split into an attack and a release segment. Based on the previous study on musical
instrument modeling for sound separation mentioned above we used two components to represent the
sinusoidal amplitudes A for a partial k. The first one, denoted excitation colour E, is a function of the note
segment s (attack or release), the partial index k and the two further user parameters L, l An example for
the importance of this model component is the clarinet for that partial amplitude depends strongly on the
number k of a harmonic partial. The second, denoted resonator filter F , depends only on the frequency
of the partial ! = kf0

2. The parts of the envelope model are represented in log amplitude using tensor

2The terminology source and filter component is taken as a convention. In reality the relations are rather complex such that a
simple interpretation of source and filter parts as excitation signal and resonator filter is not possible. The plug position of a plugged
string for example creates an envelope that depends only on frequency, but nevertheless is part of the excitation signal, while the
physical position of the piano strings depend on the fundamental frequency but nevertheless this position will impact the resonator
filter.
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Figure 7.2: Model surface for the amplitude of the 9th partial of the piano model in the release phase.
Partial amplitue as a function of pitch and local intensity (left), or local intensity and global intensity for
medium pitches (right).

B-splines as follows
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are the coefficients of the univariat B-spine basis W (kf0).
The B-spline parameters are trained on all available instrument samples minimizing the mean squared error
of the log amplitude representation. The representation of the amplitude by means of a product creates an
ambiguity because both components can be multiplied by a pair of constant factors without changing the
result. These kinds of ambiguities are handled by means of regularization constraints that are added to
the cost function during model training. The specific problem can be solved by means of a regularization
term that evaluates the deviation of the log mean amplitude of the resonator filter from 0dB. The equations
shown here describe the most basic setup. One may want the excitation colour E and the resonator filter
F to depend on f0 (e.g. for a piano where string positions and characteristics change). These kinds of
extensions introduce additional ambiguities that we were able to handle with additional regularisation con-
straints. Further details of the models can be found in (Henrik Hahn and Axel Roebel 2013; H. Hahn and
A. Roebel 2012).
The trained models for the harmonic component represent the amplitude of a partial as a function of pitch,
global intensity, and local intensity as for example displayed for the 9th partial of a piano odel in Fig-
ure 7.2. The models are used to create white residual noise and tonal excitation signals. These excitation
signals contain all note features that are not contained in the envelope models. This means they contain all
the variations that the instrumentalist used when playing the individual notes. Pitch shifting those excita-
tion signals is uncritical because they are white. Accordingly all the excitation residuals can be used for
synthesis of all notes, which allows introducing variation into sequences of the same note without adding
any additional recordings. The model structure being independent of the musical instrument hybrid instru-
ments can be created by means of using excitation residuals from one instrument to excite the envelopes
from another.
The results obtained so far are very satisfactory. We have been able to establish instrument models for
wind, brass and string instruments (including plucked and struck strings) that allow using nearly arbitrary
excitation residuals for each pitch and global intensity. The hybridizations obtained by means of combining
excitation residuals and envelope model from different instruments create very convincing sounds, where
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the components of both source instruments appear to fuse into a new perceived instrument. The stability of
the perceived hybrid instrument over the complete range of pitches and intensities remains to be studied.
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CHAPTER 8

FUNDAMENTAL FREQUENCY
ESTIMATION AND MUSIC

TRANSCRIPTION

In many musical cultures pitch, besides time position and duration, is one of the important features that is
used to structure and organize sounds into music. This importance of pitch for music is one of the reasons
that explain the importance of the fundamental frequency estimation for music signal processing. Another
reason is the fact that the spectral resolution that is required to access individual sinusoidal components of
the harmonic structure of the sounds generated by the pitched musical instrument depends on the funda-
mental frequency of the sound. Research on fundamental frequency or F0 estimation has therefore been a
central part of my research since my arrival at IRCAM. The following sections give a short overview of the
results obtained in this domain.

8.1 Fundamental frequency estimation for monophonic signals
Related projects

(MA5) S. Starke (2002). “Bestimmung der Grundfrequenz mit Hilfe des Algorithmus zur Max-
imierung der Likelihood der harmonischen Auswahl von Maxima”. Diplomarbeit (Master),
supervision A. Roebel. MA thesis. Technische Universität Berlin, Allemagne,
(MA6) S. Schulz (2002). “Bestimmung der Grundfrequenz mit Hilfe wahrscheinlichkeitstheo-
retischer Bewertung von Signalspektren unter Verwendung spektraler Energiedichtemodelle”.
Diplomarbeit (Master), supervision A. Roebel. MA thesis. Technische Universität Berlin, Alle-
magne,
(MA7) M. Krauledat (2003). “Fundamental frequency estimation”. Leonardo Internship, di-
rector X. Rodet, supervision A. Roebel. MA thesis. Westfälische Wilhelmsuniversität Münster,
(LI7) A. Roebel and X. Rodet (2008). MakeMusic. Library for fundamental frequency estima-
tion for monophonic instrumental sounds,
(RP4) Chunghsin Yeh et al. (2010-2012). Automatic midi annotation of polyphonic music.
Ableton. 2010-2012,
(MA17) L. Dale (2012). “Automatic Note Detection in Monopohonic Sound Files”. Sciences
de l’Ingénieur, Master Mécanique (M1), orientation Acoustique, supervision A. Roebel. MA
thesis. University Paris VI – Pierre et Marie-Curie.

The fundamental frequency, or F0, of a periodic signal can be defined as the inverse of the smallest of
the infinite set of time shifts that leave the signal invariant [de Cheveigné and Kawahara 2002]. Strictly
speaking, periodic signals cannot exist in the real world but more important for practical applications is
the fact that real world sound sources are generally not stationary. For signals that contain small variations
of the period within a time scale of a few periods the term quasi-periodic signal is used. The problem for
estimating the F0 of a quasi-periodic sound is the fact that the notion of small variations is ambiguous,
because there are often multiple possibilities to explain a deviation of the period. Moreover, the possible
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evolution of the F0 requires to choose an appropriate observation time duration, which itself restricts the
F0s that can be estimated.
Building upon the previous research at IRCAM [Doval and X. Rodet 1991, 1993] I started my work with the
objective to develop a robust and configurable F0 estimation algorithm. Due to the fundamental ambiguity
mentioned above I was aiming to find a method that could easily be adapted to different characteristics of
the input sound (different instruments, different noise level). The basic idea was to improve the existing
criteria that were used in the existing F0 estimation algorithms and that were based on properties of real
world musical instruments (dominance of the harmonic components, smoothness of the spectral envelope).
In a series of master thesis and internships (Jens Starke (MA5), Stefan Schulz (MA6), and Matthias Kraule-
dat (Krauledat 2003)) we established an algorithm that did compare very favourably with existing algo-
rithms like yin [N. Obin 2005] and that allowed controlling the type of errors between sub- and super-
harmonic errors. The algorithm was working in the spectral domain which, compared to the well known
algorithm yin, provided the advantages that the noise outside the analysis frequency range does not effect
the analysis results, that reverberation from previous notes had considerable less impact, and that the ex-
pected placement of the sinusoidal components can be modified to support inharmonic instruments as for
example pitched percussive instruments like xylophone (LI7).
During our work with expressive speech signals (screaming) in the Respoken project1 we found that the
SWIPE algorithm [Camacho 2007; Camacho and Harris 2008] that showed very good performance even
for signals that contain strong irregularities (sub harmonics) or noise. It is interesting that the algorithm
achieves this performance without reducing the pitch range, which is required for our own algorithm. The
possibility to avoid any strong F0 priors is a very valuable feature for automated processing of speech and
music signals, and therefore I investigated into the reasons of the high robustness of the algorithm. An
important feature of the SWIPE algorithm seems to be the fact that it uses adaptive frequency resolution.
In the master thesis of Laura Dale (2012) that dealt with the problem of note transcription for monophonic
sources in the context of the Audio2Note project described below (RP4), we therefore started to investigate
into the use of F0 estimation with adaptive resolution in noisy environments (instrument solo with drums).

8.2 Fundamental frequency estimation for polyphonic signals
Related projets

(MA8) C. Yeh (2003). “Multiple fundamental frequency estimation”. Rapport DEA Master
ATIAM, supervision A. Roebel. MA thesis. Université Paris VI Pierre et Marie-Curie,
(PhD2) C. Yeh (2008). “Multiple Fundamental Frequency Estimation of Polyphonic Record-
ings”. Director X. Rodet, supervision A. Röbel. PhD thesis. Université Paris 6 (UPMC),
(PhD3) W. C. Chang (2009). Visting PhD student at IRCAM in 2008, research on tracking of
multiple fundamental frequency candidates in polyphonic music. Supervision A. Roebel, and
C. Yeh. PhD thesis. National Cheng Kung University, Tainan, Taiwan,
(MA13) R. Houzet (2010). “Formation de flux à partir d’une représentation objet de signaux
musicaux polyphoniques”. Intership Master 2 ATIAM, supervision C. Yeh, M. Lagrange, A.
Roebel. MA thesis. Université Paris VI Pierre et Marie-Curie,
(RP4) Chunghsin Yeh et al. (2010-2012). Automatic midi annotation of polyphonic music.
Ableton. 2010-2012.

Given the very high performance that was achieved by the monophonic f0 estimation algorithms around
2003, and further motivated by the good results obtained for example by Anssi Klapuri [Anssi Klapuri
2004] I started to investigate into the problem of fundamental frequency estimation for polyphonic sounds.
The research related to this problem has been performed in the master thesis of Chunghsin Yeh (MA8)
and later in his PhD thesis (PhD2) where we tried to establish a F0 estimation algorithm based on the
same principles that were used for the monophonic F0 estimation algorithm by means of adapting the
concepts to the polyphonic case. During the PhD thesis we were confronted with the question whether we

1The FEDER project Respoken was directed by Xavier Rodet and I contributed to this project with know how on speech transfor-
mation algorithms.
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should continue to focus our efforts an estimator based on explicit domain knowledge as for example the
algorithms in [Dressler 2012; Anssi Klapuri 2004, 2008; Saito et al. 2008] or whether we should follow the
increasingly popular approach to focus on machine learning principles as for example [Bertin et al. 2009;
Bertin et al. 2009; Grindlay and Daniel P.W. Ellis 2010; Kameoka et al. 2007; E. Vincent et al. 2010].
The methods based on machine learning principles try to estimate the F0 using a given signal model or
dictionary that is then adapted to the observed signal. Given the rather long runtime of the machine learning
algorithms and given the very complex relations that are required especially to detect instruments playing in
harmonic relations we have chosen to develop an estimator that integrates domain specific knowledge that
itself was partly derived by means of machine learning techniques from databases of individual instrument
sounds (C. Yeh et al. 2010).
The contributions that support multiple f0 estimation algorithms are the following. A score function that
evaluates f0 candidates in polyphonic spectra (C. Yeh and A Röbel 2004a,b), the integration of a method
for noise level estimation (C. Yeh and A. Röbel 2006a) that ponders the importance of a spectral peak
that supports a given f0 hypothesis. A two stage procedure that first determines a set of non-harmonically
related f0s before a refined search is done to select harmonically related f0s (C. Yeh et al. 2010). A method
for generation of synthetic polyphonic music with automatic ground truth annotation (C. Yeh et al. 2007).
An algorithm that derives the expected amplitude of overlapping partials and an algorithm that allows
to estimate the expected amplitude of an overlapping partial belonging to multiple harmonic sequences
(Chunghsin Yeh and Axel Roebel 2009). A significant improvement of the fundamental frequency esti-
mation solely on individual frames has been achieved by means of adding a subsequent tracking of the
estimated fundamental frequencies candidates using as main constraint the continuity of the number of
sources over time (W.-C. Chang et al. 2008). This work has been performed in the research scholarship of
the PhD student Wei-Cheng Chang (PhD3).
The polyphonic fundamental frequency estimation has been evaluated in MIREX evaluations covering the
years 2007-2011 (Chunghsin Yeh 2007; Chunghsin Yeh and Axel Roebel 2010, 2011; Chunghsin Yeh et al.
2008; Chungshin Yeh and Axel Roebel 2009). The method was ranked second in the category frame based
multiple f0 estimation in MIREX 2007, and was ranked first for all MIREX evaluations from 2008 to 2011,
which was the last MIREX we participated in. It is interesting to note that the algorithm ranked second
over all evaluations so far is similar to ours based on explicit domain based knowledge [Dressler 2012]. The
best algorithms based on machine learning techniques are currently still inferior by about 10% in accuracy
[Bertin et al. 2009].
A topic that covers a subsequent problem of F0 estimation for polyphonic files is the formation of instru-
ment streams. This topic addresses the problem of classification of all the notes that were found by the F0

estimation stage into the different instruments. This does not require that the instruments are recognized
but that one can create a separate transcription for each instrument that is present. This problem was inves-
tigated in the master thesis of R. Houzet (MA13) using the task to cluster sequences of spectral envelopes
of different notes of different instruments into groups each covering a single instrument. The performance
was evaluated by means of the percentage of envelope frames that were not grouped into the correct class.
The error depends on the number of instruments and was around 20% for 2 instruments and in the order
of 50% for 6 instruments. This error is rather large if we consider that the spectral envelopes used were
obtained from clean sources. The main problem for this kind of algorithm is the very strong variability of
the spectra of music instrument sounds.

8.2.1 Audio2Note
Based on the success of the fundamental frequency estimation method (C. Yeh et al. 2010) we were able to
attract the interest of the company Ableton to invest into a research partnership targeting a Audio2Midi tran-
scription system (RP4). In this project we integrated our transient detection algorithm (A. Röbel 2003a,b)
together with the polyphonic f0 estimation algorithm (C. Yeh et al. 2010) into a system that describes a
given polyphonic music in terms of a sequence of midi notes. After a successful integration of the al-
gorithms by C. Yeh and later S. O’Leary the research collaboration was ended in Summer 2012 and the
algorithm is now part of the software Ableton Live 9 that appeared in Spring 2013.
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CHAPTER 9

SPOKEN AND SINGING VOICE

Analysis, synthesis and processing of the human voice is one of the major research activities of the analysis
synthesis team (Pierre Lanchantin et al. 2011). I became involved in these activities after the development
of the shape invariant processing option in the phase vocoder (see section 4.4) paved the way to voice
transformation in the spectral domain. An important contribution to the research on speech processing
was the development of the cepstrum based spectral envelope estimation technique true envelope that was
able to reliably estimate near optimal spectral envelopes (see section 7.1) providing means for very high
quality spectral envelope transformation. These results were essential for the high-level, semantic control
of speech signal transformation using age, and gender parameters that has been developed in the VIVOS
and Affective Avatar projects1 (Snorre Farner et al. 2009; S. Farner et al. 2008; Xavier Rodet et al. 2009).
I contributed to the development of the high-level control by means of work on the interface from the
underlying speech processing functionality in SuperVP while the work on the control strategy was mainly
performed by Snorre Farner and Xavier Rodet. All these results were important steps that later allowed us
to develop the signal processing library for the professional audio plugin TRaX (LI12).
Besides the basic speech transformation technics discussed in section 4.4 my research on speech processing
covers the areas: glottal source parameter estimation, voice conversion, parametric speech synthesis, and
speech to singing conversion, that will be described in the following sections.

9.1 Glottal source parameter estimation and transformation
Related projects

(PhD4) G. Degottex (2010). “Glottal source and vocal-tract separation”. Director X. Rodet,
supervision A. Röbel. PhD thesis. Université Paris 6 (UPMC),
(PhD11) S. Huber (ongoing). “High Quality Voice Conversion by modelling and transforma-
tion of extended voice characteristics”. Director X. Rodet, supervision A. Roebel. PhD thesis.
Université Paris 6 (UPMC).
(PhD7) W. C. Chien (2013). Visting PhD student at l’IRCAM from Aug. 2013 - Feb.2014, Es-
timating the source and filter from singing voice signals. Supervision A. Roebel. PhD thesis.
National Taiwan University, Taiwan.

The transposition of speech signals is generally performed by means of changing the pitch and keeping the
spectral envelope (A. Röbel and X. Rodet 2005a,b) if the speaker is preserved, or additionally transposing
the envelope (Snorre Farner et al. 2009; S. Farner et al. 2008; Xavier Rodet et al. 2009) if the speaker iden-
tity (gender, age) is supposed to be changed. The underlying speech production model is the source filter
model that assumes a white excitation source [Markel and Gray 1976]. In reality however, the excitation
source is not white. Taking this into account yields an extended source-filter model that includes a specifi-
cation of the glottal pulse signal, which have to obey certain characteristics to be accepted as natural voice
[Rosenberg 1971]. One of the main parameters for the glottal pulse is its duration that is expressed relative
to the fundamental period [Gunnar Fant et al. 1985]. In an extended source filter model pitch changes are
accompanied with changes of the duration of the glottal pulse leading to a scaling of the excitation spec-
trum, which in turn will result in a modification of the spectral envelope even if the person (the vocal tract

1Both projects were directed by Xavier Rodet.
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transfer function) remains the same. The possibility to take these modifications into account is expected to
improve the quality of transposed speech. Manipulation of the speech source would open other interesting
possibilities. Glottal source configurations have been shown to be important for characterization of affec-
tive states, emotions, speaking styles [Gobl and Chasaide 2003; Lorenzo-Trueba et al. 2012; Scherer et al.
1984]. Another interesting application is parametric speech synthesis for that today high-quality excitation
algorithm are still not available [Alan W. Black et al. 2007; Zen et al. 2009]. Recently inverse glottal source
filtering has been proposed as a new and promising approach [Raitio et al. 2011].

9.1.1 Estimation
An important precondition for the use of glottal source parameters is the availability of algorithms that
estimate the glottal source signal or the glottal source parameters. Many approaches have been proposed:
algorithms based on iterative adaptive inverse filtering (ITAIF) [Alku 1992], algorithms using AR models
with excitation (ARX) for estimation [D. Vincent et al. 2005], algorithms based on closed phase vocal tract
transfer function (VTF) estimation (CPVTF) and inverse filtering [Alku et al. 2009; Walker and P. Murphy
2005], and algorithms based on the decomposition into minimum and maximum phase components (ZZ)
[B. Bozkurt and C. d’Alessandro 2012; Drugman et al. 2011].
All these algorithms have weak points that are hindering a robust application to real world signals. All but
the last of these algorithms are based on the assumption that the VTF is all-pole, which is known to be
incorrect due to the effect of the nasal tract. This assumption has posed many problems for speech transfor-
mation (see section 7.1) and there is no reason to expect that it should work reliably in the present context.
ARX and ZZ require the correct detection of the glottal closure instant, which is a difficult problem in
itself. CPVTF requires even the detection of the closed phase, which is even more difficult. All algorithms
have problems with high pitch and breathy voices.
The potential benefits of the enhanced source filter model and the relatively weak performance of the ex-
isting algorithms has led us to initiate research into the estimation of the glottal source spectrum. This
research has started with the PhD thesis of Gilles (PhD4). The algorithm developed aims to estimate the
glottal pulse parameters of the Liljencrants-Fant (LF) glottal pulse model [Gunnar Fant et al. 1985]. While
this model (like probably any other parametric model) cannot cover the complete set of possible glot-
tal puls forms it certainly covers important characteristics of the glottal excitation that seem sufficient
to synthesize expressive speech [Gobl and Chasaide 2003]. We investigated into an approach based on
separation of minimum/maximum phase components (Gilles Degottex et al. 2009a,b, 2010, 2011). The
approach estimates jointly the glottal closure time instants. Results obtained during the thesis suggested
that the complete parameter space cannot be estimated robustly. First, the final closing phase of the LF
model introduces minimum phase characteristics into the glottal pulse spectrum and can therefore not be
detected using a method that distinguishes minimum and maximum phase signal components [B. Bozkurt
and C. d’Alessandro 2012]. Second, the glottal pulse shape parameters open quotient and asymmetry can
partly compensate each other [D. Vincent et al. 2005]. To address these ambiguities we have constrained
the glottal shape parameters to the one dimensional subspace of the LF parameter set given by the R

d

form
parameter [G. Fant 1995].
A few improvements of the method have been developed in the context of the ongoing PhD thesis of Stefan
Huber (PhD11) that tries to integrate glottal source parameters in our voice conversion algorithm (Stefan
Huber et al. 2012) (see section 9.2). Notably, the range of the R

d

regression model has been extended to
consistently cover R

d

values of very tense and relaxed excitation, a slightly more robust objective function
has been developed (Stefan Huber et al. 2012), and a Viterbi smoothing post processing has been integrated
to avoid occasional R

d

jumps. The evaluation of our method using synthetic signals or real speech signals
with EGG generally shows favourable results compared to state of the art methods [Gilles Degottex et al.
2011; Stefan Huber and Axel Roebel 2014; Stefan Huber et al. 2012], for many practical applications
however, and especially for high pitched signals (F0 > 200Hz) or relaxed excitation with very few partials
(R

d

> 4), the glottal pulse estimation remains still too unstable and will therefore remain one of the
important research activities for the next years.
To finalize this section I note that recently we experimented with a completely new approach using machine
learning technics to learn the relations between the open quotient of the glottal pulse and other relevant
speech parameters (F0, voiced/unvoiced frequency boundary, spectral envelope parameters) (Stefan Huber
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and Axel Roebel 2014). For training and validation we used the open quotient derived from EGG measure-
ments available in the CMU Arctic speech database [Kominek and Alan W Black 2004]. Separately for
each speaker the prediction of the open quotient was significantly better than what we can achieve with our
R

d

estimator. However, when we applied the predictor trained on two speakers to a third speaker we have
got about the same prediction performance that we have with the estimation algorithms. While this result
opens a new perspective to glottal pulse parameter estimation it is rather unclear whether the multi speaker
prediction across gender and age can be performed reliably.

9.1.2 Transformation
One of the main reasons for investigation into the estimation of source excitation parameters is the new
perspective to be able to manipulate the glottal pulse parameters and more generally the voice quality. Ini-
tial steps into expressive transformation of speech have been performed in [Grégory Beller 2009]. Later in
the Respoken project2 extensions for the VoiceForger library (SW5) have been developed that did allow
experimentation with dynamic transformations of pitch, intensity, and duration as well as voice quality
features like breathiness, glottal pulse parameters, and the spectral envelope. The result of this research
demonstrated that by means of manually selected conversion strategies expressive signal transformations
are feasible. The quickly changing transformations however pose problems because the signal transfor-
mation operators that are available today are not yet sufficiently robust to produce high quality speech
with quickly changing parameters. On one hand the problems are related to insufficient robustness of the
analysis algorithms, on the other hand are the signal transformations algorithms not sufficiently refined
to be able to ensure a coherent signal after the transformation. One important problem is the coherence
between spectral envelope and source signal after transformation. The transposed source may be such that
noisy excitation falls into formant regions, which creates annoying noise in the transformed speech signal.
Another problem is the fact that the signal transformation operator that have been developed so far take
mainly into account the relations between different STFT frames, and treat the content of each STFT frame
as locally stationary. These problems have been investigated partly in the project dealing with frequency
domain transposition (see section 4.5), but further research would be required to resolve remaining issues.
An alternative approach to speech signal transformation using an advanced analysis/synthesis scheme for
speech signals has been developed in the thesis of G. Degottex ((PhD4), (G. Degottex et al. 2012)). This
system analyses the speech signal in terms of voiced/unvoiced segments, fundamental frequency, glottal
source parameters, noise and spectral envelope and vocal tract transfer function and provides means to
transform all these parameters before re-synthesis. During re-synthesis the voiced part of signal is syn-
thesized entirely from parameters which gives improved control such that a number of incoherencies can
be avoided: e.g. when the voice is transformed into a more tense excitation the generation of additional
sinusoids is required, which is rather straight forward when pulses are generated from scratch instead of
transformed. The synthesis of pulses allows in principle to generate irregularities in the glottal pulse se-
quence that are characteristic for rough voices. An improved version of the algorithm is currently under
development for experimentation in the context of voice conversion applications (PhD11).

9.2 Voice conversion
Related projects

(PhD5) Fernando Villavicencio (2010a). “Conversion de la voix de haute qualité”. Director X.
Rodet, supervision A. Röbel. PhD thesis. Paris : Université Paris 6 (UPMC),
(PhD11) S. Huber (ongoing). “High Quality Voice Conversion by modelling and transforma-
tion of extended voice characteristics”. Director X. Rodet, supervision A. Roebel. PhD thesis.
Université Paris 6 (UPMC),
(MF4) Axel Roebel et al. (2012). Creation of the voice of Marilyn Monroe for the film "Mari-
lyn" by P. Parreno. Development and application of voice conversion algorithms,

2The research in the Respoken project was directed by Xavier Rodet. I contributed to this project with advice on speech signal
transformation.
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(MF5) Axel Roebel et al. (2012-2014). Creation of voices of Philippe Petain, Léon Blum,
Pierre Laval, Eduard Daladier, and Paul Reynaud, for the studio Maha Production. Develop-
ment and application of voice conversion algorithms

The term Voice Conversion is used for a subset of voice transformation tasks that aim to transform a given
source voice into a specific target voice that generally is specified by means of a sound database of the target
speaker. This problem is a natural extension of the high-level control of voice transformation algorithms
that has been investigated in the VIVOS project. Accordingly, the research on voice conversion started
after the VIVOS project with the PhD thesis of Fernando Villavicencio (PhD5). The research has later been
continued by P. Lanchantin in the AngelStudio project3 and is now continued in the PhD thesis of Stefan
Huber (PhD11) in collaboration (CIFRE) with the company Acapela.
The first question to be solved when starting research on voice conversion is related to the features that
will be used. Generally there are two classes of features that are considered for voice conversion: on one
hand features related to speaking style and prosody, and on the other hand the features related to the vocal
tract and excitation source characteristics [Kuwabara and Sagisaka 1995; Yannis Stylianou 2009]. Voice
conversion research is in its majority investigating into the second set of features using the Gaussian mixture
models to establish the feature conversion between source and target speaker [Kain 2001; Y. Stylianou
1996] and these models are trained generally on source and target speaker databases that contain the same
phrases and are aligned (parallel), without using explicitly a phonetic annotation of the speech signals.
The main contribution of the thesis of F. Villavicencio was the investigation into the use of the new cepstrum
based methods for spectral envelope estimation (see section 7.1) for voice conversion (F. Villavicencio
et al. 2008, 2009). While the improved envelope estimation had beneficial effects on the converted voice
similarity and quality (Fernando Villavicencio 2010b), the overall signal quality was still far from sufficient
for professional projects (cinema). This was partly due to the problem of over-smoothing of the VTF after
conversion, a problem that can be reduced by means of incorporating dynamic features into the conversion
[T.Toda et al. 2007], as well as missing coherence between the converted envelope and the source excitation
signal.
In the PhD thesis of Stefan Huber (PhD11), that is performed in collaboration with Acapela, the central
objective was to evaluate strategies for the manipulation of the glottal source in the context of voice con-
version systems. During his thesis, Stefan Huber has worked on improving the glottal pulse parameter
estimation, and is currently investigating the conversion of excitation parameters in an analysis/synthesis
system similar to the one proposed in (G. Degottex et al. 2012).
While the state of the art voice conversion systems are still far away from producing speech and conversion
quality that would be sufficient for artistic production, we have recently received many requests from film
and video production companies that ask for help with voice conversion projects, 2 in 2012 (MF4; MF5),
and 3 in 2013 that are still under discussion. As these projects do not require real time conversion, we
have implemented alternative offline strategies to achieve improved conversion and speech quality. The
approach established in the context of the project (MF5) is particularly interesting because it allowed us to
achieve very significant improvements of speech and conversion quality. As these new approaches are not
yet published I will not give any more details here.

9.3 Singing synthesis
Related projects

(MF2) Axel Roebel and Joshua Fineberg (2006-2007). Creation of voices for the opera Lolita
of J. Fineberg. Transformation of the voice of the main actor into girls singing voices,
(MA18) Luc Ardaillon (2013). “Singing synthesis”. Stage Master 2 ATIAM, supervision A.
Roebel. MA thesis. Université Paris VI Pierre et Marie-Curie
(RP9) ANR project - Chanter – 2014-2017 (2014). Supervision of research on singing synthe-
sis (WP2).

3The research in the FEDER project AngelStudio was directed by X. Rodet.
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Singing synthesis is a research topic that was actively performed n the analysis synthesis team quite a
while before I arrived at IRCAM. The work was mostly centred around the chant software program that
performed synthesis by rules [Bennett and X. Rodet 1989; X. Rodet et al. 1984] and that produced results
that still today are considered quite impressive4, that however are restricted to synthesis of vowels.
Compared to speech synthesis there exist rather few research activities related to singing synthesis and most
of these activities try to adapt technologies that were developed for speech synthesis. Current approaches
cover the synthesis by rules mentioned above [Bennett and X. Rodet 1989; Berndtsson 1995; X. Rodet
et al. 1984], concatenative synthesis [Bonada and Loscos 2003; Kenmochi and Ohshita 2007; Macon et
al. 1997a,b], the conversion of speech into singing [Saitou et al. 2007], and singing synthesis based on
HMM models [SynSY 2012]. Most of these systems have somewhat limited ambitions and do not take
into account all the knowledge hat is available today. The most prominent system is certainly the singing
synthesizer Vocaloid [Bonada and Loscos 2003; Kenmochi and Ohshita 2007] that is providing a complete
system for singing synthesis.

9.3.1 Speech to singing conversion
My research related within this direction started with the project Lolita (MF2) of the composer Joshua
Fineberg. For his imaginary Opera [J. Fineberg 2008] Joshua Fineberg wanted to create morphed voices
between the main actor and the girl Lolita that was present only in his imagination. For this project I im-
proved the shape invariant phase vocoder5 and established means for gradual spectral envelope morphing
(Axel Roebel and Joshua Fineberg 2007). The initial system did require manual adjustment of all param-
eter contours, but over time the system has been improved such that by today it is able to automatically
transform speech into singing given an annotated input speech signal and a computer readable version of
the target melody as well as vibrato control parameters. An experimental version of glottal pulse modifi-
cation has been integrated demonstrating the importance of the modification of the source characteristics
for expressive singing (A. Röbel et al. 2012). The modifications of the source are for the moment very ad
hoc however, and a model of the singing voice source parameter contours relating vibrato, intensity, pitch
and glottal source parameters eventually together with modifications of the spectral envelope is expected
to create considerable improvements of the singing voice quality.

9.3.2 Singing voice synthesis
Motivated in part by the interesting results that have been obtained for speech to singing conversion I have
recently engaged to revive the research activities related to the Chant project. The idea here is to develop an
extended Chant synthesis program. The program is expected to be divided into a control part that generates
the target contours for all speech signal parameters (F0, intensity, . . . ) and that can be coupled with a small
number of backends that will cover algorithms for speech to singing conversion, for singing synthesis based
on concatenation and transformation of singing units in a database, and the F0F synthesis of the original
Chant program.
Related research activities have started with the master thesis of Luc Ardaillon (MA18) in that an initial
version of a singing synthesis backend based on concatenation and transformation has been developed.
For this initial system the transformation did rely on signal transformation that were performed with the
SuperVP phase vocoder using a new spectral domain phase vocoder based concatenation technique. In the
future a more refined approach using the speech oriented analysis synthesis techniques (G. Degottex et al.
2012) discussed in section 9.1 and section 9.2 should be integrated. These topics will be adressed and the
research will be continued in the ANR project Chanter (RP9) that starts in January 2014.

4see example at: http://anasynth.ircam.fr/home/media/singing-synthesis-chant-program
5see section 4.4
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CHAPTER 10

DEVELOPMENT ACTIVITIES

As was already mentioned in the first chapter, there is a strong interest at IRCAM to transform research
results into applications that can be used inside (by composers or the musical assistents at IRCAM) or out-
side of IRCAM (by the members of the IRCAM Forum or by industrial clients). Therefore, I have invested
considerable effort into the development of C++ libraries for signal processing that will be summarized
shortly in the following sections. Frédéric Cornu, who joined the analysis synthesis team in 2007, is par-
ticipating in the development of all the C++ libraries mentioned below. He has contributed many important
extensions and corrections, and since 2010 he is the main developer for all the signal processing libraries
of the team.

10.1 MatMTL
The research in the analysis/synthesis team is performed in MATLAB, and more recently as well in Python,
so that porting to C/C++ is necessary if the algorithms should be distributed to end users. Very soon after
arriving at IRCAM I investigated into efficient porting of MATLAB implementations into C++. In 2001
and in collaboration with Patrice Tisserand, I started the development of the Matrix Mathematics Template
library (MatMTL) (SW4) with the objective to combine the efficiency that was achieved by modern c++
template libraries (e.g. [ES1, Blitz], [ES2, MTL], and more recently [ES7, Eigen]) by means of modern
c++ programming technics like meta programming and expression templates [Veldhuizen 1995] with a
high-level programming interface that was as close as possible to MATLAB.
Today MatMTL has grown to support all element-wise numerical expressions of the MATLAB program-
ming language. The use of expression templates allows computing complex sequences of element-wise
operations without temporary variables, and the compiler automatically transforms many kinds of vector
and matrix expressions into vectorized SIMD code. SIMD implementations of mathematical functions (log,
exp, sin, cos) have been developed in the Sample Orchestrator project (RP2) by Frédéric Cornu. MatMTL
is cross platform supporting Linux, MacOSX, Windows, and iOS and it is used for nearly all developments
for industrial projects in the team. A MATLAB to MatMTL compiler (Mat2MTL) has been developed
during the master thesis of B. Pratz (MA11), but this compiler has been discontinued due to the difficulties
to support MATLAB’s user defined classes.

10.2 SuperVP
SuperVP (SW2) is a library and stand alone program for STFT based signal processing. It incorporates
a number of signal analysis algorithms (F0, spectral envelope, voiced/unvoiced frequency boundary) as
well as an extended phase vocoder algorithm for signal transformation. Research and development for this
software started in 1995 and was initially supervised by P. Depalle, who left IRCAM in 1999. As part
of my research activities on phase vocoder based signal processing I became responsible as well for the
development of SuperVP.
Over the last ten years the SuperVP signal processing library has been extended by new functionalities that
have been described partly in the present document1. To support real-time applications a memory based
API has been added to the SuperVP interface. A modular analysis/synthesis API has been developed in the

1see chapter 4, and section 7.1
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Sample Orchestrator project (RP2) and later used for the development of the SVPX MaxMSP objects by
Jean-Philippe Lambert in collaboration with Cycling’74.
Within IRCAM SuperVP is used in many different forms: The integration of the command line program
in to the graphical user interface AudioSculpt (N. Bogaards et al. 2004) allows controlling the sound anal-
ysis and transformation engine by means of a graphical user interface. Another use is the integration in
Max/MSP by means of the collection of Max/MSP objects developed by Norbert Schnell from the IMTR
team [ES4, SuperVP for Max/MSP]. Since many years the command line version of SuperVP can be
controlled from within OpenMusic thanks to the OM-SuperVP module by Jean Bresson and Jean Lochard
([ES6], [Bresson 2006]). The multitude of incarnations (AudioSculpt, Max/MSP, OpenMusic) and the high
audio quality delivered by the library have generated a lot of interest in SuperVP from the artistic users at
IRCAM. According to Arshia Cont, responsible for the IRCAM Forum and the interaction between the
artistic and research departments, there are very few artistic projects that do not use SuperVP in one of
its different incarnations (AudioSculpt, Max/MSP, OM-SuperVP, command line) in one of the phases of the
project.
Besides the use at IRCAM the SuperVP library has been the object of numerous industrial projects and
licences (LI1; MF1; LI2; LI3; LI4; MF3; LI5; LI6; LI7; LI8; LI9; LI10; LI11; LI12; RP4; LI13).

10.2.1 VoiceForger
VoiceForger is a library for voice transformation that is based on SuperVP speech processing facilities that
simplifies the user interface due to the possibility to use high-level control of voice characteristics (Snorre
Farner et al. 2009; S. Farner et al. 2008; Xavier Rodet et al. 2009). The development of the C++ version of
the library voice transformation began early in 2009 under the Affective Avatars project where I supervised
the development activities of S. Farner. In this project we implemented the basic architecture for the
management of analysis and synthesis of the SuperVP library using the modular analysis/synthesis interface
developed in the Sample Orchestrator project (RP2) that allows processing and reusing of various spectral
domain analysis in the VoiceForger library. The library performs completely automatic reconfiguration of
the chain of treatments based on the high-level specifications of source and target voices. The available
high-level controls cover age and gender of the speaker, the ambitus (extend) of the fundamental frequency
contour, as well as the breathiness of the voice. The programming interface of the VoiceForger library is
organized in layers, such that alternatively to the high-level interface, many control parameters of the low-
level interface of the underlying SuperVP library are exposed as well. The VoiceForger library constitutes
the programming interface that is used in the IrcamTOOLS-TRaX plugin (LI12).

10.3 Pm2
Pm2 is a command line software, and c++ library for sound analysis/synthesis based on the sinusoidal
signal model. Pm2 is a reimplementation of the earlier Pm software integrating recent state of the art
algorithms for partial analysis that improve notably the estimation errors for the analysis of non-stationary
sinusoids (A. Röbel 2007a,b, 2008). Pm2 supports sinusoidal analysis of harmonic and inharmonic sounds,
and different modes of partial chord analysis. Pm2 is integrated as sinusoidal analysis/synthesis kernel in
AudioSculpt and via the OM-Pm2 module in OpenMusic [ES8]. Moreover it performs sinusoidal based
analysis of the ircamDescriptor software.

10.4 A2N
The development of the A2N library (SW6) has been started in the context of the industrial project Au-
dio2Note (RP4) that was aiming to enhance the Ableton Live software by means of providing automatic
midi transcription of arbitrary polyphonic music material. This library integrates research results described
in section 8.2, as well as the onset detection algorithm described in section 4.2 that is implemented in the
SuperVP library. A first version of the library was finalized in 2012 and has then been integrated in Ableton
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Live Version 9, which has been released in early 2013. In the future we plan to integrate the A2N library
or an enhanced version supporting signal separation into AudioSculpt.

10.5 Scientific Python
Before I conclude this chapter on development activities, I would like to discuss an important trend in my
approach to scientific computing. After having used MATLAB for about 20 years as the main tool for my
research activities I have recently switched to use python ([ES5, NumPy]/[ES3, SciPy]). This decision was
due to the increasing costs for MATLAB software extensions (Parallelization Toolbox) and the difficulty
to create command line executables from of MATLAB implementations. I started to investigate into the
potential of scientific computing with Python in the speech to singing conversion project subsection 9.3.1,
and later in the master thesis of Laura Dale (MA17). The conclusion of these tests were very satisfying
showing many benefits of scientific computing with Python that are especially important if many different
command line tools are used for the research, and if parallelization and interfacing with external libraries
is needed. As a conclusion I have continuously migrated my research activities to Python/NumPY/SciPY,
and this summer I have released within IRCAM a python toolbox for scientific computing.
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CHAPTER 11

FUTURE RESEARCH DIRECTIONS

The topic of this last chapter is a vision of the next 5 years of research. It is clear that for none of the
problems discussed until now I have found a final solution, and all of them may be the object of additional
research, especially if I am confronted with a practical problem where the solutions proposed until now
do not provide a satisfying solution. These basic consideration set aside, there is a direction in that the
research topics will evolve and the present chapter will discuss 4 directions that seem to represent new
approaches to signal transformation.

11.1 Transformation and synthesis of expressive sounds

The high quality obtained when transforming music and speech sounds with constant or slowly varying
transformations has now led us to investigate into expressive signal transformation and signal synthesis.
Under this term I gather transformation and synthesis problems that try to achieve at the same time high
quality, realism and expressiveness that resemble natural sounds. For music signal synthesis and transfor-
mation this includes the synthesis and transformation of notes played by musical instruments. Here the
work initiated in the SOR2 project (RP3) and the thesis of H. Hahn (PhD8) has to be continued and it
has to be integrated with models that represent the style of interpretation of individual instrumentalists.
Accordingly analysis and representation of musical ornamentation is essential (PhD10).
For speech and singing, this will concern the analysis, modelling and representation of the voice source
parameters. As the voice source is not independent of the vocal tract filter modifications of the vocal
tract filter may be required when changing the voice source. One of the central results in this work is the
analysis of the parameters of the glottal source of the voice (Gilles Degottex et al. 2011). This analysis
must be improved, particularly for high fundamental frequency sounds (f0 > 200 Hz) for which the
current algorithm is not yet working reliably. Another problem are signal segments with relaxed excitation
for that only very few sinusoids are available to estimate the source characteristics. Here again the available
analysis algorithms do not provide sufficient accuracy.
The increasing robustness and performance of the analysis of the speech source characteristics will open
means to subsequently use the results in the context of processing and expressive synthesis singing and
speech. One of the target applications is learning models of singing style from the signal models that are
subsequently used for transformation and synthesis of singing. Voice conversion, that is the transformation
of the speaker identity is a subject of ongoing research at IRCAM since 2006 (PhD5), for which there
is still no satisfactory solution. An extension to be dealt with is cross language voice conversion. In the
PhD thesis of S. Huber (PhD11) the research on voice conversion is continued including the management of
glottal source and the prosody characteristics of the speakers. More advanced speech conversion algorithms
that allow the manipulation of aperiodic voice source signals and emotional expressions are long-term
objectives.
One of the key projects in this area will be the ANR project Chanter (RP9) that will start in early 2014 and
deals with expressive singing synthesis. This project will investigate into new solutions for singing synthe-
sis, but also into representation and synthesis of the singing style (voice type, vibrato, note articulation).
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11.2 Analysis, separation and transformation of polyphonic sounds
The processing of the individual sound sources within polyphonic sounds is a signal processing problem
that is only in its early stages. With respect to the transcription problem, we have developed a very com-
petitive algorithm (C. Yeh 2008; C. Yeh et al. 2010) that achieves results that are rather satisfactory when
compared to the state of the art. Nevertheless it is clear that a performance that achieves only 60% of note
accuracy with very approximate note onset and offset locations is not sufficient for many applications.
Considering the transformation of the individual sound sources, there are already a few commercial prod-
ucts appearing that allow the manipulation of individual notes in polyphonic music1. Modification of
individual notes in a polyphonic signal is closely linked to the signal separation problem. Today, the per-
ceptual quality of the separated sounds is generally far from sufficient for using these signals for anything
but mixing it into the original polyphonic sound at the original time position.
With respect to the separation of the individual sound sources for further processing or analysis the current
focus of the research is clearly oriented towards nonnegative factorization methods. A rather promising ap-
proach to solve underdetermined separation of individual notes from polyphonic music has been presented
recently in [FitzGerald et al. 2008].
Given the many interesting applications in this domain the research on polyphonic signal transcription and
polyphonic music will constitute one of the central research topics for many years to come and the research
will continue in several directions: The note transcription errors should be reduced. This concerns espe-
cially the errors related to notes played in harmonic relations. Here additional means should be established
to take into account the musical context (harmony constraint) and the musical instruments that are present
(acoustic constraints either given a priori or derived through the analysis or the musical performance). The
note transcription should be accompanied by the information of the instrument playing the note, and an
additional transcription of the part played by the drum kit. Finally, as mentioned before, the extraction
(de-mixing) of the individual notes is an important problem to consider. On one hand it leads to many
new applications, as for example remixing and/or re-orchestration, but on the other hand the separation can
also provide information about the individual sources (e.g. the spectral envelope) that can then be inserted
back into the transcription process. Means to use the partly redundant information that is present in the
different channels of stereo and multi-track sounds similar as the approaches being currently developed in
the 3DTVs project (RP5) have to be developed.
An example of the research to be performed in this area is the master thesis of Jordi Pons Puig (MA20)
where we will try to integrate the audio 2 note algorithm that provides an approximate score representation
of the music signal with the NTD based signal separation algorithms [FitzGerald et al. 2005, 2008]. The
algorithms developed in the 3DTVs project for gunshot detection seem particularly interesting for drum
detection and separation.

11.3 Sound textures
Work on time frequency representation of sound textures has recently begun in the thesis of Wei-Hsiang
Liao (PhD12) and in the ANR project PHYSIS (RP8) that began in mid-2012. The objectives of the
research is the modelling and transformation of sound textures and noise (see section 5.2). A first objective
of this research is to establish signal transformation (time scaling) algorithms that preserve the perceptually
relevant statistical characteristics of the sound signal.
An interesting question that arises in this context is related to the question to what extend the principles
derived for texture modification can be used for time scaling music and speech signals. It is obviously
straightforward to apply the same principles that are used for texture preservation to non texture signals.
This has been done for example in [Dubnov et al. 2002; O’Regan and Kokaram 2007]. The fundamental
difference with standard approaches to time scaling is the fact that the sound characteristics preserved when
interpreting the sound as a texture are related to time averages, while standard algorithms exclusively take
into account instantaneous signal characteristics (e.g. amplitude and frequency of sinusoids). It clear that
the results of time scaling with texture based algorithms will strongly depend on the time scale that is
used to derive the averages. This can be explained easily with an example. Assume that we have perfect

1Melodyne DNA of the German company Celemony, http://www.celemony.com/dna.
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algorithms for time stretching not limited by any analysis problems and that we are working with a drum
loop signal containing some measures with a few articulations changes in the hi-hat pattern.
Time stretching this drum loop with standard algorithms will preserve the number of measures in the loop
when stretched resulting in a different tempo. When using texture stretching algorithms using the complete
drum loop for the estimation of the signal statistics the texture time scaling algorithms will preserve the
duration of the individual measures and add more measures at the end of the signal preserving the tempo
of the original loop. The variations present in the hi-hat signal would be reproduced such that the statis-
tical parameters remain unchanged which however does not require that the complete loop is periodically
repeated. If on the other hand we would use texture characteristics estimated over individual measures and
would time scale each of the regions individually we would expect to create drum loops that repeat the
individual measures each with its characteristic hi-hat pattern.
Assuming further that we are able to interpolate the texture statistics we could try to synthesize with in-
terpolated texture statistics. In this case we could expect to obtain some sort of interpolation between the
different versions of the hi-hat patterns present in the original example. If we assume we would be able
to estimate the texture statistics from a single analysis window, then preserving the evolution of the tex-
ture statistics would result in a time scaled signal very similar to that produced by the standard algorithm.
That means in that case the tempo of the drum loop would change and the number of measures would be
preserved.
Besides time scaling there are other texture transformations that should be investigated. High-level control
of texture properties related to physical scene parameters (rain strength, wind strength and turbulence)
should allow efficient texture synthesis control. The target values of the statistical texture characteristics
would have to be established from analysis of target textures and the required sampling of the texture
statistics (number of intermediate texture examples) is an open question.
Finally it would be very interesting to investigate whether the texture transformation algorithms can be in-
tegrated transparently into traditional time scaling algorithms to allow improved quality of the time scaling
of the aperiodic signal components for example in speech signals. Again there are many open questions
here, notably related to the separation of sinusoidal and aperiodic signal components and the time scale
that is necessary to estimate the relevant signal statistics with sufficient precision.

11.4 Adaptive parameter selection for analysis and transformation
One of the problems remaining for all signal transformation algorithms is the fact that results depend on the
parameters chosen for these algorithms. In section section 8.1 we discussed the algorithm SWIPE that uses
a multi-resolution representation to achieve highly robust single source F0 estimation. Our initial studies
of adaptive time-frequency representations seem to indicate that the most sensitive parameter for STFT
based signal transformation: the size of the analysis window determining the time-frequency resolution of
the signal representation, can be selected by means of adaptive procedures.
These are two examples that could be understood as precursors of a new strategy to design algorithms based
on the use of multiple representations with different resolutions from that the most appropriate resolution
will then be selected automatically. To achieve this goal there is a long way to go. The intelligence of
the signal processing expert will have to be built into the algorithms, which renders the development of
the algorithms considerably more complex. Still, the benefit for the use of these algorithms could be very
significant.
The objectives for coming years will be to continue the research on adaptive representations, and the in-
tegration of these representations in the algorithms for analysis and transformation audio signals. As a
first example, I will continue the investigation of an adaptive F0 estimation algorithm. Such an algorithm
would significantly improve existing applications as for example the TRaX plugin (LI12) that today re-
quires rough user presets to match the F0 range to the user. A considerably more complex objective is the
integration of the adaptive principles into signal transformation algorithms. As a first step we will soon
integrate adaptive time varying time-frequency resolution (time varying window size) into AudioSculpt. In
a longer future we will investigate into the adaptation of the sound processing algorithms to representations
having adaptive the time-frequency resolution in time and frequency. An additional long-term goal would
be use of adaptive time-frequency resolution for sound source separation.
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(ISMIR 07), pp. 393–398.

Yeh, Chunghsin (2007). Multiple F0 estimation for MIREX 2007. URL: http://www.music-ir.or
g/mirex/abstracts/2007/F0_yeh.pdf.

Yeh, Chunghsin and Axel Roebel (2009). “The expected amplitude of overlapping partials of harmonic
sounds”. In: Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 3169 –3172.

— (2010). Multiple-F0 Estimation For MIREX 2010. URL: http://articles.ircam.fr/texte
s/Yeh10b/index.pdf.

— (2011). Multiple-F0 estimation for MIREX 2011. URL: http://articles.ircam.fr/textes/
Yeh11a/index.pdf.

Yeh, Chunghsin, Axel Roebel, and Wei-Chen Chang (2008). Multiple F0 estimation for MIREX 2008. URL:
http://www.music-ir.org/mirex/abstracts/2008/mirex08_yeh.pdf.

Yeh, Chungshin and Axel Roebel (2009). Multiple-F0 Estimation For MIREX 2009. URL: http://art
icles.ircam.fr/textes/Yeh09b/index.pdf.

Yeh, C. and A Röbel (2004a). “A new score function for joint evaluation of multiple F0 hypothesis”. In:
Proc. of the 7th Int. Conf. on Digital Audio Effects (DAFx’04), pp. 234–239.

— (2004b). “Physical principles driven joint evaluation of multiple F0 hypotheses”. In: Proc. ISCA Tuto-
rial and Research Workshop on Statistical and Perceptual Audio Processing (SAPA’04).

— (2006a). “Adaptive noise level estimation”. In: Proc. of the 9th Int. Conf. on Digital Audio Effects
(DAFx’06), pp. 145–148.

— (2006b). “Adaptive noise level estimation”. In: Workshop on Computer Music and Audio Technology
(WOCMAT’06).

Yeh, C., A. Roebel, and X. Rodet (2010). “Multiple Fundamental Frequency Estimation and Polyphony
Inference of Polyphonic Music Signals”. In: IEEE Transactions on Audio, Speech and Language Pro-
cessing 18.6, pp. 1116–1126. URL: http://articles.ircam.fr/textes/Yeh10a/.

Zivanovic, M., A. Röbel, and X. Rodet (2004). “A new approach to spectral peak classification”. In: Proc.
of the 12th European Signal Processing Conference (EUSIPCO), pp. 1277–1280.

— (2007). “Adaptive Threshold Determination for Spectral Peak Classification”. In: Proc. of the 10th Int.
Conf. on Digital Audio Effects (DAFx’07).

— (2008). “Adaptive Threshold Determination for Spectral Peak Classification”. In: Computer Music
Journal 32.2, pp. 57–67.

PostDoc researchers supervised or co-supervised
[PD1] CanadasQuesada, Francisco (2012). Signal separation and signal transcription applied to

singing voice. Visting PostDoc Researcher at IRCAM, July - Sep. 2012.
[PD2] Özbek, Erdal (2011). Sound reconstruction for clipped or missing audio samples. Visting Post-

Doc Researcher at IRCAM, Oct 2011- Sep. 2012.
[PD3] Zivanovic, Miroslav (2003). Detection, estimation and extraction of non-stationary sinusoids in

noise: application to musical signals. Visting PostDoc Researcher at IRCAM, Jan. 2003 - Juin.
2003.
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[PD4] Zivanovic, Miroslav (2006). Improving state of the art strategies for automatic detection and
classification of signal components into sinusoidal and noise components. Visting PostDoc Re-
searcher at IRCAM, Sep. 2006 - Fev. 2007.

PhD Thesis supervised or co-supervised
[PhD1] Burred, J. J. (2008). “From Sparse Models to Timbre Learning: New Methods for Musical

Source Separation”. Visiting PhD student at IRCAM in 2006, Research on modeling of spectral
envelopes of musical instruments for musical source separation, supervision A. Roebel. PhD
thesis. Communication Systems Group, Technical University of Berlin.

[PhD2] Yeh, C. (2008). “Multiple Fundamental Frequency Estimation of Polyphonic Recordings”. Di-
rector X. Rodet, supervision A. Röbel. PhD thesis. Université Paris 6 (UPMC).

[PhD3] Chang, W. C. (2009). Visting PhD student at IRCAM in 2008, research on tracking of multiple
fundamental frequency candidates in polyphonic music. Supervision A. Roebel, and C. Yeh.
PhD thesis. National Cheng Kung University, Tainan, Taiwan.

[PhD4] Degottex, G. (2010). “Glottal source and vocal-tract separation”. Director X. Rodet, supervision
A. Röbel. PhD thesis. Université Paris 6 (UPMC).

[PhD5] Villavicencio, Fernando (2010a). “Conversion de la voix de haute qualité”. Director X. Rodet,
supervision A. Röbel. PhD thesis. Paris : Université Paris 6 (UPMC).

[PhD6] Liuni, M. (2012). “Automatic Adaptation of Sound Analysis and Synthesis”. Directors X.
Rodet, et M. Romito, supervision A. Röbel. PhD thesis. Università di Firenze, Italie/Université
Paris 6 (UPMC), France.

[PhD7] Chien, W. C. (2013). Visting PhD student at l’IRCAM from Aug. 2013 - Feb.2014, Estimating
the source and filter from singing voice signals. Supervision A. Roebel. PhD thesis. National
Taiwan University, Taiwan.

[PhD8] Hahn, H. (ongoing). “Synthèse et transformation des sons basés sur des modèles de type source-
filtre étendu pour les instruments de musique”. Director X. Rodet, supervision A. Roebel. PhD
thesis. Université Paris 6 (UPMC).

[PhD9] Wang, T. M. (ongoing). Visting PhD student at IRCAM in 2011, Research on separation of
drum signals from polyphonic music, supervision A. Roebel, C. Yeh, M. Lagrange. PhD thesis.
National Cheng Kung University, Tainan, Taiwan.

[PhD10] Coler, H. v. (ongoing). “Expressive Sample Based Sound Synthesis”. Director S. Weinzierl,
supervision A. Roebel. PhD thesis. Technical University of Berlin, Allemagne.

[PhD11] Huber, S. (ongoing). “High Quality Voice Conversion by modelling and transformation of ex-
tended voice characteristics”. Director X. Rodet, supervision A. Roebel. PhD thesis. Université
Paris 6 (UPMC).

[PhD12] Liao, W. H. (ongoing). “Modelling and transformation of sound textures and environmental
sounds”. Directors X. Rodet et A. Su, supervision A. Roebel. PhD thesis. Université Paris 6
(UPMC) and National Cheng Kung University, Tainan, Taiwan.

Master thesis supervised or co-supervised
[MA1] Ehrke, J. (1993). “Dynamische Entwicklung der Topologie Neuronaler Netze. Erprobung von

Verfahren auf der Basis des Backpropagation Algorithmus”. Diplomarbeit (Master), supervision
A. Roebel. MA thesis. Technische Universität Berlin, Allemagne.

[MA2] Assimakopoulos, T. (1994). “Modellierung nichtautonomer dynamischer Systeme durch
verdeckt gesteuerte Neuronale Netze”. Diplomarbeit (Master), supervision A. Roebel. MA the-
sis. Technische Universität Berlin, Allemagne.

[MA3] Behles, G. (1997). “Entwurf und Implementierung einer Echtzeitsoftware zur musikalischen
Gestaltung auf der Basis von granularen und PSOLA Klangverarbeitungsverfahren”. Diplomar-
beit (Master), supervision A. Roebel. MA thesis. Technische Universität Berlin, Allemagne.
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[MA4] Flohrer, T. (1999). “Anwendung von Algorithmen der blinden Signalverarbeitung zur ver-
lustlosen Kompression von Audiosignalen”. Diplomarbeit (Master) (Master), supervision A.
Roebel. MA thesis. Technische Universität Berlin, Allemagne.

[MA5] Starke, S. (2002). “Bestimmung der Grundfrequenz mit Hilfe des Algorithmus zur Maximierung
der Likelihood der harmonischen Auswahl von Maxima”. Diplomarbeit (Master), supervision
A. Roebel. MA thesis. Technische Universität Berlin, Allemagne.

[MA6] Schulz, S. (2002). “Bestimmung der Grundfrequenz mit Hilfe wahrscheinlichkeitstheoretischer
Bewertung von Signalspektren unter Verwendung spektraler Energiedichtemodelle”. Diplomar-
beit (Master), supervision A. Roebel. MA thesis. Technische Universität Berlin, Allemagne.

[MA7] Krauledat, M. (2003). “Fundamental frequency estimation”. Leonardo Internship, director X.
Rodet, supervision A. Roebel. MA thesis. Westfälische Wilhelmsuniversität Münster.

[MA8] Yeh, C. (2003). “Multiple fundamental frequency estimation”. Rapport DEA Master ATIAM,
supervision A. Roebel. MA thesis. Université Paris VI Pierre et Marie-Curie.

[MA9] Champion, G. (2004). “Application du modele additif shape invariant pour la transformation de
la voix”. Rapport DEA Master ATIAM, supervision A. Roebel. MA thesis. Université Paris VI
Pierre et Marie-Curie.

[MA10] Hamnane, S. (2006). “Traitement et représentation temps-fréquence des sons avec résolu-
tion adaptative”. Report DEA Master ATIAM, supervision A. Roebel et R. Gribonval (IN-
RIA/IRISA). MA thesis. Université Paris VI Pierre et Marie-Curie.

[MA11] Pratz, B. (2008). “Projet compilateur MATLAB vers C++ – Mat2MTL”. Master Informatique
(M1), supervision A. Roebel. MA thesis. University d’Orsay Paris XI.

[MA12] Contreras, J. (2009). “Transformation des modulations et des gestes ornementaux dans les sons
musicaux”. Report Master 2 ATIAM, supervision A. Roebel. MA thesis. Université Paris VI
Pierre et Marie-Curie.

[MA13] Houzet, R. (2010). “Formation de flux à partir d’une représentation objet de signaux musicaux
polyphoniques”. Intership Master 2 ATIAM, supervision C. Yeh, M. Lagrange, A. Roebel. MA
thesis. Université Paris VI Pierre et Marie-Curie.

[MA14] Rigaud, F. (2010). “Séparation de la partie percussive d’un morceau de musique”. Stage Master
2 ATIAM, supervision M. Lagrange, A. Roebel and G. Peeters. MA thesis. University Paris VI
– Pierre et Marie-Curie.

[MA15] Hahn, H. (2010). “Generalisierte, grundtonabhängige Modelle für quasi-harmonische Instru-
mente”. Magisterarbeit (Master), supervision A. Roebel. MA thesis. Technische Universität
Berlin, Allemagne.

[MA16] Bonnefoy, A. (2012). “Transcription de la partie percussive d’un morceau de musique”. Stage
Master 2 ATIAM, supervision M. Lagrange, A. Roebel and G. Peeters. MA thesis. Université
Paris VI Pierre et Marie-Curie.

[MA17] Dale, L. (2012). “Automatic Note Detection in Monopohonic Sound Files”. Sciences de
l’Ingénieur, Master Mécanique (M1), orientation Acoustique, supervision A. Roebel. MA the-
sis. University Paris VI – Pierre et Marie-Curie.

[MA18] Ardaillon, Luc (2013). “Singing synthesis”. Stage Master 2 ATIAM, supervision A. Roebel.
MA thesis. Université Paris VI Pierre et Marie-Curie.

[MA19] Saulnier, Hugo (2013). “Synthesis of Sound Textures”. Stage Master 2 ATIAM, supervision A.
Roebel and S. O’Leary. MA thesis. Université Paris VI Pierre et Marie-Curie.

[MA20] Puig, Jordi Pons (2013). “Source separation for music signals”. MA thesis. Universitat Politèc-
nica de Catalunya · BarcelonaTech (UPC).

Research projects supervised or performed
[RP1] Roebel, A. (2000). Adaptive additive synthesis of non-stationary sounds. Research scholarship

at CCRMA, DFG project, Ref RO2277/1-1.
[RP2] Projet ANR - Sample Orchestrator – 2006-2009 (2006). Task 3.1: Enhanced phase vocoder

analysis and transformations in real time applications.
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[RP3] ANR project - Sample Orchestrator II – 2010-2013 (2010). Supervision of research on modeling
timbre spaces of musical instruments by means of extended parameterized source filter models
(WP2).

[RP4] Yeh, Chunghsin, Sèan O’Leary, and Axel Roebel (2010-2012). Automatic midi annotation of
polyphonic music. Ableton. 2010-2012.

[RP5] Projet FP7-ICT-2011, 3DTVS, 3DTV Content Search – 2011-2014 (2011). Direction des travaux
sur 3D Audio & Multi Modal Content Analysis and Description (WP4).

[RP6] Lambert, Jean-Philippe and Axel Roebel (2011). Development of an interface to SuperVP proc-
cessing library in MaxMSP. Cycling’74. 2011-2012.

[RP7] Mitsufuji, Yuki and Axel Roebel (2011-2012). Collaborative research project with Sony Japan.
Source separation in multichannel audio recordings.

[RP8] Projet ANR - PHYSIS, Physically informed and semantically controllable interactive sound syn-
thesis – 2012-2015 (2012). Direction des travaux sur low level sound representation (WP3).

[RP9] ANR project - Chanter – 2014-2017 (2014). Supervision of research on singing synthesis (WP2).

Industrial software licenses of research results
[LI1] Roebel, A. and X. Rodet (2002). Mobistation. Library for real time voice effects and voice

transformation.
[LI2] — (2004). MakeMusic. Library for time stretching and pitch shifting with transient

preservation for music signals.
[LI3] Roebel, A., Xavier Rodet, and Norbert Schnell (2005). Voxler. Library for voice transformation.
[LI4] Roebel, A. (2005). Roni Music. Library for time scaling and pitch shifting with transient preser-

vation for music signals.
[LI5] Roebel, Axel (2008). NeoCraft. Library for transposition and time-scaling with transient preser-

vation for music signals.
[LI6] Roebel, Axel, Snorre Farner, and Xavier Rodet (2008). Xtranormal. Library for voice transfor-

mation.
[LI7] Roebel, A. and X. Rodet (2008). MakeMusic. Library for fundamental frequency estimation for

monophonic instrumental sounds.
[LI8] Roebel, Axel (2009a). MXP4. Library for time scaling and pitch shifting with transient preser-

vation for music signals.
[LI9] — (2009b). UniversSons - MachFive 3. Library for time scaling and pitch shifting with

transient preservation for music signals.
[LI10] Roebel, Axel, Snorre Farner, and Xavier Rodet (2010). Xtranormal. Library for voice transfor-

mation with high level control.
[LI11] Roebel, Axel (2010a). OhmForce. Use of supervp library for sample precise time scaling with

transient preservation for music signals.
[LI12] — (2010b). IRCAMTools-TRaX. Development of a professional audio plugin for music

and voice transformation with high level controls and high sound quality, in collaboration with
the French software development company Flux in Orléans.

[LI13] Lochard, Jean (2013). IRCAM MAX Collection : SuperVP. Use of supervp - max objects for
sound effects patches in Max/MSP.

Software development
[SW1] Röbel, A. and Frédéric Cornu. PM2: command line tool and c++ library for analysis/synthesis

with sinusoidal models. A. Roebel: Scientific direction and software development since 2000,
F. Cornu: software development since 2007.
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[SW2] Roebel, A., F. Cornu, and P. Depalle (2000). SuperVP: command line tool and c++ library for
audio treatment in real time or non real time based on an extended phase vocoder. A. Roebel:
Scientific direction and software development since 2000, F. Cornu: software development since
2007, P. Depalle: initial version before 2000.

[SW3] Röbel, A., Patrice Tisserand, Fabien Tisserand, and Diemo Schwarz. EaSDIF: c++ library for
high-level manipulation of SDIF files. F. Tisserand : initial development, P. Tisserand : software
development 2002 - 2005, D. Schwarz : initial concepts, A. Roebel : software development 2002
-. URL: http://sourceforge.net/projects/sdif/files/Easdif/.

[SW4] Röbel, A. and Frédéric Cornu. MatMTL: c++ template library implementation for matrix and
vector operations allowing efficient implementation of Matlab code in C++. A. Roebel : initial
concept, and software development since 2003, F. Cornu : software development since 2007.

[SW5] Farner, S., X. Rodet, A. Roebel, and F. Cornu (2009). VoiceForger: C++ library for real time
speech and music conversion with high-level control based on SuperVP. X. Rodet: Scientific
direction, S. Farner: Research and Software development until 2009, A. Roebel: Scientific di-
rection and Software development since 2010, F. Cornu: software development since 2010.

[SW6] Yeh, C., S. O’Leary, and A. Röbel. Audio2Note transcription library. A. Roebel: Scientific
direction and software development since 2003, C. Yeh: research and software development
since 2008-2011, S. O’Leary: research and software development in 2012.

Music and film projects
[MF1] Rodet, Xavier, Axel Roebel, and Alain Lithaud (2003). Creation of voices for Tiresia from B.

Bonello. Transformation of the voice of a female actor into a male voice.
[MF2] Roebel, Axel and Joshua Fineberg (2006-2007). Creation of voices for the opera Lolita of J.

Fineberg. Transformation of the voice of the main actor into girls singing voices.
[MF3] Rodet, Xavier, Snorre Farner, Axel Roebel, and Alain Lithaud (2007). Creation of voices for

Les Amours d’Astrée et de Céladon from E. Rohmer. Transformation of the voice of the actor
playing Céladon into a femal voice.

[MF4] Roebel, Axel, Nicolas Obin, and Stefan Huber (2012). Creation of the voice of Marilyn Monroe
for the film "Marilyn" by P. Parreno. Development and application of voice conversion algo-
rithms.

[MF5] Roebel, Axel, Nicolas Obin, Stefan Huber, and Marco Liuni (2012-2014). Creation of voices of
Philippe Petain, Léon Blum, Pierre Laval, Eduard Daladier, and Paul Reynaud, for the studio
Maha Production. Development and application of voice conversion algorithms.
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