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Curve Based Approach for Shape Reconstruction of
Continuum Manipulators

Abstract

This work provides a new methodology to reconstruct the shape of continuum
manipulators using a curve based approach. Pythagorean Hodograph (PH)
curves are used to reconstruct the optimal shape of continuum manipulators
using minimum potential energy (bending and twisting energy) criteria. This
methodology allows us to obtain the optimal kinematics of continuum manipula-
tors. The models are applied to a continuum manipulator, namely, the Compact
Bionic Handling Assistant (CBHA) for experimental validation under free load
manipulation. The calibration of the PH-based shape reconstruction method-
ology is performed to improve its accuracy to accommodate the uncertainties
due to the structure of the manipulator. The proposed method is also tested
under the loaded manipulation after combining it with a qualitative Neural
Network approach. Furthermore, the PH-based methodology is extended to model
multi-section heterogeneous bodies. This model is experimentally validated for
a closed loop kinematic chain formed using two CBHAs manipulating jointly a rope.

Keywords: Continuum manipulators, Shape reconstruc-
tion, Pythagorean Hodograph curves, Continuum kinematics.
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Modélisation par des courbes pour la reconstruction des
formes de manipulateurs continuums

Résumé

Ce travail de thèse propose une nouvelle méthode de modélisation et de reconstruc-
tion de la forme d’une classe de manipulateurs continuum, basée sur la géométrie
des courbes. Les Hodographes Pythagoriens (courbes HP) sont utilisées pour
reconstruire des formes optimales pour ce type de robots, par une optimisation des
énergies potentielles de flexion et de torsion. Cette méthode nous permis de déduire
la cinématique optimale des bras manipulateurs continuum. La validation de la
méthode proposée a été réalisée sur le robot dit trompe d’éléphant ’Compact Bionic
Handling Assistant (CBHA)’. Une calibration a été réalisée sur la méthode de
reconstruction afin d’améliorer les performances en terme de précision et de prendre
en considération les incertitudes dues à la structure du bras manipulateur. La
méthode proposée est également testée dans le cas de la préhension, en s’appuyant
sur une approche qualitative à base de réseaux de neurones. De plus, l’approche HP
est étendue à la modélisation des structures de robots hétérogènes avec plusieurs
sections. Ce dernier a été validé pour une chaîne cinématique fermée, composée de
deux manipulateurs CBHA, manipulant conjointement une corde flexible.

Mots clés: Manipulateurs continuums, Reconstruction des
formes, Pythagorean Hodograph Courbes, Cinématiques continuums.
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1.1 General Introduction

Advances in technology introduce the concept of robotics in the human world. This
technology is growing rapidly according to human needs. Today, there are many
types of robot systems under development or in use. For most of the applications,
a robotic arm (manipulator) is necessary (e.g., supplying food or handling objects,
etc.). In the beginning, rigid robotic manipulators were developed to perform specific
applications (e.g., industrial, military, medical, space and electronics). With the
technology developments since last decade on actuators, sensors, and structures
based on 3D printing, a new type of manipulators with soft behavior have been
born. These manipulators are used to reproduce bio-inspired tasks. A spreading
number of industries and researchers are viewing to the soft manipulators as an
exciting and new technology because it has many notable advantages. The most
pronounced one is the safety provided by their compliant parts. Whenever there
is a need for human-robot interaction (e.g., the interaction of workers with robots,
guides in museums, etc.), soft manipulators serve as an additional safety layer.
Also, there are some applications where soft manipulators are required (e.g., in
the agricultural application: to pick fruits and vegetables, in the medical field:
lifting and carrying patients, minimally invasive surgery, etc..). Figure 1.1 shows an
evolution from rigid robotic manipulators to the soft manipulators. To get flexible
motion, rigid manipulators are evolved to soft manipulators with a transition phase
of hyper-redundant manipulators. Soft manipulators have the following properties:
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Figure 1.1: Evolution from rigid to soft manipulators

• Mechanical structure made by rapid manufacturing;

• Low cost because of the use of soft materials (e.g., polyamides, silicon, carbon
fibers, etc.);

• Bionic gripper which makes them to interact with the delicate environment;

• Lightweight structure

These properties made them more challenging these days, where various research
topics are launched.
Many decades have been passed involving the research in the field of modeling and
controlling of soft manipulators. Still, to get an accurate model for such type of
manipulators is an open problem. Development of a generic algorithm to model
each type of soft manipulators is not an easy task. The main reason behind this
is the bio-inspiration to develop the soft manipulators. Nature offers tremendous
shapes and motion mechanisms from which we gather information to design such
manipulators. To reach the main goal to control the soft manipulators accurately,
it is essential to reconstruct their behavior precisely. As per the application, the
behavior can be kinematic or dynamic. With continuum structure, these manip-
ulators are described by an infinite number of degrees of freedom. This makes it
complex to model such manipulators without considering assumptions. Thus, it
is possible to limit the number of degrees of freedom but keeping it high to con-
verge to hyper-redundant manipulators. The other main problem in case of such
manipulators is their inherent hyper-redundancy due to their soft material which
makes them possible to reach a particular position in their workspace with different
possible postures. Therefore, along with the kinematic models, the optimal shape
approximation of these manipulators is equally important. Figure 1.2 shows the
manipulators in the order of the increase in the degrees of freedom.
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Figure 1.2: Increase in the degrees of freedom in the manipulators

1.2 Framework and Context of the Thesis

This Ph.D. thesis is prepared in the research group "Méthodes et Outils pour la Con-
ception Intégrée de Systémes (MOCIS)"1, of the laboratory "Centre de Recherche
en Informatique, Signal et Automatique de Lille (CRIStAL) (UMR CNRS 9189)"2.
This work has been developed in the framework of a joint collaborative research
project between CNRS in France and DST (Department of Science & Technology)3

in India (PRC CNRS-DST 2016-2018). This project aims to develop a dynamic
model for collaborative mobile bionic robots. The robot under consideration is
’Robotino XT’ developed by FESTO-DIDACTIC [fes 2018]. This robot consists of
a soft bionic arm called Compact Bionic Handling Assistant (CBHA), attached to
an omni-directional mobile base, called Robotino. The present work focuses on de-
termining the behavior (shape) as well as kinematic models of the soft-continuum
manipulators. This work is developed under the supervision of Mr. Rochdi Mer-
zouki, Professor at Ecole Polytechnique Universitaire de Lille.

1.3 Thesis Objective

Soft-continuum manipulators are very popular these days due to the possibility of
their interaction with biological environments (medical and treatment applications
etc...). Due to the need for accurate models for these manipulators, there are con-
tinuous advancements in this research field. The present work proposes a novelty in
the area of soft-continuum manipulators.
The main goal of this Ph.D. work is the development of an optimal
model to approximate the shape of the soft-continuum manipulators us-
ing Pythagorean Hodograph (PH) curves [Farouki 2008], leading to the
calculation of their kinematic models (forward and inverse). This work
has been applied to the open loop kinematic of the Compact Bionic Han-

1https://www.cristal.univ-lille.fr/?rubrique27&eid=24
2https://www.cristal.univ-lille.fr
3https://www.dst.gov.in
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dling Assistant (CBHA) manipulator and closed loop heterogeneous kine-
matic chain for experimental validation.
The purpose of this model is to approximate the shape of the manipulator which can
be further used for future applications (e.g., obstacle avoidance, dynamics, etc..).

1.4 Research Problem Statement

Soft-continuum manipulators are increasingly used in scientific research in the last
decade. They are inspired from biological entities like elephant trunk [Zhao 2010],
octopus [Zheng 2014] etc... To improve the closed-loop control of soft-continuum
manipulators, it is essential to develop accurate models, starting from the optimal
shape modeling, kinematic models and converging to the dynamic models.
The hyper-redundant nature of soft-continuum manipulators allows them to have
multiple postures for a single pose in the task space. If r(h) is the curve represent-
ing the shape of a single soft-continuum manipulator, reconstructed using the four
known variables Ps (position vector at the base of the manipulator), ds (direction
vector at the base point Ps), Pf (position vector at the tip of the manipulator) and
df (direction vector at the tip point Pf ) as shown in Fig. 1.3, the problem statement
to model the n number of links in a kinematic chain using n number of curves rn(h)
is stated as

Psn(xsn , ysn , zsn), dsn(dxsn , dysn , dzsn)
rn(h)→

Pfn(xfn , yfn , zfn), dfn(dxfn , dyfn , dzfn)
(1.1)

where h represents the curvilinear coordinate along the curve. In our case, the prob-
lem of reconstructing the optimal posture of soft-continuum manipulators, having
length L and potential energy E, is formulated as follows:

minimize E =

∫
(ω2(L))dL (1.2)

ω =
√
κ2 + τ2 (1.3)

subject to Lmin ≤ L ≤ Lmax (1.4)

Where ω is the total bending of the soft-continuum manipulator, it is the com-
bination of its bending and twisting energy. The curvature and the torsion are
represented by κ and τ respectively.

Kinematic modeling of soft-continuum manipulators can be classified into two
approaches: quantitative and qualitative. Quantitative approaches are model-based
approaches while the qualitative approaches are learning-based approaches. Due to
their soft materials and complex structures, modeling of continuum manipulators is
a cumbersome task.
Generally, the forward kinematic model imposes a specific posture to the manip-
ulator according to the known joint coordinates L(h) to calculate the end-effector
position. h represents the curvilinear coordinate along the curve.

Pf = g[L(h)] (1.5)
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In the case of the soft-continuum manipulators, the joint space consists of the

Figure 1.3: Soft-continuum manipulator

achievable lengths of the various sections of the manipulator as shown in Fig. 1.3.
Therefore, by fixing the values of the input lengths, the tip position (Pf ) of the
manipulator can be determined. The inverse kinematics model of a soft-continuum
manipulator is stated as:

L(h) = g−1[Pf ] (1.6)

In this model, we need to compute the joint lengths of the manipulator for a partic-
ular tip position in its workspace. But the continuum manipulators can have infinite
solutions (postures) to reach the tip position due to their inherent hyper-redundancy.
Therefore, at first, it is an essential task to compute the optimal posture of the soft-
continuum manipulators.
Then, it is possible to answer the Golden Circle questions: Why, How, What related
to the contributions of this Ph.D. thesis:
Why this research? Real-time optimization of the posture and kinematics of
soft-continuum manipulators.
How to model? Geometrical curve-based modeling for the shape recon-
struction and the kinematics computation of the soft-continuum manip-
ulators.
What approach? PH polynomial curves reconstruct the posture, based on an
optimal solution of the potential energy, with a low computational cost.
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1.5 Contribution Positioning in the Framework of the
Group Activities

The present work is performed for a class of soft-continuum manipulators named
Compact Bionic Handling Arm ’CBHA’. The latter has been studied in previous
research works developed in our group: Since 2012, the MOCIS group has been
working on the kinematic modeling of a class of soft manipulator in open chain
and with a continuum behavior. These robot structures, issued from 3D printing
are lightweight, flexible and have compliant material properties. However, by their
hyper-redundant characteristics with an unusually high number of degrees of free-
dom, it is difficult to achieve control performance described by a rigid manipulator.
Thus, the work of the group in recent years has focused on the development of
kinematic models of CBHA, optimized for real-time applications, using different
approaches: quantitative using arc geometry methods [Escande 2015] under the as-
sumption of constant curvature; qualitative using learning approximation of neural
network for both modeling and control [Melingui 2015]; hybrid using quantitative
method to approximate the behavior of the CBHA, emulated by a succession of
serial-parallel robot-section, with a qualitative neural network-based approach to
approximate the solving of the kinematic model [Lakhal 2016]. Finally, computa-
tional mechanics using the finite element method [Bieze 2018].

1.6 Main Contributions

The main contributions of the present work are:

1. The shape of the soft-continuum manipulators is modeled using PH curves.
PH curves approximate the optimal shape using minimum potential energy
(bending as well as twisting energy) criteria. Further, the PH reconstructed
shape is improved to accommodate the uncertainties due to the structure of
the manipulator.

2. PH shape reconstruction allows to calculate the optimal inverse kinematic so-
lution for the purpose of control at the task space. Further, the forward kine-
matic model is deduced in the free-load case and performed in case of loaded
manipulator after combining with a qualitative neural network approach.

3. The PH approach is extended to model multi-section heterogeneous bodies.

4. Experimental validation of the presented approach is done on a class of soft-
continuum manipulators called CBHA. Then a closed loop heterogeneous kine-
matic chain is formed with two CBHA manipulators holding a rope (a passive
link) which illustrates the application of skipping rope. This chain is built to
validate the model of multi-section heterogeneous bodies.
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erative Bionic Arms. 13th European Workshop on Advanced Control
and Diagnosis (ACD 2016). Journal of Physics: Conference Series (vol.
783, No.1, p. 012056), IOP Publishing.
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1.8 Manuscript Organization

The document is organized in the following five chapters:

• The second chapter summarizes the state of the art in the area of shape as
well as kinematic models developed for the soft-continuum manipulators.
This chapter allows to make a concrete positioning of our work compared
to the existing literature in the field of modeling soft-continuum manip-
ulators.

• The third chapter presents the shape reconstruction of soft-continuum
manipulators using different curve formulations. This chapter discusses
the theory of different curves for the shape reconstruction and their appli-
cation to the CBHA. Also, the improvement in the reconstructed shape
is performed using experimental data issued from the external tracking
system.

• The fourth chapter deals with the kinematics of the soft-continuum ma-
nipulators based on PH-curves approach. Forward, as well, Inverse kine-
matics are presented using PH curves for both freeload and loaded ma-
nipulators. Further, the experimental validation of the discussed ap-
proach is done for the CBHA manipulator.

• The fifth chapter expands the proposed PH-based approach for overall
shape reconstruction of multi-section heterogeneous continuum manipu-
lators. The experimental validation is presented for a closed loop hetero-
geneous kinematic chain formed using two CBHA manipulators holding
a passive segment described by a rope.

• Finally, the sixth chapter summarizes the conclusion of the main contri-
butions and the future prospects of the work.
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2.1 Introduction

Soft-continuum manipulator robots present a rapidly growing research field.
Various research works are developed in this area to overcome the problems
of modeling and control of this class of robots. In this chapter, the soft-
continuum manipulators are defined in the context of our work. The State
of the art concerns the shape reconstruction and kinematic modeling of soft-
continuum manipulators. It allows to make a positioning of our work in the
framework of the current literature.
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2.2 Soft-continuum Manipulator

2.2.1 Definition

It is better to start with the conventional rigid manipulators to reach to the
concept of soft-continuum manipulators. The conventional rigid manipula-
tors are composed of serially connected rigid links joined by specific joints. In
these manipulators, by knowing the lengths of the links, the relative positions
of the joints can be deduced w.r.t. a reference frame [Siciliano 2016]. Let us
consider that we begin adding more rigid links to the rigid manipulators until
our manipulator will have more degrees of freedom 1 than the ones required
to place an object in the space. This type of manipulators are known as
hyper-redundant manipulators in the literature [Hirose 2004] (Fig. 2.1). If we
are further adding more links to the manipulator till the point, the number of
links approaches to infinite, and their length approaches to zero, the robot will
finally approach to what is known as continuum manipulator. The continuum
manipulators made up of soft material are known as soft or soft-continuum
manipulators. There are manipulators which are not made up of soft material
but are continuum, e.g. a continuum manipulator used for endoscopy purpose
(Fig. 2.2).
The definition provided may imply that all of the degrees of freedom in

(a) (c)(b)

Figure 2.1: (a) A rigid industrial manipulator (ABB IRB 2400L), (b) A hyper-
redundant robot, the transition phase between rigid and continuum manipulators
[Vujović 2016], (c) A soft-continuum Air-Octor manipulator [Walker 2013]

1In robotics, two types of degrees of freedom exist; active and passive. Passive degrees of
freedom cannot be directly controlled and conform passively to the motion of the robot, while
active degrees of freedom are controlled to provide the required forces to move the manipulator.
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Figure 2.2: Two section continuum robot design for endoscopy [Kato 2013]

a continuum manipulator are controllable; generally, it is not the case. Of-
ten the continuum manipulators are bio-inspired by the functionality of bi-
ological limbs, octopus tentacles [Zheng 2014] [Zhao 2010], elephant trunk
[Behrens 2012], and the other mammals. Continuum manipulators have a
long structure without any identifiable joints, which can continuously bend
via elastic deformation [Robinson 1999].

2.2.2 Soft-continuum Robot Applications

Soft-continuum manipulators are becoming more popular nowadays. The very
first prototype of the continuum manipulator [Anderson 1967] suggested their
use in the inspection [Tonapi 2014], search and the rescue tasks [Li 2017]
[Bajo 2010].
The characteristics of soft-continuum manipulators, their compact structure,
compliant nature, light-weight structure, make them suitable for many ap-
plications. The profound use of soft-continuum manipulators is in the work
environment where humans have to interact with the robots. This involves
the application of continuum robots in the medical field. Applications, such
as, endoscopy [Fraś 2015] [Conrad 2013] [Cianchetti 2013], skeleton trauma
treatment [Alambeigi 2017] [Wilkening 2017] and minimally invasion surgery
[Orekhov 2016] [Qu 2016] [Mahoney 2016] have proved the use of continuum
manipulators in the medical field [Burgner-Kahrs 2015].
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2.2.3 Classification

Continuum manipulators can be broadly classified according to the type of
backbone they possess. Therefore, they are classified as single or multi-
backbone manipulators. Single backbone manipulators (Fig. 2.4 (left)) use to
have a central structure along the manipulator which supports the passage of
the actuation system along the body of the manipulator [Burgner-Kahrs 2015].
Many single backbone manipulators have tendons along their structure, which
are spaced by the discs attached to the backbone as a way of transmission. The
end-points of the tendons define the length of the bending section. Fig. 2.4
(right) shows a multi-backbone continuum manipulator. These manipulators
normally consist of a parallel arrangement of the elastic elements constrained
in a way.

Soft-continuum robots are bio-inspired robots. The classification of bionic
manipulators is shown in Fig. 2.3.

Actuation

Structure

Shape

FunctionalityBionic Manipulators

ContinuumDiscrete

Hard Robots with 
Soft CapabilitiesSoft RobotsSerpentineConventional 

Robots

ExtrinsicHybridIntrinsic

Figure 2.3: Classification of bionic manipulators

Our work deals with the continuum manipulators having soft structure.
Therefore another classification of the continuum manipulators is based on the
actuation used. It can be intrinsic, extrinsic or hybrid. As per classification
(Fig. 2.3), the soft-continuum manipulators can have either intrinsic or hybrid
actuation. When the actuation system is embedded in the structure of the
continuum manipulator and applies force to the backbone directly, it is called
intrinsic actuation system. The BHA manipulator (Fig. 2.5(b)) is an intrinsic
pneumatically actuated manipulator.
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Figure 2.4: Single and multi backbone continuum robots: (left) A single backbone
tendon-drive steerable catheter [Kato 2016]. (right) Multi backbone manipulator
[Bajo 2016]

(a)

(c)

(b)

Figure 2.5: Different types of actuations: (a) Hybrid actuation- The KSI manipu-
lator [Immega 1995], (b) The BHA intrinsic type actuated manipulator [Rolf 2012],
(c) The Clemson tentacle-extrinsic actuated manipulator [Gravagne 2001]
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Extrinsic actuation is defined as the actuation which applies torque and
force to the backbone of the manipulator from outside of the structure of the
robot. They apply localized force via a mechanical link to the backbone (Fig.
2.5(c)).

Hybrid actuation is the actuation which has both intrinsic and extrinsic
actuation. Generally, the central cavity of the manipulators having extrinsic
actuation is actuated by an actively controlled actuator. The example of a
hybrid actuated KSI manipulator is shown in Fig. 2.5(a). Many designs of
hybrid actuated manipulators have pneumatic actuation in the cavity of the
structure [Chirikjian 2015], [Ataollahi 2017].

2.3 Shape Estimation of Soft-continuum Manipulators

Soft-continuum manipulators have enormous advantages which enable their
use in many applications. Their ability to manipulate through confined spaces
is extensively used in many applications like medical, military, and nuclear,
etc. Many research works are devoted to model kinematics and dynamics of
the soft-continuum manipulators and are continuously developing to enhance
their accuracies, for the purpose of control strategy development. Shape esti-
mation of soft-continuum manipulators still has very limited literature. The
classification of the shape estimation approaches for the soft-continuum ma-
nipulators is as shown in Fig. 2.6.

2.3.1 Sensor Based Approaches

Most of the literature regarding shape estimation of the soft-continuum ma-
nipulators covers sensor based approaches. They need to install the specific
sensors to measure and estimate the shape of the robots. Therefore, the place-
ment and the dimension of these sensors is important according to the type of
the robot. Also, these approaches request associated investments. Following
existing works using different types of sensors are discussed as follows:

2.3.1.1 Fiber Bragg Gratings (FBGs)

FBG sensors are commonly used sensors in the field of shape estimation. A
small sized sensor is introduced in [Araújo 2001] which can be embedded in
any layer of a composite material. The configuration of this sensor is based on
the intrinsic bend sensitivity of Bragg gratings written in D-type fibers. The
sensor gives the information of the curvature of the manipulator at the points
at which the sensors are embedded. Further, curvature information is used for
the shape reconstruction of the soft-continuum manipulators. These sensors
are suitable to use in smart structures due to their small size. For the first
time, [MacPherson 2006] used the multiplexed Fiber Bragg grating sensors
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Shape Estimation of Continuum Robots
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based Approach

Figure 2.6: Positioning of our work to reconstruct the shape of the soft-continuum
manipulators

into a multi-core fiber for the shape estimation. This work is demonstrated
for the application to the structural monitoring process. In the medical field,
[Yi 2007] proposed the shape estimation of the colonoscope while it is pro-
ceeding inside the colon. The design of the sensor is discussed along with
its positioning. The sensor provides the information of the curvature and
torsion, and further, the principle based on differential geometry is used for
curve-based shape reconstruction. A Bragg gratings based optical fiber bend
sensor is used in an eccentric core polymer optical fiber [Chen 2010]. This
sensor provides high bend sensitivities and the wide range of curvature mea-
surements. In medical, for the MRI process, 3-D shape of the needle and its
deflection is estimated using FBG sensors. The needle is used with a fixture,
and the fixture has the grooves to accommodate the optical fibers. The sen-
sors provide the curved profile and the deflection of the tip of the needle once
it is inserted into the tissues. Three FBG sensors are used, and the placement
of the sensors is discussed. The work of [Roesthuis 2014] provides a proto-
type of a continuum nitinol needle embedded with 12 FBG sensors. FBG
sensors provide the axial strain in the needle which gives the curvature of the
needle. Further, the 3-D shape of the needle is estimated using kinematic
and mechanics based model. The shape estimation of Dexterous Continuum
Manipulators (DCMs) is proposed by sensing their curvatures using FBGs in
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[Liu 2015]. Fig. 2.7 shows the shape estimation of the DCM used for min-
imally invasive surgery. While advancing in this direction, [Farvardin 2016]

Figure 2.7: Shape sensing for osteolysis dexterous manipulator [Liu 2015]

tested the FBGs based shape estimation of soft-continuum manipulators with
free bending and also in the presence of obstacles.

2.3.1.2 Vision System

There are some works which deal with the shape estimation of the soft-
continuum manipulators using the vision system as an external sensor.
[Hannan 2005] used external camera based shape reconstruction of the contin-
uum manipulators. The image processing is used from a high-speed camera.
This work computes the constant curvature of each section of the elephant
trunk manipulator. Further, serial concatenation of shapes gives the estima-
tion of the full shape of the manipulator (Fig. 2.8).

[Vandini 2017] proposes a novel approach of shape estimation of concen-
tric tube robots using vision systems for fluoroscopic images. Optical markers
are used for tracking the efficient shape of a soft-continuum pneumatic ma-
nipulator. The vision system is used to track the attached markers to the
manipulator (Fig. 2.9). This approach works regardless of the effect of the
unknown forces and the kinematics uncertainties. Continuous detection of the
shape estimation of the soft-continuum manipulator is provided by [Fraś 2017]
using depth images provided by a Kinect based sensor. This vision system
detects the central axis of the soft-continuum manipulator to reconstruct its
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Figure 2.8: Elephant’s trunk robotic manipulator [Hannan 2005]

3-D shape and also approximates the orientation of each point that lies on it.
The numerical representation of the surface is also generated. This approach
is used for a cylindrical manipulator named STIFF-FLOP manipulator (Fig.
2.10). But in this case, sometimes the type of material of the continuum ma-
nipulators creates the problem in detection. Also, the data is not completely
retrieved from the edges of the objects.

Figure 2.10: The STIFF-FLOP manipulator [Fraś 2017]
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Figure 2.9: Marker tracking using vision system [Fraś 2016]

2.3.1.3 Electromagnetic and Magnetic Sensors

[Song 2015a] presents a new approach to model the shape of the multiple bend-
ing sections of wire driven soft-continuum manipulators. The information of
the joints of the soft-continuum manipulator is gathered by using the Electro-
magnetic Tracking Method (ETM). Electromagnetic sensors are used at the
joints to notice the position and the orientation information. Consequently,
using this information, quadratic Bezier curves are used to reconstruct the
shape of the soft-continuum manipulator section by section. Fewer sensors
are used as compared to FBG sensors. Further, this work is extended in
[Song 2015b] and cubic Bezier curves are used. The work of [Wang 2017] in-
volves the mounting of the magnets at the end of each joint of the concentric
tube continuum manipulator, and its pose is estimated by using a magnetic
positioning system. Then third order Bezier curves are used to reconstruct
the shape of the soft-continuum manipulator using the sensor data.

2.3.1.4 Other Sensors

[Searle 2013] proposes the design of a novel optical sensor to measure the
bending curvatures of the soft-continuum manipulators based on light in-
tensity modulation. [Trivedi 2014] presents the three methods to sense the
shape of the soft-continuum manipulators based on geometrically exact mod-
els. The three cases are: 1) The mounting of load cells at the base of the
manipulator. 2) The use of cable encoders running through along the ma-
nipulator. 3) Inclinometers mounted at the end of each section. This work
uses OctArm VI for experimental validation. A low cost twisted coil sensor
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is presented in [Abbas 2017] which can leverage the shape reconstruction of
the soft-continuum robots. This sensor gives resistance as an output, and a
model is discussed to predict the external force and the displacement of the
manipulator from this resistance.

2.3.2 Mathematical Model-Based Approaches

There is less work in case of mathematical models to reconstruct the shape of
the soft-continuum manipulators without using sensors.
In [Gravagne 2000], a relationship is established between the shape of a hyper-
redundant planar manipulator and its actuators. This is achieved by mapping
the curvature functions of the backbone curve with the lengths of tendon
cables, using a wavelet decomposition method. The redundancy is handled
using the minimum bending of the manipulator. This method uses a 2-D
tendon driven manipulator. In [Mochiyama 1998], a correspondence between
a hyper-redundant robotic manipulator (Fig. 2.11) and a geometric curve has
been established by solving a non-linear optimization problem called ’shape
inverse problem’. In this work, the ill conditions and the shortcut problem is
solved as shown in Figs. 2.12, 2.13.

Figure 2.11: Hyper-redundant manipulator [Mochiyama 1998]
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Well-Ordered ill-Ordered

Figure 2.12: Ill Order [Mochiyama 1998]

Non-Shortcut Shortcut

Figure 2.13: Shortcut [Mochiyama 1998]

The backbone shape of a hyper-redundant manipulator has also been
solved using the modal approach and thereby using a fitting algorithm to
join the various sections of a discrete 30 DOF manipulator [Chirikjian 1994].
The backbone curve is solved to compute the inverse kinematic of the hyper-
redundant manipulator (Fig. 2.14). Hyper-redundancy resolution is per-
formed to select one optimal solution.

Figure 2.14: Backbone reference frame [Chirikjian 1994]
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Figure 2.15: (a) Planar continuum manipulator with embedded FBG sensors (b)
Rigid-link model of the continuum manipulators (c) Reconstructed shape using FBG
sensors [Roesthuis 2016]

[Roesthuis 2016] presents an approach to model the shape of a planar con-
tinuum manipulator. The manipulator is assumed to be made up of a series
of rigid links connected through flexible rotational joints. The joint angles of
the manipulator are calculated using a rigid-link model. Therefore, the shape
of the manipulator is estimated by using the formulations from the rigid link
manipulators. The approach is tested for the planar continuum manipulator
having two bending sections (Fig. 2.15). As shown in Fig. 2.15, FBG sensors
are embedded in the manipulator to reconstruct its shape. This sensor-based
reconstructed shape is used for the closed-loop control of the manipulator.
The steering of the manipulator is tested for the static obstacles and also the
straight movement of the manipulator with moving obstacles. Work is done
by [Jones 2006] to visualize the soft-continuum manipulators in 3-D using
NURBS-based model. This work mainly emphasizes in real-time drawing and
display of the continuum manipulators. A circular arc model is used to show
each section of the manipulators. Fig. 2.16 shows the model of the trunk
displayed using NURBS-based model.
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Figure 2.16: Comparison of the Air-Octor continuum trunk with the NURBS-based
model [Jones 2006]

2.3.3 Work Contextualization and Contributions

The state of the art to reconstruct the shape of the continuum manipulators
was presented in section 2.3. Most of the works use sensors to reconstruct the
shape. No doubt we can get better accuracy by using sensors, but they have
the following drawbacks:

• In some fields, the continuum manipulators have to work in a confined
environment, and there is no place for sensor placement with the manip-
ulator.

• Sometimes there is a low signal to noise ratio in the data from the sensors,
and it is difficult to filter.

• The assembly of the sensors is a time-consuming process, and the geom-
etry of the sensors is trial dependent.

There is less work regarding mathematical model-based approaches to es-
timate the shape of the soft-continuum manipulators.
Figure 2.6 shows the positioning of our work regarding 3-D shape estimation of
the soft-continuum manipulators using mathematical model-based approach.
We used Pythagorean Hodograph (PH) curves to reconstruct the shape. This
work does not require any sensor to reconstruct the optimal shape. The sen-
sors can be used to check the performances and to validate the modeling
approach. The shape reconstruction of the soft-continuum manipulators is
presented using PH curves-based approach for both freeload as well as under
load conditions.
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2.4 Kinematic Modeling of Soft-continuum Manipula-
tors

Kinematics of soft-continuum manipulators is extensively explored in the
literature using qualitative, quantitative and hybrid approaches. The re-
view on the kinematics of the soft-continuum manipulators is discussed by
[Walker 2013], [Webster III 2010], [Chirikjian 2015], [Chawla 2018]. These
works discuss the different approaches to model continuum manipulators. In
[Godage 2011], the work has been done to model kinematics of multi-section
continuum manipulators using mode shape functions. This approach solves
the singularity problem associated with the previously available models. In
our case, the class of soft-continuum manipulators used for the realization of
this thesis is Compact Bionic Handling Assistant (CBHA). The long or ex-
tended version of this manipulator is called BHA (Bionic Handling Assistant).
The state of the art regarding kinematic models developed for this class of
manipulators is as follows:

2.4.1 Qualitative Approaches

Due to the complexity involved in the modeling of soft-continuum manipu-
lators, qualitative approaches, which aim to learn the kinematic problem by
using learning algorithms, have a significant role due to their ability to by-pass
the modeling task. These approaches are based on the input-output data de-
rived from experimentation and can provide accurate and fast approximations
to the kinematic solutions.
[Melingui 2015] proposes the approach which makes use of Multilayer Per-
ceptron (MLP) and Radial Basis Function (RBF) Neural Networks for the
approximation of the forward kinematic model (FKM) of CBHA trunk. Qual-
itative approaches divide the configuration space into several classes according
to the operation modes and attempt to determine mathematical relationships
between the effects (sensor measurements) and the causes (actuators inputs)
using learning techniques. They generally yield accurate models when the
database is well built, and the suited technique is chosen. In the case of the
inverse kinematics of the CBHA robot, a Distal Supervised Learning (DSL)
technique [Jordan 1992] was implemented in [Melingui 2015]. DSL technique
proposes learning first the forward kinematic model, and second to exploit
the latter to train the inverse kinematics indirectly while keeping fixed the
fitted parameters of the forward kinematic model. By doing so, only one of
the possibly many solutions is chosen for a given input. However, without ad-
ditional information (lazy arm movement, minimum end-effector positioning
error, etc.) of a particular structure of the input-to-output mapping, there
is no way of predicting which of the possibly infinite set of inverse models
the procedure will find. Therefore, a minimum norm of the tube lengths was
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Figure 2.17: Positioning of our work to model kinematics of the soft-continuum
manipulators

added as a penalty term into the inverse objective function in [Melingui 2015]
to select one particular inverse model from the redundancy manifold.
[Rolf 2014] introduces the inverse kinematics of the BHA manipulator by us-
ing a qualitative approach based on online goal babbling. The idea of this
model is to learn the inverse model of the BHA manipulator (3 sections), a
long version of the CBHA (2 sections), which suggests the joint parameter
lengths to reach to the target in the task space.

2.4.2 Quantitative Approaches

Quantitative approaches give the analytical model-based solutions of the kine-
matics. The FKM of the CBHA manipulator is calculated using a geometric
quantitative method [Escande 2015]. Assumptions used in this method are;
1) CBHA’s shape is modeled as two cylinders 2) CBHA is considered as a
non-extensible arm 3) The curvature of the tubes is assimilated to a perfect
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arc of a circle 4) No torsion because tubes are interconnected rigidly at each
vertebra. The equations 2.1 are deduced from the geometrical model of CBHA
as in fig. 2.18:

Figure 2.18: Geometrical representation of one section of CBHA [Escande 2015]
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Where, i refers to the number of the tube, j refers to the number of the
section, rj refers to the curvature radius of the jth section, φj refers to the angle
between x-axis and the projection of the jth section, θj refers to the curvature
angle of the jth section and Lj refers to the length of the jth section. The final
position of the manipulator is calculated by using the above equations and
transformation matrix.
The transformation matrix for one section of CBHA is eq. 2.2.

j−1
j T =

[
R P
0 1

]
(2.2)

Here,

P =

rjcϕj(1− cθj)rjsϕj(1− cθj)
rjsθj


and,
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R =
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cϕjsϕj(cθj − 1) s2ϕjcθj + c2ϕj sϕjsθj

cϕjsθj −sϕjsθj cθj


Where c and s are cos and sin respectively.

The forward kinematic equations are not easy to invert. Therefore, the
Newton Raphson approach is used to approximate the solution [Singh 2017].
The Newton Raphson Method is an iterative method to find the best approx-
imation to the roots of a function. The functions used for the calculation
of the inverse kinematic solution of the CBHA, are taken from the forward
kinematics of the CBHA [Escande 2015].
Equations 2.3 indicate the x, y and z coordinates of the end point of a two-
section CBHA when viewed from the base coordinate frame. These equations
are derived from the Forward Kinematic Model of the CBHA Manipulator us-
ing transformations from workspace to tube space, through the configuration
space. 

x = r1(−Cθ1 + 1)Cφ1 + r2((Sφ1)
2 + (Cφ1)

2Cθ1)
(−Cθ2 + 1)Cφ2 + r2(Cθ1 − 1)(−Cθ2 + 1)
Sφ1Sφ2Cφ1 + r2Sθ1Sθ2Cφ1

y = r1(−Cθ1 + 1)Sφ1 + r2((Sφ1)
2Cθ1 + (Cφ1)

2)
(−Cθ2 + 1)Sφ2 + r2(Cθ1 − 1)(−Cθ2 + 1)
Sφ1Cφ1Cφ2 + r2Sφ1Sθ1Sθ2

z = r1Sθ1 − r2(−Cθ2 + 1)Sφ1Sθ1Sφ2 − r2
(−Cθ2 + 1)Sθ1Cφ1Cφ2 + r2Sθ2Cθ1

(2.3)

Here C and S represent cos and sin respectively.
The eqs. 2.3, 2.1 are used to approximate the inverse kinematic solution using
the Newton Raphson approach.
[Bieze 2018] introduced the FEM-based approach to model soft-continuum
manipulators under quasi-static condition. The problem of differential equa-
tions with boundary conditions is studied using a FEM approach. Discretiza-
tion is used to reduce the number of degrees of freedom of continuum ma-
nipulators. The methodology explains the models of sensors, actuators, and
end-effectors of soft-continuum manipulators. These models are used to solve
the kinematics of the CBHA manipulator.
[Rolf 2012] modeled each section of the BHA manipulator as the torus seg-
ment as shown in Fig. 2.19. If the segment has the radius b, the deformation
of the segment can be represented by r (radius) of the torus deformation, and
the angle θ representing which part of the torus represents the segment and
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φ represents the orientation of the torus in the XY-plane. Using the three
lengths of the bellows of the first section of the BHA, geometric parameters
r, θ and φ can be constructed. The backbone length of the segment is l and
is given as:

l =
l1 + l2 + l3

3
(2.4)

g = sqrt(l21 + l22 + l23 − (l1l2 + l1l3 + l3l2)) (2.5)

Then the geometric parameters can be computed as

θ =
2g

3b
(2.6)

r =
3lb

2g
=
l

θ
(2.7)

φ = tan−1(

√
3(l3 − l2)

l3 + l2 − 2l1
) (2.8)

These equations are for the first section of the manipulator. Further using
coordinate transformations from the end frame to the base frame, FKM of
the BHA manipulator is achieved.
[Mahl 2014] presents a methodology to model the continuum manipulators
assuming a piecewise constant (variable) curvature of the backbone of the
manipulator. At first, the forward and the differential forward kinematics
are deduced. This approach defines each section of the manipulator as a
series of the finite number of circular arcs. To include the redundancy during
the inverse kinematic problem, the solution is provided at the velocity level
through the use of a robot’s Jacobian matrix which is calculated analytically.
This method needs the two following conditions to be satisfied to validate it
for a manipulator:

• The manipulator consists of a finite number of serially connected sec-
tions.

• Each section has three degrees of freedom, two for spatial bending and
one for extension of the manipulator. Torsion is not considered in the
model.

This approach is applied to the BHA manipulator and validated experimen-
tally.

2.4.3 Hybrid Approach

The Hybrid Approach uses quantitative (Geometric) as well as qualitative
(Neural Network) approaches to solve the inverse kinematics of the CBHA
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Figure 2.19: Representation of segment of BHA by torus segment [Rolf 2012]

[Lakhal 2016]. CBHA is considered consisting of 17 vertebrae; therefore in
this approach, each inter-vertebra is modeled as a parallel robot of type 3UPS-
1UP (Universal-Prismatic-Spherical) as shown in Fig. 2.20. Three kinematic
serial UPS joints do the control of the position and the orientation of the upper
vertebra relative to the lower vertebra, but only the prismatic joints are active.
In the case of the CBHA, the translation of the upper vertebrae relative to
the lower vertebrae is perpendicular. Moreover, the torsion is not possible.
For these constraints, the serial UP is used. The inverse kinematic equations
(IKE) of parallel robots are easy to establish with some elementary geometric
relationships [Lakhal 2016]. The model of an inter-vertebra, represented by
eq. 2.9, is obtained by calculating the joint variable qm,k, as shown in the
Fig. 2.20, where m=1,...,3 is the prismatic active joint and k=1,...,17 is the
vertebra, corresponding to the position Zk and orientation θk (pitch angle)
and ψk (roll angle) of the upper vertebra relative to the lower vertebra.
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(2.9)

Here C, S and r represent cos, sin and radius of vertebra respectively.
Unlike the IKE, the solution of the forward kinematic equation is relatively
complex, because eqs. 2.9, are highly nonlinear. Thus, two neural networks
are generated to provide the approximated solution of the IKE, allowing
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to obtain the position and orientation from the joint variable qm,k, as
shown in Fig. 2.21. Then, the transformation matrix k

k+1T of the upper
vertebra frame relative to the lower vertebra, represented by eq. 2.10,
allows estimating cartesian coordinates of the tip arm, from homogeneous
transformation matrices. However, CBHA contains only six potentiome-
ters, and a block is added to determine the joint variable from the tube length.

k
k+1T =


cθk sθksψk sθkcψk 0
0 cψk −sψk 0
−sθk sψkcθk cθkcψk Zk

0 0 0 1

 (2.10)

Where c and s are cos and sin respectively.

Figure 2.20: Modeling of inter-vertebra

In Fig. 2.22, the algorithm is explained. Four neural networks are used, the
first one is used to approximate the position (Xs1, Ys1, Zs1) of the first section
using the Cartesian coordinates of the tip of the CBHA (X, Y, Z). The other
three neural networks are used to approximate the position Zk, orientation θk
(pitch angle) and ψk (roll angle) of the upper vertebra relative to the lower
vertebra. These values are used to compute the lengths of each inter-vertebra
using eq. 2.9. Then these lengths are added to compute the overall lengths of
the CBHA Manipulator.

2.4.4 Work Contextualization and Contributions

The kinematic models for the class of soft-continuum manipulators, namely
CBHA and BHA, are discussed, and the positioning of our work among the
discussed works is shown in red color in Fig. 2.17.
Positioning:
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Figure 2.21: Algorithm for Forward Kinematics [Lakhal 2016]

• We used the same shape reconstruction approach based on Pythagorean
Hodograph curves to model the kinematics of the soft-continuum ma-
nipulators.

• The literature regarding kinematics of the soft-continuum manipulators
shows that the methods reviewed are decoupled from the reconstruction
of the optimal posture of the manipulators. These methods compute
the IKM of the soft-continuum manipulators which do not mean to find
the optimal posture. In this work, we reconstructed the optimal
posture of the soft-continuum manipulators using Pythagorean
Hodograph curves which leads us to the optimal kinematic so-
lution of the manipulators.

2.5 Conclusion of the Chapter

This chapter defined the soft-continuum manipulators and reviewed the lit-
erature of the soft-continuum manipulators regarding their shape reconstruc-
tion. The positioning of the proposed shape reconstruction approach is high-
lighted among the existing approaches. Further, the proposed approach is used
to solve the kinematics of the class of soft-continuum manipulators, named
CBHA. Therefore, the literature on the kinematics of the CBHA and BHAma-
nipulators is discussed, and the positioning of our work is highlighted among
the existing approaches.
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Figure 2.22: Inverse Kinematic modeling algorithm [Lakhal 2016]
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3.1 Introduction

Soft-continuum manipulators can curve continuously to provide us the de-
sired motion. It is an imperative task to find an optimal posture of the
soft-continuum manipulators for a particular target in their task space. Here,
the optimal posture means the actual or real posture of the manipulator for
a specific set of input values (for example pressure in the case of pneumatic-
based actuation; length in case of cable-based actuation). In this work, we
reconstruct the shape of the soft-continuum manipulators using a curve based-
approach. Therefore, if we have multiple solutions of reconstructed shapes for
a particular set of input values, we choose an optimal posture by using mini-
mum potential energy criteria. This is because we assume that every physical
system tends to be in a state of minimum potential energy.
We want to reconstruct the shape of the soft-continuum manipulators with a
3-D curve using four known boundary conditions; the conditions are as follows
(Fig. 3.1):

• Ps, initial or starting point position vector of the soft-continuum manip-
ulator located at the base of the manipulator.

• ds, direction vector at point Ps

• Pf , final or end-point position vector of the soft-continuum manipulator
located at the center of the tool of the manipulator.

• df , direction vector at point Pf

Figure 3.1: Shape of the soft-continuum manipulator represented by a curve

Ps(xs, ys, zs), ds(dxs, dys, dzs)
r(h)→ Pf (xf , yf , zf ), df (dxf , dyf , dzf ) (3.1)
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Here, eq. 3.1 represents the problem statement, where a curve r(h) is con-
structed to model the shape of the soft-continuum manipulators using the
afore mentioned boundary conditions. h represents the curvilinear coordinate
along the curve.
Further, in the chapter, the aim is to compare the performances of various
approachs in the context of shape reconstruction for the soft-continuum ma-
nipulator.

3.2 Geometrical Curves Representation

The classification of different curve representations is presented in fig. 3.2
[Zeid 2004]. As per our requirement, parametric curves are better than non-

Curve Representation

Parametric 
Representation

Non-Parametric 
Representation

Explicit FormImplicit Form

Synthetic CurvesAnalytical Curves

Figure 3.2: Schematic of representation of curves

parametric curves to reconstruct the shape. Besides that, we briefly discussed
non-parametric curves to show the reason behind not using them in the fol-
lowing development.
Different methods of curve formulation and representation are discussed as
follows:

3.3 Non-Parametric Representation

Non-parametric equations of curves can be expressed in two forms: explicit
and implicit.
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3.3.1 Explicit Form

This is the form where a dependent variable can be separated in the equation
and can be represented in the form of an independent variable. For example,
x + 2y = 0 is explicit, here the dependent variable y can be separated as
y = −x

2
. A non-parametric explicit form of a point P on a curve is given by:

P = [x y z]T = [x f(x) g(x)]T (3.2)

Where, r is the position vector of a point P represented in cartesian coordi-
nates as shown in Fig. 3.3. In this form, the y and z coordinates of point P
are expressed as two different functions of the third coordinate x which acts
as an independent variable as shown in eq. 3.2. Following are the examples

X

Z

Y

r

P (x,y,z)

Figure 3.3: Position vector of a point P

of explicit curves:
y = mx+ c (3.3)

y = ax3 + bx2 + cx+ d (3.4)

Here, only the value of x− coordinate can define a curve for eqs. 3.3 and 3.4.

3.3.2 Implicit Form

This is the form in which the dependent variable cannot be separated. For
example, x2 + y2 + 2xy = 0 is an implicit form. In implicit form, x, y and z
coordinates are related together by two functions as:

F (x, y, z) = 0, G(x, y, z) = 0 (3.5)
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These two functions can be solved simultaneously to obtain all the points on
the curve. Following are the examples of the implicit curves:

x2 + y2 −R2 = 0 (3.6)

ax2 + by2 + cxy + d = 0 (3.7)

3.3.3 Drawbacks of Non-parametric Representation to Model Soft-
continuum Manipulators

Representing the curve using non-parametric forms has the following two ma-
jor drawbacks:

1. If the slope of a curve at a point is vertical or near vertical, it’s value
becomes very large and approaches infinity. Therefore, this condition
is difficult to handle computationally, as well as, in the programming
phase. For example; F (x, y) = 0 and G(x, y) = 0 are two functions in
the implicit form. The equation of the tangent line at an regular point
(x0, y0) is given as:

F (x0, y0)(x− x0) +G(x0, y0)(y − y0) = 0 (3.8)

Therefore, the slope of the curve at point (x0, y0) is given by:

slope =
−F (x0, y0)

G(x0, y0)
(3.9)

If both F (x, y) and G(x, y) are zero at (x0, y0), it means the curve is
vertical at that point.
Soft-continuum manipulators can have a straight vertical pos-
ture which is difficult to represent using non-parametric curves.

2. The representation of some of the very basic curves like circle and
parabola becomes a tedious task while using non-parametric forms (es-
pecially explicit form). This limitation can be removed by selection of
optimal coordinate system and independent variable. However, the ac-
tual shape representation of an object should be intrinsically independent
of the selection of the coordinate system.
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X

Z

Y
A B

Figure 3.4: A general curve in the Cartesian coordinate space

This can be more clear from Fig. 3.4. Here, we have two values of
x − coordinates at points A and B respectively, both having the same
value of the y − coordinate. This case is not easy to represent with
a non-parametric form of equations. Soft-continuum manipulators
can have the shape as represented in fig. 3.4 with a red line.
This is the main reason behind not using non-parametric curves
to represent the shape of the soft-continuum manipulators.

3.4 Parametric Representation

The drawbacks of non-parametric representation lead us to study the para-
metric representation of the curves. In this representation, the coordinates of
the points forming the curve are functions of an independent curve parame-
ter, called curvilinear coordinate, represented by h. The curve parameter has
varied along the curve from its minimum to maximum value. The parametric
representation can be of two categories: analytical and synthetic curves.

3.4.1 Analytical Curves

Parametric analytical curves are those curves which are defined by analytical
equations. These curves are such as lines, circles, and conics, etc. The general
form of the parametric equations of a curve is as follows:

x = x(h), y = y(h), z = z(h) 0 ≤ h ≤ 1 (3.10)
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Here, h is the curvilinear coordinate along the curve. For example, the para-
metric equation of a straight line between two points P1 and P2 is given by:

P2 = P1 + h(P2 − P1), 0 ≤ h ≤ 1 (3.11)

Similarly, points on a circular arc are given by:

x = cos(h), y = sin(h)
−π
4
≤ h ≤ π

4
(3.12)

Likewise, the equations of the other curves (conics, helix, etc.) can be repre-
sented as a parametric form. Therefore, these curves can represent the shape
of manipulators from the start point to the end point by varying parameter
’h’. These curves did not define any points in between the start and the end-
points, known as control points which can be used to control the shape of the
curve. The main drawback of parametric analytical curves lies in the
fact that these curves are not sufficient to design the physical sys-
tems. This is because it is not possible to control over these curves.
Hence, the need arises for synthetic curves.

3.4.2 Synthetic Curves

Synthetic curves are the ones which can be described by the set of control
points. This control makes them appropriate to design actual 1 parts as we
have control in our hands to change them as per design requirements. Different
synthetic curves are discussed in detail in the next section.

3.5 Synthetic Curves

Multiple synthetic curves exist in the literature. In the following, we consider
the main used curves.

3.5.1 Hermite

Cubic Hermite spline is the simplest synthetic curve. The development of
cubic splines was in the context of shipbuilding since they can simulate the
behavior of wooden splines used to construct ships, see, e.g., [Liming 1944].
Cubic splines are the most famous splines to interpolate a sequence of
data points. Cubic splines are studied in depth and used in many ap-
plications in Computer Aided Geometric Design (CAGD) [De Boor 1962],
[Schoenberg 1969], [Keys 1981], [Gasca 2000]. Hermite splines are used in
path planning and tracking of mobile robots in [Wagner 2010], [Lekkas 2014].
These curves are also used for the purpose of trajectory planning [Su 2012].

1Actual parts means the physical systems.
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Now, in our work, we are studying these curves to model the shape of the
soft-continuum manipulators.

Definition 3.5.1. Hermite cubic spline can be generated using four known
boundary conditions to model the shape of the soft-continuum manipulators.
The parametric equation of a cubic spline segment is given as:

r(h) =
3∑
i=0

Cih
i, 0 ≤ h ≤ 1 (3.13)

Here, r is the point on the reconstructed shape of the soft-continuum manip-
ulator, h is the curvilinear coordinate and Ci are the polynomial coefficients.
The scalar form of eq. 3.13 is written as:

x(h) = C3xh
3 + C2xh

2 + C1xh+ C0x

y(h) = C3yh
3 + C2yh

2 + C1yh+ C0y

z(h) = C3zh
3 + C2zh

2 + C1zh+ C0z

(3.14)

The expanded vector form of eq. 3.13 is as follows:

r(h) = C3h
3 + C2h

2 + C1h+ C0 (3.15)

The same equation in matrix form becomes:

r(h) = HTC (3.16)

Where, H = [h3 h2 h 1]T and C = [C3 C2 C1 C0]
T , C is the coeffi-

cient vector.
As we have two direction vectors as input boundary conditions, the tangent
vector at any point on the curve is given by:

r′(h) =
3∑
i=0

Ciih
i−1, 0 ≤ h ≤ 1 (3.17)

Now, we have to relate these parametric equations according to our input
boundary conditions to model the shape of the soft-continuum manipulators.
Therefore, applying the four known boundary conditions i.e. the end points
and tangents at those points (Ps, ds at h=0 and Pf , df at h=1), eqs. 3.13 and
3.17 gives:

Ps = C0

ds = C1

Pf = C3 + C2 + C1 + C0

df = 3C3 + 2C2 + C1

(3.18)
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Using the above conditions, the polynomial coefficients can be expressed in
terms of the known boundary conditions as:

C0 = Ps

C1 = ds

C2 = 3(Pf − Ps)− 2(df − ds)
C3 = 2(Ps − Pf ) + ds + df

(3.19)

Substituting eq. 3.19 into eq. 3.15 and rearranging gives;

r(h) = (2h3 − 3h2 + 1)Ps + (−2h3 + 3h2)Pf + (h3 − 2h2 + h)ds + (h3 − h2)df ,
0 ≤ h ≤ 1

(3.20)
r(h) = HT [MH ]V, 0 ≤ h ≤ 1 (3.21)

Here, [MH ] is theHermite matrix, H = [1 h h2 h3] and V is the bound-
ary condition vector;

[MH ] =


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

 (3.22)

V = [Ps Pf ds df ] (3.23)

Figure 3.5 shows a basic schematic of the Hermite curve generated using four
known boundary conditions.

X

Z

Y

hd’s

d’f

Ps (h=0)

Pf (h=1)

Figure 3.5: Hermite cubic curve



42 Chapter 3. Shape Reconstruction of Soft-continuum Manipulators

Equation 3.20 defines a Hermite cubic curve which passes through two end
points (at h=0 and h=1) and their tangent vectors. The shape of the curve
can be changed either by changing the end points or by changing the tangent
vectors. The control of Hermit cubic curve is shown in Fig. 3.6.

Change of end points Change of end tangents

Figure 3.6: Control of Hermite cubic curve

Remark 3.5.1. Cubic Hermite curves are the simplest synthetic curves to
model the shape of the soft-continuum manipulators. Therefore, these curves
are computationally efficient. But they can be controlled only through their
end conditions. They do not have any control points in between to control
their shape.

3.5.2 Bezier

A new class of parametric synthetic curves named Bezier curves were
introduced in the mid of 1950’s by Pierre Bézier and Paul de Casteljau in the
French automotive industry [Farin 2002]. These curves has been applied in
many applications in computer aided geometric design, e.g. [Gordon 1974],
[Böhm 1984], [Farin 2000]. In the robotics field, Bezier curves are used to plan
trajectories, collision and obstacle avoidance for mobile robots [Jolly 2009],
[Škrjanc 2010], [Yang 2013]. Further, shape estimation of a wire-driven
flexible robot with multiple bending sections is done using Bezier curves
[Song 2015b]. This work uses electromagnetic sensors to sense the position
and orientation of the end points of each section of the soft-continuum
manipulators. We are exploring Bezier curves to reconstruct the shape of the
soft-continuum manipulators as per our known boundary conditions without
using any external sensor data.

Definition 3.5.2. Bezier curve is a parametric curve which uses Bernstein
polynomials as the basis functions. The Bezier curve r with degree n is rep-
resented by:
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r(h) =
n∑
i=0

PiBi,n(h), 0 ≤ h ≤ 1 (3.24)

Here, r(h) is the point on the reconstructed shape of the soft-continuum ma-
nipulator and the coefficients Pi are the control points of the Bezier curve.
Bi,n(h) are the Bernstein basis functions. Control points together with the
basis functions define the shape of the curve. The lines joining the consecutive
control points define the control polygon of the Bezier curve. The Bernstein
polynomial is given by;

Bi,n(h) = C(n, i)hi(1− h)n−i, 0 ≤ h ≤ 1 (3.25)

Here C(n, i) is the binomial coefficient

C(n, i) =
n!

i!(n− i)!
(3.26)

C(n, 0) = C(n, n) = 1 (3.27)

Combining eqs. 3.25 and 3.27, eq. 3.24 becomes;

r(h) = P0(1− h)n + P1C(n, 1)h(1− h)n−1 + P2C(n, 2)h2(1− h)n−2+

−−−−+Pn−1C(n, n− 1)hn−1(1− h) + Pnh
n, 0 ≤ h ≤ 1

(3.28)
In case of Bezier curve, we can generate a cubic Bezier curve from our four
known boundary conditions. Figure 3.7 shows a cubic Bezier curve along with
its control polygon. Here, P0 = Ps is the starting point of the manipulator
and P3 = Pf is the end point of the manipulator.

Ps = P0 (h=0)

Pf = P3 (h=1)

P2

P1

Control Polygon

h

Figure 3.7: A cubic Bezier curve

Properties: The main properties of the Bezier curves are:
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1. The first and the last control points are the end points of the Bezier curve.
It means it passes through P0 and Pn if we substitute h = 0 and h = 1
in eq. 3.28.

2. The curve is always tangent to the control polygon at the end segments.
Using eqs. 3.24 and 3.25, the first order derivatives at the end points are
given by:

r′(0) =
n!

(n− s)!

s∑
i=0

(−1)s−iC(s, i)Pi (3.29)

r′(1) =
n!

(n− s)!

s∑
i=0

(−1)iC(s, i)Pn−i (3.30)

Therefore, at the end points, the first derivatives are given as:

r(0) = n(P1 − P0) (3.31)

r(1) = n(Pn − Pn−1) (3.32)

It shows that the curve is tangent to the first and the last segment of
the control polygon.

3. There is global control in Bezier curves, it means the change in even one
control point will affect the whole curve.

4. With n conditions or n number of control points, we can always generate
a n− 1 degree curve.

Remark 3.5.2. A cubic Bezier curve can be used to model the shape of the
soft-continuum manipulator, as n boundary conditions can produce an n− 1
degree curve. Bernstein basis functions used for Bezier curves are easy to
solve, and they have an analytical solution. Cubic Bezier curves have two
control points in addition to the endpoints. There is global control in case of
Bezier curves, where the change of one control point will change the overall
shape of the curve.

3.5.3 B-Splines and NURBS

B-splines are used to represent free shapes in computer aided geometric ap-
plications as in [Farin 1987], [Unser 1993]. These are also used for trajectory
planning and obstacle avoidance purposes for mobile robots [Komoriya 1989],
[Berglund 2010], [Elbanhawi 2015]. Bezier curves are very convenient for less
number of control points, but for conditions with a large number of control
points, the global control of points over the curve and fixed order of curve
emerge as a drawback. Basis functions chosen for B-splines have the addi-
tional degree of freedom which does not exist in case of Bernstein polynomials.
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Therefore, B-splines have flexibility in the degree which Bezier curves do not
have.

Properties 1: B-splines give more flexibility than Bezier curves because
of these two advantages:

1. B-splines provide the local control of the shape of the curve by using
blending functions which have the local influence.

2. For B-splines, the degree of the curve is independent of the number of
the control points. A B-spline made using n control points can have
an order lower than n − 1. For example, with four control points, the
B-spline can be of degree cubic, quadratic or linear.

In our work, B-splines are studied to represent them as the shape of the soft-
continuum manipulators.

Definition 3.5.3. Same as Bezier curves, the B-spline curve defined by n+ 1
control points Pi, is given as:

r(h) =
n+1∑
i=0

PiNi,k(h), 0 ≤ h ≤ hmax (3.33)

Ni,k(h) are the B-spline basis functions. The control points Pi are also called
deBoor points. These control points form the vertices of the control or deBoor
polygon.

Positioning: The major differences in the eqs. 3.24 and 3.33 are:

1. In B-splines, the parameter k controls the degree k−1 of the curve which
is independent of the number of control points.

2. The maximum limit of the curvilinear coordinate h is no longer limited
to 1 as it is chosen for the Bezier curve.

Properties 2: The B-spline basis functions have the following properties:

1. Partition of unity:
∑n

i=0Ni,k(h) = 1
The first property describes that the relationship between the control
points of the curve and the curve itself is invariant under affine transfor-
mations.

2. Positivity: Ni,k(h) > 0
The second property ensures that the curve lies completely within the
convex hull of control points Pi.

3. Local support: Ni,k(h) = 0 if hε [hi, hi+k+1]
The third property explains that every single segment of the curve is
influenced by only k control points.



46 Chapter 3. Shape Reconstruction of Soft-continuum Manipulators

4. Continuity: Ni,k(h) is (k − 2) times continuously differentiable.

From these properties, it can be noticed that Bernstein polynomial, Bi,n(h),
has the same first two properties like B-spline basis functions.
The basis functions of B-spline also have the property of recursion which is
described as follows:

Ni,k(h) = (h− hi)
Ni,k−1(h)

hi+k−1 − hi
+ (hi+k − h)

Ni+1,k−1(h)

hi+k − hi+1

for k > 1 and i = 0, 1, 2, ...., n

(3.34)

and,

Ni,1 =

{
1, hi ≤ h ≤ hi+1

0, otherwise
for k = 1 (3.35)

Ni,1 is constant for the value of k = 1 (eq. 3.35). General value of k generates
a polynomial in h which leads to the formulation of a curve having order k
and degree k − 1 (eq. 3.34). The hi are known as parametric knots or knot
values. For an open curve;

hi =


0, j < k

j − k + 1 k ≤ j ≤ n
n− k + 2 j > n

(3.36)

Where,

0 ≤ j ≤ n+ k (3.37)

and the range of h is:

0 ≤ h ≤ n− k + 2 (3.38)

Therefore, eq. 3.37 makes it clear that (n+ k+ 1) knots are required to make
a (k − 1) degree curve defined by (n+ 1) control points.

n− k + 2 > 0 (3.39)

The above expression shows that at least two, three, and four control points
are needed to define a linear, quadratic, and cubic B-spline curve respectively.
The summary of the characteristics of B-spline curves is as follows:

1. Local control of the curve can be achieved by changing the position of
the control points. Figure 3.8 shows the local control of a cubic B-spline
by moving P3 to P ∗3 and P ∗∗3 .
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P1

P5
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P3*

Cubic Curves

Figure 3.8: Local control of B-spline curves

2. Like Bezier curve, B-splines also passes through the first and last point
and is tangent to the first and last segments of the control polygon.

3. For the same number of control points, the increase in the degree of the
B-spline curve tighten the curve (Fig. 3.9).

P0 

P3
P2

P1

P5

P4

k=2 (Linear)

k=3 (Quadratic)

k=4 (Cubic)

k=6 (Quintic)

Figure 3.9: Effect of the degree of B-spline curve

4. If k = the number of control points (n+1), the resulting B-spline becomes
the bezier curve. Also, in this case, h varies in the range of 0 to 1 (eq.
3.38), same as bezier curves.

In the case of B-splines, the increment in the knot values defined in eq. 3.36 is
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always uniform, and the incremental value is 1. A B-spline based on these uni-
form knots is called a uniform B-spline. During the modification in the shape
of the curve, the addition or the deletion of the knot values usually happens,
which produces the non-uniform gaps between the knots. Also, it creates
Non-Uniform Rational B-Splines (NURBS). NURBS are used in trajectory
planning for mobile robots in [Aleotti 2005], [Jalel 2015], [Hashemian 2017].
NURBS have the following form:

r(h) =

∑n+1
i=0 Ni,k(h)wiPi∑n+1
i=0 Ni,k(h)wi

(3.40)

Here, Ni,k is the basis function, n is the number of control points Pi and wi
are the corresponding weights. Therefore, the only difference from B-splines
is the weights provided to the control points.

Remark 3.5.3. For the given four boundary conditions, either cubic, or
quadratic, or linear B-spline can be generated to reconstruct the shape of the
soft-continuum manipulators. The advantage in this case is the local control
of the curve. But the basis functions used for B-splines are not easy to solve,
and they have an iterative solution. Also, it is given that as per our known
four boundary conditions, the cubic B-spline will be the same as the cubic
Bezier [Zeid 2004]. B-spline is not a single continuous function from
start (Ps) to the endpoint (Pf) of the manipulator. It is a sequence
of different polynomials joined at the knot vectors. Therefore, they
are complicated for the control of posture of the soft-continuum
manipulator, and the complexity will not allow us to further ex-
ploit these curves for either kinematic or dynamic model of the
soft-continuum manipulators. Therefore, besides certain advantages of
B-splines, they are complex to use for the reconstruction of the shape of the
soft-continuum manipulators.

3.5.4 Pythagorean Hodograph

PH curves are the synthetic parametric curves. These curves were introduced
by Farouki and Sakkalis [Farouki 1990] in 1990. These curves were added
to overcome the drawbacks of the previously used curves, e.g.,
Bezier, B-splines, NURBS, etc. The most notable properties of
these curves are, their arc-length has closed form solution, and they
possess rational offset curves which are not possible with the Her-
mite, Bezier, B-splines, and NURBS. Since then, PH curves are used in
many fields. 3D path planning and obstacle avoidance of Unmanned Aerial
Vehicles (UAVs) is done using PH curves [Shanmugavel 2007], [Shah 2010].
In [Bruyninckx 1997], PH curves are used for path planning of mobile robots
and also the concept of modeling the shape of the planar hyper-redundant
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manipulator is introduced. In this work, we are exploiting PH curves to
model the shape of the spatial soft-continuum manipulators. PH curves are
the special case of normal polynomial parametric curves having additional
properties. These curves are explained using ordinary polynomial parametric
curves as follows [Farouki 2008]:

Definition 3.5.4. Let r(h) be the polynomial curve characterizing the shape
of the soft-continuum manipulator.

r(h) = (x(h), y(h), z(h)); 0 ≤ h ≤ 1 (3.41)

Where, h is the normalized curvilinear coordinate of the curve. Therefore,

Ps = r(0) = (x(0), y(0), z(0))

Pf = r(1) = (x(1), y(1), z(1))
(3.42)

Definition 3.5.5. The Hodograph r′(h) is defined as the first derivative of
the curve. It is parallel to the tangent to the curve. The hodograph of the
curve r is given by:

r′(h) = (x′(h), y′(h), z′(h)) (3.43)

x′(h), y′(h), z′(h) are the first derivative components of the position vector.

Definition 3.5.6. Let L(h) represents the length of the soft-continuum ma-
nipulator reconstructed using the curve r(h):

L(h) =

∫ 1

0

|r′(h)| dh =

∫ 1

0

√
x′(h)2 + y′(h)2 + z′(h)2 dh (3.44)

Equation 3.44 can compute the length of the soft-continuum manipulator
but the closed form solution is not possible, due to the presence of the square
root inside the integral. Therefore, a numerical quadrature is required to ob-
tain a numerical approximation of the true solution. To resolve this situation,
the square root sign can be eliminated from eq. 3.44, if:

x′(h)2 + y′(h)2 + z′(h)2 = σ(h)2 (3.45)

Equation 3.45 is called Pythagorean law or condition in three-dimensions.
Hence,

Definition 3.5.7. The first derivatives (hodographs) of parametric polyno-
mials, which satisfy the Pythagorean condition, are known as Pythagorean
Hodographs.
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Therefore, eq. 3.44 can be written as:

L(h) =

∫ 1

0

|σ(h)| dh (3.46)

Equation 3.46 shows that the Pythagorean hodographs can yield a closed form
solution to determine the length of the soft-continuum manipulator.
A sufficient and necessary condition to satisfy eq. 3.45 is identified in
[Dietz 1993], i.e. the hodograph components are expressed in function of four
polynomials u(h), v(h), p(h) and q(h), as:

x′(h) = [u2(h) + v2(h)− p2(h)− q2(h)] (3.47)

y′(h) = 2[u(h)q(h) + v(h)p(h)] (3.48)

z′(h) = 2[v(h)q(h)− u(h)p(h)] (3.49)

u(h), v(h), p(h) and q(h) polynomials are chosen so that σ(h) is:

σ(h) = u2(h) + v2(h) + p2(h) + q2(h) (3.50)

In general, from eqs. 3.47-3.49, it is clear that a PH curve is of degree 2n+ 1,
when n is the degree of polynomials u(h), v(h), p(h), q(h). Therefore, the
lowest degree of a PH-curve is cubic, while polynomials u(h), v(h), p(h) and
q(h) are linear. Quintic PH curves are produced using quadratic polynomials.

3.5.4.1 Cubic PH Curve

In order to derive an expression for a spatial cubic PH curve, linear polyno-
mials u(h), v(h), p(h) and q(h) are chosen in the Bernstein form as follows:

u(h) = u0(1− h) + u1h (3.51)

v(h) = v0(1− h) + v1h (3.52)

p(h) = p0(1− h) + p1h (3.53)

q(h) = q0(1− h) + q1h (3.54)

Such that the pythagorean condition

σ(h) = u2(h) + v2(h) + p2(h) + q2(h) (3.55)

is satisfied. Substituting these values in equations 3.47, 3.48 and 3.49, and
integrating from both sides, gives:

x(h) =

∫
[[u20 + v20 − p20 − q20](1− h)2 + 2[u0u1 + v0v1 − p0p1

− q0q1](1− h)h+ [u21 + v21 − p21 − q21]h2]dh

(3.56)
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y(h) =

∫
[[u0q0 + v0p0](1− h)2 + 2[u1q0 + u0q1 + v1p0

− v0p1](1− h)h+ [u1q1 + v1p1]dh

(3.57)

z(h) =

∫
[[v0q0 + u0p0](1− h)2 + 2[v1q0 + v0q1 − u1p0

− u0p1](1− h)h+ [v1q1 − u1p1]dh
(3.58)

The indefinite integrals of Bernstein is given as in [Farouki 1990],
[Farouki 1995];∫ [(

n− 1
k

)
(1− h)n−1−khk

]
dt =

1

n

n∑
j=k+1

(
n
j

)
(1− h)n−jhj

=
1

n

n∑
j=k+1

(
n
j

)
(1− h)n−(k+1)hk+1

(3.59)

Where, n = degree of the curve, k = 0, 1, ...n−1, j = k+ 1,
(
n
j

)
= n!

(n−j)!j!

and h ∈ [0 1]. Therefore, for the cubic (n = 3) curve, eqs. 3.56, 3.57, 3.58
implies,

x(h) =
3∑

k=0

xk

(
3
k

)
(1− h)3−khk (3.60)

y(h) =
3∑

k=0

yk

(
3
k

)
(1− h)3−khk (3.61)

z(h) =
3∑

k=0

zk

(
3
k

)
(1− h)3−khk (3.62)

Using these equations, the general equation of a spatial cubic PH curve r(h)
with control points Pk is written as:

r(h) =

x(h)
y(h)
z(h)

 =
3∑

k=0

Pk

(
3
k

)
(1− h)3−khk (3.63)

Therefore,

r(h) = P0(1− h)3 + 3P1(1− h)2h+ 3P2(1− h)h2 + P3h
3 (3.64)

It is similar to the Bezier curve equation, as we used Bernstein polynomials
to formulate this equation. Therefore, it is called PH-Bezier equation. Fur-
ther, control points of this equation have to be calculated using Pythagorean
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Condition. The equation can be written in the matrix form as:

r(h) =


1
h
h2

h3


T 

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1



P0

P1

P2

P3

 (3.65)

Calculation of the Control Points

A cubic PH curve has four control points (P0, P1, P2, P3). We want to
reconstruct the shape of the soft-continuum manipulators using PH curve
construction from the base (Ps) to the tip (Pf ) of the manipulator. As shown

Pf

Ps

Figure 3.10: Basic schematic of a cubic PH curve

in Fig. 3.10, the first and the last control points are given as;

P0 = Ps
P3 = Pf

The remaining two control points P1 and P2 are computed using the given
four conditions. Derivative of eq. 3.64 gives:

r′(h) = 3(P1 − P0)(1− h)2 + 3(P2 − P1)(1− h)h+ 3(P3 − P2)h
2 (3.66)

At the base of the manipulator (h=0);

r(0) = P0, r′(0) = 3(P1 − P0) (3.67)
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At the tip of the manipulator (h=1);

r(1) = P3, r′(1) = 3(P3 − P2) (3.68)

Since the initial and final points and the derivatives at these points are known;

r(0) = P0 = (xs, ys, zs) (3.69)

r′(0) = 3(P1 − P0) = (dxs, dys, dzs) (3.70)

r(1) = P3 = (xf , yf , zf ) (3.71)

r′(1) = 3(P3 − P2) = (dxf , dyf , dzf ) (3.72)

Rearranging 3.70 and 3.72 gives;

P1 = P0 +
1

3
(dxs, dys, dzs) (3.73)

P2 = P3 −
1

3
(dxf , dyf , dzf ) (3.74)

Therefore, using these four control points, a cubic PH curve representing the
shape of the backbone of the soft-continuum manipulator is generated using
eq. 3.65.
As all of the control points are fixed in the formulation of cubic PH curve,
there are no free control points.

3.5.4.2 Quintic PH Curve

The derivation of the expression for the quintic PH curve chooses the four
quadratic polynomials u(h), v(h), p(h), q(h) in Bernstein form [Farouki 2002,
Farouki 2008] as follows:

u(h) = u0(1− h)2 + u12(1− h)h+ u2h
2

v(h) = v0(1− h)2 + v12(1− h)h+ v2h
2

p(h) = p0(1− h)2 + p12(1− h)h+ p2h
2

q(h) = q0(1− h)2 + q12(1− h)h+ q2h
2

(3.75)

um, vm, pm, qm are called Bernstein coefficients with m = 0,1,2. Inserting eqs.
3.75 in eqs. 3.47, 3.48, 3.49, and integrating from both sides yields:

x(h) =

∫
([u20 + v20 − p20 − q20](1− h)4 + 4[u0u1 + v0v1 − p0p1

− q0q1](1− h)3h+ 2[u21 + u0u2 + v21 + v0v2 − p21 − p0p2
− q21 − q0q2](1− h)2h2 + 4[u1u2 + v1v2 − p1p2 − q1q2]
(1− h)h3 + [u22 + v22 − p22 − q22]h4)dh

(3.76)



54 Chapter 3. Shape Reconstruction of Soft-continuum Manipulators

y(h) =

∫
(2[u0q0 + v0p0](1− h)4 + 4[u0q1 + u1q0 + v0p1

+ v1p0](1− h)3h+ 2[u0q2 + 4u1q1 + u2q0 + v0p2 + 4v1p1

+ v2p0](1− h)2h2 + 4[u1q2 + u2q1 + v1p2 + v2p1]

(1− h)h3 + 2[u2q2 + v2p2]h
4)dh

(3.77)

z(h) =

∫
(2[v0q0 − u0p0](1− h)4 + 4[v0q1 + v1q0 − u0p1

− u1p0](1− h)3h+ 2[v0q2 + 4v1q1 + v2q0 − u0p2 − 4u1p1

− u2p0](1− h)2h2 + 4[v1q2 + v2q1 − u1p2 − u2p1]
(1− h)h3 + 2[v2q2 − u2p2]h4)dh

(3.78)

Since the indefinite integral of the Bernstein polynomial is given by
[Farouki 1990], [Farouki 1995]:

∫ [(
n− 1
k

)
(1− h)n−1−khk

]
dt =

1

n

n∑
j=k+1

(
n
j

)
(1− h)n−jhj

=
1

n

n∑
j=k+1

(
n
j

)
(1− h)n−(k+1)hk+1

(3.79)

Where, n = degree of the curve, k = 0, 1, ...n − 1, j = k + 1,
(
n
j

)
= n!

(n−j)!j!

and h ∈ [0 1]. Therefore, for the quintic (n = 5) curve, eqs. 3.76, 3.77, 3.78
implies,

x(h) =
5∑

k=0

xk

(
5
k

)
(1− h)5−khk (3.80)

y(h) =
5∑

k=0

yk

(
5
k

)
(1− h)5−khk (3.81)

z(h) =
5∑

k=0

zk

(
5
k

)
(1− h)5−khk (3.82)

Where xk, yk, zk are in terms of coefficients um, vm, pm, and qm. From eqs.
3.80, 3.81, 3.82, the general equation of quintic PH curve r(h) with control
points Pk = (xk, yk, zk) can be written as:

r(h) =

x(h)
y(h)
z(h)

 =
5∑

k=0

Pk

(
5
k

)
(1− h)5−khk (3.83)
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This is Bernstein-Bezier form. The matrix form of the curve r(h) is given
by:

r(h) =


1
h
h2

h3

h4

h5



T 
1 0 0 0 0 0
−5 5 0 0 0 0
10 −20 10 0 0 0
−10 30 −30 10 0 0

5 −20 30 −20 5 0
−1 5 −10 10 −5 1




P0

P1

P2

P3

P4

P5

 (3.84)

The objective is to find the optimal non-linear quadratic polynomials u(h),
v(h), p(h), and q(h) to compute the control points P0, ...P5. Fig. 3.11 shows

Figure 3.11: Basic Schematic of a quintic PH curve

the basic schematic of a PH curve used to reconstruct the shape of the soft-
continuum manipulator. ~ds and ~df are the direction vectors at starting (base)
and final point (center of tool) of soft-continuum manipulator respectively. P0

to P5 are the control points of quintic PH-curve. To simplify the computation
of these control points, a quaternion formulation (appendix A) is used. Using
eqs. 3.47, 3.48 and 3.49, the hodograph of the spatial PH becomes:

~r′(h) = [u2(h) + v2(h)− p2(h)− q2(h)]~i+ 2[u(h)q(h)−
v(h)p(h)]~j + 2[v(h)q(h)− u(h)p(h)]~k

(3.85)

Where ~i, ~j, ~k are unit vectors. Equation 3.85 can be expressed in the quater-
nion form, in terms of A(h) [Choi 2002] as follows:

~r′(h) = A(h)~iA∗(h) (3.86)
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A(h) is the polynomial in quaternion form in terms of u(h), v(h), p(h), q(h).
A∗(h) is the conjugate of A(h). Left hand side of eq. 3.86 is always a pure
vector (appendix A).
Quadratic polynomials (u(h), v(h), p(h), q(h)) are required to generate a quin-
tic PH curve. Therefore, in quaternion form, the quadratic polynomial A(h)
is assumed in Bernstein form [Farouki 2002, Farouki 2008] as:

A(h) = A0(1− h)2 + A1(1− h)2h+ A2h
2 (3.87)

This quadratic polynomial has quaternion coefficients as:

Am = um + vm~i+ pm~j + qm~k (3.88)

with m = 0,1,2.

The control points of quintic curve (eq. 3.84) are given in quaternion form
[Farouki 2002]:

~P1 = ~P0 +
1

5
A0
~iA∗0 (3.89)

~P2 = ~P1 +
1

10
(A0

~iA∗1 + A1
~iA∗0) (3.90)

~P3 = ~P2 +
1

30
(A0

~iA∗2 + 4A1
~iA∗1 + A2

~iA∗0) (3.91)

~P4 = ~P3 +
1

10
(A1

~iA∗2 + A∗2~iA
∗
0) (3.92)

~P5 = ~P4 +
1

5
A2
~iA∗2 (3.93)

The known data in the pure vector quaternion form is as follows:
~Ps = xs~i+ ys~j + zs~k, ~ds = dsx~i+ dsy~j + dsz~k
~Pf = xf~i+ yf~j + zf~k, ~df = dfx~i+ dfy~j + dfz~k

As mentioned above, we have four conditions, similar to those required for
Hermite interpolation problem. Therefore using these conditions, the Hermite
interpolation problem is solved to compute the coefficients A0, A1, A2. Using
eq. 3.86, interpolation at the end points yields the following equations:

A0
~iA∗0 = ~r′(0) = ~ds

A2
~iA∗2 = ~r′(1) = ~df

(3.94)

Since eqs. 3.94 are of the type A.12, they can be solved as mentioned in
appendix A to give A0 and A2 as:

A0 =

√
1

2
(1 + λs)|~di|(− sinφ0 + cosφ0

~i+

µs cosφ0 + νs sinφ0

1 + λs
~j +

νs cosφ0 − µs sinφ0

1 + λs
~k)

(3.95)
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A2 =

√
1

2
(1 + λf )|~df |(− sinφ2 + cosφ2

~i+

µf cosφ2 + νf sinφ2

1 + λf
~j +

νf cosφ2 − µf sinφ2

1 + λf
~k)

(3.96)

Where (λs, µs, νs) and (λf , µf , νf ) are the direction cosines of ~ds and ~df
respectively. φ0 and φ2 are free angular variables.
To determine A1, position vector ( ~Pf − ~Pi) can be calculated as the sum-
mation of the vectors connecting initial and final points through lines as
[Farouki 2002]:∫ 1

0

A(h)~iA∗(h)dh = ~Pf − ~Pi

=
1

5
A0
~iA∗1 +

1

10
(A0

~iA∗1 + A1
~iA∗0)

+
1

30
(A0

~iA∗2 + 4A1
~iA∗1 + A2

~iA∗0)

+
1

10
(A1

~iA∗2 + A2
~iA∗1) +

1

5
(A2

~iA∗2)

(3.97)

=⇒ ~Pf − ~Pi =
1

120
(24A0

~iA∗0 + 12(A0
~iA∗1 + A1

~iA∗0)+

4(A0
~iA∗2 + 4A1

~iA∗1 + A2
~iA∗0) + 12(A1

~iA∗2 + A2
~iA∗1)+

24A2
~iA∗2)

(3.98)

120(~Pf − ~Pi) = 24A0
~iA∗0 + 12(A0

~iA∗1 + A1
~iA∗0) + 4(A0

~iA∗2+

4A1
~iA∗1 + A2

~iA∗0) + 12(A1
~iA∗2 + A2

~iA∗1) + 24A2
~iA∗2

(3.99)

Subtracting 15(A0
~iA∗0 + A2

~iA∗2) from both sides of eq. 3.99;

120(~Pf − ~Pi)− 15(A0
~iA∗0 + A2

~iA∗2) = 9A0
~iA∗0 + 12(A0

~iA∗1 + A1
~iA∗0)+

4(A0
~iA∗2 + 4A1

~iA∗1 + A2
~iA∗0) + 12(A1

~iA∗2 + A2
~iA∗1) + 9A2

~iA∗2
(3.100)

Adding 5(A0
~iA∗2 + A2

~iA∗0) to the both sides of eq. 3.100;

120(~Pf − ~Pi)− 15(A0
~iA∗0 + A2

~iA∗2) + 5(A0
~iA∗2 + A2

~iA∗0) = 9A0
~iA∗0+

12(A0
~iA∗1 + A1

~iA∗0) + 4(A0
~iA∗2 + 4A1

~iA∗1 + A2
~iA∗0)+

12(A1
~iA∗2 + A2

~iA∗1) + 9A2
~iA∗2 + 5(A0

~iA∗2 + A2
~iA∗0)
(3.101)

Simplification of eq. 3.101 gives;

120(~Pf − ~Pi)− 15(~dpsi + ~dpfi) + 5(A0
~iA∗2 + A2

~iA∗0) =

(3A0 + 4A1 + 3A2)~i(3A0 + 4A1 + 3A2)
∗

(3.102)
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Equation 3.102 has the form A~iA∗ if A = (3A0 +4A1 +3A2) and (3A0 +4A1 +

3A2)~i(3A0 + 4A1 + 3A2)
∗ = cx~i+ cy~j + cz~k. Therefore, from Appendix A, the

solution becomes;

(3A0 + 4A1 + 3A2) =

√
1

2
(1 + λ)|~c|(− sinφ1 + cosφ1

~i+

µ cosφ1 + ν sinφ1

1 + λ
~j +

ν cosφ1 − µ sinφ1

1 + λ
~k)

(3.103)

Using eq. 3.103 as well as known values of A0 and A2, value of A1 is computed
as:

A1 = − 3

4
(A0 + A2) +

1

4

√
1

2
(1 + λ)|~c|(− sinφ1 + cosφ1

~i+

µ cosφ1 + ν sinφ1

1 + λ
~j +

ν cosφ1 − µ sinφ1

1 + λ
~k)

(3.104)

and,
~c = 120(~Pf + ~Ps)− 15(~df + ~ds)

+ 5(A0
~iA∗2 + A2

~iA∗0)
(3.105)

Here, (λ, µ, ν) are the direction cosines of ~c. φ1 is an another free angular
variable, it depends on φ0 and φ2.
Control points are computed using eqs. 3.89-3.93. From eqs. 3.89 and 3.93,
P1 and P4 are fixed due to the input direction vectors at the end points. But
the presence of free angular variables makes P2 and P3 as free control points.
Different PH curves can be generated using different combinations of the free
angular variables φ0 and φ2, as shown in Fig. 3.12. In this figure, Ps and Pf
are chosen randomly, to show the effect of free variable angles on the shape
of the curve. Therefore, we need to choose one optimized curve for the shape
reconstruction of soft-continuum manipulators.

Minimizing Potential Energy

The curvature of the curve differs from one combination of free angular vari-
ables to the other. A physical system always tends to move from one point to
the other with minimum potential energy, which is the combination of bending
and twisting energy for the case of soft-continuum manipulators. Therefore,
a curve with minimum potential energy can approximate the real shape, and
expressed as follows:

Min(E =

∫
ω2(L)dL)

(3.106)

subject to Lmin ≤ L ≤ Lmax (3.107)
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Figure 3.12: Variation of control points P2, P3 w.r.t. φ0, φ2

where E =

∫
ω2(L)

dL

dh
dh =

∫
ω2(h)σ(h)dh (3.108)

Where ω is the total bending of the curve as a function of h. In [Farouki 1996],
it is also concluded that the constraint of lower energy is most appropriate for
application of PH in context of modeling the actual parts [Farouki 2002].
Total bending ω is given by :

ω =
√
κ2 + τ 2 (3.109)

where κ is the curvature and τ is the torsion of the curve, as:

with κ =
|~r′ × ~r′′ |
|~r′ |3

and τ =
(~r

′ × ~r′′).~r′′′

|~r′ × ~r′′ |2
(3.110)

If the torsion is restricted in the structure of the soft-continuum manipulator,
the value of τ can be assumed as zero (τ = 0). The first, second and third
derivatives of the vector curve ~r are represented in quaternion representation
as:

~r
′
= A~iA∗

~r
′′

= A
′~iA∗ + A~iA

′∗

~r
′′′

= A
′′~iA∗ + 2A

′~iA
′∗ + A~iA

′′∗
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It is empirically proved [Farouki 2008] that a PH curve will have minimum
bending energy if φ0 = φ2 = −π

2
. Therefore, in our case, φ0 and φ2 are varied

in the range of [−π π]. Potential energy is calculated for all of the PH curves
generated with φ0, φ2 ∈ [−π π] in order to select a PH curve with minimum
potential energy.

3.5.4.3 Generalized PH Curve

Formulation of cubic and quintic PH curves can be extended to the generalized
form of the PH curve. As mentioned earlier, a PH curve of degree 2n+ 1 can
be formulated while n degree polynomials u(h), v(h), p(h), q(h) are used. For
generalized PH curve formulation, the four nth degree polynomials u(h), v(h),
p(h), q(h) in Bernstein form are as follows:

u(h) =
n∑
k=0

ukBk,n(h)

v(h) =
n∑
k=0

vkBk,n(h)

p(h) =
n∑
k=0

pkBk,n(h)

q(h) =
n∑
k=0

qkBk,n(h)

(3.111)

Here, Bk,n(h) is the Bernstein polynomial and is given by:

Bk,n(h) =
n!

k!(n− k)!
(1− h)n−khk (3.112)

Use of these polynomials leads to a generalized PH curve of degree 2n + 1
same as in the case of cubic and quintic PH curves. The generalized equation
of PH is as follows:

r(h) =
2n+1∑
k=0

Pk

(
2n+ 1

k

)
(1− h)2n+1−khk (3.113)

Therefore, the use of linear, quadratic, cubic,... degree u(h), v(h), p(h), q(h)
polynomials produces cubic, quintic, seven degree,...PH curve respectively.

Remark 3.5.4. For the given four boundary conditions, cubic and quintic
PH curves are developed. The higher degree means these curves can generate
more flexible shapes. The PH curves possess significant computational
advantages over polynomial curves in general. Also, for given points
and tangents, PH curves can exhibit better profiles due to their advantages
in arc length calculation and their rational offset property.
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3.6 Synthetic Curves v/s Soft-continuum Manipulators

It is clear from the previous development that synthetic curves are more suit-
able to reconstruct the shape of the soft-continuum manipulators because they
provide the advantage to control the shape through control points. Therefore,
table 3.1 shows the comparison of different synthetic curves based on their
formulation for the known boundary conditions. This theoretical compari-
son of Hermite, Bezier, B-spline & NURBS, cubic PH and quintic PH curves
to reconstruct the shape of the soft-continuum manipulators leads us to the
following conclusions:

1. The flexibility in the shape of the soft-continuum manipulators depends
on the degree of the curves used to reconstruct it. The highest degree
possible with Hermite, Bezier, and B-spline curves is cubic
only. But in the case of PH curves, even quintic PH curves can be
generated. Therefore, it is a positive point, and we are free to use cubic
or quintic degree curve according to the needed flexibility behavior of
the continuum manipulator. Going for high degrees, PH-curve induces
the problem of "Over-fitting" (Runge’s phenomenon) [Dahlquist 2008].

2. Bernstein basis function is used in case of Bezier and PH curves, and
B-spline basis functions are used for B-spline & NURBS. The solution
of Bernstein basis functions is analytical, but the solution to the B-
spline basis functions are iterative which concludes that Bernstein basis
functions are computationally effective. This point is positive for Bezier
and PH curves.

3. There are no free control points in the formulation of Hermite, Bezier,
B-spline, NURBS and cubic PH-curves. Therefore, in these cases, the so-
lution to the shape of the soft-continuum manipulators (curve) is unique.
Quintic PH-curve has six control points, and four of them are fixed with
the four known boundary conditions, while two free control points can be
used to reconstruct the redundant shape (multiple solutions) of the con-
tinuum manipulator. The optimal shape is chosen by using the criteria
of minimum potential (bending and twisting) energy.

4. The calculation of the length of the curve does not have the closed form
solution in case of Hermite, Bezier, B-spline, and NURBS. Therefore, nu-
merical methods are needed to approximate the solution of their length.
But in the case of PH-curves, the calculation of the length has a closed
form solution. Therefore, it is a positive point for PH-curves to use them
for reconstructing the shape of the soft-continuum manipulators.

This theoretical comparison concludes that PH curves are more beneficial to
model the shape of the soft-continuum manipulators. In the next section,
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experimental validation is done to check the real-time performances for shape
reconstruction, using these curve-based approaches. In [Song 2015a], it is
stated that for known endpoints and direction vectors at those points, Bezier
curves are better than B-splines to reconstruct the shape of the soft-continuum
manipulators. This is because of the absence of the information in between the
endpoints. Therefore, we are going to check Hermite, Bezier and PH curves
only, for experimental validation.

3.7 Shape Reconstruction of Soft-continuum Manipula-
tors Based on Curves

The above-discussed curve-based approaches are applied on a class of contin-
uum manipulators, named Compact Bionic Handling Assistant (CBHA). The
description of the manipulator, the experimental setup, and the application
of the curve-based approaches to the CBHA manipulator are discussed in this
section.

3.7.1 Compact Bionic Handling Assistant Manipulator

The Compact Bionic Handling Assistant (CBHA) manipulator of Fig. 3.13
is designed by Festo [fes 2018]. The CBHA manipulator, also called elephant

Figure 3.13: CBHA manipulator description

trunk manipulator, is made up of a soft elastic polyamide material, where it
is divided into two sections, a rotating wrist and a compliant gripper (Fig.
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3.13). Each section is composed of three tubes, connected each other through
a backbone, and actuated by electro-pneumatic actuators. Pressure change in-
side the tubes leads to change in their respective lengths, inducing the change
in the position and orientation of the tip of the manipulator.
Equal pressures in all three tubes maintain the robot in straight line longitudi-
nal posture. An inextensible cable placed at the backbone of the manipulator
limits the maximum extension. To create bending, differential pressures can
be applied inside the tubes. The elongation of each tube is measured with a
wire-potentiometer. There are six wire-potentiometers, three of them measure
the tube lengths of the first section, and the three others measure the total
tube lengths. The CBHA is not able to make a torsion movement around
its longitudinal axis. Thus, no twisting behavior can be generated during its
displacement.
The CBHA manipulator can be attached to an omni-directional mobile base,
called Robotino. Combination of the mobile base with the bionic manipula-
tor is called RobotinoXT (Fig. 3.14). Fig. 3.14 shows the coordinate frame
attached to at the endpoint (Pf ) of the manipulator. The CBHA manipulator

Figure 3.14: RobotinoXT

is made up of polyamide (PA 12) material [Grzesiak 2011]. The mechanical
properties of this material are tabulated in Table 3.2.
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Table 3.2: Mechanical properties of material PA 12

Minimum Value Maximum Value Unit
Bending Strength 70 85 MPa

Density 1010 1020 kg/m3

Friction Coefficient 0.3 0.4
Impact Strength 0.5 2 J/cm
Shear Modulus 300 500 MPa
Tensile Strength 35 55 MPa
Young’s Modulus 1270 2600 MPa

Elongation 120 300 %

3.7.2 Experimental Setup

In the following development, it is supposed that the two bending sections
(Fig. 3.13) of the CBHA are fused to one entire continuum section, without
any shape disconnection. An OptiTrack vision system (Fig. 3.15) is used for
all of the experimental validations. This system tracks the position of the
reflective markers. Four Prime13 cameras are used for tracking, each of them
having specifications as follows:

• Resolution: 1.3 MP (1280×1024)

• Frame rate: 240 FPS

• Filter Switcher: Included

• Interface: GigE/PoE

• No. of LEDs: 62

• Latency: 4.2 ms

Motive 2.0 software is used for this OptiTrack vision system.
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Figure 3.15: Experimental set-up

The purpose is to model the backbone of the CBHA manipulator using
different curve-based approaches. To perform the experimental validation,
five markers are attached to each tube of the CBHA arm (at corresponding
levels) (Fig. 3.17), i.e., at the starting point, ending point, junction point, and
two intermediate points. Virtual rigid bodies are created using corresponding
markers of each tube to calculate the position and orientation at the corre-
sponding backbone point (Fig. 3.18). Inputs are given to the CBHA arm to
create a random posture. Using the vision system, the poses of the backbone
of the CBHA are tracked. Four inputs to construct a curve for the CBHA
arm are starting point, direction vector at the starting point, ending point and
direction vector at the ending point. Therefore, using these inputs, Hermite,
Bezier, cubic PH, and quintic PH curves are constructed representing the
shape of the CBHA arm. It is experimentally noticed that the CBHA
manipulator can have maximum two inflection points in its shape
(Fig. 3.16) and quintic PH curves are sufficient to model shapes with
two inflection points as they have two free control points. Therefore,
the higher order PH (Beyond quintic) curves are not applied to the
CBHA manipulator. The junction point and the other two intermediate
points are tracked to verify the reconstructed shape with the actual shape.
Figure 3.18 shows the tracking of the backbone of the CBHA manipulator

using Motive 2.0.
Assumptions: The experimentation has been done under the following

assumptions:

• The manipulator is considered under free load condition.

• In our case, the torsion is restricted in the structure of the CBHA ma-
nipulator. Therefore, the value of τ is assumed as zero (τ = 0).

• The weight of the markers attached to the manipulator is negligible.
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Figure 3.16: CBHA manipulator with two inflection points

Figure 3.17: Shape tracking of CBHA arm

3.7.3 Results and Discussions

The results and discussions from the chapter are presented as follows:
Random pressure inputs are injected into the CBHA manipulator to create
a random posture to test our curve-based approaches. The four boundary
conditions for this posture are tracked using the vision system as follows:

1. Ps = (0, 0, 0)

2. ds = (0, 0, 1)

3. Pf = (47.8369, -28.0541, 183.1658)

4. df = (0.3190, -0.4684, 0.8239)

All dimensions are in mm.
These boundary conditions are used to reconstruct the posture of the CBHA
manipulator using Hermite, Bezier, cubic PH, and quintic PH curves (Fig.
3.19). The four boundary conditions can produce cubic degree Hermite and
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Figure 3.18: Shape tracking of backbone of the CBHA arm

Bezier curves. It is noticed from the results that Hermite and Bezier give
the same resulting curve. It means for the known boundary conditions there
is no difference in the resulting cubic Hermite and Bezier curves. Fig. 3.19
experimentally confirmed it.

Quintic PH                                                        
Cubic PH
Cubic Hermite
Cubic Bezier 
Tracked Shape
Tracked Points       

Pf

ds

Ps

df

Figure 3.19: Comparison of different curve-based approaches to reconstruct the
shape of the backbone of the CBHA manipulator

The average distances of the constructed shapes (different curves) are
recorded from the actual shape of the CBHA manipulator. The Hermite
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and Bezier have the average distance of 2.1363 mm. Cubic PH and quintic
PH have the distances of 1.9149 and 1.6005 mm respectively. It shows that
the quintic PH curve gives the best approximation to the shape of the CBHA
manipulator. It is not easy to conclude on the performance from the results
for only one posture. Therefore, a trajectory with more tracked postures is
needed.
A trajectory (Fig. 3.21) with 102 points is recorded using the vision system
from the workspace of the CBHA manipulator (Fig. 3.20). The base of the
CBHA manipulator is fixed, so, the starting point, as well as the orientation
at this point, remain fixed. The ending point, as well as its orientation, are
taken from the tracked trajectory (Fig. 3.21). Figs. 3.22 to 3.25 show the
Hermite, Bezier, cubic PH and quintic PH curves to reconstruct the shape of
the backbone of the CBHA arm for the whole trajectory (102 postures).
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Figure 3.20: Work space of the CBHA manipulator
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Figure 3.21: Trajectory tracked using vision system

Reference Trajectory                                                        
Hermite Curves representing shape

Figure 3.22: Shape reconstruction of the backbone of the CBHA manipulator using
Hermite curves for a reference trajectory
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Reference Trajectory                                                        
Bezier Curves representing shape

Figure 3.23: Shape reconstruction of the backbone of the CBHA manipulator using
Bezier curves for a reference trajectory

Reference Trajectory                                                        
Cubic PH Curves representing shape

Figure 3.24: Shape reconstruction of the backbone of the CBHA manipulator using
cubic PH curves for a reference trajectory
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Reference Trajectory                                                        
Quintic PH Curves representing shape

Figure 3.25: Shape reconstruction of the backbone of the CBHA manipulator using
quintic PH curves for a reference trajectory

Figure 3.26: Error of reconstructed shapes from the actual shape

Errors are computed for curve-based reconstructed shapes from the actual
tracked shape. Figure 3.26 shows the average distance between the recon-
structed shapes and the actual shape for the 102 postures along the trajec-
tory. The results show that most of the times quintic PH curve can better
approximate the shape of the manipulator. The analysis of 102 postures to
check the best approximation to the actual posture is represented by:

1. Quintic PH based reconstructed shape gives the best approximation for
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89 postures (87.25 %).

2. Cubic PH based reconstructed shape gives the best approximation for
ten postures (9.80 %).

3. Hermite, Bezier based reconstructed shapes give the best approximation
for three postures (2.90 %).

Table 3.3, represents the minimum, maximum as well as average distances of
the reconstructed shapes from the actual shapes.

Table 3.3: Average distances (in mm) of reconstructed shapes from the actual shape
for whole trajectory

Shape Reconstruction Min. dis. (mm) Max. dis. (mm) Average dis. (mm)
Hermite 1.8473 5.3252 4.1524
Bezier 1.8473 5.3252 4.1524
Cubic PH 1.9149 5.4345 4.0021
Quintic PH 1.6005 4.2470 3.1203

The reason behind the best shape representation using quintic PH is:

1. PH condition enable us to generate higher degree curves for the same
input conditions.

2. There is no free control point in the cubic Hermite, Bezier, and cubic
PH representations. But in the case of quintic PH curves, there are two
free control points which lead to multiple solutions and the minimum
bending energy optimization is used to choose one optimal solution to
the shape.

Table 3.4 shows the time cost of reconstructing a single posture of the contin-
uum manipulators using different curves. It means all of the curves have less
time cost.

Table 3.4: Time cost to compute one posture (in sec)

Time (sec)
Hermite 0.00017
Bezier 0.00021
Cubic PH 0.00023
Quintic PH 0.00025

The results show that the quintic PH-curves are better for the tracked
trajectory. The trajectory is tracked randomly from a region in the workspace.
Therefore, it is necessary to verify the shape reconstruction for the whole
region of the workspace. Further, we tracked the data for the whole workspace
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of the CBHA manipulator. Fig. 3.28 shows the workspaces of the tracked
marker positions on the backbone of the CBHA manipulator. Hermite, Bezier,
cubic PH, and quintic PH-based shapes are used for the whole workspace to
reconstruct the shape of the backbone of the CBHA manipulator to compare
them with the actual shape. The analysis of 668 postures to check the best
approximation to the actual posture is represented by:

1. Quintic PH based reconstructed shape gives the best approximation for
511 postures (76.50 %).

2. Cubic PH based reconstructed shape gives the best approximation for
104 postures (15.57 %).

3. Hermite, Bezier based reconstructed shapes give the best approximation
for 53 postures (7.93 %).

Quintic PH                                                        
Cubic PH
Hermite, Bezier 
Actual tracked Shape

Figure 3.27: Case with better shape reconstruction using cubic PH and Hermite

This analysis shows that even for the case of whole task space of the
CBHA, quintic PH curves are better to reconstruct its shape in most of the
cases. There are approximately 20% cases where the Hermite and cubic PH
curves give the best estimation to the shape. To analyze, one of the cases
is plotted as in Fig. 3.27 in which cubic PH and Hermite curves can better
estimate the shape than quintic PH curves. It is noticed that cubic PH and
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Hermite more accurately estimate the postures which are near to the straight
configuration. The reason behind this is the higher degree of quintic PH
curves, which is more flexible to model the shape of the CBHA manipulator
with straight configurations.
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Figure 3.28: Experimental tracked positions of markers on the backbone of CBHA

3.8 Modified PH-Curves for Reconstructed Shape

The modeling of the shape for the CBHA case is made of the quintic PH-
curve. The formulation of quintic PH-curve involves two free control points,
and the optimal points are chosen by minimizing the bending of the resulting
PH-curve. Even this geometrical reconstruction is close to the real postures,
the minimization of the errors, originally from the selection of optimal control
points for the soft-continuum manipulator can be improved using specific cal-
ibration of the model using external tracking vision system. Therefore, this
section explains how the accuracy of the quintic PH curves can be further
enhanced.

3.8.1 Calibration of the Shape

When the quintic PH-based reconstructed shape and the actual shape are
superposed, a slight deviation is observed. So quintic PH-curves based ap-
proach can construct the nearest possible shape of the CBHA manipulator.
The presence of small errors can be explained as follows:
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• There is non-uniformity in the structure of the tubes. As, in the case
of the CBHA manipulator, each tube is made up of the concatenation
of 16 vertebrae. Also, the diameter of each tube decreases continuously
from its base to the top.

• The material has highly non-linear elastic behavior.

Therefore, the minimum energy calculation of the PH curve does
not fully adhere to such uncertainties. The reconstructed shape
based on quintic PH-curve needs to be calibrated for better accu-
racy.
During the shape reconstruction of the CBHA manipulator, it is supposed
that the two bending sections (Fig. 3.13) are fused into one total continuum
section. It is observed that the reconstructed shape does not pass through the
junction point of the two CBHA sections. The junction point should lie on the
curve defining the shape of the CBHA manipulator. Therefore, a calibrated
curve is generated, which not only closely resembles the quintic PH-curve but
is also made to pass through the junction point.
Formulation of quintic PH-curves consists of six control points (P0 = Ps, P1,
P2, P3, P4, P5 = Pf ). Out of these six control points, P0 and P5 are the
input points, and the formulation of the curve fixes P1 and P4 according to
the input direction vectors at the end points. Therefore, the two free control
points, namely P2 and P3 can be calibrated to pass the reconstructed curve
from the junction point of the real manipulator.
The construction of quintic PH-based shape uses Bezier interpolation as shown
in eq. 3.83. Therefore, it can also be called a Bezier curve satisfying the PH
condition. So, the properties of the bezier polynomial are exploited to cal-
ibrate the free control points of quintic PH-based reconstructed shape, to
generate the calibrated curve. Hence, the calibrated shape should also be a
Bezier curve of the same order. Knowing that the resulting calibrated
curve will be a modified PH-curve as the shifting of the control
points does not include the PH condition. It is achieved as follows:

1. Selection of h corresponding to the tracked junction point: The
junction point of the CBHA manipulator is tracked using an external
tracking vision system. Now, the value of the curvilinear coordinate h
is needed at which the calibrated curve should pass through the tracked
junction point. As the quintic PH-curve gives very close initial results,
it is assumed that the quintic PH and the calibrated curves will be
approximately similar in shape. Therefore, we take the value of the
curvilinear coordinate h from the already constructed quintic PH-curve.
Thus, the value of curvilinear coordinate h of the point closest to the
tracked junction point in the quintic PH is selected as the value of the
curvilinear coordinate h at the junction point in the calibrated shape.
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As shown in Fig. 3.29, if A is the nearest point on the quintic PH curve
from the tracked junction point, then the value of h is taken from the
point A. This value is used for the calibrated curve to pass it through
the tracked junction point at this chosen h value.

P0 = Ps

df

ds

P5 = Pf

Junction Point
A

Quintic PH Curve

Figure 3.29: Selection of h value corresponding to the tracked junction point

2. To calibrate the shape with minimum effort and minimum deviation from
quintic PH, in this method, only one of the free control points is altered
at a time to shift the curve to pass it through the junction point.
In a bezier curve, the control points have global influence, but the weight
of each control point at a particular value of curvilinear coordinate h is
given by the variation in Bernstein coefficients (Fig. 3.30). To have a
minimum deviation from the initial quintic PH, only the control point
which has the maximum influence at the selected curvilinear coordinate
h, is shifted.

3. The quintic PH-bezier curve eq. 3.83 is exploited to find the formulation
of the desired calibrated control point when the value of the curvilinear
coordinate h and the tracked junction point is known. In case, junction
point is represented by Pmid and h ≤ 0.5 at the junction point, P2 has
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to be modified. Thus, using eq. 3.83, the junction point is,

Pmid =
5∑

k 6=2,k=0

(
5

k

)
(1− h)5−khkPk +

(
5

2

)
(1− h)5−2h2P2 (3.114)

Therefore,
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∑5
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(
5
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)
(1− h)5−khkPk(

5
2

)
(1− h)5−2h2

(3.115)

In case, h > 0.5 at the junction point, P3 has to be modified. Therefore
using eq. 3.83, the junction point is,

Pmid =
5∑

k 6=3,k=0

(
5

k

)
(1− h)5−khkPk +

(
5

3

)
(1− h)5−3h3P3 (3.116)

Therefore,

P3 =
Pmid −

∑5
k 6=3,k=0

(
5
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)
(1− h)5−khkPk(

5
3

)
(1− h)5−3h3

(3.117)

As, we are modifying P2 or P3 at a time, the general form to compute
the control point is given by Pc as;

Pc =
Pmid −

∑5
k 6=c,k=0

(
5
k

)
(1− h)5−khkPk(

5
c

)
(1− h)5−chc

(3.118)

Here, Pc is the corrected or modified control point, either of the free
control points P2 or P3, in case of the CBHA, Pmid is the desired tracked
junction point from experimental data, and h is the desired value of the
curvilinear coordinate at the junction point, Pk are the rest of the con-
trol points except the point which has to be corrected.
In general, the concerned control point by the calibration can be selected
by noticing the most influential control point from Fig. 3.30. For exam-
ple, at h ≤ 0.5, P2 is more influential to the shape, otherwise it is P3.

3.8.2 Relationship between Quintic PH and Calibrated Curve

New control points are computed to calibrate the quintic PH-curve. Now,
it is advantageous to develop a relationship between the old conditions (old
control point, h corresponding to the junction point) and the new control
points. It is not easy to develop this relationship quantitatively, it is for
that a qualitative Neural Networks (NN) approach is proposed. Markers are
attached on the CBHA manipulator as shown in Fig. 3.17. Data for all of
the workspace (4096 samples) of the CBHA manipulator is tracked using the
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Figure 3.30: Variation of Bernstein coefficients with curvilinear coordinate for quin-
tic bezier curve

external tracking vision system. This data is used to compute the shapes of
the backbone of the CBHA manipulator for all of the workspace using quintic
PH-curves based approach. The control points are recorded for all of the
quintic PH-curves. Then the new calibrated control points (P2 and P3) are
computed using the shape calibration method as discussed above. As shown
in Fig. 3.31, the inputs for NN are the old control point and the h value at
the tracked junction point which gives the new calibrated control point as an
output.
In our case either control point P2 or P3 is changed depending upon the value of
the curvilinear coordinate h at the junction point. This property was exploited
to split the input data to train two different NN as shown in Fig. 3.31. The
database is divided as, 70% data is utilized for training, 30% for validation
and 30% for test sets. The Levenberg-Marquardt method in MATLAB is
used to train both of the feed-forward neural networks each containing ten
neurons in a single hidden layer. In NN1, the Mean Square Errors (MSEs) of
2.21783× 10−5, 3.89162× 10−5 and 3.60386× 10−5 are achieved for training,
validation and test sets respectively. In NN2, the MSEs of 2.37198 × 10−5,
1.42342× 10−5 and 4.302266× 10−5 are achieved for training, validation and
test sets respectively.
Fig. 3.31 presents a block representation of the discussed method used to
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Figure 3.31: Block representation of calibration method

find the new control points for the calibrated shape of the CBHA manipulator.

3.8.3 Results and Discussions

To validate the calibration method, random pressures are injected in the
CBHA, then the posture of the CBHA is estimated using quintic PH-curve.
Afterward, the corrected shape is deduced by calculating the new control
points. Fig. 3.32 presents the comparison of actual shape, PH-based shape
construction and the calibrated shape using the proposed methodology. Here,
the three intermediate tracked marker points are at distances 1.7132 mm, 0
mm, and 2.5424 mm respectively from the calibrated shape. These distances
are less than the distances of quintic PH-based shape (1.6135 mm, 4.2048
mm, and 3.8339 mm). Therefore, an overall improvement in the accuracy of
the shape of the CBHA manipulator is validated. Furthermore, a trajectory
(Fig. 3.33) with 50 points is recorded using the vision system. End-point, as
well as its orientation, is taken from the tracked trajectory (Fig. 3.33). The
PH-curves methodology is used to reconstruct the shape of the backbone of
the CBHA arm for the whole trajectory. Some random postures reconstructed
using PH-curves are shown in Fig. 3.34. The improved shapes are also con-
structed using the calibration method (Fig. 3.34). In Fig. 3.34, the control
points of the curves are not shown to avoid the confusion with the tracked
marker points. To compare the PH-based and the calibrated shape with the
experimental data, the distances of the junction point and two intermediate
points from both of the shapes are tracked over the trajectory. The average
errors for the whole trajectory (50 postures) are tabulated in Table 3.5.
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Figure 3.32: (a) Actual shape v/s quintic PH based reconstructed shape (b) Quintic
PH based reconstructed shape v/s calibrated shape

Figure 3.33: Trajectory tracked using vision system

Table 3.5: Average errors for whole trajectory (50 postures) in mm

Distance PH based shape Corrected Shape
Intermediate Marker of Section 1 1.3331 1.2088

junction point 3.6660 0.0000
Intermediate Marker of Section 2 4.2215 2.9104
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Figure 3.34: Random postures reconstructed using PH curves as well as the calibra-
tion method along the trajectory

From table 3.5, it is clear that these errors are reduced by using the cali-
bration method to correct the quintic PH-based shape. As we tried to improve
the overall errors in the shape only by changing one of the existing control
points of the PH based curve, this can be the reason for the remaining errors.

3.9 Conclusion of the Chapter

This chapter discusses the different types of geometrical curves. The syn-
thetic curves are found more suitable for reconstructing the shape of the soft-
continuum manipulators due to the ability to control them. Furthermore,
different synthetic curves are discussed and compared theoretically. Theoreti-
cal comparison concludes that Pythagorean Hodograph (PH) curves are better
than the other synthetic curves because they can produce higher order curves
using four boundary conditions. They have closed-form solution to compute
the length of the curve; also, quintic PH curves have free control points to
choose an optimal shape according to geometrical requirement.
The next step involves the experimental comparison of the discussed synthetic
curves with their application to the CBHA manipulator. This comparison
validates that quintic PH curves are better to model the shape of the soft-
continuum manipulators in 76.50 % of the cases. Rest of the 23.50 % cases are
in favor of cubic PH and Hermite curves, and these cases include the shape
reconstruction of straight configurations of the CBHA manipulator. There-
fore, this chapter concludes that quintic PH curves can be used to reconstruct
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the optimal shapes of the soft-continuum manipulators as they are accurate
in most of the cases.
In [Song 2010], a comparative study is done for the path planning of a mobile
robot using Hermit, Bezier, and B-splines. This paper concludes that out
of these three curves, Bezier curves are the best ones, as, they can produce
a smoother and shorter path. Also, [Song 2015a] stated that Bezier curves
are better to represent the shape of the continuum manipulators than the
B-splines. Bezier-curves and PH-curves use Bernstein basis functions. There-
fore, PH-curves have the advantages of Bezier-curves along with their bene-
fits. Consequently, we obtain better results with PH-curves to reconstruct the
shape of the soft-continuum manipulators.
Two free control points in the formulation of the quintic PH-curves are chosen
by minimizing the bending energy of the resulting curve. But due to some un-
certainties in the structure of the CBHA manipulator, the minimizing bending
energy criteria does not correctly adhere to our case. Therefore, a calibration
method to improve the accuracy of the quintic PH-based reconstructed shape
using the experimental data is discussed and validated for the CBHA manip-
ulator. It is a generalized method, and can be applied to any soft-continuum
manipulator to calibrate its quintic PH-based approximated shape.
Observation of the benefits of the quintic PH-curves for the shape reconstruc-
tion of the soft-continuum manipulators makes us curious to further explore
these curves. The optimal shape reconstruction should lead us to the inverse
kinematic solution of the manipulators. Therefore, the next chapter deals
with the use of PH-curves to model the kinematics of the soft-continuum
manipulators.
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4.1 Introduction

The first objective of this thesis to model the shape of the soft-continuum
manipulators is dissertated in the previous chapter which concludes that the
quintic PH curves can better approximate the shape. Control of the soft-
continuum manipulators in their task space demands an optimal inverse kine-
matic model. Therefore, the following objective is to extend the PH-based
shape reconstruction approach to solve the kinematics of the soft-continuum
manipulators. This chapter discusses the inverse, as well as, forward kine-
matics of the continuum manipulators using PH-curves. Inverse kinematics
solution of the soft-continuum manipulators is to find their joint parameters,
described in our case study on the backbone lengths for a particular target
position in their task space. Therefore, the solution to the backbone lengths of
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the soft-continuum manipulators can be deduced from the formulation of the
PH curves used to model the shape profile. Forward kinematics of the soft-
continuum manipulators imposes a specific posture to the manipulator with
the known joint parameters to calculate the end effector position in the task
space. The inverse kinematic equation of the soft-continuum manipulators de-
duced from quintic PH curves is used to formulate the FKM equation of the
soft-continuum manipulators. These kinematic models have been validated
on the CBHA manipulator and also compared with the existing kinematic
modeling approaches. These kinematic models have been developed for free
load manipulation. Unlike rigid manipulators, the soft-continuum manipu-
lators can not manipulate loads without making changes to their structure
due to their inherent soft material. Therefore, the robustness of PH-curves
based approach is tested for the variable load manipulation by computing
the change in the end pose of the manipulator for load handled, using the
NN-based learning approach.

4.2 Inverse Kinematics of Soft-continuum Manipulators
from PH-curves

In the literature, the study of the Inverse Kinematic Model (IKM) of the soft-
continuum robots is often decoupled from the reconstruction of the shape.
Due to the soft behavior of these robots, a redundancy in their posture exists.
Finding an accurate inverse kinematic model of a hyper-redundant manipu-
lator does not mean finding the optimal shape. In this thesis work, we first
reconstructed an optimal shape from an approach based on the modeling of
curves, allowing us to deduce the inverse model for an optimal posture of the
soft-continuum manipulators. Therefore, this section deals with the IKM of
the soft-continuum manipulators, its application to the CBHA manipulator
and the comparison with the existing IKMs for the same manipulator.

4.2.1 Shape Reconstruction towards Inverse Kinematic Model

PH-curves are used to model the shape of the soft-continuum manipulators
with four input conditions (Ps, ds, Pf , df ). Now, the task is to use the same
PH-curve based formulation to compute the inverse kinematics of the soft-
continuum manipulators. This means computing their length for a particular
tip position of the manipulator. In our case, the tip position of the manip-
ulator is represented by Pf . Therefore, the inverse kinematics of the soft-
continuum manipulators should be the relationship of their backbone length
with the tip position (Pf ) as:

L(h) = f(Pf ) (4.1)
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The length of the PH-curve which represents as the backbone length of the
soft-continuum manipulators is represented as in eq. 3.44. Also, the derivative
r′(h) of the generalized equation of the PH-curve r(h) is given by:

r′(h) =

x′(h)
y′(h)
z′(h)

 =
2n+1∑
k=0

Pk

(
2n+ 1
k

)
(2n+ 1− k)(1− h)2n−kkhk−1 (4.2)

This (2n + 1)th degree PH-curve is formulated when nth degree polynomials
u(h), v(h), p(h), q(h) (eq. 3.111) are used in Bernstein form. In eq. 4.2,
Pk represents the control points of the PH-curve. The nth degree PH-curve
contains (n + 1) control points. A PH-curve formulated using start (Ps, ds)
and end (Pf , df ) conditions of the soft-continuum manipulator always passes
through Ps and Pf . Also, Ps and Pf represent the first and the last control
points of the PH-curve respectively. Therefore the last control point of the
PH-curve always coincides with the end position (Pf ) of the soft-continuum
manipulator. It means using eq. 4.2 in 3.44, relates the length of the
soft-continuum manipulator with the tip position of the manipulator, which
illustrates the inverse kinematics of the soft-continuum manipulators as
follows.

L(h) =

∫ 1

0

|((C1sh+ C2sh
2 + .......+ C2nsh

2n)~Ps

+ ((C1kh+ C2kh
2 + .......+ C2nkh

2n)~Pk

+ ((C1lh+ C2lh
2 + .......+ C2nlh

2n)~Pl

+ ........

+ ((C1mh+ C2mh
2 + .......+ C2nmh

2n)~Pm

+ ((C1fh+ C2fh
2 + .......+ C2nfh

2n)~Pf )|dh

(4.3)

Here, Ps, Pk, Pl, ......, Pm, Pf represent the (2n + 2) control points of the
(2n+ 1)th degree PH-curve. The set of Ci describes the n degree polynomial
coefficients. The infinite solutions of the inverse kinematics are illustrated
by the free control points in case of PH formulation. For PH-curves, this
problem is handled by choosing an optimal solution of the free control points
as discussed in the previous chapter.

4.2.2 Application of IKM to the CBHA Manipulator

It is discovered that the quintic PH-curves are the best representatives of
the shape of the soft-continuum manipulators with their application to the
CBHA manipulator, due to it’s two inflection points. Therefore, to formulate
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the inverse kinematic equation for the quintic PH-curves in case of the CBHA,
the derivative of the equation of quintic PH-curve is used:

r′(h) =

x′(h)
y′(h)
z′(h)

 =
5∑

k=0

Pk

(
5
k

)
(5− k)(1− h)4−kkhk−1 (4.4)

Using eq. (4.4) in eq. (3.44), it gives:

L(h) =

∫ 1

0

|((−5 + 20h− 30h2 + 20h3 − 5h4)~P0

+ (5− 40h+ 90h2 − 80h3 + 25h4)~P1

+ (20h− 90h2 + 120h3 − 50h4)~P2

+ (30h2 − 80h3 + 50h4)~P3 + (20h3 − 25h4)~P4

+ (5h4)~P5)|dh

(4.5)

Here, P0, P1, P2, P3, P4, P5 represent the six control points of the quintic PH-
curve.

P0 = Ps

P5 = Pf
(4.6)

Therefore, eq. 4.5 is the relation between the length and the tip position
(Pf ) of the soft-continuum manipulator. This equation represents the inverse
kinematics of a soft-continuum manipulator modeled using quintic PH-curve.
Quintic PH-curve has two free control points and the optimal selection of
these two points gives us the optimal inverse kinematic solution of the CBHA
manipulator. Therefore, by solving eq. 4.5, the length of the soft-continuum
manipulator can be computed. The formulation of the control points of the
quintic PH (eqs. 3.89-3.93) illustrates that the point Pf = P5 can be repre-
sented in terms of the other control points. Also, eqs. 3.94 and 3.93 show the
involvement of the direction vector of the endpoint in the inverse kinematic
equation. Therefore, eq. 4.5 uses the given tip position, as well as, its orien-
tation in the task space to calculate the optimal length.
The structure of the CBHA manipulator includes three tubes attached to its
backbone as shown in Fig. 4.1. Therefore, the joint parameters for the CBHA
manipulator are the lengths L1, L2 and L3. The change in these lengths allows
the CBHA manipulator to reach a specific position in the task space. IKM
of CBHA manipulator needs to solve the optimal lengths L1, L2 and L3 for a
target position in the task space.

The end-point Pf of the backbone has to follow a desired trajectory.
The desired target includes the position as well as orientation of endpoint
Pf (xf , yf , zf ). The PH-curve is generated from Ps to Pf . As there is no tor-
sion in the structure of CBHA, only bending energy is minimized to select an
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Figure 4.1: Three measurable total tube lengths of the CBHA

optimal curve. Inverse Kinematic eq. 4.5 is used to calculate the backbone
length L of the CBHA manipulator. The tubes are attached to the backbone
of the CBHA manipulator. Therefore, the lengths L1, L2 and L3 are computed
using the backbone curve according to the following steps:

• The three potentiometer wires, that can measure the total tube lengths
L1, L2 and L3 are attached from one side to points A1, A2 and A3

of the lower vertebrae of the CBHA and from the other side to points
B1, B2 and B3 of the upper vertebrae (Fig. 4.2). The backbone of the
manipulator starts at Ps and ends at Pf . Both of these points are known
geometrically. R1 and R2 represent the radius of lower as well as upper
vertebrae respectively.

• In Fig. 4.2, the geometry of the triangle A1A2A3 and the radius R1 are
used to compute the coordinates of points A1, A2 and A3. The tubes
are attached to the backbone through a rigid link. Therefore, the same
orientation is imposed on these points as the center point of the triangle,
i.e., the point on the backbone PH curve.

• Likewise, assuming the linear variation of the radius from R1 to R2, the
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R1

R2

Figure 4.2: Boundary conditions for PH curves

three triangular vertices are determined along the entire backbone length
of the CBHA manipulator.

• Fig. 4.3 shows the lengths L1, L2, L3, generated using the backbone PH-
curve.

4.2.3 Experimental Validation

Experimental validation of the PH-based IKM of the CBHA is realized with
the OptiTrack vision system. To validate the proposed methodology, a refer-
ence trajectory with 6314 points is tracked (Fig. 4.4). Markers are used for
the detection of the tip point of the CBHA manipulator. During the real-time
movement of the manipulator, the three full-lengths L1, L2 and L3 are recorded
from the data of three potentiometer wires, which are mounted from the base
to the end of the manipulator. The lengths are calculated for all of the tra-
jectory points using the quintic PH-based approach. Fig. 4.5 represents two
random postures of the CBHA manipulator, computed using PH-based IKM
while following the desired trajectory of Fig. 4.4. An optimal posture should
have lengths close to the actual lengths of the CBHA. Therefore, estimated
lengths are compared with the measured lengths for the validation of the
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Figure 4.3: Shape reconstruction of the CBHA manipulator in case of free load
manipulation

proposed inverse kinematic model. For the same trajectory, other previously
developed IKMs for CBHA: 1) Hybrid Approach [Lakhal 2016], 2) Newton
Raphson Approach [Singh 2017], 3) Computational Mechanics [Bieze 2018]
are used for comparison.
The Hybrid approach modeled the CBHA manipulator as a series of parallel
robots. As CBHA manipulator consists of 17 vertebrae, it is modeled as 16
serial-parallel robots. The Newton Raphson approach is used to directly invert
the forward kinematic equations of the CBHA manipulator developed using
the Arc Geometry approach [Escande 2015]. Finally, the Computational Me-
chanics [Bieze 2018] approach, a Finite Element Method (FEM-based) mod-
eling applied to the CBHA manipulator in quasi-static behavior.
Assumptions: The experimentation has been done under the following

assumptions:

• The manipulator is considered under free load condition.

• The torsion is restricted in the structure of the CBHA manipulator.
Thus, the value of τ is assumed null (τ = 0).

4.2.4 Results and Discussions

The lengths are calculated, based on IKM and corresponding to each point of
trajectory, using PH-curves, Computational Mechanics, Hybrid and Newton
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Figure 4.4: Desired trajectory of the tip of the manipulator

Raphson approaches respectively. Figs. 4.7, 4.8-4.9 represent the comparison
of lengths L1, L2 and L3 respectively, when the tip of CBHA is realizing the
spatial trajectory of Fig. 4.4. The comparison shows that the lengths from all
of the approaches approximately follows the same trend as reference lengths.
Absolute extremum and average errors from the actual data are tabulated in
the table 4.1, for different IKMs. PH-IKM is more accurate than other meth-
ods. When compared to Newton Raphson approach [Singh 2017], PH-based
IKM approach assumes variable curvature of the manipulator. The former
approach is directly developed from FKM with the assumption of constant
curvature. To verify, Fig. 4.6 shows the variation of the curvature of a quin-
tic PH-curve along its backbone length for a random posture. The Hybrid
approach [Lakhal 2016] used geometrical representation to generate inverse
kinematic equations of the inter-vertebraes, and then these equations are ap-
proximated using a learning approach based on Neural Networks. [Bieze 2018]
modeled the CBHA manipulator using computational mechanics, where the
length errors for the same trajectory (Fig. 4.4) are less than the Hybrid, and
Newton Raphson approaches but bigger than of PH-based IKM approach.
All of the approaches are compared on the same CBHA manipulator realizing
the same trajectory. For PH-based IKM, the average errors in all calculated
lengths are in the range of 1-2 mm in the case of the free load. PH-based IKM
is a geometrical approach which considers the variable curvature of the
CBHA manipulator and the optimal shape after bending energy mini-
mization. The latter can justify the optimal estimation of the lengths, where
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Figure 4.5: Two random postures while following the required trajectory in case of
free load manipulation

the reconstructed posture is close to the real CBHA’s posture.

Table 4.2 shows the time cost to calculate the IKM of the CBHA for one
trajectory point (one posture), using the four approaches. PH-based IKM
takes minimum time followed by Hybrid, FEM-based and Newton Raphson
approaches. The Newton Raphson approach [Singh 2017] is an iterative ap-
proach. Therefore it takes more time. The Hybrid approach [Lakhal 2016]
takes less time than the Newton Raphson approach, but it needs more time
to handle high size matrices, as four neural networks are trained. Also, the
FEM approach has more computational cost.
Therefore, results conclude that the PH-based IKM approach gives better
performances in terms of accuracy as well as the time cost in free-load config-
uration.
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Figure 4.6: Variation of curvature of the quintic PH-curve along its backbone length
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Figure 4.7: Comparison of length L1
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Table 4.2: Time cost for one sample

Time Cost (sec)
Pythagorean Hodograph Curves Approach 0.00027

Newton Raphson Approach 0.23351
Hybrid Approach 0.01208

FEM Based Approach 0.05000
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Figure 4.9: Comparison of length L3

4.3 Performances Robustness of PH-curves

Until now, the shape reconstruction of the considered soft-continuum CBHA
manipulator was conducted in the case of the free-load manipulation. How-
ever, unlike the rigid manipulators that are dimensioned in part
according to their lifted loads, the soft-continuum manipulators can
change their kinematic behavior in function of the lifted loads. This
is due to the flexible-made structure of the soft-continuum manipulators,
where their bending is sensitive to the grasped loads. A kinematic model
which can adapt to the variation of the load is therefore necessary. Shape re-
construction of soft-continuum manipulators using PH-curves is a geometrical
model. Consequently, it can not accommodate the changes due to the dy-
namic parameters, namely: loads’ mass and flexibility of the structure. These
changes affect the performance of the curve-based reconstruction. To answer
this problem in the context of the thesis, a qualitative learning-based approach
with Neural Network (NN) is used to predict the effect of the loads on the
positioning of the tip of the soft-continuum manipulator.
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Let us assume that the end-point of the manipulator and the direction vector
at that point, in case of free-load manipulation is given as:

Pfl = (xfl, yfl, zfl)

dfl = (dxfl, dyfl, dzfl)
(4.7)

As shown in Fig. 4.10, the NN uses the position vector Pfl(xfl, yfl, zfl),
the direction vector dfl (dxfl, dyfl, dzfl) as well as the mass m as inputs.
Then, the NN gives as an output an approximation of the final pose Pf (xf ,
yf , zf ), df (dxf , dyf , dzf ) according to the mass handled by soft-continuum
manipulator. Ps is fixed at the base of the manipulator and Pf is approximated
using NN approach according to the handled mass. Furthermore, the PH
shape reconstruction is used to estimate the shape of manipulator under the
mass variation of the manipulated load.

Pfl
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Figure 4.10: Robustness of PH curves in case of variable load manipulation

4.3.1 NN-based Approach for End-point Approximation

Using a tracking vision system, it is noticed that the end-position of the CBHA
manipulator changes with the variation of mass (Fig. 4.11), which leads to
the change in the shape of the manipulator. Fig. 4.11 shows the reconstructed
shape by using PH-curve of the backbone of the CBHA manipulator for dif-
ferent masses. Fig. 4.12 shows that the manipulator does not have the same
workspace in case it handles different masses. Workspace with 305 g of mass
has more voids than the one with 105 g. Also, when both of the workspaces
are plotted together, they did not overlap. It means with the effect of load,
the end-position of the manipulator changes. The CBHA can operate as a
manipulator if its kinematic (i.e., bending) doesn’t change with the variation
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of its admissible payload. In this case, it is essential to predict what should
be the real pose in the presence of admissible payload, before starting piloting
the manipulator. Therefore, an NN based approach is used to predict the
variation of the end position of the CBHA manipulator in the presence of the
load. Multilayer Feed-forward Networks (MFNN) are considered to approxi-
mate the pose of the CBHA. They are capable of approximating a measurable
non-linear function, provided sufficiently enough hidden units [Hornik 1989].
However, finding the best MFNN structure is a difficult and unsolved problem
[Spooner 2002]. Therefore, in this work, an MFNN with two hidden layers and
random initial parameters is first considered, and based on the performance
achieved on the test set, the parameters of MFNN are determined.
The MFNN is used to predict the influence of the mass on the

Figure 4.11: Effect of mass on the shape of CBHA manipulator

CBHA’s pose. The CBHA pose Pfl(xfl, yfl, zfl), dfl (dxfl, dyfl, dzfl)
with the free-load and the mass m are taken as inputs of NN, where
the novel CBHA’s pose Pf(xf , yf , zf), df (dxf , dyf , dzf) in presence
of the load is approximated as output of the NN (Fig. 4.10). The
latter will be used for the shape reconstruction in the presence of
the handled load.
The learning database is built using the tracking vision system. As the CBHA
manipulator has pneumatic actuations, the position, with and without the
mass at the end-effector is varied proportionally with the actuated pressures.
These pressures have been varied in the range of [0; 1.5] bar. Thus, using a
step size of 0.5, each tube has been controlled by one of these values (0; 0.5;
1; 1.5). With six controlled inputs, we get a learning database of 46 = 4096
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samples, for each mass. The samples are collected for a mass varying from
0 to 350 g with a step size of 15 g. In all, we obtain a learning database of
98304 samples. The learning base is divided into three subsets whose 70% is
used in the training set, 15% in the validation set, and 15% in the test set.
The training set is used during the learning phase, and the test set is only used
to evaluate the performance of the neuronal models. For a good generalization
and to avoid over-fitting, the validation set is used during the training phase,
and the early-stopping method is applied for training. The early-stopping
method is required to stop the iterations after a period of training (called an
epoch) using the training set and the fixed weight matrices of the MFNN. The
process is reiterated until the Mean Square Error (MSE) on the validation set
reaches its minimum value.
Among existing NN training algorithms (Gradient descent, Newton’s method,
Conjugate gradient, Quasi-Newton method, the Levenberg-Marquardt algo-
rithm, etc.), the Gradient descent is the one requiring less memory. For in-
stance, compared to Newton’s method where the Hessian matrix (size n× n)
has to be stored, only the gradient vector (size n) is stored in the Gradient
descent method. In the case study, the choice of Gradient descent is moti-
vated mainly, due to the size of our training database. The training speed is
improved by adding a momentum term.
The Gradient descent algorithm requires information from the gradient vec-
tor. It starts at an initial weight matrix w0 and moves from wi to wi+1 in
the opposite direction of the gradient until a stopping criterion is satisfied.
Therefore, the weight matrix iterates in the following way:

wi+1 = wi − giηi, i = 0, 1, ... (4.8)

Where gi is the gradient vector and ηi the training rate. The latter can either
set to a fixed value or found by the optimization algorithm along the training
direction at each step. In the CBHA case, the momentum term has been
added to the Gradient descent algorithm to increase the rate of convergence.
The eq. (4.8) becomes,

wi+1 = wi − giηi + pwi−1, i = 0, 1, ... (4.9)

In the training phase, the weight matrices were randomly initialized, the
training rate was fixed at 0.01, and an MSE of 10−5 was used as a stopping
criterion. To select the best MFNN model, the values of the neurons in
each hidden layer were varied from 4 up to 20 neurons (with a step of 1
neuron), and the number of epochs was fixed at 20000. The optimal MFNN
architecture with 11 neurons in each hidden layer was obtained after 9440
epochs. The MSE of 4.23× 10−4 is obtained on the test set.
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Figure 4.12: Effect of mass change on work space of the CBHA
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Finally, the end-positions (Pf ) of the CBHA manipulator are noted using
the vision system in case the CBHA handles the masses: 135, 150, 180 and
305 g. For the same mass, end-positions are also computed using the NN
algorithm. Then as shown in Fig. 4.13, the shapes of the CBHA manipulator
are reconstructed using PH-curve. It is shown that the shape from the NN
algorithm is approximately the same as the actual shape.

Figure 4.13: Difference b/w shape of the CBHA manipulator generated using input
from NN with the one created using input from the vision system

4.4 Forward Kinematics of Continuum Manipulators
from PH-curves

In terms of PH-based approach, the FKM of the continuum manipulators
should define the relationship between the end-point and the backbone length
of the manipulator as:

Pf = f(L) (4.10)

In the following section, the FKM of the continuum manipulators is devel-
oped from PH-IKM. Then, experimental validation of the model to CBHA
manipulator and its comparison with the other existing FKM approaches for
the CBHA, are discussed as follows:
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4.4.1 Inverse Kinematic Model towards Forward Kinematics

FKM is developed using the PH-IKM Equation of the continuum manipula-
tors. The general form of 2n + 1th degree PH curve of eq. 4.3 contains the
following control points:

~P1 = ~P0 +
1

2n
A0
~iA∗0 (4.11)

~P2 = ~P1 +
1

4n
(A0

~iA∗1 + A1
~iA∗0) (4.12)

:
:
:

~P2n−1 = ~P2n−2 +
1

4n
(A2n−4~iA

∗
2n−3 + A2n−3~iA

∗
2n−4) (4.13)

~P2n = ~P2n−1 +
1

2n
A2n−3~iA

∗
2n−3 (4.14)

Therefore using these control points in the solution of eq. 4.3, the FKM of
the soft-continuum manipulators can be achieved.

4.4.2 Application of FKM to the CBHA Manipulator

IKM of the CBHA manipulator is calculated using quintic PH-curves based
approach. Likewise, FKM of the CBHA manipulator uses the IKM equation
developed for the manipulator. The IKM equation of the CBHA manipulator
is given as:

L(h) =

∫ 1

0

|((−5 + 20h− 30h2 + 20h3 − 5h4)~~P0

+ (5− 40h+ 90h2 − 80h3 + 25h4)~P1

+ (20h− 90h2 + 120h3 − 50h4)~P2

+ (30h2 − 80h3 + 50h4)~P3 + (20h3 − 25h4)~P4

+ (5h4)~P5)|dh

(4.15)

Differentiating eq. 4.15 w.r.t. h from both sides;

dL(h)

dh
= |(−5 + 20h− 30h2 + 20h3 − 5h4)~P0

+ (5− 40h+ 90h2 − 80h3 + 25h4)~P1

+ (20h− 90h2 + 120h3 − 50h4)~P2

+ (30h2 − 80h3 + 50h4)~P3 + (20h3 − 25h4)~P4

+ (5h4)~P5|

(4.16)
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dL(h)

dh
|h=1 = | − 5~P4 + 5~P5| (4.17)

Using eq. 3.46, dL(h)
dh

= σ(h);

σ(h)|h=1 = | − 5~P4 + 5~P5| (4.18)

=⇒ L = | − 5~P4 + 5~P5| (4.19)

∴ |~P5| =
L

5
+ |~P4| (4.20)

Using control points formulations of quintic PH (eqs. 3.89-3.93);

~P4 = ~P0 +
1

5
A0
~iA∗0 +

1

10
(A0

~iA∗1 + A1
~iA∗0)+

1

30
(A0

~iA∗2 + 4A1
~iA∗1 + A2

~iA∗0) +
1

10
(A1

~iA∗2 + A∗2~iA
∗
0)

(4.21)

Using eq. (4.21) in (4.20);

|~P5| =
L

5
+ |~P0 +

1

5
A0
~iA∗0 +

1

10
(A0

~iA∗1 + A1
~iA∗0)+

1

30
(A0

~iA∗2 + 4A1
~iA∗1 + A2

~iA∗0) +
1

10
(A1

~iA∗2 + A∗2~iA
∗
0)|

(4.22)

Equation 4.22 is the FKM equation of the CBHA manipulator which gives
the relation P5 = f(L). This equation can not be solved as we do not have
the direction vector at the end point, a prerequisite for the calculation of
P4. The reason is that PH is the curve-based approach and its construction
depends on the direction vector, and it is a variable curvature curve. In case
of the assumption of constant curvature, the curve can be manipulated from
the known information to compute the end-point. But in this case, it is not
possible. This is a constraint of this approach.
We just imposed the direction vector from the tracked trajectory, to compute
the magnitude of the end-point (P5) and to see the accuracy in the trajectory
tracking in terms of position only. Corresponding to the three lengths of the
CBHA manipulator, endpoints of the tubes are calculated. Therefore, using
geometry of the endpoints B1, B2, B3, as shown in Fig. 4.2, Pf is calculated.
Also, as all of the endpoints B1, B2, B3, Pf lie on the same surface, same
direction vector is imposed on all of the endpoints.

4.4.3 Results and Discussions

The trajectory (Fig. 4.4) of the end-point (P5) of the CBHA manipulator is
used to calculate the lengths of the CBHA manipulator using PH-IKM ap-
proach. Further, these calculated lengths are introduced as an input to the
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FKM of the CBHA which approximates the end-points of each tube and sub-
sequently (P5) of the backbone end of the CBHA manipulator. As shown in
Fig. 4.14, this approximated trajectory of the end-point is compared with
the reference trajectory for the validation of the proposed forward kinematic
model. Other previously developed FKMs for CBHA: 1) Hybrid Approach
[Lakhal 2016], 2) Arc Geometry Approach [Escande 2015], are used for com-
parison. Fig. 4.14 shows the trajectory tracked using FKMs as well as the
reference trajectory.
Table 4.3 shows the error comparison of proposed as well as prior developed
FKMs. The results obtained using PH-FKM are accurate. The reason of the
accuracy is that the additional input of the direction at the end point is given
along with the length.

Arc Geometry

Figure 4.14: Trajectory tracked using FKM

Table 4.3: Error comparison for FKMs in mm

Approaches Mean Error in Position Standard Deviation
PH 1.027 0.6559

Arc Geometry 11.7686 9.3256
Hybrid 4.5558 2.0990
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4.5 Conclusion of the Chapter

In this chapter, kinematics of soft-continuum manipulators are discussed us-
ing PH-based approach. The IKM of soft-continuum manipulators is deduced
quantitatively from the PH-based shape reconstruction approach. The per-
formances of the PH-IKM have been tested on the CBHA manipulator. It is
discussed in the previous chapter that quintic PH-curves are the best shape
representative for the CBHA manipulator. Therefore, the IKM of the CBHA
manipulator is computed using quintic PH-curves. The results from the PH-
based IKM are compared with the other existing IKMs for the same manipu-
lator realizing the same trajectory. These results conclude that the PH-IKM
approach gives the more accurate solution and also it is the most efficient in
terms of time cost.
Further, by taking care of the importance of the effect on the shape of the
continuum manipulator while it handles masses, the robustness of the shape
reconstruction is performed in the case of multiple admissible masses. A qual-
itative NN approach is used to compute the change in the end effector position
of the soft-continuum manipulators according to the amount of mass they are
handling. Further, this changed end effector can be used for the shape recon-
struction using PH-curves.
PH-curves based IKM of the continuum manipulators also helps us to find the
FKM equation of the soft- continuum manipulators. But the PH-based FKM
can not be solved without having the direction vector at the end point. The
application of FKM is validated on the CBHA manipulator by imposing the
direction vector at the end point. Comparison with two existing FKM meth-
ods regarding tracking accuracy indicates enhancement of these performances
for the same trajectory tracking.
After extending the PH based approach to compute the kinematics of the
continuum manipulators, it is interesting to see the performance of the same
approach for multi-sectioned or more complex forms of continuum manipula-
tors.
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5.1 Introduction

In this chapter, a PH-based approach is presented to build multi-section ma-
nipulators or to model the shape of the continuum closed loop kinematic
chains. Therefore, this work involves the concatenation of PH-curves to de-
scribe the kinematics of the soft-continuum links attached in serial or parallel
configuration.

5.2 Problem Statement

As discussed in previous chapters, to reconstruct the shape of a single soft-
continuum manipulator, four basic input conditions are used. Now, the motive
is to model the shape of the manipulators in serial or parallel configuration.
Figure 5.1 shows a general case, in which n soft-continuum links are connected
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df1

ds1

Pf1=Ps2
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Figure 5.1: General case of n number of soft links connected to form a soft-continuum
kinematic chain

to form a kinematic chain. If r(h) is the curve representing the shape of a
single soft manipulator, the problem statement to model the n links in a
kinematic chain using n curves rn(h) is stated as:
n∑
i=1

(Psi(xsi , ysi , zsi), dsi(dxsi , dysi , dzsi)
ri(h)→ Pfi(xfi , yfi , zfi), dfi(dxfi , dyfi , dzfi))

(5.1)
Here, h represents the curvilinear coordinate along the curve. i = 1, 2, ...., n−
1, n indicates the link in the kinematic chain. Equation 5.1 represents the
concatenation of n PH-curves to form a soft-continuum kinematic chain of n
links.
Same as the case of single link, in this case also we need to choose an optimal
shape of each link of the kinematic chain to get an optimal shape of the
kinematic chain. Therefore the same optimization approach is used as stated
in eq. 1.2.

5.3 Concatenation of PH Curves

Sometimes the soft-continuum manipulators are difficult to model with one
PH curve due to their complex shape or due to more sections. Also, in the
case of soft-continuum closed loop kinematic chains, to model more than one
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link, concatenation of PH curves is required. Concatenation of more than one
PH curves involves the following two cases:

5.3.1 Case 1: C1 Continuity

As shown in Fig. 5.2, two PH curves are concatenated. In this case, both of
the links are joined with C1 continuity. Therefore this is the case in which
position, as well as velocity, are the same at the junction point. The following
conditions need to be used to construct PH curves for this case:
For PH1,

r1(0) = A r1(1) = B (5.2)

r′1(0) = ds r′1(1) = dm (5.3)

For PH2,
r2(0) = B r2(1) = C (5.4)

r′2(0) = dm r′2(1) = df (5.5)

A

df

ds

C

B

dm

Link1

Link2

PH1 (r1)

PH2 (r2)

Figure 5.2: Concatenation of two PH curves with C1 continuity

5.3.2 Case 2: C0 Continuity

In a soft-continuum kinematic chain, sometimes the links are joined with
C0 continuity having only the position constraint at the junction. Fig. 5.3
shows the concatenation of two PH curves (two links) with C0 continuity. The
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following conditions need to be used to construct PH curves for this case:
For PH1,

r1(0) = A r1(1) = B (5.6)

r′1(0) = ds r′1(1) = df (5.7)

For PH2,
r2(0) = B r2(1) = C (5.8)

r′2(0) = dss r′2(1) = dff (5.9)

These two cases are discussed to get the boundary conditions for the soft-

A

df

ds

C

B

Link1
Link2PH1 (r1)

PH2 (r2)

dss

dff

Figure 5.3: Concatenation of two PH curves with C0 continuity

continuum links concatenated to form the soft-continuum kinematic chain.

5.4 Experimental Validation

5.4.1 Experimental Setup

A continuum closed loop kinematic chain is formed to move towards the ap-
plication of skipping rope. A CBHA manipulator can move an object like we
can move it by hand. Therefore, a continuum closed loop kinematic chain is
formed with an assembly of three flexible links. Fig. 5.4 shows the two CBHA
arms driving an intermediate flexible rope, forming a closed kinematic chain
ABCD. The rope is a passive link, and it is hanging under the condition of
its self-weight. Both of the CBHA arms are fixed at their bases. The aim
is to model the shape of the soft-continuum kinematic chain using quintic
PH-curves. Let us consider that CBHA1 acts as a link1, rope as a link2 and
CBHA2 as a link3. A quintic PH-curve is used to reconstruct the shape of
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Figure 5.4: Continuum closed loop kinematic chain

each flexible link of the closed kinematic chain (Fig. 5.5). Table 5.1 shows
the four initial conditions used to construct the quintic PH-curve for each
link. Therefore, three quintic PH-curves are constructed for the considered
kinematic chain. Calibrated quintic PH-curves are used in this formulation.

Table 5.1: Initial conditions to construct PH curves for soft-continuum closed loop
kinematic chain

Link1 (PH1) Link2 (PH2) Link3 (PH3)
Starting Position A B C

Starting Orientation O(A)CBHA1 O(B)Rope O(C)CBHA2

Ending Position B C D
Ending Orientation O(B)CBHA1 O(C)Rope O(D)CBHA2

The markers are attached on all of the three links of the closed kinematic
chain: CBHA1, rope and CBHA2 to perform the experimental validation as
shown in Fig. 5.4.

5.4.2 Results

Three quintic PH-curves are constructed for the kinematic chain as described
in Fig. 5.5. The reconstructed shape of the closed kinematic chain using PH
curves is compared with the actual tracked shape (Fig. 5.7). The average
errors from the actual shape (tracked markers) for the links CBHA1, rope
and CBHA2 are 2.8 mm, 8 mm and 3.1 mm respectively. These results show
that PH curves based approach can approximate the shape of the links in a
chain.
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Figure 5.5: Modeling of closed loop kinematic chain using PH curves

Figure 5.6: Tracking of continuum closed loop kinematic chain

.

Shape of CBHA1 using PH                                                        
Shape of Rope using PH
Shape of CBHA2 using PH 
Tracked Shape of CBHA1
Tracked Shape of Rope
Tracked Shape of CBHA2

Figure 5.7: Comparison of real shape with shape reconstructed using PH curve for
continuum closed loop kinematic chain
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Different movements of the kinematic chain are created and tracked using
the vision system, and data is recorded for some of the postures during the
movement. We tried to reconstruct some postures of the kinematic chain (Fig.
5.8).
From the results, it is clear that quintic PH-curves can model the shape of

the soft-continuum kinematic chains. But it is noticed that there are more
errors in the shape construction of the different links of the soft-continuum
kinematic chain than the errors to model the shape of a single soft-continuum
manipulator. The reason for these errors can be:

• The concatenation of two links experience some induced force at the
joint. Therefore, it affects the orientation of the links.

• The rope can be more flexible to model using quintic PH curves. That’s
why there is more error in the shape reconstruction of the rope than the
CBHA manipulator.

• Another reason can be the movement of the chain as two CBHAs are
moving the rope. PH-based shape reconstruction needs an accurate data
of the orientation (direction vector) to model the shape. The orientation
tracked during the motion can have some error.

5.5 Conclusion of the Chapter

The improvements in the accuracies in the shape reconstruction and kinemat-
ics of the soft-continuum manipulators using PH-based approach leads us to
the work of this chapter. This chapter deals with the shape reconstruction of
kinematic chains formed using soft-continuum links. A generalized case of a
kinematic chain built using n soft-kinematic links is discussed. The shape of
each link is reconstructed using a quintic PH-curve. Then the concatenation
of these PH-based reconstructed shapes is performed. The optimal shape of
each link ensures the optimal shape of the whole kinematic chain after con-
catenation.
An interesting experimental set-up is created to validate the proposed method-
ology of modeling soft-continuum kinematic chains. This chain consists of two
CBHA manipulators holding a rope. The rope is a passive link here. There-
fore, this chain composed of three soft-continuum links is modeled using the
discussed methodology. The optimal shape of each link is modeled separately,
and then all of the three links are concatenated to reconstruct an optimal
shape of the constructed soft-continuum kinematic chain. The results show
that the errors in the reconstructed shape are in the acceptable range.
Furthermore, it is noticed that the chain consists of two CBHAs and a rope
illustrates that it is a heterogeneous chain due to the presence of two different
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Figure 5.8: Random postures of the continuum kinematic chain reconstructed using
quintic PH-curves
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type of links (CBHA and rope) in the chain. Therefore, another interest-
ing conclusion is drawn that the proposed methodology can also model the
shapes of the heterogeneous soft-kinematic chains. Also, the single manipula-
tors which are heterogeneous can be modeled using this approach.
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The primary objective of this work is to provide a methodology to model
the shape of soft, continuum manipulators based on the geometrical curve
approach. Pythagorean Hodograph (PH) curves are used to model the
optimal shape of the manipulators, starting from the knowledge of their
input and end points’ poses. This approach of shape reconstruction leads
to the calculation of kinematic behavior of the manipulators. The proposed
methodology is validated experimentally on the CBHA manipulator, and it
is also compared with the existing kinematic approaches for CBHA. The aim
is to compare the performances of each kinematic approach applied on the
same robot.

6.1 Summary of Conclusions

First, a concise and a complete view of the field of soft manipulators is pre-
sented, after discussion of the terminology of soft and continuum manipula-
tors. The main interesting problems addressed in the framework of this Ph.D.
thesis are:
1) Shape reconstruction,
2) Kinematic modeling of soft-continuum manipulators.
Due to the soft material properties, the modeling of the shape of soft manip-
ulators plays a vital role. A positioning of PH model-based for the shape re-
construction has been made compared to existing quantitative and qualitative
approaches to model the shape as well as the kinematics of the soft-continuum
manipulators. Also, the analytical or data models of soft-continuum manipu-
lators need to be validated for simulation of control purposes. The complexity
of these models requires a real-time optimization as one of the specifications
for the proposed contribution.
The choice of the type of the curve for the shape reconstruction is an impor-
tant step. The curves can be represented as parametric or non-parametric
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form. Further, the parametric curves can be represented as analytical or syn-
thetic form and non-parametric as implicit or explicit form. Different types
of curve-based approaches are discussed with their mathematical formula-
tions. Synthetic curves are found more appropriate to model the shape of
soft-continuum manipulators due to the presence of control points to control
their shape. The mainly used synthetic curves (Hermite, Bezier, B-splines,
PH curves) are discussed to reconstruct the shape of soft-continuum manip-
ulators and are compared to choose an appropriate curve as per our require-
ments. The discussion involves how to approximate the bending along the
backbone of soft-continuum manipulators by cubic/quintic polynomial func-
tions describing geometrical curves to reconstruct the shape. Furthermore, a
class of soft-continuum manipulators, namely Compact Bionic Handling As-
sistant (CBHA) is introduced. All of the discussed curve based approaches are
applied to this manipulator to reconstruct its shape. The results are compared
and discussed regarding accuracy and time cost to choose an optimal real-time
approach. Results show that quintic PH curves are the best to reconstruct
the postures of the CBHA in 76.50 % of the cases. The remaining 13.50 %
postures are better reconstructed using Hermite, Bezier and cubic PH curves.
In these 13.50 % of cases, the posture of the CBHA is near to the straight
configuration. The advantages of PH curves over the other curves are:
1) PH curves are computationally efficient.
2) Less number of input boundary conditions can generate higher order PH
curves.
3) Length of a PH-curve has a closed form solution.
Furthermore, the calibration of the PH based reconstructed shape is performed
to accommodate the uncertainties in the structure of the CBHA manipulator
using known experimental data. This calibration further improves the accu-
racy of the PH based reconstructed shape.
Due to the flexible-made structure of the soft-continuum manipulators, their
bending is sensitive to the grasped loads. In this case, it is important to eval-
uate the robustness of the modeling approach especially when the modeling
concerns a manipulator, where its main task is the manipulation of objects.
External grasped masses by the soft manipulators induce their shape defor-
mation compared to their equivalent in rigid structure. Therefore, both cases:
1) Free load conditions, 2) Loaded conditions, are discussed. A qualitative
NN approach is used to compute the change in the end effector position of the
soft-continuum manipulators according to the amount of mass they are han-
dling. Further, this changed end effector position can be used for the shape
reconstruction using PH-curves.
After the shape reconstruction, the kinematics of the soft-continuum manip-
ulators is discussed by using the Pythagorean Hodograph (PH) curve-based
modeling. Forward, as well as, inverse kinematic models can be deduced using
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PH curves. Developed kinematic models are tested on the CBHA manipula-
tor, and the results are compared with the existing kinematic approaches for
the same manipulator. There is a limitation of finding the FKM using PH
curves as we need the orientation of the endpoint of the manipulator as an
extra input.
An extension of PH based shape reconstruction approach to a heterogeneous
soft-continuum closed loop kinematic chain has been discussed. This study
aims to propose a methodology of building heterogeneous multi-section, for
designing a soft-continuum parallel manipulator. A test bench has been devel-
oped, composed of two CBHAmanipulators holding a rope, thereby mimicking
the skipping rope application. The overall shape of the three heterogeneous
sections is modeled using the PH based shape reconstruction approach, and
validated using an external optiTrack vision system. This gives the follow-
ing two important outcomes: 1) provides the process of the concatenation of
PH curves under different conditions, 2) acknowledges the applicability of PH
curves as a shape modeling of heterogeneous multi-section manipulators.
As a conclusion of this work, we have shown that the PH based approach can
model shape as well as kinematics of the soft-continuum manipulators. It can
also be applied to the heterogeneous multi-section manipulators. The other
interesting application of this approach is to design manipulators. By ob-
taining an optimal shape using the PH based shape reconstruction approach
of each section, a manipulator can be designed section by section as per our
requirement.

6.2 Future Works

The possible extensions in the current work regarding the modeling of soft-
continuum manipulators are numerous. Based on our experience with the
curve model-based technique, the following prospectives can be taken care of:

1. Dynamic modeling of soft-continuum manipulators:
The proposed PH-based approach is used to model optimal shape and
the kinematics of the soft-continuum manipulators. The prospective is
not to keep this approach limited only to the kinematic modeling. The
extension of this approach to model dynamics of the soft-continuum
manipulators needs a physical interpretation of the PH-curve approach.
The main core of the PH-curve reconstruction is the control points. The
latter are used to control the shape of the curve, which describes math-
ematically a quintic polynomial. Now, if this polynomial representation
can be described physically by the behavior of a non-redundant rigid
manipulator, it can generate an automatic control of the control points.
This can be described by using the controlled joints of the rigid manipu-
lator, encapsulating a continuum curve of our soft manipulator. Figure
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6.1 illustrates a 2D virtual rigid manipulator made up from the control
polygon of the reconstructed PH curve. Therefore, this assumption of
the virtual rigid manipulator can help us to compute the velocities and
efforts on each control point, which induce the dynamics of the encap-
sulated soft-continuum manipulator, represented by a PH-curve.

Ps=P0

P1

P4

P3

P2

Pf=P5

Revolute
Joints

Translational 
Joints

df

ds

Soft-continuum
Manipulator

Virtual Rigid
Manipulator

Figure 6.1: Soft-continuum manipulator encapsulated by a virtual 2D rigid manip-
ulator

2. The other main prospective is to use PH-based approach to avoid obsta-
cles. As PH-based shape is the function of its control points (P0,...,P5),
where the change in the control points will result in the shape-shifting
of the soft-continuum manipulator.

PH-shape = f(P0, P1, P2, P3, P4, P5) (6.1)

The control points of the PH curve are computed using the minimum
potential energy criteria. In case of the presence of obstacles, we do not
need to adhere to the minimum energy criteria. Therefore, we can move
from minimum to the direction of an increase in the energy until we are
enabled to avoid the obstacle. Defining the different types of obstacles
and formulating an algorithm to relocate the trajectory of control points
in the presence of constraints is required.
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3. In future, it would also be interesting to check the performance of PH-
based approach to model more non-homogeneous or different types of
non-homogeneous continuum structures.





Appendix A

Introduction to Quaternions

A.1 Introduction

Until now we have learned that a 3×3 orthogonal matrix can represent a rota-
tion in R3 about an axis through the origin with determinant 1. However, the
matrix representation seems redundant because only four of its nine elements
are independent. Also, the geometric interpretation of such a matrix is not
clear until we carry out several steps of calculation to extract the rotation
axis and angle. Furthermore, to compose two rotations, we need to compute
the product of the two corresponding matrices, which requires twenty-seven
multiplications and eighteen additions. Quaternions are very efficient for ana-
lyzing situations where rotations in R3 are involved. A quaternion is a 4-tuple,
which is a more concise representation than a rotation matrix. Its geometric
meaning is also more evident as the rotation axis, and angle can be trivially
recovered. The quaternion algebra to be introduced will also allow us to com-
pose rotations easily. This is because quaternion composition takes merely
sixteen multiplications and twelve additions. The development of quaternions
is attributed to W. R. Hamilton [Hamilton 1844] in 1843. Legend has it that
Hamilton was walking with his wife Helen at the Royal Irish Academy when
he was suddenly struck by the idea of adding a fourth dimension in order
to multiply triples. Excited by this breakthrough, as the couple passed the
Brougham bridge of the Royal Canal, he carved the newfound quaternion
equations

~̂i2 = ~̂j2 = ~̂k2 = ~̂i~̂j~̂k = −1 (A.1)

into the stone of the bridge. This event is marked by a plaque at the exact
location today. Hamilton spent the rest of his life working on quaternions,
which became the first non-commutative algebra to be studied.

A.2 Quaternion Algebra

The set of quaternions, together with the two operations of addition and
multiplication, form a non-commutative ring. The standard orthonormal basis
for R3 is given by three unit vectors ~̂i = (1, 0, 0), ~̂j = (0, 1, 0), ~̂k = (0, 0, 1). A
quaternion q is defined as the sum of a scalar q0 and a vector ~q = (q1, q2, q3),
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given as:
q = q0 + ~q = q0 + q1~̂i+ q2~̂j + q3~̂k (A.2)

A.2.1 Addition and Multiplication

Addition of two quaternions acts component-wise. More specifically, consider
the quaternion q above and another quaternion:

p = p0 + ~p = p0 + p1~̂i+ p2~̂j + p3~̂k (A.3)

Then the addition of the two quaternions implies:

p+ q == (p0 + q0) + (p1 + q1)~̂i+ (p2 + q2)~̂j + (p3 + p3)~̂k (A.4)

Every quaternion q can be represented as a negative −q having components
−qi, i = 0, 1, 2, 3. The product of two quaternions satisfies these fundamental
rules introduced by Hamilton:

~̂i2 = ~̂j2 = ~̂k2 = ~̂i~̂j~̂k = −1

~̂i~̂j = ~̂k = −~̂j~̂i

~̂j~̂k = ~̂i = −~̂k~̂j
~̂k~̂i = ~̂j = −~̂i~̂k

(A.5)

Now we can give the product of two quaternions p and q:

pq = (p0 + p1~̂i+ p2~̂j + p3~̂k)(q0 + q1~̂i+ q2~̂j + q3~̂k)

= p0q0 − (p1q1 + p2q2 + p3q3) + p0(q1~̂i+ q2~̂i+ q3~̂i) + q0(p1~̂i+ p2~̂i+ p3~̂i)+

(p2q3 − p3q2)~̂i+ (p3q1 − p1q3)~̂j + (p1q2 − p2q1)~̂k
(A.6)

Whew! It is too long to remember or even to understand what is going on.
Fortunately, we can utilize the inner product and cross product of two vectors
in R3 to write the above quaternion product in a more concise form:

pq = p0q0 − ~p · ~q + p0~q + q0~p+ ~p× ~q (A.7)

In the above, p = (p1, p2, p3) and q = (q1, q2, q3) are the vector parts of p and
q, respectively.

Example A.2.1. Suppose the two vectors are given as follows:

p = 5 + 2~̂i− ~̂j + ~̂k

q = 2− 3~̂i+ ~̂j − 5~̂k
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We separated out their vector parts, ~p = (2,−1, 1) and ~q = (−3, 1,−5) and
calculated their dot and cross products as:

~p · ~q = −12 (A.8)

~p× ~q =

∣∣∣∣∣∣∣
~̂i ~̂j ~̂k
2 −1 1
−3 1 −5

∣∣∣∣∣∣∣
= 4~̂i+ 7~̂j − ~̂k

(A.9)

Using eq. A.7, the quaternion product is:

pq = 10−(−12)+5(−3~̂i+~̂j−5~̂k)+2(2~̂i−~̂j+~̂k)+(4~̂i+7~̂j−~̂k) = 22−7~̂i+10~̂j−24~̂k
(A.10)

We see that the product of two quaternions is still a quaternion with scalar
part p0q0−~p·~q and vector part p0~q+q0~p+~p×~q. The set of quaternions is closed
under multiplication and addition. It is not difficult to verify that multiplica-
tion of quaternions is distributive over addition. The identity quaternion has
real part 1 and vector part 0.

A.2.2 Conjugate

Let q = q0 + ~q = q0 + q1~̂i + q2~̂j + q3~̂k be a quaternion. The conjugate of q,
denoted q∗, is defined as;

q = q0 − ~q = q0 − q1~̂i− q2~̂j − q3~̂k (A.11)

From the definition, we have;

(q∗)∗ = q0 − (−~q) = q
q + q∗ = 2q0
q∗q = qq∗

A.3 Solution of equation A~iA∗ = ~c

In Hermite interpolation problem, we have to solve equation of the form
[Farouki 2008]:

A~iA∗ = ~c (A.12)

Where A is a quaternion of form A = a0+ax~i+ay~j+az~k and ~c = cx~i+cy~j+cz~k
is a given vector. Substituting these in (A.12), we get:

a20 + a2x − a2y − a2z = cx (A.13)

2(a0az + axay) = cy (A.14)
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2(axaz − a0ay) = cz (A.15)

Here, we have three equations with four unknowns, it means solution of (A.12)
exhibits one degree of freedom.
Let v = ~c

|~c| = (λ, µ, ν) be a unit vector in the direction of ~c, then with a0 = 0,
a particular solution is easily seen as:

A = ±
√

1

2
(1 + λ)|~c|[~i+

µ

1 + λ
~j +

ν

1 + λ
~k] (A.16)

Moreover, if Q is any quaternion satisfying the equation

Q~iQ∗ =~i (A.17)

The quaternions that satisfy (A.17) are [Farouki 2008] of the form:

Q = cosφ+ sinφ~i (A.18)

A~iA∗ = AQ~i(AQ)∗ = AQ~iQ∗A∗ = A~iA∗ (A.19)

which implies, AQ must also be a solution of (A.12). Therefore, the most gen-
eral solution of (A.12), can be parameterized in terms of an angular variable
φ as:

A(φ) =

√
1

2
(1 + λ)|~c|(− sinφ+ cosφ~i+

µ cosφ+ ν sinφ

1 + λ
~j+

ν cosφ− µ sinφ

1 + λ
~k)

(A.20)

As sin(φ+ π) = −sinφ and cos(φ+ π) = −cosφ, the above expression clears
the sign ambiguity in (A.16). Therefore, the ± sign is omitted in this general
solution.
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ANSYS Model

B.1 FEM Model of CBHA in ANSYS

FEM technique is a very popular and dependable technique for simulating the
structural effects of force in a system. FEM model of the CBHA is generated
to find the shape of the manipulator under different sets of input pressures.
The FEM model is simulated in ANSYS 17.2 (Workbench) (Fig. B.1). The
main components of FEM model are:

1. Geometry of manipulator

2. Mesh generation

3. Material assignment

4. Solving technique

Figure B.1: Contact information between two sections
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B.1.1 Contact information between two sections

Figure B.2: Contact information between two sections

The manipulator is designed as a surface model in CATIA V5. Various bodies
are modeled in design software and connected in ANSYS Design Modeller.
The bodies can be divided in two categories:

1. Bellows

2. Connecting bodies

The bellows form the sections of the robots and are connected in series. As
two bellows connected in series share contact surface which is retained in the
surface model, this surface is used to create a bonded contact. The details of
the contact are shown in Fig. B.2.

B.1.2 Connection of three tubes

Three bellows are connected in parallel to form one section of CBHA. However,
the geometry looses the contact surface of the connecting bodies that fix them
to the bellows. Therefore a line to surface mesh contact is generated. The
contact is shown in fig. B.3.
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Figure B.3: Connection of three tubes

B.1.3 Material Properties

The nylon polymer used in the manufacturing of CBHA is a nonlinear ma-
terial. Also most of the operation of CBHA occurs in the region beyond the
elastic limit. Therefore linear analysis can not be used for the simulation.
Material non- linearities are incorporated by considering the material as bilin-
ear. The strength and other material properties are shown in Fig. B.4. The
stress-strain curve of the resulting material is shown in Fig. B.5.

Figure B.4: Material properties
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Figure B.5: Stress-strain curve

B.1.4 Mesh

As discussed previously, the bodies are approximated as surfaces so shell ele-
ments are used to create a discretized mesh for the structures. A combination
of 4 node quad elements and 3 node triangular elements is used to create the
mesh. The discretized mesh model of the manipulator is shown in Fig. B.6.
To assure an error free approximation of the actual surfaces, Element Quality
is used as a mesh metric. The quality shows that most of the elements used to
construct the mesh model adhere to the good quality of the mesh, therefore
the mesh model is selected without any further corrections.
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Figure B.6: Mesh generation

B.1.5 Detailing of Mesh

Figure B.7: Detailing of mesh
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B.1.6 Input pressure graph of P1

To simulate the model, one cycle of pressure is applied. A maximum pressure
of 1.25 bar is applied to one bellow of the lower section over a time of 30
sec. The cycle is divided into 6 load steps of unequal duration. The load step
details are tabulated in Fig. B.9.

Figure B.8: Input pressure graph of P1

Figure B.9: Steps of input pressure
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B.1.7 Results of Deformation

Figure B.10: Soft-continuum manipulator
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Curve Based Approach for Shape Reconstruction of Continuum
Manipulators

Abstract: This work provides a new methodology to reconstruct the shape
of continuum manipulators using a curve based approach. Pythagorean Hodo-
graph (PH) curves are used to reconstruct the optimal shape of continuum
manipulators using minimum potential energy (bending and twisting energy)
criteria. This methodology allows us to obtain the optimal kinematics of con-
tinuum manipulators. The models are applied to a continuum manipulator,
namely, the Compact Bionic Handling Assistant (CBHA) for experimental
validation under free load manipulation. The calibration of the PH-based
shape reconstruction methodology is performed to improve its accuracy to
accommodate the uncertainties due to the structure of the manipulator.
The proposed method is also tested under the loaded manipulation after
combining it with a qualitative Neural Network approach. Furthermore, the
PH-based methodology is extended to model multi-section heterogeneous
bodies. This model is experimentally validated for a closed loop kinematic
chain formed using two CBHA manipulating jointly a rope.
Keywords: Continuum manipulators, Shape reconstruc-
tion, Pythagorean Hodograph, Continuum kinematics.

Modélisation par des courbes pour la reconstruction des formes de
manipulateurs continuums

Résumé: Ce travail de thèse propose une nouvelle méthode de modélisation
et de reconstruction de la forme d’une classe de manipulateurs continuum,
basée sur la géométrie des courbes. Les Hodographes Pythagoriens (courbes
HP) sont utilisées pour reconstruire des formes optimales pour ce type de
robots, par une optimisation des énergies potentielles de flexion et de torsion.
Cette méthode nous permis de déduire la cinématique optimale des bras
manipulateurs continuum. La validation de la méthode proposée a été réal-
isée sur le robot dit trompe d’éléphant ’Compact Bionic Handling Assistant
(CBHA)’. Une calibration a été réalisée sur la méthode de reconstruction
afin d’améliorer les performances en terme de précision et de prendre en
considération les incertitudes dues à la structure du bras manipulateur. La
méthode proposée est également testée dans le cas de la préhension, en
s’appuyant sur une approche qualitative à base de réseaux de neurones. De
plus, l’approche HP est étendue à la modélisation des structures de robots
hétérogènes avec plusieurs sections. Ce dernier a été validé pour une chaîne
cinématique fermée, composée de deux manipulateurs CBHA, manipulant
conjointement une corde flexible.
Mots clés: Manipulateurs continuums, Reconstruction des
formes, Pythagorean Hodograph, Cinématiques continuums.
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