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Abstract

In the last decade, crowdsourcing has proved its ability to address large scale data collection
tasks, such as labeling large data sets, at a low cost and in a short time. However, the
performance and behavior variability between workers as well as the variability in task
designs and contents, induce an unevenness in the quality of the produced contributions and,
thus, in the final output quality. In order to maintain the effectiveness of crowdsourcing, it is
crucial to control the quality of the contributions. Furthermore, maintaining the efficiency of
crowdsourcing requires the time and cost overhead related to the quality control to be at its
lowest. While effective, current quality control techniques such as contribution aggregation,
worker selection, context-specific reputation systems, and multi-step workflows, suffer from
fairly high time and budget overheads and from their dependency on prior knowledge about
individual workers.

In this thesis, we address this challenge by leveraging the similarity between completed
and incoming tasks as well as the correlation between the worker declarative profiles and
their performance in previous tasks in order to perform an efficient task-aware worker se-
lection. To this end, we propose CAWS (Context Aware Worker Selection) method which
operates in two phases; in an offline phase, completed tasks are clustered into homogeneous
groups for each of which the correlation with the workers declarative profile is learned.
Then, in the online phase, incoming tasks are matched to one of the existing clusters and the
correspondent, previously inferred profile model is used to select the most reliable online
workers for the given task. Using declarative profiles helps eliminate any probing process,
which reduces the time and the budget while maintaining the crowdsourcing quality. Fur-
thermore, the set of completed tasks, when compared to a probing task split, provides a
larger corpus from which a more precise profile model can be learned. This translates to a
better selection quality, especially for harder tasks.

In order to evaluate CAWS, we introduce CrowdED (Crowdsourcing Evaluation Dataset),
a rich dataset to evaluate quality control methods and quality-driven task vectorization and
clustering. The generation of CrowdED relies on a constrained sampling approach that al-
lows to produce a task corpus which respects both, the budget and type constraints. Beside
helping in evaluating CAWS, and through its generality and richness, CrowdED helps in
plugging the benchmarking gap present in the crowdsourcing quality control community.

Using CrowdED, we evaluate the performance of CAWS in terms of the quality of the
worker selection and in terms of the achieved time and budget reduction. Results shows
the following: first, automatic grouping is able to achieve a learning quality similar to job-
based grouping. And second, CAWS is able to outperform the state-of-the-art profile-based
worker selection when it comes to quality. This is especially true when strong budget and
time constraints are present on the requester side.



Finally, we complement our work by a software contribution consisting of an open
source framework called CREX (CReate Enrich eXtend). CREX allows the creation, the
extension and the enrichment of crowdsourcing datasets. It provides the tools to vectorize,
cluster and sample a task corpus to produce constrained task sets and to automatically gen-
erate custom crowdsourcing campaign sites.

Keywords : Crowdsourcing, quality control, worker profiling, benchmarking datasets



Résumé

Le crowdsourcing est une technique rapide, efficace et peu onéreuse destinée à recueillir
les opinions dun large public (dont les membres sont appelés workers) sur un ensemble de
questions (se présentant sous forme de tâches) et permettant ainsi à des utilisateurs (appelés
requesters) dobtenir un consensus de réponse ou dexpérimenter un ressenti. La disparité
comportementale et de performances des workers dune part et la variété en termes de con-
tenu et de présentation des tâches par ailleurs influent considérablement sur la qualité des
contributions recueillies et par conséquent sur le résultat finalement obtenu par les tech-
niques dagrégation appliquées sur lensemble des contributions. Par conséquent, garder leur
légitimité impose aux plateformes de crowdsourcing de se doter de mécanismes permet-
tant lobtention de réponses fiables et de qualité dans un délai et avec un budget optimisé.
Les techniques actuellement proposées (à savoir, les solutions visant à améliorer les résul-
tats agrégés, la sélection des workers, etc) bien que efficaces, noptimisent pas les délais de
réponse et le coût des campagnes et se basent sur une connaissance préalable des workers.

Dans cette thèse, nous proposons CAWS (Context AwareWorker Selection), une méth-
ode de contrôle de la qualité des contributions dans le crowdsourcing visant à optimiser le
délai de réponse et le coût des campagnes. CAWS exploite la similarité entre les tâches
déjà traitées et celles à traiter dune part ainsi que la corrélation existant entre le profil des
utilisateurs et les performances de leurs réponses aux tâches préalablement traitées. Pour
ce faire, CAWS se compose de deux phases, une phase dapprentissage opérant hors-ligne
et pendant laquelle les tâches de lhistorique sont regroupées de manière homogène sous
forme de clusters. Pour chaque cluster, un profil type optimisant la qualité des réponses aux
tâches le composant, est inféréă; la seconde phase permet à larrivée dune nouvelle tâche de
sélectionner les meilleurs workers connectés pour y répondre. Il sagit des workers dont le
profil présente une forte similarité avec le profil type du cluster de tâches, duquel la tâche
nouvellement créée est la plus proche. La recherche de workers en se basant uniquement
sur la similarité de profil rend ainsi inutile de tester en ligne les workers connectés et réduit
ainsi les coûts en temps et en budget de la campagne tout en maintenant la même qualité des
réponses. De plus, de par sa taille, lhistorique des tâches permet une inférence plus aisée
du profil des utilisateurs requis pour un type de tâche, ce qui permet à CAWS de donner de
meilleures performances dans le cas de tâches difficiles.

La seconde contribution de la thèse est de proposer un jeu de données, appelé CrowdED
(Crowdsourcing Evaluation Dataset), ayant les propriétés requises pour, dune part, tester
les performances de CAWS et les comparer aux méthodes concurrentes et dautre part, pour
tester et comparer limpact des différentes méthodes de catégorisation des tâches de lhis-
torique (cest-à-dire, la méthode de vectorisation des tâches et lalgorithme de clustering
utilisé) sur la qualité du résultat, tout en utilisant un jeu de tâches unique (obtenu par une



méthode déchantillonnage), respectant les contraintes budgétaires et gardant les propriétés
de validité en terme de dimension. Par ailleurs, CrowdED rend possible la comparaison de
méthodes de contrôle de qualité quelle que soient leurs catégories, du fait du respect dun
cahier des charges lors de sa constitution.

Les résultats de lévaluation de CAWS en utilisant CrowdED comparés aux méthodes
concurrentes basées sur la sélection de workers, donnent des résultats meilleurs, surtout en
cas de contraintes temporelles et budgétaires fortes. Les expérimentations réalisées avec un
historique structuré en catégories donnent des résultats comparables à des jeux de données
où les taches sont volontairement regroupées de manière homogène. La dernière contri-
bution de la thèse est un outil appelé CREX (CReate Enrich eXtend) dont le rôle est de
permettre la création, lextension ou lenrichissement de jeux de données destinés à tester
des méthodes de crowdsourcing. Il propose des modules extensibles de vectorisation, de
clusterisation et déchantillonnages et permet une génération automatique dune campagne
de crowdsourcing.

Titre : Selection contextuelle de travailleurs pour un contrôle de qualité efficace dans
les systèmes de production participative

Mots-clés : Production participative, contrôle de qualité , profilage de travailleurs, jeu
de données.



Zusammenfassung

Im letzten Jahrzehnt hat Crowdsourcing seine Fähigkeit bewiesen groSSe Datensamme-
laufgaben, wie die Beschriftung groSSer Datensätze, zu geringen Kosten und in kurzer
Zeit zu bewältigen. Die Leistungs- und Verhaltensschwankungen zwischen den Arbeit-
ern sowie die Variabilität in den Aufgabenentwürfen und -inhalten führen jedoch zu einer
UngleichmäSSigkeit in der Qualität der erworbenen Beiträge und somit in der endgülti-
gen Ausgabequalität. Um die Effektivität von Crowdsourcing zu erhalten, ist es entschei-
dend die Qualität der einzelnen Beiträge zu kontrollieren. Darüber hinaus erfordert die
Aufrechterhaltung der Effizienz von Crowdsourcing, dass der Zeit- und Kostenaufwand
für die Qualitätskontrolle am geringsten ist. Effektive, aktuelle Qualitätskontrolltechniken
wie die Aggregation von Beiträgen, die gezielte Auswahl von Arbeitern, kontextspezifis-
che Reputationssysteme und mehrstufige Workflows leiden unter ziemlich hohen Zeit- und
Budgetzwangslagen und von ihrer Abhängigkeit von vorausgehenden Kenntnissen über die
einzelnen Arbeiter.

Ìn dieser Arbeit gehen wir diese Herausforderungen an, indem wir die Ähnlichkeit
zwischen abgeschlossenen und eingehenden Aufgaben sowie die Korrelation zwischen den
von Arbeitern deklarierten Profilen und deren Leistung in früheren Aufgaben nutzen, um
eine effiziente aufgabenbewusste Arbeiterauswahl durchzuführen. Zu diesem Zweck schla-
gen wir eine zweiphasige Methode vor: CAWS (Context Aware Worker Selection). In
einer Offline-Phase werden bereits bearbeitete Aufgaben in homogene Cluster gruppiert, für
welche jeweils die Korrelation mit dem vorab deklarierten Profil der Arbeiter erlernt wird.
In der Online-Phase werden eingehende Aufgaben dann einem der vorhandenen Cluster
zugeordnet, und das entsprechende, zuvor erschlossene Profilmodell wird dazu verwendet,
um die vertrauenswürdigsten Online-Mitarbeiter für die gegebene Aufgabe auszuwählen.
Die Verwendung von deklarativen Profilen hilft dabei jeglichen Sondierungsprozess zu eli-
minieren, wobei Zeit und Kosten reduziert werden und gleichzeitig die Crowdsourcing-
Qualität beibehalten wird. Darüber hinaus bietet das Aggregat der abgeschlossenen Auf-
gaben im Vergleich zu einer Aufgabenaufteilung durch Sondierung einen gröSSeren Kor-
pus, aus dem ein präziseres Profilmodell erlernt werden kann. Dies führt zu einer besseren
Auswahlqualität, insbesondere für schwierigere Aufgaben.

Um CAWS zu evaluieren, stellen wir CrowdED (Crowdsourcing Evaluation Dataset)
vor, einen umfassenden Datensatz zur Evaluierung von Qualitätskontrollmethoden und qual-
itätsgetriebener Aufgaben-Vektorisierung und Clusterbildung. Die Generierung von CrowdED
basiert auf einem bedingten Stichprobeverfahren, welches es ermöglicht, einen Aufgaben-
Corpus zu erstellen, der sowohl die Budget- als auch die Typ-Bedingungen einhält. Neben
seiner Allgemeingültigkeit und Reichhaltigkeit, hilft CrowdED nicht nur bei der Bewertung
von CAWS, sondern es hilft auch dabei, die Benchmarking-Lücke in der Crowdsourcing-



Community für Qualitätskontrolle zu schlieSSen.
Mit CrowdED evaluieren wir die Leistung von CAWS im Hinblick auf die Qualität der

Arbeiterauswahl und auf die erreichte Zeit- und Kostenreduzierung. Die Ergebnisse zeigen
folgendes: Zum einen kann mit der automatischen Gruppierung eine Lernqualität ähnlich
der von Job-basierten Gruppierungen erreicht werden. Und zweitens ist CAWS in der Lage,
die aktuellen profilbasierten Auswahlmethoden in Bezug auf Qualität zu übertreffen. Dies
gilt insbesondere dann, wenn auf der Anfordererseite starke Budget- und Zeitbeschränkun-
gen bestehen.

SchlieSSlich ergänzen wir unsere Arbeit mit einer Software, die aus einem lizenzfreien
Framework namens CREX (CReate Enrich eXtend) besteht. CREX ermöglicht die Er-
stellung, Erweiterung und Anreicherung von Crowdsourcing-Datensätzen. Es liefert die
nötigen Werkzeuge um einen Aufgabenkorpus zu vektorisieren, zu gruppieren und zu sam-
plen, um eingeschränkte Aufgabensätze zu erzeugen und um automatisch benutzerdefinierte
Crowdsourcing-Kampagnen-Seiten zu generieren.
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Introduction

1.1 CONTEXT

1.1.1 SURFING THE CROWD

Throughout the early and pre-modern human history, group effort was harnessed to accom-
plish daily tasks like group foraging, edifice building and military conquests with a higher
efficiency and at a lower risk. Since the late modern period (∼mid-18th century) and with
the emergence of its lifestyle principals and models such as the democracy, the industry and
the economy, the limits of group effort have been stretched out to include a more cognitive
aspect of the human skills, that is the “group opinion”. Voting, consensus and other forms
of the group opinion have proved their ability to lead an efficient decision making process
and to produce a high-confidence output even in complex situations and contexts. Perfect
examples of this are elections and referendums in politics as well as brainstorming and user
experience tallying in the world of economics, industry and services. With the advent of
the Web, the domains where the group opinion is sought as well as the size and diversity
of the reachable crowd have both exploded. This allowed for an easier and wider exploita-
tion of the group effort. Progressively, a new generation of web-enabled crowd-centric
and crowd-supported platforms and services has emerged such as social media platforms
(e.g., Facebook [30] and Twitter [124]), opinion-sharing sites like blogs and forums (e.g.,
Reddit[103] and Quora[95]) as well as platforms for co-creation (e.g., Wikipedia[133] and
Thingiverse[119]), for crowdfunding (e.g., Kickstarter[64] and Indegogo[50]), for crowd
sensing (e.g., Apisense[4] and Kumuluz[67]) and for micro-tasks solving e.g., AMT[123]
and Figure Eight[32]). In the literature, these systems are referred to, globally or partially,
using many terms such as crowd computing[10, 86, 93, 114], human computation, collec-
tive intelligence [94], etc. In this work we will refer to these systems using the term crowd
computing.

With the fast emergence of crowd computing, a flood of problematic aspects such as
the privacy of the individuals [85], the security of those systems[137], their performance

1
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Figure 1.1: Literature usage trend for crowd computing related keywords between 2005 and
2017.

[125] and the quality of their output[71] have arisen. As shown in Figure 1.1 which depicts
the usage trends of crowd computing related keywords in literature12, these challenges have
fostered the research in crowd computing which in turn has led to a rich literature and lit on
open challenges to be tackled. However, before dealing with any of these challenges one
must draw the limits of his maneuver zone and set some definitions. That is because, de-
spite being around for almost two decades now and in spite of showing different challenges,
requirements and characteristics, these systems are still lacking for a clear delimitation unan-
imously adopted by the research community. In this work, we consider a specific variant of
crowd computing which is crowdsourcing.

1.1.2 CROWDSOURCING: A DEFINITION

Jeff Howe [46] - who first introduced the term “Crowdsourcing” in 2006 - defined it as:

“the act of taking a task traditionally performed by a designated agent (such
as an employee or a contractor) and outsourcing it by making an open call to
an undefined but large group of people...”

Twelve years later, and from a conceptual perspective, this definition still holds the essence
of what crowdsourcing is i.e., outsourcing tasks to the crowd. Nevertheless, with the es-
tablishment of specific tools i.e., platforms and services to implement this outsourcing ap-
proach, it is obvious that this definition became loose from a practical and theoretical per-
spective. This is clearly reflected in the literature where the term crowdsourcing is mostly
used to refer to micro-task markets like Figure Eight and Amazon Mechanical Turk [6, 20,
37, 40, 76, 122, 125], and where other outsourcing-based approaches, formerly perceivable
as crowdsourcing, are nowadays referred to with more specific terms such as Crowd sens-
ing, Co-creation and open innovation platforms. Therefore, a refinement of the original
definition is needed. First and for the sake of precision, we set the following terminology
which will be used in the proposed definition and further in the rest of the thesis:

1Results from the ACM Guide to the Literature counted on 06/03/2018. URL : https://dl.acm.org/
advsearch.cfm?coll=DL&dl=ACM.

2The slight decrease in the keyword occurrence might by due to the indexing delays.

https://dl.acm.org/advsearch.cfm?coll=DL&dl=ACM
https://dl.acm.org/advsearch.cfm?coll=DL&dl=ACM


1.1 Context 3

Terminology 1.1.1

A requester is a physical person or an organization connected to a crowdsourcing plat-
form. They design and submit the tasks and pay the workers through the platform.

A worker is a physical person connected to a crowdsourcing platform. He perform the
tasks.

A crowd is the set of workers of a given crowdsourcing platform.

A contribution is an answer given by a worker to a given task.

Second, we define crowdsourcing as follows :

Definition 1.1.1 Crowdsourcing is a technique that consists in outsourcing a task by
making an open call to an undefined but large group of incentivized workers. The Open
call is web-enabled, explicit and limited in time, the tasks are human intelligence tasks,
well defined, concise and device independent and the workers are incentivized by a mon-
etary reward received upon completing the task.

According to this definition, we clearly differentiate crowdsourcing from the following
related domains: (i) In crowd sensing (a.k.a participatory sensing), a worker is only re-
sponsible of taking the decision of contributing or not. The actual contribution is sourced
from her device sensors. Hence, the task is not device independent and the workers are not
the source of the collected knowledge. (ii) In co-creation platforms, people are explicitly
asked to contribute [120, 134]. However, the call is permanent and the contribution task
is not precise e.g., in Wikipedia, contributors are asked to write and edit articles; neither
topics nor deadlines are specified. Furthermore, contributors in these platforms are usually
incentivized by their interest in the community and topic instead of monetary rewards. (iii)
Open-innovation platforms and macrotask crowdsourcing are aimed at finding solutions
for complex design and knowledge-heavy problems [41, 51]. In contrast with crowdsourc-
ing, open-innovation tasks are not concise and in some cases3, the reward is perceived only
by those who find the best solution. (iv) In stealth crowdsourcing or side effect computing
[21, 126], tasks are hidden in various purpose application e.g., a game like the ESP4 game
[126] or a security measure like ReCaptcha5 [127]. Hence, workers are not incentivized by
their quest for monetary reward but by their willingness to play or to complete the login
step instead.

1.1.3 CROWDSOURCING IN USE

Figure 1.2 depicts a generic workflow of a crowdsourcing process (Steps 1 to 7). Typically,
all the interactions between the requesters and the crowd occur over and are controlled by
a crowdsourcing platform. The requester who holds a complex or large scale problem to

3e.g., innocentive (https://innocentive.com).
4An image content guessing game. Answers proposed by the players were later used to label a large image

dataset.
5A verification process used to avoid bot access to online content that helped digitizing old printed material

by asking users to decipher scanned words from books that computerized optical character recognition failed to
recognize.

https://innocentive.com)
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resolve, starts by dividing this problem into smaller, standalone and brief tasks (Step 1). He
submits those tasks to the platform and configures the campaign to fit his needs in terms of
quality and budget e.g., number of contributions per task, reward per worker per task, etc.
(Step 2). The tasks are then published to the crowd and iteratively6 assigned to the workers
(Step 3). The task assignment can be straightforward i.e. it depends only on the worker
decision of contributing, or conditioned i.e. it depends on the requester’s configurations and
worker’s qualification. The workers submit their contributions (Steps 4 and 5) and receive
their rewards (Step 6). The assignment process continues until all the tasks receive the
needed number of contributions. Contributions from different workers are then aggregated
to infer one solution for each task and a final report with the individual and the aggregated
results is submitted to the requester (Step 7).

The efficiency of crowdsourcing as well as the emergence of easy to use platforms have
democratized its usage. Applications nowadays broadly covers data labeling, data valida-
tion, multimedia transcription, artifact creation, corpus translation as well as user surveys.
This wide spread usage is reflected by the fast growth of its market which achieved, in the
US only, an annual growth of 37.5% over the last 5 years (2012 - 2017) and reached a rev-
enue of USD 1 Billion. For reference7, this compares to the USD 411.5 Million blockchain
(global) market, to the USD 1.47 Billion (global) edge computing market, and to the (esti-
mated, global) USD 471.2 Million deep learning market [36, 49, 78, 116].

Labeling large dataset: a use case

In an era where Artificial Intelligence is emerging at a steady and fast pace through its
underlying concepts such as machine learning and data mining, and where the semantic
web has taken over the web technology landscape, the quest for collecting labeled data
is a persistent and fundamental task for researchers in these domains. In the last decade,
crowdsourcing has proved its ability to address this challenge by providing a means to
collect labeled data of various types, at a low cost and short time as compared to expert
labeling [47, 94].

6For instance, to deal with people leaving and not finishing.
7Picked among the top trending technologies based on the Gart-

ner Hype Cycle https://www.gartner.com/smarterwithgartner/

top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/.

https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
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1.2 THE QUALITY ISSUE IN CROWDSOURCING SYSTEMS

Despite being structurally simple, crowdsourcing systems face complex issues because they
involve two important sources of uncertainty and ambiguity i.e. the tasks and the workers.
On the one hand, tasks might be unclear, very generic or specific, badly written, poorly
designed, intrinsically difficult or subjective. Workers, on the other hand, might be more
or less qualified due to their various educational and professional qualifications, interests or
former experience in crowdsourcing. They can also be biased with respect to the task con-
tent and type because of their preferences and demographics e.g. age, gender, country, etc.
Moreover the crowd i.e. the group of workers, when regarded as a whole, is characterized
its complexity. In fact, the accuracy with which a given task is achieved depends not only
on the individual contributions of the workers but on their distribution in the crowd and on
the manner the task is presented to - and selected by - them at the moment it is submitted as
well [1, 3, 20, 68]. All these factors generate a noisy and low quality crowdsourcing output
which in turn impacts its usability potential. For instance, when it comes to labeling a train-
ing dataset for a given machine learning approach, a poorly labeled dataset could lead to the
generation of bad, thus unusable, models. Hence, the quality of the data produced through
crowdsourcing is still questionable especially when the task is subjective or ambiguous or
requires a minimum level of domain expertise [111]. Therefore, there is a need for verifying
the quality of crowdsourced data. We define the quality control in crowdsourcing as follow:

Definition 1.2.1 In crowdsourcing, quality control refers to mechanisms employed by
the platform to ensure that at the end of a campaign, an optimal number of correct answers
can be guessed for the submitted tasks. We exclude from this security mechanisms used to
identify security threads such as malicious contributors, Sybil attacks, collusion attacks,
etc.

Indeed, this quality control is subject to practical constraints which we analyze below:

Cost : The budget payed to complete a crowdsourcing campaign can be divided into two
parts: (a) the contribution fees which consist of the sum of rewards payed by the
requester to the contributors for finishing the task and (b) service fees which are a
fixed rate8 charged by the service provider i.e. the platform. In practice, the con-
tribution fees include, for quality control purposes, an implicit cost e.g. multiple
contributions per task, an explicit cost e.g., only accepting high level workers which
are better payed than an average worker, or both of them. In some cases like the
labeling of large dataset use case, these implicit and explicit costs can rapidly grow
to reach fairly high sums. For instance, asking for 4 contributions per task instead of
3 adds a 33% of additional cost to the overall campaign cost. If we consider a large
dataset of 1 million entries, it is obvious that this additional cost can be high. One ma-
jor advantage of crowdsourcing is its cost-effectiveness. Therefore, it is crucial that
the budget proportion related to the quality control does not exceed a certain thresh-
old after which the quality to cost ratio of crowdsourcing is no more advantageous
compared to an expert labeler (alone or assisted by an algorithm).

8e.g., Figure Eight charges for the service a net amount equal to 20% of the global sum of rewards.
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Time : The time needed to control the quality of contributions is crucial in some cases
such as rescue and relief related crowdsourcing (e.g. collecting ground information,
detecting interest points in images, ...). However, it is still important especially in
the case of large campaigns like the labeling of large dataset use case. A common
practice when implementing this kind of campaigns is to launch the tasks by batches
or to a batch of workers at once. This allows for a better design related trial and
error approach. Since crowdsourcing platforms are very dynamic in term of task
and worker arrival and departure[20], workers and workers’ availability change a lot.
Therefore, controlling the quality every time a batch is launched is mandatory. If
we consider that a quality-control-related time overhead exists, it is clear that the
overall time overhead of this sequential workflow can heavily impact the campaign
completion time.

A priori knowledge : Historical knowledge about user preferences and performances is a
common and efficient aspect leveraged by recommendation[7], security e.g. login
history, and quality [25] methods in user-centric and user-enabled systems. However,
these methods usually suffer from a cold start problem. In crowdsourcing, this cold
start problem raises from the fact that we ignore the worker global performance if he
has few and/or sparse historical contributions. Consequently, controlling the quality
should not totally rely on this kind of knowledge.

1.3 DEALING WITH THE QUALITY ISSUE IN CROWDSOURCING SYSTEMS

Many approaches have been proposed in the literature to deal with the quality issue in
crowdsourcing. We divide these approaches into two categories: Aggregation optimization
and Worker selection.

Approaches in the first category focus on optimizing the contribution aggregation pro-
cess. Early works used majority voting (MV) with multiple assignments to infer the correct
answer to a given task. However, this technique considers all workers, thus their contribu-
tions, to be equally reliable, which is not realistic. Giving different weights to the different
votes remedies to this limitation and improves the quality of the aggregation. In [56, 79,
108], authors leverage different “accuracy features” such as graded and binary accuracy,
mobility patterns and in-user-interface worker behavior (e.g. number of clicks and mouse
movements) to explicitly weight the contributions of each worker. More widely used tech-
niques [6, 76, 131] rely on probabilistic data completion methods like the expectation maxi-
mization algorithm (EM) [14, 15] to implicitly weigh the contributions and infer the correct
answers. In these cases, the weights and the correct answers are simultaneously inferred
by maximizing a likelihood model. The accuracy of the inference process depends on two
factors; the campaign elements to be modeled (the worker, the task or both) and the param-
eters used to model them. Some methods propose to add more knowledge to this process
using multiple stage crowdsourcing such as the produce/review workflow described in [6].
Adding a review stage is another way to increase the confidence in the aggregation output,
however, it increases the time (since it is a sequential process) and the budget (since the
reviewers are paid) needed to complete the crowdsourcing campaign.
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Worker selection approaches aim to find in the crowd the set of the most reliable work-
ers to solve the task. To this end, early commercial crowdsourcing platforms used worker
screening, i.e., selecting workers based on qualification tests and filters . Screening is usu-
ally done before the worker is allowed to solve the actual tasks. Once the worker passes
the screening, his contributions are no more controlled and hence, he has no obligation to
submit accurate responses. Li et al. [76] select reliable workers based on their declara-
tive profile (e.g., age, gender, education, ...) and their performance in a probing stage. By
targeting a specific group, one can reduce the number of assignments and, as a result, de-
crease the budget. However, because of the probing phase, the budget still remains high
and the task completion time is increased. Roy et al. [107] select workers whose skills
matches the skills required for a given task. These methods consider that the knowledge
about the worker skills exists, which might not be always true and count on manual tagging
to determine the skills needed to finish a task, which might not be precise.

1.4 RESEARCH CHALLENGES AND THESIS CONTRIBUTIONS

In this thesis, the research problem we tackle can be summarized with the following state-
ment:

How to control the quality of contributions in a crowdsourcing campaign, while
minimizing the budget and time needed to complete it and being agnostic to historical

knowledge about the individual workers?

Indeed, optimizing the aggregation process is an effective way for increasing the quality
of the final output. However, since the aggregation step is performed upon task completion,
these methods are not able to control the access to the tasks and thus to restrict the budget
and time needed to complete the crowdsourcing process. By contrast, worker selection
approaches control this access and thus allow to better master the budget and the time.
Nevertheless, existing worker selection approaches are not optimal (in terms of time and
budget needed to complete the task) because they deal with the particularity of each task
in an extreme manner. Some ignore it and consider that all tasks are similar from a same
worker perspective - that is, a worker who proved to be good in the tasks to which he already
participated is certainly good for any upcoming task whatever its type is - which reduces the
performance of quality control. Others consider each task to be unique, i.e., the performance
of a worker needs to be reevaluated for each incoming task, which increases the budget
and the time of completion. However, in practice tasks are not all similar, yet sometimes
they share "similar traits". Furthermore, a worker usually shows a stable performance in
completing similar tasks. Taking advantage of these properties can help bypassing this
extremeness in dealing with tasks. Thus the first question to be answered in order to solve
our research problem is the following one:

RQ. 1 Is it possible, in crowdsourcing, to leverage the similarity between historical tasks
and incoming tasks to improve the online worker selection process and to reduce the time
and the cost of crowdsourcing campaigns?

When evoking the similarity of the tasks, an intuitive question regarding the features



8 Chapter 1. Introduction

based on which this similarity is computed rises. We formulate it as follows:

RQ. 2 Being textual documents, are the existing text vectorizing method suitable for
characterizing and comparing crowdsourcing tasks? If not, what is a suitable feature set
to represent them?

The second question that should be answered to solve the research problem concerns the
dependency on knowledge about workers. Indeed, in order to select reliable workers, a set
of performance distinguishing features must be used. As explained in Section 1.2, knowing
the historical performance of a given worker can help predicting her future performance.
Nevertheless, this knowledge is usually either insufficient or completely absent (for new
workers). Therefore a set of history-independent features must be exploited during the
selection process. Self-declared features such as skills and demographics are easy to collect
and history independent features. Moreover, these features can be directly related to the
worker performance in certain tasks. In this context we formulate our third research question
as follows:

RQ. 3 How to select high quality workers in crowdsourcing based on self declared fea-
tures?

In response to these questions, this thesis brings two contributions:

C. 1 Context Aware Worker Selection (CAWS ): An offline-learning/online-selection
framework for a cost and time efficient quality control.
In response to RQ. 1, 2 and 3

We propose a framework to learn during an offline stage the relation between the various
types of historical tasks and the declarative profiles of reliable workers. The task types
are determined through a content-based clustering process. The learned models are then
used in an online stage to select reliable workers within the available crowd. First, by
taking the learning process offline, the time of task completion is reduced (as there is no
need for an online probing step). Second, by using historical tasks to perform the learning
process, incoming tasks are only crowdsourced to the needed extent and thus the cost of
task completion is reduced. Finally, using the declarative profiles renders the learning and
selection process agnostic to any knowledge about the previous performance of workers.

It is clear that our method exploits a wide scope of aspects found in a crowdsourcing sys-
tem, i.e. the task content, the worker profiles and the worker reliability. Thus, its evaluation
requires a dataset that contains, quantitatively and qualitatively, all of these information.
This raises the need for a rich evaluation dataset. Existing datasets [16, 53, 57, 68, 76,
117, 129] are not satisfactory quantitatively and qualitatively to evaluate our workflow and
to compare it to state-of-the-art quality control approaches which motivates the following
contribution:

C. 2 CrowdED: A rich dataset to evaluate and compare our worker selection approach.

CrowdED fulfills three comprehensive specifications that we summarize as follows: (i)
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Data richness meaning that CrowdED is rich in information about the workers’ profiles and
the tasks’ content. (ii) Data diversity meaning that CrowdED reflects the diversity of tasks
and worker profiles in a real crowdsourcing system. (ii) Contribution abundance meaning
that CrowdED provides a large number of contributions for each of its worker and tasks.

We complement our work by a software contribution consisting of an open source plat-
form that allows a budget and type constraint creation, extension and enrichment of crowd-
sourcing quality control evaluation datasets similar to CrowdED:

C. 3 CREX: A platform to collaboratively extend and enrich CrowdED.

Although the literature is rich in quality control approaches, there is an important gap
in the crowdsourcing research community preventing a sound evaluation and comparison
of those methods, that is the lack of sufficient evaluation datasets. In fact, some of those
methods have been evaluated on quantitatively and qualitatively limited (i.e. no information
about workers, tasks or both of them) datasets and others have borrowed datasets from other
related domains such as machine learning and recommender systems. While in the former
case, there is a lack of information needed by our framework, the representativeness of
the datasets can be questioned in the latter. Moreover, the literature does not provide any
tool to extend and enrich these datasets (to be exploitable by other methods). The added
value of CrowdED comes from the fact that besides helping in evaluating our approach, it
is rich and big enough to be used in evaluating and comparing a large number of existing
crowdsourcing quality control methods. Besides, CREX helps a collaborative extension
and enrichment of CrowdED which ensures it is a future-proof dataset. All of this helps
bridging the dataset related gap mentioned earlier.

1.5 THESIS OUTLINE

This chapter presented the context of this thesis by describing crowdsourcing systems, the
quality problem they suffer from and the constraints shaping the quest for an efficient solu-
tion of this problem. In this thesis, we present our contributions toward finding this solution.
The following content is structured as follows:

• Chapter 2 discusses the literature of quality control in crowdsourcing and shows the
limitations of the state of the art methods. Moreover, it introduces and motivates the
positioning of this work within the quality control literature.

• Chapter 3 introduces our Context Aware Worker Selection method (CAWS) and de-
tails its learning and targeting phases.

• Chapter 4 presents the challenge of creating a rich and extensible evaluation dataset
and introduces both, the Crowdsourcing Evaluation Dataset (CrowdED) and the CRe-
ate Enrich eXtend platform (CREX) along with their theoretical and technical detail.

• Chapter 5 details the experimental setup and the evaluation process of CAWS as well
as the results of these evaluations.
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• Chapter 6 concludes this thesis and provides an insight into the potential improve-
ments of this work and the perspectives it opens.
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State of the art

The usefulness of crowdsourcing heavily depends on two aspects : first, the quality of the
produced output and on how it compares to an expert contribution and second, the cost and
the time needed to collect this output. This makes it fundamentally important to control the
quality of the worker contributions while keeping the time and cost overheads low. In Chap-
ter 1 of this thesis, we briefly cited the existing quality control approaches in crowdsourcing
and highlighted their limitations in terms of time- and budget-overhead optimization. In
this chapter, we further review these approaches and describe in detail the state of the art
methods of quality control. To this end, we propose a four category classification of those
methods: Aggregation optimization techniques, worker selection approaches, individual
performance enhancement, and multi-stage crowdsourcing. We draw a particular focus on
worker selection approaches as they directly relate to this work. The limitations of these
methods in terms of quality, time and cost efficiency are also discussed.

The primary contributions of this chapter can be summarized as follows:

1. We survey and detail quality control methods in crowdsourcing and discuss their con-
tributions in terms of output quality.

2. We propose a classification of these methods from the perspective of their occurrence
time on the crowdsourcing timeline and discuss the impact of this occurrence time on
the time and cost overhead they add.

Roadmap. Methods for aggregation optimization, worker selection and screening, individ-
ual performance enhancement and multi-stage crowdsourcing are described and discussed
in Section 2.1, Section 2.2, Section 2.3 and Section 2.4 respectively. Then, in Section 2.5,
the positioning of this thesis is advocated based on a discussion about the impact of the
method occurrence time on time and budget overheads and on the advantage of worker
selection on the accuracy of the aggregation algorithm. The chapter is then concluded in
Section 2.6.

2
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2.1 AGGREGATION OPTIMIZATION APPROACHES

In practice, the ultimate goal of a crowdsourcing campaign is to find the correct answer
for each task in this campaign. Indeed, one cannot rely on the answer of one or few work-
ers since this is prone to error. That is because workers in crowdsourcing are less likely
to be experts. Therefore, crowdsourcing relies on collecting redundant contributions for
each task. Those contributions are then aggregated which yields the correct answer for the
task. Practically, the aggregation problem is the process of inferring the true labels from
noisy observations which are the worker contributions [121]. A fair amount of methods in
crowdsourcing quality control has focused on optimizing the aggregation step in order to
improve the output of the crowdsourcing process [6, 56, 58, 62, 73, 76, 100, 121, 131]. In
general, the proposed aggregation methods can be classified into two categories: Iterative
and Non-Iterative [48].

2.1.1 NON-ITERATIVE AGGREGATION

As defined by Hung et al. [48], non-iterative aggregation methods “use heuristics to com-
pute a single aggregated value of each question separately”. It consists in finding, in a
single iteration, the answers for each task out of the provided contributions. One common
non-iterative aggregation technique is Majority Voting (MV). Given a task and a set of
answers for that task, MV aggregation consists in selecting the most voted answer in the
worker contributions. In classical MV, all the contributions are considered to be equally
reliable. That is, the reliability of the worker who provided a contribution is not regarded
when counting the vote. This renders the majority voting vulnerable to malicious votes and
prone to high rate of errors for difficult tasks. To cope with these limitations, one can give
higher weights for more reliable answers when computing the final vote. This is known as
Weighted Majority Voting (WMV) and has been repeatedly used in the literature [44, 56,
74]. MV and WMV can be formally expressed as follows :

Let t be a task.
Let W be the set of workers who answered the task.
Let A be the set of unique answers given by the workers for t.
Let cwt be the contribution of the worker w for the task t.
Let vw be the weight of the worker w.

The estimated correct answer of t, denoted ât , yielded by the MV is given by:

ât = argmax
k∈A

∑
w∈W

I(cwt ,k) (2.1)

and by the WMV is given by:

ât = argmax
k∈A

∑
w∈W

vw× I(cwt ,k) (2.2)

where I is an indicator function such that:
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I(x,y) =

{
0 if x = y
1 otherwise

(2.3)

Various measures can be used as weights for the contributions. For instance, Figure
Eight uses a "contributor trust" computed as the rate of correctly answered test questions
[24]. This test question principal is also called "Honeypot" [72] or gold-based quality assur-
ance [68]. Practically, this consists in continuously measuring the accuracy of the worker
using test tasks - with known answers - randomly injected in the task completion process.
The measured accuracy is then used as weight to all of the contributions given by the worker.
In [62], Khattak et al. use the test questions not only to estimate worker accuracy but to also
to compute an estimate of the difficulty of the remaining (unlabeled) tasks. This can be
summarized as follows: the workers’ accuracy for the test questions is computed. Then
temporary labels for the unlabeled tasks (i.e., all the tasks except the test questions) are
computed through the classical weighted majority voting detailed earlier in this paragraph.
Those temporary labels are then used to estimate a difficulty score for each task by com-
puting the ratio of workers who correctly answered it (w.r.t. its temporary label). Finally,
another weighted majority vote occurs to find the final estimated answers. In this final vote,
both the worker accuracy and the task difficulty are used as weights for the contributions.
In a more recent work [63], Khattak et al. use the same aggregation technique, yet, an en-
tropy measure is used to cope with the uncertainty of estimating worker accuracy and task
difficulty from a small sample.

2.1.2 ITERATIVE AGGREGATION

In contrast to non-iterative approaches, iterative aggregation is based on multiple compu-
tational rounds. In each of these rounds, the probability of a set of options being the set
of correct answers is updated. These probabilities are incrementally updated until conver-
gence of a certain objective function [48]. Generally, in the literature, iterative aggregation
methods [76, 98, 99, 100, 131] are based on the Expectation Maximization algorithm (EM)
[14, 15, 83]. Broadly speaking, the EM algorithm is a generative model that aims at find-
ing missing data while estimating the hidden parameters of a statistical model from a set
of available observations. As its name hints, the EM algorithm performs two steps in each
iteration: an Expectation step and a Maximization step. Figure 2.1 depicts the workflow of
the EM algorithm. After an initial estimation of the model parameters1, the expectation step
computes an estimate of the missing data. Then, during the maximization step, the model
parameters are updated through a maximum likelihood estimation, based on the data esti-
mated in the expectation step. These two steps are repeated until the algorithm converges
(i.e., the parameters and data estimation are unchanged).

Hereafter, we instantiate this workflow on our use case of interest i.e., the contribution
aggregation. In fact, the EM algorithm - with its different variations - is widely used and
approved in the crowdsourcing community [13, 76, 101, 102, 117, 146, 147]. Here, the
missing data are the correct answers of the tasks. The parameters of the model are the

1Usually the initialization is done randomly, unless hints about the probability distribution of those parame-
ters exist.
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Figure 2.1: The workflow of the EM aggregation where θ [it] represent the model parameters
to estimate e.g., worker accuracy scores.

workers’ reliability parameters while the observations are the contributions themselves. In
each iteration, the worker reliability parameters e.g., their accuracies, are used as weights
for their contributions in order to compute an estimate of the correct answers. This estimate
is then used to update the worker reliability parameter until those, as well as the estimated
correct answers, are unchanged.

Using merely the accuracy of the workers as weights for their contributions in the aggre-
gation process is the simplest way of creating the statistical model of an EM based aggre-
gation. However, it is possible to improve the quality of the aggregation result by modeling
other parameters of the system as latent variables to be estimated during the aggregation pro-
cess. For instance, Li et al. [74] used both the accuracy and the inaccuracy of the workers in
weighting their correct answers and their bad answers respectively. Raykar et al. [100] pro-
posed a similar algorithm except that it is optimized for binary labeling tasks as the workers
are modeled by their sensitivity i.e., the ratio of positive answers which are correctly as-
signed and their specificity2 i.e., the ratio of negative answers which are correctly assigned.
Whitehill et al. [131] proposed a more complicated model where, in addition to the worker
accuracies, the difficulty of the tasks is used as weight for the contributions. This model has
been extended by Jin et al. [53] who proposed to leverage side information about worker
and tasks to better encode the worker bias and expertise as well as the item difficulty used
in the EM model. In [98], the authors proposed a version of EM that handles the ordinal
labels instead of the categorical labels supported by the classical EM algorithm.

In fact, there is no theoretical guarantee of an optimal convergence of EM. The algo-
rithm can get trapped in a local optimum which yields a suboptimal estimation of the cor-

2The sensitivity and the specificity are also know as true positive rate and true negative rate respectively.
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rect answers [59]. This is specifically true for non-binary labeling tasks [144]. Just a few
works in the literature tried to tackle this problem in the context of crowdsourcing. Ghosh
et al. [39] presented a spectral algorithm that provably learns the true item qualities with
bounded errors. Yet, this assumes that each user performs a large number of tasks. Zhang
et al. [144] used a spectral method to improve the initialization of the worker accuracies
which improved the convergence rate of the EM algorithms.

2.2 WORKER SELECTION APPROACHES

Aggregation optimization methods aim to control the output quality of the crowdsourcing by
maximizing the information gain in the already collected contributions. Meanwhile, worker
selection approaches try to improve the quality of the individual collected contributions.
Roughly speaking, those approaches consist in allowing only reliable workers to participate
in the task solving process.

2.2.1 WORKER SCREENING

The most basic means of selecting worker is to deny the access to a task for unqualified
workers, i.e., screening them. Worker screening has been widely used in commercial crowd-
sourcing platforms, each of which has defined the qualification differently. Figure Eight
[32], Amazon Mechanical Turk (AMT) [123] and FreeLancer [35], for instance, all use
the Overall Approval Rate (OAR). OAR is an individual trustworthiness measure computed
using the historical participations of the worker in solving tasks on the platform. Gener-
ally, OAR is the percentage of the correct answers in all of the submitted answers [138].
It can also be the combination of this percentage with the number of solved tasks as well
to reflect the experience of the worker in the task solving. This is done in Figure Eight
where workers are mapped, based on their (combined) OAR, to three levels ranging from
1 (lowest reliability) to 3 (highest reliability). Upon task submission, a requester is able to
chose the minimum required level of qualified workers [25]. While reliable for eliminating
low quality and malicious workers, OAR is not sufficient to determine the real quality of a
given worker or to differentiate two workers with fairly similar OAR [138]. Moreover, as it
is computed globally in terms of the worker’s contributions, this measure is not suitable to
differentiate the workers for specific tasks or even to assess the real reliability of the worker
who might have participated merely in tasks which he finds easy and to which he is accus-
tomed. Furthermore, OAR is prone to the cold start problem as it is not computable, or at
least not significant enough, when it comes to new workers.

Besides the OAR, Figure Eight allows to filter out the workers using basic rules such
as country, language and channel 3. AMT adopts a similar, yet more flexible, filtering
system where each worker is characterized by a set of qualifications such as skills, abilities
and reputation. Qualification requirements are defined during task submission, where a
requester can require a given qualification, such as the language, to be present in the worker
profile before allowing him to see and enter the task. The difference with the worker filtering
settings of Figure Eight is that the requesters can define their own custom qualification type

3Bigger crowdsourcing platforms rely on smaller crowdsourcing markets called channels. These channels
act as a broker allowing an easier and locally adapted (e.g. by country) crowd recruitment.
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[22]. When compared to the OAR, worker filtering can better fit, without being optimal,
the specific requirements of each task. For example, let us consider a decision making
task related to American football where the workers are supposed to analyze an in-game
situation and provide the decision they would take to succeed the action such as punt or
pass. In this case, workers situated in countries where American football is a common sport
are more likely to have better knowledge in this domain and thus, being more reliable for
completing the task. Nevertheless, this filtering is manual and depends on the requester’s
subjective judgment. This makes it a time consuming and possibly biased process.

In order to consider the specificity of each task set during the worker selection, quiz
tests might be also used. They consist in testing the reliability of the workers before they
enter the task set using a small amount of tasks sampled from the set. The correct answers
for those test tasks can be collected through expert labeling. Workers who fail Quiz Mode
are not paid and are not allowed to work on the tasks. This technique is also used by Figure
Eight [27] and by AMT as part of their qualification system. Quiz tests require labeled
tasks which might be costly to acquire; in practice, when expert labels are not available, it is
common to crowdsource the quiz tasks by a large number of workers (up to 500) in order to
collect their true labels. Moreover, the choice of test tasks might be biased and thus, those
do not reflect the real difficulty or specificity of the task.

2.2.2 WORKER TRACKING

In practice, worker screening is done before the worker is allowed to solve the actual tasks.
Once the worker passes the screening, his contributions are no more controlled and hence,
there are no obligations to submit accurate responses. To tackle this limitation, one can use
gold-based quality assurance [68], also known as seeding [60]. It consists in continuously
measuring the accuracy of the worker using test tasks - with known answers - randomly
injected in the task solving workflow. A high error rate causes the rejection of the worker
from the current campaign. Similar to the quiz tests described earlier, gold-based assur-
ance depends on the quality of the task questions. On the Figure Eight platform, most
jobs have between 50 and 100 test questions [26]. This implies an additional work load
on the requester side and makes the selection either prone to requester bias in the provided
gold answers or expensive if those gold answers are collected through crowdsourcing with
high redundancy. Moreover, while guaranteeing that the worker performance will not ma-
liciously drop after he has been selected for that task like it might be the case in worker
screening, test questions in this technique are distributed over a long period within the job
solving process. For instance, by default, Figure Eight uses one test question per task page 4,
which means that some workers might spend a fair amount of time solving the tasks before
getting eliminated from the job because of a quality drop. On one hand, this increases the
time of job completion as eliminated workers must be replaced and, on the other hand, this
is unfair regarding the time the worker spent doing the job without being paid.

In [108], Rzeszotarski et al. argue that the reliability of a worker can be measured
through a set of behavioral features related to his interaction with the user interface during
the task solving. To accomplish this measurement, the worker behavior e.g., time for com-
pleting a task, number of clicks, mouse travel, etc. is tracked in the platform interface using

4A page consists of 1 to 19 tasks [26].
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software plug-ins. The collected features are then aggregated which results in a reliability
score of the worker. This method, called fingerprinting, can eliminate spammy contribu-
tions because some malicious behavior in the context of crowdsourcing are easy to define
and filter e.g. filling the answer randomly, finish the task in record time, use key strokes
such as TAB+SPACE combinations etc. However, it is fairly difficult to model the behavior
of trustworthy (non-malicious) workers, using these features in a way to reflect their real
performance.

In [132], Whiting et al. introduce a reputation system based on guilds. Their approach
consists in splitting the workers into groups, each of which tries to manage and improve
the expertise of its members. These groups certify their members by internally rating the
contributions of those members for peer assigned tasks. These ratings are then translated
to guild levels which in turn serve as reputation signals on the crowdsourcing platform. It
is worth noting that worker screening and worker tracking systems are also considered as
reputation systems as they are used in the literature to compute a measurable trustworthiness
of crowdsourcing workers [55, 81, 118].

2.2.3 SKILL MATCHING

As stated earlier, worker skills can be used to filter out reliable workers for a given task e.g.,
in AMT’s qualification requirements. This filtering process consists of deciding whether
a worker should be allowed or denied the access to a very specific task. Nevertheless,
one can see the system in its big picture and try to optimize the task assignment process
by matching the available workers to the available tasks. Skills have been leveraged in a
number of approaches in order to perform this task-to-worker matching [80, 96, 107, 113].

In [107], Roy et al. modeled the task assignment problem as an optimization problem
that takes into account the worker skills, their wage requirements, and their availability.
This work can be summarized as follows: for a given workload i.e., a number of active
tasks, i.e., unfinished tasks, in a given period, the framework called SmartCrowd tries to
build an index of the tasks in a way to account for, on the one hand, the minimum skills
required for the task and the maximum possible pay and, on the other hand, the skills of
the available workers and their requirements in terms of wage. The index of each task is a
weighted linear combination of skills (the aggregate skills of all selected workers) and wage
(the aggregate wage of all selected workers). The objective of the optimization process is
to maximize the sum of the indices of the tasks in the workload. The authors proposed
three optimal and approximative algorithms to solve this problem. The approach is tailored
for knowledge intensive crowdsourcing where workers build on each others contributions
to gradually increase the quality of each task answer (thus, aggregating the skills of the
selected workers is possible). However, one cannot apply this approach on more classical,
and more common, tasks such as the use case of labeling large datasets for which the worker
contributions are independent and collaboration is absent.

Rahman et al. [96] followed a similar optimization approach, also applied on crowd-
sourcing tasks where collaboration between workers is needed. However, in order to take
the collaborative aspect into account, they also accounted for the affinity between the se-
lected workers. The pairwise affinity between workers is computed as their similarity using
simple socio-demographic attributes, such as region, age and gender. This allows also to
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define an intra-group affinity measure i.e., the diameter of the group of worker selected
for a given task and the inter-group affinity between two group of workers i.e., the sum of
pairwise affinities of workers, working on two parts of the same task 5.

In [80], Mavridis et al. proposed to use skill taxonomies in order to characterize the
workers and the tasks. Then, based on this taxonomy, they propose to perform a one to one
matching between the worker set and the task set. This is done using one of three algorithms
that consist of two heuristics and one optimization algorithm. First, a heuristic called Match-
ParticipantFirst which tries to assign the most specialized tasks first, to the participants with
the lowest number of skills (this saves most diverse participants for other tasks). Second, a
heuristic called ProfileHash which tries to achieve perfect matches and gradually loosening
the constrained by considering generic-skill based matching. And last the Hungarian match,
which is a combinatorial optimization algorithm often used to find perfect matchings with
minimum normalized cumulative distance. However this work assumes that a task can be
characterized by a single skill which is not realistic (as a task can be more complex and links
to many skills) and that a task is mapped to only one worker which is not true in practice.
Similarly, considering that the knowledge about the worker skills is present in the system is
not realistic.

2.2.4 PROFILE BASED SELECTION

As mentioned earlier in this thesis, usually tasks in crowdsourcing require a human inter-
vention as they are not solvable by algorithms. That is because the answers for these tasks
depend on the cognitive skills of the human workers such as decision making, appreciation
and so on. These skills are usually built and grown during the human life throughout his
experiences in the society, workplace, education etc. Therefore, one can easily imagine
that these experiences, which can be reflected in the declarative profile of a worker, influ-
ence his cognitive skills and, consequently, his performance in solving the crowdsourcing
tasks. This has been studied in [61] where the authors showed that a correlation between
the performance of the workers and some of their demographical and personality-related
features exists. The main findings of the work is that in terms of demographics, location has
a very strong relation to accuracy, with Asian workers demonstrating significantly poorer
performance than American or European workers. Additionally, in terms of personality
types, they found that openness and conscientiousness relate significantly to accuracy. The
authors summarized their overall conclusion as follows : “there is a complex interaction
between the particular HIT [tasks] conditions and the types of workers who engage in a
task, and that these worker characteristics are related to the quality of their work”.

In [76], the authors leveraged these worker features such as age, gender, skills, loca-
tion, study domain and level etc., to perform a cold-start-free and dynamic worker selection.
Their method consists of three stages: the first stage consists of an information gathering
phase called probing stage. During this phase, a part of the task is distributed to the con-
nected crowd in order to get an unbiased sample of workers. At the same time, the features
of each worker are extracted. This is done either by using the data provided in the platform
profile or by simply sending a questionnaire to the workers in concern asking for the above
mentioned information. The gathered data, i.e., the full sample of the crowd and the set of

5To allow a better merging of the contributions.
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worker features are used as an input to the second stage i.e., the discovery stage. The dis-
covery stage aims at modeling the relationship between the quality of a worker contribution
for a given task and the features of this worker. The main contributions of the work reside
in this phase during which the quality of each worker’s contribution is estimated and the
profile-features of interest are determined. As a result of the discovery stage, the identified
reliable worker group is then called for completing the task or to start a new task. This
call occurs during the so called targeting stage. By targeting a specific group, one reduces
the number of assignments and, as a result, decreases the budget. However because of the
probing phase, the budget reduction is not optimal and the task completion time is increased.
Moreover, the accuracy measured proposed in this work is optimized for EM which is not
usable on all sorts of output (e.g. unbalanced MCQ).

2.2.5 PREFERENCE BASED ASSIGNMENT

Recommender systems are systems that seek to match a set of items in a system to a set
of users in a preference driven manner [7, 12, 112]. In crowdsourcing, recommender meth-
ods have been used to assign tasks to workers (or select workers for tasks) [2, 37, 109,
140] while maximizing the satisfaction of the workers from a task preference perspective.
Recommender methods assume that workers have a better performance in completing tasks
they like. Thus, preference driven recommendation can help improving the quality of the
crowdsourcing output.

Ambati et al. [2] proposed, for instance, two recommendation methods which use im-
plicitly computed and explicitly gathered features. The first finds the matches between tasks
and workers using a bag-of-words approach. The second uses a trained classifier to decide
whether the worker would be interested in a given task or not. Both approaches heavily
rely on the history of the individual workers which causes a serious cold-start problem. In
[140], Yuen et al. described a probabilistic matrix factorization method to recommend tasks
to workers called TaskRec. Their approach uses the implicit worker’s ratings inferred from
his interaction behavior with the tasks as well as a manual task categorization to model the
worker preferences. TaskRec improves - compared to traditional recommender techniques -
the recommendations in a dynamic context such as crowdsourcing.

Difallah et al. [18] proposed a method that collect the worker preferences from his social
media profiles. These preferences, to which preferences from the historical contributions
of the worker are added, are used to build a preference profile. A similarity measure uses
the latter to find suitable tasks (i.e., tasks which description are close to the worker profile)
which in turn are returned to the worker in a push methodology (i.e., sending a notification
about the task submission only to the selected workers). As the authors pointed out in their
article, this push strategy may lead to delays in the completion of the tasks. Moreover, there
might be a privacy related aspect preventing the workers from giving the crowdsourcing
platform the permission to extract preference data from their social media profiles. This is
not an issue in the case of declarative profile as workers are aware of what data they are
sharing with the platform. Instead of proposing tasks separately, Amer-Yahia et al. [3]
described a method that proposes to the workers a summary of tasks which match their
skills, preferences and the wage they would accept. The proposed summaries are valid i.e.,
they contain the number of tasks requested for a work session, representative i.e., they cover
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the range of tasks available, and personalized i.e., they contain tasks that match the worker
interests. In [1], authors extend this work by studying the effect of task diversity in the
proposed summary on task throughput, worker retention, and contribution quality.

2.3 INDIVIDUAL PERFORMANCE ENHANCEMENT

While some methods optimize aggregation techniques and other improve the quality of the
contributions through worker selection, another family of approaches proposes to improve
the quality of the individual contributions by enhancing the performance of the workers.
This can be done through training, incentives, task design enhancement and priming.

2.3.1 INCENTIVES

In the first chapter of this thesis, we presented a definition of crowdsourcing that allows
to isolate the domain in which we are interested in the work from other similar domains
(Definition 1.1.1). A key element of this definition is the existence of a monetary reward.
In the context of crowdsourcing, this monetary reward constitutes the incentivizing element
pushing the workers toward contributing. In fact, this incentive has been also proven to
boost the quality of the contributions. Various payment and incentive schemes have been
proposed in the literature to boost the performance [19, 42, 65, 77, 128, 136, 139].

In [77], Mao et al. studied three payment schemes as follow: (i) a per-task payment
scheme which is equivalent to the classical scheme used in commercial crowdsourcing plat-
forms. (ii) A per-annotation scheme, where workers are paid per annotation in a multi-label
task 6. And (iii) a per-time scheme, where workers are paid for the time they spend solv-
ing the task. These schemes were compared to each others and to a non-payment scheme
where workers volunteered to solve the tasks. The authors found that per-task payment
results in the fastest task completion, but lowest recall. Meanwhile, the per-time payment
scheme, caused workers to work more slowly, but with better results. Moreover they found
that workers who were paid on a per-task basis, show a greater quality drop as the task gets
more difficult as compared to the other schemes.

Harris et al. [42] looked into another payment scheme which consists of 4 variants of
the traditional per task payment: the first one is the classical per task payment, the second
consisted of a monetary bonus payment for each correct answer, the third consisted of a
monetary penalty for each bad answer and last a combined scheme were bonus and penalty
can be paid or deduced. The results reported in this work showed that the classical payment
model(without any bonus or penalty) performed worst than the other schemes and that cases
where a bonus is paid, performed the best.

Difallah et al. [19] also experimented with the bonus payment and proposed milestone-
based bonuses. In contrast with the aforementioned methods, this work aims at reducing the
time of task completion. The authors argued that by convincing the worker to work longer
on a task batch i.e., solve more tasks from the batch, they can avoid the situation where new
workers need to be recruited to complete an almost completed batch7. To achieve this, the

6Such as giving keywords that describe a picture.
7A batch or a job is a set of similar tasks e.g. a large number of images to label. When few tasks remains in

the batch, new workers are less interested in entering it because the time to spend on getting accustomed to the
tasks would not be profitable.
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authors proposed multiple bonus schemes such as: (i) increasing bonus i.e., paying more
bonus at the end of the batch than in its beginning (ii) milestone bonus i.e., accumulating
bonus and paying it occasionally, (iii) training bonus i.e., paying more at the beginning
of the bath than at the end 8. And (iv) random bonus i.e., paying a bonus drawn once at
random in a lottery similar manner. Results shows that workers paid at milestones stayed
longer which reduced the overall time of the batch completion. While the time is decreased,
authors showed that the average worker accuracy does not necessarily improve as a result
of the worker staying longer. Yet, the variance of their accuracy dropped for workers who
stay longer. This can be reflected as a more accurate aggregated output.

2.3.2 TRAINING

Training the workers on completing the tasks also helps them produce better quality contri-
butions on an individual level. Various techniques have been proposed in the literature to
enable this training and most of them occur during task completion. For instance, in Figure
Eight’s implementation of gold-based quality assurance (test questions) described earlier in
Section 2.2.2, when a worker incorrectly answers a test task, a feedback message is shown
to explain the error. In addition to controlling the quality, this helps train the workers while
they are solving the tasks 9. Programmatic gold [91] is an extension of the gold-based qual-
ity control where test tasks with incorrect answers are also used to train workers against
common errors. In this case, test questions - or a subset of them - are injected with known
types of errors. By doing this, one gains control over the training experience of the workers
and forces all workers to consider most common error cases.

These techniques suffer from the same problem of gold-based quality assurance related
to the work load added to the requester side. First, they require manual picking of test tasks
which is not scalable. Second, they must provide justified answers for the test question and
third one needs to perform a manual audit on a set of completed tasks to be able to detect
common errors (this mainly applies for programmatic gold quality assurance). Besides not
being scalable, this approach is prone to the lack of data when it comes to new tasks for
which the common errors are not known yet.

2.3.3 TASK INTERFACE DESIGN AND PRIMING

Designing the User Interface (UI) of the task is an important step of the task design process.
The quality of this interface can have an influence on the quality of the contributions and
on the overall crowdsourcing experience. Finnerty et al. [33] studied this influence through
a series of experiments where they measured the effects of the complexity of the interface
on attention. The results of the experiments showed evidence that a clearer and simpler
design (e.g., colors, contrasts, number of tasks in the same interface, ...) and less demand
on workers attention provide more accurate results.

A less common technique that aims to enhance the reliability of a workers is priming.
Priming as defined by the psychological literature is a temporary, implicit activation of
behavioral tendencies as a result of exposure to environmental stimuli [9]. In [84], Morris

8The rational is that when workers get trained on solving the task they will have tendency to stay longer.
9Another purpose of this measure is to allow the workers to contest an unfair test question and to rate the

quality of the tasks and of the requester in the optional task evaluation step that follows the task completion.
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et al. showed that it is possible to boost the quality of worker quality by visual priming. That
is accompanying the tasks with a visually and emotionally appealing images. Experiments
showed that positive priming, i.e., priming with positive content such as a picture of a
laughing baby outperformed the negative priming, i.e., priming with negative content such
as the picture of a dead body. Worker contributions in both, positive and negative priming
scenarios, had a better quality than the neutral scenario where no priming was used.

In [69], Le et al. studied another factor that implicitly influences the contributions of the
workers and which we classify under the priming concept. The authors showed that, when
quiz tests are used for relevance categorization task, the distribution of the correct answers
over the test tasks induces a bias on the worker contributions in the real tasks. For example,
if a worker perceives 80% of the answers are of correct answer A, then worker will answer
A every time. They concluded that distributing the answers uniformly over the test tasks
produces optimal peaks for both the individual worker accuracies and the (MV) aggregated
results.

Priming techniques and task design optimization do not give any guarantees on the
produced quality. Moreover, priming techniques are very complicated to implement as it
necessitates a solid knowledge in human psychology to be able to propose adequate priming
to the proposed task type. Optimizing the task design requires the identification of specific
design pattern for each task type which might not scale easily due to the growing number
of tasks and task types in crowdsourcing systems.

2.4 MULTIPLE STAGE CROWDSOURCING

In [28], Dow et al. compared three different workflows occurring between the moment
where a worker starts working on a task and the submission of the contribution. First, a
classical workflow consisting in working on the task and then submitting it. Second, a
workflow where the workers are asked to revise and correct their work after having finished
working on the task before submitting their contribution. And third, a workflow where
the contributions of the workers are reviewed by an external reviewer such as an expert,
and returned to the workers for correction before being submitted. This work showed that
workers who self-evaluated their work, or have received and external feedback, yielded
higher quality contributions when compared to those whose contributions have not been
reviewed. However, this work showed also that this quality boost came at the cost of a
higher work load for the requester who must determine comprehensive and task specific
evaluation criteria that can be used by the workers to self-evaluate their work. Moreover, the
reviewing process - especially the expert based one - lengthened the time of task completion
as it adds an intermediate step between the work completion and the submission of the
contribution. Finally, this adds an additional cost as, naturally, experts must be rewarded for
their feedback and workers must be rewarded an additional amount for spending more time
on the same task when compared to a more classical workflow.

Zaidan et al. applied in [142] a two stage workflow in the domain of crowdsourced
text translation. However, instead of leveraging expert and self-evaluation reviews, they
proposed to use peer reviews. That is, the contributions of a worker is reviewed by the
other workers. For a given text that needs to be translated, each of the workers to whom the



2.5 Thesis positioning 23

task was assigned produced a translation of the task. Then, the produced translation was
submitted to another set of workers to be edited and rated. Finally, a supervised ranking
algorithm ranked the translation based on the grammatical quality of the produced trans-
lations to choose the best one. The algorithm uses multiple features to compute the score
of a given translation such as the country of residence of the workers, the number of years
speaking the needed languages, the language model perplexity of the translation [5], the
edit rate of the other translations, and the calibration against professional translators. This
approach is specific to translation tasks and its extension to other task types requires a new
set of features to compute the scores of the contributions.

To tackle this limitation, Baba et al. [6] propose a similar, yet more generic multi-stage
method. Here, reviewers are only allowed to rate the contribution quality (no editing), and
the result aggregation method is unsupervised in that no predefined features are needed to
assess the quality and compute the scores of the contributions. This is done through an
iterative aggregation algorithm similar to the ones described in Section 2.1.2, applied on
the reviewer ratings. Here, both the worker ability and the reviewer bias are modeled as
latent variable of the generative model. This approach improved the output quality of the
crowdsourcing process as compared to aggregating results from a one stage workflow i.e.,
without reviewing. The authors also showed that for a limited number of workers, the two
stages workflow yields better quality results. Indeed, this is an improvement of the quality
to budget ratio. Yet, this is limited to unstructured tasks where a two stages process is
beneficial such as translation tasks. It does not apply on traditional labeling tasks as one can
directly aggregate the contributions instead of aggregating their ratings. Finally, the time
overhead related to the sequential stages of the two-stage approach remains unsolved.

2.5 THESIS POSITIONING

After having listed and described the state of the art of quality control in crowdsourcing, in
this section we discuss the limitations of methods from a more overhead-related perspective
and argue on the positioning of this work.

2.5.1 ON THE TEMPORAL ASPECT OF QUALITY CONTROL

Figure 2.2 depicts the projection of major quality control approaches (outlined with boxes)
on the timeline of the crowdsourcing process explained earlier in Section 1.1.3 of Chapter 1.
One can split this timeline into three zones with respect to the strategic goals of the quality
control methods. Those zones are delimited by the red dotted lines. The first zone ends after
the task assignment. Methods in this zone try to optimize the access to the crowd wither
by preparing the worker before they access the task or by selecting reliable workers. The
second zone, which succeeds the task assignment, groups methods that aim at improving
the data collection process. That is, the quality of the collected contributions is verified
during the collection and bad contributions are dropped or improved on the go. This second
zone ends by the end of the contribution collection process after which the third zone starts.
This third zone groups the aggregation optimization techniques and aims at maximizing the
information gain from the already collected contributions.

This temporal projection of the quality control methods allows us to assess their poten-
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tial of coping with the time and cost overhead reduction challenges. In fact, this potential
decreases with time. The further a method occurs on the time axis the less potential it
gets. Let us consider first the aggregation techniques (Zone 3). Those aim, as mentioned
before, to extract the maximal amount of information from the collected contributions. Con-
sequently, they require those contributions to exist in the first place which means that the
requester has paid and waited for them to be completed. One can optimize the aggrega-
tion methods to require less contributions while performing high accuracy inference of the
correct answers. Yet, this is usually limited by the quality of the contributions and the agree-
ment of workers over a given answer which might be harder to achieve for a lower number
of workers.

Second, we consider approaches whose the objective is to improve the data collection
process (Zone 2). Worker tracking methods i.e., gold-based assurance and fingerprinting,
as well as two stage workflows constitute the major part of these approaches. Indeed, in-
tuitively, the potential of these methods in reducing the time and cost overheads is greater
than the potential of aggregation methods. That is because the former deals with, yet, un-
collected contributions. However, their limitations raise from two different aspects. On
the one hand, worker tracking methods track the worker until his accuracy score drops and
eliminate him from the campaign. This necessitates the eliminated worker to be replaced
which increases the task completion time [19]. Moreover, these workers are not paid neither
for test questions nor for the actual task they participated in, which can be discouraging for
them10. On the other hand, multi stage crowdsourcing lengthens the task completion time
as it consists of two phases which occur sequentially11. Consequently, methods belonging
to this zone tends to have a higher time overhead.

Finally, we consider the approaches that control the input of the task solving process
i.e., both the tasks to be submitted and the participating workers. These approaches consist
mainly of individual contribution enhancement approaches (Section 2.3) and worker selec-
tion approaches 12 (Section 2.2). The former approaches suffer from their dependency on
the type of the task. Optimizing the task design is directly correlated to the type of input
data, output type, the task solving process and so on. Thus the genericity of this approach
and its scalability are not proven. The same applies for priming and worker training since
specific per-task priming and training strategies need to be implemented by the requester,
which, besides not being generic or scalable, requires additional work and intervention on
the requester side. In contrast to this, existing worker selection approaches are more generic
and scalable as they require less intervention from the requester side. Some worker selec-
tion approaches such as worker filtering, skill matching methods and recommender systems
are optimal from a time and a budget overhead point of view since the requester only pays
and waits for the needed number of contributions to be completed while having a quality
guarantee. However, these methods heavily depend on the individual history of each worker
which is not optimal in a system similar to crowdsourcing where tasks are very diversified

10Especially for honest workers. In fact, gold-based assurance eliminates malicious workers in a fast manner
since their accuracy drops quickly. However, honest workers, who are not skilled enough to complete the tasks
might be eliminated after a long journey in the task completion.

11A contribution cannot be reviewed before it is submitted.
12With the exception of worker tracking approaches.
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Figure 2.2: A projection of different quality control approaches on the crowdsourcing time
line.

and worker arrivals and departure are frequent (which leads to a cold start problem for new
workers). Probing based methods such as profile based selection and qualification tests
tackle this problem by measuring, in a first round, the reliability of the available workers.
During this round, a part of the tasks is distributed to the whole crowd and workers with
higher reliability in solving those tasks are selected to continue the work. This allows to
estimate the reliability of the worker, per task set, and independently from his historical
contributions. Nevertheless, this probing stage consists of paid and time consuming, yet
unused, contributions. That is because they are not used, or partially used in the best case,
in the actual crowdsourcing but rather for quality control only.

2.5.2 THE IMPACT OF WORKER SELECTION ON THE AGGREGATION PROCESS

Selecting workers decreases the time and the cost of completing a high quality crowdsourc-
ing campaign because it limits the task completion to reliable workers without the need
for iterative processes such as editing or reviewing. In this section we study the impact
of worker selection on the quality of a set of aggregation methods. The objective of this
study is to show that by selecting suitable workers, one improves the quality of the final
aggregated results. To this end, we created a synthetic dataset detailed in next subsection

2.5.2.1 Dataset

The data generation process is detailed hereafter. First we generated 200 multiple choice
question MCQ tasks, each having 4 options. For each of the tasks, we randomly (uniformly)
picked one option r among those 4 available ones to be the correct answer of the task.
We then generated 500 workers. Each of those workers is characterized by an accuracy
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Figure 2.3: The beta distributions used to simulate the worker accuracy distributions with
various configurations.

α ∈ [0,1]. In our model, α follows a Beta distribution of real parameters a1 > 0 and a2 > 0.
We then followed the process described in [48] to generate the contributions. That is, the
probability of the worker answer being equal to the correct answer r is equal to his accuracy
α while the probability of choosing a different answer is equal to his inaccuracy divided by
the number of possible wrong options i.e., equal to (1−α)

3 . This process was repeated 7 times
with different configurations for the beta distributions. That is for a fixed value of a1 = 4
and a2 ∈ {2,3,4,5,6,7,8}. This yielded 7 datasets which we denote and index by the value
of the corresponding a2 i.e., D2, D3, D4, D5, D6, D7, D8. These datasets constituted the
input of our evaluation algorithm. Note that the results reported below are averaged results
of multiple data generation runs. For each configuration, the datasets were generated 20
times.

The Beta distribution: We chose the beta distribution for the following reasons13: first,
it is defined in the interval [0,1] which makes it suitable for the accuracy measure. Second,
similarly to a normal distribution, it is bell-shaped (for certain range of a1 and a2 ), yet,
it is asymmetrical. This means that we can better represent the difficulty of a task from a
worker accuracy perspective. Figure 2.3 reports the shape the beta distribution takes with
respect to its parameters. a1 is fixed to 4 and a2 travels from 2 to 8 with steps of 1. If a task
of four options, is extremely difficult, the accuracy of the workers in completing the task
is most likely to be close to the accuracy of worker randomly answering the task. That is
one divided by the number of options i.e., 0.25 which approximately refers to the top of the
bell shape. For this task, workers with very high accuracy (e.g., higher than 70%) and very
low accuracy (i.e., close to zero) are very rare. This situation is well modeled with a beta
distribution of parameters a1 = 4 and a2 = 8 (dark green line). On the opposite side, the

13A more detailed description of the beta distribution and the intuition behind it have been established by
Johnson et al. in [54].
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Figure 2.6: A comparison of the behavior of three different aggregation techniques for
various distributions of reliable worker (x-axis) in the targeted group of size 20.

accuracy of the workers for an easy task are most likely to be high. Moreover, very reliable
workers are most likely to have an accuracy closer to one. This case is represented by a
beta distribution of parameters a1 = 4 and a2 = 2 (dark blue line). The cases in between
represent more or less difficult tasks (light blue, dark red, green, yellow and red lines). In
[74, 75], authors also modeled the worker accuracies as a Beta distribution with a2 = 2 and
a1 were computed in a way to keep the average worker accuracy to a given value.

2.5.2.2 Experiments and results

The goal of this study is to show the impact of task difficulty and of the number of reliable
workers in the crowd on the output of the aggregation process. We compared three aggre-
gation algorithms as follows: Majority voting (MV), Expectation Maximization (EM), and
Weighted Majority Voting (WMV). The latter is based on test questions; for each run the
accuracies of the workers for a set of 10 randomly sampled tasks are computed and used as
weights for their contributions during the aggregation.

Experiment I

We considered the scenario where 20 answers14 are collected per task and studied the im-
pact of the reliable worker distribution in the crowd of 20 workers on the aggregation quality.
Given a dataset Di, we picked 20 workers as follows: first, the Topx workers (x ∈ [0,20]),
ranked by their overall accuracy, are selected. They constitute the list of reliable workers.
The remaining workers i.e., 20− x workers, are then picked randomly from the remaining
crowd of size 500−x. The contributions of those 20 workers for the set of tasks are then ag-
gregated using the aforementioned algorithms, and the accuracy of the aggregation process

14Aggregating the answers from 10 to 20 workers per task is good enough empirically [76, 117].
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is computed using the ground truth; it is the average of the correctly guessed answers over
the number of estimated answers. This process, depicted in Figure 2.4, was repeated for all
of the datasets and the results are reported in figures 2.5 and 2.6.

We start by comparing the results of the EM aggregation for the various datasets (Figure
2.5). This reflects the impact of task difficulty on the aggregation process15. Clearly the
harder the task gets i.e., the higher a2 is, the lower the performance of EM becomes. That
is because for easier tasks, the majority of the workers are reliable, hence, the selection
has no real impact on the final quality. Next, we focus on the shape of the curve - which
is similar for all of the datasets - and compare the accuracy of EM w.r.t the number of
reliable workers x for each dataset individually. It is clear that the accuracy increases by
increasing the number x of guaranteed reliable workers in the crowd. With x = 0, the 20
workers are randomly picked in the crowd. Hence, the accuracy of the aggregation process
is rather low. The more reliable workers we have in the worker set the better is the EM
performance. When the 20 workers are reliable, the EM process converges to one regardless
task difficulty. These observations and findings apply for the other aggregation techniques
as well. This can be seen in the results reported in Figure 2.6. It is worth mentioning that
for difficult tasks, both EM and WMV outperformed MV. This held true until the number of
reliable workers crossed 12 for Beta(4,7) (i.e., difficult tasks) and 14 for Beta(4,8) (i.e., very
difficult tasks). After this threshold all of the aggregation techniques performed similarly.
This means that an accurate selection process can eliminate the need for more complicated
and time consuming aggregation techniques such as EM. However, achieving a selection
process of such quality i.e., nailing the top 14 workers, while possible in a perfect test
environment, might not be possible in the real life due to the noise which is not modeled in
our synthetic dataset16. Yet, results show that the performance improvement is steeper for
lower x. That is, a few number of reliable workers is sufficient to consistently improve the
quality of the aggregation process. Consequently, a selection process can be advantageous
even when it is not perfect.

Experiment II

In Experiment I, we studied the quality of the aggregation w.r.t. to the distribution of the
reliable crowd in a fixed size crowd, i.e., the number of workers of whom the contributions
are aggregated was fixed. Here, we consider the scenario where this number varies and
we study the impact of the selection on the aggregation quality. Here we select x workers
and aggregate their contributions17. In each run, we sampled three sets of x workers from
a Beta(4, 4)18 distribution as follows: (i) Top crowd (TOP) i.e, sampled from the top 30%
of the ranked worker list. (ii) Bad crowd (BAD) i.e., sampled from the bottom 70% of the
ranked worker list. (iii) Random crowd (RAN) i.e., sampled randomly from the whole pop-
ulation. Figure 2.8 reports the accuracy of MV, EM and WMV for the 3 sampled worker

15 For the ease of interpretation, the same colors have been used in Figure 2.3 which reflect the difficulty of
tasks as discussed earlier and Figure 2.5.

16We argue further in this thesis that modeling a realistic noise can be very difficult due to the complexity
and uncertainty found in the crowdsourcing environments.

17In contrast with the previous experiment where we aggregated the contributions of 20 workers among
which x were reliable.

18Task with medium difficulty.
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sets. The same findings as Experiment I are observed for this experiments with one excep-
tion. In fact, for very low values of x, EM is not able to achieve good accuracy even with
reliable workers. This is due to the fact that EM does not converge with very few numbers
of contributions per task. Meanwhile, both MV based aggregation techniques were able
to achieve better results for the same low numbers of selected workers. Accordingly, one
can say that, while costly, redundancy is indeed a key factor of the crowdsourcing process.
Hence, restricting the number of selected workers to very low values can be inconvenient.

2.5.3 DISCUSSING WORKER SELECTION STRATEGIES

It is clear from the previous discussions that worker selection approaches have the highest
potential to deliver a robust quality control process while optimizing its time and cost over-
heads. However, all selection methods are not equal. Some can be more efficient than others
due to three criteria which we enumerate as follows:

A priori This criterion reflects the dependency of a worker selection method on previously
collected knowledge about workers. Highly a priori dependent methods, such as rec-
ommender based approaches [2, 140] and Overall Approval Rate [32, 35, 123, 138],
suffer from cold start and sparse information problems. In contrast to those, meth-
ods that are independent from a priori knowledge present either low quality control
level such as fingerprinting [108] or the need for time and budget consuming probing
stages [76].

Task specificity This criterion reflects how specific the selection process is w.r.t. the tasks.
This specificity can be very low, such as selecting workers regardless the type and
the content of the task e.g., OAR based selection methods. These methods present no
time and cost overheads, yet, their robustness in terms of quality can be questioned
since tasks in crowdsourcing are very diverse in terms of required knowledge and
skills. On the other side, a selection approach can be very specific such as selecting
workers for each submitted task set, e.g., gold-based insurance [68], programmatic
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Table 2.1: A comparison of the worker selection approaches in terms of the task specificity,
worker specificity and a priori dependency.

Reference Selection Criteria Approach TS WS AP
[22, 25, 35, 138] AOR Filtering low high high
[26, 69, 91] Test questions Tracking high high low
[22, 27] Qualification tests Screening high high low
[22, 23] Country, language Filtering low low low
[76] Declarative profile Probing high medium low
[1, 80, 107] Skills Matching medium high high
[96] Skills and affinity Group Matching medium medium high
[1, 3] Preferences Task composition medium high high
[2, 140] Preferences Recommender low high high
[18] Preferences* Recommender medium high low
[108] Behavioral features Fingerprinting high high low

TS : Task Specificity, WS : Worker Specificity, AP : A Priori
* From external sources

gold [91] or other probing techniques [76]. Task-specific approaches guarantee that
the selected workers are suitable for the current task which improves the crowdsourc-
ing quality, however, they are time and budget consuming. This is especially true
when the same task set is submitted in batches which implies that the same control
process will be repeated while the task type and content is unchanged. Methods that
rely on describing the tasks as a set of skills [1, 107] are optimal in terms of task
specificity. That is because tasks requiring similar skills can be treated similarly even
when they are not submitted jointly.

Worker specificity This criterion reflects how specific the selection process is w.r.t. the
workers. This specificity can be very low such as generic country based and language
based filtering [22]. In this case, there are no guarantees, except for very specific
tasks, for the quality of the selected workers since they are judged based on one rough
criterion. It can also be very high such as selecting a worker based on his individual
history [138] or preferences [3, 18]. In other words, the information used to select
one worker cannot be used to select or reject another worker. Methods that rely on
workers’ declarative profiles [76] are optimal in terms of worker specificity as what
is learned from one worker’s profile can be applied on other similar profiles.

Table 2.1 summarizes the state-of-the-art of worker selection approaches and allows to com-
pare them based on the aforementioned criteria.

2.5.4 POSITIONING SUMMARY

The temporal projection of quality control methods showed that selection methods offer the
highest potential of solving the challenge of time and cost efficient quality control. The
study of the impact of worker selection on the quality of the aggregation algorithms also
proved that this selection is able to improve the output quality of the crowdsourcing process.
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Yet, studying the literature of selection methods showed that the available selection methods
suffered mostly from their dependence on a priori knowledge and from their task specificity.
Based on these findings, one can say that an efficient quality control method must adopt
a worker selection approach, while eliminating the probing stage and being agnostic to
the knowledge of the individual contribution history of the workers. However, this raises
the following question : if we eliminate the probing stage and a priori knowledge about
individual workers, on which basis should the reliable worker be identified? In this thesis
we adopt a worker approach and propose a solution for replacing the probing stage with an
a priori agnostic offline learning stage that allows to acquire the needed knowledge about
the online crowd to perform high quality worker selection.

2.6 SUMMARY

In this chapter we reviewed the state of the art of quality control methods in crowdsourcing.
We highlighted their limitations in terms of quality as well as in terms of cost and time
overheads. We argued through a discussion that a worker selection approach that does not
require any probing stage might constitute an ideal solution for reducing the time and the
cost overhead of the quality control in crowdsourcing. That is because such method would
allow to limit the access to the tasks to reliable workers, and thus to collect only trustworthy
contributions, while outperforming existing selection methods by eliminating the need for
budget and time consuming probing contributions. In the next chapter we present a method
called CAWS (Content Aware Worker Selection), which answer this question by leveraging,
based on the system history, the relationship between the declarative profiles of workers and
their performance in performing tasks of certain types.





CAWS : a method for Context Aware
Worker Selection

In Chapter 1, we presented the quality problem in crowdsourcing and highlighted the con-
straints of an efficient quality control approach i.e. the cost, the time and the a priori knowl-
edge. Throughout Chapter 2, we discussed the literature and showed the limitations of ex-
isting methods in coping with the quality control challenge under the previously mentioned
constraints. The findings of that chapter can be summarized by the following statements:
First, despite being reliable in delivering a high quality output of the crowdsourcing pro-
cess, state of the art methods are unsatisfactory in terms of cost and time overhead. Second,
worker selection methods present a higher potential to address this problem as they con-
trol the access to the crowd instead of maximizing the throughput of already collected, i.e.
paid, contributions. And third, while more efficient, worker selection methods suffer from
their dependency on either a priori knowledge about individual workers or budget and time
consuming online probing stages.

Based on these findings, we propose in this chapter a worker selection approach called
CAWS (Context Aware Worker Selection) to overcome these limitations. CAWS leverages
the crowdsourcing system history to build knowledge about the task types and their rela-
tionship with the workers profiles. It operates as follows: to begin, in an offline phase,
completed tasks are clustered into homogeneous groups for each of which the correlation
with the workers declarative profile is learned. Then, in the online phase (i.e. the actual
crowdsourcing), an incoming task is matched to one of the existing clusters and the corre-
spondent profile model is used to select the most reliable workers for the given task.

In summary, this chapter makes the following contributions:

1. We analyze the worker selection problem in crowdsourcing.

2. We describe and formalize a novel worker selection approach which substitutes the
online probing stage by an offline learning phase to decrease quality control related

3
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cost and budget overheads and to eliminate the need for prior knowledge about indi-
vidual workers.

3. We comprehensively discuss the impact of task a grouping technique on the quality
of the learning process and prepare the ground for a sound evaluation process to
quantitatively assess this impact.

Roadmap. in Section 3.1, we define and formalize the worker selection problem. In
Section 3.2, we present CAWS and detail both of its phases and their components and
we discuss the impact of the grouping process on the quality of the worker selection and
motivate the need for a comparative study. Finally, in Section 3.5 we conclude this chapter
and draw the path to the next chapter.

3.1 SETUP AND PROBLEM FORMALIZATION

Before jumping into the description of CAWS, we start by formally defining the worker
selection problem. In this section, the annotations related to tasks and workers are detailed
and the worker-selection problem is formalized.

3.1.1 SYSTEM COMPONENTS

For the sake of clarity we start by defining a crowdsourcing task. In fact, tasks are defined
and called differently among the various available crowdsourcing platforms. For instance,
while Figure Eight uses unit and job to denote an individual task and a set of tasks sharing
the same description respectively, Amazon Mechanical Turk uses Human Intelligence Task
(HIT) and group. In this work, we define a task as follows:

Definition 3.1.1 A task is one standalone question or instruction to be answered by a
worker. A task consists of (i) an input e.g. an image or a text, (ii) a question or action
request e.g. label the image or extract an information, and (iii) an output e.g. free text or
an option among proposed answers.

A very common format of task questions is Multiple Choice Questions (MCQ) [76]. This
is particularly true when considering the dataset labeling scenario stated in Section 1.1.3,
as this format is adapted to common dataset labeling tasks such as sentimental labeling of
images or text, relevance judgment, data categorization and results validation. Hereafter,
we consider only MCQ tasks1 for which we use the following notations :

We denote by t an MCQ task in the system.
We denote by Ot = {1,2, ...,q} the set of q optionsa proposed by the requester for t.
We denote by rt ∈Ot the solution of t i.e. the only correct option.

aRegardless the content of the options, we consider their labels ordered from 1 to q.

Tasks are usually proposed in batches as requesters are rarely interested in answering
merely one individual task. Consequently, we define a job as follows:

1We argue later in this section that this assumption does not impact the generecity of CAWS.
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Definition 3.1.2 A job is a set of tasks that share the same action request and are pro-
posed by the same requester. A job has a description in which the action to be taken by
the worker is described and instantiated.

The set of jobs in the system is denoted J. Figure 3.1 depicts, through an example, a job (a)
and an MCQ task (b) as well as an action request (b.1), an input (b.2) and an output (b.3) as
defined earlier in Definition3.1.1.

Description:
In this job you are asked to judge the sentiment of a sentence.

Instruction :
- Read the provided sentence
- Pick the option that better reflects the sentiment evoked in the sentence 

Example : 
….

Sentiment judgment : 

Task 1 :

D
escrip

ti o
n

a. Jo
b

b
. Task

b
.1

b
.2

b
.3

Happiness

Sadness

Anger

"I am happy to finish my thesis"

What sentiment does the following sentence evoke: 

Task 2 :

Happiness

Sadness

Anger

"My cat ate my manuscript"

What sentiment does the following sentence evoke: 

Figure 3.1: The structure of a crowdsourcing job and task.

A crowdsourcing system consists of a set of workers, a set of tasks and a set of contri-
butions. One contribution is the answer given by a worker for a task. That is :

We denote by t a task.
We denote by w a worker.
We denote by T= {1,2, ...,n} the set of size n of all the tasks in the system.
We denote by W = {1,2, ...,m} the set of size m of all the workers registered in the
system.
The contribution matrix is a (m× n) matrix C where a coefficient cwt of C denotes the
answer given by worker w ∈W for task t ∈ T

The ith row of C constitutes all the contributions given by the ith workers and the jth column
of C constitutes all the contributions given for the jth task. Therefore:

We denote by Ct the column matrix of contributions given for the task t.
We denote by Cw the row matrix of contributions given by worker w.

A worker does not answer all tasks and, consequently, a task is not answered by all of the
workers in the system. Hence, C is a sparse matrix where null-value coefficient reflects a
non-existing answer. In other words, if a worker w did not answer a task t then, cwt = null,
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otherwise, cwt ∈Ot .

3.1.2 TASK AND WORKER CHARACTERIZATION

Task and worker states

In practice, when submitted, a task is not immediately assigned2 to the workers. We call
such a task an incoming task.

We denote by A =< A1,A2, ...,An > the system’s assignment vector such that:

For each task t ∈ T, At =

{
1 i f t is assigned at least once
0 i f t is not assigned

Consequently:

A task t ∈ T is incoming ⇐⇒ At = 0

Naturally, an incoming task does not have any contributions. That is:

t ∈ T is incoming⇒ |{c ∈Ct : c ̸= null}|= 0

Once assigned, the task steps into the running state. A running task is an assigned task
that still needs all or more contributions until reaching the requested number of contributions
set by the requester and which we denote ρt .

A task t ∈ T is Running ⇐⇒ At = 1∧|{c ∈Ct : c ̸= null}|< ρt

When all the requested contributions have been gathered and no more contributions can be
submitted, a task promotes to the completed state:

A task t ∈ T is Completed ⇐⇒ At = 1∧|{c ∈Ct : c ̸= null}|= ρt

Depending on his availability on the platform, a worker might have two states. He is
online, if at the moment of the task submission, he is connected to the platform and ready
to solve tasks, otherwise, he is offline. Accordingly:

We denote by Wo ⊆W the set of online workers.
We denote by Wo the set of offline workers. That is the complementary set of Wo in W:

Wo = {w ∈W : w /∈Wo}

Task and worker features

We consider that a task is characterized by a feature vector of size r. We denote it Vt :

For t ∈ T, Vt =<V (1)
t , ...,V (r)

t >

The vector Vt can reflect different representations of the task such as a TF-IDF representa-
tion, a Doc2Vec embedding, a skill set, a taxonomy instance, etc.

2The assignment might be performed by the platform through selection or by the workers through self
assignment i.e. choosing the task from a list of proposed ones.
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Similarly, we consider that each worker is characterized by a feature profile of size s
which we denote Pw:

For w ∈W, Pw =< P(1)
w , ...,P(s)

w >

A worker profile has three types: (i) a declarative profile built using information provided
by the user, (ii) a derived profile computed from the user interaction in the system and (iii) a
hybrid profile which combines both types of data. In our terminology we consider the first
type hence Pw denotes the declarative profile of w. Finally, we assume that the performance
of each worker, in completing a set of tasks, is measured by how often his answer was
correct. That is, the proportion of correctly answered tasks out of all the answered ones in
the given set. We denote this accuracy α and formally express it as follows:

αG
w =

1
|{cwt : cwt ̸= null, ∀t ∈G}| ∑t∈G

I(cwt ,rt) (3.1)

Where w is a worker, G ⊆ T is a task set, αG
w his accuracy for the tasks in G, Cw his

contribution vector, and I is an indicator function such that:

I(x,y) =

{
0 if x = y
1 otherwise

(3.2)

Here, we use an indicator function since it is adapted to MCQ tasks. The same accuracy
measure can be used for different task types where the output space is different e.g., multiple
correct answers are possible, ratings, free text, etc. Yet, in these cases the indicator function
must be replaced by a more suitable function to assess the correctness of the worker answer.
For instance, in the cases where multiple answers are possible for the same question, I can
return the precision of the worker in which case the performance of a worker for a set of
tasks is his average precision. Accordingly, for a given task and regardless the type of its
output, it is possible to compute a similar measure to asses the performance of a given
worker in achieving it. Therefore, considering only MCQ tasks, which helps simplify the
formalization of the problem, does not affect the generecity of our approach. It is worth
noting that, aside from the indicator function, the other elements of the formalization are
independent from the choice of the task type i.e. MCQ.

3.1.3 THE WORKER SELECTION PROBLEM

Assume that a function fC,τ which, knowing the system history C, allows to estimate the
accuracy of the workers for a given task τ exists:

fC,τ : Wo→ [0,1], w→ α̂w = fC,τ(w)

The worker selection problem consists in selecting, for a given task τ , the λ workers in Wo

with the highest estimated accuracies in completing τ . Here, λ is a configurable parameter
indicating the number of workers to select. That is:
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Let S be the selecting function:

Sλ (τ) = Topλ ({ fC,τ(w); w ∈Wo})

The challenging part of the worker selection problem is to find the function f that optimally
estimates the workers’ accuracies which consequently helps infer the correct answer rt for
a given task t with higher confidence for a given aggregation function.

For convenience, a summarized view of the annotations described earlier, alongside
with their significations can be found in Table 3.1.

Annotation Description

T The set of tasks in the system
J Set of jobs in the system
W The set of workers in the system
Wo The set of online workers
C(m×n) The contribution matrix
t A task
w A worker
j A job
n Number of tasks in the system
m Number of workers in the system
Cw Contribution vector for worker w (row)
Ct Contribution vector for tasks t (column)
ρt Requested contributions for task t
rt Correct answer of task t
V Task feature vector
P Worker profile
αw Accuracy of worker w

Table 3.1: A summarized view of the annotations used in this chapter.

3.2 CONTEXT AWARE WORKER SELECTION

3.2.1 VISION

We discussed in the previous chapter the limitations of existing quality control methods.
These limitations mainly orbit around two major issues: the budget and time of perform-
ing quality control and the knowledge needed to complete it. Clearly, by collecting a large
number of contributions per worker or per task, the aggregation process achieves a more
accurate inference of the task answers [48]. Yet, this requires a higher budget and longer
time before the task is completed. Another approach consists in selecting fewer, yet bet-
ter quality, contributions. By only allowing a selected set of workers to answer a given
task, the time and budget overheads resulting from the quality control process can be bet-
ter optimized. That is because only the needed contributions are paid. Nonetheless, this
requires the presence of some knowledge allowing the selection of suitable workers. In
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the literature, this knowledge is inferred in various ways such as using the overall approval
rate (OAR) of the workers (Section 2.2.1), using worker screening and qualification tests
(Section 2.2.1) or through online paid probing (Section 2.2.4). Using the OAR assumes that
all workers have already enough contributions (otherwise, it cannot be representative of the
worker’s performance) and ignores the particularity of the incoming task. Worker screening
is performed before the actual crowdsourcing, which means that workers are not obliged to
contribute correctly once elected upon the screening process. Test-question-based selection
requires a set of tasks with justified answers3, which implies an additional work load on the
requester side and makes the selection prone to requester bias in the provided gold answers.
Moreover, test questions are distributed over a long period within the job solving process4,
which means that some workers might spend a long time solving the tasks before getting
eliminated from the job because of a quality drop. On one hand, this increases the time of
job completion as eliminated workers must be replaced and, on the other hand, this is un-
fair regarding the time the worker spent doing the job without being paid. Finally, probing
stages are done online and tasks solved during them are paid which is not optimal from a
time and a budget perspective.

In order to cope with the aforementioned knowledge source problem, we propose to
provide this knowledge about workers from the contributions of previously completed tasks.
That is, by learning the performance of workers from their historical contributions. Yet,
in order to avoid falling into a cold start problem i.e. workers with few or no historical
contributions, workers are seen by their declarative profile. In other words, the selection
is achieved based on a declarative profile instead of a worker himself. Indeed, it has been
shown in the literature that a correlation between some profile features and the profile of the
workers exists (Section 2.2.4).

Recall : Kazai et al. [61] showed that a correlation between the performance of the
workers and some of their demographical and personality-related features exists. Li et al.
[76] uses the declarative profiles to improve the selection. Jin et al. [53] optimizes the
aggregation using information such as demographics and domain-related self appraisal.

In the remainder of this chapter, we show how we leverage this correlation toward an cost-
and time-efficient, a-priori-agnostic selection of workers.

3.2.2 METHOD OVERVIEW

The general workflow of the method which consists of two steps - depicted in Figure 3.2
- can be summarized as follows: in the offline learning phase (Figure 3.3 - A), a feature
vector is extracted for each task in the history (step A.1), then tasks are clustered based on
these vectors (step A.2). For each cluster, the vector of worker features that maximizes the
contribution quality is determined (step A.3) and stored (step A.4). In the crowdsourcing
phase (Figure 3.6 - B), the features of the incoming task are extracted (step B.1) and used to
match the task to one of the existing group of tasks (step B.2). The feature vector associated
to the found type during the learning phase is fetched (step B.3) and used to estimate the
workers’ accuracies for the current task (step B.4). Workers with higher accuracy are then

3On the Figure Eight platform, most jobs have between 50 and 100 test questions [26].
4For instance, by default, Figure Eight uses 1 test question per task page i.e. 1 to 19 tasks [26].
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Figure 3.2: An overview on the workflow of CAWS.

selected to contribute to the task. In the next two sections, the steps of the offline learning
and online targeting phases are described.

Practical requirement

CAWS is meant to require as little human input as possible. Indeed, crowdsourcing systems
are highly dynamic in terms of tasks and worker arrivals and departures, which prevent the
possibility of manually performing the task characterization or the selection process [37].
As mentioned earlier, to deal with the cold start problem, we only rely on the declarative
profile to find and target the reliable workers. Similarly, we only use features extracted from
the task documents to characterize the tasks. We do not use any prior characterization made
by the requester. This is mainly because such characterization might be imprecise, very
narrow, very generic etc. Consequently, worker profile features and task features belong to
different spaces 5. Thus, explicit feature matching cannot be used to select workers.

3.3 OFFLINE LEARNING

3.3.1 TASK GROUPING

The first step of CAWS consists in splitting the task set of the crowdsourcing system into
homogeneous groups to which we refer as "Contexts". The task grouping consists of two
steps: (1) feature extraction and (2) task clustering.

1. Task vectorizing (A.1)

This step consists in extracting the features of the tasks. We consider a task as a text doc-
ument and produce its vectorial representation. To this end, we propose to use either of
two document vectorization techniques: one term frequency based technique called TF-IDF
(Term Frequency Inverse Document Frequency) [143] and one word embedding technique

5In contrast with task and worker modeling adopted in some skill-based matching techniques [107]. In these
case, both the tasks and the workers are characterized by a set of qualifying skills.
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Figure 3.3: An overview of the offline learning phase of CAWS.

called Doc2vec (Document to Vector embedding)[70]. Indeed, other techniques exist to
compute a vector representation of a text document. An example of these techniques are
topic modeling techniques such as Latent Semantic Analysis (LSA) [29], Probabilistic La-
tent Semantic Analysis (PLSA) [45], Latent Dirichlet Allocation (LDA) [11] and LDA2vec
6. These techniques are suitable for fairly long text documents or for short documents with
few dense topics such as tweets [87, 130]. Yet, none of these is the case for crowdsourcing
tasks. Note that TF-IDF and Doc2vec have been also used in the literature to characterize
crowdsourcing tasks such as in [8].

2. Task clustering (A.2)

Once vectorized, the tasks are clustered using one of two clustering technique: K-means
and agglomerative clustering. This step yields a set of task clusters, each of them defining
a task context. The set of all clusters is denoted Cl and it constitutes, along with the system
contribution matrix and the worker set, the input of the next step i.e., the performance
inference.

The impact of the grouping process : A discussion

Depending on the grouping technique used to split the task space, the contexts would em-
phasize certain kind of similarities between the tasks. To clarify this idea, we illustrate
it by the simplified example depicted in Figure 3.4. For the same task set {t1, t2, t3, t4},
different grouping methods can yield different distributions of the tasks over the contexts.
For instance, if the used grouping emphasizes the action to be performed during the task
solving (i.e., the feature "Recognize" presented in green), all the tasks would be part of the
same context (Grouping 1). The same reasoning can be maintained with the second feature
presented in blue, which in practice, reflects the actual knowledge stimulated by the task.

6An extension of word2vec and LDA that jointly learns word, document, and topic vectors.
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Grouping 1 Grouping 2 Grouping 3 Grouping ...

t1: Recognize a football player in the picture 

t2: Recognize a car model in the picture

t3: Recognize a dress style in the picture

t4: Recognize narrative style in economical report 

Grouping 1 Grouping 2 Grouping 3 Grouping ...

t1, t2, t3, t4C1 t1C1 t1, t2, t3C1 ......

t2C2 t4C2

t3C3

t4C4

Task set

Figure 3.4: An illustrative example of the grouping importance.

Considering this feature would burst split the task set into four disjoint contexts (Grouping
2). Finally, if the type of the input media is considered, then, the grouping would produce
two contexts relative to the features presented in orange i.e., one context for picture and
one context for report (Grouping 3). In the discovery step - explained in detail later in this
chapter - CAWS infers the correlation between the worker profile and his contextual perfor-
mance. That is, it determines which profile features are most likely to impact the worker
performance for the considered context. Consequently, the more the contexts are significant
from a worker feature perspective, the more reliable is the computed correlation. For exam-
ple, consider the tasks of Figure 3.4. Let us suppose that each worker w is characterized by
a three-feature-profile Pw =< Gender,Education, Interest >. Clearly none of these three
features can be significant to identify more reliable workers for completing all the tasks in
context C1 resulting from Grouping 1. That is because none of them can explain why one
worker could be better - on average - than another worker in completing all of these tasks.
Meanwhile, the feature "interest" and/or "gender" can be very significant to identify workers
who are reliable in completing tasks for each of the contexts C1, C2, C3 and C4 resulting
from Grouping 2. That is, on average, a worker with interest = “sport” and gender= “male”
for instance would be more reliable in contexts C1 and C2 while workers with interest =

“Reading” would be more reliable for context C4 and so on.

Furthermore, the produced contexts depends on the combination of the vectorizing and
clustering algorithm. The study7 depicted in Figure 3.5 compares the output of a simple
clustering task8 with respect to the distribution of the data points in the feature space. It
is clear that different clustering algorithms can yield different grouping for the same data

7Modified from the original study found on : http://scikit-learn.org/stable/modules/

clustering.html.
8This study is merely an illustrative example of the dependence between the clustering and vectorizing

algorithms. Data used in this study are 2-dimensional which is not necessarily true in the case of tasks.

http://scikit-learn.org/stable/modules/clustering.html
http://scikit-learn.org/stable/modules/clustering.html
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point distribution (column-wise comparison). Moreover, the output quality of a given clus-
tering algorithm can vary depending on the data the algorithm is dealing with (row-wise
comparison).
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Figure 3.5: An illustrative example of the behavior of different clustering algorithms
(columns) w.r.t various data point distribution (rows).

In summary, grouping the task is an important, yet tricky, step. We show further in this
thesis how the choices of the vectorizing and clustering algorithms are made so that the
learning phase yields exploitable results.

3.3.2 THE DISCOVERY ALGORITHM

The step that follows the task grouping consists in inferring the worker features that maxi-
mizes the workers’ performance for each type. For this purpose, an algorithm similar to the
discovery algorithm described in [76] is used. It consists of two steps. First, a performance
inference step in which the workers’ individual accuracies are computed. Second, the beta
vector inference step, in which these accuracies are used as targets for a linear regression
model, of which the observations are the workers’ profiles, to find the most significant
worker features. In contrast with the work proposed by Li et al. in [76] where the discovery
algorithm is performed on every incoming job online, CAWS applies it offline and by clus-
ter i.e., by task type. When applied on all the clusters in the system, the discovery algorithm
yields a set of profile models, each corresponding to one task type. Hereafter, we call the
profile model computed for a given cluster the cluster’s perfect profile. Following are the
details of the two steps of the discovery algorithm.
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Performance inference

Offline learning deals with tasks that have been already completed, hence, we assume that
the correct answers have been estimated during the aggregation process. In other words,
for each completed task t, we assume that the correct answer rt is known. Consequently,
computing the accuracy of a given worker for the completed tasks is possible using Equation
3.1. However, here, we are interested in the contextual accuracy of a worker. That is, his
accuracy for all the tasks he completed in a given task cluster.

Let cl ∈CL be a task cluster and w ∈W be a worker, the accuracy of w in cl, denoted
αcl

w , is expressed using Equation 3.1 as follows:

αcl
w =

1
|{cwt : cwt ̸= 0, t ∈ cl}| ∑t∈cl

I(cwt ,rt) (3.3)

Equation 3.3 supposes that all the workers have contributed to, at least, one task belong-
ing to cl, which is not realistic. Therefore, we define the cluster crowd which is the set of
workers that contributed to at least one task in cl. We denote it Wcl (Wcl ⊆W) and we
express it as follows:

Wcl = {w ∈W : ∃t ∈ cl, cwt ̸= 0} (3.4)

Output of the step : Accordingly, for the considered cluster cl, the output of this step is
a vector of size (|Wcl|×1). We denote this matrix αcl , and we express it as follows:

αcl = (αcl
1 αcl

2 . . . αcl
|Wcl |) (3.5)

Beta vector inference

The second step of the discovery algorithm consists in determining the worker features
which are correlated with a good performance in completing the tasks of a given cluster.
We use the linear regression model as shown in Equation 3.6. Let w be a worker, Pw his
profile, αcl

w his accuracy in a cluster cl and ε a Gaussian noise with mean 0:

αcl
w ∼ β0 +β1P(1)

w + ...+βpP(p)
w + ε (3.6)

Hence, for a complete cluster cl:


αcl

1

αcl
2
...

αcl
|Wcl |

=


1 P(1)

1 . . . P(p)
1

1 P(1)
2 . . . P(p)

2
...

...
. . .

...
1 P(1)

|Wcl | . . . P(p)
|Wcl |

×


β0

β1
...

βp

+


ε0

ε1
...

ε|Wcl |

 (3.7)

Fitting the model of Equation 3.6 yields the estimated values β̂i of the feature weights
βi. These weights reflect the relative importance of each profile feature in influencing the
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Algorithm 1: The learning algorithm
Input :System history C

worker set W
task cluster cl ∈Cl

Output :Estimated correlations for the cluster (cl,< β̂cl >)

1 Function learn(cl) :
2 Wcl ←{w ∈W | ∃t ∈ cl,Cwt ̸=∅} // Workers who answered at least

one task in cl

3 foreach w in Wcl do
4 αcl

w ← computeAccuracy(C,w,cl) // Equation 3.3

5 αcl.add(αw)

6 < β̂cl >← f it(αcl,Wcl) // Equation 3.6

7 return (cl,< β̂cl >)

worker performance. The set of weights computed for a given cluster cl form the Beta-
vector of cl and is denoted β̂cl .

Output of the step : The discovery algorithm is applied on every task cluster apart (See
function learn() in Algorithm 1). Hence, the overall output of the offline learning phase
is a set A of (cluster, Beta vector) couples. A is expressed as shown in Equation 3.8.

A = {(cl,< β̂cl >),cl ∈Cl} where < β̂cl >=< β̂0, β̂1, ..., β̂p >cl (3.8)

3.4 ONLINE CROWDSOURCING

B. Online crowdsourcing
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Figure 3.6: An overview of the online crowdsourcing phase of CAWS.
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Algorithm 2: Targeting Algorithm
data :Incoming task τ

online workers Wo

learned associations A
selection parameter λ
cluster list Cl

Output :selected worker set Ws

1 Function target(τ , Wo, A, λ ) :
2 Fτ ← extractFeatures(τ)
3 clτ ← argmin(distance(CenterCl ,Fτ)) // find the cluster to which τ

belongs

4 < β̂clτ >←{< β̂ > |(< β̂ >,cl) ∈ A and cl = clτ} // fetch the beta-vector

associated with the current cluster

5 foreach w in Wo do
6 α̂w← dotProduct(w.P,< β̂clτ >) // estimate the accuracy of w using

his profile w.P

7 W Sorted
o ←Wo.sortBy(α̂) // rank wortkers by accuracy

8 for i in 0→ λ do
9 Ws[i]←W Sorted

o [i] // select top wortkers w.r.t. λ

10 return Ws

The online crowdsourcing phase is depicted in figure 3.6 - B and detailed in Algorithm
2. For a given incoming task, selecting the reliable workers is done as follows: first, the
features of the task are extracted (line 2), then the feature vector is matched to an existing
context. The matching consists in finding the cluster with the nearest centroid to the task
feature vector (line 3). Afterwards, the online workers are ranked with respect to their
estimated accuracy in completing the task computed using the model of Equation 3.6, their
profiles and the learned associations A for the matched type (lines 5-7). Finally the most
reliable workers are selected to complete the task (line 8-10). In this algorithm, k is a
selection parameter that determines the number of workers that should be selected. This
parameter reflects the requester’s needs in terms of budget and quality.

3.5 SUMMARY

In this chapter we proposed and formalized CAWS, a Context Aware Worker Selection
method for crowdsourcing that aims at reducing the time and the budget overheads. To
this end, CAWS substitutes the online probing stage found in state of the art approaches
by an offline learning process which is transparent to the requester from both a budget and
a time perspectives. In summary CAWS operates as follows: offline, tasks in the system
history are clustered into homogeneous groups, for each of which a correlation model with
the worker profile features is learned. Then, online, the learned model are used to select
reliable workers in the crowd in a context aware manner. That is, for a given incoming task,
the model learned for its type will be used.
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We argued in this chapter, that relying on the declarative profiles of the workers, is
beneficial to address the cold start problem which is inherent to methods that are based on
individual overall-approval-rate. These are indeed widely adopted by commercial platforms.
Then, we demonstrated through a simulation study that the cost and time overhead can be
significantly reduced by moving crowd probing into an offlline phase. Yet, while reducing
the overheads and being agnostic to a priori knowledge about individual workers constitutes
the constraining criteria of this work, improving, or at least maintaining, the throughput of
the quality control process is crucial. Thus, evaluating the performance of CAWS in terms
of selection accuracy is mandatory.

While evaluating aggregation-based, skill-matching-based and qualification-based qual-
ity control approaches is feasible using synthetic datasets and datasets lacking for worker
and task meta-data as well, evaluating CAWS is more demanding in terms of data. On
one hand, CAWS leverages a correlation9 that is not realistically reproducible in synthetic
datasets. On the other hand, it exploits workers and task informations usually absent from
the existing ones. Hence, the challenge of designing and building a suitable evaluation
dataset should be dealt with. In the next chapter, we tackle this challenge by presenting a
new crowdsourcing evaluation dataset to prepare a sound evaluation process.

9The correlation between worker profile and task type.
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In Chapter 3, we described a selection method called CAWS that aims at reducing the
budget and the time overheads resulting from the quality control process while improving
its yield. In order to measure this quality and overhead gain, a two-fold evaluation process
is needed. The first fold consists in measuring the budget and time gained by shifting the
learning process to an offline phase, and the second involves measuring the impact of the
task clustering on the quality of the learning and - consequently - of the targeting (Sections
3.3 and 3.4). Performing this evaluation raises a dataset-related challenge unforeseen in
the literature. In fact, none of the existing worker selection methods leverages, at the same
time, the declarative information of the workers and the content of the tasks to optimize the
selection step. Consequently, existing datasets - tailored to evaluate these methods - do not
contain these data simultaneously. Since CAWS exploits both of the aforementioned data, it
is clear that existing datasets are not suitable to perform the required evaluation. To address
this challenge we designed and collected CrowdED (Crowdsourcing Evaluation Dataset)
an information-rich evaluation dataset. In this chapter, we detail and motivate the creation
of CrowdED and we describe CREX (CReate Enrich eXtend), a platform that allows the
collaborative extension and enrichment of CrowdED.

The contributions of this chapter are:

• We provide a comparative review of the existing datasets and discuss their usability
in our evaluation process based on a comprehensive set of requirements.

• We propose CrowdED, a rich evaluation dataset of which we present the design and
the contribution collection steps as well as the statistical and structural properties.

• We propose a sampling algorithm to create budget constrained task corpora.

4
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• We assess the contribution of CrowdED in closing an important dataset gap in the
crowdsourcing community through a qualitative study.

• We present the design of CREX and show how it facilitates the creation of crowd-
sourcing campaign to extend and enrich CrowdED.

Roadmap. In Section 4.1, the requirements of the evaluation process are analyzed and
the specifications of a suitable dataset are set. In Section 4.2, state of the art crowdsourcing
evaluation datasets are discussed w.r.t the requirements stated earlier. Then, in Section
4.3, we describe the creation process of CrowdED as well as its structural and statistical
characteristics. Finally, we present CREX in Section 4.4, before summarizing this chapter
in Section 4.6.

Acknowledgment. In this work, the paid crowdsourced data collection step has been
made possible thanks to the financial support of the Franco-German University DFH-UFA -
https://www.dfh-ufa.org/

4.1 OBJECTIVES AND REQUIREMENTS

The first step towards perform the two-fold evaluation stated earlier is to select a suitable
evaluation dataset which in turn starts by setting its qualitative specifications. To this end,
we analyze the requirements of our method and deduce the specifications of a suitable
dataset.

S1 : Data richness

As discussed in the previous chapter (Section 3.2.2), CAWS tackles the time and budget
reduction challenges by replacing the online probing and worker screening phases by an
offline learning step. CAWS leverages, on one hand, the similarity between the tasks in
the history and the incoming tasks and, on the other hand, the workers’ declarative profiles.
Therefore, a suitable evaluation dataset should contain the information that can allow one
to assess the similarity between historical and incoming tasks as well as the worker profiles.
Based on this reasoning, we distinguish two specifications related to the richness of the
dataset:

S1.1 The dataset must provide information about workers. That is, the workers’ declara-
tive profiles.

S1.2 The dataset must provide information about tasks. That is, their full content i.e.
description, questions and answer options.

S2 : Data diversity

Crowdsourcing tasks cover a wide range of types [111]. Similarly, workers in a crowdsourc-
ing system fall into multiple profile groups [52]. In order to allow assessing the genericity
of our proposition, it is crucial that the evaluation dataset reflects - to a sufficient extent -
this type and profile diversity. It is worth mentioning that while qualitative studies on the
crowdsourcing tasks and workers exist [52, 61, 105], quantitative studies describing the dis-
tribution of these tasks and workers, over their types and features respectively, are lacking
in the literature. Hence, it is hard to study whether a dataset is statistically representative of

https://www.dfh-ufa.org/
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the crowdsourcing system or not. Accordingly, we set two specifications related to the data
diversity :

S2.1 The dataset must reflect the diversity of the profile features characterizing the work-
ers of a real crowdsourcing system.

S2.2 The dataset must reflect the diversity of the task types. This includes the generic
asked action e.g. labeling an image, judging relevance, analyzing sentiment in text,
etc., and the actual knowledge domain of the task e.g. sport, economy, botany, etc.

It is clear that Specification S.2 tightens the Specification S.1. Indeed, an information
cannot be diversified (S.2) without existing in the dataset at the first place (S.1). Hence,
it is possible to drop the looser specification S.1 while maintaining the completeness of
the requirement sheet. Since the opposite is not necessarily true i.e., an information might
exist without being diversified, we keep both specifications to allow a more fine-grained
comparison of existing datasets.

S3 : Contribution abundance

Besides the necessity of computing the similarity between tasks, being able to compute
the performance of the workers from which the selection models are learned (See Section
3.3 in Chapter 3) is a key element of the learning, targeting and evaluation processes. For
a given worker, this performance is computed using the correctness of his contributions
for the tasks he participated in (See Section 3.3.2 in Chapter 3). A profile belonging to a
worker who has not contributed to any task, or to a worker who randomly answered all the
tasks he participated in, is not exploitable. Similarly, tasks for which no contributions, or
random contributions 1 are collected are useless. We summarize the latter by the following
specifications:

S 3.1 The dataset must contain a large number of contributionsa. That is, both the tasks
and the workers present in the dataset must have a reasonable number of contribu-
tions.

S 3.2 The dataset must contain non-random contributions for tasks and for workers. We
show later how this can be achieved during the campaign design and the data pre-
processing steps.

aAt this point, the quantitative requirements in terms of number of contributions per worker and per task
are not set. These are discussed later in this chapter.

In the next section, the evaluation datasets proposed in the literature are presented and their
appropriateness with respect to Specifications S.1, S.2 and S.3 is assessed.

1This might occur with badly designed, poorly rewarded or subjective tasks. It is indeed less likely to occur
when compared to random answers per worker. In fact, the randomness of the answers of a worker usually
results from a malicious behavior.
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4.2 CROWDSOURCING EVALUATION DATASETS

4.2.1 AN OVERVIEW OF THE STATE-OF-THE-ART

Table 4.1 details the characteristics of the evaluation datasets available in the crowdsourcing
literature. For the sake of completeness, both publicly and privately available datasets are
reported even though the latter ones are not usable for our evaluation. The table also shows
the compliance of these datasets with Specifications S.1, S.2 and S.3 discussed earlier in
this chapter. The compliance with these specifications is judged based on a set of observed
characteristics in the dataset which we enumerate as follows :

• The worker features (Feat.) : this is a quantitative feature showing the number of
worker profile features found in the dataset. This characteristic allows assessing the
compliance of the dataset with S.1.1 and S.2.1.

• The task content (Cont.) : this is a qualitative feature showing whether the dataset
contains information about task content or not which allows assessing the compliance
with S.1.2.

• The task diversity (Div.) : this is a qualitative feature showing whether the dataset
contains more than one type of tasks or not. This reflects the conformity with S.2.2.

• The contribution density (Den.) : the set of contributions can be Dense (D), meaning
that all of the tasks were solved by all of the workers, Semi-Dense (DS) meaning that
the sets of workers who answered different tasks overlap or Sparse (S), meaning that
the workers who answered one task are different from the workers who answered an-
other task. This characteristic reflects the compliance of the dataset with Specification
S.3.1

In the literature, many datasets have been used to evaluate crowdsourcing quality con-
trol techniques. However, only a few among them provide information about the declarative
profile of the workers [53, 76] which is in line with the low number of quality control meth-
ods leveraging this aspect (See Section 2.2 in Chapter 2). The same observation was made
by Ye et al. in [138] who highlighted the lack of worker related datasets in crowdsourcing.
The previous reasoning also applies to the content of the tasks which is not always present
in the datasets [53, 117]. On the opposite side, the contribution abundance requirement is
almost met by all of the datasets [16, 53, 57, 68, 76, 117, 129]. This might be due to the
fact that aggregation methods, which constitute a large part of the crowdsourcing related
literature as shown in Chapter 2, usually require this kind of datasets.

The Data For Everyone (DFE)2 corpus from Figure Eight provides a large number of
real task sets for which many contributions have been collected. While these sets are varied
enough in the task types, they suffer from at least one of the following limitations: First,
the majority of them provide aggregated contributions instead of individual contributions,
which violate Specification S 2.1. Second, to the best of our knowledge, none of these
datasets provide the profiles of the workers which violates Specification S 1.1. Third, the
content of the task is not always present which does not meet Specification S 1.2. One can

2https://www.figure-eight.com/data-for-everyone/

https://www.figure-eight.com/data-for-everyone/


4.2 Crowdsourcing evaluation datasets 55

argue that it is possible, through some data engineering effort 3, to combine a number of
these sets into a larger specification-fulfilling dataset. However, the datasets found in the
DFE corpus are designed and generated independently by different requesters. Hence, the
intersection between the workers and tasks of different datasets, when computable4, might
be empty or sparse which hinders any "match and transfer" step.

All of the aforementioned datasets are all real crowdsourcing datasets. That is, datasets
generated through an actual crowdsourced data collection step. Nevertheless, Synthetic
datasets have been also used in the literature. Roy et al. [107] and Rahman et al. [96] gen-
erated a set of workers and tasks distributed over a set of skills found in a multilayer skill
taxonomy in order to test the efficiency of their skill matching approaches. Others, such as
Welinder et al. [129] and Hung et al. [48] generated datasets to evaluate the performance
of their aggregation algorithms. While generating synthetic evaluation datasets for aggre-
gation and skill matching optimization approaches is relatively an easy and scientifically
valid approach, generating synthetic datasets to evaluate approaches that leverage worker’s
behavior (e.g., fingerprinting [108]) and profile (e.g., declarative profile based worker selec-
tion [76]) is unfeasible. That is because, on one hand, ignoring the uncertainty and noise
resulting from the subjectivity of the human being in generating the data, produces a dataset
which does not reflect the real crowdsourcing context. And, on the other hand, modeling
the uncertainty and noise is impossible due to the lack of behavioral study of the crowd
in crowdsourcing systems. Hence, a synthetic dataset could, theoretically, fulfill all the
specifications except Specification S 3.2.

The entries in Table 4.1 are filled as follows:

• S1.1 is labeled "+" if at least one feature of the worker profile is available in the
dataset (column Feat.). Otherwise it is labeled "-".

• S1.2 is labeled "+" if the content of the tasks is available in the dataset (column Cont.).
Otherwise it is labeled "-".

• S2.1 is labeled "++" if worker profile features are present in the dataset and if the
number of workers allows a sufficient representation of all the features (under the
assumption of uniform distribution of the features over the observations). It is labeled
"+" if he number of workers seems insufficient to cover the features. Otherwise it is
labeled "-".

• S2.2 is labeled "+" if different types of tasks are present in the dataset (column Div.).
Otherwise it is labeled "-".

• S3.1 is labeled "+" if both the tasks and the workers have sufficient contributors. Oth-
erwise it is labeled "-". We consider 20 workers per task (which allows a good quality
aggregation [75, 117]) and 20 tasks per workers (which allows to asses an accurate
reliability of a worker) to be the thresholds for contributions abundance.

• S3.1 is labeled "+" if the dataset is not synthetic. We consider that real datasets have
been collected in a sound manner.

3Transferring missing data like profiles or individual contributions from one set to the other.
4e.g. for unaggregated or un-anonymized datasets.
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To summarize, existing datasets as well as synthetic data generation are not satisfactory
for our evaluation task. Therefore, creating a custom evaluation dataset that meets Speci-
fications S.1, S.2 and S.3 is due. In the next section, and before jumping into the detailed
explanation of the creation process of such a dataset, we extend this dataset-related discus-
sion to point out the existence of an important gap in the crowdsourcing research community
hindering a sound comparison of quality control methods. We call it "The Benchmarking
Gap".



4.2 Crowdsourcing evaluation datasets 57

Ta
bl

e
4.

1:
A

co
m

pa
ri

so
n

of
a

sa
m

pl
e

of
da

ta
se

tu
se

d
in

th
e

lit
er

at
ur

e
to

ev
al

ua
te

cr
ow

ds
ou

rc
in

g
qu

al
ity

co
nt

ro
l.

C
ha

ra
ct

er
is

tic
s

C
om

pl
ia

nc
e

w
ith

ou
rr

eq
ui

re
m

en
ts

R
ef

D
at

as
et

W
or

ke
r

Ta
sk

s
C

on
tr

ib
ut

io
ns

Pu
b.

R
D

S1
.1

S1
.2

S2
.1

S2
.2

S3
.1

S3
.2

#
Fe

at
.

#
C

on
t.

D
iv

.
#

D
en

.

[5
3]

St
ac

k
ov

er
flo

w
50

5
8

14
02

1
Y

es
N

o
42

06
3

S
-

+
+

+
+

-
+

+
E

ve
rg

re
en

w
eb

pa
ge

43
4

9
7,

33
6

Y
es

N
o

22
,0

08
S

-
+

+
+

+
-

+
+

T
R

E
C

20
11

16
0

9
18

26
Y

es
N

o
54

78
S

-
+

+
+

-
-

+
+

[6
8]

O
nl

in
e

pr
od

uc
ts

ea
rc

h
25

5
0

25
6

N
o

N
o

N
A

S
-

+
-

-
-

-
N

A
+

[7
5]

Sy
nt

he
tic

11
0

30
0

N
o

N
o

33
00

D
-

-
-

-
-

-
-

-

[7
6]

K
no

w
le

dg
e

da
ta

se
t

10
0

5
75

Y
es

N
o

75
00

D
-

+
+

+
-

-
-

+
R

T
E

N
A

5
80

Y
es

N
o

N
A

D
-

+
+

+
-

-
-

+
D

is
am

bi
gu

at
io

n
da

ta
27

7
5

50
Y

es
N

o
13

85
0

D
-

+
+

+
+

-
-

+

[1
17

]
A

ff
ec

tiv
e

te
xt

an
al

ys
is

10
0

70
0

Y
es

N
o

70
00

D
+

+
-

+
-

-
-

+
R

T
E

10
0

80
0

Y
es

N
o

80
00

D
+

+
-

+
-

-
-

+
W

or
d

Si
m

ila
ri

ty
10

0
30

Y
es

N
o

30
00

D
+

+
-

+
-

-
-

+

[1
29

]
Im

ag
e

an
no

ta
tio

n
Sy

nt
h.

4-
20

/ta
sk

0
50

0
N

o
N

o
N

A
N

A
-

-
-

-
-

-
-

-
Im

ag
e

an
no

ta
tio

n
R

ea
l

40
/ta

sk
0

10
0

N
o

N
o

40
00

N
A

-
+

-
-

-
-

+
+

[1
47

]
Im

ag
e

la
be

lin
g

10
9

0
80

7
N

o
N

o
N

A
SD

-
+

-
-

-
-

-
+

R
el

ev
an

ce
ju

dg
m

en
t

6
/ta

sk
0

26
65

N
o

N
o

16
00

0
S

-
+

-
-

-
-

-
+

Fe
at

.:
w

or
ke

rF
ea

tu
re

s,
C

on
t.

:t
as

k
C

on
te

nt
,D

iv
.:

ta
sk

D
iv

er
si

ty
,D

en
.:

co
nt

ri
bu

tio
n

D
en

si
ty

D
:D

en
se

co
nt

ri
bu

tio
ns

,D
S

:S
em

i-
D

en
se

co
nt

ri
bu

tio
ns

,S
:S

pa
rs

e
co

nt
ri

bu
tio

ns
,n

/a
:n

ot
av

ai
la

bl
e

Pu
b.

:P
ub

lic
av

ai
la

bi
lit

y,
R

D
:R

ea
lD

at
as

et
,-

:U
n-

fu
lfi

lle
d

re
qu

ir
em

en
t,

+
:F

ul
fil

le
d

re
qu

ir
em

en
t



58 Chapter 4. CrowdED and CREX : Enabling Quality Control Evaluation

4.2.2 THE BENCHMARKING GAP

In fact, when judging the limitations of the existing datasets beyond the requirements of
our specific evaluation objectives, from the preceding discussion emerges the existence of a
wide gap in the crowdsourcing research. That is, besides the fact that barely a handful of the
datasets used in the literature have been made public (See column pub. in Table 4.1), none
of them provides sufficient data - at least qualitatively - in order to be used to evaluate and
compare multiple approaches at a time. We explain this by the following example: suppose
that we are interested in comparing two quality control approaches such as a skill-based task
assignment method (see Section 2.2.3 in Chapter 2) and a profile-based worker selection
method (see Section 2.2.4 in Chapter 2). A suitable dataset for evaluating the former method
must contain a large number of contributions per worker for tasks of various types5. At the
opposite side, to evaluate the latter method, a dataset containing the declarative profiles of
the workers is needed. It is clear that none of the datasets described earlier contains both
types of information to allow a sound comparison of the two methods. This reasoning can
be extended to other approaches showing that benchmarking the existing quality control
techniques is not possible due to the lack of appropriate evaluation dataset. Motivated by
this challenge, we argue, in the next paragraph, that by adding one more specification to the
previously set ones, we can take our dataset creation task one step further toward filling this
benchmarking gap.

Table 4.2 details the requirements of a representative set of quality control methods in
terms of the specifications of a suitable evaluation dataset. The majority of classical quality
control methods such as aggregation techniques [14, 56] and qualification-test-based worker
screening does not require any specific features to be present in the dataset aside from the
set of contributions i.e. a set of labels indexed by an (IDworker, IDtask) key. Other methods,
such as profile-based and skill-based worker selection require the presence of the worker
profiles6 in the dataset. Methods which take into account the type of the task when select-
ing/screening workers - and which we refer to as contextual methods - necessitate either the
existence of a category-labeled tasks or the content of the task from which the task type can
be derived. Blue shades indicate a property covered by Specification S.1, S.2 or S.3 (from
lighter to darker respectively) while red color indicates a property which is not covered by
any of the three requirements. It is clear that a dataset that fulfills the specifications S.1, S.2
and S.3 meets - with few exceptions - the requirements of the majority of these methods.
To cope with the remaining exceptions, two approaches are possible. One can either follow
an ad-hoc approach, which consists in extending the existing specifications to cover the re-
maining scenarios, or one can adopt a more future proof approach by providing the tools to
extend the existing dataset on-demand. We follow the latter approach whose requirements
and specifications are explained as follows:

S4 : Extensibility

The creation of a generic and information rich dataset should always be open to new con-
tributors, so that absent and new features can be proposed and collected based on uncovered
and new quality control needs. Moreover, creating a realistic evaluation dataset for crowd-

5To allow computing the skill profile of each worker.
6Whether it is a declarative or a derived profile.
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Table 4.2: The needs of selected quality control methods in terms of dataset content

Method Workers Task Contrib. Other
MV, WMV [56], EM [14] ID ID Yes n/a
Worker modeling [59] ID ID Yes n/a
Task modeling [131] ID ID Yes n/a
Qualification tests,
test questions *

ID ID Yes n/a

History-based * ID ID Yes n/a
Contextual history-based * ID Content Yes n/a

Programatic gold [91] ID ID/Content Yes
Online

interaction
Profile-based [61] Profile ID Yes n/a
Contextual profile-based [76] Profile Content Yes n/a
Skill-based [107] Skill Profile Skill Profile Yes n/a
Self-evaluation [53] Profile Content Yes n/a
Task composition[1] Preferences Content Yes n/a

Incentive based [77] ID ID Yes
Reward
variance

n/a: not available, * : Common methods in commercial crowdsourcing platforms.
Blue : requirement covered by Specifications S.1 (light), S.2 (Darker) and S.3 (Darkest).
Red : requirement not covered by any of the specifications.

sourcing quality control necessarily passes by a crowdsourced data collection step, which
is obviously a paid process. This makes the creation of a large enough dataset very costly,
hence not achievable by only one entity (research laboratory, company, ...). Therefore, we
add to the qualitative specifications S.1, S.2 and S.3 detailed earlier in this section a fourth
specification as follows:

S4.1 The dataset must be collaboratively extensible both in terms of tasks, workers and
contributions and in terms of worker features and task types.

In the remainder of this chapter, we show how we designed and built CrowdED to fulfill
Specifications S.1, S.2 and S.3 and how CREX guarantees its extensibility to fulfill Specifi-
cation S.4.

4.3 CROWDED : CROWDSOURCING EVALUATION DATASET

In this section, the process used to create CrowdED is described in details and the statis-
tical and structural characteristics of the latter are presented. This process is divided into
three steps shown in Figure 4.1: First, the data preparation step during which the raw re-
sources such as the task input are collected and preprocessed. Second, the data collection
step during which the actual contribution and profile crowdsourcing occurred. Finally, the
data formatting step during which the collected contributions and profiles are cleaned and
restructured.
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Figure 4.1: An overview of the creation process of CrowdED.

4.3.1 DATA PREPARATION

4.3.1.1 Raw data collection

We built our task corpus by collecting publicly available task sets from the Data For Ev-
eryone7 (DFE) datasets provided freely by Figure Eight8 (FE). The main motivation behind
choosing the DFE datasets is to use tasks that have served a real world application. In fact,
it is possible to generate random labeling and knowledge related tasks from scratch and to
use them in the dataset generation process. However, these will not be as significant as real
world tasks. Furthermore, DFE is a sustainable source9 of task sets for future extension of
CrowdED (Specification S 4.1). Our initial task pool consisted of 280K+ tasks, originally
belonging to 11 different task sets. The task content was distributed over various domains
such as sport, fashion, politics, economy, disaster relief etc. and over different action types
like relevance judgment, image labeling, tweet categorization etc. (Specification S 2.2). Ta-
ble 4.3 summarizes the characteristics of the task sets used to build the task corpus. It is
clear that the tasks are unevenly distributed over the various task sets. For instance, set "A9"
constitutes 67% of the entire corpus. In order to balance our task corpus we sampled 4000
tasks out of each set (i.e. the size of the smallest set).

Output of the step : After balancing the initial task corpus, we ended up with a corpus
of 44k tasks evenly distributed over 11 sets. In the next steps, this corpus is clustered,
sampled and published on a crowdsourcing platform for contribution collection.

4.3.1.2 Grouping and sampling the tasks

The ultimate goal of the workflow explained in this section is to produce a task corpus that
can be submitted to be crowdsourced by a large number of workers (specifications S 2.1
and S3.1). Indeed, submitting the whole task set requires a very large budget. For instance,
if we intend to submit the entire 44k tasks set under a reasonable reward and redundancy
configuration, the campaign would roughly cost 80,000$ US10. Thus, a sampling step that
aims at reducing the number of tasks to be crowdsourced while maintaining the dataset
specifications is needed. A straightforward approach would consist in uniformly sampling
a given number of tasks (fixed by the budget constraint) out of each task set. Nevertheless,

7https://www.figure-eight.com/data-for-everyone/
8Formerly named CrowdFlower.
9Yet, it is not the only one since any other task corpus can be used.

10Which is not feasible since, for this work, we had a budget equal to a fraction of this sum

https://www.figure-eight.com/data-for-everyone/
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Table 4.3: On overview of the task sets used to build initial task corpus of CrowdED.

Task set name # Tasks # Questions Question type Domain
A8 18129 3 MCQ Disaster relief
A9 189000 2 MCQ/FT Sport
BI 10672 2 MCQ Natural sciences
CH 5702 1 MCQ Natural sciences
DE 15702 1 MCQ Fashion
11 FO 4000 1 MCQ Sport
GO 13872 3 MCQ Politics
PO 5000 3 MCQ Politics
SO 10976 1 MCQ Disaster relief
SM 4000 2 MCQ/FT Technology
US 5015 1 MCQ/FT Economy

MCQ: Multiple Choice Questions.
FT : Free Text answer questions.

since the objective behind creating the dataset is to compare and analyze what are the best
configurations for the clustering/vectorization configurations (motivated in Section 3.3.1 in
Chapter 3), we argue next that this approach is not suitable for our study.

Recall : For convenience, we recall and summarize here the discussion found in Section
3.3.1 concerning the task grouping step as follows: vectorizing and clustering the tasks
are key steps in the learning process of CAWS. Indeed, vectorizing a task can be achieved
with different techniques and features which might have different impacts on the quality
of the task grouping and, thus, on the learning process. The same applies on the clustering
algorithm used to group the tasks in homogeneous categories. We are therefore interested
in comparing the impact of different vectorizing/clustering algorithm combinations on the
quality of the learning and targeting process.

First, when drawing a small number (relatively to the corpus size) of random samples
equally across all the tasks in the task corpus, we might end up with a sample which falls
in one cluster of a given clustering which prevents comparing it with other clusters in the
same clustering. Second, a set randomly sampled from the task corpus, and due to the major
size reduction, might not be partition-able by any or all of the clustering algorithms we are
interested in comparing. In other words, clustering such a set might not converge or might
not reflect the real behavior of a given clustering algorithm for the considered type of tasks.

Therefore, we propose below a sampling process which starts by grouping the tasks
using the various vectorizing/clustering combinations to produce multiple clustering sys-
tems11 of the same task corpus. Then, we apply a sampling algorithm that yields one
sample task set which, on the one hand, respects our budget constraint and, on the other
hand, is representative of all of the produced clusterings. It is worth noting that two-step
sampling strategies are commonly used in mixed implementation studies i.e., studies that
require qualitative and quantitative proofs. Our approach is inspired from these strategies
of which different implementations and variants are explained by Palinkas et al. in [92].

11i.e. a clustering yielded by a combination of one clustering method and one vectorizing technique
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Figure 4.2: An instantiation of the constrained sampling problem. Here, two clusterings
systems of two clusters each are considered. The maximum sample size S and the minimum
sample-per-cluster size is th.

Vectorizing and clustering the tasks

For the reasons detailed in the previous chapter, we chose to compare the following vec-
torization techniques: TFIDF, TFIDF with PCA and Doc2vec. Moreover, we consider the
following clustering algorithms which are representative of the three main existing cluster-
ing approaches i.e., partitional, density-based, and hierarchical : Kmeans, DBSCAN and
agglomerative clustering. To prepare this comparison, we started by vectorizing the tasks
in the task corpus using each of the three stated techniques and clustered them using one
combination of clustering algorithm and feature vector at a time. We ended up with nine
clustering systems of the same task corpus to be compared.

Indeed, in our case, the quality of each combination is judged by the quality of the
learned model it produces which, in turn, is judged by the quality of the selection process
it induces. In other words, the aim is not to optimize a given clustering quality measure
such as the Silhouette [106] or the V-measure [104]. Yet, it is important that the used vec-
torizing/clustering combinations show a satisfactory validity and stability each. Therefore
we conducted an extensive clustering study and measured the silhouette, homogeneity, com-
pleteness and V-measure of each clustering for a set of parameters for the vectorizing (e.g.,
TFIDF vector size, Doc2vec window and vector sizes, PCA vector size, etc.) and the cluster-
ing (e.g., number of clusters, distance metric, DBSCAN density parameters, Agglomerative
algorithm linkage, etc.). As a result of this study, we ended up eliminating DBSCAN from
the clustering algorithm list since it showed a high instability caused by its sensitivity to the
density parameters. Similarly we dropped TFIDF with PCA from the vectorizing technique
list since, aside from the computational benefit, did not impact the outcome of the clustering
process when compared to TFIDF without dimension reduction.

Sampling the tasks

This step aims at producing a sample task set that is sufficiently representative of the initial
task population and of the various clustering systems resulting from the previous step. In
other words, for any cluster c of any clustering system, one must find in the final sample
a sufficient number of tasks belonging to c so that this cluster could be studied during the
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evaluation process (i.e. to be able to compute a profile model for it). Figure 4.2 illustrates
our objective in a small example. Suppose that we have two clustering systems C1 and C2,
each of which contains 2 clusters i.e., clusters c11 and c12 for C1 and clusters c21 and c22 for
C2. We aim at finding one representative sample S of a preset size S (defined by the budget).
For S to be representative of both clustering systems, one should be able to find, in S, at
least a number th of tasks belonging to each of the clusters c11, c12, c21 and c22. Solving
the problem in the case of one clustering system can be straightforwardly achieved through
stratified sampling [88] which consists in dividing the corpus into sub groups (which is
already done by the clustering) and then to randomly select the task samples proportion-
ally from the different subgroups or to randomly sample th points from each subgroup i.e.,
cluster. Nevertheless, solving it in the case of multiple clustering systems is more compli-
cated. Here, classical stratified sampling is not possible since the subgroups i.e., the set of
all the clusters that divide the population might, and most likely do, overlap. In other words,
in the previous example, while the clusters belonging to the same clustering system are
disjoint because we are using deterministic clustering algorithms (e.g., c11 and c12 are dis-
joint), clusters belonging to different clustering systems are not disjoint and might contain
common tasks (e.g., c11 and c21 might overlap). By randomly sampling th tasks from each
of the 4 clusters we might be selecting the same task twice. The problem becomes more
complicated as the number of clustering systems and of clusters in each of them get bigger.
Therefore, we propose to constrain the random sampling step to overcome the overlapping
problem. We formalize this challenge as follows:

Problem input :

Let I, J, T be the number of clustering systems, of clustersa and of tasks respec-
tively.
Let th be the minimum number of sampled tasks per cluster.
Let S be the total number of tasks in the sample.
Let Y be an (I× J,T ) occurrence matrix such that:

Yi jt =

{
1 if t belongs to the cluster j in the system i
0 otherwise

(4.1)

aTo simplify, we assume that all of the clustering systems yield the same number of clusters.

Problem variables :

Let t be a task in the corpus, j a cluster and i a clustering system.
Let Xi jt ∈ {0,1} be the selection decision such that:

Xi jt =

{
1 if t is selected from j in i
0 otherwise

(4.2)

Problem objective : We want to minimize the following objective function :
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f(X) =
1

I× J

I

∑
i=1

J

∑
j=1

((
T

∑
t=1

Xi jt)− th)2 (4.3)

This is the mean squared error (MSE) of the cluster sizes w.r.t the optimal cluster size
i.e., th. The intuition behind using MSE is that with sample size constraint (S) it yields
perfectly balanced clusters at its minimum value. Having balanced size clusters, is the
ideal but not mandatory, scenario to compare, on a fair basis, the learning performed
over different clusters.

Let si j be the size of a cluster j in a system i, that is :

si j =
T

∑
t=1

Xi jt (4.4)

The sample size is constrained to be equal to S for each system i, that is :

J

∑
j=1

si j = S (4.5)

Then total MSE of the system can be expressed as:

MSE =
1

I× J

I

∑
i=1

J

∑
j=1

(si j− th)2 (4.6)

=
1
I

I

∑
i=1

1
J

J

∑
j=1

(si j− th)2 (4.7)

=
1
I

I

∑
i=1

MSEi (4.8)

The value of MSE is minimal when all the MSEi are minimal since they are positive
independent values. We now compute the minimum of an MSEi. Thus, we consider
one clustering system of J clusters.

J

∑
j=1

s j = S (4.9)

J

∑
j=1

(s j− th) = S− J× th (4.10)

(
J

∑
j=1

(s j− th)

)2

= (S− J× th)2 (4.11)

Using the Cauchy-Schwarz inequality for sums :
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(
J

∑
j=1

(s j− th)

)2

=

(
J

∑
j=1

1× (s j− th)

)2

≤
J

∑
j=1

(1)2×
J

∑
j=1

(s j− th)2 (4.12)

(
J

∑
j=1

(s j− th)

)2

≤ J×
J

∑
j=1

(s j− th)2 (4.13)

Hence :

(S− J× th)2 ≤ J
J

∑
j=1

(s j− th)2 (4.14)

(
S
J
− th

)2

≤ 1
J

J

∑
j=1

(s j− th)2 (4.15)

1
J

J

∑
j=1

(
S
J
− th

)2

≤ 1
J

J

∑
j=1

(s j− th)2 (4.16)

The right part of the equation is the MSE of a given distribution of si and the left part
is the MSE of a distribution where all s j are equal to S

J . Accordingly, the lower bound
of the MSE, when the size constraint S is imposed, is met if and only if12 all points
are distributed at a fixed distance from the cluster size constraint th.

Problem constraints : Table 4.4 shows the constraint formalization of this problem. We
explain them as follows:

C1 each selected task in a system i should be selected in all systems.

C2 The minimum number of selected tasks in each cluster should be greater than
or equal to a threshold th.

C3 The total size of the sample is S.

C4 Trivially, one cannot select a task t from a cluster j in system i unless it is in
this cluster.

Table 4.4: The sampling problem constraints.

Constraints

C1 ∏I
i=1(1−∑J

j=1 Xi jt)+∏I
i=1 ∑J

j=1 Xi jt = 1 ∀t = 1...T
C2 ∑T

t=1 Xi jt ≥ th ∀i = 1...I,∀ j = 1...J
C3 ∑J

j=1 ∑T
t=1 Xi jt = S ∀i = 1...I

C4 Xi jt ≤ Yi jt ∀i = 1...I,∀ j = 1...J,∀t = 1...T

Solving the problem We try to minimize f(X) subject to the constraints C1−4. This is a
complex13 optimization problem which we propose to address using a random search

12The Cauchy-Schwarz inequality turns into an equality when the sequences in the sums are proportional.
That is in our case, the 1s and the s j.

13We are currently working with mathematicians to reduce this problem to a known form of quadratic opti-
mization.
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algorithm [97, 141] and to pick the first solution (i.e., task sample) that respects our
constraints with a certain tolerance. Allowing a slight tolerance over the sample size
can drastically reduce the time of sampling convergence while marginally affecting
the requester budget (which is the origin of the sample size choice).

Figure 4.3 depicts the iterative process of the sampling algorithm and Algorithm 3
shows its detailed steps. The sampling starts by uniformly picking a sample sol of
size S from the task population (ϒ) (Line 2 in Algorithm 3), the population is updated
by removing sol form it (Line 3) and the initial fitness (MSE) is computed (Line
4). Then, until either all the constraints or the maximum number of iterations is
met (Line 6), the following iterative process occurs. A new sample solnew is picked
in the neighborhood of the current sample sol by substituting λ tasks from it by
new tasks randomly picked from the current population (Line 7). The new fitness is
computed (Line 8) and, if it is improved, the new sample replaces the current solution.
Otherwise, a new sample in the neighborhood of sol is chosen. The advantage of MSE
is its sensitivity to high errors which means that very big and very small clusters will
most likely be penalized after each positive iteration which helps a faster convergence
of the algorithm.

Parameter selection The budget which we could dedicate to the data collection step is
ruled by three variables. First the number of tasks i.e. S, second the number of
workers and third, the reward to be paid per assignment. The budget is the product
of all three of these variables. One must find the trade off between these variables
in order to respect the budget while allowing a sound evaluation of CAWS using the
collected data. On one side, a very low number of workers would render the learning
process impossible as this induces a low number of observations per feature and thus
can lead to an overfitting problem (Equation 3.6). On the other side, a very low
number of tasks penalizes either the genericity of the corpus w.r.t the task types or the
number of clusters that we would be able to create. Finally, a very low reward can
imply a very long data collection time and a high number of malicious contributions
(due to worker frustration). After tunning the values of the parameters we set S to 525,
the number of workers to 450 and the reward (including the bonus) to 3 US dollars for
completing all the tasks (assuming that all the workers will be eligible to get a bonus).
The tasks in each cluster are meant to be split in a training set which will be used to
compute the worker accuracies for tasks in the history and a testing set which will
be used to estimate the worker accuracy when testing the targeting phase. In Figure
Eight, quiz mode uses 1 to 20 tasks to estimate the reliability of the workers [27]. Li
et al. [76] used 5 tasks in a probing stage to compute their reliability. Consequently,
we set th to 30, which allows to split each cluster to a significant size learning and
testing datasets. With th set to 30, the theoretical upper bound of the number J of
clusters was equal to 17 (th× J ≤ S).

A discussion on the random sampling process In fact, there are no guarantees of conver-
gence for the sampling algorithm we propose. In our case, running it with the afore-
mentioned configuration, often returned a constraint-respecting sample in reasonable
time. This can be the result of the initial clusters not being extremely unbalanced.
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Figure 4.3: An overview of the iterative process of the random search.

Very unbalanced clustering might lead some clusters to be very small. In which case,
the initial random sample (i.e., line 2 in algorithm 3) can contain very few, or no,
points belonging to this cluster. Thus, sampling might take too long to converge. To
avoid this, one can initialize the algorithm differently. For instance, in each cluster-
ing system, a balanced sampling can be performed over all the clusters by selecting
S′
J tasks in each cluster, where J is the number of clusters in each system and S′ = S

I .
In this case, duplicate selection must be accounted which might reduce the size of the
sample. To deal with this, one can complement the sample with the needed number
of tasks by random sampling. By doing so, one is guaranteed to start with balanced
initial sample.

Output of the step : With the kept clustering algorithms (i.e., K-means and agglom-
erative) and vectorizing methods (i.e., TFIDF and Doc2vec) we generated 4 different
clustering systems of 15 task clusters each. Then, we sampled these systems by running
the sampling algorithm with th = 30 and S = 525 and ended with a set of 525 tasks
(which respects our budget) that were formated and submitted to FE (Figure Eight) for
contribution collection.

4.3.2 DATA COLLECTION

Talking the sample set as input, we designed a crowdsourcing job and submitted it to FE.
Workers who selected the job were asked to read a detailed description of the task solving
process and conditions and to fill their contributor IDs. These who decided to proceed with
the job completion were redirected to an external web page on which the data collection took
place. In the first stage of the campaign, we asked workers to fill their contributor IDs again
(for an easier matching and control) and to answer a set of profile related and self-evaluation
questions (Specification S 1.2)(see Section 4.3.3). Once done, workers proceeded in the
actual task solving. For each job instance, tasks were randomly distributed over 11 pages
in order to prevent the concentration of the negative impact of weariness on one subset of
tasks. After completing the whole task set, a unique submission code was provided to each
worker allowing his to receive his reward on FE.

Workers were rewarded a base pay equal to 1$ US. Additionally, a bonus of 2$ US
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Algorithm 3: The sampling process
Input :Cl: set of clusters, S: sample size, th: sampling threshold, itt: maximum

number of iterations, λ : neighborhood, ϒ: task population
Output :sol: the task sample that respect our constraints

1 sample(Cl, S, th, itt, λ , ϒ) :
2 sol← ϒ.Rand(S); // randomly select an initial sample of size S

from ϒ

3 ϒnew← ϒ.sub(sol); // remove the current sample from the population

4 fold ← computeFitness(sol, th); // compute the fitness Eq. 4.3

5 curItt← 0 // initialize the iteration counter

6 while !checkConstraint(sol, th, Cl) and curItt < itt do
7 solnew← f indNeighbour(ϒnew,sol,λ ); // find a neighbour solution

8 fnew← computeFitness(solnew, th); // compute new fitness Eq. 4.3

9 if fnew < fold then
// if fitness improved then consider the new solution

10 sol← solnew;
11 ϒnew← ϒ.sub(sol);
12 curItt ++; // increment the itteration counter

13 return sol;
14 checkConstraint(sol, th, Cl) :
15 result = True;
16 foreach cl ∈ Cl do
17 result←(count(sol, cl) ≥ th) // count the number of sampled tasks

for each cluster and check if th is respected

18 if !result then
19 Break;
20 return result;
21 findNeighbour(ϒ, sol, λ ) :
22 vec1← ϒ.Rand(λ ); // rand. select a new task set of size λ in ϒ

23 vec2← sol.Rand(λ ); // rand. select a task set of size λ in sol

24 solnew← sol.replace(vec2,vec1); // replace vec1 by vec2 in sol

25 return solnew;
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Task types
Questions # Data extraction

Data statistics Multiple choice 926 Data categorization
Num. of workers 450 Open answer 160 Relevance judgment
Num. of tasks 525 Sentiment analysis
Num. of questions 1086 Decision making
Num. of contributions +280K
Num. of task types 5 Knowledge in :
Num. of self-evaluation features 7 Features # Values Sport
Num. of declarative profile features 12 Age 11 Fashion
Num. of other worker features 3 Gender 2 Social media
Num. of dense contributions* 200 Country 25 Humanitarian

Educational domain 16 Natural sciences
Educational level 4 Technology

Features Vector Size Work domain 20 Politics
Time per task page 11 Work experience 4 1 to 5 self rating

Task completion order 1 Interest_1 25
Profile rating 8 Interest_2 25

Language_1 30
Language_2 32

Full time worker 2

Figure 4.4: An overview of the structural characteristics of CrowdED. (*) a dense contribu-
tion is a set of answers given by a single worker to the entire task set.

was awarded (manually) to workers whose answers and declared profiles were of a good
quality and high consistency (see Profile Rating in Section 4.3.3). Moreover, we estimated
the job completion time by 45 minutes, thus workers who finished the job in a very short
time (i.e., less than 40 minutes) were automatically eliminated, with their contributions, and
did not receive any reward. Finally, we only accepted workers of at least level 2 in the FE
worker classification14. On one hand, these three parameters i.e., the bonus, the contribution
duration and the minimum worker level, were strict enough to ensure that malicious workers
(i.e., workers who intentionally fill random or wrong answers) are eliminated (Specification
S 3.2). On the other hand, they are loose enough to allow a real representation of the quality
issue in crowdsourcing. Contributions were collected during 3 months over all week days
and covering all times of the day.

Output of the step : At the end of the data collection step we collected 2 types of data:
first, the contributions of the worker for the tasks they completed. Second, the declarative,
self-evaluation and behavioral profiles of these workers.

4.3.3 DATA STRUCTURE AND STATISTICS

Figure 4.4 shows the structural characteristics of CrowdED as well as the features of tasks
and workers that it contains. In total we collected 280K+ contributions for 525 tasks from
400 workers among which 200 completed the entire set of tasks. We call the set of contri-
butions given by these 200 workers a "dense set". Structurally, CrowdED consists of 4 files:
contributions.csv which contains the worker contributions, workers.csv which contains the
worker profiles, rating.csv where profile ratings are stored and finally task.zip where the

14FE levels range from 1 to 3 where level 3 represents the most experienced and reliable workers and 1
represents all qualified workers
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tasks content and description are stored. CrowdED has been made public, it is available on
Figshare, on Github (See Appendix A) as well as on the project “Project-Crowd ”page 15.

4.3.3.1 Tasks

Some of the 525 tasks in CrowdED contains up to 3 independent questions. Thus, the total
number of answered questions is 1086. The majority of these questions (926) are multiple
choice questions and the remaining part consists of open answer questions. The input of
the tasks are tweets, images, scientific article quotes or news articles and headlines. Their
action types fall into 5 categories: data extraction, data categorization, relevance judgment,
sentiment analysis, decision making.

4.3.3.2 Workers

For each worker, we collected a profile consisting of 21 features divided into 3 types:

Declarative profile

We collected 12 features consisting of the following demographical, education and inter-
est related information about the user : age, gender, country, education domain, education
level, work domain, work experience, interest 1, interest 2, native language, other spoken
language and full time worker (i.e. whether the worker is a full time or occasional crowd-
sourcing worker). Figures 4.5, 4.6 and 4.7 report the distribution of the workers over the set
of demographical, knowledge related and interest related features. We draw the following
observations related to these distributions: these numbers are, for their majority, compliant
with the numbers reported in previous studies found in the literature such as the study of the
Mechanical Turk marketplace found in [52].

Self-evaluation features

We collected 7 features consisting of a 5-star self rating for 7 knowledge domains: sport,
fashion, technology, natural sciences, humanitarian work, politics, and social media. Fig-
ure 4.8 shows the average self rating in various knowledge domains w.r.t. the gender of the
worker. In average, female workers seemed more confident in their knowledge in fashion
and humanitarian work, while male workers, rated themselves higher for sport. For the re-
maining domains, i.e., technology, natural sciences, politics and social media, both female
and male worker rated themselves similarly.

Behavior-related features

Four features related to the behavior of the worker during the campaign were collected.
Three out of these features were collected automatically in the interface : time for complet-
ing a task page, time for reading the description and filling the profile and the order of task
completion. The fourth, however, resulted from a complementary crowdsourcing campaign;
in fact, in order to judge the consistency and reliability of the worker declarative and self-
evaluation profiles, we ran a profile rating job on FE during which the profile of each worker
who participated to our job was rated (from 1 to 4) for consistency by at least 7 workers.
Figure 4.9 depicts the description of the task as published on Figure Eight.

15http://project-crowd.eu/crowded

http://project-crowd.eu/crowded
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Figure 4.5: The distribution of workers over a set of demographical features: (a) age, (b)
gender, (c)native language and (d) country.
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Figure 4.6: The distribution of workers over a set of knowledge related features: (a) educa-
tion level, (b) work experience, (c) education domain and (d) work domain.
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Figure 4.7: The distribution of workers over a set of interest related features: (a) and (b)
interests and (c) other spoken language.
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4.4 CREX: CREATE ENRICH EXTEND

In this section, the CREX framework that helps extending and enriching CrowdED (or creat-
ing similar datasets) is described. As depicted in Figure 4.10, CREX uses a two-component
architecture. The first component, CREX-D, allows a configurable task data selection while
the second, CREX-C, provides tools to automatically generate crowdsourcing campaigns
from the output of CREX-D. Figure 4.11 shows the possible parameters of each config-
urable module in CREX. The computational modules of CREX are developed with Python3.
It uses well established and sustainable natural language processing and machine learning
libraries such as scikit-learn[115], nltk[90], gensim[38] etc 16. The web user interface uses a
combination of Bootstrap, JavaScript and PHP and the used database technology is MySQL.
A list of dependencies and of a description of the configurable parameters of CREX can be
found in Appendix A. Moreover, a functional demo of CREX can be tested on the following
URL http://crex.project-crowd.eu/.

4.4.1 DATA PREPARATION COMPONENT (CREX-D)

A typical crowdsourcing workflow consists of 3 steps: first, designing the task, second,
crowdsourcing the task and last, collecting the results. Indeed, this typical workflow is
suitable for classical crowdsourcing where the aim of the requester is to exploit the results in
a limited application-centric way, e.g., label multimedia data to facilitate indexing, translate
a given corpus, etc. In other words, it suits applications where the input data are fixed and
limited in size. When it comes to research-related crowdsourcing, e.g., building evaluation,
validation or training datasets where the usage of the collected data goes beyond the limited
exploitation, the input data space is usually huge and more complex. Therefore, an upstream

16A full list of the CREX’s dependencies can be found on http://crex.project-crowd.eu/help.
html

http://crex.project-crowd.eu/
http://crex.project-crowd.eu/help.html
http://crex.project-crowd.eu/help.html


4.4 CREX: CReate Enrich eXtend 75

Figure 4.9: The description of the profile rating task.

input data selection effort is needed. A more suitable workflow is then a four step process
that adds an input data selection step at the beginning of the aforementioned workflow.

Figure 4.11 depicts the structure of the CREX-D component. It comprises four modules:
the vectorizing module (VM) , the clustering module (CM), the sampling module (SM) as
well as the evaluation module (EM). These modules are available and inter-operable yet
independent. That is, each module can be used separately or as an entry point for the
remaining steps or substituted by another module of equivalent role. This allows a more
flexible usage and thus a wider cross-domains utility of CREX.

The vectorizing module:

Grouping the tasks starts by extracting the features of interest from the raw data. In this
work, we consider textual data where each data point is the textual representation of a task.
Despite being limited to this type of data, CREX makes it easy to bypass this limitation
by either feeding pre-vectorized data to the CM or by adding custom vectorizing functions
to the VM. The actual implementation of VM supports frequency based text representation
(TFIDF [110]) and semantic document representation (Doc2vec [70]).

The clustering module:

The CM allows to cluster the vectorized tasks using one of three types of clustering algo-
rithms: partitional (K-means), density-based (DBSCAN), and hierarchical (Agglomerative).
A user can use either a cosine or an Euclidean distance during the clustering process. How-
ever, the CM provides the possibility to feed the algorithm with a custom pre-computed
similarity matrix 17.

17This option must be used carefully; some similarity measures are not significant when used with some
clustering algorithm e.g. cosine distance and K-means [145]
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The sampling module:

This module implements Algorithm 3 of the sampling process detailed in the previous sec-
tion.

The evaluation module:

The EM module allows to evaluate the clustering process using internal and external validity
measures such as silhouette [106], homogeneity, completeness and V-measure [104] as well
as a custom validity measure consisting of a similarity to co-occurrence correlation matrix.

4.4.2 CAMPAIGN MANAGEMENT COMPONENT (CREX-C)

From a requester perspective, a mandatory step of the crowdsourcing workflow is the task
design and generation. This step is a tedious and time consuming one due to two factors:
first, the interest and use of crowdsourcing is growing to reach a wider sphere of scientific
and social domains. Thus, the range of task forms and content is getting larger. Second,
a crowdsourcing task, itself, might be dynamic i.e., it may require conditional or real-time
computed components. Therefore, the capacity of commercial crowdsourcing platforms
to provide practical design tools, preset templates and real-time computational means18

is declining. A common way of dealing with these limitations is to build campaign sites
with dedicated databases and back-end computational module and to make them accessible
through a common crowdsourcing platform to provide reward payment and worker man-
agement. The campaign management component of CREX provides an easy-to-use tool for
generating campaign sites from the sampled tasks (see Section 4.4.1) using the campaign
generator module (CG). Figure 4.12 shows the structure of CREX-C, its interaction with
the external libraries and the data flow in the system.

The campaign generation module:

CREX-CG takes 2 inputs. The first is the set of tasks to be published on the campaign
site. The second is the requester input consisting of the task descriptions, examples and

18e.g., requester accessible back-end services or API to dynamically modify tasks and assignments.
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instructions. It parses these inputs to intermediate JSON files and uses them to generate
the campaign pages. The campaign site communicate directly with the database where the
contributions and the worker profiles are stored. Contributions in the database are stored
using a JSON format which allows a straightforward use of CREX-C for different task
structures and types without the need to create a new database model and query rewriting.

The filtering module:

For a set of workers, tasks and contributions collected through the campaign generated
by the GC module, the filtering module allows to select a subset of these data based on
qualitative and quantitative selection criteria applied on the workers. These criteria cover
the declarative profile features of the worker, their rating of their profiles, their time of task
completion, their time of profile completion as well as the number of task they achieved.
The code snippet 4.1 show an example configuration of the filtering module. In this example,
we are interested in selecting workers, and their contributions, who completed at least 5 task
pages (line 4), whose median profile rating is greater than 3 (line 7) and who took at least 1
minute to complete the profiles questionnaire (line 10).

1 # --- filter workers by criteria

2 criteria = {

3 # --- filter workers by number of completed pages

4 ’worker_time_cont.csv’: {’count’: [’>=’, 5]},

5

6 # --- filter workers by median profile rating

7 ’Workers_decl_r_p.csv’: {’median’: [’>=’, 3]},

8

9 # --- filter workers by time to complete the profile

10 ’Workers_time_p.csv’: {’Time_to_complete’: [’>=’, 60]}

11 }

12

13 # --- filter workers

14 filtered = select_workers_by_criteria(in_file, criteria, out_file)

Listing 4.1: Code snippet example showing the filtering module configuration

The filtering process has two main goals: First, it helps selecting a subset of the workers
based on qualitative criteria to allow studying its characteristics e.g., its average perfor-
mance of female workers. Second, and mostly, it allows to clean the data based on behav-
ioral criteria. For instance, as shown in Figure 4.13 which reports the maximum rating per
profile w.r.t the time spent by the worker filling it, a profile filled in less than 20 second is
most likely to be inconsistent (maximum rating of 219). That is, it has been most likely filled
randomly which means that the worker associated to this profile is very likely a malicious
worker. Consequently, considering only the contribution of workers who spent a reasonable
time answering the profile questionnaire would yields a noiseless dataset.

19Equivalent to "Profile with clear inconsistencies in our rating system"
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Figure 4.13: The relation between the quality of the profile (in terms of consistency) and
the time spend to fill it : (a) Average rating, (b) Median rating and (c) Maximum rating

4.5 CROWDED AND CREX RE-USABILITY

4.5.1 USABILITY IN QUALITY CONTROL EVALUATION

Table 4.5 shows the usability of CrowdED for evaluating the QC methods reported in Table
4.2. This usability is judged based on the needs of these methods in terms of information
about workers, tasks and contributions and their availability in CrowdED. The majority of
the methods that require information about workers and tasks only (regardless the type of the
information) are supported by CrowdED. Others are supported either through simulation,
i.e., vertically or horizontally splitting the dataset to simulate a real world situation like
worker screening or through augmentation, i.e., adding more knowledge to the available
data without the need for additional crowdsourcing by extracting new features or using
external taxonomy to represent tasks and workers. Less frequent methods that require more
information are not supported. Nevertheless, thanks to CREX (detailed in Section 4.4)
they could be supported by extending CrowdED with a minor reconfiguration effort (e.g.
changing the reward) or with a more demanding coding effort.

4.5.2 COMPLIANCE WITH THE FAIR PRINCIPALS

The previous paragraph shows that CrowdED and CREX bridge, theoretically, the bench-
marking gap in crowdsourcing. Yet, while fulfilling the theoretical specifications is crucial
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Table 4.5: The usability of CrowdED w.r.t the existing quality control methods

CrowdED support
Method Native Extensible

MV, WMV [56], EM [14] +++ n/a
Worker modeling [59] +++ n/a
Task modeling [131] +++ n/a
Qualification tests,
test questions.

+++ S n/a

History-based +++ S n/a
Contextual history-based +++ S n/a
Programatic gold [91] - - + C
Profile-based [61] +++ n/a
Contextual profile-based [76] +++ n/a
Skill-based [107] ++ A +++ Cf
Self-evaluation [53] ++ +++ Cf
Task composition[1] - - ++ C
Incentive based [77] - - +++ C

A: supported through Augmentation, C: extensible through
Coding, Cf: extensible through Configuration, S : supported
through Simulation, n/a: not available, - : bad, + : good.

for the utility of the resources, these specifications cannot guarantee alone the re-usability
of these resources which depends on their ease of use and their interoperability with ex-
isting tools. To guarantee this re-usability by the wide community (which allows a better
extension and enrichment of CrowdED), the FAIR principles [135] (Findable, Accessible,
Interoperable, Reusable) were considered during the design, the creation and the publish-
ing process: CrowdED and CREX are available on Github and Figshare (with an associated
DOI) which makes them Findable. They are published under CC and GPL licensing respec-
tively to allow their Re-usablility and Accessibility. CrowdED data are stored in csv files
and no proprietary languages were used to develop CREX. This ensures the Interoperability
of the resources.

4.6 SUMMARY

In this chapter we presented CrowdED, an information rich evaluation dataset. The first mo-
tivation behind creating CrowdED is to provide qualitatively and quantitatively sufficient
data to evaluate multiple aspect of CAWS, i.e., the time and cost overheads, the selection
quality and the grouping impact. This evaluation is not achievable through the existing eval-
uation datasets which lack for one or many of the data needed by the learning and targeting
processes of CAWS i.e., worker profiles, task content and the contributions. We showed
this in Section 4.2 through a comparative review of the literature datasets. To cope with this
problem, CrowdED fulfills three specifications that we summarize as follows: (i) Data rich-
ness (S1) CrowdED is rich in information about the workers’ profiles and the tasks’ content.
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This has been achieved, first, by collecting three types of worker profiles i.e., declarative,
self-evaluation and behavioral profile. (ii) Data diversity (S2) CrowdED reflects the di-
versity of tasks and worker profiles in a real crowdsourcing system. We completed this by
collecting contributions for a task corpus containing tasks of various types e.g. relevance
judgment, information extraction, etc. and belonging to different knowledge domains e.g.
politics, sport, fashion, etc. Moreover, the distribution of the collected worker profiles is
conform with the existing demographical studies found in the literature. (iii) Contribution
abundance (S3) CrowdED contains over 280K contributions. All the tasks and the workers
have a large number of contributions each.

Since crowdsourcing a large corpus is not possible due to the budget constraints, a
sampling step of the initial corpus was mandatory. However, to enable evaluating the impact
of the task grouping on the performance of CAWS as presented in Chapter 3, it is crucial to
ensure that the sampled task set is representative of all the clustering systems produced by
the vectorization and clustering algorithms of interest. Therefore, we proposed a two steps
workflow: First, the initial (large) task corpus is clustered using the vectorization/clustering
combinations to be compared. Second a constrained sampling algorithm is applied to find
the set of tasks which, on one hand, is of a reasonable size to be crowdsourced and, on the
other hand, is representative of all the clustering systems.

The second challenge motivating the creation of CrowdED is bridging the benchmark-
ing gap found in the literature. We showed in Section 4.2.2 that none of the existing datasets
allows a sound comparison of the quality control approaches which leverage different as-
pects of the crowdsourcing systems. The specifications S1, S2 and S3 fulfilled by CrowdED
allow it to be usable in evaluating and comparing a wide range of existing quality control
methods. In order to deal with the remaining exceptions i.e., the methods which are not
natively supported by CrowdED, and to future-proof it, we proposed CREX. CREX is an
open-source software framework that allows the extension of CrowdED to fulfill new quali-
tative e.g., new worker profile types, and quantitative requirements e.g., more contributions
for a given task (S4).

In summary, this chapter introduced and described a novel information rich dataset for
evaluating quality control in crowdsourcing and a new platform for collaborative creation
of crowdsourcing evaluation dataset. The chapter also shed light on the challenges facing
the creation of the dataset and the platform and on the solution proposed to cope with these
challenges. Last but not least, it prepared the ground for a sound evaluation of our worker
selection approach called CAWS. In the next chapter, the experiment setup and results of
the evaluation process are detailed.





Evaluating the Context Aware Worker
Selection Method

In this chapter, we evaluate the performance of CAWS in terms of quality. We focus on
two main points: first, we evaluate the quality gain that CAWS can yield. This is done
by varying the parameters of the system such as the clustering algorithms, the vectorizing
algorithm, the learning model, etc. Second, we study the time and cost reduction that can
be achieved by CAWS when compared to other worker selection methods.

Roadmap. In Section 5.1, we start by defining the evaluation measures that we will be
using in the experiments. In Section 5.2, the general experimental setup of this evaluation is
detailed. Then, in Section 5.3, the experiments, their objectives and their results are reported
and discussed. Finally, we conclude this chapter in Section 5.4.

5.1 EVALUATION METRICS

Optimizing the quality and reducing the time and cost overheads are the two main goals of
the method described in this work. In this section, we describe the metrics that we use to
assess the ability of our method to achieve these goals.

5.1.1 QUALITY METRICS

The final step of the crowdsourcing workflow is to aggregate the contributions collected
from the workers to whom the tasks were assigned. This makes the individual accuracy of
the workers less significant as the their contributions are transparent for the requester. The
latter, usually, is interested by the final aggregated answer. Consequently, in our work, we
assess the quality of the targeting by computing the accuracy of the aggregation process.
That is, the ratio of correct answers among the estimated ones. The correctness can be
assessed by comparing the estimated answers with the ground truth answers.

5
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To measure the performance of a selection method, we define the Accuracy of Crowd-
sourcing metric (AoC), to which equivalent quality measures have been used in other works
such as in [76, 82, 89]. AoC of an aggregation method agg is formally expressed as shown
in Equation 5.1 :

AoCagg(G) =
1
|G| ∑t∈G

I(r̂agg
t ,rt) (5.1)

Where t is a task in a task set G, rt is the correct answer of t, r̂Agg
t is the answer estimated by

the aggregation method agg for the task t, and I(x,y) is the indicator function that we recall
here:

I(x,y) =

{
0 if x = y
1 otherwise

(5.2)

5.1.2 OVERHEAD MEASUREMENT

The Time and Cost of a Crowdsourcing campaign, that we denote ToC and CoC respectively,
are directly related to the number of assignments made during the campaign. One possible
estimation of their values can be obtained by multiplying the number of assignment by
the time-per-assignment-per-worker TA, i.e., the sequential time of completing a task by a
worker (explained further) and the reward-per-assignment-per-worker RA, i.e., the average
price payed to complete one task by one worker. That is :

ToC = TA×Assignment (5.3)

CoC = RA×Assignment (5.4)

Equations 5.5 and 5.6 compute an estimate of the difference between two different qual-
ity control methods i and j. Those reflect the additional assignments made to serve only
the quality control process e.g. the probing assignments, test questions, etc. Let us assume
that Assignmenti and Assignment j are the total number of assignments for the method i and
j respectively. RA is a task dependent parameter, thus, it is similar for both methods when
applied on the same task.

TA, on the other hand, is a more complex parameter. In practice, it is very difficult to
model how the workers select a certain task, how long they will take to finish it, how many
among them will leave without finishing the task and after how much time, how long would
it take to get these workers replaced etc. Furthermore, all this happens in a quasi-parallel
manner dependent on the configuration of the system at a given moment. That is the workers
(number, preferences, qualifications ...) and the tasks (number, rewards, ...) available in the
platform at this moment. If all the workers had to start working on the tasks simultaneously,
then, the overall time for completing the campaign would be equal to the longest time per
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worker. This is the lower bound of ToC. In the opposite, if workers had to perform the tasks
in a sequential way where one worker starts completing them when an other finishes doing
it, the total time for the task completion would be the sum of all the individual completion
times. This is the upper bound of ToC. However, as we detailed earlier, the system is quasi
parallel. Thus, in these experiment, we approximate TA by dividing the observed time of
task completion by all the worker i.e. the time between submitting the tasks and receiving all
the contributions, by the number of assignments achieved during the campaign. Indeed, this
approximation is not generic. Its purpose is to allow computing the overheads that would
be induced by one quality control method for the configuration of the considered dataset.
Finally, we assume that for the same online workers, and for a fixed reward (i.e. one task is
as attractive as the other), the time that a task stays running in the system is the same for 2
identical tasks when crowdsourced simultaneously. Hence, TAi = TA j. Consequently:

Gtime = ToCi−ToC j = TAi×Assignmenti−TA j×Assignment j

= TA× (Assignmenti−Assignment j)
(5.5)

Gbudget =CoCi−CoC j = RA× (Assignmenti−Assignment j) (5.6)

5.2 GENERAL EXPERIMENTAL SETUP

5.2.1 DATASET

The quality evaluations are performed on CrowdED (Chapter 4). CrowdED has been de-
signed to fulfill a larger specification range than needed for our evaluation process. We
describe here the configuration of CrowdED retained for this experiment series. We con-
sider only the MCQ tasks1. Their number2 is 926 and they are distributed over 16 subsets
i.e., jobs. We consider 400 workers. Those are chosen so that each of them has, at least,
100 contributions in CrowdED (i.e., they participated in almost 10% of the tasks at least).
Only 200 of those workers participated in all the tasks. Workers are characterized by their
declarative profiles of 12 features among which we selected the 6 most significant3 ones
and encoded them via dummy coding.

The time and budget evaluations are performed on a dataset called "Knowledge dataset"
that we collected on Figure Eight before collecting CrowdED. and which we describe here-
after: it consists of 60 knowledge MCQ tasks with known ground truth used to estimate
the accuracy afterward. The tasks are distributed evenly over three different knowledge
domains: sports, botany and technology. We asked 140 users to answer all the questions.
Hence, the resulting dataset consists of 8400 contributions. Average worker accuracy is
equal to 61.3%, the MV aggregation accuracy is 80%. The EM aggregation accuracy is
equal to 81.3%.

1We did not consider free text questions of CrowdED.
2Tasks with multiple questions were split into multiple tasks to comply with the definition we used to

formalize CAWS.
3p-value less than 0.1 in the null hypothesis test.
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5.2.2 GROUND TRUTH

Computing the accuracy as shown in the previous section supposes that the ground truth
answers of all the tasks are already known. For CrowdED, which will be used as the quality
evaluation dataset for our work, this ground truth does not exist. In order to estimate the
correct answers we relied on the high level of redundancy in CrowdED where each task is
labeled at least 280 times. In fact, it has been shown that the majority voting aggregation,
yields near perfect estimation of the ground truth (up to 95% of of estimated answers are
correct) when the number of workers is very large (greater than 150) [102]. Accordingly, the
ground truth answers for CrowdED was estimated through a Majority Vote aggregation of
the collected contributions. Those answers are used to estimate the accuracy of the worker
and of the aggregation processes when needed.

5.2.3 SELECTION METHODS

In this work, two variants of CAWS are compared to a state-of-the-art selection method. As
detailed in Chapter 3, the offline learning of CAWS relies on Linear Regression to find the
correlations between the workers profiles and their performance for each task type. Indeed,
it is possible to use another model to learn these correlations. Besides the Linear Regression
based learning, which we denote CAWS - LR, we also implement a Random Forest based
version of CAWS and we denote it CAWS - RF. Both versions are compared, it terms of
quality, with the method proposed by Li4 et al. [74] as it is the state of the art method when
it comes to selection method which are agnostic to a priori knowledge and that relies on
declarative profiles to target workers. We denote this method Li - n where n is the number
of tasks used for the probing stage. Two values for n were used: n = 5 which is the value
used in [74] and n = 10 which is a more quality optimistic version of Li’s approach. In
addition, we use for reference a Random selection method where the needed number of
workers is randomly picked from the crowd in an uniform manner. This allows to compare
the selection methods to a scenario where no selection is made under the same budget
constrained (defined by the number of requested contributions ρt explained in Section 3.1.2
of Chapter 3). Table 5.1 summarizes these methods and their descriptions.

Method name Descritpion
CAWS - LR CAWS with a Linear Regression based discovery algorithm
CAWS - RF CAWS with a Random Forest based discovery algorithm
Li - n Li et al. method where n is the number of tasks used for the probing
Random A random selection process for reference

Table 5.1: A summarized view of the selection methods used in our evaluations.

5.2.4 TASK GROUPING

Task grouping is a key step of CAWS and needs to be evaluated. In our evaluation, we used
2 main grouping methods. First, we used the subsets to which the tasks belonged when the

4This method has been proposed by Li and Yu. For simplicity, further in this chapter we denote this method
by Li’s method.
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task corpus has been constituted. A description of these subsets can be found in Table 4.3
of Chapter 4. Using this grouping is equivalent to relying on the requester submission of
a job. That is, all tasks submitted in a same job are considered to be similar which is the
assumption of Li’s method. Last but not least, we used the task clustering approach which is
the core of CAWS. Here we used four variants which are the combinations of two clustering
algorithms, K-means and agglomerative clustering, and two vectorizing algorithms, TFIDF
and Doc2vec. The description of those can be found in Table 5.2.

Method name Description
ad Agglomerative clustering and Doc2vec vectorizing
at Agglomerative clustering and TFIDF vectorizing
kd K-means clustering and Doc2vec vectorizing
kt K-means clustering and TFIDF vectorizing
set CrowdED subsets

Table 5.2: A summarized view of the grouping methods used in our evaluations.

Hereafter, the following annotation is used to reflect the configuration used to test a
selection method:

Method Name︷ ︸︸ ︷
A︸︷︷︸

Selection

− B︸︷︷︸
Selection config.

− C︸︷︷︸
Grouping

e.g. CAWS−LR− kd or Li−10− set

For instance, CAWS - LR - kd indicates a configuration where CAWS is used for the
selection, and that it has been trained over the tasks clustered using K-means applied on
Doc2vec task representation and through a Linear Regression. LI - 10 - set, means that Li et
al. method is used for the selection and that it is applied on CrowdED subsets while using
10 tasks for the probing phase.

5.2.5 AGGREGATION

From the perspective of the output type5, tasks in a given cluster are most likely to be het-
erogeneous for two reasons: first, because the resulting clusters and their intra-homogeneity
w.r.t. this aspect, depends on the used features. Second, even if a suitable feature, e.g., the
output type, is used to split the tasks, no clustering algorithm is able to yield perfect results.
Therefore, one needs to use an aggregation algorithm that is capable of aggregating the
tasks independently. EM aggregates a set of tasks at once, thus it is not suitable. Majority
voting and weighted majority votes are more convenient as they aggregate the tasks indepen-
dently (i.e., one task at a time). In the remainder of this chapter, when CAWS is used with
its clustering component, the MV algorithm is used to aggregate the contributions of the
selected workers and the reported accuracy values are those of MV. Moreover, every time
Li’s method is used, the reported measures are those of the EM algorithm as their discovery
algorithm is optimized for this measure (Section 2.2).

5That is, of what type are the contributions? An option among proposed ones, a rating, a free text label, etc.
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5.3 EXPERIMENTS

Now that the general framework of our evaluations is set, we detail in the following para-
graphs the experiments that we conducted over two axis: (i) the quality of the learning and
selection approach and (ii) the time and cost gain.

5.3.1 EVALUATING THE PERFORMANCE OF CAWS
5.3.1.1 Objectives

Here we aim at comparing the accuracy of CAWS in terms of the aggregation accuracy
stated in Equation 5.1. We conducted four experiments Exp.1, Exp.2 , Exp.3 and Exp.4, in
which we are interested in comparing the impact of the following parameters on accuracy :

Exp.1 The Learning Model: As explained earlier in Section 5.2.3, it is possible to use differ-
ent learning models in the offline learning phase. In the first experiment, we aim to
study the impact of the used learning model on the targeting quality.

Exp.2 The Aggregation technique: In our second experiment, we are interested in measuring
the impact of the used aggregation algorithm on the targeting process.

Exp.3 The Probing Tasks: One benefit of CAWS over other probing based methods is that
it leverages the history which provides a larger learning corpus when compared to
the limited number of probing tasks. This allows a better representation of the aggre-
gated performance correlated to each profile feature. In this experiment, we intend to
measure the impact of the learning corpus size on the targeting quality.

Exp.4 The Grouping Technique: Providing a larger corpus of probing tasks is an important
advantage of CAWS. However, this is conditioned by CAWS’ ability of creating a ho-
mogeneous learning corpus. Our solution, explained in Chapter 3 consisted in using
a clustering step to group the tasks in the system history. Intuitively, the learning and
targeting quality are directly influenced by the quality of this grouping. In the fourth
experiment, we study the impact of various grouping techniques on the targeting qual-
ity.

5.3.1.2 Experimental setup

To test the performance of CAWS, our experiments were run as follows: for a given set S
of tasks e.g. a subset, a cluster, etc., a 4-folds cross validation was conducted. In each fold,
S is split into two part: Sl of size 3×|S|

4 used for training and St of size |S|4 used for testing.
The contributions of 300 workers were randomly sampled and used as the system history
(i.e., the contribution matrix). This ensures that the model is not overfitted and allows us to
consider the case where the offline worker set is not identical to the online worker set.

The training consisted in running the discovery algorithm on Sl . Then, the computed
model was tested by running the targeting algorithm for each task in St to select a number
λ of workers. We then computed AoCagg(St) for the selected workers’ contributions, where
agg is the used aggregation algorithm. Moreover, for each fold, Li’s method was tested
by sampling n tasks from Sl . Those served as probing tasks and the targeting was tested
over St by selecting the same number λ of workers. This process was repeated 20 times
and the average accuracy was reported. A number of worker similar to the one used for
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CAWS and Li in the testing was also randomly selected and the accuracy of this selection
was also reported for reference. Hereafter, we report the configurations that are specific to
each experimental objective explained in the previous subsection:

Exp.1 The Learning Model: we computed the average AoCEM and AoCMV for CAWS - LR -
set and CAWS - RF - set.

Exp.2 The Aggregation technique: we compare the average AoCEM and AoCMV for CAWS -
LR - set computed in Exp.1. Here, the set option is used to assure this comparison in
the condition of an optimal level of group homogeneity.

Exp.3 The Probing Tasks: we computed the average AoCEM for CAWS - LR - set, Li - 10 - set,
Li - 5 - set and Random - set. Performing CAWS - LR - set is equivalent to applying
Li’s method with greater number of tasks. Practically, probing with the whole task
set is useless from a selection perspective. And probing with a very large subset of
the task is very costly and time consuming.

Exp.4 The Grouping Technique: Tasks were clustered into 15 clusters for each of the clus-
tering algorithms. We computed the average AoCMV for CAWS - LR - set, CAWS - LR
- ad, CAWS - LR - at, CAWS - LR - kd, CAWS - LR - kt. Li - 10 - set and Li - 5 - set are
used for comparison.

5.3.1.3 Results
Exp.1 The impact of Learning Model

Figures 5.1a and 5.1b depict, respectively, the accuracy MV and EM w.r.t. the number of
selected workers when CAWS is trained with a Linear Regression model and a Random
Forest. For both aggregation algorithms, Linear Regression performed better then Random
Forest especially for lower selection rates. In the remainder of this chapter, the LR variant
of is CAWS is used.
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Figure 5.1: The accuracy of (a) MV and (b) EM w.r.t. the number of selected workers for
CAWS - LR and CAWS - RF

Exp.2 The impact of Aggregation technique

Figure 5.2 allows to compare the accuracy of EM and MV when applied on the contributions
of the workers selected by CAWS. It shows that, for lower selection rates, MV performs
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better than EM. This might be due to the theoretical characteristics of the EM algorithm
which makes it less stable for low numbers of workers [102]. When a sufficient number of
workers are selected (> 21), EM starts slightly outperforming MV.
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Figure 5.2: A comparison of the accuracy two aggregation algorithms EM and MV w.r.t.
the number of the workers selected by CAWS.

Exp.3 The effect of probing set size

Figure 5.3 reports the accuracy of the MV aggregation process for the considered config-
urations. The subsets of CrowdED are used as task groups and the shown accuracy is the
average accuracy of all the subsets. The smallest subset contains 40 tasks, this means that
at least, CAWS is trained over 4 times more tasks than Li’s method when 10 tasks are used
for probing and 8 times when 5 tasks are used for that purpose. This clearly influences the
targeting quality as CAWS, in this case equivalent to Li - >30 - set, outperforms both Li - 10
- set and Li - 5 - set. Moreover, it is interesting to mention that, the observed improvement
between CAWS - LR - set and Li - 10 - set is less significant than the difference between Li
- 10 - set and Li - 5 - set despite the fact that the increase in the number of tasks used for
probing is greater in the former case than in the latter. To explain this, one needs to observe
the accuracy for the individual task sets. That is the accuracy of selecting tasks for only one
set at a time i.e. using only the model learned for this set. Figure 5.4 reports the accuracy of
the considered methods for a sample of the individual tasks sets. When a task is rather easy
(Figures 5.4a and 5.4b), which is reflected by the random selection quickly converging to
as high as the accuracy achieved by the non random selection methods, the number of tasks
used for the probing is not important. Meanwhile for more difficult tasks (Figures 5.5a and
5.5b), where random selection stays low in quality even for high selection rates, the more
tasks are used in the probing stage the better the quality gets. This proves the importance of
leveraging the history of the crowdsourcing system as a better solution than online probing,
to learn worker performance based on their profile.
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Figure 5.3: Accuracy of the aggregation process using MV w.r.t. the number of workers
selected by CAWS, compared to the accuracy for: Li with 5 probing tasks, Li with 10
probing tasks and a random selection process.

Exp.4 The effect of the grouping technique

In this paragraph the main results of this evaluation process are discussed. For the previously
discussed evaluation results, the grouping component of CAWS was not tested as the used
task grouping consisted of the initially available subsets (to allow a better study of the
other evaluation parameters). Indeed, using the task sets as groups to learn constitutes the
best case scenario of task grouping. That is because tasks proposed in the same job are as
homogeneous as it can get. At least, in the common practice in crowdsourcing platforms.
Here, we test the possibility of automatically grouping the tasks which makes two things
possible : on one hand, this allows to use the similarity with historical tasks to eliminate the
online probing phase. On the other hand, it allows to reduce the work load on the requester
side who will be able to propose heterogeneous tasks in one job and get them automatically
sorted and assigned to suitable workers by the platform.

Figure 5.6 depicts the accuracy of MV in aggregating the contributions of the selected
workers when the tasks are grouped through clustering by the offline learning module of
CAWS. Here one can make the following observations:

1 One can do a clear separation between two groups of curves in this figure. First,
the Doc2vec based vectorizing, and second, the TFIDF based clustering and the set
grouping. The former group performs weaker than the latter, that is TFIDF is better
in grouping the tasks than Doc2vec. This applies for both clustering algorithms, i.e.,
K-means and agglomerative clustering. For the same clustering algorithm, TFIDF
performed significantly better than Doc2vec (between 7 and 11% over the various
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Figure 5.4: The accuracy of the aggregation process applied on the contributions of workers
selected by CAWS, Li and random for individual subsets of the dataset: (a) DE0 and (b) BI0.

selection rates).

2 For the same vectorizing algorithm, K-means performed marginally better than the
agglomerative clustering (between 2 and 4% over the various selection rates).

3 For TFIDF, the accuracy of the agglomerative clustering based CAWS tends, for high
selection rates, to the accuracy achieved by learning of the tasks subsets. Meanwhile,
the accuracy of K-means clustering based CAWS reached the accuracy of the subset
based learning at a lower selection rate (equal to 18). After a selection value of 39 the
clustering based algorithm starts improving over the subset based one.

According to observation 1 and 2, it is clear that the features used to vectorize the tasks
are a more important parameter than the used clustering algorithm. Two possible reasons
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Figure 5.5: The accuracy of the aggregation process applied on the contributions of workers
selected by CAWS, Li and random for individual subsets of the dataset: (a) A80, (b) CH0.

for TFIDF performing better than Doc2vec. First, the task variability in the current iteration
of CrowdED might not be sufficient which means that the tasks from different subsets have
few common words which means that they will have quite different TFIDF vectors, which
in turn, allows them to be easily separated by any clustering algorithm. Second, since the
majority of the tasks are short documents, Doc2vec, might not be capable of learning correct
models. In which case other variation of the paragraph to vector embedding that are more
suited for short documents must be used; Tweet2vec can be a suitable candidate [17].

Now, we compare the performance of the clustering based learning of CAWS with the
probing based method of Li. We retain our worst model i.e., CAWS - LR - ad, and our
best one, i.e., CAWS - LR - kt, and we compare them with Li’s method with 5 and 10
probing tasks. Figure 5.7 shows the result of this comparison. For lower selection rate,
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Figure 5.6: A comparison of the accuracy of the MV aggregation processes w.r.t. the num-
ber of the workers selected by CAWS for different clustering combinations and a set based
grouping.

the two models of our algorithm outperform Li’s method (up to 7% of improvement for
CAWS - LR - ad and up to 15% for CAWS - LR - kt). However, for 15 selected workers and
more, the 10-probing task based learning of Li starts converging to a level (Acc = 86%) of
which our weakest model (Agglomerative clustering and Doc2vec vectorizing) falls short.
The model based on K-means clustering and TFIDF, on the other hand, outperforms both
variants of Li’s method. This is true until the number of selected workers reaches 36, after
which the improvement induced by CAWS is marginal.

The quality experiments allowed use to prove that using the tasks in the system history,
and grouping them with automatic clustering algorithms, is able to yield a selection quality
which in worst case is equivalent to the quality yielded by methods based on online probing.
In the next part of this section, we study the ability of CAWS to reduce the time and cost
overhead introduced by the quality control process.

5.3.2 EVALUATING THE TIME AND THE BUDGET GAIN

5.3.2.1 Objective

Now that we showed that our method improves the quality of the selection, we study its
ability in reducing the time and budget overheads. For this reason, we conducted two exper-
iments of which the objectives are shown below:

Exp.5 Overheads estimation: This experiment aims at computing the time and budget gain
induced by CAWS when compared to Li’s method.

Exp.6 Budget study: This experiment aims at evaluating the output accuracy that we can
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Figure 5.7: A comparison of the aggregation accuracy processes w.r.t. the number of the
selected workers by CAWS (clustering) and by Li.

achieve for a fixed budget. Indeed, the concrete known parameter for a random re-
quester is the budget they are planning to spend on their crowdsourcing campaign.
Therefore, it is interesting to assess the quality that can be achieved for a given bud-
get.

5.3.2.2 Experimental setup

For the following experiments, we used a smaller dataset - "Knowledge dataset" - as the aim
is not to compute quality measures but rather to have an estimation of the overheads for a
given selection method.

Exp.5 Overheads estimation: We use the observed time and budget spent on completing the
campaign which was performed to collect the knowledge dataset, in order to estimate
the values of TA and RA. Then, we compute the time and budget gain i.e., Gtime

and Gbudget of two methods CAWS - LR - all and Li - 10 - all. Here "all" indicates
that we are considering the whole dataset as one cluster. Since the objective is to
study the accuracy that one can achieve for a given budget, we are not focusing on
the clustering aspect.

Exp.6 Budget study: For a given number λ of workers to select, we compute the accuracy
of MV for the workers selected by CAWS - LR - all and Li - 10 - all w.r.t. the number
of tasks used for probing purposes.

Before going into the details of the experiments, we start by computing the number of
assignments made during a given campaign. Let Wo be the set of connected workers and T
the set of incoming tasks.
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Li : Let γ be the number of tasks used in the learning phase. Let λli be the number of
workers to be selected. The number of assignments χ made during a campaign is
given by:

χli = |Wo|× γ +λli× (|T |− γ) (5.7)

That is, the sum of probing and targeting assignments. Indeed tasks used for the
probing are not crowdsourced again as their answers can be inferred from the probing
contributions.

CAWS : Let λCAWS be the number of workers to be selected. The number of assignments
χCAWS made during a campaign is given by:

χCAWS = λCAWS×|T | (5.8)

For a similar number λ = λCAWS = λli of workers to select, the budget gain Gbudget

(Equation 5.6) difference between Li and CAWS is:

Gbudget = RA× (AssignmentLi−AssignmentCAWS)

= RA× (χli−χCAWS)

= RA× (|Wo|× γ +λ × (|T |− γ)−λ ×|T |)
= RA× (|Wo|× γ−λ × γ)

= RA× γ× (|Wo|−λ )

(5.9)

Similarly, the time gain Gtime (Equation 5.5) difference between Li and CAWS is:

Gtime = TA× (AssignmentLi−AssignmentCAWS)

= TA× γ× (|Wo|−λ )
(5.10)

Equations 5.9 and 5.10 reflect the cost and the time relative to a number of assignments
equal to the number of probing tasks multiplied by the number of workers probed yet not
selected. This value is always positive. It equals zero in 2 cases when all the probed workers
are selected, or when γ = 0 in which case the selected workers are randomly selected. In
both cases, the point of selection is missed. Moreover, the larger the crowd to probe is i.e.,
Wo, the larger the time and budget gain get. In fact, this shows that by removing the online
probing stage and using offline learning, one can remove the time and budget relative to the
quality control process while maintaining the advantages of this step.
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Figure 5.8: Time and budget overheads.

5.3.2.3 Results

Exp.5 Overhead estimation

We start by approximating TA and RA. For the knowledge dataset, we paid 0.4$ per worker6

for solving all of the 60 tasks. This is equivalent to 0.0067$ per assignment i.e., RA =

0.0067$. The same reasoning is followed to evaluate the time gain; experimental measure-
ments yielded a value of 17 seconds/per assignment i.e., TA = 17 sec.

Considering these estimations, we fix the number of probing tasks to 10 and use all
140 workers as the crowd. We compute using equations 5.9 and 5.10, the budget and time
gain that CAWS can achieve as compared to the Li’s method for 6 < λ < 54 . Results are
reported in Figure 5.8. The budget and time gain that we achieve is maximal for lower
selection rates (e.g. 9$ for λ = 6) and decreases linearly when the selection rate increases
(5.7$ for λ = 54). This is equivalent to 10 to 16% of the total cost of assigning all 60 task to
all 140 workers (i.e., 0.0067×60×140 = 56$). That is because budget and time gain relies
mainly on removing the probing assignments. When the number of those assignments is
important w.r.t. the targeted assignments i.e., for lower values of λ the gain is high. When
the number of targeted assignments grows, the relative cost of probing assignments (w.r.t.
the whole campaign cost) are reduced. However, since the accuracy of our method is high
for lower selection rate, this means we are able to eliminate the cost overheads.

The same applies on the time overhead. Figure 5.8 shows that the time gain drops
linearly with the number of workers to select. Yet, at lower rates it is equal to 6 hours.
Which means that for the same configuration of the Knowledge dataset, CAWS can allow
the collection step to run 6 hours faster than an online probing based method.

6Workers who participated to the campaign graded the reward, in average, with 3.8/5 which means that it is
fair without being too high w.r.t. the task. Thus it can reflect a good estimation of an average acceptable reward
in a crowdsourcing platform.
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Exp.6 Budget study

This experiment aims at evaluating the output accuracy that we can achieve for a fixed
budget. We compared this accuracy with the accuracy achieved by Li for the similar budget.
In fact, the budget in our method is directly reflected by the selection rate (λ ). Whilst, the
budget in Li method depends not only on its selection rate (that we denote λli) but also on
the size of the crowd to probe as well as the split of the task used for probing, Li uses a
subset of the tasks to probe the crowd. This probing can indeed be done on the whole crowd
or a part of it. For a similar budget, the maximum number of assignments that can be done
by both methods is identical. Hence :

χLi = χCAWS⇔ |Wo|× γ +λli× (|T |− γ) = λCAWS×|T | (5.11)
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Figure 5.9: EM accuracy for a fixed budget: (a) λ = 21 and (b) λ = 35 (Exp.6)

We consider that λCAWS and λli are not necessarily equal. Figure 5.9a shows the results
for 7 < γ < 30 and a fixed budget determined by λ = 21. When a larger split of the tasks
is used in the probing stage, a smaller number of workers can be targeted. For γ = 18 the
whole budget is spent on probing the crowd. Hence, it is not possible to select workers.
For γ < 18, the quality of the learning grows until the number of targeted workers becomes
very low (for γ = 12, λli = 8) and thus, the aggregation quality starts dropping to 71%. Our
method has an average accuracy of 82%. Figure 5.9b shows the results for λ = 35. That is
35 workers can be selected by our method. For this budget our method is as good as Li’s
method for 9 ≤ γ ≤ 24, it has an average accuracy of 81%. Li et al.’s accuracy is low for
γ < 6 because 3 tasks are not enough to probe the crowd and for γ > 33 because of the
low selection rates. Being independent from any probing stage, our method uses the whole
budget to target workers. This budget can be equal to the minimum value for which the
collected contributions are enough to allow a stable convergence of the aggregation method
[100].

5.4 SUMMARY

In this chapter we evaluated CAWS and compared it to an online probing based selection
method in terms of quality and time and budget gain. Our findings can be summarized as
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follows:
The quality evaluation showed that it is possible to substitute online probing stages by

an offline learning step to learn about the correlations between workers profiles and their
performances for different task types. Indeed, this is enabled by the ability of clustering, as
shown in the results, to deliver an adequate task grouping which translates in good learn-
ing and selection accuracy. Moreover, the experiment showed that offline learning had an
important advantage over the online probing as it allowed a better estimation of the worker
accuracies and thus a better learning and targeting processes. This jump in the accuracy
estimation quality is guaranteed by a learning corpus larger than the few probing tasks.

Overhead study showed that CAWS is able to reduce the time and the budget of com-
pleting a crowdsourcing campaign. Indeed, while in the experiment we used Li’s probing
as an adversary method to show the advantage of the offline learning, we could have used
any other test question and quiz test based methods as they introduce a similar overhead as
the one introduced with Li. Reducing the overhead can be translated in that one can achieve
a better (or equivalent) quality than existing quality control method, with a smaller budget
and a shorter time.





Conclusion and perspectives

6.1 CONCLUSION

To conclude this work, we start by summarizing the workflow we followed in presenting
it. In the first chapter of this thesis, we introduced the quality issue in crowdsourcing and
argued on the necessity of quality control mechanisms. In Chapter 2, we reviewed the
literature of these mechanisms and discussed it in terms of three criteria: the time overhead,
the cost overhead and the achieved quality. This discussion backed up the adoption, in this
thesis, of a worker selection approach. Then, in Chapter 3, we introduced CAWS, which is
a worker selection method that aims at controlling the quality of the crowdsourcing output,
while reducing the time and cost overhead resulting from this control. In Chapter 4, we
presented CrowdED, which is an information rich dataset that contains qualitatively and
quantitatively all the needed elements to allow a sound evaluation of CAWS. In addition,
we introduce in this chapter an extension and enrichment platform for CAWS called CREX.
Finally in Chapter 5, we showed through an experimental evaluation the ability of CAWS
to achieve efficient quality control. The contributions of this thesis are summarized in the
following paragraphs.

CAWS

Controlling the quality of crowdsourcing campaigns is a mandatory step towards collecting
usable and valid data. Many methods have been proposed to achieve this quality control.
These suffered from two major limitations: their dependency on a priori knowledge about
the individual workers and the additional time and budget overheads they introduce. To over-
come these limitation, we proposed a Context Aware Worker Selection method (CAWS).
CAWS leverages the crowdsourcing system history to build knowledge about the task types
and their relationship with the workers profiles. It operates as follows: to begin, in an of-
fline phase, completed tasks are clustered into homogeneous groups for each of which the
correlation with the workers declarative profile is learned. Then, in the online phase (i.e.
the actual crowdsourcing), an incoming task is matched to one of the existing clusters and

6
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the correspondent profile model is used to select the most reliable workers for the given task.
CAWS eliminates the need for a priori knowledge about individual workers by leveraging,
on the one hand, the declarative profiles of the workers and, on the other hand, the similarity
between the tasks. Moreover, it reduces the time and budget overheads by eliminating the
need for an online probing step which it replaces by the offline learning phase.

Evaluating CAWS proved that using text vectorizing techniques allows to group the
tasks into homogeneous clusters over which the learning process can be applied. Results
showed that one can reduce the time and budget overheads by eliminating the probing stage
while achieving aggregation accuracies similar to these achieved through a job-based group-
ing. Term frequency based vectorizing outperformed the more semantic Doc2Vec vector-
ization which might be due to the short length of the tasks. Besides, this offline learning
showed to be beneficial, especially for harder tasks which are usually the most time and
budget consuming tasks in crowdsourcing since they require more redundant contributions.

CrowdED

The crowdsourcing research community lacks for information-rich datasets such as the one
needed to evaluate CAWS. Indeed, CAWS leverages a multitude of task and worker features
in order to complete its selection task. In the available datasets, these features are either
absent or insufficiently present. In order to overcome this dataset challenge and evaluate
CAWS, we designed and built CrowdED (Crowdsourcing Evaluation Dataset). CrowdED
is a rich dataset to evaluate quality control methods and quality-driven tasks vectorization
and clustering. The generation of CrowdED relies on a constrained sampling approach
that allows to produce a task corpus which respects both, the budget and type constraints.
Beside helping in evaluating CAWS, and through its generality and richness, CrowdED
helps plugging the benchmarking gap mentioned earlier.

CREX

To maintain its usability as a generic evaluation dataset for quality control methods, CrowdED
is meant to be extended and enriched collaboratively. This allows it to fulfill the require-
ments of future quality control mechanisms. To enable this collaborative extension, we pre-
sented CREX (CReate Enrich eXtend), an open source platform for creating, enriching, and
extending crowdsourced datasets like CrowdED. Thanks to its configuration panel CREX
is an easy to use platform. Its modular architecture and open source availability allow it to
be collaboratively extended. Furthermore, these modules, which are highly configurable
can be used together in an end-to-end fashion, independently or as an entry point of any
sub-workflow of CREX. All of this renders the multipurpose use of CREX possible.

6.2 PERSPECTIVES

In this section we discuss the perspectives of the work achieved in this thesis. We start
by a short term perspective which consists in testing an ongoing work on a new feature
taxonomy for task characterization. Moreover we describe a feature weighting method that
infers the importance of each feature from the historical tasks. Then, we discuss some long
term perspectives concerning the worker preferences and task trends handling.
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6.2.1 FEATURE TAXONOMY

In its current version, CAWS relies on text document vectorization techniques in order to
discover the task contexts. This approach considers mainly the content of tasks. However,
crowdsourcing tasks provide more dimensions than the bare knowledge related one. In the
literature, many works [1, 3, 80, 96, 107] proposed to characterize tasks through human
skills as this facilitates the matching process with the workers characterized in the same
feature space. The limitation of this approach raises from the fact that this skill character-
ization step is done manually by the requesters which is prone to biases and inconsistency
and which adds a heavy work load on the requester side. Moreover, rewards, input and
output types, length, and other features can also be used to better estimate the similarity
between the tasks and thus, allows a better discovery of the task types.

We advocate an automatic feature extraction approach which allows a fine grained and
a more dynamic task categorization through low level task features. These features need to
be selected and grouped in a way to reflect the human skills and abilities. To this end, we
propose to use the well known human abilities taxonomy of Fleishman et al. [34] and to gen-
eralize the taxonomy proposed by [43] to get the following five categories of human skills
: perceptual, technical, decisional, behavioral and knowledge-related. We then propose to
derive three categories of low level task features as follows:

Presentation features describe the layout, language, length of the task, the type of input
data (texts, multimedia) and expected answer types (textual, graphical, boolean).

Action features describe the action that must be taken by the worker (give a label, edit a
text, tag an image, etc.).

Content features describe the actual content and knowledge domain of a task.

These three types of features reflect for a worker, respectively, her perceptual and be-
havioral skills [108], her technical and decisional skills and her knowledge in the task topic.
Extracting these features is a process of document parsing and text mining for which dif-
ferent techniques can be used as shown in [31]. Indeed, these features are not equally
important in describing the task. One can argue, for example, that knowledge and technical
skills have a greater influence on the worker performance and thus, features related to these
skills must have a greater importance in the clustering process. Therefore features should
be be weighted. Here, we seek inspiration in recommender systems and describe a method
that finds these hidden weights. We propose, first, to use a linear feature similarity com-
bination. We denote by SimA,SimC and SimP three different similarity measures of action,
content and presentation features respectively. A linear combination of these measures is a
similarity measure that can be expressed as shown in equation (6.1).

Sim(ti, t j) = ωASimA(ti, t j)

+ ωCSimC(ti, t j)

+ ωPSimP(ti, t j)

(6.1)

In equation (6.1), ωA,ωC and ωP are the weights of the different feature types to be
found. In order to compute the optimal values of these weights, we can use an item profiling
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technique that is common in the collaborative-filtering recommendation. For each task, we
compute the individual accuracy of all workers who participated in it. These accuracies are
used as features to form a profile vector for the task. After computing all the task profiles,
we can build a matrix Π whose columns are task profiles and rows are the accuracy of
workers in all tasks. Π is shown in equation (6.3). In fact, the similarity between task in the
accuracy space i.e. in Π , is considered as a ground truth since it is derived from real world
data. It is then a logical and reliable base for the weight inference process.

Let t be a task.
Let W be a set of workers of size n.
Let αwt denote the accuracy of worker w in answering a tasks t.
πt denotes the derived profile of t such that:

πt =< α1t ,α1t , . . . ,αnt > (6.2)

Let T be a set of tasks of size m.
Let W be a set of workers of size n.
Π denotes the derived profile matrix of the system:

Π =


t1 t2 . . . tm

w1 α11 α12 . . . α1m

w2 α21 α22 . . . α2m
...

...
...

...
wn αn1 αn2 . . . αnm

 (6.3)

We consider a vector similarity function (e.g. cosine similarity) denoted Sim′ and we
compute the similarity in Π of all task couples (t, t ′) ∈ T ×T .

fth(t, t ′) =

{
1 i f Sim′(ti, t j)> th
0 i f Sim′(ti, t j)< th

(6.4)

Where th a given similarity matrix. Using the found similarities and the decision function
shown in (6.4), we can build a linear model that can be solved to estimate ωA,ωC and ωP.

fth(t, t ′)∼ ωASimA(ti, t j)+ωCSimC(ti, t j)+ωPSimP(ti, t j)+ ε (6.5)

6.2.2 ADDING WORKER PREFERENCE

Recently, few works started exploring the field of worker-centric quality control and through-
put optimization methods [1, 96]. Our method can be classified under the category of
requester-centric quality control. That is, it takes into account the budget and quality re-
quirements of the requesters in selecting the workers. Yet, it does not consider, explicitly1,

1An implicit assumption about the worker preference is indeed made in our approach as workers are usually
good in performing tasks they like.
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the preferences and the requirements of the workers who constitute the backbone of the
crowdsourcing system. One possible improvement of CAWS towards including the worker
preferences in the selection process, is to use a compound quality measure during the learn-
ing process instead of a pure quality oriented one. For instance, one can compute a weighted
linear combination between the worker accuracies for the historical tasks and his preference
score for these tasks. Preference scores can be extracted from implicit e.g., number of tasks
solved in the same cluster, average lifespan per task set, etc. or explicit feedbacks e.g., task
ratings, requester ratings, etc. This compound accuracy/preference score can be used as
targets for the profile observations in the discovery algorithm (Section 3.3.2) to find the cor-
relation between the worker features and their reliability and preference score for a given
type of tasks.

6.2.3 CONCEPT SHIFT AND MODEL ADJUSTMENT

The interest in using crowdsourcing keeps growing to reach a wider range of tasks. New
task types start emerging due to the need for new input and output types, of action types, of
content and so on. This can have an impact on the performance of CAWS. That is because,
after a certain lifespan, the trained model might no more suit these new types. It might be
possible that incoming tasks can’t be matched to any cluster among the precomputed ones.
Hence none of the learned models is suitable to target workers for these tasks. It is crucial
then to have an update strategy to adapt the computed models. This change in the task type
trends is less likely to affect the whole system at once and is more likely to affect specific
clusters. Retraining the whole system, besides its computational cost, might be unnecessary.
Studying the structure of each cluster and detecting the formation of new type patterns can
allow to avoid recomputing all of the models and restrict it to the changing ones only.

6.2.4 QUALITY GUARANTEES

When evaluating CAWS, we observed a correlation between the agreement of the worker in
a given task cluster - measured with the Krippendorff’s alpha2 [66] - and the quality of the
selection process. This correlation can be leveraged to propose time and quality guarantees
to the requester. That is, for task types where the agreement in the history is very high, the
crowdsourcing platform can propose a looser selection process to the requester. This allow
a faster contribution collection step. For the other task types where the historical agreement
is less obvious, a more strict selection need to be performed and only top workers should be
targeted. However, if these are not available at a given moment, the platform can compute a
quality guarantee score of the online workers, using the agreement of workers with similar
profiles found in the history. Based on this guarantee score, a suitable reward per assignment
can be recommended to the requester. The requester can then make the choice between
faster and cheaper, yet lower quality contribution collection step and a slower and more
expensive, yet high quality contributions.

2This is a global agreement metric that measure the how much a set of workers agrees on the answers of a
set of tasks by comparing the answer distribution to a random answer distribution.





Details about the CREX platform

A.1 DEPENDENCIES

CREX code is developped in [Python](https://www.python.org/) v3.5.2. The following
packages are used:

1. scikit-learn : http://scikit-learn.org/stable/ (clustering and evalua-
tion measures)

2. pandas : http://pandas.pydata.org/ (data structure and matrix handling)

3. scipy : https://www.scipy.org/ (scientific computing library)

4. numpy : http://www.numpy.org/ (scientific computing library)

5. seaborn : https://seaborn.pydata.org/ (data visualization)

6. nltk : https://www.nltk.org/ (natural language processing)

7. gensim : https://radimrehurek.com/gensim/ (doc2vec implementation)

8. termcolor : https://pypi.python.org/pypi/termcolor (visual console
output)

A.2 REFERENCES

CREX and CrowdED can be found on Figshare associated to the following DOI:

URL https://figshare.com/s/ca41a59f73c092385fc3

DOI https://doi.org/10.6084/m9.figshare.6109559 (Inactive until resource is made public)

A.3 CONFIGURATIONS

Following is a list of the configurable parameters of CREX along with their descriptions:

A

http://scikit-learn.org/stable/
http://pandas.pydata.org/
https://www.scipy.org/
http://www.numpy.org/
https://seaborn.pydata.org/
https://www.nltk.org/
https://radimrehurek.com/gensim/
https://pypi.python.org/pypi/termcolor
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Parameter name Values Description
preprocess_ [True/False] Preprocess the data or not, i.e., tok-

enize/stemm/train the vectorizer models. If
False a pre-processed data folder should be
given.

vectorize_ [True/False] Compute the feature vectors or not, e.g.,
TFIDF transform. If False a pre-processed
data folder should be given.

cluster_ [True/False] Run CM or not.
sample_ [True/False] Run SM or not.
evaluate_ [True/False] Run EM or not.
distance_metric_ [euclidean/cosine] Distance metric to be used by CM.
doc_sample_sizes [array of size 1]** e.g. [1000] If a large corpus is used to train

the vectorizers, a subsample of this corpus
can be vectorized and clustered if needed

preprocess_tfidf [True/False] Whether to train the TFIDF vectorizer or
not

preprocess_doc2vec [True/False] Whether to train the Doc2Vec vectorizer or
not

different_custering_data [True/False] Whether to use a corpus different from the
one used for training the models or not

n_clustering_processes [integer] Number of processes for the parallel execu-
tion of the clustering.

n_evaluation_processes [integer] Number of processes for the parallel execu-
tion of the evaluation

kmeans_k_ [array of values/PARI]* Number of cluster for Kmeans.
minibatch_km_ [0/INTEGER] If 0 minibatch is not used, else minibatch is

run with the given batch size
dbscan_min_points_ [array of values/PARI]* The minimum point parameter of DBSCAN
dbscan_eps_ [array of values/PARI]* The EPSILON parameter of DBSCAN
agg_k_ [array of values/PARI]* Number of cluster for the agglomerative

clustering.
agg_linkage_ [’ward’, ’complete’, ’average’] The linkage parameter of the agglomerative

clustering.
doc2vec_sizes_ [array of size 1]** Size of produced Doc2vec vectors
doc2vec_windows_ [array of size 1]** Size of used Doc2vec window
tfidf_vector_sizes_ [array of size 1]** Size of produced TFIDF vectors
tfidf_pca_ [True/False] Whether to use PCA dimension reduction

or not
tfidf_vector_sizes_pca_ [array of size 1] Size of the PCA vector
sampling_fitness [rmse/minmax] The objective function of the dampling al-

gorithm
max_sample_size_ [INTEGER] Size of output sample ("S" in the draft)
min_samples_per_cluster_ [INTEGER] Minimum sample size per cluster ("th" in

the draft)
max_sampling_iteration_ [INTEGER] Maximum number of itterations ("itt" in the

draft)
eva_measures [array of (’hcv’/’sil’/’coc’)] The evaluation measres to compute by the

EM
eva_vectorizing_models [’tfidf’/’doc2vec’] The vectorizing modules to evaluate
eva_clustering_models [’kmeans’/’agg’/’dbscan’] The clustering modules to evaluate
result_folder [PATH string] A path to the output folder
raw_data_folder [PATH string] A path to the input data folder
preprocessed_location [PATH string] A path to the preprocessed data folder
raw_clustering_data_folder [PATH string] A path to the data to cluster if (differ-

ent_custering_data is True)
clustering_vectorizing_combs [array of (’clustModel_vectModel’)] e.g. [’kmeans_tfidf’, ’dbscan_doc2vec’]

tells the VM and CM what models to train
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