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Abstract

Doctor of Philosophy

Energy Aware Routing in Carrier Grade Ethernet Networks

by Rihab MAALOUL

The reduction of energy consumption is a major concern for Telecom opera-

tors and Internet Service Providers (ISPs). This thesis addresses the problem

of energy efficiency in the wired communication networks using Ethernet-

based technology. We study the most relevant models of energy-aware rout-

ing which are Carrier-grade Ethernet compliant. For every routing model,

we present mathematical formulation as an exact method based on linear

programming. In addition, we propose a set of heuristic algorithms suitable

for large-sized networks. In order to better understand the possible ways

to limit energy consumption in Metro Ethernet systems, the first part of this

thesis is to survey and classify the main approaches related to energy saving

on IP networks that could be adapted to Metro Ethernet systems. The second

part is devoted to the implementation of new energy-efficient routing models

and algorithms for Carrier Ethernet networks. We present two models which

are compliant with SPB (Shortest Path Bridging protocol, IEEE 802.1aq). The

first model can be categorized as a topology oriented model that ignores the

network traffic in sleeping decision. Whereas the second, can be categorized

as traffic oriented model, that takes into account the network traffic matri-

ces in sleeping decision. Afterwards, we deal with energy aware routing

with SDN (Software Defined Network) approach. Finally, we evaluate the

impact of our algorithms on the most relevant network performance met-

rics such as the network connectivity, the average paths length, the average

traffic load, network reliability and the fairness of traffic distribution. The

experiments on several realistic network topologies showed that our models

could achieve a significant amount of energy saving while maintaining an

acceptable network performance.
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General Introduction

——————————————

Context

In recent years, significant innovations have been elaborated to Ethernet stan-

dards to meet the requirements of next-generation high-speed networks that

can support innovative applications. This makes Ethernet a widely used

technology deployed at all levels of network architectures (access, metropoli-

tan and extended). For instance, carrier Ethernet is massively used to deliver

data center applications that involve high performance and high availabil-

ity computing. The wired green network is an energy efficient network that

has enough energy to operate with the desire to reduce its consumption as

recommended by many global guidelines. The increase in traffic is accom-

panied by an increasing amount of equipment needed to carry this traffic

and, consequently, the total energy consumption of the network equipment

will increase. The research challenges facing academic and industrial com-

munities is to reduce energy consumption in the different categories of ele-

ments. The ambitious goal set out by the GreenTouch consortium in 2015 is

to achieve 98% energy reduction by 2020 compared to the reference scenario

developed previously in 2010. In this regard, the effective use of energy in

communication becomes a key issue for industry, society, and government.

In order to reduce energy consumption, it is imperative to design and de-

velop energy-efficient network protocols and architectures. In this context,

the thesis topic is built around. Indeed, the basic objective is to study and

propose solutions to the problem of energy consumption optimization in

Metro-Ethernet networks. Some innovations in protocol and architecture de-

sign are necessary for energy efficiency. The typical research idea is usually

called energy-aware routing (EAR), that aims at putting unused network ele-

ments into sleep mode to reduce the energy consumption. However, several

communication requirements should be respected by EAR.



2

Problem

The challenge of saving energy needs to be addressed at many different lev-

els, such as network architecture, equipment; network protocols, and net-

work management algorithms. Implementation of energy savings for inter-

connection equipment (routers or switches) is complex because they often

exchange routing information through routing protocols and therefore can-

not simply enter a sleep mode even if there is no data traffic. On the other

hand, there are very often many possible paths between two points of the

network and a certain number of these paths can be deactivated if certain

nodes do not have packets to be transmitted. Therefore, coordination is nec-

essary to rearrange certain paths so that traffic can be aggregated along these

paths while allowing network devices on "idle" routes to go into sleep mode.

Indeed, often there is enough redundancy in the network so that some of

the nodes can be disabled when not used as a source or as a destination for

traffic, and they are not essential as transit nodes. In the same way, node

interfaces can be asleep when there is no traffic on the associated links, or

when traffic is below a given threshold and it is possible to re-route traffic

via another path. However, the ability to disable nodes or links must be care-

fully evaluated regarding different aspects: (i) how to guarantee the network

connectivity and to maintain QoS requirements, (ii) where to place the intel-

ligence of the system (centralized or distributed architecture), and, (iii) how

to ensure network resilience in case of failure.

Contributions

In this thesis, we address the problem of optimizing the routing protocols

used in carrier Ethernet networks. We have first studied the possibility to

integrate and extend already existing and successful IP-based techniques.

Therefore, we implement and extend an IP based EAR algorithm to propose

a MEEAFS (Metro-Ethernet Energy-aware Forwarding Strategy). This algo-

rithm is a traffic-unaware algorithm in which nodes are categorized in im-

porter and exporter nodes. This strategy can be applied with Shortest Path

Bridging (SPB IEEE 802.1aq) protocol that uses the shortest path of only ex-

porter nodes to allow switching off the links on the shortest path of non-

exporters. In order to guarantee a certain level of QoS, the candidate links to

be switched off can be actually turned off only if their utilization is below a
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given link utilization threshold. We considered single path unsplittable rout-

ing and a connection between two nodes is considered by simple link. We

have then considered multi-path splittable routing and the connection be-

tween two nodes is represented by bundled links consisting of multiple ca-

bles. We have formulated a mixed integer linear program, called SPB-EAR,

to model the problem. Then we have proposed two heuristics, Green-SPB

(G-SPB) and Fast greedy (FG-SPB) to rapidly obtain near-optimal solutions.

After that, we consider further problems when deploying EAR in Soft-

defined network (SDN). In particular, we consider the limited rule space in

OpenFlow switches. Finally, we consider ensuring route reliability for each

traffic request. Each request is routed along two node-disjoint paths consid-

ering dedicated protection scheme.

Table 1 summarizes our publications associated with each chapter.

TABLE 1: Publications

Publications Chapters Rank/IF
R. Maaloul, L. C. Fourati, and B. Cousin, “Energy Saving Carrier-
Grade Networks: A Survey”, Computer Standards & Interfaces
(2017)

1,2 1.268

R. Maaloul, L. C. Fourati, and B. Cousin, “Study of energy sav-
ing in carrier-Ethernet network”, Artificial Intelligence, Modelling
and Simulation (AIMS), 2014 2nd international conference on. IEEE,
2014.

2 -

R. Maaloul, L. C. Fourati, and B. Cousin, “Energy-aware for-
warding strategy for metro ethernet networks”, ACS/IEEE Inter-
national Conference on Computer Systems and Applications AICCSA
2015.

3 C

R. Maaloul, R. Taktak, L. C. Fourati, and B. Cousin, “Equal cost
multiple path energy-aware routing in carrier-ethernet networks
with bundled links”, ACS/IEEE International Conference on Com-
puter Systems and Applications AICCSA 2017

4 C

R. Maaloul, R. Taktak, L. C. Fourati, and B. Cousin, “Energy-
Aware Routing in Carrier-Grade Ethernet using SDN Approach”,
required revision by IEEE transactions on green communications and
networking

5 -

R. Maaloul, R. Taktak, L. C. Fourati, and B. Cousin, “Two Node
Disjoint Path Routing for Energy Efficiency and Network Relia-
bility”, submitted in ICT 25th international conference on telecommu-
nication

6 C

Manuscript organization

Chapter 1, presents the practical context of the energy consumption prob-

lem in wired networks. We identify how energy is consumed within the

global network architecture. Also, we present some relevant measurements
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in optical networks. In Chapter 2, we present a literature review of green

networking and related optimization problem. We propose a new taxonomy

of the energy saving approaches based on their deployment and operation.

In Chapter 3, we present our MEEAFS (Metro Ethernet Energy-Aware For-

warding Strategy) approach which is SPB compliant and based on Dijkstra’s

algorithm. We discuss how to adopt the inspired approach which is OSPF-

based in the Metro Ethernet context especially with SPB protocol. Chapter 4,

presents an exact formulation of the energy aware routing problem consid-

ering the ECMP (Equal Cost Multi-Path) routing policy of SPB with bundled

links. We use optimization techniques Mixed Integer Linear Programming

(MILP) and greedy heuristics to tackle the problem. In Chapter 5, we pro-

pose an energy-aware routing with Software-Defined Networks architecture.

We consider the limitation of flow table size. We also use optimization tech-

niques Integer Linear Programming (ILP) and first-fit heuristics to solve the

problem. Finally, Chapter 6, presents a new energy-aware routing with node-

disjoint backup path to minimizes consumption when dedicated protection

is considered.



5

Chapter 1

Energy Saving Carrier-Grade

Networks

1.1 Background and motivation

Reducing electricity bills and energy consumption has become a crucial goal

for all sectors, including the Information and Communication Technology

(ICT) sector, as it is rapidly becoming an important play-actor in daily life [1,

2]. The alarming figures reported by worldwide energy consumption have

pushed telecom operators to rethink their network policy [3]. Nowadays,

the function of the ICT is progressed by addressing energy awareness in all

phases of production and service delivery. Energy-aware studies in commu-

nication networks, especially with respect to the environmental conditions,

are commonly referred to as green networking.

As the traffic demand continues to grow, it requires additional network

resources with higher capacity and faster processing speeds. Moreover, the

improvements in network infrastructure drive the quest for green network-

ing. In particular, for transport and carrier grade networks, represent perma-

nent and extensive resources of power consumers. For instance, data center

operators require a considerable amount of power to operate server stacks,

storage equipment, cooling equipment, operation room and so on. Green

networking has two main reasons [4]:

1) The environmental reason: most energy consumption is accompanied by

non-negligible GHG (Green House Gas) emission that has harmful conse-

quences on climate. In addition, a decrease in GHG emission volume be-

tween 15-30% is required before 2020 to keep the global temperature increase

below 2◦C [5]. A large set of telecom operators and Internet Service Providers

(ISPs) consider GHG reduction and its ecological impacts. In fact, the volume

of carbon dioxide emissions produced by the ICT sector alone is estimated to

be over 2% of the total world carbon footprint in 2020 [6]. In 2007, this 2% was
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equivalent to 830 million metric tonnes of carbon dioxide [7] and it would be

about 1100 million tonnes by 2020 [8, 9].

Statistical reports provided by certain telecom operators state the overall

amount of their power requirements and the related carbon footprint [10–12].

All of these studies show that ICT energy consumption represents an impor-

tant carbon dioxide emission and will increase rapidly if no green technique

is adopted. It might account for more than 35.8 TWh by 2020 [8, 13, 14].

2)The economic reason: the rapid increasing of CAPEX (Capital Expen-

diture) and OPEX (Operational Expenditure) represents a major economi-

cal concern. CAPEX is related to network infrastructure establishment cost,

whereas OPEX is related to network operation and administration. Energy

costs have been investigated by the operators and their financial damage

has been put in perspective. Figure 1.1 shows the constantly rising energy

costs. Moreover, [15] anticipates that a one-third reduction of carbon foot-

print emissions could create an economical benefit greater than the invest-

ments required to attain this goal.

FIGURE 1.1: Estimated OPEX for the European telcos’ network
infrastructures in the ”Business-As-Usual” (BAU) and in the
Eco sustainable (ECO) scenarios, and cumulative savings be-

tween the two scenarios [4]

The estimation of energy consumption is based on the primary seminal

study done by [16], which states the annual electricity consumed by net-

working devices in the U.S. was 6.06 TWh, which costs USD$ 1 billion per

year and it is equivalent to one nuclear reactor.

As a result of these two reasons, international projects and research bod-

ies have focused on developing green network infrastructures. We show
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here the key enablers to understand the source of energy waste and by what

means energy could be saved. Also we present the most relevant achieve-

ments that allow a better ratio of performance to energy consumption in

wired networks. The emergence of a multitude of approaches and mecha-

nisms on power saving necessitates a study and an analysis of these different

approaches in order to identify and classify the potential mechanisms for dif-

ferent scenarios and network domains.

We place specific emphasis on energy-saving studies dedicated to carrier-

grade transport networks [17, 18]. These networks are energy-hungry in-

frastructures; they run large-scale systems to deliver internet services. We

choose correspondingly to overview approaches that could be helpful and

adapted to carrier-grade transport networks. Carrier grade means extremely

high reliability and refers to the capability to support thousands if not mil-

lions of subscribers [19]. To the best of our knowledge, it doesn’t exist any

review focused on carrier-grade networks. A carrier-grade network is not a

single technology, but rather a collection of different technologies. A set of

functionalities and requirements must be defined in carrier-grade communi-

cation: (1) Scalability; (2) Resilience; (3) Quality of service; and (4) Service

management. In networks that involve carrier-grade requirements, power

saving often induces the reduction of network redundancy or network per-

formance. For instance, in order to meet the resiliency and quality of service

requirements, the network should provide fast fault recovery (under 50 ms)

through a number of duplicated resources that are not used frequently. Con-

sidering the performance trade-off versus power saving, designing efficient

power-saving strategies is a real challenge. Nevertheless, the green commu-

nications and networking fields are still in their early stages; yet they have

already spurred a considerable number of interesting works, which are sur-

veyed and analyzed in this chapter.

1.2 Principal Contributors to Network Energy Con-

sumption

In order to gain a complete view of the principal contributors to energy con-

sumption, it is crucial to consider the communication networks globally from

the user level to the transport level, as shown in Figure 1.2. We identify three

key contributors that consume energy within the overall network infrastruc-

ture: network devices, network architecture, and delivered services.
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1.2.1 Network devices

The most important contributor to the power expenditure of network sys-

tems are the physical networking devices. This includes elements in differ-

ent network domains: core, metro, and access networks. Several strategies

have been proposed for the energy management of networking devices, ([20]

among others).

FIGURE 1.2: Overall network energy consumption

Each type of network device (hubs, routers, switches . . . ) has its own ar-

chitecture and functionalities. Hence, each network device presents a power

consumption that is influenced by many factors such as manufacturer type,

number of active ports, number of line cards, traffic characteristics, and used

protocols. Since there is no standard used in power-line measurement of

network devices, some benchmarks are used as reference to characterize the

power consumption. Indeed, various workers have proposed models to de-

scribe the energy consumed by network devices such as hubs, switches, routers,

and other network devices, starting from the pioneering work of [16] and fol-

lowing works such as [20–23]. Table 1.1 lists the power consumption of the

main network devices, as shown in [20]. We observe that almost every spec-

ified device demonstrates non-proportional energy consumption behavior,
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TABLE 1.1: Power consumption summary for network de-
vices [20]

10/100 Edge Edge Edge Core Edge
Device category Hub switch switch switch switch router

12−port 24−port 48−port
Rated Max Power (in %) 35 759d 857e 300 3000 300

Measured Max Power (M)a 12.8 198 175 102 656 210
Measured Idle Power 11.7 150 133.5 76.4 555 168.5

EPIb (in %) 8.59 24.2 23.7 25.1 15.4 19.8
Aggregate bandwidth in Mbps 1200 48000 48000 48000 48000 24000

mW /Mbpsc 10.7 4.1 3.7 2.1 13.7 8.75
aM is the amount of the power consumed in W,
b Energy Proportionality Index
c Measured max power in mW / Aggregate bandwidth in Mbps. This term is
equivalent to Joules per bit.
d including 400 W for PoE (P over Ethernet )
e including 400 W for PoE .

TABLE 1.2: Power consumption for major components of typi-
cal server [27]

Component Peack power (W) Count Total (W)
CPU 100 2 200

Memory 20 4 80
Disk 10 1 10

Motherboard 40 1 40
Fan 30 1 30

System total 360

as shown by the EPI values. Thus we observe significant independency be-

tween the energy consumed and the traffic throughput. However, relying

only on the power consumed at the maximum rate reported by data sheets

can overestimate the current power consumption.

Other studies [24–26] focus on minimizing the power dissipation of spe-

cific components such as Network Interface Card (NIC), hard disks, and

CPUs. Thus, [27] measure the power consumed by the main components of

a typical rack server ( Table 1.2). European Union (EU) has published power

consumption guidelines in different updated version of conduct code on en-

ergy consumption of broadband equipment. In this respect, we reproduce

in Table 1.3 the power values for WAN components interfaces [28].

Figure 1.3 shows the contribution of different types of network device to

the worldwide energy consumption according to the analysis of Lawrence

Berkeley National Laboratory (LBNL) campus [29] in 2009. These figures
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TABLE 1.3: Power consumption for WAN interfaces [28]

Component 2013-2014

Idle State (W) On State (W)
Fast Ethernet WAN 2.0 3.0
Gigabit Ethernet WAN 2.5 5.0
FibrePtPFast Ethernet WAN 2.9 5.0
Fibre PtPGigabit Ethernet WAN 3.2 5.6
10/1G-EPON 4.8 6.2
10/10G-EPON 5.3 7.7
XG-PON1 4.8 6.5
Gigabit Passive Optical Network (GPON) 3.5 5.0
Ethernet Passive Optical Network (EPON) 3.5 4.7

demonstrate that network switching and premises equipment are the largest

categories, for about 70%, of the overall energy use.

FIGURE 1.3: Energy use of network equipment

Due to the technological advances in the ICT field, there is an important

necessity for a permanent evaluation of the energy consumed by network

devices. Such an evaluation is achieved by the cooperation of network man-

ufacturers, ISPs, standard organizations, and national regulators [30].

1.2.2 Network architecture

The network architecture is the design of the telecom network that spec-

ifies the network’s physical elements and their operational configuration.

The network architecture is typically split into three network domains: core,



1.2. Principal Contributors to Network Energy Consumption 11

TABLE 1.4: 2015–2020 Network forecast/device density and en-
ergy requirements in the Business-As-Usual (BAU). Example

based on the italian network [31]

Power consumption Number of devices Overall consumption
[W] [#] [GWh/year]

Home 10 17,500,000 1,533
Access 1,28 27,344 307
Metro 6 1,75 92
Core 10 175 15

Overall network consumption 1,947

metro, and access networks. In these different domains, the equipment in-

volved, their objectives, their expected performance, and their power con-

sumption levels differ. According to [31], Telecom Italia was the second

largest consumer of energy in Italy, consuming more than 2TWh per year.

Table 1.4 shows overall consumption foreseen for each network domain of

Telecom Italia for the years 2015–2020.

• Core network: often referred to as the backbone network or as the long-

haul infrastructure, which interconnects large cities over continental

and even intercontinental distances [32]. The core network is based

on a mesh interconnection pattern and carries a large volume of traf-

fic. In the backbone network, pairs of routers are typically connected

by multiple physical cables that form one logical bundled link [33] that

participates in intra-domain routing protocol. Link bundles are accus-

tomed because when capacity is upgraded, new links are joined beside

the existing ones, rather than replacing the existing equipment with a

higher capacity link. For example, a 40 Gbit/s bundled link can in-

volve four OC-192 cables with 10 Gbit/s of capacity for each cable. In

2009, [34] suggested an increase of core network consumption: by 2017,

the power consumption of the core network will be equal to that of net-

work access. Furthermore, this study predicts a staggering increase of

300% in power consumption of the core domain in the coming decade.

• Metro network: this is the domain of the telecom network that typically

covers metropolitan regions. It aggregates the highly fluctuating traffic

of residential subscribers from the end user to the core network serv-

ing as an interface between the access and the core. Different network-

ing technologies have been deployed in diverse metro regions across

the world. Today’s dominant metropolitan area networks (MAN) are:

SONET (Synchronous optical Networking), Optical WDM ring, and
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Metro Ethernet Hierarchy. Nowadays, ISPs tend to offer Ethernet in

MAN networks, which are arguably more flexible, scalable, and cost-

effective compared to legacy SONET architecture [35]. Its basic com-

ponents are edge routers, broadband network gateways, and Ethernet

switches.

• Access network: this part represents the end users connected to POPs

(Point of Presence) via a multitude of physical media (e.g. optical, DSL,

wireless). It is a major consumer of energy because it comprises a huge

number of active elements [36]. There are several different access tech-

nologies that can be roughly classified into two main categories: wired

and wireless. A detailed analysis of the energy consumption for the

main used access technologies was given in [37–39].

1.2.3 Services

Power consumption is influenced by the nature of the services being pro-

vided. In other words, the system activity and the usage of network resources

deployed to deliver network services. Indeed, the greatest amount of Inter-

net traffic arises from a wide range of web-based services and applications

available to end users via the Internet [40], such as cloud services, content de-

livery and storage as a service. For instance, content services involve servers

that store up the data/content and control access to it. The ability to run any

of these services assumes that the network system has sufficient power to

perform the task. The network system offers the following types of services:

• Shared services: such as Network File System (NFS), web browsing

and email. These services can be oversubscribed in that many users

may share the offered bandwidth without observing any degradation

in the quality of their service.

• Dedicated hosting services imposing different levels of quality of ser-

vice: a dedicated network resource for each service has to be supplied

through the access and backhaul network to the hosting servers.

Cloud services: cloud computing is expected to be the future internet ser-

vice model by offering network-based rather than desktop-based applica-

tions [41]. Clouds exploit a significant amount of equipment and manage-

ment techniques to allow customers to share a large pool of software, stor-

age, platforms, and computational resources [42]. The most popular cloud

based services are content delivery, Storage as a Service (StaaS) and virtual
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machines-based applications. Also, these services consume various levels of

energy according to their proprieties, i.e. complexity, heterogeneity and large

scale.

The key points for greening carrier-grade networks are the green operations

of network infrastructure, the delivery of services through energy-efficient

equipment and implemented power management, as outlined in the next

section.

1.3 Building a green network

Making a network operate in green way compels the identification of sev-

eral issues using energy efficiency as the primary goal. In order to obtain

a green network, at least four key issues should be adopted, as presented

in Figure 1.4. The green devices issue seeks to build a new generation of energy-

Green 
Network

Efficient Network Design

Green
 Devices

Green
 Routing

Renewable Energy use

FIGURE 1.4: Key issues for greening networks

efficient devices. In this respect, over the next few years, industry has devel-

oped energy-efficient and low-carbon technologies. In order to accomplish

this objective, 10 key actions should be realised that are outlined in [43].

[44] proposes to replace the electronic circuits within routers by photonic cir-

cuits. They could reach over 10 Tbit/s of attainable speed versus 100 Gbit/s

attained by electronics. However, the power consumption of photonic signal

processing technologies is not feasible to be adopted. The same workers, in

one of their next works [45], presented a perspective on device power con-

sumption. They claim that network devices working in the different parts

of the network play a crucial role because the main power consumption in

networks comes from their operational power exigencies and density. The

GreenTouch [46] and ECONET [47, 48] initiatives are the most relevant green
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networking projects appeared by the year 2010. GreenTouch focused on all-

optical networking systems, while the ECONET project has contributed to

speed-up the reduction of energy consumption in silicon elements of net-

work devices, as well as in copper-based access technologies (namely, VDSL),

which both are expected to be used and deployed in telco networks up to

the next 15 years. The efficient network design issue aims at dimensioning the

network architecture and organizing the devices in such a way that they con-

sume a lower amount of energy. The European Commission realized the

significance of this issue, which appeared in its 7th Framework Program

FP7 [49]. This later activated the TREND project (Toward Really Energy-

Efficient Network Design), which has certain pertinent achievements [50]:

• Collection of comparable data to assess the power consumption of ter-

minals, devices and infrastructures, and the identification of power

consumption trends in networking.

• Identification of energy-friendly devices, technologies, algorithms, pro-

tocols and architectures, and the investigation of how they can be intro-

duced into operational networks.

• Definition of new energy-aware network design criteria.

• Experiments that prove the effectiveness of the proposed approaches.

• Identification of a road map for energy-efficient networking.

Green routing issues aim at introducing energy-aware mechanisms inside

routing protocols, which would be able to manage the power state of net-

work resources dynamically. In this regard, numerous studies have proposed

several energy-efficient algorithms to route the traffic [51–55]. These works

focus on routing path selection subject to minimizing the energy consump-

tion, whether by powering off devices (or part of them) or by routing the

traffic through energy-efficient paths that are weighted according to their en-

ergy impact [56]. On the other hand, [57] validated that geographical de-

localization is a promising approach to reduce the cost of electricity related

to the routing. In fact, large companies like Amazon have systems that are

geographically distributed where electricity has a lower cost. However, this

technique is helpful from an economical point of view, but does not reduce

the power consumption.

Renewable energy use aims at exploiting renewable resources such as the Sun,
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wind, and water, hence reducing expenditure as well as the emission of a

carbon footprint. In this respect, renewable energy utilization makes use of

several concepts such as the option to choose a greener resource, electricity

price-based, energy resource availability and the localization of renewable

energy generators for smart grid communications and renewable electricity

use [58, 59]. Moreover, a number of popular ICT companies are becoming

dynamic supervisors in their electricity use. Table 1.3 indicates information

on renewable electricity and carbon footprint reduction goals identified by

ICT organizations [60].
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1.4 Energy profiles

Profiling the energy consumption for network devices motivates manufac-

turers to implement green technologies and to achieve meaningful power

savings. The energy profile is defined as the dependence of the energy con-

sumption (in Watt-hours, Wh) as a function of four main factors: the traffic

load through the device, the number of active ports, the line speeds, and

firmware version [33]. Figure 1.5 shows various energy profiles depending

on the traffic through the network devices [56]. Moreover, the case-study

calculation results show that by applying energy profile aware routing, a sig-

nificant amount of energy and operational cost can be saved. –On-Off : this

FIGURE 1.5: Proposed Energy Profile [56]

energy profile corresponds to the characteristics of many existing devices. It

is the most simple energy profile that fully empowers the network equip-

ment when this is later turned on (e.g. the operation of traditional Ethernet

switches). The energy consumption of this profile does not depend on the

usage (i.e. actual traffic load).

–Linear: devices belonging to this energy profile exhibit a power consump-

tion that is proportional to their usage. Switch manufacturers such as Batcher,

Fully connected and Crossbar follow this energy profile [61]. Ideally, devices

should have a linear energy profile. In addition, Barroso [62] introduced the

proportional computing concept that may be applied to individual devices

and components such as PCI slots and CPU cores to be into a sleep state
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when they are idle.

–Log 10: this energy profile is an approximation of the profile produced by

devices using the hibernation technique, so-called low-power idle proposal

adopted in IEEE 802.3az Task Force [63]. Moreover, in [64], it was shown that

the energy consumption can be as low as 10% compared to that of the On-Off

energy profile.

–Log 100: this energy profile corresponds to an intermediate function be-

tween Log10 and On-Off representation. It might be a realistic end result

when the proposed techniques by IEEE 802.3az are implemented.

–Cubic: this profile corresponds to equipment that adopts power reduction

techniques like dynamic frequency scaling DVS (Dynamic Voltage Scaling)

and DFS (Dynamic Frequency Scaling). In [65], Ethernet interface cards im-

plementing DVS and DFS were demonstrated to reduce power consumption

cubically.

Another study of energy consumption profiles was introduced in [66].

Figure 1.6 depicts the different load-dependent energy profiles as well the

optimized footprint that a device could present as a function of its utilization.

Another important energy profile model was introduced in [5]. This model

is achieved through analytical framework. It allows estimating the energy

profile of network devices, within diverse states, adopting two mechanisms,

i.e. Adaptive Rate (AR) and Low Power Idle, described in Chapter 2. Fig-

ure 1.7 shows an energy profile corresponds to a generic device that has four

available AR states (S). The power consumption of a device is assumed to

have S power states, which are thought to be ordered from the lowest energy

consumption state (s=0) to the most energy-hungry state (s = S − 1). Where

λ is the dependency parameter of idle optimization from power states (if

λ = 0, idle logic is completely unaware of power states, if λ = 1 there is no

idle logic). λ is the normalized value of traffic load incoming to the device.

φ indicates the energy consumption of the device. σ is a shape parameter of

idle optimization efficiency (ideal case, real case). ξ represents how much is

conservative the optimization in terms of choosing the most suitable power

state maintaining the desired QoS level for the incoming traffic. Finally, ν is

a shape parameter of power states’ energy consumption. The optimal profile

simply consists of a piece-wise curve, composed by the most power saving

parts of AR curves guaranteeing that the sum between the average incoming

traffic load and a guaranteed threshold (ξ) is lower than the maximum value

of the service rate in AR states.
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(A) Energy consumption as a function of
utilization

(B) Optimized footprint as a function of
utilization

FIGURE 1.6: Load-dependent energy consumption [62]

Network design and traffic-engineering decisions can exploit the full energy-

saving potential of network devices using information of load-dependent en-

ergy consumption and energy profiles. In this respect, a recent standardized

interface referred as Green Abstraction Layer (GAL), has been approved by

ETSI (the European Telecommunication Standards Institute) [67]. GAL inter-

face enables energy management protocols to consistently determine which
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FIGURE 1.7: Energy profiles in various AR states in the pres-
ence of LPI primitives and the resulting optimal device energy

profile [5]

power management capabilities are available at the data plane, their poten-

tial effects on both energy consumption and network performance, and how

to interact with them. [68] illustrates how GAL represents a multilayered

(four-layers) abstract model of the energy-saving capabilities for devices de-

ploying local and network-wide control policies in a heterogeneous setting.

Besides GAL, an energy-management working group (EMAN) has been es-

tablished by the IETF [69]. EMAN reuses existing works and investigates

existing standards such as those from IEC (International Electronical Com-

mission), DMTF (the Distributed Management Task Force), ANSI and others.

The EMAN framework allows monitoring heterogeneous devices connected

to a network to report their energy use over the time. For instance, the EMAN

framework [70] describes how energy information (measurement, character-

istics, identification) can be retrieved from IP-enabled devices using Simple

Network Management Protocol (SNMP) with the help of MIB (Management

Information Base) modules.

1.5 Cost and power consumption in optical net-

work

Carrier-grade networks are provisioned in order to meet a set of require-

ments, as mentioned before, resiliency, scalability, quality of service and ser-

vice management of the network. All these critical aspects are commonly

supported through optical networks. Besides, deploying optical switching
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technologies is considered as a promising solution to enable energy efficiency

in the core/transport segment of the internet. These reasons highlight the ne-

cessity to identify the cost and the power consumption of optical networks.

Hence, this section defines different architectures suitable for carrier-grade

networks, especially those employing optical WDM (Wavelength Division

Multiplexing) technologies. Then, we present their corresponding cost (CAPEX)

and energy consumption (OPEX) models. WDM is a technology that is most

probably deployed in broadband area networks. It multiplexes multiple op-

tical carrier signals on a single optical fiber by using different wavelengths

of light. WDM technology utilizes Optical Cross-Connect (OXC) devices to

perform switching and accelerates routing at the optical layer.

1.5.1 Network Node Architectures

The core/metro optical network architecture can be opaque and transparent

[71, 72]. In the opaque architecture (Figure 1.8), all optical signals carrying

traffic undergo an optical to electronic to optical (OEO) conversion (and vice-

versa) at every node in the network. On the other hand, in transparent and

translucent architecture (Figure 1.9), OEO conversion can be avoided by sim-

ply allowing in-transit traffic to bypass optically intermediate nodes. The

OEO conversion represents the largest operational cost for optical fiber net-

works.

FIGURE 1.8: Opaque network architecture [73]

• Different opaque architectures are used in practice among others: SONET/SDH,

basic IP over WDM (B-IPoWDM), and carrier-grade Ethernet technolo-

gies. SONET/SDH is the legacy architecture in MAN. It is a circuit-

based technology that can aggregate low-bit rate traffic streams from
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FIGURE 1.9: Transparent network architecture [73]

metro networks into high bandwidth pipes of core networks [74]. In

SONET/SDH nodes, all switching in the data plane takes place in the

electronic domain. In the next generation of optical transport networks,

SONET/SDH will progressively disappear because it is no longer effi-

cient to sustain today’s data traffic progress. In B-IPoWDM) architec-

ture, inside each node an OXC is interconnected to the IP router. This

architecture is also known as lightpath non-bypass design. The routers

are interconnected by point-to-point optical fiber links; traffic flows un-

dergo O/E/O conversion at every intermediate node. Moreover, in

order to provide carrier-grade service, extensions to regular Ethernet

switching have led the definition of what is known as carrier grade

Ethernet, taking advantages of its simplicity, scalability and effective

cost. Ethernet-over-fiber supports a link rate of up to 100 Gbit/s. Car-

rier Ethernet switch performs OEO conversion of every wavelength as

in a SONE/SDH node. It can use DWDM (Dense WDM) technology.

DWDM is used to transmit many optical channels on the same fiber

component.

• Transparent architectures are expected to enable significant power con-

servation, due to the minimum needed number of OEO conversions.

Among the transparent architectures one can consider: transparent Tp-

IPoWDM (Tp-IPoWDM) and hub-based. This architecture is also known

as lightpath bypass design. In Tp-IPoWDM, each node is equipped

with micro-electrical mechanical systems (MEMS) and as for the opaque

case the IP router is interconnected to an OXC device. If signal regen-

eration is required, the lightpath has to be dropped and the matching

traffic sent to the IP router to be processed. When no regeneration is

required, a significant amount of energy can be saved because the traf-

fic can be switched directly in the optical domain by OXCs (bypassed),
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conserving the capacity of the wavelength [72].

In the hub-based architecture, the traffic sent/received by an access

node is either local (i.e. transmitted from/to one of the access nodes in

the same metro optical network) or intermediate (i.e. directed to/from

the Internet). As most of the traffic is transit traffic, the transparency

is carried out by permitting every access node to have a direct light-

path (i.e. specific wavelength channel) to the hub node. Evidently,

the hub-based architecture is suitable for today’s network traffic states,

i.e., the traffic is either terminated or originating from the Internet. Al-

though the hub-based architecture avoids OEO conversion costs at in-

termediate nodes, it is insufficiently powerful especially in the case of

dynamic traffic scenarios, since the qualities of optical signals degrade

as they travel through numerous optical components. To overcome

these impairments, sharing bandwidth of each channel between multi-

ple source-destination nodes should be implanted.

Interested approaches are suggested in order to optimize the energy

consumption in transparent networks [75–77].

1.5.2 Analytical model for the energy consumption of a WDM

optical network

The estimation of the energy consumption of the physical infrastructure re-

sources is highly dependent on the network architecture employed and the

technology made. In this section, we present an analytical model that consid-

ers the WDM optical network architecture employing wavelength selective

switches using MEMS [78]. The overall energy consumption model is based

on the active elements of the network that can be classified as OXC nodes

and transmission link-related elements. Each OXC node comprises a set of

active and passive elements. Figure 10 illustrates the assumed OXC archi-

tecture. The passive elements incorporated in these nodes are: the multi-

plexers (MUX) and demultiplexers (DEMUX), while the active elements are:

the photonic switching matrix, one Erbium-Doped Fiber Amplifier (EDFA)

per output fiber port, one Optical-Electrical-Optical (OEO) transponder per

output wavelength port and one transmitter (Tx) – receiver (Rx) per lightpath

located at the add and drop ports of the OXC. As the assumed OXCs are sym-

metrical, the number of bypass ports of the OXC is calculated as the product

of the number of input fibres and the maximum number of wavelengths that

a fiber can support.The overall network power consumption is determined
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by the power consumption of the individual OXCs and fiber links (which

includes the installed optical amplifiers). The power consumption of node

,n(POXCn , depends on the four active elements in the OXC: the power of the

switching fabric Psf , power of OEO transponders for transmission PT ran, the

power of the wavelength converters PCon, and the power of the optical am-

plifier PAmp. Equations (1.1)-(1.4) describe the dependence of the power con-

sumption of the node on the individual elements power consumption.

PSF = portstotal × Pportpair
= (portsth + portsa/d) × Pportpair (1.1)

PTran = portsa/d × PT x/Rx (1.2)

PCon = portsth × Ptranspoder (1.3)

PAmp = (fin + fout) × PEdfa (1.4)

The power of a switch fabric is computed as the number of ports (i.e. the

sum of bypass ports portsth and add/drop portsa/d) multiplied by the power

consumed by each switch port. The power related to the OEO transponders

for transmission is the product of the add/drop ports and the power related

to the transmission device PT x/Rx. The power consumption of the installed

amplifiers is computed as the product of the number of incoming and outgo-

ing fibers (finand fout) and the power related to the optical amplifiers.

Figure 1.11 illustrates the fiber link model [79], where the only power-

consuming elements are the optical amplifiers installed per span. The maxi-

mum span length (span) is expected to be 80 km. Thus the power consump-

tion Pl of a fibre link l is length-dependent and is calculated as follows:

Pl = ⌊
length(l)

span
⌋PEdfa (1.5)

Finally, the total energy consumption of the physical infrastructure of N OXC

nodes is calculated as follows:

PNet =
∑

n∈N

POXCn +
∑

l∈L

Pl (1.6)

1.5.3 Cost and power consumption

The CAPEX and OPEX of optical WDM architectures has been the subject of

several case studies [71, 73, 78, 80]. These analysis are often based on linear

programming models and heuristic approaches. [71] provides models for
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FIGURE 1.10: OXC architecture [79]

FIGURE 1.11: Fiber link model [79]

evaluating the cost, power and traffic capacity for opaque and transparent

architectures. The total power consumption and the cost of an opaque and

a transparent network node are determined by subdividing the node into its

main functional blocks: the base node and the equipment related to the phys-

ical layer interfaces. The base node consists of the chassis, the mechanical as-

sembly, the switching matrix, the cooling functionalities, the power supply,

the control and the management functions. Every base node has a limited

number of slots for physical layer interfaces. Figures 1.12and 1.13 recapit-

ulate the normalized cost and power consumption for the components of

Ethernet carrier-grade switches and OADM (Optical add-drop Multiplexer),
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respectively.

FIGURE 1.12: Normalised cost and power consumption for Eth-
ernet Carrier-grade nodes

FIGURE 1.13: Normalised cost and power consumption for an
OADM

[78] models the cost of the power consumption of WDM network com-

ponents in terms of cost and operational power by signal transmission, as

reported in Figure 1.14. The estimation of the power consumption of the net-

work components is highly dependent on the network node architecture and

the network topology. However, packet transmission time or the link load

can be crucial parameters to compute the energy consumption in networks
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FIGURE 1.14: Normalized cost and power consumption of
WDM network components

that implement power-saving mode, as demonstrated in [81]. These authors

provide an analytical model to estimate the power consumption of optical

Ethernet links that implement a power-saving mode. The model splits the

time into discrete time intervals and assumes that the transition times be-

tween modes are a multiple of the frame transmission time. Measuring the

overall power consumption of carrier-grade networks before and after ap-

plying green approaches is an efficient metric to evaluate the performance

of the applied techniques. For instance, in data centres, the most frequently

used metric is power usage effectiveness (PUE). PUE is the ratio of the total

energy used by a data centre, including IT equipment, to the energy con-

sumed by the IT equipment only. Along with PUE, three metrics allow the

measurement of the energy efficiency of carrier grade networks: IT Equip-

ment Utilization (ITEU), IT Equipment Energy Efficiency (ITEE) and Green

Energy Coefficient (GEC) [82].

ITEU =

∑

MeasuredenergyconsumptionofITequipment
∑

RatedenergyconsumptionofITequipment
(1.7)

ITEE =

∑

ITequipmentratedworkcapacity
∑

RatedenergyconsumptionofITequipment
(1.8)

GEC =

∑

Energyinputfromrenewableresources
∑

Energyconsumptionofoperatingnetwork
(1.9)
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In this section, we have described the main node architectures in carrier-

grade networks and provided illustrative examples of how to measure over-

all network power consumption, as well as the energy efficiency. Going fur-

ther, more emphasis is given regarding saving energy in optical networks;

among others: [75–77, 83–95].

1.6 Conclusion

This chapter has surveyed the state-of-the-art on energy consumption in the

ICT sector and especially in carrier-grade networks. Identifying the energy

distribution within the global network is essential when designing a green

network. We have shown the key contributors to the power consumption

of wired networks: network devices, network architecture and service sce-

narios. Since the device elements represent an important source of power

consumption, we revised the energy consumption profiles for network de-

vices. Indeed, the energy profiles of devices under various loads can influ-

ence the choice of energy-saving technique. Then, we discussed the key is-

sues for building an energy-efficient network: green operation of devices,

efficient network design, energy-aware routing, and renewable energy sup-

plies. Also, we have presented some relevant measurements in optical net-

work.
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Chapter 2

Green networking approaches

2.1 Introduction

This chapter depicts the relevant classifications provided in the literature.

We give a comparison and insights of the presented classifications. Then, we

provide our taxonomy for current green networking approaches.

Before presenting our taxonomy and discussing the different approaches for

saving energy in networking, we introduce the most related pertinent sur-

veys in the literature.

In the research literature, there are extensive surveys from slightly differ-

ent points of view that cover approaches related to green networking [4, 30,

42, 96, 97].

A detailed survey on emerging technologies, standards efforts, and projects

is given in [4]. These authors identified three categories of green networking

research: (i) re-engineering, (ii) dynamic adaptation, and (iii) sleeping/standby.

The first category intends for network devices and architecture to be opti-

mized or to design new network equipment. The second category, dynamic

adaptation, suggests approaches that work on modulating the capacities of

network device resources in order to meet the actual services and traffic re-

quirements. Finally, sleeping/standby is founded on power management

basics that allow network equipment (or parts of them) to be switched off, to

enter very low power states.

Another survey gives a review and taxonomy of relevant techniques ap-

plied in wired networking [30]. Their taxonomy identified four branches

of green networking research: (i) adaptive link rate, (ii) interface proxying,

(iii) energy-aware infrastructure, and (iv) energy-aware applications. Adap-

tive link rate refers to scaling down the link rate proportional to the traffic

load, even to zero i.e. to the sleep state. Interface proxying refers to reducing

power consumption at the application layer while the network connectivity

is maintained due to the proxy structure. The energy-aware infrastructure
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category includes methods that adopt energy consciousness throughout the

network design stage. The final category, energy-aware applications, focuses

on studies that call for energy consciousness in software design.

The survey in [42] provides a comprehensive review of the techniques and

solutions that aim to improve the energy efficiency of large-scale distributed

systems. The authors classify existing research into four categories: (i) hard-

ware, (ii) shutdown, (iii) slowdown, and (iv) coordination and network-wide

solutions. Hardware studies approach energy efficiency by exploiting opti-

mal equipment architecture or by designing novel energy-efficient technolo-

gies. Shutdown approaches are devoted to putting idle components to sleep.

Slowdown approaches are devoted to scaling the transmission speed of in-

terfaces dynamically according to the needs. Coordination refers to the man-

agement of network power through the improvement in protocols and archi-

tecture design.

A recent survey [96] mainly focuses on energy efficient solutions for cloud-

based networking components, making use of the system literature review

(SLR) research method [98]. Four groups of methodologies have been iden-

tified based on the networking component granularity: (i) Data Center (DC)

layer, (ii) Application (App) layer, (iii) Network layer, and (iv) Device layer.

Additionally, the green traffic engineering approaches have been studied

from the perspective of optimization modelling issues in the survey arti-

cle [97]. The approaches have been split into two main groups: (i) flow-based

routing and (ii) shortest path routing. We draw Table 2.1 to compare this

study with other related works.
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2.2 Taxonomy of green networking approaches

Merging the main points of the three reviews above, we propose a new tax-

onomy of energy-aware strategies for green networks, as illustrated by Fig-

ure 2.1. Our classification is focused on two main categories: node level

and network level. In the former category, two kinds of optimization-based

strategies are proposed: either energy optimization strategies, which are ap-

plied on hardware design; or energy optimization strategies, which are ap-

plied on software functions. In the latter category, the energy-saving prob-

lem is treated at network level; this category can be divided into three main

sub-categories: proxying, virtualization, and traffic engineering. The final

sub-category can be further classified into two kinds of traffic engineering:

soft-defined networks and traditional protocols.

FIGURE 2.1: Taxonomy of green networking approach

2.2.1 Node level

Hardware optimization

A large number of studies and projects have introduced energy-aware tech-

nologies to exploit them efficiently inside network equipment design [66, 99–
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102]. The main focus of these projects is to reduce the power consumption of

specific components per node such as CPUs [26], disks [25] and NICs [24].

The basic technique of these approaches is to scale the voltage and frequency

(i.e. power consumption) proportional to the service demand. For exam-

ple, link transmission rates between components can be modulated to limit

the energy consumption and to meet the actual traffic requirements. This

hardware management capability is usually referred to as power scaling, AR

(Adaptive Rate) or as ALR (Adaptive Link Rate). The ALR technique was

first described by Gunaratne et al in 2005 [24] target to adjust NICs speed

to the effective workload. Two main methods keys are needed to develop

the ALR technique. The first is to determine exactly how the link data rate

is switched, namely ALR mechanism. The second defines an ALR policy to

decide when to switch the link data rate, in such a way as to minimise the

increase of the packet delay and to maximize the power saving. Thus, the

performance tradeoff in ALR techniques is packet delay versus power sav-

ing.

In order to avoid the time of sending a long frame preamble, Gunaratne et

al in 2008 [103] proposed a faster handshake and resynchronization mech-

anism, which is implemented using Ethernet MAC frames, able to execute

them effectively in less than 100 µs at 1 Gbit/s. Initially, the link that deter-

mines the need to increase or decrease its data rate requests a data rate change

using ALR Request MAC frame. Then, the receiving link replies to the data

rate change request with either an ALR ACK reply if it agrees to change the

data rate, or an ALR NACK reply if it does not agree. After the ALR ACK re-

sponse, the link data rate can be switched and the link resynchronized. The

total time of the handshake and resynchronization process can be less than

100 µs for 1 Gbit/s Ethernet.

In [104], a Markov model is developed where the Ethernet link data rate is

a function of link use. This proposal identifies high-buffer and low-buffer

thresholds. The use of two thresholds avoids frequent oscillations between

two rates. When the buffer occupancy reaches the high-buffer threshold, the

link rate is increased to a higher value, and when it goes under the low-

buffer threshold, the link rate is decreased. The difficulty lies in finding good

values for these thresholds in order to avoid packet losses and oscillations,

since switching between rates takes time. A similar mechanism, called the

Dynamic Adjustment of Link Width (DAWL), suggested in [105], also uses

dual-threshold based on link utilization. These authors advocate that the

distribution of operating rates and their corresponding power consumption
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significantly influences the efficiency of the adaptation techniques. In ad-

dition, components can be exchanged by more energy-efficient mechanisms

such as the replacement of electrical components with their corresponding

item in the optical domain [18, 106, 107].

In addition to ALR technique, LPI is also an energy saving technique de-

livered by the hardware level. Indeed, the IEEE 802.3az task force [108] de-

fines the LPI technique to offer the standardization solution, Energy Efficient

Ethernet (EEE), to improve Ethernet NICs and switches. EEE defines two op-

erational modes for transmitters and receivers: active mode and LPI mode

(i.e. idle link period). Compared to the active mode, LPI mode brings the en-

ergy consumption down to 10%. The basic concept is to transmit data as fast

as possible; to let then the device spends a significant fraction of time in low

power or (sleep) mode. However, the transition between the different modes

creates an overhead to every burst of one or more packets sent consecutively.

As a result the energy saving achieved is strongly dependent on the traffic

pattern and packet size distribution. In other words, the average power con-

sumption of Ethernet interface is heavily dependent on the fraction of time

the interface spends in LPI, active, and transitioning between states. The EEE

performance is improved in particularly using a technique called burst trans-

mission [109] or packet coalescing [64], which allow overcoming the effect of

EEE overhead. The idea of packet coalescing technique is to aggregate pack-

ets in a buffer until either the buffer is full or the timeout expires. However,

the buffer size and the coalescing timeout setting strongly affect the trade-off

in EEE performance. Since then, several works addressed modeling and per-

formance analysis of EEE based on various traffic parameters and with and

without consideration to packet coalescing [110–116]. In [110] authors pro-

vide an evaluation of static and dynamic coalescing for EEE in which buffer

size and timeout are fixed (static) and adapted to traffic pattern (dynamic).

The results show that static coalescing and dynamic coalescing algorithms

achieve similar power saving and delay tradeoffs. Therefore, static coalescers

are preferable for real implementation due to their low complexity.

The work in [112] provides an accurate traffic model with GI/G/1 queues

for both frame and burst transmissions. The model allows predicting the av-

erage energy saving as well as the impact of sleeping algorithms on packets

delay. However, this model is valid only for unidirectional traffic and specif-

ically designed for the case of 10 Gbit/s links. Also, the work in [116] pro-

vides a model that can be used for three available EEE links: 100BASE-TX,

1000BASE-T and 10GBASE-T. By analyzing energy consumption and various



2.2. Taxonomy of green networking approaches 35

network performance indexes in closed form, i.e., without upper bound and

lower bound approximations, makes the model suitable to be adopted in op-

timization frameworks. This model can be used and useful for dimensioning

interfaces during the design phase of a datacenter.

Figure 2.2 shows the transitions between modes as defined in EEE, as well

as, it indicates a qualitative indication of the energy consumption E(t) for

the different periods. However, the sleep and wake-up periods are intensely

greater for small frames and higher speed [116]. Ts is the sleep time required
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FIGURE 2.2: Relative power consumption for different periods
of EEE

to enter LPI mode. Once the device enters LPI mode, it stays quiet during

large period Tq, and only sends signals during short period Tr (refresh time).

Tr permits faster wake-up time and maintains alignment between Transmit-

ter (TX) and Receiver (RX). Once frames arrive, the link should exit the LPI

mode taking Tw seconds to be in active mode during Ta seconds. Finally,

refers to the average duration idle/busy cycle.

In [38], the energy consumption of representative optical and wireless de-

vices that are provided from manufacturers data sheets for optical access net-

works is analyzed. The energy consumption model is defined as a function

of the access rate to users, and is strongly based on traffic estimation. This

analysis takes into account various network technologies (DSL, HFC, PON,

FTTN, point-to-point optical system, UMTS (WCDMA), and WiMAX). They

demonstrate that passive optical access networks (PONs) and point-to-point

optical networks are the most energy-efficient of the available access tech-

nologies.
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Software optimization

Current technologies, including software, consider energy efficiency in their

operating systems and software applications. The running software hides

various processor techniques that might waste electricity. Research demon-

strates that operating systems having a heterogeneous power consumption

could be improved to consume less power [117, 118]. In other words, device

consumption within a different version of the same operating system can

have considerable variation. Software power management is promoted by

the Advanced Configuration & Power Interface (ACPI) standard [119]. The

main idea consists of the operating system managing power supply for each

component, in order to avoid unnecessary power consumption. This stan-

dard provides an interface between the hardware and software layers, by

modelling the different set of working and idle states (C-states). C-states are

described as follows: the C0 power state is an active power state where the

CPU performs tasks, while the C1 to Cn power states are processor sleeping

or idle states, where the processor consumes less power and dissipates less

heat. Furthermore, as the sleeping power state (C1, ..., Cn) becomes deeper,

the transition between the active and the sleeping state (and vice versa) needs

longer time. Table 2.2 shows that the transition between the C0 and C1 states

requires only a few ns, while 50 µs are required for the C3 state. Practically,

the higher the index of C states is, the lower will be the power consumed,

and the heat spent.

Similar research has attempted to hide the details of energy-saving tech-

niques that are implemented in data-plane, by creating middleware run-

ning in computing resources [121]. In fact, middleware can influence the

power consumed by the platforms as it maps physical resources and the

users tasks [122]. For that matter, Blanquicet et al. [123] provided the means

for the management of applications to measure the power consumption of IT

equipment and to indicate the state at which their components operate.

2.2.2 Network level

Proxying

The sleep proxy concept was introduced in 1998 with the pioneering work

of Christensen [124]. A sleep proxy scheme enables idle end devices such

as PCs to pass into sleep state dealing with their potential loss of network



2.2. Taxonomy of green networking approaches 37

TABLE 2.2: Indicative energy saving and transition times for
COTS (Commercial Off-The-Shelf [120]

C-state
Energy-saving with respect

to the C0 state
Transition times

C0 0% -

C1 70% 10 ns

C2 75% 100 ns

C3 80% 50 µs

C4 98% 160 µs

C5 99% 200 µs

C6 99.9% Unknown

connectivity. Before going to sleep, the idle PC transfers its network presence

to the proxy, and after that the proxy responds to non-urgent messages on

behalf of the sleeping node/PC and wakes-up the node/PC only if required.

It handles network requests such as ARP, ICMP and DHCP. The structure of

the NPC (Network Proxy Connectivity) scheme is shown in Figure 2.3. Since

the proxy consumes much less than the CPU of the PC and one proxy can be

shared by many PCs, the energy consumption of the system is reduced.

FIGURE 2.3: Network connectivity proxy

Another proxy structure can be implemented in NICs. This solution is re-

ferred as interface proxying, and does not need external proxy devices. NIC

proxying implements a small handling to the incoming traffic: each NIC han-

dles non-urgent traffic, while a whole node will wake up when urgent traffic
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requiring further computation is received. In [125], a framework is proposed

to implant NIC proxying over existing hardware. It supports a line speed of

up to 1 Gbit/s in its software implementation (on the Smart-NIC), and up

to 10 Gbit/s in its hardware implementation. The hardware implementation

consumes only 25% of the power consumed by the software implementation.

For higher energy savings, it should reduce the number of device wake-ups

and define longer sleeping intervals.

[126] analyzed the possibility of easily deploying SleepServer architec-

ture, i.e. dedicated on-demand proxy servers. The proposed architecture al-

lows end hosts to utilize power saving modes more frequently. SleepServers

use a very simple application agent on the end hosts. They are easily deploy-

able because they do not necessitate any changes to current hardware, soft-

ware or networking structure. [127] implements four different types of prox-

ies with increasing complexity. They demonstrate that simple approaches are

not sufficient to achieve the potential energy saving. A significant implemen-

tation is vital to handle broadcast traffic accurately and take into account the

residential setting. The ECMA-393 standard [128], namely ProxyZzzy, have

been recently introduced to provide an overall architecture and describe a

common way to implement proxy functionality. This standard specifies es-

sentially: capabilities that a proxy may expose to a host, information that

must be exchanged between a host and a proxy, and proxy behavior for IEEE

802.3 and IEEE 802.11. However, it is neutral about communication mech-

anisms between host and proxies as well as with an external proxy. Also,

it does not specify a common interface for monitoring the proxying opera-

tions. Finally, to estimate the potential savings, authors in [129] analyzed real

patterns for home and office environment of proxying network connections.

They provide full spectrum of deployment solutions, as well as consider both

on-board (like NICs) and external proxy (like switches and routers) imple-

mentations.

Virtualization

The virtualization of physical resources combines a set of mechanisms that

enable the operation of more than one service within the same machine.

Applying virtualization to computing resources brings many benefits such

as efficient hardware utilization and resource provisioning on demand, be-

sides the reduction of both CAPEX and OPEX costs. The virtualization tech-

nique is considered as a mature research field [130]. In fact, it occurred
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very frequently in data centers. Because rack space and power are expen-

sive, deploying additional servers and routing entities without an increase

in rack space is very much needed. Multiple resources and applications

within the same organization (like servers, firewall, storage, and network

entities) are on the same physical device and hence employ virtualization to

assure the proper functioning of each resource and application. The routers

are defined to be isolated logical router processes and act like a physical

router. Actually, these routers do not carry full internet routes, and the flows

have a tendency to inferior speed due to bandwidth sharing on the servers.

In [131], the authors focus on two main techniques for creating virtualised

routing entities as defined by their physical and operational characteristics.

A Hardware-Isolated Virtual Router (HVR) has hardware-based resource iso-

lation between routing entities, whereas a Software-Isolated Virtual Router

(SVR) comprises software-based resource isolation between routing entities.

Table 2.3 presents a comparison of the two virtualised routing techniques.

TABLE 2.3: Comparison of virtualised routing techniques [131]

Category
Hardware-Isolated

Virtual Router

Software-Isolated

Virtual Router

Control plane resources

(CPU, memory)
Dedicated Shared

Data plane resources

( forwarding engines, queues)
Dedicated Shared

Chassis resources

(power supplies, blowers, fabric)
Shared Shared

Management configuration Dedicated

Typically shared,

but varies depending on

degree of virtualization

Connection between

virtualised routing entities
Typically external

Typically internal,

but possibly external

Per-chassis scalability

(routing adjacencies, prefixes)

Increased with additional

logical routers

Unaffected by additional

virtual routers

In [132] VirtualPower is presented, a power management capability for
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virtualised systems that combined software and hardware scaling methods

to control the power consumption of a given platform. The proposed in-

frastructure of the VirtualPower advocates two basic ideas. The first is to

present VM guests with what appears to be a rich set of software states avail-

able to their application-specific policies, termed VPM states. The second

is to use the state changes requested by VMs as inputs to virtualisation-

level management policies. They also evaluate the dynamic power consump-

tion by a dual-core chip at different levels of frequency and voltage, and

suggest that such a solution be coupled with a software scheme. On the

other hand, [133] reported that the sole use of virtualization does not guar-

antee diminution in energy consumption. To achieve energy efficiency, other

power management with the aid of virtualization should be jointly utilized,

such as CPU throttling and dynamic reconfigurations that enable unused re-

sources to be switched off.

However, initial implementations of virtualization require all virtual nodes

to use the same hardware platform. [134–136] present the idea of virtual ma-

chine migration that allows logical nodes to move among different hardware

platforms without losing packets. In fact, the virtual machine migration that

recovers the capacity and the features of Cloud systems can reduce the op-

erational cost of the network system [137, 138]. However, if this technique

does not consider the limited memory capacity, limited processing power

and limited communication bandwidth of hardware platforms, it would suf-

fer from scalability problems for carrier-grade networks. Furthermore, mi-

grating VMs from one node to another leads to energy overhead, because

this process may require an important number of nodes to be powered on un-

til the migration is completed. In [139], an interesting approach is proposed

which could reroute traffic at layer 2, mainly by MPLS and Ethernet protocols

instead of IP layer. The authors exploit the virtualization capabilities of layer

2 protocols in core networks, in which the router can transparently transfer

all the virtual links from one (less used) to another putting the first one enter

into standby mode. However, this solution adds a new part in the control

plane, and needs further reconfigurations in order to maintain connectivity

of physical topology.

The virtualization technique, especially in MAN/WAN (or in any large in-

frastructures) needs more flexible management mechanisms to help from mi-

grating and resuming virtual machines. It can also be coupled with traffic

engineering capabilities to provide opportunities for foundations for energy-

efficient and acceptable operation required by carrier-grade networks.
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Traffic engineering: with traditional protocols

In networking terms, traffic engineering is a method that puts the traffic

where the bandwidth is, by dynamic analysis of data traffic aimed at opti-

mizing the performance of telecommunication networks. The Energy-aware

Traffic Engineering (ETE) strategy refers to routing traffic smartly based on

energy-saving objectives. This aim is reached by bringing the network power

consumption closely proportional to the actual traffic. A typical example of

energy-aware traffic engineering consists of modifying the network protocols

in order to route traffic over energy efficient paths, and switching off unused

links. Typically in the ETE problem, the network is modelled as a graph,

comprising a set of nodes interconnected by a set of unidirectional links. It

is typically formulated as Mixed Integer Linear Programming (MILP), and

the problem is known to be NP-hard. As a consequence, various heuristics

are proposed. Several ETE approaches have been proposed by carefully han-

dling the energy profile of network devices and the network routing [140–

143]. The ETE may have the same taxonomy as the traffic engineering sys-

tems. It is well known that the traffic engineering systems can be done either

with centralized or distributed decision, while their computation can be per-

formed either offline or online.

In [144], an ETE scheme is proposed for carrier-Ethernet networks using Mul-

tiple Spanning Tree Protocol (MSTP). This approach computes the best subset

of spanning trees and the best mapping of the traffic demands to the span-

ning trees, in such a way that a part of network is forced to be switched

off. The traffic flows are then routed over the network over paths defined by

the spanning trees (each spanning tree is assigned to a VLAN virtual local

area network). This is achieved by defining an optimization model aimed

at both considering the minimization of power consumption and the load-

balancing, subject to a set of constraints of traffic engineering; and ensuring

minimal network performance. Load-balancing aims to reduce the link over-

utilization when the traffic load is high. However, the solution of such mod-

els is expensive to compute for large networks. Moreover, heuristics are rare;

when they exist their performances are incompletely evaluated.

In reference [145], an interesting approach is proposed, called GRiDA,

which builds upon link-state based protocols a distributed ETE. The turn-off

decision is based on the feedback of past decisions history and the current

link load, as well as the penalty of infeasible node configuration. Accord-

ingly, GRiDA time complexity scales linearly with the network size N (num-

ber of nodes) and exponentially with nodal degree d, i.e., O(d2d + dN). To
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avoid the complexity of frequent configuration, in their next proposal [146],

the authors devise a distributed solution based only on current topology con-

figuration and the knowledge of traffic load on links. In [147], the power

consumption is reduced making use optimization modelling for simultane-

ous routing and bandwidth allocation. The major benefit of this proposal is

that it does not rely on the assumption that traffic matrix is known, because

its cost prediction. Hence, the authors resolve the problem introducing the

notion of valuation of transmission service by employing a user utility func-

tion.

An important concept of mathematical optimization, is called Γ−robustness [148,

149], which has been successfully applied for backbone networks [150–152].

The EAR Γ−robustness-based allows to handle uncertain data, such as traffic

demand volume and redundant traffic to be eliminated.

An energy-aware management approach is proposed in [153], exploiting the

possibility to turn off nodes and interfaces. In addition, this work provides

efficient greedy heuristic with different sorting policies. Note that a cru-

cial step of the greedy heuristic is the way elements are sorted. The algo-

rithm sorts elements, i.e., nodes and links, candidate to turn off using one

of the following criteria: (i) most-power (MP), where MP iteratively selects

the element which has the highest power consumption; (ii)least-flow (LF),

where LF iteratively selects the element with the smallest amount of traf-

fic already routed through it; (iii) least-link (LL) where LL iteratively selects

the nodes with small number of its incident links; (iv) random (R), the ele-

ment is selected randomly. If line cards are connected by multiple physical

cables that form one logical bundled link (or bundle of lightpaths). This tech-

nique of composite link, called link aggregation, is standardized by the IEEE

802.1AX [154]. In this respect, we found relevant works have sketched the

problem of ETE and network design with bundled links by turning off single

physical cables [143, 155–157].

[158] proposes a heuristic algorithm, Green Load-balancing Algorithm (GLA),

which is able to optimize load balancing and energy efficiency jointly based

on existing ETE algorithms for backbone networks. The GLA optimizes the

Interior Gateway Protocol (IGP) link weights of a network, using a genetic al-

gorithm to find the link weights that influence the traffic distribution within

the network. Figure 2.4 illustrates the operation of the GLA algorithm for a

simple traffic matrix composed of only two traffic demands: 30 units from C

to D and 75 units from A to D. The link utilization of C→D is 60%, A→D is
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75%. Thus the maximum link utilization in this scenario is 75%. The least-

flow policy is adopted to iterate through the link set. If the link C→D is

turned off, its load is rerouted through the alternative path C→A→D. Then

the maximum link utilization on A→D increases to 105%. Therefore, this

link cannot be turned off because of network overload. On the other hand,

the link A→D can be turned off because the alternative path A→B→D will

produce a maximum link utilization of 60%. In this example, only one link

(link A→D) can be turned off.

If the link weights are optimized as shown on the right side of Figure 2.4 ,

FIGURE 2.4: Example of the link weight optimization adopted
in [158]

both links C→D and A→D can be turned off without affecting the network

load. The traffic demands are then routed along the new paths C→A→B→D

and A→B→D respectively. The resulting network ends up with maximum

link utilization of 52.5%. Therefore, this algorithm can achieve simultaneous

improvement of both energy saving and load balancing.

Regarding traffic engineering and load balancing performances, works [159] and [160]

provide analytical models to capture the performance of energy-aware net-

work devices, especially those compliant with ACPI standard, that include

LPI and AR techniques. As well as, they trade off energy consumption de-

vices for packet forwarding. Moreover, the optimization policies presented

in [160] focus on the packet processing with respect to the overall device con-

sumption, and able to find the best way to distribute traffic among the packet

processing engines pipelines. As the traffic matrices are considered indepen-

dent, this algorithm can find different sets of link weights in the optimization

technique for each traffic matrix. A generic overview of ETE approach is pre-

sented in [161] and is shown in Figure 2.5. This approach uses the network



44 Chapter 2. Green networking approaches

topology, a power model of the network devices, and traffic matrix estima-

tion (if offered) to pre-compute the sets of paths; three sets of paths are de-

fined: always-on, on-demand, and failover. This approach defines a model

that minimizes the network energy consumption and puts the complemen-

tary set of links in power-saving mode. The decisions taken by the compu-

tation of the model are reassigned to the network routers to be installed in

their routing tables. Traffic information is collected online and transferred to

the processing functional blocks residing in the offline level. This approach

allows traffic to be aggregated on the always-on paths achieving low en-

ergy consumption at the low traffic levels, while an online component can

progressively use the on-demand paths to satisfy the offered load. Inter-

Online components

Offline components

Network Topology

Runtime Traffic 
Measurement

Traffic Matrix
 Estimation

Energy-proportional
 Routing Table

Power model

Energy-aware 
Traffic Engineering

FIGURE 2.5: General overview of ETE [161]

esting works have dealt with the multi-period traffic optimisation; among

others: [95, 162–164] . Two MILP-based algorithms are presented in [162],

the first adopts a fixed configuration for routing along multi periods of daily

time, while the second MILP allowing flexibility of routing path to the net-

work administrator.

Traffic engineering: Software defined network

The Software Defined Network (SDN) is a novel networking paradigm show-

ing significant promise through network programmability, and by splitting

network functions between the forwarding elements and the controller ele-

ment. Actually, SDN was introduced 20 years ago [165]. There are two main

SDN technologies: OpenFlow [166] and ForCES; the second is called ProGFE

(Programmable Generic Forwarding-Element) [167]. Recently, OpenFlow has

succeeded in launching itself as an SDN industry engineering standard be-

cause it has less complex functionality compared to ProGFE. OpenFlow is
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the most widely used to support energy-aware functionalities [168]. It offers

new prospects to deploy several energy-aware routing algorithms. Indeed,

the Openflow architecture takes out the control software from the switches

("forwarding elements") and moves it to a chief part ("controller element)

that is logically centralized; this enables non-negligible power saving in the

switches at the cost of the power consumed by the controller.

Following green networking improvement, recent works have targeted both

shortest path routing and ETE [169–171]. As the shortest path routing is sup-

ported in all OpenFlow controller platforms, it is powerful to use this proto-

col in order to enable energy efficiency in the network and to offer the short-

est path routing.

ElasticTree [170] is one of the most popular approaches to ETE that utilizes

SDN in data center networks. It allows to a network admin running an

energy-aware configuration which dynamically turn off not needed devices.

The work in [172] proposes an ETE solution inside OpenFlow protocol, with

the aid of the GAL (Green Abstraction Layer) [67]. This integration permits

internal communication between network devices to interchange their power

states. In this way, the OpenFlow controller becomes aware of the energy

consumption of each network components. In) [173], an extension of the

work [172], is presented to include more power states based on link capacity

instead of simple On-Off states. The technique takes as input, the topology,

the logical resources and the traffic demands and finds a satisfying mapping,

that minimize entire power consumption, between traffic demands and ac-

tion and flow configuration.

Giroire et al. [174] propose an optimization method to minimize the energy

consumption in backbone networks subject to the rule space constraints of

OpenFlow switch and general constraints reflecting the minimum of perfor-

mance guarantees. To carry out an important variety of network applica-

tions, the flow table of an OpenFlow switch should hold a very large num-

ber of rules. However, this assumption is not fulfilled because, actually,

the number of flow rules in the hardware switch is bounded by the TCAM

(Ternary Content Addressable Memory) memory size. This kind of memory

is very expensive and very power-hungry. This causes a major roadblock in

large-scale OpenFlow deployments, particularly in energy-aware routing so-

lutions whose main objective is to reduce the number of used links. Note that

this problem is not limited to SDN, any ETE technique could face it. How-

ever, TCAM-based energy-aware SDN issues received significant attention

as shown in [175]. Figure 2.6 illustrates the limited rule space problem in



46 Chapter 2. Green networking approaches

energy-aware routing within the OpenFlow switch. Figure 12b presents an

optimal solution, since it uses a minimum number of active links and sat-

isfies the capacity constraints. With limited rule space, the routing solution

moves away from the optimal solution, as shown in Figure 2.6(c). We no-

tice that without rule space constraints, node 2 holds nine flows, whereas it

cannot hold more than five in the case of the limited space rule. Only the sec-

ond solution will be compatible with hardware whose capacity is limited to

a number of flows less than nine. By means of an exact formulation using the

ILP model and greedy heuristic algorithm, the authors in [174] succeeded in

computing the minimum number of links that must remain active, fulfilling

the rule placement constraints.

Table 2.4 summarizes this section and reports the undertaken approaches

FIGURE 2.6: Limited rule space in OpenFlow switches [174]

of green networking with respect to the layer applicable and the basic mech-

anisms. This section discussed practical approaches whose objective is to

reduce the power consumed in wired networks in general. We described

the main ideas belonging to these approaches and proposed to adopt those

that fit especially carrier-grade networks. For instance, energy-aware traf-

fic engineering fits traffic variation observed within carrier-grade networks.

Indeed, network traffic is usually higher during the day and lower during

the night, thus it is powerful to implement such a mechanism in order to

put unused devices and/or redundant resources into the low power state.

Virtualization approaches are also another promising solution to enable en-

ergy saving in carrier-grade networks. In fact, with virtualization, different

services can share the same resources. Therefore, network operators do not

need anymore to dedicate hardware to each application or workload. In this

section, we introduced and classified the fundamental techniques that could

be used to green a carrier-grade network. The classification criterion comes
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from network technology deployment and its operation (i.e. at node level

and network level).

2.3 Issues in Carrier-grade networks

This section summarizes the major issues related to power saving in carrier-

grade networks. Their requirements are resiliency, scalability, quality of ser-

vice and service management.

At the moment, network operators try to improve the energy efficiency of

their network and to provide the high service level required by their users.

However, these two objectives are contentious: a trade-off becomes inevitable.

From the state-of-the-art, performance metrics are energy efficiency metrics

and QoS performance metrics. However, new metrics need to be defined for

energy-efficient, resilient, and scalable networks; they are required to have a

good evaluation of the satisfactory factor for carrier-grade networks.

• Resiliency The resilience of optical transport networks is a very impor-

tant aspect (more so than general access networks). Indeed, a link of

a core network supports, at each instance, thousands and sometime

hundreds of thousands of user connections. Thus, a failure of one link

may disrupt the communication service offer to a very large number

of users. It is generally required for carrier-grade networks to resume

service delivery within 50 ms. To enable this reliability, core networks

rely on redundant hardware components. Hence, the design of energy-

efficient resilient networks has a significant impact on the resources re-

quired, and therefore on their power consumption. Network resilience

can be categorized as protection or restoration [181]. Protection is a

proactive mechanism, while restoration is a reactive mechanism. In

protection mechanism, alternative paths are kept and reserved before a

failure occurs. When a failure occurs, no further signalling is required

to establish the protection paths. In the case of the restoration mecha-

nism, the recovery paths are dynamically assigned, and resources are

not reserved until failure occurs. When a failure occurs, extra signalling

is required to establish the restoration path. Computing the number of

deployed resources as well their capacities is a difficult tradeoff against

power consumption. This tradeoff was considered in [83].

In order to trade-off the energy saving versus the resilience perfor-

mance, the work of [169] proposes a flow restoration technique show-

ing that is hard to achieve energy saving performing 50 ms maximum
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delay for failure recovery as required by carrier-grade network. Also

a very recent study, [182], focuses on energy versus resiliency trade-off

in optical inter-datacenter networks along with solutions on an elastic

optical backbone. They consider two resilient designs MOPIC (Mini-

mum Outage Probability in Cloud) [183] and RPMPC (Resilient Provi-

sioning with Minimum Power Consumption) [184]. RPMPC shows a

good compromising scheme to offer resilient provisioning with mini-

mum energy consumption.

• Scalability Network scalability is vital to meet the constant demand growth.

Providers require that the network scales to support hundreds of thou-

sands of customers to address adequately metropolitan and regional

supplied areas. The scalability requires a very large physical infras-

tructure that is interconnected through many switches and routers; it

should allow users to reach a wide variety of applications. However,

such an infrastructure brings high costs in terms of CAPEX and OPEX.

Hence, reducing these costs presents a major challenge for the oper-

ators. In this regard, virtualization is considered as a promising solu-

tion [83, 170, 185]. Also essential aspects have been investigated on how

to minimize energy consumption for scalable networks, by optimizing

the internal architectures of optical and optoelectronic devices. For in-

stance, [186] provide a detailed analysis of the scalability and energy

efficiency requirements for board and chip level interconnects and the

corresponding targets for the potential of optical technologies.

Only few works address energy saving versus scalability trade-off is-

sues [187, 188]. For instance, [187] introduces an OpenScale inter-data

center architecture, which can be upgraded gradually from traditional

electrical switching DCNs in a plug-and-play technology achieving lower

operational cost.

• Quality of Service Nowadays, carrier-grade networks promise to offer

a good quality of service to their end users. Moreover, energy sav-

ing is becoming a crucial concern. Good trade-off between these two

potential opposing concerns is required. An analytical model in [159,

160] allows the impact of power-saving techniques (such as adaptive

link and low power idle techniques) on the quality of service metrics to

be characterized, as well as how they affect the overall system behavior.

This model can initiate a large set of network switching architectures,



50 Chapter 2. Green networking approaches

technologies and components and is becoming an interesting estima-

tion tool that can be effectively adopted inside optimization techniques

for the dynamic control of green networking equipment.

• Service management All services provided by network operators must be

managed and supervised in order to ensure that they are operating as

expected. The service provider must have the performance measure-

ments to back up any service level claims. If a fault does occur, then

the service provider has to identify which services have been impacted

to react appropriately. When this functionality is combined with en-

ergy efficiency, specialized systems and equipment are required to be

added into the network. For instance, to meet the service level agree-

ments (SLAs) in optical networks, some strategies can be taken [189]:

(1) physical impairment, energy efficiency techniques may augment the

effect of physical impairments like the fiber loss or dispersion. [190] ad-

dresses this problem and shows that it can be solved by hosting design

strategies that are both power- and impairment-aware; (2) differentiated

quality of protection; [191] proposes an efficient policy to apply differen-

tiated QoP by assigning different levels to demand with different SLA

requirements. This application allows for a reduction of protection re-

sources with significant energy efficiency; (3) lightpath preemption, based

on the intuition that low-priority services can be provisioned with the

possibility of being rejected when connected to a level of criticality must

use network resources. In this regard, lightpath preemption levels are

used to decide to which routes the optical signal must be assigned first,

releasing the resources used by lightpaths with lower preemption lev-

els.

2.4 Conclusion

In this chapter, we have described the most suitable techniques that could

improve the energy efficiency of carrier grade-networks from two different

aspects: the network and node level.

After examining different approaches described in existing surveys, we pro-

posed a new taxonomy of the energy-saving approaches based on two main

categories. The classification criterion comes from network technology de-

ployment and its operation (node level and network level).

Carrier-grade networks are energy-hungry infrastructures that run large-scale
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systems to deliver services. In this respect, we give useful references for

workers who are interested in energy-efficient and wide networks. Future

research should deal with the joint impact of the different approaches.

Aspects of carrier-grade networks, being resilience, scalability, and quality of

service, make it more difficult to determine the best performance trade-off

between energy efficiency and required functionalities. Although valuable

solutions have been studied to save energy, to the best of our knowledge,

there is no work that considers all the carrier-grade requirements at the same

time. Two key issues remain open: what is the best way to assess the trade-

off between energy saving and network performance? And how to achieve a

power consumption that is proportional to network load? These issues con-

cern not only carrier-grade networks but also a large set of wired networks.

In this thesis, the approaches we proposed are designed to be treated at

the network level. Our contributions come under traffic engineering mech-

anisms, which relate to different routing protocols of carrier Ethernet net-

works. We propose several resolution methods that can be performed in a

coordinated fashion by a centralized entity. In the next chapter, we introduce

our first approach which is called MEEAFS (Metro Ethernet Energy Aware

Forwarding Strategy).
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Chapter 3

Energy-aware Forwarding Strategy

for Metro Ethernet Networks

——————————————

3.1 Introduction

Much research related to ICT has sought for more efficient solutions that can

improve energy efficiency. Currently, minimal research has addressed energy

saving in Carrier Ethernet networks compared with those in IP networks.

Metro Ethernet is the use of Carrier-Ethernet technology in Metropolitan

Area Networks (MANs). It can be used to connect business local area net-

works (LANs) and individual end users to wide area networks (WAN) or to

the Internet. Recently, significant innovations have been developed around

Ethernet standards to meet the requirements of next generation broadband

networks. These developments have made Ethernet a widely used technol-

ogy, deployed at all levels of the network architecture (Access, Metro and

Core networks). Current Ethernet technologies rely on the Spanning Tree

Protocol (STP), which was standardized in IEEE 802.1D [192], and its vari-

ants: Rapid Spanning Tree Protocol (RSTP) [192] and Multiple Spanning Tree

Protocol (MSTP) [193]. These protocols manage the topology autonomously

and provide a loop-free connectivity across a variety of network nodes. Al-

though these protocols have been used for most Ethernet networks, they

are not sufficiently powerful to satisfy Metro Ethernet network features as

a Carrier-grade technology. These protocols have the following main short-

comings:

1. Inefficient use of resources: STP and its variants restrict the number of

bridge ports being used, which reduces the available bandwidth, espe-

cially in cases of high traffic load.
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2. Suboptimal path: The path selection is based on a single spanning tree

for the entire network (the shortest path tree roots at an arbitrary node)

instead of the shortest path between source and destination node pairs.

3. Re-convergence: STP implements a transactional distance-vector class

of routing algorithm instead of a routing algorithm based on a network

link topology database. This adversely impacts the convergence time

of an Ethernet network after a topology change [194].

Recently, a new class of shortest path routing solutions has been introduced

for Ethernet networks, the Shortest Path Bridging (SPB), standardized in

IEEE 802.1aq [195]. SPB aims to ensure frame forwarding on the shortest

path within a Shortest Path Tree (SPT) region of a network by using an ex-

tension of the Intermediate System to Intermediate System (IS-IS) link state

routing protocol [196]. In this way, SPB uses IS-IS procedures to construct and

update the link state database in each SPT bridge. The aim of this chapter is

to develop an energy-saving strategy within a Metro Ethernet network. This

idea is inspired from the EAR (Energy Aware Routing for Green OSPF) ap-

proach [53], which is designed for IP networks and is OSPF compliant. The

EAR approach is an energy-saving strategy that is based on powering off

parts of network devices (links and interfaces). Because we focus on Metro

Ethernet networks, we propose a Metro Ethernet Energy Aware Forwarding

Strategy (MEEAFS) that is IS-IS compliant. OSPF [197] and IS-IS [198] are link

state protocols that use Dijkstra’s algorithm for computing the shortest path

between node pairs. OSPF is an IP routing protocol only, while IS-IS supports

the handling of MAC addresses; it is able to run directly over Ethernet as it

is not tight to IP. Since we focus on Metro Ethernet networks, we propose an

energy-aware forwarding strategy for green carrier-Ethernet networks that is

SPB-based and is IS-IS compliant.

3.2 Carrier grade Ethernet

Figure 3.1 illustrates the difference between traditional Wide Area Network

(WAN) and Ethernet Wide Area Network (E-WAN). It shows also technol-

ogy options available for deploying them. As the figure point out, Ethernet

technology is developed in WAN for carrying Ethernet WAN services.
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FIGURE 3.1: Traditional and carrier Ethernet technologies [199]

Figure 3.2 shows the evolution of Ethernet data-link layer. We first found

the legacy IEEE 802.1D which was defined in 1985 defining STP as routing

algorithm Then two amendments appeared with IEEE 802.1w (RSTP) and

IEEE 802.1s (MSTP) have introduced new mechanisms to offer faster conver-

gence time and better network utilization than IEEE 802.1D. After that, the

Virtual LANs is appeared in 1998. which provides tags to Ethernet frames

with VLAN IDs. (it is the basic technology for carrier grade Ethernet). IEEE

802.1Q only supports up to 4094 VLANs, which is a scaling constraint for ser-

vice providers. Then two standards were defined that resolve this issue: IEEE

802.1ad (allows a provider up to 4094 service instances) and IEEE 802.1ah

which supports up to 16 million services (removing the scalability problems).

802.1aq allows for true shortest path routing, multiple equal cost paths, much

larger layer 2 topologies, faster convergence, abstraction of attached device

MAC addresses from the transit devices, head end and/or transit multicast

replication , all while supporting the full suit of 802.1 OAM ( operations,

administration and maintenance) [200]. SPB enables frame forwarding on

the shortest path between any two bridges of an Ethernet network. In order

to achieve shortest path forwarding, each bridge maintains its own Short-

est Path Tree (SPT). SPB form an SPT region and edge bridges of the region

forward the frames that are incoming to the region on their own tree. In

other words, it provides frame forwarding on the shortest path within an

SPT region of a network by using ISIS-SPB (link state routing protocol) on

all SPT bridges to control the forwarding paths. ISIS-SPB uses the standard

IS-IS procedures to construct and update the link state database in each SPT

bridge [196]. Bridges exchange link state information using IS-IS routing pro-

tocol to achieve a global consistent view of all bridges, topology and location

of end nodes. The bridges forward layer 2 frames to their destination using

the shortest path available. This combination of using a routing protocol to
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forward frames on a layer 2 network, helps keep the ease of configuration of

a layer 2 segment while adding the advantages of layer 3. These advantages

can be summarized as load balancing, fast failure reroute, and shortest path

routing.

FIGURE 3.2: Evolution of Ethernet Data-link Layer

3.3 Related work

Minimal research has focused on energy saving in Metro Ethernet networks.

Besides, there are several industrial efforts are devoted for to Metro Ethernet,

but none of them cares about energy economy at routing level. In order to

better understand the possible ways to limit energy consumption in Metro

Ethernet systems, we overview IP approaches which propose energy-aware

routing protocols compatible with SPB-based Metro-Ethernet.

The authors in [144] have proposed an optimization model based on the tra-

ditional Multiple Spanning Tree Protocols (MSTP) green routing protocol.

This model is intended for minimizing the energy consumption of Carrier-

Ethernet networks. This optimization is performed in such a way that a por-

tion of the network is forced by the objective function of the model to remain

unused, thus making it possible to turn off the elements of that portion of the

network. These network components are put into sleep mode to conserve

energy. The main shortcoming of this approach is the use of MSTP, which is

inefficient in the Metro Ethernet context.
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In [201], the authors proposed an IP-related approach that switches the router

to sleep mode during low-traffic periods and returns them to the working

state during peak hours. This approach could be adapted to an Ethernet

Bridge; however, this approach puts the whole router to sleep instead of

powering off some of its interfaces (links), which leads to poor network per-

formance.

In [53], the authors propose an Energy Aware Routing algorithm to power off

a maximum of active links by dividing the network routers into three subsets

(exporter, importer, neutral). The main idea of this algorithm is that only a

subset of routers are elected to serve as exporters. Elected exporter nodes

must have a high number of neighbors, so node election is based on the node

degree. In that case, each exporter computes its SPT to export it toward its

direct neighbors’ routers. The latter, called importer routers, utilize the SPT

of the associated exporter routers, but use the importer router as the root

node. Doing this allows the powering off of the links that are no longer in

the SPT of the importer routers. However, this algorithm considers neither

the QoS constraints nor the traffic demand. Motivated by this EAR idea, we

propose an energy-saving strategy applied within a Metro Ethernet network,

considering a new criterion to select adequate exporter bridges and support-

ing acceptable network performance. To achieve this goal, we formulate an

optimization model for the choice of exporter bridges that takes into account

energy consumption impact. In our model, an energy consumption function

needs to be minimized that is subject to a set of constraints involving the

minimal performance guarantees, which are explained in the next section.

3.4 Problem formulation

To achieve energy conservation, the network management system must solve

an optimization problem that takes the network topology and traffic de-

mands as input, and identifies the maximum number of elements (e.g. links)

that can be turned off. Our work takes as first input the network topology

and as second input the traffic demands. The energy saving solutions are

typically formulated as traffic engineering problem, Integer Linear Program-

ming (ILP) or Mixed Integer Linear Programming (MILP) formulation, able

to compute the minimum number of network elements that must remain

active to fulfill the traffic requirements. In this section, we present the theo-

retical formulation of the problem. The following ILP presents the trade off

between energy saving and network performance.
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3.4.1 Network model and notations

Consider a Carrier-Ethernet core network presented as a weighted graph

G = (N, E). The nodes in N represent bridges, and the links in E repre-

sent connections between those bridges. Let |N | and |E| be the number of

network nodes and links, respectively. Each link (i, j) ∈ E between two

nodes i, j ∈ N has an energy consumption Eij and a capacity cij . The traffic

demand between a pair of nodes could be presented as dst, where s ∈ N is

the originated node and t ∈ N is the destination node. fij denotes the total

flow on each link from i to j.

The optimization of power consumption can be expressed formally with the

following objective and constraints:

min
∑

(i,j)∈E

xijEij (3.1)

Subject to
∑

n∈NG(u)

(f st
ij − f st

ij ) =



















−1 if i = sd,

1 if i = td,

0 if i 6= sd, td,

∀i ∈ N ;

(s, t) ∈ D,
(3.2)

fij =
∑

(s,t)∈D

dstf st
ij ∀(i, j) ∈ E, (3.3)

fij ≤ µijCij ∀(i, j) ∈ E, (3.4)

µij ∈]0, 1] (3.5)

The objective function (3.1) minimizes the total power consumption induced

by links. Equations (3.2) represent the classical flow conservation constraints

ensuring that flows entering and leaving a node are equal. Equations (3.3)

compute the total flow on each link. Inequalities (3.4) force the link load to

be smaller than the maximum target utilization µij .

Let SPTk be the subgraph of G obtained by the kth bridge using Dijkstra’s

shortest path first algorithm toward all network nodes. Let SPG(N, Es) be

the subgraph of G obtained by the superposition of all SPTk(k = 1, .., |N |),

i.e. SPG = ∪i=1..|N |SPTi.

Es includes all of the links that belong to at least one SPTk, and identifies all

of the paths used to route traffic. We consider this type of link as an active

link.

Es = ‖SPTi) ∪i=1..|N | SPTi‖ (3.6)

It can be demonstrated that

|Es| ⊆ |E| (3.7)
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Proof: The equality between |Es| and |E| holds when all link costs are equal.

In this case, the routing paths correspond to the shortest paths, and SPG co-

incides with G because when all links have equal cost, the shortest path be-

tween two neighbor switches is always the direct link between these two

neighbors.

In more general cases, when the link weights are different, the number of ac-

tive links is smaller than |E|, i.e. |Es| ⊆ |E|. A first step to obtain a reduction

of energy consumption is to switch off the links belonging to the set EEs.

The minimum value of |Es|, i.e. the minimum number of unidirectional links

needed to route traffic between any pair of bridges, is

Lmin = 2(N − 1) (3.8)

Lmin is the minimum number of links that guarantees total connectivity for

the network. The condition (3.8) is verified when all of the nodes compute

the same SPT . According to this condition, by switching off the |E|2(|N |1)

links of G, we would obtain the maximum energy savings, but this leads to

traffic congestion and subsequently poor network performance.

According to the NMS (Network Management System), given the traffic de-

mand and the network topology as inputs, the outputs of the optimization

problem will be the set of links to switch off and the paths that the traffic

should use over the residual links. Table 3.1 lists a summary of the parame-

ter definitions.

3.4.2 EAR description

The EAR algorithm defined in [53] is a traffic unaware algorithm in which

routers/nodes are categorized in exporter (ER) routers, importer (IR) and

neutral (NR) routers. This algorithm involves forcing a subset of routers to

use some routes that are different from those computed in their SPTs. Only

ERs and NRs compute their SPTs performing the classical Dijkstra algorithm.

While IR will use the links of the SPTs evaluated by the exporter ones to con-

struct their own path trees and to fix the links that have to be turned off. The

EAR proceeds by the execution of three consecutive phases: // The EAR al-

gorithm defined in [53] is a distributed, energy-aware routing protocol that

is able to save energy by performing the election of exporter nodes. The

scheme involves forcing a subset of routers to use some routes that are dif-

ferent from those elected in their SPTs. The set of network routers is divided

into three subsets: exporters, importers, and neutral routers. This scheme is
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TABLE 3.1: Summary of notation

Notation Description

G(N, E, W )
Directed graph where N is the set of nodes,

E is the set of links between two nodes,
and W is the set of weights associated with each link.

|N | , |E| Cardinality of set N and E, respectively.

Eij The energy consumption of the link (i, j) ∈ E.

xij Binary variable to indicate whether the link (i, j) is asleep or not.

cij The capacity of the link (i, j) ∈ E.

D A set of all traffic demands.

dst Demand of traffic flow from s to t.

f st
ij Traffic demand from s to t that traverses the arc from i to j.

Es The set of links utilized to route traffic.

Th Threshold of link load.

µij The maximum link utilization.

achieved by the three following phases: i) During the first phase (election of

exporter routers), each node calculates its shortest path tree (performing Di-

jkstra algorithm). During this phase, each router selects from its LSA (Link

State Advertisement) database a list containing the exporter routers; ii) In

the second phase, called Modified Path Tree (MPT) evaluation, every importer

router fulfills its new path tree by using the associated exporter’s tree and

extracts the links to be switched off; iii) During the third phase, called rout-

ing path optimization, after removing the links that have been switched off,

each router computes its paths, using the Dijkstra algorithm, on the residual

network topology. The aim of this step is to update the routing paths and to

ensure that all of the routers are on the same reference topology.

Briefly, the EAR algorithm [53] is an energy-efficient algorithm in which some

SPTs between neighbor routers can be shared to reduce the overall set of ac-

tive links. The main advantage of this algorithm is that it can be applied

without knowledge of the actual traffic in the network and with no complex-

ity increase. However, the EAR algorithm ignores the current network traffic

which may overload the remained topology.

Our work aims to apply the EAR strategy to Metro Ethernet. Exploiting the
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fact that OSPF and SPB (or ISIS-SPB) are both link state routing protocols us-

ing the Dijkstra algorithm. Our MEEAFS considers SPB protocol to fit Metro

Ethernet network. We propose a new criterion for exporter bridge selection

and energy conservation. Unlike the EAR algorithm, which is based on the

node degree for the exporter router selection, MEEAFS takes into account

the impact of line cards of nodes on the overall energy consumption (nodes

having the lowest impact on energy consumption). The impact on the overall

energy consumption can be set by network administrator. Moreover, we con-

sider in a later step the current traffic load in order to reroute traffic minimiz-

ing the energy consumption induced by links and maintaining the maximum

links load under a prefixed threshold value.

3.4.3 MEEAFS algorithm

Our MEEAFS algorithm uses the topological information exchanged among

nodes (due to the SPTs computed by nodes). Given the tradeoff between the

graph connexity, energy saving and network performance, MEEAFS offers

two enhancement criteria. The first one is related to the impact of energy

consumption and the second one is related to the link congestion minimiza-

tion. As in the MEEAFS algorithm, the set of network bridges is divided

into three subsets: exporter (EB), importer (IB), and neutral bridges (NB).

the topology planning can be illustrated as described in Figure 3.3. The

MEEAFS algorithm can be summarized as follows: 1) Selection of the EBs:

During this phase, each bridge computes its energy impact. This informa-

tion is obtained by computing the energy impact of the line cards (EILCs) of

each bridge. In [56], an energy profile is defined as the energy consumption

(in Watt-hours) in the function of the traffic load and throughput of a particu-

lar network component. EILC can be estimated due to the knowledge of the

topology and the traffic conditions by means of the SPB and IS-IS protocols.

We assume that EILC is given by the network administrator. Wi denotes the

power consumption weight of bridge i and is defined as follows.

Wi =
nci
∑

k=1

EILCi,k∀i ∈ N (3.9)

where nci is the number of cards of the bridge i. According to (3.9), the bridge

power consumption expresses the energy impact as a function of link traf-

fic load. Bridges having the lowest power consumption are inserted in the
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FIGURE 3.3: Topology planning of MEEAFS

exporter bridge list, called EB_list. The direct neighbors cannot be consid-

ered as candidate EBs. This process is applied recursively on the remaining

bridges. Consequently, the bridges inserted into EB_list have the minimum

energy consumption impact. The links associated to EBs are less likely to be

switched off when an IB uses the SPT’s EB as its own. In Figure 3.4, initially

we assume that the A and B bridges are candidates to be exporters. In Fig-

ure 3.4(a) shows an example of a network graph with EILC weights. Accord-

ing to (5), WA = 0.3+0.4+0.3+0.4 = 1.4 and WB = 0.3+0.3+0.4+0.5 = 1.5.

The bridge A is elected as EB, and hence B is an IB that will use A as its

packet forwarder.

2) Modification of the SPT of IB: In this phase, each IB has to execute a slight

translation of Dijkstra’s algorithm based on its associated EB, in order to

identify the set of links that can be switched off. Each IB transforms its SPT

into a Modified Shortest Path Tree (MSPT). As explained in the first section,

SPB uses the IS-IS standard to construct and update a link state database in

each bridge. Thus, the complexity of the classical SPB remains the same,

when the IB computes an SPT in which the root node is the associated EB.

Figure 3.4(d) shows an example of a network graph in which A is elected as
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an EB and B is an IB that uses the SPT of A as its own modified SPT. We

denote MSPT (B, A) the imported SPT of A for B. The bridge B has to force

itself as the tree root node by changing the direction of the link between A

and B.

Once all of the IBs have computed their MSPT, any network link that no

longer appears in any MSPT will be declared as a link to turn off. Thus, each

IB checks iteratively if a given link (that belongs to the links to turn off, de-

noted by Loff can legitimately be turned off or must be kept in its modified

shortest path tree (MSPT). For each iteration, the considered link is removed

from the forwarding table if the link load fij is smaller than a fixed threshold

Th.

FIGURE 3.4: Illustrative example for MEEAFS phases (1) and
(2)
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Phase1 

Election of Exporter and 

Importer bridges 

G(N,E,W)

Phase2 

Modification of SPT of IBs 

Find Loff : the set of links to be saved

Connectivity maintained ?

  Remove the current

      link e from Loff      

Es=E-Loff

G'=(N,Es)

  Route traffic demand D on G 

Load of e ≤ Th 

G, Loff , D

 Keep e in Loff
  Put the link e in Es,

          Es=Es+ e

Yes

No

G'=(N,Es,W) 

Updated Es

  For each link e in Loff 

Phase 3

Dijkstra computation on G'

to reroute D 

Yes

No

FIGURE 3.5: Flowchart describing the operation of MEEAFS

3) Forwarding path optimization: At the end of the previous phase, each

IB has to assess the modified forwarding path tree MSPT. Thereafter, each

IB indicates the set of links that has to be removed. In order to optimize

the forwarding path trees, each IB having at least one switched off link pro-

cesses IS-IS Hello until the topology database has been updated. Once the

update process is terminated, SPB performs the shortest path calculation on
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the residual network topology.

Input: G=(N,E), a network graph.

Output: G’=(N,Es): network graph with the set of links to be used

1 /*Begin*/

2 B_list=N, EB_list=∅, IB_list=∅, NB_list=∅;

3 for ( i = 1; i<= N; i++ ) do

4 calculate the weight of each bridge using (3.9);

5 end

6 /*Phase 1*/

7 while ( B_list ! empty) do

8 exp= finding_exporter(B_list);

9 EB_list= EB_list ∪ {exp} ;

10 B_list= B_list - {exp} ;

11 imps=finding_importer(B_list, exp) ;

12 IB_list= IB_list ∪ {imps} ;

13 B_list= B_list - {imps} ;

14 neutrals=finding_neutral(B_list, imps);

15 NB_list= NB_list ∪ {neutrals} ;

16 B_list= B_list - {neutrals} ;

17 end

18 /*Phase 2*/

19 Loff = ∅; /*links to be turned off */

20 i=0 ;

21 while ( IB_list ! empty) do

22 modify_the_shortest_path_tree_of(IB_list[i]);

23 Loff = Loff∪ fixing_links(IB_list[i]) ;

24 if (L -Loff = 2(B- 1)) according to (3.8) then

25 Break ;

26 end

27 i++ ;

28 end

29 for (each e ∈ Loff ) do

30 if fe > Th then

31 Loff = Loff − e;

32 end

33 end

34 /*Phase 3*/

35 Es = E − Loff ;

36 compute_all_shortest_path using SPB for the residual topology

G′(N, Es) ;

Algorithm 1: MEEAFS
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3.5 Performance analysis

This section presents the MEEAFS performance obtained in different scenar-

ios using the ns-3 simulator. Initially, the simulator reads a weighted adja-

cency matrix of an input topology of 50, 100, 200 and 300 nodes, respectively.

These weights represent the energy impact of links (two adjacent nodes), as-

suming that they are set by the network administrator. We have considered

four core network topologies: the first one is composed of 50 nodes and 348

links; the second one composed of 100 nodes and 964 links; the third one is

composed of 200 nodes and 1,926 links; and the fourth one is composed of

300 nodes and 2,276 links. Each bridge is assumed to generate traffic toward

any other bridge. Traffic demands arrive at the network nodes following a

Poisson process with arrival demands rate λ and required kd traffic units that

is randomly generated between 0.001*c and 0.1*c (c being the link capacity in

traffic unit). We consider the following two evaluations:

1. A comparison of the MEEAFS algorithm versus the EAR algorithm

with different topologies.

2. A general performance analysis of the MEEAFS algorithm.

The obtained results are the average of ten independent runs. To evaluate

the energy savings that could be achieved by EAR and MEEAFS, we consider

the σ index:

σ% = 100 ×
|E| − |Es|

|E| − Lmin

(3.10)

Figure 3.6 depicts the energy savings obtained by EAR and MEEAFS algo-

rithms for the four topologies. The EAR energy savings are constant, because

the EAR algorithm has not defined a threshold either to turn off or to keep

links in the active state. The EAR algorithm also does not consider the traffic

load.

Therefore, when EAR is used, 55% of possible links are turned off. However,

we notice that the performance of MEEAFS is dependent on the Th value.

The power saving obtained by MEEAFS increases with the increase of the

threshold Th. This algorithm was able to achieve more than 65% energy sav-

ings when the value of the threshold was greater than 75%.

Figure 3.7 depicts the energy savings obtained by MEEAFS in both medium

and high loads of traffic. We have already observed that in medium loads

more energy saving can be achieved compared with high loads. Indeed, as

the traffic load increases, fewer links can be turned off. In order to analyze

the impact of the MEEAFS algorithm on network performance, we evaluate
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FIGURE 3.6: Energy saving versus link load threshold

FIGURE 3.7: Energy saving versus link load threshold (medium
and high load)

the average traffic load on active links by varying the number of turned off

links (thus varying Th). We introduce the ρ% parameter (average link load
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of active links), which is computed as follows [202]:

ρ% = 100 ×

|Es|
∑

e=1
ρe

|Es|
rhoALU (3.11)

where ρi is the traffic utilization of link i.

In Figure 3.8, the average traffic load on active links as a function of Th is

reported when MEEAFS is performed. In this scenario, we generate medium

loads with traffic demand rate λ equal to 0.2. We observe that our strategy

achieves satisfactory results in terms of average link load. Figure 3.9 reports

FIGURE 3.8: Average traffic load in active links at medium load

the average traffic load on active links. In this scenario, we generate high

loads with traffic demand rate λ equal to 0.7. In this case, we observe that

our strategy can achieve an acceptable link load if the threshold does not

exceed 55%.

The increase of threshold value corresponds to the increase in energy sav-

ings. As shown in Figure 3.9, the MEEAFS algorithm reports significant

performance at medium traffic loads, with energy saving that can exceed

60%. Moreover, the MEEAFS algorithm can achieve approximately 40% en-

ergy savings at high traffic loads without affecting the network performance.

Therefore, the choice of the threshold value in each scenario is critical to mod-

ulate the energy savings. Hence, MEEAFS could potentially guarantee a re-

duced impact on traffic performance.
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FIGURE 3.9: Average traffic load in active links at high load

Load balancing is considered to be a requirement that should be fulfilled in

Carrier Ethernet. Hence, the third performance analysis is devoted to mea-

suring the fairness of the traffic distribution on the active links Es. The fair-

ness index FI is used to measure whether the traffic load is fairly distributed

among all of the links. We utilize Jain’s Fairness Index [203]:

FI =

(
∑

e∈Es

ρe)
2

|Es| ×
∑

e∈Es

ρe
2

(3.12)

When FI = 1, this indicates that the traffic is distributed in a fair way.

Figures 3.10 and 3.11 summarize the value of FI obtained by MEEAFS and

EAR in medium and high loads of traffic, respectively.

We observe that the fairness index in both load conditions (high and medium)

is nearly similar. Similarly, the fairness index decreases when the number of

turned-off links increases, i.e., when the threshold Th values increase. Thus,

as we discussed earlier, the choice of threshold value is critical to obtain the

desired performance versus the energy saving gain.
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FIGURE 3.10: Fairness index versus link load threshold at
medium load

FIGURE 3.11: Fairness index versus link load threshold at high
load

3.6 Conclusion and future work

This work proposes a new routing algorithm, called MEEAFS, to save en-

ergy in Carrier Ethernet networks. It allows a subset of bridge interfaces to
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be turned off. Our algorithm is based on a modification of the Internet En-

ergy Aware Routing Algorithm [53]. Among the limitations of their EAR

algorithm, the traffic loads on links are ignored and the energy consump-

tion impacts of link cards are not taken into account. Our algorithm resolves

those constraints. It is based on a heuristic that identifies the exporter bridges

and fixes a value of link load threshold to ensure acceptable network perfor-

mance. Nevertheless, MEEAFS could affect the average route length. It is

not evaluated in this work and it will be considered in the next work. The

presented results show that important energy savings may be achieved with

MEEAFS for our scenarios. This was typically true at medium traffic loads

and for threshold values higher than 50%. However and obviously, at high

traffic loads, MEEAFS cannot achieve significant energy reduction without

degrading network performance. We tested the behavior of MEEAFS by con-

sidering only the core network segment. Based on these encouraging results,

our future work will consider an actual network topology, including all of

the network segments: core, metro, and access. For example, realistic net-

work topologies from available datasets might be used, such as the Rocket-

Fuel [204] and Topology Zoo datasets [205], SNDlib [206] and dynamic (cy-

clostationary) traffic matrices could be generated [207].
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Chapter 4

Equal Cost Multiple Path

Energy-Aware Routing in

Carrier-Ethernet Networks with

Bundled Links

——————————————

4.1 Introduction

In modern communication infrastructures, power consumption along with

congestion are the most critical aspects of designing the network topologies.

In the case of multiple shortest paths available for a given demands, it is bet-

ter to use the Equal Cost Multiple Path (ECMP) routing policy, that allows

minimizing the network congestion and increasing load balancing. Figure 4.1

illustrates the load sharing when ECMP rule is enabled. The ECMP feature

seems relevant to reduce delays but it can however increase energy consump-

tion, as the traffic passes through a larger number of links. Nevertheless the

lines are then less loaded and can therefore be put to sleep especially in case

of bundled links.

Recall that the energy consumption of Carrier Ethernet devices is largely

dependent on their installed capacity [22] [56]. By its characteristic, the en-

ergy consumed by a switch increases linearly with the number of line cards

plugged into the switch as well as the number of active ports on each card

[20]. For this kind of devices, two basic techniques can be adopted to re-

duce the power consumption. The first one is the so-called power scaling

or Adaptive Link Rate (ALR), which allows dynamic modulation of the de-

vice capacity to be proportional to the traffic load. The second one, named
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FIGURE 4.1: Load sharing with ECMP

EAR: energy-aware routing, forces some selected devices (e.g. the least used

devices) to be turned off and consolidating the traffic on a small set of net-

work devices. Current network devices cannot support ALR technique, thus

architectural designs of network elements should be undertaken. However,

an efficient traffic engineering can achieve an EAR by smartly aggregating

traffic demands into a small number of network elements and turning off un-

necessary elements. In this chapter, we still consider the SPB (IEEE 802.1aq

[195]). Recall that SPB computes the shortest path between any pair of nodes.

Indeed, it aims to ensure frame forwarding on the shortest path within a

Shortest Path Tree (SPT) spanning the network by using an extension of IS-

IS link state routing protocol [196]. IS-IS protocol supports the handling of

MAC addresses; it is able to run directly over Ethernet as it is not tight to

IP. In order to guarantee the load balancing requirement, SPB allows the use

of ECMP-based routing strategy [208]. ECMP improves network bandwidth

utilization, allows an enhanced use of mesh topologies, and provides addi-

tional resiliency by enabling fast access to backup paths. Moreover, the con-

cept of bundled link could help to favor the network connectivity along with

improved resilience in case of a link failure. This technique of bundled link,

called also link aggregation, is standardized by the IEEE 802.1AX [154] and

revised in [209]. This standard defines the bundled link capability (which is

MAC independent), and general information relevant to specific MAC types

that support bundled link. Figure 4.2 shows an example of link aggrega-

tion group (or bundled link). The Link Aggregation Control Protocol (LACP)

is a control protocol running over Ethernet Link Aggregation Group (LAG)

members. LACP can be used in MPLS over Ethernet, IP over Ethernet and

anything over Ethernet. The two main reasons behind using bundled links
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bundled link

FIGURE 4.2: Bundled links

are (i) allowing network operators to easily upgrade their network capacity,

(ii) resilience and network stability in case of cable failure and congestion. In

this chapter, the term ’link’ refers to one bundled link that is composed by

multiple cables.

In order to model an EAR compliant with SPB protocol, we make use of

optimization techniques. Our main contributions are:

• First, we formulate a MILP, called SPB-EAR, based on the MILP given

in [164], whose objective is to solve the problem of reducing power con-

sumption in SPB-based Carrier Ethernet networks. To the best of our

knowledge this is the first work that jointly minimizes the number of

active cables in bundled links whilst satisfying ECMP routing rule.

• Second, we propose two heuristics, called G-SPB (Green SPB) and FG-

SPB (Fast Greedy SPB), to solve SPB-EAR. The main difference between

the two heuristics is the selection order of candidate bundled links to

power-off.

4.2 Related Works

Related to literature addressing EAR, we found few researches focus on en-

ergy saving in Carrier Ethernet networks [64] [144]. Moreover, none of them

cares about saving energy considering SPB protocol. In order to better ana-

lyze EAR approach, we choose to study IP approaches which propose EAR

protocols compatible with SPB-based Carrier Ethernet context. In this re-

spect, [164] and [94] propose EAR operated with the very popular shortest

path protocol, i.e. OSPF, which uses ECMP policy to prevent network con-

gestion. The authors in [164] [158] assume to turn off only the links since

turning on/off an entire device may reduce device life cycle. Moreover,

the authors in [164] have proposed to use heuristic approach to find a sta-

ble OSPF weight setting, along with robust optimization design, for multi-

period traffic matrices. As for [158], authors have used genetic algorithms to
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find the link weights that influence the traffic distribution optimizing both

energy-efficiency and load-balancing. Efficient greedy heuristics with differ-

ent sorting criteria are proposed in [153] and [94], exploiting the possibility

to turn off both nodes and links but, in [94], the links weight is optimized

so as to reduce both power consumption and network congestion. Fortz et

al in [210] have resorted to a local search heuristic by iteratively modifying

the OSPF weights setting for load balancing purpose only. Some relevant

works have sketched the problem of energy-aware traffic engineering with

bundled links by turning off single cables. In [211], which was the first work

dealing with energy-aware traffic engineering considering bundled links, the

authors formulate the problem as an Integer Linear Program (ILP), and pro-

pose to power-off single cables. Moreover, the total load is balanced over

all links maximizing the residual capacity of links, which can therefore be

powered off. Moreover, this solution does not consider any specific routing

rule for traffic demands except the classical flow-conservation constraints.

In [156], the authors have proposed an energy-aware traffic engineering that

aims at maximizing the number of cables to be powered off while respect-

ing the given traffic demands and maintaining a required level of network

reliability.

4.3 Green ECMP routing problem

4.3.1 Network model and notations

In this work, we aim at reducing energy consumption in Carrier Networks

so we propose to implement EAR on Carrier Ethernet network operated with

SPB protocol (SPB-EAR). We show through an example in Figure 4.3 how

SPB-EAR can be applied in this context. We consider the undirected graph

G(V, E) with V = {0, 1, 2, 3, 4, 5} and E = {(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4), (4, 5)},

each node represent bridge/switch and each link (u, v) represents a bundled

link with finite capacity Cuv > 0. We assume that each link is comprised

of 3 cables, i.e., with bundle size equals to three, and capacities on links

are as depicted in Figure 6.8a. The capacity of a link is the total capacity

of its operational cables. We denote fuv the total flow on link (u, v) ∈ E.

Let D be the set of all traffic demands in G and the triple (sd, td, hd) refers

to the demand indexed by d = 1, 2, ..., |D| between node sd ∈ V and node

td ∈ V , where hd is the amount of traffic exchanged between sd and td.

Let SPBd = {spbdq | all(s, t) shortest paths for traffic demand d, indexed by
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q > 0}. Let DT Mp denote the traffic matrix that collects all the demands at pe-

riod p. In the example of Figure 4.3, we assume that there are 2 traffic matrices

DT M1 and DT M2 at two different periods. Each traffic matrix has two traffic

demands: DT M1 = {(0, 4, 6), (0, 5, 7)}, and DT M2 = {(0, 4, 3), (0, 5, 4)}. For

DT M1, the traffic demands are equally split over 3 different paths from node

0 to node 4. i.e., SPB1 = {spb11 = (0, 2, 4), spb12 = (0, 1, 4), spb13 = (0, 3, 4)},

SPB2 = {spb21 = (0, 2, 4, 5), spb22 = (0, 1, 4, 5), spb23 = (0, 3, 4, 5)}. We obtain

f01 = f02 = f03 = f14 = f24 = f34 = (6 + 7)/3 = 4.33 < 5. This routing is

feasible but there is no possible way to turn off any link, we can only remove

one cable from the link (4, 5) since f45 = 7 < 13(2/3) = 8.6. However, in the

case of DT M2 (where the demand ends are identical to DT M1 but the demand

capacities are lower) more links can be powered off. Indeed the decreasing

traffic demands may be equally split among 2 different paths between node

0 to node 4. i.e., f01 = f03 = f14 = f34 = (3 + 4)/2 = 3.5 < 5. So, we can

totally turn off the two links (0, 2), (2, 4), besides, turning off 2 cables from

the link (4, 5), i.e, f45 = 4 < 13 ∗ (1/3) = 4.33. For the first traffic matrix, only

4.76%, i.e., (1 − (20/21)) × 100 power consumption can be saved, while for

the second traffic matrix 33.33%, i.e., (1 − (13/21)) × 100 of power saving can

be reached. The power saving computation is described in Section 4.5.

Energy-aware traffic engineering allows to assign an appropriate links

weight setting for each traffic matrix independently. The links weight is used

to compute the shortest path (the sequence of links used by a demand) and

a link can be powered off by assigning a very large value to its weight and

therefore it could be excluded from the shortest paths. The problem of ECMP

weight setting is known to be NP-hard [94, 158, 210]. In this work we assume

that we use any solution provided by any of the existing solutions (for in-

stance one provided by [164]). For the sake of simplicity and without loss of

generality, in heuristic algorithms we consider that the initial weight setting

uses the inverse of link capacity. If the bundled link e is still used in the new

routing solution its weight remains stable. Otherwise, its weight is changed

to wmax.

4.3.2 Problem Formulation

In this section, we propose a MILP programing formulation for the SPB-EAR

problem. Table 4.1 summarizes notations and parameters of the model.

min
∑

e∈E

neEe + β{
∑

(e)∈E

(Be − ne)Ee} (4.1)
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TABLE 4.1: Summary of notations and parameters

Parameters Description
G=(V, E ) Undirected graph where V is the set of vertices (nodes) and

E is the set of edges (links)
E ′ Set of links used to route traffic
Euv Power consumption of a powred cable in link (u, v) ∈ E
β Parameter set to 0.1, assuming that the powered-off cables

consume 10% of the power spent in the active mode
Cuv Capacity of link (u, v) ∈ E
µ Maximum tolerated link utilization; µ ∈]0, 1]
NG(u) Set of neighbors of u ∈ V
D Set of all traffic demands D = {(sd, td, hd), sd ∈ V, td ∈ V }
Dt Set of all destination nodes t ∈ V
hd Demand of the traffic flow from node sd to td

Be Bundle size of link e ∈ E
nuv Integer variable giving the number of powered-on cables in

link (u, v)
xuv Binary variable indicating if the link (u, v) has at least one

powered-on cable or not
fd

uv Real variable to present the amount of flow of the demand d
that is routed traversing the link (u, v);fd

uv ∈ [0 1]
fuv Real variable representing the total flow traversing the link

(u, v); fuv ≥ 0
rt

uv Binary variable determining whether link (u, v)
belongs to one of shortest paths from u to t (i.e., using
ECMP)

zd
u Real variable representing fraction of the demand d routed

on the outgoing node u belonging to one of shortest paths
from s to t (i.e., using ECMP); zst

u ∈ [0 1]
kt

u Real variable representing the cost of shortest path from u
to t

M Non-negative and a big enough constant
wmax Maximum value of link weight assigned to the powered-off

link (i.e., all its cables are powered-off)
wuv Weight of the link (u, v) ∈ E; 1 ≤ wuv ≤ wmax
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FIGURE 4.3: Example of network topology for EAR

∑

v∈NG(u)

(fd
vu − fd

uv) =



















−1 if u = sd,

1 if u = td,

0 if u 6= sd, td,

∀u ∈ V ;

d ∈ D,
(4.2)

fuv =
∑

d∈D
hd(fd

uv + fd
vu) ≤ µ(ne/Be)Ce

∀e = (u, v) ∈ E,
(4.3)

xe ≤ ne ∀e ∈ E, (4.4)

Bexe ≥ ne ∀e ∈ E, (4.5)
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0 ≤ zd
u − fd

uv ≤ 1 − rt
uv ∀d ∈ D; (u, v) ∈ E, (4.6)

fd
uv − rt

uv ≤ 0 ∀(u, v) ∈ E; d ∈ D, (4.7)

rt
uv ≤ xuv ∀(u, v) ∈ E; t ∈ V, (4.8)

1 − rt
uv ≤ kt

v + wuv − kt
u ≤ M(1 − rt

uv)

∀u, t ∈ V ; (u, v) ∈ E,
(4.9)

wmax(1 − xuv) ≤ wuv ∀(u, v) ∈ E, (4.10)

wuv + xuv ≤ wmax ∀(u, v) ∈ E, (4.11)

0 ≤ ne ≤ Be ∀e ∈ E. (4.12)

The objective function (4.1) minimizes the total power consumption in-

duced by cables. It is composed of two parts. The first part computes the

power consumption of powered-on cables. The second part computes the

consumption of powered-off cables. It is weighted by the parameter β that is

set to 0.1, assuming that the powered-off cables consume 10% of the power

spent in the active mode. Constraints (4.2) express the classical flow conser-

vation. They ensure that incoming and outgoing flows are equal for each

node except the demand end nodes. Constraints (4.3) say that the sum of

traffic of all demands routed on the link e = (u, v) must not exceed the tol-

erated link capacity µCe. We consider that the capacity of a link is shared

between the traffic in both directions [212]. Indeed, this model allows to re-

duce the number of variables without loss of generality. Inequalities (4.4)

make sure that if the link e has no powered-on any cables, then xe=0. In-

equalities (4.5) make sure if the link e has at least one cable powered-on (i.e.,

ne ≥ 1) then xe = 1. Inequalities (4.6) are for ECMP routing configuration.

They guarantee that if the link (u, v) belongs to one of the shortest path from

u to t (i.e.,rt
uv = 1), then the flow f st

uv is equal to zst
u . This latter represents the

common value of the flow assigned to all links outgoing from u belonging to

the shortest paths from u to t. Inequalities (4.7) force f st
uv = 0 for all links(u, v)

that do not belong to the shortest path from u to t. Inequalities (4.8) forbid

powered-off links to belong to one of the shortest paths. Inequalities (4.9)

compute the weight of the link (u, v) congruent with the length of the short-

est path from u to t. The variable kt
v corresponds to the cost/length of the

shortest from node to v node t. Inequalities (4.10) and (4.11) put the weights

of powered-off links to wmax. Finally, inequalities (4.12) bound the number of

powered-on cables per link to be less or equal to the Be.
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4.4 Heuristic Algorithms

It is very challenging and sometimes impossible to get an optimal solution

in a reasonable time for the previous MILP formulation, mainly for large

topologies and dense instances. This is due to the fact that our problem is

NP-hard. It is indeed a particular case of the problems studied in [211] [164]

and proved to be strongly NP-hard. Therefore, to find feasible solutions in

reasonable time, we use two greedy heurisics, called Green SPB (G-SPB) and

Fast Greedy SPB (FG-SPB). The greedy heuristic has been chosen in our case

because it can provide good approximations to the optimum. For the sake of

simplicity and without loss of generality, we consider that the initial weight

setting uses the inverse of link capacity. Further, the links weight will not be

modified only if whole the link is removed, in this case the new link weight

will be equal to wmax.

4.4.1 Green SPB (G-SPB)

Figure 4.4 reports a diagram description of the process of G-SPB. It takes into

account the network topology G = (V, E, W ) and traffic matrix D, the output

is a routing solution on G′ = (V, E ′, W ′), containing only the powered-on

cables used to route the demands. G-SPB consists of two main phases. In

the first phase, we try to turn off the whole of the bundled link. The intuition

considers that the power saving achieved by powering off, initially, the whole

link is better than powering off a part of the bundle. We choose to sort links

by the amount of traffic already routed through it, the smallest first. In other

words, we sort the links in decreasing order of their residual capacities. The

heuristic iteratively selects a candidate link to be turned off. At each iteration,

a feasible route (SPB performed) is computed. If no feasible route exists,

then we put back the selected link in G′. If no violation of the operational

constraints occurs, the selected link is turned off. This process is repeated

until no more links can be turned off. The second phase is devoted to turning

off as many cables as possible so that all the flow demands are still satisfied.

For each used link (i.e., e ∈ G′) we keep the minimum number of cables by

rounding up the following ratio:

ne = ⌈
feBe

µCe

⌉ (4.13)
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Phase1/Step1:

Route traffic for all demands using 

ECMP routing rule

Phase1/Step2:

Sorts links in decreasing order of 

their residual capacities

Check route feasibility
Phase1/Step3:

E'=E-(u,v)

W'=W-(wuv)

Input:

 G=(V, E, W) , D

E'=E

W'=W

No

Yes

Phase1/Step4:

Reroute traffic for all demands 

using ECMP routing rule

No

Phase1/Step5:

Update E', W' and mark the 

route link as checked

Yes

Any candidate link 

to power-off ?

G'=(V, E', W')

Phase2/Step1:

Power-off the maximal number of 

cables, for each link in E', by 

rounding up the ratio in (13)    

Put back the 

route link in E'

FIGURE 4.4: G-SPB diagram

4.4.2 Fast Greedy SPB (FG-SPB)

Figure 4.5 reports a diagram description of the process of FG-SPB. The flows

in each link take initially the values of the dual variables obtained by solving

the MILP (4.14)-(4.17), that minimizes the total flow summed on each link,

subject to the classical constraints of flow conservation and link allowable

capacity utilization. This MILP can achieve an upper bound on energy saving

for any feasible solution in the case of using at most the sufficient number

of cables that satisfies all traffic demands. The work [211] has shown that

this solution performs poorly comparing to the optimal one. Therefore, we

propose to continue the FG-SPB proceeding as follows. Each unused link will

be powered-off, i.e., each link with fe = 0. The next step sorts the remaining

links E ′ in priority with the largest residual capacity. For each candidate

link, we try to power-off the maximal number of cables using (4.13). Then

we check the feasibility of SPB route. If it exists, the current link is marked

as checked. If the route is not feasible, the cables are powered on and the

corresponding link marked as checked. This process is repeated until every
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link is checked.

min
∑

e∈E
fe (4.14)

∑

v∈NG(u)

(fd
vu − fd

uv) =



















−1 if u=sd,

1 if u=td,

0 if u 6= sd, td,

∀u ∈ V ;

d ∈ D,
(4.15)

fe =
∑

d∈D

hd(fd
uv + fd

vu) ∀e = (u, v) ∈ E, (4.16)

fe ≤ µCe ∀(u, v) ∈ E. (4.17)

Phase1/Step1:

Solve the MILP (14)-(17)

Input:

 G=(V, E, W) , D

E'=E

W'=W

Phase2/Step2:

Sorts links E' in decreasing order of 

their residual capacities

Check route feasibility

Phase2/Step3:

Power-off the maximal possible 

cables, for the current link not 

checked yet, using (13)    

Phase2/Step4:

Reroute traffic for all demands 

using ECMP routing rule

All links are checked ?

G'=(V, E', W')

No

Phase2/Step5:

Update E' and mark the 

current link as checked
No

Yes

Yes

Phase2/Step1:

Power-off all unused links

E'=E-{(u,v)}

W'=W-{wuv}

Power-on the 

cables 

FIGURE 4.5: FG-SPB diagram

4.5 Performance analysis

In this section, we evaluate the SPB-EAR, and the heuristic-based algorithms

(G-SPB and FG-SPB). We start by comparing solutions obtained by the ex-

act formulation (SPB-EAR) with the heuristic ones on the same network in-

stances. Then, we provide a performance analysis of the heuristic solutions

for large network instances. We consider realistic network instances collected

from SNDlib [206], considering three traffic level (low, medium, high). We

assume that the daily traffic patterns have the shape of Figure 5.6, taken

from [213]. Note that the traffic matrices found in SNDlib are collected at
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FIGURE 4.6: Daily traffic for different networks

6:00 a.m. In order to fit the best to reality and represent three daily traffic lev-

els, the traffic matrix is scaled with the load parameter γ that is set to three

different values 0.5, 1, and 2.5. The performance of the proposed approaches

(SPB-EAR, G-SPB and FG-SPB) is evaluated using the following metric:

• η indicates a network’s power saving that can be obtained. It is com-

puted as follow:

η = (1 −

∑

e∈E
ne

∑

e∈E
Be

) × 100% (4.18)

• φ measures the increase of path cost. In order to report the distribution

of this parameter, we calculate for all the demands the difference of

costs between an EAR algorithm route and the corresponding ECMP

path (before applying any EAR algorithm).

• Jains’s Fairness Index 3.12 is used to evaluate the load balancing.

We solve the ILP model using the solver CPLEX with Concert Technology

(C++) [214]. Note that Cplex is a solver that uses exact methods of resolution

to solve integer, mixed integer and quadratic programs [215]. The time limit

is set to 3 hours (10800 seconds). All the experiments are performed on a PC
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with 2.6 GHz Intel Core i7 and 8GB RAM.

As known, in practice, network operators do not run their networks at full

load in order to avoid transient congestion. The maximum allowed utiliza-

tion of links is set to 70% (µ = 0.7). Both MILP algorithm and heuristics have

been tested on four realistic topologies taking into account three different

traffic loads. Obtained results are reported in Table 4.2, Table 4.3, and Ta-

ble 4.4. Entries of tables are the following. The first column indicates the

network instance name. The second column gives the load parameter γ by

which the traffic matrix is scaled. Energy saving column reports the percent-

age of powered off cables η. The gap to the optimum column reports the

energy performance of the optimized network, i.e., the ratio (UB-LB)/LB,

where UB is the upper bound on power consumption, the power consump-

tion of the sub-graph solution, and LB is the lower bound on power con-

sumption (the power consumption of the linear relaxation). Note that, the

relaxation technique replaces the integer variables of the original MILP by

appropriate continuous constraints, Interested readers are referred to [216]

for more details. Power (W ) is the upper bound on power consumption of

the sub-graph solution, i.e., UB. We assume that the power consumption of a

single powered-on cable estimated to be 30 W and the powered-off consumes

10%, i.e., β = 0.1, of the power spent in the active mode. FI reports fairness

of traffic distribution. Finally, time column reports the computation time in

seconds.

TABLE 4.2: SPB-EAR formulation

Network V E D load Saving Gap Power Fairness Time
(γ) (η%) (%) (W ) (FI) (s)
0.5 78.78 0 960 0.68 1183.48

Atlanta 15 22 210 1 78.78 0 960 0.68 1637.89
2.5 75.75 7.3 762 0.61 10800
0.5 72.72 32 4560 0.52 10800

Germany50 50 88 662 1 71.21 35 4740 0.64 10800
2.5 66.66 40 5280 0.47 10800
0.5 79.48 0 1110 0.40 1902.95

Nobel-germany 17 26 121 1 79.48 0 1110 0.45 1460.56
2.5 76.92 0 1200 0.45 6203.29
0.5 74.07 0 900 0.76 141.7

Polska 12 18 66 1 55.55 0 1350 0.73 320.96
2.5 37.03 0 1800 0.69 1736.75

Figures 4.13 to 4.16 present the topologies before and after G-SPB and

FG-SPB for the four network instances.
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TABLE 4.3: G-SPB heuristic algorithm

Network V E D load Saving Power Fairness Time
(γ) (η%) (W ) FI (s)
0.5 71.21 1055 0.46

Atlanta 15 22 210 1 68.18 1275 0.51 < 84
2.5 51.51 1770 0.43
0.5 81.44 3525 0.75

Germany50 50 88 662 1 81.06 3570 0.72 < 7000
2.5 66.29 5325 0.67
0.5 74.35 1290 0.51

Nobel-germany 17 26 121 1 74.35 1290 0.51 < 40
2.5 69.23 1470 0.46
0.5 70.03 990 0.79

Polska 12 18 66 1 46.29 1575 0.77 < 20
2.5 31.48 1990 0.69

TABLE 4.4: FG-SPB heuristic algorithm

Network V E D load Saving Power Fairness Time
(γ) (η%) (W ) FI (s)
0.5 68.18 1275 0.51

Atlanta 15 22 210 1 68.18 1275 0.51 < 30
2.5 51.51 1770 0.43
0.5 67.04 5235 0.62

Germany50 50 88 662 1 65.90 5370 0.62 < 5245
2.5 64.77 5505 0.59
0.5 74.35 1290 0.51

Nobel-germany 17 26 121 1 74.35 1290 0.51 < 26
2.5 71.79 1380 0.46
0.5 70.03 990 0.79

Polska 12 18 66 1 55.55 1350 0.73 < 8
2.5 37.03 1800 0.69
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FIGURE 4.7: Over-cost induced by G-SPB heuristic
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FIGURE 4.8: Over-cost induced by FG-SPB heuristic

(A) Before G-SPB execution (B) After G-SPB execution

FIGURE 4.9: Atlanta network
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(A) Before G-SPB execution

(B) After G-SPB execution

FIGURE 4.10: Germany50 network

(A) Before G-SPB execution (B) After G-SPB execution

FIGURE 4.11: NobelGermany network

(A) Before G-SPB execution (B) After G-SPB execution

FIGURE 4.12: Polska network
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(A) Before FG-SPB execution (B) After FG-SPB execution

FIGURE 4.13: Atlanta network

(A) Before FG-SPB execution

(B) After FG-SPB execution

FIGURE 4.14: Germany50 network

(A) Before FG-SPB execution (B) After FG-SPB execution

FIGURE 4.15: NobelGermany network



90
Chapter 4. Equal Cost Multiple Path Energy-Aware Routing in

Carrier-Ethernet Networks with Bundled Links

(A) Before FG-SPB execution (B) After FG-SPB execution

FIGURE 4.16: Polska network

As a first observation, both heuristic algorithms produce encouraging re-

sults in terms of execution times. When analyzing the results reported in

Table 4.3 and Table 4.4, we can state that G-SPB algorithm performs better

than FG-SPB. In addition, for Germany50 network G-SPB achieves higher

percentage of energy saving compared to the FG-SPB heuristic and SPB-EAR

algorithm (the MILP model has been stopped before reaching optimality due

to large topology and dense instance). It can be noted that, on average, a

good load balancing (FI), is obtained by all algorithms for nearly all instances,

ranging from 0.43 to 0.79.

Results clearly show that, as expected, the energy saving decreases when

γ parameter increases. However, for some instances as the case of Nobel-

germany and Polska networks with both heuristics, the percentage of pow-

ered off cables remains the same for different values of γ, i.e., γ = 0.5 and

γ = 1. This is obviously due the fact that cables capacities for the latter in-

stances are sufficient to satisfy high traffic demands. Experiments show also

that for the execution time for FG-SPB is relatively better than G-SPB. This

is obvious because FG-SPB has an initial distribution of traffic provided by

the MILP (4.14)-(4.17). In summary, compared with MILP solutions, both

heuristics perform similarly. Moreover, the solutions provided by G-SPB and

FG-SPB especially for large instance (e.g., Germany50) prove the efficiency of

our heuristics.

Figure 4.7 and Figure 4.8 depict the increase of path cost in terms of over

cost caused by both heuristics with respect to SPB routing (the load parame-

ter γ is set to 1). When the over-cost parameter φ is equal to 0, it means that

the routing solution is exactly the same the SPB one performed in the original

graph. We remark that a significant fraction of demands (from 27% to 43%) is
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not affected, apart from Germany50 (only about 5%). However, the path cost

can be affected by adding extra cost units to a demand. That is for instance

the case of Germany50 network for which 2% of demands add 9 extra units

of cost to their routes. Indeed, the initial link weight setting can impact not

only the energy saving but also over-cost paths of the optimized topology.

4.6 Conclusion

In this chapter, we proposed two heuristics performing energy-aware rout-

ing, Green SPB (G-SPB) and Fast Greedy SPB (FG-SPB), which are compliant

to Carrier Ethernet network operating with Shortest Path Bridging (SPB) pro-

tocol. We formulated the problem as a mixed integer linear program (MILP)

that aims at maximizing the number of cables to be powered off while fulfill-

ing the given traffic demand and the ECMP routing rules. Both MILP algo-

rithm and heuristics have been tested on four realistic topologies taking into

account three different traffic loads. Experiments prove also that the heuris-

tics are appropriated as energy efficient routing in Carrier Ethernet networks.

Based on the obtained encouraging results, our future work will focus on op-

timizing the initial weight setting based on the projected demands aiming at

efficient routing cost.
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Chapter 5

Energy-aware Routing in

Carrier-Grade Ethernet using SDN

Approach

——————————————

5.1 Introduction

Soft-Defined Networking (SDN) is a new approach that enables operators to

easily manage all the network elements. In this chapter, we address the prob-

lem of energy-aware routing in SDN-based carrier-grade Ethernet networks.

Our approach is based on turning off network nodes and links to reduce

energy consumption, while respecting the rule space capacity for each Open-

flow switch, and maintaining an allowable maximum link utilization. We

first present an exact model based on an Integer Linear Programming formu-

lation for the problem. Then, we describe a set of first-fit heuristic algorithms

suitable for large-sized networks. The exact and heuristic approaches are

tested on nine SNDlib-based instances. Experimentations show the efficiency

of both exact and heuristic methods for different network topologies. In par-

ticular, our heuristic algorithms are able to achieve a good balance among

energy consumption, resource utilization, and service performance.

Recall that in case of an ON-OFF power profile, it would be more energy

efficient to aggregate traffic on a small set of network devices (line cards and a

router chassis) to allow the maximal set to be turned off. Accordingly, Energy

Aware Routing (EAR) mechanisms constitute a potential solution to energy

consumption minimization. EAR can be implemented and integrated over

two architectures (centralized and distributed). Distributed architectures ex-

ploit limited amounts of data, relying on multiple agents which are able to
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locally adjust the sleeping decision. Compared to the distributed architec-

tures, centralized ones dispose of a central controller. Sleeping decisions are

carried out in a coordinated way by a central entity who has a global net-

work knowledge. The implementation of an energy-aware routing within an

SDN (Software Defined Network) logically centralized architecture can be

easily achieved. Carrier-grade network operators specify the need for creat-

ing an SDN architecture to facilitate the management and increase the flexi-

bility of their networks [217, 218]. In fact, for the optical transport networks,

the Optical Transport working group of the Open Networking Foundation

(ONF) [219] emphasizes the improvements in the flexibility of control and

management by leveraging virtualization and SDNs.

SDN implementations, in particular using Openflow , focus on carrier Ether-

net to optimize its operational expenditures. A detailed description of how

Openflow promotes carrier Ethernet advances is provided in [220, 221].

Openflow switches can either be pure or hybrid. Pure switches do not sup-

port legacy control protocols and only rely on the Openflow controller for

routing decisions, while hybrid switches integrate both. In [222], the au-

thors demonstrate an effective use of SDN for traffic engineering especially

when SDN is incrementally introduced into an existing networks. As hybrid

switches are the most deployed in carrier-grade Ethernet [217, 223], they will

be considered in our work.

Openflow architecture makes energy-aware routing algorithms less com-

plex due to its logically centralized controller. The Openflow controller can

learn network topology and network devices’ states, and then can compute

the best paths in terms of energy savings.

Traditional networking SDN networking

SDN
Controller 

data flow

data flow

data flow

embded 
control plane 

OpenFlow 
 switch

OpenFlow  
messages

FIGURE 5.1: Traditional networking versus SDN networking

In traditional networks, as illustrated in Figure 5.1, the strong coupling

between the data and control planes makes the deployment of energy-aware

routing algorithms very difficult. It may also become very costly when the
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numerous devices come from different manufacturers, or when they use dif-

ferent programming interfaces or different protocols. In fact, this would im-

ply a modification of the control plane for all the network devices which

act as a closed-system. In contrast, an SDN-based architecture decouples

the control plane from the data plane to produce an external entity which is

called the SDN controller or the Network Operating System. The logically

centralized architecture has the advantage of being consistent with energy-

aware traffic engineering. However, to enable energy savings in the Open-

flow controller, specific features must be controllable by adding extra mes-

sages such as the port power status on/off and the adaptive line rate [224].

These messages and their processing add overhead to the control plane and

increase the communication delay between the controller and the forwarding

devices. Furthermore, the performance of the control plane depends on the

size of the flow table embedded in the openflow switches.

In this work, we neglect the message exchange issues and consider only the

flow-table size. We also assume that network operators use hybrid Openflow

switches in their carrier Ethernet networks. These run a network manage-

ment system that allows energy-aware routing based on an estimation of the

traffic matrix. The network management system sets an optimization prob-

lem that takes into account the limitation of the flow-table size (rule space

capacity constraint), as well as flow conservation and resource utilization

constraints.

The chapter is organized as follows. We present related works in the next sec-

tion. In Section 5.3, we formally describe the problem and model it as an ILP

formulation. In Section 5.4, we describe heuristic algorithms. A performance

analysis of the proposed resolution methods is presented in Section 5.5. Fi-

nally, Section 5.6 is devoted to concluding remarks and to new directions for

future work.

5.2 Related Works

5.2.1 Energy-Aware Routing in traditional architectures

Energy-Aware Routing strategy refers to smartly routed traffic based on energy-

saving objectives. A typical example of EAR consists in modifying the net-

work protocol and turning off unused elements, in order to route traffic over

energy efficient paths. Dabaghi et al. [225] categorize EAR approaches that

use sleeping techniques into two main types: (i) traffic-unaware algorithms
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that ignore the network traffic; and (ii) traffic-aware approaches that consider

a network traffic matrix in a sleeping decision. Only the works of [53, 202,

226–228] and [229] have considered type (i) of the problem. Although these

approaches are able to achieve high energy conservation, they may impact

the reachability of network destinations and may result in important conges-

tion on transiting elements especially during high traffic periods.

Type-(ii) EAR approaches, which are the most common, offer a satisfactory

level of QoS while achieving a considerable energy efficiency. Typically, a

type-(ii) EAR problem in the network is modeled as a graph composed of

a set of nodes that are interconnected by a set of directed or undirected

links. In this context, using integer linear programming or mixed integer lin-

ear programming, the energy saving is formulated as an objective function,

while the network’s technical requirements are modeled through mathemat-

ical constraints. As the EAR problem is NP-hard [230], various heuristics

are typically proposed. Chiaraviglio et al. [153] provide a basic formulation

of the EAR problem as a capacitated multi-commodity flow (CMCF) prob-

lem with continuous flow variables (splittable flows). They propose different

heuristics, where a single routing path is considered, based on several sort-

ing policies for turning off both links and nodes. Another variant of sleeping

routing algorithms involves turning off both links and nodes, which is con-

sidered in [95]. The authors consider the case of flow-based, fully-splittable

routing. They propose a MILP-based heuristic that efficiently configures the

link weights of an Interior Gateway Protocol to reduce both power consump-

tion and network congestion. As in [95], Moulierac et al. [164] consider an

EAR that takes into account link weights optimization. The authors use in ad-

dition robust optimization techniques to deal with multi-period traffic vari-

ations. In [144], Capone et al. propose an optimization model based on the

traditional Multiple Spanning Tree Protocol (MSTP) used by carrier Ethernet

networks. They optimize both network congestion and energy consumption

(on both links and nodes). The main shortcoming of this approach is the use

of MSTP, which can no longer meet the needs of modern carrier Ethernet net-

works. The aforementioned EAR approaches are assumed to be performed

in a coordinated way by a centralized entity. However, none of them have

discussed an actual deployment on SND-based architecture networks.
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5.2.2 Energy-Aware Routing for SDN

In [170], Heller et al. develop the so-called ElasticTree which is one of the

most popular approaches that achieve energy efficiency in data center net-

works. It is implemented on a testbed consisting of OpenFlow switches. The

idea is to turn off links and switches based on the amount of traffic load. The

authors show that the traffic flows can be consolidated through a small set

of links and switches which are sufficient to serve the bandwidth requests

for most of the time. The work in [172] proposes an EAR solution inside

OpenFlow protocol with Green Abstraction Layer (GAL) [67], a recently ap-

proved standard of the European Telecommunications Standards Institute

(ETSI). This integration permits internal communication between network

devices to interchange their power states. In this way, the OpenFlow con-

troller becomes aware of the energy consumption of each network compo-

nent. In [173], an extension of the work presented in [172] is proposed in-

cluding more power states instead of simple ON-OFF states. The authors

consider an Openflow protocol that integrates further energy-aware capabil-

ities and power management primitives of the hardware components, line

cards, nodes and logical resources. Authors in [231] take the advantage of

SDN to create their power management model by collecting real time infor-

mation about network traffic and users’ demands. They propose an ILP for-

mulation that guarantees energy savings for both links and nodes while con-

sidering Qos requirements in terms of delay and link utilization constraints.

In order to solve the problem in polynomial time, the authors propose global

and alternative greedy heuristics. However, they do not consider the lim-

itation of the flow table size, which is one of the main constraints in our

model. Typically, EAR approaches assume that the node routing/forwarding

table (router/switch) can hold an infinite number of routing rules. However,

this assumption does not fit with reality since the actual number of rules in

the hardware node is bounded by the Ternary Content Addressable Memory

(TCAM) size. A new EAR approach [174] for SDN-based networks allows

only links to be turned off when the rule space constraint is considered. The

authors first model the problem in terms of ILP. They also propose a greedy

heuristic based on one sorting criterion that iteratively selects the minimally

loaded link as a candidate for being turned off.

Recall that in [174], using an SDN-based network for EAR offers the major

advantage of logically centralized operation. SDN approaches also allow low

operating expenses and the flexibility to manage the network and to improve

the QoS. In this work, we focus on using Openflow to deploy energy-aware
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routing in a carrier-grade Ethernet networks. Our work can be seen as an ex-

tension of [231] considering the rule space capacity, and an extension of [174]

offering the possibility to save energy on both links and nodes.

5.2.3 Optimizing rule space in Openflow forwarding node

In an Openflow network, the forwarding node contains one or more sepa-

rated flow tables for handling packets. Starting from version 1.1 and there-

after, Openflow supports a pipeline process consisting of multiple flow ta-

bles [217, 223]. Each flow table consists of a set of flow entries that are cre-

ated by the controller, and that determine how flows will be processed. Each

entry in the table corresponds to a routing rule associated with an appro-

priate action. A flow entry can be divided into three parts: (1) a matching

rule that may contain packet header information (e.g., source and destina-

tion MAC/IP addresses, and the ingress port); (2) an action to be executed

on matching packets (e.g., to output the frame to a specific interface or flood

it to all interfaces, to discard the frame, etc.); (3) a counter used to keep statis-

tics on the matching packets. Large tables which are powerful for storing an

important number of rules, provide fine-grained flow control and efficient

energy-aware traffic engineering. However, it is worth noting that these rules

are installed in an a TCAM on-chip that is expensive and has limited space

to hold a great number of rules. Hence, it would be interesting to optimize

the number of rules installed in forwarding devices. TCAM-based energy-

aware SDN issues received significant attention as shown in [175]. Some of

the works address the problem of rule placement without considering en-

ergy savings, see [232, 233] and [234]. In other works, such as [174] and [235],

both rule space capacity and energy consumption are optimized. Giroire et

al. [174] come with idea of using a default rule to deal with the rule capac-

ity limitation. They have proposed an energy-aware routing algorithm that

optimizes the rule placement of an Openflow router in backbone networks.

In [235], the authors propose to reduce the size of flow entries and manage

large-sized SDN flows, while optimizing only the power consumption in-

duced by the TCAM (without turning off network elements). The authors

introduce the Flow-ID concept to enable a new TCAM look-up process that

reduced the TCAM power cost.

Our main contribution in this work is to model SDN-based, energy-aware

routing in carrier Ethernet networks while respecting the memory limitations
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in an Openflow switch, which is also known as rule of space capacity. Con-

sequently, it is important to route flows on a single path when the maximum

number of rules that can be installed at each node is limited. We use the de-

fault rule for optimizing flow tables after [174]. To the best of our knowledge,

the previous works that are the closest to ours are [153], [174] and [231]. Our

work is an extension of [174], [231] and [153]. Table 5.1 gives in details the

main common points and differences between our work and those proposed

in [153], [174] and [231].

TABLE 5.1: Similarities and differences between our work and
the closest ones

Our contribution [153] [231] [174]
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X - - X

Asleep
elements

Nodes/Links Nodes/Links Links only Nodes/Links

Traffic
routing

Unsplittable flow
(ILP and heuristic)

Splittable flow (MILP)
Unsplittable flow (heuristic)

Unsplittable flow
(ILP and heuristic)

Unsplittable flow
(ILP and heuristic)

R
es

o
lu

ti
o

n
m

et
h

o
d

s

Exact
methods

ILP
(binary variables)

MILP
(continuous/binary variables)

ILP
(binary variables)

ILP
(binary variables)

Heuristic
methods

Sorting policies
for network elements
(random; least-flow;

most-power)

Sorting policies
for network elements
(random; least-flow;

most-power; least-links)

Sorting policies
for demands

(priority order of delay)

Sorting policies
for network elements

(least-flow)

5.3 Problem statement and formulation

5.3.1 Problem statement

As an example of EAR, we consider the network topology shown in Fig-

ure 5.2a. The capacity of each link is 7Gbps. There are six traffic demands.

Each demand is given by a pair of nodes (the source and destination nodes):

D = {(1, 6), (1, 5), (1, 4), (2, 6), (2, 5), (2, 7)}. All demands have a volume of 1

Gbps. When rule space constraints on the flow table are not considered, an

optimal EAR routing is obtained as shown in Figure 5.2b. In this solution,

each demand is routed through its shortest path as follows:

(1,6) : 1-2-4-6 ; (1,5) : 1-2-4-5 ; (1,4) : 1-2-4 ; (2,6) : 2-4-6 ; (2,5) : 2-4-5 ; (2,7) :

2-4-5-7

Figure 5.2b illustrates how EAR allows energy savings by turning off

node 3 and four links (i.e, (3,1), (3,2), (3,5) and (5,6)). In the obtained so-

lution, the flow table of node 2 stores three routing rules, the flow table of
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(C) EAR with rule space constraint

FIGURE 5.2: Example of EAR

node 4 stores four rules, and the flow table of node 5 stores only one rule.

Now, if we assume that the flow table for each node can store, at most, three

routing rules, then node 4 cannot route demands (2, 5) and (2, 7). Similarly,

demands (2, 6) and (2, 5) cannot be routed via node 2. Note that demand

(1, 4) does not need to be stored in node 4’s flow table as node 4 is a destina-

tion. As a consequence, the best EAR solution with the rule space constraint

is shown in Figure 5.2c and is as follows.

(1,6) : 1-3-5-6 ; (1,5) : 1-3-5 ; (1,4) : 1-3-5-4 ; (2,6) : 2-4-6 ; (2,5) : 2-4-5 ; (2,7) :

2-4-5-7

As shown in Figure5.2c, EAR can turn off only two links. Note that, links

(1, 3) and (3, 5), can never be turned off. Table 5.2 shows the routing rules

used by the nodes, i.e., each node’s flow table contains at most three rules.

The flow table of node 6 and node 7 are not reported because they have no

demands (rules) to handle.

TABLE 5.2: Routing rules for Figure 5.2c (where each node can
store at most three rules)

Node 1 Node 2 Node 3 Node 4 Node 5
Rule Action Rule Action Rule Action Rule Action Rule Action
(1,6) port 3 (2,6) port 4 (1,6) port 5 (2,6) port 6 (1,6) port 6
(1,5) port 3 (2,5) port 4 (1,5) port 5 (2,5) port 5 (1,4) port 4
(1,4) port 3 (2,7) port 4 (1,4) port 5 (2,7) port 5 (2,7) port 7

To address the space limitation issue, one can use, as in [174] default rule

to optimize the flow-table size and to enhance the EAR solution. For instance,

if we come back to the example in Figure 5.2a and apply the default rule to

the node flow tables (see Figure 5.3, contains the flow table for node 4), then
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the routing solution produces exactly the same topology as the one described

in Figure 5.2b.

In the given example of Figure 5.3, before reducing the number of entries in

the flow table, we cannot route more than 5 demands according to the avail-

able space. To address a large number of flow demands, port 5 is defined as

a default port because it initially carried the largest number of rules. Assume

that, after shrinking the rule space, we have ten flow demands to route. A

feasible solution will match 4 demands with 4 distinct rules, and the 6 re-

maining demands will match the default one.

Rule Action

(1,6) Port 6

(1,5) Port 5

(2,6) Port 6

(2,5) Port 5

(2,7) Port 5

Flow table for node 4
without rule space constraint

Flow table for node 4 
stores three rules

Before shrinking After shrinking

Rule Action

(1,6) Port 6

(2,6) Port 6

Def Port 5

FIGURE 5.3: Stored rules in node 4

5.3.2 Binary integer linear programming model

The EAR problem, with the rule space constraint, is formulated as a binary

integer linear program. The notations used are shown in Table 5.3.
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min
∑

e∈E

Eexe +
∑

u∈V

Euyu (5.1)

∑

v∈NG(u)

[(f st
uv − f st

vu) + (gst
uv − gst

vu)] =



















−1 if u=s,

1 if u=t,

0 if u 6= s,t,

∀u ∈ V,

∀(s, t) ∈ D,
(5.2)

∑

(s,t)∈D

dst(f st
uv + f st

vu + gst
uv + gst

vu) ≤ µCexe ∀e = (u, v) ∈ E, (5.3)

f st
uv + f st

vu + gst
uv + gst

vu ≤ 1
∀(u, v) ∈ E,

∀(s, t) ∈ D,
(5.4)

∑

dst∈D

∑

v∈NG(u)

f st
vu ≤ (Ru − 1)yu ∀u ∈ V, (5.5)

∑

v∈NG(u)

kuv ≤ 1 ∀u ∈ V, (5.6)

gst
uv ≤ kuv

∀(u, v) ∈ E,

∀(s, t) ∈ D,
(5.7)

∑

e∈δG(u)

xe ≤ Myu ∀u ∈ V. (5.8)

Objective function (5.1) minimizes the total energy consumed by links

and nodes. Constraint (5.2) expresses the classical flow conservation. It en-

sures that incoming and outgoing flows are equal for each node except for

the source and destination. Inequality (5.3) says that the sum of traffic for

all demands routed through link e = (u, v) must not exceed the tolerated link

capacity µCe. Inequality (5.4) ensures that the flow passing through link (u,v)

is routed using only one rule, which can be either a distinct or a default rule.

It also guarantees that the flow for a demand (s,t) is routed in one direction

on link (u,v), which can either be from u to v or from v to u. Inequality (5.5)

limits the rule space to a maximum allowed rule space capacity at each node,

while keeping only one rule as the default rule. Inequalities (5.6) and (5.7) are

used to restrict the default port for each node to one. Finally, inequality (5.8)

ensures that when a node u is turned off, none of its incident links can be

turned on.

Note that the choice of parameter M is crucial for the experiments. M should

be greater than or equal to max
u∈V

|δG(u)|, or largely M ≥ |V | − 1.

It is very challenging, and sometimes impossible, to achieve an optimal

solution using the previous ILP formulation for large topologies and dense

instances. In fact, formulation (5.1) - (5.3) falls into the class of multi-commodity
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TABLE 5.3: Summary of notations

Notation Description
G=(V ,E ) Undirected graph where V is the set of vertices (nodes)

and E is the set of edges (links)
|V | , |E| |V | is the size of V, |E| is the size of E
Ee Power consumption of link e ∈ E
Eu Power consumption of node u ∈ V
Ce Capacity of link e ∈ E
Ru Maximum number of rules that can be installed in node u ∈ V
D Set of all traffic demands D = {(s, t), s ∈ V, t ∈ V }
dst Traffic demand from node s to t
xe 1 if link e is in use, 0 otherwise
yu 1 if node u is in use, 0 otherwise
f st

uv 1 if flow (s, t) goes through link (u, v) by a distinct rule, 0 otherwise
gst

uv 1 if flow (s, t) goes through link (u, v) by the default rule, 0 otherwise
kuv 1 if the default port of node u goes to v, 0 otherwise
Fu Set of distinct flows
Gu Set of default flows
V ′ Set of nodes used to route the traffic
E ′ Set of links used to route traffic
µ µ ∈]0, 1]; maximum tolerated link utilization
NG(u) Set of neighboring nodes of u ∈ V
δG(u) Incident links to u ∈ V
M A non-negative, big enough constant

integral flow problems (see [236]). According to [97], the multicommodity

flow problem, with continuous flow variables, can be solved in a polynomial

time. However, when flow variables are integers, the corresponding decision

problem is NP-complete even when considering only two demands and uni-

tary capacities (see [237]). Moreover, if we omit all the coefficients, variables

and constraints related to rule space and energy optimization, then we obtain

the problem studied in [230], which is proven to be NP-hard. Thus, solving

the previous ILP using only exact methods for the resolution is expected to

be inefficient. As a consequence, for large topologies, we choose to tackle the

problem using heuristic methods.

5.4 Heuristic Algorithms

We present a set of first-fit heuristic-based algorithms that are practical for

large-sized networks. The first-fit heuristic is an efficient heuristic that is

widely used to solve bin-packing-like problems. It was chosen for this case
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because it is a straightforward greedy approximation algorithm that can pro-

vide a feasible solution in polynomial-time. For more details about the bin-

packing optimization problem and the first-fit heuristic, the reader may refer

to [238, 239].

Step1: Route all demands 

through the shortest paths on G'

Yes

Step3: Turn off the current element

V'=V-{u} or  E'=E-{uv}

Check feasibility 

Turn on current element
and go to the next element 

Step4: Reroute all the traffic 

demands on the residual graph

Any candidate element
to turn off?

G'=(V',E')

G=(V,E), D
V'=V,  E'=E
G'=(V',E')

No

Yes

No
Step2: Sort elements (nodes 

of V' and links of E', 
respectively) in a given 

order

FIGURE 5.4: Heuristic diagram.

We propose a centralized implementation of the heuristic algorithms into

an Openflow controller. First, the controller collects information on the net-

work topology and the user traffic demands. Then, the controller runs the

heuristic to find a subset of selected nodes and links to route traffic demands.

In Figure 5.5, we present the software architecture running inside SDN-based

network. There are three layers in an SDN architecture; (i) Application layer

transfers requirements to the controller using an open application program-

ming interface (north-bound API) that allows a better orchestration of net-

work resources, (ii) Control layer maps the application requirements to the

network resources, (iii) Infrastructure layer (data plane), consists of hetero-

geneous network devices that support an open Southbound API, i.e. Open-

Flow protocol. Note that implementing energy saving heuristic algorithms

will mainly involve the application modules (Topology, EAR, users’ requests,

statistics Information).

Figure 5.4 contains a diagram description of our proposed heuristics. Step1

uses Dijkstra’s algorithm [240] to route traffic demands through the shortest
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Application layer
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FIGURE 5.5: Software architecture running inside SDN-based
network

paths; it requires O(|D||E|.log|V |). Step2 sorts the elements according to a

given criterion and has a complexity of O(|E| + |V |). Step3 requires O(1) be-

cause the candidate element for being turned off can be found using the list

head from Step2. Step4 uses Dijkstra’s algorithm at most |D| times.

Note that a crucial step for this first-fit heuristic is the way the elements are

sorted. In our algorithms, we choose three criteria to sort nodes and links:

1. First-Fit Most-Power (MP): iteratively selects the element with the high-

est power consumption.

2. First-Fit Least-Flow (LF): iteratively selects the element with the small-

est amount of traffic already routed through it. This selection criterion

is used by [174] to sort candidate links.

3. First-Fit Random (R): randomly selects an element. Here, Step2 is ne-

glected because it does not need to sort the network elements.

Table 5.4 summarizes the combined node/link sorting policies. The columns

correspond to the nodes’ criteria and the rows to the links’ criteria.
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TABLE 5.4: Combination of sorting criteria for the first-fit
heuristics

P
P
P
P
P

P
P
P
P

links
nodes

MP LF R

LF MP-LF LF-LF R-LF
MP MP-MP LF-MP R-MP

Input: G=(V,E), initial flow tables and rule capacity Ru for all u ∈ V ,
link capacity Ce for all e ∈ E, and a set D of demands with
traffic requirements dst for all (s, t) ∈ D.

Output: G’=(V’,E’): the output graph containing only elements used to
route the demands.

1 initially, the remaining link capacity Cre = Ce for all e ∈ E;
2 /*Node optimization*/
3 sort nodes according to a predefined order in node-list;
4 for (i=1; i <= |V |; i++) do
5 turn off (node-list[i]);
6 for each (s, t) ∈ D do
7 path(s, t)=compute the best possible path from s to t ;
8 if !path (s, t) then
9 turn on (node-list);

10 else
11 update the graph and flow tables using Algorithm 2 ;
12 end

13 end

14 end
15 /*Link optimization*/
16 sort links according to a predefined order in node-list;
17 for ( j=1 ; j<= |E|; j++) do
18 turn off (link-list[j]) ;
19 for each (s, t) ∈ D do
20 path(s, t)=compute the best possible path from s to t ;
21 if !path (s,t) then
22 turn on (link-list[j]) ;
23 else
24 update the graph and flow tables using Algorithm 2 ;
25 end

26 end

27 end

Algorithm 2: First-fit heuristic-based algorithms.

For example, the MP-MP heuristic selects respectively the node and the

link that consumes the highest amount of power as a candidate to be pow-

ered off. Hence, V and E are sorted according to decreasing values of Eu, Ee

respectively. The LF-LF heuristic turns off elements (nodes and links) with
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increasing values of traffic that was already routed through each element.

Algorithm 1 describes, in detail, the different steps of our heuristics.

Input: A subgraph G′′ computed during the turning off step, the path
p(s,t), rule capacity Ru, the default port def(u) for all u ∈ V ,
remaining link capacity Cre, and link capacity Ce for all e ∈ E.

Output: Updated flow tables and updated sets of distinct Fu and
default Gu flows.

1 assign the route p(s,t) to the demand (s, t) ;
2 update Cre = Cre − dst for all e ∈ p(s,t) ;
3 for each u ∈ p(s,t) do
4 if |Fu| == Ru then
5 adjust the flow table of the node u as illustrated in Figure 5.3;
6 end
7 for each v ∈ NG′′(u) do
8 if ((u,v) ∈ p(s,t) AND def(u) ==v) then
9 Gu = Gu ∪ (s, t) ;

10 else
11 if ((u,v) ∈ p(s,t) AND def(u)6= v ) then
12 Fu = Fu ∪ (s, t) ;
13 end

14 end

15 end

16 end

Algorithm 3: Updating flow tables, Fu, and Gu

We start from the whole network by considering the initial flow tables and

assuming that all elements are turned on. After sorting the elements based

on a given criteria, we next apply the following procedure for nodes and

then for links. At each iteration, we remove (i.e., turn off) the first element in

the ordered set. Then, we compute, for each demand (s, t), the best possible

path along the residual network topology as described in Algorithm 1. The

best path is the shortest path that satisfies inequalities (5.2)- (5.4). If no path

exists, then the removed element is put back into the network topology. For

the sake of simplicity and without loss of generality, when routing we con-

sider that the weights of all links are equal to one. When a shortest path is

found, the remaining capacity of the links is updated as described in Algo-

rithm 2. Recall that, for each node u, the two sets Fu and Gu denote distinct

and default flows respectively ((see Table 5.3). Initially, flow entries are cre-

ated without hindrance until the flow table becomes full, and then there is

no available space to assign a new rule. Then, the flow table is adjusted (line

4, Algorithm 2) by selecting the port that carries the largest number of flows,

as the default port. This step has been previously described in Figure 5.3.



108
Chapter 5. Energy-aware Routing in Carrier-Grade Ethernet using SDN

Approach

5.5 Performance analysis

In this section, we evaluate the ILP formulation and the heuristic-based al-

gorithms. First, we describe the considered performance metrics and the

experimental scenarios. Our goal is to accomplish the following evaluations:

1. a general performance analysis of the ILP model on different network

instances that consider different rule space capacities;

2. a comparison of the solutions obtained using the ILP formulation with

those obtained using the heuristic ones on the same network instances;

3. a general performance analysis of the heuristic solutions for large net-

works.

5.5.1 Performance metrics

The performance of the proposed approaches for resolution is evaluated us-

ing six performance metrics. The first two metrics indicate the percentage of

energy savings that can be obtained.

• ηLoff
is the percentage of energy savings related to the links turned off

by our EAR algorithms. It is computed as follows:

ηLoff
=

∑

e∈E
Ee −

∑

e∈E′
Ee

∑

e∈E
Ee

. (5.9)

• ηNoff
is the percentage of energy savings related to the nodes turned off

by our EAR algorithms. It is computed as follows:

ηNoff
=

∑

u∈V
Eu −

∑

u∈V ′
Eu

∑

u∈V
Eu

. (5.10)

The third metric, denoted by λ2(G), represents an important characteristic

of graphs, which is the connectivity. This parameter can be computed using

the Laplacian matrix of the undirected graph G and is denoted by LG [241].

In graph theory, LG is equal to the difference between the degree matrix DG

and the adjacency matrix AG, i.e., LG = DG−AG. AG is a square binary matrix

|V | × |V |, where the generic matrix element a(ij) indicates if vertices i and j

are adjacent in the graph. The degree matrix DG of G is the diagonal matrix
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such that d(i, i) =
∑

j∈E
a(ij). The Laplacian matrix of an undirected graph is

symmetric with real eigenvalues. The eigenspectrum λ(G) of LG is defined as

the set of its |V | eigenvalues, which can be ordered sequentially in ascending

order (λ1(G) ≤ λ2(G) ≤ ... ≤ λV (G)). For a connected graph G, λ2(G) > 0.

The second smallest eigenvalue λ2 is called the algebraic connectivity of the

graph [242].

In our case, the computation of λ2 enables to control the connectivity of the

active part of the network.

The fourth metric, Γ, is used to measure the mean traffic utilization of the

used links in G′ (this metric is defined in Chapter 3 and denoted as ρ).

The fifth metric is the fairness index FI to measure the fairness of the traffic

distribution.

The last metric to be introduced is related to the increase of route length.

Consider a demand (s, t) ∈ D, then we define φst = Lst
2 − Lst

1 , where Lst
1

is the path length of routing demand (s, t) using the shortest path without

considering EAR. Lst
2 is the length of the path routing (s, t) using our EAR

algorithms. Lst
1 and Lst

2 are given in terms of hops. Note that for (s, t) ∈ D,

Lst
2 ≥ Lst

1 . This is obvious as EAR algorithms may turn off some elements of

the graph, which may increase the length of paths.

5.5.2 Experimental context

We solve the ILP model using the CPLEX solver. The time limit is set to

3 hours (10800 seconds), and M parameter is set to |V | − 1. The heuris-

tic algorithms are implemented using MATLAB. Data for the real network

topology used by ISPs are considered confidential, so they are not easily re-

vealed. Consequently, we consider realistic network instances collected from

SNDlib [206]. Table 5.5 presents the main properties of the used network

topologies.

TABLE 5.5: Properties of network topologies

Network instance |V | |E| |D| Origin of the traffic matrix Link capacity (units)

Abilene 12 15 132 6:00 am of September 04th 2004 [2480-9920]
Atlanta 15 22 210 Automatically produced by SNDlib [575000-3200000]
Di-yuan 11 42 22 Automatically produced by SNDlib [8200-159300]
France 25 45 300 Automatically produced by SNDlib 2500
Germany50 50 88 662 6:00 am of February 15th 2005 [4150-3290]
Nobel-germany 17 26 121 6:00 am of February 02nd 2005 600
Nobel-us 14 21 91 Automatically produced by SNDlib [3580-20350]
Pdh 11 34 24 Automatically produced by SNDlib 1920
Polska 12 18 66 Automatically produced by SNDlib [4260-6804]
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FIGURE 5.6: Daily traffic for different networks

We consider two main types of traffic matrices:

• TM1: is a meshed traffic matrix, i.e., every node of the network appears

at least in one demand as a source or destination. TM1 is nothing but

the traffic matrix provided by SNDlib for the chosen networks.

• TM2: is generated so that some randomly chosen nodes (from 10% to

15% of |V |) are assumed to be pass-through nodes (transit nodes, i.e.,

neither source nor destination of any demand).

Table 5.6 present the percentage of through-pass nodes.

TABLE 5.6: Percentage of pass-through nodes for TM2

Abilene Atlanta Di-yuan France Germany50 Nobel-germany Nobel-us Pdh Polska
10% 10% 12% 10% 10% 12% 15% 10% 15%

We assume that the daily traffic patterns have the shape of Figure 5.6,

taken from [213]. Note that the traffic matrices found in SNDlib are collected

at 6:00 a.m. In order to fit the best to reality and represent the daily traffic

levels, we scale TM1 and TM2 with parameter γ ranging from [0.25, 2.5].

We also assume, as in [174], that the rule capacity of each flow table is

Ru = (ρ × |D|) where ρ ∈]0, 1].

In all the experiments, we use the same estimation of the power consump-

tion as in [144]. The power consumption of a single line card is 150 Watts,
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therefore, the power consumption of a link e is Ee= 300 Watts. While the

consumption of node v is assumed to be Ev=(1200 + |δ(v)|) Watts.

5.5.3 Computational results

In this section, we present the performance results to confirm the effective-

ness of our algorithms. We start with a demonstration on the smallest test in-

stance (i.e., Abilene network). Then, we compare the performance of the ILP

model with the heuristic algorithms on nine different network topologies.

Finally, we evaluate the impact of the heuristics on network performances

with respect to the route length, different link utilization levels with different

combinations of sorting criteria, the scale factor of the traffic matrix (γ), and

to the fairness of traffic distribution.

Optimal vs. heuristic solutions for Abilene network

As a first experimental evaluation, we consider the ILP model and the heuris-

tics solutions for Abilene Network (|V | = 12, |E| = 15, |D| = 132), using TM1

and varying the rule space capacity. Figure 5.7 and Figure 5.8 present the pro-

duced topologies after applying the ILP and MP-MP heuristic algorithms to

the Abilene Network instances with rule capacities ρ = 9%, ρ = 20%, and

ρ = 100% respectively. In Figure 5.7 and Figure 5.8, the continuous lines rep-

resent the links used in the final solution to route all demands. The dashed

lines are links that appeared in the original graph and that have been turned

off during the optimization process. For the different values of ρ, both algo-

rithms (ILP and MP-MP heuristic) give solutions with always 26.5% of links

turned off. However, we notice through Figure 5.7 and Figure 5.8, that the

obtained solutions for the different rule spaces are not the same. The pro-

duced sub-graphs in fact are different for the various rule spaces. This is

obvious because when the rule capacity value ρ changes, the flow table size

changes as well, therefore producing different routing solutions for the same

instance.

We also notice that, for all the cases, the obtained sub-graphs are always full-

covering trees. Recall that, for this first set of experiments, we use a fully-

meshed traffic matrix (i.e., TM1), which implies that all the nodes must be

turned on for all the solutions. All the obtained solutions are full-covering

trees, which means that we succeed in routing all the demands using the

minimum number of links that guarantee network connectivity (i.e., |E ′| =

|V | − 1).
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Figure 5.9a and Figure 5.9b illustrate the distribution of metric φ computed

for Abilene instances (ρ = 9%, ρ = 20% and ρ = 100%) using ILP and MP-

MP algorithms respectively. Obviously, using EAR algorithms increases the

routing path lengths, which can, for some few demands, reach 9 extra hops

compared to the shortest path routes. However, more than 70% of the de-

mands have a reasonable number of extra hops that ranged from 0 to 4.

In summary, for the first experiment, the ILP and heuristic algorithms

performed similarly. Both achieve the maximum possible energy savings

without violating any operational constraints.

ATLAM5

(A) Small flow table ρ = 9%

ATLAM5

(B) Medium flow table ρ = 20%

ATLAM5

(C) Large flow table ρ = 100%

FIGURE 5.7: The Abilene Network using the ILP model

Optimal vs. heuristic solutions for various network topologies

To thoroughly compare the ILP and heuristic-based algorithms, we evalu-

ate their performances on nine different network instances that present the

two traffic matrices TM1 and TM2. To guarantee a normal operation of the

network, the maximum allowed utilization of links is set to 70% (µ = 0.7).

Results are reported in Table 5.7, Table 5.8, Table 5.9, and Table 5.10. Entries

for the tables are the following.

The first column indicates the network instance characteristics. The second

column gives the rule capacity ρ which is set to the three values 9%, 20%,

and 100%. The optimum column indicates if the optimal solution is found

(only in Table 5.7 and Table 5.9). The sorting criteria column indicates the
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ATLAM5

(A) Small flow table ρ = 9%

ATLAM5

(B) Medium flow table ρ = 20%

ATLAM5

(C) Large flow table ρ = 100%

FIGURE 5.8: The Abilene Network using MP-MP heuristic

(A) ILP model (B) MP-MP heuristic

FIGURE 5.9: Paths hops increase for Abilene Network

sorting policies used to run the heuristic (only in Table 5.8 and Table 5.10).

The energy savings column reports the percentage of turned off nodes ηNoff

and edges ηLoff
. λ2(G) and λ2(G

′) columns report the network connectiv-

ity before and after running the EAR algorithms. In other words, λ2(G) is

the initial graph connectivity, and λ2(G
′) is the computed graph connectivity.

λ2(G) and λ2(G
′) are computed only for the fully meshed matrix, which is the

case of TM1 (Table 5.7 and Table 5.8). The gap column is computed as the

ratio (UB-LB)/LB, where UB is the upper bound on power consumption, (the

power consumption of the sub-graph solution), and LB is the lower bound

on power consumption (the power consumption of the linear relaxation). Fi-

nally, the time column gives the computation time in seconds.
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Table 5.7 and Table 5.8 report the computational results obtained by run-

ning the ILP and heuristic algorithms respectively for TM1. First, note that

for all the instances, the percentage of nodes turned off using both algorithms

is ηNoff
= 0%. This is obvious since the traffic matrix TM1 is fully meshed;

therefore, no node can be turned off.

During the experiments for all network topologies except for France and Ger-

many50, we remark that the number of links used to route the traffic is |V |−1.

As discussed earlier, this is the minimum number of links needed to route a

fully meshed traffic matrix (such as TM1). We also observe that, when the

original graph is dense (i.e., λ2(G) is high), the percentage of turned off links

is important (see, for instance, Di-yuan and Pdh networks).

The impact of rule space can be noticed particularly for the France and Ger-

many50 instances. Clearly, we notice that ηLoff
increases as ρ increases as

well. We can explain this by the fact that, when providing more rule space,

routing the demands would be more flexible and would use fewer links.

Having more rule space also makes it easier to test instances. For example,

with Atlanta or Nobel-us networks, when the rule space is scarce (ρ = 9%),

the ILP cannot reach optimality within the time limit. However, the same

networks, when ρ = 20% and ρ = 100% are solved for optimality before

reaching the time limit.

In Table 5.8, we report the results obtained using the heuristic-based algo-

rithms and all the possible combinations of the sorting criteria given in Ta-

ble 5.4. In particular, we report the best obtained solutions, in terms of energy

savings and computation times, among all the combinations of sorting crite-

ria. Note, however, that we obtain the same energy savings for the majority

of combinations, but sometimes with different sub-graph solutions, (i.e., dif-

ferent values of λ2(G
′)).

As a first observation, the heuristic algorithms represent encouraging results

in terms of execution times. In addition, for France and Gemany50 networks,

our heuristics achieve a higher percentage of energy savings compared to

those achieved with the ILP model (the ILP model is stopped before reach-

ing optimality due to the large network size).

Table 5.9 and Table 5.10 report computational results obtained by running the

ILP and heuristic algorithms respectively using TM2. Note that for these ta-

bles, we do not report the values of graph connectivity, i.e., λ2(G) and λ2(G
′)

because the latter are not significant in this case. In fact, since TM2 is a sparse
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traffic matrix, some nodes acted as pass-through nodes in the routing pro-

cess, and hence, turning off these nodes improves the energy conservation.

We notice that a significant gain of energy saving is achieved with both al-

gorithms. For TM1 like TM2, the impact of rule space is also noticed for

France and Germany50 networks. As expected, the resulting energy savings

increases when the rule space also increases.

When analyzing the results reported in Table 5.7 to Table 5.10, we can state

that the heuristic algorithms provided energy saving values better than or

equal to those obtained with the ILP model within reasonable computation

times. Moreover, the heuristic results, especially those obtained for France

and Germany50, demonstrate the efficiency of our heuristics on large-sized

instances. Through the obtained results we also observe that the performance

of our heuristics is influenced by the number of demands, such as Atlanta

(|D|=210), France (|D|=300) or Germany50 (|D|=662). This is obvious since

the heuristic algorithms are based on a demand re-routing process after turn-

ing off selected nodes/links at each iteration.

TABLE 5.7: ILP formulation using TM1

Rule Energy Graph Optimality Power consumption Execution
Network capacity Optimum Saving connectivity gap Upper bound Time

(ρ%) ηNoff
% ηLoff

% λ2(G) λ2(G′) (%) UB (W) (s)

9 yes 0.13 0 2.22
Abilene 20 yes 0 26.65 0.309 0.176 0 17730 1.93

100 yes 0.086 0 1.83
9 no 0.0467 2.6 10800

Atlanta 20 yes 0 36.35 0.422 0.0706 0 22244 1961.49
100 yes 0.0642 0 1893.13
9 no 0.1023 7.4 10800

Di-yuan 20 no 0 76.15 5.793 0.0741 7.1 16284 10800
100 no 0.0938 7.5 10800
9 no 0 33.33 0.1267 7.9 39090 10800

France 20 no 0 35.55 0.350 0.0416 7.7 38790 10800
100 no 0 37.75 0.0423 7.1 38490 10800
9 no 0 31.8 0.029 15.7 78476 10800

Germany50 20 no 0 32.95 0.182 0.055 12.9 77876 10800
100 no 0 34.05 0.046 10.07 77576 10800
9 yes 0.037 0 942.541

Nobel-germany 20 yes 0 38.45 0.301 0.063 0 25252 1076.54
100 yes 0.049 0 10248.3
9 no 0.113 2.1 10800

Nobel-us 20 yes 0 38.05 0.7326 0.064 0 20742 5013.33
100 yes 0.018 0 942.541
9 no 0.127 5.5 10800

Pdh 20 no 0 70.55 2.524 0.1857 4.6 16268 10800
100 no 0.145 5.4 10800
9 yes 0.0805 0 78.6207

Polska 20 yes 0 38.85 0.7125 0.1318 0 17736 34.6595
100 yes 0.126 0 42.713

Heuristics performances analysis

In what follows, we evaluate our heuristics with France, Germany50, and

Nobel-germany networks using TM1 and based on the performance met-

ric φ. The increase in the path lengths for these networks using the MP-MP

heuristic algorithm is reported in Figure 5.10.
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TABLE 5.8: Heuristic algorithms using TM1

Rule Sorting Energy Graph Power consumption Execution
Network capacity criteria Saving connectivity Upper bound Time

(ρ%) ηNoff
% ηLoff

% λ2(G) λ2(G′) UB (W) (s)

9 R-MP 0.269
Abilene 20 R-MP 0 26.65 0.309 0.258 17730 <0.60

100 R-MP 0.070
9 R-MP 0.046

Atlanta 20 R-LF 0 36.35 0.422 0.070 22244 < 135
100 R-LF 0.064

9 R-LF 0.162
Di-yuan 20 R-LF 0 76.15 5.793 0.128 16284 < 82

100 R-LF 0.137
9 R-LF 0.095

France 20 R-MP 0 46.65 0.350 0.087 37290 < 1161
100 R-LF 0.095

9 R-LF 0.090
Germany50 20 R-LF 0 44.3 0.182 0.011 74876 < 9310

100 R-LF 0.034
9 R-LF 0.087

Nobel-germany 20 R-MP 0 38.45 0.301 0.082 25252 < 112
100 R-MP 0.056

9 R-LF 0.186
Nobel-us 20 R-LF 0 38.05 0.7326 0.123 20742 < 53

100 R-LF 0.171
9 R-MP 0.154

Pdh 20 R-MP 0 70.55 2.524 0.185 16268 < 45
100 R-LF 0.026

9 R-MP 0.117
Polska 20 R-LF 0 38.85 0.7125 0.092 17736 < 7

100 R-LF 0.092

TABLE 5.9: ILP formulation using TM2

Rule Energy Optimality Power consumption Execution
Network capacity Optimum Saving gap Upper bound Time

(ρ%) ηNoff
% ηLoff

% (%) UB (W) (s)

9 1.25
Abilene 20 yes 8.33 33.33 0 16528 0.54

100 0.13
9 171.56

Atlanta 20 yes 6.66 40.90 0 20740 635.06
100 3514.68

9 3791
Di-yuan 20 yes 09.09 78.57 0 14776 10800

100 10800
9 8 46.66 4.4 35183 10800

France 20 no 8 44.44 3.8 34883 10800
100 8 44.44 3.8 34883 10800

9 10 42.04 27.1 70668 10800
Germany50 20 no 6 39.77 27.5 70668 10800

100 6 39.77 12.9 69454 10800
9 14.63

Nobel-germany 20 yes 11.76 46.15 0 22244 18.22
100 14.51

9 370.08
Nobel-us 20 yes 14.28 47.61 0 17736 210.08

100 1387.4
9 6222.73

Pdh 20 yes 9.09 73.52 0 14762 6474.38
100 4384.39

9 19.92
Polska 20 yes 16.66 50 0 14728 14.55

100 3.42

We first remark that a significant fraction of demands (30% to 50%) is not af-

fected by path length increase (φ = 0). However, the increase in path length
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TABLE 5.10: Heuristic algorithms using TM2

Rule Sorting Energy Power consumption Execution
Network capacity criteria Saving Upper bound Time

(ρ%) ηNoff
% ηLoff

% UB (W) (s)

9 MP-LF
Abilene 20 MP-LF 8.33 33.33 16528 < 1

100 LF-LF
9 MP-LF

Atlanta 20 LF-LF 6.66 40.90 20740 < 25
100 MP-LF

9 R-MP
Di-yuan 20 R-MP 09.09 78.57 14776 < 40

100 LF-MP
9 MP-LF

France 20 MP-LF 8 51.11 34577 < 743
100 MP-MP

9 MP-LF
Germany50 20 MP-LF 10 50 67359 < 11282

100 MP-LF
9 LF-LF

Nobel-germany 20 MP-MP 11.76 46.15 22244 < 10
100 R-MP

9 MP-LF
Nobel-us 20 MP-LF 14.28 47.61 17736 < 27

100 MP-LF
9 R-MP

Pdh 20 MP-MP 9.09 73.52 14762 < 49
100 MP-LF

9 MP-MP
Polska 20 LF-LF 16.66 50 14728 < 15

100 MP-LF

reaches for a small fraction of demands an important number of hops. An ex-

ample is Germany50 Network, where the path length increases by 20 hops.

Consequently, restrictions on the maximum number of hops should be con-

sidered in the future using additional constraint to limit the number of visited

nodes especially for large-sized networks.

We can limit the path length (in terms of hop) by adding the following con-

straint:
∑

(u,v)∈E

(fuv + fvu + guv + gvu) ≤ Lst ∀(s, t) ∈ D (5.11)

To satisfy the actual path dealy the following constraints can be added:

∑

(u,v)∈E

(fuv + fvu + guv + gvu).latuv ≤ latencyst ∀(s, t) ∈ D (5.12)

where latuv is the edge delay and latencyst is the delay of the demand (s, t).

Further analysis is needed to evaluate the different sorting criteria used

for the heuristic algorithms that are always applied to France, Germany50

and Nobel-germany networks. To this end, we evaluate the different heuris-

tics performances when the maximum link utilization µ on the network varies.
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(A) Germany50 Network

(B) France Network
(C) Nobel-germany Network

FIGURE 5.10: Paths hops increase by MP-MP heuristic using
TM1

In Figure 5.11, we present the percentage of turned off links using the heuris-

tic algorithms when considering different combinations of sorting criteria.

We observe that all combinations show identical results for µ ≥ 0.6. Oth-

erwise, MP-MP and MP-LF prove to be the most efficient heuristics. For

µ > 0.65 no improvements in terms of the energy savings is noticed because

the traffic demand requirement implies a limitation of the number of links

that can be turned off.

To evaluate the heuristics performance for the daily variations in traffic

between day and night, we scale the traffic matrices (TM1 and TM2) by γ

while setting µ = 0.7 for all network instances. We use the MP-MP heuristic,

which gives, in most cases, the best results among all combinations of the

sorting criteria. Figure 5.12 reports the percentage of turned off links using

TM1. While Figure 5.13 and Figure 5.14 report the percentage of turned off

links and nodes, respectively, using TM2.

In Figure 5.12 and Figure 5.13, the obtained results are as expected. When the
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(A) Germany50 Network (B) France Network

(C) Nobel-germany Network

FIGURE 5.11: Turned off links versus µ using different combi-
nations of sorting criteria for TM1

matrix factor increases for France, Nobel-germany, Nobel-us, and Polska net-

works, the energy savings are reduced. However, for the other networks ex-

cept Abilene, the percentage of turned off links remains almost the same for

the different values of γ. This is obviously due the fact that link capacities for

the these networks are sufficient to satisfy the high-valued traffic demands.

Only for Abilene Network, no feasible energy savings can be achieved for

high-valued traffic demands. In Figure 5.14, we notice that, for France, Ger-

many50, Nobel-germany, Nobel-us, and Polska networks, some nodes have

to be turned on to route a large number of traffic demands. For the other net-

works except Abilene Network, it is possible to route a large number of traffic

demands with the same number of nodes. Concerning Abilene instances, no

feasible solution can be found when γ ≥ 2 because of the link capacity con-

straint.

To better highlight the existing tradeoff between the possible power con-

sumption minimization and the resulting network congestion, we report in

Figure 5.15 the upper bound of power consumption obtained by varying the

rate of allowable link utilization µ. The network operator can freely adjust

the value of µ in order to reach the desired balance between energy saving

and QoS.
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FIGURE 5.12: Percentage of turned off links ηLoff
using TM1

scaled by γ with the MP-MP heuristic
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FIGURE 5.13: Percentage of turned off links ηLoff
using TM2

scaled by γ with the MP-MP heuristic
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FIGURE 5.14: Percentage of turned off nodes ηNoff
using TM2

scaled by γ with the MP-MP heuristic

Finally, we evaluate the impact of rule space capacity in terms of load bal-

ancing. Figure 5.16 describes the fairness index FI behavior as a function

of ρ for the nine networks running the MP-MP heuristic. When the rule ca-

pacity decreases, the traffic demand is routed through the allowed ports, and
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FIGURE 5.15: Trade-off between power saving and network
congestion

according to the matching rule in the flow table, an unfair traffic distribution

is resulted for all the links. However, based on the results from Figure 5.16,

we observe that the heuristic solution maintains a good fairness index that

ranged from 0.45 to 0.8 for Di-yuan and Pdh networks respectively.
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FIGURE 5.16: Fairness index versus ρ using TM1 with the MP-
MP heuristic
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5.6 Conclusion

In this chapter, we present an energy-aware routing solution that is compliant

with SDN-based carrier Ethernet networks. We first propose a binary linear

programming formulation for the EAR problem that maximizes the number

of network elements to be turned off, while respecting traffic demand and

rule space constraints. Since identifying the optimal set of nodes and links to

be turned off is an NP-hard problem, along with the ILP model, we propose

a set of first-fit heuristic algorithms to reduce the computation time. We also

discuss some EAR implementations in an SDN controller. Both the ILP algo-

rithm and the heuristics are tested on nine realistic network topologies from

SNDlib taking into account the rule space constraint. Our algorithms balance

between saving energy and link utilization constraints while respecting the

size limitation of flow tables. Experiments also prove that the heuristics that

appropriate for achieving energy efficient routing in carrier-grade networks.

Based on the obtained results, which are encouraging, we aim, as a next step,

to implement the proposed heuristics via a network emulator (using a POX

controller). As a future work, it would be interesting to include restrictions

on the maximum length of paths, which can be ensured by the delay or the

hop constraints. Moreover, one could improve the deployment of EAR by

considering the so-called reliability constraint, which is one of the crucial re-

quirements for carrier Ethernet networks.
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Chapter 6

Two Node Disjoint Path Routing

for Energy Efficiency and Network

Reliability

6.1 Introduction

Ensuring a sufficient level of reliability while taking into account energy sav-

ings is a very challenging task. In this chapter, we study the multi-commodity

reliable network design problem for carrier Ethernet networks. Each traffic

demand is routed along two disjoint paths considering dedicated protection

scheme. The primary and backup path must be node-disjoint. We also as-

sume, as in chapter 4, that the links of the carrier-grade networks are made

of multiple physical cables called bundles. In order to solve it efficiently,

we make use of powerful optimization techniques. We first model the prob-

lem as an integer linear program called the (TNDP-EAR). We also propose a

heuristic based method called GreenTNDP, suitable for large-sized networks.

6.2 Networks survivability

At the moment, network operators tend to optimize the energy expenditure

of their network and to provide the high service level required by their users.

However, these two objectives are contentious, a trade-off between these two

objectives becomes hence inevitable. More resources and power are also

needed when it comes to ensuring network reliability. Critical applications

need to be protected against unexpected failure events. In this context, net-

work resilience versus energy-efficiency is a key concern in carrier-grade net-

works [189, 243]. The different terms "resiliency", "survivability", "reliability",
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Resilient schemes

Protection 

(proactive scheme)

Disjoint backup paths 

Restoration   
(reactive scheme)

Shared
Backup resources can be 

shared among disjoint paths

Dedicated

Backup resources are 
exclusively reserved

1+1 fashion
Traffic is duplicated over the two 

disjoint paths

1:1 fashion

Backup path carry traffic upon the failure 

of the primary path

FIGURE 6.1: Resilient schemes

and "robustness" can be interchangeably used in the literature of telecommu-

nications networks to refer to networks that are able to survive in the face of

faults.

Network resilience implementation applies a mechanism for fault detec-

tion and localization together with a set of recovery techniques to reroute

traffic around the failed component. The path used by default for routing

is called working path or primary path. However, the path used to replace the

working path in case of failure is called backup path. Depending on whether

backup paths are computed before or after a fault of the working path, recov-

ery techniques can be implemented based on two general schemes restoration

or protection as illustrated in Figure 6.1.

• Restoration is a reactive scheme which handles dynamically a failure

after it occurs (i.e., backup paths are computed on the fly). Further, us-

ing restoration scheme is more efficient in terms of resources utilization

and energy conservation, but it has longer recovery time and does not

provide a 100% recovery guarantee against failures.

• Protection is a proactive scheme that computes and reserves in advance

backup route in order to protect against failures that may occur in the

network and to ensure the continuity of traffic. Protection schemes

can be divided into two modes dedicated and shared based on the way

backup resources are used [189]. Shared scheme allows backup paths

to share the same resources among them. In the dedicated scheme, the

sharing of resources is not allowed among backup paths and resources

should be exclusively reserved for each path demand. Dedicated pro-

tection can be implemented in a 1+1 or 1:1 fashion.



6.2. Networks survivability 125

In 1+1 protection, the traffic is duplicated and sent concurrently over two dis-

joint paths, while in 1:1, the backup bath may carry traffic only after failure

of the primary path. Therefore, 1+1 protection is the most reliable scheme. In

particular, in this chapter, we will be interested to 1+1 protection scheme.

Routing with node-disjoint paths is more resilient to failures than routing

with link-disjoint paths, because it can protect against both node and link

failures. Further, routing with node-disjoint paths is also link-disjoint paths,

but not vice versa. Figure 6.2 taken from [189] illustrates the resilience of

multilayer networks where each layer can be considered as single network.

Figure 6.2(a) illustrates 1+1 protection in the IP layer, whereas Figure 6.2(b)

shows the same traffic demand protected at the optical layer. Figure 6.2(c)

shows the difference when employing optical bypass with 1+1 protection at

the IP layer. Figure 6.2(c) shows 1+1 protection at OTN (Optical Transport

Network) layer, which results in four times capacity utilization at the optical

layer.

FIGURE 6.2: Resilience at different layers [189]

Disjoint paths problem can be stated as follows:

Given a graph G = (V, A) of V nodes and A weighted links, a source-destination

pair s, t ∈ V , and an integer K > 0. Find a set of K paths P = {p1, p2, ..., pK}

from s to t, such that the paths have no common links (or nodes). There can
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be several constraints associated with finding link (or node) disjoint paths [244],

such as :

• Min-sum Disjoint paths problem. The total weight of the K paths is mini-

mized.

• Min-max disjoint paths problem. The sum of the weights of the path with

the largest path weight is minimized

• Min-min disjoint paths problem. The sum of the weights of the path with

the smallest path weight is minimized.

• Bounded disjoint paths problem. The sum of weights of each path should

be less than ∆K .

In the context of graph theory, the notion of survivability may be further

specified as K connectivity [245, 246], where at least K disjoint paths exist

between each pair of nodes. G is called K-node (resp. K-link) connected

(K ≥ 0) if for every pair of nodes u, v ∈ V , there are at least K node-disjoint

(resp. K link-disjoint) paths between u and v.

We assume that G is undirected without multiple edges. Given W and W ′,

two disjoint subsets of V , [W, W ′] denotes the set of edges of G having one

end node in W and the other in W ′. If W ′ = W , then [W, W ] is called a cut of

G denoted by δG(W ) (see Figure 6.3). W denotes the node set V \ W . A cut

δG(W ) such that s ∈ W and t ∈ W is called an st − cut.

s t

FIGURE 6.3: A cut δG(W )

For a directed G without multiple arcs. Given W and W ′, two disjoint

subsets of V , [W, W ′] denotes the set of arcs whose origin are in W and des-

tinations in W ′. As before, if W ′ = W , then [W, W ] is called a directed cut or

dicut of G denoted either by δ+
G(W ) or δ−

G(W ) (see Figure 6.4). W denotes the



6.3. Disjoint path computation 127

node set V \ W . If s and t are two nodes of V such that s ∈ W and t ∈ W ,

then δ+
G(W ) and δ−

G(W ) are called st − dicuts of G.

s t

+

FIGURE 6.4: A cut δ+
G(W )

The minimum number of links/nodes separating two nodes or sets of

nodes is referred to as a minimum cut. In [247], Menger states a fundamental

relation between the number of link-disjoint paths and the cardinality of cuts

in the graph G. This relation is given in the following theorem.

[Menger’s theorem]. The maximum number of link-disjoint paths between s

and t is equal to the minimum number of links that would separate s and t.

In order to assess the link/node connectivity of a network, one therefore

needs to find its minimum cut.

Definition node (vertex) cut. A node cut refers to a set of nodes whose re-

moval separates the graph into two disjoint subgraphs, and where all nodes

in the removed cut-set have at least one adjacent link to both subgraphs. Let

u and v be two non adjacent nodes in a graph. A set S of nodes is a u − v

separating set if u and v lie in different components of G − S; that is, if every

uv path contains a vertex in S. The minimum order of a uv separating set is

called the uv connectivity and is denoted by K(u, v).

Since our goal is to enhance network resilience by providing disjoint paths

to network traffic, the next section presents some representative disjoint paths

algorithms.

6.3 Disjoint path computation

Suurballe’s algorithm [248] is the most used to compute k node/link disjoint

paths between a single source-terminal pair in a directed graph. This algo-

rithm can be solved in O(|V |klog|V |). Later, Suurballe and Tarjan [249] have

used Suurballe algorithm [248] to find a pair of disjoint paths, by using two
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shortest path computations, that runs in O(|A|log(1+|A|/|V |)|V |).

The node-disjoint paths problem can be considered as a link-disjoint paths

problem but not vice versa. Therefore, additional constraints should be put

in place.

In directed graphs, two link-disjoint paths algorithm can be used to com-

pute two node-disjoint paths by node splitting on graph, which is illustrated

in Figure 6.5, each node u is split into two nodes u1 and u2, with the incoming

links of u connected to u1, while the outgoing links will depart from u2. In

u

u1 u2

FIGURE 6.5: Node splitting [244]

undirected networks, a link-disjoint paths algorithm can be used to compute

node-disjoint paths by the transformation illustrated in Figure 6.6. Each node

u is split into two nodes u1 and u2 that are connected by a directed link with

zero weight, and each undirected edge (u, v) is replaced with directed links

(u2, v1) and (v2, u1) of weight ℓuv.

u

u1 u2

v

v1 v2

FIGURE 6.6: Directivity transformation [244]

Algorithm 4 presents Suurballe-Tarjan algorithm [249] for computing two

link-disjoint paths between s and t.

A simple algorithm for solving the node disjoint paths problem is pre-

sented in [244] shown in Algorithm 5. It is based on the use of k consecutive

shortest path computations. We refer to this algorithm as the basic disjoint

path algorithm.



6.4. Problem statement and related works 129

Input: A weighted-directed graph G = (V, A), a pair of source and
destination nodes (s, t).

Output: A pair of link-disjoint paths P1 and P2.
1 Compute the shortest path tree T rooted at s ;
2 Store the shortest path from s to t in P1;
3 Transform the weights of each link (u, v) ∈ A to

w′(u, v) = w(u, v) − d(v) + d(u);
4 /*d(u) denotes the length of the shortest path from s to u*/
5 Compute the modified graph Gf by reversing the direction of all the

links in P1;
6 Find the shortest path P2 from s to t in Gf ;

Algorithm 4: Suurballe-Tarjan-2-link-disjoint-paths in directed graphs

Input: A weighted-directed graph G = (V, A), a pair of source and
destination nodes (s, t), and k, the number required of disjoint
paths.

Output: k node-disjoint paths P1, ...,Pk.
1 for i=1,...,k do
2 Find the shortest path Pi from node s to node t ;
3 Delete intermediate node of Pi from G;

4 end

Algorithm 5: Basic k-node-disjoint-paths in directed graphs

Also, Yen’s algorithm [250] can be used to generate K disjoint paths pair

as proposed in [251]. Algorithm 6 illustrates its pseudo code.

The next section is devoted to summarize related works (especially energy-

aware routing with reliability), and to give the basic background and as-

sumptions.

6.4 Problem statement and related works

We consider the EAR problem with two node disjoint paths to minimize

router power consumption during off-peak hours in carrier Ethernet net-

work. Of particular interest are approaches such as [251] and [252] which

propose an energy-aware routing with two link disjoint paths maintaining

the network reliability. Moreover, we consider the use of bundled links. Re-

call that, this technique could help to favor the network capacity along with

improved resilience in case of link failure. As well as, in this chapter, a sin-

gle network link is referred to one bundled link that is composed of multiple

cables (or ports). All the cables have the same capacity and the same power

consumption, and each port can be turned off independently. To the best of
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Input: A weighted-directed graph G = (V, A), a given demand d.
Output: A set of pair of link-disjoint paths P .

1 Generate k paths for d in G(V, A), and store in KSPd;
2 P = ∅ ;
3 pair=1;
4 for each sp1 ∈ KSPd do
5 Generate G1(V, A1) from G(V, A) by deleting all nodes and links in

sp1;
6 Generate k paths for d in G1(V, A1), and store in KSP ′

d;
7 for each sp2 ∈ KSP ′

d do
8 DPpair = {sp1, sp2};
9 if DPpair /∈ P then

10 P = P ∪ DPpair ;
11 pair + + ;

12 end

13 end

14 end
15 Reorder DPpair in P in ascending order of path length ;

Algorithm 6: KSP-based disjoint-paths

our knowledge this is the first work that jointly minimizes the number of

active cables in bundled links whilst considering routing with node disjoint

backup paths. In addition to energy efficiency, many studies have been inter-

ested to reliability issues in the network design problems. In [253] and [162],

the authors provide a set of algorithm and optimization models suitable with

IP networks, considering unsplittable routing. In both works, the network

resilience requirements are taken into account while reducing the link and

node consumption. In addition to network survivability, robust optimiza-

tion model is proposed in [162] to handle uncertain traffic demands. In [251],

Lin et al. have proposed an energy-aware routing with two disjoint paths,

according to which each request can be routed via multiple paths (may have

common links) besides two link disjoint paths, to provide higher protection

against eventual failures. The same authors have proposed an interesting

strategy in [156] which considers reliability and protection constraints in the

formulation. Terminal Reliability (TR) and Route Reliability (RR) are defined

to determine the reliability of each single link (consisting of multiple cables)

crossed by the routing path for each source-to-terminal request. When a fail-

ure occurs, based on K-shortest paths computation, alternative paths have to

be found either shared or dedicated.

Finding primary and backup link-disjoint paths for each source-to-terminal
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request is proposed in [252]. Two heuristic algorithms based on the compu-

tation of Suurballe algorithm [249] for each request (finding the active and

backup paths) to turn off both nodes and links are presented and tested. The

optimization model aims at minimizing the fixed energy cost paid to keep

a router or a link in the active state. To obtain only a single active path

routing, binary flow variables are introduced. However, the solution pro-

posed in [252] can protect against only link failures, i.e., it does not consider

the node failures event. To the best of our knowledge, the closest works to

ours are [156, 251, 252]. Like ours, they all are intended to be run in a cen-

tralized manner, which is perfectly compliant with the logically centralized

controller in Sofware-Defined Networking. For the sake of clarification, we

draw Table 6.1 that presents the common points and differences of our work

compared to [156, 251, 252].

TABLE 6.1: Main properties of this study with respect to the
closest proposals

❵
❵
❵

❵
❵

❵
❵
❵
❵❵

Properties
Proposal

[252] [156] [251] This work

Routing Unsplittable Splittable Splittable Unsplittable

Path computation Suurballe’s algorithm [249] Yen’s algorithm [250] Yen’s algorithm [250]
Basic disjoint path

algorithm[244]

Exact formulation 0–1ILP MILP MILP ILP
Backup paths Dedicated Dedicated and shared Dedicated and shared Dedicated

Failure assumption Link Link Node and link Node and link
Nodes off X - X -

Bundled links - X - X

In this work, we advocate the implementation of an EAR for carrier-grade

Ethernet in the metropolitan area networks. For instance, the implementa-

tion of EAR within a logically-centralized power management is compliant

by deploying Software Defined Network (SDN) architecture [175]. Moreover,

carrier-grade network operators specify the need for creating an SDN archi-

tecture for controlling and increasing the flexibility of their networks [218,

224]. The principal objective of our optimization model is to reduce the en-

ergy consumption induced by cables in a bundled link. This model can be

extended to turn off also nodes. However, it is very difficult from a practical

point of view to alternate turning on/off nodes, and this also would affect

the life cycle of devices. We consider the case of dedicated protection scheme

against any single failure (node or link), where a backup path is computed

for each request, independently from the fault. In case of failure, the backup

path should serve as the current primary path, and the repaired (primary)

path is acting as the backup path. Each demand may use multiple, i.e., k-node

disjoint paths to route its traffic (as illustrated in Figure 6.7). All nodes in each
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path except s and t have exactly one outgoing link and s has exactly k outgo-

ing links. In our work, we compute two node disjoint paths for each demand

(i.e., k=2).

Our network model is based on the following assumptions: (i) each link con-

sists of B cables that can be turned off independently. (ii) we consider that the

network is at least biconnected (2-node connected) graph thus every request

has always two node disjoint paths. (iii) single link/node failure (the prob-

ability of simultaneous failures is very rare because failures are very quickly

solved when compared with failure rate).

s

t

s

t

1st-node disjoint path

2nd-node disjoint path

kth-node disjoint path

1st-node disjoint path

2nd-node disjoint path

kth-node disjoint path

is the backup path is the active path 

FIGURE 6.7: Example of k node-disjoint source destination
paths

Let the 2-node connected directed graph G = (V, A) models the network

topology, where V is the set of nodes (Ethernet switches), and A is the set of

links. Each link (u, v) represents a bundled link with Buv > 1 cables. The

capacity of each link, i.e., Cuv > 1, is the total capacity of its cables which

are assumed to have the same capacity. The power consumption of each

link is the total consumption induced by its operational cables. The number

of turned-on cables in any given link (u, v) is denoted nuv 6 Buv. When

nuv = 0, it means that the whole link (u, v) is turned off. Let D be the set of

all traffic demands (traffic matrix) in G, and the triple (sd, td, hd) denotes the

traffic demand indexed by d = 1, 2, ..., |D| from the source node sd ∈ V to the

destination node t ∈ V , where hd is the amount of traffic going from sd ∈ V

to td ∈ V .

Given G and D as input, the TNDP-EAR (Two Node Disjoint Paths energy-

aware routing) consists in routing each traffic demand along a single routing

solution that minimizes the number of powered-on cables while reserving

for each demand d a primary path P d
p , and a backup P d

b . The routing solution

must also fulfill the maximum link utilization rate threshold that is denoted
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by UT . We denote fuv the total flow assigned to link (u, v) ∈ A, yd
uv the flow of

d that is routed on link (u, v) through the primary path P d
p , and zd

uv the flow of

d that is routed on link (u, v) through the backup path P d
b . The link utilization

of link (u, v) is calculated as µuv = 100 × (fuv/cuv). The remaining/residual

capacity on link (u, v) is computed as ruv = UT cuv(nuv/Buv) − fuv. For ease of

reading, Table 6.2 lists parameters and notations used along the chapter.

To illustrate TNDP-EAR, we consider an example of 6-nodes networks as

shown in Figure 6.8. We assume that each link is composed of four cables

(B=4). The capacity of each bundled link is assumed to be 24 units. Assume

that there are two demands on the network, i.e., D = {(0, 2, 2), (0, 5, 3)}. Fig-

ure 6.8b presents the produced topology when using TNDP-EAR. For de-

mand d = 1, the primary path P 1
p = 0 → 2, and the backup path P 1

b = 0 →

1 → 3 → 2. For demand d = 2, P 2
p = 0 → 2 → 4 → 5, and the backup

path P 2
b = 0 → 1 → 3 → 5. As TNDP-EAR considers 1 + 1 protection,

the traffic is duplicated over the two disjoint paths. In this case, we obtain

f01 = f02 = f13 = 5; f32 = 2; f35 = f24 = f45 = 3. Dashed lines correspond to

links that are totally turned off, whereas turned off cables are not illustrated.

After routing by TNDP-EAR, the spare capacity on each arc can be turned

off by rounding up the number of cables, we obtain n01 = n02 = n13 = 2;

n32 = n35 = n24 = n45 = 1; n14 = n34 = 0.

Figure 6.8c illustrates the TNDP-EAR solution in case of node 4 failure. De-

mand d = 1 keeps its both paths while demand d = 2 is served along P 2
b .

TABLE 6.2: Summary of notations and parameters

Parameters Description
G=(V, A ) Directed graph where V is the set of vertices (nodes) and A is the set of arcs (links)
G=(V, E ) Undirected graph where V is the set of vertices (nodes) and E is the set of edges (links)

A′ Set of links used to route the traffic demands
Euv Power consumption of a powered cable in link (u, v) ∈ A
β Parameter set to 0.1, assuming that a powered-off cables consumes 10% of the power spent in the active mode

Cuv Capacity of link (u, v) ∈ A
UT Maximum tolerated link utilization, UT ∈]0, 1]
ruv Remaining capacity of link (u, v)
D Set of all traffic demands D = {(sd, td, hd), sd ∈ V, td ∈ V }
Dt Set of all demands having t as destination node t ∈ V
hd Demand of the traffic flow from node sd to td

Buv Number of cables in link (u, v) ∈ A
nuv Integer variable to indicate the number of powered-on cables in link (u, v)
xuv Binary variable to indicate if the link (u, v) has at least one powered-on cable or not

yd
uv Binary variable to indicate whether link (u, v) is used to route d by primary path P d

p

zd
uv Binary variable to indicate whether link (u, v) is used to route d by backup path P d

b
fuv Total flow of link (u, v); fuv ≥ 0

gd
u Binary variable to indicate whether node u is used to route d by primary path P d

p , u ∈ V \ {sd, td}

kd
u Binary variable to indicate whether node u is used to route d by backup path P d

b , u ∈ V \ {sd, td}
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0

2

1 3 5

4

primary path of  d1

primary path of d2

backup path of d1

backup path of d2

(A) Network topology before using
TNDP-EAR

0

2

1 3 5

4

(B) Routing solution using TNDP-EAR
(no failure)

0

2

1 3 5

4

(C) Routing solution using TNDP-EAR
(node 4 failure)

FIGURE 6.8: Example of routing solution for TNDP-EAR

6.5 ILP formulations

6.5.1 Flow-based formulation

Undirected graphs

Consider an undirected link capacity model in which the capacity of a link

is shared between the traffic in both directions. Given an undirected graph

G = (V, E), where V represents the node set, and E the set of edges, each of

which represents an undirected link between two nodes. We formulate the

model of TNDP-EAR as integer linear programming model for undirected
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graphs as follows.

min
∑

(u,v)∈E

Euvnuv + β{
∑

(u,v)∈E

Euv(Buv − nuv)} (6.1)

xuv ≤ nuv ∀(u, v) ∈ E, (6.2)

Buvxuv ≥ nuv ∀(u, v) ∈ E, (6.3)

∑

(u,v)∈E

yd
uv −

∑

(v,u)∈E

yd
vu =



















1 if u = sd,

−1 if u = td,

0 if u 6= sd, td,

∀d ∈ D, (6.4)

∑

(u,v)∈E

zd
uv −

∑

(v,u)∈E

zd
vu =



















1 if u = sd,

−1 if u = td,

0 if u 6= sd, td,

∀d ∈ D, (6.5)

∑

d∈D

hd(yd
uv + yd

vu + zd
uv + zd

vu) ≤ UT (nuv/Buv)Cuv∀(u, v) ∈ E, (6.6)

yd
uv + zd

uv + yd
vu + zd

vu ≤ xuv ∀(u, v) ∈ E; d ∈ D, (6.7)

gd
u + kd

u ≤ 1 ∀u ∈ V \ {sd, td}; d ∈ D,

(6.8)

yd
uv + yd

vu ≤ gd
u ∀u ∈ V ; (u, v) ∈ E; d ∈ D,

(6.9)

zd
uv + zd

vu ≤ kd
u ∀u ∈ V ; (u, v) ∈ E; d ∈ D,

(6.10)

The objective function (6.1) minimizes the total power consumption induced

by cables. It is composed of two parts. The first part computes the power con-

sumption of powered-on cables. The second part computes the consumption

of powered-off cables. Inequalities (6.2) make sure all cables of link (u, v) are

powered-off when xuv = 0. Inequalities (6.3) ensures that if link (u, v) has

at least one cable powered-on (i.e., nuv ≥ 1) then xuv = 1. Equations (6.4)

and (6.5) express the classical flow conservation constraints for a primary

and backup paths for each demand, respectively. Constraints (6.6) ensure

that the total flow traversing each link (u, v) of the primary and backup path

cannot exceed the tolerated link capacity, i.e., UT (nuv/Buv)Cuv. (6.6) also im-

plies the dedicated protection of the backup path as it should have sufficient

resources/bandwidth (hd), to support its demand in case of link or node fail-

ure. Finally, inequalities (6.8)-(6.10) ensure that, for each demand, the pri-

mary and the backup paths are node-disjoint. They guarantee that if node u

is used by primary path (gd
uv = 1), then node u should be excluded from the

backup path (kd
uv = 0), and vice versa.
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Directed graphs

Given a directed graph G = (V, A), where V represents the node set, and A

represents the set of arcs, that are directed links between nodes. By consider-

ing path direction, the previous ILP can be straightforwardly formulated for

directed graphs. Constraints (6.6)-(6.7) should be replaced as follows.

∑

d∈D

hd(yd
uv + zd

uv) ≤ UT (nuv/Buv)Cuv∀(u, v) ∈ A, (6.11)

yd
uv + zd

uv ≤ xuv ∀(u, v) ∈ A; d ∈ D, (6.12)

Constraints (6.9)-(6.10) should be as follows.

yd
uv + yd

vu ≤ gd
u ∀u ∈ V ; (u, v), (v, u) ∈ A; d ∈ D, (6.13)

zd
uv + zd

vu ≤ kd
u ∀u ∈ V ; (u, v), (v, u) ∈ A; d ∈ D, (6.14)

6.5.2 Cut-based formulation

This section presents a second integer linear programming formulation for

the problem based on Menger’s theorem [247]. Recall, the theorem says that

the maximum number of node-disjoint st-paths is equal to the minimum size

of a node cut set disconnecting s and t. We reformulate the ILP model studied

in [245] to fit with our objective.

Undirected graph

Given an undirected graph G = (V, E), where V represents the node set,

and E the set of edges, each of which represents an undirected link between

two nodes. The TNDP-EAR can be formulated as cut-based integer linear

programming as follows.
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min
∑

e∈E

Eene + β{
∑

e∈E

Ee(Be − ne)} (6.15)

xe ≤ ne ∀e ∈ E,

(6.16)

Bexe ≥ ne ∀e ∈ E,

(6.17)

yd(δG(W )) =
∑

e∈δG(W )

yd
e ≥ 2 ∀d ∈ D, ∀W ⊂ V : sd ∈ W,td ∈ W = V \ W,

(6.18)

yd(δG\{u}(W )) =
∑

e∈δG\{u}(W )

yd
e ≥ 1

∀d ∈ D, u ∈ V \ {sd, td} ,

∀W ⊂ V : sd ∈ W, td ∈ W,
(6.19)

∑

d∈D

hdyd
e ≤ UT (ne/Be)Ce ∀e ∈ E,

(6.20)

yd
e ≤ xe ∀e ∈ E;d ∈ D,

(6.21)

xe, yd
e ∈ {0, 1} ∀e ∈ E;d ∈ D,

(6.22)

ne ∈ N (6.23)
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Directed graphs

By replacing the path direction, the previous ILP can straightforwardly be

extended to the directed graph G = (V, A). The linear program can be for-

mulated as follows.

min
∑

(u,v)∈A

Euvnuv + β{
∑

(u,v)∈A

Euv(Buv − nuv)} (6.24)

xuv ≤ nuv (u, v) ∈ A, (6.25)

Buvxuv ≥ nuv ∀(u, v) ∈ A, (6.26)

yd(δ+
G(W )) =

∑

(u,v)∈δ+
G(W )

yd
uv ≥ 2 ∀d ∈ D, ∀W ⊂ V : sd ∈ W, td ∈ W = V \ W,

(6.27)

yd(δ+
G\{u}(W )) =

∑

(u,v)∈δ+
G\{u}

(W )

yd
uv ≥ 1

∀d ∈ D, u ∈ V \ {sd, td} ,

∀W ⊂ V : sd ∈ W, td ∈ W,

(6.28)
∑

d∈D

hdyd
uv ≤ UT (nuv/Buv)Cuv ∀(u, v) ∈ A, (6.29)

yd
uv ≤ xuv ∀(u, v) ∈ A; d ∈ D, (6.30)

xuv, yd
uv ∈ {0, 1} ∀(u, v) ∈ A; d ∈ D, (6.31)

nuv ∈ N (6.32)

6.6 Heuristic-based algorithms

As EAR link disjoint path is proven in [252] to be NP-hard even for only two

different requests. Thus, we can state that TNDP-EAR is also an NP-hard

problem as well. Hence, heuristic methods are preferred to quickly find effi-

cient solutions for large networks. We propose a heuristic algorithm that in-

cludes node disjoint path computation phase and EAR phase. Three heuris-

tics can be proposed GreenTNDPksp, GreenTNDPbasic, and GreenTNDPSuur,

that differ in the algorithm used to compute the node disjoint paths.

• GreenTNDPksp Algorithm 6 is applied in Phase 1 to find two disjoint

paths for each demand.

• GreenTNDPbasic Algorithm 5 is applied in Phase 1 to find two disjoint

paths for each demand.
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• GreenTNDPSuur Algorithm 4 is applied in Phase 1 to find two disjoint

paths for each demand.

The idea of our heuristic is as follows. Sort all demands in a descending order

of hd; create the residual graph for each demand by removing all links with

residual capacity lower than hd; find the primary path and backup paths (us-

ing any algorithm that computes node disjoint paths) for each demand; then,

(the energy aware routing phase is initialized), select iteratively a link with

maximum residual capacity to turn off. Find all demands that contain the

deleted link, then release the bandwidth of the affected demands and reroute

traffic for these affected demands through the remaining links. If any of the

affected demands fails to be rerouted, the candidate link must be turned on

(i.e. put it back to Ar). Repeat the process until all links are considered.

Finally, turn-off the unused cables using (4.13). Heuristic algorithms are de-

scribed in Algorithm 7.

6.7 Experimental results

In this section, we evaluate the flow based ILP formulation for directed graphs

and the heuristic-based algorithm GreenTNDPbasic.

We use the following experiments setup (i) bundle size Buv = 4; (ii) the max-

imum tolerated link utilization UT = 100%; and (iii) each cable has the same

power consumption Euv = 100 watts.

6.7.1 Performance metrics

To evaluate the performance of our algorithms, we use the following metrics.

η% is the percentage of power savings related to the cables turned off by

the EAR algorithms. It is computed as follows:

η% = (1 −

∑

(u,v)∈A
nuv

∑

(u,v)∈A
Buv

) × 100% (6.33)

ρ is used to measure the mean traffic utilization of the used links in G′. It

is previously defined in Chapter 2.

Finally, we evaluate the effect of our EAR algorithms on the reliability of

each demand. We measure route reliability as in [156]. Let puv = 0.9 be the
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Input: A weighted-directed graph G = (V, A), a set D of demands with
traffic requirements hd for all d ∈ D,

Output: G′ = (V, A′): the output graph containing only links used to
route the demands.

1 Initially, A′ = A;
2 /*Phase 1*/
3 Paths=∅;
4 Sort demands in a descending order of demands hd;
5 for each d ∈ D do
6 Compute the residual graph Gr for d by removing the links with

ruv ≤ hd, ∀(u, v) ∈ A′;
7 Pd = call find-TNDP( Gr, d) ;
8 if Pd exist then
9 Update residual capacity of links of Pd on G′ ;

10 Paths=Paths ∪Pd; Pd = {P d
p , P d

b } ;

11 return true;

12 else
13 return false;
14 break ;

15 end

16 end
17 /*Phase 2*/
18 //Step 1
19 for each link (u, v) ∈ A′ in a descending order of its residual capacity do
20 A′ = A′ − {(u, v)}; // turn off candidate link (u, v)
21 //Find affected demands by turning off (u, v)
22 Da ={d|Pd ∩ (u, v) 6= ∅, d ∈ D};
23 Release the bandwidth of Da;
24 feasible=Reroute traffic of Da on G′ by repeating Phase 1;
25 if feasible==false then
26 put (u, v) back to A′ ;
27 assign bandwidth of Da on G′;

28 end

29 end
30 //Step 2
31 for each each link (u, v) ∈ A′ do
32 turn off unused cables using (4.13);
33 end

Algorithm 7: Pseudo-code description for the proposed heuristic (green
TNDP)

probability of a cable in link (u, v) being functional. The reliability of a link

(u, v) is denoted by luv can be computed as follow:

luv = 1 − (1 − puv)nuv . (6.34)
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Let RRd denote the global route reliability for a demand d routed through

two node-disjoint paths (i.e., represented by variables y and z). RRd is com-

puted as follows:

RRd = 1 − (1 − Rdy)(1 − Rdz), (6.35)

where Rdy and Rdz are the route reliability of the primary and back-up paths

respectively. Rdy and Rdz are calculated by the following formula :

Rd{y/z} = log−1
(

∑

(uv)∈Rd{y/z}

log luv

)

, ∀d ∈ D. (6.36)

We can also compute the average route reliability (ARR) for a given traffic

matrix D as follows.

ARR =

∑

d∈D
RRd

|D|
(6.37)

TNDP-EAR vs. GreenTNDPbasic solutions

We test our algorithms TNDP-EAR and GreenTNDPbasic on six realistic net-

work topologies collected from the Survivable Network Design Library (SNDlib) [206].

We choose network instances where two node-disjoint paths always exist.

We solved the ILP model using the CPLEX solver with Concert Technology

(C++) [concertcplex], with a time limit set to 3 hours (10800 seconds).

Table 6.3 and Table 6.4 report the computational results obtained by running

the ILP and GreenTNDPbasic heuristic on six realistic topologies. The gap

column reports the energy performance of the resulting network topology,

i.e., the ratio (UB-LB)/LB, where UB is the upper bound on power consump-

tion, and LB is the power consumption of the linear relaxation. If the gap

equals to zero, it means that the optimal solution is found.

TABLE 6.3: ILP formulation (TNDP-EAR)

Power Optimality Power consumption Mean links Execution
Network |V | |E| |D| Saving gap Upper bound Utilization Time

(η%) (%) UB (W) (ρ) (s)
Atlanta 15 44 132 67.61 5 5147.6 23.29 10800

Dfn-bwin 10 90 90 90.83 21 3006 22.46 10800
Di-yuan 11 84 22 88.39 6 3543.6 22.09 10800

Nobel-germany 17 52 121 55.28 2 8390.8 43.89 10800
Pdh 11 68 24 88.06 0 1917.2 11.05 30.25

Polska 12 36 66 71.52 0 3704.4 27.66 1529.89

The obtained results confirm the effectiveness of our heuristic GreenTNDPbasic.

For instance, the ILP model cannot find an optimal solution for Atlanta, Dfn-

bwin, Di-yuan, and Nobel-germany networks within 3 hours, meanwhile
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TABLE 6.4: Heuristic algorithm (GreenTNDPbasic)

Power Power consumption Mean links Execution
Network |V | |E| |D| Saving Upper bound Utilization Time

(η%) UB (W) (ρ) (s)
Atlanta 15 44 132 73.29 4247.6 52.72 19.31

Dfn-bwin 10 90 90 87.22 4176.0 25.32 31.92
Di-yuan 11 84 22 91.66 2553.6 11.94 8.96

Nobel-germany 17 52 121 75 5061.8 13.90 30.54
Pdh 11 68 24 88.06 1917.2 11.05 8.20

Polska 12 36 66 65.97 4424.4 18.84 6.86

GreenTNDPbasic can find better solutions in reasonable time (within at most

11 seconds) . Moreover, we notice that the heuristic algorithm outperforms

the ILP model for these four instances, not only in terms of computational

time but also in terms of energy savings. Concerning Pdh network instance,

TNDP-EAR and GreenTNDPbasic find the same solution (optimal). This re-

sult shows that GreenTNDPbasic may reduce the computation time. Finally,

TNDP-EAR can find the optimal solution for Polska instance within 1529 sec-

onds, meanwhile GreenTNDPbasic find less efficient solution (with 19.43% of

gap) in 6.86 seconds.

However once some of the links are turned-off, the same traffic is rerouted

on fewer set of links, which impact the traffic capabilities (i.e., network con-

gestion). This trade-off between energy-saving and network congestion is

clearly demonstrated by ρ parameter. For instance, when comparing ρ% val-

ues (for the same network instance and by the two algorithms), we notice

that ρ% increases when η% increases as well.

Figures 6.9 to 6.14 present the topologies before and after GreenTNDPbasic

for the six network instances.
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FIGURE 6.9: Atlanta network
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FIGURE 6.10: Dfn-bwin network
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FIGURE 6.11: Di-yuan network
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FIGURE 6.12: Nobel-germany network
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FIGURE 6.13: Pdh network

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

  Gdansk

  Bydgoszcz

  Kolobrzeg

  Katowice

  Krakow

  Bialystok

  Lodz

  Poznan

  Rzeszow

  Szczecin

  Warsaw

  Wroclaw

(A) Before GreenTNDPbasic execution

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

  Gdansk

  Bydgoszcz

  Kolobrzeg

  Katowice

  Krakow

  Bialystok

  Lodz

  Poznan

  Rzeszow

  Szczecin

  Warsaw

  Wroclaw

(B) After GreenTNDPbasic execution

FIGURE 6.14: Polska network
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Route reliability

Figure 6.15 to Figure 6.20 show the cumulative distribution function (CDF) of

routing reliability. We show the route reliability for GreenTNDPbasic, TNDP-

EAR and SP (Shortest Path routing without disjoint backup path) for the six

networks. Note that SP is an an energy aware routing that minimizes the total

number of cables that route each demand along only one path (the primary

one). The figures show that both TNDP-EAR and GreenTNDPbasic enhance

the route reliability. Meanwhile, SP consistently has the worst CDF on the six

networks because it saves the most energy and uses less cables than TNDP-

EAR and GreenTNDPbasic. Specifically on Atlanta 60% of its routes generated

by SP have reliability no higher than 0.7. On Dfn-bwin and Di-yuan, SP main-

tains a good route reliability more than 50% of demands have route reliability

higher than 0.8. TNDP-EAR and GreenTNDPbasic show better route relia-

bility, for instance 50% of route have reliability higher than 0.97), while on

Di-yuan all the demands have reliability more than 0.97. On Nobel-germany,

70% of routes generated by SP have reliability between 0.58 and 0.9. Whereas

80% of demands generated by TNDP-EAR and GreenTNDPbasic have reli-

ability between 0.857 and 1, and 20% of demands have reliability between

0.77 and 0.857. For the four previous networks, i.e., Atlanta, Dfn-bwin, Di-

yuan, Nobel-germany, we observe that TNDP-EAR has slightly better CDF,

i.e., it has more reliable routes compared to GreenTNDPbasic. This is due the

fact that TNDP-EAR saves less energy and therefore uses more cables than

GreenTNDPbasic.

Concerning Pdh network, SP generates 40% of routes with route relia-

bility between 0.43 and 0.81. Since TNDP-EAR and GreenTNDPbasic find the

same routing solution, they also have the same route reliability (i.e., all routes

have reliability higher than 0.9).

Finally, on Polska network, 50% of routes generated by SP have route relia-

bility less than 0.8. On this network instance, GreenTNDPbasic has CDF better

than TNDP-EAR, because here the heuristic turns off less number of cables.

As expected, when the number of links and cables is reduced, there are

more traffic with lower reliability. We draw Table 6.5 to highlight the trade-

off between minimizing energy usage and enhancing network reliability.
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TABLE 6.5: Energy saving and average route reliability

SP TNDP-EAR GreenTNDPbasic

Atlanta η% 80.68 67.61 73.29
ARR 0.7379 0.9661 0.9503

Dfn-bwin η% 94.72 90.83 87.22
ARR 0.9084 0.9646 0.9732

Di-yuan η% 94.64 88.39 91.66
ARR 0.9365 0.9969 0.994

Nobel-germany η% 76.44 55.28 75
ARR 0.8403 0.9418 0.8926

Pdh η% 92.27 88.06 88.06
ARR 0.8568 0.9486 0.9486

Polska η% 81.94 71.52 65.97
ARR 0.8692 0.8813 0.9923

6.8 Conclusion

To the best of our knowledge, this is the first study that presents two novel

ILP formulations to solve the energy aware routing with two node disjoint

path problem. In this chapter, we formally defined and modeled the reli-

able energy-aware routing problem. We then proposed three heuristic algo-

rithms GreenTNDPksp, GreenTNDPbasic, and GreenTNDPSuur, that differ

in the way the node disjoint paths are computed. The implementation of our

proposed algorithms can be run on a logically-centralized power monitor

such as in Software Defined Network (SDN) architecture. Our evaluation for

the ILP model TNDP-EAR and the heuristic GreenTNDPbasic on six realistic

networks, showed that the heuristic is efficient to produce a network with a

low energy usage under a high reliability level in reasonable time. The algo-

rithms presented in this chapter work for traffic instances where disjoint path

computation is always feasible. As a future work, it would be interesting to

consider shared scheme along with EAR.
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Conclusion

Summary of work

In this thesis, focusing on green networking, we have addressed the issue

of energy consumption in wired networks and especially in carrier Ethernet

networks. A potential solution to reduce the power consumption of Carrier-

Ethernet is to manage the whole network configuration in a coordinated

way such that to power off redundant network elements. Accordingly, we

have developed centralized approaches for carrier Ethernet operated with

different configurations and routing policies. We have considered saving en-

ergy with splittable and unsplittable flows, i.e., with Equal Cost Multi-Path

(ECMP) rules and with simple shortest path routing. Consequently, the en-

ergy consumption is the minimum required to satisfy the traffic request, but

it comes with an important impact on resilience since there are no redundant

elements in the network topology. Therefore, we have enhanced our cen-

tralized approaches to ensure, along with the energy saving, both link and

node protection in case of unexpected failure, considering dedicated protec-

tion scheme. We have used optimization methods (greedy heuristics and

ILP/MILP formulation) to solve the problem. After describing the key con-

tributors to the power consumption of wired networks, we have surveyed,

in Chapter 1 and 2, the state-of-the-art on energy consumption in the ICT

sector and especially in carrier-grade networks. We have described the most

suitable techniques that could improve the energy efficiency of carrier-grade

networks from two different aspects: the network and node level. Chap-

ter 3 presents a new energy-aware routing algorithm, called MEEAFS, to

save energy in Carrier Ethernet networks. It allows a subset of bridge in-

terfaces to be turned off. The candidate links to be turned off are initially

depending on the topology (traffic-unaware). In order to maintain a satis-

factory of QoS, the sleeping decision depends on a threshold based on link

utilization. MEEAFS is compliant with Shortest Path Bridging (SPB) proto-

col (IEEE 802.1aq). The same problem is tackled in Chapter 4, taking into
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account the network topology and the traffic matrices before sleeping deci-

sion. Moreover, ECMP routing policy is considered to minimize the network

congestion. We have formally defined the problem and modeled it as mixed

integer linear program. Then, we have proposed two heuristics performing

energy-aware routing, Green SPB (G-SPB) and Fast Greedy SPB (FG-SPB),

which are compliant to Carrier Ethernet network operating with SPB proto-

col. Chapter 5 deals with energy aware routing with SDN (Software Defined

Network) approach. We have presented an energy-aware routing solution

which is compliant for SDN-based carrier Ethernet networks. We have taken

into account the limitation of the flow-table size (rule space capacity con-

straint). We have formulated e problem as a binary integer program formu-

lation, since identifying the optimal set of nodes and links to be turned off is

an NP-hard problem, we have proposed a set of first fit heuristic algorithms

to reduce the computation time. We have also discussed some EAR imple-

mentations in an SDN controller. Finally, in Chapter 6, we have presented a

new reliable energy-aware routing that guarantees, along with energy sav-

ing, both protection to nodes and links. To survive the network in case of

node or link failures, we deal with dedicated protection scheme. Accord-

ingly, a node-backup path is computed for each traffic demand, which have

sufficient capacity to cope with probable failures. The algorithms presented

in this chapter work only for network instances where disjoint path compu-

tation is always feasible.

Further research

We suggest that the future work should take into account the following im-

provement:

• Include robust optimization methods whose objective is to reduce the

network configuration in daily traffic variations. As well as, traffic un-

certainty should be integrated into the EAR procedures.

• Focus on optimizing the initial weight setting with the aim to get effi-

cient routing cost with low network congestion.

• Include additional QoS constraints such as on the maximum length of

paths, which can be ensured by the delay or the hop constraints.
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• Taking into account the discreteness of link rates constraint, i.e., the

availability of different link rates.

• Extend our reliable EAR (TNDP-EAR ) to protect against both multiple

link-failure and multiple node-failure.

• Implementation of all our proposed approaches via network emula-

tors.
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