
HAL Id: tel-01964939
https://hal.science/tel-01964939v2

Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A UI-DSPL Approach for the Development of
Context-Adaptable User Interfaces

Thouraya Sboui, Defended Saturday, Pr Abdelmajid, Ben Hamadou, Pr Jean
Vanderdonckt, Pr Adel, M Alimi, Pr Mounir, Ben Ayed

To cite this version:
Thouraya Sboui, Defended Saturday, Pr Abdelmajid, Ben Hamadou, Pr Jean Vanderdonckt, et al..
A UI-DSPL Approach for the Development of Context-Adaptable User Interfaces. Human-Computer
Interaction [cs.HC]. Université de Sfax (Tunisie), 2018. English. �NNT : �. �tel-01964939v2�

https://hal.science/tel-01964939v2
https://hal.archives-ouvertes.fr

THESIS

Submitted and publicly defended in partial fulfillment of the requirements for the Award

of Doctor of Philosophy in

Computer Systems Engineering

Presented By

 Thouraya SBOUI

A UI-DSPL Approach for the Development of

Context-Adaptable User Interfaces

Defended Saturday, March 31, 2018

11:00 Am

Doctoral School of Sciences and

Technologies

PhD Thesis

ISI

N° 1250

Tunisian Rupublic
Ministry of Higher Education and Scientific

Research

University of Sfax

National School f Enginnering of Sfax

Pr. Abdelmajid Ben Hamadou ISIM, University of Sfax President

Pr. Jean Vanderdonckt UCL, University of Louvain Reader

Pr. Adel Mahfoudhi CCIT, Taif University Reader

Pr. Nadia Bouassida ISIM, University of Sfax Examiner

Pr. Adel M. Alimi ENIS, University of Sfax Thesis Director

Pr. Mounir Ben Ayed FSS, University of Sfax Advisor

Abstract

In the modern world of mobile computing and ubiquitous technology, society is able to interact

with technology in new and fascinating ways. To help provide a permanent service, mobile

software should be adapted to suit the user preferences. By monitoring context information

relative to the final user, the application can better meet the dynamic preferences of the user. This

program commonality and variability can benefit from the use of Software Product Line

Engineering, reusing artefacts over a set of similar programs, called a Software Product Line

(SPL). Historically, SPLs are limited to handling static compile time adaptations. Dynamic

Software Product Lines (DSPL) however, allows for the program configuration changing at

runtime, allowing for compile time and runtime adaptation to be developed in a single unified

approach. While currently DSPLs provide methods for dealing with program logic adaptations,

variability in User Interfaces (UIs) has largely been neglected. Due to this, depending on the

intended time to apply UI adaptation, different approaches are required. The main goal of this

work is to propose an SPL approach for the development context-adaptable UIs. As context

element, we choose to adapt our user interfaces to the user preferences. Our approach is intended

to handle UI adaptation within DSPLs, providing a unified representation of UI variability is

presented. The approach is based on Model Based User Interface Development Models, enabling

developers to implement UI and context variability. To validate our approach, we implemented a

design phase and a runtime phase prototypes according to a proposed illustrative example.

Résumé

Dans le monde moderne de l'informatique mobile et de la technologie omniprésente, les

utilisateurs sont capables d'interagir avec la technologie de manière nouvelle et fascinante. Pour

aider à fournir un service permanent, les logiciels mobiles doivent être adaptés au contexte

d’utilisation entre autres les préférences de l'utilisateur. En tenant compte du contexte

d’utilisation, l'application peut mieux répondre aux préférences dynamiques de l'utilisateur.

L'uniformité et la variabilité de ce programme peuvent bénéficier de l'utilisation de Software de

l’ingénierie des les lignes de produits logicielles, réutilisant des artefacts sur un ensemble de

programmes similaires, appelé Ligne de produits logiciels (SPL). Historiquement, les lignes de

produits sont limitées à la gestion des adaptations du temps de compilation statique. Les lignes de

produits logicielles dynamique (DSPL) permet néanmoins de changer la configuration du

programme au moment de l'exécution, de permettre au temps de compilation et à l'adaptation de

l'exécution d'être développés dans une seule approche unifiée. Alors qu’actuellement, les DSPL

fournissent des méthodes pour traiter les adaptations logicielles du programme, la variabilité des

interfaces utilisateur (UI) a été largement négligée. En raison de cela, selon le moment prévu pour

appliquer l'adaptation de l'interface utilisateur, différentes approches sont nécessaires. L'objectif

principal de ce travail est de proposer une approche SPL pour les UIs adaptées au contexte de

développement. En tant qu'élément de contexte, nous choisissons d'adapter nos interfaces

utilisateur aux préférences de l'utilisateur. Notre approche est destinée à gérer l'adaptation de

l'interface utilisateur dans les DSPL, en fournissant une représentation non modifiée de la

variabilité de l'interface utilisateur. L'approche est basée sur des modèles de développement

d'interface utilisateur basés sur un modèle, permettant aux développeurs de mettre en œuvre

l'interface utilisateur et la variabilité du contexte. Pour valider notre approche, nous avons mis en

place une phase de conception et un prototype de phase d'exécution selon un exemple illustratif

propose.

Acknowledgements

I have to confess, when I embarked on this PhD, I was only interested in what I felt was the goal,

and how best to get it. On this journey, as all great journeys, important people always help shape

it. For this, I feel deep gratitude is required.

 Firstly, I wish to thank Pr. Mounir Ben Ayed for all the opportunities, guidance, and continual

useful critiques of my research.

A big thanks to Pr. Jean Venderdonckt, your help, advice, suggestions and positivity have been

important. I, also, thank you for your proposal to become the reporter of my thesis.

Big thanks to Pr. Rafael Capilla for his support, and encouragement in difficult times.

 I would also like to express my thanks to Pr. Adel M. Alimi for having accepting me in the

REGIM Laboratory and for his guidance.

 Many thanks to Pr. Adel Mahfoudhi for being the reporter of my thesis.

 Big thanks to my family for their support and their presence during the good times, and the bad.

Thank you for making this journey more fun, and in many cases, bearable. I would like to thank

my parents, for their sacrifices and selfless love. My sister, Amani, for her constant words of

encouragement, and for always being a great sister. For my brothers Rafik, Amine and Wassim

for their love, support, and always being there for me. Lastly, I would like to give a special

thanks to my Mum for everything she ever did for me. I really could not have asked for a better

Mother ♥.

Declaration of Authorship

I, Thouraya SBOUI, declare that this thesis titled, “A UI-DSPL Approach for the development of

Context Adaptable User Interfaces” and the work presented in it are my own. I confirm that:

 This work was done wholly while in candidature for a Phd degree at the ENIS University.

 Where any part of this thesis has previously been submitted for a degree or any other

qualification at the ENIS University or any other institution, this has been clearly stated.

 Where I have consulted the published work of others, this is always clearly attributed.

 Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

 I have acknowledged all main sources of help.

 Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed: Thouraya SBOUI

Date: 10/03/2018

”It is through science that we prove, but through intuition that we discover"

Henri Poincare

Contents

CHAPTER 1 . INTRODUCTION .. 17

1.1 INTRODUCTION ... 17

1.2 MOTIVATION .. 17

1.3 PROBLEM STATEMENT .. 18

1.3.1 Research questions ... 18

1.3.2 Adopted Solution .. 19

1.4 MAIN CONCEPTS ... 20

1.4.1 User interface variability .. 20

1.4.2 The Context of use .. 20

1.4.3 User interface Adaptation .. 22

1.4.4 Generative software engineering approaches and UI adaptation ... 23

1.5 PUBLICATIONS... 28

1.5.1 Journal ... 28

1.5.2 Journal .. 28

1.5.3 International Conference .. 28

1.5.4 International Conference .. 28

1.5.5 Book Chapter ... 28

1.6 THESIS ROAD MAP .. 28

1.7 CONCLUSION .. 30

CHAPTER 2 . SOFTWARE PRODUCT LINES FOR USER INTERFACES ... 31

2.1 INTRODUCTION ... 31

2.2 SOFTWARE PRODUCT LINE APPROACHES FOR USER INTERFACE DEVELOPMENT .. 31

2.2.1 Resources for Finding and Accessing Scientific Papers ... 31

2.2.2 An overview of findings .. 32

2.3 SUMMARY SCHEMA ... 38

2.3.1 Design Elements ... 39

2.3.2 Transformations ... 42

2.3.3 Actors ... 44

2.4 UI-SPL APPROACHES POSITIONING ... 44

2.5 CONTEXT AWARENESS AND UI ADAPTATION IN UI-SPL APPROACHES ... 50

2.5.1 Context consideration at the design phase .. 50

2.5.2 Context consideration at the runtime phase .. 52

2.6 CONCLUSION .. 52

CHAPTER 3 . A UI-DSPL APPROACH FOR THE DEVELOPMENT OF CONTEXT-ADAPTABLE UIS (THE

DESIGN PHASE) .. 54

3.1 INTRODUCTION ... 54

3.2 AN OVERVIEW OF THE WHOLE UI-DSPL APPROACH.. 54

3.3 AN OVERVIEW OF THE DESIGN PHASE .. 56

3.4 THE ILLUSTRATIVE EXAMPLE ... 58

3.5 THE DESIGN PHASE .. 60

3.5.1 The design phase challenges .. 61

3.5.2 The domain analysis phase .. 61

3.5.3 The Domain Implementation Phase ... 66

3.5.4 The application engineering level ... 72

3.6 CONCLUSION .. 77

CHAPTER 4 . A UI-DSPL APPROACH FOR THE DEVELOPMENT OF CONTEXT-ADAPTABLE UIS (THE RUNTIME

PHASE) ... 78

4.1 INTRODUCTION ... 78

4.2 AN OVERVIEW OF THE RUNTIME PHASE ... 78

4.3 THE RUNTIME PHASE CHALLENGES .. 80

4.3.1 The runtime adaptation pattern .. 80

4.3.2 Model instantiation .. 84

4.3.3 The Runtime adaptation mechanism ... 89

4.4 CONCLUSION .. 92

CHAPTER 5 . IMPLEMENTATION, EVALUATION AND DISCUSSION .. 94

5.1 INTRODUCTION ... 94

5.2 THE DESIGN PHASE IMPLEMENTATION .. 94

5.2.1 Design phase tools.. 94

5.2.2 GUI models composition... 96

5.2.3 CUI-FUI transformation .. 100

5.3 THE RUNTIME PHASE IMPLEMENTATION ... 101

5.3.1 Runtime Configuration datas ... 102

5.3.2 The runtime reconfiguration script ... 103

5.3.3 The runtime recomposition script ... 104

5.3.4 Adapted Interfaces ... 105

5.4 EVALUATION AND DISCUSSION ... 106

5.4.1 A Scenario-based Evaluation .. 106

5.4.2 Scalability Evaluation ... 108

5.4.3 The IBM CSUQ questionnaire Evaluation ... 109

5.5 CONCLUSION .. 114

CHAPTER 6 . CONCLUSION & FUTURE WORKS ...116

6.1 INTRODUCTION ... 116

6.2 THESIS SUMMARY .. 116

6.3 THESIS CONTRIBUTIONS .. 117

6.3.1 The Design and the implementation of a Profiled context ... 117

6.3.2 Make the UI-DSPL approach more abstract and reusable ... 117

6.3.3 A design pattern for the runtime adaptation mechanism .. 118

6.3.4 A runtime adaptation mechanism to adapt user interfaces .. 118

6.4 FUTURE WORKS ... 118

6.4.1 Short-term perspectives ... 119

6.4.2 Long-term perspectives .. 120

APPENDIX A ..122

APPENDIX B ...124

APPENDIX C ...125

BIBLIOGRAPHY ..126

List of figures

FIGURE 1- 1 THE FOUR LAYER ARCHITECTURE OF MDE .. 23

FIGURE 1- 2 AN INSTANTIATION OF THE CAMELEON REFERENCE FRAMEWORK [12] ... 24

FIGURE 1- 3. A SIMPLIFIED VERSION OF THE CAMELEON REFERENCE FRAMEWORK (CRF). MAPPINGS AND

TRANSFORMATIONS BETWEEN LEVELS OF ABSTRACTION DEPEND ON THE CONTEXT OF USE. 25

FIGURE 1- 4. SOFTWARE PRODUCT LINE PROCESS... 26

FIGURE 1- 5 RELATIONSHIP BETWEEN GENERATIVE SOFTWARE DEVELOPMENT AND OTHER FIELDS [46] 27

FIGURE 2-1 A SUMMAY/REFERENCE SCHEMA FOR THE DEVELOPMENT OF USER INTERFACES USING SPL AND MDE

CORE ASSETS .. 40

FIGURE 2-2 THE TAGGING OF EXISTING WORKS-PART1 .. 46

FIGURE 2-3 THE TAGGING OF EXISTING WORKS-PART 2.. 48

FIGURE 2-4 THE TAGGING OF EXISTING WORKS-PART 3.. 49

FIGURE 3-1 THE DESIGN PHASE OF THE UI-DSPL APPROACH, SPEM [69] PRESENTATION ... 57

FIGURE 3-2 DEFAULT UIS OF THE SEARCH FOR RESTAURANT CASE STUDY ... 59

FIGURE 3-3 THE SEARCH FOR RESTAURANT UIS AFTER ADAPTATION ... 60

FIGURE 3-4 THE CONTEXT FEATURE MODEL ... 63

FIGURE 3-5 THE SEARCH UI FEATURE MODEL... 64

FIGURE 3-6 THE USIXML CUI META-MODEL [13]... 68

FIGURE 3-7 AN EXCERPT OF THE CUI META-MODEL [7] ... 69

FIGURE 3-8 MAPPINGS BETWEEN THE CONTEXT FEATURE MODEL AND THE CUI MODEL ... 71

FIGURE 3-9 THE CONTEXT MODEL CONFIGURATION ... 73

FIGURE 3-10 THE CONFIGURATION OF THE SEARCH UI FEATURE MODEL .. 74

FIGURE 3-11 PREVIEW OF ARTIFACTS COMPOSITION AND UIS GENERATION ... 76

FIGURE 4-1. THE RUNTIME PHASE OF THE UI-DSPL APPROACH, SPEM [69] PRESENTATION 79

FIGURE 4-2 THE EMF ADAPTATION MODEL .. 82

FIGURE 4-3 STATES OF THE SEARCH UI .. 85

FIGURE 4-4 THE SEARCH UI FEATURE MODEL (DESIGN PHASE) ... 86

FIGURE 4-5 SEARCH UI STATES ACCORDING TO THE ADAPTATION MODEL .. 87

FIGURE 4-6 THE CONTEXT OF USE CHANGE ... 87

FIGURE 4-7 THE CONTEXT ACQUISITION INTERFACE ... 89

FIGURE 4-8 THE RUNTIME ADAPTATION MECHANISM ... 90

FIGURE 5-1 THE EDITION INTERFACE OF FEATURE MODELS, FEATUREIDE PLATFORM ... 95

FIGURE 5-2 THE CONFIGURATION INTERFACE, THE FEATUREIDE PLATFORM ... 96

FIGURE 5-3 THE XML REPRESENTATION OF THE CUI MODEL FRAGMENT .. 98

FIGURE 5-4 THE XML FILE OF THE CONTEXT OF USE INTERFACE .. 99

FIGURE 5-5 THE XSLT FILE RELATIVE TO THE GENERATION OF THE CONTEXT OF USE INTERFACE 100

FIGURE 5-6 GENERATED UIS (DESIGN PHASE) .. 101

FIGURE 5-7 THE RUNNING CONFIGURATION ... 102

FIGURE 5-8 ADAPTATION RULES (RUNTIME PHASE), FIGURE 5-9 CONTEXT DATAS ... 102

FIGURE 5-10 THE ADAPTATION OF THE SEARCH UI .. 105

file:///C:/Users/user/Desktop/blog/storage/app/public/rapportThouraya.docx%23_Toc27438014

 FIGURE 5-11. DISTRIBUTION OF PARTICIPANTS’ ANSWERS TO THE IBM CSUQ QUESTIONNAIRE 112

 FIGURE 5-12. AGGREGATED SCORES BY CSUQ SUB-METRICS (MIN, MAX, AVERAGE) ... 113

 FIGURE 5-13. AGGREGATED SCORES BY CSUQ SUB-METRICS(AVERAGE, UP, DOWN, MEDIAN) 113

FIGURE 6-1 A CLOUD ARCHITECTURE ... 121

List of tables

TABLE 2-1 LIST OF CONFERENCES, WORKSHOPS .. 32

TABLE 2-2 AN OVERVIEW OF UI-SPL APPROACHES ... 34

TABLE 2-3 AN OVERVIEW OF CONTEXT-AWARE UI-SPL APPROACHES .. 51

TABLE 3-1 FEATURE CONSTRAINTS .. 66

TABLE 3-2 APPLICABLE FEATURE CONSTRAINTS RELATIVE TO THE DEFAULT CONTEXT OF USE 74

TABLE 4-1-ADAPTATION RULES ... 88

 TABLE 5-1 SCALABILITY EVALUATION RESULTS ... 109

TABLE 5-2. SCORES BY CSUQ SUB-METRICS .. 112

Abbreviations

Acronym Explanation

ACM Association of Computing Machinery

AIU Abstract Interaction Unit

AIO Abstract Interactive Object

API Application Programming Interface

BDD Binary Decision Diagrams

CAUI Context Adaptable User Interface Approach

CVL Common Variability Language

AUI AbStract User Interface Model

CIM Computation Independent Model

CIU Concrete Interaction Unit

CRF Cameleon Reference Framework

CTT Concurr Task Model

CUI Concrete User Interface Models

CSUQ Computer System Usability Questionnaire

DBU Dynamic Bunding Unit

DSL Domain Specific Language

DSPL Dynamic Software Product Line

ECA Event-Condition-Action

EMF Eclipse Modeling Framework

FAMILIAR FeAture Model scrIpt Language for manIpulation and Automatic

Reasoning

FD Feature Diagram

FM Feature Model

FMP Feature Modeling Plugin

FODA Feature Oriented Domain Analysis

FOSD Feature Oriented Software Development

FUI Final User Interface Model

GPS Global Positionning System

GUI Graphical User Interface

HCI Human Computer Interaction

HTML HyperText Markup Language

IBM International Business Machines

IDE Integrated Development Environment

IFML Interaction Flow Modeling Language

MBUID Model Based User Interface Development

MD Model Driven

MDA Model Driven Architecture

MDE Model Driven Engineering

MS MicroSoft

OMG Object Management Group

OOP Object Oriented Programming

PIM Platform Independent Model

QVT Querry, view, Task Language

SAT SATisfiability Solvers

SMV Symbolic Model Verifier

SPEM Software Process Engineering Meta-Model

SPL Software Product Line

SPLC Software Product Line Conference

SPLOT Software Product Line Online Tools

SPLE Software Product Line Engineering

UsiXML User Interface eXtended Markup Language

VaMos Variability Modelling of Software-Intensive Systems

XML eXtensible Metadata Language

XSLT eXtensible Stylesheet Language Transformation

http://splot-research.org/

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 17

Chapter 1. Introduction

1.1 Introduction

In this chapter, we state the motivation of our thesis, the problem that must be resolved, the

planned solution, the main concepts of our dissertation, our publications during years of work and

finally the thesis roadmap. In the problem statement, we present the problem, the research

questions which guided our research and the proposed solution. Furthermore, we present the most

important concepts related to our research areas. Among the concepts, we find: user interface

variability, the context of use, UI adaptation and software engineering approaches used for user

interface development. Finally we enumerate our publications during the thesis.

1.2 Motivation

The rapid growth of computing devices, the diversification of their context of use, and the variety

of user profiles are creating competitive challenges. Such a progress seems promising for the user

interface (UI) field to offer personalized interfaces and interaction scenario that correspond to

user expectations. UI adaptation is an active domain of research in Humain Computer Interaction

(HCI). For this reason, adaptation approaches are evolving with the context of use in order to

increase user’s satisfaction and enhance interaction experience. Adaptation methods are evolving

to fulfill new requirements and increase UI efficiency. By attempting to cut with earlier interfaces

that often needed recompilation for upgrades, which incurred increased cost, delay, and risk, UIs

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 18

shift to a runtime paradigm. UIs turn out to be adaptive rather than being user-centered and carry

out adaptation in accordance with the end-user preferences as well as the context of use.

1.3 Problem statement

The problem of our thesis is how to tackle to the diversification of user preferences and develop a

family of context-adaptable user interfaces. To meet this need, many approaches opted for the use

of generative approaches of software engineering. Among these approaches, many had used the

Software Product Line paradigm in order to develop a family of usable interfaces

[26][28][31][40-42][48][53-56][58-59][66][71]. Software product lines refers to software

engineering methods, tools and techniques for creating a collection of similar software systems

from a shared set of software assets using a common means of production. Carnegie Mellon

Software Engineering Institute defines a software product line as "a set of software-intensive

systems that share a common, managed set of features satisfying the specific needs of a particular

market segment or mission and that are developed from a common set of core assets in a

prescribed way". In the following, we will express the research questions which guided our thesis

and to which we have to answer.

1.3.1 Research questions

Based on the aim of this research, this thesis attempts to answer the following research questions:

1) Which context element will be addressed? This question is addressed in both chapters 4

and 5. Contrary to existing approaches, we will address the user element, in particular, his

preferences vis-à-vis his user interface. User preferences are a context data that have to be

manually entered by the end-user. In that case, the context is called a “profiled context”.

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Means_of_production

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 19

2) How design and manage the context of use? This question is addressed in both chapter

4 and chapter 5. In the design phase, the context is designed and implemented in order to

generate a context interface (to set the user preferences) and in the runtime phase, the

context is manually provided by the user through the context interface and automatically

managed by the runtime adaptation mechanism;

3) How to make the UI-DSPL approach more abstract? This challenge will be addressed

in chapter 4. At the design phase and to implement feature models, we will use as

implementation artifact, the MBUID models. The use of models, instead of, component or

aspect, makes the UI-DSPL approach more abstract.

4) How to support the design and the development of the runtime adaptation

mechanism? This question is addressed at the design phase (chapter4) by proposing a

design pattern, called a runtime adaptation model.

1.3.2 Adopted Solution

Unlike the SPL paradigm, the DSPL [14][22][31] paradigm continues to configure and adapt at

the runtime. The DSPL provides a unified solution to tackle the need for both design-time and

runtime adaptation. To answer to the research questions, we propose, in this dissertation, an

approach that supports the complete software life cycle: from feature selection and initial product

derivation, to runtime adaptation in response to changes of user preferences. We concretize the

notion of asset with a definition of models to realize the variability across a family of products. In

our approach, the derivation of products is divided in two processes: a design time process for the

generation of default user interfaces and a runtime process for the adaptation of UIs.

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 20

1.4 Main concepts

The most important concepts relative to our work are: 1) user interface variability [54], a main

concept of the development of a family of UIs using the SPL paradigm, 2) the context of use, a

main concept of the development of context-aware systems, 3) UI adaptation: this concept

highlights different type of user interface adaptation (e.g. automatic adaptation, manual

adaptation and semi-automatic adaptation) and finally the 4) generative approaches, this later

highlights different types of generative approaches used to develop user interfaces. In the

following, we will detail these concepts.

1.4.1 User interface variability

Like the other aspects, user interface variability may be designed and implemented. This

variability is defined according to many aspects such as the presentation aspect and/or the

functional aspect of a user interface. Current SPL techniques and tools are dealing with this

variability at the design time. However, managing the runtime variability in order to adapt the UI

cannot be achieved using a conventional SPL approach. Runtime variability can only be tackled

using Dynamic Software Product Line techniques. This variability can be expressed in stand-

alone models, such as feature models (FM) [4] and implemented using different artifacts (e.g.

models, component, document, etc…).

1.4.2 The Context of use

 The context of use was defined by many teams [12] [26] [35] [40] [70] by the triplet <user,

platform, environment>. Context elements can be defined as follows:

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 21

 The platform element presents any information pertaining to the software or the hardware

platform (processor, memory, peripheral equipments, connection network, the size of the

display screen, the available interaction tools, etc…);

 The user element presents any information relative to the user (e.g. profile, his current

activity, preferences, habits, cultural characteristics, etc…);

 The information corresponding to the environment (light, noise, geographical

localization, etc …).

In some proposals [53] [55], this definition was extended by adding another element like the

customer element. In addition to the end user, the customer is the person who owns the concrete

product. Often, this is not the end user itself. In other proposals, the context has been defined

differently. For example and according to Mostafeoui [47], three types of context were identified.

We find the Sensed context, the derived context and the profiled context:

 Profiled context: refers to the context that the user provides explicitly (for example, the

entries in the user profile);

 Sensed context: this context is acquired from the environment by means of physical or

software sensors (identity, location, temperature, time);

 Derived context: this kind of contextual information is inferred from another context

information (e.g. from Profiled and/or Sensed) using some derivation process. For

example, the name of the city from GPS coordinates through a relation mechanism.

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 22

To develop a context-aware user interfaces, the context may be considered at the design phase

[12][40][41][53][55][70], at the runtime phase [12][26][40][41], or at both phases [12][19][26].

This consideration requires the design of the context. The context was designed in several

approaches using models (e.g. user model, platform model, environment model). These models

are used in design phase and in runtime phase [12].

1.4.3 User interface Adaptation

Context-awareness and user interface adaptability are reciprocally interrelated. In context-aware

or adaptable UIs, the context of use is designed in order to adapt user interfaces to context

changes. In the following, we present three types [13] of user interface adaptation:

1.4.3.1 Adaptive UI

An Adaptive UI refers to a UI capable of being aware of the context of use and to (automatically)

react to changes of this context in a continuous way (for instance, by changing

the UI presentation, contents, navigation or even behaviour).

1.4.3.2 Adaptable UI

An Adaptable UI can be tailored according to a set of predefined options. Adaptability normally

requires an explicit human intervention. We can find examples of UI adaptability on those word

processors where the set of buttons contained by toolbars can be customized by end users.

1.4.3.3 Plastic UI

A Plastic UI is a multi-target UI that preserves usability across multiple targets. Usability is not

intrinsic to a system. Usability can only be validated against a set of properties set up in the early

phases of the development process.

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 23

1.4.4 Generative software engineering approaches and UI adaptation

Software Engineering is still struggling to produce a family of software systems, amongst these

approaches, we find, mainly, the Model Driven Engineering approach (MDE) [3][6][28][67], the

Model Based User Interface Development (MBUID)[12] [13][32][45][70][74] approach and the

Software Product Line Engineering (SPL) approach.

1.4.4.1 Model Driven Approaches

Model Driven Approaches are approaches which use the Model Driven Engineering (MDE)

[3][6][28][67] paradigm (figure1-1). The MDE paradigm is a software development methodology

which considers the model as a central artifact leading to the design of the system and the

generation of the desired software. One of the key points of MDE is the raise of abstractions [67].

MDE defines four levels of abstraction: the meta-meta-model, the meta-model, the model and the

code. These levels are connected by means of transformations. Within the field of UI adaptation,

an overview of model driven user interface approaches was provided by Akiki et al. [3].

Figure 1-0-1 The four layer architecture of MDE

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 24

1.4.4.2 Model Based User Interface Approaches

Another important paradigm is the Model Based User Interface Development (MBUID) [12]

[13][32][45][70][74] paradigm. This paradigm is a particular MDE process defining a specific

user interfaces models.

Most MBUID approaches rely on the Cameleon Reference Framework (CRF) [12]. The CRF

serves as a reference for the development of UIs supporting multiple targets or multiple contexts

of use.

Figure 1-0-2 An instantiation of the CAMELEON Reference Framework [12]

The CRF [13] is illustrated in figures 1-2 and 1-3. Within this platform there are both task and

domain models. The task model describes the logical activities that have to be carried out in order

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 25

to reach the user’s goals while the domain model is a conceptual model of the domain that

incorporates both behavior and data. Both models are used as input to generate the abstract user

interface (AUI) which expresses the UI in terms of Abstract Interaction Units (AIU) (or Abstract

Interaction Objects (AIO)), as well as the relationships among them. These AIUs are independent

of any implementation technology or modality (e.g. graphical, vocal or gestural). The AUI may

give rise to one or many Concrete User Interface (CUI). A CUI expresses the UI in terms of

Concrete Interaction Units (CIU) (or Concrete Interaction Objects (CIOs). These CIUs are

modality-dependent but implementation technology independent. The CUI is used to derivate the

Final Interactive UI (FUI).

In the context of user interface adaptation, the CRF considers the context of use at the design

time and at the runtime in order to support plastic UIs. This consideration is performed using

context models (user model, platform model, environment model). Context models are used to

ensure the transformations between models of the four abstraction levels.

Figure 1-0-3. A simplified version of the Cameleon Reference Framework (CRF). Mappings
and transformations between levels of abstraction depend on the context of use.

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 26

1.4.4.3 Software Product Line Approaches

The third generative process is the Software Product Line Engineering (SPLE) process [26][28]

[31][40-42][48][53-56] [58-59] [66] [71][76]. SPLE promises significant improvements in time-

to-market, cost, and reliability through the system identification and the exploitation of

commonalities and variations in software systems.

SPLE is a two-level approach (Figure 1-4): an abstract level called the domain engineering level

and a concrete level called the application engineering level. The domain engineering level

covers domain analysis (identification of common and variable features among the family

members), domain design (development of common assets of all family products) and domain

implementation (the implementation of the family-assets). The application engineering level

covers application analysis (the configuration of the feature model), application design

(instantiation of common assets in order to define the architecture of a specific product) and

application implementation (the development of a specific product).

Figure 1-0-4. Software Product Line Process

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 27

Both engineering levels define two spaces: a problem space and a solution space. The problem

space is for expressing variability and product configuration while the solution space is for assets

implementation and product generation. Figure 1-5 highlights concepts and technologies used to

implement the two spaces.

Figure 1-0-5 Relationship between generative software development and other fields [46]

Feature modeling [4] is a key concept in product line engineering. Feature modeling by means of

Feature Diagrams (FD) is a popular technique for capturing commonality and variability in

Software Product Lines. A feature model is an intermediate step to move from problem space to

solution space.

In the context of UI adaptation, many software product line approaches were proposed

[30][35][40][43][46]. Some proposals had considering the context of use only at the design time,

others, had considered the context at the design time and at the runtime phases. These laters opted

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 28

for the use of Dynamic SPLs approaches [26] [31] [40][41]. DSPLs and unlike SPLs continue to

adapt software systems at the runtime.

1.5 Publications

1.5.1 Journal [65]

T. SBOUI, M. BEN AYED, A. M. ALIMI, “A UI-DSPL approach for the development of

Context-adaptable UIs”, IEEE Access, Vol PP, 2017

1.5.2 Journal [61]

T. SBOUI, M. BEN AYED, “Generative Software Development Techniques of User Interface:

Survey and Open Issues”, IJCSIS Journal, Vol 14 N°7, 2016

1.5.3 International Conference [62]

T. SBOUI, “A DSPL Approach for the Development of Context-Adaptable User Interfaces”,

RCIS Conference, 2017

1.5.4 International Conference [63]

T. SBOUI, M. BEN AYED, A. M. ALIMI, “A meta-model for run-time adaptation in a UI-

DSPL process”, BHCI Conference, 2017

1.5.5 Book Chapter [64]

T. SBOUI, M. BEN AYED, A. M. ALIMI, “Addressing Context-Awareness in User Interface

Software Product Lines (UI-SPL) Approaches”, Human–Computer Interaction Series, 2017,

ISSN: 1571-5035.

1.6 Thesis Road Map

Our dissertation is broken down into the following chapters:

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 29

• Chapter 2: Software Product Lines for User Interfaces. This chapter introduces existing

Software Product Lines approaches proposed in the context of user interface development. In this

chapter, we attempt to give a literature review to determine the gaps that have to be fulfilled by

our contribution.

• Chapter 3: A UI-DSPL Approach for the development of Context-Adaptable User Interfaces.

Based on the identified gaps of existing works, the third chapter presents the contribution of our

thesis. We introduce a Dynamic Software Product Line as an approach for developing adaptive

softwares, and their properties. Next we present the challenges that fulfill the gaps of existing

proposals. Furthermore, we introduce the use case that will illustrate the rest of chapters. Finally,

we detail the two phases of the proposed approach. The design time stage includes the variability

design, implementation, and derivation. While, the runtime phase presents the runtime

configuration and recomposition of the new interface.

• Chapter 4: Implementation. This chapter presents the implementation details of our approach.

Among these details, we find the development tools, source codes of the implemented algorithms

and the generated prototypes for the mobile platform.

 • Chapter 5: Evaluation&Discussion. In this chapter, we evaluate the proposed approach using

three types of evaluation: a scenario-based evaluation, a scalability evaluation and a

questionnaire-based evaluation.

• Chapter 6: Conclusions and Future Works. This chapter presents the final conclusions of the

work featured in this thesis. We lastly present motivated work that should be further researched

within the field.

Thouraya SBOUI Introduction

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 30

1.7 Conclusion

This chapter had introduced our dissertation by fixing the motivation, the problem for which we

are looking for a solution, concepts that are relative to our work, our publications and the

roadmap of our thesis. The next chapter presents an overview of software Product line

approaches used for user interface adaptation.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 31

2 Chapter 2. Software Product Lines for User

Interfaces

2.1 Introduction

This chapter is a state of the art within it we present software engineering approaches proposed in

the context of user interface adaptation. First, we present the list of conference, journals and

workshops in which we have conducted our research to find publications that are related to our

topic. Second, we present a comparative study of existing SPL approaches reserved for user

interface adaptation. Then, we propose a summarizing schema, on which we tag these approaches

and which will serve as a design/development pattern for the developers wanting to develop a UI-

SPL approach.

2.2 Software product line approaches for user interface

development

2.2.1 Resources for Finding and Accessing Scientific Papers

The table below (table2-1) presents the most important workshops, conference, journals of

software engineering (in particular software product line engineering, e.g. SPLC, VaMos) and of

Human Computer Interaction (e.g. the ACM transaction on computer human interaction) topics.

These resources were selected according to their ranks and h-index. The higher the rank, the more

selective the source is, the higher the h-index, the better the source is. However, it is possible to

http://www.sciencebuddies.org/science-fair-projects/top_science-fair_finding_scientific_papers.shtml

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 32

find sources which are considered as having an important venue in product line engineering but

which are not ranked (e.g. the SPLC conference).

Table 2-1 List of conferences, workshops

C
o

n
fe

re
n

ce
/W

o
rk

sh
o

p

Acronym Full Name Rank/

H-index

Search results

GPCE

Generative Programming conference

engineering

B/-

--

SPLC

Software Product Line -/-3232 [58] [66] [54]

VaMos

Variability Modeling of software

-/5

[11]

ACHI

Advances in Computer Human

Interaction

C/8

[26]

AVI Advanced Visual Interfaces

B/24

 --

Jo
u

rn
a

l

IJHCI

International Journal of Human-

Computer Interaction

 A/38

--

TCHI

ACM transactions on computer-

human Interaction

B/46

--

CEJCS

Central European Journal of Computer

Science

-/-

[7]

2.2.2 An overview of findings

After presenting the resource of findings, we present in table 2-2, the SPL approaches used for

the development of user interfaces. These approaches are compared according to a list of criteria.

These criteria are:

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 33

 Approach Type: specifies the proposed approach type. It can be a conventional SPL

approach, a dynamic SPL approach, or a model driven software product line approach

(MD-SPL approach);

 Approach concepts: specifies the concepts used to implement the SPL approach. Among

these concepts, is component, aspect, model or any other concepts (e.g. document

[40][41]);

 The context of use: it denotes what dimensions of the context of use are supported. The

context of use is a triplet: platform, user and environment;

 Adaptation Time: specifies the type of the supported adaptation. Does adaptation was

supported by the design time phase, the runtime phase or by both phases.

Schlee &Vanderdonckt [66] automatically generates the C++ code of a MS Windows user

interface that can be adapted at design time by (un)selecting features subject to adaptation from a

feature diagram. The designer is responsible for deciding which features, e.g., a command, a

button, an icon, should be incorporated in the adapted UI. Therefore, there is no other way for

taking the context of use into account, which may result into Meyer seven specification sins:

noise, silence, contradiction, sur-specification, etc.

Garcés et al. [28] propose a semi-automatic Model Driven Software Product Line approach (MD-

SPL). MDA concepts are combined with SPL concepts in order to develop a graphical user

interfaces (GUIs). The defined approach is a layered approach; each layer is related to a specific

domain (e.g. business, architectural or technological). For each domain, the authors define the

metamodel, the correspondent model and the feature model. To move from one level to another,

the approach levels are connected by means of transformations. The major defect of [14] is that

the developed interfaces are not context-adaptable and are only generated for the Java platform.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 34

Quinton et al. [58] propose an automatic software product line approach that generates UIs for

mobile devices by merging the feature model (FM) assets. To bridge the gap between application

Table 2-2 An Overview of UI-SPL approaches

Related Works Approach Context of use Adaptation

Type Concepts

U
se

r

E
n
v

ir
o

n
m

en
t

P
la

tf
o

rm

D
es

ig
n

 T
im

e

R
u
n

ti
m

e

A
d

ap
ta

ti
o
n

 M
o
d
el

S
P

L

D
S

P
L

M
D

E

C
o

m
p
o

n
en

t

A
sp

ec
t

M
o
d

el

O
th

er

Schlee &
Vanderdonck

t, 2004 [30]

+ + - - - - - -

Garcés et al.
2007 [13]

+ + + - - - - - -

Quinton et

al., 2011 [31]
+ + - - - - - -

Muller, 2011
[24]

+ + + - - - - - -

Boucher et

al., 2012 [5]
+ + + - - - - - -

Pleuss et al.,
2012 [27]

+ - - - + - -

Pleuss et al.,
2013 [26]

 + + - - - + - -

Arboleda et

al., 2013 [3]
+ + + - - - - - -

Logre et al.,
2014 [22]

+ + + - - - - - -

Kramer, 2014

[19 ,20]

 + + - - + + + -

Gabillon et

al., 2015 [12]

 + + - - + + + -

Sottet et al.,

2015 [34]

+ + - - - - - -

Sboui et al.
2017
[33]

 + + + + - - + + +

feature diagram (FD) and the device FD, authors propose a pruning process which creates a

reduced application metamodel. The role of this metamodel is to check if the product being

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 35

derived can be executed in a given hardware. The Quinton approach mainly generates mobile

devices, furthermore, there is neither context management nor interface adaptation.

Müller [48] combines MBUID and SPL concepts to develop the graphical user interfaces. In his

proposal, Müller put the focus on the layout (disposition of widgets in the container) design. The

Müller approach is too theoretical, furthermore, it don’t deal neither with interface adaptation nor

with context sensitivity.

Boucher et al. [11] mention that the direct configuration of FMs is not suitable and apply a

concern separation between FMs and UI configurations. To generate the feature model, Boucher

used the UI configuration views, the feature configuration workflow and the property sheet. After

the FM generation, the features are implemented using the AUI model. The CUI model is

generated from the AUI. In [11], the authors don’t generate the final UIs, they only present the

interface sketches. Furthermore, there is neither context management nor interface adaptation.

Pleuss et al. [53] [55] propose an approach which includes only a design phase in which the

target context element was the customer. In [55], the authors used the Model-Based User

Interface Design (MBUID) models to support their approach: a task model representing what the

end-user wants to achieve, a domain model representing the data manipulated by the tasks, an

Abstract User Interface (AUI) model, and a Concrete User Interface (CUI) model to develop a

family of customized UIs. These authors also used MBUID models in [55] to implement the

domain and the application engineering levels of a UI-SPL process. In Pleuss approaches, the

context was considered only at the design phase. At this phase, the interface was

customized/adapted according to the interface customer during its configuration.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 36

Arboleda et al. [6] use a model driven approach based on a decision model to generate a specific

product. The decision model takes as input the transformation model (defining the relationship

between the feature model, the domain concepts metamodel and the architecture metamodel) and

the feature model. The decision model is used with the product model and feature model

configuration to generate the final product. The Arboleda’s approach is a generic approach which

is not dedicated nor for UI development neither for UI adaptation. The UI case study was used

just to validate the approach.

Logre et al. [42] propose an SPL approach for the development of a family of dashboards. In their

approach, the authors propose a metamodel which defines dashboards concepts. The meta-model

will serve to generate the feature model. This later is implemented using aspects. The presented

prototype implements the link between the metamodel and the feature model and provides a

semi-automated support for the approach. In [42], there is nor context management neither UI

adaptation.

Kramer [40] [41] uses a DSPL process to develop a platform-adaptive UI. The context of use was

considered at the design phase and at the runtime phase. To implement UI variability, the author

had used GUI documents as source elements for initiating the process. Kramer deals only with

sensed context and adapts the generated interfaces according to the device characteristics.

Gabillon et al. [26] propose an automatic Dynamic Software Product Line (DSPL) process that

generates a UI able to adapt its behavior when the context changes during the runtime. To

generate an adaptive UI, authors used the configured feature model, the current context of use

and components for features implementation. Like Kramer, Gabillon deals only with sensed

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 37

context. Furthermore, he adapts the generated interface at both phases according to the screen

size.

Sottet et al. [71] define an MD-SPL approach to manage UI variability. The authors define

multiple FMs, allowing the separation of concerns and propose a partial and a staged

configuration process. In [71], Sottet doesn’t deal nor with the context of use neither with the

interface adaptation.

In addition to UI-SPL approaches, we list in the following other works which deal with interface

adaptation. Among these works, we find those [12][53][70][74] which use the MDE/MBUID

paradigm to generate a family of adaptive interfaces and others which propose different

techniques to adapt the interface according to the context of use.

Calvary et al. [12] propose an approach which covers both the design time and run time phases.

The Calvary approach (named Cameleon Rreference Framework (CRF)) has now become widely

accepted in the HCI Engineering community as a reference for structuring and classifying model-

based development processes of UIs that support multiple contexts of use. Calvary et al. deals

with a particular interface adaptation which is UI plasticity. This latter is defined by Calvary et al.

as “the capacity of user interfaces to adapt to the context of use while preserving human values”.

Sottet et al. [70] propose a model driven approach to generate adaptable UI to the context of use.

The authors define models presenting the interface (the task model, the AUI model and the CUI

model) and models presenting the context of use. As context elements, the authors target the user,

the platform and the environment but practically, they implement their approach according to the

platform element.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 38

Mezhoudi et al. [46] uses the user feedbacks and the machine learning to adapt her interface. By

using the machine learning technique, the final user will have the choice between several adapted

interfaces and to him to choose the interface that goes to him. Mezhoudi et al.’s approach is

among the first MBUID approaches that have used user feedbacks to adapt user interfaces.

UsiXml [74][75] supports a Model Driven Engineering (MDE) approach and covers all CRF

models. UsiXml adaptations are focused on the platform model. Users are supported through

stereotypes, however there is nor context management neither users involvement during interface

adaptation.

Gajos et al. [27] propose a system which performs dynamically interface adaptation. The

approach targets as context elements, the devices, tasks, preferences and abilities. In their

approach, the authors propose an algorithm which finds in less than one second the optimal

adapted UI in the solution space. The major defect of Gajos et al.‘s approach is that is not

dedicated for the development of a family of UIs.

Cerny et al. [16] propose a technique that aims to reduce the development and maintenance

eff orts of CUI to a level comparable with a single UI. Unlike most of the existing CUI

approaches, their technique does not involve an external UI model. Instead, it aims to reflect

runtime-information and structures already captured in the application, while extending them to

provide an appropriate CUI

2.3 Summary Schema

In order to summarize the approaches described above, we designed a schema which will serve as

a reference for the designers who want to develop a MB-SPL approach to develop context

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 39

sensitive user interfaces. The reference schema combines different type of software engineering

artifacts in order to develop a UI-SPL process. The global process is a two-layered SPL process

presenting a domain engineering level and an application engineering level in which they

aggregate SPL artifacts (e.g. feature model, feature configuration), MDE/MBUID artifacts (e.g.

model, metamodel, transformation) and context consideration techniques (e.g. context feature

model, runtime adaptation mechanism) made to the development of a family of context-.

2.3.1 Design Elements

In figure2-1, the design elements are logically distributed throughout the schema levels. The

domain analysis level is the process of identifying, eliciting and modeling the requirements of a

family of products. The major design elements that can be included in this phase are:

 Metamodels: defines the metadata of SPL/MDE artifacts. We find metamodels describing

variability models, metamodels describing MBUID models, and metamodels describing MDE

models. Another metamodel can take place is that which describes the runtime adaptation

mechanism, this metamodel serves to facilitate the design and the development of the runtime

adaptation mechanism;

 Variability models: defines the commonalities and the variabilities of the user interface and

the context of use. To define variability models, we use Feature Diagrams (FD);

 UI domain model: defines the meaningful real-world concepts pertinent to user interface

domain. It may be presented by a UML class diagram;

 Task model/Interaction Flow Modeling Language (IFML) model [49]: the task model is the

correspondent of the use case diagram in UML language and it represents the logical

activities that should support users, interacting with the interface, in reaching their goals.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 40

Figure 2-1 A summay/reference schema for the development of user interfaces using SPL and MDE core assets

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 41

The Concur Task Trees (CTT) [52] [60] is a visual notation used to describe the task model.

Regarding the IFML [49] model and beyond the description of user interactions, the IFML is

designed for expressing content, control behaviour of the front-end of software applications, as

well as the binding to the persistence and business logic layers. The IFML is a Domain Specific

Language (DSL) that has been adopted as a standard by the Object Management Group (OMG)

in March 2013;

The domain design level takes domain models described above and aims to produce a generic

architecture to which all UIs can conform. This architecture is described using the family specific

Abstract User Interface (AUI) model or the family specific Platform Independent Model (PIM).

 Family-specific AUI/PIM models: both models describe the UI family in terms of interaction

spaces (or presentation units), independently of which interactors are available and even

independently of the modality of interaction. These models are designed at the domain

engineering level to describe presentations units composing the whole family of UIs;

The application engineering level is characterized by the derivation of the user interface product.

This derivation satisfies specific application requirements. At this level, we find the following

elements:

 Selected variants: specifies selected and deselected variants of UI and context variability

models. At this phase, selected context variants as well as specific application

requirements impacts the configuration of the variability model of the user interface;

 Product-specific AUI/PIM models: these models are an instantiation of the family-

specific AUI/PIM. At the application engineering level, these models describe a

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 42

specific UI in terms of interaction spaces and independently of which interactors are

available and the modality of interaction. From another hand, these models present assets

used to implement the selected variants of the UI variability model.

 Product-specific Concrete user interface model/platform specific model: these models

describe the interface in terms of concrete interactors that depend on the used modality.

These models are specific to a particular UI product and are generated from the product

specific AUI/PIM model thanks to an MDE transformation.

 Final user interface: depending on the target platform, this model specifies the source

code of the UI in any programming language or mark-up language. The source code can

be interpreted or compiled.

The application engineering level defines three types of processes:

 The configuration process: is the customization of the variability models by selecting and

deselecting the appropriate variants in order to meet specific user requirements;

 The runtime adaptation mechanism: this process is responsible of UI adaptation to

context changes when the UI is running;

 Transformation: is the connection linking design elements of the different levels of the

development process (more details about transformations are given in the next section).

2.3.2 Transformations

The summary schema defines four types of transformations connecting design elements of higher

level of abstractions to design elements of lower level of abstractions. These transformations can

be automated (performed by the computer autonomously), semi-automated (requiring human

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 43

intervention) or can be performed a manually. The different transformations defined by the

summary schema are:

 Instantiation: this transformation specifies the metamodels to which SPL and MDE

models must conform. An instantiation is an automated transformation which may be

performed using Integrated Development Environments (IDE) (e.g. eclipseIDE,

featureIDE);

 MDE/MBUID connections: the transformation which connects MDE/MBUID models is

an automated way that transforms a source model to a target model or to text (e.g. source

code). This kind of transformation is defined using transformation languages, collectively

known as QVT (Query/View/transformation) languages [50];

 SPL connections: include connections between the variability models, connections

between variability models and their configurations, and connections between features

and their artifacts.

The connection between variability models is supported by a set of composition and

decomposition operators (e.g. aggregate, merge, slice) [2].

The connection between the variability model and its configuration need the user

intervention, so they are performed semi automatically using variability modeling IDEs

(e.g. featureIDE);

 SPL/MDE connection: is the mapping linking SPL and MDE artifacts. A first mapping

links variability models and task/domain models. That means, if we already designed

variability models, this will help designers to model the task/domain model and vice-

versa. The two other mappings connect variability models to AUI/PIM models, this

mapping presents feature transformation into artifacts.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 44

2.3.3 Actors

The common process supports four types of actors, they include:

 Domain Expert: He has a deep knowledge of the domain. After expertise training, the

domain expert delivers the glossary of UI terms to the software analyst;

 Software Analyst: the analyst studies the domain knowledge provided by the domain

expert, and identifies the functional and non-functional specifications based on user

requirements;

 Software Designer/developer: with the collaboration of the software analyst and the

domain expert, software designer and developer are responsible of the elaboration of

domain analysis models/metamodels and of the family-specific AUI/PIM model.

Moreover, software designer/developer are responsible of product derivation (from

product specific AUI/PIM) until FUI model;

 Final Users: these are the people who have a stake or interest in the use of interactive

systems. They are invited by the analyst to specify their requirements and they are

represented, on the schema, by their requirements (domain requirements/application

requirements).

2.4 UI-SPL approaches positioning

In this section, the common process described above is used to position the UI-SPL proposals of

Table 2-2. This positioning allows knowing the levels/artifacts of the summary schema which

have been used most and others levels/artifacts that were ignored. This positioning will help us to

see the difference between approaches and to better define the contribution of our thesis.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 45

In need of clarity, the positioning of the approaches is done using three schemas. In Figure 2-2,

the approaches [11][48][66][71] were tagged, while in figure2-3, we tag the approaches

[28][42][58] and in figure 2-4, we tag the approaches [6][26][40][41]. In the following, we

describe the position of each proposal. For each approach, we select the correspondent design

elements.

In [71], Sottet et al. use the MBUID core assets. The used design elements were: the “domain

model” which corresponds to the “UI concepts model” (in Figure 2-2), the “IFML model”

(instead of the task model), the CUI model to generate the concrete UI, and the ISM to generate

the final user interface. Concerning variability models, authors use a multiple feature models (to

describe the various facets of UI variability).

 Boucher et al. [11], proposed an MBUID process to manage variability and generate a

configuration UI. To reach this goal, they use the variability model to manage the variability of

interfaces, the AUI model to implement the feature model and a CUI model to generate a

concrete UI.

Pleuss [53][55] and Muller [48] use the feature model, the task model and the AUI model to

define the domain engineering level. Then, they instantiates these models to define the product

architecture which corresponds to the CUI model.

In [66], schelee and Vandendanckont use the variability model and the frame technology (which

is absent as a design artifact), to generate the final UI.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 46

Figure 2-2 The tagging of existing works-Part1

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 47

For the second positioning and in Figure 2-3, Logre et al. [42] use a meta-model to define

concepts of dashboards, from this metamodel, they generate the feature model that depicts the

technological variants of dashboards. Then, from the FM, dashboards are generated.

For Garcés et al. [28], they use metamodels to define the business and the architecture aspects of

a GUI. They, also, define feature models to describe the variability of the interface.

The code is generated from the java model. This later is resulted from the mapping between the

architecture feature model and the architecture model.

In Quinton et al. [58], authors use the feature model to manage the functional and the

technological variabilities, they use models to define features assets and a meta-model to manage

the gap between the functional variability and the technological variability.

In the third positioning and in figure 2-4, Arboleda et al. [6] uses MDE core assets (metamodel,

models and transformation). Metamodels to define concepts of problem and solution space,

models to implement the application level and transformations to generate the final product. The

variability model is also used to manage the variability of the system and to derivate the final

product.

Gabillon [26] and Kramer [40][41] use feature models to describe the context and the UI

variability. As implementation technology, Kramer uses documents while Gabillon use

components (both technologies are absent in the summary schema). Furthermore and in order to

support feature attributes in the featureIDE platform, Kramer [40][41] extends the feature

metamodel.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 48

Figure 2-3 The tagging of existing works-Part 2

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 49

Figure 2-4 The tagging of existing works-Part 3

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 50

Based on the previous analysis of UI-SPL approaches and on the positioning schemas, we note

that very little works had considered the context of use and managed UI adaptation [26][40][41]

[53][55]. In the next section, we focus, in particular, on context-awarness/adaptation of user

interfaces.

2.5 Context awareness and UI adaptation in UI-SPL approaches

In this section, we focus on the context consideration within UI-SPL approaches. The approaches

compared in table 2-3 use a list of criterias presented as follow:

 Time of context consideration: specifies if the context was considered at the design

phase, at the runtime phase or at both phases;

 Context type: specifies the type of the managed context (i.e. sensed, derived, or

profiled);

 Context element: specifies the targeted context element (i.e. user, platform,

environment);

 Context consideration/ adaptation techniques: specifies the technique used to

design context and implement the adaptation mechanism.

2.5.1 Context consideration at the design phase

All approaches of table 2-3 have considered the context at the design time. However this

consideration differs from one approach to another according to the purpose of context

consideration and according to the technique used to design the context.

In [53][55], the context awareness was performed at the design time phase in order to generate a

customized UIs. The standard context triplet was extended with a fourth element which is the

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 51

customer element. In addition to the end user, there is also the customer who owns a concrete

product. Often, this is not the end user itself. The UI customization was performed during the

development process by addressing different UI aspects such as the layout aspect, the navigation

aspect, presentation unit aspect, UI elements aspect and so one. The UI customization was mainly

designed using additional context models. For instance, we find the navigation model, the

clustering model, and the arrangement model. Others aspects (such as the abstract user interface

elements) are customized during the derivation of a specific UI or at within (the concrete user

interface elements) the transformation connecting the AUI model and the CUI model.

Table 2-3 An Overview of context-aware UI-SPL approaches

Approach Time of
Context

considerat
ion

Context
type

Context element Context
consideration/adaptation

techniques

[Pleuss et al.
2013]

[Pleuss et al.
2012]

Design time None <user, platform,

environment, customer>

MDE models

[Kramer 2014]

Mixte time

Sensed <user, platform,

environment>

Design time: context feature model

separately designed/ UI

configuration

Runtime: features/ feature-based

corse-grained compositional

technique

[Gabillon et al.
2015]

Mixte time

Sensed <user, platform,

environment>

Design time: Context and UI

features combined under the system

FM/ UI configuration

Runtime: feature/ a component-

based compositional technique

In [40][41] and [26], the design time context consideration was performed in order to adapt the

UI to a default context of use. The UI is configured according to the target device on which the

application runs. In both proposals, the context was presented using feature models. In [40][41],

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 52

the context feature model was separately defined from the UI feature model. While in [26],

context feature and UI features was combined under the system feature model.

2.5.2 Context consideration at the runtime phase

Only two approaches [26][40][41] have addressed the context consideration at the runtime phase.

The context was handled in order to adapt the UI to the context changes. The sensed data are

relative to the platform element. For example, in [40][41], sensed data were about the battery, the

connectivity, the telephony, internet and the data synchronization. While In [26], sensed data

were about the screen size of the device. In both approaches, the context was presented using

features. To recompose the adapted UI, both approaches have used the same technique

(compositional technique) but different technologies (In [40][41], Kramer opted for the reuse of

feature-based coarse-grained modules called Dynamic Binding Units (DBUs) [59], while in [26],

authors have used component).

2.6 Conclusion

As conclusion and based on tables 2-2 and 2-3, and on the positioning schemas, we may list the

following shortcomings:

1) The context consideration within UI-SPL approaches is hardly covered, only 4 approaches

from 11 approaches deal with context-awareness in UI-SPL approaches. Furthermore and

at the runtime phase, the context was managed only in two approaches [26][40][41];

2) To implement the SPL process, the existing approaches have used different technologies

such as aspects, components, documents, and models. The use of models rather than any

other implementation technology makes the SPL process more abstract and more reusable.

Thouraya SBOUI Software Product Lines for UIs Development

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 53

However, the use of models in SPL approaches, in particular specific UI models (MBUID

models) is still not widely used.

3) In context aware proposals, the targeted context element was the platform element in

[26][40][41] and the customer element in [53][55]. There is no proposal which target the

user element (for example his preferences).

For all these reasons and in order to fulfill the listed gaps, we will present in the next chapter the

contribution which best meets these lacks.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 54

3 Chapter 3. A UI-DSPL Approach for the

Development of Context-Adaptable UIs

(The Design Phase)

3.1 Introduction

In this chapter and based on previously presented works, we present an overview of the proposed

approach and its main contributions. Our approach includes two phases: the design phase and the

runtime phase, these phases fulfill the gaps of existing works. In this chapter we put the focus on

the contributions of the design phase. This phase is reserved for the generation of initial user

interfaces. Furthermore and to better describe the design phase, we present a case study which

will illustrate this chapter and the next dissertation’s chapters.

3.2 An overview of the whole UI-DSPL approach

To fulfill the gaps of existing works, the core aim of this thesis was to bring a DSPL approach to

develop context-adaptable UIs [62]. Our approach includes two phases, a design phase to

generate the initial user interfaces and a runtime phase that adapts the generated UI to context

change. Before presenting the phases of our contribution, a number of contributions were

achieved, including:

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 55

1) Contribution 1: Design and implement a profiled context. Our proposal will deal with

profiled context. At the design phase and contrary to sensed context, context features will

be implemented (i.e. associate implementation artefacts to context features) in order to

generate the context interface. This interface will serve to manually acquire context

information at the runtime phase.

2) Contribution 2: The managed context element is user preferences. These preferences

will be defined vis-à-vis the presentation aspect and the functional aspect of a user

interface. At the design phase, user preferences will be designed using the context feature

model and at the runtime, they will be managed using a setting interface.

3) Contribution 3: Make the UI-DSPL approach more abstract. For that, we will

combine MBUID concepts with SPL concepts. Those models are used at the design phase

as artifacts to implement the UI and at the runtime to recompose the adapted UI.

4) Contribution 4: A design pattern for the runtime adaptation mechanism: To best

support the runtime adaptation of UIs. We propose a model which describes the main

concepts presenting the runtime adaptation in UI-DSPL approach. The model can be used

by developers/designers as a design pattern which automates the implementation of the

runtime adaptation mechanism and facilitates its maintenance.

In the following, we present the design phase and its contributions. The runtime phase will be

presented in the next chapter.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 56

3.3 An Overview of the design phase

As depicted in figure 3-1, the design phase is presented according to domain engineering and

application engineering processes used in a typical SPL process. The domain engineering refers

to the design and development of user interface variability. The application engineering refers to

UIs derivation and the reuse of artefacts defined and implemented in the domain engineering

level.

Within the domain engineering stage, there are two distinct phases, domain analysis, and domain

implementation. In the domain analysis phase, we define the variability models of the

application. At this phase, the variability is defined using the Feature Oriented Domain Analysis

(FODA) notation. Two features models are defined, the context feature model and the UI feature

model.

For the domain implementation phase, it is made up of reusable artefacts and their

correspondent code source implementations. At this phase, the feature models (described during

the analysis phase) are implemented using the Concrete User Interface (CUI) [13] model. The

CUI is the expression of the UI in terms of “concrete interactors” that are modality dependent and

implementation technology independent.

For the “Application Engineering” level and in order to derivate specific UIs, the feature models

are configured. Then, we use a model composer that merges artefacts corresponding to selected

features. The composed UIs are then transformed, via code generation techniques, into a Final

User Interface (FUI) model. A FUI is a representation of the UI in any programming language or

mark-up language ready for compilation or interpretation.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 57

Figure 3-1 The design phase of the UI-DSPL approach, SPEM [69] presentation

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 58

3.4 The illustrative example

To better detail the design phase and the runtime phase (see next chapter) of our approach, we

present in this section an illustrative example. This example highlights the adaptation of the main

interface of the “search for restaurant” application to user preferences change. User preferences

are a contextual data specific to application’s user. This kind of data may address the

customization of two main aspects of a user interface:

 The presentation aspect: customize the UI structure (e.g. UI elements, presentation unit),

the layout (disposition of UI element on the container), color, sizing, and so one;

 The behavioral aspect: customization of UI element by injecting alternative JavaScript

handler.

The illustrative example is about a “search for restaurant” application (figure 3-2 and figure 3-3).

The application has two interfaces: a primary interface for search and a second interface for

preferences settings.

The search UI (figure 3-2) includes a text field to enter the restaurant speciality, another text field

to enter the current location and a search button to validate the search request. By default, the

search result is displayed as hyperlink describing the restaurants which correspond to the search

request.

The preference UI (figure 3-3) includes three parts. The first part defines the preferences about

the restaurant the user is looking for, the second part defines user preferences about displaying

the search result and the third part is about accessibility preferences. “Search preferences”

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 59

address the behavioral aspect of the UI, while “display preferences” and “accessibility

preferences” address the presentation aspect of the search UI.

To customize the UI behavior, the “Search preferences” include a combobox specifying the type

of the restaurant the user is looking for (e.g: best rated restaurant, restaurant offering a

promotion). To customize the display of the search result, “Display preference” includes a

combobox specifying the display desired by the user (e.g: a vertical display, a horizontal display).

While “accessibility preferences” define two comboboxs presenting the criterias to customize the

Theme color and the font size of the search UI.

Default User interfaces are described in figure 3-2 and are relative to the following user

preferences:

User1: prefers visualizing the best rated restaurants. The user prefers visualizing the search result

displayed vertically in a low contrast theme color and a medium font size.

 (a) The search UI (b) the interface of User preference settings

Figure 3-2 Default UIs of the search for restaurant case study

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 60

The first adaptation scenario is described in figure 3-3 and is relative to the following user

preferences:

User 2: prefers visualizing restaurant in promotions. The user prefers visualizing the search result

displayed horizontally in a high contrast theme color and a larger font size.

(a) The search UI after Adaptation (b) the new preferences Settings

Figure 3-3 The search for restaurant UIs after adaptation

3.5 The Design Phase

Two of the most important challenges in Software Product Line Engineering are: variability

management and product derivation. The former refers to “how to describe, manage and

implement the commonalities and variabilities existing among the members of the same family of

software products?”. The later deals with “how to build products starting from the selection of a

given set of features?”. In this section, we describe the domain engineering and the application

engineering stages of our UI-DSPL approach from variability model definition until UI

generation.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 61

3.5.1 The design phase challenges

1) Challenge1: Ensure a clear separation of concerns [38][73]: concerns separation is a

fundamental principle of software engineering. Such separation ensures the reuse and the

ability to later improve or modify a concern. This later can be any part of the system and

can be realised as a feature in SPLs. Concern separation will be applied on the feature

models (i.e. the context feature model and the UI feature model) of the domain analysis

level.

2) Challenge 2: Use platform independent assets: as mentioned in the precedent chapter,

the concrete user interface (CUI) model is used as an implementation artifact. The use of

the MBUID model as implementation artifact will ensure the abstraction and the reuse of

the derivation process.

3) Challenge 3: Specify the composition technique: to compose feature artifacts, there are

two composition techniques. The annotative technique and the compositional technique.

To compose our CUI artifacts, we will use a compositional technique based on an XML

merger script. This later is used to compose the models (represented in form of XML

files) which implements the features of the context feature model and the UI feature

model.

3.5.2 The domain analysis phase

3.5.2.1 Concern separation

Concern separation [38][73] is a principle of software engineering. It refers to the delineation and

correlation of software elements to achieve order within a system. Through proper separation of

concerns, complexity becomes manageable. For example, Object Oriented Programming (OOP)

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 62

is a way of separating concerns by decomposing a system into a set of objects that deal with

particular functional concerns.

In SPL, concern separation was used by few approaches [40][41], in order to make the system

less complex, facilitate its modification, its evolution and ensure its reuse. In SPLs, concern can

be realized as a feature.

In the context of our contribution, we used concern separation at the domain analysis level. We

design two separated feature models: the context feature model describes the context variability

and the UI feature model describes the variability of the main interface (the search interface).

3.5.2.2 Features models and features constraints

 Feature modeling is the most common approach to specify product lines. A Feature model is a

feature diagram (a special tree of features) plus some constraints. Every node in the tree has one

parent except the root feature. A terminal or a concrete feature is a leaf and a non-terminal or

compound or abstract feature is an interior node of a feature diagram. Connections between

feature and its group of children are classified as “And”, “Or”, and “Alternative groups”. The

members of And-groups can be either mandatory, or optional. In the following, we describe the

context feature model, the UI feature model and feature constraints relative to the “search for

restaurant” example presented above.

a) The context feature model

The context feature model describes the context variability. As shown in figure 3-4, the context

variability is expressed across the triplet <user, platform, environment>. “UserPreference” is a

sub-feature of the “user” feature and is defined across three features: “SearchPreferences”

feature, “DisplayPreferences” feature and “AccessibilityPreferences” feature. The

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 63

“SearchPreference” feature defines two variants (“Promotions”, and “bestrated” variant), the

“DisplayPreference” feature defines two variants (“vertical” and “horizontal” variant).

Figure 3-4 The context feature model

b) The UI feature model

UI feature model describes the variability of the user interface [54]. In figure 3-5 the UI

variability is expressed across the UI structure and the UI presentation. The “structure” feature

defines two variants (“resquestcontainer” variant, and “responsecontainer” variant). The

“requestcontainer” has three variant relative to the search widget (the “speciality_textField”

variant, the “location_textfield” variant, and the “searchButton” variant). The “searchButton”

variant defines the “listener1_BR” variant relative to the listener handling requests of searching

the best rated restaurant. Also, the “listener2_P” variant is relative to the “searchbutton” feature

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 64

and is relative to the listener handling requests of searching the restaurants offering promotions.

The “responsecontainer” feature is defined in terms of widget features and layout features.

Widget feature define a”hyperlink” variant presenting the response object of the search request.

A hyperlink may be “img” or a “text” link. For the “layout” feature, it presents two variants: the

“GridLayout” variant and the “ListLayout” variant.

Regarding the “presentation” feature, this later defines two variants. The “contrasttheme” variant

and the “normalcontrast” variant. The former defines a “highcontrast” feature and a

“lowcontrast” feature, the later defines a “medium_FS” feature and a “larger_FS”.

Figure 3-5 The search UI feature model

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 65

c) Feature constraints

In addition to feature models, feature constraints are defined at the domain analysis phase and are

describing the link between features of the same feature model (alternatively called an “intra-

feature” constraint) or between features of different feature models (alternatively called a “cross-

tree” constraint”). These constraints are used at the design phase to resolve feature conflicts when

configuring a feature model and are used at the runtime phase, as adaptation rules, to adapt the

interface following the context change. The two types of feature constraints (intra-model and

inter-model constraints) are defined using the Event-Condition-Action (ECA) language. An ECA

rule is described as follows:

 On Event (E) if Condition (C) then Action (A)

Where event is features presenting the actual context of use, the condition is the connection

between context features using the “and”, “or”, or “not” operators and the action is the interface

features connected using the “and”, “or”, or “not” operators.

In the following, we present an example of two feature constraints using the formalism of set

theory.

Constraint 1: on E={promotions, horizontal, high, large} if C={ horizontal } then A={

Gridlayout }, this constraint means that the selection of the “horizontal” feature of the context

feature model implies the selection of the “Gridlayout” feature of the UI feature model.

Constraint 2: on E={BestRated, vertical, normal, medium} if C={BestRated} then

A={Listener1_BR}, this constraint means that the selection of the “BestRated” context feature

implies the selection of “Listener1_BR” UI feature (the listener looking for the best rated

restaurants).

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 66

Table 3-1 presents the complete list of cross-tree feature constraints describing the link

between context features and UI features and used at the runtime phase by the runtime

mechanism in order to adapt the running interface. At this phase, cross-tree constraints are,

henceforth, called adaptation rules. All these rules are applied following the context change.

Table 3-1 Feature constraints

Rule Condition Action

AR1 BestRated Listener1_BR

AR2 Promotions Listener2_P

AR3 Vertical ListLayout

AR4 Horizontal GridLayout

AR5 High HighContrast

AR6 Normal LowContrast

AR7 Medium Medium_FS

AR8 Large Large_FS

3.5.3 The Domain Implementation Phase

3.5.3.1 Implementation Artifacts (platform independent assets)

The Domain Implementation phase is the process of developing reusable artifacts corresponding

to features identified in the domain analysis phase. Implementation artifacts may be a modeling

(non code artifacts) or a programming (code source artifact) technology used to implement

features in order to develop a family of software products. As example of programming

technology, we find feature-oriented programming, aspect-oriented programming, delta-oriented

programming, and so one. As example of non-code implementation artifact, we could mention

model, and architecture artifacts.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 67

In the context of our thesis and to implement context/UI features, we used the Concrete User

Interface model. In the following, we present the CUI metamodel [13] proposed by the UsiXML

team. To perform the mapping between features identified at the domain analysis and the CUI

model, we propose an excerpt of [13] described in figure 3-7.

3.5.3.2 The CUI metamodel

Figure 3-6 depicts a graphical representation of the UsiXML Meta-model for the Concrete UI.

The root entity is CUIObject which has been subclassed in CUIInteractor and CUIContainer.

The relationship between Interactors and Containers is captured by the 'contains' relationship and

the CUIRelationship association class. It is important to note that the meta-model includes

specializations for the different modalities (graphical, tactile, vocal), as a CUI Model is modality-

dependent. The Style class is intended to capture all the presentational attributes for a CUI Object.

This design pattern decouples the model from 'presentational vocabularies'.

3.5.3.3 An expert of the CUI meta-model

Figure 3-7 depicts an excerpt of the CUI metamodel of the UsiXML team. In addition to classes

described above, we define as “graphicalinteractors”: the “textfield”, “pushbutton”, “imglink”,

“textlink”, “radiobox”, “combobox”, and the “label” objects. Regarding “graphicalcontainer”, we

mainly defined web containers such as the “footer”, the “header”, the “section”, and the “div”

container. Furthermore and in order to manage the user’s “event”, we associate a “listener” class

to the “CUIobject” class. The “listener” has to implement the “Action” class in response to the

produced event. This CUI model will be used in the next section to implement features of the

context and UI feature models.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 68

Figure 3-6 The UsiXML CUI Meta-model [13]

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 69

Figure 3-7 An excerpt of the CUI meta-model [7]

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 70

3.5.3.4 The mapping between features and implementation artifacts

Figure 3-8 presents the mappings between features of the context feature model and the CUI

model. This mapping is applied for “concrete” features, abstract features are not implemented and

are used only to structure feature models.

As depicted in figure 3-8, we associate to the “searchpreferences” feature, a fragment of the CUI

model. The “searchpreferences” feature is mapped into a model fragment composed by three

classes, namely, the main container (the “window1” object), the “div1” container object, and the

“label” object, named, the “searchpreference” object. The “searchpreferences” object is contained

in the “div1” container and this later in contained, in turn, in the “window1” container object.

Equally, the “promotions” feature is mapped to a CUI model fragment. This later is composed by

four objects: “window1”, “div1”, “CB1”, and “promotions”. The window1 object contains the

“div1” objects which contains, in turn, the “CB1” object. This later contains the “promotions”

object.

To perform the mapping feature->model, we take a look at literature. As result, we find very few

tools such as the featureMapper [36], the Feature Modeling Plug-in (fmp) [23], the Common

Variability Language (CVL) [18]. However, these tools are still in the prototype stage, they do

not appear to be working properly, for that we performed the mappings feature->model manually.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 71

Figure 3-8 Mappings between the context feature model and the CUI model

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 72

3.5.3.5 The Final User Interface Model

After realizing mappings between the features and the CUI model, the resulted CUI model

fragments are transformed into their source code implementation (the FUI mode). As a target

platform, we address a mobile platform. On the mobile platform, the FUI model is described

using the HTML markup language. More details about the FUI that presents a specific product

are given below. We take note that this transformation is not performed at the domain analysis

phase. We allow its realization to the application engineering level.

3.5.4 The application engineering level

This stage is the stage of product derivation. It includes two main phases: the stage of feature

models configuration and the stage of product-artifact composition.

3.5.4.1 Feature model configuration

The first step of product derivation is the configuration of feature models. Feature model

configuration consists in selecting features that will compose the final product and deselecting

others that will not be present.

Figure 3-9 presents the configuration of the context feature model. This configuration is done

according to a “default” context of use. This later is defined as following: as “searchpreference”,

the user wants to see the “bestrated” restaurants (instead of restaurants in “promotions”). For

“displaypreference”, the user wants to see the search result displayed in a “vertical” way (instead

of “horizontal” way). For “accessibilitypreferences” and about the “themecolor”, the user prefers

seeing his interface in a “Lowcontrast” theme. Regarding the “fontsize”, the user prefers seeing

his interface with a “medium” text (instead of “larger” text).

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 73

Figure 3-9 The Context model configuration

For the “searchUI” feature model (figure 3-10), it was configured using the default configuration

of the context feature model and the appropriate cross-tree feature constraints (table 3-2).

According to figure 3-9, if the context feature “bestrated” is selected, this implies the selection of

the UI feature, “listener1_BR”. This feature presents the listener that will handle the user’s

request about looking for the “bestrated” restaurants.

For the layout, as the context feature “vertical” was selected, then we have to select the

“listlayout” feature. For the presentation aspect of the UI and about the theme color, the

“lowcontrast_TC” is selected according to the selected “lowcontrast” feature of the context

feature model. While for the UI font size, the “medium_FS” is selected according to the slected

“medium” feature of the context feature model.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 74

Figure 3-10 The configuration of the search UI feature model

Table 3-2 Applicable feature constraints relative to the default context of use

Rule Condition Action

AR1 BestRated Listener1_BR

AR3 Vertical ListLayout

AR6 Normal LowContrast

AR7 Medium Medium_FS

The feature model configuration is usually carried out using solvers. These solvers serve to

resolve conflicts between features models using features constraints (table 3-2) during the feature

model configuration. There is different types of solvers such as SAT Solvers, BDD Solvers,

Alloy, or SMV. The featureIDE platform uses the SAT solver. Such solver can resolve conflicts

between features of the same feature model but not cross-tree features. The conflicts between

features of different feature models are not yet resolved. For that, and in our context, the

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 75

constraints defined between the context feature model and the UI feature model are resolved

manually.

3.5.4.2 Models composition

After the configuration of context feature model and UI feature model, the next step of product

derivation is the composition of artifacts implementing the selected features. This Artifact

composition amounts to compose the correspondent CUI model fragments. In the following, we

will talk about the composition technique.

a) Annotative vs Compositional Techniques

In the field of Software Product Line, there are two composition techniques, namely the

annotative technique and the compositional techniques. These approaches provide two different

solutions to separating concerns. Annotative approaches focus around the use of virtual

separation of concerns [38][73]. Examples of tools that support annotative approaches include the

C preprocessor, and CIDE tool. Using these tools, the developer can annotate parts of the source

code that are part of each feature in the SPL. This approach can allow very fine grained

adaptation including extra statements to methods, and parameter alterations in method

declarations. Product derivation is carried out by negative variability. Using negative variability,

parts of the system are removed based on which features are present in the product configuration.

This causes code to be removed from the final variant of the source code if its associated feature

is not included in a product. Compositional approaches on the other hand focus around physical

separation of concerns. By physically separating code into multiple modules, these can be

composed into different variants at configuration. This approach normally makes use of positive

variability because elements that are variable to the product are added to the base product. In this

thesis, we opted for the use of the compositional technique.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 76

b) The choice of the composer and UI generation

Since the FeatureIDE platform doesn’t include a model composer, we used a separated

composition of CUI fragments of model. As depicted in figure 3-11, the idea is to transform the

CUI models into their XML representation, then, we will use an XML composer to merge the

XML modules which corresponds to selected features. This composition technique is applied for

context features in order to derivate the UI context and for UI features in order to derivate the

search UI. The resulted XML file is transformed thanks to an XSLT transformation language into

an HTML page. More details about UIs composition and HTML derivation are given in the next

chapter.

Figure 3-11 Preview of artifacts composition and UIs generation

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 77

3.6 Conclusion

In this chapter, we presented first the whole approach, then, we detailed the design phase. The

design phase challenges are: concerns separation, the design of platform independent artifacts and

the use of a compositional artifact technique in order to generate the final user interfaces. The

design phase was detailed according to an illustrative “search for restaurant” case study. In the

next chapter, we present the runtime phase of the proposed approach.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 78

4 Chapter 4. A UI-DSPL Approach for the

Development of Context-Adaptable UIs

(The Runtime Phase)

4.1 Introduction

In this chapter, we present the second set of our approach’s contributions. These contributions are

relative to the runtime phase. This later is reserved to adapt the main interface to context of use

change. The runtime phase presents two main contributions which are 1) runtime adaptation

mechanism and 2) runtime adaptation pattern which will facilitate the design and the generation

of the adaptation runtime mechanism.

4.2 An Overview of the Runtime Phase

The runtime phase (figure 4-1) or execution phase is the phase which follows the design phase

and during which the UI is running. During this phase, the final user can set his preferences.

Following preferences settings, an adaptation mechanism is triggered. This mechanism

encompasses three main components:

 The context manager component: is responsible for context acquisition and context

storage;

 The adaptation manager: is responsible for UI reconfiguration and recomposition;

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 79

 The UI code source generator: is responsible for the generation of the UI code source

ready for interpretation or compilation.

 To facilitate the design and development of the three components of runtime mechanism, An

adaptation pattern will be proposed. This pattern describes the main concepts used by runtime

adaptation components described above.

Figure 4-1. The runtime phase of the UI-DSPL approach, SPEM [69] presentation

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 80

4.3 The Runtime phase challenges

Unlike a conventional SPL, a DSPL continues to configure and adapt at the runtime. In this

thesis, runtime adaptation is caused by context change. Therefore, we identify in this section two

main challenges. The first one is the proposition of a design pattern. This pattern is aiming to

facilitate the design and the development of the runtime adaptation mechanism. The second

challenge is the implementation of the runtime adaptation mechanism aiming to manage the

context event, handle the runtime reconfiguration and regenerate the adapted UI.

1) The runtime adaptation design pattern: at the runtime phase, we propose a runtime

adaptation model in order to facilitate the design and the development of the runtime

adaptation mechanism;

2) The runtime adaptation mechanism: has to be implemented according to the concepts

defined in the design pattern. This mechanism will serve to validate the runtime

adaptation design pattern and to adapt the UI in reaction to the changes in the context of

use.

4.3.1 The runtime adaptation pattern

In order to facilitate the design and the development of runtime adaptation mechanism, we

propose in this chapter an Eclipse Modeling Framework (EMF) model. This model represents a

design pattern which can speed up the development of the runtime adaptation process by

highlighting the fundamental concepts describing UI adaptation at the runtime and the relation

between them. Among these concepts, there are those that represent the core assets already

defined at the design phase and that will be reused at the runtime phase. For example, we find:

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 81

 UI features: its represent the running configuration. Adapting the UI interface is to find

a new configuration for UI feature model which corresponds to context changes;

 Feature artifact: already defined and used at the design phase, the artifacts that

correspond to UI features are reused at the runtime phase, according to the new

configuration, in order to recompose the new UI;

 Feature constraints: describe the links between features of the same feature model and

features of different features models. These constraints will serve as an adaptation rules

at the runtime phase.

Figure 4-2 depicts graphically the proposed model. As shown, UI adaptation is seen as a state

machine. States represents UI states and transitions describe the transitions from a source state to

a target state. A transition is performed using adaptation rules.

For states, the model defines three types of UI states:

 1) The “Default State” represents the running state. Otherwise, the UI resulted from the design

phase;

 2) The “Required State” is the UI adapted following context change;

 3) The “loading_error” state presents the UI when a loading problem takes place.

A “UIstate” is defined as a set of aspects (“UIaspect”) describing the UI at the current time.

According to Pleuss et al. [27], a UI aspect may be a presentation unit (e.g. window, container), a

UI element (e.g. widget), a layout (i.e. the disposition of widgets on the container) or a visual

appearances property (e.g. color, sizing, etc...).

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 82

Figure 4-2 The EMF Adaptation Model

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 83

 At the runtime, these aspects are described using features and their values are described using

feature attributes. When an adaptation occurs, another UI state will be defined by updating the

aspect features and keeping aspects values.

After UI state updating (another set of features presents the new UI), the UI is recomposed using

the “UIModel” artifacts which corresponds to new UI features. The result of UI recomposition is

the CUI model of the adapted UI.

From another hand, “transition” represents the transition from one state to another state. A

transition is defined as a set of adaptation rules. Adaptation rules are mainly context constraints

(define the link between context features and UI features), complemented by aspect constraints

(describing the link between UI aspects and alternatively called constraint propagation rules [20].

Adaptations rules are described as an Event-Condition-Action (ECA) rules:

 An event may be a context change or an aspect change. If the event is a context change,

then the rule is a context rule. Else, if the event is an aspect change, then the rule is an

aspect rule.

 A condition: following an event, the condition describes the context variable (or the

aspect feature),

 Action: if the condition is valid, the action is executed to UI aspects to make the required

change.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 84

For enumerative type, the model defines 5 enumerative types:

 1) “Atype” specify the type of UI aspects. It may be a presentation unit, a UI element, a visual

appearance aspect or a layout;

2) “ftype” specify the type of feature. It may be an abstract or a concrete feature;

3) “fstate” indicates the state of a feature. It may be a selected feature, a deselected feature or an

undecided feature;

 4) “attType” indicates the type of the attribute value. We used primary data types (float, string,

integer);

 5) “Dtype” indicates the action value, it is a feature.

4.3.2 Model instantiation

To demonstrate the use of the proposed model, we have to instantiate it and implement it (see

next chapter). The model instantiation is performed according to the “search for restaurant” use

case presented in the precedent chapter. The use case defines two states: a default state conforms

to default preferences settings and a required state conforms to new preferences settings. In the

following, we give more details about search UI states; adaptation rules allowing the switch from

one state to another and context use change.

4.3.2.1 User interface states

Figure 4-3 (a) shows the running search UI (as it was designed at the design phase) while figure

4-4 (b) shows the search UI as it was adapted at the runtime phase.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 85

(a) The Running UI (b) The Required UI

Figure 4-3 States of the Search UI

At both phases, the search UI is described in terms of features (figure 4-4, 4-5). At the design

phase (figure 4-4), the features describing the search UI are defined according to the following

aspects:

 UI elements (e.g. “speciality_TextField” feature, “searchButton” feature, …);

 Presentation unit (e.g. “requestContainer” feature, “ResponseContainer” feature);

 Visual appearance (e.g. “contrasttheme” feature, “Fontsize” feature);

 Layout (e.g. “layout” feature);

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 86

Figure 4-4 The search UI feature model (design phase)

At the runtime phase and in figure 4-5, the “listener_BR” feature is selected to display the best

rated restaurant. The “listlayout” feature is selected to display the search result in a vertical way;

the “normal contrast” and the “medium” feature are selected to keep the interface with contrast

background and to display the text in a medium size.

After runtime adaptation (figure 4-5), the “listener_BR” feature is deselected and the “listener_P”

feature is selected to display the promotions of restaurants. The “listlayout” feature is deselected

and the “Gridlayout” feature is selected to display the result in a horizontal way. The

“normalcontrast” and “medium” features are deselected to select “contrasttheme” and “larger”

features to make the UI darker and the text size larger.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 87

Figure 4-5 Search UI states according to the Adaptation Model

4.3.2.2 The context of use

A UI adaptation is triggered following a context change event. Figure 4-6 shows the change

between two contexts of use (the default context and the new context).

(a) The Default context of use (b) The New context of use

Figure 4-6 The context of use change

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 88

 At the design phase, the context of use is presented using a feature model, while at the

runtime phase; these features are presented in form of variables.

The context of use as shown in figure 4-6 (a) presents the default user preferences. These

preferences are relative to “User1”. “User1” prefers visualizing the “bestrated” restaurants

displayed “vertically” and in a “normal” contrast theme and a “medium” font size.

 Figure 4-6 (b) shows the user preferences relative to “User2”. User 2 is a visually disabled user

who prefers visualizing the “promotions” of restaurant displayed “horizontally” in a “high”

contrast theme and a “larger” font size.

4.3.2.3 Adaptation rules

Table 4-1 shows adaptations rules allowing the transition from the default state of the search UI

to the required state. According to the use case, adaptation rules include only context constraints

describing the link between context features and the UI aspect features. The condition refers to

context value and the action refers to UI aspect feature.

Table 4-1-Adaptation rules

Rule Condition Action

AR1 BestRated Listener1_BR

AR2 Promotions Listener2_P

AR3 Vertical ListLayout

AR4 Horizontal GridLayout

AR5 High HighContrast

AR6 Normal LowContrast

AR7 Medium Medium_FS

AR8 Large Large_FS

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 89

4.3.3 The Runtime adaptation mechanism

Runtime adaptation process was briefly presented at the beginning of this chapter. In what

follows, we will give more details about this mechanism by highlighting the managed data and

given more details about the components of runtime adaptation engine (figure 4-8).

4.3.3.1 Context acquisition

The first step in the runtime adaptation mechanism is the context acquisition. The context is

acquired from the user preferences settings interface (figure 4-7) and is saved as variables in the

context data storage (figure 4-8).

Figure 4-7 The context acquisition interface

4.3.3.2 Reconfiguration Algorithm

After context data acquisition, the adaptation engine looks for a new UI configuration. This

configuration is generated using the running configuration and the adaptation rules.

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 90

Figure 4-8 The Runtime Adaptation Mechanism

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 91

Algorithm 1 illustrates how the new UI configuration is obtained from context information. To

start, the algorithm requires a set of updated observable obtained from the context manager, and

the current configuration obtained from the product itself. The first step consists in creating a

target configuration with the same variants as in the current configuration (line 1). Afterwards,

the algorithm iterates over the updated observables. For the observables whose aspect belongs to

the current configuration, the algorithm verifies if the new observable value is false. In that case,

the aspect has to be unwoven from the product. For the observables whose aspect does not belong

to the configuration, the algorithm checks if the new observable value is true. In that case, the

aspect has to be woven to the target configuration. After the selection of variants of aspects to

weave and the deselection of variants of aspects to unweave, the algorithm obtains the target

configuration.

Agorithm1: Runtime Reconfiguration

Adapter algorithm Require: A set of updated context observables C

 Require: The current product configuration Pcurrent = {F1,F2,...,Fk}

 Ensure: A target product configuration Ptarget
1: Ptarget ← Pcurrent
2: for all (On ∈ C) do

3: if (FOn ∈ Pcurrent) then

4: if (On.value() = false) then

5: Ptarget.deselect(FOn)

6: end if

 7: else

8: if (On.value() = true) then

 9: Ptarget.select(FOn)

 10: endif

 11: end if

 12: end for

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 92

4.3.3.3 Recomposition Algorithm

Once we got the new configuration of the search UI, we have to recompose the new (adapted) UI.

Algorithm 2 illustrates how a new UI is recomposed using the artifacts which corresponds to the

selected UI features. To start, the algorithm requires the new configuration obtained from the

reconfiguration algorithm, the appropriate implementation artifacts resulted from the design

phase and obtained from the artifact storage. The algorithm consists in browsing the list of

selected feature (saved in the new configuration file). For each feature name, we have to look for

its implementation in the artifact’s directory. Each time, we find a correspondent (the feature

name matches with an artifact file name), we apply a merge. The algorithm iterates over features

composing the new configuration file.

Agorithm 2: Runtime Recomposition

Recomposition Algorithm Require: the new configuration

Require: the set of feature artifacts

 Ensure: the composed UI Product (CUI.xml file)

1:resultedfile={}

2: for I ∈ features of the new configuration file

3: for J ∈ {list of implementation artifacts}

4: if (value (I)=Name (J)) then

5: merge (resultedfile, content(J))

6: end if

7: end for

8:end for

4.4 Conclusion

In this chapter, we presented the runtime phase of our approach and their main contributions. The

runtime challenges are: an adaptation design pattern and a runtime adaptation mechanism. This

Thouraya SBOUI DSPL Approach for Context Adaptable UIs

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 93

phase was detailed according to the illustrative “search for restaurant” case study presented in the

above chapter. In the next chapter we will implement both phases of the approach using the

appropriate platforms and technologies, and then we will evaluate the generated UIs.

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 94

5 Chapter 5. Implementation, Evaluation and

Discussion

5.1 Introduction

In this chapter we present design and development tools used at the design and runtime phases.

We also present the realized prototypes. These prototypes were developed for a mobile platform.

Finally, we present different methods used to evaluate the generated UIs. We mainly use three

evaluation methods: an SPL-based evaluation, a scalability evaluation and a

qualitative/quantitative evaluation based on the IBM-CSUQ questionnaire.

5.2 The design phase implementation

5.2.1 Design phase tools

Many tools were developed in order to support feature modeling. Some tools are free and open-

source and others are paid tools. As free tools, we find the FAMILIAR DSL (Domain Specific

Language) [2], the SPLOT [68] platform, and the featureIDE platform. For paid tools,

pure::variant tool [57] is the most known. In our thesis we use the FeatureIDE platform [72] to

design and configure feature models.

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 95

5.2.1.1 FeatureIDE tool

FeatureIDE is an open-source framework for feature-oriented software development (FOSD)

based on Eclipse. All phases of FOSD are supported in FeatureIDE, namely domain analysis,

requirements analysis, domain implementation, and software generation. FeatureIDE supports

several FOSD implementation techniques such as feature-oriented programming, aspect-oriented

programming, delta-oriented programming, and preprocessors. In our context, the FeatureIDE

platform was used only for feature modeling (figure 5-1) and for feature model configuration

(figure 5-2). Feature mappings/implementation and UIs composition have been performed

separately since the featureIDE platform does not support model artifact yet.

a) Edition interface

Figure 5-1 The edition interface of feature models, FeatureIDE platform

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 96

b) Configuration interface

Figure 5-2 The configuration interface, the FeatureIDE platform

5.2.2 GUI models composition

 As described in the previous chapter, to compose the feature artifacts, we used our own merge

algorithm. This algorithm is inspired from the Olivier Becker merge code and is used to merge

the XML representations of the CUI models (features artifacts). In the following, we present the

algorithm implementation.

5.2.2.1 The merge algorithm

In his algorithm, Olivier [77] uses the eXtensible Stylesheet Language (XSLT file) to merge two

XML files. In our context, and to compose our XML files (the representation of the selected

features), we need to install the “saxon” command. In the following, we give more details about

“saxon” installation.

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 97

5.2.2.2 Saxon installation

Step1: install the Java runtime machine

 tar zxvf jre-8uversion-linux-x64.tar.gz

Step 2: update the system

 Sudo apt-get update

Step 3: After updating the OS run following command to install the package

 Sudo apt-get install libsaxonb-java

Step 4: Execute the saxon command

 saxon file1.xml merge.xslt with=file2.xml > result.xml

5.2.2.3 The merge Script

Before presenting the merge script, we present in figure 5-3 (the feature model of the context) the

transformation of feature artifacts into XML code. After this transformation, we use the merge

algorithm (Algorithm 1) presented in the above chapter to merge the XML presentation of all

feature artifacts. In the following, we give more details about the implementation of the algorithm

using Linux Shell. The Shell script has two command parameters: the first parameter is the

directory containing XML files and the second parameter is the configuration file which contains

selected features. The result of the merge is an XML file (result.xml). Figure 5-4 depicts the

result of composition of context features artifacts.

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 98

Figure 5-3 The XML representation of the CUI model fragment

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 99

THE MERGE SCRIPT

!/bin/bash
#$1 are a command parameter, $1 contains the name of the directory containing
#the XML files presenting the artifacts of the selected features.

#$2 contains the name of the configuration file

Touch result.xml # this file contains the code of the composed UI

For I in ‘cat $2’
Do

For J in ‘ls $1’
Do

If [$i -eq ‘$j’];then

saxon tt merge.xslt with=$i>> aux

cp aux tt

endif

done

done

Figure 5-4 The XML file of the context of use Interface

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 100

5.2.3 CUI-FUI transformation

Since the UI composition is realized, it’s time to generate the HTML source code of the

composed context user interface. For that, we have to apply an XSLT transformation on the

composed XML file (figure 5-4). The XSLT source code used to transform the composed context

UI is presented in figure 5-5. After coding the XSLT file, we used the following shell command

to generate the final context interface (figure 5-6):

1) The command of Installing the xsltproc package

2) xsltproc stylesheet.xsl mapage.xml > context.html

Figure 5-5 The XSLT file relative to the generation of the context of use interface

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 101

Figure 5-6 Generated UIs (design phase)

For the search UI, more details are given in the appendix A. In this later, you find the XSLT file

(which calls two others files: the formatting file “thouraya.css” and the Javascript file

“thouraya.jss”) and the generated search interface.

5.3 The runtime phase implementation

In this section, we present the implementation of runtime algorithms: the configuration algorithm

and the recomposition algorithm. As described below, these algorithms were implemented using

the shell script. Their input data (context data, adaptation rules and the running configuration)

were managed using files. In addition to algorithms, we present different adaptation scenarios of

the main interface (the search interface).

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 102

5.3.1 Runtime Configuration datas

The runtime reconfiguration mechanism needs as inputs: the running configuration (figure 5-7),

the configuration as it was realized at the design phase, the context data (figure 5-9) and the

adaptation rules (figure 5-8). This data is saved in files.

Figure 5-7 The running configuration

Figure 5-8 Adaptation rules (runtime phase) Figure 5-9 Context datas

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 103

5.3.2 The runtime reconfiguration script

Below, we present the reconfiguration shell script:

#!/bin/bash

For I in ‘cat contextdata’
Do

Var1=’cut –f2 –d ‘ ’ $i’
Var2=’cut –f3 –d ‘ ’ $i’
If [$var2=’false’];then
For J in ‘cat defaultconfig’
Do

If [$j -eq $var1];then

Sed ‘/$var1/d’ defaultconfig
Endif

Done

Else

Exist=false

For J in ‘cat defaultconfig’
Do

If [$j=$var];then

Exist=true

Endif

Done

If [$exist=false];then

Exist=true

For k in ‘cat adaptationrules’
Do

Var3= ‘cut –f2 –d ‘ ‘ $k’
Var4= ‘cut –f3 –d ‘ ‘ $k’

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 104

If [$var3=$var4];then

Action=$var4

Endif

Done

Cat $action>>defaultconfig

done

5.3.3 The runtime recomposition script

Once the new configuration is generated, it’s time to recompose the new user interface. This

interface is recomposed using the following script.

#!/bin/bash

#$1 are a command parameter, $1 contains the name of the artifacts (presented
#in form of XML files) directory and $2 contains the name of the

#configuration file

Touch result.xml

For I in ‘cat $2’
Do

For J in ‘ls $1’
Do

If [$i-eq $j];then

X=’cat $j’
saxon $X merge.xslt with=result.xml >> result.xml

endif

done

done

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 105

5.3.4 Adapted Interfaces

Like the design phase, the code generation is performed using the XSLT transformation

language. The XSLT file is applied on the XML file resulted from the composition of the new UI.

As shown in figure 5-10 (a), the right interface is the first adaptation of the search UI. It

corresponds to context 1 described as follows: the user prefers visualizing the restaurants in

promotions, displayed in a horizontal way with a contrast theme and a large font size. The second

interface (figure 5-10 (b)) is another adaptation for the search UI which corresponds to context 2

described as follows: the user prefers visualizing the best rated restaurants, displayed in a vertical

way with a contrast theme and a large font size.

(a) Search UI adaptation – context1

(b) Search UI adaptation-Context 2

5-10 The adaptation of the search UI

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 106

5.4 Evaluation and Discussion

In our thesis so far, an approach to enable UI adaptation in DSPLs has been proposed, with

details of developed tools and prototypes given. In this section, focus is given to the evaluation of

the proposed approach using the prototypes presented above. The goal is to prove that the

approach actually meets the goals of this thesis, and to evaluate the extent to which it scales. To

validate the approach, we use a scenario-based evaluation, a scalability evaluation and a

qualitative/quantitative evaluation to help assess our approach using the illustrative case study.

5.4.1 A Scenario-based Evaluation

For the scenario based evaluation and as described in chapter 3, the illustrative SPL is relative to

a “search for restaurant” application. To manage the application variability, we defined two

variability models: the context feature model and the UI (search UI) feature model. The

variability of the UI feature model was defined across different UI aspects such as: UI elements

(speciality textField, location textField and the hyperlink response objects), presentation units

(request container, response container), visual aspect (text font size, UI contrast theme) and the

layout aspect (response hyperlinks displayed in the form of grid, response hyperlinks displayed

vertically).

While context variability was defined across three UI aspects: UI element (display the best rated

restaurants or the restaurants in promotions), layout (response hyperlinks displayed using a

gridlayout, response hyperlinks displayed using a listlayout) and visual appearance of the UI (text

size, UI contrast theme).

To implement context and UI variabilities, we used the CUI model, each concrete feature is

associated to a fragment of the CUI diagram (instantiated from the meta-model of figure 6). Each

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 107

artifact is, then converted into their XML representation then composed with the others artifacts

in order to generate search and context UIs.

For the other works, the illustrative SPL in Kramer’s approach was about a content store case

study. In his case study, the store can distribute different content such as video or music. The

content can be distributed depending on the location of the device. The UI variability was defined

according to GUI elements, GUI elements properties and GUI behavior. To implement the UI

variability, the author used document-oriented technology. After the composition of document

artifacts, the resulted document is interpreted on an Android platform.

In Gabillon’s approach, the use case was about a dashboard user interface. The UI variability was

defined according to two aspects: presentation units and UI elements. To implement the UI

variability, the author used component technology.

In comparison with other approaches, we note that our approach took into consideration many

aspects when describing the UI variability. In addition to presentation units and UI elements, we

have described the UI variability according to layout and visual appearance (text size, UI color)

aspects. The design and the implementation of such features ensure the generation of an

ergonomic interface; make the UI development easier and the modification of some properties

simpler. Furthermore, and contrary to Kramer and Gabillon approaches which respectively use

document-based technology and component-based technology, the use of models as

implementation technology makes the design phase process reusable and more abstract.

At the runtime phase, comparing our approach with the other approaches, we note that the

principal difference is about context acquisition. In our approach, the context is entered manually.

The main UI is adapted according to the context data updated by the end-user. The first context

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 108

was about a user who prefers visualizing the restaurants in promotions, displayed in a horizontal

way with a contrast theme and large font size. And the second context is about a user who prefers

visualizing the best rated restaurants, displayed in a vertical way and with a contrast theme and a

large font size. In Kramer approach, the adaptation was about some platform properties such as

the actual position, connectivity and the battery while in Gabillon’s approach, the context was

about the screen size.

5.4.2 Scalability Evaluation

For scalability evaluation, we used two metrics: the generation time and the adaptation time. In

table 5-1, we present these metrics and the correspondent values for our approach and Kramer’s

approach. Gabillon did not perform a scalability evaluation.

5.4.2.1 Generation Time

This is the time the tool takes to generate the source code of initial interfaces. For this metric, we

do not consider the time required for feature model design or for artifacts implementation. We

only consider the time of feature model configuration, UIs composition and source code

generation. The generation time is calculated for the context UI and the search UI. As depicted in

table 5-1, the generation time of the context UI varies between 0.86s (for 1 feature) to 13m.05 s

(for 10 features) while for the search UI, the generation time varies between 0.89s (for 1 feature)

to 14m.57s (for 14 features). For Kramer’s approach, the generation time varies between 1.11s

(for 1 feature) to 23.43m (for 14 features).

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 109

5-1 Scalability evaluation results

Metrics

Approach Generation Time Adaptation Time

Kramer’s Approach [41]

Min. Time=1.11s

Max. Time =23.43m

 Min. Time=2.44s

 Max. Time=63.72ms

Sboui’s Approach [62,65]

Context interface

Min.Time=0.86s/Max.Time=13.05m

Main interface

Min.Time=0.89/Max.Time=14.57m

Min. Time =2.03s

Max. Time =68.332ms

Gabillon’s Approach [26] -- --

5.4.2.2 Adaptation Time

 This metric measures the time taken by an adaptation cycle. This time includes the time of a

new configuration + the time of recomposition of the new UI + the time of the generation of the

HTML source code. In our approach, to measure the adaptation time, we adapt the application

10 times to fetch the average time for these adaptations. The average time is equal to 2,83 s (for

1 feature) and to 68,332 ms (for 14 features). In Kramer’s approach, the adaptation time is equal

to 2,44s (for 1 feature) and to 63,72ms (for 14 features). At the runtime phase, Kramer’s

approach is more rapid. The reason is that the recomposition (at the runtime) is performed by

weaving/unweaving document and not by recomposing all feature artifacts as is the case of our

approach, which shows the limit of our approach.

5.4.3 The IBM CSUQ questionnaire Evaluation

5.4.3.1 The questionnaire (see appendix C)

The last evaluation is a qualitative evaluation, for that we sent an on-line questionnaire to 11

participants to evaluate their experience applying and using the Model through the two different

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 110

implementations. We relied on the IBM Computer Satisfaction Usability Questionnaire (CSUQ)
1
,

an empirically-validated 19-question questionnaire benefiting from a = 0.89 reliability coefficient

related to usability, thus meaning that answers provided by participants to this questionnaire

demonstrate a high correlation with the usability of the system being evaluated. Each IBM CSUQ

closed question was measured using a 7-point Likert scale (1=strongly disagree, 2=largely

disagree, 3=disagree, 4=neutral, 5=agree, 6=largely agree, 7=strongly agree) and was phrased

positively as follows:

1. Q1: Overall, I am satisfied with how easy it is to use this model.

2. Q2: It was simple to apply this model.

3. Q3: I can effectively complete my task applying this model.

4. Q4: I am able to complete my task quickly applying this model.

5. Q5: I am able to efficiently complete my task applying this model.

6. Q6: I feel comfortable applying this model.

7. Q7: It was easy to learn applying this model.

8. Q8: I believe I became productive quickly applying this model.

9. Q9: The model provides me with structured guidance on how to fix problems.

10. Q10: Whenever I make a mistake using the model, I recover easily and quickly.

11. Q11: The information provided by the model and its accompanying method is clear.

1
 http://garyperlman.com/quest/quest.cgi

http://garyperlman.com/quest/quest.cgi

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 111

12. Q12: It is easy to find the information I needed.

13. Q13: The information provided for the model is easy to understand.

14. Q14: The information is effective in helping me complete the tasks and scenarios.

15. Q15: The organization of information on the model screens is clear.

16. Q16: The interface of this model is pleasant.

17. Q17: I like using the interface of this model.

18. Q18: This model has all the functions and capabilities I expect it to have.

19. Q19: I am satisfied in using this model.

5.4.3.2 The Results of the Questionnaire

Figure 5-11 graphically depicts the distribution of the answers provided by the participants on the

19 IBM CSUQ questions. Each cumulated horizontal histogram of Figure 5-1 could be

interpreted as follows: a score between 6 and 7 represented with dark green, is considered as

excellent; a score of 5, represented with light green, is considered as good; a score of 4,

represented with yellow, is considered as average, a score of 3, represented in orange, is

considered as poor ; ; and a score between 1 and 2, represented in red, is considered very bad. In

general, a score between ‘average’ and ‘excellent’ should not raise any particular concern

regarding this question, whereas a score between ‘poor’ and ‘very bad’ should raise some

discussion in order to investigate why this question has been depreciated so much. Figures 5-12

and 5-13 summarize the aggregated CSUQ sub-metrics reported in table 5-2. Each CSUQ

questionnaire involves the calculation of four quality metrics of the system being evaluated as

follows:

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 112

Table 5-2. Scores by CSUQ sub-metrics

5-11. Distribution of participants’ answers to the IBM CSUQ questionnaire

0 2 4 6 8 10 12

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

I S Disagree

I disagree

I am so so

I agree

I S Agree

Sub-metric Average Mediane Avg.

Deviation

Std. Deviation

SysUse 6,47 6.5 0.84 6,5

InfoQual 4.79 6 1.05 0.8

Interqual 6,09 6 5 0.4

Overall 6 6,6 0.36 0.63

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 113

5-12. Aggregated scores by CSUQ sub-metrics (Min, Max, Average)

5-13. Aggregated scores by CSUQ sub-metrics(Average, Up, Down, Median)

Figure 5-11 suggests that the global subjective satisfaction of participants involved in the

experiment follows a positive trend since Q19 is interpreted positively by 11 users out of 11

0

1

2

3

4

5

6

7

8

SysUse InfoQual InterQual Overall

Max

Min

Average

0

1

2

3

4

5

6

7

8

SysUse InfoQual Interqual Overall

Average

up

down

median

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 114

(Q19, µ =6, M =6, s = 0.63). The most positively evaluated sub-metric is certainly the system

usefulness (Q1- Q8, µ = 6.47,M = 6.5,s =0.25) : all eight questions do not have any negative

answers, the average is the highest and the standard deviation is the smallest, thus suggesting that

respondents tend to agree that the whole system is very useful to them. Second comes the

interaction quality (Q16-Q18, µ = 6.09, M = 6, s = 0.4): the average is considered high as well as

the median with small deviation. Next comes the information quality (Q9-Q15, µ = 4.79,M = 6,s

= 0.8) : some questions have negative answers, the average is lower with a more disperse

variance, thus indicating that there is no strong agreement among the respondents regarding to

this sub-metric. Question Q9 and Q11 raise a particular concern. They are the only questions

receiving strong disagreement. Q9 “The model provides me with structured guidance on how to

fix problems” indicates that the system does not guide enough the users to correct an error when

this latter is produced. Q11 “The information provided by the model and its accompanying

method is clear” indicates that the help messages are not clear and do not help the user

sufficiently.

The analysis of the CSUQ sub-metrics in Table 5-2 and Figures 5-12 and 5-13 evidences that

participants perceived as "useful" the model (µ = 6.47,M = 6.5,s = 0.25) and said to be "Overall

satisfied" (µ = 6,M = 6,s = 0.63).

5.5 Conclusion

In this chapter, we presented the implementation of the design phase and the runtime phase of our

UI-DSPL approach. We highlighted the used tools and some developed prototypes. For

development, we, mainly, used shell scripts, the XML markup language and the XSLT

transformation Language. Prototypes was developed using shell scripts. The rest of tasks will be

done in future works. For evaluation, three main evaluation methods were used: an SPL-based

Thouraya SBOUI Implementation, Evaluation&Discussion

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 115

evaluation, a scalability evaluation and a qualitative/quantitative evaluation based on the

IBM/CSUQ questionnaire. In the next chapter, we conclude our dissertation and we give some

perspectives.

Thouraya SBOUI Conclusion&Future works

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 116

6 Chapter 6. Conclusion & future works

6.1 Introduction

In this thesis, a DSPL approach for UI adaptation was presented. This chapter concludes the

thesis providing an overall summary in Section 6.2. In Section 6.3, we summarize the main

contributions of our work, and finally (Section 6.4), we discuss the work that will be done in the

future.

6.2 Thesis Summary

In the high proliferation of smart devices, and mobile applications, user requirements are always

changing. For that, using context-aware adaptive computing has become a necessity to adapt the

software to user’s needs. In this context, the use of Dynamic software product line (DSPL)

paradigm was increased. DSPL exploits the knowledge acquired in SPLE to develop a family of

systems that can be context-aware, post-deployment reconfigurable, or runtime adaptable.

Our dissertation is considered as a new contribution in the field of user interfaces adaptation. In

our thesis, we have proposed a UI-DSPL approach for the development of context-adaptable UIs.

Our approach includes a design phase and a runtime phase. The design phase was reserved for the

development of initial UIs while the runtime phase was reserved for the UI adaptation to the

context change.

Thouraya SBOUI Conclusion&Future works

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 117

6.3 Thesis Contributions

Our thesis faces four main contributions. For contributions that have been fulfilled in the design

phase, we find: 1) the design and the implementation of a profiled context, 2) the combination of

DSPL and MBUID artifacts in order to ensure the abstraction and the reusability of the proposed

approach. For the challenges that have been fulfilled at the runtime phase, we find, 1) the

proposition of a design pattern that helps to design and develop a runtime adaptation mechanism

and 2) the implementation of the runtime adaptation mechanism. In the following, a brief

overview on these contributions:

6.3.1 The Design and the implementation of a Profiled context

Contrary to existing UI-DSPL approaches, in which authors dealt with platform adaptable UIs, in

our dissertation, we deal with interfaces adaptable to a profiled context. A profiled context is a

context which is manually entered by the end user (e.g. user preferences). To be generated, a

context UI is configured, at the design phase, using its feature model. For configuration, we used

a default user preference. After that, we use CUI artifacts to implement the context variants and

generate the context interface. At the runtime phase, new context data (user-specific preferences)

are captured in order to adapt the desired interface according to the context.

6.3.2 Make the UI-DSPL approach more abstract and reusable

 Another design phase contribution was the use of Model Based User Interface Design models to

implement context and UI features. The use of models, instead of, components, aspect or any

other implementation technology ensures the abstraction and the reuse of the UI-DSPL approach.

As MBUID model, we opted for the concrete user interface model (CUI model). This later

Thouraya SBOUI Conclusion&Future works

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 118

describes the UI in terms of concrete interactors (e.g. widget, container, and layout). The feature

mapping was realized manually by matching a CUI model fragment to each feature.

6.3.3 A design pattern for the runtime adaptation mechanism

 This challenge was intended for the runtime phase. The runtime adaptation model defines the

adaptation concepts, the relation between them and will serve as a design pattern aiming to

facilitate the design and the development of the runtime adaptation mechanism.

6.3.4 A runtime adaptation mechanism to adapt user interfaces

 The second runtime challenge is the adaptation engine. This later is responsible of the

reconfiguration and the recomposition of the user interface at the runtime. For the mechanism

components, we find the context acquisition component which acquires the context data, the

adaptation script, responsible of the UI reconfiguration and recomposition according to context

data and the UI generator, responsible of the generation of the adapted UI source code.

6.4 Future works

Even if the results obtained from this research are relevant, there are still several areas that have

to be further developed. In the following paragraphs we discuss some of these areas as well as

some future works that could lead to further improvements in the DSPL approach.

The work realized in the context of this dissertation can be continued and several areas are still

open for improvement. Below, we present some of the works that would further improve our

approach in the short term:

Thouraya SBOUI Conclusion&Future works

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 119

6.4.1 Short-term perspectives

Perspective 1: Optimization of the runtime UI Recomposition algorithm: a first task that can

be optimized in future works is the UI re-composition. This process is used at the design phase to

compose initial UIs and at the runtime phase to recompose the adapted UIs. The recomposition

consists in merging the CUI model artifacts corresponding to the selected features.

Using the same recomposition algorithm at both phases seems useful. However, at the runtime

phase, there is a slight difference in UI recomposition. If we have to adapt one part of the UI, the

used recomposition algorithm doesn’t seem to be the best solution. Because if we apply the

design phase composition algorithm at the runtime phase, UI parts that don’t need adaptation will

be recomposed and consequently lose their values. So, the best solution will be to recompose

only UI parts which need adaptation.

Perspective 2: Optimization of the runtime configuration: At the runtime, when looking for a

new configuration, the reconfiguration algorithm missed to verify constraints conflicts. So, in

order to optimize the runtime reconfiguration algorithm, this later has to consider the resolution

of constraint conflicts.

Perspective 3: use another evaluation method to evaluate our approach (see appendix B).

This evaluation will be performed by designers/developers. We are invited to answer to certain

number of questions [29]. After that and following the result of the questionnaire, we can detect

the gaps and fill them in our future work.

Thouraya SBOUI Conclusion&Future works

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 120

6.4.2 Long-term perspectives

Perspective 1: cloud architecture

To facilitate the modification of our approach and its extension, we propose a cloud computing

architecture. The use of cloud architecture will ensure many advantages for the back side

(experts/developers) and the front side (the final user). As described in figure 6-1, the cloud is

shared by UI experts, SPL experts and the final user. On the one hand, SPL expert with the

collaboration of UI expert can use the SPL Integrated Development Environment (IDE), UI

sketching tool and any other useful environment for the development of UI-SPL process without

worrying about storage or other issues. At the backend, the UI-SPL implementation environment

(Eclipse IDE) needs mechanisms such as composers and solvers. At the frontend and at the

runtime phase, if the final user has particular preferences, he applies them through his interface.

An Application Programming Interface (API) communicates these changes to an adaptation

engine that will trigger an adaptation process. This process will need mechanisms used by the

Eclipse IDE (e.g.: composer, solvers) and resources resulted from the design time process (e.g.:

UI, features models, configurations, assets and adaptation rules).

Thouraya SBOUI Conclusion&Future works

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 121

Figure 6-1 A cloud architecture

To conclude, the benefits of using cloud architecture can be summarized as follows:

 The sharing of development environment between UI expert and SPL expert/developers;

 The sharing of data storages and mechanisms (i.e: composer) between developers and final

user SPL;

 The sharing of the adaptation engine between users of the running interface;

 The lightness of cloud-users;

 The Scalability of the application if we want to extend the application by adding additional

functionalities or other contributors;

 The Reduction of application development and application adaptation cost.

Appendix

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 122

Appendix A

The XSLT File of the Generation of the Search Interface

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="html" indent="yes"/>
 <xsl:template match="/">
 <xsl:param name="file1" select="document('restaurants.xml')"/>
<!-- <xsl:result-document href="index.html">-->

 <html>
 <head>
 <link rel="stylesheet" type="text/css" href="css/thouraya.css"/>
 </head>
 <body>
 <script src="js/Thouraya.js"/>
 <div data-role="header">

 <h1> Cherchez un restaurant </h1>
 <a href="preference.php" data-icon="gear" class="ui-btn-right" data-
transition="fade">Préférences
 </div>

 <div data-role="main" class="ui-content">
 <input type="text" placeholder="Spécialité" id="myInputName"
onkeyup="myFunctionName()"/>
 <input type="text" placeholder="Entrez votre Adresse, Ville, Code Postal"
id="myInputAdd" onkeyup="myFunctionAdd()"/>
 </div>

 <table id="myTable">
 <xsl:for-each select="$file1//restaurant">
 <tr>
 <td>

 <xsl:value-of select="@name"/>

 <xsl:value-of select="@address"/>
 </td>
 </tr>

</xsl:for-each>

Appendix

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 123

 </table>

 </body>
</html>
<!-- </xsl:result-document>-->
 </xsl:template>
</xsl:stylesheet>

The correspondent search UI

Appendix

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 124

Appendix B

The NASA-TLX Questionnaire [29]

Appendix

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 125

Appendix C

The IBM CSUQ Questionnaire

Bibliography

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 126

Bibliography

[1] Abrahão, S., Iborra, E., Vanderdonckt, J.:Usability Evaluation of User Interfaces

Generatedwith a Model-Driven Architecture Tool.In:MaturingUsability: Quality in

Software, Interaction and Value, Law, E., Hvannberg, E., and Cockton, G. (eds.),

Chapter 1. HCI Series, Vol. 10, Springer, London, pp. 3-32.

DOI=http://dx.doi.org/10.1007/978-1-84628-941-5_1, 2008.

[2] Acher, M., Collet, P., Lahire, P., France, R.B.: Familiar: A domain-specific language for

large scale management of feature models. Science of Computer Programming 78(6), pp.

657-681. DOI=https://doi.org/10.1016/j.scico.2012.12.004, June 2013

[3] Akiki P. A., Bandara A. K. and Yu, Y. (20. Adaptive model-driven user interface

development systems. ACM Computing Surveys, 47(1), 2015.

[4] Apel, S., & Kästner, C. An overview of feature-oriented software development. Journal

of Object Technology, 8(5), 49-84, 2009.

[5] Apel S., Kastner C., Liebig J., FeatureHouse: Language-Independent, Automated

Software Composition, available at: http://www.infosun.fim.uni-passau.de/spl/apel/fh

[6] Arboleda, H., Romero, A., Casallas, R., Royer, J.C.: Product Derivation in a Model-

Driven Software Product Line using Decision Models. In: Memorias de la XII

ConferenciaIberoamericana de Software Engineering (CIbSE’2009, Medellín,pp.59-

72.Accessible at http://ai2-s2-

pdfs.s3.amazonaws.com/57ae/634647fcf7e610df3d106eb2a3cd0f152733.pdf , April

2009.

[7] Bacikova M., Poruban J., Analyzing stereotypes of creating graphical user interfaces,

Central European Journal of Computer Science vol. 2 num. 3, pp. 300-315, 2012

[8] Batory, D. Feature models, grammars, and propositional formulas, in H. Obbink and K.

Pohl (eds), Software Product Lines, Vol. 3714 of Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, pp. 7–2, 2015.

http://www.infosun.fim.uni-passau.de/spl/apel/fh
http://ai2-s2-pdfs.s3.amazonaws.com/57ae/634647fcf7e610df3d106eb2a3cd0f152733.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/57ae/634647fcf7e610df3d106eb2a3cd0f152733.pdf

Bibliography

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 127

[9] Benavides, D., Segura, S. and Ruiz-Cort´es, A. Automated analysis of feature models 20

years later: A literature review, Inf. Syst. 35: 615–636, 2010.

[10] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Vanderdonckt, J.: Computer-Aided

Window Identification in TRIDENT. In: Proc. of 5
th

IFIP TC 13 Int. Conf. on Human-

Computer Interaction INTERACT'95 (Lillehammer, 27-29 June 1995), K. Nordbyn, P.H.

Helmersen, D.J. Gilmore, S.A. Arnesen (Eds.). Chapman & Hall, London, 1995, pp. 331-

336.

[11] Boucher, Q., Perrouin, G., Heymans, P.: Deriving configuration interfaces from feature

models: A vision paper. In: Proceedings of the 6
th

International Workshop on Variability

Modeling of Software-Intensive Systems (VaMOS’2012, Leipzig). ACM Press, New
York, 2012, pp. 37-44. DOI=https://doi.org/10.1145/2110147.2110152, January 2012.

[12] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J. :

AUnifying Reference Framework for Multi-Target User Interfaces.Interactingwith

Computers 15(3), June 2003, pp. 289-308.

[13] Cantera Fonseca, J.M. (Ed.), González Calleros, J.M., Meixner, G., Paternò, F.,

Pullmann, J., Raggett, D. Schwabe, J. Vanderdonckt, Model-Based UI XG Final Report,

W3C Incubator Group Report, Accessible at http://www.w3.org/2005/Incubator/model-

based-ui/XGR-mbui-20100504/, May 2010.

[14] Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview of

Dynamic Software Product Line architectures and techniques: Observations from

research and industry. Journal of Systems and Software 91, pp. 3-23.

DOI=https://doi.org/10.1016/j.jss.2013.12.038, May 2014.

[15] Capilla, R., Bosch, J.: Dynamic Variability Management Supporting Operational Modes

of a Power Plant Product Line. In: Proceedings of the 6
th

International Workshop on

Variability Modeling of Software-Intensive Systems (VaMOS’2012, Leipzig, January
25-27, 2012). ACM Press, New York, 2012, pp. 49-56.

DOI=https://doi.org/10.1145/2866614.2866621

[16] Cerny, T., Cemus, K., Donahoo, M. J., & Song, E. Aspect-driven, data-reflective and

context-aware user interface, 2013.

[17] Clements, P., Northrop, L.: Software Product Lines. Addison-Wesley, Boston, 2002.

http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/

Bibliography

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 128

[18] Common Variability Language, omgwiki.org, retrieved November 2, 2016 from

http://www.omgwiki.org/variability/doku.php?id=cvl_tool_from_sintef

[19] Czarnecki K., “Overview of generative software development”, In Unconventional
Programming Paradigms (pp. 326-341). Springer Berlin Heidelberg. 2005.

[20] Czarnecki K. , Kim C. H. P., “Cardinality-based feature modeling and constraints: A

progress report”. In International Workshop on Software Factories (pp. 16-20), october

2005

[21] Eclipse Modeling Framework, available at: http://www.eclipse.org/modeling/emf

[22] Eleutério, J. D. A. S., & Rubira, C. M. F. A Comparative Study of Dynamic Software

Product Line Solutions for Building Self-Adaptive Systems, 2017

[23] Feature Modeling Plug-in, Generative Software Development Lab. Retrieved November

16, 2016, from http://gsd.uwaterloo.ca/fmp

[24] Feigenspan, J., K¨astner, C., Frisch, M., Dachselt, R. and Apel, S. Visual support for

understanding product lines, Proceedings of the 2010 IEEE 18th International

Conference on Program Comprehension, ICPC ’10, IEEE Computer Society,
Washington, DC, USA, pp. 34–35, 2010.

[25] Fleury, M., Reverbel, F: The JBoss extensible server. In: Proceedings of Middleware,

Markus Endler and Douglas Schmidt (Eds.). Lecture Notes in Computer Science, Vol.

2672. Springer,Berlin, 2003, pp. 344–373. DOI=http://dx.doi.org/10.1007/3-540-44892-

6_18, 2003.

[26] Gabillon, Y., Biri, N., Otjacques, B.: Designing an adaptive user interface according to

software product line engineering. In: Proceedings of 8
th

International Conference on

Advances in Computer-Human Interactions(ACHI’2015, Lisbon, February 22-27, 2015).

International Academy, Research, and Industry Association (IARIA), 2015, pp. 86-91.

Accessible at

[27] Gajos, K. Z., Weld, D. S., & Wobbrock, J. O. Automatically generating personalized user

interfaces with Supple. Artificial Intelligence, 174(12-13), 910-950. 2010.

[28] Garcés, K., Parra, C., Arboleda, H., Yie, A.,Casallas, R.: Variability management in a

model-driven software product line.AvancesenSistemas e Informática4(2),2007.

Accessible at http://www.bdigital.unal.edu.co/15155/

[29] Gawron V. J., Human Performance Measures Handbook, “Nasa TLX questionnaire”,
available at: http://theses.univ

lyon2.fr/documents/getpart.php?id=lyon2.2010.maincent_a&part=365749, 2000

http://www.omgwiki.org/variability/doku.php?id=cvl_tool_from_sintef
http://www.eclipse.org/modeling/emf
http://gsd.uwaterloo.ca/fmp
http://www.bdigital.unal.edu.co/15155/
http://theses.univ/

Bibliography

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 129

[30] Genaro Motti, V., Vanderdonckt, J.: A Computational Framework for Context-aware

Adaptation of User Interfaces: In: Proceedings of 7
th

Int. Conf. on Research Challenges in

Information Science (RCIS’2013, Paris, May 29-31, 2013). IEEE Computer Society, Los

Angeles, 2013, pp. 1-12.

[31] Gomaa, H., Hussein, M.: Dynamic software reconfiguration in software product

families. In: Proceedings of International Workshop on Software Product-Family

Engineering (PFE’2003, Siena, November 4-6, 2003). Lecture Notes in Computer

Science, vol. 3014.Springer, Berlin, 2003, pp. 435–444.

DOI=http://dx.doi.org/10.1007/978-3-540-24667-1_33

[32] González Calleros J. M., Meixner G., Paternò F., Pullmann J., Raggett D., Schwabe D.,

Vanderdonckt J., “Model-Based UI XG Final Report”, May 2010, available at:
https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/

[33] Grislin M., Kolski C., « Evaluation des interfaces homme-machine lors du

développement de système interactif ». Technique et Science Informatiques TSI, 3, pp.

265-296, 1996.

[34] Guerrero, J., Vanderdonckt, J., Gonzalez, J.:FlowiXML: a Step towards Designing

Workflow Management Systems.Int. Journal of Web Engineering and Technology4(2),

2008, pp. 163-182. DOI=https://doi.org/10.1504/IJWET.2008.018096

[35] Hariri, M-A., Lepreux, S., Tabary, D., Kolski, C.. : Principes et étude de cas d'adaptation

d’IHM dans les SI en fonction du contexte d'interaction de l'utilisateur. Ingénierie des
Systèmes d'Information (ISI), Networking and Information Systems, 14, pp. 141--162

(2009)

[36] Heidenreich F., FeatureMapper mapping features to models, available at:

http://featuremapper.org, lastupdate, September 2013.

[37] Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M., Coyette, A.,

Vanderdonckt, J.: Human-Centered Engineering with the User Interface Markup

Language.In: Human-Centered Software Engineering, Seffah, A., Vanderdonckt, J.,

Desmarais, M. (eds.), Chapter 7. HCI Series, Springer, London, 2009, pp. 141-173.

DOI=http://dx.doi.org/10.1007/978-1-84800-907-3_7

[38] Hubaux, A., Acher, M., Tun, T.T., Heymans, P., Collet, P.,Lahire, P.: Separating

concerns in feature models: Retrospective and support for multi-views. In: Domain

Engineering:Product Lines, Languages, and Conceptual Models, Reinhartz-Berger, I.,

https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://featuremapper.org/

Bibliography

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 130

Sturm, A., Clark, T., Cohen, S., Bettin, J. (Eds.). Springer, Berlin, 2013, pp. 3-28.

DOI=http://dx.doi.org/10.1007/978-3-642-36654-3_1

[39] Kastner, C., Apel, S. and Kuhlemann, M. (2009). A model of refactoring physically and

virtually separated features, Proceedings of the Eighth International Conference on

Generative Programming and Component Engineering, GPCE ’09, ACM, New York,
NY, USA, pp. 157–166

[40] Kramer, D.M.: Unified GUI adaptation in dynamic software product lines. Doctoral

dissertation, University of West London, London, August 2005. Accessible at

http://repository.uwl.ac.uk/1270/

[41] Kramer, D., Oussena, S., Komisarczuk, Clark, T.: Using document-oriented GUIs in

dynamic software product lines. ACM SIGPLAN Notices 49(3), March 2014, pp. 85-94.

DOI=https://doi.org/10.1145/2637365.2517214

[42] Logre, I., Mosser, S., Collet, P., Riveilli, M.: Sensor data visualisation : a composition-

based approach to support domain variability. In: Proceedings of the 10
th

 European

Conference on Modelling Foundations and Applications (ECMFA’2014, York, July 21-

25, 2014). Lecture Notes in Computer Science, Volume 8569. Springer, Berlin, 2014, pp.

101-116. DOI=https://doi.org/10.1007/978-3-319-09195-2_7

[43] López-Jaquero, V., Vanderdonckt, J., Montero, F., & González, P. (2008). Towards an

Extended Model of User Interface Adaptation: The I satine Framework. In Engineering

Interactive Systems (pp. 374-392). Springer, Berlin, Heidelberg.

[44] Lutteroth C., Weber G., Modular Specification of GUI Layout Using Constraints. In:

Proceedings of the 19th Australian Conference on Software Engineering. Washington,

DC, USA : IEEE Comp. Soc., 2008, pp. 300–309

[45] Meixner, G., Paterno, F., & Vanderdonckt, J. Past, present, and future of model-based

user interface development. i-com 10 (3): 2-11, 2011.

[46] Mezhoudi N., 2013. User interface adaptation based on user feedback and machine

learning. In Proceedings of the companion publication of the 2013 international

conference on Intelligent user interfaces companion (IUI '13 Companion). ACM, New

York, NY, USA, 25-28. DOI=10.1145/2451176.2451184 http://doi.acm.org/10.1145

/2451176.2451184

[47] Mostefaoui, G. K., Pasquier-Rocha, J. & Brezillon, P. 2004. Context-aware computing: a

guide for the pervasive computing community. IEEE/ACS International Conference on

Pervasive Services. IEEE Computer Society, Lebanon, 39–48.

http://doi.acm.org/10.1145%20/2451176.2451184
http://doi.acm.org/10.1145%20/2451176.2451184

Bibliography

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 131

[48] Muller, J.: Generating graphical user interfaces for software product lines: A constraint-

based approach. In: Alt et al. (Eds.), Tagungsband 15.

InteruniversitäresDoktorandenseminarWirtschaftsinformatik der Universitäten Chemnitz,

Dresden, Freiberg, Halle-Wittenberg, Jena und Leipzig, Leipzig,2011, pp. 64-71.

Accessible at

https://pdfs.semanticscholar.org/186d/7f0907852cbaaf798513ea1f2e347a63b342.pdf

[49] Object Management Group, IFML: the Interaction Flow Modeling Language,

2015.Accessible at: http://www.ifml.org/

[50] Object Management Group, Query/View/Transformation. Accessible

at http://www.omg.org/spec/QVT/

[51] Parra, C. (2011). Towards dynamic software product lines: Unifying design and runtime

adaptations (Doctoral dissertation, INRIA Lille).

[52] Paternò, F., Santoro, C., Spano, L.D.: Concur Task Trees (CTT). Accessible at:

https://www.w3.org/2012/02/ctt/, 2012

[53] Pleuss, A., Hauptmann, B., Dhungana, D., Botterweck, G.: User interface engineering

for software product lines: the dilemma between automation and usability.

In: Proceedings of the 4
th

ACM SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS’2012, Copenhagen, June 25-26, 2012). ACM Press, New

York, 2012, pp. 25-34. DOI=https://doi.org/10.1145/2305484.2305491

[54] Pleuss, A., Hauptmann, B., Keunecke, M., Botterweck, G.: A case study on variability in

user interfaces.In: Proceedings of the 16
th

International Software Product Line Conference

(SPLC’2012, Salvador, September 2-7, 2012), volume 1. ACM Press, New York, 2012,

pp. 6–10. DOI=https://doi.org/10.1145/2362536.2362542

[55] Pleuss, A., Wollny, S., Botterweck, G.: Model-driven development and evolution of

customized user interfaces. In: Proceedings of the 5th ACM SIGCHI Symposium on

Engineering Interactive Computing Systems (EICS’2013, London, June 24-27, 2013).

ACM Press, New York, 2013, pp. 13-22. DOI=https://doi.org/10.1145/2494603.2480298

[56] Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering. Springer,

Berlin, 2005.

[57] Pure systems, pure-systems.Com, retrieved Octobe 22, from https://www.pure-

systems.com/products/pure-variants-9.html

https://pdfs.semanticscholar.org/186d/7f0907852cbaaf798513ea1f2e347a63b342.pdf
http://www.omg.org/
http://www.ifml.org/
http://www.omg.org/spec/QVT/
https://www.pure-systems.com/products/pure-variants-9.html
https://www.pure-systems.com/products/pure-variants-9.html

Bibliography

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 132

[58] Quinton, C., Mosser, S., Parra, C., Duchien, L.: Using Multiple Feature Models to

Design Applications for Mobile Phones. In: Proceedings of the 15
th

International

Software Product Line Conference (SPLC’2011, Munich, August 21-26, 2011), vol. 2,

article No. 23. ACM Press, New York, 2011.

DOI=https://doi.org/10.1145/2019136.2019162

[59] Rosenmüller, M., Siegmund, N., Pukall, M., Apel, S.: Tailoring dynamic software

product lines. ACM SIGPLAN Notices 47(3), March 2012, pp. 3-12.

DOI=https://doi.org/10.1145/2189751.2047866

[60] Samaan, K., Tarpin-Bernard, F.: Task models and Interaction models in a Multiple User

Interfaces generation process. In Proceedings of 3rd International Workshop on TAsk

MOdels andDIAgrams for user interface design TAMODIA'2004. Prague, Check

Republic, November, ACM, pp. 137-144(2004)

[61] Sboui, T., & Ayed, M. B. Generative Software Development Techniques of User

Interface: Survey and Open Issues. International Journal of Computer Science and

Information Security, 14(7), 824, 2016

[62] Sboui T., A DSPL approach for the development of context-adaptable user interfaces,

RCIS conference, 2017

[63] Sboui, T., Ben Ayed, M., Alimi, M. A., A Meta-model for Run Time Adaptation in a

UI-DSPL process, BHCI conference, 2017

[64] Sboui, T., Ayed, M. B., & Alimi, A. M. (2017). Addressing Context-Awareness in User

Interface Software Product Lines (UI-SPL) Approaches. In Human Centered Software

Product Lines (pp. 131-152). Springer, Cham.

[65] Sboui, Thouraya, Mounir Ben Ayed, and Adel M. Alimi. "A UI-DSPL approach for the

development of Context-adaptable user interfaces." IEEE Access 2017.

[66] Schlee, M., Vanderdonckt, J.: Generative Programming of Graphical User Interfaces. In:

Proc. of 7th Int. Working Conference on Advanced Visual Interfaces (AVI'2004,

Gallipoli, May 25-28, 2004). ACM Press, New York, 2004, pp. 403-406.

DOI=https://doi.org/10.1145/989863.989936

[67] Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2), February 2006, pp.

25-31. DOI=https://doi.org/10.1109/MC.2006.58

http://hci2017.bcs.org/wp-content/uploads/BHCI_2017_paper_102.pdf
http://hci2017.bcs.org/wp-content/uploads/BHCI_2017_paper_102.pdf

Bibliography

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 133

[68] Software Product Lines Online Tools, splot-research.org. retrieved October 22, 2016,

from http://www.splot-research.org/

[69] Software&SystemsProcessEngineering Metamodel™ Specification, available at:
http://www.omg.org/spec/SPEM/2.0/

[70] Sottet, JS., Calvary, G., Favre, JM.: Mapping Model: A First Step to Ensure Usability

for sustaining User Interface Plasticity. In: Proceedings of the MoDELS’06 Workshop on
Model Driven Development of Advanced User Interfaces (2006)

[71] Sottet, J.S., Vagner, A., GarcíaFrey, A.: Model Transformation Configuration and

Variability Management for User Interface Design. In: Proceedings of 3
rd

International

Conference on Model-Driven Engineering and Software Development

(MODELSWARD’2015, Angers, February 9-11, 2015). Communications in Computer

and Information Science, vol. 580. Springer, Berlin, 2015, pp. 390-404.

DOI=http://dx.doi.org/10.1007/978-3-319-27869-8_23

[72] Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., & Leich, T. (2014).

FeatureIDE: An extensible framework for feature-oriented software

development. Science of Computer Programming, 79, 70-85.

[73] Ubayashi, N., Nakajima, S.: Separation of Context Concerns— Applying Aspect

Orientation to VDM. In Talk at the 2
nd

 Overture Workshop, FM, Vol. 6, 2006.

Accessible at https://www.yumpu.com/en/document/view/27958389/applying-aspect-

orientation-to-vdm-wiki

[74] UsiXML User Interface eXtensible Markup Language:

http://www.w3.org/2005/Incubator/model-basedui/wiki/UsiXML

[75] Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of

Information Systems. In: Proc. of 17
th

Conf. on Advanced Information Systems

Engineering CAiSE'05 (Porto, 13-17 June 2005).O. Pastor & J. Falcão e Cunha (Eds.).

Lecture Notes in Computer Science, Vol. 3520. Springer, Berlin, 2005, pp. 16-31.

[76] Voelter, M. and Groher, I. (2007). Product line implementation using aspect-oriented

and model-driven software development, Proceedings of the 11th International Software

Product Line Conference, SPLC ’07, IEEE Computer Society, Washington, DC, USA,
pp. 233–242

http://www.splot-research.org/
http://www.omg.org/spec/SPEM/2.0/
https://www.yumpu.com/en/document/view/27958389/applying-aspect-orientation-to-vdm-wiki
https://www.yumpu.com/en/document/view/27958389/applying-aspect-orientation-to-vdm-wiki
http://www.w3.org/2005/Incubator/model-basedui/wiki/UsiXML

Bibliography

A UI-DSPL Approach for the Development of Context-Adaptable UIs Page 134

[77] XSLT Stylesheets Useful things and other jokes, available at:

http://web.archive.org/web/20160809092524/http://www2.informatik.hu-

berlin.de/~obecker/XSLT/, 2002

http://web.archive.org/web/20160809092524/http:/www2.informatik.hu-berlin.de/~obecker/XSLT/
http://web.archive.org/web/20160809092524/http:/www2.informatik.hu-berlin.de/~obecker/XSLT/

A UI-DSPL Approach for the Development of
 Context-adaptables User Interfaces

Thouraya SBOUI

تكييف الϭاجΕΎϬ بين اإنسΎن ϭاآلΔ. هنΎ، يتϡ استخداϡ خط منتج تقدϡ هذه اأطرϭحΔ مسΎهمΔ جديدة في مجΎل: الخاصة
 ΔϠتين، مرحϠميكي مرحΎالدين ΎتنΎيتضمن خط منتج .ϡالمستخد Εضياϔلت Ύخصيص Δمصمم ΕΎϬاجϭ من ΔϠئΎليد عϭميكي لتΎدين

مراحل نϬجنΎ تصميϡ مخصصΔ لتطϭير الϭاجΕΎϬ اأϭليϭ ΔمرحΔϠ تنϔيذ مخصصΔ لتكييف الϭاجϭ .ΔϬتحدد كل مرحΔϠ من
ϡتقييϠل ΏليΎأس Δثاث ϡاستخدا ϡج، تϬهذا الن ϕلتحقيϭ .ذة في التقريرϔالمنϭ Δفϭصϭالم ΕΎهمΎمن المس Δعϭيستند إلى ، مجم ϡتقيي

 ϭريΎجسينΎن ،خط اانتΎئي يستند إلى استبيΎϬن ϡتقييϭ ،يرϭتطϠل ΔيϠبΎق ϡتقييIBM CSUQ.

Résumé : Cette thèse présente un nouvel appoƌt daŶs le doŵaiŶe de l’adaptatioŶ des
interfaces Homme-Machine. Dans la présente, on utilise une ligne de produits dynamique pour

la géŶéƌatioŶ d’uŶe faŵille d’iŶteƌfaces adaptées aux pƌéféƌeŶces de l’utilisateuƌ. Notƌe ligŶe de
produit dynamique renferme deux phases, une phase de conception dédiée au développement

des iŶteƌfaces iŶitiales et uŶe phase d’exécutioŶ ƌéseƌvée à l’adaptatioŶ de l’iŶteƌface. ChaƋue
phase de notre approche définit un ensemble de contributions qui sont décrites et

implémentées au seiŶ du ƌappoƌt. Pouƌ valideƌ l’appƌoche, tƌois ŵéthodes d’évaluatioŶ oŶt été
utilisées, une évaluation basée sur un scénario SPL, une scalability-évaluation et une dernière

évaluation basée sur le questionnaire IBM CSUQ.

Abstract: This thesis presents a new contribution in the field of the adaptation of human-

machine interfaces. Here, a dynamic product line is used to generate a family of interfaces

tailored to the user's preferences. Our dynamic product line includes two phases, a design

phase dedicated to the development of the initial interfaces and an execution phase dedicated

to the adaptation of the interface. Each phase of our approach defines a set of contributions

that are described and implemented within the report. To validate the approach, three

evaluation methods were used, an evaluation based on an SPL scenario, a scalability-evaluation

and a final evaluation based on the IBM CSUQ questionnaire.

 خط إنتΎج دينΎميكي. ,ϭاجΔϬ المستخدϡ تكيف ,التكيف حسΏ السيϕΎ :المفاتيح

Mots clés: Adaptation au contexte, approche DSPL, adaptation de l'interface utilisateur.

Key-words: Context-adaptation, DSPL approach, UI Adaptation

 Doctoral School of Sciences and
Technologies

PhD Thesis
Computer Systems Engineering

N° d’ordre: 200? ??nn nn

Tunisian Republic
Ministry of Higher Education and Scientific

Research

University of Sfax

High School of Engineering of Sfax

