N
N

N

HAL

open science

A UI-DSPL Approach for the Development of
Context-Adaptable User Interfaces

Thouraya Sboui, Defended Saturday, Pr Abdelmajid, Ben Hamadou, Pr Jean

Vanderdonckt, Pr Adel, M Alimi, Pr Mounir, Ben Ayed

» To cite this version:

Thouraya Sboui, Defended Saturday, Pr Abdelmajid, Ben Hamadou, Pr Jean Vanderdonckt, et al..
A UI-DSPL Approach for the Development of Context-Adaptable User Interfaces. Human-Computer

Interaction [cs.HC]. Université de Sfax (Tunisie), 2018. English. NNT: . tel-01964939v2

HAL Id: tel-01964939
https://hal.science/tel-01964939v2
Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/tel-01964939v2
https://hal.archives-ouvertes.fr

Tunisian Rupublic Doctoral School of Sciences and

Ministry of Higher Education and Scientific Technologies
Research /°¢S
—_— [PhD Thesis
. . ENITS
University of Sfax ISl
National School f Enginnering of Sfax N° 1250

THESIS

Submitted and publicly defended in partial fulfillment of the requirements for the Award
of Doctor of Philosophy in

Computer Systems Engineering

Presented By

Thouraya SBOUI

A UI-DSPL Approach for the Development of
Context-Adaptable User Interfaces

Pr. Abdelmajid Ben Hamadou ISIM, University of Sfax President
Pr. Jean Vanderdonckt UCL, University of Louvain Reader
Pr. Adel Mahfoudhi CCIT, Taif University Reader
Pr. Nadia Bouassida ISIM, University of Sfax Examiner
Pr. Adel M. Alimi ENIS, University of Sfax Thesis Director
Pr. Mounir Ben Ayed FSS, University of Sfax Advisor

Defended Saturday, March 31, 2018
11:00 Am

Abstract

In the modern world of mobile computing and ubiquitous technology, society is able to interact
with technology in new and fascinating ways. To help provide a permanent service, mobile
software should be adapted to suit the user preferences. By monitoring context information
relative to the final user, the application can better meet the dynamic preferences of the user. This
program commonality and variability can benefit from the use of Software Product Line
Engineering, reusing artefacts over a set of similar programs, called a Software Product Line
(SPL). Historically, SPLs are limited to handling static compile time adaptations. Dynamic
Software Product Lines (DSPL) however, allows for the program configuration changing at
runtime, allowing for compile time and runtime adaptation to be developed in a single unified
approach. While currently DSPLs provide methods for dealing with program logic adaptations,
variability in User Interfaces (Uls) has largely been neglected. Due to this, depending on the
intended time to apply UI adaptation, different approaches are required. The main goal of this
work is to propose an SPL approach for the development context-adaptable Uls. As context
element, we choose to adapt our user interfaces to the user preferences. Our approach is intended
to handle UI adaptation within DSPLs, providing a unified representation of UI variability is
presented. The approach is based on Model Based User Interface Development Models, enabling
developers to implement Ul and context variability. To validate our approach, we implemented a

design phase and a runtime phase prototypes according to a proposed illustrative example.

Résumé

Dans le monde moderne de l'informatique mobile et de la technologie omniprésente, les
utilisateurs sont capables d'interagir avec la technologie de maniere nouvelle et fascinante. Pour
aider a fournir un service permanent, les logiciels mobiles doivent €tre adaptés au contexte
d’utilisation entre autres les préférences de l'utilisateur. En tenant compte du contexte
d’utilisation, l'application peut mieux répondre aux préférences dynamiques de l'utilisateur.
L'uniformité et la variabilité de ce programme peuvent bénéficier de 1'utilisation de Software de
I’ingénierie des les lignes de produits logicielles, réutilisant des artefacts sur un ensemble de
programmes similaires, appelé Ligne de produits logiciels (SPL). Historiquement, les lignes de
produits sont limitées a la gestion des adaptations du temps de compilation statique. Les lignes de
produits logicielles dynamique (DSPL) permet néanmoins de changer la configuration du
programme au moment de I'exécution, de permettre au temps de compilation et a 1'adaptation de
l'exécution d'étre développés dans une seule approche unifiée. Alors qu’actuellement, les DSPL
fournissent des méthodes pour traiter les adaptations logicielles du programme, la variabilité des
interfaces utilisateur (UI) a ét€ largement négligée. En raison de cela, selon le moment prévu pour
appliquer I'adaptation de l'interface utilisateur, différentes approches sont nécessaires. L'objectif
principal de ce travail est de proposer une approche SPL pour les Uls adaptées au contexte de
développement. En tant qu'élément de contexte, nous choisissons d'adapter nos interfaces

utilisateur aux préférences de l'utilisateur. Notre approche est destinée a gérer 1'adaptation de

l'interface utilisateur dans les DSPL, en fournissant une représentation non modifiée de la
variabilité de l'interface utilisateur. L'approche est basée sur des modeles de développement
d'interface utilisateur basés sur un modele, permettant aux développeurs de mettre en ceuvre
l'interface utilisateur et la variabilité du contexte. Pour valider notre approche, nous avons mis en
place une phase de conception et un prototype de phase d'exécution selon un exemple illustratif

propose.

Acknowledgements

I have to confess, when I embarked on this PhD, I was only interested in what I felt was the goal,
and how best to get it. On this journey, as all great journeys, important people always help shape

it. For this, I feel deep gratitude is required.

Firstly, I wish to thank Pr. Mounir Ben Ayed for all the opportunities, guidance, and continual

useful critiques of my research.

A big thanks to Pr. Jean Venderdonckt, your help, advice, suggestions and positivity have been

important. I, also, thank you for your proposal to become the reporter of my thesis.
Big thanks to Pr. Rafael Capilla for his support, and encouragement in difficult times.

I would also like to express my thanks to Pr. Adel M. Alimi for having accepting me in the

REGIM Laboratory and for his guidance.
Many thanks to Pr. Adel Mahfoudhi for being the reporter of my thesis.

Big thanks to my family for their support and their presence during the good times, and the bad.
Thank you for making this journey more fun, and in many cases, bearable. I would like to thank
my parents, for their sacrifices and selfless love. My sister, Amani, for her constant words of
encouragement, and for always being a great sister. For my brothers Rafik, Amine and Wassim
for their love, support, and always being there for me. Lastly, I would like to give a special
thanks to my Mum for everything she ever did for me. I really could not have asked for a better

Mother ¥.

Declaration of Authorship

I, Thouraya SBOUI, declare that this thesis titled, “A UI-DSPL Approach for the development of

Context Adaptable User Interfaces™ and the work presented in it are my own. I confirm that:

= This work was done wholly while in candidature for a Phd degree at the ENIS University.

= Where any part of this thesis has previously been submitted for a degree or any other
qualification at the ENIS University or any other institution, this has been clearly stated.

= Where I have consulted the published work of others, this is always clearly attributed.

= Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

=] have acknowledged all main sources of help.

= Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed: Thouraya SBOUI

Date: 10/03/2018

"It is through science that we prove, but through intuition that we discover”

Henri Poincare

Contents

CHAPTER 1. INTRODUCTION......cccotrurrrririsssssssnneesssanss 17
1.1 INTRODUCTION ..uvveetteesteeseeesteeasesessseessseessseassssessseassssessssssssessssssssesssssssesesssssnsssenssssnsssansessnsesensessssesensessnses 17
1.2 IVIOTIVATION 1.ttt eutteetteetteesteeette ettt estteebeeesbteesbeeebteesbeesabaeeabeeeabbeeabeesabeeeabeesabeeeabeeeaseesabaesasaesabeeensaesnbaeensaesnses 17
13 PROBLEM STATEMENT «.iiiiieiiieieieeeee et ee ettt et e e e e e e e et e aataaeaeaaaaaaeaaaaeaaaaaaaaaaaaeasaeeaasasasasaneens 18

0N T B (== o [o s B 1 (=2 1 o) (XSS 18
1.3.2 AQOPLEA SOIULION ...ttt ettt ettt ettt et e st e e see et e enaeeeaes 19
1.4 IMIAIN CONCEPTS .uvteeutteetteeteeeteeeteeesueessseeesseessseeesseanseesasaesssesessessseesseesnsaesseesaseeesaesabaesnseesabaessaesabaeensaesnses 20
1.4. 1 USer interface VAriQDIIItYccooveieiieesiieieeet ettt ettt ettt ettt et e ate e sateesineenaeeeaes 20
1.4.2 THE CONTOXE Of USE c...veeeeeeeeeeeie et e e e e ettt e et e e ettt e e e ettt e e ettt e e e tsaaaeastseaeasssaeessasaeaatssaensssaessssenanns 20
1.4.3 USer interface AQQPLOLIONc.coovueieiieeiiieeee ettt ettt ettt ettt et e e esineenaeeeaes 22
1.4.4 Generative software engineering approaches and Ul adaptationccccovueeecieeeeesiveeeciieneeirenann, 23
1.5 Uo7 T] N TS 28
T N 1011 | ¢ T | APPSR 28
) ST (017 1 o | USSP 28
1.5.3 INtErNALIONGAI CONFOIENCE......c....vveeeeeeeeeeeee ettt te e ettt e ettt e e ettt e e e ettt e e st e e esibaaeeastseseessssaeessssnaeas 28
1.5.4 INternQtionQl CONFEIrONCE.ccueevueiesieeii ettt ettt ettt et e sat e s iteesateesineenaeeenes 28
BT R > To Yo] 01T | o 1 GOSN 28
1.6 THESIS ROAD IMIAPttiiiiteeittee ettt ettt e s tte e sttt e ettt e st e e eateesstaeeaseesataeaaseesateeeaseesabaeanseesateeanseesataeanseesntaesnseesnteeenseennses 28
1.7 CONGCLUSION utteeuteesureesueessseessseesaseessseesasesssseesssesssseesssesssseesssesssseesssesssseesssesssessssessseessseessseesosessssessssessssessns 30

CHAPTER 2. SOFTWARE PRODUCT LINES FOR USER INTERFACES.cooctriinnniiissnnesisssnnssssssssssssssssssssssssssssanns 31
2.1 INTRODUGCTION teeeeeeuutttteeeeeeeaattttteeeeeesauuebeeeeeeeaaannbe et eeaeee s nsse e e e eeeeesaanseseeeeeeesansnseeeeeeesaannnbaneeeeesesannsnnneeeenean 31
2.2 SOFTWARE PRODUCT LINE APPROACHES FOR USER INTERFACE DEVELOPMENT ...vveeveererueeeeeeeenseensesseesseesseensesssesssesnns 31

2.2.1 Resources for Finding and Accessing SCI@NtIfiC PAPEIS.........cc..ueeeceuveeeeieeeeesirieeeeieeeesiseeeesseeeesssseaessasns 31
A A o Mo X V=TV (=2 Ve i 1 Lo [T LSS 32
2.3 SUMMARY SCHEMAeutiuteeteteenteenteentesseesaeesueesseesseensesssesssesssasseensesnsesnsesnsesseesseesseenseensesssesssesseensessensesnsesees 38
D T B 0= o T B o =14 =3 ¢ 1 XSS 39
DA O o 4 o g Lo 11 [K 42
B2 B B Yot (o] (TP 44
2.4 UI-SPL APPROACHES POSITIONING ...veuvesueerueesseeseensesseesseesseensesnsesnsesssesseessessseensesnsesssesseensesnsesnsessessesneesseensesnes 44
2.5 CONTEXT AWARENESS AND Ul ADAPTATION IN UI-SPL APPROACHESuuttieieeeieiiiiteeieeeeesirieeeeeesesenbereeeeesesemnnneeeees 50
2.5.1 Context consideration at the deSigN PRAGASEcc.eeeeeeueeeeeeie e eecee e te e eta e seee e e sree e s esrtaaesnaees 50
2.5.2 Context consideration at the runtime PRAGSEccccueeeeeeeeeeeeeieeeeiieeeeeeeeeeeeeeeeetteaaesteseeesraaeesaenas 52
2.6 CONCLUSION w.uttteuteesuteesuseesuseesuseesuteesuseesateesuseesaseesaseesasaesaseesaseesaseesateesaseesabaesaseesabaesaseesabaesaseesabeesnneesaseesnseesns 52

CHAPTER 3. A UI-DSPL APPROACH FOR THE DEVELOPMENT OF CONTEXT-ADAPTABLE UIS (THE

L] [d o) 54
3.1 INTRODUGCTION teeteeauuttttteeeeeeaauttteteeeeesauuabe e eeeeesaaunbeeeeeaeeesaanbaeeeeaeeesanssbeeeeeeesaasnseeeeeeesaannbebeeeaesesannnsnaeeaaeesas 54
3.2 AN OVERVIEW OF THE WHOLE UI-DSPL APPROACH. ..ceeuvterutteeteesiteesteesteeeiteesibeesnseesabeesseesabeesseesabessnseesasessnseesanes 54
33 AN OVERVIEW OF THE DESIGN PHASEiietttteeeeeeaautetteeeeeesautetteeaesesausseaeeeeaesaaannseeeeeeesaaannsaeeeesesasannsseeeeaesasaanse 56

3.4 THE ILLUSTRATIVE EXAMPLE ... eetteteeee e ettt e e e s e s ree et e e e s e ssren et e e e s e s mnen et e e e s e s snsneeesesesemnnnateeeessennnraneeesesenannnes 58

3.5 THE DESIGN PHASEceteeeeet ettt e e e ettt e e e e ettt e e e s e s e e e e s e s e e e et e s e s n e n e e e eeeesamnnreneeesesesnnreneeeeeeesannnes 60

3.5.1 The desSign Phase CAGIENGEScoooueeeiueieiiieiieeet ettt ettt 61
3.5.2 The domain GNQAIYSIS PAGSEoeeeeeeieeeeeeeeee ettt e e et e e et e e et e e e e st a e e e e teteesssaaeeasasesasseaennsees 61
3.5.3 The Domain Implementation PRGSEcccoocuienieeiieinieeiiiese ettt ettt 66
3.5.4 The application eNgiNEEIriNG IEVEl................oueeueeeeeeeieeeeieeeeee et e e ttee e et tee e e st e e siae e e e ssaeeesssaaesneees 72
3.6 CONCLUSION .eeiittieeeiitte e sttt e e sttt ettt e st e st e s e sb e e e s b e e e s s b et e s e s bt e e s b e e e e s bbb e e e s b e e e s nnae e e snbeeeesaraeesaannaeesnnnes 77

CHAPTER 4 . A UI-DSPL APPROACH FOR THE DEVELOPMENT OF CONTEXT-ADAPTABLE UIS (THE RUNTIME

PHASE) «.evuvueeiurecscscsesesssesesesesesesssesesssssessssssssasssssstassssssssssesesesssesesssssesssssssssssssesesssesssasassssssssssssssssesesesssesesssssssssanas 78
4.1 INTRODUCTION .uvteeutteeteeeseeeteessseeesseeasseeesssessseessssesnsesssssessesssssessssssseessessnseesnsesssssesssessnseesnsesenseesnsessnseesnses 78
4.2 AN OVERVIEW OF THE RUNTIIME PHASEeiitiiitieeiiitt et e e e sttt et e e e sttt e e e e e se ettt e e e e e sesuanbaeeeeeesesnnbeeaeeeesesanses 78
4.3 THE RUNTIME PHASE CHALLENGESvvteeuveesuteesuteessteesseessseesseesusesssseesssessseesssesssessssessnseesasessnsesssasessessnsessnseesses 80

4.3.1 The runtime adaptation POTLEINcooueerueeiiieeiee ettt et e et et saee e 80
O I Y [Yo [T Y e [L1 (o L [BRSO PUPPPPROt 84
4.3.3 The Runtime adaptation MECAGNISMccc.eerueeeiueiiiiieiee ettt ettt sttt saee e 89
4.4 CONGCLUSION utveeuteenureesueesuseessseesaseessseesasesssseesssessssessssessnsessssessssessssesssseesssessssessssessseesssessseessessssessnsessssessns 92

CHAPTER 5. IMPLEMENTATION, EVALUATION AND DISCUSSIONcccoooiiiiiinnnss 94
5.1 INTRODUCTION .uvveeuteeeureeseeeseeessesessaeessesesseessssesssesnsessnsssensesenssssnsssensesssessssessnsessnssessessnseesnsessnseesnsesensessnses 94
5.2 THE DESIGN PHASE IMPLEMENTATION ..cuuveeiuteeeuseessteesseesssaeasessnsesaseesssesssessssesasessnsesassesssesassessssessssessnsssensessses 94

IV N 0 =X (o T I o Lo K2 o o] K3 S 94
5.2.2 GUI MOAEIS COMPOSIEION.eeeeeieiiieieeee ettt ettt et s ettt et e s e e sateesseenanes 96
5.2.3 CUI-FUI trANSFOIMQTIONveeeieeeeeeeeetee e e tee e ettt e e ettt a e et aa e e e tte e e e assaeeatsaaaeaatsasaessssasssssssaassssesananes 100
5.3 THE RUNTIME PHASE IMPLEMENTATION ...vteuutteeuveessreessseessseessseesseesssessssessssesssssesssessssessssesssessssessosesssessssessssessns 101
5.3.1 Runtime CONfiGUIALION GALAScccccveeeeeeiieeeeiieeeeeeeeeecee e ette e e sttt e e e taa e e e s taaaestsaseessssaesssssaessssesananes 102
5.3.2 The runtime recoNfigUIration SCIPT..........ccueeeecuueeeeeeiieeeesiee e ssiee e ettt e e s etee e s ateeasssteessaseaesssenassssseaesanes 103
5.3.3 The runtime reCOMPOSILION SCHIPT...........cccueeeeeeeeeeeeieeeeeiteeeestee e e e st e eesseaeesttssaesstseseesssasessssaessssesasanes 104
I I VYo [0 o3 {=To [[1 (=T g o [0l =SSR 105
5.4 EVALUATION AND DISCUSSION ..euuveeeuveesereessueesresesseessessssessssessnsessssessnsesssessssessssesssssssssesssssssssssessssessssssssesssenes 106
5.:4.1 A SCenario-based EVAIUGLIONcceeecueeeiueeeiiieieeiee ettt ettt ettt ettt et estteesaeeesaneenaeeenes 106
5.4.2 SCAIADIlItY EVAIUGLIONeeveeiieeeeee et e ettt ettt e e ettt e e e ettt e e e aaaaeeatsaaaeaatsaaeesstsaaessssaansssesananes 108
5.4.3 The IBM CSUQ qUESLIONNQIre EVAIUGLIONcc.vveeeeeiiieeeieeesciieeeesitaeeciea e ssteeesiaeeseteaessusaeasssseaenanes 109
5.5 CONCLUSION euvteeuveesereesuseesuseessseesuseessseessseessseesssesssseesssesssssesssesssssensssssssssssseessssssssesssssessseessesensssessseesssesnsees 114

CHAPTER 6 . CONCLUSION & FUTURE WORKS......ccocctriisrnnriissnninisssnnssissssssssssssssssssessssssssssssssssssssssssssssassssssanes 116

6.1 INTRODUCTION .teeeeeuuutttteeeeeeaautttteeeeesesaubee e eeeesesassebeeeeeeesanann s et et eeesaassbeeeeaeeaaaannbebeeeeeseaannbeneeeeesesannsnnnneaeeennn 116
6.2 THESIS SUMMARY ...eteettesutesteenseenteeneesaeesusasseesseessesnsesssesseesseesseesseensesnsesssesseensesnsesnsesssesssesseessesnsessesnsesssensenns 116
6.3 THESIS CONTRIBUTIONS ..cttteeeeeuuuttteteeesesauustteeeesesaauusseseeeesaaaaunbeseeeaesesanseseeeeesesaaannbeeeeeessaannbaneeaeeeasannssneeaaesanan 117

6.3.1 The Design and the implementation of a Profiled CONtexXtccccuueecveeeesiieeeeciieeecceeeeseeeessiea e 117
6.3.2 Make the UI-DSPL approach more abstract and reusablecccoueeeeceeeeecveeeeiieeeeiiieeeesveeeeaans 117
6.3.3 Adesign pattern for the runtime adaptation MeChGNISM...........ccc.eeeeecceeeesirieeeeciieeeciieeesieeessieaeeeans 118
6.3.4 A runtime adaptation mechanism to adapt USer iNterfacescccvveeeeveeeeeeieeeeeiieeeesiieeeeiieeeeaans 118
6.4 FUTURE WORKS .. .tteeuteestteesuteesiteesiseesateesseesateesaseesabeesaseesabeesaseesabeesnstesabeesasaesabeesstesabaeestesabeeenbesseeesaseeseeas 118
O.4.1 SNOIt-LEIMN PEISPECLIVESoveeeeeeeeeee e e e tee e et e ettt e e ettt a e ettt e s e et a e e atsaaaeatsaseessssasessssaensssesananes 119
(O A Wo Yo 1o B =34 oI =T) oL =dor o 1= 120

APPENDIX A coiiiititiiiiiiiiiiiiiiiiiiiiiiissssssssssssssssssssssss sssnsssssssessesessennnees 122

APPENDIX B
APPENDIX C

BIBLIOGRAP

N

List of figures

FIGURE 1-1 THE FOUR LAYER ARCHITECTURE OF MIDEccciiiiiiiiiiiiiieiecieete ettt ettt esveesneeenesenas 23
FIGURE 1-2 AN INSTANTIATION OF THE CAMELEON REFERENCE FRAMEWORK [12]....cceiiiieniiiiniieieeieeeieesveeeenn 24
FIGURE 1-3. A SIMPLIFIED VERSION OF THE CAMELEON REFERENCE FRAMEWORK (CRF). MAPPINGS AND

TRANSFORMATIONS BETWEEN LEVELS OF ABSTRACTION DEPEND ON THE CONTEXT OF USE.cccveoienueeveennenne. 25
FIGURE 1-4. SOFTWARE PRODUCT LINE PROCESS.......cctoitiiiiiiiiiinienitetete ettt et sbe et e e sanesanes 26
FIGURE 1-5 RELATIONSHIP BETWEEN GENERATIVE SOFTWARE DEVELOPMENT AND OTHER FIELDS [46]cccccovveneen. 27
FIGURE 2-1 A SUMMAY/REFERENCE SCHEMA FOR THE DEVELOPMENT OF USER INTERFACES USING SPL AND MDE

CORE ASSETS ..uutteeutteeuttestteeteestte sttt eteesteesabte ettt ebteaasteesteeabeeabteeabeeesteeasteessbeenbeeesabeasteesabeenateesabeesaseesabeasaseesas 40
FIGURE 2-2 THE TAGGING OF EXISTING WORKS-PARTIccuttiiiiiiiieiiieiieenieesteesiteesteeseeeesaeeseaeeseseensseessseensseesssasnseens 46
FIGURE 2-3 THE TAGGING OF EXISTING WORKS-PART 2.......0eeiitieiiieiieeiieenteesreesseesteessseesseessseessseesssessssesnssessssesssses 48
FIGURE 2-4 THE TAGGING OF EXISTING WORKS-PART 3......ccoccitiiiiiuiiiiieitieiteeie et eeesteesteesteeveeveessesesesteesteesseessesnnesenas 49
FIGURE 3-1 THE DESIGN PHASE OF THE UI-DSPL APPROACH, SPEM [69] PRESENTATIONccccovvvtieeeeeeinrrreeeeeeeennnns 57
FIGURE 3-2 DEFAULT UIS OF THE SEARCH FOR RESTAURANT CASE STUDYcuveeteeurerererteesieeseesesssesssesseessesssesssesssessnes 59
FIGURE 3-3 THE SEARCH FOR RESTAURANT UIS AFTER ADAPTATIONcectieieeterrereerseesseenseesesssesssenseessesssenssesssensnes 60
FIGURE 3-4 THE CONTEXT FEATURE MODELcccuuttittteritteniieeniteeniteeniteesiseesiseessseesseeesssesssseesssesssseessessssessssessseesssesssses 63
FIGURE 3-5 THE SEARCH UI FEATURE MODEL..........ccueiteiteeiteeteeteeteeseesseesseeseesseessesssesseesssessesssesssesssessssssesssssssesssessees 64
FIGURE 3-6 THE USIXML CUI META-MODEL [13]...iiiiiiiiiiiiiiiie ettt ee et e e e e eeaaaaee e e e s eesaavaneseseseennnees 68
FIGURE 3-7 AN EXCERPT OF THE CUI META-MODEL [7] ...veeitiitieiietiietieeteeteete et eeeesteesveesaeeveeseeasesssesssesseesseessessnesnnas 69
FIGURE 3-8 MAPPINGS BETWEEN THE CONTEXT FEATURE MODEL AND THE CUI MODELcccceevieieetiereereere e 71
FIGURE 3-9 THE CONTEXT MODEL CONFIGURATIONcttitttiritteriieeniteeniteesiteessteessteessseenseeesssessseeesssesssseesssessseesssesssses 73
FIGURE 3-10 THE CONFIGURATION OF THE SEARCH Ul FEATURE MODEL.......cccuttrtteniieniieeniieenieeenreenireesneensseessessssens 74
FIGURE 3-11 PREVIEW OF ARTIFACTS COMPOSITION AND UIS GENERATIONccoctteruieenureenireenireenireenireeseneenseeessesnsnens 76
FIGURE 4-1. THE RUNTIME PHASE OF THE UI-DSPL APPROACH, SPEM [69] PRESENTATIONc.cvvvveeeeeiiinreeeeeeeeeennnns 79
FIGURE 4-2 THE EMF ADAPTATION IMODELcccuvtiitteritteniteeniteeniteenteesteesiteessseessseessseenssessssesssseessessssessssessseesssesssses 82
FIGURE 4-3 STATES OF THE SEARCH Uloiiiiiiiiiiieiiieeie et ettt e e et e e s et e e sttt e e s ntaeesennteeesnseeeesnsaeesnnns 85
FIGURE 4-4 THE SEARCH UI FEATURE MODEL (DESIGN PHASE)........cuuttiiiieeeieiiittieeeeeeeeeitteeeeeeeeeesasasseaeseeesnsssseeasesannsens 86
FIGURE 4-5 SEARCH UI STATES ACCORDING TO THE ADAPTATION MODELccceiititrieiiieeeiiieeeniieeesireeessnseeeesnseeesnnns 87
FIGURE 4-6 THE CONTEXT OF USE CHANGEccccuteittestttesteesteesseessseessseessseessseessssessssessssesssesssssessssessssessssesssessssesssses 87
FIGURE 4-7 THE CONTEXT ACQUISITION INTERFACEceerutteruteeniieenireeniteeniteesiseesiseesseenssessssesssseesssesssseesssesnsseesssesnsses 89
FIGURE 4-8 THE RUNTIME ADAPTATION MECHANISMcutttiitiniieeniieeniteenireesseeniseesseensseessseesssessseensseesssessssessssesssees 90
FIGURE 5-1 THE EDITION INTERFACE OF FEATURE MODELS, FEATUREIDE PLATFORMcccceeeeiiiiieeiieeecivieeeeivee e 95
FIGURE 5-2 THE CONFIGURATION INTERFACE, THE FEATUREIDE PLATFORMcccceeiiiiniiieiieeiieeniieenireesiveenireenineenenees 96
FIGURE 5-3 THE XML REPRESENTATION OF THE CUI MODEL FRAGMENTccceiititeeeirieeennreeeensreeesssneeessnseesssssseesanns 98
FIGURE 5-4 THE XML FILE OF THE CONTEXT OF USE INTERFACE.........cccctttiiitteertieeeeireeessreeeessreeesassseessssseeesssseesanes 99
FIGURE 5-5 THE XSLT FILE RELATIVE TO THE GENERATION OF THE CONTEXT OF USE INTERFACEccccvveernnnennn. 100
FIGURE 5-6 GENERATED UIS (DESIGN PHASE)uvvtteititeeeittteesetteeesteeeeassseeesassseesssseseassssessssssesesssseessssssessssssesssssseeens 101
FIGURE 5-7 THE RUNNING CONFIGURATIONccutteitteetrtenureenueeennreenseeesssesssseessesnsseenssesnsessnseessseessssssnsessssessnsssenseesses 102
FIGURE 5-8 ADAPTATION RULES (RUNTIME PHASE), FIGURE 5-9 CONTEXT DATAS... e 102

FIGURE 5-10 THE ADAPTATION OF THE SEARCH UlL.......oooiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 105

file:///C:/Users/user/Desktop/blog/storage/app/public/rapportThouraya.docx%23_Toc27438014

FIGURE 5-11. DISTRIBUTION OF PARTICIPANTS’ ANSWERS TO THE IBM CSUQ QUESTIONNAIRE.......c...ccceeneenueennenne 112
FIGURE 5-12. AGGREGATED SCORES BY CSUQ SUB-METRICS (MIN, MAX, AVERAGE)cceeeveuiieerirereeirieeeniveeennes 113
FIGURE 5-13. AGGREGATED SCORES BY CSUQ SUB-METRICS(AVERAGE, UP, DOWN, MEDIAN)c.cccovvieeenrieeennns 113
FIGURE 6-1 A CLOUD ARCHITECTUREcc..eecttiteniteniteteeteeetenteenueenseeeteseresanesseesaeesseenseemsesssesueenseenseesnesnnesanesmeesseenseenns 121

List of tables

TABLE 2-1 LIST OF CONFERENCES, WORKSHOPScccteitiiitietiertieseesseesseesseesesseessesssessessseessesssesssssssessssssesssesssessessnes 32
TABLE 2-2 AN OVERVIEW OF UI-SPL APPROACHESccctteiteertieenireenteesseesseessseesseessseessseesssesssessssessssesnsseesssesssses 34
TABLE 2-3 AN OVERVIEW OF CONTEXT-AWARE UI-SPL APPROACHESccccvttieiiiieeeiiieesiiieeesreeeesereeesssseeesssssesannes 51
TABLE 3-1 FEATURE CONSTRAINTS ...ccuutterttteiuteeniteeniteenuteentteesseeensteesseeessseesseessssessseeesssesssseasssesssesesseensseessseesseesssessssees 66
TABLE 3-2 APPLICABLE FEATURE CONSTRAINTS RELATIVE TO THE DEFAULT CONTEXT OF USE.......cvceveereereeneennennn. 74
TABLE 4-1-ADAPTATION RULESuttiitttiittteniteesiteeniteentteentteesteeensteesseeessteessseesssessseeessseessesasssessseeesssesssseesssessseeesssessseees 88
ABLET5-1 SCALABILITY EVALUATION RESULTSocveviuiuieieiteteseseseseeessesessesssssesesssessssssssssssssasasesssesesesssssssssssssesssns 109

TABLE 5-2. SCORES BY CSUQ SUB-METRICSc0oteiiuiieeeitteeeeeteeeeeiteeeeeeseeeeeiseseesossseeasssessesissseessssssesssssseeessssessssesens 112

Abbreviations

Acronym Explanation
ACM Association of Computing Machinery
AIU Abstract Interaction Unit
AIO Abstract Interactive Object
API Application Programming Interface
BDD Binary Decision Diagrams
CAUI Context Adaptable User Interface Approach
CVL Common Variability Language
AUI AbStract User Interface Model
CIM Computation Independent Model
CIU Concrete Interaction Unit
CRF Cameleon Reference Framework
CTT Concurr Task Model
CUI Concrete User Interface Models
CSUQ Computer System Usability Questionnaire
DBU Dynamic Bunding Unit
DSL Domain Specific Language
DSPL Dynamic Software Product Line
ECA Event-Condition-Action
EMF Eclipse Modeling Framework
FAMILIAR FeAture Model scrIpt Language for manIpulation and Automatic
Reasoning
FD Feature Diagram
FM Feature Model
FMP Feature Modeling Plugin
FODA Feature Oriented Domain Analysis
FOSD Feature Oriented Software Development
FUI Final User Interface Model
GPS Global Positionning System
GUI Graphical User Interface
HCI Human Computer Interaction
HTML HyperText Markup Language
IBM International Business Machines
IDE Integrated Development Environment
IFML Interaction Flow Modeling Language

MBUID Model Based User Interface Development

MD Model Driven
MDA Model Driven Architecture
MDE Model Driven Engineering
MS MicroSoft
OMG Object Management Group
oop Object Oriented Programming
PIM Platform Independent Model
QVT Querry, view, Task Language
SAT SATisfiability Solvers
SMV Symbolic Model Verifier
SPEM Software Process Engineering Meta-Model
SPL Software Product Line
SPLC Software Product Line Conference
SPLOT Software Product Line Online Tools
SPLE Software Product Line Engineering
UsiXML User Interface eXtended Markup Language
VaMos Variability Modelling of Software-Intensive Systems
XML eXtensible Metadata Language

XSLT eXtensible Stylesheet Language Transformation

http://splot-research.org/

Thouraya SBOUI Introduction

Chapter 1. Introduction

1.1 Introduction

In this chapter, we state the motivation of our thesis, the problem that must be resolved, the
planned solution, the main concepts of our dissertation, our publications during years of work and
finally the thesis roadmap. In the problem statement, we present the problem, the research
questions which guided our research and the proposed solution. Furthermore, we present the most
important concepts related to our research areas. Among the concepts, we find: user interface
variability, the context of use, Ul adaptation and software engineering approaches used for user

interface development. Finally we enumerate our publications during the thesis.

1.2 Motivation

The rapid growth of computing devices, the diversification of their context of use, and the variety
of user profiles are creating competitive challenges. Such a progress seems promising for the user
interface (UI) field to offer personalized interfaces and interaction scenario that correspond to
user expectations. UI adaptation is an active domain of research in Humain Computer Interaction
(HCI). For this reason, adaptation approaches are evolving with the context of use in order to
increase user’s satisfaction and enhance interaction experience. Adaptation methods are evolving
to fulfill new requirements and increase Ul efficiency. By attempting to cut with earlier interfaces

that often needed recompilation for upgrades, which incurred increased cost, delay, and risk, Uls

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 17

Thouraya SBOUI Introduction

shift to a runtime paradigm. Uls turn out to be adaptive rather than being user-centered and carry

out adaptation in accordance with the end-user preferences as well as the context of use.

1.3 Problem statement

The problem of our thesis is how to tackle to the diversification of user preferences and develop a
family of context-adaptable user interfaces. To meet this need, many approaches opted for the use
of generative approaches of software engineering. Among these approaches, many had used the
Software Product Line paradigm in order to develop a family of usable interfaces
[26][28][31][40-42][48][53-56][58-59][66][71]. Software product lines refers to software
engineering methods, tools and techniques for creating a collection of similar software systems
from a shared set of software assets using a common means of production. Carnegie Mellon
Software Engineering Institute defines a software product line as "a set of software-intensive
systems that share a common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core assets in a
prescribed way". In the following, we will express the research questions which guided our thesis

and to which we have to answer.

1.3.1 Research questions

Based on the aim of this research, this thesis attempts to answer the following research questions:

1) Which context element will be addressed? This question is addressed in both chapters 4
and 5. Contrary to existing approaches, we will address the user element, in particular, his
preferences vis-a-vis his user interface. User preferences are a context data that have to be

manually entered by the end-user. In that case, the context is called a “profiled context”.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 18

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Means_of_production

Thouraya SBOUI Introduction

2)

3)

4)

1.3.2

How design and manage the context of use? This question is addressed in both chapter
4 and chapter 5. In the design phase, the context is designed and implemented in order to
generate a context interface (to set the user preferences) and in the runtime phase, the
context is manually provided by the user through the context interface and automatically
managed by the runtime adaptation mechanism;

How to make the UI-DSPL approach more abstract? This challenge will be addressed
in chapter 4. At the design phase and to implement feature models, we will use as
implementation artifact, the MBUID models. The use of models, instead of, component or
aspect, makes the UI-DSPL approach more abstract.

How to support the design and the development of the runtime adaptation
mechanism? This question is addressed at the design phase (chapter4) by proposing a

design pattern, called a runtime adaptation model.

Adopted Solution

Unlike the SPL paradigm, the DSPL [14][22][31] paradigm continues to configure and adapt at

the runtime. The DSPL provides a unified solution to tackle the need for both design-time and

runtime adaptation. To answer to the research questions, we propose, in this dissertation, an

approach that supports the complete software life cycle: from feature selection and initial product

derivation, to runtime adaptation in response to changes of user preferences. We concretize the

notion of asset with a definition of models to realize the variability across a family of products. In

our approach, the derivation of products is divided in two processes: a design time process for the

generation of default user interfaces and a runtime process for the adaptation of Uls.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 19

Thouraya SBOUI Introduction

1.4 Main concepts

The most important concepts relative to our work are: 1) user interface variability [54], a main
concept of the development of a family of Uls using the SPL paradigm, 2) the context of use, a
main concept of the development of context-aware systems, 3) UI adaptation: this concept
highlights different type of user interface adaptation (e.g. automatic adaptation, manual
adaptation and semi-automatic adaptation) and finally the 4) generative approaches, this later
highlights different types of generative approaches used to develop user interfaces. In the

following, we will detail these concepts.

1.4.1 User interface variability

Like the other aspects, user interface variability may be designed and implemented. This
variability is defined according to many aspects such as the presentation aspect and/or the
functional aspect of a user interface. Current SPL techniques and tools are dealing with this
variability at the design time. However, managing the runtime variability in order to adapt the UI
cannot be achieved using a conventional SPL approach. Runtime variability can only be tackled
using Dynamic Software Product Line techniques. This variability can be expressed in stand-
alone models, such as feature models (FM) [4] and implemented using different artifacts (e.g.

models, component, document, etc...).

1.4.2 The Context of use
The context of use was defined by many teams [12] [26] [35] [40] [70] by the triplet <user,

platform, environment>. Context elements can be defined as follows:

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 20

Thouraya SBOUI Introduction

The platform element presents any information pertaining to the software or the hardware
platform (processor, memory, peripheral equipments, connection network, the size of the
display screen, the available interaction tools, etc...);

The user element presents any information relative to the user (e.g. profile, his current
activity, preferences, habits, cultural characteristics, etc...);

The information corresponding to the environment (light, noise, geographical

localization, etc ...).

In some proposals [53] [55], this definition was extended by adding another element like the

customer element. In addition to the end user, the customer is the person who owns the concrete

product. Often, this is not the end user itself. In other proposals, the context has been defined

differently. For example and according to Mostafeoui [47], three types of context were identified.

We find the Sensed context, the derived context and the profiled context:

Profiled context: refers to the context that the user provides explicitly (for example, the
entries in the user profile);

Sensed context: this context is acquired from the environment by means of physical or
software sensors (identity, location, temperature, time);

Derived context: this kind of contextual information is inferred from another context
information (e.g. from Profiled and/or Sensed) using some derivation process. For

example, the name of the city from GPS coordinates through a relation mechanism.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 21

Thouraya SBOUI Introduction

To develop a context-aware user interfaces, the context may be considered at the design phase
[12][40][41][53][55][70], at the runtime phase [12][26][40][41], or at both phases [12][19][26].
This consideration requires the design of the context. The context was designed in several
approaches using models (e.g. user model, platform model, environment model). These models

are used in design phase and in runtime phase [12].

1.4.3 User interface Adaptation

Context-awareness and user interface adaptability are reciprocally interrelated. In context-aware
or adaptable Uls, the context of use is designed in order to adapt user interfaces to context

changes. In the following, we present three types [13] of user interface adaptation:

1.4.3.1 Adaptive Ul
An Adaptive Ul refers to a Ul capable of being aware of the context of use and to (automatically)
react to changes of this context in a continuous way (for instance, by changing

the Ul presentation, contents, navigation or even behaviour).

1.4.3.2 Adaptable UI
An Adaptable Ul can be tailored according to a set of predefined options. Adaptability normally
requires an explicit human intervention. We can find examples of Ul adaptability on those word

processors where the set of buttons contained by toolbars can be customized by end users.

1.4.3.3 Plastic Ul
A Plastic Ul is a multi-target UI that preserves usability across multiple targets. Usability is not
intrinsic to a system. Usability can only be validated against a set of properties set up in the early

phases of the development process.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 22

Thouraya SBOUI Introduction

1.4.4 Generative software engineering approaches and UI adaptation

Software Engineering is still struggling to produce a family of software systems, amongst these
approaches, we find, mainly, the Model Driven Engineering approach (MDE) [3][6][28][67], the
Model Based User Interface Development (MBUID)[12] [13][32][45][70][74] approach and the

Software Product Line Engineering (SPL) approach.

1.4.4.1 Model Driven Approaches

Model Driven Approaches are approaches which use the Model Driven Engineering (MDE)
[3][6][28][67] paradigm (figurel-1). The MDE paradigm is a software development methodology
which considers the model as a central artifact leading to the design of the system and the
generation of the desired software. One of the key points of MDE is the raise of abstractions [67].
MDE defines four levels of abstraction: the meta-meta-model, the meta-model, the model and the
code. These levels are connected by means of transformations. Within the field of Ul adaptation,

an overview of model driven user interface approaches was provided by Akiki et al. [3].

MO [e ik el } |

Instance of —

Represented by —

Figure 1-0-1 The four layer architecture of MDE

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 23

Thouraya SBOUI Introduction

1.4.4.2 Model Based User Interface Approaches
Another important paradigm is the Model Based User Interface Development (MBUID) [12]
[13][32][45][70][74] paradigm. This paradigm is a particular MDE process defining a specific

user interfaces models.

Most MBUID approaches rely on the Cameleon Reference Framework (CRF) [12]. The CRF

serves as a reference for the development of Uls supporting multiple targets or multiple contexts

of use.
<
J____S__?.Pfﬁ i 3 "
.--"'f-- xﬁ'“x_
B —w [N
Enter Kewwords Launch Gooale Search Launch Special Search TESI‘(& CDHGEptS
g Abstract Ul
input command command *
F *
| i’| Concrete Ul
Ls. "
| |_W|L I'm Feeling Lucky | F|na| UI

'

Figure 1-0-2 An instantiation of the CAMELEON Reference Framework [12]

The CRF [13] is illustrated in figures 1-2 and 1-3. Within this platform there are both task and

domain models. The task model describes the logical activities that have to be carried out in order

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 24

Thouraya SBOUI Introduction

to reach the user’s goals while the domain model is a conceptual model of the domain that
incorporates both behavior and data. Both models are used as input to generate the abstract user
interface (AUI) which expresses the Ul in terms of Abstract Interaction Units (AIU) (or Abstract
Interaction Objects (AIQO)), as well as the relationships among them. These AIUs are independent
of any implementation technology or modality (e.g. graphical, vocal or gestural). The AUI may
give rise to one or many Concrete User Interface (CUI). A CUI expresses the Ul in terms of
Concrete Interaction Units (CIU) (or Concrete Interaction Objects (CIOs). These CIUs are
modality-dependent but implementation technology independent. The CUI is used to derivate the

Final Interactive UI (FUI).

In the context of user interface adaptation, the CRF considers the context of use at the design
time and at the runtime in order to support plastic Uls. This consideration is performed using
context models (user model, platform model, environment model). Context models are used to

ensure the transformations between models of the four abstraction levels.

Ul models Context of use dependent

Mappings and Transformations

Modality independent
Implementation independent Abstract Ul

(PIM)
Modality dependent Concrete Ul
Implementation independent
(PSM)
Modality dependent :
Implementation dependent Final Ul
(PSM)

Figure 1-0-3. A simplified version of the Cameleon Reference Framework (CRF). Mappings
and transformations between levels of abstraction depend on the context of use.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 25

Thouraya SBOUI Introduction

1.4.4.3 Software Product Line Approaches

The third generative process is the Software Product Line Engineering (SPLE) process [26][28]
[31][40-42][48][53-56] [58-59] [66] [71][76]. SPLE promises significant improvements in time-
to-market, cost, and reliability through the system identification and the exploitation of

commonalities and variations in software systems.

SPLE is a two-level approach (Figure 1-4): an abstract level called the domain engineering level
and a concrete level called the application engineering level. The domain engineering level
covers domain analysis (identification of common and variable features among the family
members), domain design (development of common assets of all family products) and domain
implementation (the implementation of the family-assets). The application engineering level
covers application analysis (the configuration of the feature model), application design
(instantiation of common assets in order to define the architecture of a specific product) and

application implementation (the development of a specific product).

Feature Model

Family Assets

Domain Engineering

.

,Application Engineering

Configured FMs

Figure 1-0-4. Software Product Line Process

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 26

Thouraya SBOUI Introduction

Both engineering levels define two spaces: a problem space and a solution space. The problem
space is for expressing variability and product configuration while the solution space is for assets
implementation and product generation. Figure 1-5 highlights concepts and technologies used to

implement the two spaces.

_ | N —
System-Family / Product-Line Engineering ‘S\
-

—

Figure 1-0-5 Relationship between generative software development and other fields [46]

Feature modeling [4] is a key concept in product line engineering. Feature modeling by means of
Feature Diagrams (FD) is a popular technique for capturing commonality and variability in
Software Product Lines. A feature model is an intermediate step to move from problem space to

solution space.

In the context of Ul adaptation, many software product line approaches were proposed
[30][35][40][43][46]. Some proposals had considering the context of use only at the design time,

others, had considered the context at the design time and at the runtime phases. These laters opted

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 27

Thouraya SBOUI Introduction

for the use of Dynamic SPLs approaches [26] [31] [40][41]. DSPLs and unlike SPLs continue to

adapt software systems at the runtime.

1.5 Publications
1.5.1 Journal [65]
T. SBOUI, M. BEN AYED, A. M. ALIMI, “A UI-DSPL approach for the development of

Context-adaptable Uls”, IEEE Access, Vol PP, 2017

1.5.2 Journal [61]
T. SBOUIL M. BEN AYED, “Generative Software Development Techniques of User Interface:

Survey and Open Issues”, IJCSIS Journal, Vol 14 N°7, 2016

1.5.3 International Conference [62]

T. SBOUI, “A DSPL Approach for the Development of Context-Adaptable User Interfaces”,

RCIS Conference, 2017

1.5.4 International Conference [63]

T. SBOUI, M. BEN AYED, A. M. ALIMI, “A meta-model for run-time adaptation in a Ul-

DSPL process”, BHCI Conference, 2017

1.5.5 Book Chapter [64]
T. SBOUI, M. BEN AYED, A. M. ALIMI, “Addressing Context-Awareness in User Interface

Software Product Lines (UI-SPL) Approaches”, Human—Computer Interaction Series, 2017,

ISSN: 1571-5035.

1.6 Thesis Road Map

Our dissertation is broken down into the following chapters:

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 28

Thouraya SBOUI Introduction

* Chapter 2: Software Product Lines for User Interfaces. This chapter introduces existing
Software Product Lines approaches proposed in the context of user interface development. In this
chapter, we attempt to give a literature review to determine the gaps that have to be fulfilled by

our contribution.

* Chapter 3: A UI-DSPL Approach for the development of Context-Adaptable User Interfaces.
Based on the identified gaps of existing works, the third chapter presents the contribution of our
thesis. We introduce a Dynamic Software Product Line as an approach for developing adaptive
softwares, and their properties. Next we present the challenges that fulfill the gaps of existing
proposals. Furthermore, we introduce the use case that will illustrate the rest of chapters. Finally,
we detail the two phases of the proposed approach. The design time stage includes the variability
design, implementation, and derivation. While, the runtime phase presents the runtime

configuration and recomposition of the new interface.

» Chapter 4: Implementation. This chapter presents the implementation details of our approach.
Among these details, we find the development tools, source codes of the implemented algorithms

and the generated prototypes for the mobile platform.

* Chapter 5: Evaluation&Discussion. In this chapter, we evaluate the proposed approach using
three types of evaluation: a scenario-based evaluation, a scalability evaluation and a

questionnaire-based evaluation.

» Chapter 6: Conclusions and Future Works. This chapter presents the final conclusions of the
work featured in this thesis. We lastly present motivated work that should be further researched

within the field.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 29

Thouraya SBOUI Introduction

1.7 Conclusion

This chapter had introduced our dissertation by fixing the motivation, the problem for which we
are looking for a solution, concepts that are relative to our work, our publications and the
roadmap of our thesis. The next chapter presents an overview of software Product line

approaches used for user interface adaptation.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 30

Thouraya SBOUI Software Product Lines for Uls Development

Chapter 2. Software Product Lines for User

Interfaces

2.1 Introduction

This chapter is a state of the art within it we present software engineering approaches proposed in
the context of user interface adaptation. First, we present the list of conference, journals and
workshops in which we have conducted our research to find publications that are related to our
topic. Second, we present a comparative study of existing SPL approaches reserved for user
interface adaptation. Then, we propose a summarizing schema, on which we tag these approaches
and which will serve as a design/development pattern for the developers wanting to develop a Ul-

SPL approach.

2.2 Software product line approaches for user interface

development

2.2.1 Resources for Finding and Accessing Scientific Papers

The table below (table2-1) presents the most important workshops, conference, journals of
software engineering (in particular software product line engineering, e.g. SPLC, VaMos) and of
Human Computer Interaction (e.g. the ACM transaction on computer human interaction) topics.
These resources were selected according to their ranks and h-index. The higher the rank, the more

selective the source is, the higher the h-index, the better the source is. However, it is possible to

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 31

http://www.sciencebuddies.org/science-fair-projects/top_science-fair_finding_scientific_papers.shtml

Thouraya SBOUI Software Product Lines for Uls Development

find sources which are considered as having an important venue in product line engineering but

which are not ranked (e.g. the SPLC conference).

Table 2-1 List of conferences, workshops

Acronym Full Name Rank/ Search results
H-index
2 Generative Programming conference
< GPCE engineering B/- -
% Software Product Line -/-3232 [58] [66] [54]
= SPLC
E Variability Modeling of software [11]
S VaMos -/5
.:':_3 ACHI Advances in Computer Human [26]
S Interaction C/8
AVI Advanced Visual Interfaces --
B/24
International Journal of Human-
Computer Interaction A/38 --
JHCI
3
- TCHI ACM transactions on computer- B/46 -
human Interaction
CEJCS Central European Journal of Computer -/- [7]

Science

2.2.2 An overview of findings

After presenting the resource of findings, we present in table 2-2, the SPL approaches used for

the development of user interfaces. These approaches are compared according to a list of criteria.

These criteria are:

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 32

Thouraya SBOUI Software Product Lines for Uls Development

e Approach Type: specifies the proposed approach type. It can be a conventional SPL
approach, a dynamic SPL approach, or a model driven software product line approach
(MD-SPL approach);

e Approach concepts: specifies the concepts used to implement the SPL approach. Among
these concepts, is component, aspect, model or any other concepts (e.g. document
[40][41D);

e The context of use: it denotes what dimensions of the context of use are supported. The
context of use is a triplet: platform, user and environment;

e Adaptation Time: specifies the type of the supported adaptation. Does adaptation was

supported by the design time phase, the runtime phase or by both phases.

Schlee &Vanderdonckt [66] automatically generates the C++ code of a MS Windows user
interface that can be adapted at design time by (un)selecting features subject to adaptation from a
feature diagram. The designer is responsible for deciding which features, e.g., a command, a
button, an icon, should be incorporated in the adapted Ul. Therefore, there is no other way for
taking the context of use into account, which may result into Meyer seven specification sins:

noise, silence, contradiction, sur-specification, etc.

Garcés et al. [28] propose a semi-automatic Model Driven Software Product Line approach (MD-
SPL). MDA concepts are combined with SPL concepts in order to develop a graphical user
interfaces (GUIs). The defined approach is a layered approach; each layer is related to a specific
domain (e.g. business, architectural or technological). For each domain, the authors define the
metamodel, the correspondent model and the feature model. To move from one level to another,
the approach levels are connected by means of transformations. The major defect of [14] is that

the developed interfaces are not context-adaptable and are only generated for the Java platform.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 33

Thouraya SBOUI Software Product Lines for Uls Development

Quinton et al. [58] propose an automatic software product line approach that generates Uls for

mobile devices by merging the feature model (FM) assets. To bridge the gap between application

Table 2-2 An Overview of UI-SPL approaches

Related Works Approach Context of use Adaptation

Component
Acenect
Model

Garcés et al. + + + - - - - - .
2007 [13]

Muller, 2011 + + + - - - - - -

[24]

Pleuss et al., + - - - + - .
2012 [27]

Arboleda et + + + - - - - - .

al., 2013 [3]

Kramer, 2014
[19,20]

+ + - - - - - -

Sottet et al.,
2015 [34]

feature diagram (FD) and the device FD, authors propose a pruning process which creates a

reduced application metamodel. The role of this metamodel is to check if the product being

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 34

Thouraya SBOUI Software Product Lines for Uls Development

derived can be executed in a given hardware. The Quinton approach mainly generates mobile

devices, furthermore, there is neither context management nor interface adaptation.

Miiller [48] combines MBUID and SPL concepts to develop the graphical user interfaces. In his
proposal, Miiller put the focus on the layout (disposition of widgets in the container) design. The
Miiller approach is too theoretical, furthermore, it don’t deal neither with interface adaptation nor

with context sensitivity.

Boucher et al. [11] mention that the direct configuration of FMs is not suitable and apply a
concern separation between FMs and Ul configurations. To generate the feature model, Boucher
used the UI configuration views, the feature configuration workflow and the property sheet. After
the FM generation, the features are implemented using the AUI model. The CUI model is
generated from the AUL In [11], the authors don’t generate the final Uls, they only present the

interface sketches. Furthermore, there is neither context management nor interface adaptation.

Pleuss et al. [53] [55] propose an approach which includes only a design phase in which the
target context element was the customer. In [55], the authors used the Model-Based User
Interface Design (MBUID) models to support their approach: a task model representing what the
end-user wants to achieve, a domain model representing the data manipulated by the tasks, an
Abstract User Interface (AUI) model, and a Concrete User Interface (CUI) model to develop a
family of customized Uls. These authors also used MBUID models in [55] to implement the
domain and the application engineering levels of a UI-SPL process. In Pleuss approaches, the
context was considered only at the design phase. At this phase, the interface was

customized/adapted according to the interface customer during its configuration.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 35

Thouraya SBOUI Software Product Lines for Uls Development

Arboleda et al. [6] use a model driven approach based on a decision model to generate a specific
product. The decision model takes as input the transformation model (defining the relationship
between the feature model, the domain concepts metamodel and the architecture metamodel) and
the feature model. The decision model is used with the product model and feature model
configuration to generate the final product. The Arboleda’s approach is a generic approach which
is not dedicated nor for UI development neither for UI adaptation. The UI case study was used

just to validate the approach.

Logre et al. [42] propose an SPL approach for the development of a family of dashboards. In their
approach, the authors propose a metamodel which defines dashboards concepts. The meta-model
will serve to generate the feature model. This later is implemented using aspects. The presented
prototype implements the link between the metamodel and the feature model and provides a
semi-automated support for the approach. In [42], there is nor context management neither Ul

adaptation.

Kramer [40] [41] uses a DSPL process to develop a platform-adaptive UL The context of use was
considered at the design phase and at the runtime phase. To implement UI variability, the author
had used GUI documents as source elements for initiating the process. Kramer deals only with

sensed context and adapts the generated interfaces according to the device characteristics.

Gabillon et al. [26] propose an automatic Dynamic Software Product Line (DSPL) process that
generates a Ul able to adapt its behavior when the context changes during the runtime. To
generate an adaptive Ul, authors used the configured feature model, the current context of use

and components for features implementation. Like Kramer, Gabillon deals only with sensed

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 36

Thouraya SBOUI Software Product Lines for Uls Development

context. Furthermore, he adapts the generated interface at both phases according to the screen

size.

Sottet et al. [71] define an MD-SPL approach to manage UI variability. The authors define
multiple FMs, allowing the separation of concerns and propose a partial and a staged
configuration process. In [71], Sottet doesn’t deal nor with the context of use neither with the

interface adaptation.

In addition to UI-SPL approaches, we list in the following other works which deal with interface
adaptation. Among these works, we find those [12][53][70][74] which use the MDE/MBUID
paradigm to generate a family of adaptive interfaces and others which propose different

techniques to adapt the interface according to the context of use.

Calvary et al. [12] propose an approach which covers both the design time and run time phases.
The Calvary approach (named Cameleon Rreference Framework (CRF)) has now become widely
accepted in the HCI Engineering community as a reference for structuring and classifying model-
based development processes of Uls that support multiple contexts of use. Calvary et al. deals
with a particular interface adaptation which is UI plasticity. This latter is defined by Calvary et al.

as “the capacity of user interfaces to adapt to the context of use while preserving human values”.

Sottet et al. [70] propose a model driven approach to generate adaptable UI to the context of use.
The authors define models presenting the interface (the task model, the AUI model and the CUI
model) and models presenting the context of use. As context elements, the authors target the user,
the platform and the environment but practically, they implement their approach according to the

platform element.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 37

Thouraya SBOUI Software Product Lines for Uls Development

Mezhoudi et al. [46] uses the user feedbacks and the machine learning to adapt her interface. By
using the machine learning technique, the final user will have the choice between several adapted
interfaces and to him to choose the interface that goes to him. Mezhoudi et al.’s approach is

among the first MBUID approaches that have used user feedbacks to adapt user interfaces.

UsiXml [74][75] supports a Model Driven Engineering (MDE) approach and covers all CRF
models. UsiXml adaptations are focused on the platform model. Users are supported through
stereotypes, however there is nor context management neither users involvement during interface

adaptation.

Gajos et al. [27] propose a system which performs dynamically interface adaptation. The
approach targets as context elements, the devices, tasks, preferences and abilities. In their
approach, the authors propose an algorithm which finds in less than one second the optimal
adapted UI in the solution space. The major defect of Gajos et al.‘s approach is that is not

dedicated for the development of a family of Uls.

Cerny et al. [16] propose a technique that aims to reduce the development and maintenance
efforts of CUI to a level comparable with a single UL Unlike most of the existing CUI
approaches, their technique does not involve an external Ul model. Instead, it aims to reflect
runtime-information and structures already captured in the application, while extending them to

provide an appropriate CUI

2.3 Summary Schema

In order to summarize the approaches described above, we designed a schema which will serve as

a reference for the designers who want to develop a MB-SPL approach to develop context

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 38

Thouraya SBOUI Software Product Lines for Uls Development

sensitive user interfaces. The reference schema combines different type of software engineering
artifacts in order to develop a UI-SPL process. The global process is a two-layered SPL process
presenting a domain engineering level and an application engineering level in which they
aggregate SPL artifacts (e.g. feature model, feature configuration), MDE/MBUID artifacts (e.g.
model, metamodel, transformation) and context consideration techniques (e.g. context feature

model, runtime adaptation mechanism) made to the development of a family of context-.

2.3.1 Design Elements

In figure2-1, the design elements are logically distributed throughout the schema levels. The
domain analysis level is the process of identifying, eliciting and modeling the requirements of a

family of products. The major design elements that can be included in this phase are:

e Metamodels: defines the metadata of SPL/MDE artifacts. We find metamodels describing
variability models, metamodels describing MBUID models, and metamodels describing MDE
models. Another metamodel can take place is that which describes the runtime adaptation
mechanism, this metamodel serves to facilitate the design and the development of the runtime
adaptation mechanism;

e Variability models: defines the commonalities and the variabilities of the user interface and
the context of use. To define variability models, we use Feature Diagrams (FD);

e UI domain model: defines the meaningful real-world concepts pertinent to user interface
domain. It may be presented by a UML class diagram;

e Task model/Interaction Flow Modeling Language (IFML) model [49]: the task model is the
correspondent of the use case diagram in UML language and it represents the logical

activities that should support users, interacting with the interface, in reaching their goals.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 39

Thouraya SBOUI

Software Product Lines for Uls Development

Domain Requirements

x

Domain Expert/Software Analyst

ariability
Model

UI Task Model concepts
/TFML Model Model

Runtime
Adaptation
meta-model

. ~
Family-(Abstract User
Interface model/
. Platform independent
Software Designe R
ware Diesigher - Model)
Domain design \
R S ——
Application Product |(Abstract
Requirements =3 User Interface model/
Platform independent

Model) 2
=
8
Application Analysis&Design Eo
&
- — O E— E—— O O S - . e . . 5
— - - - 2
- g
o
Software Developer Legend g
IApplication Implementation Product-(Concrete User 2
0 Interface model/ Context Manager <

; Instance of Products Derivation Platformdependent model)

m— Transformation

€—> Mapping

B MDEMBUID Artifact

B spi Assets/Process

Final User

Interface 2

Domain Engineering

Adaptation Manager

Ul Deployement

Figure 2-1 A summay/reference schema for the development of user interfaces using SPL. and MDE core assets

A UI-DSPL Approach for the Development of Context-Adaptable Uls

Page 40

Thouraya SBOUI Software Product Lines for Uls Development

The Concur Task Trees (CTT) [52] [60] is a visual notation used to describe the task model.
Regarding the IFML [49] model and beyond the description of user interactions, the IFML is
designed for expressing content, control behaviour of the front-end of software applications, as
well as the binding to the persistence and business logic layers. The IFML is a Domain Specific
Language (DSL) that has been adopted as a standard by the Object Management Group (OMG)

in March 2013;

The domain design level takes domain models described above and aims to produce a generic
architecture to which all Uls can conform. This architecture is described using the family specific

Abstract User Interface (AUI) model or the family specific Platform Independent Model (PIM).

e Family-specific AUI/PIM models: both models describe the Ul family in terms of interaction
spaces (or presentation units), independently of which interactors are available and even
independently of the modality of interaction. These models are designed at the domain

engineering level to describe presentations units composing the whole family of Uls;

The application engineering level is characterized by the derivation of the user interface product.
This derivation satisfies specific application requirements. At this level, we find the following

elements:

e Selected variants: specifies selected and deselected variants of Ul and context variability
models. At this phase, selected context variants as well as specific application
requirements impacts the configuration of the variability model of the user interface;

e Product-specific AUI/PIM models: these models are an instantiation of the family-

specific AUI/PIM. At the application engineering level, these models describe a

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 41

Thouraya SBOUI Software Product Lines for Uls Development

specific Ul in terms of interaction spaces and independently of which interactors are
available and the modality of interaction. From another hand, these models present assets
used to implement the selected variants of the Ul variability model.

e Product-specific Concrete user interface model/platform specific model: these models
describe the interface in terms of concrete interactors that depend on the used modality.
These models are specific to a particular UI product and are generated from the product
specific AUI/PIM model thanks to an MDE transformation.

e Final user interface: depending on the target platform, this model specifies the source
code of the Ul in any programming language or mark-up language. The source code can

be interpreted or compiled.

The application engineering level defines three types of processes:

e The configuration process: is the customization of the variability models by selecting and
deselecting the appropriate variants in order to meet specific user requirements;

e The runtime adaptation mechanism: this process is responsible of UI adaptation to
context changes when the Ul is running;

e Transformation: is the connection linking design elements of the different levels of the

development process (more details about transformations are given in the next section).

2.3.2 Transformations

The summary schema defines four types of transformations connecting design elements of higher
level of abstractions to design elements of lower level of abstractions. These transformations can

be automated (performed by the computer autonomously), semi-automated (requiring human

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 42

Thouraya SBOUI Software Product Lines for Uls Development

intervention) or can be performed a manually. The different transformations defined by the

summary schema are:

Instantiation: this transformation specifies the metamodels to which SPL and MDE
models must conform. An instantiation is an automated transformation which may be
performed using Integrated Development Environments (IDE) (e.g. eclipselDE,
featureIDE);

MDE/MBUID connections: the transformation which connects MDE/MBUID models is
an automated way that transforms a source model to a target model or to text (e.g. source
code). This kind of transformation is defined using transformation languages, collectively
known as QVT (Query/View/transformation) languages [50];

SPL connections: include connections between the variability models, connections
between variability models and their configurations, and connections between features
and their artifacts.

The connection between variability models is supported by a set of composition and
decomposition operators (e.g. aggregate, merge, slice) [2].

The connection between the variability model and its configuration need the user
intervention, so they are performed semi automatically using variability modeling IDEs
(e.g. featureIDE);

SPL/MDE connection: is the mapping linking SPL. and MDE artifacts. A first mapping
links variability models and task/domain models. That means, if we already designed
variability models, this will help designers to model the task/domain model and vice-
versa. The two other mappings connect variability models to AUI/PIM models, this

mapping presents feature transformation into artifacts.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 43

Thouraya SBOUI Software Product Lines for Uls Development

2.3.3 Actors

The common process supports four types of actors, they include:

e Domain Expert: He has a deep knowledge of the domain. After expertise training, the
domain expert delivers the glossary of UI terms to the software analyst;

e Software Analyst: the analyst studies the domain knowledge provided by the domain
expert, and identifies the functional and non-functional specifications based on user
requirements;

e Software Designer/developer: with the collaboration of the software analyst and the
domain expert, software designer and developer are responsible of the elaboration of
domain analysis models/metamodels and of the family-specific AUI/PIM model.
Moreover, software designer/developer are responsible of product derivation (from
product specific AUI/PIM) until FUI model;

e Final Users: these are the people who have a stake or interest in the use of interactive
systems. They are invited by the analyst to specify their requirements and they are
represented, on the schema, by their requirements (domain requirements/application

requirements).

2.4 UI-SPL approaches positioning

In this section, the common process described above is used to position the UI-SPL proposals of
Table 2-2. This positioning allows knowing the levels/artifacts of the summary schema which
have been used most and others levels/artifacts that were ignored. This positioning will help us to

see the difference between approaches and to better define the contribution of our thesis.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 44

Thouraya SBOUI Software Product Lines for Uls Development

In need of clarity, the positioning of the approaches is done using three schemas. In Figure 2-2,
the approaches [11][48][66][71] were tagged, while in figure2-3, we tag the approaches
[28][42][58] and in figure 2-4, we tag the approaches [6][26][40][41]. In the following, we
describe the position of each proposal. For each approach, we select the correspondent design

elements.

In [71], Sottet et al. use the MBUID core assets. The used design elements were: the “domain
model” which corresponds to the “Ul concepts model” (in Figure 2-2), the “IFML model”
(instead of the task model), the CUI model to generate the concrete Ul, and the ISM to generate
the final user interface. Concerning variability models, authors use a multiple feature models (to

describe the various facets of Ul variability).

Boucher et al. [11], proposed an MBUID process to manage variability and generate a
configuration Ul To reach this goal, they use the variability model to manage the variability of
interfaces, the AUI model to implement the feature model and a CUI model to generate a

concrete UL

Pleuss [53][55] and Muller [48] use the feature model, the task model and the AUI model to
define the domain engineering level. Then, they instantiates these models to define the product

architecture which corresponds to the CUI model.

In [66], schelee and Vandendanckont use the variability model and the frame technology (which

is absent as a design artifact), to generate the final UL

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 45

Thouraya SBOUI

Software Product Lines for Uls Development

Domain Requirements

x

Domain Expert/Software Analyst

Software Designer

Application
Requirements

N

Software Developer

Legend

Instance of

o>

=3 Transformation

€—> Mapping

Runtime
Adaptation
meta-model

Domain Engineering

Application Engineering

I MDE/MBUID Artifact
7 SPL Assets/Process]
Figure 2-2 The tagging of existing works-Part1
A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 46

Thouraya SBOUI Software Product Lines for Uls Development

For the second positioning and in Figure 2-3, Logre et al. [42] use a meta-model to define
concepts of dashboards, from this metamodel, they generate the feature model that depicts the

technological variants of dashboards. Then, from the FM, dashboards are generated.

For Garcés et al. [28], they use metamodels to define the business and the architecture aspects of

a GUL They, also, define feature models to describe the variability of the interface.

The code is generated from the java model. This later is resulted from the mapping between the

architecture feature model and the architecture model.

In Quinton et al. [58], authors use the feature model to manage the functional and the
technological variabilities, they use models to define features assets and a meta-model to manage

the gap between the functional variability and the technological variability.

In the third positioning and in figure 2-4, Arboleda et al. [6] uses MDE core assets (metamodel,
models and transformation). Metamodels to define concepts of problem and solution space,
models to implement the application level and transformations to generate the final product. The
variability model is also used to manage the variability of the system and to derivate the final

product.

Gabillon [26] and Kramer [40][41] use feature models to describe the context and the UI
variability. As implementation technology, Kramer uses documents while Gabillon use
components (both technologies are absent in the summary schema). Furthermore and in order to
support feature attributes in the featureIDE platform, Kramer [40][41] extends the feature

metamodel.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 47

Software Product Lines for Uls Development

Thouraya SBOUI

Domain Requirements LT I
mH Runtime -
. Adaptation g
meta-model]
Domain Expert/Software Analyst e
.......... — Lg
‘3
E
o
—— o - o — — — -—— — a
2
c
]
E
Software Designer %-
E
___________ SRR A S —
Application ;
Requirements | User Interface model/ [|ATNEAY SN <A NN
Platform independent
Model) 2
5
2
1
m
- E
Software Developer Legend E
[=9
O Bl (nterface model/ [N Context Manager Z
: Instance of
=3 Transformation
Adaptation Manager
€—> Mapping
I MDE/MBUID Artifact
— Interface 2 Ul Deployement
I spL Assets/Process
Figure 2-3 The tagging of existing works-Part 2
A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 48

Thouraya SBOUI Software Product Lines for Uls Development

Domain Analysjg i
|
Domain Requirements | ’_.n-"'" e T
: concepts Runtime i
Model 3 Adaptation g
. . meta-model 2
Domain Expert/Software Analyst S R ED
m
H
=
g
=3
T a
Software Designer
-——
Application roduct —(Abstract
Requirements ; User Interface model/
Platform independent
Model) -
o
o
-8
en
=
23]
- — s
-8
— =
Software Developer Legend E
=
A =z
| Instance of
:
=3 Transformation
€—> Mapping

P MDE/MBUID Artifact

] SPL Assets/Process

Figure 2-4 The tagging of existing works-Part 3

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 49

Thouraya SBOUI Software Product Lines for Uls Development

Based on the previous analysis of UI-SPL approaches and on the positioning schemas, we note
that very little works had considered the context of use and managed UI adaptation [26][40][41]
[53][55]. In the next section, we focus, in particular, on context-awarness/adaptation of user

interfaces.

2.5 Context awareness and Ul adaptation in UI-SPL approaches

In this section, we focus on the context consideration within UI-SPL approaches. The approaches

compared in table 2-3 use a list of criterias presented as follow:

Time of context consideration: specifies if the context was considered at the design

phase, at the runtime phase or at both phases;

e Context type: specifies the type of the managed context (i.e. sensed, derived, or
profiled);

e Context element: specifies the targeted context element (i.e. user, platform,
environment);

e Context consideration/ adaptation techniques: specifies the technique used to

design context and implement the adaptation mechanism.

2.5.1 Context consideration at the design phase

All approaches of table 2-3 have considered the context at the design time. However this
consideration differs from one approach to another according to the purpose of context

consideration and according to the technique used to design the context.

In [53][55], the context awareness was performed at the design time phase in order to generate a

customized Uls. The standard context triplet was extended with a fourth element which is the

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 50

Thouraya SBOUI Software Product Lines for Uls Development

customer element. In addition to the end user, there is also the customer who owns a concrete

product. Often, this is not the end user itself. The Ul customization was performed during the
development process by addressing different UI aspects such as the layout aspect, the navigation
aspect, presentation unit aspect, Ul elements aspect and so one. The Ul customization was mainly
designed using additional context models. For instance, we find the navigation model, the
clustering model, and the arrangement model. Others aspects (such as the abstract user interface
elements) are customized during the derivation of a specific Ul or at within (the concrete user

interface elements) the transformation connecting the AUI model and the CUI model.

Table 2-3 An Overview of context-aware UI-SPL approaches

Approach Time of Context Context element Context
Context type consideration/adaptation
considerat techniques
ion
[Pleuss et al. Design time None <user, platform, MDE models
2013] environment, customer>

[Pleuss et al.
2012]

[Kramer 2014] Sensed <user, platform, Design time: context feature model
environment> separately designed/ Ul
configuration

Mi im .
xte time Runtime: features/ feature-based

corse-grained compositional
technique

[Gabillon et al. Sensed <user, platform, Design time: Context and Ul
2015] environment> features combined under the system
FM/ UI configuration

Mixte time .
Runtime: feature/ a component-

based compositional technique

In [40][41] and [26], the design time context consideration was performed in order to adapt the
UI to a default context of use. The Ul is configured according to the target device on which the

application runs. In both proposals, the context was presented using feature models. In [40][41],

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 51

Thouraya SBOUI Software Product Lines for Uls Development

the context feature model was separately defined from the UI feature model. While in [26],

context feature and UI features was combined under the system feature model.

2.5.2 Context consideration at the runtime phase

Only two approaches [26][40][41] have addressed the context consideration at the runtime phase.
The context was handled in order to adapt the UI to the context changes. The sensed data are
relative to the platform element. For example, in [40][41], sensed data were about the battery, the
connectivity, the telephony, internet and the data synchronization. While In [26], sensed data
were about the screen size of the device. In both approaches, the context was presented using
features. To recompose the adapted UI, both approaches have used the same technique
(compositional technique) but different technologies (In [40][41], Kramer opted for the reuse of
feature-based coarse-grained modules called Dynamic Binding Units (DBUs) [59], while in [26],

authors have used component).

2.6 Conclusion

As conclusion and based on tables 2-2 and 2-3, and on the positioning schemas, we may list the

following shortcomings:

1) The context consideration within UI-SPL approaches is hardly covered, only 4 approaches
from 11 approaches deal with context-awareness in UI-SPL approaches. Furthermore and
at the runtime phase, the context was managed only in two approaches [26][40][41];

2) To implement the SPL process, the existing approaches have used different technologies
such as aspects, components, documents, and models. The use of models rather than any

other implementation technology makes the SPL process more abstract and more reusable.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 52

Thouraya SBOUI Software Product Lines for Uls Development

However, the use of models in SPL approaches, in particular specific Ul models (MBUID
models) is still not widely used.

3) In context aware proposals, the targeted context element was the platform element in
[26][40][41] and the customer element in [53][55]. There is no proposal which target the

user element (for example his preferences).

For all these reasons and in order to fulfill the listed gaps, we will present in the next chapter the

contribution which best meets these lacks.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 53

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

Chapter 3. A UI-DSPL Approach for the
Development of Context-Adaptable Uls

(The Design Phase)

3.1 Introduction

In this chapter and based on previously presented works, we present an overview of the proposed
approach and its main contributions. Our approach includes two phases: the design phase and the
runtime phase, these phases fulfill the gaps of existing works. In this chapter we put the focus on
the contributions of the design phase. This phase is reserved for the generation of initial user
interfaces. Furthermore and to better describe the design phase, we present a case study which

will illustrate this chapter and the next dissertation’s chapters.

3.2 An overview of the whole UI-DSPL approach

To fulfill the gaps of existing works, the core aim of this thesis was to bring a DSPL approach to
develop context-adaptable Uls [62]. Our approach includes two phases, a design phase to
generate the initial user interfaces and a runtime phase that adapts the generated UI to context
change. Before presenting the phases of our contribution, a number of contributions were

achieved, including:

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 54

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

1)

2)

3)

4)

Contribution 1: Design and implement a profiled context. Our proposal will deal with
profiled context. At the design phase and contrary to sensed context, context features will
be implemented (i.e. associate implementation artefacts to context features) in order to
generate the context interface. This interface will serve to manually acquire context
information at the runtime phase.

Contribution 2: The managed context element is user preferences. These preferences
will be defined vis-a-vis the presentation aspect and the functional aspect of a user
interface. At the design phase, user preferences will be designed using the context feature
model and at the runtime, they will be managed using a setting interface.

Contribution 3: Make the UI-DSPL approach more abstract. For that, we will
combine MBUID concepts with SPL concepts. Those models are used at the design phase
as artifacts to implement the UI and at the runtime to recompose the adapted UL
Contribution 4: A design pattern for the runtime adaptation mechanism: To best
support the runtime adaptation of Uls. We propose a model which describes the main
concepts presenting the runtime adaptation in UI-DSPL approach. The model can be used
by developers/designers as a design pattern which automates the implementation of the

runtime adaptation mechanism and facilitates its maintenance.

In the following, we present the design phase and its contributions. The runtime phase will be

presented in the next chapter.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 55

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

3.3 An Overview of the design phase

As depicted in figure 3-1, the design phase is presented according to domain engineering and
application engineering processes used in a typical SPL process. The domain engineering refers
to the design and development of user interface variability. The application engineering refers to
Uls derivation and the reuse of artefacts defined and implemented in the domain engineering

level.

Within the domain engineering stage, there are two distinct phases, domain analysis, and domain
implementation. In the domain analysis phase, we define the variability models of the
application. At this phase, the variability is defined using the Feature Oriented Domain Analysis
(FODA) notation. Two features models are defined, the context feature model and the Ul feature

model.

For the domain implementation phase, it is made up of reusable artefacts and their
correspondent code source implementations. At this phase, the feature models (described during
the analysis phase) are implemented using the Concrete User Interface (CUI) [13] model. The
CUI is the expression of the Ul in terms of “concrete interactors” that are modality dependent and

implementation technology independent.

For the “Application Engineering” level and in order to derivate specific Uls, the feature models
are configured. Then, we use a model composer that merges artefacts corresponding to selected
features. The composed Uls are then transformed, via code generation techniques, into a Final
User Interface (FUI) model. A FUI is a representation of the UI in any programming language or

mark-up language ready for compilation or interpretation.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 56

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

Domain Analysis The CUI meta-model Domain Implementation
Create context Create Ul Feature —
Feature Model Model —
<«<in>> <<in>> <<Conform To>>

<<Lout>>

<<Mapping>>

B <<in>>

Model
Implementation

————————————————————————————————— -

Composed Uis <<out>>

Application Analysis Application Implementation

Cantext Feature — | <<Mapping>>
Model Models
Ul featufe Model CUI model Fragment Implementation
SPL expert
<<in>> <<in>> —
iy S ——— e p—— e mmm————— N - p—
l .
h : <<in>>
—T B i '
<<out>> <<in>> : <<in>> Interpreted Ul
Feature Models > -+ 1 _h
configuration 1 <<out>> | =—)
g | Artifacts p— Ul transformation
The Selected features of context : composition
and Ul feature models | 1
1
1
]
1
1
L]

Executed Ul

o B
w Process Role Activity —

Figure 3-1 The design phase of the UI-DSPL approach, SPEM [69] presentation

Document

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 57

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

3.4 The illustrative example

To better detail the design phase and the runtime phase (see next chapter) of our approach, we
present in this section an illustrative example. This example highlights the adaptation of the main
interface of the “search for restaurant” application to user preferences change. User preferences
are a contextual data specific to application’s user. This kind of data may address the

customization of two main aspects of a user interface:

e The presentation aspect: customize the UI structure (e.g. UI elements, presentation unit),

the layout (disposition of Ul element on the container), color, sizing, and so one;

e The behavioral aspect: customization of Ul element by injecting alternative JavaScript

handler.

The illustrative example is about a “search for restaurant” application (figure 3-2 and figure 3-3).
The application has two interfaces: a primary interface for search and a second interface for

preferences settings.

The search UI (figure 3-2) includes a text field to enter the restaurant speciality, another text field
to enter the current location and a search button to validate the search request. By default, the
search result is displayed as hyperlink describing the restaurants which correspond to the search

request.

The preference Ul (figure 3-3) includes three parts. The first part defines the preferences about
the restaurant the user is looking for, the second part defines user preferences about displaying

the search result and the third part is about accessibility preferences. “Search preferences”

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 58

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

address the behavioral aspect of the UI, while “display preferences” and “accessibility

preferences” address the presentation aspect of the search UL

To customize the Ul behavior, the “Search preferences” include a combobox specifying the type
of the restaurant the user is looking for (e.g: best rated restaurant, restaurant offering a
promotion). To customize the display of the search result, “Display preference” includes a
combobox specifying the display desired by the user (e.g: a vertical display, a horizontal display).
While “accessibility preferences” define two comboboxs presenting the criterias to customize the

Theme color and the font size of the search Ul

Default User interfaces are described in figure 3-2 and are relative to the following user

preferences:

Userl: prefers visualizing the best rated restaurants. The user prefers visualizing the search result

displayed vertically in a low contrast theme color and a medium font size.

BestRestaurant MyPreferences

Speciality Search Preferences

Location Q See First l EostRatad

Display Preferences

Restaurant Mikes | Resule Display | Verseal]
% Fizza, Pates
e
= W M Er
Contrast Theme l Mormal Comtrast |

e Nagolelana - P_hoenix
* K ok T Font Siz= [Tiedium |

g Cherry Blossom

Accessibility Preferences

best Japa 1eese
- * & Yr ¥ - oKk
(a) The search Ul (b) the interface of User preference settings

Figure 3-2 Default Uls of the search for restaurant case study

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 59

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

The first adaptation scenario is described in figure 3-3 and is relative to the following user

preferences:

User 2: prefers visualizing restaurant in promotions. The user prefers visualizing the search result

displayed horizontally in a high contrast theme color and a larger font size.

BestRestaurant

MyPreferences
Speciality
Search Preferences

Location Q9 cem
ee First

Search Display Preferences
% = Result Display

Accessibility Preferences

Mike, Pizza Phoenix

45 € Italian Food Contrast Theme
60 €
- d . B Font Size
= | .. s
LaCasa =E=. [ok

Pasta Italiana
3

(a) The search UI after Adaptation (b) the new preferences Settings

Figure 3-3 The search for restaurant Uls after adaptation

3.5 The Design Phase

Two of the most important challenges in Software Product Line Engineering are: variability
management and product derivation. The former refers to “how to describe, manage and
implement the commonalities and variabilities existing among the members of the same family of
software products?”. The later deals with “how to build products starting from the selection of a
given set of features?”. In this section, we describe the domain engineering and the application

engineering stages of our UI-DSPL approach from variability model definition until Ul

generation.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 60

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

3.5.1
1y

2)

3)

3.5.2

The design phase challenges

Challengel: Ensure a clear separation of concerns [38][73]: concerns separation is a
fundamental principle of software engineering. Such separation ensures the reuse and the
ability to later improve or modify a concern. This later can be any part of the system and
can be realised as a feature in SPLs. Concern separation will be applied on the feature
models (i.e. the context feature model and the UI feature model) of the domain analysis
level.

Challenge 2: Use platform independent assets: as mentioned in the precedent chapter,
the concrete user interface (CUI) model is used as an implementation artifact. The use of
the MBUID model as implementation artifact will ensure the abstraction and the reuse of
the derivation process.

Challenge 3: Specify the composition technique: to compose feature artifacts, there are
two composition techniques. The annotative technique and the compositional technique.
To compose our CUI artifacts, we will use a compositional technique based on an XML
merger script. This later is used to compose the models (represented in form of XML
files) which implements the features of the context feature model and the Ul feature

model.

The domain analysis phase

3.5.2.1 Concern separation

Concern separation [38][73] is a principle of software engineering. It refers to the delineation and

correlation of software elements to achieve order within a system. Through proper separation of

concerns, complexity becomes manageable. For example, Object Oriented Programming (OOP)

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 61

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

is a way of separating concerns by decomposing a system into a set of objects that deal with

particular functional concerns.

In SPL, concern separation was used by few approaches [40][41], in order to make the system
less complex, facilitate its modification, its evolution and ensure its reuse. In SPLs, concern can

be realized as a feature.

In the context of our contribution, we used concern separation at the domain analysis level. We
design two separated feature models: the context feature model describes the context variability

and the Ul feature model describes the variability of the main interface (the search interface).

3.5.2.2 Features models and features constraints

Feature modeling is the most common approach to specify product lines. A Feature model is a
feature diagram (a special tree of features) plus some constraints. Every node in the tree has one
parent except the root feature. A terminal or a concrete feature is a leaf and a non-terminal or
compound or abstract feature is an interior node of a feature diagram. Connections between
feature and its group of children are classified as “And”, “Or”, and “Alternative groups”. The
members of And-groups can be either mandatory, or optional. In the following, we describe the
context feature model, the Ul feature model and feature constraints relative to the “search for

restaurant” example presented above.

a) The context feature model

The context feature model describes the context variability. As shown in figure 3-4, the context
variability is expressed across the triplet <user, platform, environment>. “UserPreference” is a
sub-feature of the “user” feature and is defined across three features: “SearchPreferences”

feature, “DisplayPreferences” feature and “AccessibilityPreferences” feature. The

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 62

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

“SearchPreference” feature defines two variants (“Promotions”, and “bestrated” variant), the

“DisplayPreference” feature defines two variants (“vertical” and “horizontal” variant).

Legend: | ProfiedContext |
Mandatory _F___a.e-';f‘“-HH
&F Optional —~ e
,.-"':k\‘ Alternathce | User | | Piatform | | Environment |
Abstract
[Concrete
| Li=erPreference |
| SﬂﬁrmPrefvf_:;am | | Diﬂ]h].erferﬁm | | ﬁﬂEESSi:;f_'."PI‘EfEI‘E‘IEES |
f_,-f’ .{_}KK\H /{_h‘xh H}_,-f’/ HH
|Prmmtims||ﬁestﬁﬂtaj||Hurizu1hal||Uerﬁcﬂl||Cuwast'Trﬂm| |Fu'.ﬁze|
o ry

' g
v _ﬂ“n /TN

e

[ign | [Norma | [Medum | [[Caree |

Figure 3-4 The context feature model

b) The UI feature model

Ul feature model describes the variability of the user interface [54]. In figure 3-5 the UI
variability is expressed across the Ul structure and the UI presentation. The “structure” feature
defines two variants (“resquestcontainer” variant, and ‘“responsecontainer” variant). The
“requestcontainer” has three variant relative to the search widget (the “speciality textField”
variant, the “location_textfield” variant, and the ‘“searchButton” variant). The “searchButton”
variant defines the “listenerl BR” variant relative to the listener handling requests of searching

the best rated restaurant. Also, the “listener2 P” variant is relative to the “searchbutton” feature

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 63

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

and is relative to the listener handling requests of searching the restaurants offering promotions.
The “responsecontainer” feature is defined in terms of widget features and layout features.
Widget feature define a”hyperlink” variant presenting the response object of the search request.
A hyperlink may be “img” or a “text” link. For the “layout” feature, it presents two variants: the

“GridLayout” variant and the “ListLayout” variant.

Regarding the “presentation” feature, this later defines two variants. The “contrasttheme” variant
and the ‘“normalcontrast” variant. The former defines a ‘“highcontrast” feature and a

“lowcontrast” feature, the later defines a “medium_FS” feature and a “larger FS”.

Legend:

Search_UI

e ¥ Mandatary
e A Aternative

—— Absiract
Structur Presentation
[Concrete

Figure 3-5 The search Ul feature model

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 64

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

¢) Feature constraints

In addition to feature models, feature constraints are defined at the domain analysis phase and are
describing the link between features of the same feature model (alternatively called an “intra-
feature” constraint) or between features of different feature models (alternatively called a “cross-
tree” constraint”). These constraints are used at the design phase to resolve feature conflicts when
configuring a feature model and are used at the runtime phase, as adaptation rules, to adapt the
interface following the context change. The two types of feature constraints (intra-model and
inter-model constraints) are defined using the Event-Condition-Action (ECA) language. An ECA

rule is described as follows:

On Event (E) if Condition (C) then Action (A)

Where event is features presenting the actual context of use, the condition is the connection
between context features using the “and”, “or”, or “not” operators and the action is the interface
features connected using the “and”, “or”, or “not” operators.
In the following, we present an example of two feature constraints using the formalism of set
theory.

Constraint 1: on E={promotions, horizontal, high, large} if C={ horizontal } then A={
Gridlayout }, this constraint means that the selection of the “horizontal” feature of the context

feature model implies the selection of the “Gridlayout” feature of the UI feature model.

Constraint 2: on E={BestRated, vertical, normal, medium} if C={BestRated} then
A={Listenerl_BR}, this constraint means that the selection of the “BestRated” context feature
implies the selection of “Listenerl_BR” UI feature (the listener looking for the best rated

restaurants).

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 65

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

Table 3-1 presents the complete list of cross-tree feature constraints describing the link
between context features and UI features and used at the runtime phase by the runtime
mechanism in order to adapt the running interface. At this phase, cross-tree constraints are,

henceforth, called adaptation rules. All these rules are applied following the context change.

Table 3-1 Feature constraints

Rule Condition Action
AR1 BestRated Listenerl BR
AR2 Promotions Listener2 P
AR3 Vertical ListLayout
AR4 Horizontal GridLayout
ARS High HighContrast
ARG6 Normal LowContrast
AR7 Medium Medium_FS
ARS8 Large Large_FS

3.5.3 The Domain Implementation Phase

3.5.3.1 Implementation Artifacts (platform independent assets)

The Domain Implementation phase is the process of developing reusable artifacts corresponding
to features identified in the domain analysis phase. Implementation artifacts may be a modeling
(non code artifacts) or a programming (code source artifact) technology used to implement
features in order to develop a family of software products. As example of programming
technology, we find feature-oriented programming, aspect-oriented programming, delta-oriented
programming, and so one. As example of non-code implementation artifact, we could mention

model, and architecture artifacts.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 66

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

In the context of our thesis and to implement context/UI features, we used the Concrete User
Interface model. In the following, we present the CUI metamodel [13] proposed by the UsiXML
team. To perform the mapping between features identified at the domain analysis and the CUI

model, we propose an excerpt of [13] described in figure 3-7.

3.5.3.2 The CUI metamodel

Figure 3-6 depicts a graphical representation of the UsiXML Meta-model for the Concrete UL
The root entity is CUIObject which has been subclassed in CUlInteractor and CUIContainer.
The relationship between Interactors and Containers is captured by the 'contains' relationship and
the CUIRelationship association class. It is important to note that the meta-model includes
specializations for the different modalities (graphical, tactile, vocal), as a CUI Model is modality-
dependent. The Style class is intended to capture all the presentational attributes for a CUI Object.

This design pattern decouples the model from 'presentational vocabularies'.

3.5.3.3 An expert of the CUI meta-model
Figure 3-7 depicts an excerpt of the CUI metamodel of the UsiXML team. In addition to classes

2 (134

described above, we define as “graphicalinteractors™: the “textfield”, “pushbutton”, “imglink”,
“textlink”, “radiobox”, “combobox”, and the “label” objects. Regarding “graphicalcontainer”, we
mainly defined web containers such as the “footer”, the “header”, the “section”, and the “div”
container. Furthermore and in order to manage the user’s “event”, we associate a “listener” class
to the “CUIobject” class. The “listener” has to implement the “Action” class in response to the

produced event. This CUI model will be used in the next section to implement features of the

context and Ul feature models.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 67

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

CuiModel
Behaviour
StyleRelationship : Cuiobject ’—é
+contextCondition 1* :Ebel o> 0. - .
+longLabel . CuilnteractionUnit 0.
L +hel 4.(:;1" +uitle
e—
S —~| +shortlabel -
Style +contextCondition | 1--
£ +roke 0.* 0=
0.* 0.* |+s@te Header Listener
0..” f.'l +condion
Footer 1
<<enumeration> > teractor ’ v
UserTnteractivityType [« ... SN CuiContainer !
Interactivity: Userlnteractivity T AR -
e +userinteractivity: Userlnteractivity Type : l_ e
+output])
+inputOutput A : : ; ﬂ Event
PP — ; +aventType: EventType
Multimodallnteractor . l GraphicalContainer : o
CuiRelationship| : : e B Action
(P TactileContainer i | +ectionType: ActionType
v
<€ anumeration s
Graphicallnteractor | Vocallnteractor | | TactileInteractor CuiEventType
GraphicalRelationship| | VocalRelationship| | TactileRelationship
EventType
LayoutRelationship \%7 |
<<enumerations»
ActionType CuiActionType fe.ooooooemneen ot

Figure 3-6 The UsiXML CUI Meta-model [13]

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 68

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

SUIModel Actian
1--*
?1--* 1
Style a.* 0.~ cUiobiest 1..*% o.* bistener Event
. . - - 1 1.*
BackGraundZalar
TextSize —
TextField CUllnteractor CUlContainer
1.+ 07 i
Driw

FushButton Ar le‘

GraphicalZontainer cection
Graphicallnteraciaor
. o <1
ImgLink
T A‘l Z‘l
w1 O footer headear
TextLink RadioBox -ormboBox label
Iterm

Figure 3-7 An excerpt of the CUI meta-model [7]

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 69

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

3.5.3.4 The mapping between features and implementation artifacts
Figure 3-8 presents the mappings between features of the context feature model and the CUI
model. This mapping is applied for “concrete” features, abstract features are not implemented and

are used only to structure feature models.

As depicted in figure 3-8, we associate to the “searchpreferences” feature, a fragment of the CUI
model. The “searchpreferences” feature is mapped into a model fragment composed by three
classes, namely, the main container (the “window1” object), the “div1” container object, and the
“label” object, named, the “searchpreference” object. The “searchpreferences” object is contained

in the “div1” container and this later in contained, in turn, in the “window1” container object.

Equally, the “promotions” feature is mapped to a CUI model fragment. This later is composed by
four objects: “window1”, “divl”, “CB1”, and “promotions”. The window1 object contains the
“div]” objects which contains, in turn, the “CB1” object. This later contains the “promotions”

object.

To perform the mapping feature->model, we take a look at literature. As result, we find very few
tools such as the featureMapper [36], the Feature Modeling Plug-in (fmp) [23], the Common
Variability Language (CVL) [18]. However, these tools are still in the prototype stage, they do

not appear to be working properly, for that we performed the mappings feature->model manually.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 70

Thouraya SBOUI

Windowwindow

DSPL Approach for Context Adaptable Uls

Div:Div1

|

Label:SearchPreference

Figure 3-8 Mappings between the context feature model and the CUI model

Mandatory
¥ oOptional
/L\ Alternative
Abstract
[Concrete

| ProfiledContext |

| user | | Pratform | | Environment |

|

JW|]mm]
s O N AN

Window:window1

Div:Div1

[

ComboBox CB1

[

Itern:Promotions

A UI-DSPL Approach for the Development of Context-Adaptable Uls

Page 71

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

3.5.3.5 The Final User Interface Model

After realizing mappings between the features and the CUI model, the resulted CUI model
fragments are transformed into their source code implementation (the FUI mode). As a target
platform, we address a mobile platform. On the mobile platform, the FUI model is described
using the HTML markup language. More details about the FUI that presents a specific product
are given below. We take note that this transformation is not performed at the domain analysis

phase. We allow its realization to the application engineering level.

3.5.4 The application engineering level

This stage is the stage of product derivation. It includes two main phases: the stage of feature

models configuration and the stage of product-artifact composition.

3.5.4.1 Feature model configuration
The first step of product derivation is the configuration of feature models. Feature model
configuration consists in selecting features that will compose the final product and deselecting

others that will not be present.

Figure 3-9 presents the configuration of the context feature model. This configuration is done
according to a “default” context of use. This later is defined as following: as “searchpreference”,
the user wants to see the “bestrated” restaurants (instead of restaurants in “promotions”). For
“displaypreference”, the user wants to see the search result displayed in a “vertical” way (instead
of “horizontal” way). For “accessibilitypreferences” and about the “themecolor”, the user prefers
seeing his interface in a “Lowcontrast” theme. Regarding the “fontsize”, the user prefers seeing

his interface with a “medium” text (instead of “larger” text).

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 72

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

ProfiledContext

v oo User
v UserPreference

v . SearchPreferences
A B Promotions
T B
w DisplayFrete

A B Horizonta

& Vertical
w * AccessibiityPreferences

v . ContrastTheme

o J:] Platform

o J:] Environment

Figure 3-9 The Context model configuration

For the “searchUI” feature model (figure 3-10), it was configured using the default configuration
of the context feature model and the appropriate cross-tree feature constraints (table 3-2).
According to figure 3-9, if the context feature “bestrated” is selected, this implies the selection of
the UI feature, “listenerl BR”. This feature presents the listener that will handle the user’s

request about looking for the “bestrated” restaurants.

For the layout, as the context feature ‘“vertical” was selected, then we have to select the
“listlayout” feature. For the presentation aspect of the Ul and about the theme color, the
“lowcontrast TC” is selected according to the selected “lowcontrast” feature of the context
feature model. While for the UI font size, the “medium_ FS” is selected according to the slected

“medium” feature of the context feature model.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 73

Thouraya SBOUI

DSPL Approach for Context Adaptable Uls

Search_|

L Structure

W

W

W

W

W

W

L Presentation

ul

[] ReguestContainer

& [Specialty_TextField
] Location_TextField
. SearchButton

W

> ResponseContainer

L] ResponseElement
[E HyperText
o [HyperMg

[] Layout

AE ListLayo u!)

* ContrastThems

A

/CE NurmalCuntras! >

* FontSize

LGEH Wedium FS

W

W

Figure 3-10 The configuration of the search Ul feature model

Table 3-2 Applicable feature const

raints relative to the default context of use

Rule Condition Action
AR1 BestRated Listenerl_BR
AR3 Vertical ListLayout
AR6 Normal LowContrast
AR?7 Medium Medium_FS

The feature model configuration is usually carried out using solvers. These solvers serve to

resolve conflicts between features models using features constraints (table 3-2) during the feature

model configuration. There is different types of solvers such as SAT Solvers, BDD Solvers,

Alloy, or SMV. The featureIDE platform uses the SAT solver. Such solver can resolve conflicts

between features of the same feature model but not cross-tree features. The conflicts between

features of different feature models are not yet resolved. For that, and in our context, the

A UI-DSPL Approach for the Development of Context-Adaptable Uls

Page 74

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

constraints defined between the context feature model and the UI feature model are resolved

manually.

3.5.4.2 Models composition

After the configuration of context feature model and UI feature model, the next step of product
derivation is the composition of artifacts implementing the selected features. This Artifact
composition amounts to compose the correspondent CUI model fragments. In the following, we

will talk about the composition technique.

a) Annotative vs Compositional Techniques
In the field of Software Product Line, there are two composition techniques, namely the
annotative technique and the compositional techniques. These approaches provide two different
solutions to separating concerns. Annotative approaches focus around the use of virtual
separation of concerns [38][73]. Examples of tools that support annotative approaches include the
C preprocessor, and CIDE tool. Using these tools, the developer can annotate parts of the source
code that are part of each feature in the SPL. This approach can allow very fine grained
adaptation including extra statements to methods, and parameter alterations in method
declarations. Product derivation is carried out by negative variability. Using negative variability,
parts of the system are removed based on which features are present in the product configuration.
This causes code to be removed from the final variant of the source code if its associated feature
is not included in a product. Compositional approaches on the other hand focus around physical
separation of concerns. By physically separating code into multiple modules, these can be
composed into different variants at configuration. This approach normally makes use of positive
variability because elements that are variable to the product are added to the base product. In this

thesis, we opted for the use of the compositional technique.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 75

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

b) The choice of the composer and UI generation
Since the FeatureIDE platform doesn’t include a model composer, we used a separated
composition of CUI fragments of model. As depicted in figure 3-11, the idea is to transform the
CUI models into their XML representation, then, we will use an XML composer to merge the
XML modules which corresponds to selected features. This composition technique is applied for
context features in order to derivate the UI context and for Ul features in order to derivate the
search UL The resulted XML file is transformed thanks to an XSLT transformation language into
an HTML page. More details about Uls composition and HTML derivation are given in the next

chapter.

Transformation

CU' = XML
Models files

XMLComposer

)

Transformation XSLT

CUIProduct.xml

ansformation XSLT i

Figure 3-11 Preview of artifacts composition and Uls generation

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 76

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

3.6 Conclusion

In this chapter, we presented first the whole approach, then, we detailed the design phase. The
design phase challenges are: concerns separation, the design of platform independent artifacts and
the use of a compositional artifact technique in order to generate the final user interfaces. The
design phase was detailed according to an illustrative “search for restaurant” case study. In the

next chapter, we present the runtime phase of the proposed approach.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 77

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

Chapter 4. A UI-DSPL Approach for the
Development of Context-Adaptable Uls

(The Runtime Phase)

4.1 Introduction

In this chapter, we present the second set of our approach’s contributions. These contributions are
relative to the runtime phase. This later is reserved to adapt the main interface to context of use
change. The runtime phase presents two main contributions which are 1) runtime adaptation
mechanism and 2) runtime adaptation pattern which will facilitate the design and the generation

of the adaptation runtime mechanism.

4.2 An Overview of the Runtime Phase

The runtime phase (figure 4-1) or execution phase is the phase which follows the design phase
and during which the Ul is running. During this phase, the final user can set his preferences.
Following preferences settings, an adaptation mechanism is triggered. This mechanism

encompasses three main components:

e The context manager component: is responsible for context acquisition and context
storage;

e The adaptation manager: is responsible for UI reconfiguration and recomposition;

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 78

Thouraya SBOUI

DSPL Approach for Context Adaptable Uls

e The UI code source generator: is responsible for the generation of the Ul code source

ready for interpretation or compilation.

To facilitate the design and development of the three components of runtime mechanism, An

adaptation pattern will be proposed. This pattern describes the main concepts used by runtime

adaptation components described above.

r

Application User

Running Ul

<<out>>

<<in>>

<<Conform To>>

Adaptation Model

Context

(17T

New User Preferences

Acquisition

<<out>>

Adaptation

<<out>>

Ul Regeneration

Adaptation Engine

Adaptated Ul

Figure 4-1. The runtime phase of the UI-DSPL approach, SPEM [69] presentation

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 79

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

4.3 The Runtime phase challenges

Unlike a conventional SPL, a DSPL continues to configure and adapt at the runtime. In this
thesis, runtime adaptation is caused by context change. Therefore, we identify in this section two
main challenges. The first one is the proposition of a design pattern. This pattern is aiming to
facilitate the design and the development of the runtime adaptation mechanism. The second
challenge is the implementation of the runtime adaptation mechanism aiming to manage the

context event, handle the runtime reconfiguration and regenerate the adapted UL

1) The runtime adaptation design pattern: at the runtime phase, we propose a runtime
adaptation model in order to facilitate the design and the development of the runtime
adaptation mechanism;

2) The runtime adaptation mechanism: has to be implemented according to the concepts
defined in the design pattern. This mechanism will serve to validate the runtime
adaptation design pattern and to adapt the Ul in reaction to the changes in the context of

use.

4.3.1 The runtime adaptation pattern

In order to facilitate the design and the development of runtime adaptation mechanism, we
propose in this chapter an Eclipse Modeling Framework (EMF) model. This model represents a
design pattern which can speed up the development of the runtime adaptation process by
highlighting the fundamental concepts describing UI adaptation at the runtime and the relation
between them. Among these concepts, there are those that represent the core assets already

defined at the design phase and that will be reused at the runtime phase. For example, we find:

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 80

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

e UI features: its represent the running configuration. Adapting the UI interface is to find
a new configuration for Ul feature model which corresponds to context changes;

e Feature artifact: already defined and used at the design phase, the artifacts that
correspond to UI features are reused at the runtime phase, according to the new
configuration, in order to recompose the new U,

e Feature constraints: describe the links between features of the same feature model and
features of different features models. These constraints will serve as an adaptation rules
at the runtime phase.

Figure 4-2 depicts graphically the proposed model. As shown, UI adaptation is seen as a state
machine. States represents Ul states and transitions describe the transitions from a source state to

a target state. A transition is performed using adaptation rules.

For states, the model defines three types of Ul states:

1) The “Default State” represents the running state. Otherwise, the Ul resulted from the design

phase;

2) The “Required State” is the Ul adapted following context change;

3) The “loading_error” state presents the UI when a loading problem takes place.

A “Ulstate” is defined as a set of aspects (“Ulaspect”) describing the Ul at the current time.
According to Pleuss et al. [27], a UI aspect may be a presentation unit (e.g. window, container), a
UI element (e.g. widget), a layout (i.e. the disposition of widgets on the container) or a visual

appearances property (e.g. color, sizing, etc...).

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 81

Thouraya SBOUI

DSPL Approach for Context Adaptable Uls

< <enumeration> >
-1
H ModelOfUlAdaptati = PresentationUnit
= UlElement
H Defaultul p—r:
Ulstate Transition - VisualAppearence
1.* *
=] RequiredUl H UlState H Transition - < <epumeration> >
= name : EString = id : Eint & CrossTreeConstraind £ Ftype
| = Concrete
& LoadingError’ . | Definedsy 1* ! ASetOf = Abstract
= E AdaptationR E TreeConstr
UlAspect lI\ppliea'l’ () < <enumeration> >
2 ESyi 2 Fstate
S name : EString -
: Atype /.A ' i Condition Selected
= bype: 1 on 1. = Deselected
UVariabi E Action E Condition : = Undeaded
) 1 S value : Dtype| | = value : EString| | = 'd : EString e
Implement e
H Feature l A 2 AttType
H UModel | 1 = name : EString = Float
' © state : Fstate = Integer
from |10 ,
.* has 1 1 < <enumeration> >
Bind 0* & Variable 1. & Context 2 Dtype
- = feature
H Attribute Observable
S name : EString [Al :
= valee : AMType H profiled Context E Derived Cont £ Sensed cont
Figure 4-2 The EMF Adaptation Model

A UI-DSPL Approach for the Development of Context-Adaptable Uls

Page 82

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

At the runtime, these aspects are described using features and their values are described using
feature attributes. When an adaptation occurs, another UI state will be defined by updating the

aspect features and keeping aspects values.

After UI state updating (another set of features presents the new UI), the Ul is recomposed using
the “UlModel” artifacts which corresponds to new Ul features. The result of UI recomposition is

the CUI model of the adapted UL

From another hand, “transition” represents the transition from one state to another state. A
transition is defined as a set of adaptation rules. Adaptation rules are mainly context constraints

(define the link between context features and Ul features), complemented by aspect constraints

(describing the link between Ul aspects and alternatively called constraint propagation rules [20].

Adaptations rules are described as an Event-Condition-Action (ECA) rules:

e An event may be a context change or an aspect change. If the event is a context change,
then the rule is a context rule. Else, if the event is an aspect change, then the rule is an
aspect rule.

e A condition: following an event, the condition describes the context variable (or the
aspect feature),

e Action: if the condition is valid, the action is executed to Ul aspects to make the required

change.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 83

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

For enumerative type, the model defines 5 enumerative types:

1) “Atype” specify the type of Ul aspects. It may be a presentation unit, a UI element, a visual

appearance aspect or a layout;

2) “ftype” specify the type of feature. It may be an abstract or a concrete feature;

3) “fstate” indicates the state of a feature. It may be a selected feature, a deselected feature or an

undecided feature;

4) “attType” indicates the type of the attribute value. We used primary data types (float, string,

integer);

5) “Dtype” indicates the action value, it is a feature.

4.3.2 Model instantiation

To demonstrate the use of the proposed model, we have to instantiate it and implement it (see
next chapter). The model instantiation is performed according to the “search for restaurant” use
case presented in the precedent chapter. The use case defines two states: a default state conforms
to default preferences settings and a required state conforms to new preferences settings. In the
following, we give more details about search UI states; adaptation rules allowing the switch from

one state to another and context use change.

4.3.2.1 User interface states

Figure 4-3 (a) shows the running search UI (as it was designed at the design phase) while figure

4-4 (b) shows the search Ul as it was adapted at the runtime phase.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 84

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

pemtiestaurant

—— -—Reslgurant Mikes | : -“W
me .!'1 Pizza. Pates Wl
s 0 =3 =

= Wk oy

Mike, Pizza Phoenix

B » Napoletana - Phoenix 45 € Italian Food
' 60 €
* K K Y — P
j Cherry Blossom EE'!—';}' " &__ "y
© LaCasa Sapore
k koo Pasta Italiana
EN =
(a) The Running UL (b) The Required UI

Figure 4-3 States of the Search Ul

At both phases, the search Ul is described in terms of features (figure 4-4, 4-5). At the design
phase (figure 4-4), the features describing the search UI are defined according to the following

aspects:

e Ul elements (e.g. “speciality TextField” feature, “searchButton” feature, ...);
e Presentation unit (e.g. “requestContainer” feature, “ResponseContainer” feature);
e Visual appearance (e.g. “contrasttheme” feature, “Fontsize” feature);

e Layout (e.g. “layout” feature);

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 85

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

Searc Legend
¥ Wandatoy
. T, A Atemative
L ¥
St Preseniafion Roshract
T P [7] Concrete
=___--' --'--___= .__.-" Ty
ReniesCoriane ResgseCnter ContasThens
_.--"-.-.-Y----"'--___ II',.-'" 'a..,..'\-\.,_H ,F'{-:\\ .-"(—)‘\
-____.-' \. '\-\. . # ..H.. x”l \\\ f,f \\
- . I ., / K / ,
Specat TexFed | Locain TexFed SeaciButn RespnszEenet Loyt HhConst NomaConrest | Wedun 5 Lager FS
f{-\)\ ;f \\ A '\\

/ : / / "
Listenert BR | | Listener? P | HyperText || HyperiMG | ListLayout | | Gridkayout

Figure 4-4 The search Ul feature model (design phase)

At the runtime phase and in figure 4-5, the “listener BR” feature is selected to display the best

rated restaurant. The “listlayout™ feature is selected to display the search result in a vertical way;
the “normal contrast” and the “medium” feature are selected to keep the interface with contrast
background and to display the text in a medium size.

After runtime adaptation (figure 4-5), the “listener BR” feature is deselected and the “listener P”
feature is selected to display the promotions of restaurants. The “listlayout” feature is deselected
and the “Gridlayout” feature is selected to display the result in a horizontal way. The
“normalcontrast” and “medium” features are deselected to select “contrasttheme” and “larger”

features to make the UI darker and the text size larger.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 86

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

Search_Ul Search_Ul
v e Structure - - Structure
- - RequestContainer - - RequestContainer
-> Speciality_TextField - Speciality_TextField
- Location_TextField - Location_TextField
v L] - SearchButton pv - SearchButton
A- Listener1_BR AEI Listener1_BR
AEl ten ',ef}\- ListenerzZ_P
e - ResponseContainer i - ResponseContainer
- - ResponseElement v . ResponseElement
v L] Hwperlink v - Hyperlink
- Text . Text
- MG . MG
" - Lawout v L] Lawout
A ListLayout AE' ListlLayout
A [cridiayout A HH cridiayout
L - Presentation w L] Presentation
R -> ThemeColor LY L] ThemeColor
AEI ghContrast TC A HighContrast TC
A LowContrast_TC AEI LowContrast_TC
L - - FontSize w - - FontSize
A FH Wedium_Fs A [Medium
’,&\EI Larger_F ,c’:;\- Larger FS

Figure 4-5 Search Ul states according to the Adaptation Model
4.3.2.2 The context of use
A UI adaptation is triggered following a context change event. Figure 4-6 shows the change

between two contexts of use (the default context and the new context).

MyPreferences MyPreferences

Search Preferences Search Preferences

See Firss l Eerthated See First I_ Promotions |
Display Preferences Display Preferences
Result Display | Wartical J Result Display Horizonta]
Accessibility Preferences Accessibility Preferences
Contrast Theme [Mormal Contrast | Contrast Theme I_ High Contrast |
Font Size [Medium | Font Size [Larger |
[OK [Ok
(a) The Default context of use (b) The New context of use

Figure 4-6 The context of use change

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 87

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

At the design phase, the context of use is presented using a feature model, while at the

runtime phase; these features are presented in form of variables.

The context of use as shown in figure 4-6 (a) presents the default user preferences. These
preferences are relative to “Userl”. “Userl” prefers visualizing the “bestrated” restaurants

displayed “vertically” and in a “normal” contrast theme and a “medium” font size.

Figure 4-6 (b) shows the user preferences relative to “User2”. User 2 is a visually disabled user
who prefers visualizing the “promotions” of restaurant displayed “horizontally” in a ‘“high”

contrast theme and a “larger” font size.

4.3.2.3 Adaptation rules

Table 4-1 shows adaptations rules allowing the transition from the default state of the search UI
to the required state. According to the use case, adaptation rules include only context constraints
describing the link between context features and the UI aspect features. The condition refers to

context value and the action refers to Ul aspect feature.

Table 4-1-Adaptation rules

Rule Condition Action
AR1 BestRated Listenerl BR
AR2 Promotions Listener2_P
AR3 Vertical ListLayout
AR4 Horizontal GridLayout
AR5 High HighContrast
AR6 Normal LowContrast
AR7 Medium Medium_FS
ARS8 Large Large_FS

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 88

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

4.3.3 The Runtime adaptation mechanism

Runtime adaptation process was briefly presented at the beginning of this chapter. In what
follows, we will give more details about this mechanism by highlighting the managed data and

given more details about the components of runtime adaptation engine (figure 4-8).

4.3.3.1 Context acquisition
The first step in the runtime adaptation mechanism is the context acquisition. The context is
acquired from the user preferences settings interface (figure 4-7) and is saved as variables in the

context data storage (figure 4-8).

MyPreferences

Search Preferences

See First |_ BestRated |

Display Preferences

Result Display | ‘ertical]

Accessibility Preferences

Contrast Theme l Maormal Contrast |

Font Size l Medium |

Figure 4-7 The context acquisition interface
4.3.3.2 Reconfiguration Algorithm
After context data acquisition, the adaptation engine looks for a new UI configuration. This

configuration is generated using the running configuration and the adaptation rules.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 89

Thouraya SBOUI

DSPL Approach for Context Adaptable Uls

MyPreferences

Search Preferences

BestRestaurant

Specialay

Location @

- Restaurant Mikes | Result Display vertical
B z Pizza, Pates
o —— * Kk K I

MyPreferences

Preferences

change

Accessibility Preferences

L oy - Napoletana - Phoenix
* * & Yr
ST

Cherry Blossom
b

* K r Yr

Adaptation Engine

Ul
configurations

Context Acquisition

T/

Context DataJ
y

2

Reconfiguration Algorithm <&

FeatureArtifacts
(CUls.xml)

\;'ransformation
Recomposition Algorithm

Composed Ney Ul

K

Code regenerator

_/

Legend

8 Data

——> Data flow

Search Preferences

See First

Accessibility Preferences

Contrast Theme

Context
Data

Adaptation

Rules

BestRestaurant

Blm T
. = - i

Mike, Pizza Phoenix
45 € Italian Food
60 €

S
= |
LaCasa
Pasta

ltali_ana

Figure 4-8 The Runtime Adaptation Mechanism

A UI-DSPL Approach for the Development of Context-Adaptable Uls

Page 90

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

Algorithm 1 illustrates how the new UI configuration is obtained from context information. To
start, the algorithm requires a set of updated observable obtained from the context manager, and
the current configuration obtained from the product itself. The first step consists in creating a
target configuration with the same variants as in the current configuration (line 1). Afterwards,
the algorithm iterates over the updated observables. For the observables whose aspect belongs to
the current configuration, the algorithm verifies if the new observable value is false. In that case,
the aspect has to be unwoven from the product. For the observables whose aspect does not belong
to the configuration, the algorithm checks if the new observable value is true. In that case, the
aspect has to be woven to the target configuration. After the selection of variants of aspects to
weave and the deselection of variants of aspects to unweave, the algorithm obtains the target

configuration.

Agorithm1: Runtime Reconfiguration

Adapter algorithm Require: A set of updated context observables C
Require: The current product configuration Pcurrent = {F1,F2,..., Fk}
Ensure: A target product configuration Ptarget

1: Ptarget < Pcurrent

2: for all (On € C) do

3: if (FOn € Pcurrent) then
4: if (On.value() = false) then
5: Ptarget.deselect(FOn)

6: end if

7: else

8: if (On.value() = true) then
9: Ptarget.select(FOn)

10: endif

11: end if

12: end for

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 91

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

4.3.3.3 Recomposition Algorithm

Once we got the new configuration of the search Ul, we have to recompose the new (adapted) UL
Algorithm 2 illustrates how a new Ul is recomposed using the artifacts which corresponds to the
selected Ul features. To start, the algorithm requires the new configuration obtained from the
reconfiguration algorithm, the appropriate implementation artifacts resulted from the design
phase and obtained from the artifact storage. The algorithm consists in browsing the list of
selected feature (saved in the new configuration file). For each feature name, we have to look for
its implementation in the artifact’s directory. Each time, we find a correspondent (the feature
name matches with an artifact file name), we apply a merge. The algorithm iterates over features

composing the new configuration file.

Agorithm 2: Runtime Recomposition

Recomposition Algorithm Require: the new configuration
Require: the set of feature artifacts

Ensure: the composed Ul Product (CULxml file)
1:resultedfile={}

2: for I € features of the new configuration file

: for J € {list of implementation artifacts}

: if (value (I)=Name (J)) then

: merge (resultedfile, content(J))

: end if

: end for

8:end for

~N O\ L AW

4.4 Conclusion

In this chapter, we presented the runtime phase of our approach and their main contributions. The

runtime challenges are: an adaptation design pattern and a runtime adaptation mechanism. This

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 92

Thouraya SBOUI DSPL Approach for Context Adaptable Uls

phase was detailed according to the illustrative “search for restaurant” case study presented in the
above chapter. In the next chapter we will implement both phases of the approach using the

appropriate platforms and technologies, and then we will evaluate the generated Uls.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 93

; Implementation, Evaluation&Discussion

Chapter 5. Implementation, Evaluation and

Discussion

5.1 Introduction

In this chapter we present design and development tools used at the design and runtime phases.
We also present the realized prototypes. These prototypes were developed for a mobile platform.
Finally, we present different methods used to evaluate the generated Uls. We mainly use three
evaluation methods: an SPL-based evaluation, a scalability evaluation and a

qualitative/quantitative evaluation based on the IBM-CSUQ questionnaire.

5.2 The design phase implementation

5.2.1 Design phase tools

Many tools were developed in order to support feature modeling. Some tools are free and open-
source and others are paid tools. As free tools, we find the FAMILIAR DSL (Domain Specific
Language) [2], the SPLOT [68] platform, and the featureIDE platform. For paid tools,
pure::variant tool [57] is the most known. In our thesis we use the FeatureIDE platform [72] to

design and configure feature models.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 94

; Implementation, Evaluation&Discussion

5.2.1.1 FeaturelDE tool

FeatureIDE is an open-source framework for feature-oriented software development (FOSD)
based on Eclipse. All phases of FOSD are supported in FeatureIDE, namely domain analysis,
requirements analysis, domain implementation, and software generation. FeatureIDE supports
several FOSD implementation techniques such as feature-oriented programming, aspect-oriented
programming, delta-oriented programming, and preprocessors. In our context, the FeatureIDE
platform was used only for feature modeling (figure 5-1) and for feature model configuration
(figure 5-2). Feature mappings/implementation and Uls composition have been performed

separately since the featureIDE platform does not support model artifact yet.

a) Edition interface

& Java - myGUI/model.xml - Eclipse
File Edit Mavigate Search Project Run Window Help

-

=~ ST A R L R R N R A e e 1 ‘%’I%
[Er. 22 = B |[ddefaultconfig 4 HMpModel &% myGUIModel 98 HMpModel [c] defaultconfig 4% myGUI Model 53 | &% restaurantl... @ HMpModel 4 IHMp Model > =&
BEle -
~ I IHMp
8 src Legend: ProfiedContext
&) RE System | & Mandatory AN
v = configs & Optional g S
B default.c A, Atemative User | | Piatform | | Environment
(= features Albrstract
- Concrete
@ modelxml :
@ model2xml i
~ & myGul I A
® s e —— e,
=, JRE System | o 2l ~ 1 R
~ G configs AN 4 N . ~
& default.c Promotons | | BestRated | | Horizontal | | Vertical | | ContrastTheme FontSize
pgl uic.confi 5, Py
2] Ulconf.c / N\ N .
(= features High | | Normal | | Medium | | Large

& modelxml
v & restaurantUl
8 sre
=) JRE System |
& configs
iz features
= UML
@ modelxml

Figure 5-1 The edition interface of feature models, FeatureIDE platform

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 95

; Implementation, Evaluation&Discussion

b) Configuration interface

& Java - IHMpfconfigs/default.config - Eclipse o
File Edit Mavigate Search Project Run Window Help
NN -0 BEE-IBE V- 6 [ovickacees i} 5 |8
BP. 2 = B | [ddefaultconfig 12 4 IHMp Model Fia
B2 & 7 valig,1 possible configurations l:ll RN R T)
=)
v @ Mp v [m] Search_UI
8 src
v [m] Structure
?ﬂ JRE?“EMI v [W] RequesiContainer
Ve ;” e [m] Specialty_TextFiekd
e il [m] Location_TextFiekd
= — v [H] SearchBution
W madelimi Listenerl_BR
9 model2.xml o
-y et
éj Ll ~ [m] ResponseContainer
& restaurantl]
v [W] ResponseElement
[m] HyperText
[m] HyperlG
v [&] Layout
ListLayout
v [m] Presentation

v [H] ContrastTheme
NormalContrast

~ [m] FontSize
Wedium_FS.
[[] Larger Fs

Figure 5-2 The configuration interface, the FeatureIDE platform

5.2.2 GUI models composition

As described in the previous chapter, to compose the feature artifacts, we used our own merge
algorithm. This algorithm is inspired from the Olivier Becker merge code and is used to merge
the XML representations of the CUI models (features artifacts). In the following, we present the

algorithm implementation.

5.2.2.1 The merge algorithm

In his algorithm, Olivier [77] uses the eXtensible Stylesheet Language (XSLT file) to merge two
XML files. In our context, and to compose our XML files (the representation of the selected
features), we need to install the “saxon” command. In the following, we give more details about

“saxon” installation.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 96

; Implementation, Evaluation&Discussion

5.2.2.2 Saxon installation

Stepl: install the Java runtime machine

tar zxvf jre-8uversion-linux-x64.tar.gz

Step 2: update the system

Sudo apt-get update

Step 3: After updating the OS run following command to install the package

Sudo apt-get install libsaxonb-java

Step 4: Execute the saxon command

saxon filel.xml merge.xslt with=file2.xml > result.xml

5.2.2.3 The merge Script

Before presenting the merge script, we present in figure 5-3 (the feature model of the context) the
transformation of feature artifacts into XML code. After this transformation, we use the merge
algorithm (Algorithm 1) presented in the above chapter to merge the XML presentation of all
feature artifacts. In the following, we give more details about the implementation of the algorithm
using Linux Shell. The Shell script has two command parameters: the first parameter is the
directory containing XML files and the second parameter is the configuration file which contains
selected features. The result of the merge is an XML file (result.xml). Figure 5-4 depicts the

result of composition of context features artifacts.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 97

Legend: ProfiedContext

Mandatory TN

o Optonal o —J ~0

/=, Aternative User | | Piatform | | Environment

Abstract '
Windowwindow1 Div.Div1 Concrete l
K>
Label:SearchPreference SearchCriteria ' Dsnh;tawul ' c‘m.,;nm | Fm%ze '
BestRated | Horizontal | | Vertical | = High | | Normal | | Medium | Large
Windowwindow1 Div.Div1 <cu | M Od e | >
A <——N <window id=‘window1'>
e
SeuiNiodels <div |d—d|v1.> - o
<window id="window1'> ” | <comboB?x id="CB1 r)ame= crlterlaCB >
e ; C Box.CB i id= = i
zdiv id="iv1s | ComboBoxCB1 <item id=‘defaultitem’ Value=‘promotions/>
<label id=‘label1’ value='searchPreference’/> </(?omboBox>
</div> </d'_V>
</window> </W|'ndow>
</cuiModel> Item:Promations </cuiModel>
XML presentation of The CUI fragment XML presentation of The CUIl fragment

Figure 5-3 The XML representation of the CUI model fragment

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 98

Thouraya SBOUI

Implementation, Evaluation&Discussion

THE MERGE SCRIPT

'/bin/bash

#$1 are a command parameter, $1 contains the name of the directory containing
#the XML files presenting the artifacts of the selected features.

#52 contains the name of the configuration file

Touch result.xml # this file contains the code of the composed UI

For I in ‘cat $2’
Do

For J in ‘ls $1’
Do

If [$1i -eq ‘'$j’];then

saxon tt merge.xslt with=$i>> aux

cp aux tt
endif
done

done

<window

@ ook L R

W h

<button
<button

b S e

11 Sl<div id="div2"'>

2 <label id="label2"' wvalu
<label id="label2l" wvaluese=
] <combobox id="CB2"'" name='DisplLayont"®:>
<item id="Item2" -
<item id="item21"

<cuiModel>

id="windowl">
<diwv id="divl'>
<label id="labell"
<label id="labell2"

Cl<combobox id="CB1"

e='searchPreference” />
lue='sesFirst'/>
"eriteriaCB">

7 <item id="Iteml" - ='"promotions' />
8 <item id="iteml2' wvalue='BestRated'/:>
9 *</comhohoxﬂ

10 F</div>

e='DisplayPreference" />
"ResultDisplay" />

17 </ combobox>
18 F<Sdiv>

1 EH<divw id="div3">
20 <lakbel i1d="labkel3'" valuse='accesslibilityPreference’
21
22 <label id='"label31" walue='contrastTheme" />
23 Hl<combobox id="CB3" am TCT >
24 <item id='item3" = 2 "HighContrast"' />
ZE <item id='item31" 1e="'LowContrast® />
26 </ combobox>
27 <label id="labeld4' wvalue='FontSize'/>
28 H<combobox id="CB4"

= <item id="itemd"' - re="larger' />

0 <item id='itemd4l' value='mediom'/>
1 </ combobox>

F</div>

Hl<div id="div4 >

id="butl">ok<,/button>
id="but2'>cancel</button>

-4

eXtensible Markup Language file

Figure 5-4 The XML file of the context of use Interface

A UI-DSPL Approach for the Development of Context-Adaptable Uls

Page 99

Thouraya SBOUI Implementation, Evaluation&Discussion

5.2.3 CUI-FUI transformation

Since the UI composition is realized, it’s time to generate the HTML source code of the
composed context user interface. For that, we have to apply an XSLT transformation on the
composed XML file (figure 5-4). The XSLT source code used to transform the composed context
Ul is presented in figure 5-5. After coding the XSLT file, we used the following shell command

to generate the final context interface (figure 5-6):

1) The command of Installing the xsltproc package

2) xsltproc stylesheet.xsl mapage.xml > context.html

<html>
<head>
<title>page Contextd<ftitle>
</head>
<body>
<x=sl:apply-templates =scelect="onimodel /fwindow/div" />
- < /body>
11 - </html>
12 P/ xelitenplate>
13 %ﬂcsl rcemplate match="/onimodel /fwindow/div" >

%(xsl:tenplate match="/,/">

S T BT

{1}
T

[T]

<xsl:for—-each select="label">

15 <label>

16 <1—— xsl:value-of select="@value"/ -->

17 <xsl:value—of select="."/>

18 - </label>

9 = <select>

Q «<1—— xgl:for-each select="../combobox™ —->
1 <xsl:for-each select="..//combobox/item">

2 = <option>

3 <le— x=l:valuse—of select="item/Ewvalus"/ —->
4 <xsl:value-of select="."/>

= = </option>

6 - </#sl: for-sach>

7 - </fselect>

8 - </xsl:for-esach>

=] <1—— fxal:for-each —->

]

[H==x=l:template match="cuimodel /window/button">

<input type="buntton" class="button" wvalue="Cancel"/>
Fe/xslitemplace>

H<x=sl:template match="cunimodel /fwindow/button">

<input tyvpe="bntton" class="bntton" valus="0k",/>

P sl itemplate——>

F</xesl:template

Lo Fral

=] M N s L R

B oL L L0 LY L0 LA L LA R ORI ORI ORI R RS ORI R R R

n

ot irl ashaot

Figure 5-5 The XSLT file relative to the generation of the context of use interface

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 100

Thouraya SBOUI Implementation, Evaluation&Discussion

Préférence Page d'acceuil

Search Preferences:

© Best Rated

Promotions

Display Preference:

© Vertical

Horizontal

Accessibility Preferences :
Contrast Theme

Normal Contrast

© High Contrast

Font Size

Medium

© Laraer
Footer Text

Figure 5-6 Generated Uls (design phase)

For the search Ul, more details are given in the appendix A. In this later, you find the XSLT file
(which calls two others files: the formatting file “thouraya.css” and the Javascript file

“thouraya.jss”) and the generated search interface.

5.3 The runtime phase implementation

In this section, we present the implementation of runtime algorithms: the configuration algorithm
and the recomposition algorithm. As described below, these algorithms were implemented using
the shell script. Their input data (context data, adaptation rules and the running configuration)
were managed using files. In addition to algorithms, we present different adaptation scenarios of

the main interface (the search interface).

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 101

Thouraya SBOUI Implementation, Evaluation&Discussion

5.3.1 Runtime Configuration datas

The runtime reconfiguration mechanism needs as inputs: the running configuration (figure 5-7),
the configuration as it was realized at the design phase, the context data (figure 5-9) and the

adaptation rules (figure 5-8). This data is saved in files.

& Java - IHMp/configs/default.config - Eclipse
File Edit Mavigate Search Project Run Window Help

SN UiNR-0-A-BE G- SE
e = O ¢| default.config 3% 4% IHMp Model
L=} 9 by P
BlElle ~ 1Epeciality TextField
£ __:rf.} IHMp 4: Locat,.j.o.n_‘[ext,Field
B sre 3 SearchButton
4Li B
=\, JRE System | 4 Listenerl BR
= 5 5 HyperText
w = configs g
. & HyperIMG
g default.c e
- feat ListLayout
L’ eatures g NormalContrast
¥ model.xml 9Medium FS
% model2xml 10 -
& myGUI
v é':‘} restaurantUl
@ src
=\ JRE System |
&> configs
= features
(= UML
§ modelxml

Figure 5-7 The running configuration

ARL BestRated Listenerl BR BestRated False
ARZ Promotions Listener2 P Promotions True
AR3 Vertical ListLayout Vertical False
AR4 Horizontal Gridlayout Horizontal True
AR5 High HighContrast High True
AR6 Normal HighContrast Normal False
AR7 Medium Medium_FS Medium False
AR8 Large Large FS Large True
Figure 5-8 Adaptation rules (runtime phase) Figure 5-9 Context datas

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 102

Thouraya SBOUI

Implementation, Evaluation&Discussion

5.3.2 The runtime reconfiguration script

Below, we present the reconfiguration shell script:

#!/bin/bash

For I in ‘cat contextdata’

Do
Varl='cut -£2 -d ‘' ' $i’
Var2='cut -£3 -d ' ' $i’

If [$var2='false’];then

For J in ‘cat defaultconfig’
Do

If [$j -eq $varl];then

Sed ‘/$varl/d’ defaultconfig
Endif

Done

Else

Exist=false

For J in ‘cat defaultconfig’
Do

If [$j=$var];then

Exist=true

Endif

Done

If [$Sexist=false];then
Exist=true

For k in ‘cat adaptationrules’
Do

Var3= ‘cut -f2 -d ' ' $k’

Vard4= ‘cut -£f3 -d ' ' $k’

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 103

Thouraya SBOUI Implementation, Evaluation&Discussion

If [$var3=$vard];then
Action=$var4

Endif

Done

Cat $action>>defaultconfig

done

5.3.3 The runtime recomposition script

Once the new configuration is generated, it’s time to recompose the new user interface. This

interface is recomposed using the following script.

#!/bin/bash

#$1 are a command parameter, $1 contains the name of the artifacts (presented
#in form of XML files) directory and $2 contains the name of the
#configuration file

Touch result.xml

For I in ‘cat $2’

Do

For J in ‘ls $1’

Do

If [$i-eq $]j];then

X='cat $j’

saxon $X merge.xslt with=result.xml >> result.xml

endif

done

done

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 104

Thouraya SBOUI

Implementation, Evaluation&Discussion

5.3.4 Adapted Interfaces

Like the design phase, the code generation is performed using the XSLT transformation
language. The XSLT file is applied on the XML file resulted from the composition of the new UL
As shown in figure 5-10 (a), the right interface is the first adaptation of the search UL It
corresponds to context 1 described as follows: the user prefers visualizing the restaurants in
promotions, displayed in a horizontal way with a contrast theme and a large font size. The second
interface (figure 5-10 (b)) is another adaptation for the search UI which corresponds to context 2
described as follows: the user prefers visualizing the best rated restaurants, displayed in a vertical

way with a contrast theme and a large font size.

Cherchez un restaur... {3 Préférences
Search Preferences:

Best Rated

© Promotions

Display Preference:

Vertical

Buddha Thai and

Market chine 28 Bar sencn , 2
1521 1st Ave, Seattle, WA 2222 2nd Ave, Seattie, WA

© Horizontal

Accessibility Preferences :
Contrast Theme

Normal Contrast
© High Contrast

Font Size

Medium

© Larger

Zone de préférence

Ipanema
Girill #renc

1225 18t Ave, Seattle, WA

L)
g i
'j‘? !

Sake House irencr , 1ss Orab Pot iencr see
2230 18t Ave, Seattie, WA o0 Alaskan Way, Seattle,

o

(a) Search UI adaptation — contextl

Search Preferences
© Best Rated
Promotions
Display Preference
© Vertical

Horizontal

Accessibility Preferences

Contrast Theme

Normal Contrast
© High Contrast

Font Size

Medium
© Larger

Zone de préférence

Cherchez un restaurant 3 Prétérences

Pan Africa Market -
1521 1st Ave, Seattle, WA

Buddha Thai and Bar
2222 2nd Ave, Seattle, WA

The Melting Pot s

14 Mercer St, Seattle, WA

Ipanema Girill renc
1225 1st Ave, Seattle, WA

A3

(b) Search UI adaptation-Context 2

5-10 The adaptation of the search UI

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 105

Thouraya SBOUI Implementation, Evaluation&Discussion

5.4 Evaluation and Discussion

In our thesis so far, an approach to enable Ul adaptation in DSPLs has been proposed, with
details of developed tools and prototypes given. In this section, focus is given to the evaluation of
the proposed approach using the prototypes presented above. The goal is to prove that the
approach actually meets the goals of this thesis, and to evaluate the extent to which it scales. To
validate the approach, we use a scenario-based evaluation, a scalability evaluation and a

qualitative/quantitative evaluation to help assess our approach using the illustrative case study.

5.4.1 A Scenario-based Evaluation

For the scenario based evaluation and as described in chapter 3, the illustrative SPL is relative to
a “search for restaurant” application. To manage the application variability, we defined two
variability models: the context feature model and the UI (search UI) feature model. The
variability of the UI feature model was defined across different Ul aspects such as: UI elements
(speciality textField, location textField and the hyperlink response objects), presentation units
(request container, response container), visual aspect (text font size, UI contrast theme) and the
layout aspect (response hyperlinks displayed in the form of grid, response hyperlinks displayed

vertically).

While context variability was defined across three Ul aspects: UI element (display the best rated
restaurants or the restaurants in promotions), layout (response hyperlinks displayed using a
gridlayout, response hyperlinks displayed using a listlayout) and visual appearance of the UI (text

size, UI contrast theme).

To implement context and Ul variabilities, we used the CUI model, each concrete feature is

associated to a fragment of the CUI diagram (instantiated from the meta-model of figure 6). Each

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 106

Thouraya SBOUI Implementation, Evaluation&Discussion

artifact is, then converted into their XML representation then composed with the others artifacts

in order to generate search and context Uls.

For the other works, the illustrative SPL in Kramer’s approach was about a content store case
study. In his case study, the store can distribute different content such as video or music. The
content can be distributed depending on the location of the device. The Ul variability was defined
according to GUI elements, GUI elements properties and GUI behavior. To implement the UI
variability, the author used document-oriented technology. After the composition of document

artifacts, the resulted document is interpreted on an Android platform.

In Gabillon’s approach, the use case was about a dashboard user interface. The UI variability was
defined according to two aspects: presentation units and Ul elements. To implement the UI

variability, the author used component technology.

In comparison with other approaches, we note that our approach took into consideration many
aspects when describing the UI variability. In addition to presentation units and Ul elements, we
have described the UI variability according to layout and visual appearance (text size, UI color)
aspects. The design and the implementation of such features ensure the generation of an
ergonomic interface; make the Ul development easier and the modification of some properties
simpler. Furthermore, and contrary to Kramer and Gabillon approaches which respectively use
document-based technology and component-based technology, the wuse of models as

implementation technology makes the design phase process reusable and more abstract.

At the runtime phase, comparing our approach with the other approaches, we note that the
principal difference is about context acquisition. In our approach, the context is entered manually.

The main Ul is adapted according to the context data updated by the end-user. The first context

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 107

Thouraya SBOUI Implementation, Evaluation&Discussion

was about a user who prefers visualizing the restaurants in promotions, displayed in a horizontal
way with a contrast theme and large font size. And the second context is about a user who prefers
visualizing the best rated restaurants, displayed in a vertical way and with a contrast theme and a
large font size. In Kramer approach, the adaptation was about some platform properties such as
the actual position, connectivity and the battery while in Gabillon’s approach, the context was

about the screen size.

5.4.2 Scalability Evaluation

For scalability evaluation, we used two metrics: the generation time and the adaptation time. In
table 5-1, we present these metrics and the correspondent values for our approach and Kramer’s

approach. Gabillon did not perform a scalability evaluation.

5.4.2.1 Generation Time

This is the time the tool takes to generate the source code of initial interfaces. For this metric, we
do not consider the time required for feature model design or for artifacts implementation. We
only consider the time of feature model configuration, Uls composition and source code
generation. The generation time is calculated for the context UI and the search Ul As depicted in
table 5-1, the generation time of the context Ul varies between 0.86s (for 1 feature) to 13m.05 s
(for 10 features) while for the search Ul, the generation time varies between 0.89s (for 1 feature)
to 14m.57s (for 14 features). For Kramer’s approach, the generation time varies between 1.11s

(for 1 feature) to 23.43m (for 14 features).

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 108

Thouraya SBOUI Implementation, Evaluation&Discussion

5-1 Scalability evaluation results

Metrics
Approach Generation Time Adaptation Time
Kramer’s Approach [41] Min. Time=1.11s Min. Time=2.44s
Max. Time =23.43m Max. Time=63.72ms

Context interface
Sboui’s Approach [62,65] Min.Time=0.86s/Max.Time=13.05m Min. Time =2.03s
Main interface Max. Time =68.332ms

Min.Time=0.89/Max.Time=14.57m
Gabillon’s Approach [26] - -

5.4.2.2 Adaptation Time
This metric measures the time taken by an adaptation cycle. This time includes the time of a
new configuration + the time of recomposition of the new UI + the time of the generation of the
HTML source code. In our approach, to measure the adaptation time, we adapt the application
10 times to fetch the average time for these adaptations. The average time is equal to 2,83 s (for
1 feature) and to 68,332 ms (for 14 features). In Kramer’s approach, the adaptation time is equal
to 2,44s (for 1 feature) and to 63,72ms (for 14 features). At the runtime phase, Kramer’s
approach is more rapid. The reason is that the recomposition (at the runtime) is performed by
weaving/unweaving document and not by recomposing all feature artifacts as is the case of our

approach, which shows the limit of our approach.

5.4.3 The IBM CSUQ questionnaire Evaluation

5.4.3.1 The questionnaire (see appendix C)
The last evaluation is a qualitative evaluation, for that we sent an on-line questionnaire to 11

participants to evaluate their experience applying and using the Model through the two different

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 109

Thouraya SBOUI Implementation, Evaluation&Discussion

implementations. We relied on the IBM Computer Satisfaction Usability Questionnaire (CSUQ)I,
an empirically-validated 19-question questionnaire benefiting from a = 0.89 reliability coefficient
related to usability, thus meaning that answers provided by participants to this questionnaire
demonstrate a high correlation with the usability of the system being evaluated. Each IBM CSUQ
closed question was measured using a 7-point Likert scale (1=strongly disagree, 2=largely
disagree, 3=disagree, 4=neutral, 5=agree, 6=largely agree, 7=strongly agree) and was phrased

positively as follows:

1. Q1: Overall, I am satisfied with how easy it is to use this model.

2. Q2: It was simple to apply this model.

3. Q3: I can effectively complete my task applying this model.

4. Q4: I am able to complete my task quickly applying this model.

5. QS5: I'am able to efficiently complete my task applying this model.

6. Q6: I feel comfortable applying this model.

7. Q7: It was easy to learn applying this model.

8. Q8: I believe I became productive quickly applying this model.

9. Q9: The model provides me with structured guidance on how to fix problems.
10. Q10: Whenever I make a mistake using the model, I recover easily and quickly.

11. Q11: The information provided by the model and its accompanying method is clear.

! http://garyperlman.com/quest/quest.cgi

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 110

http://garyperlman.com/quest/quest.cgi

Thouraya SBOUI Implementation, Evaluation&Discussion

12. Q12: It is easy to find the information I needed.

13. Q13: The information provided for the model is easy to understand.

14. Q14: The information is effective in helping me complete the tasks and scenarios.

15. Q15: The organization of information on the model screens is clear.

16. Q16: The interface of this model is pleasant.

17. Q17: Ilike using the interface of this model.

18. Q18: This model has all the functions and capabilities I expect it to have.

19. Q19: I am satisfied in using this model.

5.4.3.2 The Results of the Questionnaire

Figure 5-11 graphically depicts the distribution of the answers provided by the participants on the
19 IBM CSUQ questions. Each cumulated horizontal histogram of Figure 5-1 could be
interpreted as follows: a score between 6 and 7 represented with dark green, is considered as
excellent; a score of 5, represented with light green, is considered as good; a score of 4,
represented with yellow, is considered as average, a score of 3, represented in orange, is
considered as poor ; ; and a score between 1 and 2, represented in red, is considered very bad. In
general, a score between ‘average’ and ‘excellent’ should not raise any particular concern
regarding this question, whereas a score between ‘poor’ and ‘very bad’ should raise some
discussion in order to investigate why this question has been depreciated so much. Figures 5-12
and 5-13 summarize the aggregated CSUQ sub-metrics reported in table 5-2. Each CSUQ
questionnaire involves the calculation of four quality metrics of the system being evaluated as

follows:

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 111

Thouraya SBOUI Implementation, Evaluation&Discussion

Table 5-2. Scores by CSUQ sub-metrics

Sub-metric Average Mediane Avg. Std. Deviation
Deviation
SysUse 6,47 6.5 0.84 6,5
InfoQual 4.79 6 1.05 0.8
Interqual 6,09 6 5 0.4
Overall 6 6.6 0.36 0.63

Q19
Q18
Q17
Qile
Q15
Q14
Qi3

Q12 M | S Disagree
Ql1l M| disagree
Q10
lam so so
Q9
| agree
Q8
WS Agree
Q7
Q6

Q5
Qs
a3
Q2
Ql

5-11. Distribution of participants’ answers to the IBM CSUQ questionnaire

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 112

Thouraya SBOUI Implementation, Evaluation&Discussion

8
7
6 - —h
5
e Max
4 el Min
3 === Average
2
1
0 T T T
SysUse InfoQual InterQual Overall

5-12. Aggregated scores by CSUQ sub-metrics (Min, Max, Average)

Average

up

3 down

2 median

SysUse InfoQual Interqual Overall

5-13. Aggregated scores by CSUQ sub-metrics(Average, Up, Down, Median)

Figure 5-11 suggests that the global subjective satisfaction of participants involved in the

experiment follows a positive trend since Q19 is interpreted positively by 11 users out of 11

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 113

Thouraya SBOUI Implementation, Evaluation&Discussion

(Q19, p =6, M =6, s = 0.63). The most positively evaluated sub-metric is certainly the system
usefulness (Q1- Q8, u = 6.47.M = 6.5,s =0.25) : all eight questions do not have any negative
answers, the average is the highest and the standard deviation is the smallest, thus suggesting that
respondents tend to agree that the whole system is very useful to them. Second comes the
interaction quality (Q16-Q18, u = 6.09, M = 6, s = 0.4): the average is considered high as well as
the median with small deviation. Next comes the information quality (Q9-Q15, u =4.79.M = 6,s
= 0.8) : some questions have negative answers, the average is lower with a more disperse
variance, thus indicating that there is no strong agreement among the respondents regarding to
this sub-metric. Question Q9 and Q11 raise a particular concern. They are the only questions
receiving strong disagreement. Q9 “The model provides me with structured guidance on how to
fix problems” indicates that the system does not guide enough the users to correct an error when
this latter is produced. Q11 “The information provided by the model and its accompanying
method is clear” indicates that the help messages are not clear and do not help the user

sufficiently.

The analysis of the CSUQ sub-metrics in Table 5-2 and Figures 5-12 and 5-13 evidences that
participants perceived as "useful" the model (u = 6.47,M = 6.5,s = 0.25) and said to be "Overall

satisfied" (u = 6,M = 6,5 = 0.63).

5.5 Conclusion

In this chapter, we presented the implementation of the design phase and the runtime phase of our
UI-DSPL approach. We highlighted the used tools and some developed prototypes. For
development, we, mainly, used shell scripts, the XML markup language and the XSLT
transformation Language. Prototypes was developed using shell scripts. The rest of tasks will be

done in future works. For evaluation, three main evaluation methods were used: an SPL-based

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 114

Thouraya SBOUI Implementation, Evaluation&Discussion

evaluation, a scalability evaluation and a qualitative/quantitative evaluation based on the
IBM/CSUQ questionnaire. In the next chapter, we conclude our dissertation and we give some

perspectives.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 115

Thouraya SBOUI Conclusion&Future works

Chapter 6. Conclusion & future works

6.1 Introduction

In this thesis, a DSPL approach for UI adaptation was presented. This chapter concludes the
thesis providing an overall summary in Section 6.2. In Section 6.3, we summarize the main
contributions of our work, and finally (Section 6.4), we discuss the work that will be done in the

future.

6.2 Thesis Summary

In the high proliferation of smart devices, and mobile applications, user requirements are always
changing. For that, using context-aware adaptive computing has become a necessity to adapt the
software to user’s needs. In this context, the use of Dynamic software product line (DSPL)
paradigm was increased. DSPL exploits the knowledge acquired in SPLE to develop a family of

systems that can be context-aware, post-deployment reconfigurable, or runtime adaptable.

Our dissertation is considered as a new contribution in the field of user interfaces adaptation. In
our thesis, we have proposed a UI-DSPL approach for the development of context-adaptable Uls.
Our approach includes a design phase and a runtime phase. The design phase was reserved for the
development of initial Uls while the runtime phase was reserved for the UI adaptation to the

context change.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 116

Thouraya SBOUI Conclusion&Future works

6.3 Thesis Contributions

Our thesis faces four main contributions. For contributions that have been fulfilled in the design
phase, we find: 1) the design and the implementation of a profiled context, 2) the combination of
DSPL and MBUID artifacts in order to ensure the abstraction and the reusability of the proposed
approach. For the challenges that have been fulfilled at the runtime phase, we find, 1) the
proposition of a design pattern that helps to design and develop a runtime adaptation mechanism
and 2) the implementation of the runtime adaptation mechanism. In the following, a brief

overview on these contributions:

6.3.1 The Design and the implementation of a Profiled context

Contrary to existing UI-DSPL approaches, in which authors dealt with platform adaptable Uls, in
our dissertation, we deal with interfaces adaptable to a profiled context. A profiled context is a
context which is manually entered by the end user (e.g. user preferences). To be generated, a
context Ul is configured, at the design phase, using its feature model. For configuration, we used
a default user preference. After that, we use CUI artifacts to implement the context variants and
generate the context interface. At the runtime phase, new context data (user-specific preferences)

are captured in order to adapt the desired interface according to the context.

6.3.2 Make the UI-DSPL approach more abstract and reusable

Another design phase contribution was the use of Model Based User Interface Design models to
implement context and Ul features. The use of models, instead of, components, aspect or any
other implementation technology ensures the abstraction and the reuse of the UI-DSPL approach.

As MBUID model, we opted for the concrete user interface model (CUI model). This later

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 117

Thouraya SBOUI Conclusion&Future works

describes the Ul in terms of concrete interactors (e.g. widget, container, and layout). The feature

mapping was realized manually by matching a CUI model fragment to each feature.

6.3.3 A design pattern for the runtime adaptation mechanism

This challenge was intended for the runtime phase. The runtime adaptation model defines the
adaptation concepts, the relation between them and will serve as a design pattern aiming to

facilitate the design and the development of the runtime adaptation mechanism.

6.3.4 A runtime adaptation mechanism to adapt user interfaces

The second runtime challenge is the adaptation engine. This later is responsible of the
reconfiguration and the recomposition of the user interface at the runtime. For the mechanism
components, we find the context acquisition component which acquires the context data, the
adaptation script, responsible of the Ul reconfiguration and recomposition according to context

data and the Ul generator, responsible of the generation of the adapted Ul source code.

6.4 Future works

Even if the results obtained from this research are relevant, there are still several areas that have
to be further developed. In the following paragraphs we discuss some of these areas as well as

some future works that could lead to further improvements in the DSPL approach.

The work realized in the context of this dissertation can be continued and several areas are still
open for improvement. Below, we present some of the works that would further improve our

approach in the short term:

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 118

Thouraya SBOUI Conclusion&Future works

6.4.1 Short-term perspectives

Perspective 1: Optimization of the runtime UI Recomposition algorithm: a first task that can
be optimized in future works is the UI re-composition. This process is used at the design phase to
compose initial Uls and at the runtime phase to recompose the adapted Uls. The recomposition

consists in merging the CUI model artifacts corresponding to the selected features.

Using the same recomposition algorithm at both phases seems useful. However, at the runtime
phase, there is a slight difference in Ul recomposition. If we have to adapt one part of the UI, the
used recomposition algorithm doesn’t seem to be the best solution. Because if we apply the
design phase composition algorithm at the runtime phase, UI parts that don’t need adaptation will
be recomposed and consequently lose their values. So, the best solution will be to recompose

only UI parts which need adaptation.

Perspective 2: Optimization of the runtime configuration: At the runtime, when looking for a
new configuration, the reconfiguration algorithm missed to verify constraints conflicts. So, in
order to optimize the runtime reconfiguration algorithm, this later has to consider the resolution

of constraint conflicts.

Perspective 3: use another evaluation method to evaluate our approach (see appendix B).
This evaluation will be performed by designers/developers. We are invited to answer to certain
number of questions [29]. After that and following the result of the questionnaire, we can detect

the gaps and fill them in our future work.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 119

Thouraya SBOUI Conclusion&Future works

6.4.2 Long-term perspectives

Perspective 1: cloud architecture

To facilitate the modification of our approach and its extension, we propose a cloud computing
architecture. The use of cloud architecture will ensure many advantages for the back side
(experts/developers) and the front side (the final user). As described in figure 6-1, the cloud is
shared by UI experts, SPL experts and the final user. On the one hand, SPL expert with the
collaboration of UI expert can use the SPL Integrated Development Environment (IDE), UI
sketching tool and any other useful environment for the development of UI-SPL process without
worrying about storage or other issues. At the backend, the UI-SPL implementation environment
(Eclipse IDE) needs mechanisms such as composers and solvers. At the frontend and at the
runtime phase, if the final user has particular preferences, he applies them through his interface.
An Application Programming Interface (API) communicates these changes to an adaptation
engine that will trigger an adaptation process. This process will need mechanisms used by the
Eclipse IDE (e.g.: composer, solvers) and resources resulted from the design time process (e.g.:

UlI, features models, configurations, assets and adaptation rules).

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 120

Thouraya SBOUI Conclusion&Future works

Legend
—> OQutput Flow R
7 Input Flow T
- eloper/Paas Account
‘ Sources
Running Ul

Context
Data

2

SCRIPT

Final User/Sad

Figure 6-1 A cloud architecture

To conclude, the benefits of using cloud architecture can be summarized as follows:

e The sharing of development environment between Ul expert and SPL expert/developers;

e The sharing of data storages and mechanisms (i.e: composer) between developers and final

user SPL;
e The sharing of the adaptation engine between users of the running interface;
e The lightness of cloud-users;

e The Scalability of the application if we want to extend the application by adding additional

functionalities or other contributors;

e The Reduction of application development and application adaptation cost.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 121

Appendix

Appendix A

The XSLT File of the Generation of the Search Interface

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl=""http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs=""http://www.w3.0rg/2001/XMLSchema'" xmlns:fn="http://www.w3.0org/2005/xpath-functions''>

<!--

<xsl:output method="html" indent=""yes"'/>

<xsl:template match=""/"">

<xsl:param name=""filel" select='"document('restaurants.xml')''/>
<xsl:result-document href="index.html"'' >-->

<html>

<head>

<link rel=""stylesheet' type='"text/css' href="css/thouraya.css'/>
</head>

<body>

<script src=""js/Thouraya.js''/>

<div data-role="header'>

<h1> Cherchez un restaurant </h1>
<a href=""preference.php'' data-icon=""gear'" class="'"ui-btn-right'' data-

transition="'"fade'' >Préférences

</div>

<div data-role='""main' class='"ui-content''>
<input type=""text" placeholder=""Spécialité" id=""myInputName"

onkeyup=""myFunctionName()''/>

<input type='text" placeholder="Entrez votre Adresse, Ville, Code Postal"

id="myInputAdd" onkeyup="myFunctionAdd()"/>

</div>

<table id=""myTable''>

<xsl:for-each select=""$filel//restaurant''>

<tr>

<td>

<xsl:value-of select="'@name''/>

<xsl:value-of select="'@address''/>

</td>

</tr>

</xsl:for-each>

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 122

</table>

</body>
</html>
<!-- </xsl:result-document>-->
</xsl:template>
</xsl:stylesheet>

Appendix

The correspondent search Ul

Cherchez un restau.. Préférences

Spécialité
Seattle, Washington, Etats-Unis

Search

Pan Africa Market

1521 1st Ave, Seattle, WA distance 0.42 Mile

Buddha Thai and Bar
2222 2nd Ave, Seattle, WA distance 0.77 Mile

The Melting Pot
14 Mercer St, Seattle, WA distance 1.7 Mile

A UI-DSPL Approach for the Development of Context-Adaptable Uls

Page 123

Appendix

Appendix B

The NASA-TLX Questionnaire [29]

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method asses5es
work load on five 7point scales. Increments of high, medivm and low
estimates for each poimt result in 27 gradations on the scales.

Mame Task Date

Mental Demand How mentally demanding was the task?
Y I A | | T T I A |
Vory Low Very High

Physical Demand How physically demanding was the task?
I I I I | [I I
Viery Low Very High

Temporal Demand How hurried or rushed was the pace of the task?
A I I A | A I I I
Wery Low Viery High

Performance How successful were you in accomplishing what

you were asked to do?

Parfact Failura

Effort How hard did you have to work to accomplish
your level of performance?

Very Low Vary High

Frustration How insecure, discouraged. imitated, stressad,
and annoyed werayou?

Very Low Very High

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 124

Appendix

Appendix C

The IBM CSUQ Questionnaire

Veuillez évaluer la facilite d utilisation.

» Essayer de répondrs 2 fous les énoness.
= Pour les énoneds qui ne 'zppliguent pas, répondez - NA

= Aszurez-vous que les champs survants sont remplis: Systéme: Envoyer a:

» Faifes un commentaire spécifique 2 un énoncé en cliguant sur cet [icone, ou faites afficher une boite de commentaires qui 5" appliguent 2 fous les énoneés en cliguant sur le bouten Commentaires.
= Pour sowmetire vos répenses, cliques sur : Soumettre

Syztéme: I:l Envoyer a:

Vous &tes mites 3 fame des commentaires et 3 inscrire voire adresse électronigque dans ['sspace réserve 2 cette fin.

o

Soumngitre || Commentaires

12343267 NA
1. En général, je suis satisfait(z) de 1z facilitd d'urilization de c2 syetéma 3 Dol © © 0 @ © © © Accord ©
2.Ce systéme est simple 3 utiliser 3 Désacoard © 0 O @ Arcord
3.Ta1 compléts men travail comectement en utilisant ce systeme 3 Desmcord 0 O 0 @ Arcord
4. T2l ét2 en mesure de compléter rapidement ma tacha avec ce systéme 3 Désxccard 0 © O © Arrord
3.7 a complets men travail efficacement en utilisant ce syztéme 3 Désxccard 0 © O © Arcord
. Jo me sans 2 'atze avec casystama 0 Désacoord @ © © © © © © Accord
7.1 a1 en de la factlite 3 apprandre comment uhlizer ce systemea 0 Dixcord @ O @ @ © O O Accord
3. Je crots atre devenu(s) rapidement efficare en uhilisant ca systémes 3 Disoccord © © © © © © O Accord
Q La: meszazes d erreur présentss par ce svetéme m' mdiquent clatrameant comment résoudrs les problémes 0 Deccod 0 O O © Arcord
10 Larsgue)2t fais une erreur J utihsztion sur ce svetéme, 1l m'a &té facile of rapide de |z comzer 3 Deccod 0 0 O © Arcord
11. Las cutils d'aide disponiblas sur ez systéma (tels que I'aidz en ligne, les messages 4 I'éeran et autres informations) sont utiles @ Dészccerd © 0 0 O Arcord
12. T ai faeilement troumé 1 information que je cherchzis O Dol 0 0 O © @ Arcord @
13 L'information fournie avee o2 systéme est facile 3 comprandre 0 Dol @ 0 @ @ © O O Aword @
14 L'information dispenible sur ce systéme contribus 2 me soutent dans 1a rézlisation des tiches et des scénarics [Diccord @ © © @ © O O Accord @
13. L' crgamization de I'information dans les écrans du svstéme est clare 3 Désacoord @ © @ © © © © Accord @
16. L' mntarface da ce svstame est agréable 3 Désaccord @ © © © © @ © Accord @
17. 1" aime uhlizer | interface de ce systame 0 Désacoard @ © © © © O © Accord @
13. Ca systeme possada toutes les fonchions et le petentiel comrespendant 2 mes attantes 3 Diaacoord @ © @ @ © O © Accord @
19 En géneral, je suis sahisfait(z) de ce systéma 3 Dasacoard Accord O

1234567 N

Inscrivez les principaux aspects negatifs:

oadl o

Inscrivez les principaux aspects positifs:

b bl =

[Soumste) ommeriares

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 125

(1]

(2]

(5]

(8]

Bibliography

Bibliography

Abrahdo, S., Iborra, E., Vanderdonckt, J.:Usability Evaluation of User Interfaces
Generatedwith a Model-Driven Architecture Tool.In:MaturingUsability: Quality in
Software, Interaction and Value, Law, E., Hvannberg, E., and Cockton, G. (eds.),
Chapter 1. HCI Series, Vol. 10, Springer, London, pp. 3-32.
DOI=http://dx.doi.org/10.1007/978-1-84628-941-5_1, 2008.

Acher, M., Collet, P., Lahire, P., France, R.B.: Familiar: A domain-specific language for
large scale management of feature models. Science of Computer Programming 78(6), pp.
657-681. DOI=https://doi.org/10.1016/j.scic0.2012.12.004, June 2013

Akiki P. A., Bandara A. K. and Yu, Y. (20. Adaptive model-driven user interface
development systems. ACM Computing Surveys, 47(1), 2015.

Apel, S., & Kistner, C. An overview of feature-oriented software development. Journal
of Object Technology, 8(5), 49-84, 2009.

Apel S., Kastner C., Liebig J., FeatureHouse: Language-Independent, Automated
Software Composition, available at: http://www.infosun.fim.uni-passau.de/spl/apel/th

Arboleda, H., Romero, A., Casallas, R., Royer, J.C.: Product Derivation in a Model-
Driven Software Product Line using Decision Models. In: Memorias de la XII
Conferencialberoamericana de Software Engineering (CIbSE’2009, Medellin,pp.59-

72.Accessible at http://ai2-s2-
pdfs.s3.amazonaws.com/57ae/634647fcf7e610df3d106eb2a3cd0f152733.pdf , April
20009.

Bacikova M., Poruban J., Analyzing stereotypes of creating graphical user interfaces,
Central European Journal of Computer Science vol. 2 num. 3, pp. 300-315, 2012

Batory, D. Feature models, grammars, and propositional formulas, in H. Obbink and K.
Pohl (eds), Software Product Lines, Vol. 3714 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 7-2, 2015.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 126

http://www.infosun.fim.uni-passau.de/spl/apel/fh
http://ai2-s2-pdfs.s3.amazonaws.com/57ae/634647fcf7e610df3d106eb2a3cd0f152733.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/57ae/634647fcf7e610df3d106eb2a3cd0f152733.pdf

Bibliography

[9] Benavides, D., Segura, S. and Ruiz-Cort’es, A. Automated analysis of feature models 20
years later: A literature review, Inf. Syst. 35: 615-636, 2010.

[10] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Vanderdonckt, J.: Computer-Aided
Window Identification in TRIDENT. In: Proc. of 5™IFIP TC 13 Int. Conf. on Human-
Computer Interaction INTERACT'95 (Lillehammer, 27-29 June 1995), K. Nordbyn, P.H.
Helmersen, D.J. Gilmore, S.A. Arnesen (Eds.). Chapman & Hall, London, 1995, pp. 331-
336.

[11]Boucher, Q., Perrouin, G., Heymans, P.: Deriving configuration interfaces from feature
models: A vision paper. In: Proceedings of the 6"International Workshop on Variability
Modeling of Software-Intensive Systems (VaMOS’2012, Leipzig). ACM Press, New
York, 2012, pp. 37-44. DOI=https://doi.org/10.1145/2110147.2110152, January 2012.

[12] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J. :
AUnifying Reference Framework for Multi-Target User Interfaces.Interactingwith
Computers 15(3), June 2003, pp. 289-308.

[13] Cantera Fonseca, J.M. (Ed.), Gonzalez Calleros, J.M., Meixner, G., Paterno, F.,
Pullmann, J., Raggett, D. Schwabe, J. Vanderdonckt, Model-Based UI XG Final Report,
W3C Incubator Group Report, Accessible at http://www.w3.0org/2005/Incubator/model-
based-ui/XGR-mbui-20100504/, May 2010.

[14] Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview of
Dynamic Software Product Line architectures and techniques: Observations from

research and industry. Journal of Systems and Software 91, pp. 3-23.
DOI=https://doi.org/10.1016/.jss.2013.12.038, May 2014.

[15] Capilla, R., Bosch, J.: Dynamic Variability Management Supporting Operational Modes
of a Power Plant Product Line. In: Proceedings of the 6™International Workshop on
Variability Modeling of Software-Intensive Systems (VaMOS’2012, Leipzig, January
25-217, 2012). ACM Press, New York, 2012, pp- 49-56.
DOI=https://doi.org/10.1145/2866614.2866621

[16] Cerny, T., Cemus, K., Donahoo, M. J., & Song, E. Aspect-driven, data-reflective and
context-aware user interface, 2013.

[17] Clements, P., Northrop, L.: Software Product Lines. Addison-Wesley, Boston, 2002.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 127

http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/

Bibliography

[18] Common Variability Language, omgwiki.org, retrieved November 2, 2016 from
http://www.omgwiki.org/variability/doku.php?id=cvl_tool_from_sintef

[19] Czarnecki K., “Overview of generative software development”, In Unconventional
Programming Paradigms (pp. 326-341). Springer Berlin Heidelberg. 2005.

[20] Czarnecki K. , Kim C. H. P., “Cardinality-based feature modeling and constraints: A
progress report”. In International Workshop on Software Factories (pp. 16-20), october
2005

[21] Eclipse Modeling Framework, available at: http://www.eclipse.org/modeling/emf

[22] Eleutério, J. D. A. S., & Rubira, C. M. F. A Comparative Study of Dynamic Software
Product Line Solutions for Building Self-Adaptive Systems, 2017

[23] Feature Modeling Plug-in, Generative Software Development Lab. Retrieved November
16, 2016, from http://gsd.uwaterloo.ca/fmp

[24] Feigenspan, J., K astner, C., Frisch, M., Dachselt, R. and Apel, S. Visual support for
understanding product lines, Proceedings of the 2010 IEEE 18th International
Conference on Program Comprehension, ICPC ’10, IEEE Computer Society,
Washington, DC, USA, pp. 34-35, 2010.

[25] Fleury, M., Reverbel, F: The JBoss extensible server. In: Proceedings of Middleware,
Markus Endler and Douglas Schmidt (Eds.). Lecture Notes in Computer Science, Vol.
2672. Springer,Berlin, 2003, pp. 344-373. DOI=http://dx.doi.org/10.1007/3-540-44892-
6_18, 2003.

[26] Gabillon, Y., Biri, N., Otjacques, B.: Designing an adaptive user interface according to
software product line engineering. In: Proceedings of 8"International Conference on
Advances in Computer-Human Interactions(ACHI’2015, Lisbon, February 22-27, 2015).
International Academy, Research, and Industry Association (IARIA), 2015, pp. 86-91.
Accessible at

[271Gajos, K. Z., Weld, D. S., & Wobbrock, J. O. Automatically generating personalized user
interfaces with Supple. Artificial Intelligence, 174(12-13), 910-950. 2010.

[28] Garcés, K., Parra, C., Arboleda, H., Yie, A.,Casallas, R.: Variability management in a
model-driven software product line.AvancesenSistemas e Informatica4(2),2007.
Accessible at http://www.bdigital.unal.edu.co/15155/

[29] Gawron V. J., Human Performance Measures Handbook, “Nasa TLX questionnaire”,
available at: http://theses.univ
lyon2.fr/documents/getpart.php?1d=lyon2.2010.maincent_a&part=365749, 2000

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 128

http://www.omgwiki.org/variability/doku.php?id=cvl_tool_from_sintef
http://www.eclipse.org/modeling/emf
http://gsd.uwaterloo.ca/fmp
http://www.bdigital.unal.edu.co/15155/
http://theses.univ/

Bibliography

[30] Genaro Motti, V., Vanderdonckt, J.: A Computational Framework for Context-aware
Adaptation of User Interfaces: In: Proceedings of 7"Int. Conf. on Research Challenges in
Information Science (RCIS’2013, Paris, May 29-31, 2013). IEEE Computer Society, Los
Angeles, 2013, pp. 1-12.

[31] Gomaa, H., Hussein, M.: Dynamic software reconfiguration in software product
families. In: Proceedings of International Workshop on Software Product-Family
Engineering (PFE’2003, Siena, November 4-6, 2003). Lecture Notes in Computer
Science, vol. 3014.Springer, Berlin, 2003, pp- 435-444.
DOI=http://dx.doi.org/10.1007/978-3-540-24667-1_33

[32] Gonzalez Calleros J. M., Meixner G., Paterno F., Pullmann J., Raggett D., Schwabe D.,
Vanderdonckt J., “Model-Based Ul XG Final Report”, May 2010, available at:
https://www.w3.0rg/2005/Incubator/model-based-ui/X GR-mbui-20100504/

[33] Grislin M., Kolski C., «Evaluation des interfaces homme-machine lors du
développement de systeéme interactif ». Technique et Science Informatiques TSI, 3, pp.
265-296, 1996.

[34] Guerrero, J., Vanderdonckt, J., Gonzalez, J.:FlowiXML: a Step towards Designing
Workflow Management Systems.Int. Journal of Web Engineering and Technology4(2),
2008, pp. 163-182. DOI=https://doi.org/10.1504/IJWET.2008.018096

[35] Hariri, M-A., Lepreux, S., Tabary, D., Kolski, C.. : Principes et étude de cas d'adaptation
d’IHM dans les SI en fonction du contexte d'interaction de l'utilisateur. Ingénierie des
Systemes d'Information (ISI), Networking and Information Systems, 14, pp. 141--162
(2009)

[36] Heidenreich F., FeatureMapper mapping features to models, available at:
http://featuremapper.org, lastupdate, September 2013.

[37] Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M., Coyette, A.,
Vanderdonckt, J.: Human-Centered Engineering with the User Interface Markup
Language.In: Human-Centered Software Engineering, Seffah, A., Vanderdonckt, J.,
Desmarais, M. (eds.), Chapter 7. HCI Series, Springer, London, 2009, pp. 141-173.
DOI=http://dx.doi.org/10.1007/978-1-84800-907-3_7

[38] Hubaux, A., Acher, M., Tun, T.T., Heymans, P., Collet, P.,Lahire, P.: Separating
concerns in feature models: Retrospective and support for multi-views. In: Domain
Engineering:Product Lines, Languages, and Conceptual Models, Reinhartz-Berger, I.,

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 129

https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://featuremapper.org/

Bibliography

Sturm, A., Clark, T., Cohen, S., Bettin, J. (Eds.). Springer, Berlin, 2013, pp. 3-28.
DOI=http://dx.doi.org/10.1007/978-3-642-36654-3_1

[39] Kastner, C., Apel, S. and Kuhlemann, M. (2009). A model of refactoring physically and
virtually separated features, Proceedings of the Eighth International Conference on
Generative Programming and Component Engineering, GPCE °09, ACM, New York,
NY, USA, pp. 157-166

[40] Kramer, D.M.: Unified GUI adaptation in dynamic software product lines. Doctoral
dissertation, University of West London, London, August 2005. Accessible at
http://repository.uwl.ac.uk/1270/

[41] Kramer, D., Oussena, S., Komisarczuk, Clark, T.: Using document-oriented GUIs in
dynamic software product lines. ACM SIGPLAN Notices 49(3), March 2014, pp. 85-94.
DOI=https://doi.org/10.1145/2637365.2517214

[42] Logre, 1., Mosser, S., Collet, P., Riveilli, M.: Sensor data visualisation : a composition-
based approach to support domain variability. In: Proceedings of the 10™ European
Conference on Modelling Foundations and Applications (ECMFA’2014, York, July 21-
25, 2014). Lecture Notes in Computer Science, Volume 8569. Springer, Berlin, 2014, pp.
101-116. DOI=https://doi.org/10.1007/978-3-319-09195-2_7

[43] Lopez-Jaquero, V., Vanderdonckt, J., Montero, F., & Gonzalez, P. (2008). Towards an
Extended Model of User Interface Adaptation: The I satine Framework. In Engineering
Interactive Systems (pp. 374-392). Springer, Berlin, Heidelberg.

[44] Lutteroth C., Weber G., Modular Specification of GUI Layout Using Constraints. In:
Proceedings of the 19th Australian Conference on Software Engineering. Washington,
DC, USA : IEEE Comp. Soc., 2008, pp. 300-309

[45] Meixner, G., Paterno, F., & Vanderdonckt, J. Past, present, and future of model-based
user interface development. i-com 10 (3): 2-11, 2011.

[46] Mezhoudi N., 2013. User interface adaptation based on user feedback and machine
learning. In Proceedings of the companion publication of the 2013 international
conference on Intelligent user interfaces companion (IUI '13 Companion). ACM, New
York, NY, USA, 25-28. DOI=10.1145/2451176.2451184 http://doi.acm.org/10.1145
/2451176.2451184

[47] Mostefaoui, G. K., Pasquier-Rocha, J. & Brezillon, P. 2004. Context-aware computing: a
guide for the pervasive computing community. IEEE/ACS International Conference on
Pervasive Services. IEEE Computer Society, Lebanon, 39—48.

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 130

http://doi.acm.org/10.1145%20/2451176.2451184
http://doi.acm.org/10.1145%20/2451176.2451184

Bibliography

[48] Muller, J.: Generating graphical user interfaces for software product lines: A constraint-
based approach. In: Alt et al. (Eds.), Tagungsband 15.
InteruniversitdresDoktorandenseminarWirtschaftsinformatik der Universitidten Chemnitz,
Dresden, Freiberg, Halle-Wittenberg, Jena und Leipzig, Leipzig,2011, pp. 64-71.
Accessible at
https://pdfs.semanticscholar.org/186d/7f0907852cbaat798513eal f2e347a63b342.pdf

[49] Object Management Group, IFML: the Interaction Flow Modeling Language,
2015.Accessible at: http://www.ifml.org/

[50] Object Management Group, Query/View/Transformation. Accessible
at http://www.omg.org/spec/QVT/

[51] Parra, C. (2011). Towards dynamic software product lines: Unifying design and runtime
adaptations (Doctoral dissertation, INRIA Lille).

[52] Paterno, F., Santoro, C., Spano, L.D.: Concur Task Trees (CTT). Accessible at:
https://www.w3.0rg/2012/02/ctt/, 2012

[53] Pleuss, A., Hauptmann, B., Dhungana, D., Botterweck, G.: User interface engineering
for software product lines: the dilemma between automation and usability.
In: Proceedings of the 4"ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS’2012, Copenhagen, June 25-26, 2012). ACM Press, New
York, 2012, pp. 25-34. DOI=https://doi.org/10.1145/2305484.2305491

[54] Pleuss, A., Hauptmann, B., Keunecke, M., Botterweck, G.: A case study on variability in
user interfaces.In: Proceedings of the 16" International Software Product Line Conference
(SPLC’2012, Salvador, September 2-7, 2012), volume 1. ACM Press, New York, 2012,
pp- 6—10. DOI=https://doi.org/10.1145/2362536.2362542

[55] Pleuss, A., Wollny, S., Botterweck, G.: Model-driven development and evolution of
customized user interfaces. In: Proceedings of the 5th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS’2013, London, June 24-27, 2013).
ACM Press, New York, 2013, pp. 13-22. DOI=https://doi.org/10.1145/2494603.2480298

[56] Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering. Springer,
Berlin, 2005.

[57] Pure systems, pure-systems.Com, retrieved Octobe 22, from https://www.pure-
systems.com/products/pure-variants-9.html

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 131

https://pdfs.semanticscholar.org/186d/7f0907852cbaaf798513ea1f2e347a63b342.pdf
http://www.omg.org/
http://www.ifml.org/
http://www.omg.org/spec/QVT/
https://www.pure-systems.com/products/pure-variants-9.html
https://www.pure-systems.com/products/pure-variants-9.html

Bibliography

[58] Quinton, C., Mosser, S., Parra, C., Duchien, L.: Using Multiple Feature Models to
Design Applications for Mobile Phones. In: Proceedings of the 15"International
Software Product Line Conference (SPLC’2011, Munich, August 21-26, 2011), vol. 2,
article No. 23. ACM Press, New York, 2011.
DOI=https://doi.org/10.1145/2019136.2019162

[59] Rosenmiiller, M., Siegmund, N., Pukall, M., Apel, S.: Tailoring dynamic software
product lines. ACM SIGPLAN Notices 47(3), March 2012, pp. 3-12.
DOI=https://doi.org/10.1145/2189751.2047866

[60] Samaan, K., Tarpin-Bernard, F.: Task models and Interaction models in a Multiple User
Interfaces generation process. In Proceedings of 3rd International Workshop on TAsk
MOdels andDIAgrams for user interface design TAMODIA2004. Prague, Check
Republic, November, ACM, pp. 137-144(2004)

[61] Sboui, T., & Ayed, M. B. Generative Software Development Techniques of User
Interface: Survey and Open Issues. International Journal of Computer Science and
Information Security, 14(7), 824, 2016

[62] Sboui T., A DSPL approach for the development of context-adaptable user interfaces,
RCIS conference, 2017

[63] Sboui, T., Ben Ayed, M., Alimi, M. A., A Meta-model for Run Time Adaptation in a
UI-DSPL process, BHCI conference, 2017

[64] Sboui, T., Ayed, M. B., & Alimi, A. M. (2017). Addressing Context-Awareness in User
Interface Software Product Lines (UI-SPL) Approaches. In Human Centered Software
Product Lines (pp. 131-152). Springer, Cham.

[65] Sboui, Thouraya, Mounir Ben Ayed, and Adel M. Alimi. "A UI-DSPL approach for the
development of Context-adaptable user interfaces." IEEE Access 2017.

[66] Schlee, M., Vanderdonckt, J.: Generative Programming of Graphical User Interfaces. In:
Proc. of 7th Int. Working Conference on Advanced Visual Interfaces (AVI2004,
Gallipoli, May 25-28, 2004). ACM Press, New York, 2004, pp. 403-406.
DOI=https://doi.org/10.1145/989863.989936

[67] Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2), February 2006, pp.
25-31. DOI=https://doi.org/10.1109/MC.2006.58

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 132

http://hci2017.bcs.org/wp-content/uploads/BHCI_2017_paper_102.pdf
http://hci2017.bcs.org/wp-content/uploads/BHCI_2017_paper_102.pdf

Bibliography

[68] Software Product Lines Online Tools, splot-research.org. retrieved October 22, 2016,
from http://www.splot-research.org/

[69] Software&SystemsProcessEngineering Metamodel™ Specification, available at:
http://www.omg.org/spec/SPEM/2.0/

[70] Sottet, JS., Calvary, G., Favre, JM.: Mapping Model: A First Step to Ensure Usability
for sustaining User Interface Plasticity. In: Proceedings of the MoDELS’06 Workshop on
Model Driven Development of Advanced User Interfaces (2006)

[71] Sottet, J.S., Vagner, A., GarciaFrey, A.: Model Transformation Configuration and
Variability Management for User Interface Design. In: Proceedings of 3™International
Conference on Model-Driven Engineering and Software = Development
(MODELSWARD’2015, Angers, February 9-11, 2015). Communications in Computer
and Information Science, vol. 580. Springer, Berlin, 2015, pp. 390-404.
DOI=http://dx.doi.org/10.1007/978-3-319-27869-8_23

[72] Thiim, T., Kistner, C., Benduhn, F., Meinicke, J., Saake, G., & Leich, T. (2014).
FeaturelDE: An extensible framework for feature-oriented software
development. Science of Computer Programming, 79, 70-85.

[73] Ubayashi, N., Nakajima, S.: Separation of Context Concerns— Applying Aspect
Orientation to VDM. In Talk at the 2™ Overture Workshop, FM, Vol. 6, 2006.
Accessible at https://www.yumpu.com/en/document/view/27958389/applying-aspect-
orientation-to-vdm-wiki

[74] UsiXML User Interface eXtensible Markup Language:
http://www.w3.0rg/2005/Incubator/model-basedui/wiki/UsiXML

[75] Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of
Information Systems. In: Proc. of 17"Conf. on Advanced Information Systems
Engineering CAiSE'05 (Porto, 13-17 June 2005).0. Pastor & J. Falcao e Cunha (Eds.).
Lecture Notes in Computer Science, Vol. 3520. Springer, Berlin, 2005, pp. 16-31.

[76] Voelter, M. and Groher, 1. (2007). Product line implementation using aspect-oriented
and model-driven software development, Proceedings of the 11th International Software
Product Line Conference, SPLC ’07, IEEE Computer Society, Washington, DC, USA,
pp. 233-242

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 133

http://www.splot-research.org/
http://www.omg.org/spec/SPEM/2.0/
https://www.yumpu.com/en/document/view/27958389/applying-aspect-orientation-to-vdm-wiki
https://www.yumpu.com/en/document/view/27958389/applying-aspect-orientation-to-vdm-wiki
http://www.w3.org/2005/Incubator/model-basedui/wiki/UsiXML

Bibliography

[77] XSLT Stylesheets Useful things and other jokes, available at:
http://web.archive.org/web/20160809092524/http://www?2.informatik.hu-
berlin.de/~obecker/XSLT/, 2002

A UI-DSPL Approach for the Development of Context-Adaptable Uls Page 134

http://web.archive.org/web/20160809092524/http:/www2.informatik.hu-berlin.de/~obecker/XSLT/
http://web.archive.org/web/20160809092524/http:/www2.informatik.hu-berlin.de/~obecker/XSLT/

Doctoral School of Sciences and

Tunisian Republic Technologies
Ministry of Higher Education and Scientific Q
Research /a S PhD Thesis
—_— EL':E Computer Systems Engineering
University of Sfax
High School of Engineering of Sfax N° d’ordre: 200?— ?2?nn nn

A UI-DSPL Approach for the Development of
Context-adaptables User Interfaces

Thouraya SBOUI

e bad aladiu) &b i AV Gl o Sleal) G Jlae 3 530 aale da g kY o a6 ;dwaddd)
s ya ool po Sl Lilatie bad (el addiusall 5 laiil Lapad dacas Clgal (e dlile 2l gl Sualin
() iy ani candill Caullud D0 aladiul &5 cedll 138 Gaily |y) 8 334kl 5 4 gea gall Claalusall (10 de sana

IBM CSUQ, Ol (N iy (Agd i g ¢ o shaill 4118 a2 Y o g sl

Résumé : Cette thése présente un nouvel apport dans le domaine de I'adaptation des
interfaces Homme-Machine. Dans la présente, on utilise une ligne de produits dynamique pour
la génération d’une famille d’interfaces adaptées aux préférences de I'utilisateur. Notre ligne de
produit dynamique renferme deux phases, une phase de conception dédiée au développement
des interfaces initiales et une phase d’exécution réservée a I'adaptation de l'interface. Chaque
phase de notre approche définit un ensemble de contributions qui sont décrites et
implémentées au sein du rapport. Pour valider 'approche, trois méthodes d’évaluation ont été
utilisées, une évaluation basée sur un scénario SPL, une scalability-évaluation et une derniéere
évaluation basée sur le questionnaire IBM CSUQ.

Abstract: This thesis presents a new contribution in the field of the adaptation of human-
machine interfaces. Here, a dynamic product line is used to generate a family of interfaces
tailored to the user's preferences. Our dynamic product line includes two phases, a design
phase dedicated to the development of the initial interfaces and an execution phase dedicated
to the adaptation of the interface. Each phase of our approach defines a set of contributions
that are described and implemented within the report. To validate the approach, three
evaluation methods were used, an evaluation based on an SPL scenario, a scalability-evaluation
and a final evaluation based on the IBM CSUQ questionnaire.

Sl z) lad) aadiuall dgal 5 (o) Sl Cava (oSl 3 iilial)
Mots clés: Adaptation au contexte, approche DSPL, adaptation de I'interface utilisateur.

Key-words: Context-adaptation, DSPL approach, Ul Adaptation

