
HAL Id: tel-01963693
https://hal.science/tel-01963693v1

Submitted on 21 Dec 2018 (v1), last revised 9 May 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Programming Models for Conceptual
Clustering: Application to an ERP Configuration

Problem
Maxime Chabert

To cite this version:
Maxime Chabert. Constraint Programming Models for Conceptual Clustering: Application to an
ERP Configuration Problem. Computer Science [cs]. Université de Lyon - INSA Lyon, 2018. English.
�NNT : �. �tel-01963693v1�

https://hal.science/tel-01963693v1
https://hal.archives-ouvertes.fr

N° d’ordre : 2018LYSEI118
THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON

opérée au sein de l’insa de Lyon

École doctorale no 512
InfoMaths

Spécialité de doctorat :
Informatique

Soutenue publiquement le 18/12/2018, par

Maxime Chabert

Constraint Programming Models for
Conceptual Clustering : Application to an

ERP Configuration Problem

Devant le jury composé de :

Mme Thi-Bich-Hanh Dao Maître de Conférences HDR Université d’Orléans Rapporteur
M. Christian Bessière Directeur de Recherche CNRS Rapporteur
Mme Élisa Fromont Professeure des Universités Université de Rennes 1 Examinatrice
Mme Valérie Botta-Genoulaz Professeure des Universités INSA-LYON Examinatrice
M. Christian Schulte Professeur des Universités KTH Royal Institute of Technology Examinateur
Mme Christine Solnon Professeure des Universités INSA-LYON Directrice de thèse
M. Pierre-Antoine Champin Maître de Conférences HDR Université Claude Bernard Lyon 1 Co-directeur de thèse
Mme Amélie Cordier Maître de Conférences Hoomano Co-directeur de thèse
M. Justinian Oprescu Docteur en Informatique Infologic Invité

Département FEDORA - INSA Lyon - Écoles doctorales
Quinquennal 2016 - 2020

SIGLE ÉCOLE DOCTORALE NOM ET COORD. RESPONSABLE
Chimie CHIMIE DE LYON

http://www.edchimie-lyon.fr
Sec. : Renée El Melhem
Bât. Blaise Pascal, 3e étage
secretariat@edchimie-lyon.fr
insa : R. Gourdon

M. Stéphane Daniele
Institut de recherches sur la catalyse et l’environnement de
Lyon
ircelyon-umr 5256
Équipe cdfa
2 Avenue Albert Einstein
69 626 Villeurbanne cedex
directeur@edchimie-lyon.fr

E.E.A ÉLECTRONIQUE, ÉLECTROTECHNIQUE,
AUTOMATIQUE
http://edeea.ec-lyon.fr
Sec. : M.C. Havgoudoukian
ecole-doctorale.eea@ec-lyon.fr

M. Gérard Scorletti
École Centrale de Lyon
36 Avenue Guy de Collongue
69 134 Écully
T 04.72.18.60.97 v 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,
MICROBIOLOGIE, MODÉLISATION
http://e2m2.universite-lyon.fr
Sec. : Sylvie Roberjot
Bât. Atrium, ucb Lyon 1
T 04.72.44.83.62
insa : H. Charles
secretariat.e2m2@univ-lyon1.fr

M. Fabrice Cordey
cnrs umr 5276 Lab. de géologie de Lyon
Université Claude Bernard Lyon 1
Bât. Géode
2 Rue Raphaël Dubois
69 622 Villeurbanne cedex
T 06.07.53.89.13
cordey@univ-lyon1.fr

ediss INTERDISCIPLINAIRE SCIENCES-SANTÉ
http://www.ediss-lyon.fr
Sec. : Sylvie Roberjot
Bât. Atrium, ucb Lyon 1
T 04.72.44.83.62
insa : M. Lagarde
secretariat.ediss@univ-lyon1.fr

Mme Emmanuelle Canet-Soulas
inserm U1060, CarMeN lab, Univ. Lyon 1
Bâtiment imbl
11 Avenue Jean Capelle insa de Lyon
69 621 Villeurbanne
T 04.72.68.49.09 v 04.72.68.49.16
emmanuelle.canet@univ-lyon1.fr

InfoMaths INFORMATIQUE ET MATHÉMATIQUES
http://edinfomaths.universite-lyon.fr
Sec. : Renée El Melhem
Bât. Blaise Pascal, 3e étage
T 04.72.43.80.46 v 04.72.43.16.87
infomaths@univ-lyon1.fr

M. Luca Zamboni
Bât. Braconnier
43 Boulevard du 11 novembre 1918
69 622 Villeurbanne cedex
T 04.26.23.45.52
zamboni@maths.univ-lyon1.fr

Matériaux MATÉRIAUX DE LYON
http://ed34.universite-lyon.fr
Sec. : Marion Combe
T 04.72.43.71.70 v 04.72.43.87.12
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves Buffière
insa de Lyon
mateis
Bât. Saint-Exupéry
7 Avenue Jean Capelle
69 621 Villeurbanne cedex
T 04.72.43.71.70 v 04.72.43.85.28
ed.materiaux@insa-lyon.fr

mega MÉCANIQUE, ÉNERGÉTIQUE, GÉNIE
CIVIL, ACOUSTIQUE
http://edmega.universite-lyon.fr
Sec. : Marion Combe
T 04.72.43.71.70 v 04.72.43.87.12
Bât. Direction
mega@insa-lyon.fr

M. Philippe Boisse
insa de Lyon
Laboratoire lamcos
Bâtiment Jacquard
25 bis Avenue Jean Capelle
69 621 Villeurbanne cedex
T 04.72.43.71.70 v 04.72.43.72.37
philippe.boisse@insa-lyon.fr

ScSo SCSO *
http://ed483.univ-lyon2.fr
Sec. : Viviane Polsinelli
Brigitte Dubois
insa : J.Y. Toussaint
T 04.78.69.72.76
viviane.polsinelli@univ-lyon2.fr

M. Christian Montes
Université Lyon 2
86 Rue Pasteur
69 365 Lyon cedex 07
christian.montes@univ-lyon2.fr

* ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie.

http://www.edchimie-lyon.fr
mailto:secretariat@edchimie-lyon.fr
mailto:directeur@edchimie-lyon.fr
http://edeea.ec-lyon.fr
mailto:ecole-doctorale.eea@ec-lyon.fr
mailto:gerard.scorletti@ec-lyon.fr
http://e2m2.universite-lyon.fr
mailto:secretariat.e2m2@univ-lyon1.fr
mailto:cordey@univ-lyon1.fr
http://www.ediss-lyon.fr
mailto:secretariat.ediss@univ-lyon1.fr
mailto:emmanuelle.canet@univ-lyon1.fr
http://edinfomaths.universite-lyon.fr
mailto:infomaths@univ-lyon1.fr
mailto:zamboni@maths.univ-lyon1.fr
http://ed34.universite-lyon.fr
mailto:ed.materiaux@insa-lyon.fr
mailto:ed.materiaux@insa-lyon.fr
http://edmega.universite-lyon.fr
mailto:mega@insa-lyon.fr
mailto:philippe.boisse@insa-lyon.fr
http://ed483.univ-lyon2.fr
mailto:viviane.polsinelli@univ-lyon2.fr
mailto:christian.montes@univ-lyon2.fr

5

Remerciements

Une des nombreuses vertus de cette thèse est qu’elle m’a appris à dire "nous" au lieu
de "je" car je me suis très vite rendu compte que je n’irais pas très loin tout seul. Ce
"nous" désigne bien sûr les personnes avec qui je travaille au quotidien comme mes
encadrants mais aussi l’ensemble des personnes qui par une simple discussion, si simple
soit-elle, font avancer notre réflexion et nous inspirent. Ce “nous” semble très paradoxal
avec la solitude que j’ai pu parfois ressentir face à cette thèse mais l’aboutissement est
bien un travail collectif qui s’est enrichi grâce à de nombreuses personnes que je veux
remercier chaleureusement.

Je tiens tout d’abord à remercier Infologic qui a été à l’origine de ce projet et par-
ticulièrement mon père qui a toujours su avoir des idées avant-gardistes et ambitieuses
pour l’entreprise. Ce projet de thèse m’a permis de découvrir l’entreprise sous un angle
que je ne connaissais pas. Je remercie l’ensemble des personnes qui ont cru dans ce
projet ou qui m’ont permis d’avancer.

Je remercie Christine, mon encadrante de thèse, qui n’a pas hésité une seconde
pour se lancer et s’investir dans ce projet. Merci pour ton exigence constante qui m’a
toujours poussé à aller plus loin, même quand c’était difficile. Merci également pour
ton soutien et ton investissement dans les moments clés de cette thèse.

Je remercie mes co-encadrants Amélie et Pierre-Antoine pour leurs idées toujours
pertinentes. Même si je me suis éloigné de vos domaines de recherche, vos remarques
ont toujours été justes et constructives pour faire avancer ce projet.

Je remercie le jury qui me fait l’honneur de lire et évaluer cette thèse. J’ai la chance
d’avoir le jury que je souhaitais et j’en suis très heureux. Un merci particulier aux
rapporteurs d’avoir pris le temps de me faire des rapports riches et pertinents.

Je remercie bien évidemment ma famille qui m’a toujours soutenu dans ce que je
fais. Merci de me donner une stabilité indispensable pour pouvoir avancer sereinement
dans mes études et dans ma vie. C’est en grande partie grâce à vous, par mon éducation
et mes valeurs, que je termine cette thèse aujourd’hui.

Un merci très spécial à Perrine, ma compagne, qui a su me supporter et me soutenir
durant cette dernière année si particulière.

Merci à mes amis qui ont toujours été là quand j’en avais besoin.
Je tiens également à remercier les doctorants et chercheurs rencontrés durant ces

trois années avec qui j’ai pu partager de très bons moments, notamment durant les
différentes conférences auxquelles j’ai eu la chance de participer.

Cette thèse m’a permis d’apprendre beaucoup de choses sur les plans scientifiques
et professionnels bien évidemment mais aussi sur moi même. Cette thèse aura été une
expérience d’une richesse incroyable sur laquelle je pourrai m’appuyer dans ma vie
professionnelle et personnelle.

7

Contents

1 Introduction 17

I Applicative Context and Proposed Approach 22

2 Enterprise Resource Planning 24
2.1 Definition of an ERP . 24
2.2 Presentation of Infologic and Copilote 25
2.3 ERP implementation issues . 28

2.3.1 Alignment of the ERP system with enterprise processes 28
2.3.2 Best practices vs ERP customization 29
2.3.3 Critical success factors . 30

2.4 Implementation process of Copilote . 30
2.5 Time allocation . 33
2.6 Discussion . 34

3 Configuration of Copilote 36
3.1 Existing Configuration Tools . 36
3.2 Categories of requirements . 37
3.3 Architecture of the configuration of Copilote 38
3.4 Methodology . 40
3.5 Focus on general parameters of Copilote 41
3.6 Discussion . 44

4 Proposed approach: From Configurations to Requirements 45
4.1 Map of the business units of Copilote 46
4.2 Use of the map . 48

4.2.1 Collecting the requirements . 48
4.2.2 Business logic scope of the parameters 49

4.3 From configurations to requirements 50
4.4 Discussion . 51

II Technical Context 53

5 Constraint Programming 55
5.1 Constraint Satisfaction Problems . 56
5.2 Constraint Propagation . 57
5.3 Backtracking search algorithms . 60
5.4 Set Variables . 63

5.5 Global Constraints . 64
5.6 Solving Optimization Problems with CP 67

5.6.1 Mono-criterion optimization . 67
5.6.2 Multi-criteria Optimization . 69

5.7 Constraint Programming Libraries . 72
5.8 Discussion . 73

6 Conceptual clustering 75
6.1 Motivations . 75
6.2 Formal Concepts . 77
6.3 Conceptual Clustering . 80
6.4 Declarative approaches for conceptual clustering 83

6.4.1 Boolean-based CP model . 83
6.4.2 Set-based CP model . 84
6.4.3 Hybrid ILP model for conceptual clustering 86

6.5 Discussion . 87

7 Exact Cover problem 88
7.1 Definitions and notations . 88
7.2 Applications of EC . 90
7.3 Dedicated Algorithm DLX . 91
7.4 Existing CP models to solve EC . 95

7.4.1 Boolean-based Model . 95
7.4.2 Gcc-based Model . 96

7.5 Existing SAT models to solve EC . 96
7.6 Comparison of declarative approaches with DLX 97
7.7 Discussion . 98

8 Benchmark 99
8.1 Description of UCI instances . 99
8.2 Description of ERP instances . 100

III New CP Approaches for Conceptual Clustering 101

9 New CP models 103
9.1 New CP Model for Conceptual Clustering 103
9.2 New CP Model for the Exact Cover Problem 106
9.3 Experimental evaluation . 108
9.4 Discussion . 110

10 ExactCover global constraint 112
10.1 Definition of exactCover . 112
10.2 Basic propagator . 113
10.3 DL Propagator . 114
10.4 DL+ Propagator . 114
10.5 Experimental Evaluation . 115
10.6 Extension of exactCover to exactCoverCost 117

10.7 Discussion . 119

11 Constraining the number of selected subsets 120
11.1 Addition of Existing Constraints to exactCover 120
11.2 Definition of exactCoverK and exactCoverCostK 122

11.2.1 Basic Propagator . 122
11.2.2 MD Propagator . 124
11.2.3 MD+ Propagator . 126

11.3 Discussion . 127

12 Evaluation of exactCover on Conceptual Clustering Problems 129
12.1 Experimental Protocol . 130
12.2 Single criterion optimization . 131

12.2.1 Single criterion optimization when k is fixed 131
12.2.2 Single criterion optimization when k is bounded 132

12.3 Multi criteria optimization . 135
12.3.1 Comparison of propagation algorithms of exactCoverCost 135
12.3.2 New dynamic approach . 137
12.3.3 Comparison with state-of-the-art declarative approaches 140

12.4 Discussion . 141

13 Application to ERP customization 142
13.1 Use case . 143
13.2 Relevancy measures . 143
13.3 Feedbacks and improvements . 146

13.3.1 Properties of the formal concepts. 146
13.3.2 Pivot items . 146
13.3.3 Soft clustering . 147
13.3.4 Hierarchical clustering . 148
13.3.5 Default parameter values . 149

13.4 Complete toolkit for configuration part mining 150
13.5 Discussion . 152

14 Conclusion 153

11

Résumé en français

Motivations
Les progiciels de gestion intégrés ou ERP (Enterprise Resource Planning) sont es-
sentiels pour les entreprises industrielles pour structurer, automatiser et piloter leurs
processus métiers afin d’améliorer leur compétitivité. Les ERP sont les leaders incon-
testés des systèmes d’information des entreprises industrielles. Cependant, ce sont des
logiciels génériques conçus pour être utilisés par une grande diversité d’entreprises qui
ont des processus métiers et des besoins différents. Par conséquent, les ERP proposent
de nombreuses options de paramétrage pour s’adapter aux différentes entreprises. Le
déploiement d’un ERP est le processus qui consiste à paramétrer l’ERP selon les be-
soins d’une entreprise : il détermine le comportement exact de l’ERP et les processus
métiers supportés par le système dans une entreprise. La réussite du déploiement d’un
ERP dans une entreprise dépend souvent de facteurs organisationnels comme la gestion
du projet, la préparation au changement ou la formation du personnel sur le nouveau
système. Cependant, des facteurs opérationnels comme l’élicitation des besoins d’une
entreprise ou le paramétrage d’un ERP sont des sujets de recherche constants et ne
sont toujours pas maîtrisés.

Infologic est une entreprise française qui développe et installe son propre ERP, ap-
pelé Copilote, spécialisé dans l’agro-alimentaire. La principale force de Copilote est
son hyper-adaptabilité qui permet de supporter un large éventail de besoins métiers.
Copilote a plusieurs dizaines de milliers de paramètres qui sont utilisés pour adapter
le plus finement possible le système aux besoins d’une entreprise. Cependant, cette
flexibilité rend le système long et difficile à installer : une profonde connaissance de
Copilote et de ses fonctionnalités est nécessaire pour déployer le système dans une
entreprise. Les intégrateurs (les employés d’Infologic qui déploient Copilote) doivent
être formés au moins 8 mois pour pouvoir être autonomes sur Copilote. En effet, Info-
logic ne capitalise pas sur les déploiements antérieurs de Copilote et les compétences
des intégrateurs dépendent donc directement de leur expérience sur le système. C’est
pourquoi réduire la complexité du déploiement de Copilote est un enjeu crucial pour
Infologic qui doit intégrer rapidement et efficacement de nouveaux intégrateurs pour
répondre à la demande de nouveaux clients qui augmente considérablement.

Dans cette thèse, nous étudions le processus de déploiement de Copilote pour com-
prendre les principales difficultés rencontrées par Infologic. Nous nous concentrons en
particulier sur l’étape de paramétrage et sur l’architecture des paramètres de Copilote.
Une difficulté majeure rencontrée pendant le paramétrage d’un besoin métier est de
trouver rapidement les bons paramètres à modifier, i.e. les paramètres qui impactent
la logique métier du système à ajuster, et ensuite d’assigner les bonnes valeurs à ces
paramètres. Notre défi est de fournir un outil qui assiste les intégrateurs lorsqu’ils
paramètrent Copilote selon les besoins d’une entreprise.

12

Nous proposons de réduire le temps et la complexité du paramétrage en réutilisant
des morceaux de paramétrage. En effet, comme le souligne Daneva dans [Era+15],
les entreprises ont souvent des besoins similaires, et le taux de besoins précédemment
rencontrés dans une autre entreprise peut être considérablement élevé dans certains
cas. Plus précisément, nous proposons une approche qui vise à extraire un catalogue
de morceaux de paramétrage à partir des paramétrages existants de Copilote, et à
associer chaque morceau de paramétrage avec le besoin métier auquel il correspond. Ce
catalogue permet de capitaliser sur l’expérience de tous les intégrateurs et de réutiliser
cette expérience pour les prochains déploiements de Copilote.

La partie la plus difficile de notre approche est d’utiliser des techniques de fouille
de données pour identifier des morceaux de paramétrages qui correspondent à des
besoins métiers. Nous proposons d’utiliser l’Analyse de Concept Formel (FCA) et plus
précisément le clustering conceptuel pour regrouper les paramétrages qui correspondent
au même besoin métier et extraire le morceau de paramétrage correspondant. Nous
proposons d’utiliser la programmation par contraintes (PPC) pour faire du clustering
conceptuel. En effet, les experts de Copilote ne peuvent pas définir une mesure idéale
pour évaluer la pertinence d’un morceau de paramétrage. Le cadre déclaratif de la PPC
nous permet de facilement intégrer les retours des experts par le biais de nouvelles
contraintes et de critères à optimiser afin d’améliorer progressivement la pertinence
des morceaux de paramétrages extraits.

Objectifs et contributions
Notre objectif est d’extraire un catalogue de morceaux de paramétrage à partir des
déploiements passés d’un ERP pour simplifier les prochains déploiements du système.
Pour atteindre cet objectif, une première contribution est l’introduction d’une nouvelle
abstraction appelée carte d’unités fonctionnelles qui permet de structurer le processus
de déploiement. Une seconde contribution est la définition d’un processus interactif de
fouille de données pour construire le catalogue, où des experts peuvent interactivement
affiner leurs contraintes et critères utilisés pour extraire des morceaux de paramé-
trages. Une troisième contribution est la définition de nouveaux modèles PPC et de
contraintes globales pour résoudre efficacement les problèmes de clustering conceptuel
sous contraintes présents durant le processus de fouille.

Nous avons utilisé Copilote pour illustrer et évaluer nos contributions. Cependant,
le processus que nous proposons pour extraire un catalogue de paramétrages à partir
des déploiements passés est générique, et nous pensons qu’il pourrait être appliqué à
d’autres ERP.

Structuration du processus de déploiement sur la carte d’unités fonction-
nelles. Pour être capable d’extraire un catalogue de morceaux de paramétrage à
partir des paramétrages existants de Copilote, nous avons besoin d’associer les pa-
ramètres avec la logique métier du système qu’ils impactent. Ces relations ne sont
pas explicitement définies et seuls les intégrateurs expérimentés les connaissent. C’est
pourquoi le premier objectif est d’extraire ces connaissances pour pouvoir capitaliser
dessus. Pour cela, nous introduisons une nouvelle abstraction appelée carte d’unités
fonctionnelles. Cette carte divise la logique fonctionnelle de Copilote en unités fonc-
tionnelles structurées dans un Graphe Orienté Acyclique et nous permet d’associer les

13

paramètres avec le périmètre de logique fonctionnelle qu’ils impactent. Cette carte dé-
taille l’ensemble des parties de Copilote qui peuvent être paramétrées selon les besoins
d’une entreprise. Elle peut être considérée comme la modélisation de l’ensemble des
fonctionnalités couvertes par Copilote. Elle peut être utilisée de différentes manières
durant le processus de déploiement, pour guider les intégrateurs pendant l’analyse des
besoins d’une entreprise et associer chaque besoin avec l’unité fonctionnelle concernée,
et pour aider les intégrateurs à trouver les paramètres concernés quand ils paramètrent
un besoin métier. Dans nos travaux, cette carte nous permet de considérer les morceaux
de paramétrages qui concernent une même unité fonctionnelle ce qui est essentiel pour
extraire des morceaux de paramétrage pertinents.

Processus de fouille intéractif. Nous proposons d’extraire des morceaux de para-
métrage pertinents à partir des déploiements antérieurs de Copilote. Pour cela, nous
avons collecté dans une base de données l’ensemble des paramétrages existants. Nous
montrons comment extraire des morceaux de paramétrage pertinents, i.e., des sous-
ensembles de valeurs de paramètres qui correspondent à un besoin métier, en solu-
tionnant des problèmes de clustering conceptuel. Comme la difficulté majeure est de
définir les contraintes et critères nécessaires pour extraire des morceaux de paramé-
trage pertinents, nous proposons un processus interactif qui intègre les retours des
experts en ajoutant de nouvelles contraintes ou critères d’optimisation pour améliorer
progressivement la pertinence des morceaux de paramétrage extraits.

Nouveaux modèles PPC pour le clustering conceptuel sous contraintes. Le
clustering conceptuel est un problème NP-complet qui consiste à partitionner un en-
semble d’objets de telle sorte que les objets regroupés dans un même cluster partagent
des propriétés communes. Dans notre contexte où les retours des experts sont itéra-
tivement intégrés, nous avons besoin d’un outil flexible et efficace pour résoudre ce
problème. Nous proposons d’utiliser la PPC, et les principales contributions de cette
thèse sont de nouveaux modèles PPC et des contraintes globales pour résoudre les
problèmes de clustering conceptuel sous contraintes en optimisant divers critères.

Il existe plusieurs approches PPC pour résoudre les problèmes de clustering concep-
tuel [Gun15 ; Dao+15a]. Cependant, ces approches supposent que le nombre de clusters
est connu par avance ce qui n’est pas le cas dans notre contexte. Ces approches peuvent
être étendues au cas où le nombre de clusters n’est pas fixé mais elles ne passent pas
à l’échelle. Par conséquent, nous proposons deux nouveaux modèles de PPC pour ré-
soudre les problèmes de clustering conceptuel quand le nombre de clusters n’est pas
connu. Le premier modèle peut être considéré comme une extension du modèle de Dao
et al. [Dao+15a]. Le deuxième modèle résout le problème en deux étapes, comme pro-
posé par Ouali et al. dans [Oua+16] : la première étape consiste à extraire l’ensemble
des clusters possibles à l’aide d’un outil spécialisé comme LCM [Uno+04] ; la deuxième
étape consiste à sélectionner un ensemble de clusters qui partitionnent les objets à clus-
teriser. Nous avons expérimentalement comparé nos modèles PPC avec les approches
déclaratives existantes sur un jeu de données classique d’apprentissage automatique et
sur un nouveau jeu de données que nous avons généré à partir des paramétrages de
Copilote. Nous montrons que nos modèles passent mieux à l’échelle quand le nombre
de clusters n’est pas fixé et que nous optimisons un seul critère.

14

La deuxième étape de l’approche en deux temps proposée dans [Oua+16] revient
à résoudre un problème de couverture exacte sous contraintes. Ce problème est NP-
complet et concerne plusieurs applications. Nous introduisons une nouvelle contrainte
globale pour résoudre efficacement ce problème en utilisant une structure de données
backtrackable introduite par Knuth dans [Knu09]. Nous proposons deux extensions
à cette contrainte globale : la première permet de contraindre le nombre de sous-
ensembles sélectionnés, et la deuxième permet de contraindre les coûts minimaux et
maximaux associés aux sous-ensembles sélectionnés. Nous introduisons plusieurs algo-
rithmes de propagation pour ces contraintes globales et nous montrons qu’ils sont plus
efficaces que les approches déclaratives existantes pour les problèmes d’optimisation
mono et multi-critères.

Plan de la thèse
La première partie présente le contexte applicatif de nos travaux. Dans le chapitre 2,
nous décrivons les principes de base des ERP et nous détaillons les particularités de
Copilote. Dans le chapitre 3, nous décrivons comment les intégrateurs paramètrent Co-
pilote durant le déploiement du système dans une nouvelle entreprise, et nous étudions
la structure du paramétrage. Dans le chapitre 4, nous introduisons notre contribu-
tion applicative qui est une nouvelle approche pour guider les intégrateurs durant le
paramétrage du système basée sur une carte d’unités fonctionnelles.

La deuxième partie décrit le contexte technique de nos travaux. Dans le chapitre 5,
nous introduisons les principes de bases de la PPC. Dans le chapitre 6, nous décrivons
le problème de clustering conceptuel et les approches déclaratives existantes pour ré-
soudre ce problème. Dans le chapitre 7, nous décrivons le problème de couverture exacte
et la structure de données Dancing Links introduite par Knuth pour résoudre ce pro-
blème. Nous décrivons et comparons également les approches déclaratives existantes
pour résoudre ce problème. Dans le chapitre 8, nous décrivons les deux jeux de données
que nous utilisons pour nos expérimentations : un jeu de données existant pour évaluer
les algorithmes d’apprentissage automatique, et un nouveau jeu de données issus des
paramétrages de Copilote.

La troisième partie décrit nos contributions techniques. Dans le chapitre 9, nous
introduisons deux nouveaux modèles PPC pour résoudre les problèmes de clustering
conceptuel et nous les comparons avec les approches déclaratives existantes. Dans le
chapitre 10, nous introduisons une nouvelle contrainte globale exactCover, et nous dé-
crivons et comparons trois algorithmes de propagation pour cette contrainte. Nous
étendons exactCover au cas où des mesures d’utilité sont associées aux sous-ensembles
pour permettre de contraindre l’utilité minimale et maximale des sous-ensembles sé-
lectionnés. Dans le chapitre 11, nous introduisons la contrainte globale exactCoverK
qui étend exactCover au cas où le nombre de sous-ensembles sélectionnés est contraint.
Nous décrivons trois algorithmes de propagation pour cette contrainte. Dans le cha-
pitre 12, nous évaluons l’intérêt de nos contraintes globales pour résoudre différents
problèmes de clustering conceptuel. Nous considérons dans un premier temps le cas
où un seul critère doit être optimisé puis le problème d’optimisation multi-critères qui
consiste à calculer le front Pareto des solutions non-dominées sur un ensemble de cri-
tères. Nous introduisons une nouvelle stratégie dynamique pour résoudre ces problèmes

15

d’optimisation multi-critères et nous la comparons avec les stratégies statiques et dyna-
miques existantes. Dans le chapitre 13, nous introduisons un outil de fouille qui utilise
nos modèles PPC pour extraire des morceaux de paramétrage pertinents et intègre
itérativement les retours de l’expert en adaptant nos modèles. Nous listons différents
retours que nous avons collectés lors de l’utilisation de notre outil par un expert sur
une unité fonctionnelle de Copilote pour démontrer la faisabilité de notre approche.

Dans le chapitre 14, nous terminons nos travaux avec une discussion sur plusieurs
perspectives.

17

Chapter 1

Introduction

Motivations
Enterprise Resource Planning (ERP) systems are essential for industrial companies
to structure, automatize and monitor their business processes in order to boost their
competitiveness. ERPs are undisputed leaders for information systems in the indus-
try sector. However, ERP systems are generic software which are designed to serve a
large variety of companies with different business processes and needs. Therefore, they
have many configuration options to support various business processes used in different
companies. The implementation process of an ERP system is the process that consists
in assigning values to ERP parameters according to the company requirements: It de-
termines the exact operations and processes supported by the system in the specific
company. This process involves many organizational issues such as project manage-
ment, readiness for change or training of the staff on the new system. Operational
issues related to the elicitation of the requirements of a company or the configura-
tion of the ERP system have been widely studied. However, they are still not well
understood.

Infologic is a French company that develops and integrates their own ERP system,
called Copilote, specialized for agri-food industry. The main strength of Copilote is
that it is highly customizable to handle many business requirements. It has tens of
thousands of parameters that are used to adapt it as precisely as possible to customer
requirements. However, this flexibility makes the implementation of Copilote a time
consuming task that requires a deep knowledge of its functionalities and parameters.
System integrators (employees of Infologic who implement Copilote) need at least eight
months of training and practice to be autonomous for implementing Copilote. Indeed,
Infologic does not capitalize on previous implementations of Copilote and system inte-
grators skills are based on their own experience on the system. Reducing the complexity
of the implementation of Copilote is a critical issue for Infologic who needs to integrate
quickly and efficiently new system integrators to meet the demand of new customers
which is significantly increasing.

In this thesis, we study the implementation process of Copilote in order to un-
derstand the main issues encountered by Infologic. In particular, we focus on the
configuration step and on the architecture of Copilote parameters. Most of the time, a
critical issue when configuring a business requirement is to find the right parameters to
assign, i.e., the parameters that impact the right business logic of Copilote, and then
to find the right values to assign to these parameters. Our challenge is to provide a
tool that assists system integrators when they configure Copilote according to business
requirements.

18

To this aim, we propose to reduce the configuration time by reusing parts of previous
configurations. Indeed, as pointed out by Daneva in [Era+15], companies have many
common requirements, and the rate of requirement reuse may be remarkably high
in some cases. More precisely, we propose an approach for extracting a catalog of
configuration parts from existing configurations of Copilote, and we propose to associate
with every configuration part of the catalog the business requirement it fulfills. This
catalog capitalizes on the past experience of all integrators and will allow us to reuse
this experience for next implementations of Copilote.

The most challenging part of our approach is to use data mining techniques to
identify relevant configuration parts that may correspond to a business requirement.
We propose to use Formal concept Analysis (FCA) and conceptual clustering to group
together configurations that fulfill the same requirement and identify the corresponding
part of configuration. To compute conceptual clusterings, we propose to use Constraint
Programming (CP). Indeed, Copilote integration experts are not able to formally define
all constraints and criteria needed to mine relevant configuration parts in an a priori
way. The declarative framework of CP allows us to easily integrate feedbacks of experts
by means of new constraints and optimization criteria in order to increase the relevancy
of the mined configuration parts.

Goals and contributions
Our goal is to extract a catalog of configuration parts from existing implementations of
an ERP system in order to simplify future implementations of this system. To achieve
this very general objective, a first contribution is the definition of a new abstrac-
tion, called business unit map, which allows us to structure the whole implementation
process. A second contribution is the definition of an interactive mining process for
building the catalog, where experts may interactively refine constraints and criteria
used to mine relevant configuration parts. A third contribution is the definition of new
CP models and global constraints to efficiently solve constrained conceptual clustering
problems that occur during the mining process.

The ERP system used to illustrate and evaluate our contributions is Copilote. How-
ever, the process we propose for extracting a catalog of configuration parts from existing
implementations of an ERP system is rather generic, and we believe it may be applied
to other ERP systems as well.

Structuration of the implementation process with a business unit map. To
be able to extract a catalog of configuration parts from existing configurations of Copi-
lote, we need to relate parameters with the business logic of Copilote they impact.
These relationships are not explicitly defined, and only experimented Copilote integra-
tors have a good knowledge of them. Hence, a first goal is to extract this knowledge
and capitalize it. To this aim, we introduce a new abstraction called business unit
map. This map divides the business logic of Copilote into business units structured in
a Directed Acyclic Graph (DAG) and allows us to relate parameters with the business
logic scope of Copilote they impact. This map details all the parts of Copilote that
may be configured according to business logic requirements. It may be seen as the
model of all capabilities of Copilote. It may be used in many different ways during the
implementation process, to guide system integrators during the requirement analysis

19

and relate every requirement to the concerned Copilote business unit, and to help sys-
tem integrators focus on the right parameters when configuring a requirement. In our
work, this map allows us to focus on configuration parts that concern a single business
unit which is essential to extract relevant configuration parts.

Interactive Mining Process. We propose to extract relevant configuration parts
from existing implementations of Copilote. To this aim, we have created a database
that contains all previous configurations of the system. We show how to mine relevant
configuration parts, i.e., subsets of parameter values that implement business require-
ments, by solving constrained conceptual clustering problems. As it is difficult to define
the constraints and criteria that lead to relevant configuration parts, we propose an
interactive mining process, where expert feedbacks are iteratively added, by means of
constraints and optimization criteria, in order to progressively improve relevancy.

New CP approaches for constrained conceptual clustering. Conceptual clus-
tering is an NP-hard problem which basically involves partitioning a set of objects
in such a way that objects within a same cluster share some properties. In our con-
text where expert feedbacks are integrated by means of constraints and optimization
criteria, we need both an efficient and flexible tool for solving this problem. To this
aim, we propose to use CP, and the main technical contributions of this thesis are new
CP models and global constraints for efficiently solving conceptual clustering problems
under various constraints and criteria.

There exist several CP approaches to solve conceptual clustering problems [Gun15;
Dao+15a]. However, these approaches assume that the number of clusters is fixed and
known a priori, which is not the case in our context. These models may be extended
to the case where the number of clusters is not fixed but they do not scale well in
this case. Therefore, we propose two new CP models to solve conceptual clustering
problems when the number of clusters is not known a priori. The first model may be
seen as an extension of the model of Dao et al. [Dao+15a]. The second model solves
the problem in two steps, as proposed by Ouali et al. in [Oua+16]: In a first step,
all possible clusters are efficiently extracted by using a dedicated mining tool such as
LCM [Uno+04]; In a second step, a subset of clusters that defines a partition is selected
by using a CP model. We experimentally compare our new CP models with existing
declarative approaches on classical machine learning instances and on a new benchmark
we have generated from existing configurations of Copilote. We show that our new CP
models scale well when the number of clusters is not fixed and when considering a
single criterion to optimize.

The second step of the two-step process proposed in [Oua+16] basically involves
solving a constrained exact cover problem. This problem is NP-hard and has many
applications. We introduce a new global constraint to solve it efficiently with CP,
by using a backtrackable datastructure introduced by Knuth in [Knu09]. We pro-
pose two extensions of this global constraint: an extension to constrain the number of
selected subsets, and an extension to constrain minimal and maximal utility costs as-
sociated with selected subsets. We introduce different propagation algorithms for these
global constraints, and we show that they are more efficient than existing declarative
approaches for both mono and multi-criteria optimization problems.

20

Outline of the thesis
The first part describes the applicative context of this work. In Chapter 2, we describe
basic principles of ERP systems, with a specific focus on Copilote. In Chapter 3, we
describe how experts configure Copilote when implementing it for a new company, and
we describe the structure of the parameters that have to be configured. In Chapter 4,
we introduce our applicative contribution, which is a new approach for guiding system
integrators during the configuration step by using a business unit map.

The second part describes the technical context of this work. In Chapter 5, we
introduce basic principles of CP. In Chapter 6, we describe the conceptual clustering
problem and existing declarative approaches for solving this problem. In Chapter 7, we
describe the exact cover problem and the Dancing Links data structured introduced by
Knuth for this problem. We also describe and compare existing declarative approaches
for solving this problem. In Chapter 8, we describe the two benchmarks that are used in
our experimental evaluations: An existing benchmark often used to evaluate machine
learning algorithms, and a new benchmark derived from our ERP application.

The third part describes our technical contributions. In Chapter 9, we introduce
two new CP models for solving conceptual clustering problems, and we compare them
with existing declarative approaches. In Chapter 10, we introduce the exactCover
global constraint, and we describe and compare three propagation algorithms for this
constraint. We also extend exactCover to the case where utility costs are associated
with subsets and minimal or maximal utility costs of selected subsets are constrained.
In Chapter 11, we introduce the exactCoverK global constraint, which is an extension of
exactCover to the case where the number of selected subsets is constrained to be equal
to a given integer variable. We describe and compare three propagation algorithms for
this constraint. In Chapter 12, we evaluate the interest of our new global constraints
for solving different conceptual clustering problems. We first consider mono-criterion
optimization problems, where a single objective function must be optimized, and we
consider four classical objective functions. Then, we consider multi-criteria optimiza-
tion problems, that aim at computing the Pareto front of non-dominated solutions with
respect to several objective functions. We introduce a new dynamic strategy to solve
these multi-criteria optimization problems and compare it with existing static and dy-
namic strategies. In Chapter 13, we introduce our interactive mining tool that uses
our CP models to mine relevant configuration parts and integrate expert feedbacks by
means of constraints and optimization criteria. We list the different feedbacks we have
collected when experimenting this tool with an expert on a specific business unit of
Copilote, used as a proof of concept of our process.

In Chapter 14, we conclude this work with a discussion of some perspectives.

Publications
The CP models described in Chapter 9 have been published in 2017, in the interna-
tional conference on principles and practice of CP [Cha+17b], and in the Journées
Francophones de Programmation par Contraintes [Cha+17a]. The global constraint
exactCover described in Chapter 10 has been presented to the doctoral program of the
international conference on principles and practice of CP in 2018 [Cha+18].

21

We plan to submit a journal paper where we describe the different propagation
algorithms introduced in Chapters 10 and 11, in a few weeks.

22

Part I

Applicative Context and Proposed
Approach

23

Enterprise Resource Planning (ERP) systems play a crucial role for industrial actors
to structure and improve their processes in order to generate more profit. Therefore,
any issue that involves ERP system efficiency becomes crucial and finding a solution
to solve it represents an important economic challenge. This thesis has been done in
collaboration with Infologic, a company that develops and implements its own ERP
system called Copilote. We present in this part main issues of Infologic that led to
launch this project.

We define in Chapter 2 what is an ERP system and we present the activity and the
history of Infologic. Then, we describe the implementation process of ERP systems and
we highlight some well-known issues. We focus in Chapter 3 on the configuration step
of Copilote in order to understand the main issues encountered by Infologic. Finally, we
propose in Chapter 4 a new approach to guide the implementation process of Copilote
and assist the configuration step.

24

Chapter 2

Enterprise Resource Planning

Contents
2.1 Definition of an ERP . 24

2.2 Presentation of Infologic and Copilote 25

2.3 ERP implementation issues 28

2.3.1 Alignment of the ERP system with enterprise processes . . . 28

2.3.2 Best practices vs ERP customization 29

2.3.3 Critical success factors . 30

2.4 Implementation process of Copilote 30

2.5 Time allocation . 33

2.6 Discussion . 34

ERP systems have been widely studied since they have an essential role in industrial
information systems. Reducing the risks when installing an ERP system in an industrial
company is a major issue.

In this chapter, we first define what is an ERP system, in Section 2.1. Then, we
present the history of Infologic and the ERP system developed and installed by the
company in Section 2.2. We introduce some well-known issues encountered during the
implementation process of ERP systems in Section 2.3. We focus on the implementation
process of Copilote in Section 2.4, and we study the time spent on each step of this
implementation process in Section 2.5

2.1 Definition of an ERP
ERP history. In the 1960s, first management software solutions emerged with the
growth of the industry combined with technological progresses. Material Requirements
Planning (MRP) systems helped manufacturers to translate their production schedule
into time-phased net requirements for the sub-assemblies [Gum96]. Major industrial
players such as Toyota used MRP systems to manage their materials.

In the mid 1970s, MRP systems were extended to a standard application of pro-
duction resource planning called MRP II [Chu+99] that considers all the resources of
a company such as workforce or machine capacities. However, the need to manage
production facility’s orders, production plans and inventories into the system led to
the development of a more integrated solution called Enterprise Resource Planning
(ERP) [Chu+99].

25

An ERP system may be defined as a customizable standard software application
which includes integrated business solutions (also called modules) for the core processes
such as production planning and control or warehouse management and the main
administrative functions of a company such as accounting or billing [Ros+99]. An ERP
system facilitates the storage, the retrieval and the analysis of the data by integrating
functional modules all together. It may be seen as a tool that allows an industrial
company to manage and monitor in real time its whole activity [Ros+99].

There exist many software specialized for one single business process such as sales
forecast systems for instance. These systems may be more efficient and bring more
functionalities than an ERP module on this specific process. However, the interface of
these specialized software with the rest of the information system of a company can
be very complex and expensive, particularly to make the data coherent with the whole
system. Therefore, the fact that ERP systems propose a native integration of their
functional modules is a significant advantage that provides efficiency, robustness and
coherency of the data.

This logic has been widely followed by industrial companies: They find a real
added value in having an information system that is robust and coherent between
many functional modules. For a long time, especially during the 1990s, ERP systems
were seen as expensive solutions, hard to install for Small and Medium Enterprises
(SME) but nowadays, the strong competition between ERP vendors and the increase
of the demand from industrial companies have allowed many companies to purchase
ERP solutions. ERP systems have become essential for industrial companies. They are
often considered as the backbone of a company [Gra+14] or as the nervous system of
the organization in which data are nerve impulses [Ahm+13]. If data are not correct,
responses of the functional modules will not be accurate.

It is important to note that nowadays, it would be extremely difficult, if not impos-
sible, to develop from scratch a specific software for an industrial company considering
the significant number of processes to manage.

2.2 Presentation of Infologic and Copilote
History of Infologic. Infologic was created by André Chabert in 1982 in Valence
(France). Infologic develops and integrates its own ERP system specialized for agri-
food industry. As shown in Figure 2.1, Infologic started to sell its first ERP solution,
Agro V1, in 1984. Up to 20 companies used this system, mainly in poultry industry
of Rhône-Alpes region. Infologic can be considered as a pioneer of ERP systems in
France since its creation coincides with the apparition of first ERP systems.

During the 1990s, Infologic grew and developed a new version of its ERP system
called Agro V2. To gain market shares, Infologic opened a new office in Nantes to reach
many agri-food companies of the west of France. Agro V2 had been sold to up to 200
customers and is still operating in a few companies.

In the 2000s, text-based systems such as Agro V2 became obsolete and Infologic
had to propose a graphic version of its ERP. Infologic chose to develop a new ERP
system from scratch using Java technology. The huge gap between object oriented
programming languages such as Java and old technologies used in previous versions
of its ERP system forced Infologic to replace its development teams. However, the
developer’s shortage in France led Infologic to relocate part of the development team

26

Figure 2.1 – Infologic evolution within ERP history.

in Romania, specially in Bucarest and Iasi. In 2005, Infologic sold for the first time its
new ERP system called Copilote. It is important to note that most of the developers
of Agro V2 became system integrators of Copilote, i.e. experts that configure Copilote
for a new customer of Infologic. Therefore, the experience accumulated for 20 years
remained in the enterprise.

In the 2000s, Infologic kept on growing and opened a new office in Toulouse to reach
market shares of the south west of France. Infologic has now up to 450 customers that
represent up to 2 million parcels shipped every day or up to 20,000 computer worksta-
tions installed all over France. Infologic’s growth has been particularly impressive for
the last few years. The number of employees has grown from 120 in 2014 to up to 200 in
2018 and the revenue has increased from 12 million euros in 2014 to 21 million euros in
2018. The staff is mainly composed of system integrators (30%) and developers (24%).
The rest of the staff corresponds to sales, maintenance, technical and administrative
departments. Infologic has the particularity of selling a turnkey solution: technical
engineers install the hardware such as servers or computer workstations and system
integrators configure the ERP system according to customer requirements.

Competitors. The global leader in ERP solutions is SAP which is a German com-
pany that generates over $17 billion in sales revenue. In addition to SAP, other inter-
national software editors such as Oracle, Microsoft and Sage propose ERP solutions
for French agri-food industry companies. Infologic also competes with French ERP ed-
itors such as Vif or Proginov which have a size comparable to Infologic. These smaller

27

Figure 2.2 – Functional perimeter of the ERP Copilote.

editors take advantage of their size by being more reactive and attentive to their cus-
tomer requirements, which is very appreciated. They are able to adapt or modify more
easily their system compared to big editors which have much more inertia. However,
most of international industrial companies still favor bigger editors such as SAP since
they have many international references and a robust currency management, which is
essential for this kind of companies.

Presentation of Copilote. Copilote is the ERP system currently developed and sold
by Infologic. The system has been continually evolving in response to new customer
requirements since 2002. As shown in Figure 2.2, the main strength of Copilote is its
large functional perimeter. It integrates classical modules such as commercial man-
agement, warehouse management, manufacturing execution system or logistic manage-
ment. However, Infologic differs from its competitors by integrating some modules that
are rarely natively included in ERP systems. Copilote integrates its own financial and
sales forecasts modules, a very powerful decision-making system that allows to monitor
in real time activities of a company and an efficient Electronic Data Interchange tool.

The particularity of Copilote is that exactly the same software is installed for all
the customers whereas they have different fields of activity. For instance, Copilote is
the leader in poultry and egg industry, but it can be used in wine, ready-cooked or
food trading companies while they have most of the time different processes and needs.

Therefore, Copilote has tens of thousands of parameters that are used to adapt it
as precisely as possible to customers requirements. This flexibility of configuration is
a real strength of Copilote that is recognized by its customers to be a very performing
and adaptable ERP system. However, this ultra-customization makes the system very
complex, especially for system integrators of Infologic. In particular, a same goal may
be achieved by configuring the ERP system in many different ways. Some figures
highlight the complexity and the dimension of Copilote:

28

• Copilote integrates 4,227 screens;

• Copilote code contains 67,000 Java classes and up to 10 million lines;

• Copilote has 5,351 general parameters that allow to configure modules;

• Copilote has 10,934 database tables.

2.3 ERP implementation issues
An ERP system is designed to serve a large variety of companies. That is why it
has many configuration options to support various business processes used in different
companies. The system implementation is the process that consists in assigning values
to the system’s parameters according to the company requirements. It determines
the exact operations and processes supported by the system in the specific company.
This implementation process has been widely studied [Bin+99; Ahm+13; Mot+05;
Ahm+12; Käh14; AM+03; Rob+11; Som+01; Pan], and it appears to be very complex
with many factors that can impact the success of ERP implementation projects.

The study of [Pan] focuses on 342 ERP implementation projects in 2017 and gives
some figures about financial and organizational issues involved for companies acquiring
a new ERP system. Companies that took part in the survey have an average annual
revenue of 445M$ and most of them are part of distribution or manufacturing industry.
Most of the time, these companies acquire a new ERP system to improve the business
performance, to make employees jobs easier or to ensure compliance. The average
duration of an ERP implementation project is 17 months whereas the average cost
is around 1.3M$. However, 74% (resp. 59%) of the companies of the study have
experienced costs (resp. duration) overruns and 25% characterize their project as a
failure, since the outcome does not correspond to their expectations.

This study shows that an ERP system implementation is a complicated process,
still not well understood. We present in this section main issues involved in ERP
implementations.

2.3.1 Alignment of the ERP system with enterprise processes

One issue of the implementation of ERP system is the precise identification of the gap
between business process requirements of a company and ERP system capabilities in
order to avoid as much as possible misalignments [Mam13; BG+05]. A misalignment
is defined as the fact that the processes placed under ERP system control will not be
aligned with the real needs and the processes of the company [Mam13]. That is why
the question of requirements elicitation becomes essential for the ERP implementation
and many approaches have been proposed [Lui+; Sof+05; VIL09; Jan+15; Dar+93;
Gar+17; Rol+01; Lac+14]. The main idea of these approaches is to model both com-
pany’s requirements and ERP system capabilities with the same modeling framework
to measure the gap between the system and the requirements in order to be able to
react quickly and make the right decisions.

29

2.3.2 Best practices vs ERP customization

A critical issue in ERP implementation is how to bridge the gap between the ERP
system and an organization’s business processes by customizing either the system, or
the business processes of the organization, or both [Rol+01; Luo+04].

Best practices. A best practice is defined as the way to transfer the past successful
experience to new ERP projects in order to improve the chance of successful implemen-
tations [Sha+12]. ERP vendors would like to integrate as much as possible best prac-
tices into the system such as embedded standard process configurations, for instance. It
has been proved that best practices have a positive impact on the coordination during
the implementation of the system and boost project efficiency [Hua+04].

However, best practices are sometimes not in favor of the business of a company and
can reduce there competitiveness since organizations have often unique manufacturing
problems [Hua+04]. If unique processes enable the company to gain a competitive
advantage in its industry or are better suited to its culture, the advantage can be lost
by using a standard process of the system [Soh+00].

ERP customization. Since the same system may be used in companies that have
different processes and needs, customization of the system becomes inevitable. ERP
customization makes ERP systems more user friendly and increases their acceptance
by users [Lig05]. The customization of the system can be done through either the
configuration that consists in assigning values to ERP’s parameters or the modification
of the source code in order to implement a specific process [Bre+01]. The second way
leads to some benefits such as adding functionalities to the system, automating a new
process or improving competitiveness of the industrial company [Lig01].

However, modification of the source code of such a large system can be risky and
critical, it requires a good expertise of the system to avoid side effects.

Customization plays an important role in the success of an ERP implementation
because it requires expertise in software solution as well as business processes and it
may be a time consuming procedure that can increase the expenditure [Par+14].

Balance between good practices and customization. ERP systems almost
never fit all the requirements of an industrial company, especially for manufactur-
ing processes [Wu+07; Luo+04; Dit+09; Lig05]. The study of [Pan] shows that only
23% of companies adopt an ERP system with no or few customizations whereas 34%
of ERP implementations need an important customization of the system. Even if it
is possible for huge industrial companies to use standard ERP system functionalities,
the lack of flexibility and key components can have a negative impact on the competi-
tiveness of smaller companies and adopting standard processes proposed by the ERP
system should be made with caution [BG+05].

The balance is necessary between high customization that requires additional effort
from the implementation team [Par+14] and a lack of acceptance of ERP standard
processes that can contribute to the failure of the project [Sko+01]. Therefore, the
solution seems to inevitably combine both best practices and customization. For in-
stance, [Fer+06] ensures that deliberately and carefully deviating from the best prac-
tices may also be effective.

30

2.3.3 Critical success factors

The identification of key factors for the success of an ERP implementation is a hot
research subject. These factors are called critical success factors (CSFs) [Bin+99;
Ahm+13; Mot+05; Ahm+12; Käh14; AM+03; Rob+11; Som+01]. CSFs are all the
domains for which satisfying results increases the chance of success of the implementa-
tion of the system, and, therefore, improve the competitiveness of the company after
the launch of the ERP system [FR79].

Obviously, operational factors such as configuration of the system or functional
scope expression are essential during the ERP implementation [AM+03; Ahm+13].
However, many organizational factors, that are not related to the quality of the system,
may have a great impact on the implementation process [AM+03; Ahm+13; Som+01;
Bin+99]. For instance, project management, readiness for change or training of the
staff on the new system are essential to achieve a successful implementation. These
factors are confirmed by Infologic experts who highlight the importance of involving
key members of a company into the project and having the support and commitment
of the company’s management.

2.4 Implementation process of Copilote
To understand the difficulties encountered by Infologic during the implementation of
Copilote, we detail how Infologic integrators implement Copilote for new customers, i.e.,
industrial companies that purchased Copilote. Figure 2.3 describes the implementation
process of Copilote. Each box corresponds to a step of the implementation. The time
scale on the left gives an idea of the average time spent for each step for a 8 month
project (which is a standard duration according to our observations). Obviously, the
duration of the implementation process may be variable depending on the customer
activity and the scope of Copilote to implement.

Requirement analysis: The first step of Copilote implementation is the collect of
the functional requirements of the customer. Experimented integrators of Infologic visit
customers facilities and interview main managers of the company about their business
processes to understand how they work and their specificities. This task is achieved by
skilled and experienced integrators because it requires expertise in business processes as
well as in Copilote capabilities. There are always several system integrators involved in
a new implementation because integrator expertise scope is often limited to one single
module. The main challenge for Infologic is to get complete and stable requirements
as soon as possible because the later a requirement changes, the more important is the
cost and the impact on the implementation process.

The requirement elicitation can last a few weeks, depending on the size of the cus-
tomer and on the functional scope of Copilote to install. After interviewing managers
of the company, Infologic integrators formalize the current operations of every business
process of the customer and how it will work under control of Copilote in a document
called requirement analysis. This document has to be signed by both Infologic and the
customer representative before continuing the implementation process. Theoretically,
all misalignments between Copilote and customer requirements have to be identified

31

Figure 2.3 – Typical implementation process of Copilote.

before the signature and decisions of adapting customer processes to Copilote or mod-
ifying Copilote have to be taken before continuing the implementation. Furthermore,
this document has a legal value and is the only reference for the rest of the implementa-
tion process which means Infologic is committed to meet the requirements as described
in the document.

This step may be very hard to complete because it is complicated for the customers
to explain clearly their current processes as well as the way they want to work since
they do not know enough Copilote capabilities. The role of Infologic integrators is all
the more important as they have to ask the good questions to make sure the managers
give all the important details about the way they work and their specificities.

32

Data transfer: Data transfer is the step during which the customer has to transfer
the data from his old system into Copilote using integration files. Infologic advices
to integrate core data such as customers, suppliers, materials and items which are
essential for Copilote since most of the operations done during business processes use
these data. This step may become critical if it is too delayed because data are necessary
to test the configuration of Copilote and validate that the implementation meets the
requirements. Most of the time, customers underestimate the duration of this task
that can be time-consuming. They do it at the last moment, most of the time with
mistakes in the data they integrate.

System configuration: System configuration constitutes the longest step of the im-
plementation of Copilote. This step basically involves assigning values to parameters in
such a way Copilote fulfills the customer needs as described in the requirement analysis
document. The goal of the configuration may be to customize the user interface, to
create statistics or to configure critical business logic into process operations.

The complexity of this step comes from the fact that Copilote has a large number
of parameters with strong interactions that are not always explicitly stated. When a
system integrator has to configure a customer requirement, it may be hard to figure
out which parameters have to be changed and what are the right values to assign to
them, especially when this is the first time he encounters this kind of requirement. The
complexity of this step motivated our work and we will detail the configuration process
later in this thesis.

It is important to note that the configuration step does not only involve assigning
values to parameters but also testing if Copilote is configured as expected. Therefore,
data must have been transfered into Copilote to be able to run the processes and assess
whether it works as expected. That is why the data transfer step is so important: It
allows to do correct and relevant tests. This step can be time consuming, particularly
when tests fail since it is hard to identify which parameters have wrong values.

User training: The user training step is essential during an ERP implementation.
Obviously, a good training of all future users ensures a correct and efficient way to
use Copilote when it is launched. It also allows Infologic to involve as many customer
employees as possible into the project. It is important to get many employees to adhere
to the new way of working since managing culture-change is pointed out as a critical
success factor [Mot+05].

Infologic proposes a very early training for key-users. The goal is to make them
understand the main concepts and specificities of Copilote. These trainings very often
lead to new requirements or requirement modifications since key-users have a better
understanding of Copilote.

The second step of training concerns end-users and aims to explain and practice all
the operations they will have to do on the system. Therefore, these trainings are done
almost at the end of the implementation process to prevent users from forgetting the
training before launching the new system.

Testing: The testing step is one of the most important step to make sure Copilote is
configured as expected. Tests are done all along the implementation process by both
Infologic system integrators and future end-users. This way, Infologic integrators use

33

Table 2.1 – Evolution of time allocation for the last 5 years. For each year and each step,
the column days gives the total time spent in man-days for all Copilote implementa-
tions, the column % gives the percentage of this step with respect to the whole process,
and the column avg gives the average number of man-days spent per implementation.

2013 2014 2015 2016 2017
34 implem. 35 implem. 34 implemen. 38 implem. 53 implem.

days % avg days % avg days % avg days % avg days % avg
Config. and testing 2,285 50 67.2 2,266 50 64.7 3,287 51 96.7 4,300 58 113.2 4,340 57 81.9
User training 1,046 23 30.8 930 21 26.6 1,322 21 38.9 1,263 17 33.2 1,251 17 23.6
Requirement analysis 647 14 19.0 670 15 19.2 1,110 17 32.7 841 11 22.1 951 13 18.0
Project tracking 306 7 9.0 412 9 11.8 498 8 14.6 890 12 23.4 868 11 16.4
Data transfer 261 6 7.7 213 5 6.1 215 3 6.3 181 2 4.8 150 2 2.8
Total 4,545 100 134 4,491 100 128 6,432 100 189 7,475 100 197 7,560 100 143

their expertise to adjust the Copilote configuration if necessary whereas future users
can feel more comfortable with Copilote by practicing. Infologic experience shows
that a lack of tests often leads later to the discovery of configuration problems or bad
practices from the users.

Acceptance testing aims to contractually validate that Infologic has done the work
as expected by the customer. For Infologic, this last battery of tests with the customer
is essential to agree that the system is ready to be used live.

Launch of Copilote: The last step of the implementation process is the launch of
the system live. Infologic sends teams of integrators to help end-users to use Copilote
and to handle configuration problems that occur such as price incoherences or errors
on sales item labels, for instance. The launch of a new system is always very intense
because users do not feel comfortable with it and are slower than usual. It is always
hard to measure immediately the expected gains. Most of the time, Infologic teams
stay with the customer for a week.

Infologic remains in support to the customer after launching Copilote because the
company may need assistance when a problem occurs with it. This situation happens
particularly on operations that are done only a few times in a year such as inventory
since the configuration is less used and tested.

2.5 Time allocation
Table 2.1 shows the evolution of the time spent by system integrators for each step
of all implementations of Copilote from 2013 to 2017. These data have been collected
from Copilote where all employees log their activity. For each year and each implemen-
tation step, we give the total number of man-days spent for all the implementations,
the percentage it represents in the whole process and the average time in man-days
for one implementation, i.e., the number of man-days divided by the number of imple-
mentations of the year (which is reported in the second line of the table).

Time spent during the implementation process is essentially dedicated to configu-
ration and testing. This step constitutes half of the total time from 2013 to 2015 and
reaches up to 57% of the whole process in 2016 and 2017. In 2017, 4,340 man-days
were spent for configuration and testing, which represents almost 20 full-time employees
doing only configuration and testing.

34

The second longest step is the user training step. The time spent for this step has
continually decreased from 2013 (23% of the time) to 2017 (17% of the time). The
percentage of time allocated for requirement analysis has first increased, from 14% in
2013 to 17% in 2015, and then decreased to 13% in 2017. However, the requirement
analysis step is divided into two activities: the analysis with the customer and the
writing of the requirement analysis document. It is interesting to note that the time
dedicated to requirement analysis writing increased whereas requirement analysis time
decreased. It means that system integrators need more time than before to write the
analysis document. In 2017, for 1 man-day (8 hours) of requirement analysis, a system
integrator needed up to 6 hours to write the analysis whereas he needed less than 3
hours in 2013.

The only step whose percentage of time allocated increased, with configuration and
testing step, are project tracking. Project tracking represents around 11% of the whole
process in 2017. This trend can be explained by the increase of the requirements from
the customers in terms of project management and by the efforts made by Infologic to
structure and standardize the dialogue with the customer during the progress of the
project.

We can note that the implementation activity has experienced a spectacular growth
between 2014 and 2015. However, Infologic implemented Copilote in 2015 once less
than in 2014 (35 implementations). To meet the workload, Infologic hired new system
integrators with no experience on Copilote and trained them to be operational as soon
as possible. Most of them were operational in 2016. This can explain the increase of
the percentage of time dedicated to configuration since they were beginners.

When we relate these figures with the CSF described in part 2.3.3, the decrease
of the time dedicated to requirement analysis is worrying since it is a critical step
to identify all misalignments between Copilote and the customer requirements. Each
time a misalignment is detected late during the implementation process, it implies some
extra time to reconfigure Copilote according to the new requirements. Moreover, time
allocated to the user training step has continually decreased since 2013 while this step
may be essential to involve key-users into the project and manage the change of the
processes.

2.6 Discussion
ERP systems are huge customizable standard software applications that are essential
for industrial companies. However, the implementation process of an ERP system is
very complex and involves both human and technical issues.

As we can see, most of the time spent during the implementation process of Copilote
is dedicated to its configuration. After interviewing many system integrators, it turns
out that they have difficulties to configure Copilote, particularly when this is the first
time they are facing a new business logic requirement. Most of the time, to configure a
new operation, integrators look for a similar case in their personal experience and try to
adapt what they had done for the new case. This practice is based on personal experi-
ence and there is no capitalization between all integrators. It represents a critical issue
for Infologic for several reasons. First, when system integrators leave Infologic, they
leave with all their knowledge and no capitalization has been done on their experience.
Moreover, it causes significant expertise gap between experienced integrators and new

35

ones who need to be trained for at least 8 months to be autonomous on the system. It
is an important hindrance for the growth of Infologic who needs to integrate quickly
and efficiently new system integrators. Solving this issue becomes vital for Infologic
since the sales of Copilote are significantly increasing.

Furthermore, several studies have shown that this time-consuming configuration
step is less critical than human factors such as user training or change readiness [Mot+05;
Ahm+13]. Therefore, an important challenge is to reduce the time needed to configure
an ERP system in order to spend more time on more critical tasks, such as requirements
elicitation.

36

Chapter 3

Configuration of Copilote

Contents
3.1 Existing Configuration Tools 36

3.2 Categories of requirements 37

3.3 Architecture of the configuration of Copilote 38

3.4 Methodology . 40

3.5 Focus on general parameters of Copilote 41

3.6 Discussion . 44

As explained in the previous chapter, the implementation process of an ERP system
involves many issues and Infologic integrators spend most of their time configuring the
system while other critical issues would need more resources. This chapter focuses
on the configuration of Copilote to understand more precisely how system integrators
configure it and identify the main issues.

We introduce existing configuration tools in Section 3.1 and then we focus on Copi-
lote. We divide customer requirements into three categories in Section 3.2. Then, we
present the architecture of the configuration of Copilote in Section 3.3 and we intro-
duce the configuration methodology used by system integrators in Section 3.4. Finally,
we focus on general parameters in Section 3.5 by analyzing the configuration screen,
existing dependencies between these parameters and existing configurations.

3.1 Existing Configuration Tools
The configuration step requires deeply knowledgeable experts in specific modules who
tend to be extremely expensive resources [Ari+03]. Their knowledge is rarely capital-
ized by companies that integrate ERP systems as Infologic who need a great number of
integrators to meet the demand. Therefore, it may be hard, if not impossible, for very
small industrial companies to purchase an ERP system since its implementation can be
very expensive. Hence, accelerating the configuration step becomes an important eco-
nomic issue for enterprises that integrate ERP systems as well as for small companies
who need an ERP system. That is why several tools have been proposed to automate
part of the configuration of an ERP system [Do+14; Ari+03; KW16; Buc+10].

Tools based on decision trees. Authors of [KW16] propose a configuration tool
for small enterprises that cannot afford to pay consultants to configure an ERP system.

37

They present two approaches based on decision trees built on expert knowledge and
classifiers to automate configuration options. The idea is to automatically configure
the ERP system only with a questionnaire completed by the Chief Executive Officer
(CEO) of a small enterprise. They propose to configure automatically business objects
such as sites or regions of the enterprise. These data are called categories and are
represented as abstract hierarchical entities. The first approach consists in building a
decision tree from ERP expert interviews. The value of a parameter corresponds to a
node of the tree which is associated to a question. The configuration is completed when
the CEO reaches a leaf. The second approach consists in classifying the answers of the
questionnaires. From each answer, they deduce which categories have to be added
to the configuration. They use a Naive Bayes classifier trained with questionnaires
completed by students.

Another automatic configuration tool is introduced in [Buc+10] for a material re-
quirements planning software developed by SAP. Companies have generally a lot of
difficulties to configure this kind of system because it requires many complex parame-
ters and it is hard to benefit from the whole system when one is not an expert. The
approach also uses decision trees built manually to find the good values of the param-
eter.

Object oriented tool. In [Ari+03], authors propose a tool to relate functional or
organizational requirements of an enterprise with the configuration of an ERP. To
do this, they model requirements and the configuration of the ERP system with an
object oriented framework used to match requirements with configurations. The goal
is to capitalize configurations of functionalities of different ERP systems with a user
friendly interface. From the same interface, they can configure different ERP systems
such as SAP R/3, PeopleSoft or Oracle Applications. The object oriented approach is
used to model enterprise functions and enterprise schema which are directly linked with
the user interface and ERP configurations. However, there is no automation to build
the model and relate it with ERP configurations, which is clearly the most difficult
part. Moreover, Copilote is much more adaptable and complex than the considered
ERP systems.

3.2 Categories of requirements
When implementing Copilote, the configuration step consists in assigning values to
parameters in such a way that the system fulfills the customer requirements described
in the requirement analysis document. These requirements, for a given business process,
may be divided into three main categories:

• Business logic requirements, i.e., requirements that describe how the system must
work during the business process;

• Operating requirements, i.e., requirements that describe what information users
need during the business process to do their job as well as possible;

• Reporting requirements, i.e., requirements that describe how data collected dur-
ing the business process must be aggregated and displayed for reporting and
monitoring activities.

38

Example 3.1. We consider the purchase order process that consists, for a company,
in purchasing materials needed for its activities. The main step of the purchase order
process is to enter the order into the system.

A business logic requirement may be to specify how the system must compute the
price of the material knowing that prices are often defined for a given period. Therefore,
the reference date to compute the price is essential. A company may want to compute
the price according to the date of order for 95% of the suppliers and according to the
date of delivery for 5% of the suppliers.

When entering a new purchase order, an operating requirement may be to visualize
the last ten purchase orders placed with the current supplier to know what were the
last purchased materials, their prices and the last quantities the company ordered.

When analyzing purchase activities, a reporting requirement may be to visualize
all the purchase orders done during the last 6 months, grouped by month of order and
by supplier with the aggregated weight and price at each grouping level.

Operating requirements and reporting requirements are straightforward to configure
in Copilote. There is no need of a deep knowledge of the system to configure this kind
of data visualization even if it can be time consuming.

We focus on business logic requirements that are much more complex to configure
since it is done with thousands of parameters that require a deep expertise of the
system.

3.3 Architecture of the configuration of Copilote
We focus on the architecture of the parameters of Copilote that are used to configure
the system to fulfill business logic requirements. Figure 3.1 shows the different levels
of parameters embedded in Copilote.

Copilote is divided into 7 business modules: acquisition, sales, production, Ware-
house Management System (WMS), financial, Customer Relationship Management
(CRM) and Electronic Data Interchange (EDI). Each business module has the same
configuration structure.

Functional module parameters are the highest level of parameters of a business
module. They are used to activate high level functionalities such as export function-
alities, for instance. Each functional module corresponds to a part of Copilote that
customers can purchase when they choose the scope of Copilote they want. Copilote
contains 232 functional module parameters.

Each of the seven business modules has hundreds of general parameters that are
used to configure business logic into the processes handled in the module. Many general
parameters depend on a functional module parameter: They can be configured only
if their functional module parameter is activated. Table 3.1 details the number of
parameters of these modules. For each module, we give the number of parameters
according to their type:

• Symb gives the number of symbolic parameters, i.e., parameters that take their
value within a finite list of values;

• Ref gives the number of parameters that are a reference towards another database
object;

39

Figure 3.1 – Architecture of the different levels of parameters of Copilote.

• Domain gives the number of parameters that can take a value within a specific
domain such as numeric, date or text parameters;

• Multi gives the number of multi-valued parameters, i.e., parameters that are a
list of objects.

Acquisition and sales modules have more general parameters than other modules
because they cover much more business processes. 46% of the general parameters of
Copilote are symbolic parameters. All these parameters are very important during the
configuration step since they are used to specify the business logic of the system.

Each module has many different business objects that are manipulated, modified
and created by Copilote during business processes. These business objects embed a
lot of data that are essential for the business logic such as, for example, lead time,
pricing details, billing details, or country of the supplier. This data is also considered
as parameters.

40

Table 3.1 – Detail of the number of general parameters for each module.

Module Symb Ref Domain Multi Total
Acquisition 604 282 232 91 1,209

Sales 1,167 525 303 165 2,160
Production 149 63 55 21 288
Financial 141 240 143 11 535
Warehouse 222 191 177 88 678

CRM 18 89 17 6 130
EDI 3 11 12 3 29
Total 2,304 1,401 939 385 5,029

Moreover, part of the business logic specified in the global parameters layer can be
overwritten at the business objects level. This is especially useful to handle particular
cases. During a business process, Copilote considers first the business logic of the
business objects involved in the process and then the logic coming from the general
parameters.

Example 3.2. If we consider the business logic requirement described in Example 3.1,
a symbolic general parameter called Price reference date is used to specify what date
must be taken into account to compute the price of the materials. The same field
exists in the supplier business object that allows to consider another reference date for
a particular supplier.

Therefore, we set the value "Date of order" in the general parameter and for the 5%
of suppliers concerned, we set the value "Date of delivery" in the field of their business
object. This way, the date of order is considered to compute material prices except for
the suppliers for which we specified "Date of delivery" in their object.

Example 3.3. The trade of goods declaration is necessary for companies that export
or import materials in the European Union. To configure the trade of goods declaration
functionality, an integrator has first to activate the corresponding functional module.

Once this is done, general parameters that concern trade of goods declaration are
visible in the general parameter screen of sales module and acquisition module. These
parameters allow to specify how to do the declaration of the company. For instance, a
parameter is used to specify whether the company declares sales item samples into the
declaration or not.

Finally, a field for each supplier (resp. customer) business object specifies whether
trades with this supplier (resp. customer) have to be taken into account in the dec-
laration. Then, to test if the declaration is configured as expected, the integrator has
to enter orders with these suppliers and generate the declaration to check if it is well
done.

3.4 Methodology
We focus on how system integrators configure the system according to the requirement
analysis document. To do this, we followed integrators during the implementation
process of Copilote.

41

When system integrators start to configure the system for a customer, they focus
on one single business process described in the requirement analysis document. Most
of the time, they achieve the following tasks:

1. They activate the functional module needed for the process;

2. They configure operating requirements and reporting requirements;

3. They configure business logic requirements by setting values to general parame-
ters to handle the general case;

4. They configure business objects needed for particular cases and to run the process
for testing the configuration;

5. They execute as often as necessary the process to test all the cases that need to
be handled by Copilote.

Example 3.4. If we consider our running example described in Example 3.1, as we
do not need to activate any functional module, we start by configuring the view of the
last 10 purchase orders for a given supplier and we add it to the purchase order screen.

Then, we configure the view that groups the purchase orders of the last 6 months
by month and by supplier with the price and the quantity. Both views are done with
the decisional tool of Copilote which is straightforward to use.

Then, we configure the general parameter Price reference date as explained in Ex-
ample 3.2 and we enter new suppliers, some of which with the value "Date of delivery"
in their Price reference date field.

Finally, we need to enter some materials, some pricing, some delivery details for
each of the suppliers. Once this is done, we may enter a new order on a normal supplier,
another one on a supplier having "Date of delivery" specified and we have to verify
that Copilote works as expected. If it computes the good prices, we configure the next
requirements, otherwise, we try to find out what parameters have to be modified to
correct the problem.

Our running example is trivial since the requirement can be configured by instanti-
ating only one parameter. However, most of the time it involves more parameters and
is much harder to configure. Assigning the right values to the parameters in order to
fulfill a requirement may be a very hard task, particularly when an integrator faces a
requirement for the first time.

Our example still shows that the testing part may be time consuming since many
business objects may need to be entered in the system to verify all the cases to han-
dle. Moreover, each time the configuration is modified, a system integrator has to
verify again all the cases to handle. Any mistake when configuring the system is time-
consuming to both correct the mistake and verify that the system works as expected.

3.5 Focus on general parameters of Copilote
We focus on the general parameters of the acquisition module of Copilote to understand
how they are configured by integrators. As shown in Table 3.1, the acquisition module
contains more than 1,200 parameters and most of them are symbolic parameters.

42

Figure 3.2 – Configuration screen of the general parameters of the acquisition module

Configuration screen. A screen is dedicated to the configuration of the general
parameters of the acquisition module. As shown in Figure 3.2, the screen displays a
list of all the parameters. There is only a text field to filter the parameters according
to their label. Therefore, when configuring a requirement for the first time, a system
integrator either finds a detailed and clear documentation that explains how to config-
ure it, which rarely exists, or enter some keywords into the filter to hopefully find the
right parameters to configure. System integrators may search for a long time into the
huge amount of parameters what parameters need to be configured, and this may be
frustrating.

Even when a system integrator has already configured the same requirement in a
previous implementation, if he does not remember exactly how he configured it, he still
has to remember for which customer he did it and then identify what parameters were
concerned to find out how he configured it.

In this screen, the way parameters are displayed makes it hard to understand the
business logic implied by the current configuration. To understand the meaning of a
parameter value, system integrators need to visualize all the parameters that impact
the same business logic. Displaying all the parameters in a list buries their business
logic meaning into a huge amount of information.

Furthermore, parameters that are very important for the business logic are not
distinguished from detail parameters. For instance, the parameter Price reference date,
which is critical, is next to the parameter that specifies the font color of the purchase
order screen.

Dependencies between parameters. Many dependencies exist between general
parameters because some values may be incompatible from a business logic point of
view. We detail two frequent dependencies.

• Master/slave activation: A slave parameter can be instantiated only if a master
parameter is assigned to a given value. For instance, parameters concerning
wine industry can be assigned only if the boolean parameter that activates wine
functionalities is set to true. Otherwise, the slave parameter is not activated.

• Master/slave dependency: The value of the slave parameter is reset when the
value of the master parameter is modified. For instance, when the parameter

43

that specifies the packing site is changed, the parameter that gives the packaging
station is reset to null because only stations of the packing site can be chosen for
this parameter.

Some of these dependencies are encoded directly in the general parameters screen
to help the system integrator avoid mistakes on business logic coherency but still many
mistakes are done which have, sometimes, bad consequences on customer activities.
It would be a tremendous work to identify and encode manually all the dependencies
that exist between this huge amount of parameters. However, identifying the most
critical or the most frequent configuration mistakes in order to add, into the system,
dependencies that prevent to make them again would probably improve the overall
quality of the configuration.

Identifying automatically all the dependencies between parameters, which is a com-
plex issue, would be an interesting problem to solve and many different techniques could
be applied. These dependencies may allow one to know if a configuration is correct
from a business logic point of view. However, this does not mean that the configuration
is correct according to the requirements of the customer which is our main objective.

Analysis of existing configurations. We have collected 500 existing configurations
of the general parameters of the acquisition module from existing implementations of
Copilote in order to analyze how they are instantiated.

The analysis of existing configurations shows us that a significant part of these
parameters are used by only few customers. Indeed, 110 parameters are used by only
one customer (i.e., instantiated in only one configuration), 200 by less than five cus-
tomers and 240 by less than ten customers. When focusing on these parameters, we
find out that they are dedicated to functionalities developed for a particular field of
activity. For instance, 40 parameters are used by the only customer of Infologic that
works in the wine industry. Therefore, part of the general parameters are very specific
to fields of activity and are used by only few customers of Infologic. Most of the time,
these parameters could be ignored by system integrators if they are not relevant for
the current customer to configure.

When focusing on the values of the parameters, some parameters have a dominant
value that is assigned in more than 90% of the configurations whereas some parameters
have values almost never used which lead us to believe they correspond to very specific
requirements. It would be very useful to know, when assigning a value to a parameter,
the distribution of the assigned values in all the configurations.

Furthermore, around 15% of these parameters have a constant value, i.e., they have
the same value in all the configurations. These parameters are then useless and may be
removed. When trying to understand the origin of these useless parameters, it turned
out that it comes from the fact that this module is symmetric with the sales module
since processes are very similar in both modules: when a functionality is developed for
the sales module, it is, most of the time, developed in the acquisition module as well,
and general parameters of the functionality are added to the module. However, some
of these functionalities are never used.

We could think that two companies within the same activity field would have similar
requirements and then similar configurations but this is not true. They may have very
similar requirements for some parts of business processes but most of the requirements
are independent from the business sector.

44

3.6 Discussion
Existing configuration tools are not suitable for Infologic because the model on which
they are based are either built manually or based on questionnaires completed by
students.

When we focus on the configuration of a business process in Copilote, it appears
that the complexity remains in finding, from thousands of parameters, the subset of
parameters that impact the considered business logic and then in choosing the right
values to assign to these parameters in order to fulfill the requirement.

Obviously, simple improvements of the system could be done to help integrators
during the configuration step:

• For a given parameter, by showing the values it takes in other configurations;

• By warning integrators when they are doing a configuration never done before;

• By displaying first the parameters used by more than x% of the customers.

Infologic started to develop a tool to provide these information which may help sys-
tem integrators. However, this tool does not help them to understand the business logic
induced by a configuration, which requires a deep expertise of Copilote and of busi-
ness logic. Moreover, experts with a deep knowledge of Copilote tend to be extremely
rare resources and we cannot base our approach only on them. In the next chapter,
we present a new approach which exploits existing configurations of Copilote: These
existing configurations contain the knowledge needed to configure Copilote according
to the requirements of the customers of the corresponding implementations.

45

Chapter 4

Proposed approach: From
Configurations to Requirements

Contents
4.1 Map of the business units of Copilote 46

4.2 Use of the map . 48

4.2.1 Collecting the requirements 48

4.2.2 Business logic scope of the parameters 49

4.3 From configurations to requirements 50

4.4 Discussion . 51

Infologic is convinced that it is possible to significantly reduce configuration time
by developing a tool for reusing parts of previous configurations when implementing
Copilote for a new customer. This intuition is confirmed by Daneva [Era+15] who
measured requirements reuse, and found out that even if full reuse was not achieved,
the rate of reuse could be remarkably high in some cases.

More precisely, the tool should guide integrators during the requirement analysis
by proposing questions to ask to customer managers in order to collect efficiently the
requirements. From each of these requirements, the tool should identify the correspond-
ing configuration part used in previous implementations (if it exists) and automatically
reuse it for the new case. In other words, the goal is to collect a catalog of business
logic requirements with their corresponding configuration parts in order to reuse them
during new implementations of Copilote.

The first way to build this catalog is to ask integrators to identify, one by one, all the
requirements and their corresponding configuration parts they have implemented be-
fore. This solution is not an option for Infologic because this work would be amazingly
complex and would be too time-consuming for system integrators.

The second way is to extract automatically, from existing configurations, parts
of configurations that correspond to business logic requirements. More precisely, the
main idea of this approach is to collect all existing configurations and apply data
mining techniques to extract relevant parts of configurations to be interpreted by expert
integrators and related to corresponding business logic requirements. This second
proposition is more suitable for Infologic since it is much less time consuming for
system integrators which are a critical resource.

46

In this chapter, we propose a new approach to assist the configuration of Copilote.
In Section 4.1, we introduce the concept of business unit map, which is a set of func-
tional goals which are structured thanks to a refinement relation. In Section 4.2, we
show how to exploit this map during the implementation process of Copilote. Finally, in
Section 4.3, we introduce our approach that consists in extracting, from previous con-
figurations, parts of configurations that may correspond to business logic requirements
in order to reuse them for new implementations.

4.1 Map of the business units of Copilote
To be able to extract relevant parts of configurations and then to reuse them to as-
sist the configuration of Copilote from customer requirements, a new abstraction is
necessary to relate parameters to requirements. As seen in Section 3.2, business logic
requirements are customer requirements on the business logic applied by Copilote dur-
ing a process, and this business logic is achieved by setting parameters. However,
the connection between parameter settings and business requirements is not explicitly
stated. Therefore, we propose to identify every part of a business process for which a
business logic may be configured into Copilote. Such a part may be seen as the unit of
reasoning of system integrators during the configuration process, and we call it a busi-
ness unit. This concept of business unit is inspired by the definition of a functionality
in [Rol+01] where authors propose a system to link ERP functionalities with customer
requirements.

The goal is to obtain a complete map of the business units of Copilote and use this
map all along the implementation process, particularly when collecting the customer
requirements and configuring the system.

Definition 4.1 (Business unit). A business unit is defined as a goal to be achieved by
Copilote. There may exist several ways for achieving this goal with Copilote, and each
of them may be specified by a business logic requirement.

We denote B the set of all the business units of Copilote.

Example 4.2. For instance, Enter a sales order is a business unit. It can be achieved
in many different ways. Two different business logic requirements for achieving this
business unit are: (1) a telemarketer answers a customer call and uses Copilote to enter
a new order; (2) a customer uses a web portal to directly enter a new order.

We may consider different levels of granularity when defining business units, and a
high level business unit may be refined into a set of more detailed business units.

Definition 4.3 (Refinement of a business unit). The function refinement : B → P(B)
associates with every business unit bu ∈ B a (possibly empty) set of business units
{bu1, . . . , bun} ⊂ B.

From a business logic point of view, the refinement function must not contain cycles.
More formally, it defines a partial order on B, and the corresponding graph is called
the map of B.

Definition 4.4 (Business unit map). The business unit map is a graph Grefinements =
(B, E) such that B is a set of business units, and E is the set of directed edges defined

47

by the refinement function, i.e., E = {(bui, buj) ∈ B × B|buj ∈ refinement(bui)}.
Grefinements must be a Directed Acyclic Graph (DAG), i.e., there must not exist a subset
of n ≥ 2 business units {bu1, . . . , bun} ⊆ B such that ∀i ∈ [2, n], (bui−1, bui) ∈ E and
(bun, bu1) ∈ E.

Note that Grefinements is a DAG and not a tree because a business unit may be used
to refine several higher level business units.

We have designed and implemented a tool for assisting the construction of this
map. The description of this tool is beyond the scope of this thesis, and we only use
the resulting map. This tool has been used by an expert integrator to build a part of the
business unit map of Copilote. This incomplete map only contains the business units
related to three modules, i.e., the acquisition, sales and production modules, which
nearly correspond to half of the Copilote modules. The part of the map corresponding
to the acquisition (resp. sales and production) module contains 48 (resp. 71 and 166)
business units.

Figure 4.1 – Part of the business units map of the sales flow process in Copilote.

Example 4.5. Fig. 4.1 shows a small part of the business unit map of Copilote.
The highest level unit is BU1 (Manage sales) which corresponds to the sales process.
This process is refined into five more precise business units, i.e., refinement(BU1) =
{BU1.1, BU1.2, BU1.3, BU1.4, BU1.5} where BU1.1 is Enter a sales order, BU1.2 is
Prepare the order, BU1.3 is Deliver the order, BU1.4 is Invoice the order, and BU1.5
is Manage the trade of good declaration. Actually, BU1 is refined with much more
business units but we display only a few of them in Fig. 4.1 to simplify it.

All these business units still correspond to high level units and are refined into
more precise business units. For instance, BU1.1 is refined into four lower level busi-
ness units, i.e., refinement(BU1.1) = {BU1.1.1, BU1.1.2, BU1.1.3, BU1.1.4} where

48

BU1.1.1 is Select the customer, BU1.1.2 is Select a sales item, BU1.1.3 is Select a
quantity to sell, and BU1.1.4 is Compute the price.

For each of these lower level business units, there may exist different business logic
requirements. For instance, for the business unit BU1.1.1, business logic requirements
may be:

• Block customers that have not paid all their invoices;

• Display a pop-up with specific information that concern customers when a user
selects them;

• Group customers by department in the selection list.

4.2 Use of the map
The business unit map is a model of all capabilities of Copilote. We propose to use this
model to (i) structure the requirement analysis step (as explained in Section 4.2.1),
and (ii) bridge the gap between business units and parameters (as explained in Sec-
tion 4.2.2).

4.2.1 Collecting the requirements

The business unit map of Copilote may be used to guide the requirement analysis step.
As explained in Section 2.4, the objective of the requirement analysis step is to collect
all the requirements needed to configure the business logic of Copilote as expected by
the customer. In other words, it consists in collecting, for all business units in B, the
requirements needed to configure the business logic of the units.

We propose to use the DAG structure ofGrefinements to guide system integrators when
collecting customer requirements. A system integrator starts to collect the requirements
by selecting the business unit bu ∈ B that represents the goal achieved by the process
he wants to analyze. Then, the goal is to refine as much as possible the customer
requirements.

More formally, for a given business unit bu ∈ B, Algorithm 1 details how to collect
recursively all the requirements needed to configure bu. When analyzing a business
unit bu, the first point is to know if the customer is concerned by the goal achieved by
bu (line 3). If it is not the case, there is no need to collect requirements. Otherwise, if
bu is not refined, all the requirements needed to configure bu need to be collected (line
5). If bu is refined, all the business units that refine bu must be analyzed in the same
way (line 8).

Example 4.6. We consider the analysis of the requirements concerning the sales pro-
cess. According to Figure 4.1, the business unit Manage sales represents the goal
achieved by this process. The system integrator (denoted SI) interacts with the cus-
tomer (denoted C) by following this predefined framework:

• SI asks if C is concerned by this process. Let us assume that this is the case.

• SI focuses on the refinement of Manage sales.

49

Algorithm 1: Analysis of a business unit
1 Procedure Analyze(Grefinements , bu)

Input: A business unit map Grefinements = (B, E) and a business unit bu to analyze
2 begin
3 if The customer is concerned by bu then
4 if bu is a leaf in Grefinements then
5 Ask all the requirements needed to configure bu
6 else
7 for each (bu, bui) ∈ E do
8 Analyze(Grefinements , bui)

• SI asks if C has any specificities when Entering a sales order. Let us assume
that this is the case.

• SI focuses on the refinement of Enter a sales order.

• SI considers the business unit Select the customer and collects all the require-
ments associated with this business unit. This is done by asking the following
questions to C:

– How do you select the customer on which you want to enter a new sales
order?

– Is there any control to do on the customer associated with a sales order?

– Do you allow to enter a sales order for a customer that has unpaid invoices?

This way of collecting the requirements provides many advantages:

• The map gives a complete view of the business units that have to be analyzed
with the customer. We can easily know the progress of the requirement analysis
and what business units remain to be done.

• Each requirement is related to the business unit it impacts. We obtain as output
a set of business units to be configured together with their requirements. This
defines clearly the scope of the implementation process.

The method can easily be improved by providing, for each business unit, the ques-
tions a system integrator has to ask to collect efficiently and entirely the requirements.

4.2.2 Business logic scope of the parameters

In the current version of Copilote, there is no way to know or even to describe the scope
of the business logic impacted by a parameter. This information is essential to be able
to focus, for a given business unit, only on parameters that may impact it. Therefore,
for each parameter p, we propose to identify all the business units whose business logic
may be impacted by p. We call this set of business units the business logic scope of p.

More formally, let P be the set of all parameters of Copilote. We define the function
scope : P → P(B) that gives for each parameter the set of business units it impacts.

50

We define the dual function parameters : B → P(P) that gives, for each business unit
in B, the set of the parameters that impact its business logic, i.e., bu ∈ scope(p) ⇔
p ∈ parameters(bu).

We have designed and implemented a tool for associating business units with pa-
rameters. We decided to focus on a subpart of Copilote: general parameters of the
sales modules and parameters of the model of production planning business object.
The task of associating a business logic scopes with the rest of the parameters is still
in progress: It is time consuming since Copilote has thousands of parameters and only
experts are able to do this critical job.

Our goal is to use this mapping between parameters and business units to restrict
the list of parameters that are displayed to the system integrator: When configuring
a business unit bu, Copilote will only display the parameters that may impact the
business logic of bu, i.e., parameters(bu).

4.3 From configurations to requirements
A business unit defines a goal which may be achieved by different parameter settings
depending on the customer needs (i.e., the business logic requirements), but also on
the system integrator who has configured Copilote. In this section, we introduce an ap-
proach for extracting from existing configurations of Copilote a catalog of configuration
parts related to a description of the corresponding functional needs.

More precisely, let D be the database of n existing configurations of Copilote. Each
configuration in D corresponds to a different customer and gives the instantiation of
the parameters for this customer. In other words, D is a matrix which contains a
row for each customer c ∈ [1, n] and a column for each parameter p ∈ P such that
D[c][p] is the value assigned to parameter p ∈ P in the configuration of Copilote used
by customer c.

Our goal is to extract relevant configuration parts from D. Let us first define what
is a configuration part.

Definition 4.7 (Configuration part). A configuration part is defined by a couple (P ′, I)
such that P ′ ⊆ P is a subset of parameters and I is an instantiation of these parameters
such that there exists at least one customer for which this instantiation has been used,
i.e., ∃c ∈ [1, n],∀p ∈ P ′, I(p) = D[c][p].

There exists an exponential number of configuration parts and our goal is to extract
only those that are relevant. We may consider different criteria to evaluate the relevancy
of a configuration part (P ′, I). Some of these criteria may be simple measures such as,
for example:

• The number of customers for which the part has been used, i.e., #{c ∈ [1, n]|∀p ∈
P ′, D[c][p] = I(p)};

• The number of parameters in P ′, i.e., #P ′.

An important criterion is the cohesion of the parameters in P ′. In particular, we restrict
our attention to configuration parts (P ′, I) such that all parameters in P ′ are related
to a same business unit, i.e., ∃bu ∈ B, P ′ ⊆ parameters(bu).

51

Other criteria may be more difficult to define in an a priori way, and we propose to
interact with an expert of the configuration of Copilote to identify relevant configuration
parts as follows:

1. Define a first set C of constraints and criteria for identifying relevant configuration
parts;

2. Apply data-mining techniques on D to extract a set S of the most relevant
configuration parts according to C.

3. Ask the expert to select the configuration parts in S that correspond to business
logic requirements;

4. If the expert judges that S contains irrelevant configuration parts, interact with
the expert to update the set C of constraints and criteria used to mine relevant
configuration parts, and return to step 2.

Finally, for each relevant configuration part (P ′, I) that has been selected by the expert,
the expert has to describe the requirements that are fulfilled by the instantiation I of
the parameters P ′. The resulting set of all selected configuration parts together with
the description of the corresponding requirements is called a catalog of configurations.

This catalog of configurations capitalizes on the experience of all integrators that
have implemented configurations in the database D. It will be used to assist system
integrators for new implementations of Copilote. During the requirement analysis of
a business unit, system integrators can choose directly, from the configuration cata-
log, the configuration part that corresponds to the business logic requirement of the
customer if it exists. This configuration part (P ′, I) can be used to automatically
instantiate every parameter p ∈ P ′ to I(p).

4.4 Discussion
We have introduced in this chapter an approach for reusing previous configurations in
order to assist Copilote integrators during the configuration step. The basic idea is to
guide the implementation of Copilote by means of a business unit map. This map is
used during the requirement analysis step to structure the interview of the customer for
identifying all requirements associated with the business units that are targeted for this
customer. This map is also used to identify the parameters which impact a business
unit. Finally, a catalog of configurations is used to propose to the integrator some
configuration parts that correspond to the business logic requirement of the customer.

A first proof of concept of the approach has been implemented. In particular, we
have implemented a tool for assisting the construction of the business unit map, and we
have used this tool to build this map for a subset of Copilote. We have also identified,
for each business unit of this partial map, the set of parameters which impact it.

The most challenging part of our approach is to use data mining techniques to
identify relevant configuration parts. As explained in the previous section, constraints
and criteria used to define relevancy are not completely known and we need to interact
with an expert to identify them. This data mining task constitutes the technical core
of this thesis. To achieve it, we propose to use constraint programming because this

52

declarative framework allows us to easily integrate feedbacks of experts, by means of
new constraints and criteria.

The database D which is mined mainly contains symbolic data since most of the
parameters described in Table 3.1 are symbolic. Therefore, we focus on symbolic data
mining methods and we propose to use Formal Concept Analysis (FCA) which groups
together objects sharing a same set of attribute values [Gan+97]. The aim is to group
configurations that fulfill the same requirement together and identify the corresponding
part of configuration.

53

Part II

Technical Context

54

We propose to use constraint programming (CP) to identify relevant configuration
parts from a database of existing configurations of Copilote. This problem mainly in-
volves solving a clustering problem. CP allows us to define our problem in a declarative
way by means of variables and constraints. Since our approach is experimental, CP
constitutes a flexible framework that allows us to easily and interactively modify and
adapt our model according to Copilote expert feedbacks.

In this part, we describe the technical context of our work. In Chapter 5, we
introduce the basic Branch and Propagate generic algorithm used in classical CP solvers
to solve constraint satisfaction problems, and we describe different ingredients that are
used in our CP models, i.e., set variables, global constraints, and approaches for solving
optimization problems with CP.

In Chapter 6, we describe Formal Concept Analysis, the idea of which is to group
together objects that share a same set of attribute values. We more particularly focus
on conceptual clustering that aims at partitioning a set of objects into homogeneous
and well separated clusters such that each cluster is described by a set of attribute
values shared by all its objects. We also describe existing declarative approaches to
solve conceptual clustering problems.

In Chapter 7, we describe the Exact Cover problem that aims at selecting a subsets
of objects that defines a partition of a set of objects and we show how conceptual
clustering may be seen as an Exact Cover problem. We describe some dedicated and
declarative approaches for solving this problem.

55

Chapter 5

Constraint Programming

Contents
5.1 Constraint Satisfaction Problems 56

5.2 Constraint Propagation . 57

5.3 Backtracking search algorithms 60

5.4 Set Variables . 63

5.5 Global Constraints . 64

5.6 Solving Optimization Problems with CP 67

5.6.1 Mono-criterion optimization 67

5.6.2 Multi-criteria Optimization 69

5.7 Constraint Programming Libraries 72

5.8 Discussion . 73

We propose to use Constraint Programming (CP) to mine relevant configurations
parts from existing Copilote configurations. CP allows us to define our problem in a
declarative way by means of variables and constraints. This kind of problems defined
by means of constraints are called Constraint Satisfaction Problems (CSPs), and are
described in Section 5.1. CSPs are solved by generic algorithms which are usually
based on a Branch and Propagate principle: The propagation step, described in Section
5.2, exploits constraints to simplify the problem; The branching step, described in
Section 5.3, decomposes the problem into subproblems which are recursively solved.
In Section 5.4, we describe set variables, i.e., variables that represent sets of values,
and we show how their domains may be approximated by set intervals in order to
efficiently propagate constraints on them. In Section 5.5, we describe global constraints,
which are a key ingredient of the success of CP: They provide both a compact way
for modeling complex relations and an efficient way for propagating them. In Section
5.6, we introduce Constrained Optimization Problems and Multi Objective Constrained
Problems, and we show how these problems may be solved with CP approaches. Finally,
in Section 5.7 we briefly describe how to implement a new global constraint in a CP
library.

Many definitions and notations introduced in this chapter are taken from [Ros+06],
and we refer the reader to this handbook for more details on CP.

Given a set S, we denote #S the cardinality of S and P(S) the set of all subsets
of S. Given two integer values lb and ub, we denote [lb, ub] the set of all integer values
ranging between lb and ub.

56

5.1 Constraint Satisfaction Problems
A Constraint Satisfaction Problem (CSP), also called constraint network, involves as-
signing values to variables so that constraints are satisfied. Each variable has a domain,
which is the set of values that may be assigned to it. In this thesis, we only consider
finite domains and, without loss of generality, we assume that all domains only contain
integer values, i.e., are finite subsets of Z.

More formally, let us first define what is a constraint.

Definition 5.1 (Constraint). A constraint c is a relation defined on a sequence of
variables X(c) = (xi1 , . . . , xi#X(c)

), called the scheme of c. c is the subset of Z#X(c)

that contains the combinations of values τ ∈ Z#X(c) that satisfy c, denoted sol(c).
#X(c) is called the arity of c.

A constraint may be defined in intention, by using mathematical operators, or in
extension, by listing all the tuples in the relation.

Example 5.2. The constraint c ≡ x1 < x2∧x2 < x3 is the relation defined in intention
that contains every tuple (a, b, c) ∈ Z3 such that a < b and b < c. The tuple (4, 7, 8)
satisfies c whereas the tuple (4, 1, 2) does not satisfy c. The arity of c is 3.

The constraint c′ ≡ {(1, 2, 3), (2, 1, 3)} is the relation defined in extension which is
satisfied by two tuples: (1,2,3) and (2,1,3).

Definition 5.3 (CSP). A CSP is defined by a triple (X,D,C) such that:

• X = (x1, . . . , xn) is a finite sequence of integer variables;

• D = D(x1)× . . .×D(xn) is the domain for X, where D(xi) ⊂ Z is the finite set
of values that may be assigned to the variable xi;

• C = {c1, . . . , cm} is a set of constraints such that, for each constraint ci ∈ C,
every variable in X(ci) belongs to X.

A CSP is binary if all its constraints involve two variables, i.e., ∀ci ∈ C,#X(ci) = 2

The variables of a CSP and the scheme of a constraint ci are sequences of variables
and not sets because the order of values matters for tuples in D or ci. However, we
may use set operators on sequences. In particular, given two constraints ci and cj, we
denote X(ci) ⊆ X(cj) the fact that every variable in the scheme of ci also belongs to
the scheme of cj, whatever their order in the schemes. Also, given a constraint c and
a variable x, we denote x ∈ X(c) the fact that x belongs to the scheme of c.

Given a tuple τ on a sequence of variables Y , and another sequence of variables
W ⊂ Y , we denote τ [W] the restriction of τ for the variables of W , ordered according
to W . Given a variable xi ∈ Y , τ [xi] denotes the value of xi in τ .

Solving a CSP involves assigning variables to values so that constraints are satisfied.

Definition 5.4 (Instantiation). Let (X,D,C) be a CSP.

• An instantiation I on Y = (x1, . . . , xk) ⊆ X is an assignment of values v1, . . . , vk
to the variables x1, . . . , xk. I is a tuple and may either be denoted
((x1, v1), . . . , (xk, vk)) or (I[x1], . . . , I[xk]).

57

• An instantiation I on Y is valid if for all xi ∈ Y, I[xi] ∈ D(xi).

• An instantiation I on Y is partial if Y ⊂ X and complete if Y = X.

• An instantiation I on Y is locally consistent if it is valid and for every ci ∈ C such
that X(ci) ⊆ Y , I[X(ci)] satisfies ci. If I is not locally consistent, it is locally
inconsistent.

• A solution is a complete instantiation I on X which is locally consistent. The set
of solutions of (X,D,C) is denoted sol(X,D,C).

• An instantiation I on Y is globally consistent (or consistent) if it can be extended
to a solution (i.e., there exists I ′ ∈ sol(X,D,C) with I = I ′[Y]).

Example 5.5. As a running example, we use the 4-queens problem that aims at placing
4 queens on a 4 × 4 chess board in a way that no two queens can attack each other.
Different CSPs may be used to model this problem. A classical CSP is (X,D,C) with

• X = (x1, x2, x3, x4);

• D(xi) = {1, 2, 3, 4} for all i ∈ [1, 4];

• C = {ci,j|{xi, xj} ⊂ X} where

ci,j ≡ (xi 6= xj) ∧ (|xi + i| 6= |xj + j|) ∧ (|xi − i| 6= |xj − j|).

In other words, this model associates a variable xi with every column i ∈ [1, 4], as
we know for sure that there is exactly one queen per column, and the value assigned
to this variable corresponds to the row of this queen. There is a constraint c(xi, xj)
between every pair of queens. The first (resp. second, and third) part of this constraint
ensures that all queens are placed on different rows (resp. different downward diagonals,
and different upward diagonals). This CSP has two solutions, i.e., sol(X,D,C) =
{(2, 4, 1, 3), (3, 1, 4, 2)}.

For this CSP, the partial and valid instantiation I = (1, 3) on Y = (x1, x2) assigns
x1 to 1 and x2 to 3. I is locally consistent because it satisfies the constraint c1,2.
However, I is not globally consistent because it cannot be extended to a solution.

5.2 Constraint Propagation
CSPs are usually solved by backtracking search algorithms which are described in
the next section. These algorithms explore all possible instantiations in a systematic
way. As the number of valid instantiations is exponential in the number of variables,
this exhaustive exploration is combined with constraint propagation techniques which
exploit constraints to reduce the search space.

More precisely, the propagation of a constraint c aims at filtering its variable do-
mains by removing values that cannot belong to solutions. After this propagation
step, the filtered domains are said to be locally consistent. Different propagation al-
gorithms may be proposed for a same constraint, and these algorithms may achieve
different levels of local consistency. Given two propagation algorithms P1 and P2 for a
same constraint c, we say that P1 is stronger than P2 if, for every variable xi ∈ X(c),

58

we have D1(xi) ⊆ D2(xi) where D1 and D2 denote the filtered domains obtained by
propagating c with P1 and P2, respectively, given the same initial domains.

In this section, we describe arc consistency, which is the most famous local consis-
tency, and bound consistency, which is a weaker consistency.

Definition 5.6 (Arc Consistency (AC)). Let be (X,D,C) a CSP, c ∈ C a constraint,
and xi ∈ X a variable.

• A value vi ∈ D(xi) is consistent with c if there exists a valid tuple τ satisfying c
such that τ [xi] = vi. Such a tuple is called a support for (xi, vi) on c.

• The domain D is arc consistent on c for xi if all values in D(xi) are consistent
with c.

• The CSP (X,D,C) is arc consistent if D is arc consistent for all variables in X
on all constraints in C.

• The CSP (X,D,C) is arc inconsistent if ∅ is the only domain tighter than D
which is arc consistent for all variables on all constraints.

Historically, arc consistency is associated with binary CSPs and generalized arc
consistency with non-binary CSPs while both definitions are perfectly the same.

Example 5.7. Let us consider the 4-queens problem introduced in Example 5.5, and
let us consider the following domains: D(x1) = {1, 2}, D(x2) = {1, 3} and D(x3) =
D(x4) = {2, 4}. This network is not arc consistent because the value 1 for x2 has no
support on the constraint c1,2 (because {(x1, 1), (x2, 1)} violates the row constraint and
{(x1, 2), (x2, 1)} violates the downward diagonal constraint).

When the domain of a variable xi is not arc-consistent on a constraint c, we may
ensure arc-consistency by removing inconsistent values from D(xi) and detect arc-
inconsistency if the domain becomes empty. This domain filtering step is called con-
straint propagation and designing efficient propagation algorithms is a key point for
solving CSPs.

Many propagation algorithms have been proposed for ensuring AC, and one of
the most famous of these algorithms is called AC3 and has been introduced by Mac-
worth [Mac77]. AC3 is displayed in Algorithm 2. Its main component is the function
Revise which updates the domain of a variable xi with respect to a constraint c: For
each value vi in the domain of xi, it searches for a support for (xi, vi) on c (line 5) and,
if no support is found, vi is removed from the domain of xi (line 6). Revise returns
true if a domain has been changed, and false otherwise.

The main AC3 algorithm is a loop that iteratively calls Revise for variable/constraint
couples which are stored in a queue Q. This queue is initialized with all possible vari-
able/constraint couples (line 11). The main loop removes a couple (xi, c) from Q (line
13) and calls Revise (line 14). If the domain of xi has been emptied, an inconsis-
tency has been detected and AC3 returns false (line 14). Otherwise, if the domain has
been changed, Q is updated (line 15) by adding to it every couple (xj, c

′) such that
{xi, xj} ⊆ X(c′) because the values removed from D(xi) may belong to a support of a
value in D(xj) and in this case we need to check if there is another support. When Q
is empty, the algorithm returns true.

59

Algorithm 2: AC3 algorithm
1 Function Revise(xi, c)

Input: A variable xi, and a constraint c
Output: A Boolean value
Postcondition : Remove from D(xi) every value that has no support on c.

Return true if a value has been removed, false otherwise
2 begin
3 CHANGE ← false
4 for each vi ∈ D(xi) do
5 if 6 ∃τ ∈ c ∩ πX(c) with τ [xi] = vi then
6 remove vi from D(xi)
7 CHANGE ← true

8 return CHANGE

9 Function AC3(X,D,C)
Input: A CSP (X,D,C)
Output: A Boolean value
Postcondition : Filter D to ensure AC. Return true if (X,D,C) is AC, and

false otherwise
10 begin
11 Q← {(xi, c)|c ∈ C, xi ∈ X(c)}
12 while Q 6= ∅ do
13 select and remove (xi, c) from Q
14 if Revise(xi, c) then
15 if D(xi) = ∅ then return false ;
16 Q← Q ∪ {(xj , c′)|c′ ∈ C ∧ c′ 6= c ∧ xi, xj ∈ X(c′) ∧ i 6= j}

17 return true

AC3 achieves AC in O(er3dr+1) time and O(er) space, where r is the maximum
arity of a constraint, e is the number of constraints, and d is the maximum number of
values in a domain.

Example 5.8. Let consider the 4-queens problem introduced in Example 5.5, and let
us assume that D(x1) = {1}, D(x2) = {3, 4}, D(x3) = {2, 4}, D(x4) = {2, 3} (i.e., the
first queen is on the first row, and we have already removed from the domains of the
other variables the values that are directly conflicting with it).

Initially, Q contains: 〈(x2, c2,3), (x3, c2,3), (x2, c2,4), (x4, c2,4), (x3, c3,4), (x4, c3,4)〉.

• Revise(x2, c2,3) removes 3 from D(x2) and returns true.
We have D(x2) = {4}.
(x3, c2,3) and (x4, c2,4) are added to Q (but they were already in Q).
We have Q = 〈(x3, c2,3), (x2, c2,4), (x4, c2,4), (x3, c3,4), (x4, c3,4)〉.

• Revise(x3, c2,3) removes 4 from D(x3) and returns true.
We have D(x3) = {2}.
(x2, c2,3) and (x4, c3,4) are added to Q.
We have Q = 〈(x2, c2,4), (x4, c2,4), (x3, c3,4), (x4, c3,4), (x2, c2,3)〉.

60

• Revise(x2, c2,4) does not remove values and returns false.

• Revise(x4, c2,4) removes 2 from D(x4) and returns true.
We have D(x4) = {3}.
(x2, c2,4) and (x3, c3,4) are added to Q.
We have Q = 〈(x3, c3,4), (x4, c3,4), (x2, c2,3), (x2, c2,4)〉.

• Revise(x3, c3,4) removes 2 from D(x3) and returns true.
We have D(x3) = ∅: An inconsistency has been detected and AC3 returns false.

AC3 is rather straightforward to implement. However, its time complexity is
not optimal because Revise searches for supports from scratch, without memorizing
them. Many improvements have been proposed since AC3 such as, for example,
AC4 [Moh+86; Moh+88], AC6 [Bes94; Bes+08] or AC2001 [Zha+01]. We refer the
reader to [Ros+06] for more details.

When the domain of a variable xi contains all integer values ranging between a
lower bound (denoted xi.lb) and an upper bound (denoted xi.ub), the domain of xi
is represented by the interval [xi.lb, xi.ub]. When all variables have interval domains,
we may consider a local consistency which only operates on bounds. This bound
consistency is weaker than AC, but it is also quicker to achieve.

Definition 5.9 (Bound consistency). Let c be a constraint on the variables X(c) =
(x1, . . . , xk) with respective interval domains D(x1), . . . , D(xk). c is bound consistent if
for every variable xi ∈ X(c), ∀vi ∈ {xi.lb, xi.ub},∀j 6= i, ∃vj ∈ [xj.lb, xj.ub], (v1, . . . , vk) ∈
c.

Example 5.10. Let consider the 4-queens problem introduced in Example 5.5, and let
us assume that D(x1) = [1, 2], and D(x2) = D(x3) = D(x4) = [1, 4]. The constraint
c1,2 is not bound consistent because there exists no support for (x2, 1). To ensure bound
consistency of this constraint, we have to change the lower bound of x2 to 3.

Ensuring bound consistency amounts to shrinking the domain intervals as much as
possible without losing any solutions. Sometimes, it allows to apply filtering algorithms
that have a lower complexity than algorithms that achieve AC. Indeed, ignoring holes
from the domain variables usually leads to graphs with a specific structure that can
be exploited to derive more efficient graph algorithms. Moreover, achieving bound-
consistency may be used in a pre-processing step before applying a more expensive
filtering that achieves AC.

For instance, many algorithms have been introduced to ensure the bound consis-
tency of the constraint alldifferent [Lec96; Pug98; Meh+00; LO+03]. Regin gives an
O(n2.5) algorithm to ensure domain consistency [Rég94] where n is the number of vari-
ables while Puget [Pug98], Mehlhorn and Thiel [Meh+00] and Lopez-Ortiz [LO+03]
give O(n.log(n)) algorithms to ensure bound consistency.

5.3 Backtracking search algorithms
Constraint propagation filters domains by removing values that cannot belong to solu-
tions. However, it only ensures a local consistency, and constraint propagation must be
combined with a systematic exploration of the remaining search space to actually find

61

Algorithm 3: BT algorithm
1 Function BT((X,D,C), I)

Input: A CSP N = (X,D,C) and a valid instantiation I on Y ⊆ X
Output: A Boolean value
Postcondition : Return true if there exists S ∈ sol(X,D,C) such that I = Y [S]

2 begin
3 if I is not locally consistent then return false;
4 if Y = X then return true;
5 Choose a variable xi ∈ X \ Y
6 for each value vi ∈ D(xi) do
7 if BT(N, I ∪ {(xi, vi)}) then
8 return true

9 return false

solutions (or prove inconsistency). This exploration is usually performed by a back-
tracking algorithm. In this section, we first introduce a naive backtracking algorithm,
and then show how it may be combined with constraint propagation. Finally, we intro-
duce ordering heuristics and branching strategies that may be used to customize the
search.

Naive backtracking algorithm (BT). BT is described in Algorithm 3. It recur-
sively extends a valid instantiation, starting from the empty instantiation, until either
the current instantiation is not locally consistent (line 3) or the current instantiation
is a solution (line 4). To extend a current instantiation I, an uninstantiated variable
xi is chosen (line 5) and, for each value vi in its domain, BT is recursively called on
I ∪ {(xi, vi)}.

Example 5.11. The search tree explored by BT for solving the 4-queens problem is
displayed in Fig. 5.1a. This search tree has one node for each recursive call to BT ,
and an edge from node (N, I1) to node (N, I2) if BT (N, I1) has called BT (N, I2).

BT is a naive algorithm because it does not propagate constraints to prune branches
of the search tree: Only the constraints with no uninstantiated variable are
checked. For instance, at level 2 (when x1 and x2 are assigned), only the constraints
between variables x1 and x2 are checked, and BT does not detect that the constraints
between x3 and x1 and x2 cannot be satisfied when I = {(x1, 1), (x2, 3)}.

Forward-Checking algorithm (FC). FC refines BT by propagating constraints to
filter domains at each recursive call. A trade-off has to be found between the cost of
constraint propagation and its strength. FC reduces the cost of constraint propagation
by maintaining AC only on constraints with exactly one uninstantiated variable.
More precisely, line 3 of Algorithm 3 is replaced by a call to a procedure that filters
domains as follows: For each uninstantiated variable xi ∈ X \ Y and each constraint
c ∈ C such that X(c) \ Y = {xi}, it removes from D(xi) every value vi which is not
AC on c for xi. If a domain becomes empty, false is returned and the search must
backtrack.

62

(a) Search tree explored by BT.

(b) Search tree explored by FC. (c) Search tree explored by MAC.

Figure 5.1 – Comparison of the search trees explored by BT, FC, and MAC for solv-
ing the 4-queens problem. Each search node is represented by the 4x4 chessboard
corresponding to the current instantiation I.

Example 5.12. Fig. 5.1b displays the search tree explored by FC on the 4-queens
problem. When I = {(x1, 1)}, the filtering procedure propagates the constraint be-
tween x1 and x2 (resp. x3, and x4), and it removes 1 and 2 from D(x2) (resp. 1 and 3
from D(x3), and 1 and 4 from D(x4)).

63

Maintaining arc consistency algorithm (MAC). Like FC, MAC propagates con-
straints to filter domains at each recursive call. However, it propagates more constraints
than FC as it maintains AC on all constraints with at least one uninstantiated
variable. More precisely, line 3 of Algorithm 3 is replaced by a call to a procedure
(such as AC3, for example) that filters domains to ensure AC on all constraints with
at least one uninstantiated variable. If a domain becomes empty, false is returned and
the search must backtrack.

Example 5.13. Fig. 5.1c displays the search tree explored by MAC to solve the 4-
queens problem. When I = {(x1, 1)}, an algorithm such as AC3 detects an incon-
sistency (as illustrated in Section 5.2). When I = {(x1, 2)}, all domains are reduced
to singletons, and the corresponding instantiation is a solution. Hence, MAC only
explores two branches.

Ordering heuristics. At each recursive call to Algorithm 3, an uninstantiated vari-
able xi is chosen (line 5), and the rule used to choose this variable is called a variable
ordering heuristic. Variable ordering heuristics have an impact on the size of the search
tree. For example, the minDom heuristic [Gol+65] chooses a variable with the smallest
domain, and this heuristic usually reduces the width of the search tree as the number
of children of a node of the search tree is equal to the number of values in the domain of
the chosen variable. Another classical heuristic is maxDegree, which chooses a variable
involved in a maximum number of constraints, and this heuristic usually reduces the
depth of the search tree as assigning a highly constrained variable usually allows to
discover inconsistencies sooner.

Value ordering heuristics are used to define the order used to iterate on all values
in the domain of the chosen variable (line 6). If the CSP is globally consistent, these
ordering heuristics may allow to discover a solution quicker by first choosing the most
promising values.

Branching strategies. In a search tree built by Algorithm 3, each node has one
child per value in the domain of the selected variable xi. Other branching strategies
may be considered. For example, if the domain of xi is a closed interval of integer
values [lb, ub], we may create two branches: one where we reduce D(xi) to [lb, v] and
another one where we reduce D(xi) to [v + 1, ub], where v is a value that belongs to
[lb, ub] (typically, v = b lb+ub

2
c). Another classical branching strategy is to create two

branches: One where xi is assigned to a value v ∈ D(xi), and another one where v is
removed from D(xi).

5.4 Set Variables
Set variables are variables that are instantiated to sets of integer values. In most cases,
it is not possible to define the domain of a set variable by enumerating all possible sets,
because there exists an exponential number of subsets with respect to the number of
elements: if a set variable may be assigned with any subset of [1, k], it is not reasonable
to enumerate the 2k subsets when defining its domain. Hence, set domains are usually
approximated by set intervals, as proposed by Gervet in [Ger95].

64

Definition 5.14. Let glb and lub be two sets. The set interval [glb, lub] contains every
set S such that glb ⊆ S ⊆ lub.

In other words, glb (also called the kernel) is the greatest lower bound and it contains
all mandatory elements; lub (also called the envelope) is the least upper bound and it
contains all possible elements.

Example 5.15. The set interval [{1, 4}, {1, 2, 4, 5}] contains the sets {1, 4}, {1, 2, 4},
{1, 4, 5}, and {1, 2, 4, 5}.

The domain of a set variable may be approximated by a set interval by computing
its convex closure.

Definition 5.16. Let be E a set of elements, and S a set of subsets of E (i.e., S ⊆
P(E)). The convex closure of S is the set interval:

[
⋂
si∈S

si,
⋃
si∈S

si].

Example 5.17. The convex closure of {{1, 2, 3}, {3}, {3, 6}{3, 4, 5}} is the set interval
[{3}, {1, 2, 3, 4, 5, 6}].

This convex representation of set domains allows to efficiently propagate set con-
straints by ensuring bound consistency (with a straightforward extension of Def. 5.9 to
set variables).

Example 5.18. Enforcing bound consistency of the constraint S = S1 ∩ S2 amounts
to adding to S.glb every value in S1.glb ∩ S2.glb and removing from S.lub every value
which does not belong to S1.lub ∩ S2.lub.

Branching Strategies for Set Variables. When solving a CSP that has set vari-
ables, the branching strategy needs to be adapted: As set domains may contain a huge
number of values, we usually do not create a branch for each possible value in set
variable domains. A classical branching strategy is to choose a set variable s such that
s.glb ⊂ s.lub, to select an element e ∈ s.lub \ s.glb and to create two branches: The
first branch corresponds to the case where e ∈ s and it is obtained by adding e to s.lub;
The second branch corresponds to the case where e 6∈ s and it is obtained by removing
e from s.glb.

5.5 Global Constraints
Global constraints are a key point of the success of CP: They both ease the modeling
step, by providing compact ways for declaring constraints, and speed-up the solution
process, by providing dedicated propagators. In this section, we first recall some prop-
erties of global constraints, and then we describe the global constraints which are used
in this thesis.

If global constraints are widely used in CP, defining what is a global constraint
has been subject of many discussions. In the Global Constraint Catalog [Bel+05], a
global constraint is defined as an expressive and concise condition involving a non-fixed

65

number of variables. In [Bes+03], Bessière and Van Hentenryck have introduced three
properties that may be used to characterize constraint globality. These properties are
defined with respect to constraint decompositions: the decomposition of a constraint c
is a CSP P such that the constraints of P have lower arities than c, and sol(P) = sol(c).

Bessière and Van Hentenryck propose three levels of globality for a constraint.

Definition 5.19. A constraint is

• semantically global if it is not possible to decompose it;

• operationally global with respect to a filtering strength, if it is not possible to
achieve the same strength of filtering when considering a decomposition of it;

• algorithmically global with respect to a filtering strength, if it is not possible to
achieve the same strength of filtering with the same complexity when considering
a decomposition of it.

Semantic globality implies both operational and algorithmic globality. Operational
globality is important because it implies a stronger filtering, that removes more values,
though it may be possible that this stronger filtering does not pay off if the com-
plexity of achieving it is too high. Algorithmic globality does not necessarily implies
a stronger filtering, but it implies a more efficient filtering (with respect to time or
memory consumption).

Example 5.20. The global constraint alldifferent(x1, . . . , xn) is satisfied if all xi vari-
ables are assigned to different values. It has been introduced in [Rég94] and it is widely
used as many problems involve finding injections.

Let P = (X,D,C) be the CSP such that X = (x1, . . . , xn) and C = {cij : {xi, xj} ⊆
X}, where cij ≡ xi 6= xj. P is a decomposition of the constraint alldifferent(x1, . . . , xn).
Hence, alldifferent is not semantically global.

However, alldifferent is operationally global as there exists no decomposition of it
that preserves AC [Bes+09a].

Let us now describe the global constraints that are used in this thesis. We assume
that arrays of n elements are indexed from 1 to n, and we denote A[i] the ith element
of an array A.

NValue. The constraint NValue has been proposed by Pachet and Roy to model a
combinatorial problem involved in selecting musical playlists [Pac+99]. It ensures that
the number of different values taken by a collection of integer variables is equal to a
given integer variable.

More formally, given an array X of m integer variables, and an integer variable N ,
the constraint NValue(X,N) ensures:

N = #{X[i]|i ∈ [1,m]}.

Enforcing domain consistency on NValue is NP-hard [Bes+04b], even when the
domain of N is reduced to a singleton [Bes+07].

NValue can be decomposed with the constraints atMostNValue and atLeastNValue,
that respectively constrain X to take at most N different values and at least N different

66

values. Enforcing AC on atLeastNValue may be done in polynomial time whereas
enforcing AC on atMostNValue is an NP-hard problem [Bes+05]. Therefore, several
propagation algorithms that ensure lower consistencies have been proposed [Bel01;
Bes+05]. Different decompositions of NValue are studied in [Bes+09b].

Global Cardinality Constraint. The Global Cardinality Constraint gcc is a gen-
eralization of alldifferent: Given a set of variables X, allDifferent ensures that each
possible value v is taken by at most one variable of X, whereas gcc ensures that the
number of times a value v is taken is equal to an integer variable.

More formally, given an array X of n integer variables, an array val of k integer
values, and an array Occ of k integer variables, the constraint gcc(X, val, Occ) ensures:

∀i ∈ [1, k], Occ[i] = #{j ∈ [1, n]|X[j] = val[i]}.

Enforcing AC on this gcc global constraint is NP-complete [Qui+04] when domains
are not closed intervals. In [Rég96], Régin introduces an algorithm for enforcing BC in
O(n2.d) (where n is the number of variables and d the number of values) while [Qui+04]
improves this work with an O(n1.5.d) algorithm.

Element. The global constraint element was introduced by Van Hentenryck and
Carillon [Hen+88]. This constraint is very important to implement variable indices
and to relate two sets of variables.

Given two integer variables I and V and an array of integer variables T , the con-
straint element(I, T, V) ensures:

V = T [I].

CP solvers usually implement dedicated filtering algorithms for element.

Precede. The global constraint precede has been introduced in [Law+04]. It is often
used to break symmetries of indistinguishable values.

More formally, given an array X of n integer variables and an array v of m integer
values, the constraint precede(X, v) ensures:

∀k ∈ [1,m− 1],∀l ∈ [k+ 1,m], (∃j ∈ [2, n], X[j] = v[l])⇒ (∃i ∈ [1, j − 1], X[i] = v[k]).

A filtering algorithm was proposed in [Law+04], it enforces GAC with a time com-
plexity linear to the length of X.

Partition. The global constraint partition is described in [Bes+04a] and it is used to
constrain a collection of set variables to be a partition of a given set variable.

More formally, given an array S of n set variables and a set variable U , the constraint
partition(S, P) ensures:

U =
⋃

i∈[1,n]

S[i] ∧ ∀{i, j} ⊆ [1, n], S[i] ∩ S[j] = ∅

The partition constraint is decomposable into binary empty intersection constraints
and ternary union constraints involving n additional variables without hindering bound
consistency [Wal03]. Therefore, bound consistency of partition may be enforced in
polynomial time. In Choco solver [Pru+16], this constraint is decomposed into two
global constraints:

67

• a union constraint that ensures U =
⋃

i∈[1,n]
S[i].

• an allDisjoint constraint that ensures that ∀{i, j} ⊆ [1, n], S[i] ∩ S[j] = ∅.

AtLeast. Given an array X of m integer variables, an integer variable N , and a value
v, the constraint atLeast(N,X, v) ensures:

N ≤ #{i ∈ [1,m]|X[i] = v}.

5.6 Solving Optimization Problems with CP
Many real world problems (such as scheduling, sequencing, or planning, for example)
involve not only satisfying some constraints but also optimizing some objective func-
tions. In this section, we first show how to solve these problems with CP when there
is only one objective function to optimize. Then, we study the case where there are
several objective functions to optimize.

5.6.1 Mono-criterion optimization

A Constrained Optimization Problem (COP) is defined by a quadruple (X,D,C, f)
such that (X,D,C) is a CSP, and f : X → R is a function which maps every in-
stantiation of X to a numerical value. Solving a COP amounts to finding a solution of
(X,D,C) that maximizes f . Without loss of generality, we only consider maximization
problems.

Backtracking search algorithms introduced in Section 5.3 can be extended to solve
COPs in a rather straightforward way, as proposed by Van Hentenryck in [VH89]. The
idea is to solve a sequence of satisfaction problems. More precisely, before starting
the search, we add to X a new variable obj, and we add to C a new constraint obj =
f(X). Then, we perform a backtracking search procedure (such as MAC, for example).
However, when a solution is found (line 4 of Algorithm 3), we add the constraint obj > v
where v is the value assigned to obj in the solution, and we go on the search. This
process is repeated until no more solution can be found in which case the last solution
found has been proven optimal.

Example 5.21. Let us consider the COP (X,D,C, f) such that X = (x, y, z), D(x) =
D(y) = D(z) = {1, 2, 3}, C = (NValue([x, y, z], 2)), and f(x, y, z) = x + y + z. We
introduce the integer variable obj with D(obj) = [3, 9] and add the constraint obj =
x+ y + z to C.

In Fig. 5.2, we show the search tree explored when using MAC with a lexicographical
ordering heuristic for selecting variables and values. At each node, we display the
domain of each variable after enforcing AC if it is not instantiated, otherwise, we
give its value. All nodes are numbered according to the order they are explored.
Solutions are successively found at nodes n3, n4, n6, and n7, and we successively add
the constraints obj > 4, obj > 5, obj > 7, and obj > 8. Finally, at node n8, enforcing
AC on constraint c2 removes 2 from the domains of y and z while enforcing AC on
the constraint c1 removes 3 from the domain of y that becomes empty. The search
backtracks, and as there is no more branches to explore the search stops. The optimal
solution is the last solution found, i.e., {(x, 2), (y, 3), (z, 3)}.

68

Figure 5.2 – Search tree for a single criterion optimization problem when using lex-
icographical order as value and variable ordering heuristics. For each node, we give
the domain of the variable if it is not instantiated, otherwise, we give its value. Green
nodes correspond to solutions.

69

Ordering heuristics usually have a great impact when solving COPs. In particular,
the size of the search tree depends on the quality of the first solution found: The
higher the value v of the objective function, the more branches are pruned by the
constraint obj > v. Hence, ordering heuristics usually aim at favoring solutions with
high objective function values [Fag+17]. Note however that a large part of the search
effort is spent for proving the optimality of the last solution found and heuristics that
favor good solutions first no longer help in this case.

Example 5.22. In our previous example, if we use the maxdom value ordering heuris-
tic, that first branches on the maximum value in the domain of the variable, the first
solution found is {(x1, 3), (x2, 3), (x3, 2)}, which is optimal, and the search tree is com-
posed of a single branch (because the proof of optimality is achieved by AC which
detects an inconsistency when adding the constraint obj > 8).

5.6.2 Multi-criteria Optimization

In many real-life problems, there are several criteria to optimize. When these different
criteria can be aggregated into a single function (by considering a linear combination of
them, for example), the problem can be reduced to a classical COP. However, in some
cases it is not possible to define a suitable aggregation function. In this case, we may
search for a set of non-dominated solutions that correspond to different compromises.

More formally, let us define multi-objective optimization problems and the domi-
nance relation that is used to compare solutions of these problems.

Definition 5.23 (Multi-Objective Combinatorial Optimization (MOCO)). A MOCO
problem is a quadruple (X,D,C, F) where (X,D,C) is a CSP and F = {f1, . . . , fm}
is a set of objective functions.

Without loss of generality, we assume that each objective function fi ∈ F is of the
form fi(X) = obji, where obji ∈ X is a numeric variable: If this is not the case, we can
easily add a new variable obji to X and constrain this variable to be equal to fi(X).
Also, we assume that each objective function must be maximized.

Definition 5.24 (Domination). Let be (X,D,C, F) a MOCO problem, and I and I ′
two solutions of the CSP (X,D,C). I dominates I ′, denoted I � I ′, if:

∀obji ∈ F, I[obji] ≥ I ′[obji] ∧ ∃obji ∈ F, I[obji] > I ′[obji]

Non-dominated solutions are said to be Pareto optimal, and the set of all Pareto-
optimal solutions is called the Pareto front [Par96].

Example 5.25. Fig. 5.3 shows the set of solutions of a MOCO problem with two
objective functions. Examples of dominance relations are: e9 � e6, e7 � e2, and
e1 � e0. Solutions e0, e3 and e10 do not dominate any solution whereas e11, e12, e13 and
e14 are non-dominated solutions and constitute the Pareto front.

A first possibility to compute the Pareto front is to solve a sequence of COPs,
as proposed by van Wassenhove and Gelders in [Was+80] and by Duong in [Duo14].
This approach is described by Algorithm 4 for the case where there are two objective
functions f1(X) = obj1 and f2(X) = obj2. Algorithm 4 first searches for a solution

70

Figure 5.3 – Pareto front of a MOCO problem with two objectives obj1 and obj2: Each
point (x, y) corresponds to a solution ei such that x = ei[obj1] and y = ei[obj2].

Algorithm 4: Computation of Pareto fronts by solving a sequence of COPs
Input: A MOCO (X,D,C, F) such that F = {obj1, obj2}
Output: The Pareto front of (X,D,C, F)

1 begin
2 P ← ∅
3 while true do
4 I1 ← solution of (X,D,C) that maximizes obj1
5 if I1 = null then return P ;
6 I2 ← solution of (X,D,C ∪ {obj1 = I1[obj1]}) that maximizes obj2
7 Add I2 to P
8 Add the constraint obj2 > I2[obj2] to C
9 Add the constraint obj1 < I1[obj1] to C

I1 that maximizes obj1 (line 4) and then searches for a solution I2 that maximizes
obj2 when constraining obj1 to be equal to I1[obj1] (line 6). I2 is the solution of the
Pareto front which has the largest possible value for obj1. To search for other non-
dominated solutions, we constrain obj2 to be strictly greater than I2[obj2] (line 8). We
repeat these operations: At each iteration, we compute a new non-dominated solution
by first optimizing obj1 (line 4), and then optimizing obj2 while fixing the value of
obj1 (line 6), and we add a constraint on the lower bound of obj2 (line 8). Because
of these successively added constraints, the solutions that are successively added to
the Pareto front have increasing values for obj2 and decreasing values for obj1. We
stop iterating when obj2 cannot be improved anymore, i.e., the CSP (X,D,C) has no
solution because the last solution added to the Pareto front has the largest possible
value for obj2.

Example 5.26. Let us consider the solutions displayed in Fig. 5.3.

71

Algorithm 5: Computation of Pareto fronts by enumerating all solutions and
dynamically adding constraints
Input: A MOCO (X,D,C, F)
Output: The Pareto front of (X,D,C, F)

1 begin
2 P ← ∅
3 while true do
4 Search for the next solution I of (X,D,C)
5 if I = null then return P ;
6 Add I to P , and remove from P every solution dominated by I
7 Add the constraint

∨
obji∈F

obji > I[obji] to C

• At iteration 1 of Algorithm 4, we first search for a solution that maximizes obj1,
i.e., I1 ∈ {e10, e14}. Then we search for a solution that maximizes obj2 when
obj1 = 9, i.e., I2 = e14. We add e14 to the Pareto front, and we add the constraint
obj2 > 2.

• At iteration 2, we search for a solution that maximizes obj1, i.e., I1 ∈ {e9, e13}.
Then we search for a solution that maximizes obj2 when obj1 = 6, i.e., I2 = e13.
We add e13 to the Pareto front, and we add the constraint obj2 > 5.

• At iteration 3, we search for a solution that maximizes obj1, i.e., I1 ∈ {e7, e12}.
Then we search for a solution that maximizes obj2 when obj1 = 4, i.e., I2 = e12.
We add e12 to the Pareto front, and we add the constraint obj2 > 8.

• At iteration 4, we search for a solution that maximizes obj1, i.e., I1 = e11. Then
we search for a solution that maximizes obj2 when obj1 = 6, i.e., I2 = e11. We
add e11 to the Pareto front, and we add the constraint obj2 > 9.

• At iteration 5, we search for a solution that maximizes obj1, but there is no
solution that satisfies the constraint obj2 > 9, and we stop iterating.

Algorithm 4 solves a sequence of COPs and, for each of these COPs, a new tree
search is performed. In [Gav02], Gavanelli proposes an alternative approach where a
single tree search is performed for computing the whole Pareto front, as described in
Algorithm 5: Each time a new solution I is found (line 4), the Pareto front is updated
by adding I and removing all solutions dominated by I (line 6), and a constraint is
dynamically added in order to prevent the search from computing a solution which is
dominated by I (line 7). The search stops when no more solution can be found. A
Pareto constraint based on this filtering rule has been introduced in [Sch+13] with an
efficient filtering algorithm for bi-objective MOCOs.

Example 5.27. Let us consider the solutions displayed in Fig. 5.3, and let us suppose
that the first solution found is e8. In this case, the constraint obj1 > 5 ∨ obj2 > 4 is
dynamically added, and the points e3, e4, and e6 are no longer solutions as they are
dominated by e8. Let us then suppose that the second solution found is e13. As e13
dominates e8, e8 is removed from the Pareto front. The constraint obj1 > 6 ∨ obj2 > 4
is dynamically added, and the points e9 and e2 are no longer solutions.

72

The two approaches described in Algorithms 4 and 5 have complementary weak-
nesses and strengths. Algorithm 4 solves a sequence of COPs, and restarts a new tree
search for each of these COPs. If the propagation of the constraint on the lower bound
of obj2 does not filter enough domains, it may be possible that some parts of the search
tree are explored more than once. For example, once Algorithm 4 has found solution
e14, and added constraint obj2 > 2, instantiations e3, e6, e14 and e10 are no longer con-
sistent. However, it may be possible that the branches that lead to these instantiations
are not pruned at the root of the search tree, leading to some redundancy.

Algorithm 5 performs a single search, so that this kind of redundancy is avoided.
However, the search aims at enumerating all solutions (while dynamically adding con-
straints to prune branches that lead to dominated solutions). The efficiency of this
process highly depends on the quality of the solutions that are found at the beginning
of the search. On our example, if the first solution found is e3, then the constraint
added to prune dominated solutions (obj1 > 2 ∨ obj2 > 2) does not remove any so-
lution, whereas if the first solution found is e13, then the constraint added to prune
dominated solutions (obj1 > 6 ∨ obj2 > 5) removes solutions e2, e3, e4, e6, e8, and e9.

5.7 Constraint Programming Libraries
Backtracking search algorithms described in the previous sections have been embed-
ded in various CP libraries such as ECLiPSe [Wal+97], GNU Prolog [Dia+00], Pi-
cat [Zho+13], Gecode [tea05], or Choco [Pru+16], for example. To solve a CSP with
these libraries, the user mainly has to implement a model of the problem by using
predefined procedures for declaring the variables and the constraints of the problem.
Then, the model may be solved by using predefined search procedures. This approach
is well summarized by Freuder in [Fre97]:

Constraint Programming represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: The user states
the problem, the computer solves it.

However, CSPs are NP-complete problems in general, and generic search proce-
dures may struggle to solve them. Hence, the user may customize them by specifying
which ordering heuristics or which branching strategies should be used, for example.

Most of these libraries are open source software, and are designed to be easily
extended. In particular, users can easily define new constraints. Actually, the "branch
and propagate" approach makes it easy to add new constraints as each constraint is
basically a set of propagators which filter the domains of its variables.

In this Section, we very briefly describe the main challenges for implementing a new
constraint, with a specific focus on Choco 4 which has been used for our implementa-
tions. We refer the reader to [Ros+06] for more details on the implementation of CP
libraries in general, and to [Pru+16] for more details on Choco 4.

Choco 4 is an Open Source library developed in Java 8, and it uses object ori-
ented mechanisms and design patterns to ease the implementation of new features. In
Choco 4, a constraint is an instance of the class Constraint, and it is a container which
is composed of propagators: Each propagator is in charge of filtering the domains of
some of its variables. Many predefined constraints are already implemented in Choco
and to create one of these predefined constraints we simply call constraint factory

73

methods that are implemented in the class Model: Each constraint factory method
returns an instance of Constraint corresponding to a different kind of constraint with
its corresponding list of propagators.

To create a constraint that is not yet implemented in Choco, we use the construc-
tor of the class Constraint which takes as arguments a list of propagators. Hence,
implementing a new constraint simply amounts to implementing its propagators. Each
propagator is an instance of a class that must extend the abstract class Propagator.
To implement such a class, we mainly have to implement three methods:

• The constructor of the class, which usually creates the data structures needed for
propagating the constraint;

• The method isEntailed, which returns true if the constraint is satisfied, false
if it cannot be satisfied, and undefined if both cases are still possible;

• The method propagate, which filters variable domains.

Optionally, we may also specify the events that trigger a call to propagate by redefining
the method getPropagationConditions.

A major issue when implementing a propagator is to restore the previous states
of the data structures used by the propagator when backtracking. There exist three
different ways to do this:

• Copying, i.e., a copy of the complete state is created before changing it and,
when backtracking, this copy is used to restore the state;

• Trailing, i.e., operations that change the state are recorded and, when backtrack-
ing, inverse operations are performed (in reverse order) to restore the state;

• Recomputation, i.e., the state is recomputed from scratch after each backtrack.

Trailing is the predominating approach used for state restoration in finite domain
constraint programming system.

5.8 Discussion
CP allows a user to define a problem in a declarative way, by means of variables and
constraints, and then to solve it by using generic search procedures. However, if it is
usually very easy to model a CSP, a COP, or a MOCO with a CP language, it may
happen that the generic search procedures are not able to solve these problems within
a reasonable amount of time. In this case, the user may improve the model, by adding
redundant constraints (i.e., constraints that do not change the set of solutions, but
the propagation of which reduces the search space), by introducing new constraints for
breaking symmetries, by replacing some constraints with existing global constraints,
or by defining new ordering heuristics or new branching strategies, for example. To
improve the search process, the user may also introduce new global constraints, and
dedicated propagation algorithms for this constraint, in order to filter more values
and/or reduce the complexity of the propagation.

There exist two other well known declarative approaches for solving problems: Inte-
ger Linear Programming (ILP) and the satisfiability of Boolean formulas (SAT). Both

74

ILP and SAT provide a declarative way for modeling a problem by means of variables
and constraints: numeric variables and linear (in)equalities for ILP and boolean vari-
ables and clauses for SAT. From a modeling point of view, CP may be viewed as a
generalization of both SAT and ILP as the constraints used in ILP and SAT may be
used in a CP model as well. However, CP, SAT and ILP use different generic procedures
for searching for solutions.

• ILP solvers are usually based on Branch and Bound approaches: At each node
of the search tree, a bound on the objective function is computed by solving a
relaxation of the problem (typically, integrality constraints are relaxed to obtain
a linear problem that may be solved in polynomial time). This approach may also
be combined with Branch and Cut (where linear constraints are added to tighten
relaxations and compute better bounds), or Branch and Price (where the number
of active variables is reduced, and columns corresponding to omitted variables
are generated during the solution process). The reader may refer to [Nem+88]
for more details.

• SAT solvers are usually based on an exhaustive backtracking search called DPLL,
which performs unit propagation at each node of the search tree, usually combined
with Conflict-driven clause learning (CDCL) to allow the search to backjump to
the first node involved in a conflict. The reader may refer to [Bie+09] for more
details.

In the next two chapters, we define the conceptual clustering problem and the exact
cover problem, and we describe existing CP, ILP, and SAT models for solving these
problems. However, none of these models is able to solve all instances related to our
ERP configuration problem within a reasonable amount of time. This motivated us for
introducing new CP models in Chapter 9 and new global constraints in Chapters 10
and 11 dedicated to these problems.

75

Chapter 6

Conceptual clustering

Contents
6.1 Motivations . 75

6.2 Formal Concepts . 77

6.3 Conceptual Clustering . 80

6.4 Declarative approaches for conceptual clustering 83

6.4.1 Boolean-based CP model . 83

6.4.2 Set-based CP model . 84

6.4.3 Hybrid ILP model for conceptual clustering 86

6.5 Discussion . 87

In this thesis, we want to extract relevant parts of configurations from a database
of configurations imported from previous implementations of Copilote. Therefore, we
focus on knowledge discovery in databases (KDD) approaches: These approaches aim
at extracting reusable interpretable knowledge from large databases [NAP05]. A KDD
process has three main steps: the selection and preparation of data, the data mining
operation and finally the interpretation of the extracted knowledge. In this chapter,
we focus on the data mining step that aims at extracting knowledge from the prepared
data. Methods used during this step can be divided into two categories, i.e., symbolic
and numerical methods, depending on the type of data attributes. As most Copilote
parameters have symbolic values, we focus on symbolic methods and, more particularly,
on Formal Concept Analysis (FCA) which groups together objects sharing a same set
of attribute values [Gan+97].

We present our motivations for using conceptual clustering in our applicative con-
text in Section 6.1. In Section 6.2, we introduce definitions related to FCA and we
present some measures used to characterize formal concepts. In Section 6.3, we define
the problem of conceptual clustering, where each cluster corresponds to a formal con-
cept, and we introduce classical criteria used to evaluate clusterings. In Section 6.4, we
describe two existing CP approaches and one ILP-based approach to solve conceptual
clustering problems.

6.1 Motivations
As explained in Chapter 4, we aim at extracting relevant parts of configurations that
correspond to business logic requirements. To do this, we propose to use conceptual

76

Price reference date Min order blocking Order split Stock control
C1 Delivery date Yes No Blocking
C2 Delivery date No No Alert
C3 Order date Yes No Without
C4 Order date Yes Yes Alert

Table 6.1 – Example of configurations of the sale module of Copilote: Each line corre-
sponds to a configuration and describes the setting of four parameters for this module.

Table 6.2 – Transactional database generated from the configurations displayed in
Table 6.1: Lines correspond to transactions, columns to items, and there is a 1 (resp.
0) at line t/column i if (t, i) ∈ R (resp. (t, i) 6∈ R).

i1 i2 i3 i4 i5 i6 i7 i8 i9
t1 1 0 1 0 0 1 1 0 0
t2 1 0 0 1 0 1 0 1 0
t3 0 1 1 0 0 1 0 0 1
t4 0 1 1 0 1 0 0 1 0

i1 ≡ (Price reference date, Delivery date) i6 ≡ (Order split, No)
i2 ≡ (Price reference date, Order date) i7 ≡ (Stock control, Blocking)
i3 ≡ (Order blocking, Yes) i8 ≡ (Stock control, Alert)
i4 ≡ (Order blocking, No) i9 ≡ (Stock control, Without)
i5 ≡ (Order split, Yes)

clustering. Indeed, we do not have any information about the business requirements
previously configured in the system: We do not know how many business requirements
exist, neither do we know how many times they were configured. We only assume
that each configuration fulfills one business logic configuration. Conceptual clustering
is well-suited to this context because it allows us, in an unsupervised way, to group
together configurations that implement the same requirement and identify the part of
configuration they share.

From configurations to a transactional database. In this thesis, we use the
transactional database terminology: Objects are called transactions, and attribute
values are called items. More formally, we assume that:

• T is a set of m transactions (numbered from 1 to m);

• I is a set of n items (numbered from 1 to n);

• R ⊆ T × I is a binary relation that relates transactions to items, i.e., (t, i) ∈ R
denotes the fact that transaction t has item i.

We denote itemset(t) the set of items associated with a transaction t, i.e., ∀t ∈
T , itemset(t) = {i ∈ I|(t, i) ∈ R}.

To generate a transactional database (T , I,R) from existing Copilote configura-
tions, we proceed as follows: T contains a transaction for each existing configuration;
I contains an item for each possible value of each parameter; R contains a couple

77

i1 i2 i3 i4
t1 1 1 0 1
t2 1 0 1 1
t3 0 1 0 1
t4 0 1 1 0
t5 1 0 1 0

Table 6.3 – Example of transactional dataset with m = 5 transactions and n = 4 items.

(t, i) ∈ T × I if and only if the configuration associated with t contains the parameter
setting associated with i.

Example 6.1. Table 6.1 displays the setting of four parameters in four configurations
of Copilote. Two of these parameters are symbolic ones: Price reference date may be
assigned to Delivery date or Order date; and Stock control may be assigned to Blocking,
Alert, or Without. The two other parameters are Boolean ones.

From these parameter settings, we create nine items: Two for Price reference date,
Min order blocking, and Order split, and three for Stock control. The corresponding
transactional database is displayed in Table 6.2.

6.2 Formal Concepts
Formal concepts are groups of transactions that share a same set of items. They are
defined by means of intents and extents which are defined below.

Definition 6.2 (intent). The intent of a subset T ⊆ T of transactions is the intersec-
tion of their itemsets, i.e., intent(T) =

⋂
t∈T

itemset(t).

Definition 6.3 (extent). The extent of a set I ⊆ I of items is the set of transactions
whose itemsets contain I, i.e., extent(I) = {t ∈ T : I ⊆ itemset(t)}.

Example 6.4. Table 6.3 gives an example of transactional dataset. We have:

• intent({t1, t5}) = {i1} because i1 is the only item contained in both itemset(t1)
and itemset(t5)

• extent({i2, i3}) = {t4} because t4 is the only transaction whose itemset contains
both i2 and i3.

P(T) and P(I) are partially ordered sets (posets) when considering the set inclusion
order relation ⊆, and intent and extent operators induce a Galois connection between
these two posets, i.e., ∀T ⊆ T , ∀I ⊆ I, T ⊆ extent(I)⇔ I ⊆ intent(T).

Definition 6.5. A formal concept is a couple (T, I) ∈ P(T) × P(I) such that T =
extent(I) and I = intent(T). We denote F the set of all formal concepts.

Example 6.6. In Table 6.4, we give all the formal concepts we can extract from the
dataset displayed in Table 6.3. c5 = ({i1, i3}, {t2, t5}) is a formal concept because t2,
and t5 are the only transactions that contain both i1 and i3, and, i1 and i3 are the only
items contained in both t2 and t5.

78

F intent extent frequency size diameter split
c0 ∅ {t1, t2, t3, t4, t5} 5 0 1 0
c1 {i1} {t1, t2, t5} 3 1 3

4
1
3

c2 {i2} {t1, t3, t4} 3 1 3
4

1
2

c3 {i3} {t2, t4, t5} 3 1 3
4

1
2

c4 {i4} {t1, t2, t3} 3 1 3
4

2
3

c5 {i1, i3} {t2, t5} 2 2 2
3

1
2

c6 {i1, i4} {t1, t2} 2 2 1
2

1
3

c7 {i2, i3} {t4} 1 2 0 2
3

c8 {i2, i4} {t1, t3} 2 2 1
3

1
2

c9 {i1, i3, i4} {t2} 1 3 0 1
2

c10 {i1, i2, i4} {t1} 1 3 0 1
3

c11 {i1, i2, i3, i4} ∅ 0 4 0 0

Table 6.4 – The set F of all formal concepts contained in the dataset described in
Table 6.3. For each formal concept, we give its intent, extent, frequency, size, diameter
and split.

Formal concepts are partially ordered with respect to the inclusion partial order
defined on transactions or, equivalently, on items.

Definition 6.7 (Subconcept). Let c1 = (T1, I1) and c2 = (T2, I2) be two formal con-
cepts. c1 is a subconcept of c2, denoted c1 ≤ c2 iff T1 ⊆ T2 or, equivalently, I2 ⊆ I1.

Example 6.8. In Table 6.4, c9 ≤ c1 because {t2} ⊂ {t1, t2, t5} and {i1} ⊂ {i1, i3, i4}.
c1 and c3 are not comparable because {t1, t2, t5} and {t2, t4, t5} are not comparable by
means of set inclusion.

Definition 6.9. The set of all formal concepts F equipped with the subconcept or-
dering ≤ is called a concept lattice of (T , I,R).

Example 6.10. We show in Fig. 6.1 the concept lattice of the formal concepts ex-
tracted from our example transactional dataset. Each node of the lattice corresponds
to a formal concept and edges correspond to direct subconcept relations.

Measures associated with formal concepts. Two classical measures for charac-
terizing formal concepts are the frequency and the size, which correspond to the number
of transactions and items, respectively.

Definition 6.11 (Frequency and size of a formal concept). Let c = (T, I) be a formal
concept, frequency(c) = #T and size(c) = #I.

Some measures that are often used to evaluate the quality of a clustering may be
used to characterize formal concepts. In particular, the diameter and the split of a
cluster evaluate the within-cluster homogeneity and the between-cluster separation,
respectively. We may use them to evaluate the homogeneity of a formal concept and
its separation with other transactions of the database.

79

c0 = ({t1, t2, t3, t4, t5}, ∅)

c1 = ({t1, t2, t5}, {i1}) c2 = ({t1, t3, t4}, {i2}) c3 = ({t2, t4, t5}, {i3}) c4 = ({t1, t2, t3}, {i4})

c5 = ({t2, t5}, {i1, i3}) c6 = ({t1, t2}, {i1, i4}) c7 = ({t4}, {i2, i3}) c8 = ({t1, t3}, {i2, i4})

c9 = ({t2}, {i1, i3, i4}) c10 = ({t1}, {i1, i2, i4})

c11 = (∅, {i1, i2, i3, i4})

Figure 6.1 – Representation of the concept lattice of the formal concepts of the dataset
represented in Table 6.3.

Definition 6.12 (Diameter and split of a formal concept). Let be T a set of transac-
tions, c = (T, I) a formal concept, and d : T × T → R a dissimilarity measure. The
diameter of c is the maximal dissimilarity between two transactions of c, i.e.,

diameter(c) = max
t,t′∈T

d(t, t′)

and the split of c is the minimal dissimilarity between a transaction of c and a trans-
action not contained in c, i.e.,

split(c) = min
t∈T,t′∈T \T

d(t, t′).

We may consider different dissimilarity measures for computing the diameter or
the split of a formal concept. A classical measure is the Jaccard distance [Jac01]
which measures the dissimilarity of two transactions by means of the ratio between the
number of items they share and the total number of their items.

Definition 6.13 (Jaccard distance). The Jaccard distance between two transactions
t and t′ is:

d(t, t′) = 1− #(itemset(t) ∩ itemset(t′))
#(itemset(t) ∪ itemset(t′))

Example 6.14. In Table 6.4, we give for each formal concept of the dataset the value
of each measure defined above. Concept c3 has a frequency of 3 and a size of 1.
Its diameter is 3

4
because d(t2, t4) = 3

4
and its split is 1

2
because d(t1, t2) = 1

2
. As

expected, formal concepts with only one transaction, i.e., c7, c9, c10, have a high size
and a diameter equal to 0. Formal concepts with the highest frequency, i.e., c1, c2, c3, c4,
have the lowest size.

80

Formal concepts and closed itemset mining. Formal concepts correspond to
closed itemsets as defined in the data mining community [Pas+99a]. The set F of all
formal concepts may be computed by using algorithms dedicated to the enumeration
of frequent closed itemsets, provided that the frequency threshold is set to 1.

Many algorithms with a variety of approaches have been proposed to compute
frequent formal concepts [Aré+07; Kuz+02; Zak+05; Pas+99b; Pas+99a; Pei+00;
Zak00; Zak+99]. Part of these algorithms perform additional tasks such as con-
structing the concept lattice that can slow down the performance and consume mem-
ory [Aré+07; Kuz+02; Zak+05], others enumerate frequent itemsets and output only
those being closed [Pas+99b; Pas+99a; Pei+00; Zak00; Zak+99]. The two fastest
algorithms to date are LCM (Linear time Closed pattern Miner) [Uno+04] and In-
Close [And09]. Both approaches are conceptually based on the well known algorithm
Close-By-One [Kuz99; And09].

In particular, LCM [Uno+04] is able to extract all formal concepts F in linear time
with respect to #F . It uses a technique called prefix preserving closure extension which
extends a closed pattern to another one by adding new items. Since any closed itemset
is generated by the extension of exactly one of the other closed itemsets, frequent
closed itemsets can be enumerated in a depth-first search manner with no need to
store previously computed itemsets. Hence, the memory usage depends only on the
size of the input dataset. Furthermore, it enables to completely prune unnecessary non-
closed frequent patterns. This is a big advantage over approaches based on frequent
itemset mining since the number of frequent itemsets can be exponentially larger than
the number of closed itemsets.

As there is usually a huge number of closed itemsets, we may add constraints or
optimization criteria to identify relevant concepts. For example, we may search for
closed itemsets whose frequency is greater than some given threshold and whose size is
maximal. Using CP to model and solve itemset search problems with additional user-
constraints is a topic which has been widely explored during the last ten years [Rae+08;
Khi+10; Gun+11; Gun15; Laz+16; Sch+17]. Indeed, CP allows one to easily model
various constraints on the searched itemsets, corresponding to application-dependent
constraints for example. These constraints are used to filter the search space during
the mining process, and allow CP to be competitive with dedicated mining tools such
as LCM.

6.3 Conceptual Clustering
Clustering is an unsupervised classification approach the goal of which is to partition
a set of objects into homogeneous and well-separated groups called clusters: Objects
within a same cluster are similar, whereas objects in different clusters are dissimilar.
Clustering has a large field of applications such as economics, sociology, or natural
sciences.

To partition objects into clusters, a first possibility is to rely on some dissimi-
larity measure between objects. A well-known algorithm to address this problem is
k-means [Mac67], for example. This problem may also be seen as an optimization
problem the goal of which is to find a partition of the objects that optimizes some

81

given criterion such as the split, the diameter for example. In [Duo14], Duong de-
scribes CP models for solving these problems, and shows that application-dependent
constraints may easily be added to customize the model.

Conceptual clustering is an alternative approach which provides a description of
each cluster in addition to clusters [Mic80]. The description or concept of a cluster is
a set of properties shared by objects of the cluster. In the 1990s, many approaches
have been proposed to learn from observations by using conceptual clustering [Che+85;
Ste+86; Mic+83]. For example, COBWEB [Fis87] is an incremental conceptual clustering
approach where the search is guided with a category utility measure based on object
similarity, in order to maximize the information that can be predicted from observa-
tions, for each cluster. Each concept corresponds to a cluster and is described by a list
of attributes associated with probabilities.

In many recent works [Dao+15a; Gun15; Oua+16], clusters are associated with
formal concepts, and we consider this definition in this thesis.

Definition 6.15 (Conceptual clustering). Let (T , I,R) be a transactional database. A
conceptual clustering is a set of k formal concepts C = {(T1, I1), . . . , (Tk, Ik)} such that
{T1, . . . , Tk} is a partition of the set T of transactions, i.e., ∀t ∈ T ,∃!i ∈ [1, k], t ∈ Ti.

In the following, we talk indifferently of clusters or of formal concepts of a conceptual
clustering since every cluster corresponds to a formal concept.

Example 6.16. Let us consider the set of formal concepts displayed in Table 6.4.
Three examples of conceptual clusterings are: P1 = {c2, c5}, P2 = {c3, c8}, and P3 =
{c5, c7, c8}.

Optimization criteria. There may exist different solutions to a conceptual clus-
tering problem, and we may consider different optimization criteria to search for the
best solution. In particular, the utility measures introduced in Section 6.2 (i.e., size,
frequency, split and diameter) may be used to define an objective function to optimize.
These measures evaluate the quality of each cluster separately, and we may consider dif-
ferent ways for aggregating them to evaluate the quality of a clustering. More formally,
let be P = {c1, . . . , ck} a conceptual clustering, and u : P → R an utility measure such
that u(ci) reflects the quality of the cluster ci. Without loss of generality, we assume
that the higher the value of u(ci), the better the quality of ci: If this is not the case
(as for the diameter, for example), the measure may be multiplied by −1 to define the
utility (e.g., u(ci) = −diameter(ci)). In [Ari+18], Aribi et al. consider four different
aggregation functions:

• sumu, which returns the sum of all utilities, i.e., sumu(P) =
∑

ci∈P u(ci);

• minu, which returns the smallest utility, i.e., minu(P) = minci∈P u(ci);

• devu, which returns the gap between the largest and the smallest utility, i.e.,
devu(P) = maxci∈P u(ci)−minci∈P u(ci);

• OWAu (Ordered Weighted Average), which returns a weighted sum of utilities, i.e.,
OWAu(P) =

∑
i∈[1,k]wixi where (x1, . . . , xk) is a permutation of (u(c1), . . . , u(ck))

such that ∀i ∈ [1, k − 1], xi ≤ xi+1, and wi = sin (k+1−i)π
2k+1

is the weight of the ith
largest utility value.

82

u1 u2 u3 u4 u5 sum min dev OWA
1 9 8 6 6 30 1 8 9w1 + 8w2 + 6w3 + 6w4 + w5 = 24.25
4 6 5 7 8 30 4 4 8w1 + 7w2 + 6w3 + 5w4 + 4w5 = 22.65
4 6 5 4 4 23 4 2 6w1 + 5w2 + 4w3 + 4w2 + 4w1 = 16.80
4 6 6 5 5 26 4 2 6w1 + 6w2 + 5w3 + 5w2 + 4w1 = 19.01

Table 6.5 – Comparison of four aggregation measures on four different clusterings with
k = 5: Each line gives the utility value ui of each cluster ci, and the aggregation
computed with sum, min, dev, and OWA.

Table 6.5 compares these four aggregation functions on different utility measure values.
Maximizing the sum ensures a good average quality, but the repartition of this quality
among clusters may not be equitable: Some clusters may have very low utility values
while some others may have very high values. This is the case, for example, of the first
clustering of Table 6.5 which has a very low quality cluster (whose utility is 1) while
its utility sum is maximal. Maximizing min ensures a minimal quality over all clusters,
whereas minimizing dev favors clusterings with clusters of homogeneous quality. On
our example, the second and third clusterings both have a minimum utility value
of 4, but the third clustering has more homogeneous utility values (ranging between
4 and 6 instead of 4 and 8). min and dev are not sensible to intermediate values:
Two clusterings with the same minimal and maximal utilities among all clusters, but
different intermediate values, have the same aggregated value. On our example, this
is the case for the third and fourth clustering, that both have values ranging between
4 and 6, though the fourth clustering has higher intermediate values. OWA has been
introduced in [YAG93] to ensure a better equity by weighting utilities according to
their rank. On our example, the fourth clustering is preferred to the third one when
considering OWA.

In our applicative context, the min aggregation function is well suited because it
ensures that all clusters have a minimal quality. In other words, it discards clusters
of low utility. There is no need to ensure some kind of equity between the different
clusters as it is most probable that all relevant configuration parts are not equally good
according to utility measures.

Impact of the number of clusters on quality measures. The number k of
clusters is an important parameter which has a great influence on the size, the frequency,
the split and the diameter of the clusters. In particular, when k is small (typically,
when k = 2), clusters contain more transactions as each transaction must belong to
one cluster and, therefore, cluster frequencies tend to have higher values. In this case,
cluster sizes tend to have low values because the number of shared items can only
decrease when adding a transaction to a cluster. Also, when k is small, cluster splits
and diameters tend to have high values.

As a counterpart, when k is large (and close to the number of transactions), clusters
contain less transactions and, therefore, cluster frequencies, splits and diameters tend
to have low values, whereas cluster sizes tend to have high values.

Example 6.17. In Table 6.4, P1 = {c2, c5} is the conceptual clustering with the
smallest number of clusters, and it maximizes Min frequency and Minsplit . P3 = {c5, c8, c7}

83

is the conceptual clustering with the largest number of clusters, and it maximizes
Minsize and Min−diameter .

Soft Clustering. In some applications, constraining the clusters to be an exact parti-
tion of the set of transactions is not relevant, and we may soften this constraint. In this
case, some transactions may belong to more than one cluster (i.e., the non-overlapping
constraint is relaxed) or to no cluster (i.e., the covering constraint is relaxed) [Kog+06].
Many soft clustering techniques are characterized by a relaxation of the borders of the
clusters [Bez81; Bez+78]. The soft borders address many typical real-life applications
where overlapping clusters or uncertain cluster memberships can often be observed.

Soft conceptual clustering may be expressed with respect to the relation between
transactions and formal concepts [Oua+16]. More formally, given two thresholds 1 ≤
δo ≤ #T and δc ≤ #T , a set of formal concepts P = {c1 = (I1, T1), . . . , ck = (Ik, Tk)}
is a soft conceptual clustering if:

• at most δc transactions are not covered by P , i.e., #T −#(
⋃

i∈[1,k]
Ti) ≤ δc.

• each transaction belongs to at most δo clusters, i.e., ∀t ∈ T ,#{ci|t ∈ Ti} ≤ δo

Example 6.18. For the transactional dataset example of Table 6.3, if we set δc = 1
and δo = 1, {c1, c7} or {c3, c10} are soft conceptual clusterings. {c6, c7} is not a solution
because only 3 transactions are covered. If we set δc = 0 and δo = 2, {c2, c3} is a soft
conceptual clustering whereas {c1, c2, c4} is not because t1 belongs to three clusters.

6.4 Declarative approaches for conceptual clustering
In this section, we describe existing declarative approaches for solving conceptual clus-
tering problems. These declarative approaches allow the user to customize the problem
by adding application-dependent constraints. In Section 6.4.1, we describe a first CP
model which uses Boolean variables to model formal concepts. In Section 6.4.2, we
describe another CP model which uses set variables. In Section 6.4.3, we describe an
hybrid approach which combines a dedicated mining tool for extracting all formal con-
cepts with an Integer Linear Programming model for selecting a subset of these formal
concepts that defines a partition.

We present all models using the transactional database notations introduced in
Section 6.2.

6.4.1 Boolean-based CP model

This CP model was introduced by Guns et al. in [Gun15]. It assumes that the number
of clusters is defined by a constant value denoted k.

Variables. Boolean variables are used to represent both intents and extents of formal
concepts that correspond to clusters:

• For each cluster c ∈ [1, k] and each item i ∈ I, the boolean variable Ic,i is set to
1 iff i belongs to the intent of the formal concept associated with cluster c;

84

• For each cluster c ∈ [1, k] and each transaction t ∈ T , the boolean variable Tc,t
is set to 1 iff t belongs to the extent of the formal concept associated with c.

Constraints. For each cluster c ∈ [1, k], we ensure that it corresponds to a formal
concept by adding the following constraints:

• An extent constraint ensures that a transaction t belongs to the extent of c iff
each item is either included in itemset(t) or excluded from the intent of c, i.e.,

∀t ∈ T , Tc,t = 1⇔
∑
i∈I

Ic,i · (1−Rt,i) = 0

where Rt,i = 1 iff (t, i) ∈ R;

• An intent constraint ensures that an item i belongs to the intent of c iff each
transaction is either included in the extent of c or its itemset does not contain i,
i.e.,

∀i ∈ I, Ic,i = 1⇔
∑
t∈T

Tc,t · (1−Rt,i) = 0.

These constraints are implemented with k · (#T +#I) reified constraints.
To ensure the partition constraint, we constrain each transaction to belong to ex-

actly one cluster, i.e.,
∀t ∈ T ,

∑
c∈[1,k]

Tc,t = 1.

Objective function. The utility measures introduced in Section 6.3 are modeled
by introducing an integer variable uc for each cluster c ∈ [1, k], and constraining this
variable to be equal to the utility measure of cluster c. If the utility measure is frequency
(resp. size), this constraint is uc =

∑
t∈T

Tc[t] (resp. uc =
∑
i∈I

Ic[i]).

Given these variables, we can search for a conceptual clustering that maximizes the
minimum utility, among all clusters, by defining the objective function to maximize as
minc∈[1,k] uc.

6.4.2 Set-based CP model

In [Dao+15b], Dao et al. describe a CP model for clustering problems where a dissimi-
larity measure between objects is provided. In this case, the goal is to find a partition of
the objects which satisfies some constraints and optimizes an objective function defined
by means of this dissimilarity measure. This CP model is extended to solve conceptual
clustering problems in [Dao+15a]. Experimental results reported in [Dao+15a] show
that this model outperforms the boolean model of [Gun15] introduced in the previous
section. This model also assumes that the number of clusters is defined by a constant
value denoted k.

85

Variables. This model uses the following variables:

• For each transaction t ∈ T , an integer variable Gt represents the cluster of t and
its domain is D(Gt) = [1, k].

• For each cluster c ∈ [1, k], a set variable Intent c represents the intent of the set
of transactions in c with D(Intent c) = [∅, I].

Constraints. For each cluster c ∈ [1, k], the extent constraint is defined by:

∀t ∈ T , Gt = c⇔ Intent c ⊆ itemset(t)

and it is implemented thanks to k ×#T reified constraints.
For each cluster c ∈ [1, k], the intent constraint is defined by:

Intent c =
⋂

t∈T ,Gt=c

itemset(t)

and it is implemented thanks to k constraints, such that each of these k constraints
needs #T reified domain constraints to build the set of all transactions in cluster c,
and a set element global constraint to select the corresponding itemsets and intersect
them.

Symmetries (due to the fact that cluster numbers may be swapped) are broken by
adding a precede(G, [1, k]) constraint [Law+04].

Objective function. We can search for a conceptual clustering that maximizes the
minimum utility, among all clusters, as follows:

• To maximize Min frequency , we introduce an integer variable F to be maximized.
For each cluster c, we add the constraint atLeast(F,G, c) to ensure that F is
smaller than or equal to the number of transactions in c.

• To maximize Minsize , we introduce an integer variable T to be maximized. For
each cluster c ∈ [1, k], we add the constraint T ≤ #Intentc to ensure that T is
smaller than or equal to the number of items in the intent of c.

• To maximize Minsplit , we search for all solutions, and we dynamically add con-
straints each time a new solution is found. More precisely, when a new solution
I is found, we compute its associated minimum split split , i.e.,

split = min
t,t′∈T ,I[Gt]6=I[Gt′]

d(t, t′)

and for each pair of transactions {t, t′} ⊆ T such that d(t, t′) ≤ split , we add the
constraint Gt = Gt′ to C. This constraint ensures that the next solution (if any)
will have a larger split value.

• To maximize Min−diameter , when a new solution I is found, we compute its asso-
ciated maximum diameter diam, i.e.,

diam = max
t,t′∈T ,I[Gt]=I[Gt′]

d(t, t′)

and for each pair of transactions {t, t′} ⊆ T such that d(t, t′) ≥ diam, we add
the constraint Gt 6= Gt′ . This constraint ensures that the next solution (if any)
will have a smaller diameter value.

86

Maximize
∑
f∈F

vfxf

Subject to (1) ∀t ∈ T ,
∑
f∈F

atfxf = 1

(2) k =
∑
f∈F

xf

(3) kmin ≤ k ≤ kmax
k ∈ N, xf ∈ {0, 1}, f ∈ F

Figure 6.2 – ILP model for conceptual clustering

Extension of the model to the case where k is not fixed. The model proposed
in [Dao+15a] assumes that the number of clusters is fixed to a constant value k.

It may be extended to the case where the number of clusters is bounded between
kmin and kmax by introducing an integer variable k with D(k) = [kmin, kmax]. To ensure
that k is equal to the number of non-empty clusters, we add the constraint k = max

t∈T
Gt.

When maximizing Min frequency , for each cluster c ∈ [1, kmax], we post the constraint:

c ≤ k ⇒ atLeast(F,G, c).

When maximizing Minsize , for each cluster c ∈ [1, kmax], we post the constraint:

c ≤ k ⇒ T ≤ #Intentc.

6.4.3 Hybrid ILP model for conceptual clustering

In [Oua+16], Ouali et al. propose to compute conceptual clusterings by combining
two exact techniques: In a first step, a dedicated closed itemset mining tool (i.e.,
LCM [Uno+04]) is used to compute the set F of all formal concepts and, in a second
step, Integer Linear Programming (ILP) is used to select a subset of F that is a
partition of the set T of transactions and optimizes some given criterion.

The ILP model used to solve the second step is described in Fig. 6.2. This model
associates a boolean variable xf with every formal concept f ∈ F such that xf = 1
iff f is selected in the solution. Selected formal concepts are constrained to define a
partition of T by posting constraint (1), where atf = 1 if the transaction t belongs to
the extent of the concept f , and 0 otherwise.

Contrary to the CP approaches of [Gun15; Dao+15b], the number of clusters is not
fixed. A variable k is constrained to be equal to the number of selected concepts by
posting constraint (2) and constraint (3) allows to control the bounds of k.

A cost value vf is associated with every formal concept f ∈ F . This cost corresponds
to the utility measure and may be the size, the frequency or any other utility measure
associated with formal concepts, as introduced in Section 6.2.

The model introduced in [Oua+16] assumes that the aggregation function is sum,
and the goal is to maximize the sum of utility measures associated with the selected
concepts. If the case is not explicitly discussed in [Oua+16], we may easily modify
this ILP model to the aggregation function min: We introduce a variable vmin and
enforce it to be smaller than or equal to utility values of selected concepts by adding
the constraint ∀t ∈ T, vmin ≤ vfxf +M(1−xf), whereM is a positive constant greater
than the largest value of v.

87

6.5 Discussion
We have introduced in this section the main definitions and principles related to formal
concepts and conceptual clustering. In Chapter 13, we show how to use conceptual
clustering to extract relevant parts of configurations from existing ERP configurations.
We have chosen to use CP to achieve this task, because CP languages allow us to easily
add new constraints or objective functions to customize the model and extract more
relevant concepts according to ERP expert feedbacks.

We have described existing CP models for solving conceptual clustering problems
with CP. These CP models consider that the number of clusters k is a constant which is
known in advance. This is not the case in our application. If existing models can easily
be extended to the case where the number of clusters is not known, they do not scale
well in this case and they are not able to solve all our instances within a reasonable
amount of time. This motivated us to introduce new CP models for solving conceptual
clustering problems, which are described in Chapter 9.

We have also described an hybrid approach that solves conceptual clustering prob-
lems by combining a dedicated tool that extracts formal concepts with an ILP model
that selects a subset of formal concepts. The problem solved by the ILP model corre-
sponds to the exact cover problem. We describe this problem in the next chapter, and
we introduce a new global constraint dedicated to this problem in Chapter 10.

88

Chapter 7

Exact Cover problem

Contents
7.1 Definitions and notations . 88

7.2 Applications of EC . 90

7.3 Dedicated Algorithm DLX 91

7.4 Existing CP models to solve EC 95

7.4.1 Boolean-based Model . 95

7.4.2 Gcc-based Model . 96

7.5 Existing SAT models to solve EC 96

7.6 Comparison of declarative approaches with DLX 97

7.7 Discussion . 98

As pointed out by Ian Davidson during a tutorial he gave in December 2017 on Data
Mining and Machine Learning using Constraint Programming Languages, the problem
that aims at selecting a subset of formal concepts that defines a partition of the set of
transactions is a well known problem, called Exact Cover.

In Section 7.1, we formally define this problem and introduce some notations. In
Section 7.2, we describe three applications of this problem. In Section 7.3, we de-
scribe an algorithm introduced by Knuth to solve this problem, together with a nice
data structure, called Dancing Links, which is used to efficiently restore states when
backtracking. In Sections 7.4 and 7.5, we introduce CP and SAT models to solve this
problem. In Section 7.6, we experimental compare these declarative approaches with
the dedicated algorithm of Knuth.

7.1 Definitions and notations
An instance of the Exact Cover Problem (EC) is defined by a couple (S, P) such that
S is a set of elements and P ⊆ P(S) is a set of subsets of S. EC aims at deciding if
there exists a subset C ⊆ P which is a partition of S, i.e., a subset C ⊆ P such that:

∀a ∈ S,#{u ∈ C|a ∈ u} = 1.

This problem is NP-complete [Kar72].

Example 7.1. For example, let us consider the instance (S, P) displayed in Fig. 7.1.
A solution is: C = {v, x, z}.

89

S = {a, b, c, d, e, f, g}
P = {t, u, v, w, x, y, z}

where

t = {a, g}, u = {a, d, g}, v = {a, d}, w = {d, e, g}, x = {c, e, f}, y = {b, c, f}, z = {b, g}

Figure 7.1 – Example of instance of the exact cover problem.

Elements of S are denoted a, b, c, etc, whereas elements of P (i.e., subsets) are
denoted t, u, v, etc. For each element a ∈ S, we denote cover(a) the set of subsets
that contain a:

cover(a) = {u ∈ P |a ∈ u}.

Example 7.2. For example, in Fig. 7.1, we have cover(a) = {t, u, v}.

Two subsets u, v ∈ P are compatible if u ∩ v = ∅ and, for every subset u ∈ P , we
denote incompatible(u) the subsets of P that are not compatible with u:

incompatible(u) = {v ∈ P \ {u} : u ∩ v 6= ∅}

Example 7.3. For example, in Fig. 7.1, we have incompatible(x) = {w, y}.

The maximal cardinality of a subset in P is denoted np, the maximal number of
subsets that cover an element is denoted nc, and the maximal number of subsets that
are not compatible with another subset is denoted ni:

np = max
u∈P

#u

nc = max
a∈S

#cover(a)

ni = max
u∈P

#incompatible(u)

Given a set C ⊆ P of selected subsets which are all pairwise compatible, the set of
elements that are not covered by a subset in C is denoted SC :

SC = {a ∈ S : ∀u ∈ C, a 6∈ u}

and for every non covered element a ∈ SC , the set of subsets that cover a and are
compatible with every subset in C is denoted coverC(a):

∀a ∈ SC , coverC(a) = {v ∈ cover(a) : ∀u ∈ C, v ∩ u = ∅}.

Example 7.4. For example, in Fig. 7.1, if C = {x} then SC = {a, b, d, g} and
coverC(g) = {t, u, z}.

90

7.2 Applications of EC
Many real-world problems involve solving an exact cover problem. For example, Junt-
tila and Kaski describe in [Jun+10] a benchmark of EC instances of combinatorial
origin: Bell numbers, Perfect matchings in K2n graphs, Steiner triple systems, Latin
squares, and Kirkman triple systems.

In this section, we describe three applications of EC, i.e., tilling, instruction selec-
tion, and conceptual clustering.

Tilling. In [Knu09], Knuth illustrates EC on the problem that aims at tiling a rect-
angle figure composed of equal squares with a set of pentaminoes, as illustrated in
Fig. 7.2. To model this problem as an EC, we define the sets S and P as follows:

• S contains one element for each square of the rectangle to tile, and one element
for each pentamino shape;

• P contains one subset for each possible position of a pentamino on the rectangle,
and this subset contains the shape of the pentamino and all squares that are
covered by the pentamino.

For example, for the 6× 10 rectangle displayed in Fig 7.2, we define:

S = {si,j|i ∈ [1, 6], j ∈ [1, 10]} ∪ {I, P, Y, V, T,X, L, F, Z,W,N,U}.

The pentamino with a I shape has 20 different possible positions when placing it verti-
cally and 36 different possible positions when placing it horizontally. Hence, there are
56 subsets in P which correspond to the placement of this pentamino, i.e.,

{{I, si,j, si+1,j, si+2,j, si+3,j, si+4,j}|i ∈ [1, 2], j ∈ [1, 10]}
∪ {{I, si,j, si,j+1, si,j+2, si,j+3, si,j+4}|i ∈ [1, 6], j ∈ [1, 6]}

To find a tiling of the rectangle with non-overlapping polyominoes, we need to select a
subset of P that defines a partition of S.

Figure 7.2 – Polyomino tiling problem. Images from
https://en.wikipedia.org/wiki/Pentomino

91

Instruction selection. In [HB18], Hjort Blindell shows how to use CP to solve an
instruction selection problem that occurs when compiling a source code to generate
an executable code. This instruction selection problem may be decomposed into two
subproblems:

1. A matching problem, that involves finding the instructions provided by the tar-
get processor that can implement one or more operations in the source code to
compile;

2. A selection problem, that involves selecting a subset of these target instructions
such that each source operation is covered exactly once.

The selection problem is an EC problem.

Conceptual Clustering. Our interest for EC comes from the conceptual clustering
problem which is described in Section 6.3. As discussed in Section 6.4.3, this problem
may be solved in two steps. The first step involves extracting the set F of all formal
concepts from a set of transactions T , and it may be solved by using a dedicated and
efficient tool such as LCM [Uno+04]. The second step involves finding a subset of F
that forms a partition T (and, optionally, that optimizes some given criteria). This
second step is the instance of EC defined by the couple (S = T , P = F).

7.3 Dedicated Algorithm DLX
Knuth has introduced an algorithm called X to recursively enumerate all solutions of
an instance (S, P) of EC [Knu09]. This algorithm is displayed in Figure 61 and has
three input parameters: the sets S and P that define the instance of EC to solve, and
a partial cover C ⊆ P that contains the subsets that have already been selected in
the solution (for the first call to X, we have C = ∅). If the set SC of non covered
elements is empty, then C is a solution and the algorithm outputs it (line 3). If there
is an element a ∈ SC such that coverC(a) = ∅, then a cannot be covered by any subset
compatible with C and the search must backtrack. Otherwise, we choose an element
a ∈ SC (line 7) and, for each subset u ∈ coverC(a), we recursively try to add u to the
partial solution (line 9).

A first key point for an efficient enumeration process is to use an ordering heuristic
to choose the next element a (line 7). Knuth shows that this ordering heuristic has a
great impact on performance, and that much better results are obtained by selecting an
element a ∈ SC for which the number of subsets compatible with C is minimal. Hence,
the ordering heuristic used line 7 chooses an element a ∈ SC such that #coverC(a) is
minimal.

A second key point is to incrementally maintain SC and coverC(a) for each element
a ∈ SC . To this aim, Knuth introduces Dancing Links and the implementation of
Algorithm X with Dancing Links is called DLX. As illustrated in Figure 7.3, the idea
is to use doubly linked circular lists to represent a sparse matrix. Each cell c in this
matrix has five fields denoted c.head , c.left , c.right , c.up, and c.down, respectively.

1In [Knu09], the algorithm is introduced using a matrix representation (columns correspond to
elements and lines to subsets). We describe it with the notations that are used in our propagation
algorithms.

92

Algorithm 6: Algorithm X(S, P, C)
Input: An instance (S, P) of EC and a set C ⊆ P of selected subsets
Postcondition: Output every exact cover C ′ of (S, P) such that C ⊆ C ′

1 begin
2 Let SC = {a ∈ S : ∀u ∈ C, a 6∈ u}
3 if SC = ∅ then Output C;
4 else
5 ∀a ∈ SC , let coverC(a) = {v ∈ cover(a) : ∀u ∈ C, v ∩ u = ∅}
6 if ∀a ∈ SC , coverC(a) 6= ∅ then
7 Choose an element a ∈ SC
8 for each subset u ∈ coverC(a) do
9 X(S, P, C ∪ {u})

SC ha (3) hb (2) hc (2) hd (3) he (2) hf (2) hg (4)

t cta ctg

u cua cud cug

v cva cvd

w cwd cwe cwg

x cxc cxe cxf

y cyb cyc cyf

z czb czg

Figure 7.3 – Representation of the EC instance of Fig. 7.1 with Dancing Links when
C = ∅. right (resp. left, up, and down) fields are represented by plain black (resp.
dotted black, dotted blue, and plain blue) edges. Header cells are colored in blue, and
their size fields are displayed in brackets. head fields are not displayed: the head field
of each gray cell contains a pointer to the blue cell in the same column.

For each subset u ∈ P , the matrix has a row which contains a cell cua for each
element a ∈ u. This row is a doubly linked circular list, and we can iterate over all
elements in u, starting from any cell in the row, by using left fields until returning back
to the initial cell. If we use right fields instead of left fields, we also iterate over all
elements in u, but we visit them in reverse order.

93

Algorithm 7: removeCells(u)
1 for each a ∈ u do
2 ha ← getHeader(a)
3 ha.left .right ← ha.right
4 ha.right .left ← ha.left
5 cva ← ha.down
6 while cva 6= ha do
7 cvb ← cva.right
8 while cvb 6= cva do
9 cvb.down.up ← cvb.up

10 cvb.up.down ← cvb.down
11 decrement cvb.head .size
12 cvb ← cvb.right

13 cva ← cva.down

Algorithm 8: restoreCells(u)
1 for each a ∈ u (in reverse order) do
2 ha ← getHeader(a)
3 ha.left .right ← ha
4 ha.right .left ← ha
5 cva ← ha.up
6 while cva 6= ha do
7 cvb ← cva.left
8 while cvb 6= cva do
9 cvb.down.up ← cvb

10 cvb.up.down ← cvb
11 increment cvb.head .size
12 cvb ← cvb.left

13 cva ← cva.up

Besides these #P rows, there is an extra row in the matrix, which is the first row
and contains a cell ha for each non covered element a ∈ SC . This cell is called the
header and it has an extra field size which is equal to the cardinality of coverC(a).
Like the other rows, the first row is a doubly linked circular list and we can iterate over
all elements in SC by using left or right fields.

Each column of the matrix corresponds to an element a ∈ SC and is composed of
#coverC(a) + 1 cells: the header ha plus one cell cua for each subset u ∈ coverC(a).
Each cell cua in the column can access to its header thanks to the head field (i.e.,
cua.head = ha). This column is a doubly linked circular list, and we can iterate over all
subsets in coverC(a), starting from the header ha, by using down fields until returning
to ha. If we use up fields, we also iterate over all subsets in coverC(a), but we visit
them in reverse order.

The advantage of using doubly linked circular lists is that a cell may be removed
or restored (when backtracking) very easily. More precisely, to remove a cell c from a
column, we execute: c.down.up ← c.up; c.up.down ← c.down
To restore c (when backtracking), we execute: c.down.up ← c; c.up.down ← c.
Similarly, to remove c from a row, we execute: c.right .left ← c.left ; c.left .right ← c.right
and to restore c (when backtracking), we execute: c.right .left ← c; c.left .right ← c.
Also, doubly linked lists can be traversed in two directions: This way we can undo a
sequence of cell removals by executing the inverse sequence of cell restorations.

The complete algorithms to update the matrix with Dancing Links are displayed
in Algorithms 7 and 8: Algorithm 7 is called just before the recursive call (line 9 of
Algorithm 6) to remove cells, and Algorithm 8 is called just after the recursive call
(line 9 of Algorithm 6) to restore cells. The resulting algorithm is called DLX.

Algorithm 7 is called after the addition of a subset u to C. For each element a ∈ u,
we remove the header ha of the column associated with a (lines 3-4). Then, we iterate
over all subsets v ∈ coverC(a) by traversing the column list associated with a, starting
from its header and using down fields. Each cell cva in this column corresponds to a
subset v ∈ coverC(a) which is incompatible with u (since a is already covered by u).
Hence, for each element b ∈ v, we must remove v from coverC(b). To this aim, we
iterate over all elements b ∈ v by traversing the row list associated with v, starting

94

from cva and using right fields, and we remove every cell cvb from its column list (lines
9-10). Each time a cell cvb is removed, we decrement cvb.head .size to ensure that it is
equal to #coverC(b).

Algorithm 8 undoes all cell removals performed by Algorithm 7. It performs the
same traversals but in reverse order and restores cells instead of removing them: The
column list associated with a is traversed using up fields instead of down fields and row
lists are traversed using left fields instead of right fields.

The time complexity of Algorithms 2 and 3 is O(n2
p · nc) as the number of cells in

a row is bounded by np and the number of cells in a column is bounded by nc.

SC ha (3) hb (1) hc (2) hd (2) he (1) hf (0) hg (2)

t cta ctg

u cua cud cug

v cva cvd

w cwd cwe cwg

x cxc cxe cxf

y cyb cyc cyf

z czb czg

Figure 7.4 – Representation of the instance of Fig. 7.1 with Dancing Links when C =
{x}. Links that have been modified are displayed in red.

Example 7.5. Let us consider the EC instance displayed in Figure 7.1, and let us
assume that Algorithm 6 first chooses element c (line 7) and recursively calls X with
C = {x}. Before this recursive call, Algorithm 7 iterates on elements in x

• For element c, it removes cell hc from the first row and then successively removes
from their columns cells cxe, cxf (to remove subset x), and cyf and cyb (to remove
subset y).

• For element e, it removes cell he from the first row and then successively removes
cells cwg and cwd from their columns (to remove subset w).

• For element f , it removes the cell hf from the headers.

The size fields of the headers of the columns in which cells have been removed are
updated consequently. The resulting matrix is displayed in Figure 7.4.

95

After the recursive call to X, Algorithm 8 iterates on elements in x. For element f ,
it restores cell hf in the first row. For element e, it restores cell he in the first row and
then successively restores cells cwd and cwg in their columns. For element c, it restores
cell hc in the first row and then successively restores cells cyb, cyf , and cxf and cxe in
their columns.

We refer the reader to [Knu09] for more details on DLX. An open source imple-
mentation of DLX in C, called libexact, is described in [Kas+08].

7.4 Existing CP models to solve EC
Let us describe two different CP models that have been proposed to solve exact cover
problems that occur when solving an instruction selection problem. In both models,
for each element a ∈ S, an integer variable coveredBya is used to decide which subset
of P covers a, and its domain is D(coveredBya) = cover(a).

7.4.1 Boolean-based Model

A first model is described in [HB18], for solving an instruction selection problem. This
model uses Boolean variables to model the selected subsets.

For each subset u ∈ P , a Boolean variable isSelectedu indicates if u is selected in the
solution. isSelected variables are channeled with coveredBy variables by the following
set of constraints:

∀u ∈ P, ∀a ∈ u, coveredBya = u⇔ isSelectedu.

When a variable isSelectedu is assigned to true, enforcing AC on these constraints
filters domains as follows:

• For every element a ∈ u, it removes from D(coveredBya) every value different
from u (propagation of isSelectedu = true ⇒ coveredBya = u);

• For every subset v ∈ P \ {u} such that v ∩ u 6= ∅, it removes true from
D(isSelected v) (because, for every element b ∈ v ∩ u, (isSelected v, true) has no
support on coveredByb = u⇔ isSelected v = true).

• For every element a ∈ S \{u}, it removes from D(coveredBya) every value v such
that u ∩ v 6= ∅ (because (coveredBya, v) has no support on coveredBya = v ⇔
isSelected v = true).

Example 7.6. For example, let us assume that D(isSelectedx) = {true} for the in-
stance of Figure 7.1. In this case, ensuring AC filters domains as follows:

• All values different from x are removed from D(coveredBy [c]), D(coveredBye) and
D(coveredByf),

• w and y are removed from the domains of all coveredBy variables,

• true is removed from D(isSelectedw) and D(isSelectedy).

96

7.4.2 Gcc-based Model

A second model is described in [Flo+10], also for solving an instruction selection prob-
lem. This model uses a gcc constraint to model the problem.

In this model, an integer variable nbu is associated with every subset u ∈ P : It
represents the number of times u is assigned to a coveredBy variable and its domain is
D(nbu) = {0,#u}. Indeed, the number of coveredBy variables assigned to u must be
either equal to 0 (if u is not selected), or to #u (if u is selected).

Given these variables, EC is modeled by a global cardinality constraint between
coveredBy and nb variables: gcc(coveredBy , P, nb).

Enforcing AC on this gcc global constraint is NP-complete because domains of nb
variables are not closed intervals (they only contain two values which are not successive
integers). Therefore, CP solvers usually enforce weaker consistencies that may be
different from a solver to another such as, for example, those ensured by the filtering
algorithms described in [Qui+04; Nig11].

7.5 Existing SAT models to solve EC
In [Jun+10], Junttila and Kaski introduce SAT encodings for the exact cover problem.
Given an instance (S, P) of EC, they associate a Boolean variable xu with every subset
u ∈ P , such that xu is assigned to true iff the subset u is selected in the exact cover.
The conjonctive normal form (CNF) formula associated with (S, P) is∧

a∈S

exactly-one({xu : u ∈ cover(a)})

where exactly-one(X) over a set X of Boolean variables is a CNF formula which is
satisfied by a complete truth assignment iff exactly one variable in X is assigned to
true. Junttila and Kaski describe three different encodings for exactly-one(X). The
first encoding is straightforward. For each element a ∈ S, it is composed of one n-ary
clause and (n2 − n)/2 binary clauses where n = #cover(a):

exactly-one({xu : u ∈ cover(a)}) =
∨

u∈cover(a)

xu
∧

u,v∈cover(a)

¬xu ∨ ¬xv

The two other encodings are less straightforward and use auxiliary variables to
encode and exploit values of xu variables in order to require less clauses in the encoding.
The bitwise encoding is composed of ndlog2ne binary clauses and one n-ary clause
whereas the ladder encoding produces one unary clause, 3(n− 1) binary clauses and
one n-ary clause.

Several state-of-the-art SAT solvers, especially #SAT solvers, have been experimen-
tally compared for enumerating all solutions of EC instances, for the three encodings.
These experiments show that the clasp solver [Geb+12] has the best run time behavior
among the DPLL-based approaches tested in [Jun+10], and is also very insensitive to
the applied exactly-one encoding scheme. SAT solvers have also been compared with
libexact, the C implementation of DLX [Kas+08], showing that SAT solvers explore
smaller search space but do not perform that well in terms of running time: If SAT
solvers are faster on some easy instances, they are often outperformed by libexact on
harder instances.

97

(a) (1) libexact vs (2) SATladder (b) (1) libexact vs (2) BoolDec

(c) (1) libexact vs (2) GccDec (d) (1) SATladder vs (2) GccDec

Figure 7.5 – Comparison of GccDec, BoolDec and SAT with libexact on benchmark
instances of [Jun+10]: Each point (x,y) corresponds to an instance which is solved in x
seconds with (1) and y seconds with (2). For SAT, we use clasp with ladder encoding.

7.6 Comparison of declarative approaches with DLX
In Figure 7.5a, we compare results obtained by libexact and clasp with the ladder
encoding (denoted SATladder) on the benchmark instances of [Jun+10]2. We can see
that SATladder is faster than libexact only for a few very easy instances. For harder
instances, the gap between the two approaches increases in favor of libexact which is
more than one order of magnitude faster for the hardest instances. These results are
consistent with the results presented in [Jun+10].

We compare results obtained by libexact with the results of the boolean-based
model and the Gcc-based model (denoted BoolDec and GccDec), in Figure 7.5b and
Figure 7.5c, respectively. Both CP models are implemented with Choco V4.3 [Pru+16].
They have similar results and cannot compete with libexact which is at least an order
of magnitude faster for all instances. Figure 7.5d compares SATladder with GccDec and

2This benchmark is available at https://users.ics.aalto.fi/tjunttil/experiments/CP2010/

98

shows us SATladder is faster, but the gap between the two approaches decreases when
instances become harder.

7.7 Discussion
We have described in this chapter the Exact Cover problem and some of its applications.
Our interest for this problem comes from conceptual clustering, as selecting a subset of
formal concepts that define a partition of the transactions is an instance of EC. We have
described a simple backtracking algorithm introduced by Knuth to solve this problem,
together with a backtrackable data structure, called Dancing Links, which is used
to efficiently restore states when backtracking. We presented existing CP and SAT
approaches to solve this problem, and experimentally showed that these declarative
approaches are not competitive with a dedicated algorithm that uses Dancing Links.
This motivates us for introducing a new global constraint dedicated to EC, together
with an algorithm that uses Dancing Links to propagate this global constraint.

99

Chapter 8

Benchmark

Contents
8.1 Description of UCI instances 99

8.2 Description of ERP instances 100

In Chapters 9 to 11, we introduce new CP models for solving conceptual clustering
problems. These models are experimentally evaluated and compared with state-of-the-
art approaches described in Chapters 6 and 7 on two sets of instances that we describe
in this chapter: The first set of instances, described in Section 8.1, is coming from
a classical benchmark for evaluating machine learning algorithms; The second set of
instances, described in Section 8.2, is a new benchmark that we have extracted from
our ERP configuration dataset.

8.1 Description of UCI instances
We describe in Table 8.1 six classical machine learning instances coming from the UCI
database [Dhe+17] which have been used in other recent works on conceptual clus-
tering [Gun15; Dao+15a; Oua+16; Ari+18]. These instances need to be preprocessed
before searching for conceptual clusterings, to discretize continuous attributes, for ex-
ample. We have considered instances preprocessed as in [Oua+16].

Some properties of these UCI instances are described in Table 8.1. The density
is the percentage of ones in the database, i.e., 100 ∗ #R

#T ·#I . Typically, the higher
the density, the larger the number of formal concepts. For example, UCI3 has less
transactions and less items than UCI2, but it has a higher density and more than twice
as more formal concepts.

The number of formal concepts varies from less than 5, 000 for UCI1 to more than
3, 7 millions for UCI6. The time spent by LCM to extract all formal concepts is closely
related to this number, as expected for a linear-time complexity. It is smaller than one
second for the five smallest instances, and close to 14 seconds for the largest instance,
UCI6.

Let us recall that when solving conceptual clustering problems in two steps, by
first computing all formal concepts and then solving an exact cover problem, the exact
cover instance (S, P) is defined by S = T and P = F . Hence, instances with a very
large number of formal concepts, such as UCI6, may be challenging.

100

Name #T #I d #F t
UCI1 (zoo) 101 36 44% 4,567 0.01
UCI2 (soybean) 630 50 32% 31,759 0.10
UCI3 (primary-tumor) 336 31 48% 87,230 0.28
UCI4 (lymph) 148 68 40% 154,220 0.52
UCI5 (vote) 435 48 48% 227,031 0.68
UCI6 (hepatitis) 137 68 50% 3,788,341 13.9

Table 8.1 – Description of UCI instances: For each instance, we display the number
#T of transactions, the number #I of items, the density d, the number #F of formal
concepts, and the time t (in seconds on an Intel(R) Core(TM) i7-6700 with 3.40GHz
of CPU and 65GB of RAM) spent by LCM to extract all formal concepts.

Name #T #I d #F t
ERP 1 50 27 48 1,580 0.01
ERP 2 47 47 58 8,1337 0.03
ERP 3 75 36 51 10,835 0.03
ERP 4 84 42 45 14,305 0.05
ERP 5 94 53 50 63,633 0.28
ERP 6 95 61 47 71,918 0.45
ERP 7 160 66 45 728,537 5.31

Table 8.2 – Description of ERP instances (see Table 8.1 for the meaning of the columns).

8.2 Description of ERP instances
We have used data coming from our ERP configuration database to generate a new
benchmark for conceptual clustering. These instances have been randomly extracted
from our database to evaluate scale-up properties of algorithms on a realistic dataset for
our targeted application, i.e., a dataset which has properties similar to real clustering
problems we have to solve when searching for relevant configuration parts (which is
not necessarily the case of UCI instances). However, these instances have no functional
meaning, and clusterings extracted from them cannot be interpreted since parameters
and configurations are randomly chosen. In Chapter 13, we consider more meaningful
instances from an applicative point of view.

Each ERP instance has been built by randomly selecting a subset of parame-
ters from the complete set of parameters, and a subset of configurations from the
set of configurations that have a parameter instance for all the selected parameters.
Then, each randomly selected subset of parameters/configurations is transformed into
a transactional database as explained in Section 6.1. These instances are available
at http://liris.cnrs.fr/csolnon/ERP.html, to allow other researchers to evaluate
scale-up properties of their new algorithms on them.

We describe in Table 8.2 some properties of these instances. For these instances,
the number of formal concepts varies from 1, 580 to 728, 537, and the time spent by
LCM to extract them varies from 0.01 second to 5.31 seconds.

101

Part III

New CP Approaches for Conceptual
Clustering

102

This part describes our main technical contributions, i.e., new CP models and new
global constraints for solving conceptual clustering problems that occur when searching
for relevant configuration parts in existing Copilote configurations.

Existing CP models for solving conceptual clustering models do not scale well when
the number of clusters k is not fixed a priori. In our applicative context, the number
of clusters correspond to the number of configuration parts, and we do not know this
number. In Chapter 9, we introduce two new CP models that scale better when k is not
fixed. However, these CP models still struggle to solve all our instances when adding
constraints on k or when considering multi-criteria optimization problems, for example.
This motivated us for introducing a new global constraint dedicated to exact cover
problems. In Chapter 10, we introduce propagation algorithms for this constraint, and
in Chapter 11, we extend our constraint to the case where the number of selected subsets
is constrained. We evaluate our global constraint, and compare it with state-of-the-art
declarative approaches, on different conceptual clustering problems in Chapter 12.

Finally, in Chapter 13, we describe the interactive mining tool that we have designed
for extracting relevant configuration parts with CP and interactively integrating expert
feedbacks after each mining process. We describe the different feedbacks we had to
integrate after the first uses of this tool by a Copilote expert, and we show how we
modified the CP model to integrate these feedbacks.

103

Chapter 9

New CP models

Contents
9.1 New CP Model for Conceptual Clustering 103

9.2 New CP Model for the Exact Cover Problem 106

9.3 Experimental evaluation . 108

9.4 Discussion . 110

We have described in Chapters 6 and 7 existing CP models for solving concep-
tual clustering and exact cover problems. In this chapter, we introduce two new CP
models: The first CP model, described in Section 9.1, is dedicated to conceptual clus-
tering problems; The second CP model, described in Section 9.2, is dedicated to the
exact cover problem. These new CP models are compared with existing declarative
approaches in Section 9.3.

9.1 New CP Model for Conceptual Clustering
In this section, we introduce a new CP model for computing conceptual clusterings.
This model may be seen as an improvement of the CP model of [Dao+15b] (described
in Section 6.4.2).

We do not assume that the number of clusters is fixed: We only assume that the
number of clusters is bounded by two given bounds kmin and kmax such that 1 < kmin ≤
kmax < #T .

Variables. We use the following variables:

• An integer variable k (with D(k) = [kmin, kmax]), which represents the number of
clusters;

• For each transaction t ∈ T :

– An integer variable Gt (with D(Gt) = [1, kmax]), which represents the cluster
of t like in the CP model of [Dao+15b];

– A set variable Intent t (with D(Intent t) = [∅, itemset(t)]), which represents
the set of items in the intent of the cluster of t;

• For each cluster c ∈ [1, kmax], a set variable Extent c (with D(Extent c) = P(T)),
which represents the set of transactions in c.

104

A first difference with the CP model of [Dao+15b] is that Intent set variables are
associated with transactions instead of clusters. This simplifies the propagation of
the intent constraint (as explained below). Another reason for associating Intent set
variables with transactions instead of clusters is that k is not fixed. In this case, it may
happen that the variable k has a value strictly lower than kmax and, if we associate a
variable Intent c with every possible cluster c ∈ [1, kmax], then every Intent c variable
associated with a cluster c ∈ [k+1, kmax] is empty. In this case, the computation of the
minimal intent size cannot be achieved by constraining a variable to be equal to the
smallest cardinality of all Intent c variables, and we have to discard variables associated
with empty clusters.

Also, we introduce new Extent set variables to explicitly model extents. These
variables are associated with clusters because this allows us to easily channel them
with Gt variables. However, this implies that we have to discard every Extent c variable
associated with an empty cluster c ∈ [k+1, kmax] when computing the minimal extent
frequency.

Constraints. We channel Extent c and Gt variables by posting the constraint

∀t ∈ T ,∀c ∈ [1, kmax], t ∈ Extent c ⇔ Gt = c

We reify m(m− 1)/2 equality constraints between Gt variables to ensure that two
transactions are in a same cluster iff they have the same intent, and this intent is
included in their itemsets: ∀{t1, t2} ⊆ T

(Gt1 = Gt2)⇔ (Intentt1 = Intentt2)⇔ (Intentt1 ⊆ itemSet(t1) ∩ itemSet(t2))

This constraint ensures the extent property as any transaction t1 such that itemset(t1) ⊇
Intent t2 is constrained to be in the same cluster as t2. However, this constraint only
partially ensures the intent property: for each transaction t, it ensures Intent t ⊆
∩t′∈T ,Gt=Gt′

itemset(t′) whereas the intent property requires that Intent t is equal to the
itemset intersection. However, given any solution that satisfies the constraint Intent t ⊆
∩t′∈T ,Gt=Gt′

itemset(t′), we can easily compute another solution that fully satisfies the
intent property by adding to Intent t every item i ∈ (∩t′∈T ,Gt=Gt′

itemset(t′)) \ Intent t.
Hence, each time a solution is found, for each cluster c, we compute its actual intent by
computing the intersection of all its transaction itemsets. This ensures that each clus-
ter actually is a formal concept, and therefore this ensures correctness. Completeness
is ensured by the fact that our constraint is a relaxation of the initial constraint.

As proposed in [Dao+15a; Dao+15b], we break symmetries (due to the fact that
clusters may be swapped) by posting the global constraint:

precede(G, [1, kmax])

To constrain the number of clusters k, we add the constraint k = max
t∈T

Gt to ensure
that k is equal to the largest value assigned to G variables.

Objective function. If the goal is to maximize Min frequency , we introduce an integer
variable Min frequency (with D(Min frequency) = [1,#T − 1]) and post the constraints:

∀c ∈ [1, kmax],Extent c 6= ∅ ⇔ Min frequency ≤ card(Extent c)

105

If the goal is to maximize Minsize , we introduce an integer variable Minsize (with
D(Minsize) = [1,#I − 1] and post the constraint:

Minsize = min
t∈T

card(Intent t)

When we optimize Minsplit or Min−diameter , we dynamically add constraints each
time a solution is found as proposed in [Dao+15a; Dao+15b]:

• If the goal is to maximize Minsplit , we search for all solutions, and we dynamically
add constraints each time a new solution is found. More precisely, when a new
solution I is found, we compute its associated minimum split value, i.e.,

split = min
t,t′∈T ,I[Gt]6=I[Gt′]

d(t, t′)

and for each pair of transactions {t, t′} ⊆ T such that d(t, t′) ≤ split , we add the
constraint Gt = Gt′ to C. This constraint ensures that the next solution (if any)
will have a larger split value.

• If the goal is to maximize Min−diameter (i.e., minimize the maximal diameter value
among all clusters), when a new solution I is found, we compute its associated
maximum diameter value, i.e.,

diam = max
t,t′∈T ,I[Gt]=I[Gt′]

d(t, t′)

and for each pair of transactions {t, t′} ⊆ T such that d(t, t′) ≥ diam, we add
the constraint Gt 6= Gt′ . This constraint ensures that the next solution (if any)
will have a smaller diameter value.

Ordering heuristics. The variable ordering heuristic first selects the variable k.
The value ordering heuristic used for k depends on the objective function: When the
objective function tends to favor solutions with small values of k (i.e., Min frequency and
Minsplit), we first assign k to its lower values; Otherwise, we first assign k to its higher
values.

Once k has been assigned, the variable ordering heuristic selects G variables, and
it uses the minDomain heuristic for selecting first G variables that have the smallest
domains. We first assign G variables to their lower values.

Experimental evaluation. All experiments have been done on an Intel(R) Core(TM)
i7-6700 and 65GB of RAM. We consider the problem of finding a conceptual clustering
that optimizes one single criterion (i.e., maximizing Min frequency , Minsize , Minsplit or
Min−diameter) when the number of clusters k is fixed from 2 to 4, and then when k is
not fixed (in this case, we define D(k) = [2,#T −1]). Table 9.1 compares the approach
of Dao et al. [Dao+15a] (denoted FCP1) implemented with Gecode v4.3 [tea05] with
our new CP model (denoted FCP2) implemented with Choco v.4.0.3[Pru+16].

When considering Minsize and Min frequency criteria, FCP1 is almost always faster for
k = 2 and k = 3 whereas performances are degraded when k = 4: FCP2 becomes more
efficient for 10 instances and both approaches could not solve 10 instances. Increasing
the number of clusters k degrades performances for both approaches. When k is not

106

FCP1 FCP2 FCP1 FCP2
k=2 k=3 k=4 N k=2 k=3 k=4 N k=2 k=3 k=4 N k=2 k=3 k=4 N

Maximizing Minsize Maximizing Min frequency

ERP1 0.0 0.1 0.8 0.2 0.2 1.2 3.8 0.4 0.3 0.0 0.3 0.2 0.2 1.0 14.4 0.3
ERP2 0.0 0.4 15.4 25.7 0.3 0.9 2.1 0.4 0.0 0.3 3.6 0.3 0.3 0.7 18.2 0.4
ERP3 0.0 0.5 193.6 459.9 0.4 2.0 7.6 0.5 0.0 0.2 15.6 1.4 0.5 2.0 10.5 0.9
ERP4 0.0 0.6 138.4 2.0 0.6 6.4 37.2 1.2 0.0 0.3 29.3 1.2 0.7 3.2 124.7 1.0
ERP5 0.0 2.2 - - 0.9 8.4 65.1 0.4 0.0 1.3 440.6 72.5 1.0 6.0 150.3 1.5
ERP6 0.0 10.4 - 6.9 1.6 16.5 139.1 1.3 0.0 7.7 613.1 47.6 1.3 4.1 343.8 1.7
ERP7 0.0 181.5 - 49.1 4.0 72.6 - 2.5 0.1 78.8 - 952.7 4.6 64.8 - 6.5
UCI1 0.0 0.2 15.7 1.4 0.5 4.0 16.5 0.5 0.0 0.2 7.6 1.1 1.1 4.9 188.4 1.6
UCI2 0.1 3.8 833.9 - 15.1 97.9 - 493.6 0.1 1.2 28.1 211.0 122.8 188.5 - 192.1
UCI3 0.0 7.5 - 334.0 5.4 88.0 - 20.8 0.0 2.0 250.6 530.0 23.4 103.0 - 33.5
UCI4 0.0 11.8 - 212.7 1.9 30.8 424.8 3.1 0.0 1.3 296.5 101.1 3.1 42.1 - 4.5
UCI5 0.1 9.9 - - - 7.7 218.6 19.9 0.1 8.7 - - - 32.2 - -
UCI6 0.0 144.1 - 193.4 4.5 199.0 - 1.3 0.0 11.6 - 38.9 2.3 412.6 - 3.1

Maximizing Minsplit Maximizing Min−diameter

ERP1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2
ERP2 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.3 0.6 0.2
ERP3 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.0 0.0 0.0 0.0 0.2 0.3 0.5 0.3
ERP4 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.0 0.0 0.0 0.0 0.2 0.4 1.3 1.1
ERP5 0.0 0.0 0.0 0.1 0.2 0.3 0.3 0.4 0.0 0.0 0.0 0.1 0.2 0.4 1.4 0.4
ERP6 0.0 0.0 0.0 0.1 0.3 0.3 0.3 0.5 0.0 0.0 0.0 0.1 0.5 0.9 2.9 1.2
ERP7 0.0 0.0 0.0 0.2 0.7 0.9 0.8 1.5 0.0 0.0 0.0 0.2 0.9 1.5 2.7 1.0
UCI1 0.0 0.0 0.0 0.1 0.3 0.3 0.3 0.7 0.0 0.0 0.0 0.1 0.3 0.4 0.6 0.4
UCI2 0.1 0.1 0.1 11.0 4.7 6.6 6.2 15.7 0.1 0.1 0.1 11.3 7.3 9.6 37.4 446.5
UCI3 0.0 0.0 0.0 1.7 1.3 1.6 1.7 4.2 0.0 0.0 0.0 1.7 1.7 9.3 84.9 13.9
UCI4 0.0 0.0 0.0 0.2 0.4 0.5 0.6 0.5 0.0 0.0 0.0 0.2 0.6 1.3 2.8 3.5
UCI5 0.0 0.1 0.1 4.6 - 3.7 18.7 9.6 0.0 0.1 0.1 4.5 - 2.0 69.8 18.6
UCI6 0.0 0.0 0.0 0.2 0.6 0.6 0.8 1.0 0.0 0.0 0.0 0.2 1.1 7.4 86.7 1.8

Table 9.1 – Comparison of FCP1 and FCP2 when the goal is to optimize Minsize ,
Min frequency (upper part) and Minsplit , Min−diameter (lower part): For each approach,
we display the time (in seconds) when k is fixed to 2, 3, and 4, respectively, and when
k is not fixed (N). ’-’ is reported when time exceeds 1,000s.

fixed, FCP2 is faster than FCP1 except for the easiest instances ERP1, ERP2 and
UCI1. FCP2 is the only approach that can solve all the instances for Minsize criterion.

Optimizing Minsplit and Min−diameter is much easier since both models are able to
solve almost all instances. FCP1 is always faster than FCP2 whether k is fixed or not:
It is able to solve all instances in less than 0.2 seconds (resp. 12 seconds), when k
is fixed (resp. k is not fixed). However, FCP2 scales rather well and is able to solve
all instances but UCI5 when k = 2. Increasing the number of clusters k does not
change the time of FCP1 whereas FCP2 needs more than one minute when k = 4 for
Min−diameter on UCI3, UCI5 and UCI6.

Both approaches are rather complementary and only seven instances could not be
solved when considering both approaches.

9.2 New CP Model for the Exact Cover Problem
We introduce a new CP model for the exact cover problem, and this CP model may be
used to solve conceptual clustering problems when combining it with LCM [Uno+04]
to extract the set of all formal concepts from a set of transactions before searching for
a subset of formal concepts that is a partition of the transactions.

Variables. Let (S, P) be an instance of EC. Like the Boolean-based and the gcc-based
models introduced in Section 7.4, for each element a ∈ S, an integer variable coveredBya

107

is used to represent the selected subset that covers a (with D(coveredBya) = cover(a)).
Besides these variables, we use a set variable C (with D(C) = [∅, P]), which repre-

sents the set of selected subsets that define an exact cover of S.

Constraints. For each element a ∈ S, we ensure that the selected subset that covers
a belongs to the solution by adding a member constraint coveredBya ∈ C.

We ensure that each element a ∈ S is covered by exactly one selected subset by
adding the constraint #(C ∩ cover(a)) = 1. This way, each time a subset u is added
to C, all the subsets v such that v ∩ u 6= ∅ are removed from the upper bound of C,
and cannot be chosen anymore.

Constraining the number of subsets of the solution. To constrain the number
of selected subsets (corresponding to the number of clusters when solving a conceptual
clustering problem) to be bounded between two given bounds kmin and kmax, we add an
integer variable k (with D(k) = [kmin, kmax]), which represents the number of selected
subsets.

The way we constrain k depends on the utility measure: When the utility measure
tends to favor solutions with small values of k (i.e., u = frequency or u = split), we
use NValue(G, k), otherwise we use #C = k. Indeed, we experimentally observed that
NValue is efficient when k is small, but does not scale well when k is large.

Objective function. When the EC instance (S, P) corresponds to the selection
step of a conceptual clustering problem (i.e., S is a set of transactions and P a set of
formal concepts), the objective function to maximize is the minimum utility measure
associated with a selected subset. Let u : P → R be this utility measure (as defined in
Section 6.3). The objective function to maximize is

min
c∈C

u(c).

Ordering heuristics. We use the minDomain heuristic for selecting first coveredBy
variables that have the smallest domains. As the goal is to maximize the minimum
utility of a selected subset, we use a value ordering heuristic that selects first elements
of S that have a high utility, for all utility measures but Min frequency .

Special case for Min frequency . The frequency utility measure has particular properties
that may be used to speed up the solution process when searching for an exact cover
that maximizes Min frequency . Indeed, an exact cover forms a partition of the set of
elements S (corresponding to transactions), and each subset u ∈ P corresponds to a
formal concept whose frequency is equal to #u. Therefore, for any exact cover, the
sum of the cardinalities of its subsets is equal to #S.

More formally, let C = {u1, . . . , uk} be an exact cover such that k > 1, and let
m = mini∈[1,k] #ui and M = maxi∈[1,k] #ui be the minimum and maximum size of the
subsets in C, respectively. The first property is:

m+M ≤ #S.

108

Indeed, let umin and umax be two subsets of C such that m = #umin, M = #umax, and
umin 6= umax. We have:

#S =
∑
ui∈C

#ui (because C defines a partition of S)

= m+M +
∑

ui∈C\{umin,umax}

#ui

As
∑

ui∈C\{umin,umax}
#ui ≥ 0, we have m+M ≤ #S.

The second property is:
m ∗ k ≤ #S.

Indeed, for all ui ∈ S, we have m ≤ #ui. Therefore, #S =
∑
ci∈S

#ui ≥ k ∗m.

When we maximize Minfrequency, we take advantage of these two properties by
adding two integer variables Minfrequency and Maxfrequency that represent the minimal
and maximal frequency of the selected formal concepts. We constrain these variables
to be equal to the minimal and maximal frequencies by posting the constraints:

Minfrequency = min
c∈C

frequency(c)

Maxfrequency = max
c∈C

frequency(c)

We add constraints corresponding to the two properties:

• (C1) Minfrequency ≤ #S −Maxfrequency

• (C2) Minfrequency ∗ k ≤ #S

Furthermore, we deduce from the property m ∗ k ≤ #S that the upper bound of
Min frequency is d #T

K.lb
e. However, when we maximize Min frequency , our ordering heuristic

favors the choice of formal concepts with the highest frequency that inevitably leads to
conceptual clusterings with a low minimal frequency. To prevent this, we use the Ob-
jectiveStrategy proposed by Choco [Pru+16], which performs a dichotomous branching
over the domain of Min frequency . Each time a solution is found, the ObjectiveStrategy
first searches for a next solution such that:
Minfrequency ∈ [

Minfrequency .ub−Minfrequency .lb

2
,Minfrequency.ub].

If it fails, it searches for a solution such that:
Minfrequency ∈ [Minfrequency.lb,

Minfrequency .ub−Minfrequency .lb

2
− 1].

9.3 Experimental evaluation
We consider the problem of finding a conceptual clustering that optimizes one single
criterion when the number of clusters k is fixed from 2 to 4 and when k is bounded
between 2 and #T − 1. We solve this problem in two steps: First, we use LCM to
compute all formal concepts; Second, we solve an exact cover problem. We consider
three CP models for the second step, i.e., our new model denoted SetDec, the boolean-
based model denoted BoolDec, and the Gcc-based model denoted GccDec. These three
CP models are implemented with Choco v.4.0.3. We also consider the ILP approach
of Ouali et al. [Oua+16], implemented with CPLEX v12.7 and denoted ILP.

109

BoolDec GccDec SetDec ILP
k=2 k=3 k=4 N k=2 k=3 k=4 N k=2 k=3 k=4 N k=2 k=3 k=4 N

Maximize Minsize

ERP1 23.1 252.7 - 0.2 4.9 64.3 - 0.4 2.2 27.7 230.0 0.2 0.1 0.3 0.6 0.3
ERP2 - - - 4.1 73.3 - - 0.4 26.4 105.3 523.6 0.3 1.2 1.2 1.4 0.8
ERP3 - - - 3.3 173.2 - - 0.7 66.7 814.1 - 0.3 1.5 1.5 1.5 2.2
ERP4 - - - 25.0 382.3 - - 2.0 198.5 - - 0.8 6.3 15.8 12.6 20.7
ERP5 - - - 327.3 - - - 4.4 - - - 1.7 11.9 34.7 25.9 27.4
ERP6 - - - - - - - 12.3 - - - 4.5 63.6 225.1 387.5 -
ERP7 - - - - - - - 411.9 - - - 129.5 - - - -
UCI1 - - - 1.1 204.8 - - 0.6 81.4 - - 0.2 0.0 0.0 0.0 0.1
UCI2 - - - 18.2 - - - 154.4 - - - 5.0 39.1 104.2 302.0 23.1
UCI3 - - - - - - - 81.7 - - - 4.6 - - - 39.6
UCI4 - - - - - - - 70.2 - - - 32.9 216.9 297.5 - -
UCI5 - - - - - - - - - - - 15.1 106.7 269.4 174.6 129.2
UCI6 - - - - - - - - - - - 111.3 - - - -

Maximize Min frequency

ERP1 0.2 0.6 1.3 0.3 0.1 0.5 1.5 0.2 0.2 0.7 1.9 0.2 0.2 0.5 0.6 0.2
ERP2 1.4 11.5 32.1 2.0 0.6 5.0 11.7 0.9 0.8 4.3 10.0 0.6 1.2 1.5 1.4 1.3
ERP3 5.7 40.9 31.1 5.4 2.2 20.7 12.2 2.8 2.5 17.6 10.4 2.5 1.5 1.4 2.0 2.2
ERP4 1.7 203.7 - 2.0 0.6 51.0 223.9 0.9 0.9 42.4 187.8 0.9 6.0 8.8 14.4 27.5
ERP5 250.1 - - 255.9 24.9 430.3 - 27.8 24.2 819.9 - 26.0 16.0 18.4 33.5 26.1
ERP6 - - - - 365.2 - - 246.8 223.9 - - 241.4 111.8 160.2 129.5 302.1
ERP7 - - - - - - - - - - - - - - - -
UCI1 1.3 8.8 46.0 1.8 0.7 5.8 32.3 1.3 1.5 5.8 34.0 1.0 0.9 2.4 3.0 3.7
UCI2 34.7 271.0 - 36.0 18.9 261.6 - 24.6 41.5 453.5 - 29.8 27.5 155.0 315.6 -
UCI3 225.0 459.8 - 112.1 33.1 235.6 - 55.5 59.1 351.0 - 63.7 83.8 - - -
UCI4 261.2 - - 24.1 13.9 - - 14.7 20.4 667.5 - 19.1 339.3 737.4 - -
UCI5 - - - - - 58.5 - 80.2 - 127.8 - 76.6 75.2 350.2 952.1 -
UCI6 - - - - - - - - - - - - - - - -

Maximize Min−diameter

ERP1 23.0 189.4 - 0.2 4.9 47.6 173.9 0.4 2.0 25.8 91.7 0.2 0.2 0.5 0.7 0.7
ERP2 - - - 3.1 57.7 - - 0.7 17.2 141.8 - 0.3 1.0 1.2 1.5 0.8
ERP3 - - - 2.7 142.7 - - 0.1 65.3 725.5 - 0.3 1.5 1.6 1.6 1.8
ERP4 - - - 18.6 346.6 - - 2.1 140.7 - - 0.8 6.0 8.5 9.9 19.0
ERP5 - - - 241.3 - - - 4.2 - - - 1.6 15.6 19.6 43.2 22.9
ERP6 - - - - - - - 12.0 - - - 4.3 127.8 80.3 164.1 -
ERP7 - - - - - - - 413.9 - - - 125.6 - - - -
UCI1 - - - 1.3 187.0 - - 0.6 79.0 - - 0.2 1.3 2.0 3.0 1.1
UCI2 - - - 20.6 - - - 125.8 - - - 4.6 26.8 156.4 - 20.2
UCI3 - - - 444.7 - - - 58.9 - - - 4.5 - - - 45.3
UCI4 - - - - - - - 58.7 - - - 30.8 188.1 - - -
UCI5 - - - - - - - 485.6 - - - 14.0 90.1 221.3 - 176.9
UCI6 - - - - - - - - - - - 99.6 - - - -

Maximize Minsplit

ERP1 4.0 2.7 5.2 0.1 1.3 1.1 2.3 0.1 0.6 0.4 1.0 0.1 0.2 0.1 0.2 0.2
ERP2 0.3 0.3 0.4 0.3 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.2 1.0 0.7 0.7 0.5
ERP3 0.3 0.3 0.4 0.4 0.3 0.2 0.3 0.4 0.4 0.3 0.4 0.4 1.5 1.0 1.2 1.7
ERP4 0.3 0.7 1.0 0.4 0.2 0.3 0.6 0.3 0.4 0.5 0.6 0.4 5.6 5.2 4.0 2.0
ERP5 - - - 17.4 - - - 1.9 464.7 2.0 1.9 2.0 15.3 9.4 9.3 13.0
ERP6 - - - 432.0 - - - 3.8 316.5 - - 14.1 49.6 24.4 96.5 164.3
ERP7 67.1 121.3 140.9 139.3 65.3 71.0 72.0 65.3 27.6 28.6 28.5 22.2 - - - -
UCI1 0.3 0.4 0.3 0.3 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 1.3 0.6 0.8 1.0
UCI2 - - - 3.4 200.4 1.0 1.5 1.4 103.4 3.6 4.8 3.5 38.8 169.1 229.7 25.8
UCI3 - - - 129.8 - - - 8.6 - - - 319.7 - - - 933.0
UCI4 18.4 21.8 21.8 22.6 3.3 4.8 4.8 4.8 3.2 6.2 6.3 3.2 188.7 58.5 24.9 88.9
UCI5 - - - - - - - - - - - - 104.5 266.1 269.8 -
UCI6 - - - - - - - - - - - 192.6 - - - -

Table 9.2 – Comparison of BoolDec, GccDec, SetDec and ILP when the goal is to opti-
mize Minsize , Min frequency , Min−diameter , and Minsplit : Total time in seconds (including
the time spent by LCM) when k is fixed to 2, 3, and 4, respectively, and when k is not
fixed (N). ’-’ is reported when time exceeds 1,000s.

We compare in Table 9.1 results obtained with these four approaches (we report
the total time, that includes the time spent by LCM to compute all formal concepts).
When k is fixed, ILP solves more instances than CP approaches and is most of the

110

ERP UCI
1 2 3 4 5 6 7 1 2 3 4 5 6

#S 50 47 75 84 94 95 160 101 630 336 148 435 137
Minsize 49 45 63 83 85 94 159 59 501 215 147 342 136
Min−diameter 49 45 63 83 85 94 159 59 501 215 147 342 136
Min frequency 2 2 2 2 2 2 2 2 2 2 2 3 2
Minsplit 2 2 2 2 2 2 2 2 2 2 2 3 2

Table 9.3 – Number of clusters of optimal solutions when maximizing Minsize ,
Min−diameter , Min frequency and Minsplit .

time the fastest approach. BoolDec is almost always the slowest approach: For Minsize

and Min−diameter criteria, it is able to solve only ERP1 for k < 4 . SetDec solves more
instances than GccDec and it is always faster for Minsize and Min−diameter criteria. For
instance, SetDec solves ERP2 in 142 seconds for Min−diameter and k = 3 while GccDec
is not able to solve it in less than 1000 seconds.

When k is not fixed, BoolDec is still the slowest CP approach: The use of many
boolean variables seems to make the propagation very slow when solving big instances
such that ERP7 or UCI6. SetDec is the fastest approach for most instances, particularly
when maximizing Min frequency and Min−diameter . SetDec scales generally better than
other approaches for the hardest instances ERP7 and UCI6. For instance, it is the
only approach able to solve UCI6 and ERP7 for all criteria but Min frequency . ILP
approach does not scale well for large instances: It is able to solve ERP6 only for
Min frequency and Minsplit .

We report the number of clusters of the optimal solutions when optimizing each
criterion in Table 9.3. When we optimize Minsize or Min−diameter , optimal solutions
have a large number of clusters (very close to T − 1), whereas when we optimize
Min frequency or Minsplit , optimal solutions have very few clusters (very close to 2). As
explained in Section 6.2, these results confirm that Min frequency and Minsplit criteria are
conflicting with Minsize and Min−diameter criteria.

9.4 Discussion
We have proposed two new CP models to solve conceptual clustering problems: The
model introduced in section 9.1 may be seen as an extension of the model of Dao et
al. [Dao+15a] whereas the model introduced in Section 9.2 is dedicated to the exact
cover problem and it may be used to solve conceptual clustering problems provided
that we first precompute all possible formal concepts. When considering the problem
of finding a conceptual clustering that optimizes one single criterion with a number of
clusters fixed, ILP and FCP1 are the best approaches: FCP1 is most of the time the
fastest approach when k = 2 or k = 3 while its performances are degraded when k = 4
and, in this case, ILP is usually faster.

However, when k is not fixed, SetDec and FCP2 are the best approaches when max-
imizing Min frequency and Minsize while FCP1 is the fastest approach when maximizing
Min−diameter and Minsplit .

111

When we observe the number of clusters of the solutions, we find out that Min frequency

and Minsplit criteria are conflicting with Minsize and Min−diameter criteria. To find a
compromise between these complementary criteria, we may compute the Pareto front
of non-dominated solutions. We have tried to compute Pareto fronts with these dif-
ferent models. However, FCP1 and FCP2 are not able to solve any instance within
a reasonable amount of time. SetDec and ILP are able to solve small instances, but
they do not scale well and cannot be used to solve larger instances. This motivated us
to introduce new global constraints to solve conceptual clusterings more efficiently in
Chapters 10 and 11.

112

Chapter 10

ExactCover global constraint

Contents
10.1 Definition of exactCover . 112

10.2 Basic propagator . 113

10.3 DL Propagator . 114

10.4 DL+ Propagator . 114

10.5 Experimental Evaluation . 115

10.6 Extension of exactCover to exactCoverCost 117

10.7 Discussion . 119

As proposed in the ILP approach of Ouali et al. [Oua+16] described in Section 6.4.3,
we may solve conceptual clustering problems by first extracting all formal concepts from
the set of transactions with a dedicated tool such as LCM [Uno+04] and then solving
an exact cover problem. In this chapter, we focus on the resolution of the exact cover
problem. CP provides a framework that allows to embed dedicated propagators into
global constraints to speed-up the solution process. Therefore, we propose to embed
into a new global constraint called exactCover an efficient propagation algorithm which
uses the Dancing Links introduced by Knuth [Knu09] and described in Section 7.3.

We define the exactCover constraint in Section 10.1. Then, we propose three fil-
tering algorithms that ensure different level of consistency, i.e., a basic propagator in
Section 10.2, a propagator based on the dancing links in Section 10.3, and an advanced
propagator in Section 10.4. In Section 10.5, we experimentally compare our filter-
ing algorithms with state-of-the-art declarative approaches. Finally, in Section 10.6,
we extend our global constraint to handle the case where costs are associated with
subsets.

10.1 Definition of exactCover
Let (S, P) be an instance of EC and, for each subset u ∈ P , let isSelectedu be a Boolean
variable. The global constraint exactCoverS,P (isSelected) is satisfied iff all isSelected
variables assigned to true correspond to an exact cover of S, i.e.,

∀a ∈ S,#{u ∈ cover(a) : isSelectedu} = 1.

Example 10.1. Let us consider the instance (S, P) displayed in Fig. 7.1. Let I be the
instantiation that assigns isSelected v, isSelectedx, and isSelected z to true, and all other
isSelected variables to false. The instantiation I satisfies exactCoverS,P (isSelected).

113

Enforcing AC on exactCover is NP-complete since the exact cover problem is NP-
complete.

We have described in Section 7.4 two CP models for the exact cover problem, and
we have also introduced in Section 9.2 a new CP model. Each of these models may be
used to define a decomposition of exactCover, showing us that it is not semantically
global. We have shown in Section 9.3 that the best performing model is the new model
introduced in Section 9.2. This model will be referred to as the set decomposition
(SetDec) of exactCover, and it will be used as a baseline to evaluate the interest of
introducing a global constraint.

10.2 Basic propagator
Let us first introduce a basic propagator which ensures the same level of consistency as
AC on the set decomposition of exactCover without using any specific data structure.
This basic propagator is used as a baseline to evaluate the interest of using Dancing
Links.

To simplify notations, we denote C the set of subsets associated with isSelected
variables which are assigned to true, i.e.,

C = {u ∈ P |D(isSelectedu) = {true}}

and we use notations introduced in Chapter 7. In particular, SC denotes the set of
elements that are not covered yet, and coverC(a) the set of subsets that may be selected
to cover an element a ∈ SC .

To ensure the same level of filtering as AC on the set decomposition, we have
to ensure the following property: for each subset u ∈ P such that D(isSelectedu) =
{true}, and for each subset v ∈ incompatible(u), we have true 6∈ D(isSelected v). In
other words, each time a variable isSelectedu is assigned to true, we have to assign to
false every variable isSelected v such that v ∈ incompatible(u). Also, for each element
a ∈ SC , we have to check that there is at least one subset u ∈ coverC(a) such that
true ∈ D(isSelectedu).

To this aim, for each subset u ∈ P , we compute the set incompatible(u) of all
subsets of P that are not compatible with u. These incompatibility sets are computed
before starting the search process in O(#P 2 · np).

Then, during the search, when a variable isSelectedu is assigned to true, for each
subset v ∈ incompatible(u), we assign isSelected v to false. This is done in linear time
with respect to the size of the largest incompatibility set, i.e., O(ni).

Also, to ensure that each element a ∈ SC can be covered by at least one subset
compatible with the selected subsets, we incrementally maintain the cardinality of
coverC(a) (without explicitly maintaining coverC(a)). Initially, this cardinality is set
to the cardinality of cover(a), i.e., we initialize #coverC(a) to #cover(a). Then, each
time a variable isSelected v is assigned to false, we decrement #coverC(a) for each
element a ∈ v, and we trigger a failure if #coverC(a) = 0. As the number of isSelected
variables that are assigned to false is bounded by ni, the complexity of the basic
propagation algorithm is O(np · ni).

When backtracking, we restore #coverC counters by performing the inverse opera-
tions. This is done in O(np · ni).

114

Example 10.2. For example, let us consider the instance displayed in Fig. 7.1. #coverC
counters are initialized to 2 for b, c, e, and f , to 3 for a and d, and to 4 for g. Now,
let us assume that isSelectedx is assigned to true. The incompatibility set of x is
incompatible(x) = {w, y}. Hence, we assign isSelectedw and isSelectedy to false and
we decrement #coverC counters associated with elements of w and y, i.e., d, e and g
for w, and b, e, and f for y. We obtain: #coverC(b) = #coverC(c) = #coverC(e) =
#coverC(f) = 1, and #coverC(g) = #coverC(e) = 3.

This propagator is called Basic, and the Choco implementation of exactCover with
this propagator is denoted ECBasic.

10.3 DL Propagator
In the basic propagation algorithm, incompatibility lists are not incrementally main-
tained during the search: When a variable isSelected v is assigned to false, v is not
removed from other incompatibility lists. On our previous example, u and w both
belong to incompatible(v) and incompatible(z). As a consequence, if v and z are suc-
cessively selected, when propagating the assignment of isSelected z, we consider again
subsets u and w.

To improve this, we propose to incrementally maintain coverC(a) for each element
a by using Dancing Links [Knu09] as described in Section 7.3. More precisely, each
time a variable isSelectedu is assigned to true, we call Algorithm 7. This algorithm is
modified as follows:

• After line 7, if u 6= v, we remove true from the domain of isSelected v, where v is
the subset associated with the row of cvb;

• After line 11, if cvb.head .size = 0, we trigger a failure.

When backtracking from the assignment of isSelectedu to true, we call Algorithm 8.
The propagation algorithm (resp. the algorithm that restores data structures when

backtracking) has the same complexity as Algorithm 7 (resp. Algorithm 8), i.e., O(n2
p ·

nc).
This propagator is called DL, and the Choco implementation of exactCover with

this propagator is denoted ECDL.

10.4 DL+ Propagator
Propagators introduced in Sections 10.2 and 10.3 ensure the same level of consistency
as AC on the set decomposition. In this section, we introduce a stronger propagator,
that filters more values by exploiting a property introduced in [Dav+11]: If there
exist two elements a, b ∈ SC such that coverC(a) ⊆ coverC(b) then, for every subset
u ∈ coverC(b)\coverC(a), we cannot select u together with the sets in C because u does
not cover a and every subset v ∈ coverC(a) is incompatible with u. When propagating
our global constraint, this implies that we can assign isSelectedu to false.

To efficiently detect coverC inclusions, we exploit the following property:

coverC(a) ⊆ coverC(b) ⇔ #(coverC(a) ∩ coverC(b)) = #coverC(a).

115

Hence, for each pair of uncovered elements {a, b} ⊆ SC , we maintain a counter, denoted
#coverC(a, b), that gives the number of subsets that both belong to coverC(a) and
coverC(b), i.e.,

#coverC(a, b) = #(coverC(a) ∩ coverC(b))

These counters are initialized in O(n2
p ·#P). To incrementally maintain them during

the search, we modify Algorithm 7 by calling a procedure before line 13: This pro-
cedure decrements #coverC(b, c) for every pair of elements {b, c} ⊆ v, where v is the
subset associated with cell cva. Indeed, as v has been removed from both coverC(b)
and coverC(c), it must also be removed from the intersection of these two sets. The
complexity of this procedure is O(n2

p), and the complexity of Algorithm 7 with this
call becomes O(n3

p · nc).
Then, at the end of Algorithm 7, for every pair of elements {a, b} ⊆ SC such that

#coverC(a, b) = #coverC(a), and for every subset v ∈ coverC(b)\ coverC(a), we assign
isSelected v to False. This is done in O(#S2

C · nc). Therefore, the time complexity of
DL+ is O(n3

p · nc +#S2
C · nc).

Example 10.3. Let us consider the example displayed in Fig. 7.4, when C = {x}.
At the end of Algorithm 7, we have #coverC(a, d) = hd.size = 2 and, therefore,
isSelected [t] is assigned to false.

We modify similarly Algorithm 8 to restore #coverC(a, b) counters when backtrack-
ing, and the complexity of Algorithm 8 becomes O(n3

p · nc +#S2
C · nc).

This propagator is called DL+, and the Choco implementation of exactCover with
this propagator is denoted ECDL+.

10.5 Experimental Evaluation
Comparison of SetDec, ECBasic, ECDL, and ECDL+. We have considered the
same search strategy for all implementations, which corresponds to the ordering heuris-
tic introduced by Knuth in [Knu09]:

• For SetDec, this is done by branching on coveredBy variables and using the min-
Dom heuristic to select the next coveredBy variable to assign (as maintaining AC
ensures that D(coveredBy [a]) = coverC(a));

• For ECBasic, ECDL, and ECDL+, at each node of the search tree, we search
for the element a ∈ SC such that #coverC(a) is minimal, and for each subset
u ∈ coverC(a) we create a branch where isSelectedu is assigned to true.

In all cases, we break ties by fixing an order on elements and subsets, and we consider
the same order in all implementations.

We consider the problem of enumerating all solutions of EC instances built from
the instance ERP1 described in Chapter 8. As there is a huge number of solutions,
we consider instances obtained from ERP1 by selecting p% of its subsets in P , with
p ∈ {20, 25, 30, 35, 40}. For each value of p, we have randomly generated ten instances
and we report average results on these ten instances.

Table 10.1 displays the number of choice points performed by SetDec and ECDL+
to enumerate all solutions. ECBasic and ECDL explore the same number of choice

116

Choice points CPU time (in seconds)
p #sol np nc ni SetDec ECDL+ SetDec ECBasic ECDL ECDL+
20 7 · 103 34 122 305 54 · 103 16 · 103 6 1 1 0
25 3 · 105 34 160 359 14 · 105 6 · 105 112 9 7 4
30 5 · 106 37 184 440 20 · 106 11 · 106 1,469 122 82 51
35 5 · 107 37 210 510 19 · 107 11 · 107 19,226 1,178 732 461
40 5 · 108 50 264 630 16 · 108 10 · 108 - 10,168 5,501 4,036

Table 10.1 – Comparison of SetDec, ECBasic, ECDL, and ECDL+ for enumerating all
solutions. For each percentage p of selected subsets in ERP1, we display: the number of
solutions (#sol), the maximum size of a subset (np), the maximum number of subsets
that cover an element (nc), the maximum number of subsets that are incompatible
with a subset (ni), the number of choice points of SetDec and ECDL+, and the CPU
time of SetDec, ECBasic, ECDL, and ECDL+ (average values on ten instances per line).
We report ’-’ when time exceeds 50,000 seconds.

points as SetDec since they achieve the same filtering level and they consider the same
ordering heuristic. ECDL+ explores less choice points: The number of choice points
explored by ECDL+ is twice as large as the number of solutions, whereas the number
of choice points explored by SetDec, ECBasic and ECDL is 7 times (resp. 4, 4, 3, and
3) as large as the number of solutions when p = 20 (resp. p = 25, 30, 35, and 40).

If SetDec, ECBasic and ECDL explore the same number of choice points, ECBasic
and ECDL are an order faster than SetDec, showing the interest of a global propagation
algorithm. ECDL is faster than ECBasic, and when increasing p (i.e., the number of
subsets in P), the difference between ECDL and ECBasic also increases. Actually,
the time complexities of the propagation algorithms used in ECBasic and ECDL are
O(np · ni) and O(n2

p · nc). Average values for np, nc, and ni are reported in Table 10.1,
and we can see that ni is larger than nc which is much larger than np. Furthermore, the
nc factor in the time complexity of ECDL is a loose upper bound as we incrementally
maintain coverC lists: In practice, we do not iterate over nc subsets, but only over the
subsets in coverC lists.

As expected, ECDL+ explores fewer choice points than ECDL. However, the gap
decreases when p increases because inclusions of coverC sets become less frequent when
increasing the number of subsets in P . Even if the time complexity of ECDL+ is an
order higher than the time complexity of ECDL (O(n3

p · nc) instead of O(n2
p · nc)), the

reduction of the search space achieved by ECDL+ allows it to be faster than ECDL.
However, if it is twice as fast for small instances, the gain becomes smaller when
increasing p.

Experimental Comparison with SAT and libexact. Let us now compare ECDL
and ECDL+ with the SAT model of [Jun+10], using the SAT solver clasp [Geb+12]
with the ladder encoding which obtains the best results, and the libexact [Kas+08]
implementation of the dedicated DLX algorithm [Knu09]. Results are reported in
Table 10.2. As expected, libexact is always faster than ECDL+: libexact is 3 times
as fast as ECDL+, and this ratio is rather constant when p increases. The gap between
these two approaches is explained (1) by the difference of support languages (Java for

117

CPU time (in seconds) Memory consumption (in MegaBytes)
p ECDL ECDL+ libexact SAT ECDL ECDL+ libexact SATladder
20 1 0 0 2 158 130 2 9
25 7 4 2 59 181 170 2 13
30 82 51 18 1,360 221 175 2 19
35 732 461 143 14,507 319 210 2 32
40 5,501 4,036 1,315 - 345 268 2 -

Table 10.2 – Comparison of ECDL, ECDL+, libexact, and SAT for enumerating all
solutions. We report ’-’ when time exceeds 50,000s.

ECDL+ and C for libexact), and (2) by the cost of using a generic CP solver instead
of a dedicated algorithm.

ECDL+ is faster than SATladder, and the gap between the two approaches increases
when increasing p, showing that ECDL+ has better scale-up properties than SATladder:
ECDL+ is 10 times as fast as SATladder when p = 20 and 31 times as fast when p = 35.
When p = 40, SATladder is not able to enumerate all solutions within the CPU time
limit of 50, 000 seconds whereas ECDL+ needs 4, 036 seconds on average.

We also display memory consumption in Table 10.2. Clearly, ECDL and ECDL+
need much more memory than SATladder and libexact. Note that we have not opti-
mized our code with respect to memory consumption. In particular, each instance is
memorized in two different data structures: a first data structure which is built when
reading the instance, and the Dancing Link data structure which is built from the first
data structure.

Finally, in Fig. 10.1, we compare ECDL, ECDL+, libexact and SATladder on the
benchmark instances of [Jun+10]1. This benchmark is composed of several families of
exact cover instances of combinatorial origin such as Latin squares or Steiner triple
systems (see [Jun+10] for more details).

Figure 10.1a compares ECDL with libexact. ECDL is always at least one order of
magnitude slower than libexact but the gap decreases for the hardest instances.

Figure 10.1b shows that SATladder is much more efficient than ECDL for the easiest
instances. However, ECDL has better scale-up properties and becomes faster than
SATladder for harder instances, which confirms the trends identified when analyzing
Table 10.2.

Figure 10.1c highlights that the advanced filtering performed in ECDL+ slightly
pays off for only a few instances. ECDL+ has most of the time similar performance
than ECDL but ECDL becomes much better for Steiner triples system instances (on
the top-right corner of the figure). Indeed, ECDL is 11 times faster than ECDL+ on
some of these instances.

10.6 Extension of exactCover to exactCoverCost
In some applications, costs are associated with subsets of P . This is the case in our con-
ceptual clustering application, where different utility measures (such as the frequency,
the size, the split, or the diameter) are associated with each subset. In this case, we

1This benchmark is available at https://users.ics.aalto.fi/tjunttil/experiments/CP2010/

118

(a) x = libexact and y = ECDL (b) x = ECDL and y = SATladder

(c) (1) x = ECDL and y = ECDL+

Figure 10.1 – Comparison of ECDL, ECDL+, libexact, and SAT on benchmark in-
stances of [Jun+10]: Each point (x, y) corresponds to an instance which is solved in x
seconds with one approach and y seconds with the other approach.

may add constraints on minimal and/or maximal costs associated with selected sub-
sets, or we may search for solutions which maximize the minimal cost (or minimize the
maximal cost) associated with a selected subset.

More formally, let n be the number of different costs and, for each i ∈ [1, n] and each
subset u ∈ P , let cost i(u) denote the ith cost associated with u. For each i ∈ [1, n],
we introduce two integer variables MinCost i and MaxCost i. We define the global
constraint exactCoverCostS,P,cost(isSelected ,MinCost ,MaxCost) which is satisfied iff
all isSelected variables assigned to true correspond to an exact cover of (S, P) and
MinCost and MaxCost variables are assigned to the minimum and maximum costs

119

associated with selected subsets, i.e.,

∀a ∈ S, #{u ∈ cover(a) : isSelectedu} = 1

∀i ∈ [1, n], MinCost i = minu∈P isSelected [u] · cost i(u)

∀i ∈ [1, n], MaxCost i = maxu∈P isSelected [u] · cost i(u)

This constraint is propagated like exactCover, but before starting the search we
remove from P every subset u that does not satisfy the bound constraints, i.e., such
that there exists i ∈ [1, n] for which cost i(u) < MinCost i.lb or cost i(u) > MaxCost i.ub.
Then, each time a variable isSelectedu is assigned to true, for each i ∈ [1, n], we
propagate:

MinCost i.ub = min{MinCost i.ub, cost i(u)},
MaxCost i.lb = max{MaxCost i.lb, cost i(u)}.

Also, each time MinCost i.lb (resp. MaxCost i.ub) is updated, for each subset u such
that cost i(u) < MinCost i.lb (resp. cost i(u) > MaxCost i.ub), we assign isSelectedu to
false.

10.7 Discussion
In this chapter, we have introduced a global constraint dedicated to the exact cover
problem, and three algorithms for propagating it: A basic propagator, that does not
use backtrackable data structures and ensures the same level of filtering as AC on the
set decomposition, a propagator called DL that also ensures the same level of filtering
but uses Dancing Links to efficiently maintain data, and a propagator called DL+ that
ensures a stronger filtering than DL.

However, to solve conceptual clustering problems, we usually add constraints on
the number of selected subsets, which corresponds to the number k of clusters, at least
to constrain k to be strictly greater than one and strictly lower than the number of
transactions. In the next chapter, we study how to extend exactCover for doing this
efficiently.

120

Chapter 11

Constraining the number of selected
subsets

Contents
11.1 Addition of Existing Constraints to exactCover 120

11.2 Definition of exactCoverK and exactCoverCostK 122

11.2.1 Basic Propagator . 122

11.2.2 MD Propagator . 124

11.2.3 MD+ Propagator . 126

11.3 Discussion . 127

In some applications, we may need to add constraints on the number of selected
subsets. For example, in our conceptual clustering application, the number of selected
subsets corresponds to the number of clusters and we often add constraints in order to
forbid solutions with too few or too many clusters. In this case, we declare an integer
variable k which is constrained to be equal to the number of selected subsets. This may
be done either by explicitly adding constraints on k, as explained in Section 11.1, or
by defining a new global constraint exactCoverK S,P (isSelected , k) and new propagators
that ensure that the integer variable k is equal to the number of isSelected variables
assigned to true, as explained in Section 11.2.

11.1 Addition of Existing Constraints to exactCover
In this section, we study how to add constraints to exactCoverS,P (isSelected) in order
to ensure that the number of selected subsets is equal to an integer variable k.

A first possibility is to add the constraint:∑
u∈P

isSelected [u] = k

We denote ECDL,sum and ECDL+,sum the Choco implementation of exactCover that
combines this sum constraint with the propagation algorithms introduced in Sections
10.3 and 10.4, respectively.

Another possibility is to use the NValue global constraint introduced Section 5.5. To
combine NValue with exactCover, we must introduce coveredBy variables: For each ele-
ment a ∈ S, we define an integer variable coveredBya whose domain isD(coveredBya) =

121

Figure 11.1 – Comparison of the number of choice points (top) and time (bottom) of
ECDL,sum, ECDL,NV , ECDL+,sum, and ECDL+,NV for enumerating all solutions of 10
instances obtained from ERP1 by selecting randomly 25% of its subsets, when k is
assigned to x, with x ∈ [2, 49].

cover(a), like in the boolean model introduced in Section 7.4.1. In this case, the com-
plete set of constraints is:

∀u ∈ P, ∀a ∈ cover(u), coveredBya = u⇔ isSelectedu

NValue(coveredBy , k)

exactCoverS,P (isSelected)

We denote ECDL,NV and ECDL+,NV the Choco implementations that combine these
constraints with the propagation algorithms introduced in Sections 10.3 and 10.4, re-
spectively.

Experimental Evaluation. We consider the problem of enumerating all solutions
of an exact cover problem when the number of selected subsets k is constrained to
be equal to an integer value. We solve this problem on 10 instances obtained from
ERP1 by selecting randomly 25% of the subsets in P . These instances have #S = 50
elements and the number of subsets is close to 400. We vary the value assigned to k
from 2 to #S − 1. For each point (x, y) in Figure 11.1, y is the performance measure

122

(time or number of choice points) for enumerating all solutions when k is assigned to
x (i.e., to enumerate all exact covers with exactly x selected subsets).

In Figure 11.1, we compare performances of ECDL,sum, ECDL,NV , ECDL+,sum, and
ECDL,NV . Using NValue strongly reduces the number of choice points, especially for
extremal values of k. However, the propagation of NValue is much more time consuming
than the propagation of a sum constraint. As a consequence, using NValue does not
pay-off, except for very large values of k (i.e., when k > 40) for which NValue reduces
the number of choice points by several orders of magnitude. Using DL+ instead of DL
for propagating exactCover reduces the number of choice points, especially when k is
larger than 10, and this stronger filtering also reduces the search time, except for very
low values of k: When k is lower than 5, variants that use DL are slightly faster than
variants that use DL+.

Note that the advanced filtering DL+ seems to be complementary with the filtering
performed by NValue: When k ∈ [16, 23], the gain of DL+ is increased when it is
combined with NValue. For instance, when k = 19, ECDL+,NV explores 743.103 less
choice points than ECDL,NV whereas ECDL+,sum explores 595.103 less choice points
than ECDL,sum .

11.2 Definition of exactCoverK and exactCoverCostK
To better propagate constraints between k and isSelected variables, we define the global
constraint exactCoverK S,P (isSelected , k). This constraint is satisfied iff the number of
isSelected variables assigned to true is equal to k and the subsets associated with these
variables define an exact cover of S, i.e.,

∀a ∈ S,#{u ∈ cover(a) : isSelectedu} = 1∑
u∈P

isSelectedu = k

This constraint is extended to handle the case where costs are associated with ele-
ments, and bounds on the costs of the selected elements must be maintained, in a similar
way as exactCover, as explained in Section 10.6. More precisely, we define the constraint
exactCoverCostK S,P,cost(isSelected ,MinCost ,MaxCost , K) that combines the propaga-
tors of exactCoverK described in this section with the propagators associated with cost
bounds described in Section 10.6.

In this section, we describe three algorithms that propagate the constraint that
relates k with isSelected variables, and that may be used both for exactCoverK and
exactCoverCostK. These propagators are experimentally compared for the simple enu-
meration problem introduced in Section 11.1 which is solved with exactCoverK as it
does not involve utility costs. Experimental results for exactCoverCostK are reported
in the next chapter.

11.2.1 Basic Propagator

A first basic filtering simply ensures that k is bounded by the number of subsets that
are already selected on the lower side, and the number of subsets that can be selected
on the upper side, i.e., we ensure:

nbTrue ≤ k.lb ≤ k.ub ≤ #P − nbFalse

123

Figure 11.2 – Comparison of ECKDL,Basic with ECDL,sum and ECDL,NV (left), and
ECKDL+,Basic with ECDL+,sum and ECDL+,NV (right) for enumerating all solutions of
10 instances obtained from ERP1 by selecting randomly 25% of its subsets, when k is
assigned to x, with x ∈ [2, 49].

where nbTrue (resp. nbFalse) is the number of isSelected variables assigned to true
(resp. false).

This filtering ensures the same consistency as maintaining AC on the sum constraint∑
u∈P isSelectedu = k.
We tighten this filtering by taking into account the set SC of elements that are still

not covered. More precisely, as the largest subset in P contains np elements, we need at
least d#SC

np
e subsets to cover all elements in SC (where dxe denotes the smallest integer

greater than or equal to x). Similarly, we need at most d #SC

minu∈P #u
e subsets to cover all

elements in SC . Hence, we tighten the filtering to ensure:

nbTrue + d#SC
np
e ≤ k.lb ≤ k.ub ≤ min{#P − nbFalse, nbTrue + d #SC

minu∈P #u
e}

We denote ECKDL,Basic (resp. ECKDL+,Basic) the Choco implementation of ex-
actCoverK that combines this basic filtering on k with the propagation algorithms
introduced in Section 10.3 (resp. 10.4).

Experimental evaluation. We compare ECK∗,Basic with EC∗,sum and EC∗,NV (for
∗ ∈ {DL,DL+}) in Fig. 11.2. When the number x of selected subsets is smaller than
20, EC∗,sum explores more choice points than ECK∗,Basic, and ECK∗,Basic explores
more choice points than EC∗,NV . However, as the propagation of NValue is very time
consuming, EC∗,NV needs much more time than ECK∗,Basic and EC∗,sum (except for
the smallest values of x). ECK∗,Basic is slightly faster than EC∗,sum when k is smaller
than 12 for DL and 20 for DL+.

124

a

bc

d

e

f

g

a

b

d

g

Figure 11.3 – Intersection graphs associated with the instance displayed in Fig. 7.1
when C = ∅ (left) and when C = {x} (right).

When the number x of selected subsets is larger than 20, ECK∗,Basic explores nearly
the same number of choice points as EC∗,NV whereas EC∗,sum explore much more choice
points. In this case, ECK∗,Basic is faster than both EC∗,sum and EC∗,NV .

11.2.2 MD Propagator

We propose to compute a better lower bound for k by integrating a propagation al-
gorithm introduced in [Bes+05] for NValue. The interest of integrating this algorithm
within the propagation of exactCoverK instead of combining our global constraint with
NValue is that the propagation algorithm of [Bes+05] exploits an intersection graph
G = (SC , EC) which can be derived in a straightforward way from the data structure
we maintain when propagating exactCover. This graph associates a vertex with every
non covered element in SC and an edge with every pair of non covered elements that
may be covered by a same subset, i.e.,

EC = {{a, b} ⊆ SC : coverC(a) ∩ coverC(b) 6= ∅}.

As we maintain in #coverC(a, b) the size of coverC(a) ∩ coverC(b) when using DL+
filtering, edges of EC simply correspond to pairs {a, b} ⊆ SC such that #coverC(a, b) >
0.

Example 11.1. For example, we display in Fig. 11.3 the two intersection graphs
associated with the instance displayed in Fig. 7.1 when C = ∅ and when C = {x},
respectively.

An independent set in the intersection graph is a set of vertices I ⊆ SC with
no edge in common. In other words, for every pair of elements {a, b} ⊆ I, we have
coverC(a)∩coverC(b) = ∅. As a consequence, it is not possible to cover all the elements
of I with less than #I subsets.

In [Bes+05], Bessière et al. use this property to provide a lower bound on the
number of different values in the NValue global constraint. In particular, they propose
to use the greedy algorithm of [Hal+97], called Minimum Degree (MD), to compute a
large independent set: Starting from an empty independent set, at each iteration they
choose a vertex v of minimum degree, add it to the independent set, and remove v and
all its adjacent vertices from the graph, until the graph is empty. The complexity of
this algorithm is linear with respect to the number of edges in the intersection graph,
provided that buckets are used to incrementally maintain the set of vertices of degree
d for every d ∈ [0,#Sc − 1].

125

Figure 11.4 – Comparison of number of choice points (top) and CPU time (bottom) of
ECKDL,Basic, ECKDL,MD, ECKDL+,Basic and ECKDL+,MD for enumerating all solu-
tions of 10 instances obtained from ERP1 by selecting randomly 25% of its subsets,
when k is assigned to x, with x ∈ [2, 49].

Given an independent set I built with MD, we tighten the lower bound of k by
ensuring:

nbTrue +#I ≤ k.lb

Example 11.2. For example, when C = ∅, MD builds the independent set {a, e, b}.
This allows us to infer that k must be greater than or equal to 3.

For each propagation algorithm ∗ ∈ {DL,DL+} introduced in Sections 10.3 and
10.4, we denote ECK∗,MD the Choco implementation of exactCoverK that combines
this tightened lower bound on k with the basic upper bound on k introduced in the
previous section and the propagation algorithm ∗.

Experimental evaluation. ECK∗,MD and ECK∗,Basic (with ∗ ∈ {DL,DL+}) are
experimentally compared in Figure 11.4. For low values of k (i.e., when k ≤ 20),
ECK∗,MD explores less choice points than ECK∗,Basic, whereas for higher values of k
they explore the same number of choice points. However, computing independent sets
is time consuming. Therefore, the MD filtering reduces computation time only when
k < 8 (resp. k < 14) when ∗ = DL (resp. ∗ = DL+).

126

11.2.3 MD+ Propagator

In [Bes+05], Bessière et al. also show how to use independent sets to filter domains
when the cardinality of the independent set is equal to the number of different values.
In our context, this filtering allows us to assign to false some isSelected variables when
k.lb = k.ub = nbTrue +#I. More precisely, for every subset u that does not cover an
element of I (i.e., u 6∈ ∪a∈IcoverC(a)), we can assign isSelectedu to false.

This filtering may be done not only for I, but also for any other independent set
that has the same cardinality as I. However, as this is too expensive to compute all
independent sets that have the same cardinality as I, we only compute a subset of them
using the algorithm described in [Bel01] (as proposed in [Bes+05]). This algorithm
computes in linear time with respect to #EC all independent sets that differ from I
by only one vertex: It iterates on every vertex a ∈ I, and for every edge {a, b} ∈ EC ;
if b is not adjacent to any vertex of I \ {a}, it adds the independent set I \ {a} ∪ {b}.

Let I0 be the initial independent set computed with MD, and I1, . . . , In be the
independent sets derived from I0. We assign to false every variable isSelectedu such
that there exists an element a in an independent set Ij not covered by u, i.e.:

u 6∈
⋂

j∈[0,n]

⋃
a∈Ij

coverC(a)⇒ D(isSelectedu) = {false}

Example 11.3. On our running example, when C = {x}, MD builds a first indepen-
dent set {b, a}. Therefore, the lower bound of k is 3. The upper bound of k is also
equal to 3 because:

k.ub = min{#P − nbFalse, nbTrue + d #SC
minu∈P #u

e} = min{5, 1 + 4

2
} = 3.

Since k.lb = k.ub = nbTrue+#I, we can apply the filtering on isSelected domains.
We derive from the first independent set {b, a} a second independent set {b, d}. We
have coverC(b) = {z}, coverC(a) = {t, u, v} and coverC(d) = {u, v}. We can assign to
false every isSelected variable associated with a subset that does not belong to:

{u, v, z} ∩ {t, u, v, z} = {u, v, z}.

Therefore, we assign isSelectedt to false.

For each propagation algorithm ∗ ∈ {DL,DL+} introduced in Sections 10.3 and
10.4, we denote ECK∗,MD+ the Choco implementation of exactCoverK that combines
this filtering of isSelected variables with the tightened lower bound on k and the basic
upper bound on k introduced in the previous sections and the propagation algorithm ∗.

Experimental evaluation. ECK∗,MD+ and ECK∗,MD (with ∗ ∈ {DL,DL+}) are
experimentally compared in Fig. 11.5. For low values of k (i.e., when k ≤ 27),
ECK∗,MD+ explores less choice points than ECK∗,MD, whereas for higher values of k
they explore the same number of choice points. For instance, when k < 8, ECK∗,MD+

explores twice less choice points compared with ECK∗,MD. MD+ filtering has the same
complexity as MD filtering. Therefore, ECK∗,MD+ is slightly faster than ECK∗,MD

when k < 15 whereas they have very similar performances for higher values of k.

127

Figure 11.5 – Comparison of number of choice points (top) and CPU time (bottom)
of ECKDL,MD, ECKDL,MD+, ECKDL+,MD and ECKDL+,MD+ for enumerating all
solutions of 10 instances obtained from ERP1 by selecting randomly 25% of its subsets,
when k is assigned to x, with x ∈ [2, 49].

11.3 Discussion
We have studied two different ways for constraining the number of selected subsets to
be equal to an integer variable k. A first possibility is to add existing constraints to
exactCover, and we have shown that this may be done either with a sum or an NValue
constraint. NValue has a stronger propagation than sum, but this propagation also has
a higher time complexity, and we have experimentally shown that this pays off only
for the largest values of k.

A second possibility is to define a new global constraint, called exactCoverK, to-
gether with new propagators. We have introduced three propagators for this new global
constraint:

• The Basic propagator combines a filtering similar to the filtering achieved by a
sum constraint with simple bounds on k;

• The MD propagator combines the Basic propagator with a propagator intro-
duced for NValue in [Bes+05], which tightens the lower bound of k by computing
an independent set in the intersection graph of coverC sets. We show how to de-
rive this intersection graph from our data structure without increasing the time

128

complexity. Hence, the overhead of MD with respect to Basic is only due to the
computation of an independent set, which is done in linear time with respect to
the number of edges in the intersection graph.

• The MD+ propagator combines the MD propagator with an advanced filtering,
also introduced in [Bes+05] for NValue, which filters the domains of isSelected
variables when the cardinality of the independent set is equal to k.

MD+ is stronger than MD which is stronger than Basic. However, propagation times
are also increased as MD involves computing an independent set, and MD+ a set of
independent sets. As a consequence, stronger filterings do not always pay off, and their
interest depends on the value of k.

These different possibilities for propagating the fact that the number of selected
subsets must be equal to an integer variable k may be combined with the two different
propagation algorithms that have been introduced in Chapter 10: DL, which uses
Dancing Links to ensure the same consistency as AC on the set decomposition, and
DL+, which is stronger than DL and further filter isSelected variables when the set of
available subsets for covering an element is included in another set of available subsets.

Hence, we have six different levels of filtering for exactCoverK (resp. exactCov-
erCostK), denoted ECKp1,p2 (resp. ECCKp1,p2) with p1 ∈ {DL,DL+} and p2 ∈
{Basic,MD,MD+}. In the next chapter, we evaluate the interest of these propaga-
tors on conceptual clustering problems.

129

Chapter 12

Evaluation of exactCover on
Conceptual Clustering Problems

Contents
12.1 Experimental Protocol . 130

12.2 Single criterion optimization 131

12.2.1 Single criterion optimization when k is fixed 131

12.2.2 Single criterion optimization when k is bounded 132

12.3 Multi criteria optimization 135

12.3.1 Comparison of propagation algorithms of exactCoverCost . . 135

12.3.2 New dynamic approach . 137

12.3.3 Comparison with state-of-the-art declarative approaches . . . 140

12.4 Discussion . 141

In this chapter, we experimentally evaluate our new global constraints exactCov-
erCost and exactCoverCostK for solving conceptual clustering problems. We consider
two different kinds of problems: mono-criterion problems, where a single objective
function is optimized, and bi-criteria problems, where we search for the Pareto set of
all non-dominated solutions with respect to two objective functions.

The experimental evaluation is designed to address the following questions:

• What propagation algorithms of our global constraints are the most efficient
according to the considered problem?

• Is our new global constraint competitive with state-of-the-art declarative ap-
proaches described in Chapter 6?

We describe the experimental protocol in Section 12.1. We report experimental
results for mono-criterion problems in Section 12.2. We consider problems where the
number k of clusters is fixed, and problems where this number is not fixed but bounded
within a given interval. In Section 12.3, we report experimental results for bi-criteria
problems. This problem is more challenging, and we introduce a new dynamic strategy
for solving it.

130

12.1 Experimental Protocol
Considered implementations of our new global constraints. All our CP mod-
els are implemented with Choco v.4.0.3.

For all problems addressed in this chapter, we consider the four optimization criteria
introduced in Chapter 6, i.e., Minfrequency , Minsize , Minsplit and Min−diameter . To solve
these problems with our new global constraints, we use the variants that allow us to
add constraints on bounds of the costs of the selected subsets, i.e., exactCoverCost and
exactCoverCostK.

When the number k of selected subsets is not tightly constrained (i.e., when k is
not fixed but simply bounded by a given interval, and the optimization criterion is
not Minfrequency), we combine exactCoverCost with a sum constraint to constrain the
number of selected subset to be equal to k (as explained in Section 11.1). This Choco
implementation is denoted ECCp1,sum, where p1 ∈ {DL,DL+} is the algorithm used
to propagate the exact cover constraint (as described in Chapter 10).

When the number k of selected subsets is tightly constrained(i.e., when k is fixed,
or the optimization criterion is Minfrequency), we use exactCoverCostK. Its Choco im-
plementation is denoted ECCKp1,p2 , where p1 ∈ {DL,DL+} is the algorithm used to
propagate the exact cover constraint (as described in Chapter 10), and p2 ∈ {Basic,MD,MD+}
is the algorithm used to propagate constraints on the number of selected subsets (as
described in Chapter 11). Furthermore, when the utility measure is Minfrequency , we
add the constraints introduced in Section 9.2, i.e., Minfreq ≤ #S − Maxfreq and
Minfreq ∗ K ≤ #S and we use the ObjectiveStrategy proposed by Choco [Pru+16]
which performs a dichotomous branching over the domain of Minfreq.

Other considered approaches. For each considered problem, we compare ECC or
ECCK with the best performing approach among the following approaches:

• FCP1, the CP model introduced by Dao et al. in [Dao+15a] and described in
Section 6.4.2. When k is fixed, we use the Gecode V4.3 [tea05] implementation
provided by the authors. When k is not fixed, we consider the extension of this
implementation which is described in Section 6.4.2.

• ILP, the hybrid approach introduced by Ouali et al. in [Oua+16] and described
in Section 6.4.3. We used CPLEX v12.7 for the implementation of the ILP model.

• FCP2, the CP model introduced in Section 9.1. This model has been implemented
with Choco v.4.0.3.

• SetDec, the hybrid approach that first uses LCM to extract all formal concepts
and then uses the CP model introduced in Section 9.2 for solving an exact cover
problem. This model has been implemented with Choco v.4.0.3.

For each kind of problem, we only report the results of the best performing approaches:

• When the number of clusters k is fixed, the best approaches are FCP1 and ILP;

• When the number of clusters k is not fixed, the best approaches are

– FCP2 and SetDec when optimizing Min frequency or Minsize ;

131

– FCP1 when optimizing Minsplit or Min−diameter .

These results are consistent with the experimental results reported in Chapter 9.

Performance measures. We consider two different performance measures, i.e., the
number of choice points and the CPU time. All experiments were conducted on Intel(R)
Core(TM) i7-6700 with 3.40GHz of CPU and 65GB of RAM, using a single thread.

For all hybrid approaches that use LCM to extract all formal concepts in a prepro-
cessing step, and then solve an exact cover problem (i.e., SetDec, ILP, ECCp1,sum, and
ECCKp1,p2), CPU times that are reported always include the time spent by LCM to
extract all formal concepts (see Tables 8.1 and 8.2 for information on this time).

Benchmarks. We consider instances coming from the two benchmarks described in
Chapter 8. The UCI benchmark allows us to evaluate our approach on classical ma-
chine learning instances, which are usually used to evaluate clustering and classification
algorithms. The ERP benchmark allows us to evaluate our approach on instances very
similar to instances that we must solve in our applicative context.

12.2 Single criterion optimization
In this section, we consider the problem of finding a conceptual clustering that optimizes
one of the criteria introduced in Section 6.3. We consider two different problems: In
Section 12.2.1, we report results when the number of clusters is fixed, i.e., when k is
set to a given value; In Section 12.2.2, we report results when the number of clusters
is not a priori known and only bounded in [2,#T − 1], i.e., we want more than one
cluster and at least one cluster must contain two transactions.

12.2.1 Single criterion optimization when k is fixed

In our applicative context, we do not know a priori the number of clusters and, there-
fore, k is not fixed. However, we made a few experiments to evaluate scale-up properties
of our global constraint when k is fixed to a given value.

Fig. 12.1 reports results obtained with different values for k, from 2 to 10. We
only consider two optimization criteria (i.e., (a) Min frequency and (b) Minsize), and
five representative instances (i.e., ERP1, ERP4, ERP5, UCI1, and UCI2). We com-
pare the variant of our global constraint which achieves the strongest filtering (i.e.,
ECCKDL+,MD+) with FCP1 and ILP.

For Min frequency , ECCKDL+,MD+ is the only approach that is able to solve all in-
stances for all values of k within a CPU time limit of 1000 seconds. FCP1 is always the
fastest approach when k < 4 but it does not scale well when k increases. ILP is also
able to solve the first four instances for all values of k: It is slower than ECCKDL+,MD+

for ERP instances, and faster for UCI1. However, ILP does not scale well for UCI2
and it is not able to complete its run when k > 5.

For Minsize , ILP is the only approach that is able to solve all instances except UCI2
when k > 8. Like for Min frequency , FCP1 is the fastest approach when k = 2 but it does
not scale well when k increases. ECCKDL+,MD+ is the fastest approach for ERP1 and

132

(a) Average CPU time when maximizing Min frequency

(b) Average CPU time when maximizing Minsize

Figure 12.1 – Comparison of ECCKDL+,MD+, FCP1 and ILP when k is assigned to
x, with x ∈ [2, 10]: (a) CPU time when maximizing Min frequency ; (b) CPU time when
maximizing Minsize .

UCI2. However, it is not able to complete its run when k > 7 (resp. 5) for ERP4 and
ERP5.

As a conclusion, for this problem, ECCKDL+,MD+ and ILP are the best performing
approaches and they are complementary: ILP tends to be more efficient for Minsize ,
and ECKDL+,MD+ for Min frequency .

12.2.2 Single criterion optimization when k is bounded

Let us now consider the case where we do not know a priori the number of clusters,
i.e., k is not fixed. In this case, we only constrain k to be strictly greater than 2 and
strictly smaller than the number of transactions, i.e., D(k) = [2,#T − 1].

133

Minsize Minsplit Min−diameter

ECCDL,sum ECCDL+,sum ECCDL,sum ECCDL+,sum ECCDL,sum ECCDL+,sum
time nodes time nodes time nodes time nodes time nodes time nodes

ERP1 0.1 48 0.1 48 0.1 8 0.1 8 0.1 48 0.1 48
ERP2 0.1 41 0.2 42 0.1 3 0.1 3 0.1 40 0.2 42
ERP3 0.1 58 0.2 59 0.1 4 0.2 4 0.1 58 0.2 59
ERP4 0.2 84 0.4 84 0.2 2 0.2 2 0.2 84 0.4 84
ERP5 0.5 77 0.8 79 0.6 5 0.7 4 0.5 76 0.7 78
ERP6 1.6 95 3.8 95 0.9 15 1.8 14 1.6 95 3.8 95
ERP7 31.1 161 103.6 161 6.9 3 13.7 3 49.6 161 103.4 161
UCI1 0.1 58 0.1 58 0.1 3 0.1 3 0.1 58 0.1 58
UCI2 0.3 493 0.6 493 0.3 5 0.7 5 0.2 493 0.5 493
UCI3 0.5 215 0.8 215 0.7 33 2.4 33 0.5 215 0.8 215
UCI4 3.3 152 6.2 152 0.7 3 0.8 3 3.2 152 6.3 152
UCI5 1.0 338 1.5 338 1.9 89 4.2 89 1.0 338 1.5 338
UCI6 17.0 136 23.5 136 17.9 5 34.9 5 28.2 136 38.3 136

Table 12.1 – Time (in seconds) and number of choice points of ECCDL,sum and
ECCDL+,sum to find a conceptual clustering that maximizes Minsize , Minsplit and
Min−diameter .

Size, split and diameter criteria. Table 12.1 displays the results of ECCDL,sum
and ECCDL+,sum when maximizing Minsize , Minsplit and Min−diameter . In this case, k
is not tightly constrained, and stronger propagation algorithms for constraining k to
be equal to the number of selected subsets (introduced in Section 11.2) are not useful.

ECCDL,sum and ECCDL+,sum often explore the same number of choice points, and
when they do not explore the same number of choice points, the difference is lower
than three. Hence, the stronger propagation of DL+ does not pay off and ECCDL+,sum

is always slower than ECCDL,sum. Times are similar for small instances but the gap
increases for bigger instances. For instance, to maximize Minsize for ERP7, ECCDL,sum
needs 25 seconds while ECCDL+,sum needs almost 100 seconds.

Frequency criterion. We consider now the problem of finding a conceptual cluster-
ing that maximizes Min frequency . In this case, k is more tightly constrained as constraints
on the frequency are strongly related to the number of clusters. Hence, we compare
ECCDL,sum and ECCDL+,sum with ECCKDL,p2 (where p2 ∈ {Basic,MD,MD+}) and
ECCKDL+,MD+ in Table 12.2.

ECCDL,sum explores much more choice points than ECCDL+,sum. For instances, for
ERP6, the number of choice points is reduced from 1212 to 7. Hence, for this problem,
the advanced filtering DL+ pays off and ECCDL+,sum is able to solve all instances in
less than 75 seconds while ECCDL,sum is not able to solve ERP7 within 1000 seconds.

Let us now compare ECCDL,sum, which achieves a very simple filtering on k,
with ECCKDL,p2 with p2 ∈ {Basic,MD,MD+} which achieve stronger filterings
on k (while using the same filtering DL for propagating the exact cover constraint).
ECCKDL,Basic and ECCDL,sum nearly always explore the same number of choice points
and have very similar performances. ECCKDL,MD explores slightly less choice points
than ECCKDL,Basic but, as the MD propagation is expensive, this never pays off.
ECCKDL,MD+ explores much less choice points than ECCKDL,MD (for example, 9
instead of 1194 for ERP6), and this allows to strongly reduce time, especially for the

134

ECCDL,sum ECCDL+,sum ECCKDL,Basic ECCKDL,MD ECCKDL,MD+ ECCKDL+,MD+

time nodes time nodes time nodes time nodes time nodes time nodes
ERP1 0.1 7 0.1 5 0.1 7 0.1 7 0.1 6 0.1 5
ERP2 0.5 159 0.2 6 0.6 159 0.9 159 0.2 9 0.1 6
ERP3 0.6 106 0.2 6 0.6 106 0.7 83 0.2 12 0.2 6
ERP4 1.5 138 0.4 9 1.5 138 2.5 138 0.3 12 0.4 9
ERP5 16.8 346 1.0 7 17.2 346 28.5 277 4.2 23 1.0 7
ERP6 90.7 1,212 1.9 7 87.7 1,212 161.6 1,194 2.1 9 2.3 7
ERP7 - - 23.9 7 - - - - 421.1 109 34.7 7
UCI1 0.2 34 0.2 9 0.2 34 0.2 30 0.2 15 0.2 13
UCI2 0.6 16 0.8 7 0.6 14 1.5 14 1.5 11 1.5 11
UCI3 2.4 27 2.3 6 2.5 27 5.1 23 2.8 9 2.3 6
UCI4 1.6 18 1.9 10 1.6 17 2.4 17 2.4 14 2.2 11
UCI5 1.3 6 2.1 4 1.3 4 2.5 4 2.2 4 2.2 4
UCI6 382.7 175 74.4 17 371.7 175 461.2 175 299.7 121 67.6 18

Table 12.2 – Time (in seconds) and number of choice points of ECCDL,sum,
ECCDL+,sum, ECCKDL,Basic, ECCKDL,MD+ and ECCKDL+,MD+ to find a concep-
tual clustering that maximizes Min frequency . ’-’ is reported when time exceeds 1,000s.

hardest instances. For instance, ECCKDL,MD+ solves ERP7 in 421.1 seconds whereas
this instance is not solved by ECCKDL,Basic nor ECCKDL,MD within 1000 seconds.

Finally, let us compare ECCDL+,sum, ECCKDL,MD+ with ECCKDL+,MD+ to eval-
uate the interest of combining the strongest exact cover filtering (DL+) with the
strongest filtering for k (MD+). ECCKDL+,MD+ explores slightly less choice points
than ECCKDL,MD+ for all instances but the two largest ones (ERP7 and UCI6) and,
in this case the two approaches have very similar performance. For ERP7 and UCI6,
the number of choice points is strongly decreased, and ECCKDL+,MD+ is clearly faster
than ECCKDL,MD+. When comparing ECCDL+,sum with ECCKDL+,MD+, we note
that both approaches have very similar performance both with respect to the number
of choice points and the time.

Comparison with state-of-the-art declarative approaches. In Table 12.3, we
compare the best variant of our global constraint (i.e., ECCDL,sum for all criteria but
frequency, and ECCKDL+,MD+ for frequency) with other declarative approaches. As
pointed out in Section 9, the best performing approaches are different depending on the
optimization criterion: For size and frequency, the best results are obtained by FCP2
and SetDec, whereas for split and diameter, the best results are obtained by FCP1.
Let us recall that ILP does not scale well for this problem and fails at solving many
instances within a time limit of 1000 seconds (see Table 9.2).

For size and frequency, ECCDL,sum and ECCKDL+,MD+ are the fastest approaches
for all instances but the two largest ones, i.e., ERP7 and UCI6 for which FCP2 scales
better. For these two instances, LCM needs 13.9 and 5.31 seconds, respectively, to
enumerate all formal concepts, whereas FCP2 is able to solve the complete problem in
4.4 and 4.3 seconds, respectively, thanks to ordering heuristics that allow it to quickly
find the optimal solution without enumerating all formal concepts. However, on some
smaller instances (such as UCI3, UCI4, and UCI5), FCP2 is much less efficient than
ECCDL,sum, and it is not able to solve UCI2 within the time limit.

135

Max(Minsize) Max(Min frequency) Max(Minsplit) Min(Min−diameter)
ECCDL,sum FCP2 SetDec ECCKDL+,MD+ FCP2 SetDec ECDL,sum FCP1 ECDL,sum FCP1

ERP1 0.1 0.4 0.2 0.1 1.0 0.2 0.1 0.0 0.1 0.0
ERP2 0.1 0.4 0.3 0.1 1.0 0.6 0.1 0.0 0.1 0.0
ERP3 0.1 0.6 0.3 0.2 3.2 2.5 0.1 0.0 0.1 0.0
ERP4 0.2 1.6 0.8 0.4 4.5 0.9 0.2 0.0 0.2 0.0
ERP5 0.5 0.8 1.7 1.0 4.4 26.0 0.6 0.1 0.5 0.1
ERP6 1.6 2.5 4.5 2.3 5.7 241.4 0.9 0.1 1.6 0.1
ERP7 31.1 4.4 129.5 34.7 23.0 - 6.9 0.2 49.6 0.2
UCI1 0.1 0.8 0.2 0.2 5.1 1.0 0.1 0.1 0.1 0.1
UCI2 0.3 - 5.0 1.5 536.8 29.8 0.3 11.0 0.2 11.3
UCI3 0.5 55.7 4.6 2.3 70.1 63.7 0.7 1.7 0.5 1.7
UCI4 3.3 16.3 32.9 2.2 8.9 19.1 0.7 0.2 3.2 0.2
UCI5 1.0 33.2 15.1 2.2 - 76.6 1.9 4.6 1.0 4.5
UCI6 17.0 4.3 111.3 67.6 8.7 - 17.9 0.2 28.2 0.2

Table 12.3 – Comparison of the time (in seconds) spent by ECCDL,sum (for all crite-
ria but frequency) and ECCKDL+,MD+ (for the frequency) with the best performing
declarative approaches for each criterion, i.e., FCP2 and SetDec for size, and frequency,
and FCP1 for split and diameter. ’-’ is reported when time exceeds 1,000s.

For split and diameter, FCP1 is faster than ECCDL,sum on many instances, espe-
cially for the two largest instances ERP7 ad UCI6.

12.3 Multi criteria optimization
When analyzing the number of clusters reported in Table 9.3, we note that we obtain
solutions with a large number of clusters (close to #T − 1) when we optimize Minsize

or Min−diameter whereas we obtain solutions with very few clusters (close to 2) when
we optimize Min frequency or Minsplit . As explained in Section 6.2, this comes from the
fact that Min frequency and Minsplit criteria are conflicting with Minsize and Min−diameter

criteria.
In this case, we may search for a set of solutions that represent different compromises

between these conflicting criteria by computing the Pareto front of non-dominated so-
lutions. In this section, we evaluate scale-up properties of our CP models for computing
this Pareto front for two pairs of conflicting criteria, i.e., Min frequency and Minsize (de-
noted (frequency,size)) and Minsplit and Min−diameter (denoted (split,diameter)).

12.3.1 Comparison of propagation algorithms of exactCoverCost
Let us first compare the different propagation algorithms introduced for our global
constraint. For (split,diameter), k is not tightly constrained (it is only constrained to
belong to [2,#T]). Therefore, in this case we only consider the two variants that achieve
the simplest filtering on k, i.e., ECCDL,sum, and ECCDL+,sum. For (frequency,size),
k is more constrained (because of the relation between the frequency and the number
of clusters). Therefore, in this case we also consider variants that achieve stronger
filterings on k, i.e., ECCKDL,MD+, and ECCKDL+,MD+. We only report results with
MD+ because MD has rather similar results and Basic filters much less choice points
than MD+.

136

(Split,Diameter) (Frequency,Size)
ECCDL,sum ECCDL+,sum ECCDL,sum ECCDL+,sum ECCKDL,MD+ ECCKDL+,MD+

#s time nodes time nodes #s time nodes time nodes time nodes time nodes
ERP1 1 0.2 48 0.3 48 7 0.5 1,077 0.3 448 0.4 1,055 0.3 428
ERP2 5 0.6 89 0.6 92 9 10.2 6,284 0.9 571 12.3 5,994 0.9 486
ERP3 2 0.5 63 0.4 62 10 13.9 6,619 1.2 692 19.8 5,556 1.1 608
ERP4 2 0.9 88 1.0 89 13 109.7 68,710 3.4 1,230 157.0 65,726 3.5 1,068
ERP5 3 2.3 106 2.3 100 13 842.3 27,280 13.7 1,144 - - 16.1 1,099
ERP6 3 4.8 108 8.0 111 15 - - 25.8 1,423 - - 30.5 1,345
ERP7 2 135.9 164 198.0 173 17 - - 987.7 4,559 - - - -
UCI1 3 0.4 78 0.4 81 13 3.8 6,498 1.1 1,291 4.8 7,713 1.1 1,140
UCI2 3 1.4 560 2.2 549 12 - - - - - - 280.0 232,871
UCI3 1 1.0 215 2.0 215 11 - - 335.7 17,541 - - 499.2 50,879
UCI4 5 4.4 319 15.9 297 - - - - - - - - -
UCI5 2 4.7 428 5.4 400 8 - - 130.2 103,361 - - 136.5 103,290
UCI6 4 536.4 433 316.8 437 - - - - - - - - -

Table 12.4 – Time (in seconds) and number of choice points needed by ECCDL,sum

and ECCDL+,sum for (split,diameter) and ECCDL,sum , ECCDL+,sum , ECCKDL,MD+

and ECKDL+,MD+ for (frequency,size) to compute the set of non-dominated solutions
using the static method of [Was+80]. #s gives the number of non-dominated solutions.
’-’ is reported when time exceeds 1,000s.

To compute the Pareto front, we use the static method of [Was+80] described
in Section 5.6.2. More precisely, we consider as first criterion to maximize Minsplit

(resp. Min frequency), i.e., it corresponds to obj1 in Algorithm 4, when optimizing
(split,diameter) (resp. (frequency, size)). If there is almost no difference between
choosing Minsplit and Min−diameter as first criterion, considering Min frequency as first
criterion to optimize has a significant impact on the time, and significantly reduces
solving times compared when we consider Minsize as first criterion. This may come
from the side constraints we add on Min frequency and the objective strategy we use.

We display in Table 12.4 the CPU time in seconds and the number of choice points
needed for each considered variant of exactCoverCosts.

For all approaches, the Pareto front for (split,diameter) is smaller and also easier
to compute than for (frequency,size). This may come from the fact that frequency
and size measures are very conflicting criteria (formal concepts with large frequencies
usually have small sizes, and vice versa), whereas (split,diameter) are less conflicting
criteria.

For (split,diameter), ECCDL,sum is often faster than ECCDL+,sum because DL+
never reduces significantly the number of choice points.

For (frequency,size), DL+ significantly reduces the number of choice points, com-
pared toDL for all instances, and ECCDL+,sum is able to solve four more instances than
ECDL,sum within the time limit. MD+ also reduces the number of choice points, com-
pared toMD, but the reduction is less drastic: ECCDL,MD+ and ECCDL+,MD+ explore
less choice points than ECCDL,sum and ECCDL+,sum , respectively, for all instances but
UCI1 (for ECCDL,∗) and UCI3 (for ECCDL+,∗). ECCDL+,MD+ solves UCI2 in 280
seconds whereas no other approach can solve it in less than 1,000 seconds. However,
MD+ considerably degrades the performance of ECCDL+,MD+ for UCI3. Most of the
time, ECDL+,MD+ is the approach that explores the smallest number of choice points
while ECDL+,sum is the fastest approach.

137

(a) Exact Cover C = {u7, u8, u12}. (b) Subsets of P dominated by C.

Figure 12.2 – Subsets dominated by an exact cover.

12.3.2 New dynamic approach

We have described two CP-based approaches to compute the Pareto front of non-
dominated solutions in Section 5.6.2. In this section, we show how to improve the
dynamic method of Gavanelli et al. [Gav02] when using it to solve a multi-criteria
exact cover problem (S, P).

We assume that there are n > 1 utility measures such that, for each i ∈ [1, n], ci(u)
is the utility of the subset u ∈ P , Mini is an integer variable to be maximized, and
this variable is constrained to be equal to minu∈C ci(u) (where C is the set of selected
subsets).

During the search process, when an exact cover C ⊆ P is found, we know that if
an exact cover C ′ contains a subset u ∈ P which is dominated by C, then C ′ is also
dominated by C. In other words, once we have found an exact cover C ⊆ P , we can
discard any subset u such that ∀i ∈ [1, n], ci(u) ≤ minu∈C ci(u) before searching for
other exact covers.

Example 12.1. We display in Figure 12.2a an exact cover instance with two utility
measures: each point (x, y) corresponds to a subset u such that x = c1(u) and y = c2(u).
Let us assume that C = {u7, u8, u12} is an exact cover. When C is found, we have
Min1 = 4 and Min2 = 4. Therefore, we know that any exact cover that contains
a subset in the area [0, 4] × [0, 4] (displayed in blue) is dominated by C and we can
remove true from the domains of isSelectedu3 and isSelectedu4 .

Hence, we propose to extend the dynamic approach of Gavanelli et al. [Gav02]. More
precisely, each time a solution I is found, we dynamically add two constraints. The
first constraint is the constraint used in [Gav02] to prevent the search from computing
a solution dominated by I, i.e., ∨

i∈[1,...,n]

Mini > I[Mini].

The second constraint is a new constraint which prevents the search from selecting a
subset dominated by I, i.e.,

∀u ∈ P,
∧

i∈[1,...,n]

ci(u) ≤ I[Mini]⇒ isSelectedu = false

138

This second constraint immediately filters the domains of isSelected variables associated
with subsets which are dominated by I, whereas the first constraint does not filter any
domain when all upper bounds of Mini variables are greater than I[Mini].

Example 12.2. In our previous example, domains of isSelected variables are not im-
mediately filtered when adding the constraint

Min1 > 4 ∨Min2 > 4

Indeed, when both upper bounds ofMin1 andMin2 are greater than 4, this disjunctive
constraint is not propagated. It is propagated only when the upper bound of one of
these variables becomes lower than or equal to 4: When Min1 (resp. Min2) becomes
lower than or equal to 4, the solver propagates the constraintMin2 > 4 (resp. Min1 >
4), and this propagation assigns to false every variable isSelectedui such that c2(ui) ≤ 4,
i.e., u3, u4, u5, u8, u9, u10, and u14 (resp. c1(ui) ≤ 4, i.e., u0, u1, u2, u3, u4, u5, u7, u11,
and u12).

Implementation. We have implemented this extension for the CP model that uses
our new global constraint exactCoverCost, and also for our CP model that uses the
SetDec decomposition introduced in Section 9.2.

For the CP model that uses exactCoverCost, each time a solution is found, we dy-
namically add the clause isSelectedu = False for each subset u ∈ P which is dominated
by the solution.

For the CP model that uses SetDec, we channel the set variable C with isSelected
boolean variables such that ∀u ∈ P, isSelectedu = true ⇔ u ∈ C and we dynamically
add the clause isSelectedu = False for each subset u ∈ P which is dominated by
the solution. Another possibility is to directly add the constraint u 6∈ C, without
introducing isSelected. However, this alternative is less efficient.

Experimental evaluation. Let us compare the three possibilities for computing the
Pareto front of non dominated solutions:

• The static approach of [Was+80] described in Section 5.6.2 and denoted Static;

• The dynamic approach of [Gav02] described in Section 5.6.2 and denoted Dy-
namic;

• Our extension of Dynamic introduced in this section and denoted Extended.

For Dynamic and Extended, we adapt the ordering heuristic introduced by Knuth:
We still search for the set of all elements a ∈ SC such that #coverC(a) is minimal,
but instead of selecting a subset that covers one of these elements and maximizes the
utility measure, we select a subset that covers one of these elements and maximizes the
number of dominated subsets in P .

Experimental results are reported in Table 12.5 when using the best performing
propagation algorithms according to the experimental comparison reported in Sec-
tion 12.3.1, i.e., ECCDL,sum when the criteria to optimize are Minsplit and Min−diameter ,
and ECCKDL+,MD+ when the criteria to optimize are Minsize and Min frequency .

Our extended method explores less choice points and is clearly faster than Dynamic.
In particular, it is able to solve four more instances than Dynamic.

139

Static Dynamic Extended
#s time nodes nbSol time nodes nbSol time nodes nbSol

(split,diameter) with ECCDL,sum
ERP1 1 0.2 48 2 0.1 191 3 0.1 127 3
ERP2 5 0.6 89 10 2.0 631 8 0.3 193 8
ERP3 2 0.5 63 4 2.3 459 2 0.2 62 2
ERP4 2 0.9 88 4 7.7 724 2 0.3 87 2
ERP5 3 2.3 106 6 157.2 3,488 3 0.9 85 3
ERP6 3 4.8 108 6 172.1 2,813 6 1.7 337 6
ERP7 2 135.9 164 4 - - - 42.9 452 4
UCI1 3 0.4 78 6 0.2 203 7 0.2 151 7
UCI2 3 1.4 560 6 1.3 2,523 11 3.7 2,515 11
UCI3 1 1.0 215 2 2.1 395 3 1.7 371 3
UCI4 5 4.4 319 10 571.2 12,457 12 4.4 805 12
UCI5 2 4.7 428 4 66.8 2,732 5 5.4 794 5
UCI6 4 536.4 433 8 - - - 151.5 563 10

(frequency,size) with ECCKDL+,MD+

ERP1 7 0.3 428 14 0.2 226 18 0.3 176 18
ERP2 9 0.9 486 18 2.3 2,785 26 2.4 1,739 27
ERP3 10 1.1 608 20 1.9 1,686 31 1.4 1,197 28
ERP4 13 3.5 1,068 26 8.5 1,160 47 8.2 981 47
ERP5 13 16.1 1,099 26 74.4 17,023 48 48.6 3,993 47
ERP6 15 30.5 1,345 30 172.5 6,289 68 155.8 2,190 70
ERP7 17 1,047.4 4,043 34 - - - - - -
UCI1 13 1.1 1,140 26 2.5 1,449 67 1.4 719 69
UCI2 12 280.0 232,871 24 - - - - - -
UCI3 11 499.2 50,879 22 - - - 1,461.0 205,785 99
UCI4 14 1,476.3 298,832 28 - - - 2,919.7 689,217 66
UCI5 8 136.5 103,290 16 - - - - - -
UCI6 - - - - - - - - - -

Table 12.5 – Comparison of Static, Dynamic, and Extended to compute the Pareto front
for (split,diameter) with ECCDL,sum, and for (frequency,size) with ECCKDL+,MD+: #s
gives the number of non-dominated clusterings, Time gives the CPU time in seconds
(or ’-’ when time exceeds 3,600 seconds), nodes gives the number of choice points, and
nbSol gives the number of solutions found.

For (split,diameter), Static is competitive with Extended for the small instances,
but it is outperformed for larger instances such as ERP6, ERP7, or UCI6. This may
come from the fact that the number of solutions computed by Extended is often close
to the number of non dominated solutions: nbSol is equal to #s for three instances,
and never greater than 4 ∗#s. This means that ordering heuristics are able to guide
the search towards solutions that often belong to the Pareto front. All these solutions
are computed by solving a single enumeration problem within a single search. As
a comparison, Static always computes 2#s solutions, and each of these solutions is
obtained by solving a new optimization problem.

On (frequency,size), Static is the fastest approach for all instances but ERP1, and
it scales much better: It is able to solve all instances but UCI6 in less than one hour,
whereas Extended reaches the CPU time limit for ERP7, UCI2, UCI5, and UCI6.

140

(split,diameter) (size,frequency)
ECCDL,sum SetDec ILP ECCKDL+,MD+ SetDec ILP

Strategy Extended Extended Static Static Static Static
ERP1 0.1 0.2 0.5 0.3 4.8 1.0
ERP2 0.3 0.8 1.4 0.9 23.4 3.8
ERP3 0.2 0.6 1.5 1.1 129.1 6.3
ERP4 0.3 4.1 20.1 3.5 946.3 39.4
ERP5 0.9 16.1 27.4 16.1 - 89.0
ERP6 1.7 130.3 268.1 30.5 - 450.4
ERP7 42.9 - - 1,047.4 - -
UCI1 0.2 0.7 0.9 1.1 128.8 8.1
UCI2 3.7 2,055.4 231.8 280.0 - -
UCI3 1.7 - 645.1 499.2 - -
UCI4 4.4 202.0 - 1,476.3 - -
UCI5 5.4 - - 136.5 - -
UCI6 151.5 - - - - -

Table 12.6 – Time (in seconds) required by ECCDL,sum and SetDec and ILP to compute
the set of non-dominated solutions for (split,diameter) and ECCKDL+,MD+, SetDec
and ILP for (frequency,size). We report ’-’ when time exceeds 3,600s. The third line
precises the strategy (Extended or Static) used to compute the Pareto front.

This may come from the fact that the number of solutions computed by Extended
is often much larger than the number of non dominated solutions. For example, for
UCI3, Extended computes 99 solutions, whereas the Pareto front only contains 11 non
dominated solutions. For this instance, Static solves 22 optimization problems, and it
is three times as fast as Extended.

As a conclusion, Dynamic is outperformed by Extended, and Extended and Static
are complementary: Extended is more efficient for (split,diameter), and Static for (fre-
quency,size).

12.3.3 Comparison with state-of-the-art declarative approaches

Finally, let us compare our global constraint with other declarative approaches. In this
study, we do not report results of the full CP approaches (FCP1 and FCP2) because
they hardly scale. For example, for the (size,frequency) criteria, FCP2 is not able to
solve ERP1 in less than one day using the Static strategy, whereas this instance is
solved in less than one second with our global constraint.

Table. 12.6 compares the best propagation algorithms of our new global constraint
(i.e., ECCDL,sum for (split,diameter) and ECCKDL+,MD+ for (frequency,size)) with
SetDec and ILP. We used the following strategies for computing the Pareto front with
CP-based approaches: For (split,diameter), we use Extended for ECCDL,sum and Set-
Dec; For (frequency,size), we use Static. For ILP, we always use the Static strategy.

For (split,diameter), our global constraint ECCDL,sum is significantly faster than
ILP and SetDec: It is able to solve all instances whereas SetDec and ILP fail at solving
four instances. For some instances, ECCDL,sum is two orders of magnitude faster than
SetDec and ILP. For example, it can solve UCI3 in less than two seconds whereas ILP

141

needs more than ten minutes and SetDec cannot solve it within the time limit of one
hour.

For (frequency,size), ECCKDL+,sum is also significantly faster than ILP and SetDec:
It is able to solve all instances but UCI6 whereas SetDec and ILP fail at solving eight
and six instances, respectively. In particular, ECCKDL+,MD+ is the only approach
that is able to solve ERP7, UCI2, UCI3, UCI4, and UCI5. Finally, ILP scales better
than SetDec and solves two instances that SetDec cannot.

12.4 Discussion
We have experimentally evaluated our new global constraints on various conceptual
clustering problems. When the number of clusters k is fixed, our approach does not
always scale well, especially for the Minsize criterion and, in some cases, it is outper-
formed by ILP. When k is not fixed, our approach scales well and it is able to solve
all mono-criterion optimization problems rather quickly: Most instances are solved in
less than one second, and the hardest instance is solved in less than 100 seconds. For
many instances, it is the best performing approach, though it is outperformed by full
CP approaches (FCP1 or FCP2) for some instances.

We extended the Gavanelli et al. approach to compute the Pareto front of non-
dominated solution when considering two optimization criteria. This new approach
always improves Gavanelli et al. approach, and it is faster than the static approach
of [Was+80] for (split,diameter) criteria, whereas it is slower for the (frequency,size)
criteria. Our new global constraint allows us to compute the complete Pareto front for
all instances but one, and it scales much better than ILP.

Now we have an efficient method to solve conceptual clustering problems, we ex-
periment it in the next chapter in our applicative context to extract relevant parts of
configuration.

142

Chapter 13

Application to ERP customization

Contents
13.1 Use case . 143

13.2 Relevancy measures . 143

13.3 Feedbacks and improvements 146

13.3.1 Properties of the formal concepts. 146

13.3.2 Pivot items . 146

13.3.3 Soft clustering . 147

13.3.4 Hierarchical clustering . 148

13.3.5 Default parameter values . 149

13.4 Complete toolkit for configuration part mining 150

13.5 Discussion . 152

Now we have an efficient declarative approach to solve conceptual clustering prob-
lems, we experiment our approach on a business unit of Copilote. As explained in
Chapter 4, we aim at extracting relevant parts of configurations that correspond to
business logic requirements. To do this, we use conceptual clustering to identify groups
of configuration parts that implement a same business logic: Each cluster corresponds
to a part of configuration, i.e., the subset of parameter values shared by all the config-
urations of the cluster.

From an applicative point of view, the challenge is to identify relevant configuration
parts, i.e., configuration parts that have a business logic meaning and are reusable for
new configurations. To improve the quality of the configuration parts we extract,
we propose to interact with experts after each extraction step in order to integrate
their feedback: At each iteration, we extract the most relevant configuration parts
according to some given constraints and optimization criteria, and we ask an expert
system integrator to discard parts with no functional meaning; This feedback is used
to update the constraints and criteria before starting a new mining process.

In this chapter, we describe the business unit which is used for our proof of concept
in Section 13.1. In Section 13.2, we focus on how to measure the relevancy of configu-
ration parts and we define a new utility measure based on correlation. In Section 13.3,
we present the main feedbacks expressed by the expert when he used our tool on the
use case described in Section 13.1, and we describe how we adapted our CP model
to integrate these feedbacks. Finally, we give an overview of the complete toolkit we
developed to interactively mine configuration parts in Section 13.4.

143

13.1 Use case
For the proof of concept of our approach, we focus on one business unit of the produc-
tion module called Plan production. As its name implies, this business unit corresponds
to a functionality of Copilote that is used to plan the production of a company. To plan
the production as well as possible, a customer may need to visualize many information
such as the state of the storage, the incoming sales order, the sales forecasts and the
current planning of production. All these information may be computed in many differ-
ent ways according to the business rules of the customer. Moreover, the requirements
may change when planning the production of a family of products to another. That is
why a business object is dedicated to the configuration of the production planning and
a single customer may have several configurations, i.e., several instances of this object.

The main configuration options of the production planning tool are:

• the planning period, which may be a day, week, month or year, and which usually
depends on the volume to produce and on the storage life of the product;

• the computation of the quantity to produce, which may depend on existing sale
orders, or on sale forecasts, for example;

• the computation of the material needs, which depend on the production planning;

• the computation of the storage.

Only a part of the customers of Infologic need the production planning tool. We
collected 1531 existing configurations and focused on twelve parameters of the produc-
tion planning configuration business object. After translating these twelve parameters
into binary items, we obtained 25 items. Therefore, in our proof of concept our trans-
actional database has 1531 transactions and 25 items.

13.2 Relevancy measures
Before experimenting conceptual clustering on our use case, we have to determine how
to characterize the relevancy of a configuration part, which is the main issue of our
data mining process. From an applicative point of view, a configuration part is relevant
if the parameter setting associated with it corresponds to a business logic requirement.

We have introduced four classical measures associated with formal concepts in Sec-
tion 6.2, i.e., frequency size, diameter, and split. We have used these utility measures to
evaluate scale-up properties of our CP models. However, they are not really meaningful
in our applicative context. In particular, the frequency corresponds to the number of
customers that use it, and ERP experts have told us that there is no relation between
the frequency and the relevancy of a configuration part: Frequent configuration parts
may be as useful as rare ones, as long as they correspond to a business logic require-
ment. However, when interpreting the meaning of a configuration part, the frequency
and the detail of the different customers that use a concept are very helpful information
for system integrators.

The size of a configuration part corresponds to the number of parameters and
it mainly affects the way an expert understands its functional meaning. Obviously,
concepts with very small sizes may lack of information to be relevant whereas too long

144

concepts may be hard to interpret. Hence, we usually add constraints to bound the
size of the configuration parts.

According to discussions we had with Copilote experts, the relevancy of a configu-
ration part mainly depends on the correlation between the parameter values of a part.
This correlation denotes a mutual relationship between parameter values. Typically, a
configuration part is more relevant if its parameter values are usually grouped together,
i.e., they are highly correlated.

As explained in [Nov+09], different research communities have proposed many tech-
niques to find comprehensible itemsets or models in data. Measuring the correlation
between items has been widely studied in the data mining community, particularly in
association rule mining. We introduce three well-known measures based on correlation
which are used to assess the relevancy of association rules and we explain how we apply
them on formal concepts.

Association rules. Association rules have been defined in [Agr+93] by Agrawal et
al. as implications between two itemsets. We keep on using the transactional database
terminology to have no ambiguities in the following definitions, i.e., T is a set of
transactions, I a set of items, and R ⊆ T × I a binary relation between transactions
and items. For more details, we refer the reader to [Nov+09] that presents a unified
framework for descriptive rules.

Definition 13.1 (Association rule). Let be X ⊆ I and Y ⊆ I two itemsets. r = X →
Y is an association rule. X is the antecedent of r and Y its consequent.

Definition 13.2 (Support). The support of an itemset Z ⊆ I is the number of trans-
actions that contain all items of Z, i.e., supp(Z) = #{t ∈ T |Z ⊆ itemset(t)} (in other
words, if Z is the itemset of a formal concept c, then the support of Z corresponds to
the frequency of c).

The support of an association rule r = X → Y is the support of X ∪ Y , i.e.,
supp(r) = supp(X ∪ Y).

Example 13.3. Let us consider the database displayed in Table 6.1. The rule r1 =
{i2, i3} → {i8} has a support of 1 because only t4 contains i2, i3 and i8.

Interestingness measures. According to authors of [Héb+07], an interestingness
measure is a function which assigns a numerical value to an association rule according to
its quality. Many interestingness measures are based on the supports of the antecedent
and the consequent of the rule. We consider two well-known measures called RAcc and
WRAcc.

Definition 13.4 (Relative accuracy (RAcc)). Let r = X → Y be an association rule.
The Relative Accuracy of r is

RAcc(r) =
supp(X ∪ Y)

supp(X)
− supp(Y)

#T
.

As explained in [Lav+99], RAcc gives the accuracy gain of r compared to the rule
∅ → Y . A rule is interesting if it improves upon this default accuracy. However, the
problem of the relative accuracy is that it is easy to obtain high relative accuracy with
very specific rule, i.e., rules with a low support since supp(Y) is very low.

That is why a weighted variant, called WRAcc, was proposed in [Lav+99].

145

Definition 13.5 (Weighted Relative Accuracy (WRAcc)). Let r = X → Y be an
association rule. The Weighted Relative Accuracy of r is:

WRAcc(r) =
supp(X)

#T
· (supp(X ∪ Y)

supp(X)
− supp(Y)

#T
) =

supp(X)

#T
∗ RAcc(r).

The WRAcc measure offers a trade off between the relative accuracy and the gen-
erality of the rule, i.e., its support.

Example 13.6. For instance, let us consider a dataset with #T = 100 transactions
such that supp(Y) = supp(X) = 5, supp(W) = supp(Z) = 70, supp(X ∪ Y) = 2 and
supp(W ∪ Z) = 65. We have:

• RAcc(X → Y) = 0.35 and RAcc(W → Z) = 0.32

• WRAcc(X → Y) = 0.02 and WRAcc(W → Z) = 0.22

The WRAcc measure clearly favorsW → Z which better matches with our intuition
of interestingness of a rule.

Hence, we choose to use the WRAcc measure to measure the correlation between
parameter instances of a configuration part.

Application to formal concepts. We propose to extend the WRAcc measure to
formal concepts, in order to evaluate how correlated is each item of a concept with the
other items of the concept.

Definition 13.7 (WRAcc of a formal concept). Let c = (T, I) be a formal concept. If
#I = 1, then WRAcc(c) = −∞. Otherwise:

WRAcc(c) =

∑
i∈I

WRAcc({i} → I \ {i})

#I
.

In other words, the WRAcc of a formal concept that has only one item is defined as
−∞ because it does not bring any business logic. Otherwise, its WRAcc is the average
correlation of every item i ∈ I with the other items in I, i.e., the average WRAcc of
every association rule {i} → I \ {i}.

Let us now define our new utility measure for evaluating the interest of a conceptual
clustering.

Definition 13.8 (MinWRAcc utility measure). Let P = {c1, . . . , ck} be a conceptual
clustering. We define: MinWRAcc(P) = min

ci∈P
WRAcc(ci).

When maximizing this utility measure, we favor clusterings with formal concepts
such that every item is correlated with the other items in the intent of the concept.

Example 13.9. Let us consider the transactional database of Table 6.3.
P = {c5, c8, c7, c10} is a conceptual clustering. We have:
WRAcc(c5) =

1
25

WRAcc(c8) =
1
25

WRAcc(c7) =
−4
25

WRAcc(c10) =
−1
25

Therefore, we have: MinWRAcc(P) = −0.03.

146

13.3 Feedbacks and improvements
We considered the use case described in Section 13.1, and experimented our approach
that iteratively extracts configuration parts and interacts with an expert integrator to
integrate his feedback as described in Section 4.3.

More precisely, we developed a tool with an interface that allows the user (i.e.
the expert) to apply conceptual clustering on the configurations of the business unit
plan production. Initially, the user can choose an optimization criterion Minu with
u ∈ {frequency , size,−diameter , split ,WRAcc}. We display the resulting configuration
parts and their associated properties:

• the size, the frequency, the split, the WRAcc and the diameter of the formal
concept;

• the list of customers that use the configuration part.

The expert can qualify each configuration part by associating a description if it
fulfills a requirement or by discarding the part with a commentary if it is not relevant.
He may also give us some feedback to improve the mining process and find more relevant
configuration parts. In this section, we present the main feedbacks we obtained and
how we used them to improve the mining step.

13.3.1 Properties of the formal concepts.

Feedback. The first feedback of our expert concerns properties of extracted config-
uration parts. They want to avoid:

• too specific formal concepts which have a very low frequency and a high size
because they are very hard to interpret;

• too short formal concepts with one or two parameters.

Proposed solution. To solve this problem, we allow the user to add thresholds on
both minimal and maximal frequency or size of the configuration parts. When using our
exactCoverS,P global constraint to solve the mining problem, this amounts to removing
from P every formal concept that does not satisfy these threshold constraints.

13.3.2 Pivot items

Feedback. When configuring the business unit Plan production, Copilote integrators
usually start by configuring the periodicity parameter, and the first question they ask
to the customer aims at setting this parameter. This is a typical example of expert
knowledge: An expert knows that this parameter is discriminant for the rest of the
configuration. Therefore, the second feedback of our expert concerns this parameter:
A configuration part that does not contain an item corresponding to a value for this
parameter is not relevant because it is a key parameter to both configure the business
unit and interpret configuration parts.

147

Proposed solution. To solve this problem, we allow the user to specify a list of
pivot parameters, i.e., parameters that must appear in configuration parts. Let Lpivot

be this list and, for each pivot parameter pi ∈ Lpivot , let items(pi) ⊆ I be the set of
items associated with this parameter (each item in items(pi) corresponds to a different
value that may be assigned to pi). When searching for conceptual clusterings, we
add the constraint that each selected formal concept must contain exactly one item in
items(pi), for each pivot parameter pi ∈ Lpivot .

When using our exactCoverS,P global constraint to solve the mining problem, this
amounts to removing from P every formal concept that does not satisfy this constraint.

13.3.3 Soft clustering

Feedback. When analyzing configuration parts, our expert integrator discarded many
configuration parts that are not relevant according to his knowledge because they do
not correspond to any business logic.

When analyzing these parts, we found out that the quality of the solution is some-
times degraded because the set of selected formal concepts is constrained to define
a partition of the configurations. This partition constraint is composed of two con-
straints: a coverage constraint, that ensures that every configuration is contained in a
formal concept, and a non-overlap constraint, that ensures that a same configuration
is not contained in more than one formal concept.

It may be interesting to allow the user to soften these constraints. When softening
the coverage constraint, we allow a few configurations to belong to no formal concept.
Indeed, some configurations may contain errors or correspond to bad practices (if they
have been done by unexperienced Copilote integrators, for example). Ignoring these
configurations will obviously improve the quality of the configuration parts we extract.

When softening the non-overlap constraint, we allow a few configurations to belong
to more than one formal concept. In our applicative context, this may happen when a
same configuration fulfills different business logic requirements.

Proposed solution. We propose to search for soft conceptual clusterings (as defined
in Section 6.3). We introduce two thresholds δo ∈ [1,#T] and δc ∈ [1,#T] such that at
most δc transactions are not covered by the clustering and each transaction can belong
to at most δo clusters.

To solve this soft conceptual clustering problem, we have adapted the SetDec CP
model introduced in Section 9.2 to solve the exact cover problem. The adaptation is
rather straightforward.

• We modify the domains of coveredBy variables: In this initial model, for each
element a ∈ S, we have an integer variable coveredBya which is used to represent
the selected subset that covers a. As an element may be covered by 0, 1, or
several subsets, we use set variables instead of integer variables, and we define
the domain of these variables by D(coveredBya) = [∅, cover(a)].

• We modify the coverage constraint: In the initial model, this constraint is
coveredBya ∈ C (where C is the set variable that represents the selected subsets);
We replace it by cover(a) ∩ C = coveredBya.

148

• We control overlaps by constraining the cardinality of coveredBy variables:
#coveredBya ≤ δo.

• We control the number of uncovered transactions by posting the constraint
nbEmpty(coveredBy, N), which constrains N to be equal to the number of empty
coveredBy sets, and by posting the constraint N ≤ δc.

Performances. We give only a quick overview of the experiments we have done with
this new model, denoted SoftSetDec. When we relax only the coverage constraint,
i.e. δo = 1 and δc > 0, the soft conceptual clustering problem is solved faster by
SoftSetDec than the initial problem with SetDec (when the solution is constrained to
be a partition), and the larger the instance, the larger the difference of performance
between the two models. This is due to the fact that soft conceptual clustering solutions
are a superset of conceptual clustering solutions, which allows our heuristic to find a
good solution faster.

However, when we relax only the non-overlap constraint, i.e. δo > 1 and δc = 0, the
problem becomes much harder and SoftSetDec is always slower than SetDec. Probably,
a better heuristic could be to first search for a conceptual clustering which is an exact
partition with SetDec and then iteratively and greedily extend it by allowing overlaps
that satisfy the threshold constraint and improve the considered utility measure.

13.3.4 Hierarchical clustering

Feedback. Our expert found that more meaningful results were obtained when us-
ing the WRAcc utility measure as optimization criterion, and using pivot parameters.
However, conceptual clusterings computed with these criteria and constraints usually
contain formal concepts that have very few items because WRAcc is weighted with
the frequency, and formal concepts with high frequencies usually have small sizes (i.e.,
small number of items).

In practice, customers almost never share exactly the same needs. Requirements
may have a common business logic but they differ at some point. These configuration
parts with very few items correspond to high level requirements, which are shared by
several customers. However, each of these high-level requirements may be specialized
into more specific variants. In other words, requirements can be described with a tree
structure where most common requirements are at the top of the tree and children
correspond to more precise requirements.

Solution. We propose to use hierarchical conceptual clustering. In many works, clus-
ters are organized in hierarchies [Mic+83; Fis87]. As explained in [Fis96], a hierarchical-
clustering creates a tree-structured clustering, where sibling clusters partition the trans-
actions covered by their common parent.

We propose a top-down approach, described in Algorithm 9, that consists in re-
cursively applying conceptual clustering on the clusters we find until getting clusters
with only one transaction. The function clusterise applies conceptual clustering on the
transactions of the cluster c given in input (line 4). For each obtained cluster ci, we
add it to the children of c (line 6) and we recursively call clusterise on ci (line 7). We
stop when the input cluster contains only one transaction (line 3). To get the whole

149

Algorithm 9: Hierarchical conceptual clustering
1 Function clusterise(c)

Input: A formal concept c = (T, I)
2 begin
3 if #T > 1 then
4 C ← conceptual_clustering(T, I)
5 for each ci = (Ti, Ii) ∈ C do
6 Add ci to the list of children of c
7 clusterise(ci)

hierarchical structure, we start by calling clusterise with a cluster that contains all
the transactions. We obtain a tree of formal concepts where each child represents an
extension of its parent, i.e, every child is a sub-concept of its parent.

In our applicative context, sibling concepts correspond to variants of their parent
configuration part: they may correspond to requirements slightly more precise than
the parent requirement.

We apply the WRAcc measure in a more relevant way than defined in Section 13.2.
We propose to optimize the WRAcc of sibling clusters with their parent which is
much more intuitive: We maximize the correlation between a parent and its chil-
dren. More formally, let c = (T, I) be a formal concept, when recursively clustering
c, the WRAcc measure used to evaluate the utility of ci = (Ti, Ii) when executing
conceptual_clustering(T, I) (line 4) is defined by WRAcc(I → Ii).

Note that the WRAcc measure seems very relevant to do top-down conceptual
clustering since it favors formal concepts with both high frequency and high correlation,
i.e., configuration parts that correspond to high level requirements.

13.3.5 Default parameter values

Feedback. A recurrent feedback from system integrators is that some items appear
in many configuration parts while they do not bring any business logic in the concept.
These items make the interpretation much more complex, even to know whether a
configuration part is interesting from a business logic point of view. We want to limit
as much as possible these items that degrade the quality of the configuration parts and
make it difficult to interpret them.

Analysis of the problem. When analyzing these items, we find out that they often
correspond to the assignment of a default value to a parameter which is not used
by the system. Indeed, when Infologic implements Copilote for a new customer, a
default configuration is installed for this customer before system integrators can start
to configure it. This default configuration embeds a lot of data in order to have a
first version that already works and to reduce the work of configuration by setting the
most standard values to parameters. When a parameter has not been changed from
its default value, we cannot know if a system integrator validated the value assigned
to the parameter, i.e., whether the value is needed to fulfill a business requirement or

150

not. Many parameter settings are inherited from the default configuration while they
are useless.

Therefore, when a parameter is almost never changed by system integrators, the
item associated with its default value has a high frequency and may appear in many
formal concepts since it is shared by most of the configurations, even if it is not used
by the system.

It is very hard to automatically identify items corresponding to default parameter
values that are not used by Copilote. We can access the log of the modifications
of the parameters and therefore identify what parameters have been changed by a
system integrator. However, selecting only these instances would not be suitable since
a significant part of default values assigned to parameters is actually used by Copilote.

Hence, we have not found a solution to automatically identify parameter values
that are not used by Copilote to ignore them when extracting configuration parts.

13.4 Complete toolkit for configuration part mining
In this section, we give an overview of the complete toolkit we have developed to allow
a Copilote integrator expert to interactively mine configuration parts.

Selection of the data. Before mining configuration parts, the first step is to select a
business unit bu from the business unit map (described in Section 4.1), together with a
set of customers for which he wants to extract configuration parts. The toolkit displays
the full list of parameters associated with bu, i.e., parameters(bu), and the expert may
add or remove some parameters.

Configuration of the search. The second step is to configure the search according
to the constraints and criteria of the expert. To this aim, the expert may:

• Set a minimal and/or maximal frequency of the concepts;

• Set a minimal and/or maximal size of the concepts;

• Select some parameters and define them as pivot parameters in order to constrain
every selected concept to contain exactly one parameter value for each of these
pivot parameters.

As explained before, all these constraints are taken into account in a pre-processing
step, by removing from the set P of all candidate concepts those that do not satisfy
them.

The expert may choose properties of the clustering, i.e., choose between "hard",
soft and hierarchical clustering. This is done by setting the following parameters:

• The percentage of configurations that must be covered by the clustering (the
default value of this parameter is 100%);

• The maximal number of clusters a configuration part can belong to (the default
value of this parameter is 1);

151

• A boolean parameter that indicates whether to apply hierarchical conceptual
clustering or not (the default value is false).

All these options are compatible and one may apply soft hierarchical clustering.
The different utility measures that may be used to evaluate the quality of a clus-

tering are: Min frequency , Minsize , Minsplit , Min−diameter , and MinWRAcc. If the expert
has chosen to do hierarchical clustering, then he can select only one utility measure to
optimize. Otherwise he can select one or two utility measures: If only one measure is
selected, we search for a conceptual clustering that optimizes it; If two measures are
selected, we search for all non-dominated clusterings.

Finally, the expert may set a timeout: If the search is not completed within the
timeout, the best solution found is returned.

It is possible that new constraints and criteria may be further needed by experts.
The interest of using CP to implement the search engine of our toolkit is that we should
be able to quickly modify the CP model to integrate them.

Visualization of the search results. If hierarchical clustering has been selected,
then we display a hierarchy of formal concepts. Otherwise, we display a set of formal
concepts (corresponding to the optimal solution if only one utility measure is selected,
or to a set of non-dominated solutions if two utility measures have been selected).

In both cases, for each formal concept, we visualize:

• The parameter and the value corresponding to each item of the concept;

• Measures associated with the concept, i.e., frequency, size, split, diameter, and
WRAcc;

• The set of customers that use the configuration part.

Evaluation of the concepts. The last functionality of the toolkit is the evaluation
of the concepts. The expert can select concepts and, for each selected concept, he can
either tag it as relevant or irrelevant. If the concept is tagged as relevant, the expert
is invited to enter a textual description of the business logic it implements. If the
concept is tagged as irrelevant, the expert is invited to enter a textual explanation of
its irrelevancy.

Expert feedback after using our toolkit. Our toolkit has been used by one
expert for mining configuration parts associated with one business unit described in
Section 13.1. For this business unit, he found that the best results are obtained when
applying hierarchical soft conceptual clustering using pivot parameters and selecting
the MinWRAcc utility measure. This ensures that the configuration tree is split according
to pivot parameters and that concepts within a same subtree are highly correlated.
Most of the time, the expert chose to allow from 10 to 20% of configurations to be
uncovered.

152

13.5 Discussion
We have described an experimental toolkit which may be used by an expert to mine
configuration parts for a targeted business unit, and associate to every selected config-
uration part a description of the requirement it fulfills. The search engine used to mine
concepts is implemented in CP, and this allowed us to easily integrate new constraints
and criteria for automatically discarding irrelevant configuration parts. However, the
interpretation of the extracted concepts is not straightforward and may be time con-
suming since some parts of concept, which are hard to identify, do not bring any
business logic. It may be an important hindrance for the model and improving the
relevancy of the configuration parts is still our main challenge.

153

Chapter 14

Conclusion

We introduced in this thesis a new approach to assist system integrators when imple-
menting an ERP system for a new customer. First, we introduced the Business Unit
Map, which is a structured model of the different parts of the ERP system that may
be configured according to business logic requirements, and which allowed us to relate
parameters with business logic scopes. Then, we proposed an approach for extracting
a catalog of configuration parts from existing configurations of the ERP system: Each
configuration part corresponds to a business logic requirement that may be reused for
next implementations of the ERP system. Our approach has been illustrated and ex-
perimented with Copilote, the ERP system developed by Infologic. However, we believe
it could be adapted to other ERP systems.

The main challenge was to design a mining tool for extracting relevant configura-
tion parts (to be added to the catalog) from existing configurations. A first difficulty
came from the fact that experts are not able to define an ideal measure for evaluating
the relevancy of a configuration part. Hence, we proposed an interactive process for
integrating expert feedbacks on the relevancy of the extracted configuration parts in
order to improve the relevancy of the next extractions. Another difficulty came from
the fact that each extraction process basically involves solving a constrained conceptual
clustering problem which is NP-hard. We proposed to use Constraint Programming
to solve this problem because it is a flexible, declarative, and easy to use framework
which is well suited in our interactive context: It allowed us to easily integrate ex-
pert feedbacks by means of constraints and optimization criteria. However, conceptual
clustering is a challenging problem, especially for the largest instances that may have
millions of formal concepts, or when the goal is to compute the whole set of non-
dominated solutions with respect to several conflicting optimization criteria. Our main
technical contributions aimed at improving scale-up properties of CP when solving
these problems.

First, we proposed two new CP models, and we showed that they scale well when the
number of clusters is not known a priori and when there is only one objective function
to optimize. However, these models are not efficient enough when the number of clusters
is more tightly constrained, or when the goal is to find the Pareto-front of all non-
dominated solutions with respect to several conflicting objective functions, for example.
CP is an extensible framework, where the user may integrate new constraints, together
with their propagators, in order to improve the expressive power of the constraint
language or the efficiency of the solving engine. We used this property to introduce
a new global constraint dedicated to the exact cover problem, which is at the core
of conceptual clustering problems. We proposed to use Dancing Links to efficiently
propagate this constraint, and we showed how to strengthen this propagation when

154

the number of selected subsets is constrained. This new global constraint allowed us
both to model more easily conceptual clustering problems, and to solve them more
efficiently than existing declarative approaches. Exact cover problems occur in many
other applications, and we plan to integrate our new propagators in the Choco library,
for allowing further uses of them for other applications.

We integrated our CP models for solving conceptual clustering problems within a
prototype that aims at demonstrating the interest of our interactive process for mining
relevant configuration parts from existing Copilote configurations. An expert used
this prototype for mining the configuration parts associated with the business unit
related to Plan production. Most of his feedbacks were straightforward to integrate
within the CP model and, in some cases, these new constraints improved the efficiency
of the solving process because they reduced the search space. Other feedbacks are
more challenging such as, for example, softening the non-overlapping constraint, or
automatically identifying useless parameters that are assigned to default values.

Perspectives
We have proposed a proof of concept of our approach which validates the potential
gain of using our assistant of configuration. However, it is obviously not usable as it
is and many perspectives of improvement remain from both CP and applicative points
of view.

Soft exactCover global constraint. A first improvement is to extend our global
constraint exactCover to allow the user to soften non-overlapping or coverage con-
straints. A convenient and flexible extension is to add #S integer variables to the
input parameters: Each of these variables is associated with a different element and
is constrained to be equal to the number of selected subsets that cover this element.
This way, we allow the user to constrain in many different ways the coverage and the
overlapping of the selected subsets. For instance, we may easily model the constraint of
allowing at most x% of elements to overlap or allowing few elements not to be covered.
Obviously, the extension of the propagators of exactCover are not straightforward but
the gain of efficiency compared with our softSetDec model may be significant and may
allow us to have a more reactive configuration mining tool.

New strategies for computing Pareto fronts of multi-criteria optimization
problems. We have compared three different strategies for computing Pareto front:
The static strategy of [Was+80], the dynamic strategy of [Gav02], and an improvement
of this dynamic strategy that we have proposed for our specific problem where each
objective function aims at maximizing a minimal utility cost. Experimental results
have shown us that (i) these strategies are complementary, and (ii) they have a strong
impact on the efficiency of the solution process. Hence, we are convinced that there is
room for improvements.

First, when using the static approach, we solve a sequence of optimization problems,
and we could exploit results of previous searches when solving the next optimization
problem. For example, we could collect all solutions that have been found during all
previous searches. When solving the next optimization problem, we could filter these

155

solutions to keep those that satisfy the current constraints, and update bounds on
objective variables consequently. This may be seen as a merge of the static approach
and the dynamic approach.

Also, we observed that ordering heuristics have a strong impact on the search
process when using a dynamic strategy: Ideally, we would like to quickly find solutions
that dominate the largest number of subsets. To this aim, we have proposed to favor
the selection of subsets that dominate the largest number of subsets. However, selecting
a good subset does not necessarily lead to a good solution. Hence, we believe there is
room for improvement. For example, we could take into account the fact that selecting
a subset degrades or not current minimum utility values.

Finally, parallelizing several searches that explore different parts of the search space
may be relevant. We have introduced and compared different strategies for parallelizing
a Pareto front search in [Cha+17b] but we did not explore all possibilities. Indeed,
we have efficient models to solve mono-criterion optimization problems and computers
have many cores. Therefore, we could take advantage of this by splitting the problem
into subproblems that focus on different parts of the search space, corresponding to
different compromises between the different criteria, and communicate the solutions
found to reduce the search space.

New relevancy measures. The main hindrance of the use of our tool is the lack
of relevancy of the extracted configuration parts that makes it hard and time consum-
ing for the expert to interpret results. Improving the relevancy of the configuration
parts we extract remains an important challenge for us. We have proposed to use the
WRAcc utility measure, and our expert found that this improved the relevancy of the
extracted configuration parts because they correspond to more correlated parameter
values. However, our input data (i.e., existing configurations) has specificities (such
as default values assigned to parameters, or parameter values that are never used by
Copilote) that degrade the quality of the solutions we obtain.

A promising improvement would be to take into account user experience data in our
relevancy measure. Indeed, Copilote logs all modifications done on parameter values
during the implementation process: Each time a value is assigned to a parameter,
Copilote records the time, the user who modified the value and the new assigned value.
Also, Copilote records every access to a screen with the user and the time of the
access. We could exploit these data to improve our relevancy measure. For instance,
we could favor configuration parts with parameters that are often modified together or
parameters that are modified after accessing a given screen.

Furthermore, we could associate an importance rate with each parameter: Copilote
has critical parameters that have a strong impact on the business logic while other
parameters have only a small impact (such as layout of screen or color of fonts, for
example). Favoring configuration parts with important parameters would ensure more
interest and value added of the extracted configuration parts. However, finding the
best way to exploit these different utility measures together may be a challenge.

Using the business unit map as a common language. This thesis is part of an
ambitious project that aims at improving the whole implementation process of Copi-
lote, which is a critical issue for Infologic. By discovering the implementation process
of Copilote as any Copilote integrator beginner on one hand, and studying existing

156

researches about ERP implementation processes on the other hand, we had the chance
to step back to think about improving the implementation process. We are convinced,
together with Infologic experts, that the business unit map could be more widely ex-
ploited to significantly improve the quality of the services proposed by Infologic. A
tremendous challenge is to relate the whole activity of Infologic to this business unit
map. Obviously, most of the activities of Infologic employees concern Copilote: They
either sell it (for sales representatives), or develop parts of it (for software develop-
ers), or configure it (for system integrators). At the moment, there exists no interface
between these different categories of employees that all work on the same product:
Copilote. However, system integrators need to know what scope of Copilote has been
sold when implementing it, sales representatives and system integrators need to know
what functionalities of Copilote have been newly developed, the management of In-
fologic needs to compare the cost of the development of new Copilote functionalities
with prices they are sold, etc. The business unit map provides an obvious common
language between all these activities: Every new development may be translated into
business units of Copilote that can be sold and implemented; A sale of Copilote may
be translated into a set of business units to install; etc. We can take advantage of this
in many different ways.

For instance, we could use the map to manage skills of system integrators. Indeed,
if every activity is related to a business unit, we can easily deduce from the past which
employees may be competent to achieve a task that requires knowledge on a given
business unit. For instance, we may record, for each system integrator, the list of
business units he has already configured in previous implementations, and this may
be used to define his scope of competences on Copilote. This may be useful to plan
activities or to train integrators if there is a lack of competences to achieve incoming
tasks, which are critical issues for Infologic.

157

Bibliography

[Agr+93] R. Agrawal, T. Imielinski, and A. Swami. “Mining association rules be-
tween sets of items in large databases”. In: International Conference on
Management of Data (SIGMOD). ACM. 1993, pp. 207–216 (cit. on p. 144).

[Ahm+12] N. Ahmad, A. Haleem, and A. A. Syed. “Compilation of Critical Success
Factors in Implementation of Enterprise Systems: A Study on Indian Or-
ganisations”. In: Global Journal of Flexible Systems Management, 13(4)
(2012), pp. 217–232 (cit. on pp. 28, 30).

[Ahm+13] M. M. Ahmad and R. Pinedo Cuenca. “Critical Success Factors for ERP
Implementation in SMEs”. In: Robot. Comput.-Integr. Manuf. 29(3) (2013),
pp. 104–111 (cit. on pp. 25, 28, 30, 35).

[AM+03] M. Al-Mashari, A. Al-Mudimigh, and M. Zairi. “Enterprise resource plan-
ning: A taxonomy of critical factors”. In: European Journal of Operational
Research, 146(2) (2003), pp. 352 –364 (cit. on pp. 28, 30).

[And09] S. Andrews. “In-Close, a fast algorithm for computing formal concepts”.
In: International Conference on Conceptual Structures (ICCS). Final ver-
sion of paper accepted (via peer review) for the International Conference
on Conceptual Structures (ICCS) 2009, Moscow. 2009 (cit. on p. 80).

[Ari+03] B. Arinze and M. Anandarajan. “A Framework for Using OO Mapping
Methods to Rapidly Configure ERP Systems”. In: Commun. ACM, 46(2)
(2003), pp. 61–65 (cit. on pp. 36, 37).

[Ari+18] N. Aribi, A. Ouali, Y. Lebbah, and S. Loudni. “Equitable Conceptual
Clustering Using OWA Operator”. In: Advances in Knowledge Discov-
ery and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018,
Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III. 2018,
pp. 465–477 (cit. on pp. 81, 99).

[Aré+07] G. Arévalo, A. Berry, M. Huchard, G. Perrot, and A. Sigayret. “Perfor-
mances of Galois Sub-hierarchy-building algorithms”. In: Fifth Interna-
tional Conference on Formal Concept Analysis. Ed. by S. K. S. Schmidt.
Vol. LNAI 4390. voir hal# lirmm-00163381 pour le rapport de recherche
au format PDF. Clermont-Ferrand, France: LNAI, 2007, pp 166–180 (cit.
on p. 80).

[Bel+05] N. Beldiceanu, M. Carlsson, and j.-x. Rampon. “Global Constraint Cata-
log”. In: (2005) (cit. on p. 64).

[Bel01] N. Beldiceanu. “Pruning for the Minimum Constraint Family and for the
Number of Distinct Values Constraint Family”. In: Principles and Prac-
tice of Constraint Programming — CP 2001. Ed. by T. Walsh. Berlin,

158

Heidelberg: Springer Berlin Heidelberg, 2001, pp. 211–224 (cit. on pp. 66,
126).

[Bes+03] C. Bessière and P. Van Hentenryck. “To Be or Not to Be ... a Global
Constraint”. In: Principles and Practice of Constraint Programming (CP).
Springer, 2003, pp. 789–794 (cit. on p. 65).

[Bes+04a] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. “Disjoint, Partition and
Intersection Constraints for Set and Multiset Variables”. In: Principles
and Practice of Constraint Programming – CP 2004. Ed. by M. Wallace.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 138–152 (cit. on
p. 66).

[Bes+04b] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. “The Complexity of
Global Constraints”. In: Proceedings of the 19th National Conference on
Artifical Intelligence. AAAI’04. San Jose, California: AAAI Press, 2004,
pp. 112–117 (cit. on p. 65).

[Bes+05] C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. “Filtering
Algorithms for the NValue Constraint”. In: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems. Ed. by R. Barták and M. Milano. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 79–93 (cit. on pp. 66, 124, 126–128).

[Bes+07] C. Bessière, E. Hébrard, B. Hnich, and T. Walsh. “The Complexity of Rea-
soning with Global Constraints”. In: Constraints, 12(2) (2007), pp. 239–
259 (cit. on p. 65).

[Bes+08] C. Bessiere and R. Debruyne. “Theoretical analysis of singleton arc consis-
tency and its extensions”. In: Artificial Intelligence, 172(1) (2008), pp. 29
–41 (cit. on p. 60).

[Bes+09a] C. Bessiere, G. Katsirelos, N. Narodytska, and T. Walsh. “Circuit Com-
plexity and Decompositions of Global Constraints”. In: Proceedings of the
21st International Jont Conference on Artifical Intelligence. IJCAI’09.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009, pp. 412–
418 (cit. on p. 65).

[Bes+09b] C. Bessiere, G. Katsirelos, N. Narodytska, C. Quimper, and T. Walsh.
“Decomposition of the NVALUE constraint”. In: CoRR, abs/0909.3273
(2009). arXiv: 0909.3273 (cit. on p. 66).

[Bes94] C. Bessiere. “Arc-consistency and arc-consistency again”. In: Artificial In-
telligence, 65(1) (1994), pp. 179 –190 (cit. on p. 60).

[Bez+78] J. C. Bezdek and J. D. Harris. “Fuzzy partitions and relations; an ax-
iomatic basis for clustering”. In: Fuzzy Sets and Systems, 1(2) (1978),
pp. 111 –127 (cit. on p. 83).

[Bez81] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Norwell, MA, USA: Kluwer Academic Publishers, 1981 (cit. on
p. 83).

http://arxiv.org/abs/0909.3273

159

[BG+05] V. Botta-Genoulaz, P.-A. Millet, and B. Grabot. “A Survey on the Recent
Literature on ERP Systems”. In: 56 (2005), pp. 510–522 (cit. on pp. 28,
29).

[Bie+09] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applica-
tions. Amsterdam, The Netherlands, The Netherlands: IOS Press, 2009
(cit. on p. 74).

[Bin+99] P. Bingi, M. K. Sharma, and J. K. Godla. “Critical Issues Affecting
an ERP Implementation”. In: Information Systems Management, 16(3)
(1999), pp. 7–14. eprint: http://dx.doi.org/10.1201/1078/43197.16.
3.19990601/31310.2 (cit. on pp. 28, 30).

[Bre+01] L. Brehm, A. Heinzl, and M. Markus. “Tailoring ERP Systems: A Spec-
trum of Choices and Their Implications”. In: Proceedings of the 34th An-
nual Hawaii International Conference on System Sciences (HICSS-34)-
Volume 8 - Volume 8. HICSS ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 8017– (cit. on p. 29).

[Buc+10] D. Bucher and J. Meissner. “Automatic Parameter Configuration for In-
ventory Management in SAP ERP/APO”. In: (Jan. 2010) (cit. on pp. 36,
37).

[Cha+17a] M. Chabert, P.-A. Champin, A. Cordier, and C. Solnon. “Comparaison
de différents modèles de programmation par contraintes pour le clustering
conceptuel”. In: Actes JPFC 2017. Montreuil-sur-Mer, France, 2017 (cit.
on p. 20).

[Cha+17b] M. Chabert and C. Solnon. “Constraint Programming for Multi-criteria
Conceptual Clustering”. In: Principles and Practice of Constraint Pro-
gramming - 23rd International Conference, CP, Proceedings. Vol. 10416.
Lecture Notes in Computer Science. Springer, 2017, pp. 460–476 (cit. on
pp. 20, 155).

[Cha+18] M. Chabert and C. Solnon. “A Global Constraint for the Exact Cover
Problem: Application to Conceptual Clustering”. In: Doctoral Program of
CP 2018. Lille, France, 2018 (cit. on p. 20).

[Che+85] Y. Cheng and K. S. Fu. “Conceptual Clustering in Knowledge Organi-
zation”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-7(5) (1985), pp. 592–598 (cit. on p. 81).

[Chu+99] S. H. Chung and C. A. Snyder. “ERP Initiation - A Historical Perspective”.
In: Proceedings of the Fifth Americas Conference on Information Systems
August 13-15, 1999 Milwaukee, Wisconsin, USA. 1999, pp. 213–215 (cit.
on p. 24).

[Dao+15a] T.-B.-H. Dao, W. Lesaint, and C. Vrain. “Clustering conceptuel et re-
lationnel en programmation par contraintes”. In: JFPC 2015. Bordeaux,
France, 2015 (cit. on pp. 13, 19, 81, 84, 86, 99, 104, 105, 110, 130).

http://dx.doi.org/10.1201/1078/43197.16.3.19990601/31310.2
http://dx.doi.org/10.1201/1078/43197.16.3.19990601/31310.2

160

[Dao+15b] T.-B.-H. Dao, K.-C. Duong, and C. Vrain. “Constrained Clustering by
Constraint Programming”. In: Artificial Intelligence (2015) (cit. on pp. 84,
86, 103–105).

[Dar+93] A. Dardenne, A. van Lamsweerde, and S. Fickas. “Goal-directed Require-
ments Acquisition”. In: Selected Papers of the Sixth International Work-
shop on Software Specification and Design. 6IWSSD. Amsterdam, The
Netherlands, The Netherlands: Elsevier Science Publishers B. V., 1993,
pp. 3–50 (cit. on p. 28).

[Dav+11] J. Davies and F. Bacchus. “Solving MAXSAT by Solving a Sequence of
Simpler SAT Instances”. In: Principles and Practice of Constraint Pro-
gramming - 17th International Conference, CP. Proceedings. Vol. 6876.
Lecture Notes in Computer Science. Springer, 2011, pp. 225–239 (cit. on
p. 114).

[Dhe+17] D. Dheeru and E. Karra Taniskidou. UCI Machine Learning Repository.
2017 (cit. on p. 99).

[Dia+00] D. Diaz and P. Codognet. “GNU Prolog: Beyond Compiling Prolog to
C”. In: Practical Aspects of Declarative Languages. Ed. by E. Pontelli and
V. Santos Costa. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 81–92 (cit. on p. 72).

[Dit+09] Y. Dittrich, S. Vaucouleur, and S. Giff. “ERP Customization as Software
Engineering: Knowledge Sharing and Cooperation”. In: IEEE Software,
26(6) (2009), pp. 41–47 (cit. on p. 29).

[Do+14] T. N. Do, S. Moga, and P. Lenca. “Random forest of oblique decision
trees for ERP semi-automatic configuration”. In: ACIIDS 2014 : the 6th
Asian Conference on Intelligent Information and Database Systems. Ed.
by Springer. Vol. 551 - SCI (Studies in Computational Intelligence). Ad-
vanced approaches to intelligent information and database systems (Stud-
ies in Computational Intelligence, Volume 551, 2014). 2014, pp. 25–34 (cit.
on p. 36).

[Duo14] K.-C. Duong. “Constrained clustering by constraint programming”. The-
ses. Université d’Orléans, 2014 (cit. on pp. 69, 81).

[Era+15] I. Erasmus and M. Daneva. “ERP services effort estimation strategies
based on early requirements”. In: 2nd International Workshop on Re-
quirements Engineering for the Precontract Phase (RE4P2) at REFSQ
2015. Ed. by A. Kalenborg and M. Trapp. CEUR Workshop Proceedings.
CEUR-WS.org, 2015, pp. 83–99 (cit. on pp. 12, 18, 45).

[Fag+17] J. Fages and C. Prud’Homme. “Making the First Solution Good!” In: 2017
IEEE 29th International Conference on Tools with Artificial Intelligence
(ICTAI). 2017, pp. 1073–1077 (cit. on p. 69).

[Fer+06] T. W. Ferratt, S. Ahire, and P. De. “Achieving Success in Large Projects:
Implications from a Study of ERP Implementations”. In: Interfaces, 36(5)
(Sept. 2006), pp. 458–469 (cit. on p. 29).

161

[Fis87] D. H. Fisher. “Knowledge Acquisition Via Incremental Conceptual Clus-
tering”. In: Mach. Learn. 2(2) (1987), pp. 139–172 (cit. on pp. 81, 148).

[Fis96] D. Fisher. “Iterative Optimization and Simplification of Hierarchical Clus-
terings”. In: J. Artif. Int. Res. 4(1) (1996), pp. 147–179 (cit. on p. 148).

[Flo+10] A. Floch, C. Wolinski, and K. Kuchcinski. “Combined scheduling and in-
struction selection for processors with reconfigurable cell fabric”. In: 21st
IEEE International Conference on Application-specific Systems Architec-
tures and Processors, ASAP 2010. 2010, pp. 167–174 (cit. on p. 96).

[FR79] J. F. Rockart. “Chief Executives Define Their Own Data Needs”. In: 57
(1979), pp. 81–93 (cit. on p. 30).

[Fre97] E. C. Freuder. “In Pursuit of the Holy Grail”. In: Constraints, 2(1) (1997),
pp. 57–61 (cit. on p. 72).

[Gan+97] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Founda-
tions. Springer, 1997 (cit. on pp. 52, 75).

[Gar+17] N. Garg, M. Sadiq, and P. Agarwal. “GOASREP: Goal Oriented Approach
for Software Requirements Elicitation and Prioritization Using Analytic
Hierarchy Process”. In: Proceedings of the 5th International Conference
on Frontiers in Intelligent Computing: Theory and Applications : FICTA
2016, Volume 2. Ed. by S. C. Satapathy, V. Bhateja, S. K. Udgata, and
P. K. Pattnaik. Singapore: Springer Singapore, 2017, pp. 281–287 (cit. on
p. 28).

[Gav02] M. Gavanelli. “An Algorithm for Multi-criteria Optimization in CSPs”. In:
Proceedings of the 15th European Conference on Artificial Intelligence.
ECAI’02. Amsterdam, The Netherlands, The Netherlands: IOS Press,
2002, pp. 136–140 (cit. on pp. 71, 137, 138, 154).

[Geb+12] M. Gebser, B. Kaufmann, and T. Schaub. “Conflict-driven answer set
solving: From theory to practice”. In: Artif. Intell. 187 (2012), pp. 52–89
(cit. on pp. 96, 116).

[Ger95] C. Gervet. “Set Intervals in Constraint Logic Programming: Definition
and implementation of a language”. Theses. Université de Franche Comté
Besançon, 1995 (cit. on p. 63).

[Gol+65] S. W. Golomb and L. D. Baumert. “Backtrack Programming”. In: J. ACM,
12(4) (1965), pp. 516–524 (cit. on p. 63).

[Gra+14] B. Grabot, A. Mayère, F. Lauroua, and R. Houe Ngouna. “ERP 2.0, what
for and how?” In: 65 (2014) (cit. on p. 25).

[Gum96] R. Gumaer. “Beyond ERP and MRP II: optimized planning and synchro-
nized manufacturing. (Enterprise Resource Planning; Manufacturing Re-
source Planning).” In: IIE Solutions. 1996. HighBeam Research. (October
6, 2017). (1996) (cit. on p. 24).

[Gun+11] T. Guns, S. Nijssen, and L. D. Raedt. “Itemset mining: A constraint pro-
gramming perspective”. In: Artif. Intell. 175(12-13) (2011), pp. 1951–1983
(cit. on p. 80).

162

[Gun15] T. Guns. “Declarative pattern mining using constraint programming.” In:
Constraints, 20(4) (2015), pp. 492–493 (cit. on pp. 13, 19, 80, 81, 83, 84,
86, 99).

[Hal+97] M. M. Halldórsson and J. Radhakrishnan. “Greed is good: Approximating
independent sets in sparse and bounded-degree graphs”. In: Algorithmica,
18(1) (1997), pp. 145–163 (cit. on p. 124).

[HB18] G. Hjort Blindell. “Universal Instruction Selection”. PhD thesis. KTH,
Software and Computer systems, SCS, 2018, p. 314 (cit. on pp. 91, 95).

[Hen+88] P. V. Hentenryck and J.-P. Carillon. “Generality versus Specificity: An
Experience with AI and OR Techniques”. In: AAAI. 1988 (cit. on p. 66).

[Hua+04] S. Huang, Y.-C. Hung, H.-G Chen, and C.-Y Ku. “Transplanting the best
practice for implementation of an ERP system: A structured inductive
study of an international company”. In: 44 (June 2004), pp. 101–110 (cit.
on p. 29).

[Héb+07] C. Hébert and B. Crémilleux. “A Unified View of Objective Interestingness
Measures”. In: MLDM. 2007 (cit. on p. 144).

[Jac01] P. Jaccard. “Distribution de la flore alpine dans le bassin des Dranses et
dans quelques régions voisines”. In: Bulletin de la Société Vaudoise des
Sciences Naturelles, 37 (1901), pp. 241 –272 (cit. on p. 79).

[Jan+15] J. Jansson and F. Jonsson. Development of an ERP Requirements Speci-
fication Method by Applying Rapid Contextual Design : A Case Study of
a Medium-sized Enterprise. 2015 (cit. on p. 28).

[Jun+10] T. Junttila and P. Kaski. “Exact Cover via Satisfiability: An Empirical
Study”. In: Principles and Practice of Constraint Programming – CP 2010.
Springer, 2010, pp. 297–304 (cit. on pp. 90, 96, 97, 116–118).

[Kar72] R. M. Karp. “Reducibility among Combinatorial Problems”. In: Complex-
ity of Computer Computations. Springer, 1972, pp. 85–103 (cit. on p. 88).

[Kas+08] P. Kaski and O. Pottonen. “libexact User s Guide, Version 1.0”. In: HIIT
Technical Reports, 187 (2008) (cit. on pp. 95, 96, 116).

[Khi+10] M. Khiari, P. Boizumault, and B. Crémilleux. “Constraint Programming
for Mining n-ary Patterns”. In: Principles and Practice of Constraint Pro-
gramming - CP 2010 - 16th International Conference, CP 2010, St. An-
drews, Scotland, UK, September 6-10, 2010. Proceedings. 2010, pp. 552–
567 (cit. on p. 80).

[Knu09] D. E. Knuth. “Dancing links”. In: Millenial Perspectives in Computer Sci-
ence, 18 (2009), p. 4 (cit. on pp. 14, 19, 90, 91, 95, 112, 114–116).

[Kog+06] J. Kogan, C. Nicholas, and M. Teboulle. Grouping Multidimensional Data:
Recent Advances in Clustering. Berlin , Heidelberg: Springer-Verlag, 2006
(cit. on p. 83).

163

[Kuz+02] S. O. Kuznetsov and S. Obiedkov. “Comparing Performance of Algo-
rithms for Generating Concept Lattices”. In: JOURNAL OF EXPER-
IMENTAL AND THEORETICAL ARTIFICIAL INTELLIGENCE, 14
(2002), pp. 189–216 (cit. on p. 80).

[Kuz99] S. O. Kuznetsov. “Learning of Simple Conceptual Graphs from Positive
and Negative Examples”. In: Principles of Data Mining and Knowledge
Discovery. Ed. by J. M. Żytkow and J. Rauch. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 384–391 (cit. on p. 80).

[KW16] S. S. Klaus Wölfel Jean-Paul Smets. “Automating ERP Package Config-
uration for Small Businesses”. In: (2016) (cit. on p. 36).

[Käh14] A. A. andTommi Kähkönen. “Knowledge Transfer Challenges in ERP De-
velopment Networks: The Quest for a Shared Development Model”. In:
27th Bled eConference: eEcosystems, Bled, Slovenia, June 1-5, 2014. 2014,
p. 27 (cit. on pp. 28, 30).

[Lac+14] C. Lacombe, R. Pochelu, S. Tazi, and Y. Ducq. “Model-Driven Enter-
prise Resource Planning Specifications in SMEs”. In: IFIP International
Conference on Advances in Production Management Systems (APMS).
Ed. by B. Grabot, B. Vallespir, S. Gomes, A. Bouras, and D. Kiritsis.
Vol. AICT-440. Advances in Production Management Systems. Innova-
tive and Knowledge-Based Production Management in a Global-Local
World Part III. Part 2: Case Studies. Ajaccio, France: Springer, Sept.
2014, pp. 538–545 (cit. on p. 28).

[Lav+99] N. Lavrač, P. Flach, and B. Zupan. “Rule Evaluation Measures: A Unifying
View”. In: Inductive Logic Programming. Ed. by S. Džeroski and P. Flach.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 174–185 (cit. on
p. 144).

[Law+04] Y. C. Law and J. H. M. Lee. “Global Constraints for Integer and Set
Value Precedence”. In: 10th International Conference on Principles and
Practice of Constraint Programming (CP). Springer Berlin Heidelberg,
2004, pp. 362–376 (cit. on pp. 66, 85).

[Laz+16] N. Lazaar, Y. Lebbah, S. Loudni, M. Maamar, V. Lemière, C. Bessiere,
and P. Boizumault. “A Global Constraint for Closed Frequent Pattern
Mining”. In: Principles and Practice of Constraint Programming - 22nd In-
ternational Conference, CP 2016, Toulouse, France, September 5-9, 2016,
Proceedings. 2016, pp. 333–349 (cit. on p. 80).

[Lec96] A Bounds-Based Reduction Scheme for Difference Constraints. 1996 (cit.
on p. 60).

[Lig01] B. Light. “The Maintenance Implications of the Customization of ERP
Software”. In: 13 (2001), pp. 415 –429 (cit. on p. 29).

[Lig05] B. Light. “Going Beyond ’Misfit’ As a Reason for ERP Package Customi-
sation”. In: Comput. Ind. 56(6) (Aug. 2005), pp. 606–619 (cit. on p. 29).

164

[LO+03] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. Van Beek. “A Fast
and Simple Algorithm for Bounds Consistency of the All Different Con-
straint”. In: Proceedings of the 18th International Joint Conference on
Artificial Intelligence. IJCAI’03. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2003, pp. 245–250 (cit. on p. 60).

[Lui+] J. Luis, D. V. González, and J. S. Díaz. Business process-driven require-
ments engineering: a goal-based approach (cit. on p. 28).

[Luo+04] W. Luo and D. M. Strong. “A framework for evaluating ERP implementa-
tion choices”. In: IEEE Transactions on Engineering Management, 51(3)
(2004), pp. 322–333 (cit. on p. 29).

[Mac67] J. MacQueen. “Some methods for classification and analysis of multivari-
ate observations”. In: Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley,
Calif.: University of California Press, 1967, pp. 281–297 (cit. on p. 80).

[Mac77] A. Mackworth. “Consistency in Networks of Relations”. In: Artificial In-
telligence, 8(1) (1977). Reprinted in Readings in Artificial Intelligence,
B. L. Webber and N. J. Nilsson (eds.), Tioga Publ. Col., Palo Alto,
CA, pp. 69-78, 1981. This paper was honored in Artificial Intelligence
59, 1-2, 1993 as one of the fifty most cited papers in the history of Ar-
tificial Intelligence. It also received the 2013 AIJ Classic Paper Award:
http://www.journals.elsevier.com/artificial-intelligence/news/announcing-
winners-of-the-2013-aij-classic-paper-award/, pp. 99–118 (cit. on p. 58).

[Mam13] S. Mamoghli. “Contribution to the alignment of off-the-shelf product based
information systems : towards a model-driven engineering, based on risk
identification”. Theses. Université de Strasbourg, 2013 (cit. on p. 28).

[Meh+00] K. Mehlhorn and S. Thiel. “Faster Algorithms for Bound-Consistency of
the Sortedness and the Alldifferent Constraint”. In: Principles and Prac-
tice of Constraint Programming – CP 2000. Ed. by R. Dechter. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 306–319 (cit. on p. 60).

[Mic+83] R. S. Michalski and R. E. Stepp. “Learning from Observation: Conceptual
Clustering”. In: Machine Learning: An Artificial Intelligence Approach.
Ed. by R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1983, pp. 331–363 (cit. on pp. 81,
148).

[Mic80] R. Michalski. Knowledge Acquisition Through Conceptual Clustering: A
Theoretical Framework and an Algorithm for Partitioning Data Into Con-
junctive Concepts. Report (University of Illinois at Urbana-Champaign.
Dept. of Computer Science). Department of Computer Science, University
of Illinois at Urbana-Champaign, 1980 (cit. on p. 81).

[Moh+86] R. Mohr and T. Henderson. “Arc and Path Consistency Revisited”. In:
Artificial Intelligence, 28 (1986), pp. 225–233 (cit. on p. 60).

[Moh+88] R. Mohr and G. Masini. “Good Old Discrete Relaxation”. In: Proceed-
ings of the 8th European Conference on Artificial Intelligence. ECAI’88.

165

Marshfield, MA, USA: Pitman Publishing, Inc., 1988, pp. 651–656 (cit. on
p. 60).

[Mot+05] J. Motwani, R. Subramanian, and P. Gopalakrishna. “Critical Factors for
Successful ERP Implementation: Exploratory Findings from Four Case
Studies”. In: Comput. Ind. 56(6) (Aug. 2005), pp. 529–544 (cit. on pp. 28,
30, 32, 35).

[NAP05] A. NAPOLI. “Chapter 41 - A SMOOTH INTRODUCTION TO SYM-
BOLIC METHODS FOR KNOWLEDGE DISCOVERY”. In: Handbook
of Categorization in Cognitive Science. Ed. by H. Cohen and C. Lefebvre.
Oxford: Elsevier Science Ltd, 2005, pp. 913 –933 (cit. on p. 75).

[Nem+88] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. New York, NY, USA: Wiley-Interscience, 1988 (cit. on p. 74).

[Nig11] P. Nightingale. “The extended global cardinality constraint: An empirical
survey”. In: Artificial Intelligence, 175(2) (2011), pp. 586 –614 (cit. on
p. 96).

[Nov+09] P. K. Novak, N. Lavrac, and G. I. Webb. “Supervised Descriptive Rule
Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and
Subgroup Mining”. In: Journal of Machine Learning Research, 10 (2009),
pp. 377–403 (cit. on p. 144).

[Oua+16] A. Ouali, S. Loudni, Y. Lebbah, P. Boizumault, A. Zimmermann, and L.
Loukil. “Efficiently Finding Conceptual Clustering Models with Integer
Linear Programming”. In: Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016. 2016, pp. 647–654 (cit. on pp. 13, 14, 19, 81, 83, 86,
99, 108, 112, 130).

[Pac+99] F. Pachet and P. Roy. “Automatic Generation of Music Programs”. In:
Principles and Practice of Constraint Programming – CP’99. Ed. by J.
Jaffar. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 331–345
(cit. on p. 65).

[Pan] Solutions, P.C.: Panorama consulting solutions research report - 2017
ERP Report. Technical report, Panorama Consulting Solutions (2017),
2017 (cit. on pp. 28, 29).

[Par+14] S. Parthasarathy and S. Sharma. “Determining ERP customization choices
using nominal group technique and analytical hierarchy process”. In: Com-
puters in Industry, 65(6) (2014), pp. 1009 –1017 (cit. on p. 29).

[Par96] V. Pareto. Cours d’Economie Politique. Genève: Droz, 1896 (cit. on p. 69).

[Pas+99a] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. “Discovering Frequent
Closed Itemsets for Association Rules”. In: Database Theory - ICDT ’99,
7th International Conference. 1999, pp. 398–416 (cit. on p. 80).

[Pas+99b] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. “Efficient mining of
association rules using closed itemset lattices”. In: Information Systems,
24(1) (1999), pp. 25 –46 (cit. on p. 80).

166

[Pei+00] J. Pei, J. Han, and R. Mao. “CLOSET: An Efficient Algorithm for Mining
Frequent Closed Itemsets”. In: 2000, pp. 21–30 (cit. on p. 80).

[Pru+16] C. Prud’homme, J.-G. Fages, and X. Lorca. Choco Documentation. TASC,
INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. 2016 (cit. on
pp. 66, 72, 97, 105, 108, 130).

[Pug98] J.-F. Puget. “A Fast Algorithm for the Bound Consistency of Alldiff Con-
straints”. In: Proceedings of the Fifteenth National/Tenth Conference on
Artificial Intelligence/Innovative Applications of Artificial Intelligence.
AAAI ’98/IAAI ’98. Menlo Park, CA, USA: American Association for
Artificial Intelligence, 1998, pp. 359–366 (cit. on p. 60).

[Qui+04] C. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. “Improved Al-
gorithms for the Global Cardinality Constraint”. In: Principles and Prac-
tice of Constraint Programming - CP 2004, 10th International Confer-
ence, Proceedings. Vol. 3258. Lecture Notes in Computer Science. Springer,
2004, pp. 542–556 (cit. on pp. 66, 96).

[Rae+08] L. D. Raedt, T. Guns, and S. Nijssen. “Constraint programming for item-
set mining”. In: Proceedings of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Las Vegas, Nevada,
USA, August 24-27, 2008. 2008, pp. 204–212 (cit. on p. 80).

[Rob+11] L. Robert, A. R. Davis, and A. McLeod. “ERP Configuration: Does Sit-
uation Awareness Impact Team Performance?” In: 2011 44th Hawaii In-
ternational Conference on System Sciences (HICSS 2011), 00(undefined)
(2011), pp. 1–8 (cit. on pp. 28, 30).

[Rol+01] C. Rolland and N. Prakash. “Matching ERP System Functionality to Cus-
tomer Requirements”. In: International Symposium on Requirements En-
gineering. Canada, 2001, p. 1 (cit. on pp. 28, 29, 46).

[Ros+06] F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). New York, NY, USA: Elsevier
Science Inc., 2006 (cit. on pp. 55, 60, 72).

[Ros+99] M. Rosemann and J. Wiese. “Measuring the Performance of ERP Soft-
ware: a Balanced Scorecard Approach”. In: (1999) (cit. on p. 25).

[Rég94] J.-C. Régin. “A Filtering Algorithm for Constraints of Difference in CSPs”.
In: Proceedings of the Twelfth National Conference on Artificial Intelli-
gence (Vol. 1). AAAI ’94. Menlo Park, CA, USA: American Association
for Artificial Intelligence, 1994, pp. 362–367 (cit. on pp. 60, 65).

[Rég96] J.-C. Régin. “Generalized Arc Consistency for Global Cardinality Con-
straint”. In: Proceedings of the Thirteenth National Conference on Arti-
ficial Intelligence - Volume 1. AAAI’96. Portland, Oregon: AAAI Press,
1996, pp. 209–215 (cit. on p. 66).

[Sch+13] P. Schaus and R. Hartert. “Multi-Objective Large Neighborhood Search”.
In: Principles and Practice of Constraint Programming: 19th International

167

Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceed-
ings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 611–627
(cit. on p. 71).

[Sch+17] P. Schaus, J. O. R. Aoga, and T. Guns. “CoverSize: A Global Constraint
for Frequency-Based Itemset Mining”. In: Principles and Practice of Con-
straint Programming. Ed. by J. C. Beck. Cham: Springer International
Publishing, 2017, pp. 529–546 (cit. on p. 80).

[Sha+12] R Sharma, S M. Patil, and A. Tandon. “CUSTOMIZATION AND BEST
PRACTICES MODEL FOR ADOPTING ERP SYSTEM: AN ANALY-
SIS”. In: (June 2012) (cit. on p. 29).

[Sko+01] W. Skok and M. Legge. “Evaluating Enterprise Resource Planning (ERP)
Systems Using an Interpretive Approach”. In: Proceedings of the 2001
ACM SIGCPR Conference on Computer Personnel Research. SIGCPR
’01. New York, NY, USA: ACM, 2001, pp. 189–197 (cit. on p. 29).

[Sof+05] P. Soffer, B. Golany, and D. Dori. “Aligning an ERP System with En-
terprise Requirements: An Object-process Based Approach”. In: Comput.
Ind. 56(6) (2005), pp. 639–662 (cit. on p. 28).

[Soh+00] C. Soh, S. Sia, and J. Tay-Yap. “Enterprise Resource Planning: Cultural
Fits and Misfits: Is ERP a Universal Solution?” In: 43 (2000), pp. 47–51
(cit. on p. 29).

[Som+01] T. M. Somers and K. Nelson. “The impact of critical success factors across
the stages of enterprise resource planning implementations”. In: Proceed-
ings of the 34th Annual Hawaii International Conference on System Sci-
ences. 2001, 10 pp.– (cit. on pp. 28, 30).

[Ste+86] R. E. Stepp and R. S. Michalski. “Conceptual clustering of structured
objects: A goal-oriented approach”. In: Artificial Intelligence, 28(1) (1986),
pp. 43 –69 (cit. on p. 81).

[tea05] G. team. Gecode (generic constraint development environment). 2005 (cit.
on pp. 72, 105, 130).

[Uno+04] T. Uno, T. Asai, Y. Uchida, and H. Arimura. “An Efficient Algorithm for
Enumerating Closed Patterns in Transaction Databases”. In: Discovery
Science: 7th International Conference, DS 2004, Padova, Italy, October
2-5, 2004. Proceedings. Ed. by E. Suzuki and S. Arikawa. Springer Berlin
Heidelberg, 2004, pp. 16–31 (cit. on pp. 13, 19, 80, 86, 91, 106, 112).

[VH89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Cam-
bridge, MA, USA: MIT Press, 1989 (cit. on p. 67).

[VIL09] I. VILPOLA. “DEVELOPMENTAND EVALUATIONOF A CUSTOMER-
CENTERED ERP IMPLEMENTATION METHOD”. In: Tampere Uni-
versity of Technology. 2009 (cit. on p. 28).

[Wal+97] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A Platform for Con-
straint Logic Programming. 1997 (cit. on p. 72).

[Wal03] T. Walsh. “Consistency and Propagation with Multiset Constraints: A
Formal Viewpoint”. In: Principles and Practice of Constraint Program-
ming – CP 2003. Ed. by F. Rossi. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 724–738 (cit. on p. 66).

[Was+80] L. N. V. Wassenhove and L. F. Gelders. “Solving a bicriterion schedul-
ing problem”. In: European Journal of Operational Research, 4(1) (1980),
pp. 42 –48 (cit. on pp. 69, 136, 138, 141, 154).

[Wu+07] J.-H. Wu, S.-S. Shin, and M. S. Heng. “A methodology for ERP misfit
analysis”. In: Information and Management, 44(8) (2007), pp. 666 –680
(cit. on p. 29).

[YAG93] R. R. YAGER. “On Ordered Weighted Averaging Aggregation Operators
in Multicriteria Decisionmaking”. In: Readings in Fuzzy Sets for Intelli-
gent Systems. Ed. by D. Dubois, H. Prade, and R. R. Yager. Morgan
Kaufmann, 1993, pp. 80 –87 (cit. on p. 82).

[Zak+05] M. J. Zaki and C.-J. Hsiao. “Efficient Algorithms for Mining Closed Item-
sets and Their Lattice Structure”. In: IEEE Trans. on Knowl. and Data
Eng. 17(4) (2005), pp. 462–478 (cit. on p. 80).

[Zak+99] M. J. Zaki and C.-J. Hsiao. CHARM: An Efficient Algorithm for Closed
Association Rule Mining. Tech. rep. COMPUTER SCIENCE, RENSSE-
LAER POLYTECHNIC INSTITUTE, 1999 (cit. on p. 80).

[Zak00] M. J. Zaki. “Scalable Algorithms for Association Mining”. In: IEEE Trans.
on Knowl. and Data Eng. 12(3) (2000), pp. 372–390 (cit. on p. 80).

[Zha+01] Y. Zhang and R. H. C. Yap. “Making AC-3 an Optimal Algorithm”. In:
Proceedings of the 17th International Joint Conference on Artificial In-
telligence - Volume 1. IJCAI’01. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2001, pp. 316–321 (cit. on p. 60).

[Zho+13] N.-F. Zhou and H. Kjellerstrand. A User s Guide to Picat. 2013 (cit. on
p. 72).

FOLIO ADMINISTRATIF

THÈSE DE L’UNIVERSITÉ DE LYON OPÉRÉE AU SEIN DE L’INSA LYON

Nom : Chabert Date de soutenance : 18 Décembre 2018
Prénom : Maxime
Titre : Constraint Programming Models for Conceptual Clustering : Application to
an ERP Configuration Problem
Nature : Doctorat Numéro d’ordre : 2018LYSEI118
École doctorale : InfoMaths
Spécialité : Informatique
Résumé :

Les ERP (Enterprise Resource Planning) sont incontournables dans les sys-
tèmes d’information des sociétés industrielles : ils jouent un rôle crucial pour
automatiser et suivre leurs processus afin d’améliorer leur compétitivité. Un
ERP est un logiciel générique qui est utilisé par plusieurs sociétés industrielles
ayant des besoins et des processus différents. C’est pourquoi de nombreux para-
mètres permettent d’adapter le fonctionnement du système aux besoins d’une
société. Cette thèse vise à simplifier le paramétrage d’un ERP. Nous proposons
une approche visant à extraire, depuis l’ensemble des paramétrages existants,
un catalogue de paramétrages correspondant à des besoins fonctionnels pré-
cédemment rencontrés afin de les réutiliser lors des prochains déploiements
de Copilote. Nous proposons d’utiliser la programmation par contraintes pour
cela, afin de pouvoir facilement personnaliser les solutions calculées en ajou-
tant des contraintes et des critères d’optimisation variés. Nous introduisons
de nouveaux modèles à base de contraintes pour résoudre des problèmes de
clustering conceptuel, ainsi qu’une contrainte globale pour le problème de cou-
verture exacte avec plusieurs algorithmes de propagation.

Mots-clefs : ERP - Conceptual clustering - Constraint programming
Laboratoire de recherche : liris
Directrice de thèse : Christine Solnon
Président de jury :
Composition du jury :

Thi-Bich-Hanh Dao
Christian Bessière
Elisa Fromont
Valérie Botta-Genoulaz
Christian Schulte
Christine Solnon
Pierre-Antoine Champin

	Introduction
	I Applicative Context and Proposed Approach
	Enterprise Resource Planning
	Definition of an ERP
	Presentation of Infologic and Copilote
	ERP implementation issues
	Alignment of the ERP system with enterprise processes
	Best practices vs ERP customization
	Critical success factors

	Implementation process of Copilote
	Time allocation
	Discussion

	Configuration of Copilote
	Existing Configuration Tools
	Categories of requirements
	Architecture of the configuration of Copilote
	Methodology
	Focus on general parameters of Copilote
	Discussion

	Proposed approach: From Configurations to Requirements
	Map of the business units of Copilote
	Use of the map
	Collecting the requirements
	Business logic scope of the parameters

	From configurations to requirements
	Discussion

	II Technical Context
	Constraint Programming
	Constraint Satisfaction Problems
	Constraint Propagation
	Backtracking search algorithms
	Set Variables
	Global Constraints
	Solving Optimization Problems with CP
	Mono-criterion optimization
	Multi-criteria Optimization

	Constraint Programming Libraries
	Discussion

	Conceptual clustering
	Motivations
	Formal Concepts
	Conceptual Clustering
	Declarative approaches for conceptual clustering
	Boolean-based CP model
	Set-based CP model
	Hybrid ILP model for conceptual clustering

	Discussion

	Exact Cover problem
	Definitions and notations
	Applications of EC
	Dedicated Algorithm DLX
	Existing CP models to solve EC
	Boolean-based Model
	Gcc-based Model

	Existing SAT models to solve EC
	Comparison of declarative approaches with DLX
	Discussion

	Benchmark
	Description of UCI instances
	Description of ERP instances

	III New CP Approaches for Conceptual Clustering
	New CP models
	New CP Model for Conceptual Clustering
	New CP Model for the Exact Cover Problem
	Experimental evaluation
	Discussion

	ExactCover global constraint
	Definition of exactCover
	Basic propagator
	DL Propagator
	DL+ Propagator
	Experimental Evaluation
	Extension of exactCover to exactCoverCost
	Discussion

	Constraining the number of selected subsets
	Addition of Existing Constraints to exactCover
	Definition of exactCoverK and exactCoverCostK
	Basic Propagator
	MD Propagator
	MD+ Propagator

	Discussion

	Evaluation of exactCover on Conceptual Clustering Problems
	Experimental Protocol
	Single criterion optimization
	Single criterion optimization when k is fixed
	Single criterion optimization when k is bounded

	Multi criteria optimization
	Comparison of propagation algorithms of exactCoverCost
	New dynamic approach
	Comparison with state-of-the-art declarative approaches

	Discussion

	Application to ERP customization
	Use case
	Relevancy measures
	Feedbacks and improvements
	Properties of the formal concepts.
	Pivot items
	Soft clustering
	Hierarchical clustering
	Default parameter values

	Complete toolkit for configuration part mining
	Discussion

	Conclusion

