
HAL Id: tel-01963082
https://hal.science/tel-01963082v1

Submitted on 21 Dec 2018 (v1), last revised 19 Feb 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shape Abstractions with Support for Sharing and
Disjunctions

Huisong Li

To cite this version:
Huisong Li. Shape Abstractions with Support for Sharing and Disjunctions. Programming Languages
[cs.PL]. ENS Paris - Ecole Normale Supérieure de Paris; PSL University, 2018. English. �NNT : �.
�tel-01963082v1�

https://hal.science/tel-01963082v1
https://hal.archives-ouvertes.fr

 !

Soutenue par
Huisong LI
le 3 janvier 2018  

THÈSE DE DOCTORAT  

de l’Université de recherche Paris Sciences et Lettres 
PSL Research University
 

 

Préparée à l’Ecole Normale Supérieure

Dirigée par Xavier RIVAL
 

 Abstractions de la Forme des Structures de Données Supportant
Partage et Disjonctions

Shape Abstractions with Support for Sharing and Disjunctions

COMPOSITION DU JURY :  

M. VAFEIADIS Viktor
MPI-SWS, Rapporteur 

M. RINETZKY Noam
Tel aviv university, Rapporteur 

Mme. BLAZY Sandrine
University of Rennes 1, Membre du jury

M. ZAPPA NARDELLI Francesco
ENS & INRIA, Membre du jury

M. CHANG Bor Yuh Evan
University of Colorado Boulder,
Membre du jury

Mme. DRAGOI Cezara
ENS & INRIA, Membre du jury

M. RIVAL Xavier
Ens & INRIA, Membre du jury

Ecole doctorale n°386  
 
 Ecole doctorale de Sciences Mathématiques de Paris Centre

 
Spécialité Informatique

2

i

Résumé

L’analyse statique des programmes permet de calculer automatiquement des propriétés sé-
mantiques valides pour toutes les exécutions. En particulier, dans le cas des programmes ma-
nipulant des structures de données complexes en mémoire, l’analyse statique peut inférer des
invariants utiles pour prouver la sûreté des accès à la mémoire ou la préservation d’invariants
structurels. Beaucoup d’analyses de ce type manipulent des états mémoires abstraits représen-
tés par des conjonctions en logique de séparation dont les prédicats de base décrivent des blocs
de mémoire atomiques ou bien résument des régions non-bornées de la mémoire telles que des
listes ou des arbres. De telles analyses utilisent souvent des disjonctions finies d’états mémoires
abstraits afin de mieux capturer leurs dissimilarités. Les analyses existantes permettent de
raisonner localement sur les zones mémoires mais présentent les inconvénients suivants:
(1) Les prédicats inductifs ne sont pas assez expressifs pour décrire précisément toutes les

structures de données dynamiques, du fait de la présence de pointeurs vers des parties
arbitraires (i.e., non-locales) de ces structures;

(2) Les opérations abstraites correspondant à des accès en lecture ou en écriture sur ces prédi-
cats inductifs reposent sur une opération matérialisant les cellules mémoires correspon-
dantes. Cette opération de matérialisation crée en général de nouvelles disjonctions, ce qui
nuit à l’impératif d’efficacité. Hélas, les prédicats exprimant des contraintes de structure
locale ne sont pas suffisants pour déterminer de façon adéquate les ensembles de disjonc-
tions devant être fusionnés, ni pour définir les opérations d’union et d’élargissement d’états
abstraits.

Cette thèse est consacrée à l’étude et la mise au point de prédicats en logique de séparation
permettant de décrire des structures de données dynamiques, ainsi que des opérations abstraites
afférentes. Nous portons une attention particulière aux opérations d’union et d’élargissement
d’états abstraits. Nous proposons une méthode pratique permettant de raisonner globalement
sur ces états mémoires au sein des méthodes existantes d’analyse de propriétés structurelles et
autorisant la fusion précise et efficace de disjonctions.

Nous proposons et implémentons une abstraction structurelle basée sur les variables d’ensembles
qui lorsque elle est utilisée conjointement avec les prédicats inductifs permet la spécification
et l’analyse de propriétés structurelles globales. Nous avons utilisé ce domaine abstrait afin
d’analyser une famille de programmes manipulant des graphes représentés par liste d’adjacence.

Nous proposons un critère sémantique permettant de fusionner les états mémoires abstraits
similaires en se basant sur leur silhouette, cette dernière représentant certaines propriétés struc-
turelles globales vérifiées par l’état correspondant. Les silhouettes s’appliquent non seulement à
la fusion de termes dans les disjonctions d’états mémoires mais également à l’affaiblissement de
conjonctions de prédicats de logique de séparation en prédicats inductifs. Ces contributions nous
permettent de définir des opérateurs d’union et d’élargissement visant à préserver les disjonctions
requises pour que l’analyse se termine avec succès. Nous avons implémenté ces contributions au

ii

sein de l’analyseur MemCAD et nous en avons évaluées l’impact sur l’analyse de bibliothèques
existantes écrites en C et implémentant différentes structures de données, incluant des listes
doublement chaînées, des arbres rouge-noir, des arbres AVL et des arbres “splay”. Nos résultats
expérimentaux montrent que notre approche est à même de contrôler la taille des disjonctions
à des fins de performance sans pour autant nuire à la précision de l’analyse.

iii

Abstract

Shape analyses rely on expressive families of logical properties to infer complex structural in-
variants, such that memory safety, structure preservation and other memory properties of pro-
grams dealing with dynamic data structures can be automatically verified. Many such analyses
manipulate abstract memory states that consist of separating conjunctions of basic predicates
describing atomic blocks or summary predicates that describe unbounded heap regions like lists
or trees using inductive definitions. Moreover, they use finite disjunctions of abstract memory
states in order to take into account dissimilar shapes. Although existing analyses enable local
reasoning of memory regions, they do, however, have the following issues:
(1) The summary predicates are not expressive enough to describe precisely all the dynamic

data structures. In particular, a fairly large number of data structures with unbounded
sharing, such as graphs, cannot be described inductively in a local manner;

(2) Abstract operations that read or write into summaries rely on materialization of memory
cells. The materialization operation in general creates new disjunctions, yet the size of
disjunctions should be kept small for the sake of efficiency. However, local predicates are
not enough to determine the right set of disjuncts that should be clumped together and
to define precise abstract join and widen operations.

In this thesis, we study separating conjunction-based shape predicates and the related abstract
operations, in particular, abstract joining and widening operations that lead to critical modifi-
cations of abstract states. We seek a lightweight way to enable some global reasoning in existing
shape analyses such that shape predicates are more expressive for abstracting data structures
with unbounded sharing and disjuncts can be clumped precisely and efficiently.

We propose a shape abstraction based on set variables that when integrated with inductive
definitions enables the specification and shape analysis of structures with unbounded sharing.
We implemented the shape analysis domain by combining a separation logic-based shape abstract
domain of the MemCAD analyzer and a set abstract domain, where the set abstractions are
used to track unbounded pointer sharing properties. Based on this abstract domain, we analyzed
a group of programs dealing with adjacency lists of graphs.

We design a general semantic criterion to clump abstract memory states based on their
silhouettes that express global shape properties, i.e., clumping abstract states when their sil-
houettes are similar. Silhouettes apply not only to the conservative union of disjuncts but also
to the weakening of separating conjunctions of memory predicates into inductive summaries.
Our approach allows us to define union and widening operators that aim at preserving the case
splits that are required for the analysis to succeed. We implement this approach in the Mem-
CAD analyzer and evaluate it on real-world C libraries for different data structures, including
doubly-linked lists, red-black trees, AVL-trees and splay-trees. The experimental results show
that our approach is able to keep the size of disjunctions small for scalability and preserve case
splits that takes into account dissimilar shapes for precision.

iv

v

Acknowledgments

My first thank goes to my advisor, Xavier Rival, for giving me the chance to do my PhD
in France and work on very challenging and interesting topics. He always gave me great advice
on research, paper writing, presentation, programming and so on, and was always kind and
generous towards me.

I want to express my most sincere gratitude to my reviewers for accepting the time-consuming
task of reading this manuscript. If I did my job right, it should be easier to read than it was
to write. I’d like to extend my thanks to the other members of my PhD jury, who did me the
honor of accepting to come from far to listen to me. Moreover, I want to thank Richard James,
who read my thesis and gave me a lot of useful comments to help me to improve my English
writing.

I also want to warmly thank my co-authors: Francois Beranger, Arlen Cox and Bor-Yuh Evan
Chang for many great discussions, collaboration, and for their help. In particular, thanks to
Francois for all the funny jokes we had in our office, for helping me deal with many administrative
papers and for organizing many wine parties.

Next, I thank to all the people in my group: Jiangchao Liu, Cheng Tie, Antoine Toubhans,
Hugo Illous, Francois Beranger, Arlen Cox, Pippijn Van Steenhoeven, Yoonseok Ko, Changhee
Park for all the group meetings that helped me improve my papers, presentations and research
ideas. In particular, I would like to thank Jiangchao for being helpful on uncountably many
times during my PhD, and as we were doing our PhD at the same time, I was almost never
alone in the office.

I am also very grateful to all the people in my lab including: Jerome Feret, Antoine Mine,
Cezara Dragoi, Vincent Danos, Caterina Urban, Thibault Suzanne, Mehdi Bouaziz, Ferdinanda
Camporesi, Lý Kim Quyên, Stan Le Cornec, Nicolas Behr, Andrea Beica, Marc Chevalier for all
the help, discussions, parties and wonderful lunch times. Thanks to Caterina, Arlen, Jiangchao
for watching many nice movies together when I was alone in Paris, Ferdinanda for being a nice
friend and teaching me how to make pizza, and Jerome Feret for his invaluable help.

I am very grateful to all my friends who supported me in my effort toward this PhD, in
particular, Chengqing Chen for the wonderful time we had when we shared a flat, Kailiang Ji
who went on a nice travel with me when I was very depressed and Chao Wang, Lili Xu, Teng
Long and Ye Jin who were always nice and helped me a lot.

Finally, I would like to thank all my family for supporting me throughout my studies, espe-
cially my boyfriend, Ilias Garnier, for all your love, support, understanding and tolerance, and
for building a nice home with me.

vi

Contents

Résumé iii

Abstract iv

Acknowledgments vi

I Introduction to Shape Analysis v

1 Introduction 1
1.1 Dynamic Memory Allocation and Dynamic Data Structures 1
1.2 Software Problems Involving Pointers and Dynamic Data Structures 3

1.2.1 Memory Safety Problems . 4
1.2.2 Security Problems . 7

1.3 Improving Software Quality Against Memory problems 7
1.3.1 Systematic Software Development . 7
1.3.2 Testing and Code Reviewing . 8
1.3.3 Formal Verification . 8

1.4 Pointer Analyses and Shape Analyses . 10
1.4.1 Pointer analyses. 10
1.4.2 Three-valued Logic Based Shape Analyses 11
1.4.3 Separation Logic Based Shape Analysis 12
1.4.4 Other Shape Analyses . 13

1.5 Outstanding Challenges in Shape Analysis . 14
1.5.1 Reasoning about Sharing in Separation Logic Based Shape Analysis . . . 14
1.5.2 Improving Scalability and Disjunction Control 16

1.6 Outline and Contributions of the Thesis . 19

2 Separation Logic Based Shape Analysis 21
2.1 A Simple Imperative Language . 21

2.1.1 Syntax . 21
2.1.2 Concrete States . 23
2.1.3 Concrete Semantics . 25

2.2 Abstract Interpretation . 28

ii Contents

2.3 Memory State Abstractions . 32
2.4 Abstract Semantics . 38

2.4.1 Abstract Store Operations . 39
2.4.2 Unfolding . 41
2.4.3 Abstract Evaluation of Left and Right Value Expressions 43
2.4.4 Folding . 45
2.4.5 Abstract Denotational Semantics . 48

2.5 Domain Signatures . 50

II Shape Analysis for Unstructured Sharing 53

3 Overview 55
3.1 Abstraction . 55
3.2 Analysis Algorithm . 58

4 Abstractions for Data-Structures with Unstructured Sharing 63
4.1 Inductive Definitions with Set Predicates . 63
4.2 Composite Memory Abstraction with Set Predicates 64
4.3 Properties of Set Parameters . 67

5 Abstract Domains for Set Reasoning 71
5.1 Set Constraints and Abstractions . 71

5.1.1 Concrete States of Set Variables . 71
5.1.2 Set Abstractions . 72

5.2 Set Domains . 74
5.2.1 Linear Set Domain . 74
5.2.2 BDD-based Set Domain . 77

6 Static Analysis Algorithms for Unstructured Sharing Abstractions 81
6.1 Abstract states . 81
6.2 Computation of Abstract Post-conditions . 82

6.2.1 Abstract Operators and Unfolding . 82
6.2.2 Non-local Unfolding . 84

6.3 Abstract Lattice Operations . 86
6.3.1 Inclusion Checking . 86
6.3.2 Joining and Widening . 91

6.4 Soundness of The Analysis . 96
6.5 Implementation and Experimental Evaluation . 96
6.6 Related Works of The Analysis for Unstructured Sharing 100
6.7 Conclusion on The Analysis for Unstructured Sharing 100

Contents iii

III Silhouette-guided Disjunct Clumping 103

7 Overview 105
7.1 Semantic-Directed Disjunct Clumping . 105

7.1.1 Disjunct Clumping Problem . 105
7.1.2 Clumping Disjuncts Based on their Abstraction 107

7.2 Analysis of an AVL Tree Insertion Function . 108

8 Silhouette Abstractions: Abstraction of Memory Abstract States 115
8.1 Silhouette Abstraction . 115

8.1.1 Definitions . 115
8.1.2 Computation of Silhouettes . 117

8.2 Silhouette-based Weak Entailment Checking . 119
8.2.1 Silhouette Entailment Check . 119
8.2.2 Weak Entailment Checking . 121

9 Silhouette-Guided Joining of Abstract Memory States 125
9.1 Existing Abstract States Join Procedure and Precision Loss 125
9.2 Silhouette Guided Abstract States Joining . 127

9.2.1 Silhouettes Joining . 127
9.2.2 Guided Abstract States Joining . 128
9.2.3 Taking Advantage of the Analysis Goal 130

10 Silhouette-Guided Clumping and Widening 133
10.1 Silhouette Guided Clumping of Abstract States 133

10.1.1 Silhouette Generalization . 133
10.1.2 Clumping Relation . 134
10.1.3 Clumping Algorithm . 136

10.2 Silhouette-guided Widening of Disjunctive Abstract states 137
10.3 Static Analysis . 140

11 Experimental Evaluation of Silhouette-Directed Clumping 143
11.1 Research Hypotheses . 143
11.2 Experimental Methodology . 144
11.3 Experimental Evaluation . 146
11.4 Related Work on Silhouette-guided Clumping . 150
11.5 Conclusion on Silhouette-guided Clumping . 151

IV Conclusion 153

12 Conclusion and Future Directions 155
12.1 Conclusion . 155
12.2 Future Directions . 156

iv Contents

Part I

Introduction to Shape Analysis

Chapter 1

Introduction

This chapter presents the main approaches to shape analysis and intro-
duces the motivations of this thesis. First, the benefits and problems
brought by pointers and dynamic data structures in programming lan-
guages and critical software are introduced in Section 1.1 and Section 1.2
respectively. Then, in Section 1.3, several methods that can reduce soft-
ware problems or prove the absence of some software problems are pre-
sented. Section 1.4 mainly focuses on static analyses targeting memory
properties, including pointer analyses and shape analyses. Finally, Sec-
tion 1.5 and Section 1.6 discuss some open challenges in shape analysis
and the contributions of the thesis.

1.1 Dynamic Memory Allocation and Dynamic Data Structures

Pointers and dynamic data structures are often found in low-level operating system codes, device
drivers and other safety critical computer controlled systems in transportation and communi-
cation. The main reason is that pointers and dynamic data structures allow efficient memory
management and access. Let us begin by reviewing common uses of pointers and dynamic data
structures.

Pointers. Pointers are values denoting the address of a memory cell in programming languages,
like C, C++ and Java. Therefore, pointers are often used as references to program variables,
dynamically allocated memory blocks, and functions. As an example, the following C program
defines an integer variable i and an integer pointer p that points-to i. A pointer can be
dereferenced to read the value of the memory it refers to and also to write into the memory.
For example, the program statement at line 3 is equivalent to the statement i = i + 1 as
dereferencing p (that is *p) on the right side of the assignment will produce the value of i,
while, on the left side, the dereference will produce the address &i.

1 int i = 3;
2 int * p = &i;
3 *p = *p + 1;

2 Chapter 1. Introduction

Pointers contribute to the expressive power of a programming language. For example, in C,
pointers enable unbounded data structures and call-by-reference. In C, functions use call-by-
value to pass arguments. A function call works on a copy of the input parameters, which means
that any changes to the parameters inside the function have no effect on the original arguments.
However, if a function uses pointers as parameters, the function can then modify the structure
pointed to by the parameters through dereferencing pointers.

Moreover, pointers can also improve the performance of a programming language, since
copying a pointer is often much cheaper both in time and space than copying the data it refers
to.

Dynamic Memory Allocation. Dynamic memory management is a key use of pointers. In C
and C++, programmers can dynamically allocate memory on the heap when necessary by using
some library functions, like malloc in C, and new in C++. Dynamically allocated memory can
only be read and written through pointers. For example, the following C program uses malloc()
to dynamically allocate a memory area able to hold 10 integers and uses the pointer p referring
to the beginning of the memory area. If the allocation fails (for instance, when not enough
memory is available), malloc will return NULL. Therefore, the program performs a null check
on the pointer p at line 3. If the allocation succeeds, the program then initializes the allocated
area with 0 by relying on pointer arithmetic and pointer dereferences at line 5.

1 int * p = (int *) malloc (10 * s i z eo f (int));
2 int i = 0;
3 i f (p == NULL) return;
4 while(i<10){
5 *(p+i) = 0;
6 i++;
7 }

Dynamic Data Structures. In many programs, pointers and dynamic memory allocation
are used to implement dynamic data structures. Dynamic data structures refer to organizations
of data elements in memory where data elements, called nodes, are stored in dynamically allo-
cated memory blocks and are linked by pointers. Dynamic data structures play a big role in
programming languages like C, C++ and Java, because they allow programmers to dynamically
adjust the memory consumption according to the data size. This way, many dynamic data
structures support very efficient insertion, deletion and search operations.

Linked lists and binary search trees are commonly used dynamic data structures. Linked lists
store data nodes in a linear order. Singly linked lists are the most simple list data structures,
where each node is made up of some data fields and a pointer to the next node in the sequence.
For example, the following memory block contains a singly linked list pointed to by variable l.

3 7 9 11
0
15

&l

Each list node contains two fields: an integer value and a pointer to the next node. Specifically,
the last list node contains a null (0) pointer to specify the end of the list. Singly linked lists

Chapter 1. Introduction 3

10

6 15

4 8 19

0
0

0
0

0
0

0

&r

Figure 1.1: A binary search tree

can easily support node insertion and deletion operations with O(1) time. However, a singly
linked list can only be searched or traversed in one direction, from head to tail. In order to allow
for more efficient algorithms, additional pointers are often added to list nodes. For instance, in
doubly linked lists, each node contains two pointers: a pointer to the next node and a pointer to
the previous node. In circular linked lists, the next pointer of the last list node points back to
the head of the list instead of being null. Moreover, lists are often used to implement other more
complex data structures, like, stacks, queues, dynamic arrays, adjacency lists and skip lists.

However, one of the primary disadvantages of linked lists is that searching for a list element
usually takes O(n) time. Binary search trees overcome this problem. A binary search tree node
is usually composed of two pointers (respectively for the left child node and the right child node)
and a data field. The data of the left sub-tree must be smaller than the current node, and that
of the right sub-tree must be greater than the current node. As an example, Figure 1.1 shows
a memory area containing a binary search tree, whose root is pointed to by pointer r. Search,
insertion and deletion operations of binary search trees take O(log n) time on average (where n
is the number of tree nodes). However, in the worst case when the tree is not well balanced,
these operations take O(n) time complexity. To further improve the worst case efficiency of
binary search trees, self-balancing binary search trees, like red-black trees and AVL trees, and
self-adjusting binary search trees, like splay trees, have been proposed.

Overall, compared to static data structures, like arrays, dynamic data structures are more
flexible. Dynamic data structures support more efficient addition, deletion and search operations
and allow more efficient use of memory.

1.2 Software Problems Involving Pointers and Dynamic Data
Structures

On the one hand, pointers and dynamic data structures are useful as they allow flexible and
efficient memory management and data organization. On the other hand, pointers and dynamic
data structures may be dangerous as they can cause very severe software problems, including
memory safety problems, memory leaks, and security issues. Let us review these problems.

4 Chapter 1. Introduction

1 struct list{
2 int *data;
3 struct list *next;
4 };
5 list* list_min_remove(struct list *hd){
6 list * pre_min , *min , *c;
7 c = hd;
8 min = hd;
9 while(c->next != NULL){

10 i f (*(c->next ->data) < *(min ->data)){
11 pre_min = c;
12 min = c->next;
13 }
14 c = c->next;
15 }
16 i f (pre_min != NULL)
17 pre_min ->next = min ->next;
18 e l se
19 hd = hd->next;
20 free(min ->data);
21 free(min);
22 return hd;
23 }

Figure 1.2: A minimum element deletion function of a singly linked list

1.2.1 Memory Safety Problems

Basic memory safety problems. Memory safety problems are due to memory access errors,
including dereferencing null, dangling or uninitialized pointers, and illegal freeing of already
freed or non dynamically allocated memory areas. As an example, the following C program may
lead to a null dereference error when the function malloc returns NULL. This may happen when
there is no available memory.

1 int * p = (int *) malloc (s i z eo f (int));
2 *p = 1;

Memory safety problems often cause runtime errors. In most programming languages, in-
cluding C, dereferencing null pointers will make the program crash. Dereferencing dangling
pointers may cause unpredictable behaviors, such as the corruption of unrelated data, a seg-
mentation fault or an unexpected output, because dangling pointers refer to memory which has
already been deallocated and the memory may now contain completely different data. In C,
the default value of a pointer is undefined. Therefore, dereferencing an uninitialized pointer can
also lead to erratic program behaviors. Moreover, only dynamically allocated memory can be
freed through pointers. Double freeing of a dynamically allocated memory block or freeing of a
non dynamically allocated memory region will cause a segmentation fault and also result in a
crash of the program.

Chapter 1. Introduction 5

Data structure preservation. However, finding memory safety problems or proving certain
memory safety properties of programs that manipulate dynamic data structures is often chal-
lenging because pointers are used as links in dynamic data structures. Memory safety properties
of such programs rely on well formed dynamic data structures.

Let us consider the C program in Figure 1.2 as an example. The program defines a singly
linked list type list, where each list element contains a data field that stores an integer pointer
and a next pointer. The function list_min_remove takes a list head pointer hd as an input
parameter and aims to remove the list element whose data field points to the minimum integer
from the list. It first searches for the minimum list element using the while loop from line 9 to
line 15. Pointers min, pre_min and c respectively store the minimum list element, the previous
element and a cursor. Then, it removes the minimum list element from the list (lines 16 to 19)
and frees the memory.

However, executing the list_min_remove function may lead to dereferencing null, uninitial-
ized or dangling pointers, and illegal freeing.

Null pointer dereference. If the input parameter hd is NULL, pointer c will be initialized to
NULL at line 7. Then, the dereference c -> next at loop head (line 9) will lead to a null pointer
dereference error. Even when hd is not NULL, null pointer dereference may still happen at line
10 where the program dereferences the data field of list elements (*(c -> next -> data) and
*(min -> data)), when some data fields are equal to NULL.

Uninitialized pointer dereference. In function list_min_remove, pointer pre_min is declared
at line 6, but only initialized inside the while loop. When the loop is not executed, pre_min
will stay uninitialized, the default value of which could be arbitrary. Therefore, the uninitialized
pointer pre_min may pass the null pointer checking at line 16 and lead to an uninitialized pointer
dereference error at line 17.

Dangling pointer dereference and illegal freeing. At line 20, the function frees the integer
memory cell pointed by min -> data. This is fine if we assume that min -> data points to a
dynamically allocated memory cell and the memory cell is only referenced by pointer min->data,
but might otherwise cause illegal freeing at line 20 or cause a dangling pointer dereference error
in the execution of some following code.

Therefore, in order to prove that a call to list_min_remove does not lead to any memory
safety issues, we need to prove that the input parameter points to a well formed and non-empty
list. That is, the list has at least one node and the data field of all the list nodes point to
dynamically allocated and mutually disjoint memory cells. In turn, this requires proving the
data structures are preserved by the list manipulation functions, like the list_min_remove
function.

Memory Leaks. A memory leak occurs when a dynamically allocated memory block becomes
unreachable or is not released after use. It can be seen as a special memory safety problem.
In C and C++, programmers can dynamically allocate a chunk of memory from the system to
store data. Dynamically allocated memory can only be accessed through pointers. Therefore,
programmers should always make sure that there is at least one pointer to any dynamically
allocated memory block until it is freed. Otherwise, the memory block will become unreachable.
Moreover, C and C++ do not have built in automatic garbage collection. Programmers are
responsible for freeing dynamically allocated memory after using it, otherwise the program may

6 Chapter 1. Introduction

1 struct list{
2 int data;
3 struct list *next;
4 };
5 list* alloc_list (){
6 list * hd = NULL;
7 list * tmp = NULL;
8 int i = 1;
9 while(i < 101){

10 tmp = (list*) malloc(s i z eo f (list));
11 i f (tmp == NULL)
12 return void;
13 e l se {
14 tmp ->next = hd;
15 hd = tmp;
16 }
17 i++;
18 }
19 return hd;
20 }

Figure 1.3: A list allocation program with memory leaks

consume much more memory than needed. Normally, unfreed dynamically allocated memory
will be returned to the system when the program exits.

Memory leaks can be a major problem as computers and portable devices have a fixed
amount of available memory. If a running software uses up all the available memory, any
memory allocation operation will fail, which will cause all the processes trying to allocate more
memory to terminate or crash. Typically, this can be solved by terminating the leaking software,
so that the operating system can clean up the memory. However, this is not very satisfactory,
especially for the kernels of operating systems and software in embedded devices and servers
which may be left running for many years. Generally, memory leaks are likely to induce a failure
of the operating system if they occur in the kernel. The same is true for embedded systems which
have no sophisticated memory management.

As a memory leak example, let us consider the C program in Figure 1.3. The alloc_list
function aims to dynamically allocate a list of length 100 and returns either the head pointer
of the list, or NULL when the allocation fails. Specifically, it declares two pointers hd and tmp
respectively for the head of the already allocated list and a temporary pointer for the newly
allocated element and uses a while loop to perform the allocation: each loop iteration allocates
one list element at line 10 and sets it as the list head at lines 14 to 15. However, the execution
of the alloc_list function may cause memory leaks. When the memory allocation at line 10
fails, the function directly returns void without freeing all the previously allocated list elements.
After the function returns, all the memory blocks allocated inside the function will become
unreachable, and thus, can no longer be freed until the program exits.

Chapter 1. Introduction 7

1.2.2 Security Problems

Memory safety problems may cause not only runtime errors but also serious security problems,
such as information leaks and privilege escalation.

Dangling pointer dereference bugs have frequently become security holes and have been
known as “use after free” vulnerabilities. After freeing the memory a pointer refers to, the
pointer becomes a dangling pointer and should not be dereferenced again as the memory may
now contain completely different data. If the memory is used by higher privilege users or
applications, writing or reading through a dangling pointer may cause privilege escalation. If
the memory is reallocated by attackers and used to store attacker-controlled data, a dangling
pointer dereference may cause the execution flow of the program to be controlled by attacker-
controlled data. Moreover, if the dangling pointer is a function pointer, some malicious code
written by attackers may be called.

A famous example of “use after free” vulnerability is CVE-2012-4969 [oM12], a zero-day
Internet Explorer vulnerability, which was found to be exploited in-the-wild in September 2012.
The main reason for the vulnerability was due to an incorrect reference count of an object
which allowed the attacker to free it while it was in-use. Another example of a use-after-
free vulnerability was CVE-2012-4792 [oM13] exploited in-the-wild in December 2012. This
vulnerability was also due to an incorrect reference count of an object, which caused a dangling
pointer dereference after the object was freed.

Apart from dangling pointer vulnerability, null pointer dereferencing can also be a potential
security problem. For example, if a security check program contains a null pointer dereference
bug, it may allow the attacker to bypass security checks or reveal valuable debugging information
that can be used in subsequent attacks.

1.3 Improving Software Quality Against Memory problems

As memory related software problems can often have serious consequences, it is an important
task to improve software quality against memory problems.

1.3.1 Systematic Software Development

Software engineering is an attempt to reduce software problems by following a systematic ap-
proach to the development of software. According to the software engineering approach, detailed
software requirements specifications and design specifications should be established in order to
guide the developers towards its implementation.

Some specific software development guidelines are used for critical software developments.
For instance, in order to improve code safety, security, portability and reliability in embed-
ded systems developments, a set of software development guidelines for the C programming
language, MISRA C, was drawn up by Motor Industry Software Reliability Association. Nowa-
days, MISRA C has been widely followed by developers in automotive, telecom, medical devices,
and railway systems. As another example, all the commercial software-based aeronautics follow
the DO-178C rules. Specifically, DO-178C specifies the software safety level by examining the

8 Chapter 1. Introduction

effects of a failure in the system and requires all software that commands, controls, and monitors
safety-critical functions to be certified with respect to its level of criticality.

However, these approaches cannot prevent all bugs in programs. Firstly, programmers are
humans and we know that humans can make mistakes. Secondly, critical systems are nowadays
quite complex and have millions of lines of code. Code size is the worst enemy of software: as the
code size grows, the number of bugs also increases. According to the book [McC93], on average
in industry, “there are about 15 - 50 errors per 1000 lines of delivered code”. Moreover, software
guidelines are written in human languages and are verified manually. Human inspection is not
always reliable.

1.3.2 Testing and Code Reviewing

Testing and code reviewing are important steps in software development. Software testing relies
on executing software with a set of designed inputs to find software bugs. Code reviewing takes
the form of a systematic examination of software source code by programmers. However, testing
and code reviewing cannot identify all software problems.

A large software system often has a huge number of branches and loops. Therefore, testing
cannot cover all possible executions of branches and any number of loop iterations of large
software systems. Besides, testing cannot cover all the possible inputs as software may have a
huge of or even infinite number of inputs. For example, we cannot test on all the inputs of a
program which takes any length of singly linked lists as parameters. Moreover, memory errors
can be very difficult to discover by testing. For certain memory errors, there is often a long delay
from the point when a memory error occurs to the point when the program crashes or produces
invalid outputs, e.g. memory leaks. Memory errors may also be hard to reproduce, e.g. memory
errors due to dangling pointer dereferences or memory errors with intermittent symptoms.

Code reviewing may find some serious memory errors. However, human inspection is not
reliable in general.

Both testing and code reviews are very time consuming and expensive. More importantly,
they cannot provide a formal guarantee of the absence of program errors and cannot establish
that a software program satisfies certain properties under certain conditions.

1.3.3 Formal Verification

Formal verification aims to formally prove that a program is correct with respect to a speci-
fication which could state either safety properties or functional properties. One example of a
safety specification could be that a program does not contain null pointers and dangling pointer
dereference errors. A functional specification could be that a program preserves a list structure
and outputs a sorted list for any input list.

In order to formally verify a program, we first need to define a formal language, like a logic-
based language or a graphic-based language, which is expressive enough to express program
semantics and program specifications. Then, it remains to prove that the program is correct
with respect to the formal language. However, proving by hand is impossible for real programs
which are huge in size.

In contrast, automated formal verification techniques which aim to automatically produce

Chapter 1. Introduction 9

correctness proofs for programs have made tremendous progress in recent years. Proving the
correctness of programs is an undecidable problem [Ric53]: there does not exist a sound and
complete algorithm which returns true if and only if the input program is correct. Therefore,
designing an automatic sound and complete proof system is impossible. In general, formal veri-
fication techniques either rely on human intervention or drop the soundness or the completeness
aspects in order to be fully-automated.

Model checking. Originally, model checking [EC80, CES86] aimed to automatically verify
correctness properties of finite-state systems. Given a finite-state system, model checking proves
that certain properties are satisfied by an exhaustive search of all possible states during all
executions of the system.

Applying model checking techniques to program verification will therefore face a state ex-
plosion problem due to the infinite state-space of programs. To overcome this problem, many
model checking techniques have been proposed for handling infinite state systems, including
bounded model checking and model checking based on abstraction. Bounded model checking
only considers a finite subset of an infinite state space. Model checking based on abstraction
relies on finding a finite abstraction of infinite states. For example, some model checking tech-
niques use tree or forest automata to finitely represent potentially infinite memory states which
contain unbounded dynamic data structures. As the problems are undecidable, most model
checking work focuses on developing semi-automatic verification algorithms or decidable results
for restricted cases.

Automated theorem proving. Another way to prove program properties is to rely on proof
assistants. A proof assistant, e.g. the Coq proof assistant1 or the PVS verification system2,
is a software tool to help develop formal proofs through collaboration between humans and
theorem provers. A proof assistant is often composed of a specification language and a semi-
automated theorem prover. In order to prove program properties, humans are supposed to write
program specifications and guide the theorem prover to search for proofs. However, prover-
assisted approaches are not fully automated and human intervention may take a considerable
amount of time. For hard problems, proficient users are required. Moreover, when the targeted
program is slightly modified by programmers, the original proofs are hard to reuse. Usually, the
whole proof process has to be run again.

Abstract interpretation. In the late 1970s, Patrick Cousot, together with Radhia Cousot,
proposed abstract interpretation frameworks [CC77, CC92] that allow fully automatic static
analyses to be designed. Specifically, an abstract interpretation framework provides a systematic
set up that can be used by static analysis designers to derive computable and sound, but not
necessarily complete, program analyses. That is, if the analysis returns true with respect to
a specification, then the analyzed program satisfies the specification. However, not all the
programs that satisfy the specification can be verified.

1https://coq.inria.fr
2http://pvs.csl.sri.com

https://coq.inria.fr
http://pvs.csl.sri.com

10 Chapter 1. Introduction

In order to design an abstract interpretation based static analysis, one should first identify
the set of target programs and the program properties of interest, based on which, one can
design an abstract domain. An abstract domain is a lattice over a set of abstract elements.
Each abstract element represents a set of concrete elements (program states). For example,
one may abstract the concrete values of integer program variables by their signs (+,−, 0). The
relationship between abstract elements and concrete elements should be explicitly defined by a
concretization function that maps each abstract element to a set of concrete elements.

In abstract interpretation, program semantics are described as abstract transfer functions
that allow program semantics to be over-approximated at the abstract level. To compute ab-
stract fix-points for loops and recursive procedures, abstract interpretation relies on a widening
operator O that over-approximates any two abstractions and guarantees termination for any
fix-point computation process.

Recently, abstract interpretation based static analysis tools have made dramatic progress.
The Astrée analyzer [BCC+03] is able to prove the absence of runtime numerical errors on
avionic software [DS07] and spaceship control programs [BCC+10]. Besides numerical analyses,
abstract interpretation is also used in proving various memory properties of programs dealing
with pointers and dynamic data structures. This will be discussed in the following section.

1.4 Pointer Analyses and Shape Analyses

As critical programs often manipulate pointers and complex dynamic data structures, pointer
analyses and shape analyses, respectively aiming at discovering interesting pointer relations and
structural properties are required. Section 1.4.1 presents pointer analyses. Then, Section 1.4.2
and Section 1.4.3 respectively introduce three-valued logic and separation logic based shape
analyses. Finally, Section 1.4.4 briefly discusses some other graph-based and automata-based
shape analyses.

1.4.1 Pointer analyses.

Pointer analyses [LH88, CBC93, And94] aim to build points-to relations (e.g., pointer “x points
to y”) or alias relations (e.g., pointers “x and y are aliased” i.e., they point to the same mem-
ory address) for each program point. The results of pointer analyses are often used in other
more complex analyses, like escape analyses, construction of call graphs and aggressive compiler
optimization.

In order to be more expressive, pointer analyses [JM82, CWZ90, HN90, HHN92] use finer
memory models that are closer to the linked data structures manipulated by programs. Based
on finer memory models, the analyses are able to establish relations between not only program
variables but also memory locations reachable from program variables (e.g. memory location
x -> next -> next). The analysis proposed in [Deu94] further enriched pointer analyses with
numerical linear equalities to track more subtle relations, such as x.(next)n = y.(next)n. To gain
more precision, pointer analyses [HL11, WL95, MRR05] of flow-sensitivity (that considers the
order of program statements), context-sensitivity (that considers the calling context of function
calls), field-sensitivity (that treats all fields of a struct separately) and object-sensitivity (that

Chapter 1. Introduction 11

0&l
v1 v2 v3

Figure 1.4: A concrete memory block with a singly linked list pointed to by variable l

considers the objects on which a method is applied, to determine the set of objects pointed to
by reference variables and reference object fields) have been well studied.

While being fast enough to analyze large pieces of code, pointer analyses are not expressive
enough to capture complex data structure invariants and to verify memory safety, data structure
preservation and other memory properties. Therefore, more expressive shape analyses which
aim at inferring precise structural properties of memory states and verifying memory safety and
complex functional properties of programs dealing with pointers and dynamic data structures
have been proposed.

1.4.2 Three-valued Logic Based Shape Analyses

Three-valued logic based shape analysis [SRW99] (TVLA) is a powerful parametric framework
for abstracting concrete memory states using Kleene’s 3-valued logic [Kle52]. Three-valued logic
has three truth values (0, 1, 1/2), where 0 and 1 are definite values and 1/2 is an indefinite value.
The figure below shows the information order on the truth values, where all definite values are
smaller than the indefinite value, which means a definite value has more information than an
indefinite value.

0

1/2

1

Abstract memory states. According to TVLA, a shape invariant can be characterized by a
set of logical predicates describing pointer variables, types of data structure elements, connec-
tivity properties and so on. As an example, the concrete memory shown in Figure 1.4.2 contains
a singly linked list pointed to by pointer l. After naming the three list nodes v1, v2 and v3, the
concrete memory can be described as the logical formula:

l(v1) ∧ next(v1, v2) ∧ next(v2, v3) ∧ next(v3, 0)

where, l(v1) means pointer l points to node v1 and next(v1, v2) means the next field of v1
refers to node v2. However, the set of concrete memory which contains a list is unbounded as
the list could be of any length. In order to represent an unbounded set of concrete memory
states, TVLA builds abstract states based on 3-valued logic formulas and summary nodes. As
an example, the following abstract state abstracts all the concrete memory where l points to a
singly linked list of at least length 1, including the concrete memory block shown in Figure 1.4.2.

l(v1) = 1 ∧ next(v1, v
′
2) = 1/2 ∧ next(v′2, v

′
2) = 1/2 where v′2 is a summary node

12 Chapter 1. Introduction

To concretize the abstract state into the concrete memory, we need to concretize the summary
node v′2 into nodes v2 and v3 and concretize the indefinite value 1/2 into definite values.

In order to perform assignment operations on abstract states, TVLA defines a “focus” oper-
ation that refines an abstract state into a set of abstract states, so that formulas related to the
assignment only have definite values. In contrast to “focus”, “blur” is an operation that merges
nodes into summary nodes, so that abstract states can stay simple and finite.

TVLA is a general framework that can be instantiated in different ways by varying the
predicates. It can also be parameterized in the model of concrete memory states for different
levels of precision. For example, the fine-grained semantic model [KSV10] is able to precisely
present overlapping data structures, while the coarse-grained semantic model leads to a lighter,
but less precise analysis.

However, in the TVLA framework, 3-valued logic can not capture disjoint properties of
memory cells naturally. This may cause the analysis to produce imprecise results. Moreover,
updates on abstract states containing complex predicates, like connectivity predicates or cyclicity
predicates, are complex and expensive to compute, which may result in a scalability problem.

1.4.3 Separation Logic Based Shape Analysis

Separation logic. Separation logic [Rey02] was proposed for reasoning about memories as an
extension of Hoare logic. The key feature of separation logic is the separating conjunction (∗)
which allows us to describe disjoint properties of memory cells. As an example, the concrete
memory below contains two memory cells of variables x and l.

2
3

&l
&x

The concrete memory can be described as the separation logic formula:

&x 7→ 3 ∗ &l 7→ 2

where, &x 7→ 3 describes the memory cell of variable x, &l 7→ 2 describes the memory cell of
l, and the separating conjunction ∗ of the two predicates specifies that variables x and l are
located in memory regions that do not overlap.

Separation logic supports the frame rule below, which plays an important role in enabling
local reasoning.

φ P φ′

φ ∗ ψ P φ′ ∗ ψ
The condition of the rule is that the execution of program P only reads or writes memory cells
specified in memory state φ. It says that if executing program P from a memory state φ results
in memory state φ′, then, executing the program in any bigger memory state φ ∗ ψ will not
affect the additional part ψ of the memory state. Based on this rule, we can thus only consider
the local effect of a program statement on a minimal sub-memory and derive its global effect on
the whole memory.

Chapter 1. Introduction 13

Abstract memory states. In addition to the separating conjunction, separation logic based
shape analyses [BCC+07, CDOY09, DOY06, CR08] often rely on user-provided or built-in in-
ductive definitions to summarize unbounded data structures. An inductive definition is a precise
description of a data structure. For example, we can define singly linked lists by induction:

α · list ⇐⇒ α = 0 ∨ α 6= 0 ∧ ∃β. α 7→ β ∗ β · list

where, α denotes the address of the list head. The definition says that either α is equal to 0
(null) which indicates the list is empty, or the list contains at least one node described by a
points-to predicate α 7→ β (α and β respectively describe the address and the value of the list
node) and a list tail described by a recursive call β · list. The list tail is located at address β
and located in a disjoint memory region with the list head node according to the separating
conjunction ∗.

An abstract memory state is thus defined as a separating conjunction combination of atomic
heap predicates:

abstract states: m(∈Mω) ::= p ∗ . . . ∗ p

atomic predicates: p(∈ P) ::= α 7→ β (points-to predicate)
| α · list (inductive predicate)
| α · tree (inductive predicate)

An atomic heap predicate is either a points-to predicate α 7→ β representing a single memory
cell or an inductive predicate, e.g. α · list, summarizing a memory region. As an example, the
concrete memory shown in Figure 1.4.2 can be abstracted by the abstract state below:

∃α1, . &l 7→ α1 ∗ α1 · list

where, &l is the symbolic address of variable l, α1 is the symbolic address of the list head
node, and inductive predicate α1 · list summarizes the concrete list. Indeed, the abstract state
describes an unbounded number of concrete memory regions, where the list is of any length.

Inductive predicates in separation logic based shape analyses play a similar role to summary
nodes in TVLA. However, inductive predicates follow a more local approach by using rule-based
inductive definitions, while summary-nodes quantify global facts over sets of memory locations.
Similarly to the blur and focus operations in TVLA, separation logic based analyses provide
fold and unfold operations to generate and materialize inductive predicates respectively.

As the separating conjunction is able to express the disjoint properties of memory cells, strong
updates and local reasoning can be performed on memory abstractions based on the separating
conjunction. Studies on separation logic based shape analysis have successfully led to many
shape analyzers, such as SpaceInvader [DOY06], Predator [DPV11], MemCAD [CR13]
and Infer [CDD+15].

1.4.4 Other Shape Analyses

Automata-based shape analyses. Another family of shape analyses [HHR+11, HHL+15]
makes use of tree or forest automata to abstract memories with complex dynamic data structures.

14 Chapter 1. Introduction

Memory abstractions are usually composed of several tree automata, where each automaton rep-
resents a separate memory area. Similarly to inductive definitions, user-defined forest automata
are used to encode recursive data structures and are used as alphabets in the abstractions to
allow unbounded data structures to be represented. Program semantics are thus encoded as
operations on automata.

Graph-based shape analyses. Some other shape analyses [GH96, MHKS08] abstract mem-
ories as graphs and express program semantics as graph transformations. Specifically, in [GH96]
memory areas are abstracted by considering the shape (tree, DAG, or cyclic graph) of the data
structure accessible from heap directed pointers, and in [MHKS08], graph nodes are used to
represent memory regions and edges are used to represent pointers.

1.5 Outstanding Challenges in Shape Analysis

Shape analysis aims at inferring precise structural properties of memory states. Precision is
always a major concern in shape analysis as an analysis can easily fail due to a lack of precision.
On the other hand, in order to analyze real-world codes, shape analyses must be able to scale
up.

As the separating conjunction make it possible to express the disjoint properties of memory
cells, separation logic based shape analyses can reason about memory states locally and can
perform strong updates on memory abstractions. Thus, the analyses can efficiently and precisely
analyze some programs manipulating singly linked lists and some simple tree data structures.

However, real-world programs often manipulate more complex data structures, e.g. nested
data structures, overlaid data structures and data structures with sharing, for which separa-
tion logic is not expressive enough to precisely describe the structural properties. To solve
this problem, many ideas have been proposed, including various combinations of abstract do-
mains [TCR14, TCR13, SR12, CR08] and abstractions based on a per-field separating conjunc-
tion [DES13]. However, these approaches still have significant limitations when it comes to
handling data structures with unstructured sharing. Section 1.5.1 will discuss the problem in
detail and outline an approach that combines shape predicates with set predicates to express
unstructured sharing.

Moreover, in order to precisely describe possibly dissimilar concrete memory states at a
program point, shape analyses often rely on finite disjunctions of abstract memory states. Dis-
junctions should be kept small for scalability reasons, though precision often requires keeping
additional case splits. In this context, deciding when and how to merge disjuncts and to replace
them with precise over-approximations is critical both for precision and efficiency. Section 1.5.2
will set out the challenge in disjunction control and present some existing techniques in detail,
as well as introducing the semantic-directed clumping of disjunctive abstract states.

1.5.1 Reasoning about Sharing in Separation Logic Based Shape Analysis

We say that a data structure is unshared if any node in the data structure is at most pointed
to by one pointer. On the other hand, when any nodes in a data structure may be referred
to by more than one pointer, the data structure is said to be shared. Singly-linked lists and

Chapter 1. Introduction 15

1 typedef struct node{
2 struct node * next;
3 int id;
4 struct edge * edges;
5 } node;
6 typedef struct edge{
7 struct node * dest;
8 struct edge * next;
9 } edge;

Figure 1.5: Type definitions for adjacency lists

binary search trees are unshared data structures, while more complex structures, such as doubly
linked lists, directed-acyclic graphs (DAGs) and some data structures representing graphs in
general, are shared data structures. Some shared data structures have regular sharing patterns.
Such sharing patterns can be described by using a bounded number of constraints on nodes.
For example, doubly-linked lists have structured sharing. In doubly linked lists, the sharing
occurs because each node is pointed to by both its predecessor (except for the first node) and
its successor (except for the last node). Therefore, doubly-linked lists can be described by the
following inductive definition:

α · dll(δ) ::= (emp ∧ α = 0) ∨ (α.prev 7→ δ ∗ α.next 7→ β ∗ β · dll(α) ∧ α 6= 0)

This definition says that α points to a doubly-linked list if and only if it is either null (0) or
a pointer to a list element: the prev field of the element points to δ and the next field of the
element β points to a doubly-linked list such that the prev field of its first element should point
back to α itself. As in doubly linked lists, each node has exactly one predecessor, which can be
specified as the parameter δ of the inductive definition. As shown in paper [CRN07], skip lists
can also be defined following the same schema.

However, precisely and recursively summarizing data structures with unstructured sharing
using the separating conjunction is much more challenging because in such data structures, a
node may be pointed to by an unbounded number of pointers and the pointers could be anywhere
in the structure.

In order to make the challenges more concrete, let us consider adjacency lists (a data structure
for representing graphs) as an example. Figure 1.5 shows a type definition for adjacency lists: a
graph is a list of nodes, each node has a list of edges, and each edge is a pointer to its destination
node. Figure 1.6(b) shows an adjacency list representation of the graph shown in Figure 1.6(a),
where each node i in the simple graph is described by a node located at address ai.

In order to prove memory safety or functional properties of algorithms manipulating the
data structure with separation logic based shape analysis techniques, we need to recursively
define this data structure using the separating conjunction. A natural approach is to exploit the
list-of-lists inductive skeleton of adjacency lists. As shown in Figure 1.7: for the node at a0, its
list of edges can be inductively summarized in the green region, while the other nodes, together
with their edge lists in the graph, can be summarized in the purple region. What is implicit in

16 Chapter 1. Introduction

0 1

23

(a) A simple graph

&g
0

a0

1

a1

2

a2

3

a3 0x0

0x0

(b) Adjacency list representation of (a)

Figure 1.6: Example of an adjacency list

&g
0

a0 summarized
list of nodes
and their
outgoing

edgessummarized
list

of edges
of node a0

Figure 1.7: A partially summarized adjacency list

this informal diagram is that, to achieve precision, these summarized regions must also capture
complex, unstructured, cross pointer relations (i.e., the curving lines in Figure 1.6(b)).

To capture this unstructured sharing precisely, we observe that the correctness of the struc-
ture stems from the fact that each edge pointer points to an address in E = {a0, a1, a2, a3}.
Thus, the absence of invalid edges can be captured by adjoining a set property to a conventional
list predicate. We also need to ensure that all edge pointers point to nodes belonging to the set
E of valid nodes in the graph for each node’s edge list. To give an inductive definition for the
list of nodes, we need to ensure that this list of nodes is consistent with the set E of valid nodes,
and thus we require a second set variable F that captures the nodes summarized in the purple
region. For the node list summary in Figure 1.7 (shown in purple), this variable F should be
the set {a1, a2, a3}.

While we have outlined an approach to summarize adjacency lists using a combination of an
inductive skeleton and relations over set-valued variables, using such summaries poses significant
algorithmic challenges in abstract transfer functions, checking entailment of abstract states and
computing over-approximations of abstract states.

1.5.2 Improving Scalability and Disjunction Control

Shape analyses, including TVLA and separation logic based shape analyses, rely on disjunctions
of abstract states to capture precise structural properties of memory states. In separation logic

Chapter 1. Introduction 17

1 typedef struct list{
2 struct list *next;
3 int d;
4 } list;
5
6 void search_min_max(struct list *hd){
7 list * min , *max , *c;
8 min = max = c = hd;
9 while(c != NULL){

10 i f (c->d < min ->d) min = c;
11 i f (c->d > max ->d) max = c;
12 c = c->next;
13 }
14 printf("min: %d", min ->d);
15 printf("max: %d", max ->d);
16 return;
17 }

Figure 1.8: Searching the minimum and maximum list elements

. 0. . .

hd max min c

(a) Concrete memory state 1

. 0. . .

hd min max c

(b) Concrete memory state 2

Figure 1.9: Concrete memories with list segments

based shape analysis, disjunctive abstract states can be represented as:

disjunctive abstract states: d(∈ D) ::= m ∨ . . . ∨ m

abstract states: m(∈Mω) ::= p ∗ . . . ∗ p

while, in TVLA, disjunctive abstract states are disjunctions of abstract states built on the
conjunction ∧.

Disjunctions are necessary as programs can produce very different structures at a program
point and it is often impossible to precisely abstract them all into a single abstract state either
based on the conjunction ∧ or the separating conjunction ∗. As an example, let us consider the
program in Figure 1.8, which searches for the minimum and maximum list elements from any
input singly linked list. At each program point of the while loop (line 9 to line 13), according
to the input list, the program may produce a concrete memory state, where the pointer min
points to a list element appearing in the list before the element pointed to by max, or a concrete
memory state, where the pointer max points to a list element appearing in the list before the
element pointed to by min. Figure 1.9 shows a pair of such memory states. Both memory states
contain a list pointed to by the variable hd, and three “cursors” min, max, c pointing somewhere
in that list. The only difference between these two memory states is the order of the cursors
min, max. Shape analyses like [DOY06, CRN07] instantiate a generic list segment predicate

18 Chapter 1. Introduction

hd
α1

min
α2

max
α3

c
α4

list list list list ∨ hd
α1

max
α2

min
α3

c
α4

list list list list

Figure 1.10: A disjunctive abstract state with list segments

α · list ∗= β · list to abstract a segment of the list starting at α and finishing with a pointer to
β. Using this abstraction, the concrete memory state in Figure 1.9(a) can be abstracted by:

∃α1, α2, α3, α4, &hd 7→ α1 ∗ &max 7→ α2 ∗ &min 7→ α3 ∗ &c 7→ α4

∗ α1 · list ∗= α2 · list ∗ α2 · list ∗= α3 · list ∗ α3 · list ∗= α4 · list ∗ α4 · list

The left side of Figure 1.10 shows a graph representation of the abstract state. However, the
abstract state cannot abstract the concrete memory shown in Figure 1.9(b) at the same time
as min, max appear in the reverse order, which could be abstracted by the abstract state on the
right side of Figure 1.10. Therefore, we need the disjunctive abstract state shown in Figure 1.10
to precisely abstract the two concrete memory states.

In practice, disjunctions are a huge challenge to static analyses. While the creation of new
disjunctions occurs naturally when the analysis needs to reason about operations that read or
write into summary predicates, letting the number of disjuncts grow makes the analysis slower
and consumes more memory. However, getting rid of unnecessary disjuncts turns out to be a
much harder task than introducing them. To clump a disjunctive abstract state d, an analysis
needs:

1. to sort the disjuncts of d into sets of abstract states M0, . . . ,Mn, such that all abstract
states in Mi are sufficiently similar;

2. to compute for each set Mi an abstract state mi that conservatively over-approximates all
the elements of Mi; this weakening should infer how sets of predicates can be folded into
summary predicates.

Both steps are critical. The first step should determine the right set of disjuncts: leaving too
many disjuncts would make it impossible to scale, whereas excessively reducing the size of the
disjunction would prevent the weakening step from producing precise summaries.

Existing approaches all come with limitations and are often challenged by the first step
(disjunct sorting). Canonicalization operators [SRW02] solve this problem by using a finite set
of “canonical” abstract states, replacing each abstract state with a canonicalized version of it.
Although the analysis may use an infinite domain, the precision of canonicalization outputs
is limited by that of the finite set of canonical abstract states. The canonicalization operator
of [DOY06] and the join operators of [CRN07, YLB+08] utilize local rewriting rules based on the
syntax of abstract states. They cannot reason about global shape properties, and thus may miss
chances to clump some disjuncts. State partitioning [CC92] and trace partitioning [RM07, HT98]
provide frameworks for sensitivity in static analysis, but do not provide a general strategy to
choose which disjunctions to preserve. We observe that static strategies based on the control
flow structure of programs (conditions, loops, etc.) are likely to produce inadequate disjunct
clumps as they ignore the shapes. On the other hand, disjunctive completion [CC79] authorizes
any disjunction of abstract states (so that simplification is never required); however, it cannot

Chapter 1. Introduction 19

deal with infinite sets of abstract predicates and is prohibitively costly when the set of abstract
states is finite. Pruning disjunctions is thus a major challenge in many memory reasoning tools.

In this thesis, we observe that semantic properties of abstract states can help to characterize
the clumping of disjuncts. For instance, the reason why the abstract states in Figure 1.10 cannot
be clumped together lies in the order of the pointers min and max. Indeed, if we let be the
relation that states that there is a link path from one pointer to another, then we get a path-
based abstraction hd min max c for the left abstract state and hd max min c
for the right abstract state. Then, a “similarity” check can be performed on the two path-based
abstractions, and, based on the checking result, the analysis can decide to not clump the two
disjuncts in Figure 1.10.

We have described an approach that uses a path-based “silhouette” abstraction of the abstract
states themselves to the clumping of disjunctive abstract states. In essence, this technique uses
a form of lightweight canonicalization, but only as a guide to decide which disjuncts to clump,
whereas the analysis computations (including the abstract join for clumping) all still take place
in the initial, infinite lattice.

1.6 Outline and Contributions of the Thesis

This section presents an outline and the contributions of the thesis.
Chapter 2 provides some theoretical background of separation logic based shape analysis,

including a simple imperative language and a basic memory abstract domain.
Chapters 4, 5, and 6 propose shape analysis for unstructured sharing : a shape analysis that

tracks set properties to infer precise invariants of data structures with unstructured sharing.

• Chapter 4 formalizes memory abstractions that are parameterized by inductive definitions
with set-valued parameters and set abstractions, where inductive definitions with set-valued
parameters are used to summarize shared data structures and set abstractions are used to
reason about relations over set variables.

• Chapter 5 introduces a general interface for set abstract domains and a formalization of a
linear set domain used in our shape analysis.

• Chapter 6 proposes static analysis algorithms to infer invariants over data structures with
unstructured sharing and then reports on a preliminary empirical evaluation of these al-
gorithms implemented in the MemCAD analyzer.

Chapters 8, 9, 10 and 11 propose semantic-directed clumping of disjunctive abstract states:
let silhouette abstractions of the abstract states guide the algorithms for clumping and weakening
disjuncts.

• Chapter 8 sets up a path-based silhouette abstraction of abstract states to capture shape
similarities and guide the weakening of abstract states.

• Chapter 9 uses silhouettes to guide the joining procedure of abstract memory states such
that the procedure is more precise.

20 Chapter 1. Introduction

• Chapter 10 presents algorithms for the clumping and the widening of disjunctive abstract
states based on silhouettes.

• Chapter 11 reports on the implementation of the silhouette-guided algorithms in the Mem-
CAD analyzer and the efficiency assessment with the verification of several real-world C
libraries that manipulate structures such as doubly-linked lists, red-black trees, AVL trees,
and splay trees.

Finally, Chapter 12 concludes the thesis.

Chapter 2

Separation Logic Based Shape Analysis

This chapter serves as a formal introduction to separation logic based
shape analysis. First, Section 2.1 sets out the formal syntax and seman-
tics of a minimal core of C language. Section 2.2 presents some notions
of abstract domains in the abstract interpretation framework. Then, Sec-
tion 2.3 introduces a formal definition for separation logic based memory
abstractions and Section 2.4 presents the abstract semantics of the pro-
gram language. Finally, Section 2.5 sums up exhaustive signatures for
the aforementioned abstract domain.

2.1 A Simple Imperative Language

The programs that are considered in this thesis are all written in the C language. For the sake
of simplicity, in this section, we define a simple language that intends to establish a model for
a fragment of the C language and a concrete denotational semantics for this language.

2.1.1 Syntax

Figure 2.1 presents the syntax of a simple imperative language that provides dynamic memory
management and basic control instructions. We avoid types in the language and assume that
any value is stored in a 4-byte long cell.

Program variables. We let X = {x, y, . . .} denote a fixed infinite set of program variables,
though a given program manipulates only a finite number of variables. Variables must be
declared using the variable declaration command shown in Figure 2.1 before being manipulated
by programs.

L-values and r-values. In our programming language, expressions are of two kinds: left value
expressions that correspond to memory addresses and right value expressions that correspond
to values. Memory addresses a ∈ Vaddr ranging from 1 to 232 − 1 are also memory values v ∈ V
ranging from 0 to 232 − 1. To follow the standard C notation, in the following, we present
addresses as 0x followed by the hexadecimal representation of the addresses, e.g., 0x...080.

22 Chapter 2. Separation Logic Based Shape Analysis

Binary operators ⊕ ::=
| == | 6= | < | <= | . . .

Left value expressions l ::=
| x variable
| *l pointer dereference
| l.f field access

Right value expressions r ::=
| n integer
| l l-value read
| r⊕ r binary operation
| &l address of l-value

Statements p ::=
| x variable declaration
| l = r assigment
| l = malloc(n) memory allocation
| free(l, n) memory de-allocation
| assert(r) assertion
| if(r){p}else{p′} conditional branch
| while(r){p} loop
| p; p sequence

Figure 2.1: The Syntax of a C-like simple imperative language.

A left value expression can be the address of a program variable x, the address l.f repre-
senting a left value l plus an offset f ∈ F , or the address *l obtained by dereferencing a left
value expression l. We note that the expression l.f corresponds to the field access operation of
struct data in C. In the following, we let f ∈ F denotes both numerical offset and field name.

Similarly, a right value expression can be an integer value n ∈ N, the value of the memory
cell located at address l, denoted by l, the address l of a memory cell, denoted by &l, or a
value r⊕ r obtained by applying a binary operator ⊕ to two sub-expressions.

Statements. As shown in Figure 2.1, a program p is a sequence of statements that can be of
different kinds.

The variable declaration statement x declares a variable x by allocating a memory cell of size
4-byte for x.

The assignment statement l = r writes the value denoted by right value expression r into
the memory cell at the address denoted by left value expression l.

The memory allocation statement l = malloc(n) dynamically allocates a memory block of
n memory cells and writes the base address of the block into the memory cell at the address
denoted by left value expression l.

The memory de-allocation statement free(l, n) de-allocates n memory cells starting at the
base address denoted by l.

The assertion statement assert(r) crashes the execution if the value denoted by r is equal
to 0.

Chapter 2. Separation Logic Based Shape Analysis 23

The conditional branch statement if(r){p}else{p′} computes the value denoted by r and
continues with the execution of p if the value of r is not equal to 0, or continues with the
execution of p′ otherwise.

The loop statement while(r){p} keeps running the program with p if the value of r is not
equal to 0 and exits the loop when the value of r is equal to 0.

2.1.2 Concrete States

In order to define a concrete program semantics, we first need to define concrete memory states
on which programs are operated.

Memory states. Intuitively, a memory state consists of two parts: an environment that
relates symbolic addresses of program variables to their real addresses and a store that is made
up of finite number of individual cells. However, an error may appear during the execution of a
program, e.g., when a program attempts to read an invalid memory cell. Let ω denote an error
state; we thus have the following definition:

Definition 2.1 (Memory states). A memory state m ∈Mω is either an error state ω or a
non-error state (ε, σ) ∈M made up of an environment ε ∈ E and a store σ ∈ H:

(ε, σ) ∈M ::= E ×H
m ∈Mω ::= {ω}]M
ε ∈ E ::= X& → Vaddr
σ ∈ H ::= Vaddr → V

We let X& = {&x,&y, . . .} denote the set of symbolic addresses of program variables. The
environment ε maps symbolic addresses of program variables into their real addresses in the
store. The store σ is a partial function from memory addresses a ∈ Vaddr to their values v ∈ V.

We note that 0 is a null address. We write [] for an empty store, [a1 7→ v1, . . . , ak 7→ vk] for the
store with exactly k allocated cells at addresses a1, . . . , ak and which contains values v1, . . . , vk
respectively, σ1]σ2 for the “gluing” of the two stores σ1 and σ2 such that the intersection of the
addresses of the cells of σ1 with the addresses of the cells of σ2 is empty, σ1 − σ2 for removing
cells whose addresses are in dom(σ2) from σ1, and σ[a 7→ v] for substituting σ(a) by v.

In order to define a concrete program semantics that manipulates memory states, let us first
define several primary operations over stores:

read ∈ Vaddr ×H → V] {ω}
write ∈ Vaddr × V ×H → H] {ω}
create ∈ N×H → Vaddr ×H] {0}
delete ∈ Vaddr × N×H → H] {ω}

The formal characterizations of the operations are shown in Figure 2.1.2. Intuitively, read(a, σ)
reads the value σ(a) of a memory cell at address a in the store σ. In the case where a is not a
valid address, i.e., a 6∈ dom(σ), read(a, σ) returns a memory error ω. Similarly, write(a, v, σ)
writes value v into the cell at address a of the store σ and returns a memory error ω when

24 Chapter 2. Separation Logic Based Shape Analysis

read(a, σ) ::=

{
σ(a) if a ∈ dom(σ)
ω otherwise

write(a, v, σ) ::=

{
σ[a 7→ v] if a ∈ dom(σ)

ω otherwise

create(n, σ) returns

either (a, σ] [a 7→ v1, . . . , a+ 4(n− 1) 7→ vn])
such that a, . . . , a+ 4(n− 1) ∈ Vaddr − dom(σ)

or 0

delete(a, n, σ) ::=

{
σ − [a 7→ v1, . . . , a+ 4(n− 1) 7→ vn] if a, . . . , a+ 4(n− 1) ∈ dom(σ)

ω otherwise

Figure 2.2: Characterizations of store operations

a is not a valid address. The functions create and delete are used to dynamically allocate
and de-allocate memory cells respectively. Specifically, create(n, σ) attempts to allocate n
continuous cells and adds them into the store σ. If the allocation succeeds, it returns the base
address of the newly allocated block that contains n cells and the new store, and if the allocation
fails to find enough space, it returns the null address 0. We note that this operation is non-
deterministic as the location and the initial value of the newly allocated block depends on the
implementation. Conversely, delete(a, n, σ) removes n continuous cells starting from address a
in the store σ. It returns memory error ω if there exists an invalid address in the set of addresses
{a, a+ 4, . . . , a+ 4(n− 1)}.

Limitations and discussion. For the sake of conciseness, we limit the complexity of our
concrete memory model:

• We make no distinction between the stack region and the heap region. Thus, memory
errors, such as illegal freeing of non-dynamically allocated memory blocks, do not show up
in our memory model. However, our memory model can be easily extended to take these
errors into account, for instance, one can augment a store σ with a set of dynamically
allocated addresses or augment each address in the store with an attribute indicating a
stack or heap cell.

• Our memory states are untyped. That is, we do not distinguish between pointer values
and integers and assume all values, all addresses, and all memory cells are four bytes long.
This can be extended by adding an environment that maps program variables to their
types and a sizeof function that returns the size of any given type.

However, our memory model is rather low-level thereby allowing us to target at memory
properties such as the absence of dereferencing of null pointers and dangling pointers, data
structure preservation, and so on.

Chapter 2. Separation Logic Based Shape Analysis 25

evallJlK(ω) = ω (ω−strict)
evallJxK(ε, σ) =

{
ε(x) if x ∈ dom(ε) ∧ ε(x) ∈ dom(σ)
ω otherwise

evallJ*lK(ε, σ) = evalrJlK(ε, σ)

evallJl.fK(ε, σ) =

{
evallJlK(ε, σ) + f if evallJlK(ε, σ) 6= ω
ω otherwise

(a) Semantics of left value expressions evallJlK

evalrJrK(ω) = ω (ω−strict)
evalrJnK(ε, σ) = n
evalrJ&lK(ε, σ) = evallJlK(ε, σ)
evalrJr1 ⊕ r2K(ε, σ) = J⊕K(evalrJr1K(ε, σ), evalrJr2K(ε, σ))

evalrJlK(ε, σ) =

{
read(evallJlK(ε, σ), σ) if evallJlK(ε, σ) 6= ω
ω otherwise

(b) Semantics of right value expressions evalrJrK

Figure 2.3: Semantics of left and right value expressions

2.1.3 Concrete Semantics

In this section, we define a denotational semantics of programs, which focuses on constructing
all the effects of programs on concrete memory states.

Semantics of operators. The semantics J⊕K of an operator ⊕ (e.g., +,−) defined below
usually denotes the mathematical meaning of the operator:

J⊕K ∈ V] {ω} × V] {ω} → V] {ω}

For example, J+K(2, 4) = 6. We note that, some inputs of an operator may lead to an error state
ω, e.g., J/K(2, 0) = ω. Moreover, J⊕K is ω−strict, i.e., J⊕K propagates the error state ω when
the error state ω is an input.

Semantics of left and right value expressions. Figure 2.3 presents the formal definitions
of the semantics of left and right value expressions. The semantics evallJlK ∈Mω → Vaddr]{ω}
of a left value expression l is a ω−strict function that propagates the error state ω ∈ Mω and
maps a non-error memory state (ε, σ) ∈M either to an address denoted by l in the given state
(ε, σ) or to an error state ω. Similarly, the semantics evalrJrK ∈Mω → V]{ω} of a right value
expression r is also a ω−strict function that propagates the error state and maps a non-error
memory state (ε, σ) ∈ M either to a value denoted by r in the given state or to an error state
ω. The error state ω may appear both in mathematical operations and in store operations.

Denotational semantics. The denotational semantics JpK ∈ P(Mω) → P(Mω) of program
statements is presented in Figure 2.4. Intuitively, in the denotational semantics, programs are
described as functions that map sets of initial memory states to sets of final memory states
at the end of the execution of the program. The semantics is defined in a standard way by

26 Chapter 2. Separation Logic Based Shape Analysis

guardJrK(M) =
{(ε, σ) | (ε, σ) ∈M ∧ evalrJrK(ε, σ) 6∈ {0, ω}} ∪ {ω | ω ∈M ∨ (ε, σ) ∈M, evalrJrK(ε, σ) = ω}

Variable declaration:

JxK(M) =
{ω | ω ∈M ∨ ∃(ε, σ) ∈M, x ∈ dom(ε) ∨ 0 = create(1, σ)}
∪ {(ε] [x 7→ a1], σ1) | (ε, σ) ∈M ∧ x 6∈ dom(ε) ∧ (a1, σ1) = create(1, σ)}

Assignment:

Jl = rK(M) =
{ω | ω ∈M ∨ ∃(ε, σ) ∈M, ω = evallJlK(ε, σ) ∨ ω = evalrJrK(ε, σ)}
∪ {ω | ∃(ε, σ) ∈M, a = evallJlK(ε, σ) ∧ v = evalrJrK(ε, σ) ∧ ω = write(a, v, σ)}
∪ {(ε, σ1) | (ε, σ) ∈M, a = evallJlK(ε, σ) ∧ v = evalrJrK(ε, σ) ∧ σ1 = write(a, v, σ)}

Allocation:

Jl = malloc(n)K(M) =
{ω | ω ∈M ∨ ∃(ε, σ) ∈M, ω = evallJlK(ε, σ)}
∪ {ω | ∃(ε, σ) ∈M, a = evallJlK(ε, σ) ∧ 0 = create(n, σ) ∧ ω = write(a, 0, σ)}
∪ {ω | ∃(ε, σ) ∈M, a = evallJlK(ε, σ) ∧ (a1, σ1) = create(n, σ) ∧ ω = write(a, v1, σ1)}
∪ {(ε, σ1) | ∃(ε, σ) ∈M, a = evallJlK(ε, σ) ∧ 0 = create(n, σ) ∧ σ1 = write(a, 0, σ)}
∪ {(ε, σ2) | (ε, σ) ∈M, a = evallJlK(ε, σ) ∧ (a1, σ1) = create(n, σ) ∧ σ2 = write(a, v1, σ1)}

De-allocation:

Jfree(l, n)K(M) =
{ω | ω ∈M ∨ ∃(ε, σ) ∈M, ω = evallJlK(ε, σ)}
∪ {ω | ∃(ε, σ) ∈M, a = evallJlK(ε, σ) ∧ ω = delete(a, n, σ)}
∪ {(ε, σ1) | (ε, σ) ∈M, a = evallJlK(ε, σ) ∧ σ1 = delete(a, n, σ)}

Assertion:

Jassert(r)K(M) =
{ω | ω ∈M ∨ ∃(ε, σ) ∈M, ω = evalrJrK(ε, σ) ∨ 0 = evalrJrK(ε, σ)}
∪ {(ε, σ) | (ε, σ) ∈M, v = evalrJrK(ε, σ) ∧ v 6= 0}

Conditional branch:

Jif(r){p1}else{p2}K(M) = Jp1K ◦ guardJr 6= 0K(M) ∪ Jp2K ◦ guardJr == 0K(M)

Loop:

Jwhile(r){p}K(M) = guardJr == 0K(lfp⊆λM1.M ∪ JpK ◦ guardJr 6= 0K(M1))

Sequence:

Jp1; p2K(M) = Jp2K ◦ Jp1K(M)

Figure 2.4: Denotational semantics of programs

Chapter 2. Separation Logic Based Shape Analysis 27

induction over the syntax of programs. It relies on the store operations read,write, create and
delete, and the semantics of left and right value expressions evallJlK and evalrJrK. In order to
handle control flow operations in branch statements and loop statements, it relies on a guardJrK
operation that filters out memory states that do not satisfy the condition expression r:

guardJrK ∈ P(Mω)→ P(Mω)

Note that, as defined in Figure 2.4, all the program statements propagate the error state ω,
that is, for all p and for all M ⊆Mω,

ω ∈M =⇒ ω ∈ JpK(M)

In addition to that, the semantics of some statements on non-error states are discussed below.
The variable declaration statement, x, consists of creating a new cell for variable x for all

the non-error states. If in a memory state (ε, σ), variable x is already declared, denoted as
x ∈ dom(ε), or the store allocation fails, denoted as 0 = create(1, σ), executing the statement
will output the error state ω in the final states.

The assignment statement, l = r, is carried out on each non-error state (ε, σ) ∈ M by
evaluating the left-hand side l into an address a, evaluating the right-hand side r into a value
v, and writing the value v into the cell at address a in the store σ. If one of the three steps fails,
i.e., outputs the error state ω, the execution of the assignment statement will also output the
error state ω in the final states.

The allocation statement, l = malloc(n) first evaluates the left-hand side l into an address
a on a non-error state (ε, σ) ∈ M. If the evaluation process fails, it outputs the error state.
Otherwise, it allocates a memory block of n memory cells in the store. When the allocation
fails, i.e., returns a null address 0, it writes the null address 0 into the cell at address a. When
the allocation succeeds, i.e., returns the base address a1 of the newly allocated block and the
new store σ1, it writes address a1 into the cell at address a in the new store σ1.

The semantics for a loop statement, while(r){p}, is defined on the least fix-point, denoted
as lfp⊆λM1.M ∪ JpK ◦ guardJr 6= 0K(M1), of the following function:

λM1.M ∪ JpK ◦ guardJr 6= 0K(M1)

Indeed, the function is monotone over the complete lattice (P(Mω),⊆,∪) as guardJrK and JpK
are monotone. This ensures that the function always has a least fix-point. Intuitively, a loop
invariant covers all the reachable states during the execution of the loop from a set of initial
states.

The semantics of the other statements are all quite natural, and are thus not discussed in
detail.

Extensions. The programming language presented in Figure 2.1 is a small fragment of the
C language, which allows a more concise presentation of the thesis. In practice, we could also
consider other features of the C language:

• C programs that contain other control statements (e.g., switch, break, goto, for) can
be transformed into equivalent programs with only if and while statements.

28 Chapter 2. Separation Logic Based Shape Analysis

• The scopes of variables can be added into the environment in order to allow local variables
to be defined in nested blocks.

• In order to support functions, we could add the call records into the environment.

• Since our language supports expressions of pointer dereference and field access, it can be
easily extended to handle basic types (e.g., bool, int), pointer types, and structure types.

2.2 Abstract Interpretation

Abstract interpretation [CC77] is a theory that allows different program semantics to be com-
pared by using abstractions. In this section, we recall the most basic notions of abstract interpre-
tation, which are used in the following in order to design sound and automatic static analyzers
to prove properties about programs.

As shown in Section 2.1, the behavior of a program can be formalized as a function that
maps sets of initial memory states into sets of final memory states. In order to abstract such
behaviors, we need to design an abstract domain that includes a set of abstract states, abstract
operations and some over-approximation of lattice operations.

Abstract states. An abstract state m ∈Mω describes a set of concrete states. The relation-
ship between abstract and concrete states is explicitly given by a concretization function that
maps each abstract state into a set of concrete states:

γ :Mω → P(Mω)

where P(Mω) is the power-set of concrete states. In addition, abstract states often include the
bottom and top elements ⊥,> ∈Mω, which denote the empty and complete concrete sets:

γ(⊥) = ∅
γ(>) =Mω

Example 2.1 (Interval abstractions). An interval abstraction m is a map from each
program variable x ∈ X to an interval abstraction [n1, n2]. It abstracts away the con-
crete addresses of program variables and over-approximates the concrete value of program
variables by intervals. The concretization function of interval abstractions is defined as:

γ(m) = {(ε, σ) | ∀x 7→ [n1, n2] ∈ m, n1 ≤ σ ◦ ε(x) ≤ n2}

Abstract operations. In order to describe manipulations of concrete states, abstract inter-
pretation relies on abstract operations. Abstract operations correspond to concrete computa-
tions at the abstract level. Therefore, the abstract operations that an abstract domain should
provide depend on the operations on the concrete elements. More precisely, for each concrete
operation op :Mω ×Mω →Mω, the analysis should use a correspondence abstract operation
op : Mω ×Mω →Mω. A sound abstract operation should over-approximate all the concrete
behaviors of the concrete operation.

Chapter 2. Separation Logic Based Shape Analysis 29

Definition 2.2 (Soundness of abstract operations). An abstract operation op : Mω ×
Mω →Mω is sound with respect to the concrete operation op :Mω ×Mω →Mω if and only
if:

∀m1,m2 ∈Mω,∀m1 ∈ γ(m1),m2 ∈ γ(m2), op(m1,m2) ∈ (γ ◦ op)(m1,m2)

Example 2.2 (Abstract operations on the interval abstract domain). Correspond-
ing to the addition + and subtraction − operations on concrete values of program variables,
the interval abstract domain should define abstract operations + and − on the intervals:

+([n1, n2], [n3, n4]) = [n1 + n3, n2 + n4]
−([n1, n2], [n3, n4]) = [n1 + n3, n2 + n4]

Approximation of lattice operations. Besides basic abstract operations, the analysis also
needs to use approximation of lattice operations: vMω

for the entailment checking of abstract
states, tMω

for joining two abstract states, OMω
for ensuring termination when computing

abstract fix-points. These operators have to be sound in order to derive sound proofs of program
properties.

Entailment checking operator vMω
. In order to prove one abstract state can be over-

approximated by another abstract state, the abstract domain needs to use an entailment checking
operation vMω

: Mω ×Mω → {true, false}. In the following, we simply write m1 vMω
m2

when vMω
(m1,m2) = true.

Definition 2.3 (Soundness of entailment checking operator vMω
). The entailment

checking operation vMω
:Mω ×Mω → {true, false} is sound if and only if:

∀m1,m2 ∈Mω, m1 vMω
m2 =⇒ γ(m1) ⊆ γ(m2)

Example 2.3 (A sound entailment checking operator on intervals).

[n1, n2] vMω
[n3, n4] ⇐⇒ n1 ≥ n3 ∧ n2 ≤ n4

Joining operator tMω
. When analyzing a program, the number of abstract states may

grow exponentially due to conditional statements and abstract operations. In order to have
analyses that are scalable and always terminate, abstract states may need to be merged during
the analysis. The joining operator tMω

: Mω ×Mω → Mω merges two abstract states and
returns an over-approximation.

Definition 2.4 (Soundness of joining operator tMω
). The joining operator tMω

:Mω×
Mω →Mω is sound if and only if:

∀m1,m2 ∈Mω, γ(m1) ⊆ γ(m1 tMω
m2) ∧ γ(m2) ⊆ γ(m1 tMω

m2)

30 Chapter 2. Separation Logic Based Shape Analysis

Example 2.4 (A sound joining operator on intervals).

[n1, n2] tMω
[n3, n4] = [min(n1, n3),max(n2, n4)]

Widening operator OMω
. As shown in Figure 2.4, the concrete semantics of a loopwhile(r){p}

on a set of concrete states M is defined as the least fix-point of the function λM1. M ∪
JpK ◦ guardJr 6= 0K(M1). In practice, the fix-point can be reached when Mn+1 ⊆ Mn with
the following iterations:

{
M0 = M
Mn+1 = Mn ∪ JpK ◦ guardJr 6= 0K(Mn) n ∈ N

However, the sequences of iterates might be infinite. The same is true for the abstract iteration
below in order to compute an abstract fix-point that over-approximates the concrete least fix-
point:

{
m0 = m

mn+1 = mn tMω
JpK ◦ guardJr 6= 0K(mn) n ∈ N

The abstract iteration starts from an abstract state m that over-approximates M (i.e., M ⊆
γMω

(m)), and is performed on the abstract semantics JpK of the loop body and the abstract
semantics guardJrK of loop condition.

However, in order to design a static analysis that always terminates, the number of abstract
iterates has to be finite. Therefore, a widening operator OMω

: Mω ×Mω → Mω that joins
abstract states and provides a convergence acceleration for the iteration process is necessary.

Definition 2.5 (Widening operator). A widening operator OMω
∈ Mω × Mω → Mω

should satisfy the two following properties for soundness and termination respectively:

1. ∀m1,m2 ∈Mω, γMω
(m1) ⊆ γMω

(m1OMω
m2) ∧ γMω

(m2) ⊆ γMω
(m1OMω

m2)

2. For any sequence (mn)n∈N, the sequence (m′n)n∈N defined below is ultimately stationary:
{

m′0 = m0

m′n+1 = m′nOMω
mn+1 n ∈ N

Example 2.5 (A widening operator of interval abstractions).

[n1, n2]OMω
[n3, n4] = [n1 ≤ n3?n1 : −∞, n2 ≥ n4?n2 : +∞]

With the widening operator OMω
, we can thus have the following abstract iteration with

widening:
{

m0 = m

mn+1 = mnOMω
JpK ◦ guardJr 6= 0K(mn) n ∈ N

Chapter 2. Separation Logic Based Shape Analysis 31

According to [CC77], the abstract iteration with widening is ultimately stationary and sound,
i.e., it is able to compute a sound over-approximation of the concrete least fix-point in a finite
number of iterates, which is the abstract post fix-point of the loop while(r){p} from the pre-
condition m, denoted as lfpvMω

(λm1. mOMω
JpK ◦ guardJr 6= 0K(m1)).

However, in practice, the widening operator OMω
can lead to a huge loss in precision. In

order to compute more precise loop invariants, static analyses often make use of the widening
operator to accelerate the iteration convergence after several abstract iterates with the join
operator tMω

.

Forward analyses. An analysis based on forward abstract interpretation starts from an ab-
stract pre-condition that takes into account all the possible initial states and aims to automati-
cally compute an abstract post-condition that covers all the final reachable states.

Example 2.6 (An example of a forward analysis using interval abstractions).
Let us consider the analysis of the simple program below with the abstract pre-condition
i 7→ [−∞,+∞] as an example.

1 i = 0;
2 while(i<10){
3 i = i+1;
4 }

The abstract pre-condition states that variable i may be any integer value. Then, the
assignment statement at line 1 writes 0 to i, which results in abstract state i 7→ [0, 0].
Starting from the abstract state i 7→ [0, 0], the analysis then needs to iterate on the while
loop to compute an abstract fix-point. The iteration process is shown below:

Iteration loop head loop end join or widen
first: i 7→ [0, 0] i 7→ [1, 1] i 7→ [0, 0] tMω

i 7→ [1, 1] = i 7→ [0, 1]

second: i 7→ [0, 1] i 7→ [1, 2] i 7→ [0, 1] tMω
i 7→ [1, 2] = i 7→ [0, 2]

third: i 7→ [0, 2] i 7→ [1, 3] i 7→ [0, 2] OMω
i 7→ [1, 3] = i 7→ [0,+∞[

fourth: i 7→ [0,+∞[i 7→ [1,+∞[i 7→ [0,+∞[OMω
i 7→ [1,+∞[= i 7→ [0,+∞[

The first loop iteration increases the value of i by 1 at line 3, which results in abstract state
i 7→ [1, 1] at the end of the first loop iteration. Then, the analysis joins the two abstract
states corresponding to the loop entry and to the end of the first iteration and gets abstract
state i 7→ [0, 1]. The second loop iteration starts from the join result i 7→ [0, 1] and ends in
abstract state i 7→ [1, 2]. After joining the two abstract states i 7→ [0, 1] and i 7→ [1, 2], the
analysis gets i 7→ [0, 2]. From the third iteration, the analysis starts to widen the abstract
states corresponding to the loop entry and to the end of the iteration. In both the third the
fourth iterations, the analysis gets abstract state i 7→ [0,+∞[, thus the abstract iteration
terminates and returns the abstract fix-point i 7→ [0,+∞[.

32 Chapter 2. Separation Logic Based Shape Analysis

2.3 Memory State Abstractions

This section and the next aim to introduce a memory abstract domain [CR08] that is based
on a fragment of separation logic [Rey02]. In particular, the memory abstractions and the
concretization function are presented in this section. We note that other separation logic based
shape analyses [BCC+07, CDOY09, DOY06] all share similar principles.

Abstract values. To abstract concrete memory states, we first need to abstract concrete
values by abstract values. An abstract value v ∈ V is either a symbolic variable α ∈ Vα or
a symbolic address of a program variable &x ∈ X&. To concretize abstract values, we need a
valuation function µ ∈ V → V that maps an abstract value v ∈ V to a concrete value v ∈ V. We
let µdX&

denote the restriction of a valuation µ to symbolic addresses of program variables X&.

Abstract states. An abstract state m ∈Mω is either > (top), ⊥ (bottom) or a pair (g, n) ∈
G ×N that is composed of an abstract shape graph g ∈ G and a numerical abstraction n ∈ N :

m ∈Mω ::= G ×N] {⊥,>}

Intuitively, an abstract shape graph g ∈ G describes the structural properties of concrete memory
states by using separating conjunction formulas parameterized by abstract values V, and thus,
is concretized into a set of pairs made up of a concrete store σ ∈ H and a valuation µ ∈ V → V
of abstract values:

γG : G → P(H× (V → V))

A numerical abstraction n ∈ N abstracts the numerical properties of abstract values and is
concretized into a set of valuations of abstract values:

γN : N → P(V → V)

Further details of abstract shape graphs and numerical abstractions are discussed in the follow-
ing.

Given the concretization of abstract shape graphs and numerical abstractions, we can thus
define the concretization of abstract states γMω

:Mω → P(Mω) as follows:

γMω
(⊥) = ∅

γMω
(>) = Mω

γMω
(g,n) = { (µdX&

, σ) | ∃µ ∈ γN (n), (σ, µ) ∈ γG(g)}

Note that an abstract state is concretized into a set of concrete states, where a concrete state
is either an error state ω or is a pair (ε, σ) made up of an environment ε mapping symbolic
addresses of program variables into their real addresses and a store σ. The bottom state ⊥
is concretized into an empty set and the top state > stands for the complete set of concrete
states. For each concrete state (ε, σ) ∈ γMω

(g, n), there exists a valuation µ that is coherent
with the environment ε (i.e., ε = µdX&

), the abstract shape g and the numerical abstraction n,
i.e., (σ, µ) ∈ γG(g) and µ ∈ γN (n), denoted as (σ, µ) � (g, n).

Chapter 2. Separation Logic Based Shape Analysis 33

Abstract shapes. An abstract shape g ∈ G is a separating conjunction ∗ of region predicates:

g (∈ G) ::= p1 ∗ . . . ∗ pn

Each region predicate pi ∈ P describes a store that is disjoint from stores described by other
region predicates. The concretization of an abstract shape can thus be defined as “gluing”
disjoint stores, each of which concretizes a region predicate:

γG(p1 ∗ . . . ∗ pn) = { (σ1] . . .] σn, µ) | ∀1 ≤ i ≤ n, (σi, µ) ∈ γP(pi)}
A region predicate can be emp denoting an empty region, a points-to predicate (e.g., v1.f 7→

v2) denoting a single memory cell, an inductive predicate (e.g., v2 ·list) describing a store with an
inductive data structure or a segment predicate (e.g., v1 · list ∗= v2 · list) describing a fragment
of an inductive data structure.

The empty predicate. The empty predicate emp denotes an empty store, and thus can be
concretized into a set of pairs composed of an empty store and any valuation:

γP(emp) = { ([], µ) | µ ∈ V → V}
In the following, we represent the emp predicate as an empty graph with only abstract values
and no edges, such as the graph below with only two nodes representing abstract values:

v1 v2

Points-to predicates. A points-to predicate v1.f 7→ v2 abstracts a store with only a concrete
cell, where given a valuation µ of abstract values v1 and v2, the abstract address v1 + f denotes
the concrete address µ(v1) + f in the store and the abstract value v2 denotes the concrete value
µ(v2) of the cell. Formally, a points-to edge is concretized as follows:

γP(v1.f 7→ v2) = { ([µ(v1) + f 7→ µ(v2)], µ) | v1, v2 ∈ dom(µ)}
In the following, we represent below a points-to predicate v1.f 7→ v2 as an edge:

v1 v2
f

Moreover, the separating conjunction ∗ of region predicates is represented in sub-graphs with
disjoint edges. For example, the separating conjunction of the two points-to predicates v1.f 7→
v2 ∗ v2.f 7→ v3 is represented as the following graph with two disjoint edges:

v1 v2 v3
f f

Example 2.7 (An abstract shape with only points-to edges). Let us consider the
abstract shape graph below which abstracts a memory block with a list pointed to by
variable x:

&x α1 α2

α3

α4

α5

α6

α7

next

d

next

d

next

d

34 Chapter 2. Separation Logic Based Shape Analysis

The points-to edge starting at node &x abstracts the memory cell of variable x. The two
points-to edges starting at node α1 respectively abstract the next field and the data field
of the first list element. Similarly, the points-to edges starting at nodes α2 and α4 abstract
the the following two list elements. The shape graph contains 7 points-to edges in total,
and thus should be concretized into a set of pairs composed of a concrete store with exactly
7 memory cells and a valuation. One concrete example is the following pair (σ1, µ1), where,
σ1 is the graphical representation of [0x...010 7→ 0x...040]] [0x...040 + next 7→ 0x...060]]
[0x...040 + d 7→ 5]] [0x...060 + next 7→ 0x...080]] [0x...060 + d 7→ 9]] [0x...080 + next 7→
0x0]] [0x...060 + d 7→ 18] :

σ1 ∈ H

5

9

0x0
18

0x...010

0x...040

0x...060

0x...080

µ1 ∈ V → V

&x 7→ 0x...010
α1 7→ 0x...040 α3 7→ 5
α2 7→ 0x...060 α5 7→ 9
α4 7→ 0x...080 α7 7→ 18
α6 7→ 0x0

We note σ1 contains a list of length 3 as the next pointer of the last list element is null.
However, in the concretization, we could have different stores with different valuations, so
that the store only contains a list fragment of length 3, such as the following one (σ2, µ2):

σ2 ∈ H

7

3

0x10
32

0x...020

0x...050

0x...070

0x...090

µ2 ∈ V → V

&x 7→ 0x...020
α1 7→ 0x...050 α3 7→ 7
α2 7→ 0x...070 α5 7→ 3
α4 7→ 0x...090 α7 7→ 32
α6 7→ 0x...010

Inductive predicates. While separating shape graphs containing only points-to edges are
expressive enough to abstract linked lists of a certain length, they cannot describe sets of memory
states containing linked lists of any length. Intuitively, some data structures e.g., linked lists
and binary trees, present a recursive pattern that can be summarized by an inductive definition.

Chapter 2. Separation Logic Based Shape Analysis 35

For example, linked lists can be defined as:

α0 · list ::=
emp ∧ α0 = 0

∨ α0.next 7→ α1 ∗ α0.d 7→ α2 ∗ α1 · list ∧ α 6= 0

This says that a list starting from address α0 is either empty (no list element) when α0 is null
or has a list element at address α0 (which has a next field to α1 and a data field) and a list
α1 · list starting from address α1. Similarly, binary trees can be defined as:

α0 · tree ::=
emp ∧ α0 = 0

∨ α0.l 7→ α1 ∗ α0.r 7→ α2 ∗ α0.d 7→ α3 ∗ α1 · tree ∗ α2 · tree ∧ α 6= 0

This says that a binary tree starting from address α0 is either empty (no tree element) when α0

is null or has a tree element at address α0 (which contains a left field to α1, a right field to α2

and a data field), a left sub-tree α1 · tree starting from address α1 and a right sub-tree α2 · tree
starting from address α2.

Following inductive definitions, we can thus extend abstract shape graphs with inductive
predicates that are parameterized by inductive definitions. For instance, linked lists rooted at
abstract address α can be abstracted by the inductive predicate α · list which follows the list
inductive definition. Similarly, binary trees rooted at abstract address β can be abstracted by
the inductive predicate β · tree which follows the tree inductive definition.

In the following, we present inductive predicates as thick edges in graphs, for example, α ·list
is represented as:

α
list

Example 2.8 (An abstract shape graph with inductive predicates). Given the list
inductive definition, we can now abstract lists of any length that are pointed to by variable
x by the following abstract shape graph:

&x α
list

A few concrete examples that can be abstracted by the abstract shape graph are shown
below:

• Variables x points to a list with one element:

0. . .&x

• Variable x points a list with two elements:

. . . 0. . .&x

36 Chapter 2. Separation Logic Based Shape Analysis

• Variable x points to a list with four elements:

. 0. . .&x

Further details about inductive definitions and the concretization of inductive predicates are
given in Chapter 4.

Segment predicates. Inductive definitions provide descriptions for complete data structures.
However, in order to describe segments of data structures, we need segment definitions. Segment
definitions can usually be derived fairly systematically from the initial inductive definitions. For
example, the list segment definition α0 · list ∗= α1 · list below is derived from the list inductive
definition:

α0 · list ∗= α1 · list ::=
emp ∧ α0 = α1

∨ α0.next 7→ α2 ∗ α0.d 7→ α3 ∗ α2 · list ∗= α1 · list ∧ α0 6= α1

It describes a list starting at address α0 with a missing sub-list starting at address α1, in other
words by separating conjunction with a sub-list starting at address α1, we can get a complete
list starting at address α0:

α0 · list ∗= α1 · list ∗ α1 · list ⇐⇒ α0 · list

Similarly, a binary tree segment definition α0 · tree ∗= α1 · tree below is derived from the
tree inductive definition:

α0 · tree ∗= α1 · tree ::=
emp ∧ α0 = α1

∨ α0.l 7→ α2 ∗ α0.r 7→ α3 ∗ α0.d 7→ α4 ∗ α2 · tree ∗= α1 · tree ∗ α3 · tree ∧ α0 6= α1

∨ α0.l 7→ α2 ∗ α0.r 7→ α3 ∗ α0.d 7→ α4 ∗ α3 · tree ∗= α1 · tree ∗ α2 · tree ∧ α0 6= α1

It describes a binary tree rooted at abstract address α0 with a missing sub-tree rooted at abstract
address α1, i.e., by separating conjunction with a sub-tree starting at address α1, we can get a
complete tree starting at address α0:

α0 · tree ∗= α1 · tree ∗ α1 · tree ⇐⇒ α0 · tree

We note that, in the tree segment definition, the last two rules respectively describe cases where
the missing sub-tree is in the left or the right branch of the tree node at α0.

Parameterized by segment definitions, we can thus extend abstract shape graphs with seg-
ment predicates to describe partial data strcutures. In the following, we present segment pred-
icates as thick edges with a source node and a destination node in graphs. For example, the
graphical representation of a tree segment α · tree ∗= β · tree is the following:

α β
tree

When necessary (e.g., when we have different inductive predicates at both ends or have inductive
predicates with parameters), we may also use the following graphical representation:

Chapter 2. Separation Logic Based Shape Analysis 37

α β
tree

tree

Example 2.9 (An abstract shape graph with segment predicates). The abstract
shape graph below abstracts memory states occurring in a classical list traversal algorithm,
where, x is a pointer to the first list element and c is a “cursor” pointing to an element in
the list:

&x

&c

α β
list list

A few concrete examples are shown in the following, where for simplicity we leave out
memory cells of variables x and c:

• The list segment pointed to by variable x and c is empty:

. 0. . .

x,c

• The list segment pointed to by variable x and c has one element:

. 0. . .

x c

• The list segment pointed to by variable x and c contains all the list elements except
the last one:

. 0. . .

x c

Further details about segment definitions and the concretization are discussed in Chapter 4.

Numerical abstractions. Numerical abstractions are used to abstract the numerical prop-
erties of abstract values, and are not the primary focus of the thesis. Therefore, in the thesis,

38 Chapter 2. Separation Logic Based Shape Analysis

we assume a numerical abstract domain N , which provides the following abstract operations:

abstract elements n ∈ N
concretization γN : N → P(V → V)

guard guardN : N × CV → N
assign assignN : N × V ×RV → N
remove removeN : N × V → N
prove proveN : N × CV → {true, false}
rename renameN : N × (V → P(V))→ N
abstract join tN : N ×N → N
abstract widen ON : N ×N → N
inclusion check vN : N ×N → {true, false}

We note that, guardN inputs a numerical abstraction n ∈ N and a numerical constraint cV ∈ CV ,
and returns a numerical abstraction which enforces cV ; assignN inputs a numerical abstraction
n ∈ N , an abstract variable v ∈ V and a numerical expression rV ∈ RV , and returns a numerical
abstraction where abstract variable v has been assigned to a new meaning that is computed
based on rV ; removeN inputs an abstraction n and an abstract variable v, and removes the
abstract variable v from the abstraction n; proveN inputs an abstraction n and a numerical
constraint cV , and returns true when it successfully establishes that n entails cV ; renameN
inputs an abstraction n and a mapping from abstract variables in n to other abstract variables,
and returns another abstraction which renames abstract variables in n according to the input
mapping.

In practice, a suitable numerical domain is obtained as a reduced product of a numerical
domain that only reasons about equalities and dis-equalities and any other numerical domains
supported by the Apron library [JM09], e.g., octagons [Min06], convex polyhedra [CH78], inter-
vals [CC77]. In the following, for simplicity, we sometimes present numerical constraints directly
than specific numerical abstractions, present guardN (n, cV) as n ∧ cV and proveN (n, cV) =
true as n =⇒ cV .

Disjunctive abstract states. In practice, shape analyses often rely on disjunctive abstract
states d ∈ D of the form m1 ∨ m2 ∨ . . . ∨ mn (n ∈ N). The reason is that disjunctive abstract
states d ∈ D enable more precise abstraction of memory states than abstract states m ∈ Mω.
Indeed, in real-world program analyses, a single abstract state m ∈ Mω often cannot capture
precise structural properties of a set of concrete memory states. The concretization of disjunctive
abstract states is defined as the union of the concretization of each abstract state:

γD(m1 ∨ m2 ∨ . . . ∨ mn) = γMω
(m1) ∪ . . . ∪ γMω

(mn)

2.4 Abstract Semantics

In this section, we discuss the abstract semantics for the abstract statesMω introduced in the
previous section, from which the abstract semantics for the disjunctive abstract states D can be

Chapter 2. Separation Logic Based Shape Analysis 39

read(v, f, (g,n)) ::=

{
v1 if ∃g1, v1, g = g1 ∗ v.f 7→ v1
> otherwise

write(v, f, v1, (g,n)) ::=

{
(g1 ∗ v.f 7→ v1,n) if ∃g1, v2, g = g1 ∗ v.f 7→ v2

> otherwise

create(n, (g,n)) returns

(α, (g ∗ α 7→ α1 ∗ . . . ∗ α+ 4(n− 1) 7→ αn,n)), (α, (g,n ∧ α = 0))

where α, α1, . . . , αnare fresh symbolic variables

delete(v, n, (g,n)) ::=

{
(g1,n) if ∃g1, v1, . . . , vn, g = g1 ∗ v 7→ v1 ∗ . . . ∗ v + 4(n− 1) 7→ vn
> otherwise

Figure 2.5: Abstract store operations

derived naturally.

2.4.1 Abstract Store Operations

As presented in Figures 2.3 and 2.4, both the concrete program semantics and the expression
evaluation involve the store operations shown in Figure 2.1.2. Therefore, in order to define the
abstract semantics of program statements, we first need to provide abstract store operations.
For simplicity, we assume here that the memory regions that store operations operate on are
fully described by points-to edges. The case where the memory cells involved are summarized in
inductive or segment predicates will be dealt with unfolding operations of summary predicates
in Section 2.4.2.

Corresponding to the concrete store operations read, write, create and delete, we have
the following abstract store operations:

read ∈ V × F ×Mω → V] {>,⊥}
write ∈ V × F × V ×Mω →Mω

create ∈ N×Mω → (V ×Mω)2] {⊥,>}
delete ∈ V × N×Mω →Mω

All the operations are ⊥−strict and >−strict, i.e. when the input abstract state is ⊥, the
operation returns ⊥ and the same for >. We note that the > abstract state accounts for crashes
of program analysis either due to program errors or the loss of precision during the analysis.
Further characterizations of the abstract operations are shown in Figure 2.5.

Intuitively, the abstract operation read(v, f, (g, n)) attempts to read the abstract value of
the memory cell at abstract address v + f by searching a points-to edge starting at v.f, e.g.
v.f 7→ v1, in the abstract shape graph g and returns the abstract value v1. The abstract
write(v, f, v1, (g, n)) operation attempts to write the abstract value v1 into the memory cell
at abstract address v + f. Therefore, it also searches for a points-to edge starting at v.f, e.g.

40 Chapter 2. Separation Logic Based Shape Analysis

v.f 7→ v2, in the abstract shape graph g, and then updates the points-to edge to v.f 7→ v1.
Since the concrete operation create(n, σ) may succeed (returning the base address of the newly
allocated block and the new store) or fail (returning the null address 0), to over-approximate
such behaviors, the abstract operation create(n, (g,n)) returns a pair made up of (α, (g ∗
α 7→ α1 ∗ . . . ∗ α + 4(n − 1) 7→ αn, n)) and (α, (g, n ∧ α = 0)). The first pair abstracts
the concrete results of successful allocation by adding n continuous points-to edges starting at
abstract addresses α in the abstract shape graph g, while the second pair corresponds to the
case of a failure by returning a symbolic variable α that is constrained to be 0 in the numerical
abstraction, denoted by n ∧ α = 0. Conversely, the abstract operation delete(v, n, (g,n))
removes n continuous points-to edges starting from abstract address v from the abstract shape
graph. We note that the > abstract state may be returned during the store operations either
due to imprecise abstract states or invalid store operations that cause the error state ω in the
concrete part.

The abstract store operations are sound. For simplicity, we only present the soundness con-
dition of abstract operation read and the soundness conditions of other operations are similar.

Condition 2.6 (Soundness of abstract read operation). The abstract operation read is
sound if and only if the following property holds:

read(v, f, (g,n)) = v1
=⇒
∀(σ, µ) � (g, n), read(µ(v), f, σ) ∈ {µ(v1) | (σ, µ) � (g,n), }

Example 2.10 (Abstract store operations). Let us consider some abstract store op-
erations on the abstract state below:

&x α1 α2

α3

α4

α5

next

d

next

d

list
g : , n : α1 6= 0 ∧ α2 6= 0

• read(α1, next, (g,n)) = α2 read(α1, d, (g, n)) = α3

• write(α1, next, α4, (g, n)) = (g1, n1) (the operation flips the next edge from node α1

in g to node α4):

&x α1 α2

α3

α4

α5

next

d

next

d

list
g1 : , n1 : α1 6= 0 ∧ α2 6= 0

• create(2, (g, n)) = ((α6, (g2,n2)), (α6, (g3,n3))) :

Chapter 2. Separation Logic Based Shape Analysis 41

&x α1 α2

α3

α4

α5

α6 α7

α8

next

d

next

d

list 0

4

g2 : , n2 : α1 6= 0 ∧ α2 6= 0

&x α1 α2

α3

α4

α5

α6
next

d

next

d

list
g3 : , n3 : α1 6= 0 ∧ α2 6= 0 ∧ α6 = 0

• delete(α1, 2, (g, n)) = (g4, n4) (the list tail can no longer be dereferenced from variable
x after the first list element has been removed):

&x α1 α2 α4

α5

next

d

list
g4 : , n4 : α1 6= 0 ∧ α2 6= 0

2.4.2 Unfolding

In Section 2.4.1, we describe store operations based on the assumption that the memory regions
that store operations operate on are fully described by points-to edges. However, store operations
may involve memory cells that are summarized in inductive or segment predicates, for example
the store operation read(α, next, (g,n)) reads the abstract value at abstract address α + next

which is summarized in the inductive predicate α · list:

&x α
list

g : , n : α 6= 0

In such cases, in order to precisely support the store operations, the analysis needs to unfold
summary predicates to expose points-to edges that store operations operate on.

Unfolding of inductive edges. The principle of unfolding an inductive predicate (e.g., α ·
list) is to rewrite the inductive predicate by syntactically expanding all the rules of the inductive
definition. Specifically, the unfolding operation unfold ∈ V×Mω → D takes an abstract address
v which is the origin of an inductive edge and memory cells from which need to be materialized,
and an abstract state m ∈Mω. It outputs a disjunctive abstract state d = m1 ∨ . . . ∨ mk ∈ D,
where each abstract state mi refines the abstract state m following a rule of the inductive
definition. For simplicity, we present here only the soundness condition and an example of
unfolding; the formal definition of unfolding is given in Chapter 6.

Condition 2.7 (Soundness of unfold). The unfolding operator unfold ∈ V ×Mω → D is
sound if and only if:

∀m ∈Mω, unfold(v,m) = m1 ∨ . . . ∨ mn =⇒ γMω
(m) ⊆ γMω

(m1) ∪ . . . ∪ γMω
(mn)

42 Chapter 2. Separation Logic Based Shape Analysis

Example 2.11 (Unfolding a list inductive predicate). Let us consider the unfolding
of the inductive predicate α2 · list from the abstract state below:

&x α1 α2

α3

next

d

list
g : , n : α1 6= 0

As the list inductive definition contains two rules, one corresponding to the empty list and
the other to the non-empty list, unfolding the inductive predicate α2 · list leads to the two
abstract states below:

&x α1 α2

α3

next

d

g1 : , n1 : α1 6= 0 ∧ α2 = 0

&x α1 α2

α3

α4

α5

next

d

next

d

list
g2 : , n2 : α1 6= 0 ∧ α2 6= 0

The first abstract state (g1,n1) corresponds to the empty list case, where the list predicate
is replaced by an empty region, and the numerical abstraction n1 guarantees that α2 is a
null address. The second abstract state (g2, n2) corresponds to the non-empty list case,
where the list element at α2 is completely exposed and α2 is constrained to be non-null in
n2.

Unfolding of segment predicates. Segment predicates may need to be unfolded from either
end, forward or backward. Forward unfolding is very useful for analyzing forward traversal
programs of data structures, and conversely backward unfolding is for backward data structure
traversal. Forward segment unfolding relies on rewriting the segment predicate by syntactically
unfolding all the rules of the segment definition, which is similar to the unfolding of inductive
predicates. while backward unfolding needs to first split a segment predicate into a separating
conjunction of two segments and then performs forward unfolding at the split point. For example,
backward unfolding at the previous node α4 of node α3 of the doubly linked list segment predicate
α1 ·dll(α2) ∗= α3 ·dll(α4) needs to split the segment at node α4 (node α5 denotes the previous
node of node α4):

α1 α4 α3

dll(α2)

dll(α5)

dll(α5)

dll(α4)

The soundness condition of segment unfolding can be expressed in the same way as in Defini-
tion 2.7.

Chapter 2. Separation Logic Based Shape Analysis 43

Example 2.12 (Unfolding a list segment predicate). Let us consider unfolding the
list segment from node α1 to node α2 in the abstract state below:

&x α1 α2
list list

g : , n : α1 6= 0

According to the list segment definition, we get the two abstract states below:

&x α2
list

g1 : , n1 : α1 6= 0 ∧ α1 = α2

&x α1 α3

α4

α2
next

d

list list
g2 : , n2 : α1 6= 0 ∧ α1 6= α2

The abstract state (g1,n1) corresponds to the empty segment case, i.e., the segment is
unfolded into an empty region and a constraint specifying α1 is equal to α2 is added into the
numerical abstraction. In practice, the unfolding should then rename α2 into α1 everywhere
in the graph and continue unfolding the inductive edge from node α1 to expose memory
cells at α1. The abstract state (g2,n2) refines the list segment to a non-empty list segment,
which exposes the memory cells at address α1 and imposes the constraint that α1 is not
equal to α2 in n2.

2.4.3 Abstract Evaluation of Left and Right Value Expressions

As the definition of right value expressions (presented in Figure 2.1) involves arithmetic opera-
tors, therefore we first formalize the abstract semantics of arithmetic operators.

Abstract semantics of arithmetic operators. While the concrete semantics of arithmetic
operators are quite simple, precisely defining the abstract semantics of the operators is fairly
complex as they may involve both abstract shape graphs and numerical abstractions. Fig-
ure 2.6 shows the abstract semantics of the additive operator + and the equal test operator ==.
Intuitively, the abstract operator J+K takes two abstract values v1 ∈ V and v2 ∈ V (additive
operands), an abstract state (g,n) ∈Mω, and returns a pair made up of an abstract value v3 and
a new abstract state (g,guardN (n, v3 = v1+v2)) where v3 is enforced to the sum of v1 and v2 in
the abstract state. Similarly, the abstract operator J==K also takes two abstract values v1 and
v2, an abstract state (g, n) ∈ Mω, but returns two pairs made up of boolean values (true and
false) and abstract states which respectively enforce equality and dis-equality condition on v1
and v2. For precision, the equality (resp., dis-equality) condition should be not only enforced on
the numerical abstraction n, denoted as guardN (n, v1 = v2)) (resp., guardN (n, v1 6= v2))), but
also on the abstract shape graph g, denoted as guardG(g, v1 = v2) (resp., guardG(g, v1 6= v2).
We note that guardG ∈ G×CV → G is an operator of the abstract shape domain, which takes an
abstract shape graph g ∈ G, a numerical constraint cV ∈ CV , and returns a new abstract shape
graph where the numerical constraint has been enforced. Moreover, the abstract semantics J⊕K

44 Chapter 2. Separation Logic Based Shape Analysis

J+K(v1, v2, (g,n)) =

(v3, (g,guardN (n, v3 = v1 + v2))) (v3 is a fresh symbolic variable)

J==K(v1, v2, (g,n)) =

(true, (guardG(g, v1 = v2),guardN (n, v1 = v2))),

and (false, (guardG(g, v1 6= v2),guardN (n, v1 6= v2)))

Figure 2.6: Abstract arithmetic operators

of any operator is a ⊥−strict and >−strict function that returns ⊥ and > respectively when
the input abstract state is ⊥ and >.

For simplicity, we only present here the soundness condition of the abstract semantics of
the additive operator and the soundness condition of other abstract arithmetic operators can be
defined similarly.

Condition 2.8 (Soundness of abstract operator J+K). The abstract operation J+K is
sound if and only if the following property holds:

J⊕K(v1, v2, (g, n)) = (v3, (g1,n1)) =⇒
γMω

(g,n) ⊆ γMω
(g1, n1)

∧ {J+K(µ(v1), µ(v2)) | (σ, µ) � (g1, n1)} ⊆ {µ(v3) | (σ, µ) � (g1, n1)}

Example 2.13 (Abstract equality test operation). Let us consider the abstract state
(g, n) of Example 2.10. The abstract equality test operation J==K(α1, α2, (g,n)) tests the
equality of abstract value α1 and α2 in the abstract state (g,n). According to Figure 2.6, the
abstract semantics relies on both the equality and dis-equality test operations on the shape
graph (i.e., guardG(g, v1 = v2) and guardG(g, v1 6= v2)) and on the numerical abstraction
(i.e., guardN (n, v1 = v2) and guardN (n, v1 6= v2)). Indeed, in the abstract graph g, the test
operations can be done in an exact manner: the separating conjunction of the points-to edges
α1.next 7→ α2 and α2.next 7→ α4 entails that α1 and α2 are addresses of disjoint memory
cells, thus, they cannot be equal. Therefore, we can get that guardG(g, v1 = v2) = ⊥ and
guardG(g, v1 6= v2) = g. That is, J==K(α1, α2, (g,n)) returns the two pairs (true,⊥) and
(false, (g,guardN (n, v1 6= v2))).

Abstract evaluation of left and right value expressions. Intuitively, given an abstract
state m, a left value expression l is possibly evaluated into an abstract address (v1, f) ∈ V ×F ,
top (>) that accounts for a failure of the analysis, or bottom (⊥). However, unfolding may be
triggered during the evaluation, which outputs a disjunctive abstract state m1 ∨ . . . ∨ mk, on
each disjunct of which the evaluation is then performed on. Therefore, the abstract semantics

Chapter 2. Separation Logic Based Shape Analysis 45

of left value expressions is a ⊥−strict and >−strict function of the form:

evallJlK ∈Mω →
∨

((V × F)×Mω)] {⊥,>}

We note that, in the following we sometimes write (v1, f) as v1 + f or v1 when the offset is 0.
Similarly, unfolding may also be triggered in the evaluation of a right value expression r,

and thus a right value expression r is either evaluated into a disjunction of pairs of abstract
values and abstract states, or >, ⊥. The abstract semantics of right value expressions is defined
as ⊥−strict and >−strict functions of the form:

evalrJrK ∈Mω →
∨

(V ×Mω)] {⊥,>}

Similar to the concrete expression evaluation shown in Figure 2.3, a formal definition of
abstract expression evaluation can be derived based on the syntax of expressions and the abstract
semantics read, J⊕K and unfold, and thus for simplicity is omitted here. Instead, we present
the soundness condition of the abstract right value expression evaluation and the soundness
condition of the abstract left value expression evaluation can be defined similarly.

Condition 2.9 (Soundness of the abstract evaluation of the right value expression).
The abstract operation evalrJrK is sound if and only if the following property holds:

evalrJrK(g, n) =
∨

1≤i≤n(vi, (gi,ni)) =⇒

γMω
(g,n) ⊆ ⋃1≤i≤n γMω

(gi,ni)

∧ ∀1 ≤ i ≤ n, {evalrJrK(ε, σ) | (ε, σ) ∈ γMω
(gi,ni)} ⊆ {µ(vi) | (σ, µ) � (gi,ni)}

evalrJrK(g, n) = ⊥ =⇒ γMω
(g, n) = ∅

Example 2.14 (Abstract evaluations). Let us consider the abstract state (g,n) of
Example 2.10. The abstract left evaluation of x is the symbolic address &x of variable x,
i.e., evallJxK(g, n) = &x, while the abstract right evaluation of x is the symbolic variable
α1 which abstracts the value of varibale x, i.e., evalrJxK(g,n) = α1. Similarly, the abstract
left evaluation of (*x).next is the abstract address α1 + next, i.e., evallJ(*x).nextK(g, n) =
α1 + next, while the abstract right evaluation of (*x).next is the abstract value α2 at
abstract address α1 + next, i.e., evalrJ(*x).nextK(g, n) = α2.

2.4.4 Folding

Section 2.4.2 shows the unfolding of inductive and segment edges, which is used in some abstract
transfer functions. In contrast to unfolding, folding [CR08] folds back memory regions into
summary predicates and is required in abstract lattice operators of memory states: vMω

, tMω

and OMω
. However, folding turns out to be much harder than unfolding, and the main difficulties

lie in finding memory regions that are candidates for folding and searching for folded summary
predicates. In the following, we present only the principles of the operators that need folding
and refer the readers to Section 6.3 for more details.

46 Chapter 2. Separation Logic Based Shape Analysis

Inclusion checking vMω
. Inclusion checking takes two abstract states (gl, nl) and (gr,nr),

and attempts to establish that the concretization of one abstract state (gl,nl) is included in
the concretization of the other abstract state (gr,nr), that is γMω

(gl, nl) ⊆ γMω
(gr,nr). A

first use of inclusion checking is to prove an abstract loop invariant has been reached after a
series of abstract iterations. A second use is to determine whether a memory region can be
over-approximated by a summary predicate in joining tMω

and widening OMω
. In addition,

inclusion checking is also used in proving post-conditions.
Specifically, the inclusion checking algorithm first aims to set up the inclusion of abstract

shape graphs gl vG gr based on a series of syntactic rewriting rules. As the names of symbolic
variables in gl may have nothing to do with the names in gr (symbolic variables are existential
qualified variables), the rewriting rules have do deal with the renaming of symbolic variables.
Thus, a rewriting rule either matches identical memory regions of gl and gr up to node renaming
or weakens a memory region of gl (resp., gr) into a memory region of gr (resp., gl). When
the inclusion holds on abstract shape graphs, it then applies the numerical inclusion checking
operator vN to establish that nl vN nr.

Example 2.15 (Inclusion checking). Let us try to check the inclusion of (gl,nl) into
(gr,nr), where:

&x α1 α2

α3

next

d

list
gl : , nl : α1 6= 0

&x β1
list

gr : , nr : true

As both abstract shape graphs contain a points-to edge from &x that are identical up to
renaming node β1 of gr into node α1 of gl, the inclusion checking algorithm thus binds β1 to
α1 (i.e., β1 7→ α1), and conclude that the points-to edge &x 7→ α1 is included into &x 7→ β1.
Then, the problem is reduced to checking the inclusion of (g′l, nl) into (g′r,nr) with node
binding {β1 7→ α1}, where:

&x α1 α2

α3

next

d

list
g′l :

, nl : α1 6= 0

&x β1
list

g′r : , nr : true

As g′l and g′r no longer have identical predicates, the algorithm thus tries to weaken g′l into
the inductive predicate β1 · list of g′r. To do that, it unfolds the inductive predicate β1 · list.
One unfolding result is g′′r with numerical constraint β1 6= 0, where:

Chapter 2. Separation Logic Based Shape Analysis 47

&x β1 β2

β3

next

d

list
g′′r :

The abstract graph g′′r is identical with g′l up to node renaming {β1 7→ α1, β2 7→ α2, β3 7→
α3}. The numerical constraint β1 6= 0 and numerical abstraction nr can be entailed by nl
up to the node renaming. Therefore, the inclusion holds.

Joining tMω
and widening OMω

. The joining operator tMω
takes two abstract states

(gl,nl) and (gr, nr), and attempts to compute an abstract state (go, no) that over-approximates
both arguments, that is γMω

(gl, nl) ⊆ γMω
(go,no) and γMω

(gr,nr) ⊆ γMω
(go,no).

Similar to the inclusion checking, the joining algorithm also first joins abstract shape graphs,
i.e., go = gl tG gr, based on a series of syntactic rewriting rules. Each rewriting rule outputs
a memory region into go, which is either identical to memory regions of gl and gr up to node
renaming or over-approximates memory regions of gl and gr. Then, the numerical joining
operator tN is applied on nl and nr to compute a common over-approximation, i.e., no =
nl tN nr.

The widening operator OMω
is very similar to the joining operator, except that it relies on

the numerical widening operator ON to enforce termination.

Disjunctive inclusion checking vD, joining tD and widening OD. Lifting the inclusion
checking of abstract states vMω

to disjunctive inclusion checking vD is obvious:

ml1 ∨ . . . ∨ mln vD mr1 ∨ . . . ∨ mrm ⇐⇒ ∀1 ≤ i ≤ n,∃1 ≤ j ≤ m,mli vMω
mrj

However, an efficient disjunctive inclusion checking algorithm relies not only on efficient inclusion
checking of abstract states vMω

but also on an efficient algorithm (presented in Chapter 8) to
choose the right abstraction mrj for each mli such that mli vMω

mrj .
Given two disjunctive abstract states ml1 ∨ . . . ∨ mln and mr1 ∨ . . . ∨ mrm , a simple disjunc-

tive joining tD can directly return the disjunction of them ml1 ∨ . . . ∨ mln ∨ mr1 ∨ . . . ∨ mrm .
However, this joining operator can cause the disjunct number to grow exponentially. In order
to limit the growth of the disjunct number, a disjunctive joining operator tD should partition
the disjuncts of both arguments into different groups and compute an over-approximation for
each group by repeatedly joining abstract states based on the joining operator tMω

. We refer
the reader to Chapter 10 for more details of the disjunctive joining operator.

A basic idea for widening two disjunctive abstract states ml1 ∨ . . . ∨ mlnODmr1 ∨ . . . ∨ mrm

is to partition the disjuncts of the right side into different groups according to the disjuncts of the
left side, such that any disjunct mli of the left side can be widened with an over-approximation
of a subset of disjuncts of the right side. However, in practice, designing a precise disjunctive
widening operator OD is usually hard, especially when the underlying abstract domain has
infinite abstract states since the widening operator has to guarantee that the disjunct number
of any iteration sequence will finally stabilize. Chapter 10 presents a such widening operator.

48 Chapter 2. Separation Logic Based Shape Analysis

guardDJcVK(m) =
∨

1≤i≤n(gi,guardN (ni, vi 6= 0))

where evalrJcVK(m) =
∨

1≤i≤n(vi, (gi,ni))

Assignment:

Jl = rK(m) =
∨

1≤i≤n
∨

1≤j≤ki write(vi, fi, vij ,mij)

where evallJlK(m) =
∨

1≤i≤n((vi, fi),mi)

and ∀1 ≤ i ≤ n, evalrJrK(mi) =
∨

1≤j≤ki(vij ,mij)

Conditional branch:

Jif(r){p1}else{p2}K(m) = Jp1K ◦ guardDJr 6= 0K(m) tD Jp2K ◦ guardDJr == 0K(m)

Loop:

Jwhile(r){p}K(d) = guardDJr == 0K(lfpvD
λd1. d tD JpK ◦ guardDJr 6= 0K(d1))

Figure 2.7: Abstract denotational semantics of program statements

2.4.5 Abstract Denotational Semantics

In this section, we formalize the abstract denotational semantics of programs that over-approximates
the concrete denotational semantics defined in Figure 2.4 as:

JpK ∈ D → D

The abstract denotational semantics takes a disjunctive abstract state that over-approximates
the pre-condition of the program p and outputs a disjunctive abstract state that over-approximates
the concrete states after the execution of the program, and can be defined by induction over the
syntax of programs in a very standard way. The soundness condition of the abstract denotational
semantics is:

JpK(d1) = d2 =⇒ {JpK(ε, σ) | (ε, σ) ∈ γD(d1)} ⊆ γD(d2)

For simplicity, we only formalize the abstract semantics of assignment, condition branch and
loop statements in Figure 2.7. The abstract semantics of the other program statements can be
defined similarly.

Abstract semantics of assignment statements. Intuitively, given an abstract state m ∈
Mω, an abstract assignment operation Jl = rK should evaluate the left value expression into an
abstract address v1 + f, evaluate the right value expression into an abstract variable v2, and
then write the abstract variable v2 into the abstract address v1 + f. However, as the abstract
evaluation of left and right value expressions may trigger unfolding that produces disjunctive
abstract states, therefore as shown in Figure 2.7, the abstract assignment operation on a single

Chapter 2. Separation Logic Based Shape Analysis 49

disjunct returns a disjunctive abstract state. Though disjuncts can be collapsed together by
the joining operator tMω

, precision is often lost. The opposite direction consists in keeping
all disjuncts as shown in 2.7, which would lead to a very precise but very costly analysis. In
practice, in order to design scalable analysis, an operator that partially collapses disjuncts to
maintain a low number of disjuncts while preserving the precision is necessary. The soundness
can be proved by composing the soundness of abstract operations evallJlK, evalrJrK and write.

Abstract semantics of conditional branch statements. Figure 2.7 shows the definition
of the abstract semantics of conditional branch statements on a single disjunct, which involves
a guard function of the following form:

guardD ∈ CV → D → D
It inputs a numerical constraint cV ∈ CV expressing the condition to be guarded and a disjunctive
abstract state d1 ∈ D, and returns a disjunctive abstract state d2 ∈ D that over-approximates
the concrete states of γD(d1), which satisfies cV . Figure 2.7 shows the formal definition of
guardD, which follows the soundness condition below.

Condition 2.10 (Soundness of the abstract guard function). The abstract operation
guardD is sound if and only if the following property holds:

guardD(cV , d1) = d2 =⇒ {(ε, σ) | (ε, σ) ∈ γD(d1) ∧ evalrJcVK(ε, σ) 6∈ {0, ω}} ⊆ γD(d2)

Abstract semantics of loops. As the concrete denotational semantics of a loop while(r){p}
shown in Figure 2.4 computes a least fix-point as a post-condition from a pre-condition, the
abstract denotational semantics of loops defined in Figure 2.7 thus needs to compute an ab-
stract post fix-point for the loop, denoted as lfpvD

λd1. d tD JpK ◦ guardDJr 6= 0K(d1), to
over-approximate the concrete least fix-point. In practice, the abstract post fix-point can be
computed by a series of iterations with the widening operator OD defined as: d

′
0 = d and

d
′
n+1 = d

′
nODJpK◦guardDJr 6= 0K(d′n). The termination and soundness properties of the widen-

ing operator OD ensure an abstract post fix-point can always be reached.

Soundness of the analysis. Finally, let us establish the main theorem regarding the sound-
ness of the analysis.

Theorem 2.1 (Soundness of the abstract denotational semantics.). The abstract de-
notational semantics is sound with respect to the soundness condition:

JpK(d1) = d2 =⇒ {JpK(ε, σ) | (ε, σ) ∈ γD(d1)} ⊆ γD(d2)

Proof. The proof can be done by induction over the syntax of programs, by composing:
• the soundness of the abstract store operations: read, write, create and delete;
• the soundness of abstract evaluation operations: evallJlK and evalrJrK, and the abstract

guard functions guardN and guardG ;
• the soundness of abstract lattice operators: vMω

, tMω
, OMω

.
�

50 Chapter 2. Separation Logic Based Shape Analysis

2.5 Domain Signatures

Thus far, we have introduced an abstract domain for abstracting memory states that takes
a numerical abstract domain as a parameter, and lifted the memory abstract domain to a
disjunctive abstract domain. To sum up, in this section we give an exhaustive list of signatures
of these abstract domains.

Signature for numerical abstract domains.

numerical abstract elements n ∈ N
concretization γN : N → P(V → V)

guard guardN : N × CV → N
assign assignN : N × V ×RV → N
remove removeN : N × V → N
prove proveN : N × CV → {true, false}
rename renameN : N × (V → P(V))→ N
abstract join tN : N ×N → N
abstract widen ON : N ×N → N
inclusion check vN : N ×N → {true, false}

Signature for memory abstract domains.

abstract states m ∈Mω

concretization γMω
:Mω → P(E ×H)

guard guardMω
:Mω × CV →

∨Mω

store read read : V × F ×Mω → V] {>,⊥}
store write write : V × F × V ×Mω →Mω

store create create : N×Mω → (V ×Mω)2] {⊥,>}
store delete delete : V × N×Mω →Mω

left value evaluation evallJlK :Mω →
∨

((V × F)×Mω)] {⊥,>}
right value evaluation evalrJrK :Mω →

∨
(V ×Mω)] {⊥,>}

abstract join tMω
:Mω ×Mω →Mω

abstract widen OMω
:Mω ×Mω →Mω

inclusion check vMω
:Mω ×Mω → {true, false}

Chapter 2. Separation Logic Based Shape Analysis 51

Signature for disjunctive memory abstract domains.

abstract states d ∈ D
concretization γD : D → P(E ×H)

guard guardD : D × CV → D
abstract join tD : D ×D → D
abstract widen OD : D ×D → D
inclusion check vD: D ×D → {true, false}

52 Chapter 2. Separation Logic Based Shape Analysis

Part II

Shape Analysis for Unstructured
Sharing

Chapter 3

Overview

In this part, we propose a shape analysis that tracks set properties to
infer precise invariants about data structures with unstructured sharing.
Before the formalization, we outline the analysis of a graph traversal
algorithm, where graphs are represented as adjacency lists.

3.1 Abstraction

An adjacency list is a graph data structure with unstructured sharing as the number of pre-
decessors of a node is unbounded and the predecessors could be anywhere in the structure.
Figure 3.1 shows a type definition of adjacency lists: a graph is a list of nodes, each node has a
list of edges which comprise pointers to successor nodes. Figure 3.2(b) shows an adjacency list
representation of the graph shown in Figure 3.2(a).

Separation logic based shape analysis relies on the separating conjunction ∗ to express dis-
joint properties of memory regions and inductive definitions to summarize recursive data struc-
tures. However, summarizing adjacency lists in this framework turns out to be very challenging.
Simply exploiting the list-of-lists inductive skeleton of adjacency lists based on the separation
conjunction cannot capture the cross edge pointers precisely, as the separation conjunction only
allow nodes to be described once. In order to capture the unstructured sharing of adjacency lists
precisely, Section 1.5.1 outlined an approach to summarize adjacency lists using a combination
of an inductive skeleton and relations over set-valued variables. However, using such summaries
poses significant algorithmic challenges in analyzing graph manipulation programs. To be more
concrete, in this chapter we consider analyzing a representative of graph traversal algorithms
that manipulates graph edges. Intuitively, traversing graph edges amounts to traversing the
cross pointers of Figure 3.2(b). Such steps make the shape analysis of graph manipulation pro-
grams tricky since they do not follow the inductive skeleton of the adjacency list—instead, they
“jump” to some other node in the structure.

In the rest of this section, we first present the inductive definition of adjacency lists and
then discuss abstractions of memory states comprising adjacency lists. Formalizations of the
abstractions are presented in Chapter 4.

56 Chapter 3. Overview

1 typedef struct node{
2 struct node * next;
3 int id;
4 struct edge * edges;
5 } node;
6 typedef struct edge{
7 struct node * dest;
8 struct edge * next;
9 } edge;

Figure 3.1: Type definition of adjacency lists

0 1

23

(a) A simple graph

&g
0

a0

1

a1

2

a2

3

a3 0x0

0x0

(b) Adjacency list representation of (a)

Figure 3.2: Example of an adjacency list

Graph inductive predicate. The first step towards an analysis to verify a graph algorithm
is to set up inductive definitions to summarize the adjacency list structure. The set of outgoing
edges of a node consists of a list of records, and thus the predicate to summarize such a region
can be based on a classical list inductive definition:

α · list ::=
(emp, α = 0)

∨ (α · dest 7→ β ∗ α · next 7→ γ ∗ γ · list, α 6= 0)

However, this definition does not express the fact that all instances of field dest contain a pointer
to a node of the graph as the value β of that field is unconstrained. To resolve this issue, we
simply need to add the constraint β ∈ E , where E should denote the set of all node addresses in
the graph. The abstract domain should also keep track of those predicates through folding and
unfolding steps. Therefore, we obtain the inductive definition edges, as shown in Figure 3.3.
The inductive definition edges takes the additional parameter E , and the value predicate of the
non-empty case has been strengthened with the set predicate β ∈ E .

Moreover, the inductive definition of a graph needs to capture two set properties: (1) the
destination of all edges are in set E (as described by inductive definition edges) and (2) the set
of nodes in the adjacency list should contain the set E . Thus, the inductive definition nodes
presented in Figure 3.3 takes two set parameters: (1) E is constant over the whole induction and

Chapter 3. Overview 57

α · edges(E) ::=
(emp, α = 0)

∨ (α · dest 7→ β ∗ α · next 7→ γ

∗ γ · edges(E), α 6= 0 ∧ β ∈ E ∧ β 6= 0)

α · nodes(E ,F) ::=
(emp, α = 0 ∧F = ∅)

∨ (α · next 7→ β ∗ α · id 7→ γ ∗ α · edges 7→ δ

∗ β · nodes(E ,F ′) ∗ δ · edges(E),
α 6= 0 ∧ F = F ′] {α})

Figure 3.3: Inductive definitions of adjacency lists

g
α

nodes(E ,F) {
E ⊆ F

(a) Fully summarized abstract state

g
α

β

γ

δ

nodes(E ,F1)

edges(E)

next

id

edges

α 6= 0

F = F1] {α}
E ⊆ F

(b) Partially summarized abstract state

Figure 3.4: Abstract states of graphs

(2) F stands for the set of nodes of a graph fragment described by an instance of nodes. We
note that the set predicates F = ∅ (base case) and F = F ′] {α} (inductive case) guarantee
that F is exactly the set of nodes described by predicate α · nodes(E ,F).

Abstraction of memory states. Using these definitions, the complete adjacency list pointed
to by pointer g shown in Figure 3.2(b) can be fully summarized by the abstract state shown in
Figure 3.4(a), which contains an inductive predicate α ·nodes(E ,F) (set variable E denotes the
set of destination nodes of edges and set variable F denotes all the nodes of the concrete graph)
and a set constraint E ⊆ F specifying that all the destination nodes of edges are graph nodes.
Similarly, Figure 3.4(b) displays a partially summarized abstraction, where points-to predicates
starting from α abstract the first graph node, inductive predicate δ ·edges(E) abstracts the edge
list of the graph node at α, and inductive predicate β · nodes(E ,F1) abstracts the adjacency
list of the other nodes in the graph. Additional set predicates (E = F1] {α} ∧ E ⊆ F)
express that all the destination nodes of edges are graph nodes. We note that set predicates
and numerical predicates are represented in a value-set abstract domain, which is obtained as a
reduced product [CC79] of a numerical abstract domain and a set abstract domain (presented in

58 Chapter 3. Overview

1 void traversal(node* h){
2 node* c = h;
3 while(c != NULL){
4 edge* s = c -> edges;
5 i f (s == NULL) break;
6 while(s->next != 0 && random ()){
7 s = s->next;
8 }
9 c = s->dest;

10 printf("visiting: %d", c->id);
11 }
12 }

Figure 3.5: A representative path traversal function through a graph

Chapter 5). For simplicity, we show here the predicates directly instead of value-set abstractions.

3.2 Analysis Algorithm

We now discuss automatic shape analysis algorithms (formalized in Chapter 6) to verify the
memory safety property (the absence of null or dangling pointer dereferences) and the preser-
vation of structural invariants of the graph random traversal program shown in Figure 3.5.

In particular, the analysis should start from a pre-condition specifying that variable h points-
to a correct graph with the set of nodes F :

m0 :
c h

α
nodes(E ,F)

E ⊆ F

Then, at line 2, the cursor c is initialized to variable h:

m1 :
h, c
α

nodes(E ,F)
E ⊆ F

Then, the loop body (lines 4 to 10) randomly selects a successor of the node pointed to by c
(lines 4 to 8) and moves to that node at line 9. The analysis of the loop body needs to unfold
summaries to perform mutation over summarized regions, and to utilize a widening operator for
the convergence of the abstract iterates over both nested loops. However, to establish that no
dangling pointer is dereferenced, the analysis should precisely track the fact that c either points
to a valid node of the graph, or is a null pointer (which causes the program to exit) at all times.
To show the challenges of the analysis, let us discuss the first abstract loop iteration in detail;
the other iterations are similar.

Unfolding. At line 4, variable s is initialized to a pointer to the edge list of the node pointed-
to by c. As variable c points-to an inductive predicate α ·nodes(E ,F) as shown in the abstract

Chapter 3. Overview 59

state m1, performing the abstract assignment requires unfolding the inductive predicate and
other abstract operations, which leads to the abstract state below:

m2 :
c, h
α

α′

s
β

next

id

edges

edges(E)

nodes(E ,F1)

α 6= 0 ∧F = {α}]F1

∧ E ⊆ F

Moreover, the assignment at line 7 advances variable s to the pointer of its next edge, which
relies on unfolding the edge predicate β · edges(E) as shown in the abstract state m2 and leads
to the abstract state m3 after assignment:

m3 :
c, h
α

α′

β

δ

s
β′

next

id

edges

dest

next edges(E)

nodes(E ,F1)

α 6= 0 ∧ β 6= 0 ∧ δ 6= 0 ∧ β′ 6= 0
∧ F = {α}]F1 ∧ δ ∈ E ∧ E ⊆ F

Widening with set parameters. Then, the analysis needs to infer the loop invariant of the
inner loop from line 6 to line 8, which relies on applying a widening operator (OMω

) on the two
abstract states below at the end of the first loop iteration:

m′
2 :

c, h
α

α′

s
β

next

id

edges

edges(E)

nodes(E ,F1)

α 6= 0 ∧ β 6= 0
∧ E ⊆ F ∧ F = {α}]F1

OMω

m3 :
c, h
α

α′

β

δ

s
β′

next

id

edges

dest

next edges(E)

nodes(E ,F1)

α 6= 0 ∧ β 6= 0 ∧ δ 6= 0 ∧ β′ 6= 0
∧ F = {α}]F1 ∧ δ ∈ E ∧ E ⊆ F

The two abstract shape graphs are very similar except that in m′2, s is a pointer to the first
element of the edge list of the node at α, and in m3, s points-to the second element. Intuitively,
the widening operation should compute a shape graph declaring that s refers to an element

60 Chapter 3. Overview

somewhere in the edge list of the node at α. This can be done by introducing an edge list
segment from β to β′ in the abstract graph below:

m4 :
c, h
α

α′

β

s
β′

next

id

edges

edges(?) edges(?)

nodes(?, ?)

α 6= 0 ∧ β 6= 0 ∧ β′ 6= 0

Moreover, the widening operation should also synthesize set parameters for summary predicates,
such that the structural invariants of adjacency lists can still be tracked. The abstract state
below shows an abstract shape graph with precise set parameters:

m4 :
c, h
α

α′

β

s
β′

next

id

edges

edges(E) edges(E)

nodes(E ,F1)

α 6= 0 ∧ β 6= 0 ∧ β′ 6= 0
∧ F = {α}]F1 ∧ E ⊆ F

However, precise parameter synthesis requires reasoning about properties of the set parameters
of the inductive definitions nodes and edges. For instance, the inference of set parameter E
of the edge segment from β to β′ is based on the fact that the inductive definition edges has
a constant set parameter. Intuitively, a set parameter is said to be a constant of an inductive
definition if it is propagated with no modification to all recursive calls of the inductive definition.

Non-local unfolding with set parameters. After the inner loop, variable c is set to the
destination node of the edge pointed to by s at line 9, which leads to the abstract state:

m5 :
h
α

α′

α′′

β

s
β′

c
δ

next

id

edges

edges(E)

dest

next

nodes(E ,F1)

edges(E)

α 6= 0 ∧ β 6= 0 ∧ β′ 6= 0
∧ δ 6= 0 ∧ E ⊆ F
∧ F = {α}]F1

∧ δ ∈ E

In the abstract state m5, c no longer appears to point to a node in the nodes inductive backbone.
Yet, the dereferencing of c -> id at line 10 requires the materialization of an edge from that
node, although no edge (points-to or summary) starts from node δ. However, the analysis infers
that δ ∈ E ∧ E ⊆ F ∧ F = {α}]F1, which indicates that either δ = α, or δ ∈ F1. If δ = α,
then the dereferencing of c -> id can be achieved by reading the value α′′ of the points-to edge
α.id 7→ α′′. However, the case of δ ∈ F1 is more complex.

Chapter 3. Overview 61

We notice that the second parameter F of the nodes inductive definition is a head parameter:
F = ∅ in the empty rule and F = {α}]F ′ in the second rule, where α is the address of the
head of the structure and F ′ is the parameter of the tail. That is, the parameter collects the
set of head nodes in all recursive inductive calls.

Therefore, in abstract state m5, set parameter F1 denotes the set of addresses of graph
nodes summarized in the inductive predicate α′ · nodes(E ,F1). Thus, δ ∈ F1 means that δ is
the address of a graph node in the inductive predicate from α′, and it can be materialized by
splitting the inductive predicate into a node list segment from α′ to δ and an inductive predicate
from δ as shown below:

m′
5 :

h
α

α′
c
δ

α′′

β

s
β′

next

id

edges

nodes(E ,F2)

edges(E)

dest

next

nodes(E ,F3)

edges(E)

α 6= 0 ∧ β 6= 0 ∧ β′ 6= 0
∧ δ 6= 0 ∧ E ⊆ F
∧ F = {α}]F2]F3

∧ δ ∈ E

The side property F = {α}]F2]F3 states that the set of graph nodes F1 summarized in
the inductive edge α′ · nodes(E ,F1) is split into the two partitions: F2 and F3, where F2

describes the set of graph nodes summarized in the segment and F3 describes the set of graph
nodes summarized in the inductive predicate from δ.

This form of unfolding is much more complex than more conventional forms of inductive
predicates unfolding. Indeed, the conventional unfolding techniques (except backward unfolding)
look no further than the edges going out of the node where they need to do the unfolding while
the unfolding presented here needs to utilize the set properties to localize δ. To achieve this,
the analysis needs to track all set predicates through unfolding, updates and widening steps and
also to infer properties of set parameters, i.e., constant and head.

62 Chapter 3. Overview

Chapter 4

Abstractions for Data-Structures with
Unstructured Sharing

This chapter formalizes the memory abstractions for reasoning about
sharing. Specifically, Section 4.1 formalizes inductive definitions pa-
rameterized by set variables. Section 4.2 proposes memory abstractions
parameterized by inductive definitions and an abstract domain for con-
straints over value and set variables. Section 4.3 discusses properties of
set parameters: constant and head, which are used to infer set parame-
ters of summary predicates during program analysis.

4.1 Inductive Definitions with Set Predicates

The analysis presented in this thesis is parameterized by a set of inductive definitions, which
means that the abstract domain is generic, and can deal with a wide family of data-structures.
In this section, we extend the relational inductive definitions of [CR08] with set predicates.

Inductive definitions. An inductive definition α · ind(α0, . . . , αm,E0, . . . ,En) ::= r0 ∨ r1 ∨
. . . ∨ rk takes a main parameter α, a list of pointer parameters α0, . . . , αm and a list of set pa-
rameters E0, . . . ,En and defines a scheme to summarize heap regions that satisfy some inductive
property, specified as a disjunction of rules as presented in Figure 4.1. Each rule comprises a
heap part and a pure part. The heap part is a separating conjunction of memory cells (points-to
predicates of the form α · f 7→ β) and recursive calls to inductive definitions. The pure part
comprises not only numerical constraints, but also set constraints, over the symbolic variables
exposed in the heap part and the set parameters, as shown in FPure. The intuitive meaning
of a set constraint such as α ∈ E is that the concretization will map α into a numerical value
that belongs to the concretization of E . As a simple example, the inductive definition below
characterizes the singly linked list starting at address α, such that the set of addresses of list
elements is exactly E :

α · ls(E) ::= (emp, α = 0 ∧ E = ∅)
∨ (α · n 7→ β0 ∗ α · v 7→ β1 ∗ β0 · ls(E ′), α 6= 0 ∧ E = {α}] E ′)

64 Chapter 4. Abstractions for Data-Structures with Unstructured Sharing

r ::= (FHeap, FPure)
FHeap ::= emp

| α · f 7→ β
| α · ind(α0, . . . , αn,E0, . . . ,En)
| FHeap ∗ FHeap

FPure ::= α = c (c ∈ V)
| α 6= c (c ∈ V)
| α ∈ E
| E = {α}]F
| E = {α} ∪F
| . . .

Figure 4.1: Inductive rules

As another example, the inductive definition below characterizes the set of d fields of the singly
linked list starting at address α as a subset of E :

α · lc(E) ::= (emp, α = 0)
∨ (α · n 7→ β0 ∗ α · d 7→ β1 ∗ β0 · lc(E), α 6= 0 ∧ β1 ∈ E)

Inductive definitions edges and nodes (Figure 3.3) capture set constraints over the nodes
and edges of graphs in a similar way: nodes collects exactly the set of all nodes of the graph,
whereas edges asserts all edges should point to one of the nodes of the graph.

Since pointer parameters are not our main contribution, we will often omit them in this
part of the thesis. However, the analysis that we describe supports them together with set
parameters. Similarly, and for the sake of readability, we will often write inductive predicates
with a single set parameter.

4.2 Composite Memory Abstraction with Set Predicates

We now formalize abstract memory statesMω.
Concrete values V are abstracted by abstract values V. An abstract value variable v ∈ V

is either a symbolic variable α ∈ Vα or the symbolic address &x of a program variable x. Set
variables (e.g., E ,F ∈ T) abstract sets of concrete values. We let µ ∈ Fµ be a valuation function
that maps each abstract value v ∈ V (resp., set variable E ∈ T) to a numerical value µ(v) ∈ V
(resp., set of numerical values µ(E) ∈ P(V)).

Moreover, abstract states are parameterized by a finite set of inductive definitions defined by
the syntax shown in Section 4.1 and a value-set abstract domain C that provides an abstraction
for constraints over abstract values and set variables, such as value constraint α 6= 0 ∧ α′ 6= 0,
and set constraint F = F1]F2 ∧ E ⊆ F . We will construct a set-value abstract domain in
Chapter 5. Such a domain will be defined as a reduced product of an existing numeric abstract
domain [Min06, CH78, CC77] and an abstract domain designed to describe constraints over set
symbols.

Chapter 4. Abstractions for Data-Structures with Unstructured Sharing 65

&x α0

&y α1

ls(E0)

lc(E1)

, α1 6= 0 ∧ E1 ⊆ E0

Figure 4.2: An abstract state

Abstract states. An abstract state is a pair (g, c) made up of an abstract shape graph g ∈ G,
and a value-set abstraction c ∈ C. The syntax of abstract shapes is shown below:

g ::= emp
| α · f 7→ β

| α · ind(~E)

| α · ind(~E) ∗= β · ind(~E)
| g ∗ g

An abstract shape graph g is either empty, or a single points-to edge α·f 7→ β, or an inductive
predicate α · ind(~E) (instantiating an inductive definition ind), or a segment α · ind(~E) ∗= β ·
ind(~E) describing an incomplete inductive structure, or a separating product of such predicates.
It should be noted that, this definition of abstract shape graphs is an extension of that given
in Section 2.3. Specifically, the emp and points-to predicates are the same, yet the inductive
predicates and segment predicates are extended with set parameters. Moreover, a value-set
abstraction c ∈ C is also an extension of a numerical abstraction n ∈ N , which allows us to
reason about set properties. As an example, Figure 4.2 shows an abstract state parameterized
by inductive definitions ls and lc defined in Section 4.1. It states that variable y points-to a list
abstracted by α1 · lc(E1), where the d field of each list element points to a list element of a list
α0 · ls(E0) pointed to by variable x.

Concretization. A value-set abstraction c ∈ C is concretized into a set of valuations that
map each abstract value variable and set variable respectively to a numerical value and a set of
numerical values:

γC : C → P(Fµ)

The concretization of an abstract shape graph g ∈ G is a set of pairs of concrete stores and
valuations for abstract value variables and set variables, that is:

γG : G → P(H×Fµ)

The concretization of value-set abstractions and abstract shape graphs is very similar to that
of numerical abstractions and abstract shape graphs introduced in Section 2.3 except that the
valuations here concretize set variables. Thus, the concretization of an abstract memory state
m = (g, c) ∈Mω is defined as a set of memory states, and for each memory state, a valuation of

66 Chapter 4. Abstractions for Data-Structures with Unstructured Sharing

([], µ) ∈ γG(emp)

a = µ(α) + f v = µ(β)

([a 7→ v], µ) ∈ γG(α · f 7→ β)

∀i, (σi, µ) ∈ γG(gi)

(σ0] σ1, µ) ∈ γG(g0 ∗ g1)

g U (FHeap, FPure) (σ, µ) ∈ γG(FHeap) µ ` FPure

(σ, µ) ∈ γG(g)

Figure 4.3: Concretization rules

abstract value variables and set variables can be found that satisfies all constraints from g and
c:

γMω
(g, c) = {(µdX&

, σ) ∈M | ∃µ ∈ γC(c), (σ, µ) ∈ γG(g)}
Concretization of abstract shape graphs. Figure 4.3 shows the concretization rules for abstract

shape graphs. The first three rules describe the usual concretization for empty shapes, single
points-to edges and the separating conjunction. The last rule defines the concretization for
inductive and segment predicates using the standard notion of syntactic unfolding [CR08]: the
unfolding of an inductive or segment predicate selects a rule r in the corresponding inductive or
segment definition, and replaces the predicate with the heap part of r and constrains value and
set valuations with the pure part of r.

Example 4.1 (Abstract shape graphs and their concretization). Figure 4.4 shows
a few abstractions of the concrete memory state σ shown in Figure 4.4(a), where l stores
a pointer to a list of length 3, and where v0, v1, . . . , v7 denote numerical values / addresses.
The shape of Figure 4.4(b) abstracts this state without any summarization (it contains
no inductive predicate). Its concretization into m results in ∀i, µ(αi) = vi (in particular,
µ(α6) = v6 = 0x0), and can be fully expressed using the points-to and separating product
rules of Figure 4.3. The shape of Figure 4.4(c) summarizes the list completely into a single
inductive predicate α1 · ls(E0). In this case, the concretization also needs to bind E0 to a
set of concrete addresses: by the definition of ls (Section 4.1), this boils down to µ(E0) =
{v1, v2, v4}. Moreover, this concretization needs to trigger the unfolding rule (last rule in
Figure 4.3) four times in order to produce the shape of Figure 4.4(b). The first three
unfoldings successively generate points-to edges at α1, α2 and α4, and the last unfolding
constrains α6 to be null. The shape of Figure 4.4(d) summarizes only the last two elements
of the list (in purple) while the first element (in red) is preserved in its unfolded form.
Similarly to the previous case, the unfolding of this shape needs to trigger the unfolding
rule three times in order to get the shape of Figure 4.4(b) and to map E1 to µ(E1) = {v2, v4}.

Finally, the shape of Figure 4.4(e) summarizes two list elements with inductive predicate
α2 · ls(E3) (in purple) and the rest of the list with a segment predicate (in red). The meaning
of the segment predicate α1 ·ls(F1) ∗= α2 ·ls(F2) can be expressed by the following segment

Chapter 4. Abstractions for Data-Structures with Unstructured Sharing 67

a0 = &l v0 v2
v3

v4
v5

v6
v7

v1 = 0x0

(a) An example concrete memory

α0 α1 α2

α3

α4

α5

α6

α7

n

v

n

v

n

v

(b) Shape, no summarization

α0 α1

ls(E0)

(c) Shape, summarization

α0 α1 α2

α3

n

v

ls(E1)

(d) Shape, partial summarization

α0 α1 α2

ls(F1)

ls(F2)

ls(E1)

(e) Segment and inductive summaries

α0 α1 α2

ls(F) ls(E1)

(f) Alternative segment and inductive sum-
maries

Figure 4.4: Abstract shape graphs and their concretization

definition derived from the inductive definition ls:

α · ls(E) ∗= β · ls(F) ::=
emp ∧ α = β ∧ E = F
∨ α · n 7→ α0 ∗ α · v 7→ α1 ∗ α0 · ls(E0) ∗= β · ls(F) ∧ α0 6= α1 ∧ E = {α}] E0

Thus, set variables F1,F2 of the segment α1 · ls(F1) ∗= α2 · ls(F2) describe two sets of
addresses such that the set of addresses of the list elements summarized in the segment is
exactly µ(F1) \ µ(F2).

4.3 Properties of Set Parameters

Inductive definitions with set parameters (Section 4.1) provide a scheme to summarize data
structures with sharing. However, automatically inferring accurate set parameters for summary
predicates during shape analysis turns out to be a very hard task as they depend on complex
properties of the data-structure shapes and contents.

As an example, let us consider folding the points-to edges from node α1 in Figure 4.4(d)
into the segment edge in Figure 4.4(e) and inferring set parameters F1 and F2. According
to the segment definition shown in Example 4.1, the folding process infers that F1 = {α1}]
F2, which means set variables F1 and F2 can be concretized into any sets µ(F1) and µ(F2)
such that µ(F1) \ µ(F2) = µ(α1). In other words, only the difference between these two set

68 Chapter 4. Abstractions for Data-Structures with Unstructured Sharing

parameters matters. However, proving data structure preservation of the abstract state shown
in Figure 4.4(e) requires the set predicate F2 = E1 which cannot be inferred directly according
to the segment definition shown in Example 4.1. Indeed, as only the difference between set
parameters F1 and F2 matters, the segment predicate can be simplified with only one set
parameter F denoting the difference between F1 and F2, such as α1 · ls ∗=(F) α2 · ls. Thus,
set parameter F can be simply inferred as {α1} in the folding process. Figure 4.4(f) shows the
graphical notation of the segment predicate α1 · ls ∗=(F) α2 · ls.

In the following, we identify so-called parameter kinds, that simplify the inference of segment
parameters in join, and make such simplified definitions possible.

Constant parameters. Intuitively, a set parameter of an inductive definition is constant if
it is propagated with no modification to all the recursive calls of the inductive definition. We
note that the set parameter E of edges (Figure 3.3) and also the first set parameter E of nodes
(Figure 3.3) are constant set parameters. In the following, we write ind ` E : cst to denote
that parameter E of inductive definition ind is constant.

Inferring constant parameters. To automatically infer whether a set parameter E of an
inductive definition α · ind(E) ::= r0 ∨ r1 ∨ . . . ∨ rk is constant, we use the following derivation
rules on the inductive definition ind:

• parameter E is constant if and only if it is so for each heap part of a rule of ind:

∀i, 0 ≤ i ≤ k =⇒ ri `ind E : cst

ind ` E : cst

FHeap `ind E : cst

(FHeap, FPure) `ind E : cst

• when considering a part of FHeap that consists only of a call to ind, then the parameter
is constant if and only if it is applied to the same set parameter as the current call:

β · ind(E) `ind E : cst

• when considering a part of FHeap that consists only of a call to another inductive definition
ind′, and provided that definition does not call ind (even indirectly), then the parameter
is constant:

ind′ does not call ind directly or indirectly
β · ind′(F) `ind E : cst

• finally, the “is constant” property propagates naturally through the separating product
and points-to predicate:

FHeap `ind E : cst F ′Heap `ind E : cst

FHeap ∗ F ′Heap `ind E : cst α · f 7→ β `ind E : cst

Properties of constant parameters. When a set parameter E of an inductive definition α ·
ind(E) ::= r0 ∨ r1 ∨ . . . ∨ rk is constant (ind ` E : cst), segment predicates (e.g., α1 · ls(E0) ∗=
α2 · ls(E1)) can be simplified with only one set parameter (e.g., α1 · ls ∗=(F) α2 · ls) as any state
(σ, µ) in the concretization of the segment α1 · ls(E0) ∗= α2 · ls(E1) is such that µ(E0) = µ(E1).

Chapter 4. Abstractions for Data-Structures with Unstructured Sharing 69

Theorem 4.1 (Folding of summary predicates with constant parameters). Given an
inductive definition α · ind(E) ::= r0 ∨ r1 ∨ . . . ∨ rk, if ind ` E : cst, then:

γG(α0 · ind ∗=(E) α1 · ind ∗ α1 · ind(E)) ⊆ γG(α0 · ind(E))

γG(α0 · ind ∗=(E) α1 · ind ∗ α1 · ind ∗=(E) α2 · ind) ⊆ γG(α0 · ind ∗=(E) α2 · ind)

Proof. The theorem can be proved by induction on the unfolding depths of the segment predicate
α0 · ind ∗=(E) α1 · ind. �

Head parameters The second parameter of nodes (Figure 3.3) is clearly not constant as
it collects the set of head nodes in all recursive inductive calls, and can be computed exactly
from the values of the same parameters in the recursive calls. We call such a parameter a head
parameter. This definition generalizes to non-linear structures (i.e., with several recursive calls
corresponding to distinct sub-structures, like trees). Parameter E of the ls definition is also a
head set parameter. In the following, we write ind ` E : head to denote that parameter E of
inductive definition ind is head.

Inferring head parameters. To automatically infer whether a set parameter E of an inductive
definition α · ind(E) ::= r0 ∨ r1 ∨ . . . ∨ rk is head, we use the following derivation rules on the
inductive definition ind:

• parameter E is head for ind if and only if it is so for each inductive rule:

∀0 ≤ i ≤ k, ri `ind E : head

ind ` E : head

• parameter E is head for a given rule that unfolds cells at α if and only if it is provably
equal to the disjoint union of {α} and the arguments of the recursive sub-calls to ind,
that is if it can be partitioned into a set of sets corresponding to the argument of each call
and {α}:

FHeap `ind {Ei | 0 ≤ i ≤ n} FPure �
⊎n

0=i Ei] {α} = E

(FHeap, FPure) `ind E : head

• parameter E is head for a given rule that unfolds to emp if and only if E is inferred as ∅:

FPure � E = ∅
(emp, FPure) `ind E : head

• rules for the separating conjunction, empty and points-to predicates express the linearity
of head parameters (where, T, T ′ denote sets of set variables):

FHeap `ind T F ′Heap `ind T ′

FHeap ∗ F ′Heap `ind T] T ′ emp `ind ∅ α · f 7→ β `ind ∅

• an inductive call to ind accounts for a single set variable corresponding to its parameter
(the head addresses in the structure are exactly the head addresses of the sub-call):

β · ind(Ei) `ind {Ei}

70 Chapter 4. Abstractions for Data-Structures with Unstructured Sharing

• finally, calls to other inductive definitions contribute an empty set of head addresses in a
structure:

ind′ does not call ind directly or indirectly
β · ind′(F) `ind ∅

Properties of head parameters. When a set parameter E of an inductive definition α ·
ind(E) ::= r0 ∨ r1 ∨ . . . ∨ rk is head (ind ` E : head), segment predicates (e.g., α1 · ls(E0) ∗=
α2 · ls(E1)) can be simplified with only one set parameter (e.g., α1 · ls ∗=(F) α2 · ls) as for
any concretization (σ, µ) of the segment α1 · ls(E0) ∗= α2 · ls(E1), only the difference be-
tween E0 and E1 matters, that is, we can always find another valuation µ′ (µ′ 6= µ) such that
(σ, µ′) ∈ γG(α1 · ls(E0) ∗= α2 · ls(E1)) and µ′(E0) \ µ′(E1) = µ(E0) \ µ(E1).

Theorem 4.2 (Folding of summary predicates with head parameters). Given an in-
ductive definition α · ind(E) ::= r0 ∨ r1 ∨ . . . ∨ rk, if ind ` E : head, then:
for all (σ, µ) ∈ H ×Fµ

•

(σ, µ) ∈ γG(α0 · ind ∗=(E0) α1 · ind ∗ α1 · ind(E1)) ∧ µ ` E = E0] E1

=⇒
(σ, µ) ∈ γMω

(α0 · ind(E))

•
(σ, µ) ∈ γG(α0 · ind ∗=(E0) α1 · ind ∗ α1 · ind ∗=(E1) α2 · ind) ∧ µ ` E = E0] E1

=⇒
(σ, µ) ∈ γMω

(α0 · ind ∗=(E) α2 · ind)

Proof. The theorem can be proved by induction on the unfolding depths of the segment predicate
α0 · ind ∗=(E0) α1 · ind. �

To conclude, we have shown two kinds of set parameters, constant and head. Yet there may
also be other kinds of set parameters, the abstractions that we present in this chapter and the
analysis algorithm presented in Chapter 6 are not limited to constant and head set parameters.
Moreover, constant and head set parameters correspond to a solution to a sharing pattern that
is not limited to adjacency lists. For example, memory states that are composed of binary
trees and lists with pointers to the tree can also be abstracted based on inductive definitions
with constant and head set parameters and such memory states often appear in tree traversal
algorithms. In addition, the study on kinds of set parameters may also allow us to design
efficient shape analysis algorithms to support inductive predicates with numerical properties,
such as sorted lists, lists of certain lengths and binary search trees.

Chapter 5

Abstract Domains for Set Reasoning

This chapter presents the work carried out in collaboration with Arlen
Cox on set abstract domains, thus only the part strictly related to the
thesis is presented. In the analysis of sharing data structures, set ab-
stract domains are used for reasoning about set predicates. Specifically,
Section 5.1 presents a common interface for set abstract domains, which
is needed by the program analysis. Section 5.2 mainly presents a set
abstract domain that is based on linear constraints over sets and briefly
introduces a BDD-based set domain.

5.1 Set Constraints and Abstractions

In this section, we first define set predicates that a set abstract domain needs to reason about
and define concrete states as models of set predicates. Then, we specify a common interface of
set abstract domains.

5.1.1 Concrete States of Set Variables

Concrete states. We recall that V denotes the set of all concrete values, E ,F ∈ T are set
variables, and v1, v2 ∈ V are abstract value variables. A concrete state is a valuation function
µ ∈ Fµ that maps each abstract value to a concrete value v ∈ V and each set variable to a set
of concrete values V ∈ P(V).

Set predicates. We now set up the language of set predicates and its concrete semantics.

Definition 5.1 (Set predicates). Set predicates are defined by the following grammar:

set predicates cT ::= cT ∧ cT | eT ⊆ eT | eT = eT | v ∈ eT | true | false
set expressions eT ::= ∅ | {v} | E | eT ∪ eT | eT] eT

A set predicate cT ∈ CT denotes a set of valuations which satisfy the predicate, that is
{µ | µ � cT }. For clarity, we give a formal definition of µ � cT in Figure 5.1, where the
semantics JeT Kµ of a set expression eT under a concrete valuation µ is a set of concrete values.

72 Chapter 5. Abstract Domains for Set Reasoning

J∅Kµ = ∅
J{v}Kµ = {µ(v)}
JE Kµ = µ(E)

JeT ∪ e′T Kµ = JeT Kµ ∪ Je′T Kµ

JeT] e′T Kµ = JeT Kµ] Je′T Kµ

µ � true µ 6� false

µ � v ∈ eT ⇐⇒ µ(v) ∈ JeT Kµ

µ � eT ⊆ e′T ⇐⇒ JeT Kµ ⊆ Je′T Kµ

µ � eT = e′T ⇐⇒ JeT Kµ = Je′T Kµ

µ � cT ∧ c′T ⇐⇒ µ � cT ∧ µ � c′T

Figure 5.1: Semantics of set predicates

set abstraction s ∈ S
bottom check isbotS ∈ S → {true, false}
prove proveS : S × CT → {true, false}
guard guardS : S × CT → S
project projectS : S × V] T → S
rename renameS : S × (V] T → P(V] T))→ S
inclusion check vS : S × S → {true, false}
join tS : S × S → S
widen OS : S × S → S

Figure 5.2: The signature of set domains

5.1.2 Set Abstractions

A set abstraction s ∈ S is concretized into a set of concrete states:

γS : S → P(V)

Moreover, we assume that set abstract domains always contain the ⊥ and > abstract elements,
which are respectively concretized into the empty set ∅ and the full set V.

Example 5.1 (Singleton set domain). A very basic example of such a domain is the
singleton set domain that comprises: ⊥, > and a function from set variables T into their
singleton value V. For instance, the abstract element {E 7→ α,F 7→ β} stands for E =
{α} ∧ F = {β} and can be concretized into {µ | µ � E = {α} ∧ F = {β}}.

Chapter 5. Abstract Domains for Set Reasoning 73

Operations over set abstractions. The main operations that a set abstract domain should
provide is formalized in Figure 5.2.

The abstract operator isbotS is used to conservatively determine if an abstract state de-
scribes unsatisfiable set constraints. As an example, for the singleton set domain presented in
Example 5.1, isbotS(s) returns true when the abstract element s is ⊥. The soundness condition
of the operator is that:

isbotS(s) = true =⇒ γS(s) = ∅
The abstract operator proveS is used to conservatively determine if a set constraint cT ∈ CT

is implied by a set abstract element s ∈ S. A singleton set abstract element can only imply set
predicates of the forms E = {α} and α ∈ E , e.g., proveS({E 7→ α,F 7→ β}, β ∈ F) = true.
The soundness condition of the operator is that:

proveS(s, cT) = true =⇒ γS(s) ⊆ γCT (cT)

The operator guardS is used to enforce a set constraint cT ∈ CT on a set abstraction s ∈ S.
For instance, proveS({E 7→ α},E ′ = {α}) enforces set predicate E ′ = {α} on the singleton
set abstract element {E 7→ α} and gets abstract element {E 7→ α,E ′ 7→ α}. The soundness
condition of the operator is that:

guardS(s, cT) = s′ =⇒ γS(s) ∩ γCT (cT) ⊆ γS(s′)

The operator projectS is used to project out set variables or abstract value variables that
become redundant from a set abstraction. For example, projecting out a set variable from a
singleton set abstract element can simply remove the map of the set variable. The soundness
condition of the operator is that:

projectS(s,E) = s′ =⇒ ∀µ ∈ γS(s), µddom(s)\E ∈ γS(s′)
projectS(s, v) = s′ =⇒ ∀µ ∈ γS(s), µddom(s)\v ∈ γS(s′)

The operator renameS is used to rename set variables and abstract value variables in set
abstract elements and is needed in the joining process of abstract memory states (presented in
Chapter 6). Let us assume that f ∈ V] T → P(V] T) is a renaming map of a set abstract
element s, which maps a set variable E (resp., an abstract value variable v) of s to a set of set
variables (resp., a set of abstract value variables) that share the same property with E (resp.,
v). As an example, renaming set variable E to {E ′,F ′} and symbolic variable α to α′ of the
singleton set abstract element {E 7→ α} gets {E ′ 7→ α′,F ′ 7→ α′}. The soundness condition of
the operator is that:

renameS(s, f) = s′

=⇒
∀µ ∈ γS(s),∀µ′,∀E ∈ dom(f), ∀E ′ ∈ f(E), µ′(E ′) = µ(E) =⇒ µ′ ∈ γS(s′)

The inclusion checking operator vS conservatively decides implication among set abstract
elements. It is necessary in verifying the convergence of abstract iterations and proving post-
conditions. As an example, checking the implication between singleton set abstract elements s

74 Chapter 5. Abstract Domains for Set Reasoning

and s′, i.e., vS (s, s′), simply requires proving s′ ⊆ s. The soundness condition of the operator
is that:

vS (s, s′) = true =⇒ γS(s) ⊆ γS(s′)

The join operator tS and the widening operator OS take two set abstract elements and
aim to compute a common weakening of them. In addition to that, the widening operator OS
ensures termination of any sequence of abstract iterates. As an example, joining (resp., widening)
singleton set abstract elements s and s′, i.e., tS(s, s′) (resp., OS(s, s′)), simply requires computing
the intersection s ∩ s′. The soundness condition of the joining operator tS (which is similar for
OS) is that:

tS(sl, sr) = so =⇒ γS(sl) ⊆ γS(so) ∧ γS(sr) ⊆ γS(so)

5.2 Set Domains

Set domains are needed in constructing some complex program analyses [CCR14, CCS13,
LRC15] to reason about unbounded collections of elements. Different set domains usually pre-
cisely express different predicates. Several set domains have been developed including a linear
set domain, a BDD-based set domain and a QUIC-graph based set domain.

• The linear set domain focuses on reasoning about linear partitions of sets and is mainly
designed to be precise enough and efficient for the analysis of shared data structures in
the MemCAD analyzer.

• The BDD-based set domain focuses on reasoning about symbolic set predicates, i.e., non
content related set predicates, and was designed by Arlen Cox for automatic analysis
of open objects in dynamic language programs [CCR14]; it was later also used in the
MemCAD analyzer. The BDD-based set domain is more general and precise than the
linear domain, but less reliable in terms of scalability.

• The QUIC-graphs based set domain [CCS13] uses directed hyper-graph data structures to
represent constraints of the form E1 ∩ . . . ∩ En ⊆ F1 ∪ . . . ∪ Fm on subset relations and
contents of set variables. It is used in automatically inferring relations between the set of
values stored in containers such as arrays, lists, dictionaries, and sets.

Moreover, precision and scalability of set domains can also be improved by an equality domain
functor [CCLR15] which handles equality constraints externally and prevents them being seen
by the underlying abstract domains, and a packing domain functor [CCLR15] which dynamically
reduces a complex abstraction to a set of small clusters. In this section, we only present the
linear set domain and the BDD-based set domain in detail and refer the readers to [CCLR15] for
more set abstract domains or techniques to improve the performance of set abstract domains.

5.2.1 Linear Set Domain

Linear set abstractions aim to precisely abstract set predicates that are composed of linear set
constraints of the form E0 = {v0, . . . , vn}] E1] . . .] Em, inclusion constraints of the forms
E ⊆ F and v ∈ E , and equality constraints of the form E = F . Such constraints are very

Chapter 5. Abstract Domains for Set Reasoning 75

useful in the analysis of sharing data structures and allow quite a straightforward normalization
representation of set abstractions, for which efficient algorithms are possible.

Definition 5.2 (Linear set abstract elements). A linear set abstract element is either >,
⊥ or a tuple (cl, ce, ci) defined by the following grammar:

s ∈ S ::= > | ⊥ | (cl, ce, ci)
cl ::= true | E0 = {v0, . . . , vn}] E1] . . .] Em | cl ∧ cl
ce ::= true | E = F | ce ∧ ce
ci ::= true | v ∈ E | F ⊆ E | ci ∧ ci

The linear formula cl expresses linear set equality constraints over set variables and is imple-
mented as a map, where each set variable may appear at most once as the left-hand side. Linear
set equality constraints are always normalized in the abstraction by expanding nested linear
equality constraints, for example, the set constraint E = E1] E2 ∧ E2 = E3] E4 is rewritten as
E = E1] E3] E4 ∧ E2 = E3] E4 in cl of a linear set abstract element. Moreover, the emptiness
property of a set variable E can also be expressed in cl by mapping E to an empty set. The
equality formula ce and the inclusion formula ci respectively express equality constraints and
inclusion constraints.

Example 5.2 (A precise linear set abstract element). The concrete states satisfying
set predicate E ⊆ F ∧ F = {α}]F2]F3 ∧ δ ∈ E can be precisely abstracted by the
linear set abstract element (cl, ce, ci), where:

cl = (F = {α}]F2]F3)
ce = true
ci = (E ⊆ F ∧ δ ∈ F ∧ δ ∈ E)

Example 5.3 (An imprecise linear set abstract element). The concrete states sat-
isfying set predicate E ⊆ F ∧ F = {α} ∪ F2 ∪ F3 ∧ δ ∈ E can be abstracted by the
linear set abstract element (cl, ce, ci), where

cl = true
ce = true
ci = (E ⊆ F ∧ δ ∈ F ∧ α ∈ F ∧ F2 ⊆ F ∧ F3 ⊆ F ∧ δ ∈ E)

We note that, as the linear set domain cannot express non disjoint union, the set constraint
F = {α} ∪ F2 ∪ F3 is weakened into α ∈ F ∧ F2 ⊆ F ∧ F3 ⊆ F .

Concretization. As any linear set abstract element can be translated into a conjunction of
set constraints, the concretization γS ∈ S → P(V) of the linear set abstract element can thus
be defined as sets of concrete states that satisfy the corresponding set predicate.

76 Chapter 5. Abstract Domains for Set Reasoning

Definition 5.3 (Concretization). Given a linear set abstract element (cl, ce, ci) ∈ S,

γS(cl, ce, ci) = {µ | µ � cl ∧ ce ∧ ci}

Abstract operators. A great advantage of linear set abstract domain is that it allows fast
abstract operations.

The abstract operation isbotS(s) simply returns true if s is ⊥.
The abstract operation proveS(s, cT) encodes the set predicate cT into an equivalent normal

form predicate of s and then checks that s includes the normal form predicate.
The abstract operation guardS(s, cT) can simply enforce inclusion constraints into ci and

equality constraints into ce. Linear constraints are first normalized by expanding nested linear
constraints and then enforced into cl. For set predicates that are not of these forms, the operation
then weakens the predicates into these forms, where precision may be lost. When a set variable
E is already constrained in the linear map cl, e.g., cl = (E = {α}]F), the guardS operation
cannot add another linear constraint of E in cl, where weakening may be also necessary.

Example 5.4 (Abstract guard operations). Let cl = (F = {α}] E), ce = true and
ci = true, then:

guardS((cl, ce, ci),E = {β}] E1) = (cl ∧ E = {β}] E1, ce, ci)

and
guardS((cl, ce, ci),F = {β}] E1) = (cl, ce, β ∈ F ∧ E1 ⊆ F)

The abstract operation projectS(s,E) either drops all the constraints related to E from cl,
ce and ci of s or replaces E with another equal set variable.

Example 5.5 (Abstract project operations). Let cl = (F = {α}] E), ce = (E = E1)
and ci = true, then:

projectS((cl, ce, ci), α) = (true, ce,E ⊆ F)

and
projectS((cl, ce, ci),E) = (F = {α}] E1, true, true)

Let f ∈ V]T → P(V]T) be a mapping from set variables (resp., abstract value variables) of
set abstract element s to sets of other set variables (resp., abstract value variables). The abstract
rename operation renameS(s, f) then simply replaces any set variable E (resp., abstract value
variable v) of set abstraction s by another set variable F ∈ f(E) (resp., v′ ∈ f(v)) that it
should be renamed to. When a set variable E is mapped to more than one set variable, e.g.,
E1,E2 ∈ f(E), equality between set variables E1 and E2 should be established in the resulting
abstract element. Moreover, set variables of s that cannot be renamed are dropped.

Given s = (cl, ce, ci) and s′ = (cl
′, ce′, ci′), the inclusion checking operation vS (s, s′) returns

true when dom(s′) = dom(s) and the set of constraints expressed by (cl
′, ce′, ci′) is a subset of

the set of constraints expressed by (cl, ce, ci). Finally, tS and OS over-approximate set abstract

Chapter 5. Abstract Domains for Set Reasoning 77

encoding set expressions:
trE(∅) = false, true

trE(E) = E , true

trE(eT ∪ e′T) = e ∨ e′, c ∧ c′
where e, c = trE(eT) and e′, c′ = trE(e′T)

trE(eT] e′T) = e ∨ e′, c ∧ c′ ∧ ¬(e ∧ e′)
where e, c = trE(eT) and e′, c′ = trE(e′T)

encoding set predicates:
trE(true) = true
trE(false) = false
trE(eT ⊆ e′T) = (e =⇒ e′) ∧ c ∧ c′

where e, c = trE(eT) and e′, c′ = trE(e′T)

trE(eT = e′T) = (e ⇐⇒ e′) ∧ c ∧ c′
where e, c = trE(eT) and e′, c′ = trE(e′T)

trE(cT ∧ c′T) = c ∧ c′
where c = trE(cT) and c′ = trE(c′T)

Figure 5.3: Translation function trE

elements in the same way. Given s = (cl, ce, ci) and s′ = (cl
′, ce′, ci′) with dom(s) = dom(s′), the

over-approximation (cl
′′, ce′′, ci′′) of them is the intersection of the set of constraints expressed

by (cl, ce, ci) and (cl
′, ce′, ci′). Moreover, as the number of constraints decreases during the

over-approximation operation, the widening operation guarantees termination.

Example 5.6 (Abstract joining operation). Let cl = (F = {E1} ∧ E2 = ∅), ce = true
and ci = true, and cl′ = (F = {α}] E1 ∧ E2 = {α}), ce′ = true and ci′ = true then:

tS((cl, ce, ci), (cl
′, ce′, ci′)) = (F = E1] E2, ce, ci)

5.2.2 BDD-based Set Domain

In this section, we briefly introduce a set abstract domain based on binary decision diagrams
(BDDs) [Som99] and refer the readers to [Cox15] for more details. The core idea of the set
domain is to encode set predicates into their Boolean algebraic forms and then represent Boolean
algebraic forms as binary decision diagrams. We note that, set content reasoning, e.g., α ∈ E ,
cannot be supported directly by BDD-based set abstract domain, yet can be supported by
a reduced product of BDD-based set abstract domain and the singleton set abstract domain
presented in Example 5.1. Therefore, in the following, we only consider set predicates among
set variables.

78 Chapter 5. Abstract Domains for Set Reasoning

Encoding set predicates. A powerset with basic set operations forms a Boolean algebra
with the join operator ∨ being the set union operator ∪, the meet operator ∧ being the the set
intersection operator ∩, the negative operator ¬ being set complement operator, false being the
empty set ∅ and true being the universal set. Therefore, we can encode any set predicate into its
Boolean algebra formula with the translation function trE presented in Figure 5.3. Generally, the
translation is the literal replacement of set operations with the corresponding Boolean operation.
As set predicates may contain disjoint union expressions, a set expression eT is translated into
an expression e with a side constraint c, i.e., trE(eT) = e, c, where the side constraint c enforces
disjoint properties.

BDD-based set abstract elements. Canonical binary decision diagrams (BDDs) are used
to canonically and efficiently represent Boolean algebras based on the if-then-else normal form
and a total order ≺ of the variables. We define a BDD-based set abstract element as a canonical
BDD.

Definition 5.4 (BDD-based set abstract elements). A BDD-based set abstract element
is composed of three basic syntactic elements:

s ::= true | false |ITE(E , s1, s2)

where, true and false represent Boolean constants, and ITE(E , s1, s2) represent Boolean formula
E =⇒ s1 ∧ ¬E =⇒ s2.

Example 5.7 (A BDD-based set abstract element). The set predicate E1 ⊆ E2 ∧
E2 ⊆ E3 can be encoded as the Boolean algebraic formula E1 =⇒ E2 ∧ E2 =⇒ E3.
Following the order E1 ≺ E2 ≺ E3, the Boolean algebraic formula can be represented as the
BDD form:

E1

E2E2

E3

1 0

01

1

1
0

0 1 0 ITE(E1,
ITE(E2, ITE(E3, true, false), false),
ITE(E2, ITE(E3, true, false), true)

)

Concretization. Conversely, a BDD-based set abstract element can be transferred into an
equivalent set predicate and the abstract element can thus be concretized into a set of valuation
functions satisfying the set predicate.

Chapter 5. Abstract Domains for Set Reasoning 79

Definition 5.5 (Concretization). Let V be the set of all values. Let trR be a function
mapping a BDD-based set abstract element into a set expression:

trR(true) = V
trR(false) = ∅
trR(ITE(E , s1, s2)) = (E c ∪ trR(s1)) ∩ (E ∪ trR(s2))

The concretization of a BDD-based set abstract element s is then defined as a set of valuations,
where the semantics of the set expression trR(s) is the set of all values V :

γS(s) = {µ | JtrR(s)Kµ = V)}

Abstract operators. Typical BDD implementations provide the basic logical operations ∧,
∨, ¬, universal and existential quantifications ∃, ∀, and the validity checking functionality, from
which the abstract operations can be derived straightforwardly. Thus, for the sake of simplicity,
we only present a part of operations.

The operation projectS(s,E) uses existential quantifier elimination provided by BDDs to
drop variable E :

projectS(s,E) = ∃E , s
The operations proveS and vS simply rely on the validity checking functionality provided

by BDDs.
The operations tS and OS can be implemented with the ∨ operation provided by BDDs,

which is precise and does not need any rules or heuristics:

tS(s1, s2) = OS(s1, s2) = s1 ∨ s2

80 Chapter 5. Abstract Domains for Set Reasoning

Chapter 6

Static Analysis Algorithms for
Unstructured Sharing Abstractions

This chapter proposes a static analysis algorithm to infer precise proper-
ties of shared data structures. Specifically, Section 6.1 recalls the abstract
domain; Section 6.2 presents some basic abstract transfer functions and
a novel operation, i.e., non-local unfolding. Non-local unfolding en-
ables “jumping” over inductive predicates. Section 6.3 shows algorithms
that allow abstract memory regions to be conservatively folded into induc-
tive predicates with inductive set parameters synthesis. Non-local
unfolding and inductive set parameters synthesis are the new notions
of the analysis algorithm. Finally, Section 6.5 reports on an empirical
evaluation of the analysis algorithm.

6.1 Abstract states

In Section 4.2, we define an abstract state as a pair (g, c) made up of an abstract shape graph
g ∈ G and a value-set abstract element c ∈ C. The concretization of an abstract memory state
m = (g, c) ∈ Mω is defined as a set of memory states such that for each memory state, a
valuation of abstract value variables and set variables can be found that satisfy all constraints
from g and c:

γMω
(g, c) = {(µdX&

, σ) ∈M | ∃µ ∈ γC(c), (σ, µ) ∈ γG(g)}

Abstract shape graphs describe the basic structure of memory states and are defined as
separating products of points-to predicates of the form α · f 7→ β, inductive predicates of the
form α · ind(~E), and segment predicates of the form α · ind(~E) ∗= β · ind(~E).

A value-set abstract domain C reasons about both numerical predicates and set predicates.
It is built as a reduced product of a numerical domain and a set domain that is presented in
Chapter 5, i.e., c ∈ C ::= N × S, and thus each abstract operation of the value-set abstract
domain can be simply passed to the underlying numerical domain and set domain. Let C denote
the conjunction of numerical predicates CV and set predicates CT , the signature of value-set

82 Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

domains is defined as:

abstraction c ∈ C
bottom check isbotC ∈ C → {true, false}
prove proveC : C × C → {true, false}
guard guardC : C × C → C
remove removeC : C × V] T → C
rename renameC : C × (V] T → P(V] T))→ C
join tC : C × C → C
widen OC : C × C → C
inclusion check vC : C × C → {true, false}

6.2 Computation of Abstract Post-conditions

We have extended the abstract memory states defined in Section 2.3 by replacing numerical
abstractions with value-set abstractions. We now need to extend the abstract operators and
unfolding presented in Section 2.4 in order to design a forward abstract interpretation to compute
sound abstract post-conditions from abstract pre-conditions. Moreover, the new abstract states
allow a novel operator, namely non-local unfolding, which we highlight in this section.

6.2.1 Abstract Operators and Unfolding

Abstract operators. The basic abstract operations include the abstract store operations
read, write, create and delete, and abstract arithmetic operations, e.g., J+K, J==K. These
operations can be defined very similarly to those defined in Section 2.4 by simply replacing
numerical abstract operations with corresponding value-set abstract operations. For simplicity,
we only show here the abstract store operation create and the abstract arithmetic operation
J==K.

The abstract store operation create ∈ N×Mω → (V ×Mω)2] {⊥,>} is formalized as:

create(n, (g, c)) returns
(α, (g ∗ α 7→ α1 ∗ . . . ∗ α+ 4(n− 1) 7→ αn, c)) and (α, (g,guardC(c, α = 0))

The abstract operation create(n, (g, c)) returns a pair of abstract states respectively correspond-
ing to a successful allocation of n cells and a failure case. In the second case, the symbolic address
α is constrained to be 0 in the value-set abstraction by the abstract operation guardC(c, α = 0).

The abstract arithmetic operation J==K ∈ V × V ×Mω → ({true, false} ×Mω)2] {⊥,>}
is formalized as:

J==K(v1, v2, (g, c)) =

(true, (guardG(g, v1 = v2),guardC(c, v1 = v2))),

and (false, (guardG(g, v1 6= v2),guardC(c, v1 6= v2)))

The abstract operation J==K(v1, v2, (g, c)) takes two abstract values v1, v2 and an abstract state
(g, c) ∈ Mω as inputs, and respectively enforces equality and dis-equality conditions of v1 and
v2 on the abstract state (g, c).

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions 83

&s

α1

edges(E)

α1 6= 0

(a) Folded “pre”-shape m

α1 6= 0
∧ α2 6= 0
∧ α2 ∈ E&s

α1

α3

α2
dest

next edges(E)

(b) “Unfolded”-shape m′

Figure 6.1: Abstract states and unfolding

The soundness condition of the abstract operation can be similarly defined as in Section 2.4
and is omitted here.

Unfolding. When abstract operations involve memory regions that are summarized in induc-
tive or segment predicates, the analysis needs to unfold summary predicates to expose memory
regions on which store operations act. As an example, reading the abstract value denoted by
s -> next of the abstract state shown in Figure 6.1(a) needs to unfold the inductive predicate
α1 · edges(E).

The principles of unfolding inductive predicates and segment predicates are very similar,
as presented in Section 2.4.2, thus, we only formalize the unfolding of inductive predicates.
Generally, unfolding an inductive predicate in one abstract state follows its inductive definition
to produce a disjunction of cases, where one case is for one inductive rule. Following the inductive
definitions presented in Section 4.1, each inductive rule comprises a heap part and a pure part,
and the pure part comprises numerical constraints and also set constraints, thus, the unfolding
replaces the inductive predicate with the heap part in the abstract shape graph, and enforces
the pure constraints in the value-set abstraction. Symbolic variables and set variables that are
not parameters of the inductive definition are all existential variables that need to be replaced
by fresh variables of the abstract state.

Definition 6.1 (Unfolding). Given inductive definition α · ind(E) ::=
∨k
i=1(FHeap,i, FPure,i),

the unfolding operation unfold ∈ V ×Mω → D is defined as:

unfold(v, (g ∗ v · ind(F), c)) =
∨k
i=1(g ∗ F ′Heap,i,guardC(c, F

′
Pure,i)

where, dom(F ′Heap,i, F
′
Pure,i) ∩ dom(g, c) = {v,F} and ∃f ∈ V] T → V] T , {α 7→ v,E 7→

F} ⊆ f, F′Heap,i = FHeap,i ◦ f,F′Pure,i = FPure,i ◦ f.

Example 6.1 (Unfolding). Let us consider unfolding the inductive predicate α1·edges(E)

84 Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

m0 :
β α

ls(E)
β ∈ E

m1 :
βα

ls(E0) ls(E1) β ∈ E1
E = E0] E1

Figure 6.2: Non-local unfolding

of the abstract state presented in Figure 6.1(a) with the following inductive definition:

α · edges(E) ::=
(emp, α = 0)

∨ (α · dest 7→ β ∗ α · next 7→ γ

∗ γ · edges(E), α 6= 0 ∧ β ∈ E ∧ β 6= 0)

Unfolding the inductive predicate α1 · edges(E) with the first inductive rule produces a
bottom abstract state ⊥, since the abstract state m contains constraint α1 6= 0 in the value-
set abstraction component. Unfolding α1 ·edges(E) with the second inductive rule produces
the abstract state presented in Figure 6.1(b), where symbolic variables α, β, γ of the rule
have been renamed to α1, α2, α3 respectively in the abstract state. That is:

unfold(α1, (&s 7→ α1 ∗ α1 · edges(E), c)) =

&s 7→ α1 ∗ α1 · dest 7→ α2 ∗ α1 · next 7→ α3 ∗ α3 · edges(E),guardC(c, α2 6= 0 ∧ α2 ∈ E)

Theorem 6.1 (Soundness of unfold). The unfolding operator unfold is sound with respect
to the soundness Condition 2.7, i.e.,

∀m ∈Mω, unfold(v,m) = m1 ∨ . . . ∨ mn =⇒ γMω
(m) ⊆ γMω

(m1) ∪ . . . ∪ γMω
(mn)

Proof. The soundness can be easily derived from the concretization rule of inductive predicates
presented in Figure 4.3. �

6.2.2 Non-local Unfolding

Limitations of standard unfolding. The unfolding case studied so far is quite straight-
forward as the node at which the inductive predicate should be unfolded is well specified by
the transfer function (e.g., α1 in Figure 6.1(a)). However, the above unfolding cannot work
when analyzing an instruction reading c -> id (line 10 of the graph traversal function shown in
Figure 3.5) from the abstract state below:

m5 :
h
α

α′

α′′

β

s
β′

c
δ

next

id

edges

edges(E)

dest

next

nodes(E ,F1)

edges(E)

α 6= 0 ∧ β 6= 0 ∧ β′ 6= 0
∧ δ 6= 0 ∧ E ⊆ F
∧ F = {α}]F1

∧ δ ∈ E

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions 85

In the abstract state c points to δ in the abstract level, but node δ is not the origin of a points-to
predicate nor of an inductive predicate that could be unfolded.

Principle of non-local unfolding. Intuitively, δ could be any node in the graph and thus we
expect the abstract memory state to reflect this. This intuitive idea is formalized as follows: the
second parameter of nodes is a head parameter (Section 4.3), and the side predicates express
the fact that δ ∈ {α}]F1, where F1 appears as a second parameter of the nodes predicate in
the shape, which allows δ to be localized. This principle is a direct consequence of a property
of head parameters:

Theorem 6.2 (Non-local unfolding principle). Let ind be a single parameter inductive,
such that α · ind(E) ` E : head. Let (σ, µ) ∈ γG(α · ind(E)) such that µ(β) ∈ µ(E). Given
E0,E1 fresh set variables, µ can be extended into µ′, such that (σ, µ′) ∈ γG(α · ind ∗=(E0) β · ind ∗
β · ind(E1)), µ′(E) = µ′(E0)] µ′(E1) and µ′(β) ∈ µ′(E1).

Proof. According to the definition of head parameters,

α · ind(E) ` E : head =⇒ ∀(σ, µ) ∈ γG(α · ind(E)), µ(E) = ∅ ∨ µ(α) ∈ µ(E)

As µ(β) ∈ E indicates µ(E) 6= ∅, we then need to prove that for all 1 ≤ |µ(E)|, the theorem
holds:

• if |µ(E)| = 1, we have µ(α) = µ(β). Let µ′ = µ] {E0 7→ ∅,E1 7→ µ(E)}, the theorem
obviously holds.

• if |µ(E)| = n+ 1, we assume that the theorem holds when |µ(E)| ≤ n.
In the case where µ(β) = µ(α), let µ′ = µ] {E0 7→ ∅,E1 7→ µ(E)}, the theorem obviously
holds.

In the case where µ(β) 6= µ(α), the inductive predicate α · ind(E) can be unfolded as a
separating conjunction of a set of inductive calls to ind and other predicates, denoted as
α1 ·ind(F1) ∗ . . . ∗ αk ·ind(Fk) ∗ g, such that the disjoint union of {α} and the arguments
of the recursive sub-calls is equal to E , i.e., E = {α}]{F1, . . . ,Fk} and σ = σ0] . . .]σk
such that (σi, µ) ∈ γG(αi · ind(Fi)).

Let us assume that µ(β) ∈ µ(Fi) (1 ≤ i ≤ k), since |µ(Fi)| ≤ n, µ can be extended to µ′i
such that (σi, µ

′
i) ∈ γG(αi · ind ∗=(X0) β · ind ∗ β · ind(X1)), µ′i(Fi) = µ′i(X0)] µ′i(X1)

and µ′i(β) ∈ µ′i(E1).

Let µ′ = µ′i] {E1 7→ µ′i(X1),E0 7→ µ(E) \ µ′i(X1)}, we get:
(σ, µ′) ∈ γG(α1 ·ind(F1) ∗ . . . ∗ αi ·ind ∗=(X0) β ·ind ∗ β ·ind(E1)) ∗ . . . αk ·ind(Fk) ∗ g)
According to the inductive definition, finally we get: (σ, µ′) ∈ γG(α · ind ∗=(E0) β · ind ∗
β · ind(E1)).

�

Figure 6.2 illustrates this non-local unfolding principle. While theorem 6.2 states the result
for inductive definitions with a single set parameter, the result generalizes directly to the case
of definitions with several parameters (only the parameter supporting non-local unfolding then
needs to be a head parameter). It also generalizes to segments.

86 Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

Non local unfolding algorithm. Given an inductive definition α·ind(E) ::=
∨k
i=1(FHeap,i, FPure,i),

where α · ind(E) ` E : head, when unfolding at an abstract address α of an abstract state (g, c),
the unfolding algorithm first searches for a local unfolding at α, that is either a segment or an
inductive predicate starting from α. When no such local unfolding can be found, the non-
local unfolding operation unfoldnc is then performed. It searches for predicates of the form
α ∈ {α0, . . . , αk}]E0] . . .]El, where E0, . . . ,El appear as head parameters. When it finds such
a predicate, the analysis produces a disjunction of cases, where either α = αi, or where α ∈ Ei
and it performs a non-local unfolding of the corresponding predicate (Theorem 6.2);

Application to the computation of post-conditions of assignments. The analysis of
an assignment statement proceeds along the following steps:

1. it attempts to transform all l-values to edges and r-values to symbolic variables;
2. when step 1 fails because no points-to edge can be found at offset α ·f, it unfolds points-to

predicates at α either by local unfolding or non-local unfolding.
3. The unfolding process usually produces a disjunction of cases. Then, the analysis performs

the abstract operation write on each unfolded disjunct.
Note that failure to fully materialize all required nodes would produce imprecise results, thus,
in the absence of information about parameters, the analysis may fail to produce a precise post-
condition as it did before. The purpose of non-local unfolding is to avoid imprecise results when
dealing with structures with sharing.

6.3 Abstract Lattice Operations

While transfer functions unfold inductive predicates, inclusion checking, join and widening op-
erators need to discover valid set parameters so as to fold them back. However, folding turns
out to be much harder than unfolding, and the main difficulties for our abstract domian lie in
searching for set parameters for folded summary predicates.

6.3.1 Inclusion Checking

As introduced in Section 2.4.4, given two abstract memory states (gl, nl) and (gr,nr), the in-
clusion checking abstract operation vMω

attempts to establish that γMω
(gl, nl) is included in

γMω
(gr,nr).

Original inclusion checking algorithm. The original inclusion checking algorithm of ab-
stract states G × N presented in [CR08] is based on a series of syntactic rewriting rules of
abstract shape graphs to establish the inclusion of abstract shape graphs and an implication
checking of numerical abstractions to determine whether inclusion does indeed hold. Figure 6.3
shows such a system. The i-pt and i-ind rules state that any points-to and inductive predicates
are included in themselves; the same principle actually also applies to segment predicates. The
i-sep rule splits abstract shapes according to the separation principle. The i-uf rule unfolds
the right hand side shape and tries to match the left-hand side with one of the disjuncts. The
i-segind rule applies when trying to compare a segment on the left and an inductive predicate

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions 87

nl ` α · f 7→ β vG α · f 7→ β (i− pt)

nl ` α · ind vG α · ind (i− ind)

nl ` gl vG gr nl ` g′l vG g′r
nl ` gl ∗ g′l vG gr ∗ g′r (i− sep)

gr U (gu, FPure) nl ` gl vG gu proveN (nl, FPure) = true

nl ` gl vG gr (i− uf)

nl ` gl vG β · ind(E)

nl ` α · ind ∗= β · ind ∗ gl vG α · ind (i− segind)

nl ` gl vG gr nl vN nr

(gl,nl) vMω
(gr,nr) (i− val)

Figure 6.3: Original inclusion checking over shapes and abstract states G ×N

on the right, that correspond to the same definition and the same origin. The last rule, i-val,
returns true when both the comparison of shapes and of numerical abstractions return true.

However, the system cannot be simply extended when summary predicates are extended with
set parameters and numerical abstractions are extended with set abstractions. As an example,
let us consider proving the inclusion of the following abstract states (α · ls(E) ` E : head):

(gl, cl) :
α1 α2

α3

n

v

ls(E1)
α1 6= 0

(gr, cr) :
α1

ls(E0)
α1 6= 0

According to Figure 6.3, we can apply the i-uf rule: unfolding the inductive predicate α1 · ls(E0)
of gr which produces an identical shape with gl and a set predicate E0 = {α1}] E1 and proving
that cl implies the set predicate by proveC(cl,E0 = {α1}] E1), which apparently returns false.
Therefore, the inclusion proof fails. However, the set of concrete memory states abstracted by
(gl, cl) is indeed included in the set of concrete memory states abstracted by (gr, cr). Though
inclusion checking is typically incomplete, we may hope that basic cases still get proved.

Extended inclusion checking algorithm. We extend the original inclusion checking algo-
rithm as presented in Figure 6.4, where we let c ∈ C be the conjunction of numerical and set
predicates, cdV be the restriction of c to numerical predicates, and cdT be the restriction of
c to set predicates. The major difference of the extended system is to collect set predicates

88 Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

cl, true ` α · f 7→ β vG α · f 7→ β (ei− pt)

cl, true ` α · ind(E) vG α · ind(E) (ei− ind)

cl, c ` gl vG gr cl, c
′ ` g′l vG g′r

cl, c ∧ c′ ` gl ∗ g′l vG gr ∗ g′r (ei− sep)

gr U (gu, FPure) cl, c ` gl vG gu proveC(cl, FPuredV) = true

cl, c ∧ FPuredT ` gl vG gr (ei− uf)

cl, c ` gl vG β · ind(E) α · ind(E) ` E : cst

cl, c ` α · ind ∗=(E) β · ind ∗ gl vG α · ind(E) (ei− segindcst)

E1 fresh cl, c ` gl vG β · ind(E1) α · ind(E) ` E : head

cl, c ∧ E = E0] E1 ` α · ind ∗=(E0) β · ind ∗ gl vG α · ind(E) (ei− segindhead)

E 6∈ dom(c) ∀0 ≤ i, j ≤ k, 0 ≤ p, q ≤ l, (gl, c) =⇒ αi 6= αj ∧ αi 6∈ Ep ∧ Ep ∩ Eq = ∅
c

i guardC(c,E = {α0, . . . , αk}] E0] . . .] El) (ei− inst)

cl, c ` gl vG gr cl
i
∗

c′l proveC(c
′
l, c) = true c′l vC cr

(gl, cl) vMω
(gr, cr) (ei− val)

Figure 6.4: Extended inclusion checking over shapes and abstract states G × C

c that need to be proved during the inclusion checking process over shapes gl and gr , i.e.,
cl, c ` gl vG gr, and then, compute c′l by instantiation of the value of fresh set variables of cl,

denoted as cl
i
∗

c′l, such that proveC(c
′
l, c) = true.

Inclusion rules for shapes. The ei-pt and ei-ind rules respectively correspond to the i-pt
and i-ind rules of the original system, which state that any shape is included in itself and for sim-
plicity is omitted. The ei-sep and ei-uf rules respectively correspond to the i-sep and i-uf rules
of the original system. The only difference is that the ei-uf rule only proves unfolded numerical
predicates FPuredV while preserving the unfolded set predicates FPuredT in the proof condition.
The ei− segindcst and ei− segindhead rules correspond respectively to the i-segind rule for
the cases of a constant set parameter and a head set parameter when matching segments and in-
ductive predicates. The ei− segindcst rule simply requires inductive and segment to share the
same set parameter while the ei− segindhead rule enforces the additiveness of head parameters
by choosing fresh E1 so that E = E0] E1.

Instantiation of fresh set variables. The ei-inst rule instantiates a fresh set variable E by
enforcing an equality constraint between the fresh set variable and a set expression {α0, . . . , αk}]
E0] . . .] El of non-fresh set variables. We note that a disjoint union expression eT] e′T has a

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions 89

cl,

{
E = E0] E2

∧ E2 = {α1}] E1

` vG

(ei− segindhead)

cl, E2 = {α1}] E1 ` vG

(ei-uf)

cl, true ` vG

(ei-pt && ei-ind)

α1 α2
α3

n

v

ls(E1)

α1 α2
α3

n

v

ls(E1)
α1 α2

α3

n

v

ls(E1)

α1

ls(E2)

α0 α1 α2
α3

n

v

ls(E0) ls(E1)
α0

ls(E)

Figure 6.5: An example of inclusion checking over shapes

side constraint eT ∩ e′T = ∅ that needs to be proved for soundness. Specifically, the disjointness
can either be proved by the value-set abstraction, i.e., proveC(cl, eT ∩ e′T = ∅) = true, or be
proved based on the property of the separating conjunction ∗ and head parameters:

• α1 · f 7→ β1 ∗ α2 · f 7→ β2 ∗ g =⇒ α1 6= α2.

• in the case of α · ind(E) ` E : head, α1 · ind(E1) ∗ α2 · ind(E2) ∗ g =⇒ E1 ∩ E2 = ∅.

• in the case of α · ind(E) ` E : head, α1 · ind(E1) ∗ α2 · f 7→ β2 ∗ g =⇒ α2 6∈ E1 if the
inductive definition α · ind(E) contains a rule r = (FHeap, FPure), where FHeap = α · f 7→
α′ ∗ . . . and FPure = E = {α}] . . . ∧

We note that this rule is very important for folding back unfolded predicates into summary
predicates with set parameters.

Finally, the ei-val rule corresponding to the i-val rule decomposes the inclusion checking
of abstract states into the inclusion checking over abstract shapes, the instantiation of fresh set
variables, and the implication process over value-set abstractions.

Example 6.2 (Inclusion checking). Figure 6.5 illustrates the inclusion checking algo-
rithm on abstract states (gl, cl) and (gr, cr), where gl and gr are the bottom shapes shown in
Figure 6.5, and cl and cr are respectively an abstraction of α1 6= 0 and true. We recall that
the ls definition (presented in Section 4.1) has a head parameter (α·ls(E) ` E : head), which
behaves similarly to nodes (Figure 3.3) in its second parameter. The example resembles
inclusion tests run in the analysis of the program shown in Figure 3.5.

The inclusion proof search over shapes starts from the bottom shapes gl and gr, where α0

90 Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

is the origin of a segment on the left, and of an inductive predicate on the right. Since ls has
a head parameter, the ei− segindhead rule specific to this case applies, and the inclusion
test “consumes” the segment, effectively removing it from the left argument, and adding a
fresh E2 variable, such that E = E0] E2 is added in the proof condition. Then, since α1

is the origin of points-to predicates on the left and of inductive predicate on the right, the
ei-uf rule is applied to unfold the inductive predicate, where the constraint E2 = {α1}] E1

is added into the proof condition after proving that proveC(cl, α1 6= 0) = true. Finally, the
algorithm derives that inclusion holds on the shapes after matching three pairs of identical
predicates.

Then, the algorithm needs to prove that the condition E = E0] E2 ∧ E2 = {α1}] E1

is implied by cl (dom(cl) = dom(gl)). Since set variables E and E2 do not exist in cl, the
instantiation of E and E2 is necessary. According to the ei-inst rule, we can first instantiate
E2 to {α1}] E1, i.e., c

i guardC(cl,E2 = {α1}] E1). We note that, the side condition
{α1} ∩ E1 = ∅ is implied by the abstract shape gl, in which α1 is the origin of points-to
predicates and E1 is the head parameter of inductive predicate α2 · ls(E1). Then, similarly
we can instantiate E to {α1}] E0] E1, thus we have:

c′l = guardC(guardC(cl,E2 = {α1}] E1),E = {α1}] E0] E1) and cl
i c′l

Indeed, the instantiation of set variables E and E2 is constructed according to the proof
condition c in the bottom rule. Intuitively, when proving c requires an equality constraint
between a fresh set variable E and a set expression eT of non-fresh set variables, we instan-
tiate E to eT .

Finally, we have (gl, cl) vMω
(gr, cr) after verifying that proveC(c

′
l, c) = true and

c′l vC cr.

Theorem 6.3 (Soundness condition of inclusion checking over shapes). If

cl, c ` gl vG gr

then:
∀(σ, µ) � (gl, cl) ∃µ′ extending µ, µ′ � c =⇒ (σ, µ′) � gr

Proof. The proof can be derived by induction over inclusion rules of shapes.

• For the ei-pt and ei-ind rules, it obviously holds.

• For the ei-sep rule, for all µ � cl, (σ, µ) � gl and (σ′, µ) � g′l, according to the condition,
∃µ′ extending µ, µ′ � c =⇒ (σ, µ′) � gr and µ′ � c′ =⇒ (σ′, µ′) � g′r. Thus, we have
µ′ � c ∧ c′ =⇒ (σ] σ′, µ′) � gr ∗ g′r.

• For the ei-uf rule, for all µ � cl and (σ, µ) � gl, according to the condition cl, c ` gl vG gu,
∃µ′ extending µ, µ′ � c =⇒ (σ, µ′) � gu. According to proveC(cl, FPuredV) = true,
∀µ′ extending µ, µ′ � FPuredV . As gr U (gu, FPure) and FPure = FPuredV ∧ FPuredT ,
according to the concretization rule in Figure 4.3, we have ∃µ′ extending µ, µ′ � c ∧
FPuredT =⇒ µ′ � FPure ∧ (σ, µ′) � gu =⇒ (σ, µ′) � gr.

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions 91

• For the ei− segindcst rule, for all µ � cl and (σ, µ) � α · ind ∗=(E) β · ind and (σ′, µ) � gl,
according to the condition cl, c ` gl vG β · ind(E), ∃µ′ extending µ, µ′ � c =⇒ (σ′, µ′) �
β·ind(E). Thus, ∃µ′ extending µ, µ′ � c =⇒ (σ]σ′, µ′) � α·ind ∗=(E) β·ind ∗ β·ind(E).
According to Theorem 4.1, ∃µ′ extending µ, µ′ � c =⇒ (σ] σ′, µ′) � α · ind(E).

• For the ei− segindhead rule, for all µ � cl and (σ, µ) � α·ind ∗=(E0) β·ind and (σ′, µ) � gl,
according to the condition cl, c ` gl vG β · ind(E1), ∃µ′ extending µ, µ′ � c =⇒ (σ′, µ′) �
β · ind(E1). Thus, ∃µ′ extending µ, µ′ � c =⇒ (σ] σ′, µ′) � α · ind ∗=(E0) β · ind ∗
β · ind(E1). According to Theorem 4.2, ∃µ′ extending µ, µ′ � c ∧ E = E0] E1 =⇒
(σ] σ′, µ′) � α · ind(E).

�

Theorem 6.4 (Soundness condition of instantiation). Given (g, c), if c
i c′ then:

∀(σ, µ) � (g, c),∃µ′ extending µ, (σ, µ′) � (g, c′)

Proof. For all (σ, µ) � (g, c), ∀0 ≤ i, j ≤ k, 0 ≤ p, q ≤ l, µ(αi) 6= µ(αj) ∧ µ(αi) 6∈ µ(Ep) ∧
µ(Ep) ∩ µ(Eq) = ∅. Thus, let µ′ = µ] [E 7→ {µ(α0), . . . , µ(αk)}] µ(E0)] . . .] µ(El)], we have
(σ, µ′) � (g,guardC(c,E = {α0, . . . , αk}] E0] . . .] El)). �

Theorem 6.5 (Soundness condition of inclusion checking). Given (gl, cl) and (gr, cr),
if

(gl, cl) vMω
(gr, cr)

then
γMω

(gl, cl) ⊆ γMω
(gr, cr)

Proof. According to Theorem 6.4 and cl
i
∗

c′l, we have ∀(σ, µ) � (gl, c), ∃µ′ extending µ, (σ, µ′) �
(gl, c

′
l). As proveC(c

′
l, c) = true, c′l vC cr, and cl, c ` gl vG gr, according to Theorem 6.3, we

get ∀(σ, µ) � (gl, c),∃µ′ extending µ, µ′ � c ∧ µ′ � cr ∧ (σ, µ′) � gr.
Therefore, we get ∀(σ, µ) � (gl, c),∃µ′ extending µ, (σ, µ′) � (gr, cr). �

6.3.2 Joining and Widening

As introduced in Section 2.4.4, the joining and widening abstract operations tMω
and OMω

input two abstract memory states ml and mr and return an over-approximation of them mo,
that is γMω

(ml) ⊆ γMω
(mo) and γMω

(mr) ⊆ γMω
(mo). In addition to that, the widening

operator will enforce termination, that is, any sequence of iterations of the widening operator
will eventually become stationary. A basic version of the joining and widening algorithm is
formalized in [CR08], where in the shape domain G, joining and widening rely on the same
algorithm. Here we extend the algorithm so as to handle set parameters.

92 Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

nl, nr ` α · f 7→ β tG α · f 7→ β = α · f 7→ β (j− pt)

nl, nr ` α · ind tG α · ind = α · ind (j− ind)

nr ` gr vG α · ind
nl,nr ` α · ind tG gr = α · ind (j−weak)

nl ` gl vG α · ind ∗= β · ind proveN (nr, α = β) = true

nl,nr ` gl tG emp = α · ind ∗= β · ind (j− intro)

nl,nr ` gl tG gr = go nl, nr ` g′l tG g′r = g′o
nl,nr ` gl ∗ g′l tG gr ∗ g′r = go ∗ g′o (j− sep)

nl, nr ` gl tG gr = go no = nl tN nr

(gl,nl) tMω
(gr,nr) = (go,no) (j− val)

Figure 6.6: Original joining over shapes of abstract states G ×N

Original joining algorithm. The original joining process designed for abstract states G ×
N is formalized in Figure 6.6, and consists of a joining process over abstract shapes and a
joining process over numerical abstractions, as shown by the j-val rule. The principle of the
joining algorithm over abstract shapes is to select pairs of regions in both input shapes and
compute an over-approximation for each pair of regions relying on the j-sep rule. Specifically,
based on the j-pt and j-ind rules, when both input regions contain syntactically equal atomic
predicates, the join then simply returns the same shape as an over-approximation. When one
input region contains a summary predicate, the j-weak rule attempts to weaken the other region
into the summary predicate with the inclusion checking algorithm. In addition, the j-intro rule
synthesizes a segment between α and β when either input contains a region subsumed by the
segment, and the other input implies α = β which corresponds to an empty segment.

Extended joining algorithm. Figure 6.7 shows the extended joining algorithm of abstract
states G × C that is able to handle set parameters of summary predicates. Similarly to the join
system shown in Figure 6.6, the extended join algorithm over shapes first selects regions of both
inputs that can be over-approximated based on the ej-sep rule and then relies on two generic
sets of rules to join each region. The first set of rules states that, if both inputs contain a same
region g, then these regions can be joined immediately. It is applied for points-to and inductive
predicates as shown by the ej-pt and ej-ind rules, and segment predicates, for which the rule
is omitted for simplicity. The second set of rules applies to cases where the input regions are
different and thus weakening is necessary: if a common over-approximation go for gl and gr can
be found and checked with vG , abstract join can rewrite these into go. We note that this set of
rules may extend the set predicates, as fresh set variables are introduced by the inclusion check
algorithm. Nevertheless, this process is non-trivial, since the joining algorithm needs to infer
relations over the new set variables, from the results of the inclusion checking. Specifically, the
joining algorithm attempts to perform the weakening in the following cases:

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions 93

(cl, true), (cr, true) ` α · f 7→ β tG α · f 7→ β = α · f 7→ β (ej− pt)

(cl,E = E1), (cr,E = E2) ` α · ind(E1) tG α · ind(E2) = α · ind(E) (ej− ind)

cr, cr ` gr vG α · ind(E)

(cl,E = E1), (cr, cr) ` α · ind(E1) tG gr = α · ind(E) (ej−weak)

cl, cl ` gl vG α · ind ∗=(E) β · ind cr =⇒ α = β α · ind(E) ` E : head

(cl, cl), (cr,E = ∅) ` gl tG emp = α · ind ∗=(E) β · ind (ej− introhead)

cl, cl ` gl vG α · ind ∗=(E) β · ind cr =⇒ α = β α · ind(E) ` E : cst

(cl, cl), (cr, true) ` gl tG emp = α · ind ∗=(E) β · ind (ej− introcst)

(cl, cl), (cr, cr) ` gl tG gr = go (cl, c
′
l), (cr, c

′
r) ` g′l tG g′r = g′o

(cl, cl ∧ c′l), (cr, cr ∧ c′r) ` gl ∗ g′l tG gr ∗ g′r = go ∗ g′o (ej− sep)

(cl, cl), (cr, cr) ` gl tG gr = go ∀i ∈ {l, r}, ci i
∗

c′i ∧ c′i =⇒ ci co = c′l tC c′r
(gl, cl) tMω

(gr, cr) = (go, co) (ej− val)

Figure 6.7: Extended joining over shapes and abstract states G × C

• the ej-weak rule applies when either input contains an inductive predicate and the other
input contains a region that can be subsumed by the same inductive predicate proved by
inclusion checking. Constraints over set parameter E may be added after the inclusion
checking. In particular, in the case of a head set parameter, these constraints should
capture the linearity over the head set parameter. The same principle also applies to
segment predicates.

• the ej− introhead and ej− introcst rules apply when either input contains a region sub-
sumed by a segment between α and β, and α = β in the other input which corresponds
to an empty segment. We note that since set parameter E is fresh, the joining algorithm
needs to rely on both the inclusion checking algorithm to discover what E actually rep-
resents on one side and on the property of the set parameter (head or constant) on the
other side. Specifically, when ind ` E : head, the set parameter E of the empty segment
is enforced to be empty, i.e., E = ∅, as shown in the j− introhead rule, and in the case of
ind ` E : cst, no new constraint is added, as shown in the j− introcst rule.

Finally, the ej-val rule instantiates fresh set variables in both value-set abstract elements cl and
cr based on set constraints cl and cr collected during the shape joining and indirectly stemming
from the constant or head kind of the set parameters, i.e., cl

i
∗

c′l and cr
i
∗

c′r, and then
joins the enriched value-set abstract elements co = c′ltC c′r after proving the soundness condition
c′l =⇒ cl ∧ c′r =⇒ cr.

94 Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

(cl,X0 = F), (cr,X0 = F1) `

s
α1

nodes(E ,F)

tG
s
α1

nodes(E ,F1)

=

s
α1

nodes(E ,X0)

(ej-ind)

(cl,X1 = ∅), (cr,X1 = {α0}]F0) `

s
α1

c
α0 tG c

α0

s
α1

next

id

edges

nodes(E ,F0)

edges(E)

=

c
α0

s
α1

nodes(E ,X1)

(ej− introhead&&ej− introcst)

(cl,

{
X0 = F

∧X1 = ∅
), (cr,

{
X0 = F1

∧X1 = {α0}]F0

) `

s
α1

c
α0

nodes(E ,F)

tG
c
α0

s
α1

next

id

edges

nodes(E ,F0) nodes(E ,F1)

edges(E)

=
c
α0

s
α1

nodes(E ,X1) nodes(E ,X0)

(ej-sep)

(ej-val)

α0 = α1

∧ E = F

s
α1

c
α0

nodes(E ,F)

tMω

E = {α0}]F0]F1

c
α0

s
α1

next

id

edges

nodes(E ,F0) nodes(E ,F1)

edges(E)

=
E = X0]X1

c
α0

s
α1

nodes(E ,X1) nodes(E ,X0)

Figure 6.8: An example of joining

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions 95

Example 6.3 (Joining). Figure 6.8 shows a simplified instance of a join taken from the
analysis of the program of Figure 3.5. The input abstract states and output abstract state
are shown at the bottom.

Initially, both input shapes contain nodes inductive predicates at α1, therefore the ej-
ind rule can be applied to output a nodes inductive predicate. The first parameter is
constant, and thus is equal to E everywhere. The second parameter is a head parameter, so
a new set variable X0 is introduced, and cl (resp., cr) is enriched with constraint X0 = F
(resp., X0 = F1).

Then, the ej− introhead and ej− introcst rules are applied to introduce a segment
between α0 and α1 as constraint α0 = α1 is indicated by the left value-set abstraction cl.
Again, the constant parameter is equal to E everywhere. In addition, set variable X1 is
introduced as the second parameter. On the left, constraint X1 = ∅ is added. On the right,
the inclusion checking discovers constraint X1 = {α0}]F0.

Finally, rule ej-sep combines the joining result of the above rules, which leads to the
final joining shape. In addition, rule ej-val instantiates fresh set variables X0 and X1 in cl
and cr according to the set constraints collected during the shape joining and then computes
the final value-set abstract element as an abstraction of X1 = {α0}]F0.

Theorem 6.6 (Soundness of join). Given (gl, cl) and (gr, cr), if

(gl, cl) tMω
(gr, cr) = (go, co)

then:
γMω

(gl, cl) ⊆ γMω
(go, co) ∧ γMω

(gr, cr) ⊆ γMω
(go, co)

Proof. According to the ej-val rule, let us assume (cl, cl), (cr, cr) ` gl tG gr = go, ∀i ∈
{l, r}, ci i

∗
c′i ∧ c′i =⇒ ci and co = c′l tC c′r.

We first need to prove that

(cl, cl), (cr, cr) ` gl tG gr = go =⇒ (cl, cl) ` gl vG go ∧ (cr, cr) ` gr vG go

This can be proved by induction over the joining rules over shapes.
Then, according to the soundness condition of Theorem 6.3 and Theorem 6.4, we can get:

∀i ∈ {l, r},∀(σ, µ) � (gi, ci),∃µ′ extending µ, µ′ � ci ∧ µ′ � c′i ∧ (σ, µ′) � go

Finally, according to the soundness condition of the operator tC ,
∀i ∈ {l, r}, ∀(σ, µ) � (gi, ci), ∃µ′ extending µ, (σ, µ′) � go ∧ µ′ � co

�

Widening. The widening operator OMω
follows the same rewriting rules on abstract shape

graphs, but applies a widening operator OC on value-set abstractions instead of tC . That is,

(cl, cl), (cr, cr) ` gl tG gr = go ∀i ∈ {l, r}, ci i
∗

c′i ∧ c′i =⇒ ci co = c′lOCc′r
(gl, cl)OMω

(gr, cr) = (go, co)

96 Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

Theorem 6.7 (Widening). The operator OMω
is a widening operator onMω.

Proof. Based on Theorem 6.6, the soundness of the operator OMω
can be proved easily.

The property that the operator OMω
can ensure convergence is originally proved in [CR08].

The core idea is that the number of edges of go will be stable:

• the number of points-to edges and inductive edges of go is limited by the number of
points-to edges and inductive edges in both inputs.

• the ej-intro rule may introduce segment edges, but this rule can only be applied when a
pair of input nodes are equal, and thus it can not be applied more than a fixed number of
times.

Once the abstract shape is stable, the value-set abstract element will eventually be stable
since OC is a widening operator over C. �

6.4 Soundness of The Analysis

Finally, with all the sound underlying abstract operations, we can build an analysis that inputs
inductive definitions as parameters, a C program, and a pre-condition, and it automatically com-
putes an abstract post-condition. The analysis is implemented by composing abstract transfer
functions of each program statement. Each abstract transfer function inputs an abstract state
and computes an abstract post-state that is sound with respect to the abstract semantics of the
program statement shown in Figure 2.7. Thus, the analysis is sound with respect to the abstract
semantics of programs, shown in Theorem 2.1.

6.5 Implementation and Experimental Evaluation

We implemented inductive definitions with set predicates into the MemCAD static analyzer [TCR13,
TCR14] and extended abstract operations of the analyzer to handle set variables and set pred-
icates. The analyzer takes a set abstract domain (Chapter 5) as a parameter to represent set
constraints and a numerical domain [CR13] as a parameter to represent numerical constraints.

In the following, we consider two set abstract domains:
• a BDD-based set domain (Section 5.2.2) that is based on an encoding of set constraints

into BDDs, and utilizes a BDD library [Fil]. We call this domain “BDD” in the results
table;

• a linear set domain (Section 5.2.1) that relies on a compact representation of constraints
of the form Ei = {α0, . . . , αn}] F0] . . .] Fm as well as set equalities, inclusion and
membership constraints. We call this domian “LIN” in the results table, since the main
set constraints expressed here are of “linear” form.

For the numerical domain, we consider a numerical domain that is obtained as a reduced product
of a numerical domain that only reasons about equalities and dis-equalities and the convex
polyhedra domain [CH78] supported by the Apron library [JM09]. All the abstract domains
were implemented in OCaml, and integrated into the MemCAD static analyzer.

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions 97

Description LOCs Nested “BDD” time (ms) “BDD” “LIN” time (ms) “LIN”
loops Total Shape Set Property Total Shape Set Property

Node: add 27 0 44 0.3 11 yes 28 0.3 0.2 yes
Edge: add 26 0 31 0.2 4 yes 27 0.2 0.1 yes
Edge: delete 22 0 45 0.4 16 yes 30 0.3 0.2 yes
Node list traversal 25 1 117 1.5 87 yes 28 0.5 0.3 yes
Edge list iteration + dest. read 34 1 332 2.7 293 yes 36 3.5 2.4 yes
Graph path: deterministic 31 2 360 2.7 323 yes 35 2.4 2 yes
Graph path: random 43 2 765 7.1 711 yes 41 4.1 3 yes

Table 6.1: Analysis of a set of fundamental graph manipulation functions. Analysis times (in
milliseconds) are measured on one core of an Intel Xeon at 3.20GHz with 16GB of RAM running
Ubuntu 14.04.2 LTS (we show overall time including front-end and iterator shape domain and
set domain), with “BDD” and “LIN” set domains. “Property” columns: inference of structural
properties.

We want to assess: (1) whether the analysis achieves the verification of structure preservation
in the presence of sharing, and (2) whether set domains are sufficiently precise and provide
scalability, (3) whether the efficiency of the extended memory abstract domain is preserved
compared to the original memory abstract domain presented in Sections 2.3 and 2.4.

Therefore, we parameterize the analysis with the inductive definitions of adjacency lists
shown in Figure 3.3. We ran the analysis on a basic graph library, specifically chosen to assess
the handling of shared structures (addition or removal operations, structure traversals, and
traversals following paths, including the program of Figure 3.5). For each program, we input
a pre-condition that abstracts all the valid input data structures of the program, and a post-
condition that needs to be verified by the analysis for proving data structure preservation. The
results of the analysis are presented in Table 6.1.

As shown in the “Property” columns, in all cases, the analysis with both set domains suc-
cessfully establishes memory safety (absence of null / dangling pointer dereferences), structural
preservation for the graph modifying functions and traversal functions. Note that, in the case
of path traversals, memory safety requires the analysis to localize the cursor as a valid graph
node, at all times (the strongest set property, captured by the graph inductive definitions of
Figure 3.3). As an example, we show in Figure 6.9 the invariants computed during the first
loop iteration of the analysis of the random graph path traversal program of Figure 3.5 and in
Figure 6.10 the invariants obtained after reaching an abstract post-fixpoint.

Both the BDD-based set domain and the linear set domain are sufficiently precise to analyze
the benchmarks of Table 6.1. However, the linear set domain is more efficient than the BDD-
based set domain as shown in the “Set” columns which are the analysis times spent on the set
domain. Yet the BDD-based set domain proves to be inefficient in this situation and takes up
most of the analysis time for three reasons: (1) it keeps properties that are not relevant to the
analysis and (2) renaming set variables (required after joins) necessitates full re-computation of
BDDs. In contrast, the linear set domain is tailored for the predicates required in the analysis,
and produces very quick analysis run-times. (3) BDDs may need more iterations for convergence.
To conclude, the linear set domian has reliable performance and predictable precision, which

98 Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

at line 1 c h nodes(E ,E)
true

at line 3 c, h
α

nodes(E ,E)
true

at line 5
c, h
α

α′

s

next

id

edges

edges(E)

nodes(E ,F)

α 6= 0 ∧ E = {α}]F

at line 9
c, h
α

α′

s
β

next

id

edges

edges(E)edges(E)

nodes(E ,F)

α 6= 0
∧ E = {α}]F

at line 10 h
α

α′

s
β

c
β′

next

id

edges

dest

next edges(E)edges(E)

nodes(E ,F)

α 6= 0 ∧ β 6= 0
∧ E = {α}]F ∧ β′ ∈ E

at line 11
(loop
body
end)

c, h
α

α′

s
β

β′

next

id

edges

dest

next edges(E)edges(E)

nodes(E ,F)

α 6= 0 ∧ β 6= 0 ∧ β′ = α
∧ E = {α}]F ∧ β′ ∈ E

∨
h
α

α′

s
β

β′

c
β′

α′

next

id

edges

next

id

edges

dest

next edges(E)

edges(E)

edges(E)

nodes(E ,X)

nodes(E ,X ′)

α 6= 0 ∧ β 6= 0 ∧ β′ 6= 0
∧E = {α}]X] {β′}]X ′

∧β′ ∈ E

∨ h
α

α′

s
β

c
β′

next

id

edges

dest

next edges(E)edges(E)

nodes(E ,F)

α 6= 0 ∧ β 6= 0 ∧ β′ = 0
∧ E = {α}]F ∧ β′ ∈ E

Figure 6.9: Local invariants computed over the first iteration

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions 99

at line 3 h
α

c
α′

nodes(E ,X) nodes(E ,X ′)
E = X]X ′

at line 5 h
α

c
α′

s

nodes(E ,X)

next

id

edges

edges(E)

nodes(E ,F)

α′ 6= 0 ∧ E = X] {α′}]F

at line 9 h
α

c
α′

s
β

nodes(E ,X)

next

id

edges

edges(E)edges(E)

nodes(E ,F)

α′ 6= 0
∧ E = X] {α′}]F

at line 10 h
α α′

s
β

c
β′

nodes(E ,X)

next

id

edges

dest

next edges(E)edges(E)

nodes(E ,F)

α′ 6= 0 ∧ β 6= 0
∧E = X] {α′}]F ∧ β′ ∈ E

at line 11
(loop
body
end)

h
α

c
α′

s
β

β′
nodes(E ,X)

next

id

edges

dest

next edges(E)edges(E)

nodes(E ,F)

α′ 6= 0 ∧ β 6= 0 ∧ β′ = α′

∧E = X] {α′}]F ∧ β′ ∈ E

∨ h
α α′

s
β

β′

c
β′

α′

nodes(E ,X)

next

id

edges

next

id

edges
dest

next edges(E)

edges(E)

edges(E)

nodes(E ,X ′)

nodes(E ,F ′)

α′ 6= 0 ∧ β 6= 0 ∧ β′ 6= 0
∧E = X] {α′}]X ′] {β′}]F ′

∧β′ ∈ E

∨ h
α α′

s
β

c
β′

nodes(E ,X)

next

id

edges

dest

next edges(E)edges(E)

nodes(E ,F)

α′ 6= 0 ∧ β 6= 0 ∧ β′ = 0
∧E = X] {α′}]F ∧ β′ ∈ E

∨ h
α

c
β′

α′

s
β

c
β′

nodes(E ,X1)
next

id

edges

nodes(E ,X2)

next

id

edges

dest

next edges(E)edges(E)

nodes(E ,F)

edges(E)

α′ 6= 0 ∧ β 6= 0 ∧ β′ 6= 0
∧E = X1] {β′, α′}]X2]F
∧β′ ∈ E

Figure 6.10: Local invariants computed after reaching a post-fixpoint

100Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

can be used in a specific analysis, while the BDD-based set domain can always provide excellent
precision but with a risk of less reliable performance.

The “Total” columns in Table 6.1 show the total analysis time using different set domains
and the “Shape” columns show the time spent on the shape domain. We find that, in all cases,
the total analysis time is less than one second, and in particular the analysis parameterized by
the linear set domain takes less than 50ms run-time, even in complex cases which require non-
local unfolding and instantiation of fresh set variables. Moreover, the time spent in the shape
domain is in line with those usually observed in the analyzer [TCR13, TCR14]. Therefore, the
performance of the analysis is well preserved with an efficient set domain.

6.6 Related Works of The Analysis for Unstructured Sharing

A wide family of shape analysis techniques have been proposed to deal with inductive structures,
often based on 3-valued logic [SRW02, LAS00] or on separation logic [BCO05, DOY06, BCC+07,
NDQC07, CDOY09, CR08]. Such analyses often deal very well with list- and tree- like structures,
but are often challenged with unbounded sharing.

In this part of the thesis, we augmented a separation logic-based analysis [CRN07, CR08]
with set predicates to handle unbounded sharing, both in summaries and in unfolded regions,
and retain the parameterizability of this analysis.

A shape analysis tracking properties of structure contents was presented in [Vaf09], although
with a less general set abstraction interface, and without support for unfolding guided by set
parameters. Another related approach was proposed in [CRB10], that utilizes a set of data-
structure specific analysis rules and encodes sharing information into instrumentalized variables
in order to analyze programs manipulating trees and graphs. In contrast, our analysis does no
such instrumentation and requires no built-in inductive definitions.

Recently, a set of studies [DES13, KSV10, LYP11, TCR13] targeted overlaid structures,
which feature some form of structured sharing, such as a tree overlaid on a list. Typically,
these analyses combine several abstractions specific to the different layers. We believe that the
problem is orthogonal to ours, since we consider a form of sharing that is not structured, and
we need to achieve non-local materialization.

Another line of work that is slightly related to ours are the hybrid analyses that aim at
discovering relations between the structures and their contents [CR08, FFJ12, BDES12]. Our
set predicates actually fit in the domain product formalized in [CR08], and can also indirectly
capture relations between structures and their contents through sets. Abstractions of set prop-
erties have recently been used in order to capture relations between sets of keys of dictionar-
ies [DDA11, CCR14] or groups of array cells [LR15]. A noticeable result is that our analysis
tracks very similar predicates, although for a radically different application.

6.7 Conclusion on The Analysis for Unstructured Sharing

In this part of the thesis, we have set up a shape analysis able to deal with unbounded sharing.
This analysis combines separation logic-based shape abstractions and a set abstract domain to

Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions101

track pointer sharing properties. Reduction across domains is done lazily at non-local material-
ization and join. This abstraction was implemented in the MemCAD static analyzer and could
cope with graphs described by adjacency lists. Future work will experiment with other set ab-
stract domains and combine this abstraction with other memory abstractions [TCR13, TCR14].

102Chapter 6. Static Analysis Algorithms for Unstructured Sharing Abstractions

Part III

Silhouette-guided Disjunct Clumping

Chapter 7

Overview

In this part, we propose semantic-directed clumping of disjunctive ab-
stract states: a semantic criterion to clump abstract states based on their
silhouette, which applies not only to the conservative union of disjuncts
but also to the weakening of separating conjunctions of memory predi-
cates into inductive summaries. Before the formalization, in this chap-
ter, we first introduce the disjunct clumping problem and describe the
core idea of using silhouettes in disjunct clumping of abstract memory
states at a high level.

7.1 Semantic-Directed Disjunct Clumping

In this section, we first recall the disjunct clumping problem in shape analysis, which is originally
introduced in Section 1.5.2. Then, we overview our approach to disjunct clumping based on the
use of an abstraction of abstract states.

7.1.1 Disjunct Clumping Problem

Many separation conjunction based shape analyses, e.g., the analysis presented in [BCO05,
DOY06, CRN07, YLB+08] and in Part II, manipulate abstract memory states that consist of
separating conjunctions of basic region predicates. As formalized in Section 4.2, region predicates
typically either describe a finite region very precisely, e.g., points-to predicates, or summarize
an unbounded region, e.g., inductive and segment predicates. That is, an abstract state can be
viewed as a logical formula described by a grammar of the form:

abstract states: m(∈Mω) ::= p ∗ . . . ∗ p

region predicates: p(∈ P) ::= pe (exact description)
| ps (summary)

Indeed, apart from separation conjunction based shape analysis, many other analyses also rely
on expressive sets of predicates in order to abstract structures, such as shape analysis based on
three-valued logic [SRW02], array analysis [CCL11] dealing with contiguous structures indexed

106 Chapter 7. Overview

Concrete memory state 1:

. . .

.

. . .

t

x

y

Concrete memory state 2:

. . .

.

t

x y

Figure 7.1: Tree fragments and need for disjunctions

by ranges of integers, and dictionary analysis [DDA11, CCR14] that handles structures indexed
using sets of keys.

However, such a set of logical predicates is often not sufficient to describe a set of concrete
memory states precisely as programs can produce very different structures at a program point.
As an example, it is impossible to precisely abstract the concrete memory states shown in
Figure 7.1 into a single abstract state, as the relative positions of variables t, x and y in the tree
are very different, yet they can be precisely abstracted by a disjunction of two abstract states.
Therefore, disjunctive abstract states d(∈ D) ::= m ∨ . . . ∨ m are necessary in analysis.

In practice, disjunctions are a huge challenge to static analysis. The creation of new disjunc-
tions occurs naturally when the analysis manipulates branch statements and loops, and when
the analysis needs to unfold summary predicates to reason about operations that read or write
into summary predicates. However, letting the number of disjuncts grow makes the analysis
slower and consumes more memory. Nonetheless, getting rid of unnecessary disjuncts turns out
to be a much harder task than introducing them.

We let tMω
denote a computable join operation over the set of abstract states that over-

approximates unions of sets of memory states. It is always sound for the analysis to replace
a disjunctive abstract state m0 ∨ m1 with a non-disjunctive abstract state tMω

(m0,m1), but
this operation generally leads to a loss of information. Disjunct clumping aims at identifying a
partition of a finite set of disjuncts so that each component of the partition can be joined using
the join operator tMω

without a significant loss of precision. However, existing approaches
all come with limitations. For instance, both the local rewriting rules-based canonicalization
operator of [DOY06] and the control flow structure (conditions, loops, etc.) based partition
strategies are likely to produce inadequate and imprecise disjunct clumps as they either totally
ignore the shapes or ignore global shape properties.

Therefore, to better solve the disjunct clumping problem, we need to:

• identify global shape properties of abstract states, such that abstract states sharing similar
global shape properties can be joined using the join operator tMω

without a significant
loss of precision. For instance, abstract states of the concrete states shown in Figure 7.1
should have different global shape properties as the joining operation cannot produce a
precise over-approximation.

Chapter 7. Overview 107

• design a disjunct clumping strategy that considers global shape properties of abstract
states and can quickly identify a partition of a finite set of disjuncts, such that abstract
states in each partition group share similar global shape properties.

7.1.2 Clumping Disjuncts Based on their Abstraction

In this part, we propose an approach to disjunct clumping that is based on using silhouettes (an
abstraction of abstract states) to represent global properties of abstract states:

• we design a set of logical predicates S that describe the silhouettes of abstract states in
a compact and simple representation, and a computable silhouette equivalence relation ∼
that defines which silhouettes are similar;

• we define a computable abstraction function θ : Mω −→ S that maps an abstract state
into its silhouette.

Using this notion of silhouette, we define the clumping algorithm clump that inputs a
disjunctive abstract state d and returns another disjunctive abstract state clump(d) that over-
approximates d with at most as many (though usually fewer) disjuncts:

1. it inputs a disjunctive abstract state m0 ∨ . . . ∨ mn;
2. it computes θ(m0), . . . , θ(mn), and packs together abstract states with the same image by
θ up to the equivalence relation ∼;

3. it reduces each group into a single abstract state, by repeatedly applying tMω
, and returns

a more compact disjunction.

Example 7.1 (Silhouettes in numerical analysis). In this example, we consider pro-
grams that manipulate integer variables, and perform basic arithmetic operations. A com-
mon goal for static analyses consists of verifying the absence of division by zero errors. Let
us assume such an analysis relies on interval constraints over program variables: a division
by x can be proved safe if the analysis computes for x either an interval of strictly negative
numbers or an interval of strictly positive numbers. We note that joining together an inter-
val of strictly negative numbers and an interval of strictly positive numbers will return an
interval that contains zero. Thus, after such a join, crucial information will be lost to verify
that a division by x is safe.

The sign abstraction provides an obvious characterization which interval unions will
produce such an imprecise result: the sign abstract domain is made up of four abstract
values ⊥,	,⊕,> that respectively denote the empty set, any set of strictly negative integers,
any set of strictly positive integers, and any set of integers. For instance, if two intervals
have sign 	, they can be joined without losing information with respect to zero, whereas
the join of an interval with sign 	 with an interval with sign ⊕ will cause a loss of precision.

Therefore, a principle similar to silhouettes allows us to enhance the precision of the
analysis, with respect to the goal of proving variables are not equal to zero:

• disjunctive states composed of finite disjunctions of intervals can keep more precise
information about sets of states where a variable x may be positive or negative;

• the “silhouette” of intervals defined by their sign abstraction characterizes when joining
two intervals will cause a precision loss, with respect to the property of interest.

108 Chapter 7. Overview

7.2 Analysis of an AVL Tree Insertion Function

In this section, we define an instance of clumping of disjunctive predicates, by defining S, θ and
∼ and we demonstrate how this approach enables the verification of a function that inserts an
element into an AVL tree, while limiting the size of disjunctions.

Example: insertion into an AVL tree. AVL trees achieve balancing by enforcing that the
heights of two subtrees of a single node differ by at most one, and by storing that difference on
each node, so that insertion and removal algorithms can re-balance subtrees incrementally, using
“rotation” operations. This property makes insertion and removal complicated, thus the preser-
vation of structural invariants and absence of memory errors (such as illegal pointer operations
or leakage of subtrees) are difficult to verify. In particular, the insertion and removal functions
need to distinguish many cases, which the functions’ verification should also distinguish. Thus,
verification algorithms will produce large numbers of disjuncts, and could greatly benefit from
clumping.

Fig. 7.2 shows an extract of an AVL insertion function. While the verification of the full
code (from [Wal03]) is presented in Chapter 11, we study here a simplified version for the sake
of clarity. We only consider the handling of disjunctions of memory shapes; in particular, we
ignore the AVL trees numeric balancing constraints (for our purposes, this restriction has no
impact on the analysis).

The fragment in Fig. 7.2 handles the insertion into a non-empty tree, and carries it out in
three phases. First, the node p at which the new element should be inserted is localized, as well
as the deepest edge (with source x and target y) in the tree where the balancing property is
locally broken by this insertion (indeed, this is the only point where a re-balancing will actually
be required, since a rotation at this point will prevent any other balancing constraint from being
broken). Second, a new node is allocated and inserted at position p. Finally, the re-balancing
itself is performed. We consider in detail only the first phase. This phase should compute
pointers p, x, y. To verify this function, the analysis should compute invariants that characterize
precisely the shape of trees, subtrees and the relative positions of pointers p, x, y, t in all cases,
including the corner case where tree t consists of a single node, and the insertion is actually
done above it.

Abstract states and analysis. To express invariants over the code in Fig. 7.2, the analysis
needs inductive predicates and segment predicates parameterized by inductive definitions to
describe trees of unbounded size as well as cursors inside trees. Let us assume a tree definition
(introduced in Section 2.3) describing either an empty tree or a tree with an AVL node and two
disjoint subtrees:

α0 · tree ::=
emp ∧ α0 = 0

∨ α0.l 7→ α1 ∗ α0.r 7→ α2 ∗ α0.bal 7→ α3 ∗ α0.d 7→ α3 ∗ α1 · tree ∗ α2 · tree ∧ α 6= 0

This definition boils down to a pair of fold (Section 2.4.4) / unfold (Section 2.4.2) operations ,
that fully characterize tree:

Chapter 7. Overview 109

1 typedef struct node_t {
2 struct node_t *l, *r; // left , right child
3 int bal , d; // balancing and content
4 } node;
5
6 int insert_non_empty(node * t, int i){
7 assume(t != null);
8 node *h = (node*) malloc(s i z eo f (node));
9 node *x, *y, *p, *q;

10 h->l = y = p = t;
11 x = h;
12 // phase 1: insertion point localization
13 while(1){
14 i f (i < p->d)
15 q = p->l;
16 e l se
17 q = p->r;
18 i f (q == null)
19 break;
20 i f (q->bal != 0){
21 x = p;
22 y = q;
23 }
24 p = q;
25 }
26 // phase 2: insertion at position p...
27 // phase 3: rebalancing at position x, y...
28 }

Figure 7.2: Extract of C source code for the AVL tree insert function.

α0
tree

unfold

fold = 0x0
α0

∨ α0

α1

α2

α3

α4

l

r

bal

d

tree

tree

Following the inductive definition, the abstract state on the right hand side of Figure 7.3 de-
scribes states where t points to a tree, and x points to a (possibly non-strict) subtree of the tree
pointed to by t. It is made up of the separating conjunction of a tree segment α ·tree ∗= β ·tree
summary and an inductive predicate β · tree. An example of concrete memory is shown on the
left hand side of the figure.

The analysis performs a forward abstract interpretation [CC77], starting from an abstract
precondition that takes into account all the possible valid call states, that is all the memory

110 Chapter 7. Overview

A concrete state:

t

x 0x0
0x0

0x0
0x0

0x0
0x0

0x0

Abstract state:

t
α

x
β

tree tree

Figure 7.3: Abstract states.

states where t points to a non-empty, well-formed tree (described by tree). It computes abstract
post-conditions for each statement, and unfolds summaries on-demand: for instance, in the first
iteration p = t, and at line 14, the reading of field d of the node pointed to by p requires
unfolding the tree summary predicate attached to t. Such unfoldings generate disjunctions of
case splits. Conversely, join and widening applied at loop head should fold back case splits, so
as to compute a loop invariant.

The disjuncts merging challenge. Fig. 7.4 describes a few abstract states that are observed
at line 25, at the exit of the first loop, and that illustrate the challenges of clumping disjuncts.
The figure shows abstract states, the generic form of concrete memories they represent and their
silhouettes, which will be explained below. For concision, and as only the relative positions of
cursors matter, we focus on t, x, y and omit fields d, bal, and variables h, p, q. Labels t, x, y
decorate the nodes that represent their value. Moreover, we show only a sample of 4 out of 32
disjuncts:

• Abstract state m0 abstracts memories where x, y were not advanced.

• Abstract state m1 abstracts memories where x was advanced to the root of the tree, and
the search continued in the left subtree.

• Abstract state m2 abstracts memories where the search visits the left subtree of t, x is
advanced into that subtree, and y is the left child of x.

• Abstract state m3 describes a similar condition to m2 but when the search visits the right
subtree of t and x is a left child.

Some of these abstract states are very similar to each other and can be joined to reduce the
cost without significantly affecting the precision of the analysis. Indeed, x and y occupy the
same relative positions in m2 and m3; moreover, in both cases the two cursors point to subtrees
of t. Thus, both m2 and m3 can be approximated by an abstract state with a segment from t
to x and where y is the left child of x. Furthermore, m1 can also be weakened similarly: the
relative positions of x, y are the same, and the only minor difference is that x is not a strict
subtree of t since t = x, but this equality can also be described by an (empty) segment. On the
other hand, m0 abstracts very different memories, where x is not a subtree of t, so it cannot be
described with a segment from t to x. Any abstract state that over-approximates both m0 and

Chapter 7. Overview 111

i Example concrete state Abstract state mi Silhouette abstraction si

0
0x0

x
t,y x

t, y
l

r

tree
x t, y

l

1

t,x
y t, x

y
l

r

tree

tree
t, x y

l

2

t

x
y

t

x
y

l

r

l

r

tree

tree

tree

tree t x y
l · (l+ r)? l

3

t

x
y

t x

y
l

r

l

r

l

r
tree

tree
tree

tree

tree

t x y
r · (l+ r)? · l l

Figure 7.4: Selected abstract states from the analysis of an insertion into an AVL tree (4 disjuncts
out of 32).

m1 would discard all information about either t or x, which would make the proof of structural
preservation impossible. Therefore, an ideal clumping would join m1,m2,m3 together but keep
m0 separate.

Silhouette abstraction. Intuitively, abstract states where the relative positions of cursors
t, x, y in the tree are similar can be clumped together with no severe precision loss. In line
with this intuition, the notion of silhouette (formalized in Chapter 8) retains only the relative
positions of t, x, y and the access paths between them, as shown in the last column of Fig. 7.4. As
access paths may be of unbounded length, we abstract them with regular expressions describing
sequences of fields dereferenced between nodes. For instance, the silhouette s0 of m0 boils down
to a single edge, with a single path labeled by l. Even the more complex m3 is characterized
by only two edges respectively labeled by r · (l+ r)? · l (between t and x) and by l (between x
and y).

Clumping disjuncts. Silhouettes make the dissimilarity of m0 with the other states in Fig. 7.4
obvious, due to the incompatible order of cursors. However, we can also see that the silhouettes

112 Chapter 7. Overview

t x
y

l

r

tree
tree

tree

Figure 7.5: Weakened abstract state m1,2,3.

of m2 and m3, while not syntactically identical are actually equal up-to a generalization of the
path regular expression for the left edge into (l+r)?. This generalization matches the fact that
any structure segment can be weakened into a tree segment predicate, whatever the sequence of
“left-right” branches it encompasses:

s∼ =
t x y

(l+ r)? l

The silhouette of m1 also corresponds to a special case of s∼. Therefore, we let ∼ denote the
similarity of silhouettes up-to generalization of access paths (formalized in Chapter 10). With
this notation, we have:

s0 6∼ s1 s0 6∼ s2 s0 6∼ s3 s1 ∼ s2 ∼ s3

Therefore, the groups computed here are {m0}, {m1,m2,m3}, and the four disjuncts of Fig. 7.4
are clumped into a disjunctive abstract state composed of only two disjuncts m0 and m1,2,3. The
computation of the m1,2,3 (which we discuss in the next paragraph) may use any weakening al-
gorithm for abstract states, such as canonical abstraction [SRW02], canonicalization of symbolic
heaps [DOY06], or shape graph join [CRN07].

In essence, clumping relies on a weak canonicalization [SRW02] that returns silhouettes,
and then selects groups based on an equivalence relation over the set of silhouettes. To ensure
the termination of abstract iterates over loops, the clumping relation ∼ is required to be finite
(i.e., it should have a finite set of equivalence classes), though the set of silhouettes may still
be infinite. However, clumping may be performed at other points than loop heads (in order
to shrink abstract states, without discarding any information), and then it does not require a
finite ∼. From this point of view, clumping provides a more flexible approach to the handling of
disjunctions than canonicalization, since it does not need to project abstract states into a finite
set of predicates, and since it may still take advantage of precise binary operators for weakening.

Clumping region predicates. The information computed in silhouettes also provides a
guideline for weakening abstract states (formalized in Chapter 9). Indeed, let us consider sil-
houette s∼, which is weaker than the silhouettes of m1,m2,m3. As it contains an edge labeled
by (l + r)? between t and x, it suggests weakening the fragment of these abstract states that
are between t and x into a tree segment predicate. The soundness of such a weakening can be
verified by checking entailment of a fragment of m1 (resp., m2,m3) and a treeseg predicate.
The resulting weaker abstract state m1,2,3 is shown in Figure 7.5. Here, the role of the silhou-
ette is to provide guidance on how abstract states may be weakened. The advantage of this

Chapter 7. Overview 113

approach to the computation of weakening is that it provides global semantic information about
the structure of abstract states, which would be missed if weakening operators based only on
syntactic rules (like the canonical heap abstraction of [DOY06] and the join of [CRN07]).

114 Chapter 7. Overview

Chapter 8

Silhouette Abstractions: Abstraction of
Memory Abstract States

This chapter formalizes silhouettes, and shows that they provide a useful
abstraction to reason about the weakening of abstract states. Specifically,
Section 8.1 formalizes silhouettes and their computation; Section 8.2
studies the relationship between entailment checking of abstract states
and silhouettes.

8.1 Silhouette Abstraction

In this section, we first formalize silhouettes in Section 8.1.1, and then provide the computation
of silhouettes in Section 8.1.2.

8.1.1 Definitions

Before formalizing silhouettes, we first simplify the abstract states introduced in Section 2.3 so as
to be able to give a clear presentation of the principle underlying our approach. Specifically, we
omit abstracting memory cells of program variables as they do not have any effect on clumping
disjuncts, and we replace numerical abstractions with simple numerical constraints expressing
equalities and disequalities.

Abstract states. An abstract value v ∈ V is either a symbolic variable α ∈ Vα or the symbolic
value of a program variable x ∈ X . An abstract state m ∈ Mω (formalized in Figure 8.1)
describes a set of concrete memory states. It is either ⊥, > or a separating conjunction of
region predicates that abstract separate memory regions [Rey02] in conjunction with numerical
constraints such as equalities and disequalities.

The logical meaning of an abstract state m is defined by its concretization γMω
(m) ⊆

H × (X → V), as a set of pairs made up of a memory store σ ∈ H and an evaluation function
µ ∈ X → V that maps each program variable to its concrete value. In addition, for each concrete
state (σ, µ) ∈ γMω

(m), there exists a valuation function µ′ ∈ Vα → V mapping each symbolic

116 Chapter 8. Silhouette Abstractions: Abstraction of Memory Abstract States

p ::= emp (empty memory)
| v · f 7→ v′ (single memory cell)
| v · ind (inductive summary predicate)
| v · ind ∗= v′ · ind (segment summary predicate)

g ::= p ∗ . . . ∗ p (abstract shape graph)
c ::= v � 0x0 (� ∈ {=, 6=})

| v = v′

| c ∧ c
m ::= g ∧ c

d ::= m ∨ . . . ∨ m

Figure 8.1: Definition of abstract states

variable into its concrete counterpart in σ, such that (σ, µ] µ′) � m, i.e.,

γMω
(m) = {(σ, µdX) | (σ, µ) � m}

The detailed definitions of γMω
(m) and γD(d) are omitted as they can be formalized similarly

as in Sections 2.3 and 4.2. We note that symbolic variables are existentially quantified, and thus
the concretization of abstract states is unchanged by renaming symbolic variables. Similarly,
swapping node names or merging equal nodes preserves the meaning of abstract states.

Silhouettes. Abstract states provide a precise description of sets of concrete states. Even
summarized regions are characterized by inductive predicates that convey very detailed infor-
mation about their structure. The purpose of silhouettes, as introduced in Section 7.1.2, is
to identify similarities among abstract states without looking into the details of the shapes of
the structures. Thus, we define silhouettes as graphs, yet with edges that retain less informa-
tion than region predicates. We notice that information about reachability on pointer paths is
relevant to the characterization of groups of abstract states that could be clumped together.
Paths can be described using basic regular expressions over fields. We let E denote the set of
the regular expressions that satisfy the grammar e ::= ε | f | (f0 + . . . + fn)? | e · e which are
respectively adequate to describe equalities, points-to edges, segment edges, and sequences of
edges. This leads us to the following definition:

Definition 8.1 (Silhouette). A silhouette s is a graph defined by a set of nodes N ⊆ V, and
a set of edges E that are labeled by regular expressions in E (we write (v, e, v′) for such an edge).

Concretization. A silhouette collects a conjunction of reachability constraints over paths.
Thus, the concretization γS(s) of a silhouette s is defined as the set of pairs (σ, µ) made up
of a memory store σ and an evaluation function of program variables, and for each pair (σ, µ),
there exists an evaluation function µ′ of symbolic variables, such that (σ, µ] µ′) satisfies all
the constraints defined by the edges of s. Deciding whether (σ, µ] µ′) satisfies the constraint
defined by an edge (v, e, v′) comes down to evaluating the values described by v, v′ into values
a, a′ and checking whether dereferencing a sequence of fields described by e starting from a
makes it possible to reach a′. This leads us to the following definition:

Chapter 8. Silhouette Abstractions: Abstraction of Memory Abstract States 117

Definition 8.2 (Silhouette concretization). The following set of rules formalizes whether
(σ, µ) satisfies the constraint defined by a silhouette edge (v, e, v′):

(σ, µ) � µ(v), e, µ(v′)
(σ, µ) � (v, e, v′) (σ, µ) � a, (f0 + . . .+ fn)?, a

σ(a+ f) = a′

(σ, µ) � a, f, a′
∃i, (σ, µ) � σ(a+ fi), (f0 + . . .+ fn)?, a′

(σ, µ) � a, (f0 + . . .+ fn)?, a′

(σ, µ) � a, ε, a
∃a′′, (σ, µ) � a, e, a′′ ∧ (σ, µ) � a′′, e′, a′

(σ, µ) � a, e · e′, a′

Then, the concretization of silhouettes is defined as:

γS(s) = {(σ, µdX) | ∀(v, e, v′) ∈ s, (σ, µ) � (v, e, v′)}

Example 8.1 (Silhouette). Let us consider the silhouette shown below with its graphical
representation on the right:

s = {(t, (l+ r)?, x)} t x(l+ r)?

Its concretization includes memory states such as the following memory state:

t

x 0x0
0x0

0x0
0x0

0x0
0x0

0x0

8.1.2 Computation of Silhouettes

To allow silhouettes to assist in clumping abstract states, it is crucial to have an efficient way to
compute them. First, empty regions, equalities/disequalities to 0x0, and full inductive predi-
cates (of the form α · ind) do not contribute to the silhouette. Second, a points-to edge v ·f 7→ v′

simply contributes an edge (v, f, v′). Last, a segment predicate v · ind ∗= v′ · ind contributes
an edge (v,path(ind), v′), where path(ind) denotes the set of paths that can be induced by
a segment of inductive definition ind: in the case of the tree definition shown in Section 7.2,
path(tree) = (l + r)?. Moreover, the silhouette of an abstract state is obtained by collecting
the contribution of each region predicate.

118 Chapter 8. Silhouette Abstractions: Abstraction of Memory Abstract States

Definition 8.3 (Silhouette computation). The silhouette of an abstract state is defined as
a set of edges computed by the translation function Π defined by:

Π(v � 0x0) = ∅ Π(v = v′) = {(v, ε, v′)}
Π(emp) = ∅ Π(v · f 7→ v′) = {(v, f, v′)}
Π(ind(v)) = ∅ Π(ind(v, v′)) = {(v,path(ind), v′)}
Π(p0 ∗ . . . ∗ pk ∧ n0 ∧ . . . ∧ nl) =

Π(p0) ∪ . . . ∪ Π(pn) ∪ Π(n0) ∪ . . . ∪ Π(nn)

This translation function Π is sound since all concrete states described by the abstract state m
are also described by its silhouette Π(m).

Theorem 8.1 (Soundness of silhouette computation). The silhouette translation func-
tion Π is sound: for each memory state m,

γMω
(m) ⊆ γS(Π(m))

Proof. The proof proceeds by induction over abstract states, and follows the definition of Π.
The cases of equality and disequality constraints, empty regions, points-to regions, and inductive
predicates are trivial. The case of segments requires unrolling their concretization which is itself
based on a fix-point. Finally, the case of a conjunction of predicates follows from the fact that
the semantics of a silhouette seen as a set of constraints is the intersection of the concretization
of each individual constraint. �

Example 8.2 (Silhouette computation). Let us consider the abstract state m below:

t
α

x
β

tree tree

We have Π(α · tree ∗= β · tree) = {(α, (l + r)∗, β)} and Π(β · tree) = ∅. Thus, Π(m) is
the silhouette shown in Example 8.1.

Weakening silhouettes. Silhouettes describe conjunctions of constraints, thus they can be
weakened into coarser approximations of sets of memory states, either by dropping or by weak-
ening some constraints. As only a part of silhouette nodes may play a special role, we define
here a weakening of silhouettes by restricting silhouettes to a subset of nodes.

Definition 8.4 (Silhouette restriction). Given a silhouette s = (N,E) and a set of nodes
N′ ⊆ N, the restriction of s to N′, denoted as sdN′, is defined as (N′,E′), i.e., the set of nodes
N′ and the set of edges E′ obtained as acyclic concatenations of edges of s forming paths from
N′ to N′:

∀v0, vk ∈ N′, (v0, e, vk) ∈ E′ ⇐⇒ ∃(v0, e1, v1), . . . , (vk−1, ek, vk) ∈ E, e = e1 · . . . · ek

Chapter 8. Silhouette Abstractions: Abstraction of Memory Abstract States 119

This weakening effectively allows us to ignore some nodes. For instance, if X ⊆ X is a
set of variables that play a special role, then Π(m)dX is a silhouette of m that will only retain
information about the variables in X. We note this silhouette Π(m,X).

Example 8.3 (Silhouette restriction). Let us consider the abstract state shown in
Example 8.2, Π(m, {t}) is ∅ and Π(m, {x}) is ∅.

Theorem 8.2 (Soundness of silhouette restriction). Given a silhouette s = (N,E) and a
set of nodes N′ ⊆ N,

γS(s) ⊆ γS(sdN′)

Proof. Based on the concretization rules of Definition 8.2, We can easily prove that:

∀(σ, µ) � s,∀(v, e, v′) ∈ sdN′ , (σ, µ) � (v, e, v′)

�

8.2 Silhouette-based Weak Entailment Checking

In this section, we study the relationship between entailment checking of abstract states and the
silhouettes, and we hope to improve the efficiency of the entailment checking of abstract states
with silhouette entailment checking.

8.2.1 Silhouette Entailment Check

Before introducing silhouette entailment checking, let us first recall entailment check for abstract
states.

Entailment check for abstract states. As introduced in Section 6.3.1, the entailment check-
ing of abstract states vMω

[BCO05, DOY06, CRN07] is usually implemented as a proof search
system based on sets of proof rules that establish inclusion locally. The proof rules shown be-
low (for clarity, numerical constraints are elided) are able to express separation, reflexivity, and
unfolding of inductive summary predicates in general:

m0 vMω
m′0 m1 vMω

m′1
m0 ∗ m1 vMω

m′0 ∗ m′1 i− sep

m is of the form v · f 7→ v′ or v · ind or v · ind ∗= v′ · ind
m vMω

m i− id

m′ is of the form v · ind or v · ind ∗= v′ · ind and m′ unfold−→ m
m vMω

m′ i− uf

m vMω
v′ · ind

v · ind ∗= v′ · ind ∗ m vMω
v · ind i− segind

120 Chapter 8. Silhouette Abstractions: Abstraction of Memory Abstract States

The entailment checking algorithm is in general sound and incomplete: when vMω
(m0,m1)

returns true (denoted as m0 vMω
m1), then γMω

(m0) ⊆ γMω
(m1), yet the reverse implica-

tion does not hold in general. Indeed, complete proof search algorithms with backtracking are
expensive and generally can not be ensured in the presence of more complex sets of numerical
constraints [CRN07] than in the restricted set of abstract states used here. Moreover, when the
inclusion does not hold, i.e., γMω

(m0) 6⊆ γMω
(m1), which happens very often in the analysis,

the inclusion checking algorithm still needs to apply a set of proof rules to return false, which
can be costly.

Silhouette entailment check. As an alternative to the abstract state entailment check, we
propose to first use a weaker and cheaper entailment check on silhouettes, which is based on a
classical inclusion of constraints. We let L (e) denote the language of e.

Definition 8.5 (Silhouette entailment check). Let s0, s1 ∈ S. We let vS (s0, s1) return
true (denoted as s0 vS s1) if and only if for each edge (v, e, v′) of s1 there exists a (possibly
empty) sequence of edges (v0, e1, v1), . . . , (vk−1, ek, vk) in s0 such that v0 = v, vk = v′ and
L (e1 · . . . · ek) ⊆ L (e) (or, if the sequence is empty, ε ∈ L (e)).

We note that vS forms an order relation, i.e., given s0 vS s1 and s1 vS s2, we can get
s0 vS s2.

Example 8.4 (Silhouette entailment check). Let us consider the silhouettes below
drawn from the analysis of the program searching for the minimum and maximum list
elements shown in Figure 1.8:

s0

hd min max
n∗ n∗

s1

hd max minn∗ n∗

s2

hd, min maxn · n

We have: vS (s0, s1) = false, vS (s1, s0) = false, vS (s2, s0) = true.

Theorem 8.3 (Soundness). The entailment check vS is sound: given s0, s1 ∈ S,

if s0 vS s1, then γS(s0) ⊆ γS(s1)

Proof. Let us assume vS (s0, s1) = true and (v, e, v′) is an edge of s1. Then, according to Defini-
tion 8.5, there exists a (possibly empty) sequence of edges (v0, e1, v1), . . . , (vk−1, ek, vk) in s0 such
that v0 = v, vk = v′ and L (e1 · . . . · ek) ⊆ L (e) (or, if the sequence is empty, ε ∈ L (e)). By the
definition of the silhouette concretization, the concretization of {(v0, e1, v1), . . . , (vk−1, ek, vk)} is
included in that of (v, e, v′). As the concretization of s1 is the intersection of the concretization
of its edges, we can thus derive the theorem. �

Chapter 8. Silhouette Abstractions: Abstraction of Memory Abstract States 121

8.2.2 Weak Entailment Checking

The most important result on silhouette entailment checking is that it is weaker than abstract
states entailment checking:

Theorem 8.4 (Weak entailment). Let m0,m1 ∈ Mω and s0 = (N0,E0) = Π(m0), s1 =
(N1,E1) = Π(m1), then:

m0 vMω
m1 =⇒ s0 vS s1

Moreover, let N′ ⊆ N0 ∧ N′ ⊆ N1, then:

m0 vMω
m1 =⇒ s0dN′ vS s1dN′

Proof. We can prove that m0 vMω
m1 =⇒ s0 vS s1 by induction on the derivation rules of

vMω
:

• Case of the i-id rule:

m is of the form v · f 7→ v′ or v · ind or v · ind ∗= v′ · ind
m vMω

m

Since both sides are equal, their image by Π are equal too.

• Case of the i-uf rule (for inductive predicates):

v · ind unfold−→ m
m vMω

v · ind

The right-hand side is a full inductive predicate, which thus has a silhouette with no edge,
which concretizes in the set of all pairs made up of a state and a valuation.

• Case of the i-uf rule (for segment predicates):

v · ind ∗= v′ · ind unfold−→ m
m vMω

v · ind ∗= v′ · ind

By the definition of the unfolding of a segment and of path, m is a memory state fragment
such that there exists a path from v to v′ described by an expression the whose language
is included in that of path(ind). Thus, Π(m) vS {(v,path(ind), v′)}.

• Case of the i-segind rule:

m vMω
v′ · ind

v · ind ∗= v′ · ind ∗ m vMω
v · ind

The right-hand side is a full inductive predicate, which thus has a silhouette with no edge,
which concretizes in the set of all pairs made up of a state and a valuation.

122 Chapter 8. Silhouette Abstractions: Abstraction of Memory Abstract States

input: disjunctive abstract state m0 ∨ . . . ∨ mn

disjunctive abstract state m′0 ∨ . . . ∨ m′k
set of program variables X

output: true or false
0 : s0 ← Π(m0,X); . . . ; sn ← Π(mn,X);
1 : s′0 ← Π(m′0,X); . . . ; s′k ← Π(m′k,X);
1 : for p = 0 to n
2 : is_leq ← false; q ← 0;
3 : while q <= k && is_leq == false
4 : if vS (sp, s

′
q) then is_leq =vMω

(mp,m
′
q);

5 : q + +;
6 : if is_leq == false then return false;
7 : return true;

Figure 8.2: Weak entailment check algorithm vD.

• Case of the i-sep rule:
m0 vMω

m′0 m1 vMω
m′1

m0 ∗ m1 vMω
m′0 ∗ m′1

Applying the induction hypothesis to the proofs of m0 ∗ m1 and m′0 ∗ m′1, we get Π(m0) vS

Π(m1)) and Π(m′0) vS Π(m′1)). Since Π(m0 ∗ m1) = Π(m0) ∪ Π(m1) and Π(m′0 ∗ m′1) =
Π(m′0) ∪ Π(m′1) and by definition of vS, Π(m0 ∗ m1) vS Π(m′0 ∗ m′1).

Then, based on Definition 8.4 and Definition 8.5, given s0 vS s1, we can easily prove that
for every edge (v0, e, v1) of s1dN′ , there exists (v0, e

′, v1) of s0dN′ , such that L (e′) ⊆ L (e). That
is, s0dN′ vS s1dN′ . �

Weak entailment check algorithm. From this theorem follows the core principle of our
approach: while the most direct way to check if γMω

(m0) ⊆ γMω
(m1) consists in applying the

(fairly expensive) vMω
(m0,m1) proof search algorithm, an alternative approach consists in

computing vS (Π(m0),Π(m1)) first and computing vMω
only when vS returns true. Indeed,

if vS returns false, then vMω
will also definitely return false, though at a much higher com-

putational cost. Following the same principle, in Figure 8.2 we show the silhouette-based weak
entailment check algorithm on disjunctive abstract states.

Example 8.5 (Entailment). Figure 8.3 shows a few abstract states and their silhouettes
drawn from the example given in Chapter 7. Let us consider checking the disjunctive
abstract state d = m0 ∨ m1 ∨ m2 is included in itself according to the algorithm shown in
Figure 8.2.

First, as vS (s0, s0) = true, we thus need to prove vMω
(m0,m0) = true. Then,

as vS (s1, s0) = false, we can omit a complex computation of vMω
(m1,m0), which will

definitely return false. Moreover, as vS (s2, s0) = false and vS (s2, s1) = false, we can
also omit complex computations of vMω

(m2,m0) and vMω
(m2,m1). Indeed, with the

Chapter 8. Silhouette Abstractions: Abstraction of Memory Abstract States 123

i Abstract state mi Silhouette abstraction si

0
x

t, y
l

r

tree
x t, y

l

1 t

x
y

l

r

l

r

tree

tree

tree

tree t x y
l · (l+ r)? l

2
t x

y

l

r

tree

tree

tree

t x y
(l+ r)? l

Figure 8.3: Abstract states and silhouettes

silhouette entailment checking, we only need to compute that vMω
(m0,m0), vMω

(m1,m1)
and vMω

(m2,m2), while a normal disjunctive entailment checking will require six times
computations of the entailment checking of abstract states.

124 Chapter 8. Silhouette Abstractions: Abstraction of Memory Abstract States

Chapter 9

Silhouette-Guided Joining of Abstract
Memory States

This chapter shows that silhouettes can be used to make the joining pro-
cedure of abstract memory states more precise. Specifically, Section 9.1
first recalls the existing abstract states join procedure and discusses pos-
sible loss of precision in the joining. Then, Section 9.2 introduces sil-
houette guided abstract states join.

9.1 Existing Abstract States Join Procedure and Precision Loss

Before introducing the silhouette-guided joining of abstract states, let us first recall the main
principles of the existing abstract state joining operator tMω

presented in Section 6.3.2. Based
on separation [Rey02] and local reasoning, the joining operator tMω

applies two main kinds of
rules on abstract shapes, as presented in Figure 6.6:

• Weakening guided by existing region predicates. The first set of rules (e.g., j-pt,
j-ind, j-weak) searches for cases where g vG g′ (resp. g′ vG g) holds so that a valid
choice for gt is g′ (resp., g). The most common case is when g = g′. Another important
case is when g′ = α · ind and g vG α · ind; then g gets weakened into a summary predicate,
that was already present in g′.

• Synthesis of summary predicates. The second set of rules (e.g., j-intro) synthesizes
new summary predicates, in order to weaken specific patterns. For instance, the intro-
duction of a segment predicate is a particular case of summary predicate synthesis, that
weakens an empty region into a segment:

gi = emp ∧ α = β)
g′i vG α · ind ∗= β · ind

}
 gti = α · ind ∗= β · ind

126 Chapter 9. Silhouette-Guided Joining of Abstract Memory States

Example 9.1 (Abstract states join). As an example, let us consider the abstract states
below:

t, x
treem :

t
α

x

β

l

r

tree
tree

tree
m′ :

We note that in m, t = x. Then, both abstract states m, m′ can be split into two regions,
and the following joining rules are applied to each region:

t, x
tG

t
α

x

β

l

r

tree
tree =

t x
α

tree

x
tree tG

x
tree

=
t

tree

Therefore, the two states m, m′ can be joined into t · ind ∗= x · ind ∗ x · ind.

Challenges. In practice, however, joining rules are applied in sequential orders and it is often
the case that more than one rule can be applied at one point. Yet, different rule application
orders may produce very different results. However, determining which rule, when applied,
can lead to a precise joining results in huge difficulty in the abstract join because of the large
search space that needs to be examined. Moreover, in certain cases, there exists no rule order
that produces a precise common over-approximation. Even when a solution does exist, it may
be non-unique, and there may be no universally best solution, as illustrated by the following
example.

Example 9.2 (Non-unique joining rule order). We let m,m′ be defined by:

t, x
y

β

l

r

tree

tree
m :

t
y, x

β

l

r

tree

tree
m′ :

Chapter 9. Silhouette-Guided Joining of Abstract Memory States 127

There are several possible joinings, two of which are presented below:

• first pairing each of the four edges of m with an edge of m′ by applying the j-pt rule
produces a joining result with very precise information about t, y, but which discards
all information about x:

t
y

β

l

r

tree

tree
mt

1 :

• synthesizing a segment predicate between t and x by applying the j-intro rule first
and then synthesizing another segment predicate between x and y by applying the
same rule produces a joining result, where the fact that x, y are cursors in the tree
pointed to by t is preserved, but the information that t · l points to y is lost:

t x y
tree tree treemt

2 :

In this situation, to make the best joining choice, the analysis should take into account
future uses of t, x, y. If x is unused after the point in the program where the joining is
performed, the first joining is the best. If the fact that x points somewhere in the tree
matters, the second joining is better. Finally, if the fact that y is a child of t and the fact
that x points somewhere in the tree both matter, then no precise joining result exists.

9.2 Silhouette Guided Abstract States Joining

In this section, we first define silhouette joining in Section 9.2.1 and in Section 9.2.2 we demon-
strate that silhouettes can help to determine which rule to apply during abstract state join for
a precise joining result. Then, in Section 9.2.3, we show that silhouettes can be restricted so as
to be more concise and relevant to guiding abstract states join, by considering the analysis goal.

9.2.1 Silhouettes Joining

We now define a join operator over silhouettes that takes any two silhouettes as inputs and
returns their over-approximation.

128 Chapter 9. Silhouette-Guided Joining of Abstract Memory States

Definition 9.1 (Silhouette join). Let us first define the join of silhouette edges. Silhouette
edges (v0, e, v1) and (v0, e

′, v1) can be joined as the edge (v0, e
t, v1), where et keeps the same left

side as e and e′ and joins the other part into the smallest and more general regular expression
of the form (f0 + . . .+ fk)

?.
Then, given two silhouettes s = (N,E), s′ = (N′,E′), we define their silhouette join noted

tS(s, s′) as the silhouette st = (Nt,Et) such that Nt = N ∩ N′ and Et collect the pairwise join
of the edges of sdNt and of s′dNt .

Silhouettes join acts like a “lightweight” abstract states join.

Example 9.3 (Silhouettes join). Let us consider the abstract states m and m′ presented
in Example 9.1, and let X = {t, x}, then we obtain the silhouettes below:

t, xs = Π(m, X̂) =

t x(l + r)? · ls′ = Π(m′, X̂) =

As in s, the access path from t to x is ε (empty), and in s′, t can reach x through access
path (l + r)∗ · l, therefore joining the two silhouettes gets the silhouette below, where the
access path (l + r)∗ over-approximates ε and (l + r)∗ · l:

t x(l+ r)?s tS s′ =

Theorem 9.1 (Soundness). The silhouette join is sound:

∀s, s′ ∈ S, tS(s, s′) = so =⇒ γS(s) ∪ γS(s′) ⊆ γS(so)

Proof. According to Definition 9.1, for any (v, eo, v
′) ∈ so, there exists (v, e, v′) ∈ s and

(v, e′, v′) ∈ s′ such that, L (e) ∪ L (e′) ⊆ L (e0). Therefore, γS(s) ⊆ γS(so) ∧ γS(s′) ⊆
γS(so). �

9.2.2 Guided Abstract States Joining

When two abstract states can be joined into a segment, their silhouette is a refinement of the
silhouette of a segment (by Th. 8.4):

Theorem 9.2 (Guided segment synthesis weak characterization). Let m,m′ be two
abstract states such that m vMω

v0 · ind ∗= v1 · ind and m′ vMω
v0 · ind ∗= v1 · ind, then

γS(joinS(Π(m, {v0, v1}),Π(m′, {v0, v1})))
⊆ γS({(v0,path(ind), v1)})

Chapter 9. Silhouette-Guided Joining of Abstract Memory States 129

Based on the theorem, we derive the semantic guided segment introduction rule below,
where the application of the rule does not rely on the syntax of abstract states, but relies on
their silhouette join.

Definition 9.2 (Semantic guided segment introduction rule).

let s = Π(m, {v0, v1}) and s′ = Π(m′, {v0, v1})
if tS(s, s′) = (f0 + . . .+ fk)

?

and vS (tS(s, s′), {(v0,path(ind), v1)}) = true,
then if vMω

(m, v0 · ind ∗= v1 · ind) = true

and vMω
(m′, v0 · ind ∗= v1 · ind) = true,

then, tMω
(m,m′) = v0 · ind ∗= v1 · ind

Intuitively, this rule will only attempt to synthesize a segment when the join of the silhouettes
can be weakened into the silhouette of a segment. Only in that case will it call the shape inclusion
checking function vMω

to determine if a segment can be introduced. This rule supersedes the
classical syntactic rule and avoids many attempts to run the costly vMω

, which would fail (since
vS provides a cheaper, weak entailment test).

In the following, we let tMω
denote a join operator for abstract states, that takes as input

a third argument for a silhouette which it uses as a guide to introduce segments. Given two
abstract states and a silhouette, the guided joining operator first attempts to apply the semantic
guided segment introduction rule, and then applies the other joining rules, as presented in
Figure 6.6.

Theorem 9.3 (Soundness). The guided joining is sound:

tMω
(m,m′, s) = mo =⇒ γMω

(m) ⊆ γMω
(mo) ∧ γMω

(m′) ⊆ γMω
(mo)

Proof. The soundness can be easily proved based on the soundness of each rule. �

Example 9.4. We consider the abstract states m,m′ of Example 9.1. Then:

st = tS(Π(m, {x, t}),Π(m′, {x, t})) = {(t, (l + r)?, x)}

Thus, the semantic guided segment introduction rule can be applied to synthesize a segment
predicate between t and x, and after which a normal joining rule can be applied to match
the inductive predicate at x:

tMω
(m,m′, st) = t · tree ∗= x · tree ∗ x · tree

As another example, let us consider the abstract states m,m′ of Example 9.2, where

st = tS(Π(m, {x, t, y}),Π(m′, {x, t, y})) = {(t, l?, x), (x, l?, y)}

As path(tree) = (l + r)∗, thus the guided segment introduction rule can be applied to
synthesize a segment predicate between t and x and a segment predicate between x and y,

130 Chapter 9. Silhouette-Guided Joining of Abstract Memory States

. . .

. . .

.

t

x y

(a) Concrete memory state

t α

β

δ x

y
(l+ r)∗

r

l

(l+ r)?

(l+ r)?

t
α

δ

β

x

y

l

r

tree
tree

tree tree

tree

(b) Abstract state and silhouette

Figure 9.1: Branching node

after which a normal joining rule can be applied to match the inductive predicate at y:

tMω
(m,m′, st) = t · tree ∗= x · tree ∗ x · tree

We note that the silhouette guided abstract states join could compute more precise join
results when the search space for the join is larger, as evaluated in Chapter 11. The syntactic
rule-based join that we presented in Figure 6.6 tends to fail in such cases, and that the failure
generally stems from a lack of understanding of the semantic properties of the abstract state.

9.2.3 Taking Advantage of the Analysis Goal

Live variables. As remarked in Example 9.2, live program variables play a big role in de-
termining whether a joining result is precise or not. The reason is that live variables may be
read later in the program being analyzed before they are overwritten. Thus the joining process
of abstract states should always try to apply rules that are able to keep precise information
of live variables since if, during joining, the information about live variables is lost, then the
analysis is very likely to fail. As shown in Section 9.2.2, silhouettes can guide abstract state join
to keep important precise information that is relevant to silhouettes. Therefore, we can make
silhouettes more concise and relevant by collecting only nodes that are live variables. We note
that a standard liveness compiler analysis [App08] can compute a set of live program variables
at each program point.

Branching nodes. When abstracting concrete memories, memory nodes that have nested
pointers to several sub-structures which can also be accessed by dereferencing different program
variables are usually important as such nodes should not be summarized in abstract states for
precision. We call such a memory node a “branching node” in the following. As an example, the
memory node in purple in Figure 9.1(a) is a branching node. If it were summarized, one of the

Chapter 9. Silhouette-Guided Joining of Abstract Memory States 131

cursors x, y would have to be dropped. A precise abstraction would abstract the branch node
exactly with points-to edges, as shown at the top of Figure 9.1(b). As silhouettes are used to
guide the synthesizing of segment predicates in abstract state join operations, which may cause
precision loss when branching nodes are summarized, we need to identify “branching nodes” in
silhouettes and always keep precise information about them, such as the silhouette shown at the
bottom of Figure 9.1(b).

132 Chapter 9. Silhouette-Guided Joining of Abstract Memory States

Chapter 10

Silhouette-Guided Clumping and
Widening

This chapter demonstrates that silhouettes can be used in order to pre-
cisely compute the clumping and widening of disjunctive abstract states.
Specifically, Section 10.1 presents silhouette-guided clumping based on
an equivalence relation of silhouettes and silhouette-guided joining. Fur-
thermore, Section 10.2 defines silhouette-based widening of disjunctive
abstract states, i.e., relying on silhouettes to select which pair of dis-
juncts to be widened together for more precise widening results.

10.1 Silhouette Guided Clumping of Abstract States

In this section, we first show that silhouettes need to be generalized in order to easily recognize
silhouette similarities at the silhouette level in Section 10.1.1. Then, we define a silhouette
clumping equivalence relation in Section 10.1.2. Intuitively, the relation is used to indicate
whether abstract states can be joined precisely. In Section 10.1.3, we present a clumping algo-
rithm.

10.1.1 Silhouette Generalization

While the silhouettes of abstract states defined in Sect. 9.2.3 are restrictions of silhouettes
directed to live variables, they still adhere too closely to the structure of the abstract states to
highlight all the possibilities for clumping. For instance, Fig. 10.1 shows two abstract states
m,m′ taken from the abstract states of the analysis of the AVL tree insertion program shown
in Figure 7.2. The silhouettes of m and m′ are shown on the right side, and apparently are not
equal. Yet, the two abstract states could be clumped as they both can be weakened into a tree
segment predicate from t to x without harming the analysis as discussed in Section 7.2.

To recognize silhouette similarities in configurations such as that given in Figure 10.1, con-
straints should be generalized so as to make segment patterns easier to recognize at the silhouette
level. Since segments correspond to regular expressions of the form (f0+ . . .+fk)

?, the following
generalization function makes such patterns appear more prominently:

134 Chapter 10. Silhouette-Guided Clumping and Widening

m =
t

x
α0

α1

l

r

tree

tree Π(m, {t, x}) = t xl · (l + r)∗

m′ =
t

x
β0

β1 β2 β3

l

r

l

r

tree

tree

tree Π(m′, {t, x}) =
t xr · (l + r)∗ · r

Figure 10.1: Abstract state candidates for clumping.

Definition 10.1 (Silhouette generalization). The generalization φ(e) of a regular expres-
sion e of the form f′0 · . . . · f′m · (f0 + . . . + fk)

? · f′′0 · . . . · f′′n, where {f′0, . . . , f′m, f′′0, . . . , f′′n} ⊆
{f0, . . . , fk}, is the regular expression φ(e) = (f0 + . . .+ fk)

?. For all other regular expressions
e, we let φ(e) = e.

The generalization of a silhouette s is obtained by replacing any edge (v, e, v′) of s by edge
(v, φ(e), v′). It is noted Φ(s).

This operation defines a weakening over silhouettes, since for all silhouettes s, we can prove
that γS(s) ⊆ γS(Φ(s)).

Example 10.1. After generalization, we obtain:

Φ(Π(m, {t, x})) = {(t, (l + r)?, x)} = Φ(Π(m′, {t, x}))

10.1.2 Clumping Relation

We now consider a criterion for the computation of candidate groups of abstract states for
clumping based on silhouettes.

As introduced in Figure. 6.6, many the join rules implicitly rely on vMω
. Therefore, we can

use silhouette entailment check vS to prune out abstract state entailment checks that do not hold
in the silhouettes based on Theorem. 8.4. However, silhouette-guided joining allows weakening
rules to be applied on both sides, as presented in Definition 9.2, during the computation of a
single join of two abstract states m,m′. Thus, we need a symmetric characterization of situations
where a weakening may be performed either in m, in m′ or in both, which is the purpose of the
following relation ./.

Definition 10.2 (Silhouette association relation). Let s′dN′ be the restriction of a silhou-
ette s′ to a set of nodes N′. Let s0, s1 be two silhouettes with the same set of nodes N. We
let s′0 = Φ(s0) and s′1 = Φ(s1). We write s0 ./ s1 if and only if there exist N0,N1 such that
N = N0 ∪ N1 and:

s′0 = s′0dN0
∪ s′0dN1

∧ vS (s′0dN0
, s′1dN0

) = true

∧ s′1 = s′1dN0
∪ s′1dN1

∧ vS (s′1dN1
, s′0dN1

) = true

Chapter 10. Silhouette-Guided Clumping and Widening 135

This relation is symmetric and reflexive, but not transitive.

Example 10.2. Let s0, s1, s2 be defined by:

s0 =
x, y zf∗

s1 =
x, y zf

s2 =
x y, zf∗

Let N0 = {x, y} and N1 = {y, z}, we get that s0dN0
vS s1dN0

, s0dN0
vS s2dN0

, and s1dN1
vS

s0dN1
, s2dN1

vS s1dN1
. Thus, we have that s0 ./ s1 and s0 ./ s2 hold. However, s1 ./ s2 does

not hold.

The silhouette association relation soundly characterizes the cases where a precise join can
be computed using rules that perform weakening guided by existing predicates:

Theorem 10.1 (Silhouette association and weakening). Let m,m′ be two abstract states.
We assume that m = m0 ∗ m1 and m′ = m′0 ∗ m′1. Then:

m0 vMω
m′0 ∧ m′1 vMω

m1 =⇒ Φ(Π(m)) ./ Φ(Π(m′))

Proof. According to Definition 8.3, Π(m) = Π(m0) ∪ Π(m1) and Π(m′) = Π(m′0) ∪ Π(m′1).
According to Theorem 8.4, m0 vMω

m′0 =⇒ Π(m0) vS Π(m′0) and m′1 vMω
m1 =⇒

Π(m′1) vS Π(m1). Thus, we have Π(m) ./ Π(m′), which implies Φ(Π(m)) ./ Φ(Π(m′)). �

The theorem implies that:
whenever a join can be computed by weakening part of m into predicates present in m′

and part of m′ into predicates present in m, then relation ./ holds.
The contraposition entails that:

when ./ does not hold, no precise join can be found using only rules that weaken abstract
states based on existing predicates.

Therefore, Theorem 10.1 will prevent clumping from attempting to compute some but not
all joins that will fail. However, the characterization that the theorem provides is actually very
accurate, as shown by our experiments in Chapter 11.

Example 10.3 (Association relation). Let us recall the abstract states of Example. 9.2:

t, x
y

β

l

r

tree

tree
m :

t
y, x

β

l

r

tree

tree
m′ :

136 Chapter 10. Silhouette-Guided Clumping and Widening

If X = {t, y}, then Π(m, X̂) = {(t, l, y)} = Π(m′, X̂). Thus, Φ(Π(m, s)) ./ Φ(Π(m′, s))
holds. As observed in Example. 9.2, joining these two states is precise with respect to X.

On the other hand, if X = {t, x, y}, we obtain Π(m, X̂) = {(t, ε, x), (x, l, y)} and
Π(m′, X̂) = {(t, l, x), (x, ε, y)}, and thus Φ(Π(m, X̂)) ./ Φ(Π(m′, X̂)) does not hold. Indeed,
we observed that joining them would incur a precision loss.

With the silhouette association relation, we now can define the equivalence silhouette clump-
ing relation ∼.

Definition 10.3 (Clumping relation ∼). Given a set of silhouettes S = {s0, . . . , sn}, the
clumping relation ∼ is defined as the transitive closure of ./:

∀si, sj ∈ S, si ∼ sj ⇐⇒ si ./ sj ∨ ∃sk ∈ S, si ∼ sk ∧ sk ∼ sj

The clumping relation ∼ is symmetric, reflexive, and transitive.

Example 10.4 (Clumping relation). Let us consider the silhouette in Example 10.2,
we can get that: s0 ∼ s1 ∼ s2.

10.1.3 Clumping Algorithm

Fig. 10.2 summarizes the clump algorithm for clumping abstract states, which takes as input
a disjunctive abstract state and the set of live variables at the current location in the program
being analyzed and outputs a clumped disjunctive abstract state with fewer disjuncts:

1. It first computes the silhouette of all the abstract states and the generalized form of these
silhouettes, where the generalized forms are used in order to compute ./.

2. It then groups silhouettes that are connected components of the silhouette association
relation ./, such that each group is an equivalence class of silhouette clumping relation
∼. Moreover, each group is sorted as a sequence of silhouettes such that any silhouette
(except the first one) in the sequence is associated with a previous silhouette.

3. For each group, the sequence of silhouettes suggests a sequence of abstract state joins,
that are expected to preserve silhouette joins by utilizing silhouette-guided joins to enable
semantic-guided synthesis of summary predicates as shown in Chapter 9. We note that
this join order has no relevance to the soundness of the algorithm.

This clumping algorithm is sound : it returns a disjunctive abstract state that over-approximates
m0, . . . ,mn:

Theorem 10.2 (Clumping soundness). For each disjunctive abstract state m0 ∨ . . . ∨ mn

and for every set of variables X, we have:

γD(m0 ∨ . . . ∨ mn) ⊆ γD(clump(m0 ∨ . . . ∨ mn,X))

Proof. The soundness is a direct consequence of the soundness of silhouette-guided joining. �

Chapter 10. Silhouette-Guided Clumping and Widening 137

input: disjunctive abstract state m0 ∨ . . . ∨ mn

set of live variables X
output: clumped disjunctive abstract state m′0 ∨ . . . ∨ m′k
0 : s0 ← Π(m0, X̂); . . . ; sn ← Π(mn, X̂);
1 : s′0 ← Φ(s0); . . . ; s

′
n ← Φ(sn);

2 : computation of relation ./ over s′0, . . . , s
′
n

3 : and of the connected components S0, . . . ,Sk of ./
4 : for each connected component Sj of ./
5 : sort the elements of Sj into s′i0 ≺ . . . ≺ s′il
6 : such that ∀p,∃q ≤ p, s′iq ./ s′ip+1

7 : m′j ← mi0 ; st ← si0 ;

8 : for p = 1 to l
9 : st ← joinS(st, sip);

10 : m′j ← joinMω
(m′j ,mip , s

t);

Figure 10.2: Clumping algorithm clump.

Following Theorem 10.1 and Theorem 9.2, this algorithm will not attempt to compute ab-
stract state joins that will not succeed in producing a precise result in the silhouette level.
However, clumping may propose to clump states that do not join well, for example, when the
join of silhouettes indicates synthesizing a segment in abstract states join, yet the synthesiz-
ing fails. However, the experimental results of Sect. 11 do not show any occurrence of such a
precision loss.

Example 10.5 (The algorithm clump). Let us consider the abstract states in Fig-
ure 10.3. The clump algorithm computes that s1 ∼ s2 ∼ s3, and therefore clumps
m1,m2,m3 into the abstract state below:

t x
y

l

r

tree
tree

tree

We note that the segment predicate in the abstract state is synthesized with the silhouette-
guided segment introduction rule (Definition 9.2). At the same time, it keeps m0 separate.
Here, the clumping result is precise for the analysis to infer interesting properties, as dis-
cussed in Chapter 7, and in addition, it is also optimal regarding the number of disjuncts.

10.2 Silhouette-guided Widening of Disjunctive Abstract states

To infer loop invariants from an abstract pre-condition, the analysis needs to use a widening
operator OD over disjunctive abstract states. This operator should over-approximate concrete
union, and ensure that any sequence (dn)n of the form dn+1 = OD(dn,d

′
n) terminates. In this

138 Chapter 10. Silhouette-Guided Clumping and Widening

i
Abstract state mi Silhouette si = Π(mi, ̂{x, t, y})

0
x

t, y
l

r

tree
x t, y

l

1
t, x

y
l

r

tree

tree
t, x y

l

2 t

x
y

l

r

l

r

tree

tree

tree

tree t x y
l · (l + r)? l

3

t x

y
l

r

l

r

l

r
tree

tree
tree

tree

tree

t x y
r · (l + r)? · l l

Figure 10.3: Clumping abstract states from the analysis of the AVL tree insertion program
(given in Figure 7.2) with their respective silhouettes

section, we assume that OMω
is a widening over abstract states, using similar algorithms to

tMω
. Such an operator can often be based on tMω

[CRN07].

Widening based on silhouette-guided pairing. Intuitively, a widening of d with d
′ should

widen disjuncts of d with disjuncts of d
′, using some sort of pairing to select which pairs of

disjuncts are to be widened together. Since silhouettes aim at capturing abstract states that
can be joined precisely, we build our widening around a pairing function that we build based on
the silhouette.

Definition 10.4 (Pairing function). Given d = m0 ∨ . . . ∨ mn and d
′

= m′0 ∨ . . . ∨ m′n′,
a pairing of d,d

′ is a function π
d,d

′ from {0, . . . , n} into the powerset of {0, . . . , n′} such that
i 6= j implies π(i) ∩ π(j) = ∅.

If a pairing family π
d,d

′ is defined for all d,d
′ ∈ D, we can define an operator over disjunctive

abstract states that lets the pairing function define which disjuncts of the right-hand argument

Chapter 10. Silhouette-Guided Clumping and Widening 139

are widened with each disjunct of the left-hand argument, and preserves the disjuncts of the
right-hand argument that do not appear in the pairing.

Definition 10.5 (Disjunctive widening operator). Let d = m0 ∨ . . . ∨ mn and d
′
= m′0 ∨

. . . ∨ m′n′. We let OD(d,d
′
) be defined as the abstract state m′′0, . . . ,m

′′
n+k, where:

• m′′i = OMω
(mi,tMω

({m′l | l ∈ πd,d′(i)})) if i ≤ n;
• {m′′n+i | 1 ≤ i ≤ k} = {m′j | ∀i, j 6∈ πd,d′(i)}.

This operator always returns a sound over-approximation of its arguments. Yet, depending
on the pairing family, it may fail to guarantee termination. In the following, we define a pairing
family that ensures termination so that widenD does indeed define a widening.

A good pairing should map abstract states that produce a precise widening, in the same
way as clumping for join. It should also drive the introduction of summary predicates. As
observed in Chapter 9, silhouettes hold information capable of guiding this process. However,
for termination, we need to bound silhouettes. Thus, we define a pairing that is parameterized
by an integer bound b, and that associates abstract states with silhouettes that are equivalent
when regular expressions are smashed upon exceeding length b (in the following, let b = 1):

Definition 10.6 (Silhouette-based pairing). Let F denote the set of all field names and let
b be an integer bound.

We define the regular expression bounded abstraction by:

ωb(e1 · . . . · ek) =

{
e1 · . . . · eb · F? if k > b

e1 · . . . · ek · F? otherwise

Let function Ωb abstract a silhouette by replacing each edge (v, e, v′) of the silhouette by
(v, ωb(e), v′).

Then, given silhouettes s, s′, we write sob s
′ if and only if vS (Ωb(s

′),Ωb(s)) = true.
Last, given disjunctive abstract states d = m0 ∨ . . . ∨ mn and d

′
= m′0 ∨ . . . ∨ m′n′ , the

pairing function π
d,d

′ of d, d
′ satisfies:

j ∈ π
d,d

′(i) =⇒ si ob s
′
j

Theorem 10.3 (Disjunctive widening). Using the pairing of Definition 10.6, the widening
operator OD of Definition 10.5 enforces termination of abstract iterates.

Proof. The proof relies on the finiteness of the image of Ωb, which entails that, for any sequence
(dn)n of widened iterates (such that dn+1 = OD(dn,d

′
n)), the disjuncts in dn eventually stabilize

to a set corresponding to a fixed, finite set of silhouettes. �

‘

Example 10.6 (Widening). Fig. 10.4 displays a few of the disjuncts that arise in the
second and third iteration over the first loop in the analysis of the AVL tree insertion
program presented in Fig. 7.2.

140 Chapter 10. Silhouette-Guided Clumping and Widening

m0 :
t x y

l l

r r

m′
0 :

t x y
l l l

r r r

m′
1 :

t x y
l l

r
r r

l

m′
2 :

t x y
l

r
l

r

l

r

Figure 10.4: Widening disjunctive abstract states.

Disjunct m0 occurs in the second iteration whereas disjuncts m′0,m
′
1,m

′
2 arise in the

third iteration. For clarity, we only show the nodes on the path between t, x and y. In the
table below, we show their silhouettes before and after applying the bounded abstraction:

silhouette bounded abstraction
m0 {(t, l, x), (x, l, y)} {(t, l · F?, x), (x, l · F?, y)}
m′0 {(t, l · l, x), (x, l, y)} {(t, l · F?, x), (x, l · F?, y)}
m′1 {(t, l · l, x), (x, r, y)} {(t, l · F?, x), (x, r · F?, y)}
m′2 {(t, l · r, x), (x, l, y)} {(t, l · F?, x), (x, l · F?, y)}

Then, Π(m0)ob Π(m′0) and Π(m0)ob Π(m′2) hold whereas Π(m0)ob Π(m′1) does not. Thus,
the pairing is defined by π(0) = {0, 2}. The widening will thus preserve the information
which establishes whether y is the left or right child of x.

10.3 Static Analysis

We now summarize the whole analysis.
As a forward abstract interpretation [CC77], it starts with an abstract pre-condition that

over-approximates initial memory states with a single disjunct which abstracts either the set of
all memory states, with no structure allocated for whole program analysis, or a pre-condition
describing the valid call states for the analysis of a library function.

It computes disjunctive abstract post-conditions for each statement. Post-conditions of as-
signment, test, allocation and deallocation statements are computed locally on each disjunct in
parallel as shown in Section 2.4.5. Before a control flow join that joins two disjunctive abstract

Chapter 10. Silhouette-Guided Clumping and Widening 141

states d and d
′, the analysis either simply returns d ∨ d

′ or applies clumping (Section 10.1)
to d ∨ d

′ in order to reduce the disjunction size. For loops, the silhouette-guided OD operator
(Section 10.2) enforces the convergence of sequences of disjunctive abstract states in order to
compute an abstract fix-point.

The analysis is sound as formalized in Theorem 2.1, which states that the analysis returns
abstract post-conditions that over-approximate final states.

142 Chapter 10. Silhouette-Guided Clumping and Widening

Chapter 11

Experimental Evaluation of
Silhouette-Directed Clumping

The silhouette-directed algorithms are implemented in the MemCAD
analyzer. This chapter assesses the efficiency of silhouette-directed meth-
ods in improving the static analysis of various data structures from real-
world C libraries. Specifically, Section 11.1 presents some research hy-
potheses, Section 11.2 sets up the benchmarks and experimental method-
ology and Section 11.3 evaluates the hypotheses.

11.1 Research Hypotheses

In this section, we empirically evaluate whether or not semantic-directed clumping is effective
in improving the static analysis of data structures from real-world C libraries. We implemented
clumping in the MemCAD analyzer [CR13]. We seek to provide evidence for or against the
following hypotheses:

RH1 (Clumping is effective). Semantic-directed clumping with guided join is necessary and ef-
fective for analyzing data structure operations from existing, real-world libraries. The
underlying premise of this work is that inferring disjunctive loop invariants is necessary
to effectively analyze real-world data structures. While certain code may be reasonably
adapted to avoid the need for disjunctive invariants, analyzing existing, real-world code
typically involves handling corner cases in separate disjuncts. We assess the impact of
silhouettes on the analysis and make a comparision with other techniques.

RH2 (Guided join is necessary). Guided join is necessary to avoid unacceptable precision loss.
Semantic-directed clumping uses silhouette abstraction to select the disjuncts to join.
Guided join then subsequently uses these same silhouettes to perform the shape join. We
seek to evaluate the need for this latter step.

RH3 (Clumping has a low overhead). The overhead of semantic-directed clumping is reasonable.
We hope and expect that the additional overhead in computing and comparing silhouettes
is outweighed by the benefits of increased precision and improved scalability. This aspect

144 Chapter 11. Experimental Evaluation of Silhouette-Directed Clumping

must be tested empirically as the number of silhouette comparisons is quadratic in the
number of disjuncts.

RH4 (Clumping limits disjunctive explosion). Semantic-directed clumping improves the scalabil-
ity of disjunctive analysis by limiting the number of disjuncts in the abstract state. Without
clumping, the number of disjuncts grows exponentially from control-flow paths and the
unfolding of inductive predicates. The scalability of disjunctive analysis (and thus most
shape analyses) is limited by the exponential growth in the number of disjuncts in the ab-
stract state. Thus the technical challenge is to avoid piling up more and more unnecessary
disjuncts while analyzing sequences of operations.

11.2 Experimental Methodology

To evaluate the effectiveness of semantic-based clumping, we consider 26 benchmarks of varying
implementation styles and degrees of difficulty to analyze. These include operations over singly-
linked and doubly-linked lists, as well as various binary trees with different kinds of invariants
and pointer patterns (search, splay, red black, or AVL and with various sharing patterns). The
operations consist of variants of finding an element, inserting, deleting, reversing, and sorting.

Notably, 21 benchmarks are from external sources. Some of these come with typically simple,
user-specified assertions (e.g., x != NULL). Each benchmark consists of a top-level function
implementing a data structure operation with a pre-condition and a post-condition that specify
the preservation of precise shape invariants. Some routines are recursive whereas the others
contain nested loops.

Table 11.1 lists these benchmarks with metrics to get a sense of the difficulty to analyze,
including the presence of recursion, lines of code, numbers of sub-routines, numbers of loops
and acyclic paths. The number of loops and acyclic paths gives the number of disjuncts that
a naïve path and context-sensitive analysis would have at the exit point. The final metric is
the maximum number of simultaneous pointers into a data structure instance (column “Simult.
Pointer”). The summary row gives total counts of LOCs, assertions, functions, loops and paths,
and the average number of simultaneous pointers (As discussed in Chapter 7, the number of
simultaneous pointers into an instance is related to the number of disjuncts needed to represent
the program invariant).

The analysis is parameterized by the definition of ind (or infers it for basic list and tree cases).
It attempts to prove memory safety, any user-specified assertions, and the (more complex) post-
condition given a C program and optionally inductive predicates summarizing memory regions.
Clumping is applied at the beginning and the end of functions, at loop heads, at loop exits, and
at the end of branches.

We evaluate and compare the following clumping strategies:
• ClumpG and Clump do silhouette-guided clumping and widening (Chapter 10); ClumpG uses

guided join (Chapter 9), whereas Clump does not;
• None is the baseline technique, and does not compute silhouettes to perform clumping or

guided joining. Instead, the joining keeps all disjuncts of both inputs and the widening
merges all disjuncts of each input into one;

Chapter 11. Experimental Evaluation of Silhouette-Directed Clumping 145

Benchmark LOC
User
Assert Fun Loop Path

Simult.
Pointer

singly-linked list
sll-delmin 25 0 1 1 12 5
sll-delmin† 26 0 2 1† 6 5
sll-delminmax 49 0 1 1 248 7
sll-delminmax† 52 0 2 1† 124 7

binary search tree
bstree-find 26 0 1 1 4 3
bstree-find† 26 0 2 1† 4 3

Predator singly-linked list
psll-reverse 11 0 1 1 2 3
psll-isort 20 0 1 2∗ 5 5
psll-bsort 25 0 1 2∗ 10 4

GDSL doubly-linked list (back pointers) with sentinel head and tail
gdll-findmin 49 14 8 1 3 5
gdll-index 55 14 9 2 24 2
gdll-findmax 58 14 8 1 3 5
gdll-find 78 26 10 1 18 5
gdll-delete 107 26 12 1 72 5

GDSL binary search tree with leaf-to-root and back pointers
gbstree-find 53 8 7 1 20 3
gbstree-insert 133 15 12 1 7680 5
gbstree-delete 165 9 15 1 23040 10

BSD splay tree
bsplay-find 81 0 4 1 56 5
bsplay-delete 95 0 4 2 448 5
bsplay-insert 101 0 4 1 43 5

BSD red black tree with back pointers
brbtree-find 29 0 3 1 4 2
brbtree-insert 177 0 4 2 3036 7
brbtree-delete 329 0 5 3 1.e+ 8 12

JSW AVL tree
javl-find 25 0 3 1 26 2
javl-free 27 0 3 1 3 3
javl-insert 95 0 6 2 1.e+ 8 6

summary 1917 126 123 34 2.e+ 8 5.0

Table 11.1: List of benchmarks, divided into internal, micro-benchmarks (top) and bench-
marks from external sources (bottom) including the Predator test suite [DPV11], the GNU
Data Structure Library (GDSL), the BSD library, and a tutorial implementation of AVL trees
(JSW) [Wal03]. Some external libraries include typically simple, user-specified assertions (User
Assert). A † indicates that the routine is recursive, while a ∗ indicates that the loops are nested.
The subsequent columns provide metrics for the complexity of the code, including the total num-
ber of functions (Fun), the number of loops (Loop), the number of acyclic paths (Path), and the
maximum number of simultaneous pointers into a data structure instance (Simult. Pointer).

146 Chapter 11. Experimental Evaluation of Silhouette-Directed Clumping

• Canon and CanonG conservatively model canonicalization operators [DOY06, SRW02]: they
compute silhouettes but only join abstractions when their silhouettes are exactly the same
(after folding nodes which are not pointed to by live variables); CanonG uses guided joining
whereas Canon does not (we expect these strategies will still compute fewer disjunctions
than a purely syntactic canonicalization would).

11.3 Experimental Evaluation

RH1: Clumping is effective. Our analyzer attempts to infer complex disjunctive shape
invariants in loops, which is particularly challenging considering the benchmarks shown in Ta-
ble 11.1 with not only forward and back pointers but also possibly unbounded sharing patterns.
Back pointers (as in doubly-linked lists or trees with parent pointers) require not only forward
unfolding of inductive summaries but also backward unfolding [CR08]. The BSD red-black tree
has parent pointers, which is heavily used in rebalancing. The leaves of the GDSL binary search
tree all point back to the root node.

We observe a number of implementation idioms that lead to a need for disjunctions:

• First, the maximum number of simultaneous pointers into a data structure instance (“Si-
mult. Pointer”) is one driving factor as mentioned above, which typically increases as the
operations get more complex (e.g., 12 for brbtree-delete).

• Second, the GDSL doubly-linked list uses sentinel nodes for the list head and tail. Because
they are different to normal nodes, they cannot be summarized into the normal list seg-
ment, which yields more disjuncts to represent the possible points-to relationships between
those nodes and the internal list segment.

• Third, nodes sometimes need to remain materialized between loops. Disjunctions are
needed to represent the cases where the materialized node can occur but the number
of disjuncts explodes exponentially in the number of materialized nodes in a tree. For
example, delete in a red-black tree (brbtree-delete) requires three loops in sequence: find
the node n to delete, find the minimum node m in the right subtree of n (i.e., the next
in-order node to preserve the binary search invariant), rebalance the tree from the right
subtree of that minimum nodem. The node to delete n must be kept materialized between
the first and second loop (to be able to track the swap of m and n) but becomes irrelevant
between the second and the third loop (after the swap).

While maintaining a disjunct, or trace partition, for every acyclic path may be sufficiently
precise in many or even most cases, it is clear from the path counts (column Path) that this
choice is utterly infeasible in practice. The essence of semantic-directed clumping is to identify
simultaneous pointers, sentinel nodes and the sort of relevance or irrelevance of a materialized
node by computing silhouettes (i.e., “abstracting the abstraction”).

In Figure 11.1(a), we compare clumping with guided join with the other strategies, showing
the number of benchmarks that can be successfully verified memory safe (i.e., free of null or dan-
gling pointer dereferences), the user-specified asserts, and the shape preservation post-condition
using the different strategies (see also the bottom line of Figure 11.1(b)). We find that clumping

Chapter 11. Experimental Evaluation of Silhouette-Directed Clumping 147

0
5

10
15
20
25

ClumpG Clump CanonG Canon None

(a) Number of benchmarks verified using
each strategy.

Benchmark ClumpG Clump CanonG Canon None

sll-delmin 0.04 > 0.05 > >
sll-delmin† 0.04 0.05 > > >
sll-delminmax 0.12 > 0.42 > >
sll-delminmax† 0.20 0.20 > > >
bstree-find 0.03 > 0.05 > >
bstree-find† 0.04 0.04 0.11 0.11 >
psll-reverse 0.02 0.02 0.02 0.02 0.02
psll-isort 0.03 0.03 0.04 0.04 >
psll-bsort 0.04 0.04 0.04 0.04 0.06
gdll-findmin 0.61 0.61 0.62 > 0.61
gdll-index 0.61 > 0.62 > 0.61
gdll-findmax 0.61 0.61 0.62 > 0.60
gdll-find 0.62 0.62 0.63 0.65 >
gdll-delete 0.62 0.63 0.63 0.64 >
gbstree-find 0.59 > 0.59 > 0.58
gbstree-insert 0.65 > > > >
gbstree-delete 1.64 > 1.71 > 1.39
bsplay-find 0.28 > 0.56 0.56 >
bsplay-delete 0.48 > 1.08 1.07 >
bsplay-insert 0.30 > 0.62 0.62 >
brbtree-find 0.36 > 0.36 > >
brbtree-insert 1.07 > > > >
brbtree-delete 6.06 > > > >
javl-find 0.19 > 0.19 > 0.19
javl-free 0.18 0.19 0.19 0.18 0.19
javl-insert 1.84 > 5.22 > >
average (all) 0.66 0.28 0.68 0.39 0.47

verified 26 11 21 10 9

(b) Analysis times are only reported if all assertions are successfully verified, including the preservation
invariant in post-conditions. > indicates a failure to verify (due to precision loss). Run times (in seconds)
measured on one core of a 3.20GHz Intel Xeon with 16GB of RAM. Times are reported as an average of
three runs.

Figure 11.1: Successful verification times with different analysis strategies. The clumping with
guided join strategy can verify significantly more benchmarks than any other strategy and over
3x more than the None baseline—and all at similar costs in analysis time.

148 Chapter 11. Experimental Evaluation of Silhouette-Directed Clumping

with guided join (ClumpG) is significantly more effective (able to verify benchmarks) than the
baseline and also more capable than any other strategy. CanonG fails to verify, for example, the
particularly complex red-black tree insertion and deletion operations.

Clumping with guided join is able to verify these additional benchmarks with an analysis
time that is comparable with any other configuration, as shown in Figure 11.1(b). The analysis
time is larger for more complex benchmarks (e.g., for red-black tree delete brbtree-delete), which,
as expected, raises its average analysis time, but ClumpG is also the only strategy that succeeds
on this code. ClumpG is also notably faster than CanonG on javl-insert. Therefore, we conclude
that ClumpG takes comparable or even less time than other strategies on benchmarks where other
strategies succeed (e.g., in the bsplay benchmarks).

Another measure of effectiveness of ClumpG is that analysis logs show this strategy led to no
precision loss in joins.

RH2: Guided join is necessary. Figure 11.1(a) and 11.1(b) also show not only that clump-
ing is effective but that guided join is also necessary. While Clump does slightly improve on
the baseline (11 versus 9), where two more benchmarks are verified, ClumpG (clumping with
guided joining) is able to verify all the 26 benchmarks. Moreover, CanonG (canonicalization with
guided joining) successfully verifies 21 benchmarks, while Canon alone only verifies 10 bench-
marks. Thus, the guided join strategies (ClumpG and CanonG) are significantly better (26 and 21,
respectively). Moreover, we find that Clump and Canon tend to fail more in the tree benchmarks,
as there is a larger search space for the join; guiding appears more critical when the search space
for join is larger.

RH3: Clumping has a low overhead. From Figure 11.1(b), we see that ClumpG is com-
parable in the analysis time with any other configuration, which provides some evidence that
clumping has a reasonable overhead. To see this more directly, in the graph below, we show the
percentage of the analysis time spent on clumping, join, and other operations for each bench-
mark. We find that join is a very expensive operation and still takes about half of the analysis
time in many cases despite effective clumping. Moreover, we find that in all cases the time spent
on clumping (which includes the time to compute silhouettes) is a very small percentage of the
total analysis time (no more than a few percent), and much smaller than the time spent on join.
Therefore, we can conclude that clumping has a reasonably low overhead.

sllsll

dll

bst
gbst
spt

rbt
avl

clump

join

other

% time spent

Chapter 11. Experimental Evaluation of Silhouette-Directed Clumping 149

ClumpG CanonG None

Benchmark Fix Max Post Fix Max Post Fix Max Post

psll-reverse 1 1 1 1 1 1 1 1 1
psll-isort 1 2 1 1 3 2 1 > >
psll-bsort 1 5 1 1 4 1 1 8 1
gdll-findmin 2 3 1 4 7 2 1 3 2
gdll-index 1 7 1 1 5 2 1 5 5
gdll-findmax 2 3 1 4 7 2 1 3 2
gdll-find 2 6 1 2 6 2 > > >
gdll-delete 2 6 1 2 6 2 > > >
gbstree-find 1 3 1 1 3 3 1 3 3
gbstree-insert 2 4 1 > > > > > >
gbstree-delete 1 69 1 2 68 1 1 54 54
bsplay-find 3 42 1 5 89 1 > > >
bsplay-delete 3 42 1 5 89 1 > > >
bsplay-insert 3 42 1 5 89 1 > > >
brbtree-find 1 13 1 2 8 2 > > >
brbtree-insert 3 51 1 > > > > > >
brbtree-delete 3 108 1 > > > > > >
javl-find 1 3 1 1 3 1 1 3 3
javl-free 1 2 1 1 2 1 1 > >
javl-insert 3 120 1 18 240 1 > > >
max 3 120 1 18 240 3 1 54 54

(a) The maximum number of disjuncts at a loop head (Fix), at any program point (Max), and at the exit
point (Post) produced by the ClumpG, CanonG, and None analysis configurations.

ClumpG CanonG None

Benchmark Time Post Time Post Time Post

gbstree-find 3.3 1 2.18 1 40.79 158
brbtree-insert 60.2 1 > > > >
javl-find 0.63 1 > > 3.77 158
javl-insert 129.9 1 526.17 1 > >
average (all) 48.5075 1 264.175 1 22.28 158

(b) Synthesize a new benchmark by sequentially composing a data structure operation 32 times to simulate
multiple operations in sequence (times in seconds).

Figure 11.2: Clumping limits disjunctive explosion.

150 Chapter 11. Experimental Evaluation of Silhouette-Directed Clumping

RH4: Clumping limits disjunctive explosion. Figure 11.2(a) digs more deeply into the
verification times from Figure 11.1(b) by considering the maximum number of disjuncts produced
at a loop head, any program point, and at the exit point of the operation. First, we observe
that interestingly, the None baseline configuration only succeeds when the number of disjuncts
at a loop head is 1. When more than one disjunct is needed for the loop invariant, the silhouette
abstraction seems crucial to guiding the inference of a sufficiently precise invariant. Second,
in all cases where both ClumpG and CanonG succeed, ClumpG uses fewer disjuncts in the loop
invariant, and the difference can be quite significant (e.g., for javl-insert, 3 versus 18). And
interestingly, ClumpG is always able to get to a single disjunct at the exit point while proving
the post-condition.

From these observations, we hypothesize that being able to clump into the minimal number
of necessary disjuncts is crucial to analyzing data structure operations in a client program
that makes several such calls. To test this hypothesis, we perform a controlled experiment by
sequentially composing a given operation with itself 32 times and trying to prove the shape
preservation invariant at the end. The resulting analysis is notably more complex than for
the initial code, due to increasingly complex abstract states over call sequences. The results in
Figure 11.2(b) show that ClumpG keeps the number of disjuncts constant and scales well, whereas
CanonG and None suffer a significant slow-down in the cases where they do not fail.

11.4 Related Work on Silhouette-guided Clumping

Several generic techniques are used to handle disjunctions in static analyses. Disjunctive com-
pletion [CC79] adds support for disjunctions to an abstract domain, but never collapses them,
and thus is too expensive in practice. Similarly, [GR98] introduces the least disjunctive basis
of an abstract domain as a compact domain with the same disjunctive completion, though this
construction does not minimize the size of the representation of the abstract elements. State
partitioning [CC92, JHR99] attaches abstract states to specific sets of states, which effectively
allows one to support disjunctive properties while providing a way to control disjunct numbers
via the definition of partitions. Trace partitioning [HT98, RM07] achieves a similar result using
information about traces. However, these studies provide frameworks, and do not address the
problem of finding a criterion to clump disjuncts. Silhouettes provide such a criterion, based on
the properties of join.

Shape analyses based on three-valued logic [SRW02], and on separation logic [BCO05,
BCC+07, CRN07, DPV11, BDES12] are known to require disjunctions. The same goes for
array analyses [HP08]. Several strategies have been designed to limit the number of disjunc-
tions. When summary predicates denote non-empty regions, possibly empty regions create
an additional need for disjunctions. Thus, several proposals have been made to let summary
predicates denote possibly empty regions [CRN07, YLB+08, CCL11]. Canonicalization opera-
tors [LAS00, SRW02, BCO05, DOY06] collapse abstract states into a smaller, finite lattice, and
thereby bound the number of disjuncts. While the analysis may use a larger lattice, precision
after applying this operation is limited by the smaller lattice. Join operators [CRN07, YLB+08]
do not require a smaller lattice (and can therefore keep more information), but lack a mechanism
to bound the cardinality of disjunctions. To apply join or canonicalization operators efficiently,

Chapter 11. Experimental Evaluation of Silhouette-Directed Clumping 151

several strategies have been designed. Arnold [Arn06] groups abstract states that satisfy some
inclusion relation. Moreover, [YLB+08] performs a partial join that groups disjuncts only when
it syntactically verifies the absence of precision loss. In contrast, our work proposes a criterion
based on an abstraction of abstract states, and on the fact that this abstraction is cheaper to
compute. A more related study is that by Manevich [MSRF04], that extends TVLA [LAS00]
with a grouping of three-valued abstract states based on a partial graph isomorphism.

Techniques to merge disjuncts have been developed in static analyses for numerical properties
as well. For instance, a notion of affinity between polyhedra is used in [PC06] in order to decide
whether they can be joined without too significant a precision loss. This approach is extended
in [PTTC11] to deal with set properties. Bagnara [BHZ04] proposed a widening over disjunctions
of polyhedra, that tests for the implication of abstract states to better bound the precision loss.

Existing off-line approaches for the parameterization of static analyses and abstract domains
(such as the selection of the abstract domain to use, and of the abstract values to keep) include
syntactic heuristics based on code patterns [BCC+03], machine learning techniques [LTN11,
OYY15], and semantic impact pre-analysis methods [OLH+14]. The disjunct clumping problem
is tied to the abstract states that arise during the analysis, and it is therefore not surprising
that it requires an on-line abstraction of these states at analysis time.

Finally, we remark that other analyses that abstract structures with summaries [CCR14],
heap abstractions [DDA10], rich type systems [KRJ09, RKJ10] or quantified logical asser-
tions [GMT08] may benefit from adapted forms of silhouette abstraction when facing the dis-
junction problem.

11.5 Conclusion on Silhouette-guided Clumping

In this part of the thesis, we introduced silhouettes that abstract the abstract states. The in-
formation enclosed in the silhouettes proves useful not only to clump disjunctions of abstract
states, but also to compute better abstract joins. These results were achieved by selecting a
definition of silhouettes that provides a weak entailment check over abstract states, and thereby
accurately characterizes abstract states that are likely to join well. This characterization is con-
servative with respect to the standard analysis algorithms: while it will always suggest clumping
abstract states that can be joined precisely, it may also suggest clumping abstract states that
cannot be joined precisely, although we never observed this behavior in our experiments. This
situation is quite similar to that of a static analysis that can be proven sound but is conservative
in theory, yet computes very precise results in practice. Our experimental evaluation confirms
the effectiveness of the silhouette abstraction, which allows our implementation to verify a large
collection of challenging benchmarks at a reasonable cost. The overhead inherent in computing
silhouettes is outweighed by the benefits of increased precision and improved scalability.

152 Chapter 11. Experimental Evaluation of Silhouette-Directed Clumping

Part IV

Conclusion

Chapter 12

Conclusion and Future Directions

12.1 Conclusion

Separation-logic based shape analysis relies on the separating conjunction (∗) to describe disjoint
properties of local memory regions and inductive predicates to summarize unbounded dynamic
data structures within heaps. However, the local predicates are not expressive enough to describe
global properties that some complex data structures rely on, and to partition disjunctions.

In Part II, we have set up a shape analysis that is able to cope with data structures with
unbounded sharing. The analysis combines separation logic based shape abstractions and a set
abstract domain that tracks pointer sharing properties. The real difficulties of the analysis lie in
the synthesis of set parameters for summary predicates during folding operations, and the non-
local unfolding of summary predicates that “jumps” to somewhere in an inductive predicate. To
deal with these difficulities, we have specified two kinds of set parameters of inductive predicates,
head and constant, and designed an instantiation process for synthesizing set parameters. We
have implemented the analysis in the MemCAD static analyzer by augmenting an existing shape
domain in MemCAD with a set domain. The advantages of the analysis include that the original
domain structures of MemCAD remain mostly unchanged, the analysis is still parametric in the
structure to verify, and the modularity of the analyzer is preserved. We have obtained positive
results in analyzing a basic graph library, where graphs are described as adjacency lists.

In Part III, we have set up a general framework for disjunct clumping based on abstraction
of abstract states, i.e., silhouettes. Generally, abstract states can be clumped if their silhouettes
are similar according to a computable silhouette equivalence relation. We have defined and
formalized an instance of this framework in separation logic-based shape analysis, where silhou-
ettes simply abstract access path relations between live program variables. It turns out that
silhouettes apply not only to the clumping of disjuncts but also to the weakening of separating
conjunctions of memory predicates into inductive summaries. We have implemented this ap-
proach in the MemCAD analyzer and evaluated it on real-world C codes from existing libraries
dealing with doubly-linked lists, red-black trees, AVL-trees and splay-trees. Our experimental
evaluation shows that silhouette-based clumping is effective in keeping the size of disjunctions
small while preserving the case splits that are required for the analysis to succeed at a reasonable
cost.

156 Chapter 12. Conclusion and Future Directions

12.2 Future Directions

Several interesting routes for future work could be explored.

Numerical properties of data structures. Invariants of data structures, e.g., binary search
trees and red-black trees, consist not only of shape invariants but also of numerical invariants. In
order to keep precise numerical properties of data structures, the work presented in paper [CR08]
proposed inductive predicates with numerical parameters. However, automatically inferring nu-
merical parameters for summary predicates during folding remains a huge challenge. Therefore,
similarly to set parameters, identifying the kinds of numerical parameters and designing a pre-
cise instantiation process for the kinds of numerical parameters are necessary. In addition, a
disjunct clumping that is based not only on shape properties but also on numerical properties
should be explored. As a consequence, silhouettes and silhouette equivalence relations for the
clumping of different numerical abstractions should be designed.

Abstractions of DAGs. A directed acyclic graph (DAG) is a finite directed graph with a
topological order of nodes, such that any node of the graph can only have out-edges to nodes
later in the order. Our abstract domain does not provide a way to abstract the topological
order of nodes, and thus cannot abstract DAGs precisely. As DAGs can be used to model many
different kinds of data information, such as ordering the compilation operations in a makefile
and representing sequences of binary choices, it is necessary to extend the domain in order to
analyze programs that handle DAGs is necessary. Intuitively, the extension may require the set
domain to be extended in order to abstract orders of sets.

Sharing properties of recursive procedures. Recursive procedures that manipulate dy-
namic data structures often lead to pointer sharing properties between the call stack and the
dynamic data structure, and deferences of the data structure from the call stack. The sharing is
usually unbounded. As our analysis is able to track unbounded pointer sharing properties with
set abstractions and deferences of the data structure from the call stack might be handled by
non-local unfolding, an application of our analysis to recursive procedures might be explored.

Clumping abstract states in other analyses. Similarly to shape analysis, array analysis
(which deals with contiguous structures indexed by ranges of integers) and dictionary analysis
(which handles structures indexed using sets of keys) also implicitly or explicitly use separation
and summarization to abstract sets of concrete memory states, and rely on disjunctions for
the sake of precision. In these analyses, deciding how to create summarization in joining and
whether or not to keep case splits is also critical. Therefore, the disjunct clumping of abstract
states based on silhouettes in these analyses might also be studied.

Bibliography

[And94] Lars O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, DIKU, 1994.

[App08] Andrew Appel. Modern Compiler Implementation in C. Cambridge University Press,
2008.

[Arn06] Gilad Arnold. Specialized 3-valued logic shape analysis using structure-based refine-
ment and loose embedding. In Static Analysis Symposium (SAS), pages 204–220.
Springer, 2006.

[BCC+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-
critical software. In Ron Cytron and Rajiv Gupta, editors, Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation
2003, San Diego, California, USA, June 9-11, 2003, pages 196–207. ACM, 2003.

[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’Hearn,
Thomas Wies, and Hongseok Yang. Shape analysis for composite data structures.
In Werner Damm and Holger Hermanns, editors, Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings,
volume 4590 of LNCS, pages 178–192. Springer, 2007.

[BCC+10] Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, and Xavier Rival. Static analysis and verification of aerospace software
by abstract interpretation. In AIAA Infotech@ Aerospace 2010, page 3385. 2010.

[BCO05] Josh Berdine, Cristiano Calcagno, and Peter O’Hearn. Symbolic execution with
separation logic. In Asian Conference on Programming Languages and Software,
pages 52–68. Springer, 2005.

[BDES12] Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu. Ab-
stract domains for automated reasoning about list-manipulating programs with infi-
nite data. In Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), pages 1–22. Springer, 2012.

[BHZ04] Roberto Bagnara, Patricia M Hill, and Enea Zaffanella. Widening operators for
powerset domains. In Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 135–148. Springer, 2004.

158 Bibliography

[BS11] Thomas Ball and Mooly Sagiv, editors. Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011. ACM, 2011.

[CBC93] Jong-Deok Choi, Michael G. Burke, and Paul R. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side effects. In Mary
S. Van Deusen and Bernard Lang, editors, Conference Record of the Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Charleston, South Carolina, USA, January 1993, pages 232–245. ACM Press,
1993.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record
of the Fourth ACM Symposium on Principles of Programming Languages, Los An-
geles, California, USA, January 1977, pages 238–252. ACM, 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen, editors, Conference
Record of the Sixth Annual ACM Symposium on Principles of Programming Lan-
guages, San Antonio, Texas, USA, January 1979, pages 269–282. ACM Press, 1979.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(2&3):103–179, 1992.

[CCL11] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmentation
functor for fully automatic and scalable array content analysis. In Ball and Sagiv
[BS11], pages 105–118.

[CCLR15] Arlen Cox, Bor-Yuh Evan Chang, Huisong Li, and Xavier Rival. Abstract domains
and solvers for sets reasoning. In Logic for Programming, Artificial Intelligence, and
Reasoning, pages 356–371. Springer, 2015.

[CCR14] Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival. Automatic analysis of open
objects in dynamic language programs. In Static Analysis Symposium (SAS), pages
134–150, 2014.

[CCS13] Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan. Quic graphs:
Relational invariant generation for containers. In European Conference on Object-
Oriented Programming, pages 401–425. Springer, 2013.

[CDD+15] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimei-
jer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma
Rodriguez. Moving fast with software verification. In NASA Formal Methods Sym-
posium, pages 3–11. Springer, 2015.

Bibliography 159

[CDOY09] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Com-
positional shape analysis by means of bi-abduction. In ACM SIGPLAN Notices,
volume 44, pages 289–300. ACM, 2009.

[CES86] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Alfred V. Aho, Stephen N. Zilles, and Thomas G.
Szymanski, editors, Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages, Tucson, Arizona, USA, January 1978, pages
84–96. ACM Press, 1978.

[Cox15] Arlen Cox. Binary-Decision-Diagrams for Set Abstraction. ArXiv e-prints, March
2015.

[CR08] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis.
In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2008, San Francisco, California, USA, January 7-12, 2008, pages 247–260. ACM,
2008.

[CR13] Bor-Yuh Evan Chang and Xavier Rival. Modular construction of shape-numeric
analyzers. In EPTCS, editor, Semantics, Abstract Interpretation, and Reasoning
about Programs: Essays Dedicated to David A. Schmidt on the Occasion of his Six-
tieth Birthday, Manhattan, Kansas, USA, 19-20th September 2013., volume 129 of
EPTCS, pages 161–185, 2013.

[CRB10] Renato Cherini, Lucas Rearte, and Javier Blanco. A shape analysis for non-linear
data structures. In Static Analysis Symposium (SAS), pages 201–217. Springer, 2010.

[CRN07] Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula. Shape analysis with
structural invariant checkers. In Hanne Riis Nielson and Gilberto Filé, editors, Static
Analysis, 14th International Symposium, SAS 2007, Kongens Lyngby, Denmark, Au-
gust 22-24, 2007, Proceedings, volume 4634 of Lecture Notes in Computer Science,
pages 384–401. Springer, 2007.

[CWZ90] David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. Analysis of pointers
and structures. In Bernard N. Fischer, editor, Proceedings of the ACM SIGPLAN’90
Conference on Programming Language Design and Implementation (PLDI), White
Plains, New York, USA, June 20-22, 1990, pages 296–310. ACM, 1990.

[DDA10] Isil Dillig, Thomas Dillig, and Alex Aiken. Symbolic heap abstraction with demand-
driven axiomatization of memory invariants. pages 397–410. ACM, 2010.

[DDA11] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using containers.
In Principles Of Programming Languages (POPL), pages 187–200, 2011.

160 Bibliography

[DES13] Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu. Local shape analysis for
overlaid data structures. In International Static Analysis Symposium, pages 150–171.
Springer, 2013.

[Deu94] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k -limiting.
In Vivek Sarkar, Barbara G. Ryder, and Mary Lou Soffa, editors, Proceedings of
the ACM SIGPLAN’94 Conference on Programming Language Design and Imple-
mentation (PLDI), Orlando, Florida, USA, June 20-24, 1994, pages 230–241. ACM,
1994.

[DOY06] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis
based on separation logic. In Holger Hermanns and Jens Palsberg, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 12th International
Conference, TACAS 2006 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006,
Proceedings, volume 3920 of LNCS, pages 287–302. Springer, 2006.

[DPV11] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Predator: A practical tool for check-
ing manipulation of dynamic data structures using separation logic. In International
Conference on Computer Aided Verification, pages 372–378. Springer, 2011.

[DS07] David Delmas and Jean Souyris. Astrée: from research to industry. In International
Static Analysis Symposium, pages 437–451. Springer, 2007.

[EC80] E Emerson and Edmund Clarke. Characterizing correctness properties of parallel
programs using fixpoints. Automata, Languages and Programming, pages 169–181,
1980.

[FFJ12] Pietro Ferrara, Raphael Fuchs, and Uri Juhasz. TVLA+ : TVLA and value anal-
yses together. In George Eleftherakis, Mike Hinchey, and Mike Holcombe, editors,
Software Engineering and Formal Methods - 10th International Conference, SEFM
2012, Thessaloniki, Greece, October 1-5, 2012. Proceedings, volume 7504 of Lecture
Notes in Computer Science, pages 63–77. Springer, 2012.

[Fil] Jean-Christophe Filliatre. Bdd ocaml library. https://www.lri.fr/~filliatr/
ftp/ocaml/bdd/.

[GH96] Rakesh Ghiya and Laurie J Hendren. Is it a tree, a dag, or a cyclic graph? a shape
analysis for heap-directed pointers in c. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 1–15. ACM,
1996.

[GMT08] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting abstract interpreters to
quantified logical domains. In Principles Of Programming Languages (POPL), pages
235–246. ACM, 2008.

[GR98] Roberto Giacobazzi and Francesco Ranzato. Optimal domains for disjunctive ab-
stract interpretation. Science of Computer Programming, 32(1):177–210, 1998.

https://www.lri.fr/~filliatr/ftp/ocaml/bdd/
https://www.lri.fr/~filliatr/ftp/ocaml/bdd/

Bibliography 161

[HHL+15] Lukáš Holík, Martin Hruška, Ondřej Lengál, Adam Rogalewicz, Jiří Šimáček, and
Tomáš Vojnar. Forester: Shape analysis using tree automata. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 432–435. Springer, 2015.

[HHN92] Laurie J. Hendren, Joseph Hummel, and Alexandru Nicolau. Abstractions for re-
cursive pointer data structures: Improving the analysis of imperative programs.
In Stuart I. Feldman and Richard L. Wexelblat, editors, Proceedings of the ACM
SIGPLAN’92 Conference on Programming Language Design and Implementation
(PLDI), San Francisco, California, USA, June 17-19, 1992, pages 249–260. ACM,
1992.

[HHR+11] Peter Habermehl, Lukáš Holík, Adam Rogalewicz, Jiří Šimáček, and Tomáš Vojnar.
Forest automata for verification of heap manipulation. In International Conference
on Computer Aided Verification, pages 424–440. Springer, 2011.

[HL11] Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of lines of
code. In Code Generation and Optimization (CGO), 2011 9th Annual IEEE/ACM
International Symposium on, pages 289–298. IEEE, 2011.

[HN90] Laurie J Hendren and Alexandru Nicolau. Parallelizing programs with recursive data
structures. IEEE Transactions on parallel and distributed systems, 1(1):35–47, 1990.

[HP08] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in simple
programs. In Rajiv Gupta and Saman P. Amarasinghe, editors, Proceedings of the
ACM SIGPLAN 2008 Conference on Programming Language Design and Implemen-
tation, Tucson, AZ, USA, June 7-13, 2008, pages 339–348. ACM, 2008.

[HT98] Maria Handjieva and Stanislav Tzolovski. Refining static analyses by trace-based
partitioning using control flow. In Static Analysis Symposium (SAS), pages 200–214.
Springer, 1998.

[JHR99] Bertrand Jeannet, Nicolas Halbwachs, and Pascal Raymond. Dynamic partitioning
in analyses of numerical properties. In Static Analysis Symposium (SAS), pages
39–50. Springer, 1999.

[JM82] Neil D Jones and Steven S Muchnick. A flexible approach to interprocedural data
flow analysis and programs with recursive data structures. In Proceedings of the
9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 66–74. ACM, 1982.

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains
for static analysis. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26 -
July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer Science, pages
661–667. Springer, 2009.

162 Bibliography

[Kle52] Stephen C. Kleene. Introduction to metamathematics. Bibliotheca Mathematica.
North-Holland, Amsterdam, 1952.

[KRJ09] Ming Kawaguchi, Patrick Rondon, and Ranjit Jhala. Type-based data structure
verification. In Programming Languages Design and Implementation (PLDI), pages
304–315. ACM, 2009.

[KSV10] Jörg Kreiker, Helmut Seidl, and Vesal Vojdani. Shape analysis of low-level C with
overlapping structures. In Gilles Barthe and Manuel V. Hermenegildo, editors, Verifi-
cation, Model Checking, and Abstract Interpretation, 11th International Conference,
VMCAI 2010, Madrid, Spain, January 17-19, 2010. Proceedings, volume 5944 of
LNCS, pages 214–230. Springer, 2010.

[LAS00] Tal Lev-Ami and Mooly Sagiv. Tvla: A system for implementing static analyses. In
Static Analysis Symposium (SAS), pages 280–301. Springer, 2000.

[LH88] James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure accesses.
In Richard L. Wexelblat, editor, Proceedings of the ACM SIGPLAN’88 Conference
on Programming Language Design and Implementation (PLDI), Atlanta, Georgia,
USA, June 22-24, 1988, pages 21–34. ACM, 1988.

[LR15] Jiangchao Liu and Xavier Rival. Abstraction of arrays based on non contiguous par-
titions. In Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), pages 282–299. Springer, 2015.

[LRC15] Huisong Li, Xavier Rival, and Bor-Yuh Evan Chang. Shape analysis for unstructured
sharing. In International On Static Analysis, pages 90–108. Springer, 2015.

[LTN11] Percy Liang, Omer Tripp, and Mayur Naik. Learning minimal abstractions. In
Principles Of Programming Languages (POPL), pages 31–42. ACM, 2011.

[LYP11] Oukseh Lee, Hongseok Yang, and Rasmus Petersen. Program analysis for overlaid
data structures. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science,
pages 592–608. Springer, 2011.

[McC93] Steve McConnell. Code complete: a practical handbook of software construction
(redmond, wa, 1993.

[MHKS08] Mark Marron, Manuel Hermenegildo, Deepak Kapur, and Darko Stefanovic. Efficient
context-sensitive shape analysis with graph based heap models. In International
Conference on Compiler Construction, pages 245–259. Springer, 2008.

[Min06] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computa-
tion, 19(1):31–100, 2006.

Bibliography 163

[MRR05] Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sen-
sitivity for points-to analysis for java. ACM Transactions on Software Engineering
and Methodology (TOSEM), 14(1):1–41, 2005.

[MSRF04] Roman Manevich, Mooly Sagiv, Ganesan Ramalingam, and John Field. Partially
disjunctive heap abstraction. In Static Analysis Symposium (SAS), pages 265–279.
Springer, 2004.

[NDQC07] H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verification of shape
and size properties via separation logic. In Byron Cook and Andreas Podelski, edi-
tors, Conference on Verification, Model Checking, and Abstract Interpretation (VM-
CAI), volume 4349 of Lecture Notes in Computer Science, pages 251–266. Springer,
2007.

[OLH+14] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. Selec-
tive context-sensitivity guided by impact pre-analysis. In Programming Languages
Design and Implementation (PLDI), pages 475–484. ACM, 2014.

[oM12] Security TechCenter of Microsoft. Microsoft security bulletin ms12-063 - critical,
2012.

[oM13] Security TechCenter of Microsoft. Microsoft security bulletin ms13-008 - critical,
2013.

[OYY15] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. Learning a strategy for adapting a
program analysis via bayesian optimisation. pages 572–588. ACM, 2015.

[PC06] Corneliu Popeea and Wei-Ngan Chin. Inferring disjunctive postconditions. In
ASIAN, pages 331–345. Springer, 2006.

[PTTC11] Tuan-Hung Pham, Minh-Thai Trinh, Anh-Hoang Truong, and Wei-Ngan Chin.
Fixbag: A fixpoint calculator for quantified bag constraints. In Conference on Com-
puter Aided Verification (CAV), pages 656–662. Springer, 2011.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002,
Copenhagen, Denmark, Proceedings, pages 55–74. IEEE Computer Society, 2002.

[Ric53] Henry G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):pp. 358–366, 1953.

[RKJ10] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Low-level liquid types.
In Principles Of Programming Languages (POPL), pages 131–144. ACM, 2010.

[RM07] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain. ACM
Transactions on Programming Languages And Systems, 29(5):26–69, 2007.

[Som99] Fabio Somenzi. Binary decision diagrams. NATO ASI SERIES F COMPUTER
AND SYSTEMS SCIENCES, 173:303–368, 1999.

164 Bibliography

[SR12] Pascal Sotin and Xavier Rival. Hierarchical shape abstraction of dynamic structures
in static blocks. In Ranjit Jhala and Atsushi Igarashi, editors, Programming Lan-
guages and Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, December
11-13, 2012. Proceedings, volume 7705 of Lecture Notes in Computer Science, pages
131–147. Springer, 2012.

[SRW99] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape anal-
ysis via 3-valued logic. In Andrew W. Appel and Alex Aiken, editors, POPL ’99,
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, San Antonio, TX, USA, January 20-22, 1999, pages 105–118.
ACM, 1999.

[SRW02] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages And Systems (TOPLAS), 24(3):217–
298, 2002.

[TCR13] Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival. Reduced product com-
bination of abstract domains for shapes. In Roberto Giacobazzi, Josh Berdine, and
Isabella Mastroeni, editors, Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI), volume 7737 of Lecture Notes in Computer Science,
pages 375–395. Springer, 2013.

[TCR14] Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival. An abstract domain
combinator for separately conjoining memory abstractions. In Markus Müller-Olm
and Helmut Seidl, editors, Static Analysis Symposium (SAS), volume 8723 of Lecture
Notes in Computer Science, pages 285–301. Springer, 2014.

[Vaf09] Victor Vafeiadis. Shape-value abstraction for verifying linearizability. In Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI), pages 335–
348. Springer, 2009.

[Wal03] Julienne Walker. AVL balanced tree library, 2003. http://www.
eternallyconfuzzled.com/libs/jsw_avltree.zip.

[WL95] Robert P Wilson and Monica S Lam. Efficient context-sensitive pointer analysis for
C programs, volume 30. ACM, 1995.

[YLB+08] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino
Distefano, and Peter W. O’Hearn. Scalable shape analysis for systems code. In
Conference on Computer Aided Verification (CAV), pages 385–398. Springer, 2008.

http://www.eternallyconfuzzled.com/libs/jsw_avltree.zip
http://www.eternallyconfuzzled.com/libs/jsw_avltree.zip

Résumé
L'analyse statique des programmes permet de calculer
automatiquement des propriétés sémantiques valides pour
toutes les exécutions. En particulier, dans le cas des
programmes manipulant des structures de données
complexes en mémoire, l'analyse statique peut inférer des
invariants utiles pour prouver la sûreté des accès à la
mémoire ou la préservation d'invariants structurels.
Beaucoup d'analyses de ce type manipulent des états
mémoires abstraits représentés par des conjonctions en
logique de séparation dont les prédicats de base décrivent
des blocs de mémoire atomiques ou bien résument des
régions non-bornées de la mémoire telles que des listes ou
des arbres. De telles analyses utilisent souvent des
disjonctions finies d’états mémoires abstraits afin de mieux
capturer leurs dissimilarités. Les analyses existantes
permettent de raisonner localement sur les zones mémoires
mais présentent les inconvénients suivants:
(1) Les prédicats inductifs ne sont pas assez expressifs pour
décrire précisément toutes les structures de données
dynamiques, du fait de la présence de pointeurs vers des
parties arbitraires (i.e., non-locales) de ces structures~;
(2) Les opérations abstraites correspondant à des accès en
lecture ou en écriture sur ces prédicats inductifs reposent
sur une opération matérialisant les cellules mémoires
correspondantes. Cette opération de matérialisation crée en
général de nouvelles disjonctions, ce qui nuit à l'impératif
d'efficacité. Hélas, les prédicats exprimant des contraintes
de structure locale ne sont pas suffisants pour déterminer de
façon adéquate les ensembles de disjonctions devant être
fusionnés, ni pour définir les opérations d'union et
d'élargissement d'états abstraits. Cette thèse est consacrée
à l'étude et la mise au point de prédicats en logique de
séparation permettant de décrire des structures de données
dynamiques, ainsi que des opérations abstraites afférentes.
Nous portons une attention particulière aux opérations
d'union et d'élargissement d’états abstraits. Nous proposons
une méthode pratique permettant de raisonner globalement
sur ces états mémoires au sein des méthodes existantes
d'analyse de propriétés structurelles et autorisant la fusion
précise et efficace de disjonctions.

Nous proposons et implémentons une abstract ion
structurelle basée sur les variables d'ensembles qui lorsque
elle est utilisée conjointement avec les prédicats inductifs
permet la spécif icat ion et l 'analyse de propriétés
structurelles globales. Nous avons utilisé ce domaine
abstrait afin d'analyser une famille de programmes
manipulant des graphes représentés par liste d'adjacence.

Nous proposons un critère sémantique permettant de
fusionner les états mémoires abstraits similaires en se
basant sur leur silhouette, cette dernière représentant
certaines propriétés structurelles globales vérifiées par l'état
correspondant. Les silhouettes s'appliquent non seulement à
la fusion de termes dans les disjonctions d'états mémoires
mais également à l'affaiblissement de conjonctions de
prédicats de logique de séparation en prédicats inductifs.
Ces contributions nous permettent de définir des opérateurs
d’union et d'élargissement visant à préserver les disjonctions
requises pour que l'analyse se termine avec succès. Nous
avons implémenté ces contributions au sein de l'analyseur
MemCAD et nous en avons évaluées l'impact sur l'analyse
de bibliothèques existantes écrites en C et implémentant
différentes structures de données, incluant des listes
doublement chaînées, des arbres rouge-noir, des arbres
AVL et des arbres ``splay’'. Nos résultats expérimentaux
montrent que notre approche est à même de contrôler la
taille des disjonctions à des fins de performance sans pour
autant nuire à la précision de l'analyse.  

Mots Clés
analyse statique, structures de données dynamique,
logique de séparation, disjonctions

Abstract
Shape analyses rely on expressive families of logical properties to
infer complex structural invariants, such that memory safety,
structure preservation and other memory properties of programs
dealing with dynamic data structures can be automatically verified.
Many such analyses manipulate abstract memory states that
consist of separating conjunctions of basic predicates describing
atomic blocks or summary predicates that describe unbounded
heap regions like lists or trees using inductive definitions. Moreover,
they use finite disjunctions of abstract memory states in order to
take into account dissimilar shapes. Although existing analyses
enable local reasoning of memory regions, they do, however, have
the following issues:
(1) The summary predicates are not expressive enough to describe
precisely all the dynamic data structures. In particular,,a fairly large
number of data structures with unbounded sharing, such as graphs,
cannot be described inductively in a local manner;
(2) Abstract operations that read or write into summaries rely on
materialization of memory cells. The materialization operation in
general creates new disjunctions, yet the size of disjunctions should
be kept small for the sake of efficiency. However, local predicates
are not enough to determine the right set of disjuncts that should be
clumped together and to define precise abstract join and widen
operations. In this thesis, we study separating conjunction-based
shape predicates and the related abstract operations, in particular,
abstract joining and widening operations that lead to critical
modifications of abstract states. We seek a lightweight way to
enable some global reasoning in existing shape analyses such that
shape predicates are more expressive for abstracting data
structures with unbounded sharing and disjuncts can be clumped
precisely and efficiently.

We propose a shape abstraction based on set variables that when
integrated with inductive definitions enables the specification and
shape analysis of structures with unbounded sharing. We
implemented the shape analysis domain by combining a separation
logic-based shape abstract domain of the MemCAD analyzer and a
set abstract domain, where the set abstractions are used to track
unbounded pointer sharing properties. Based on this abstract
domain, we analyzed a group of programs dealing with adjacency
lists of graphs.

We design a general semantic criterion to clump abstract memory
states based on their silhouettes that express global shape
properties, \ie, clumping abstract states when their silhouettes are
similar. Silhouettes apply not only to the conservative union of
disjuncts but also to the weakening of separating conjunctions of
memory predicates into inductive summaries. Our approach allows
us to define union and widening operators that aim at preserving
the case splits that are required for the analysis to succeed. We
implement this approach in the MemCAD analyzer and evaluate it
on real-world C libraries for different data structures, including
doubly-linked lists, red-black trees, AVL-trees and splay-trees. The
experimental results show that our approach is able to keep the
size of disjunctions small for scalability and preserve case splits
that takes into account dissimilar shapes for precision.

Keywords
static analysis, dynamic data structures, separation logic,
disjunctions

	Résumé
	Abstract
	Acknowledgments
	I Introduction to Shape Analysis
	Introduction
	Dynamic Memory Allocation and Dynamic Data Structures
	Software Problems Involving Pointers and Dynamic Data Structures
	Memory Safety Problems
	Security Problems

	Improving Software Quality Against Memory problems
	Systematic Software Development
	Testing and Code Reviewing
	Formal Verification

	Pointer Analyses and Shape Analyses
	Pointer analyses.
	Three-valued Logic Based Shape Analyses
	Separation Logic Based Shape Analysis
	Other Shape Analyses

	Outstanding Challenges in Shape Analysis
	Reasoning about Sharing in Separation Logic Based Shape Analysis
	Improving Scalability and Disjunction Control

	Outline and Contributions of the Thesis

	Separation Logic Based Shape Analysis
	A Simple Imperative Language
	Syntax
	Concrete States
	Concrete Semantics

	Abstract Interpretation
	Memory State Abstractions
	Abstract Semantics
	Abstract Store Operations
	Unfolding
	Abstract Evaluation of Left and Right Value Expressions
	Folding
	Abstract Denotational Semantics

	Domain Signatures

	II Shape Analysis for Unstructured Sharing
	Overview
	Abstraction
	Analysis Algorithm

	Abstractions for Data-Structures with Unstructured Sharing
	Inductive Definitions with Set Predicates
	Composite Memory Abstraction with Set Predicates
	Properties of Set Parameters

	Abstract Domains for Set Reasoning
	Set Constraints and Abstractions
	Concrete States of Set Variables
	Set Abstractions

	Set Domains
	Linear Set Domain
	BDD-based Set Domain

	Static Analysis Algorithms for Unstructured Sharing Abstractions
	Abstract states
	Computation of Abstract Post-conditions
	Abstract Operators and Unfolding
	Non-local Unfolding

	Abstract Lattice Operations
	Inclusion Checking
	Joining and Widening

	Soundness of The Analysis
	Implementation and Experimental Evaluation
	Related Works of The Analysis for Unstructured Sharing
	Conclusion on The Analysis for Unstructured Sharing

	III Silhouette-guided Disjunct Clumping
	Overview
	Semantic-Directed Disjunct Clumping
	Disjunct Clumping Problem
	Clumping Disjuncts Based on their Abstraction

	Analysis of an AVL Tree Insertion Function

	Silhouette Abstractions: Abstraction of Memory Abstract States
	Silhouette Abstraction
	Definitions
	Computation of Silhouettes

	Silhouette-based Weak Entailment Checking
	Silhouette Entailment Check
	Weak Entailment Checking

	Silhouette-Guided Joining of Abstract Memory States
	Existing Abstract States Join Procedure and Precision Loss
	Silhouette Guided Abstract States Joining
	Silhouettes Joining
	Guided Abstract States Joining
	Taking Advantage of the Analysis Goal

	Silhouette-Guided Clumping and Widening
	Silhouette Guided Clumping of Abstract States
	Silhouette Generalization
	Clumping Relation
	Clumping Algorithm

	Silhouette-guided Widening of Disjunctive Abstract states
	Static Analysis

	Experimental Evaluation of Silhouette-Directed Clumping
	Research Hypotheses
	Experimental Methodology
	Experimental Evaluation
	Related Work on Silhouette-guided Clumping
	Conclusion on Silhouette-guided Clumping

	IV Conclusion
	Conclusion and Future Directions
	Conclusion
	Future Directions

