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Abstract.

This dissertation is about local certification, a central topic in distributed decision,
a subfield of distributed computing. The distributed decision mechanism consists, for
the nodes of a network, in deciding in a distributed manner whether the network is
in a proper configuration or not, with respect to some fixed predicate. This decision
is said to be local because the nodes of the network can communicate only with their
neighbours. After communication, every node outputs a decision, stating whether the
network is locally correct, that is, correct given the partial information gathered so
far by this node. The network is declared to be globally correct, if and only if, it is
declared to be locally correct by every node.

Most predicates cannot be verified by this type of computation, due to the loc-
ality constraint. Local certification is a mechanism that enables to circumvent this
difficulty, and to check any property. It consists in providing the nodes of the network
with labels, called certificates, that can be verified locally by a distributed algorithm.
A local certification scheme is correct if only the networks that satisfy the predicate
can be certified. In addition to its theoretical appeal, as a form of distributed non-
determinism, the concept of local certification is especially relevant in the study of
fault-tolerant distributed algorithms, where a key step consists in checking the status
of the network, based on information stored at the nodes.

This dissertation deals with four aspects of local certification: error-sensitivity,
uniformity, redundancy, and interactivity. The study of these four topics is motivated
by the same essential question: How to reduce the resources needed for certification,
and/or ensure a better fault-tolerance? In order to tackle this question we have to
understand fundamental properties of certification. In particular, in this dissertation
we answer questions such as: How redundant the certificates need to be for a proper
certification? Are the classic certification protocols robust to a strengthening of the
acceptance condition? and, How does introducing interactivity in the process changes
the complexity of certification?

Keywords: Distributed network computing, distributed decision, local certification,
proof-labelling scheme, fault-tolerance.



4



5

Résumé.

Cette thèse porte sur la notion de certification locale, un sujet central en décision
distribuée, un domaine du calcul distribué. Le mécanisme de la décision distribuée
consiste, pour les nœuds d’un réseau, à décider de manière distribuée si le réseau est
dans une configuration correcte ou non, selon un certain prédicat. Cette décision est
dite locale, car les nœuds du réseau ne peuvent communiquer qu’avec leurs voisins.
Après avoir communiqué, chaque nœud prend une décision, exprimant si le réseau
est correct ou non localement, c’est-à-dire correct étant donné l’information partielle
récoltée jusque-là. Le réseau est déclaré correct globalement s’il est déclaré correct
localement par tous les nœuds.

Du fait de la contrainte de localité, peu de prédicats peuvent être vérifiés de cette
manière. La certification locale est un moyen de contourner cette difficulté, et permet
de décider tous les prédicats. C’est un mécanisme qui consiste à étiqueter les nœuds
du réseau avec ce que l’on appelle des certificats, qui peuvent être vérifiés localement
par un algorithme distribué. Un schéma de certification locale est correct si seuls les
réseaux dans une configuration correcte peuvent être certifiés. L’idée de la certification
locale est non seulement séduisante d’un point de vue théorique, comme une forme de
non-déterminisme distribué, mais c’est surtout un concept très utile pour l’étude des
algorithmes tolérants aux pannes, où une étape-clé consiste à vérifier l’état du réseau
en se basant sur des informations stockées par les nœuds.

Cette thèse porte sur quatre aspects de la certification locale : la sensibilité aux
erreurs, l’uniformité, la redondance et l’interactivité. L’étude de ces quatre sujets est
motivée par une question essentielle : comment réduire les ressources nécessaires à la
certification et/ou permettre une meilleure tolérance aux pannes? Pour aborder cette
question, il est nécessaire de comprendre le mécanisme de certification en profondeur.
Dans cette optique, dans cette thèse, nous apportons des réponses aux questions
suivantes. À quel point les certificats doivent-ils être redondants, pour assurer une
certification correcte? Les schémas de certification classiques sont-ils robustes à un
changement de la condition de correction? Le fait d’introduire de l’interactivité dans
le processus change-t-il la complexité de la certification?

Mots-clefs: Calcul distribué sur réseau, décision distribuée, certification locale,
schéma d’étiquetage de preuve, tolérance aux pannes.
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Structure.

This document begins with a fairly long introduction that surveys the results and
techniques of both the previous work and the thesis. A more complete review of the
previous work can be found at the end of this document, in Chapter 7, which is a sur-
vey of the literature. After a chapter about the model and the definitions (Chapter 2),
the main technical contributions of the thesis are developed in Chapters 3, 4, 5 and 6.
These core chapters correspond to four papers that are either published or accepted
for publication. They are structurally quite close to the original versions, but the in-
troductions have been changed and some proof sketches and figures have been added.
Chapter 8 is the conclusion, with open problems and perspectives.
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Chapter 1

Introduction

This introduction has four parts. The first part is an introduction to distributed
decision, the subfield of distributed computing this thesis is concerned with. The
second part is an overview of the results and techniques from the literature that are
essential for what follows. The third part reviews the contributions of the thesis.
The fourth part is an annotated list of my works in (or related with) distributed
computing.

1.1 Introduction to distributed decision

This thesis is about distributed decision, a subfield of network distributed computing.
This section is an introduction to this domain. We present informally the essential
concepts in a narrative style, keeping just the key elements, and avoiding citations
in purpose. Discussions of the original papers and of some technical points can be
found in the last two subsections, Historical notes and Complements. A broader,
more systematic and exhaustive review of the domain can be found towards the end
of this document, in the form of a survey of the literature (Chapter 7).

1.1.1 Distributed computing and local algorithms

A domain of distributed computing. Distributed computing is the field of com-
puter science that studies the systems in which several entities communicate in order
to complete a task, without central control. These entities can be agents in a net-
works, animals, robots etc., but we will simply consider machines. There are plenty
of models to study such setting, but one can distinguish two main challenges: asyn-
chrony, and locality. Asynchrony is a problem of time. Entities may not have the
same notion of time, may compute at different speed, and may crash. Locality is
a problem of space. The machines may be far apart, and it may take a long time
to communicate. Thus in general, a machine would not get any information from a
far-away machine, and still it has to compute something meaningful globally. These
two challenges are usually decoupled, and this thesis is focused on the second one,
that is, locality.

13



14 CHAPTER 1. INTRODUCTION

Modelling networks as graphs. We consider networks of computing machines,
modelled as graphs. The vertices of the graph represent the machines of the network,
and the edges represent communication links. This (connected) graph is the commu-
nication graph. A concrete example would be to model a set of sensors with radio
communication, by assigning a node for each sensor, and adding an edge between two
sensors that are close enough to communicate by radio one with other.

Locality. The natural model of distributed algorithms on graphs uses messages,
that the nodes can send and receive in rounds. We use a more abstract model with
the nodes having a partial view of the graph. These are equivalent, as we show in the
later Subsection 1.1.6. We consider that every node can see the subgraph induced by
the nodes at some distance t from itself, and has to output a relevant value, only based
on this knowledge. That is, every node has a partial view of the graph, and its output
is independent of the parts of graph that are outside this view. See Figure 1.1. An
algorithm in this model may be called a local algorithm. The smaller the radius of the
view, the more local the algorithm. The constraint of not being able to communicate
with nodes that are far away can be called the locality constraint, and the theory that
focus on this constraint is usually refered to as the study of locality.

Figure 1.1: In a local algorithm, every node has a local view. For example the dark blue
node can see only the node in the light blue area. In particular it has no knowledge about
the red node: the output of the blue node on this graph, or on the graph where we have
changed the red node in some way, should be the same.

A typical question about locality is: can every node output a colour such that the
colouring has some global property, if we impose that every node can only see at a
bounded distance? Typical research in the field consists in designing local algorithms
for computing such a colouring with the smallest possible views. Remark that the
graph is both the input (it is this one graph that we want to colour) and the structure
that defines the neighbourhoods of the nodes. The approach we take here is a bit
different from this colouring question, in the sense that we do not seek to construct
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a solution to a problem. Instead we want to check whether the current solution is
correct. That is, we consider decision problems and not construction problems.

From construction to decision. In centralized computing, decision problems are
the foundation of the theory of complexity. The current decade has seen efforts
to define a theory of complexity for distributed computing, based on a distributed
version of decision problems. In a problem of distributed decision, the input is the
communication graph, with some additional labels on the nodes and edges, and the
machines have to collaborate for deciding whether this input corresponds to a proper
configuration with respect to a fixed predicate. For example, in a setting where every
node is given a colour, we want to check that no edge has the same colour on both
endpoints. The way the nodes take a global decision will be specified later, but it
is based on a local process: every node will just have access to a small view of the
graph.

Motivations for a new field. Motivations for the study of distributed decision
range from practical to theoretical. On the practical side, deciding whether a config-
uration of the network is in a proper state is a natural primitive when the network
is subject to faults. Focusing on this kind of problems is useful as a building block
for more complex systems (concrete examples will come later in this section). On a
more theoretical point of view, distributed decision gives insights about distributed
construction (we will see an example in the paragraph about probabilistic decision).
Nonetheless the links between construction and decision are not as tight as in cent-
ralized computing, which is why distributed decision is a field in itself. Another
motivation comes from the division we have mentioned earlier, between asynchrony
and locality in distributed computing. It is unfortunate that the two aspects are so
rarely tackled together. A concrete reason why this happens is that the algorithmic
problems studied in these two subfields are of very different nature. For example,
locality-oriented research would typically focus on combinatorial optimization prob-
lems, while the asynchrony-oriented research will typically focus on reaching some
form of consensus between the processes. An expectation of distributed decision is
that checking whether some configuration satisfies some predicate is general enough
to fit in both frameworks. This thesis will only deal with the locality perspective, but
we give in Subsection 1.1.6 a few pointers to papers aiming at bridging the gap.

How to decide when there are several machines. Decision in centralized com-
puting is easy to define: there is one input to consider, and one decision to make,
accept or reject. In distributed computing, there are several machines, thus different
partial views of the input, and different outputs. Every node will output a local de-
cision and those local decisions will be aggregated to define a global decision. For the
aggregation of the decisions, a natural choice is to accept a configuration if, and only
if, all the nodes locally accept, and this is the choice for this thesis. Other aggregation
mechanisms have been studied, but the literature mostly focuses on this one, because
of its simplicity and its practical relevance. Indeed, in a practical scenario, every node
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is checking regularly its neighbourhood, and that if something looks wrong, then it
raises an alarm or launch a recovery procedure that resets the whole network.

Languages and examples. So far, we have informally described decision as the
task of determining whether the graph is in a correct state with respect to some
predicate. Usually, in distributed decision, one considers languages, just like in cent-
ralized computing. A language is a set of configurations, that is a set of graphs whose
nodes (and more rarely edges) can be labelled. The labels can be called inputs. The
instances in the language may be called yes-instances and the others no-instances.
Examples of languages are: the graphs that can be properly coloured with some given
number of colours (this language has empty input labels), graphs that are properly
coloured (the inputs are colours), graphs that are trees, etc.

Identifiers. We will always assume that the nodes have distinct identifiers (or ID
for short), that is, every node is given a number, and these numbers are different. This
will be detailed and justified later. An important point is that a language should not
refer to the identifiers, for example a set of graphs where the node with identifier 1
has some special property, is not a language.

1.1.2 Basic decision and its limits

Basic decision mechanism. The basic decision mechanism for a given language
is deterministic. Every node gathers its neighbourhood at some distance, and then
decides to accept or reject based on this view. More precisely, for a given language,
a basic scheme consists in a local algorithm, that first gathers the neighbourhood at
some fixed constant distance t (that is, it gets a snapshot containing the structure of
the graph, the identifiers, and the inputs of the nodes within this radius t), and then
decides to output accept or reject. This algorithm is the same at every node. See
Figure 1.2 for a concrete example.

Limits: acyclicity. Now one can try to define a local algorithm for checking that
the communication graph is a tree, that is, checking the acyclicity of the underlying
graph. This is actually impossible, that is, there is no such algorithm. The high-level
reason for this is that, locally, one cannot distinguish between a cycle and a path.
See Figure 1.3 for an illustrated proof of this result. The type of reasoning used in
the proof is common in distributed computing, and is called the indistinguishability
technique.

The main way to cope with this limitation of the basic schemes is to consider
non-determinism, which we will describe soon. But let us do a small detour to take a
look at the probabilistic side.

1.1.3 Probabilistic decision

Allowing some randomness. In the light of the great power of randomness for
distributed graph algorithms, one is tempted to ask whether we can decide more
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Figure 1.2: The figure illustrates the basic decision scheme for this language of properly
coloured graphs (Subsection 1.1.2). The local algorithm of this scheme is simple: every node
gets a view at distance 1, and rejects if and only if one of its neighbours has the same colour
as its own. The first raw describes the behaviour of the algorithm on a yes-instance (that
is on a graph that is properly coloured). For this instance, the node that is highlighted is
blue, and its neighbours are either yellow or orange, thus it accepts. Actually no node has
a neighbour with the same colour, thus every node accepts, and the instance is (globally)
accepted. The second raw illustrates the behaviour of the local algorithm on a no-instance.
Here the highlighted node has colour orange and has two orange neighbours, thus it reject.
This automatically lead to the (global) rejection of the configuration.
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Figure 1.3: This figure illustrates the fact that some languages cannot be decided by a
basic decision scheme (Subsection 1.1.2). The language studied is the set of trees. Consider
the two paths on n vertices of the two first pictures. They only differ by their identifier
assignments. The first path has identifiers from 1 to n in increasing order. The second one
has identifiers from n/2 + 1 (suppose n is even) up to n, and then from 1 to n/2. Both
are yes-instances (because paths are trees). Thus if there exists a correct local algorithm to
decide the language, then it should accept on all nodes, in both instances. Now consider a
cycle where the identifiers go from 1 to n and then loop, as in the third picture. This is a
no-instance, thus the local algorithm should reject on at least one node. Consider some node
where it rejects, and the view of this node. By construction this view also appears in one of
the two paths we mentioned before. This means that with exactly the same view, the local
algorithm is accepting in the path and rejecting in the cycle. This is impossible because the
algorithm is deterministic and cannot distinguish between the two instances. Thus a basic
decision is not enough for this language.
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languages if we allow the local algorithm to use random bits. In a similar way as
in centralized computing (or, more precisely, as in the complexity class BPP), a
scheme will be considered correct if, on yes-instances, there is a good probability
of acceptance, and on no-instances, there is a good probability of rejection. By good
probability, we mean larger than some fixed constant. With this definition, randomness
does help. In particular, it provides the ability to basically count up to a constant,
as the following example shows.

At most one node selected. In the language we consider, every node has an
input bit stating whether it is selected or not. The labelled graphs in the language
are the ones that have at most one selected node. The language is called At most one
selected, or Amos for short. Having at most one selected node is a global property, in
the sense that two far away nodes cannot detect that they are both selected, thus no
basic decision scheme can decide this language. Nevertheless, with randomness, it is
decidable, and it does not even require the nodes to have any knowledge of the graph,
except their own input. The trick is the following. The algorithm consists simply
in stating that every unselected node accepts, and every selected node accepts with
some probability p. If there are no selected node then the probability that every node
accepts is 1. If there is just one selected node, then it is p. If two or more nodes are
selected, the probability that all nodes accept is at most p2. This scheme is correct
if we consider the following decision thresholds. If an instance is in the language, we
require that the nodes accept with probability at least p. If an instance is not in the
language, we require that the nodes reject with probability at least 1−p2. (Note that
this makes sense only for p inside some interval.)

Impact on construction tasks. The study of probabilistic decision has led to an
improvement in the understanding of construction algorithms that is worth stressing
here, as such new light is also a motivation for the field. It has long been known that
randomness does not help for construction tasks if: (1) the solutions form a language
that can been checked locally (that is, checked with a basic decision mechanism) (2)
we consider only constant-time construction. This result has been extended to more
problems, by proving that the first condition can be lifted from languages decided
with basic decision, to languages decided with probabilistic decision.

1.1.4 Non-determinism

The core topic of this thesis is non-determinism in distributed decision. Let us first
recall the form of non-determinism in centralized computing.

Non-determinism in centralized computing. We will do an analogy between
our model and the well-known complexity class NP. The class NP was originally
defined with non-deterministic Turing machines, but the modern definition is often
more handy. A decision scheme for NP is based on two entities: the machine, called
the verifier, and an external oracle, called the prover. It follows the following sequence
of steps. First, given the instance, the prover provides a certificate of polynomial size
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to the verifier. Second, the verifier runs a polynomial-time algorithm that takes as
input both the instance and the certificate. Third, the verifier outputs a decision,
accept or reject. Such a scheme is correct if the following condition holds for every
instance: the instance is in the language, if and only if, there exists a certificate such
that the verifier accepts. This can be pictured in a less formal way as: an omniscient
prover trying to make the limited verifier accept, regardless of whether or not the
instance belongs to the language. The verifier has to distinguish between the cases in
which the prover is honest, and the cases where it is dishonest.

Proof-labelling schemes. The classic form of non-determinism in distributed de-
cision is called a proof-labelling scheme.1 In such a scheme, there is a prover and every
node acts as a verifier. The prover provides a local certificate, also called proof, to
each vertex. In general, these certificates are all different. In this new framework, the
view that a node gathers, includes the certificates of the nodes within the view; in
addition to the structure of the graph, the identifiers and inputs, as in a basic scheme.
The local decisions are aggregated as before. The acceptance rule is similar to the
one of NP, that is, for every instance: the configuration is in the language if and
only if there exists an assignment of certificates that makes every node accept. The
usual way to describe a scheme is to describe the way the prover crafts certificates on
yes-instances, and then to explain how the nodes can distinguish between certificates
of good instances, and certificates designed to mimic those on bad instances.

A concrete example: acyclicity. Let us go back to the example we used to
highlight the limitations of basic deterministic decision in Figure 1.3, the set of trees.
We describe a proof-labelling scheme for this language. The strategy for the prover
on a yes-instance (that is on a tree) is to pick an arbitrary node, the leader, and
to give to every node, as a certificate, its distance to the leader. The local verifier
algorithm used by the nodes is the following. The node considers the distance d
written on its certificate, and accepts if and only if, either (1) d = 0 and all the
neighbours have distance 1, or (2) it has exactly one neighbour with distance d − 1
and the other neighbours have distance d + 1. It is easy to be convinced that on
yes-instances, the verifier algorithm outputs accept on every node. It then requires a
proof to be convinced that, if there exists a cycle in the graph, then there is always one
node to catch an inconsistency, regardless of the certificate assignment the prover has
designed. A sketchy proof of this fact is the following. Consider a cycle in the graph,
and consider the certificates assigned by the prover for the nodes of this cycle. The
verifier understand these certificates as numbers. Consider the node that is assigned
the largest number in the cycle. This node has two neighbours with equal or smaller
numbers. This matches none of two cases we have described above. Thus this node
rejects, and the configuration is globally rejected. See Figure 1.4, for a similar scheme
designed for a different, but similar, language: acyclicity of a selected subgraph.

1In this paragraph, we give a general definition of proof-labelling schemes, see the Historical notes
in Subsection 1.1.5, for the original (more restricted) definition.
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Figure 1.4: In the text, we have used the set of trees to illustrate the notion of proof-
labelling scheme. It is more common to consider properties of a labelling of the graph,
instead of properties of the graph itself. Here, this translates into having an edge labelling
describing a set of selected edges, and deciding whether the subgraph defined by these
edges is acyclic. The picture on the left, where the selected edges are coloured in orange,
is an example of yes-instance for this language. The picture on the right illustrates the
certificate assignment given by the prover, and the view of a particular node. The strategy
for the prover on yes-instances consists in first choosing a leader in each tree. This choice is
represented by the orange nodes in the picture on the right. Then the prover provides every
node with its distance to the leader of its tree. The verifier simply checks that the distances
are consistent along the selected edges, just as in the scheme for trees. For example, here, the
highlighted node has label 2, which is consistent with the numbers given to its neighbours
in the subgraph: one of them has distance 1, and the others have distance 3.
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Link with self-stabilizing algorithms. Proof-labelling schemes can be described
as local non-determinism inside distributed decision, but this notion was introduced
before the field of distributed decision was formally created. They were considered first
as a way to study some specific parts of so-called self-stabilizing algorithms. Basically,
a (construction) algorithm is self-stabilizing if, starting from an arbitrary state of the
network, it can reach a proper configuration (with respect to a given language). At
any time, such an algorithm has to check that the configuration is correct, and if it is
not the case, then it has to fix it. For example, consider an algorithm whose role is to
select an acyclic subset of edges (as in Figure 1.4). Suppose it has done so, but then
some register is corrupted, a new edge is selected, and the addition of this edge creates
a cycle. The algorithm has to detect that the configuration has changed, and that
it is not correct any more, and has to reach a new acyclic configuration quickly. An
essential step in this scenario is to detect that something is wrong, and this is of course
where decision appears. For acyclic subgraph, for example, we know from Figure 1.3
that we cannot decide the correctness locally. A strategy to cope with this is to write
some information at the nodes during the computation. That is, not only does the
algorithm build an acyclic labelling, but it also mark the distances at the nodes. This
way, if the graph is modified in a way that does not match the information available
at the nodes, then the nodes can detect it, and launch a recovery procedure.

Considering proof-labelling schemes is a way to focus on the fault detection phase.
In this framework, the additional information left at the nodes is abstracted as an
external prover.

Proof sizes and measure of the locality. An essential aspect of a proof-labelling
scheme is the size of the certificates used, that we call the proof size. The first reason
for this importance is practical: small certificates are better, because in applications
they use less resources. The second reason is more theoretical. If we consider only
the (deterministic) basic decision mechanisms, then we can easily define a dichotomy
between local and global languages. A local language would be a language for which
there exists such a mechanism (as the language of properly coloured graphs in Fig. 1.2)
and a global language would be a language such that no such mechanism exists (such
as the set of trees in Fig. 1.3). The study of proof sizes allows a more fine-grain
analysis. Remember that the certificates are assigned by an oracle that has full
knowledge of the graph, thus they are, in some sense, pieces of global information
given to the nodes. From this perspective, the larger the certificates need to be,
the more global information we have to give to the nodes to decide, and thus the
more global the language. The optimal size of the proofs for a language is then
a measure (or, more rigorously, an inverse measure) of its locality. Note that this
definition extends the first rough definition of local/global we had: languages that
can be decided with a basic decision mechanism have in some sense proof size zero,
and languages that cannot be decided this way, need non-zero proof size.



1.1. INTRODUCTION TO DISTRIBUTED DECISION 23

1.1.5 Historical notes

This subsection is a personal and partial historical view of the field. Reader not
interested in history or citations may skip this part. This text is not meant to be
exhaustive, see the survey for the citations of all the works of the domain.

Study of locality and locally checkable labellings. The model of network
distributed computing dates back to the 1990s with the papers of Linial [87], and
Naor and Stockmeyer [89]. A fundamental book on the topic, by Peleg, appeared
in 2000 [95]. In their paper, Naor and Stockmeyer define a class of (construction)
problems called locally checkable labelling, LCL for short. For these problems, the
nodes may have inputs, and they have to compute outputs. A problem is in LCL if
there exists an algorithm that, given a view at some constant distance, with the in-
puts and outputs, can decide whether the solution computed is correct. Also for LCL
problems, inputs, outputs and the degrees of the graphs are assumed to be constant.
This class includes many classic problems such as computing colourings, independent
sets, matchings etc. Note that the definition of LCL implies that the correctly labelled
instances form a language that can be decided via a basic decision mechanism.

Proof-labelling schemes. Proof-labelling schemes were introduced by Korman,
Kutten and Peleg, in 2005 (see [81] for the conference version, and [82] for the 2010
journal version). The definition of a proof-labelling scheme in this original paper is
a bit different from the one we gave in Subsection 1.1.4. The authors of [81, 82]
consider that the nodes are exchanging messages instead of having a view, but more
importantly, that the only communication a node can perform is to send its certificates
to its neighbours.

Locally checkable proofs. To sum up, in the original definition of proof-labelling
schemes, a node only knows the following: its degree, input, and identifier, and its
certificate and the ones of all its neighbours (meaning the nodes it is adjacent to).
In [66, 67], Göös and Suomela, used the terms Locally checkable proofs, to describe
proof-labelling schemes, in the general form we have described before. This implies
allowing arbitrary constant radius for the view, and accessing all the inputs, IDs and
certificates within this view. In later works, the term “proof-labelling schemes” refers
to the original model, or to locally checkable proofs. The two cases are pretty different
when it comes to lower bounds, as in the second definition (that is the one used in
this thesis) the nodes have more information about the graph, which implies that it
is harder for the prover to fool them.

Distributed decision as a subfield of distributed computing. In 2012-2013,
Fraigniaud, Korman and Peleg argue in favour of a complexity theory for distributed
decision [54]. This was followed by a handful of papers studying randomization in
this context, or on the impact of the model of identifiers. Lately several groups
have studied various aspects of proof-labelling schemes. Let us cite some relevant
recent works, excluding the ones directly related to this thesis, that will be mentioned
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later. In [24], Censor-Hillel, Paz and Perry study the interplay between approximation
and non-determinism. In [14] and [94], Fraigniaud, Perry and Patt-Shamir focus on
message communication during the verification (with the original definition of proof-
labelling scheme). The first paper deals with randomization, while the second deals
with the type of communication at hand (broadcast versus unicast). Finally, proof-
labelling schemes can be seen as certification mechanism, and Fraigniaud and Balliu [9]
use them to certify routing tables.

1.1.6 Complements

In this subsection we answer (or give pointers that answer) some natural questions,
that the previous sections may have raised. In particular this subsection provides
some indications about topics that are at the boundary of the current work. These
complements are not essential for the rest of the text, therefore they may also be
skipped.

On representing networks by graphs. We have modelled networks as graphs,
and this will be the setting for the whole thesis. Readers may consider that this mod-
elling is too rough. A more realistic model for wireless communication, for example,
is the SINR model, that takes into account interference. Even such models are reas-
onably well approximated by simple graphs [71], thus it is reasonable to begin with
graphs. Nevertheless distributed decision in more realistic models is an interesting
avenue of research.

From messages to views. In the Locality paragraph of Subsection 1.1.1, we have
mentioned the fact that our quite high-level model with views (let us call it the view
model) is equivalent to the more realistic message-passing model. Let us first specify
which message-passing model we consider, and then sketch the equivalence. In the
message-passing model, computation proceeds in rounds. In the context of distributed
decision, the number of rounds is usually constant. At each round every node can
receive messages from its neighbours in the graph, compute new messages, and send
them to its neighbours. The size of the messages is not bounded. We now sketch the
proof of the equivalence between the two models, without mentioning the possible
inputs, for simplicity. Let us first show that the message-passing model is at least as
strong as the view model. At each round, every node can send, to all its neighbours,
all the information about the graph it has. At the very beginning of the process, a
node knows only its degree and its ID. It can send them to its neighbours. Then it
receives the analogue messages from its neighbours, and is able to reconstruct the view
at distance 1. The next step is to send this view at distance 1 to all its neighbours,
and to receive their views at distance 1. 2 By merging these views, every node can
reconstruct its own view at distance 2, etc. Thus, with basically t rounds every node
can reconstruct its view at distance t. Now in the other direction, suppose a node has

2Note that at this step, if there is no bound on the degree, the messages used can be polynomially
large in n. Thus this transformation does not work in the so-called congest model, where the
messages must have logarithmic size.
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a view at some distance t. It can compute the first messages sent by the nodes in its
(t − 1)-neighbourhood, because it knows their IDs and degrees. Then, the node can
compute which messages are received by the nodes in its (t− 2)-neighbourhood. And
so on and so forth, until it simulates (only) its own behaviour for the t-th round.

Relation between decision and construction. We have evoked the fact that
decision and construction are not as closely related in distributed computing as in
centralized computing. Let us consider colouring to exemplify this claim. In cent-
ralized computing, if one has access to an oracle deciding if some partial 3-colouring
can be completed to a correct 3-colouring, then it is easy to build a construction
algorithm of similar complexity. Indeed one can follow the following trial-and-error
strategy. First ask whether the graph can be 3-coloured, if not, stop. Otherwise,
select a node arbitrarily, give it an arbitrary colour, and ask whether this colouring
can be completed. If the answer is positive, one can continue with a second vertex,
otherwise one can try another colour, and ask again for approval etc. If it does not
stop after the first step, this procedure produces a proper 3-colouring, and the running
time is only multiplied by a linear factor. In distributed computing, it is not that
simple. The main reason is that the process described above is inherently sequential,
and does not correspond to the distributed setting. For example, for colouring, all
the nodes have to choose their colours at the same time. Thus the fact that verifying
a colouring is easy in distributed manner, does not give much information on the
difficulty of computing a colouring.

Dealing with asynchrony. As said, distributed decision was partly justified as a
path to gather together asynchrony and locality in distributed computing. We refer to
results in that direction, or more precisely results about wait-free distributed decision,
in Subsection 7.6.1 in the survey.

Other decision mechanisms. The decision mechanism studied in this thesis (ac-
cept globally, if and only if, every node accepts locally), is justified by practical scen-
arios, but from a theoretical perspective it relevant to investigate other mechanisms.
For example, one can allow more bits of output, or different ways to gather the out-
puts into one decision. This has been investigated in [4] and [5]. See Subsection 7.3.3
in the survey.

Alarm scenarios. A practical motivation for our decision mechanism is the scenario
where the nodes can raise an alarm. A reference about such decentralized monitoring
is [16].

Indistinguishability technique. A proof technique that is essential in distributed
computing, and in particular in this thesis, is the indistinguishability technique. In a
distributed environment, the machines often have a partial knowledge of the current
state of the system. Thus there may be several global configurations that, from the
point of view of a specific machine, are exactly the same; then the behaviour of
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this machine must be the same in all these configurations. The indistinguishability
technique consists in using this simple fact to show lower bounds. A usual reasoning
is: if some quantity is not large enough, then there exists two instances that cannot be
distinguished, although the task to solve requires the algorithm to have two different
output, thus this quantity must be large. A reference on this technique (among others)
is [43].

Randomness and difficulty of boosting. We have described probabilistic de-
cision in Subsection 1.1.3. The paper that introduced the concept is [54]. In this
paper, the schemes require some precise threshold for the decision, which is intriguing
because in centralized computing these numbers are usually unimportant, as they can
be boosted to obtain any (meaningful) number. The question of whether boosting is
possible in the distributed setting was answered negatively in [56].

The result about derandomization mentioned in Subsection 1.1.3 is the main the-
orem of [35], and is an improvement over a result of [89].

Not only can randomness enable to decide more languages, but also it helps to
decrease the message size, when considering the message-passing model. In [14] the
authors show that one can gain an exponential factor in the size of the messages, by
using some hashing techniques.

Role of the identifiers. So far, we have not used the identifiers a lot, but those are
important. In the first place, identifiers are essential for the transformation from the
message-passing model to the view model. Indeed without identifiers, it is impossible
to reconstruct the view of a node, as we do not know if two nodes that appear in two
different messages are different or not. Later in the text, identifiers will also be very
useful to design schemes for some languages. For example, the prover may give the
ID of a leader to all the nodes. Actually, there exists a parallel line of research that
considers proofs that do not use IDs, that is, proofs that are correct whatever the
ID-assignment is. In both our framework and this other framework, the languages
studied do not depend on the identifiers.

The polynomial bound on the identifiers is a classic assumption in network dis-
tributed computing. On the one hand, it is small enough to allow to encode the
identifiers on a logarithmic number of bits. On the other hand it is large enough to
ensure that the numbers are distinct, and having identities between 1 and n would be
too strong in some applications, and would allow the algorithm to abuse the power
these identifiers.

The impact of the precise model of identifiers on decision can be a pretty subtle
issue, as shown for example in [59]. See Subsection 7.4.1 in the survey.

Message size. In the papers that consider the message-passing models, the size of
the messages is a key parameter. One can for example study the interplay between
message and proof sizes. See Subsection 7.3.2 in the survey, for the basic and probabil-
istic decision in presence of congestion, and Subsection 7.4.2 for the non-deterministic
analogue.
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Weaker computational power. We have not mentioned any restriction on the
computational power of the nodes of the network, and we actually do not bound it
in general. This is because our focus is on the proof sizes, and on the locality of the
verification. One result of the thesis needs the assumption that the language is com-
putable (in a centralized manner), but in general we do not even need this assumption.
Much more restricted models have been studied, where the nodes basically compute
with finite automata. In this framework, a fruitful approach to use modal logic to
characterize the languages that can be recognized. See for example the thesis [98],
and the references therein.

Advice versus certificate. A concept close to local certificates is the notion of
advice. An advice also comes as an assignment of labels to the nodes, given by an
oracle, but this oracle can be trusted. That is, the information just helps for the
computation, and does not need to be verified. This concept has been introduced
to measure how much global information is needed to complete some task. See for
example [50].

Differences with the self-stabilizing approach We have mentioned that proof-
labelling schemes have been defined in the first place to study the fault detection phase
of self-stabilizing algorithms, and that these two concepts share the same flavour.
Yet, there are some aspects on which these models differ. On the one hand, in a self-
stabilizing algorithm, the additional information required to check the correctness
must be efficiently computable. This is not the case in proof-labelling schemes where
the certificates are given by an external prover. On the other hand, a proof-labelling
scheme is required to work for every configuration of the language, which may not
be necessary for self-stabilizing algorithms. Let us illustrate this statement on the
language of acyclic subgraphs. In a proof-labelling scheme, any acyclic subgraph must
be properly decided. Whereas a self-stabilizing algorithm may always choose to output
some constrained form of acyclic subgraph. This may make the certification easier
for the algorithms, as it does not have to detect errors in arbitrary configurations.

Use in (centralized) parameterized complexity. The concept of local proofs
is natural enough to ask whether it can be of any use in a centralized setting. It
is actually useful in parameterized complexity. More precisely, a simple argument
allows to transform automatically the existence of local proofs (of some type) into
algorithms that are polynomial in the size of the graph, and single exponential in the
treewidth. This mechanism works for example in the case of maximum independent
set and vertex cover. The lower bounds established on local proofs can rule out the
possibility of using this tool, which can in turn justify the use of other techniques [19].

Complexity theory for construction tasks. One of the original motivations for
distributed decision was to have a complexity theory similar to the one of centralized
computing. Indeed until 2010, network distributed computing was mainly about
pushing further and further the bounds on particular problems (maximal matching,
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colouring, spanning tree constructions etc.), and not on putting these problems into
neat classes. While distributed decision was growing, research has also been done to
classify the problems of constructing LCL languages (as described in Subsection 1.1.5).
For example, it has long been known that a whole body of problems (such as (∆ + 1)-
colouring and maximal independent set), can be solved in time O(log∗ n), whereas for
some other problems the best known algorithms had complexities in Ω(log n). It was
unknown whether there exist problems in between. In [25], it is proved that there is a
gap between the two types of problems, thus defining classes of complexity for LCL.
See [11] for a recent paper on this line of research.
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1.2 Proof-labelling schemes toolbox
This section is a toolbox of techniques and results used in the investigation of proof-
labelling schemes. It takes the form of questions and answers, with proof sketches.
These techniques will be used in the thesis, either as building blocks for new proofs,
or as benchmarks, to which we can compare our techniques.

What are the languages that admit a proof-labelling scheme? All distrib-
uted languages do. The technique to prove this statement is now classic, and was first
evoked in [81]. Basically, there exists a universal scheme that works for every lan-
guage. On yes-instances the prover provides the whole adjacency matrix of the graph,
with the correspondence between the raws and the identifiers of the nodes, and also
the input assignment. The nodes first check that they are given the same certificate.
Then they check that this description of the graph is consistent with their local views.
It is easy to show that if this step succeeds, then the configuration described in the
certificates is indeed the actual configuration. Finally all the nodes check in parallel
and without communication, that the configuration is in the language. This scheme
uses certificates of size θ(n2) (plus a possible term for the inputs).

Can we do better? Yes, for many languages we can have smaller proofs. For
example the scheme for acyclicity sketched in Subsection 1.1.4 uses certificates of
size O(log n). One of challenges of distributed decision is to show upper and lower
bounds on the proof sizes for diverse languages.

What about spanning trees? The language of trees, we have studied first is not
very common in distributed computing, as it deals with the communication graph
itself, and not with a labelling. We have then used the example of acyclic subgraphs,
like in Figure 1.4. An even more important language is the language of spanning
trees. We want to decide whether a subset of selected edges form a spanning tree of
the communication graph. The classic scheme for this language tackles acyclicity with
distances, as in the scheme of Figure 1.4, but, to ensure the connectivity, every node
is also given the ID of the root, called root-ID. In addition to the verification of the
distances, the verifier checks that it is given the same root-ID as its neighbours. Also if
a node has distances zero, then it checks that its ID is equal the root-ID. To prove the
correctness of this scheme, we just have to prove the connectivity of the subgraph of
selected edges, as the acyclicity is guaranteed by the distances. Consider an instance
with several trees. Then, in case the prover does not give the same root-ID to every
nodes, two adjacent nodes are given different root-ID, and reject. Otherwise, every
node is given the same root-ID, but then, there is one node that is given distance 0,
but whose ID is not the root-ID, and this node rejects. Thus the scheme is correct.
Note that as the identifiers are supposed to be bounded by a polynomial in n, the
size of the certificate is in O(log n)), like for acyclic subgraphs.

Is Θ(log n) optimal for spanning trees? Yes it is. This has first been proved
for the original definition of proof-labelling scheme in [81], with a technique called
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Figure 1.5: This figure illustrates the crossing technique, for the language of trees. It extends
to spanning trees. The main point is that if o(log n) bits certificates are used, then there
exist two edges, (a, b) and (c, d), such that a and c (respectively b and d) are assigned the
same certificate (by the pigeon-hole principle). On the top picture, we illustrate this with
blue and yellow certificates (the other certificates are all in grey, but they are not equal in
general, they are arbitrary). Then we cross the edges: we remove, (a, b) and (c, d), add
(b, c). We get a cycle, and some disconnected parts that can be discarded. The point is, if
the prover provides the same certificates as in the first instance, the nodes receive exactly
the same messages (remember that we consider the original definition of proof-labelling
scheme). Then the nodes cannot distinguish the top and the bottom picture, although one
is a yes-instance and the other is a no-instance.

edge-crossing. Then it has been proved for the more general definition in [67], with a
technique called gluing. The crossing technique basically consists in proving that it is
possible to take two edges and cross them without the nodes noticing. We give more
details in Figure 1.5. This technique does not apply to our framework, but it is an
opportunity to provide a simple application of the indistinguishability technique, in
a non-deterministic setting.

The reason why this technique does not work for the general definition of proof-
labelling schemes used in this thesis, is that if the nodes do have the knowledge of the
IDs of their neighbours, then any change in the topology, such as crossing some edges,
is detected. To deal with the more general framework, a more involved technique based
on gluing different instances has been developed. We describe it now. For simplicity,
we consider languages that are dealing with inputs, and not with the communication
graph itself. We sketch the proof without any specific problem in mind, but one can
think about spanning trees for example.

The high-level idea is to consider a large family of yes-instances, and their ac-
cepting certificates, and to show that if the certificates are not large enough, there
exists a no-instance for which we can craft an accepting certificate assignment. More
precisely, each yes-instance we consider is formed of two long paths, linked together
by the endpoints to create a cycle. As this is a yes-instance, there exists a certificate
assignment that makes the nodes of the cycle accept. Now consider a new instance
formed by taking two paths from two different yes-instances and connecting them into
a cycle. This may be no-instance. If the prover provides to the nodes of each path,
the same certificates as in the original yes-instance it comes from, then only the nodes
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(a) Symmetric dumbbell graph (b) Non-symmetric dumbbell graph

Figure 1.6: Consider a special class of graphs that we call dumbbell graphs. These are
graphs formed by (1) taking two graphs, that we call primary graphs, that have the same
number of nodes, and that are both are non-symmetric, and (2) linking them by a path that
is at least twice as large as the verification radius. Basically, in such graphs, if a non-trivial
automorphism exists, then it must exchange the two primary graphs (that is the permutation
must map one to the other). This can happen only if the two primary graphs are isomorphic.
On the picture above, the graph on the left has a non-trivial automorphism, whereas the
graph on the right does not have one. Now the high-level idea, is that, in order to check if
the two graphs are isomorphic, one needs to gather all the information about both primary
graphs at one node. But there is no node that can see both primary graphs, because the path
is too long. Thus the information has to be conveyed by the certificates. As the primary
graphs have roughly n/2 nodes, describing one of them takes Ω(n2) bits. This implies a
lower bound on the size of the certificates. This intuitive reasoning about communicating
information is made rigorous via a counting argument. See [67] for the details.

at the border (that is the nodes close to the endpoints of the paths) can detect the
difference. Then in such instances, the main challenge for the prover is to convince
the border nodes that the connection is legal. One can prove that if the certificate
size is not at least Ω(log n), then paths from several yes-instances, equipped with the
certificates inherited from these yes-instances, can be connected such that: (1) the
resulting graph is a no-instance; (2) every connection is accepted by the nodes. This
results in a no-instance being accepted by all nodes. This is a contradiction, and the
lower bound follows. See [67] for the details and illustrations.

Are there languages that require the quadratic proof size? Yes, there are.
The classic examples are the ones based on isomorphism-flavoured questions. The
language of symmetric graphs consists in the set of graphs that have a non-trivial
automorphism. That is, a graph is in the language if there exists a permutation of
the identifiers, different from the identity permutation, that preserves the adjacency
relation. For this language, we are basically required to describe the whole graph in
the certificates of all nodes. The proof of this statement is in [67]. We sketch it in
Figure 1.6.

Another example of language that requires (almost) quadratic certificates is the
set of graphs that cannot be properly coloured with three colours. The proof is
more involved, and explicitly uses communication complexity and intricate colouring
gadgets (see [67]).
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Any language with Θ(1) proofs? Yes, the main examples are colourings. After
quadratic size, we look at the other end of the spectrum of proof sizes. There are
languages with empty proofs: the ones that are decidable with the basic decision
mechanism. Just above basic decision, there are problems that have optimal proofs
of size Θ(1). An example is the set of bipartite graphs: the prover just has to provide
a 2-colouring, and the nodes can check that their neighbours have a colour that is
different from their own. More generally deciding if a graph can be coloured with
some number k of colours falls into this category.

What about minimum spanning trees? Minimum spanning trees are funda-
mental objects in networks and in distributed computing. We consider the minimum
spanning tree language, that is the set of graphs whose edges are weighted, and some
of them selected, such that the selected edges form a minimum spanning tree of the
communication graph, with respect to the input weights. The optimal proof size for
this language Θ(log2 n). This result, especially the lower bound, requires advanced
proof techniques [79]. We sketch the upper bound. For simplicity, we assume that all
the weights are distinct, which implies that there is a unique minimum spanning tree.

The scheme for this language is based on the GHS algorithm [63], which is itself
based on Borůvka algorithm. Let us recall the principles of Borůvka algorithm, and
see Figure 1.7 for the run of this algorithm on a small instance. It proceeds in rounds,
adding edges to a set of selected edges, until this set is a minimum spanning tree. At
the beginning no edge is selected. Then, in parallel, every node chooses the lightest
edge it is adjacent to, and all the chosen edges are added to the set. These form a
subgraph of the network, and the connected components of this subgraph are called
fragments. At the next round, every fragment chooses an outgoing edge (that is an
edge with exactly one endpoint in the fragment) of minimum weight. These newly
chosen edges are added to the set, and consequently some fragments are merged. New
rounds are played until there is only one fragment. This fragment is the minimum
spanning tree. There are at most O(log n) rounds.

We now sketch the scheme based on this algorithm. The certificates describe
locally the run of the algorithm. There is a field of O(log n) bits for each of the
O(log n) rounds. Each field, basically contains (1) the identifier of a so-called leader
of the fragment (to identify the fragment), (2) a tree of selected edges pointing to this
leader (to ensure its connectivity, and the existence of the leader) (3) the weight of the
lightest outgoing edge chosen for the next round, with the identifiers of its endpoints
(to allow the verification of the minimality), along with (4) a spanning tree pointing to
the edge (to ensure its existence). These four elements can be encoded with O(log n)
bits locally. This is because by assumption the identifiers are on O(log n) bits, and
the trees, as said above can be verified with O(log n) bits too. As there are O(log n)
rounds, these local proofs have size O(log2 n).

Is there any natural problem with proof size between Θ(polylogn) and Θ(n2)?
Until recently, only artificial languages were known with proof size within this range.
In particular, the known techniques were not able to prove such intermediate lower
bounds. This is not the case any more, with the introduction in distributed decision
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Figure 1.7: Illustration of Borůvka algorithm. In the first column, the top picture is the
original instance with the weights, and the bottom picture illustrates the original fragments,
that is, the nodes. In the second column, we depicted the outgoing edges chosen by the
nodes, and the fragments at the end of Round 1. In the third column, we drew the edges
chosen by the two fragments, and the final output. This output is the minimum spanning
tree.

of tools from communication complexity, with gadgets developed for lower bounds
for construction tasks. Specifically, verifying that the diameter of the communication
graph is bounded by some integer k is proved to be in Ω(n/k) and O(n log n) in [24].

Do a language and its complement have the same proof size? As a language
is a set (of labelled graphs), one can ask whether deciding the complement of this set
is as hard as deciding the original language. In terms of proof-labelling scheme, this
means establishing whether they have the same optimal proof size. In the centralized
setting, for deterministic computation, complement languages have the same com-
plexity. However for non-deterministic (centralized) computation it is (a priori) not
the same.3 In distributed decision, the deterministic setting is already non trivial.
For example, consider the language where the nodes of the graph are given colours,
and we want to decide whether this colouring is a proper colouring. This can be done
with a basic decision scheme. But what about accepting only bad colourings? We
cannot just make every node flip its decision. Indeed, consider a colouring with a
single monochromatic edge. In the scheme for proper colourings, every node accepts,
except the ones close to the monochromatic edge. After flipping, every node rejects
except the two endpoints of the monochromatic edge, which means rejecting the in-
stance. The question is then: how to reverse decision? In general, this comes at a
cost, for example for bad colourings, one can reverse decision with O(log n) proofs
(by pointing to the monochromatic edge with a spanning tree).

This difference between a language and its complement also appears when none
of them is locally decidable. For example, the language of the graphs that can be 3-

3See for example the NP vs co-NP question.
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coloured has constant size proofs, but that its complement requires almost quadratic
proofs.
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1.3 Overview of the thesis

The thesis can be summarized as a study of different alternative definitions of proof-
labelling schemes. The goal of this approach is twofold. First, these new models are
justified by diverse practical scenarios, that are better captured by a different form
of non-determinism. Second, these models enable us to study diverse aspects of dis-
tributed non-determinism: error-sensitivity, uniformity, redundancy and the impact
of interactivity. The core of the thesis consists in four chapters one for each of these
concepts. These are adaptations of four papers, either published or accepted for pub-
lication. The only significant change in the structure is Section 6.5, that originally
appeared along with the content of Chapter 4. For each of these four chapters, we
now give a high-level description of the model, along with sketches of the main results
and techniques. Formulas and technicalities are avoided to keep a narrative style ;
readers more comfortable with more formal statements can jump right to the technical
content.

1.3.1 Error-sensitivity via a stronger rejection (Chapter 3)

Two questions. This work originates from two seemingly unrelated questions. The
first one is related to property testing. Property testing (of graphs) is a field of
centralized computing that, very roughly speaking, studies whether one can test if a
graph has a property or not, by just querying the adjacency of a few nodes. That is,
in this scenario, the (centralized) algorithm does not have access to the whole graph,
but is probing a database to get enough information about it. A task can be solved in
such a restricted model only if we relax the usual algorithmic problems. The definition
of graph property testing allows to make a mistake in the decision if the graph is close
to have the property (for some notion of close). We note that property testing has a
flavour of both locality and decision, thus it is natural to see if we can relate it with
distributed decision.4 The second seminal question of this chapter is: can we make
more than one node reject a bad instance? Indeed, the definition of proof-labelling
scheme only requires that for every certificate assignment at least one node rejects,
but in practice, the more nodes rejecting, the faster we can fix the situation. In a
nutshell we ask what happens to the results on proof-labelling schemes if we require
a stronger rejection?

Error-sensitivity. We define a notion of error-sensitivity for proof-labelling schemes.
Basically, a scheme is error-sensitive, if the number of rejecting nodes is at least linear
in the distance from the instance to the language. We will precise this definition soon,
but let us give a motivating example first. We use our running example of verifying
acyclicity. Every node is given as input an adjacency list, and we want to check
whether these lists define a proper acyclic subgraph or not. Consider three instances

4Relating property testing to distributed graph algorithm has led us to define the model of
Chapter 3, but it has also motivated another field of research, somehow closer to the original property
testing, that focuses on congestion and uses randomization. See the seminal papers [21, 23], the
papers citing them, and the paragraph on the topic in the survey chapter in Subsection 7.3.2.
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(see Figure 1.8): in the first one the subgraph is a proper forest, in the second it has
only one cycle, and in the third it is a very dense subgraph.

Figure 1.8: The three instances of the paragraph Error-sensitivity, along with the decisions
of the nodes. First column: the top picture represents a yes-instance, thus all the nodes
have to accept if given the right certificates (bottom picture). Second column, a no-instance,
close to the language, and the nodes decisions on the bottom: at least one node must reject,
whatever the certificate assignment is. The third instance is similar to the second, but it is
far from the language, thus we can hope to have more than one node rejecting, as pictured
on the graph on the far right.

In a proof-labelling scheme, the verifier is required to accept the first instance if
provided the right certificates, and to reject on at least one node, for every certificate
assignment on the two other instances. In the second instance, a very large portion
of the subgraph is acyclic, that is by changing just a little bit the inputs we can
get a yes-instance. Then we cannot hope that there exists a scheme where many
nodes are rejecting, because of the following prover strategy. The prover first decides
which is the accepting certificate assignment of the close yes-instance, and then uses
the same assignment on the current instance. Because few nodes can detect the
change in the input (because we took a close yes-instance), then few nodes can reject.
However, in the third instance there is no very large part that could appear in a
proper instance, thus we can hope that with any certificate assignment many node
will catch inconsistencies.

A distance on instances. To be more precise we need to define what it means for
an instance to be far or close to a language. Let us first precise the type of languages
we consider. In this chapter, we only consider languages that deal with node inputs.
That is we will not consider properties of the communication graphs, nor properties
of edge labellings. This is actually the type of language that makes more sense in
practice. Indeed it corresponds to the scenario where a construction algorithm builds
some solution to a problem (with every node holding its part of the output), and
where we want to check that this solution is correct. Also in this context every graph
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has a solution (e.g. every weighted graph has a minimum spanning tree), thus we
require that for every graph, there exists a node labelling such that the labelled graph
belongs to the language.

Now the distance is actually a distance between node labellings. The distance
between two input labellings of the same graph is the number of inputs that differ.
The distance from a configuration to a language, is then the minimum number of
nodes we have to edit to transform the labelling into a labelling of the language, for
this graph. In the three instances of the previous paragraph and of Figure 1.8, the
first instance is at distance zero, the second is at distance two (because editing the
two endpoints of an edge of the cycle is necessary and sufficient to get acylicity), and
the third instance is at a distance that is linear in the size of the graph, because to
remove all the cycles, one has to edit the adjacency lists of almost all the nodes.

The precise requirement for a scheme to be error-sensitive, is that on no-instances,
the number of rejecting nodes is lower bounded by the distance of the instance to the
language, up to a multiplicative constant, for every possible certificate assignment.

Not every language is error-sensitive. Playing with the definition, one quickly
notice that not every proof-labelling is error-sensitive. Then one can show that there
are actually languages that do not admit any error-sensitive proof-labelling scheme.
This stands in contrast with the situation without error-sensitivity constraint, for
which the universal scheme (as described in the first paragraph of Section 1.2) is a
proper scheme for every language.

We sketch a situation for which even the universal proof-labelling scheme, that
provides the most information to the nodes is not error-sensitive. Consider a com-
munication graph made by joining two labelled graphs A and B by an edge, that we
denote A−B. The prover can always make sure that almost all the nodes of A believe
they are in some labelled graph A − C, and that almost all the nodes in B believe
they are in some labelled graph D − B. Only the nodes close to the bottleneck will
notice the difference. The scheme can be error-sensitive only if the language is such
that, if A−C and D−B are in the language then A−B is close to the language. For
the problem of deciding if a selected subgraph is symmetric (the subgraph version of
the language we considered in Section 1.2), if the subgraphs of A and C (respectively
D and B) are isomorphic, but the one of A is very far from the one of B, then this
condition is not satisfied. This means that there is no hope to get error-sensitivity for
this language.

The first main result of the chapter is a characterization of the languages that ad-
mit an error-sensitive proof-labelling scheme (Theorem 3.1). We call such languages,
error-sensitive languages.

Characterization by local stability. To state this characterization we need to
define the concept of local stability. The definition is based on a hybridization oper-
ation on graphs, pictured on Figure 1.9, that we detail now. Let G = (V,E) be a
graph, and let (Hi)i be a family of subgraphs of G, such that the vertex sets of the
(Hi)i form a partition of V (top left picture in Figure 1.9). For every i, consider a
graph Gi, that has Hi as subgraph, and has a correct labelling with respect to the
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Figure 1.9: The hybridization operation used in the definition of local stability. The colours
are meant to identify from which Gi a labelling comes from in the bottom picture.

language (top right picture in Figure 1.9). Finally consider the graph G with the
hybrid labelling inherited from the (Gi)i on the (Hi)i (bottom picture in Figure 1.9).

Note that in general such an hybrid is not in the language. We say that a language
is locally stable, if for every such hybrid, the distance to the language, is upper
bounded by the number of border nodes up to multiplicative constants. A node
is a border node, if it belongs to some Hi and has a neighbour in a subgraph Hj

(with i 6= j). To help get a grip on this definition, see the example of acyclic subgraph
in Figure 1.10. The characterization of error-sensitive languages is now expected:

Theorem. A language admits an error-sensitive proof-labelling if and only if it is
locally stable.

Note that the concept of local stability is purely graph-theoretical, which contrasts
with proof-labelling schemes that are much more algorithmic. Local stability is helpful
because it provides a (more) mechanical way to prove or disprove error-sensitivity, as
it deals with graph structures and not with the existence of a prover strategy and a
local verifier. With local stability, we can show not only that the language of acyclic
spanning subgraphs is error-sensitive (as sketched in Figure 1.10), but also that the
languages of spanning trees and minimum spanning trees are error-sensitive too.

The proof of this characterization (that we will not discuss here), builds on the
fact that if there exists an error-sensitive proof-labelling scheme, then the universal
proof-labelling scheme is also error-sensitive. The drawback of this proof strategy is
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Figure 1.10: We sketch a proof of local stability for the acyclic subgraph language. Consider
three instances of the language and a partition, as in Figure 1.9, but for the language at
hand (top left picture, with three little graphs). As the selected edges are encoded via an
adjacency list at every node, doing the hybridization (top right picture) creates half edges:
edges that are in the adjacency list of exactly one of the endpoints. Also it can create cycles,
as the green-blue cycle on the bottom part. All these cycles must cross the border (the
orange dashed line) at least twice, by construction. There is an easy way to transform this
hybrid into a proper acyclic subgraph: remove all the half-edges, and, remove the cycle edges
crossing the boundary, one by one, until there is no cycle (bottom pictures). The distance
between the original hybrid and the final instance is bounded by the number of border nodes,
because we have only edited border nodes.
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that if a language is proved to be locally stable, then we are only guaranteed that
the universal scheme is error-sensitive. This means that the only upper bound on
the optimal proof size we have, when restricting to error-sensitivity, is the trivial one:
O(n2). This leads to the second main contribution.

Main result 2: Optimal error-sensitive schemes for spanning tree problems.
Because of their local stability, spanning trees and minimum spanning trees are error-
sensitive, and we know from Section 1.2, that the optimal proof size for these languages
are respectively Θ(log n) and Θ(log2 n). A natural question is whether it is necessary
to allow larger proof to get error-sensitivity. We answer by the negative.

Theorem. The classic proof-labelling schemes for spanning trees and minimum span-
ning trees are error-sensitive.

The proofs are quite technical and cannot be described here. However we can give
a glimpse of the difficulty by explaining a surprising phenomenon that appears for
these languages (and does not occur in the simple example of Figure 1.10). It can be
the case that, to transform a no-instance into a yes-instance, it is necessary to edit
nodes that (for a given certificate assignment) are accepting, and that are actually
very far from a rejecting a node. That is, in a no-instance, there is always a node to
catch an inconsistency, but this node can be very far from the place where we can
actually fix the problem. The typical case for spanning trees is an instance with two
acyclic subgraphs that together span the graph (which is a no-instance, because it is
not connected). In this case the prover can have the following strategy. First choose
a root in each tree, far away from the edges of the communication graphs that could
connect the two trees if selected. Second, give the correct distances to the nodes.
Third, in the first tree, give the name IDv of the root-node v of this tree. Fourth, in
the second tree use again IDv (which is then not correct, as v cannot be the root of
the two trees). Then the only node to detect the problem will be the root node of the
second tree, but this node is very far from a place where one could reconnect the two
trees.

1.3.2 Uniformity via the price of locality (Chapter 4)

Uniformity of proofs. Looking at the classic proof-labelling scheme from the tool-
box of Section 1.2, one can notice that there is often a part of the certificates that
is common to every node. For example, in the universal scheme, all the nodes have
the same description of the graph. In other schemes, it is common that the name of
a particular node is known to every vertex. The seminal question of this chapter is:
what if we require that the certificates are completely uniform, that is, that they are
exactly the same for every node? Or in other word what if, instead of giving each
node its own local proof, the prover writes a single global proof on some register that
every node can access?

This scenario matches some practical settings. For example, consider the case
where a monitor is observing the whole network, and broadcasts a piece of global
information to the nodes to help them decide the state of the network. As this monitor
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may be corrupted, the nodes have to check this update locally, which corresponds to
our model. A more theoretical motivation for this chapter, and also for Chapter 3,
is to study how much do the distributed proofs overlap. Here, we study the simplest
relation there can be between proofs of different nodes: equality.

Price of locality. In order to understand uniformity in proof labelling schemes,
we study the relations between three kinds of proofs: the (purely) local proofs (the
usual ones in proof-labelling schemes), the (purely) global proofs, where the nodes
only have access to the same global proof, and the mixed proofs, that allow both local
and global proofs. The first main question we ask is: can mixed proofs be much more
efficient than local proofs? Or from the other point of view, is there a large price to
pay when going from mixed proofs to local proofs? To answer this first question, we
define the price of locality of a language, as the ratio between the sum of the optimal
local proofs and the size of an optimal mixed proof, which is the sum of the local
proofs and the global proof. See Figure 1.11 for an illustration of the notions of this
paragraph. We can define the uniformity of a language as the inverse of the price of
locality: if an (optimal) scheme is uniform, then this parameter is 1 (or constant),
whereas if the price is high, it means that the certificates given to the nodes in an
optimal scheme are far from being uniform, and then the uniformity is goes to zero.
The price of locality is somehow more handy, thus we focus on this one, although
using uniformity would just be a change of vocabulary.

Local proofs Mixed proofs Price of locality

Figure 1.11: On the left, the usual scenario for proof-labelling scheme: local (orange) proofs.
In the middle the scenario with mixed proofs: local (yellow) proofs, and a global (blue) proof
(that every node can see). On the right, the price of locality ratio: the sum of the (optimal)
local proofs, divided by the size of the optimal mixed proofs (that is the sum of local proofs
and of the global proof).

Main result: the price of locality can reach the extreme values. It is easy
to see that the price of locality is between 1 and n. The n bound comes from the
fact that one can craft local proofs from a global proof, by simply copying the global
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proofs on the n local certificates. The other bound follows from the fact that mixed
proofs generalize local proofs. We prove that these extreme values can be reached.

Consider the two following dual problems. For both problems, every nodes has an
input stating whether it is selected or not. Then we consider the language where at
most one node is selected, Amos for short, and at least one node is selected, Alos
for short. Note that these simple problems are fundamental as their conjunction form
the classic problem of checking leader election.

Theorem. The price of locality is Θ(n) for Amos, and Θ(1) for Alos.

The proof for Amos is simple. One can show that the minimum size of local proofs
is obtained when, on yes-instances, the prover provides the name of the selected node
(or an empty label if no one is selected) to all the nodes. And an obvious mixed proof
consists doing exactly the same, but on the global certificate (this is actually a purely
global proof). The ratio between the sum of the local proof and the mixed proof is
the number of nodes, that is n.

The case of Alos is more complex. We prove that a mixed proof requires at least
Ω(n log n) bits. This means that we gain nothing by using a mixed proof, because
a simple local proof scheme certifies the language with O(log n) bits certificates. In
other words, in this case distributing the proof is for free, and the price is in Θ(1). The
proof of this result is a kind of dual of the technique of Göös and Suomela [67] sketched
in Section 1.2. On a very high level, the proof of [67] consists in gluing portions of
yes-instances to get a no-instance that cannot be distinguished from a yes-instance,
whereas our proof consists in showing that if there are many yes-instances, then we
can shorten one of them, and create a no-instance that cannot be distinguished from
a yes-instance. In [67] it is proved that a bunch of languages require Ω(log n) local
proofs, and we can lift these results to Ω(n log n) mixed proofs. In particular, we can
show that spanning trees require Ω(n log n) mixed proofs.

Intermediate cost. We can prove that there are languages with price of locality in
ω(1) and o(n). More precisely, we prove that minimum spanning trees have price of
locality Θ(log n). For this, we design an optimal mixed proof of size Θ(n log n), which
is to be compared with the optimal O(log2 n) local proofs described in Section 1.2.

Purely global proof. The second question of this chapter, is whether, for a given
language, the optimal global proof can be strictly larger than the optimal mixed
proof. At first, it seems that the answer is negative. Indeed one thinks that the local
proofs of a mixed scheme can be transformed into a global proof, by concatenating
them. But this is not enough because, a priori, a node has no way to find out which
part of this new global proof is supposed to be its own certificate. A correct global
proof is the concatenation of all the local certificates, along with the identifiers of the
corresponding nodes. However, for some languages this global proof is larger than the
mixed proof. For bipartiteness for example, the local proofs are on Θ(1) bits, and the
strategy above gives a global proof on Θ(n log n) bits, which is larger than the O(n)
mixed proof. We actually show that for bipartiteness, if we change the model to allow
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arbitrarily large IDs, then the global proof can be arbitrarily large, and in particular
strictly larger than mixed proofs.

1.3.3 Redundancy via a larger radius (Chapter 5)

Redundancy in the tree scheme. In the previous section, the main theorem
about Alos implies that in some sense a scheme for acyclicity has no global correla-
tion, because making it global basically requires to copy all the local proofs. However,
when looking at the scheme with distances, it does not seem to be true that the proofs
are not correlated: the distances of two adjacent nodes are very related, indeed they
only differ by one unit. The concept of uniformity is not fine-grained enough to dis-
cuss this aspect. The reason is basically that the relation between the distances fade
away when we consider nodes further apart, thus it is not captured by a global point
of view. We need a more local tool. The variant of proof-labelling schemes that fits
this purpose best is to consider that the verifier can look at non-constant distance.

Proof-labelling schemes with non-constant distance. We consider the modi-
fication of proof-labelling schemes where the radius of the nodes’ views can grow with
the size of the network n. For example, we consider schemes where the nodes can look
at distance Θ(log n). The rationale is that by looking further, the nodes get to know
more certificates given by the prover ; then if some piece of information present in the
certificate of a node is very related with a piece present in a neighbours’ certificate, we
can probably avoid to repeat it, and it should reduce the optimal proof size. In other
words, we want to study redundancy by measuring how fast the optimal certificate
size decreases when we increase the radius.5 Seminal work on this concept was done
in [90].

Three scenarios. For the rest of this section, t will denote the radius, and k the
number of bits used in the proof-labelling scheme at distance 1, for the language at
hand. For the size of the certificates for a scheme at distance t, three natural scenarios
come to mind.

• There is no trade-off: whatever the radius is (strictly below the diameter), we
need proofs of the size Θ(k).

• There is a linear scaling : there is a scheme that uses O(k/t) bits certificates.

• There is a scaling by the size of the ball around the node: if the nodes have at
least b(t) nodes in their neighbourhood at distance t, then the certificates can
be as small as O(k/b(t)).

A language for which we are in the first, second and third scenario respectively
can be called non-redundant, redundant and highly redundant. And we can define the
the redundancy of a language as the denominator of the proof size.

5A subtlety is that when we increase the radius, not only the verifier has access to more certificates,
thus more pieces of the information from the prover, but also it has a better knowledge of the structure
of the graph in its neighbourhood.
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The main questions of this chapter are: (1) is one of these scenarios is the right
one for all the languages? and (2) if not, in which category are the classic languages?

General results. We give two partial answers to the first question. The first answer
is that, when the local proofs are uniform, we achieve scaling by the size of the ball.

Theorem. Uniform (radius-1) proof-labelling schemes can be turned into (non-uniform)
radius-t schemes with certificates of size O(k/b(t)).

This is somehow expected: in this case the proof is very redundant, thus there
must be good scaling (or otherwise the scaling would not be a proper measure of
redundancy). In particular in graphs that are quite dense, the universal scheme can
give very small proofs if turned into a scheme at distance t. Note that even if the
scheme is not uniform, but has only a uniform part, typically an ID shared by all the
nodes, then at least this part of the proof can be made much smaller if we allow larger
radius. The proof is sketched in Figure 1.12.

Figure 1.12: Illustration of the scaling of uniform proofs. On the left the classic framework
for a proof-labelling scheme at distance 1. On the right, the illustration of the radius t
scheme. In this scheme the prover strategy is the following. First decide what is the uniform
certificate assignment for distance 1. Then split the uniform label into Θ(b(t)) equal parts.
Finally assign to every node one of these parts, in such a way that every node has at least
one copy of every part in its neighbourhood. The existence of such a certificate distribution
is proved by a probabilistic method.

For the second result we do not restrict the type of proofs, but the topology of
the communication graph. In restricted topologies, such as cycles and trees, we get
linear scaling for all languages.

Theorem. On cycles, grids and trees, every language has proofs of size O(k/t).

The proof of this result has several parts; let us just state and sketch the proof of
the key lemma. The proof is based on the fact that if the prover takes the certificates
of the proof-labelling scheme at distance 1, but assigns them only to a 1/t-fraction of
the nodes, then there is still a way for the verifier to decide. The nodes that will be
given a certificate have to be carefully chosen. On a path for example: if we number
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the positions of the nodes of the path from 1 to n, then the prover selects the node vi,
if and only if i is equal to 0 or 1 modulo t. This guarantees that we have subpaths of
non-selected nodes of length roughly t, separated by blocks of two nodes. The verifier
algorithm, if not given a certificate, accepts. If the node is given a certificate, it tries
all possible certificate assignments of the nodes of the adjacent subpaths. If it finds
an assignment that makes the verifier of the radius-1 proof-labelling scheme accept,
then it accepts, otherwise it rejects. A key point is that if the nodes that are given
certificates are properly chosen, then the success of these independent simulations
ensures that there exists an accepting certificate assignment for the whole graph.

Once this simulation argument is proved, we have a proof-labelling scheme at
distance t with proofs of size O(k/t) on average. We then design a way to spread the
certificates, a bit like in the previous theorem but deterministically, to ensure that
every certificate has size in O(k/t).

Specific languages. In addition to these general results, we show diverse scalings
for spanning trees, minimum spanning trees, and diameter, which require other tech-
niques, but that we will not detail here.

1.3.4 Interactivity via alternation (Chapter 6)

Changing the way of measuring performance. So far the performance of a
scheme has been measured by the size of its certificates. As we have seen in Section 1.2,
some languages require very large certificates. A reasonable approach is to fix a
maximum size for the certificates, and to relax other constraints, or change the model.
The approach we take for this chapter is to consider interactivity in the proof process.
More specifically, we will allow interaction between two provers. The nodes are going
to receive not only one message from one prover, but the transcript of a conversation
between the two provers.6 Once again this is inspired by the complexity theory of
centralized computing.

Polynomial hierarchy in centralized computing. In centralized computing, the
basic class is P, and adding non-determinism defines NP. In NP, a prover provides a
proof to the machine, and the machine verifies it in polynomial time. In some sense
the prover is trying to prove that the instance is in the language. What if we take
the definition of NP but allow two provers to provide proofs? More precisely, what
if we consider that a prover and a disprover (that is an oracle who tries to prove
that the instance is not in the language) can discuss, and that the machine has the
transcript of the discussion? This is what the polynomial hierarchy is about. The
hierarchy is made of an infinity of level. Each level corresponds to a type of prover-
disprover interaction, and contains all the languages that can be decided with such a
protocol. For example the level called Π2 is the set of languages that can be decided
by scheme where the disprover provides a first certificate and the prover provides a

6Note that we do not consider interactivity in the sense of exchange of messages between the
prover and the network, but only between provers.
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second certificate to the machine. The level Σ2 is the same except that the prover
speaks first. Note that NP is included in both Π2 and Σ2 because in both cases if the
machine considers only the certificate given by the prover, we are back to the definition
of NP. The differences between the levels of the hierarchy is the identity of the first to
speak, but more importantly the number of times there is a change of speaker. Such
change is called an alternation. By increasing the number of alternations between
prover and disprover, we get larger and larger classes.

Distributed hierarchy. We adapt the concept of the polynomial hierarchy to dis-
tributed decision, and define a local hierarchy. The notion is exactly the same as in
the centralized setting, except that the prover and the disprover provide local proofs
to a local verifier. Depending on the level of the protocol, there is some number of
alternations between the two oracles, which implies that every node is given a bunch
of certificates. For example, in a scheme of the type prover-disprover-prover, when
it takes its local decision every node is holding three certificates: the first certificate
comes from the prover, then the disprover can craft a second certificate assignment
to answer, and finally the prover finishes the discussion by giving a third certificate.

O(log n) threshold on reversing decision. As said in the introduction of this
part, we want to bound the size of the certificates, and use another measure efficiency.
This other measure will be the number of alternations. The question now is about
the good threshold for the certificate size. The size O(log n) was identified in [67] as
an important threshold as it is the minimum size to certify trees and to encode IDs
and polynomial numbers. We then choose O(log n) as the size of the certificates used
by the prover and disprover.

Example: symmetric graphs. To make the notion of alternation more concrete,
consider the language of symmetric graphs (defined in Section 1.2). We can show that
this language has a protocol of the form prover-disprover-prover. First the prover will
(supposedly) give to every node the name of its image by the non-trivial automorph-
ism. Then the disprover will (supposedly) point to an error in this automorphism
(for example it may prove that two nodes have the same image, by basically having
a spanning tree pointing to each of them, along with the shared image ID). Finally
the prover will (supposedly) certify that the disprover is cheating (for example by
pointing to a place where the distances in the tree of the disprover are inconsistent).

Structural results. For this introduction we focus on the structure of the hier-
archy, but the chapter also contains alternating schemes for different languages from
combinatorial optimization, logic etc. We first show that there is a collapse in the
hierarchy that does not exists in centralized computing.

Theorem. The class corresponding to a protocol where the disprover speaks last is
equal to the class of the same protocol without the last disprover message.

The basic reason for this is that each node can locally simulate the last certificates
of the disprover. That is, the nodes can test locally whether there exists a certificate
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assignment of the nodes of its view that would make the verifier reject; and if node
detects this, it rejects. Consequently, given a certain number of alternations, there
exists exactly one type of scheme. The level zero corresponds to basic decision, level
one corresponds to proof-labelling schemes, level two corresponds to disprover-prover
protocols, level three to prover-disprover-prover etc. In addition, it is easy to show
that using a tree construction the following holds.

Theorem. The complement of the class of level i is always contained in the class of
level i+ 1.

Big open question and relation with communication complexity. The main
open question of this chapter is whether the second level (disprover-prover) and third
level (prover-disprover-prover) are separated. If they are not, then the whole hierarchy
collapses, and there are just three levels (this is another structural result). A priori, a
good strategy to prove such separation, is to use the communication-complexity-like
framework of [67] (used to show that some tasks require Θ(n2) bits, see Section 1.2).
We could not make this technique work with alternation, but, as we discovered later,
there is a good reason for this. In communication complexity, a similar hierarchy
has been defined, and the question of separating the different levels has been open
for more than 30 years. We are able to prove tight links between the proof strategy
of [67] and the communication complexity framework (in particular if we consider a
variant of the hierarchy with global proofs as in Chapter 4).
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1.4 Annotated list of publications

This section is an annotated list of my works in distributed computing. It does not
contain some earlier works on approximation algorithms.

• Laurent Feuilloley and Pierre Fraigniaud. Randomized local network computing.
In 27th ACM on Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 340–349, 2015. doi:10.1145/2755573.2755596.

This paper is the main work of my masters thesis. It is the derandomization
result we mentioned in Subsection 1.1.6. It generalizes a result that was known
for languages that can be checked with a basic deterministic scheme to the ones
that can be checked with a probabilistic scheme.

• Laurent Feuilloley, Juho Hirvonen, and Jukka Suomela. Locally optimal load
balancing. In 29th International Symposium, DISC 2015, Tokyo, Japan, October
7-9, 2015, Proceedings, pages 544–558, 2015. doi: 10.1007/978-3-662-48653-5

This work is about distributed (construction) algorithms, for a load balancing
problem in bounded degree graphs.

• Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy of local
decision. In 43rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 118:1–118:15,
2016. doi:10.4230/LIPIcs.ICALP.2016.118

This paper corresponds to Chapter 6, and to Subsection 1.3.4 in the introduc-
tion.

• Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bul-
letin of the EATCS, 119, 2016. url: bulletin.eatcs.org link, arXiv: 1606.04434

This article corresponds to the survey at the end of this thesis, Chapter 7.

• Laurent Feuilloley. How long it takes for an ordinary node with an ordinary ID
to output? In Structural Information and Communication Complexity - 24th
International Colloquium, SIROCCO 2017, Porquerolles, France, June 19-22,
2017, Revised Selected Papers, pages 263–282, 2017. doi: 10.1007/978-3-319-72050-0

This work is about construction and not decision, thus for the sake of consistency
it does not appear in the thesis, although it was done during my PhD. It basically
asks the question: what if we allow different nodes to have views with different
radiuses, and measure the performance by the average of these radiuses, instead
of the maximum?

• Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes.
In 31st International Symposium on Distributed Computing, DISC 2017, Octo-
ber 16-20, 2017, Vienna, Austria, pages 16:1–16:15, 2017. doi:LIPIcs.DISC.2017.16

This corresponds to Chapter 3 and Subsection 1.3.1 in the introduction.

https://doi.org/10.1145/2755573.2755596
https://doi.org/10.1007/978-3-662-48653-5
https://doi.org/10.4230/LIPIcs.ICALP.2016.118
http://bulletin.eatcs.org/index.php/beatcs/article/view/411/391
https://arxiv.org/abs/1606.04434
https://doi.org/10.1007/978-3-319-72050-0
https://doi.org/10.4230/LIPIcs.DISC.2017.16
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• Laurent Feuilloley and Juho Hirvonen. Local verification of global proofs. In
DISC 2018 (To appear), 2018. arXiv: 1803.09553

This paper corresponds to Chapter 4, and Subsection 1.3.2 in the introduction.

• Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry.
Redundancy in distributed proofs. In DISC 2018 (To appear), 2018. arXiv:
1803.03031

This paper corresponds to Chapter 5, and Subsection 1.3.3 in the introduction.

• Laurent Feuilloley and Michel Habib. Graph classes and forbidden patterns on
three vertices, 2018. Manuscript

This work is still in progress, and is mainly about classic graph theory thus does
not appear in the thesis. But as it has a nice link with proof-labelling schemes,
we take a few paragraphs to describe it.

This work is at the interface between two research lines in graph theory. On the
one hand, there is a large body of research focused on studying the graph classes
where some subgraph or some minor is forbidden. These graph classes have very
interesting structures and are described by deep theorems, such as the celebrated
Robertson-Seymour theorem. On the other hand, many algorithms recognizing
useful graph classes are not detecting forbidden subgraphs but forbidden ordered
structures in some ordering of the nodes of the graph. A typical form for a fast
recognition algorithm is to first perform one or several tree traversals, and then
to check that some structure does not appear in the ordering of the nodes
produced by these traversals. For example one wants to reject if there are three
nodes a, b and c in this order in the traversal such that (a, c) is an edge but
(a, b) is not an edge.

The goal of our work is to understand the classes that can be defined the follow-
ing way: the graph is in the class, if and only if, there exists an ordering of the
nodes such that some pattern does not appear. Such characterizations already
exist for some well-known classes such as interval graphs, comparability graphs,
split graphs etc. We differ from previous work by taking a systematic approach
to the question.

The link with proof-labelling schemes may appear to the reader after this long
introduction: if the ordering can be given by the prover, checked locally, and if
the patterns can also be checked locally, then the class can be recognized by a
proof-labelling scheme with O(log n) proofs. We show that this is the case for
several well-known classes: trees (with a fairly different scheme than the one
we have described before), interval graphs, chordal graphs, path and bipartite
graphs (although in this last case the O(log n) proofs are not optimal).

http://arxiv.org/abs/1803.09553
http://arxiv.org/abs/1803.03031
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Chapter 2

Model and definitions

In this chapter, we describe the model we study, and define the main objects used in
the thesis. The definitions that are specific to a chapter are deferred to the beginning
of the chapter in question. The survey of Chapter 7 has its own notations that are
more complex, because they describe more variants of the objects.

Graphs. Throughout the thesis, the communication network is modelled as a graph,
the communication graph. All graphs are undirected, connected, and simple (no self-
loops, and no parallel edges). The set of vertices is denoted by V , and the set of edges
by E. The size of the network is the size of V , and is denoted by n. Given a node v
of a graph G, we denote by N(v) the open neighbourhood of v, i.e., the set of nodes
that are adjacent to v in G. Depending on the context, the word neighbourhood may
also refer to the nodes that are at distance at most d from v, where d is a constant,
or to the subgraph induced by these nodes.

A graph is (input) labelled, if there are labels associated with the nodes, or, more
rarely, with the edges. Note that an edge labelling can always be turned into a vertex
labelling: the endpoints of the edge can hold the label of the edge. An input labelling
can be formalized with a function x : V → {0, 1}∗, and an edge labelling as a function
x′ : E → {0, 1}∗. An example of edge labelling is edge weights, when considering
minimum spanning trees. The input labels (or simply inputs) often have constant
size, but in some cases (such as edge weights) they are only bounded by a polynomial
in n. A labelled graph is called a configuration.

Identifiers. In every graph we will consider, each node v has a name, called identi-
fier or identity, denoted by ID(v), taken from the set {1, . . . , N}, where N is polyno-
mial in n. In other words, all identities are stored on O(log n) bits.1 In a same graph,
all names are pairwise distinct.

LOCAL model as local snapshots. We use a quite high-level model of commu-
nication. In the diverse scenarios we consider, a node always gets a snapshot of its

1In Section 4.4 we will not bound the identifiers by a polynomial, but consider that the upper
bound N is a parameter of the problem, that can appear in the complexity.
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neighbourhood at some distance in the graph. This is equivalent to use the classic
LOCAL model [87, 95], where nodes exchange messages in rounds, with no constraint
of message size, nor of computational power or space. This model is suited to our
approach, which is focused on locality, and does not consider message complexity.
The neighbourhood that a node has access to, is called its view. It is a ball centred
at the node running the algorithm. The algorithms dealing with such local views are
often called local algorithms.

Distributed languages. A distributed language is a set of configurations, that is a
collection of labelled graphs. Most of the time, we consider languages where only the
nodes are labelled, and not on the edges, thus a language is a set of configurations
(G, x), with x a node labelling function.2 Note that the identifiers do not appear in
this definition. A language is often denoted L, and we use capital letters for the names
of the languages (such as Spanning Tree). A distributed language is constructible
if, for every graph G, there exists x such that (G, x) ∈ L. It is Turing decidable if
there exists a (centralized) Turing machine that decides L.

Languages are one of the ways to consider a set of graphs having a property. We
may also consider predicates to be the key object, and talk about the graphs satisfying
some predicate P .

Examples of languages. Let us list a few important languages that appear in this
thesis.

• k-coloured: the set of graphs whose nodes are labelled by an integer between
1 and k, called the colour, such that there is no monochromatic edge, that is,
no edge with the same colour at both endpoints.

• k-colourable: the set of graphs (with no input labels) such that there exists
a proper colouring (that is a colouring with no monochromatic edge). A special
case is the language Bipartite, which is the set of graphs that can be 2-
coloured.

• Acylicity: the set of trees.

• Acyclic subgraph: the set of graphs where the edges are labelled by a bit,
and where the edges with bit 1 (called selected edges) form an acyclic subgraph
of the communication graph.

• Spanning Tree: the set of graphs, such that the selected edges form a spanning
tree of the graph. This name can be shortened into St. (In Chapter 3, two
variants, corresponding to two on different encodings of the selected edges, will
be defined.)

• Minimum Spanning Tree: the set of graphs, where the set of selected edges
form a minimum spanning tree of the graph. A short-cut is Mst.

2We may also use the letter ` for the node labelling function.
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• Symmetry: the set of graphs that have a non-trivial automorphism.

Other examples are: Regular, where in a selected subgraph every node has the
same degree; and Leader, where exactly one node is selected. The languages Alos
and Amos that are essential in Chapter 4, will be defined there.

Local deterministic decision. A deterministic local decision algorithm with ra-
dius t, is a local algorithm in which every node v outputs a local decision, accept or
reject, based on all the information contained in its t-neighbourhood. This informa-
tion consists in: the local structure of the graph, the IDs of the nodes, and the local
inputs. The distance t is constant with respect to the size of the network n (except
in Chapter 5).

A basic decision scheme for a language L is defined by a deterministic local decision
algorithm A, such that, for every configuration: all the nodes accept, if and only if,
the configuration belongs to the language L. We say that an algorithm (globally)
accepts a configuration if all nodes accept. For a configuration (G, x), we denote
the fact that a node v accepts (respectively rejects) by A(G, v, x) = 1 (respectively
A(G, v, x) = 0), and the fact that the whole configuration is accepted (respectively
rejected) by A(G, x) = 1 (respectively A(G, x) = 0).

Proof-labelling schemes. Given a distributed language L, a proof-labelling scheme
(PLS for short) for L is a pair prover-verifier (p,v). The prover p is an oracle assigning
a certificate function c : V (G)→ {0, 1}∗ to every labelled graph (G, x). The verifier v
is a t-round local algorithm, with t being constant,3 that behaves as a deterministic
local decision algorithm, but takes into account the certificates of the prover. That
is, the verifier has access to the graph topology, the identifiers, the inputs and the
certificates, within its constant radius view. Then for every labelled graph (G, x) the
following two conditions should be satisfied:

• If (G, x) ∈ L then v outputs accept at every node of G whenever all nodes of G
are given the certificates provided by p;

• If (G, x) /∈ L then, for every certificate function c : V (G) → {0, 1}∗, v outputs
reject in at least one node of G.

The first condition guarantees the existence of certificates allowing the given legally
labelled graph (G, `) to be globally accepted. The second condition guarantees that
the verifier cannot be “cheated”, that is, an illegally labelled graph will systematically
be rejected by at least one node, whatever “fake” certificates are given to the nodes.
Note that the prover and the verifier can access and use the IDs, but the language
does not depend on the identifier assignment.

Given an instance (G, x, ID) (where ID denotes the identifier assignment) with
(G, x) in the language L, we denote by p(G, x, ID, v) the certificate assigned by the

3In Chapter 3, we assume that the radius is 1, in order to have cleaner proofs. The topic of
Chapter 5, is the impact of allowing non-constant radius.
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prover p to node v ∈ V , and by |p(G, x, ID, v)| its size. In a graph all the certificates
have the same size, thus this size can be denoted |p(G, x, ID)|. For a given language L,
the certificate size of a proof-labelling scheme (p,v) for the configurations of size n, is
defined as the maximum of |p(G, x, ID)|, taken over all instances (G, x, ID) of size n.
It is denoted by size(p,v).

Locality. In this dissertation, the words local and locality can basically refer to three
related but different aspects. It will always be clear from the context which definition
we are using. First, it can refer to the constraint that the nodes can communicate
only with nodes that are close by in the network. In this perspective, the smaller
the radius of the view is, the more local the algorithm is. This is the most classic
meaning. Second, it can refer to the size of the certificates. As explained in the
introduction (paragraph Proof sizes and measure of the locality, in Subsection 1.1.4),
one can argue that we can classify the languages by locality, stating that the smaller
the optimal proof size, the more local the language. Third, in Chapter 4, and in
particular in the term price of locality, we are dealing with locality of proofs. In a
classic proof-labelling scheme, the certificates are local, in the sense that every node
has its own local certificate. In this later setting, local certificates are opposed to
global certificates that are certificates that every node can access.

Knowledge of n. In general we assume that the nodes do not know n. This is
crucial for some proofs where we consider instances of different sizes, and argue that
they cannot be distinguished. Actually, if we allow certificates of size Ω(log n), then
the prover can give and certify n (with a spanning tree and counters).

The reader will find the definitions specific to a section, at the beginning of the
said section.



Chapter 3

Error-sensitivity

This section is devoted to the study of the error-sensitivity of proof-labelling schemes.
Basically a proof-labelling scheme is error-sensitive, if on no-instances the number of
rejecting nodes is lower bounded by the edit distance from the graph to the languages
(up to multiplicative constants), regardless of the certificate assignment.

We did an overview of this work in Subsection 1.3.1 of the introduction. It is joint
work with Pierre Fraigniaud, and corresponds to the paper [36] published in 2016.
Before diving in the technical parts, we restate and develop the motivation behind
this study, and give the definitions and cite the related work that are specific to this
chapter.

3.1 Introduction

Motivations and specific related work. One weakness of proof-labelling schemes
is that they do not allow to distinguish between a configuration which is slightly
erroneous, and a global state which is completely bogus. In both cases, it is only
required that at least one node detects the illegality of the state. In the latter case
though, having only one node raising an alarm, or launching a recovery procedure for
bringing the whole system back to a legal state, might be quite inefficient. Instead, if
many nodes would detect the errors, then bringing back the system into a legal state
will be achieved by a collection of local resets running in parallel, instead of a single
reset traversing the whole network sequentially.

Moreover, in several contexts like, e.g., property-testing1, monitoring an error-
prone system is implemented via an external mechanism involving a monitor that is
probing the system by querying a (typically small) subset of nodes chosen at ran-
dom. Non-deterministic property-testing has been recently investigated in the liter-
ature [69, 70, 88], where a certificate is given to the property-testing algorithm. Such
a certificate is however global. Global certificates will be the topic of Chapter 4, but
here we focus on local proofs. In the context of property-testing, such decentralized

1We sketched what property testing is in the introduction. For a proper survey of property-testing
on graphs, see [64, 65]. Another type of computation that has a local flavour although it is not fully
decentralized is centralized local computing, see e.g., [32, 68, 93].
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certificates can be viewed as, say, annotations provided to the nodes of a network,
or to the entries of a database. The correction of the network, or of the database, is
then checked by a property-testing algorithm querying nodes at random for recovering
the individual states of these nodes, including their certificates. To be efficient, such
distributed certificates must guarantee that, if the monitored system is far from being
correct, then many nodes are capable to detect the error. Indeed, if just one node
is capable to detect the error, then the probability that the monitoring system will
query that specific node is very low, resulting in a large amount of time before the
error is detected.

In this chapter, we aim at designing error-sensitive proof-labelling schemes, which
guarantee that system states that are far from being correct can be detected by many
nodes, providing faster recovery if the error detection mechanism is decentralized, or
faster discovery if this error detection mechanism is centralized.

More specifically, the distance between two global states of a distributed system
is defined as the edit-distance between these two states, i.e., the minimum number of
individual states one has to modify in order to move from one global state to the other.
A proof-labelling scheme is error-sensitive if there exists a constant α > 0 such that,
for any erroneous system state S, the number of nodes detecting the error is at least
α d(S), where d(S) is the shortest edit-distance between S and a correct configuration.
The choice of a linear dependency between the number of nodes detecting the error,
and the edit-distance to legal states is not arbitrary, but motivated by the following
two observations.

• On the one hand, a linear dependency is somewhat the best that we may hope
for. Indeed, let us consider a k-node network G in some illegal state S for which
r nodes are detecting the illegality of S — think about, e.g., the spanning tree
predicate. Then, let us make n copies of G and its state S, potentially linked
by n−1 additional edges if one insists on connectivity. In the resulting kn-node
network, we get that O(rn) nodes are detecting illegality, which grows linearly
with the number of nodes, as n grows.

• On the other hand, while a sub-linear dependency may still be useful in some
contexts, this would be insufficient in others. For instance, in the context of
property testing, for systems that are ε-far from being correct (i.e., essentially, an
ε fraction of the individual states are incorrect), the linear dependency enables to
find a node capable to detect the error after O(1/ε) expected number of queries
to random nodes. Instead, a sub-linear dependency would yield an expected
number of queries that grows with the size of the system before querying a node
capable to detect the error.

Specific definition. To define the novel notion of error-sensitive proof-labelling
schemes, we introduce the following notion of distance between labelled graphs. Let `
and `′ be two (input) labellings of a same graph G. The edit distance between (G, `)
and (G, `′) is the minimum number of elementary operations required to transform
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(G, `) into (G, `′), where an elementary operation consists of replacing a node label
by another label. That is, the edit distance between (G, `) and (G, `′) is simply

|{v ∈ V (G) : `(v) 6= `′(v)}|.

The edit-distance from a labelled graph (G, `) to a language L is the minimum, taken
over all labellings `′ of G satisfying (G, `′) ∈ L, of the edit-distance between (G, `) and
(G, `′). Roughly, an error-sensitive proof-labelling scheme satisfies that the number
of nodes that reject a labelled graph (G, `) should be (at least) proportional to the
distance between (G, `) and the considered language.

Definition 3.1. A proof-labelling scheme (p,v) for a language L is error-sensitive if
there exists a constant α > 0, such that, for every labelled graph (G, `),

• If (G, `) ∈ L then v outputs accept at every node of G whenever all nodes of G
are given the certificates provided by p;

• If (G, `) /∈ L then, for every certificate function c : V (G) → {0, 1}∗, v outputs
reject in at least α d nodes of G, where d is the edit distance between (G, `) and
L, i.e., d = dist

(
(G, `),L

)
.

Note that the at least α d nodes rejecting a labelled graph (G, `) at edit-distance
d from L do not need to be the same for all certificate functions.

3.2 Basic properties of error-sensitive proof-labelling
schemes

Let us first illustrate the notion of error-sensitive proof-labelling scheme with the ex-
ample of Acyclic Subgraph, that we have already come across in the introduction.
Here, we use a notation with pointers (as we will see later, in this chapter the encod-
ing of the input is important). That is, the input of each node v, denoted `(v), is
either the name of one of its neighbours, or an empty label, and the edges {v, `(v)}
(for non-empty `(v)) form an acyclic subgraph of G.

We show that Acyclic Subgraph has an error-sensitive proof-labelling scheme.
The proof of this result is easy, as the fixing of the labels can be done locally, at the
rejecting nodes. Nevertheless, the proposition and its proof serve as a basic example
illustrating the notion of error-sensitive proof-labelling scheme.

Proposition 3.1. Acyclic Subgraph has an error-sensitive proof-labelling scheme.

Proof. Let (G, `) ∈ Acyclic Subgraph. Every node v ∈ V (G) belongs to a subtree
rooted at a node r such that `(r) = ⊥. The prover p provides every node v with
its distance d(v) to the root of its subtree (i.e., number of hops to reach the root
by following the pointers specified by `). The verifier v proceeds at every node v as
follows: first, it checks that `(v) ∈ N(v) ∪ {⊥}; second, it checks that, if `(v) 6= ⊥
then d(`(v)) = d(v)− 1, and if `(v) = ⊥ then d(v) = 0. If all these tests are passed,
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then v accepts. Otherwise, it rejects. By construction, if (G, `) is acyclic, then all
nodes accept with these certificates. Conversely, if there is a cycle C in (G, `), then let
v be a node with maximum value d(v) in C. Its predecessor in C (i.e., the node u ∈ C
with `(u) = v) rejects. So (p,v) is a proof-labelling scheme for Acyclic Subgraph.

We show that (p,v) is error-sensitive. Suppose that v rejects (G, `) at k ≥ 1
nodes. Let us replace the label `(v) of each rejecting node v by the label `′(v) = ⊥,
and keep the labels of all other nodes unchanged, i.e., `′(v) = `(v) for every node
where v accepts. We have (G, `′) ∈ Acyclic Subgraph. Indeed, by construction,
the label of every node u in (G, `′) has a well-formatted label `′(v) ∈ N(v) ∪ {⊥}.
Moreover, let us assume, for the purpose of contradiction, that there is a cycle C in
(G, `′). By definition, every node v of this cycle is pointing to `′(v) ∈ N(v). Thus
`′(v) = `(v) for every node of C, from which it follows that no nodes of C was rejecting
with `, a contradiction with the fact that, as observed before, v rejects every cycle.
Therefore (G, `′) ∈ Acyclic Subgraph. Hence the edit-distance between (G, `)
and Acyclic Subgraph is at most k. It follows that (p,v) is error-sensitive, with
sensitivity parameter α ≥ 1.

The definition of error-sensitivity is based on the existence of a proof-labelling
scheme for the considered language. However, two different proof-labelling schemes
for the same language may have different sensitivity parameters α. In fact, we show
that every non-trivial language admits a proof-labelling schemes which is not error-
sensitive. That is, the following result shows that demonstrating the existence of a
proof-labelling scheme that is not error-sensitive for a language does not prevent that
language to have another proof-labelling scheme which is error-sensitive. We say that
a distributed language is trivially approximable if there exists a constant d such that
every labelled graph (G, `) is at edit-distance at most d from L.
Proposition 3.2. Let L be a distributed language. Unless L is trivially approximable,
there exists a proof-labelling scheme for L that is not error-sensitive.

Proof idea. The idea is to take an arbitrary scheme and to turn it into a scheme where,
whatever the configuration is, the prover has a strategy to make at most one node
reject. In this new scheme the prover, in addition to the certificates of the original
scheme, will define and certify a spanning tree of the graph and provide a boolean
to each node. At every node, the verifier will consider the original certificates, but
will not output its decision. Instead it will do a verification of the consistency of the
booleans. The boolean corresponds to the predicate: for the current node and its
descendant, no node is rejecting the original certificates. Note that the information
available to the nodes is sufficient to check the consistency. Then the root of the tree
will output the decision that corresponds to its boolean.

Proof. Let L be a non trivially approximable distributed language. Given a labelled
graph (G, `) ∈ L, let T be a spanning tree of G. It is folklore (cf., e.g., [7, 82], and
Section 1.2) that T can be certified by a proof-labelling scheme where the certificate
assigned to each node u consists of a pair (I(u), d(u)) where I(u) is the ID of a node
r picked as the root of T , and d(u) the hop-distance in T from u to r. The verifier
checks the distances the same way as it does in the proof of Proposition 3.1 (which
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guarantees the absence of cycles). In addition, every node checks that it agrees with
its neighbours in the graph about the ID of the root (which guarantees that T is not
a forest with more than one tree). At every node, if all these tests are passed at that
node, then it accepts, else it rejects.

We now prove that every proof-labelling scheme (p,v) for L can be transformed
into a proof-labelling scheme (p′,v′) for L which is not error-sensitive. On a legal
instance (G, `) ∈ L, the prover p′ selects a spanning tree T of G, and provides every
node u with its certificate p(u) for (G, `), with the local description of the tree T
together with the appropriate certificate, and with a boolean b(u) set to true. The
verifier v′ checks the correctness of the spanning tree T , and rejects if it is not correct.
From now on, we assume that T is correct. The verifier v′ then outputs accept or
reject according to the following rules.

• At every node u distinct from the root of T , v′ accepts if and only if one of the
two conditions below is fulfilled:

– b(u) = false, and either v rejects at u, or a child v of u in T satisfies
b(v) = false;

– b(u) = true, v accepts at u, and b(v) = true for every child v of u in T .

• At the root of T , the verifier v′ rejects if and only if

– v rejects, or a child v of u satisfies b(v) = false.

By construction, if (G, `) ∈ L then all the nodes accept when provided with the
appropriate certificates, because, with these certificates, all booleans b are true, and
v accepts at all nodes.

If (G, `) /∈ L, then v′ rejects in at least one node if the given certificates do not
encode a spanning tree T . Therefore, let us assume that the given certificates correctly
encode a spanning tree T , rooted at r. Since (G, `) /∈ L, there exists at least one node
where v rejects. Let u be a node where v rejects, such that v rejects at no other
nodes on the shortest path from u to r in T . If u = r, then, since v rejects, we get
that v′ rejects as well. So, let us assume that u 6= r. Let u0, u1, . . . , ut with u0 = u,
t ≥ 1, and ut = r be the shortest path from u to r in T . For v′ to accept at u0, it
must be the case that b(u) = false. The same holds at each node along the path:
For v′ to accept at ui, i = 0, . . . , t − 1, it must be the case that b(ui) = false. This
leads v′ to reject at ut = r. Therefore, (p′,v′) is a proof-labelling scheme for L.

We now show that (p′,v′) is not error-sensitive. Let (G, `) /∈ L. Let T be a span-
ning tree of G, rooted at node r. We provide the nodes with the proper description
of T and the certificates to certify T . We also provide the nodes with arbitrary certi-
ficates for v. Then we provide the nodes with the following “fake” boolean certificates
that we assign by visiting the nodes of the tree T bottom-up, as follows. Let u be a
node:

• if v rejects at u or a child v of u in T satisfies b(v) = false, then set b(u) = false;

• else set b(u) = true.
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In this way, only the root of T can reject. Therefore, with such certificates, even
instances (G, `) that are arbitrarily far from L will be rejected by a single node. It
follows that (p′,v′) is not error-sensitive, as claimed.

Recall that the fact that every distributed language has a proof-labelling scheme
can be established by using a universal proof-labelling scheme (puniv,vuniv) (see [67]
and Subsection 1.2 in the introduction). Given a distributed language L, and a
labelled graph (G, `) ∈ L on an n-node graph G, a universal certificate c : V (G) →
{0, 1}∗ for that labelled graph is defined for every node u ∈ V (G) by the triple
c(u) = (T,M,L) where nodes are ordered from 1 to n in arbitrary order, T is a vector
with n entries indexed from 1 to n where T [i] is the ID of the ith node v, L[i] is the
label `(v) of the ith node v, and M is the adjacency matrix of G. The prover puniv
assigns c(u) to every node u ∈ V (G). The verifier vuniv then checks at every node u
that its certificate is consistent with the certificates given to its neighbours (i.e., they
all have the same T , L, and M , the indexes matches with the IDs, and the actual
neighbourhood of v is as it is specified in T , L and M). If this test is not passed,
then vuniv outputs reject at u, otherwise it outputs accept or reject according to
whether the labelled graph described by (M,L) is in L or not. It is easy to check that
(puniv,vuniv) is indeed a proof-labelling scheme for L. The universal proof-labelling
scheme has the following nice property, that we state as a lemma for further references
in the text.

Lemma 3.1. If a distributed language L has an error-sensitive proof-labelling scheme,
then the universal proof-labelling scheme applied to L is error-sensitive.

Proof. Let (p,v) be an error-sensitive proof-labelling scheme for L, and let (puniv,vuniv)
be the universal proof-labelling scheme for L. Let (G, `) /∈ L. We show that
(puniv,vuniv) is at least as good as (p,v) with respect to the number of rejecting
nodes. Specifically, we show that if vuniv rejects (G, `) at r nodes for some certificate
function c, then there exists a certificate function c′ such that v rejects (G, `) in at
most r nodes.

Let u be a node in which vuniv accepts (G, `), and let c(u) = (T,M,L) be the
certificate of node u leading to this acceptance. Note that it must be the case that
(M,L) ∈ L. We set c′(u) as the certificate assigned to node u by p in labelled graph
(M,L). We do so for all nodes at which vuniv accepts. We then go over every node
u at which vuniv rejects (G, `), but that is adjacent to at least one node v at which
vuniv accepts (G, `). Let c(v) = (T,M,L) be the corresponding certificates at the
accepting node v. As before, we set c′(u) as the certificate assigned to node u by p
in labelled graph (M,L). Note that if u is adjacent to two different nodes v and v′
at which vuniv accepts, the two nodes v, and v′ share the same certificates (T,M,L).
Hence the definition of c′ at u is well defined.

Now, we observe that for a node u in which vuniv accepts, its certificate c(u) is
consistent with the certificates of all its neighbours, and thus, in particular, u and
its neighbours share the same labelled graph (M,L). Therefore, the certificates c′
assigned to u and its neighbours are consistent with respect to v. It follows that
every node u at which vuniv accepts (G, `) with certificate function c satisfies that v
accepts (G, `) at u with certificate function c′.
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While every distributed language has a proof-labelling scheme, we show, using
Lemma 3.1, that there exist languages for which there are no error-sensitive proof-
labelling schemes.

Proposition 3.3. There exist languages that do not admit any error-sensitive proof-
labelling scheme.

We gave an overview of the proof in Subsection 1.3.1 of the introduction, with an
general reasoning, and then taking the language of symmetric graphs as an example.
The following proof uses a different language.

Proof. We show that there exist languages L such that, for every proof-labelling
scheme (p,v) for L, and every d ≥ 1, there exists a labelled graph (G, `) at edit-
distance at least d from L, and a certificate function c, such that v rejects (G, `) with
certificate c in at most a constant number of nodes. We consider labelled graphs (G, `)
where ` encodes a subgraph H` of G as follows: `(u) ⊆ N(u) is a list of neighbours of
u in G that are adjacent to u in the subgraph H`. We consider the following language:

regular = {(G, `) : H` is regular.}

Let us assume, for the purpose of contradiction, that there exists an error-sensitive
proof-labelling scheme (p,v) for regular. From Lemma 3.1, it follows that the
universal scheme (puniv,vuniv) is error-sensitive for regular. We show that this is
not the case.

Let d1 and d2 be two distinct integers. Let G1 be a regular graph of degree d1, and
let G′1 be a copy of G1. Let {u1, v1} ∈ E(G1), and let {u′1, v′1} be the corresponding
edge in G′1. We construct the graph G∗1 obtained from G1 and G′1 by removing
{u1, v1} and {u′1, v′1}, and adding {u1, u

′
1} and {v1, v

′
1}. By construction, G∗1 is d1-

regular. Similarly, we can construct a d2-regular graph G∗2 from a d2-regular graph
G2 and its copy G′2. We denote by {u2, u

′
2} and {v2, v

′
2} the edges connecting G2 to

its copy G′2 in G∗2. For i ∈ {1, 2}, let `i be the labelling of the nodes of G∗i such that
H`i = G∗i . We have

(G∗1, `1) ∈ regular, and (G∗2, `2) ∈ regular.

Let G∗3 be the graph obtained from G1 and G2 by removing {u1, v1} from G1, removing
{u2, v2} from G2, and adding the edges {u1, u2} and {v1, v2}. Again let us consider
the labels `3 assigned to the nodes of G∗3 with H`3 = G∗3. Since d1 6= d2, we have

(G∗3, `3) /∈ regular.

Now let us assign to the nodes of G1 in G∗3 the certificates assigned by puniv to the
nodes of G1 in G∗1. Similarly, let us assign to the nodes of G′2 in G∗3 the certificates
assigned by puniv to the nodes of G′2 in G∗2. With such certificates, only the nodes
u1, v1, u2, and v2 may reject when running vuniv. Therefore, at most 2d1 + 2d2 + 4
nodes reject. On the other hand the distance between (G∗3, `3) and regular is at
least as large as min{|V (G1)|, |V (G2)|}. This distance can thus be made arbitrarily
large, while the number of rejecting nodes remains constant. Hence, the universal
proof-labelling scheme is not error-sensitive.
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Remark. The language regular used in the proof of Proposition 3.3 to establish the
existence of languages that do not admit any error-sensitive proof-labelling schemes
actually belongs to the class LCL of locally checkable labellings [89]. Therefore, the
fact that a language is easy to check locally does not help for the design of error-
sensitive proof-labelling schemes.

We complete this warmup section by some observations regarding the encoding of
distributed data structures. Let us consider the following two distributed languages,
both corresponding to spanning tree. The first language, stp, encodes the spanning
trees using pointers to parents, while the second language, stl, encodes the spanning
trees by listing all the incident edges of each node in these tree.

stp =
{

(G, `) : ∀v ∈ V (G), `(v) ∈ N(v) ∪ {⊥}

and
( ⋃
v∈V (G) : `(v)6=⊥

{v, `(v)}
)
forms a spanning tree

}

stl =
{

(G, `) : ∀v ∈ V (G), `(v) ⊆ N(v) and u ∈ `(v) iff v ∈ `(u),

and
( ⋃
v∈V (G)

⋃
u∈`(v)

{u, v}
)
forms a spanning tree

}
.

Obviously, stp is just a compressed version of stl as the latter can be constructed
from the former in just one round. However, note that stp cannot be recover from
stl in a constant number of rounds, because stp provides a consistent orientation of
the edges in the tree. It follows that stp is an encoding of spanning trees which is
actually strictly richer than stl. This difference between stp and stl is not anecdotal,
as we shall prove later that stl admits an error-sensitive proof-labelling scheme, while
we show hereafter that stp is not appropriate for the design of error-sensitive proof-
labelling schemes.

Proposition 3.4. stp does not admit any error-sensitive proof-labelling scheme.

We illustrate the underlying idea of the following proof with Figure 3.1.

Proof. Let Pn be the n-node path u1, u2, . . . , un with n even. Let `0, `1, and `2 be
labellings defined by `1(ui) = ui+1 for all 1 ≤ i < n, and `1(un) = ⊥; `2(ui) = ui−1 for
all 1 < i ≤ n, and `2(u1) = ⊥; and `3(ui) = ui−1 for all 1 < i ≤ n

2
, `3(ui) = ui+1 for all

n
2

+ 1 ≤ i < n, and `3(u1) = `3(un) = ⊥. We have (Pn, `1) ∈ stp and (Pn, `2) ∈ stp,
while the distance from (Pn, `3) to stp is at least n

2
. Let (p,v) be a proof-labelling

scheme for stp. Consider the case of (Pn, `3) where every ui, i = 1, . . . , n
2
, is given the

certificate assigned by p to ui in (Pn, `2), and every ui, i = n
2

+ 1, . . . , n, is given the
certificate assigned by p to ui in (Pn, `1). With such certificates, (Pn, `3) is rejected
by v at un

2
and un

2
+1 only.
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Figure 3.1: We describe the idea of the proof of Proposition 3.4. The two first instances
are yes-instances for the language (spanning trees encoded with pointers). Thus there exist
two certificate assignments (the blue and the yellow ones) such that every node accept in
both instances. Consider now the third instance, which is a no-instance. By copying the
certificates in a smart way, the verifier can make sure that only two nodes will reject.

3.3 Characterization

We now define the notion of local stability, which allows us to characterize the dis-
tributed languages admitting an error-sensitive proof-labelling scheme. This notion
naturally pops up in the context of proof-labelling schemes [82] and locally checkable
proofs in general [67]. Indeed, in these latter frameworks, languages that are “hard” to
prove, in the sense that they require certificates of large size (typically of Ω(n2) bits),
are not locally stable, in the sense that glueing together two legal labelled graphs, say
by connecting them by an edge, results in a labelled graph which can be very far from
being legal. Local stability also naturally pops up in the context of the classical con-
struction tasks which admit local algorithms, such as (∆ + 1)-colouring and MIS [87].
Indeed, those tasks share the property that any partial solution can be extended to a
larger solution without modifying the already assigned labels. Extending the partial
solution actually only depends on the “border” of the current partial solution.

More specifically, let G be a graph, and let H be a subgraph of G, that is, a graph
H such that V (H) ⊆ V (G), and E(H) ⊆ E(G). We denote by ∂GH the set of nodes
at the boundary of H in G, that is, which belongs to V (H), and are incident to an
edge in E(G) \ E(H). Given a labelling ` of a graph G, and a subgraph H of G, the
labelling `H denotes the labelling of H induced by ` restricted to the nodes of H:

`H(v) =

{
`(v) if v ∈ V (H)
∅ otherwise (where ∅ denotes the empty string).

See Figure 1.9 in the introduction. Roughly, a distributed language L is locally
stable if, by copy-pasting parts of legal labellings with small cuts between these parts,
the resulting labelled graph is not too far from being legal. More precisely, let G
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be a graph, and let H1, . . . , Hk be a family of connected subgraphs of G such that
(V (Hi))i=1,...,k is a partition of V (G). For every i ∈ {1, . . . , k}, let us consider a
labelled graph (Gi, `i) ∈ L such that Hi is a subgraph of Gi. Let ` be the labelling of
G defined as ` =

∑k
i=1 `i, i.e. for every v ∈ V (G), `(v) = `i(v) where i is such that

v ∈ V (Hi). We say that such a labelled graph (G, `) is induced by the labelled graphs
(Gi, `i), i = 1, . . . , k, via the subgraphs H1, . . . , Hk.

Definition 3.2. A language L is locally stable if there exists a constant β > 0,
such that, for every labelled graph (G, `) induced by labelled graphs (Gi, `i) ∈ L, i =
1, . . . , k, via subgraphs H1, . . . , Hk, the edit-distance between (G, `) and L is at most
β | ∪ki=1 ∂GHi ∪ ∂GiHi|.

That is, the labelled graph resulting from cut-and-pasting parts of legally labelled
graphs (Gi, `i), i = 1, . . . , k, is at edit-distance from L upper bounded by the number
of nodes at the boundary of the subgraphs Hi in G and Gi, and is independent of the
number of nodes in each of these subgraphs Hi, i = 1, . . . , k.

We have now all ingredients to state our characterization result:

Theorem 3.1. Let L be a distributed language. L admits an error-sensitive proof-
labelling scheme if and only if L is locally stable.

Proof idea. We first show that having an error-sensitive proof-labelling scheme implies
local stability. Consider a labelled graph (G, `) induced by labelled graphs (Gi, `i)
in L. As the (Gi, `i) are yes-instances, for each of them there exists a certificate
assignment such that all nodes accept. Consider a proof assignment for (G, `) that is
a patch-work of these assignments for the ((Gi, `i))i. When we run the verifier, only
the nodes at the border will reject. Because of the error-sensitivity, this implies that
the distance from the instance to the language is roughly the number of border nodes.
Thus the language is locally stable.

For the other direction, we consider the universal scheme. Remember that in this
scheme, the verifier considers its certificate as a description of the current labelled
graph, check that the described graph is in the language, and that it is consistent
with its neighbourhood. The argument is the following. Loosely speaking, if there
is an area of the graph where the nodes accept, then it means that the nodes agree
on the on the description of the graph, and that this is a graph in the language. In
general, there are several such areas in the graph, each of them with a distinct graph
description. Only the nodes at the border of these areas reject (because they realize
that the prover does not provide the same description to every node). These areas can
be interpreted as the component for local stability, and the description correspond
to the different ((Gi, `i))i. As only the border nodes are rejecting, the distance must
be small, because we assume local stability. This in turn implies that the universal
scheme is error-sensitive.

Proof. We first show that if a distributed language L admits an error-sensitive proof-
labelling scheme then L is locally stable. So, let L be a distributed language, and let
(p,v) be an error-sensitive proof-labelling scheme for L with sensitivity parameter α.
Let (G, `) be a labelled graph induced by labelled graphs (Gi, `i) ∈ L, i = 1, . . . , h, via
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the subgraphs H1, . . . , Hh for some h ≥ 1. Since, for every i ∈ {1, . . . , h}, (Gi, `i) ∈ L,
there exists a certificate function ci such that v accepts at every node of (Gi, `i)
provided with the certificate function ci. Now, let us consider the labelled graph
(G, `), with certificate ci(u) on every node u ∈ V (Hi) for all i = 1, . . . , h. With
such certificates, the nodes in V (Hi) that are not in ∂GHi ∪ ∂GiHi have the same
close neighbourhood in (G, `) and in (Gi, `i). Therefore, they accept in (G, `) the
same way they accept in (Gi, `i). It follows that the number of rejecting nodes is
bounded by | ∪hi=1 ∂GHi ∪ ∂GiHi|, and therefore (G, `) is at edit-distance at most
1
α
| ∪hi=1 ∂GHi ∪ ∂GiHi| from L. Hence, L is locally stable, with parameter β = 1

α
.

It remains to show that if a distributed language is locally stable then it admits an
error-sensitive proof-labelling scheme. Let L be a locally stable distributed language
with parameter β. We prove that the universal proof-labelling scheme (puniv,vuniv)
for L (cf. Section 3.2) is error-sensitive for some parameter α depending only on β.
Let (G, `) /∈ L, and let us fix some certificate function c. The verifier vuniv rejects in
at least one node. We show that if vuniv rejects at k nodes, then the edit-distance
between (G, `) and L is at most k/α for some constant α > 0 depending only on β.
For this purpose, let us consider the outputs of vuniv applied to (G, `) with certificate
c, and let us define the graph G′ as the graph obtained from G by removing all
edges for which vuniv rejects at both extremities. Note that the graph G′ may not be
connected.

Let C be a connected component of G′, with at least one node u at which vuniv
accepts. Let c(u) = (T,M,L) be the certificate of node u, as it should be in the
universal proof-labelling scheme as described in section 3.2. Since vuniv accepts at u,
node u shares the same triple (T,M,L) with all its neighbours in G′, as vuniv would
reject at u otherwise. Similarly, for every neighbour v of u, it must be the case that
v agrees on (T,M,L) with each of its neighbours w in G′, as otherwise vuniv would
have rejected at both v and w, and the edge {v, w} would have been removed from
G. It follows that all nodes in C share the same triple (T,M,L) as the one given
to the accepting node u. Also (M,L) coincides with the local structure of C and its
labelling ` at all accepting nodes in C. Moreover, since vuniv accepts at u, we have
(M,L) ∈ L. We denote by (GC , `C) this labelled graph in L.

Let C be a connected component of G′ where all nodes reject. In fact, by construc-
tion, such a component is composed of just one isolated node. For every such isolated
rejecting node u, let us denote by (GC , `C) a labelled graph composed of a unique
node, with ID equal to the ID of u, and with labelling `C(u) such that (GC , `C) ∈ L.

Let C be the set of all connected components of G′. Let (G, `′) be the graph
induced by labelled graphs (GC , `C) via the subgraphs C ∈ C. Note that (G, `) and
(G, `′) coincide, but for the isolated rejecting nodes. By local stability, (G, `′) is at
edit-distance at most β |∪C∈C∂GC∪∂GCC| from L. Now, the nodes in ∪C∈C∂GC∪∂GCC
are exactly the rejecting nodes. Thus the number k of rejecting nodes satisfies k =
| ∪C∈C ∂GC ∪ ∂GCC|, and the edit-distance from (G, `′) to L is at most β k. On the
other hand, by construction, the edit-distance between (G, `′) and (G, `) is at most
the number of isolated rejecting nodes, that is, at most k. Therefore, the edit-distance
between (G, `) and L is at most (β + 1) k. Thus, the universal proof-labelling scheme
is error-sensitive, with parameter α = 1

β+1
.
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Proposition 3.3 can be viewed as a corollary of Theorem 3.1 as it is easy to show
that regular is not locally stable. Nevertheless, local stability may not always
be as easy to establish, because it is based on merging an arbitrary large number of
labelled graphs. We thus consider another property, called strong local stability, which
is easier to check, and which provides a sufficient condition for the existence of an
error-sensitive proof-labelling scheme. Given two labelled graphs (G, `) and (G′, `′),
and a subgraph H of both G and G′, the labelling `− `H + `′H for G is the labelling
such that, for every node v ∈ V (G), (` − `H + `′H)(v) = `′H(v) if v ∈ V (H), and
(`− `H + `′H)(v) = `(v) otherwise.

Definition 3.3. A language L is strongly locally stable if there exists a constant
β > 0, such that, for every graph H, and every two labelled graphs (G, `) ∈ L and
(G′, `′) ∈ L admitting H as a subgraph, the labelled graph (G, ` − `H + `′H) is at
edit-distance at most β |∂G′H + ∂GH| from L.

The following lemma states that strong local stability is indeed a notion that is
at least as strong as local stability. For convenience, we change the notation of the
labellings from `i to `(i).

Lemma 3.2. If a language L is strongly locally stable, then it is locally stable.

Proof idea. The main difference between the two notions is that in the strongest
definition, there are only two labellings that come into play, whereas in the classic
definition, there is an arbitrary number of labellings. (Another more subtle aspect is
that the definition of the border is not exactly the same.) The idea of the proof is
to take an arbitrary good labelling of G, and to replace it little by little by labellings
from the (Gi, `i). At each step only two labellings come into play. The end result is
(G, `) and its distance to the original good labelling of G, is at most the size of the
union the borders of each step. This union is actually the set of border nodes for the
classic definition.

Proof. Let us consider a strongly locally stable language L, with parameter β, and
a labelled graph (G, `) induced by labelled graphs (Gi, `

(i)) ∈ L, i = 1, . . . , h, via
the subgraphs H1, . . . , Hh. Let ρ(0) be a labelling of G such that (G, ρ(0)) ∈ L. We
iteratively relabel every node of Hi, i = 1, . . . , h, by their corresponding labels in `(i),
starting from (G, ρ(0)). More precisely, let us first consider (G, ρ(0) − ρ(0)

H1
+ `

(1)
H1

). H1

is a subgraph of both G and G1. Therefore, since L is strongly locally stable, we get

dist
((
G, ρ(0) − ρ(0)

H1
+ `

(1)
H1

)
,L
)
≤ β |∂GH1 ∪ ∂G1H1|.

Let ρ(1) be a labelling of G such that (G, ρ(1)) ∈ L and

dist
((
G, ρ(0) − ρ(0)

H1
+ `

(1)
H1

)
,
(
G, ρ(1)

))
≤ β |∂GH1 ∪ ∂G1H1|.

Let us assume that, for some j ∈ {1 . . . h − 1}, we have already established the
existence of labellings ρ(i) of G, i = 1, . . . , j, such that, for every i = 1, . . . , j,

dist
((
G, ρ(i−1) − ρ(i−1)

Hi
+ `

(i)
Hi

)
,
(
G, ρ(i)

))
≤ β |∂GHi ∪ ∂GiHi|



3.3. CHARACTERIZATION 67

with (G, ρ(i)) ∈ L. Again, since L is locally stable, we get that

dist
((
G, ρ(j) − ρ(j)

Hj+1
+ `

(j+1)
Hj+1

)
,L
)
≤ β |∂GHj+1 ∪ ∂Gj+1

Hj+1|.

We set ρ(j+1) as a labelling of G such that (G, ρ(j+1)) ∈ L, and

dist
((
G, ρ(j) − ρ(j)

Hj+1
+ `

(j+1)
Hj+1

)
,
(
G, ρ(j+1)

))
≤ β |∂GHj+1 ∪ ∂Gj+1

Hj+1|.

In this way, we construct a sequence of labellings ρ(1), . . . , ρ(h) such that, for every
i = 1, . . . , h, (G, ρ(i)) ∈ L, and

dist
((
G, ρ(i−1) − ρ(i−1)

Hi
+ `

(i)
Hi

)
,
(
G, ρ(i)

))
≤ β |∂GHi ∪ ∂GiHi|.

Now, since `H1 = `
(1)
H1
, we get that, restricted to H1,

dist
((
G, `

)
,
(
G, ρ(0) − ρ(0)

H1
+ `

(1)
H1

))
= 0.

Therefore, restricted to H1,

dist
((
G, `

)
,
(
G, ρ(1)

))
≤ β|∂GH1 ∪ ∂G1H1|.

It follows that, restricted to H1 ∪H2,

dist
((
G, `

)
,
(
G, ρ(1) − ρ(1)

H2
+ ρ

(2)
H2

))
≤ β|∂GH1 ∪ ∂G1H1|.

as a consequence, we get that, restricted to H1 ∪H2,

dist
((
G, `

)
,
(
G, ρ(2)

))
≤ β

(
|∂GH1 ∪ ∂G1H1|+ |∂GH2 ∪ ∂G2H2|

)
.

More generally, restricted to H1 ∪ · · · ∪Hh,

dist
((
G, `

)
,
(
G, ρ(h)

))
≤ β

h∑
i=1

(
|∂GHi ∪ ∂GiHi|

)
.

Since the sets ∂GHi ∪ ∂G1Hi, i = 1, . . . , h, are disjoint, and since V (G) = ∪hi=1V (Hi),
it follows that

dist
((
G, `

)
,
(
G, ρ(h)

))
≤ β

∣∣∣ h⋃
i=1

(
∂GHi ∪ ∂GiHi

)∣∣∣.
That is, L is locally stable, as desired.

In fact, strong local stability is a notion strictly stronger than local stability,
although they coincide on bounded-degree graphs.
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Proposition 3.5. There are languages that are locally stable but not strongly locally
stable. However, all locally stable languages on bounded degree graphs are strongly
locally stable.

Proof. To show that there are languages that are locally stable but not strongly locally
stable, we consider the following language L. In L, the labelling ` describes a set of
edges H`, and a colouring of each node in blue or red, where H` must be made of
subgraphs that are stars, and every star must be monochromatic. This language has
a proof-labelling scheme. On legal instances, the prover assigns to every center u of a
star a certificate c(u) = 0, and to every other node u of a star a certificate c(u) = 1.
All the others are given an empty certificate. The verifier checks that a node with
a certificate 1 has exactly one neighbour in H`, that this neighbour has certificate 0
and that it has the same colour. Also it checks that not two adjacent nodes can have
certificate 0. This is a proof-labelling scheme for L, which is error-sensitive. Indeed,
just like for the language Acyclic Subgraph, one can fix the labels locally, by
removing the faulty edge from H`. By Theorem 3.1, this language is locally stable.
However, it is not strongly locally stable. Indeed, consider a first instance (G, `) that
is a star on n nodes with only blue nodes, and a second instance (G, `′), on the same
graph, but with only red nodes. Now consider (G, `− `H + `′H), where H contains the
center, and has half of the nodes of G. This instance is at distance roughly n/2 from
L, while ∂G′H + ∂GH contains just a single node, the center.

We now show that all locally stable languages on bounded degree graphs are
strongly locally stable. Let ∆ ≥ 1, and let F∆ be the family of graphs with maximum
degree ∆. Let L be a locally stable language on graphs in F∆. Let us consider
a connected graph H, and two labelled graphs (G, `) ∈ L and (G′, `′) ∈ L, with
G ∈ F∆, and G′ ∈ F∆, both admitting H as a subgraph. Let (G, `− `H + `′H) be the
labelled graph induced by labelled graphs (G, `) and (G′, `′) via the subgraph H. We
view (G, `− `H + `′H) as induced by (G, `) and (G′, `′) via the subgraphs G \H and
H. By local stability, we get that the distance from (G, `− `H + `′H) to L is at most
β | (∂GH ∪ ∂G′H)∪ (∂G(G \H) ∪ ∂G(G \H)) |. Now, |∂G(G\H)| ≤ ∆|∂GH|, because
each edge from the cut (H,G \H) must have an endpoint in H and these endpoints
have at most degree ∆. As a consequence the distance from (G, `− `H + `′H) to L is
at most β(∆ + 1)|∂GH ∪ ∂G′H|, and the strong stability follows.

Thanks to the characterization in Theorem 3.1, and to the sufficient condition of
Lemma 3.2, we immediately get error-sensitiveness for the language

leader =
{

(G, `) :∀v ∈ V (G), `(v) ∈ {0, 1}
and there exists a unique v ∈ V (G) for which `(v) = 1

}
.

Corollary 3.1. leader admits an error-sensitive proof-labelling scheme.

Also, one can show that the language STl of spanning trees, whenever encoded by
adjacency lists, admits an error-sensitive proof-labelling scheme. This is in contrast
to Proposition 3.4.

Corollary 3.2. stl admits an error-sensitive proof-labelling scheme.
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Proof idea. The proof use the following natural path. In the definition of strong local
stability we consider a labelling (G, ` − `H + `′H). This labelling corresponds to a
tree, when restricted to H, or to G \H. The hybrid labelling may contain cycles and
disconnected components. Then one has to show that the number of cycles or distinct
connected components is upper bounded by the number of nodes in the border, up
to multiplicative constants.

Proof. We show that stl is strongly locally stable. Let us consider two labelled graphs
(G, `) ∈ stl and (G′, `′) ∈ stl, both admitting H as a subgraph. We show that
(G, `− `H + `′H) is not far from L. For this purpose, we aim at modifying the labels of
few nodes so that to form a spanning tree of G. First, for every node u ∈ ∂GH∪∂G′H,
we modify `′H(u) such that the label of u becomes consistent with its neighbourhood
in G. That is, all edges listed in the label exist in G, and they match edges listed by
the neighbours of u in G. After this modification, which impacts only |∂GH ∪ ∂G′H|
nodes, the resulting labelling of the nodes in G encodes a set of edges F ⊆ E(G).
However, F may not be a spanning tree, and it may include cycles, and may even be
not connected.

Let Ĝ be the graph obtained from G after we remove all edges in E(H), and all
nodes in V (H)\ (∂GH ∪∂G′H). Note that V (H)∪V (Ĝ) = V (G) and V (H)∩V (Ĝ) =

∂GH ∪ ∂G′H. The set F is equal to the union of the edges described by ` on Ĝ, and
of the edges described by `′ on H. Indeed consider an edge e ∈ F . If both endpoints
of e are in Ĝ, then this edge is encoded by ` at its two endpoints, as the labels of
these endpoints are copied from `, and the modification of `− `H + `′H performed at
the nodes in ∂GH ∪ ∂G′H does not impact such nodes. If e has both endpoints in
H \ (∂GH ∪ ∂G′H) then, by the same reasoning, this edge is encoded by `′ at its two
endpoints. If e has both endpoints in ∂GH∪∂G′H, then the modification of `−`H+`′H
performed at the nodes in this latter set did not affected edge e, which implies that
e was originally encoded in `′. Finally, if e has one endpoint in ∂GH ∪ ∂G′H, and the
other one outside ∂GH ∪ ∂G′H, then, from by the modification of ` − `H + `′H , the
edge e was present in ` in at least one of its extermities.

As ` is the labelling of a spanning tree of G, F restricted to Ĝ is a spanning forest
of Ĝ. Similarly, as `′ is a spanning tree of G′, F restricted to H is a spanning forest
of H. Also, since V (Ĝ) ∩ V (H) = ∂GH ∪ ∂G′H, it follows that, in both forests, every
tree contains a node of V (Ĝ)∩V (H). Let us denote by nĜ, mĜ, and sĜ the number of
nodes, edges, and connected components of F restricted to Ĝ, respectively. Similarly,
let us denote by nH , mH , and sH the same parameters for H. Since the connected
components of F restricted to Ĝ, and to H, are forests, we get that:

mĜ = nĜ − sĜ and mH = nH − sH (3.1)

Moreover, since each connected component contains a node of the border, we get

sĜ ≤ |V (Ĝ) ∩ V (H)| and sH ≤ |V (Ĝ) ∩ V (H)|. (3.2)

Now, let us consider the whole set F , and let us define nF , mF , and sF as the
number of nodes, edges, and connected components of F , respectively. By definition,
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mF = mĜ +mH . Thus, by Eq. (3.1), we get that

mF = nĜ + sĜ + nH + sH .

Moreover, by definition, nF = nĜ + nH − |V (Ĝ) ∩ V (H)|. Therefore,

mF = nF + |V (Ĝ) ∩ V (H)|+ sĜ + sH .

We can now bound the number of edges that we need to remove from F in order to
get a spanning forest (with the same number of connected components). For such a
forest, it must hold that its number of edges, m, satisfies m = nF + sF . Therefore,

mF −m = (nF + |V (Ĝ) ∩ V (H)|+ sĜ + sH)− (nF + sF )

≤ |V (Ĝ) ∩ V (H)|+ sĜ + sH

≤ 3|V (Ĝ) ∩ V (H)|,

where the last equality holds by Eq. (3.2). Thus, by removing at most 3|∂GH ∪∂G′H|
edges from F , we get a spanning forest of G with at most |∂GH ∪ ∂G′H|connected
components. Therefore, by adding |∂GH ∪ ∂G′H| − 1 edges, one can construct a
spanning tree of G. So, in total, transforming F into a spanning tree required to
modify at most 4|∂GH ∪∂G′H| edges. This may impact the labels of at most 8|∂GH ∪
∂G′H| nodes. As the labels of the nodes in ∂GH ∪∂G′H were also modified at the very
beginning of the construction, it follows that the number of node labels impacted by
our spanning tree construction is at most 9|∂GH∪∂G′H|. It follows that stl is strongly
locally stable with parameter at most 9, which implies that it admit an error-sensitive
proof-labelling scheme with sensitivity parameter at least 1

9
.

Also, Theorem 3.1 allows us to prove that minimum-weight spanning tree (MST)
is error-sensitive (whenever the tree is encoded locally by adjacency lists). More
specifically, let

mstl =
{

(G, `) : ∀v ∈ V (G), `(v) ⊆ N(v) and
( ⋃
v∈V (G)

⋃
u∈`(v)

{u, v}
)
forms a MST

}
.

(3.3)

Corollary 3.3. mstl admits an error-sensitive proof-labelling scheme.

Proof idea. This proof is more involved than the ones for simple spanning trees. This
is because minimum spanning trees are more constrained than spanning trees, hence,
changing a part of the graph may change the minimum spanning tree much more
than it changes a spanning tree. The key claim is that actually there is another
type of stability of minimum spanning tree. More precisely, consider two graphs
with a subgraph H in common. There exists two subsets of edges Smax and Smin,
with Smin ⊆ Smax such that: (1) the MSTs of the two graphs restricted to H, call
them (Mi)i, are such that: Smin ⊆ Mi ⊆ Smax, and (2) the difference between |Smax|
and |Smin| can basically be bounded by the number of border nodes involved. To
establish this result, we analyse the runs of Kruskal algorithm on the different graphs
at hand.
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Proof. We show that mstl is strongly locally stable. Let us consider a graph H, and
two labelled graphs (G, `) ∈ mstl and (G′, `′) ∈ mstl admitting H as a subgraph.
We show that the labelled graph (G, ` − `H + `′H) is not far from mstl. Let T be
the spanning tree of G defined by the set of edges defined by `, and let T ′ be the
spanning tree of G′ defined by the set of edges defined by `′. Let F the edge set
defined by ` − `H + `′H on G, after the same modification of that labelling on the
nodes of ∂GH ∪ ∂G′H as in the proof of Corollary 3.2, i.e., the labels of ∂GH ∪ ∂G′H
are modified so that the adjacency lists of these nodes in their labels match the labels
of their neighbours. Let Ĝ be the graph defined as in the proof of Corollary 3.2, that
is, Ĝ is the graph obtained from G after removing all edges in E(H), and all nodes
in V (H) \ (∂GH ∪ ∂G′H). Note that F is obtained from the union of the two forests
that came form ` and `′, on E(Ĝ) and E(H), respectively. Hence, every connected
component of F contains a node in ∂GH ∪ ∂G′H.

Recall that Kruskal algorithm constructs an MST by considering the edges in
increasing order of their weights, and by adding the currently considered edge to the
current MST if and only if this edge does not create a cycle with the previously added
edges. It is known that every MST of a graph can be generated by Kruskal algorithm,
by breaking ties between edges of identical weight in a way to add all edges of the
desired MST. Let O be the ordering of the edges of G that leads to the tree T , and
let O′ be the ordering of the edges of G′ that leads to the tree T ′. Let O′H , be the
same ordering as O′ but restricted to the edges of H.

Let G1 be the graph obtained from H by adding a new node u connected to every
node of ∂GH + ∂G′H by edges with weights smaller than the smallest weight in E(G)
and in E(G′). Let O1 be the ordering of E(G1) obtained by concatenating O′H to an
arbitrary ordering of the edges incident to u. Let T1 be the MST of G1 that Kruskal
algorithm constructs in G1 when it uses the ordering O1. Also let G2 be a copy of H,
let T2 be the MST constructed by Kruskal algorithm on G2 using O2 = O′H . Finally,
we define the ordering O3 of the edges of G as the ordering such that the edges of
E(Ĝ) appear in the same order as in O, the edges of E(H) appear in the same order
as in O′, and the edges of E(T ) ∩ E(Ĝ) have priority. Let T3 be the spanning tree
defined by Kruskal algorithm on G with O3. T3 is necessarily equal to T on the edges
of Ĝ because they are MST of the same graph, and because the edges of E(T )∩E(Ĝ)
have priority in O3.

Claim 3.1. The following inclusions hold.

E(T1) ∩ E(H) ⊆ E(T ′) ∩ E(H) ⊆ E(T2) ∩ E(H).

E(T1) ∩ E(H) ⊆ E(T3) ∩ E(H) ⊆ E(T2) ∩ E(H).

Before proving Claim 3.1, let us show how to complete the proof using that Claim.
By Claim 3.1, on H, T3 can be transformed into T ′ by changing only edges of E(T2) \
E(T1). Moreover E(T2) ∩ E(H) and E(T1) ∩ E(H) are a spanning forests of H with
at most |∂GH ∪ ∂G′H| trees in it, because, as in the proof of Corollary 3.2, every tree
contains at least a node of ∂GH ∪ ∂G′H. We get that

|(E(T2) ∩ E(H)) \ (E(T1) ∩ E(H))| ≤ |∂GH ∪ ∂G′H|.
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Therefore, restricted to the graph H, the tree T3 can be transformed into the tree
T ′ by adding or removing at most |∂GH ∪ ∂G′H| edges. Now, as T3 is equal to T on
Ĝ, E(T3) can be transformed into F by changing at most |∂GH ∪ ∂G′H| edges. Thus
F is at edit-distance at most 2|∂GH ∪ ∂G′H| from a minimum spanning tree of G.
Since the modification we made at the very beginning to ensure the consistency of
the labels affected at most |∂GH ∪ ∂G′H| nodes, it follows that the edit-distance from
(G, ` − `H + `′H) to the language is most 3|∂GH ∪ ∂G′H|, and thus the language is
strongly locally stable.

It just remains to prove Claim 3.1. We show the two sets of inclusion at once.
Let M be either E(T ′) or E(T3), and let Ω be the corresponding ordering of the
edges leading to T ′ or T3. Note that, by construction Ω, O1, and O2 are consistent
on the edges that they have in common, i.e., on all the edges of E(H). Let Otot be
an ordering that is consistent with the three orderings Ω, O1 and O2. We can run
Kruskal algorithm on the three instances G, G1 and G2 with Otot. Let M

(i)
1 , M (i)

2 and
M (i), be the subset of edges in E(T1), E(T2), and M , respectively, that have been
added by Kruskal algorithm to the current tree before considering the ith edge in
Otot. We show, by induction on i, that the three following properties hold for every
i ≥ 1:

P1: M (i)
1 ∩ E(H) ⊆M (i) ∩ E(H) ⊆M

(i)
2 ∩ E(H);

P2: if two nodes of H are linked by a path in M
(i)
2 then they are also linked by a

path in M (i);

P3: if two nodes of H are linked by a path in M (i) then they are also linked by a
path in M (i)

1 .

These properties are trivially true for i = 1, as all setsM (1)
1 ,M (1)

2 andM (1) are empty.
Suppose that P1, P2, and P3 hold are true for i−1, and consider i-th edge e = {u, v}
considered by Kruskal algorithm in Otot for T1, T2 and T ′ or T3. We consider two
cases.

Consider first the case where e /∈ E(H). Then e appears either only in O1, or
only in Ω. If e appears only in O1, then independently of whether Kruskal algorithm
takes e or not, the three properties P1, P2, and P3 hold for i. If e appears only in
Ω, then, clearly, P1 and P2 hold for i. The only scenario for which P3 may become
wrong for i is if e is added to M , and this addition creates a new path between two
nodes x and y of H, while there are no paths between x and y in M (i)

1 . Let us show
that this does not happen. Indeed, since e /∈ E(H), such a path must pass through
the border of H, which is included in ∂GH ∪ ∂′GH (this holds for both choices for M ,
that is, either E(T ′) or E(T3)). In particular adding e to the set of edges taken by
Kruskal algorithm so far connects two nodes of the border of H. Now, all the nodes
of ∂GH ∪∂′GH are already connected inM (i)

1 . Indeed, the edges of E(G1)\E(H) have
smaller weights. Therefore, all the nodes of ∂GH ∪ ∂′GH are connected in M (i)

1 , and
thus it is not possible that there is a path created by adding e in M that does not
already exists in M (i)

1 .
Second, consider the case e ∈ E(H). Then e appears in all the orderings. Let us

consider two subcases depending on whether or not e is taken in M .
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• If e is taken in M , then e is not closing a cycle in M (i−1), and thus, thanks to
P2, e is not closing any cycle in M (i−1)

2 either. Thus e is also taken in T2, and
P1 holds. P2 still holds as well since e is added to both sets. If e is taken in
T1 then P3 holds. Instead if e is not taken in T1, then its two extremities were
already linked by a path, and P3 also holds.

• If e is not taken in M , then e closes a cycle in M (i−1). Therefore, by P3, e also
closes a cycle in M (i−1)

1 , and thus it is not taken in T1 either, and P1 holds. P3
still holds as we have added no edges to M . If e is not taken in T2 then P2
holds. And if e is taken in T2, then the fact that e is not taken in M implies
that the nodes were already connected, and thus again P2 holds.

This completes the proof of Claim 3.1, and thus the proof of Corollary 3.3.

3.4 Compact error-sensitive proof-labelling schemes

The characterization of Theorem 3.1 together with Lemma 3.1 implies an upper bound
of O(n2) bits on the certificate size for the design of error-sensitive proof-labelling
schemes for locally stable distributed languages. In this section, we show that the
certificate size can be drastically reduced in certain cases. It is known that spanning
tree and minimum spanning tree have proof-labelling schemes using certificates of
polylogarithmic size, Θ(log n) bits [7, 82], and Θ(log2 n) bits [79], respectively. We
show that the proof-labelling schemes for spanning tree and MST in [7, 79, 82] are
actually error-sensitive.

Recall that Proposition 3.4 proved that spanning tree does not admit any error-
sensitive proof-labelling schemes whenever the tree is encoded at each node by a
pointer to its parent: STp does not have any error-sensitive proof-labelling scheme.
However, we show that STl, i.e., the language of spanning trees encoded by adjacency
lists, does have a very compact error-sensitive proof-labelling scheme.

Theorem 3.2. STl has an error-sensitive proof-labelling scheme with certificates of
size O(log n) bits.

Proof. We show that the classical proof-labelling scheme (p,v) for STl is error-
sensitive. We illustrate the proof with an example, see figure 3.2 for the graph we
consider.

On instances of the language, i.e., on labelled graphs (G, `) where ` encodes a
spanning tree T of G, the prover p chooses an arbitrary root r of T , and then assigns
to every node u a certificate (I(u), P (u), d(u)) where I(u) = ID(r), P (u) is the ID of
the parent of u in the tree (or ID(u) if u is the root), and d(u) the hop-distance in
the tree from u to r. The verifier v at every node u first checks that:

• the adjacency lists are consistent, that is, if u is in the list of v, then v is in the
list of u;

• there exists a neighbour of u with ID P (u), we denote it p(u);
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Figure 3.2: We consider the graph above. The edges of the input are black, the edges that
are in the communication graph, but not in the input, are grey. The input does not describe
a spanning tree, as the subgraph has two cycles, and is not even connected.

• the node u has the same root-ID I(u) as all its neighbours in G;

• d(u) ≥ 0.

Then, the verifier checks that:

• if ID(u) 6= I(u) then d(p(u)) = d(u) − 1, and for every other neighbour w in `,
d(w) = d(u) + 1 and p(w) = u;

• if ID(u) = I(u) then P (u) = ID(u), d(u) = 0, and every neighbour w of u in `
satisfies d(w) = d(u) + 1 and p(w) = u.

See figures 3.3 and 3.4 for an example of certificate assignment, and the behaviour
of the verifier.
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Figure 3.3: This figure illustrates the certificates provided by the prover. The numbers are
the distances, and the arrows show the orientation of the pointers. The nodes in the blue
rectangle have the ID of the dark blue node as their root-ID in the certificates. The ones in
the yellow rectangle have the ID of the orange node.

By construction, if (G, `) ∈ STl, then v accepts at every node. Also, it is easy to
check that if (G, `) /∈ STl, then, for every certificate function c, at least one node
rejects.

To establish error-sensitivity for the above proof-labelling scheme, let us assume
that v rejects at k ≥ 1 nodes with some certificate function c. Then, let (G′, `′) be
the labelled graph coinciding with (G, `) except that all edges for which v rejects at
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Figure 3.4: In this picture, the red nodes are the ones that reject, when the verifier is run
on the graph with the certificates of the previous figure. The red edges have both endpoints
rejecting. The nodes on the top left corner reject because they do not have the same root-ID.
The ones on the bottom, linked by an edge, reject, because they detect that the edge linking
them is in the input but is not oriented. The last node on the bottom rejects because it has
distance zero and a pointer to itself, as if it were the root, but its ID is not the root-ID of
the certificate. Finally, the endpoints of the edge on the right reject, because the distances
are not consistent with the pointers.

both endpoints are removed both from G, and from the adjacency lists in ` of the
endpoints of these edges. Note that modifying ` into `′ only requires to edit labels of
nodes that are rejecting.

The graph G′ may be disconnected. Let (C, `′C) be a connected component of
(G′, `′). See figure 3.5.

Figure 3.5: After removing the edges whose two endpoints reject, we are left with the graph
of this last figure. Note that the communication graph now has two connected components.
Also remark that the edges of the input that are left, form a forest. When running the
verifier again on this graph, some nodes still reject, they are coloured in red. These nodes
are the ones such that: (1) if we consider the orientation given by the certificates, they have
the role of the root of a tree, but (2) they do not have the ID that corresponds to root-ID.
By putting back the edges of the communication graph, only three edges are needed to get
a proper spanning tree.

We claim that the edges of `′C form a forest in C. First note that if there is a cycle
in the edges of `′C , then this cycle already existed in ` because we have added no edges
when transforming ` into `′. Consider such a cycle in `, and the certificates given by
p. Either an edge is not oriented, that is no node uses this edge to point to its parent,
or the cycle is consistently oriented and then distances are not consistent. In both
cases two adjacent nodes of the cycle would reject when running v. Then this cycle
cannot be present in `′C , as at least one edge has been removed. As a consequence `′C
form a forest of C. In C, if a node is connected to no other node by an edge of `′C ,
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we will consider it as a tree of one node. With this convention, `′ is a spanning forest
of G′.

We will now bound the number of trees in `′ by a function of k. The number of
trees in `′ is equal to the sum of the number of trees in each component (C, `′C).

Let us run v on graph (C, `′C), and let kC be the number of rejecting nodes.
Observe that for every two nodes u and v in a component C, it holds that I(u) = I(v).
Indeed, otherwise, there would exist two adjacent nodes u and v in C with I(u) 6= I(v),
resulting in v rejecting at both nodes, which would yield the removal of {u, v} from
G. Consequently, at most one tree of `′C has a root whose ID corresponds to the ID
given in the certificate. Then the number of trees in `′C is bounded by kC + 1, and
the total number of trees is bounded

∑
C kC + 1 = (

∑
C kC) + |C|.

Note that because of the design of the proof-labelling scheme, the nodes that
accept when running v on (G, `) also accept in (G′, `′). Then

∑
C kC ≤ k.

Let VC be the set of nodes of C. It is easy to see that for all C, there exists a
node of VC that rejects when we run v on (G, `). Indeed if there is no rejecting node,
then no edge between C and the rest of the graph is removed, and then there is only
one component in the graph. But then all node accept, which contradict the fact that
k ≥ 1. Then |C| ≤ k.

So overall all `′ encodes a spanning forest with at most 2k trees. Such a labelling
can thus be modified to get a spanning tree by modifying the labels of at most 4k
nodes. That is, (p,v) is error-sensitive with parameter α ≥ 1

4
.

Finally, we show that the compact proof-labelling scheme in [79, 82] for minimum-
weight spanning tree, as specified in Eq. (3.3) of Section 3.3 is error-sensitive when
the edge weights are distinct.

Theorem 3.3. mstl admits an error-sensitive proof-labelling scheme with certificates
of size O(log2 n) bits.

Hereafter, we provide first a sketch of proof for Theorem 3.3, and then the proof
itself.

Sketch of proof. A classic proof-labelling scheme for mst (see, e.g., [75, 79, 82])
consists in encoding a run of Borůvka algorithm. Recall that Borůvka algorithm
maintains a spanning forest whose trees are called fragments, starting with the forest
in which every node forms a fragment. The algorithm proceeds in a sequence of steps.
At each step, it selects the lightest outgoing edge from every fragment of the current
forest, and adds all these edges to the mst, while merging the fragments linked by
the selected edges. This algorithm eventually produces a single fragment, which is a
mst of the whole graph, after at most a logarithmic number of steps.

At each node u, the certificate of the scheme consists of a table with a logarithmic
number of fields, one for each round of Borůvka algorithm. For each step of Borůvka
algorithm, the corresponding entry of the table provides a proof of correctness for the
fragment including u, plus the certificate of a tree pointing to the lightest outgoing
edge of the fragment. The verifier verifies the structures of the fragments, and the
fact that no outgoing edges from each fragment have smaller weights than the one
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given in the certificate. It also checks that the different fields of the certificate are
consistent (for instance, it checks that, if two adjacent nodes are in the same fragment
at step i, then they are also in the same fragment at step i+ 1).

To prove that this classic scheme is error-sensitive, we perform the same decom-
position as in the proof of Theorem 3.2, removing the edges that have both endpoints
rejecting. We then consider each connected component C of the remaining graph,
together with the subgraph S of that component described by the edges of the given
labelling. In general, S is not a mst of the component C (S can even be disconnec-
ted). Nevertheless, we can still make use of the key property that the subgraph S
is not arbitrarily far from a mst of the component C. Indeed, the edges of S form
a forest, and these edges belong to a mst of the component. As a consequence, it
is sufficient to add a few edges to S for obtaining a mst. To show that S is indeed
not far from being a mst of C, we define a relaxed version of Borůvka algorithm,
and show that the labelling of the nodes corresponds to a proper run of this modified
version of Borůvka algorithm. We then show how to slightly modify both the run of
the modified Borůvka algorithm, and the labelling of the nodes, to get a mst of the
component. Finally, we prove that the collection of msts of the components can be
transformed into a mst of the whole graph, by editing a few node labels only.

Proof. Let G be an edge-weighted graph. For simplicity we assume that all the edge-
weights are distinct, and thus the MST is unique. Recall that the sequential version
of Borůvka algorithm for constructing a MST maintains a forest initially composed
of n trees (called fragments), each reduced to just one node, and proceeds in phases
where, at each phase, one fragment is picked, and the edge with minimum weight
incident to that fragment is added to the forest, resulting in reducing the number of
fragments by one, until a single fragment remains, which forms a MST. As shown
in, e.g., [95], one can run a parallel version of Borůvka algorithm which proceeds in
at most dlog2 ne rounds, where each round consists in merging fragments in parallel.
Note that a merging may involve more than just two fragments during a single round,
so the number of fragments may actually decrease faster than by a factor 2 at each
round.

We show that the proof-labelling scheme for MST described in [79, 82] is error-
sensitive. Recall that, in this proof-labelling scheme, the prover essentially encodes
at each node the run of the parallel version of Borůvka algorithm. More specifically,
the certificate at each node u is divided into dlog2 ne fields, one for each round i =
1, . . . , dlog2 ne, plus an additional one. Each field corresponding to a round in u’s
certificate contains (1) a rooted tree spanning the fragment including u at round i,
pointing at an arbitrary node of the fragment, whose ID we call the ID of the fragment,
with its proof, (2) another rooted tree, also spanning the fragment but pointing to
the endpoint of the lightest edge e outgoing the fragment, with its proof and (3) the
ID of the other endpoint of the edge e, and its weight. The former spanning tree
is used to ensure the connectivity of the fragment, while the latter spanning tree is
used to make sure that the edge e is truly the edge of minimum weight incident to the
fragment. Also a last field is added, with the spanning tree of the whole network using
exactly the edges of the labelling (that should span all the network) and its proof.
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The verifier checks that, for each round, the two spanning trees of the fragment are
correct. It also checks that the run is consistent, that is: (1) two adjacent nodes with
same fragment ID at some round have the same fragment ID and the same lightest
outgoing edge for all further rounds, (2) if an edge is used to merge two fragments at
some round, then its endpoints belong to the same fragment for all remaining rounds,
and (3) if a spanning tree is pointing to an edge, then this edge exists and is used
to merge the fragment with another fragment, (4) the final spanning tree has exactly
the edges of the labelling, and correctly span the whole graph, that is all the nodes
have the same root-ID for this tree. It is proved in [79, 82] that this approach results
in a proof-labelling scheme for mst.

We show that the above proof-labelling scheme is error-sensitive. Let us assume
that k ≥ 1 nodes reject with some certificate function c. We perform the same
decomposition as in the proof of Theorem 3.2, removing from G and ` the edges
whose two extremities are rejecting. We obtain a labelled graph (G′, `′). Let C be a
connected component of G′. Let us run the verifier on (C, `′C) with the same certificate
function, and let kC be the number of rejecting nodes in C. As before the number
of rejecting node in the whole graph can only decrease from (G, `) to (G′, `′), thus∑

C kC ≤ k.
Consider a node that is rejecting, it can be rejecting either because the certificate

of a round i is not correct (eg a spanning tree is broken, or condition (3) does not
hold), or because the consistency conditions between the rounds (conditions (1), (2)
and (4)) are not fulfilled.

We claim that, because of the decomposition step, the only cases for which a node
rejects are the ones were, either it has no parent in one of the trees and is not identified
as the root (it does not have the correct root-ID or distance), or it is the correct root
but it does not have the edge that is announced in the certificate.

We can use the same line of argument as the proof of Theorem 3.2: if another type
error exists, then there exists an edge such that both endpoints will witness the error,
and then such an edge cannot exist in (C, `C) because it would have been removed
when doing the decomposition.

We will now consider a relaxed version of Borůvka algorithm that we call lazy
Borůvka. This algorithm does not produce an MST in general.

As the classical version of Borůvka, the lazy variant grows a forest of fragments.
Initially, there is one fragment per node. At each round, lazy Borůvka proceeds in
three steps. First it picks an arbitrary name for each fragment. Second, for each
fragment F , it considers all edges connecting F to a fragment with different name,
and either chooses the incident edge with smallest weight, or do not choose any edge,
in which case we say that F is skipping its turn. Third it merges the fragments that
are linked by edges selected during the second step. The algorithm stops if all the
fragments have the same name.

Note that in general lazy Borůvka does not produce an MST and can even not
terminate. But if, for each round, the names assigned to adjacent fragments are
distinct, and that there is no round i, such that every fragment skip at every round
after i, then lazy Borůvka eventually produces an MST.

Given a fragment F , we refer to all fragments including F during the further
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rounds of lazy Borůvka as its successors. The fragments of the previous rounds that
F contains are called predecessors. Also, we call cluster a maximal set of adjacent
fragments having the same name during a same round. We consider the following two
properties of a run of lazy Borůvka:

1. During the run, if some fragments form a cluster, then all their successors will
also be part of a same cluster, but will remain different fragments.

2. At every round of the run, at most one fragment per cluster chooses an edge.

We show that `′C corresponds to the outcome of a run of lazy Borůvka with these
properties.

Claim 3.2. The labelling `′C is the outcome of a correct run R of lazy Borůvka on C,
and this run satisfies the properties 1 and 2.

Proof of the claim. Let us show that `′C is the outcome of a correct run R of the
algorithm on C. To do so we will use the certificates. Consider an execution of
lazy Borůvka where fragments are as described by the certificates, and the names of
the fragments are the root-ID of the corresponding fragments. As we argued before,
these fragments are well-defined, that is they are trees, with correct proof, and the
same root-ID at every node. Moreover these fragments are consistent from a round
to the next round, because they satisfy the consistency properties checked by the
verifier. The fact that the root-ID may not be the ID of the root of the tree is not a
problem, as it corresponds to a name. Finally recall that if a node of C rejects when
checking round i, this is because, that node has no parent in a tree encoded in the
certificate, and either it does not have the appropriate root ID, or it is not incident
to the appropriate edge. In both cases, there are no outgoing edges corresponding to
that fragment for Round i, that we interpret as the fact that this fragment skipped
its turn at this round.

Thus the different steps are valid for lazy Borůvka and correspond to `′C . We
now prove that the run has property 1 and 2, and at the end we will show that the
termination is also correct.

For the first property, let us assume, for the purpose of contradiction, that at
some round in R two adjacent fragments F1 and F2 have the same name, but two
successors F ′1 and F ′2 have different names. Then, when verifying the certificates,
the both endpoints of an edge e connecting F1 to F2 would reject, as the certificates
describe this run, and as the verifier checks that the rounds are consistent. There is
no such edge e in C by construction of G′, thus this situation does not occur. Also
if the two successors F ′1 and F ′2 are identical, then at some round the certificates
describe that a fragment is taking an edge to a fragment that has the same root-ID,
which is impossible (as such an edge would have been removed when creating G′).
These arguments generalize to cluster, by connectivity. As for the second property,
suppose that at some round i two fragments of a cluster choose an edge. It means
that in the certificates of this run, there were two fragments with correct spanning
trees pointing to these edges. As the verifier checks that two adjacent nodes with the
same root-ID have the same outgoing edge, either the outgoing edge e was the same in
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the certificates of the two fragments, and then at least one of them will take no edge
because it will detect that it does not have the edge e, or this edge was different for
the two fragments and then all the edges between these fragments would have both
endpoints rejecting and then they would not be adjacent as these edges would have
been removed. These arguments generalize to cluster, by connectivity.

To conclude, the termination of this run is also correct with respect to the specific-
ation of lazy Borůvka. This is because of two facts. First in the certificate, the last
field describes a tree that has the same root-ID on every node, and the verifier checks
this, thus it holds after the decomposition step. Thereafter, the run stops at a round
where all the fragments have the same name. Second, suppose there was a round i
before the last round described by the certificate at which all the fragments had the
same name. Then because of property 1, at round i the fragments were exactly the
same as in the last round, and every node has skipped for all the next rounds. Thus
we can consider the round i is the last round, it still holds that the run corresponds
to `C , and has property 1 and 2. This completes the proof of Claim 3.2. �

In general, when it stops, lazy Borůvka can produce a forest which is arbitrarily far
from being an MST. Nevertheless, we show that as the run R satisfies the properties 1
and 2, the forest produced is at distance at most O(kC) from an MST of C, where kC
is the number of rejecting node in C. To do so we will modify the run R, by applying
iteratively an operation on the run, adding edges to `′C . We do so until we get to a
run where at every round, not two adjacent fragments have the same name, that is a
run that builds an MST.

We now describe the operation that we can apply to a run and the labelling
associated with the run. Consider the first round for which there is a cluster with
more than one fragment, and let K be such a cluster. There are only a few cases to
consider.

• Case 1: none of the fragments in K is choosing an edge although there are
fragments with names different from the one of K, adjacent to K. In this case,
we assign new distinct names for this round to all of the fragments in K, making
sure that these names are not already used at that round by other fragments
(that is we use fresh names).

• Case 2: one of the fragments of K is choosing an edge, which has minimum
weight among all edges that connect that fragment to the other fragments of C,
including the fragments of K. In this case, we replace the names of the other
fragments of K by fresh names.

• Case 3: a fragment F of the cluster K is choosing an edge e, although the
lightest edge outgoing from F is an edge e′ that connects it to a fragment F ′
of K. In this case, we add a round between round i − 1 and round i where
all fragments of C are given distinct names, and every fragment is skipping its
turn except F , which is choosing the edge e′. Also we add this edge e′ to the
labelling.
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• Case 4: round i is the last round. In this case, we have only one cluster K con-
taining all the remaining fragments. We consider the lightest edge e connecting
two fragments in K, and add a round between round i − 1 and round i where
all fragments of C are given distinct names, and every fragment is skipping its
turn except F , which is choosing the edge e. Also we add this edge e to the
labelling.

Claim 3.3. If we have a correct run of lazy Borůvka that satisfies property 1 and
2 and that corresponds to the current labelling, then the operation preserves these
properties.

Proof of the claim. Suppose we have a correct run of lazy Borůvka that satisfies
property 1 and 2 and that corresponds to the current labelling. Consider the four
cases of the operation.

• Case 1. The run is still correct after the renaming because: the fragments
of K were skipping, thus the modification of the names does not affect their
behaviour, and the behaviour of the other fragments is still the same because
we have chosen fresh names (in particular if at round i a fragment F /∈ K
chooses an edge to a fragment F ′ ∈ K, then this action is still valid as F and
F ′ still have different names). The outcome and the property 2 are still correct
as we have not changed the fact that the nodes are skipping, nor the labelling.
Finally, property 1 holds because we have considered the first round with a
cluster of more than one fragment, so the predecessors of the fragments of K
had different names at the previous rounds.

• Case 2. The same line of reasoning as in the previous case holds: the behaviour
is unchanged, the change of name does not affect the correctness of the actions
of neither the fragments of K nor the ones outside K, and the property 1 holds
because we consider the first round.

• Case 3. Consider first the round that we have added. The fragment F chooses
the lightest edge to a fragment that has a different name, because we have chosen
different names for all the fragments. Then this round is correct for lazy Borůvka
algorithm. Now we have to check that the next rounds are correct. By merging
two fragments, we may have created several kinds of problems. First the name
of this fragment could be badly defined as the names of the successors of these
fragments can be different. But this cannot be the case because property 1 holds
in the run before the modification. Second, this merged fragment could take two
edges at the same round, one taken by the successor of F before the operation,
and one taken by the successor of F ′ before the operation. This also cannot
happen, because of property 2. Finally the behaviour of the other fragments is
unchanged has they only consider the names of their adjacent fragments, and
that we have not changed these names. Therefore we still have a correct run.
We have added the new edge in the labelling thus the run still describes the
labelling at hand. The property 1 and 2 still hold for the round we have added,
and also hold for the next rounds, as we have just merged two fragments of the
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same cluster, thus the names are unchanged, and if two fragments of a cluster
are now choosing an edge at the same round then it means that this also happens
in the run before the operation, which a contradiction.

• Case 4. The same kind of reasoning as for the previous case holds.

This case analysis completes the proof of the claim. ♦

Because of claim 3.2, the labelling `′C is the outcome of a correct run R of lazy
Borůvka on C, and this run satisfies the properties 1 and 2, therefore we can apply
the operation on it. We claim that we can iterate this operation, and get a run R in
which there are no clusters with more than just one fragment, after a finite number of
iterations. To prove this claim let us first prove that after an iteration for which we
have used case 3 or case 4, the number of fragments in the final cluster has decreased
by one. Consider the two fragments that we have merged during the operation. In
the run before the operation, these two fragments had successors that were never
merged, because of property 1. Thus the successors were distinct fragments at the
end. Now that we have merged them, they form only one fragment at the end. As
the behaviour of the other fragments is not affected by the change, the number of
fragment at the end has decreased by one. Let us now prove that for the cases 1 and
2, the sum, over the rounds, of the number of clusters with more than one fragment
has strictly decreased. This is easy to see, as we have scattered such a cluster in both
cases, without creating new ones. Also for cases 1 and 2, the number of fragments
in the final cluster remains unchanged. Therefore at every step, either the number
of fragment in the final cluster has decreased by one, or it remains unchanged and
the sum over the runs of the number of clusters with more than one fragment has
strictly decreased. As these two quantities must be non-negative, the operation can
be repeated only finite amount of time. Finally after all these operations, the run is
such that at every round not two adjacent fragments have the same name, thus (the
modified) `′C is a spanning tree of C.

We have added exactly one edge everytime we have decreased by one the number
of fragments in the final cluster. Thus the number of edges added is the number of
fragments in the final cluster in the original run R, minus one. This number is at
most kC . Indeed, at most one fragment contains no rejecting nodes because only one
fragment can have the node whose ID was used as the root-ID in the certificates,
and all the roots of the other fragments will reject, and there are kC rejecting nodes.
Therefore the distance (in the number of modified edges) between the original `′C and
the modified `′C that is a correct spanning tree of C, is at most kC . As the same
reasoning holds for every connected component, if we define the spanning tree of a
disconnected graph as the union of the spanning trees of its connected component,
then the modified `′ = ∪C`′C is the spanning tree of G′, and it is at distance at most∑

C kC ≤ k from the original `′ = ∪C`′C (in the number of modified edges).
We now compare (the modified) `′ with the spanning tree of the original graph G.
We claim that the set of edges described by `′ can be transformed into a spanning

tree of G by adding or removing at most 2k edges. Remember that from G to G′
we have only removed the edges that were between two of the rejecting nodes. Let
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us call S this set of edges. We go backwards and remove edges from G to go to G′
keeping track of the spanning tree. Among the edges of S at most k−1 can be part of
the MST of G, because otherwise there would be a cycle as there are only k rejecting
nodes. Removing the other edges from G does not change the MST. Let G1 be G
without these edges, and let us also remove them from S. Now let us consider one of
the remaining edges of S, that we call e = (u, v). Let G2 be the graph G1 without this
edge e. If removing e disconnects the graph, then the spanning tree of G2 if the same
as the one of G1, without e. If it does not, then we define e′ as the edge of smallest
weight in the cut between the nodes that are closer to u in the tree, and the ones
that are closer to v in the tree. Let us check that the new spanning tree is minimum
by checking the cycle property: if for every cycle in the graph, the heaviest edge is
not part of the spanning tree then the spanning tree is minimum. The only cycles we
have to consider are the ones that contain e′. Suppose that the edge e′ is the heaviest
of a cycle in G2. This cycle must cross the cut with another edge, and this edge must
have a smaller weight, otherwise e′ would not be the heaviest, but this contradicts
the definition of e′, thus by adding e′ we have a spanning tree of G2. We can iterate
this construction until there is no more edges in S. At the end Gk = G′ and we know
that the spanning tree of G′ is (the modified) `′. We have added or removed at most
2k edges.

To conclude, in the first step from (G, `) to (G′, `′), we have edited only the labels
of the rejecting nodes, thus k labels. Then we got from each `′C to the final `′C by
adding at most kC edges, thus in the whole graph we have modified at most 2k labels.
And in the last step we have added or removed at most 2k edges, thus modified at
most 4k labels. Thus in total we have edited at most 7k labels. Thus the distance
is at most linear in the number of rejecting nodes and the proof-labelling scheme is
error-sensitive.
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Chapter 4

Uniformity

In this chapter, we study the impact of using global proofs instead of local proofs.
In the usual proof-labelling schemes, every node is given its own proof, whereas here
we will consider that every node can access the same global proof. This is equivalent
to the constraint that the scheme should be uniform, that is, that all the certificates
should be equal. The comparison between the two models provides insights on the
locality of the certification.

This chapter is surveyed in Subsection 1.3.2 of the introduction. It is based on [39],
which is joint work with Juho Hirvonen. Actually, a section of [39] has been moved
to another chapter. Namely, a section devoted to the similarity between hierarchies
defined in communication complexity and distributed decision has been moved to
Chapter 6, which is chapter focused on hierarchies.

4.1 Introduction
Motivation and specific related work. The first proof-labelling schemes were
designed in the context of self-stabilizing algorithms, where a distributed algorithm
would, in addition to the output, keep some information to verify that the state of the
network is not corrupted. Similar scenarios exist for global proofs. For example, one
may consider a network where the machines compute in a distributed fashion, but an
external operator with a view of the whole network can once in a while broadcast a
piece of information, such as the name of a leader. As one expects this type of update
to be costly, the focus is on minimizing the size of such broadcast information.

From a more theoretical perspective, global proofs are a natural alternative form
of non-determinism. Moreover, in proof-labelling schemes a part of the certificate is
often global. For example, the name of a leader is given to all nodes. Global proofs
can be used to study how much of such redundant information a local proof must
have. Finally, one may consider that global proofs are the most natural equivalent of
classical non-determinism: only the algorithm is distributed and we ask what is the
cost of distributing the proof.

The idea of a prover for computation in a network, or in a system with several
computational units, appears outside of distributed computing, and usually with a
global proof. In property testing, models where a prover provides a certificate to

85
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the machine that queries the graph have been considered [69, 70, 88]. In two-party
communication complexity, non-determinism can come as a global proof that both
players can access [8].

Specific definitions. Usual proof-labelling schemes use (purely) local proof, that
is, the prover provides every node with its own certificate. In this chapter, we denote
the size of each individual proof in an optimal such scheme by s`(n). We introduce
(purely) global proofs, where the prover provides a single certificate, and every node
can access it. Its minimum size is denoted by sg(n). Finally, in mixed proofs, the
prover provides a global proof and local proofs. The size considered, denoted by
sm(n), is the sum of the size of the global proof, and the size of the concatenation of
the local proofs in an optimal scheme.

4.2 The price of locality

In this section, we study the size of local, mixed and global proofs for different prob-
lems, and the price of locality that follows.

4.2.1 Proof sizes

We first prove some general inequalities between the sizes of the different proof sizes.
We then define and discuss the novel notion of price of locality.

Theorem 4.1. For any language, the optimal proof sizes respect the following in-
equalities.

s`(n) ≤ sm(n) ≤ sg(n) (4.1)
sm(n) ≤ n · s`(n) (4.2)
sg(n) ≤ n · s`(n) +O(n log n). (4.3)

Proof. The first line of inequalities mainly follows from the definitions. Suppose one
is given a mixed certificate for a language, with local certificates of size f(n) each,
and a global certificate of size g(n). The size of this mixed certificate is sm(n) =
n · f(n) + g(n). Then one can create a local proof of size f(n) + g(n), by giving to
every node its local part concatenated with the global part. Thus s`(n) ≤ sm(n).
The inequality sm(n) ≤ sg(n) holds because the mixed proof is a generalization of
the global proof. Similarly, if there exists local certificates of size s`(n), then one can
use them in the mixed model. The size measured in the mixed model will then be
n · s`(n). Finally, given local certificates, one can craft a global certificate. The global
certificate consists in a list of couples, each couple being an ID and the local certificate
of the node with this ID. The size is in n · s`(n) + O(n log n) because identifiers are
on O(log n) bits.
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4.2.2 Price of locality

We define the Price of Locality for distributed proofs, by analogy with the Price of
Anarchy in algorithmic game theory [84, 92]. Note that this is not the same as the
price of locality that appears in the title of [85]. The price of locality (PoL) of a
language is defined as the ratio between the size of the concatenation of the purely
local certificates, divided by the size of the mixed certificate. That is:

PoL(n) =
n · s`(n)

sm(n)
.

It may come as a surprise that we use mixed proofs instead of global proofs for
this definition. There are several reasons for this. First, the inequalities above insure
that with this definition the ratio is between 1 and n, whereas with global proofs
the price could be smaller than 1, thus not a price per se. We study this possibility
in section 4.4. More fundamentally, mixed proofs are a better way to measure how
much it costs to fully distribute a proof, as they are a proper generalization of the
local proofs, which is not the case of global proofs. Second, our upper bounds use
purely global proofs, and our lower bounds (except in section 4.4) consider mixed
proofs, thus we get the strongest results on both sides.

Another point of view for this part of the dissertation would be to define the
uniformity of a language. It would simply be the inverse of the price of locality. It
happens that the price is more handy, and that is why we use this instead of the
uniformity. Yet the topic is really uniformity: how much does the landscape changes
if only uniform schemes are allowed? Which portion of the classic schemes is uniform?

Remark 4.1. Note that we assume that the local proofs given to the nodes are of the
same size, and thus the concatenation is exactly n times larger then the size of one
local certificate. The interesting question of whether the average proof size could be
asymptotically better, if proofs of different sizes were allowed, is outside of the scope
of this chapter.

4.2.3 High price of locality

In this section, we prove that it can be very costly to distribute the proof. This is easy
and is a warm-up for the rest of the chapter. A scheme uses uniform local proofs, if
the local proofs given to the nodes of the network are all equal. It is simple to change
such proof system into a global proof: just take the uniform local proof and make it
global. The verifier has the same behaviour and the scheme is correct. This implies
the following theorem.

Theorem 4.2. For languages where an optimal proof-labelling scheme uses uniform
local proofs, the price of locality is θ(n).

This theorem applies to the language Symmetry, the set of graphs that do not
admit a non-trivial automorphism, which has an optimal scheme with O(n2) uniform
local proofs ([67], and Section 1.2 in the introduction chapter). We now consider the
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language At-most-one-selected (Amos), that has been defined and used in [54].
In this problem, the nodes are given binary inputs, and the yes-instances are the
ones such that at most one node has input 1. We prove that this language meets the
hypothesis of the previous theorem.

Theorem 4.3. The language Amos has an optimal proof-labelling scheme with uni-
form proofs of size O(log n).

Proof. We describe the scheme. The prover strategy on yes-instances is the following.
If there is exactly one selected node, the prover provides the ID of the node as uniform
certificate, otherwise it provides an empty label. The verification algorithm is, for
every node v: if v is selected and the certificate is not its ID, then reject, otherwise
accept. It is easy to check that this scheme is correct. First, if no node is selected,
all nodes accept, for all certificate. Second, if one nodes is selected, then the prover
provides its ID as a certificate, and thus the selected node accepts, and all the other
nodes too. Finally, if two or more nodes are selected, at most one of them has its ID
written in the global certificate, because the IDs are distinct ; thus at least one node
is rejecting.

In [67], the authors prove that verifying that exactly one node is selected (Leader
Election) requires Ω(log n) local certificate. The proof basically shows that without
this amount of proof, an instance with two leaders would be accepted. This reasoning
holds for Amos, and we can derive a Ω(log n) lower bound for local certificates as
well.

Corollary 4.1. The price of locality for Amos is in Θ(n).

4.2.4 Intermediate price of locality

In this subsection, we show that the language Minimum Spanning Tree (MST)
has price of locality Θ(log n). It is an intermediate price, between n (the previous
subsection), and constant (the next section). Remember that the language MST is
the set of weighted graphs in which a subset of the edges are selected, and form a
minimum spanning tree of the graph. The edge weights are assumed to be polynomial
in n, and for simplicity we assume that the edge weights are distinct.

In [79], the authors show that there exist local proofs of size O(log2 n) for Mst,
and that this bound is tight. We show a simple global proof that has size O(n log n).
As a mixed proof for the simpler language Spanning Tree requires Ω(n log n) (see
Section 4.3), this bound is also tight.

Theorem 4.4. The global proof size for Minimum Spanning Tree is in O(n log n).

Proof. We describe the scheme. On a yes-instance the prover provides a list of the
selected edges with their weights. This global certificate has size O(n log n), because
the edge weights and the identifiers can be written on O(log n) bits. Then every node
first checks that the certificate is correct regardless of the graph. That is, every node
checks that:

• The certificate is a well-formed edge list. Let L be this list.
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• The list L describes an acyclic graph. That is that there is no set of nodes
w1, w2, ..., wk such that (w1, w2), (w2, w3), ..., (wk−1, wk), and (wk, w1) appear in
the list.

• The list L describes a connected graph. That is for any pair of nodes present in
the list, there exists a path in the list that connects them.

Then every node v of the graph checks locally that:

• The L is consistent with the selected edges that are adjacent to it.

• It has an adjacent selected edge.

• For every e = (v, w) in the graph but not in the list, and every edge e′ on the
path from v to w in L, the weight of e′ is smaller than the weight of e.

We now prove the correctness of the scheme. The first part of the verification
insures that the set of edges described by L form an acyclic connected graph. The
two first checks of the second part insure that it contains the selected edges and that
it is spanning the graph. As it is a spanning tree, it must then be exactly the set
of selected edges. Finally, remember that the so-called cycle property states that a
spanning tree verifying the last item of the previous algorithm is a minimum spanning
tree [26].

Corollary 4.2. The price of locality for Mst is in Θ(log n).

4.3 Locality for free and reversing decision
In this section, we show that for some languages there exists local proofs of size
O(log n) and that any mixed proof has size O(n log n). It follows that in this case,
the price of locality is constant, that is the locality of the proofs comes for free.

The language we consider, called At least one selected (Alos), consists of
all labelled graphs such that at least one node has a non-zero input label. We say
that a node with a non-zero input label is selected. Proving that at least one node has
some special property (being the root, having some input, being part of some special
subgraph) is an important subroutine in many schemes.

On a more fundamental perspective, reversing decision basically deals with proving
that some node is rejecting, which falls into the scope of the Alos. It has long been
known that O(log n) local proof is sufficient for reversing decision, and the current
section shows that not only this is optimal, but also one cannot gain by using global
proofs.

Theorem 4.5. A mixed proof for the language Alos requires Ω(n log n) bits.

The theorem is equivalent to state that the language requires either Ω(log n) bits
per local proof or Ω(n log n) bits of global proofs. For a sketch of the proof, see
Subsection 1.3.2 in the introduction.

Proof of Theorem 4.5. Consider a mixed scheme with local certificates of size f(n)
and a global certificate of size g(n). Let r be the verification radius of the scheme.
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Blocks. The lower bound instances are consistently oriented cycles of length at
most n = (b + 1)(2r + 1), for some integer b. Cycles are constructed from blocks of
2r + 1 nodes: the ith block is a path Bi = (vj, vj+1, . . . , vj+2r), where j = i(2r + 1) +
1, oriented consistently from vj to vj+2r. Each node vj is labeled with the unique
identifier j.

Constructing instances from blocks. Let π : [b] → [b] be a permutation on
the set of the first b blocks. Each permutation defines a cycle Cπ where we take the
blocks in the order given by π, and finally take the (b + 1)th block. Each pair of
consecutive blocks in π is connected by an edge, and Bb+1 is connected to Bπ−1(1).

Finally, the center node vb(2r+1)+r+1 of Bb+1 is labelled with a non-zero label,
making the instance a yes-instance. All other nodes are labelled with the zero-label.
Denote this family of permuted yes-instances by C = {Cπ}π.

Labeled blocks. The prover assigns a local proof of f(n) bits to each node.
Thus, there are 2f(n)(2r+1) different labeled versions of each block. We call these
labelled blocks. Denote by Bi,` the block Bi labelled according to `. We call Bi the
type of Bi,`

Consider two labelled blocks, Bi,` and Bj,`′ , in this order, linked by an edge. We
say that labelled blocks are accepting from Bi,` to Bj,`′ with global certificate L if,
when we run the verifier on the nodes that are at distance at most r from an endpoint
of the connecting edge, all these nodes accept. We denote this by Bi,` →L Bj,`′ .

For each choice L of the global certificate, this edge relation defines a graph GB,L
on the set of labelled blocks. A path in GB,L corresponds to a labelled path fragment
in which all nodes at least r steps away from the path’s endpoints accept. Finally, an
accepting cycle is a cycle in GB,L such that all nodes accept.

Bounding the overlap of certificates. For each Cπ ∈ C, there must exist an
accepting assignment of certificates to the nodes. Let L denote the global part of this
accepting certificate. Such a Cπ corresponds to a directed cycle in GB,L. Note that
in this cycle the last edge can be omitted as it would always link the last block to
the first block. Then Cπ corresponds to a directed path P (Cπ, L) of length b in GB,L.
Denote the set of labelled blocks on this path by S(Cπ, L).

Let CL denote the set of instances such that there exists an accepting local certific-
ation given the global certificate L. Every yes-instance has an accepting certification,
so there must exist L∗ with

|CL∗| ≥ |C|/2g(n).

Now consider any two instances Cπ and Cπ′ in CL∗ . We drop the specification of
the global certificate from the notation. Assume that Cπ and Cπ′ use the same set of
blocks, that is S(Cπ, L

∗) = S(Cπ′ , L
∗). Also assume without loss of generality, that π

is the identity permutation. Now in P (Cπ′) there must exist a back edge with respect
to π, that is, an edge between labelled blocks B and B′, of types Bπ′−1(i) and Bπ′−1(i+1)

respectively, such that π′−1(i) > π′−1(i + 1). This is because we assumed that the
instances consist of the same blocks, but are different. Therefore at some point an
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edge of Cπ′ must go backwards in the order of π. We also have that B,B′ 6= Bb+1 as
if there is no back edge before reaching Bb+1, we must have Cπ = Cπ′ .

This implies that there is an accepting cycle formed by taking first the path from
B to B′ along P (Cπ) and then an edge from B′ to B. This cycle does not contain
a selected node. It follows that there is a no-instance of size at least 2(2r + 1) and
a certification that causes the verifier to accept the instance. Therefore we have the
following lemma.

Lemma 4.1. For all pairs of instances Cπ, Cπ′ with the same accepting global certi-
ficate L, we have that S(Cπ, L) 6= S(Cπ′ , L).

Remark 4.2. Note that the contradicting instances can be of size 2(2r + 1) but the
identifiers can be of size n and the certificates of size f(n). Therefore the lower bound
only holds for uniform verifiers that do not get any guarantees except that 1) the
identifiers come from the set [n + c], for some constant c, and 2) the certificates are
of size at least f(n).

Alternatively it is possible to consider Alos on possibly disconnected instances so
that every connected component must have at least one node selected. In this case the
proof will fool even a non-uniform prover.

Counting argument. By Lemma 4.1, each pair of permutations π, π′ in CL∗
must induce a different set of labelled blocks that form the accepting certifications of
instances Cπ and Cπ′ . The number of different permutations in CL∗ is at least b!/2g(n).
On the other hand, the number of different sets of labelled blocks, selecting a block
of each type, is 2f(n)(2r+1)b. As shown in Lemma 4.1, to have a legal certification, we
must have that 2f(n)(2r+1)b+g(n) ≥ b!.

Using Stirling’s approximation we get that f(n)(2r + 1)b + g(n) ≥ b log2 b −
(log2 e)b + O(ln b). Since b = Θ(n) and r = O(1), this implies that either f(n) =
Ω(log n) or g(n) = Ω(n log n). Thus the mixed proof has size Ω(n log n)

Corollary 4.3. Inverting decision with a single additional level of nondeterminism
requires local certificates of size Ω(log n) or global certificates of size Ω(n log n).

Proof. Consider the language None selected, that is, the language of labelled
graphs such that all nodes have the zero label. This language is locally decidable
without nondeterminism, that is, None selected ∈ LD [51] or Λ0 in the notation of
Section 6.5. The language Alos is its complement. Finally, by Theorem 4.5, deciding
Alos, that is, reversing the decision of None selected requires local certificates
with Ω(log n) bits or global certificates with Ω(n log n) bits.

The proof can be adapted to several other problems, namely leader election, span-
ning tree and the set of odd-cycles, giving a lower bound for mixed proof systems.

Corollary 4.4. Any mixed proof system for Leader election requires local certi-
ficates of size Ω(log n) or global certificates of size Ω(n log n).
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Proof of Corollary 4.4. Consider the proof of Theorem 4.5. The family C of yes-
instances for Alos is also a family of yes-instances for Leader election. Since
Leader election ( Alos, the proof of Theorem 4.5 produces no-instances of
Leader election that the verifier accepts.

Corollary 4.5. Any mixed proof system for spanning tree requires local certificates
of size Ω(log n) or global certificates of size Ω(n log n).

Proof sketch. Consider two types of instances: the cycles where all the edges are
selected, and the the cycles where all edges but one are selected. The first instances
are not in the language, the second are. We can rephrase this restricted problem as:
there is at least one non-selected edge. Then the same type of proof works.

Corollary 4.6. Any mixed proof system for odd-cycle requires local certificates of
size Ω(log n) or global certificates of size Ω(n log n).

Proof sketch. The proof of Corollary 4.6 consists in a refinement of the proof for
Alos. We can build on an odd number of blocks, each block being of odd length
itself. Then we can give a colour to each block so that half of the blocks are black and
half are white. Finally we can force the paths to alternate between white and black
blocks. The cycles obtained will then be of even length, and thus be no-instances.
The number of possible paths is reduced, but only by term of the form 2b, which is
negligible compared with the b! term. The calculation then still gives the Ω(n log n)
lower bound.

A consequence of these corollaries is that all the Ω(log n) lower bounds obtained
in [67] for local certificates can be lifted to Ω(n log n) mixed proofs with our technique.
However for the problem Amos we studied in the previous section, our technique
does not work, which is consistent with the fact that an Ω(n log n) lower bound would
contradict the O(log n) upper bound we show. As already said, the technique of [67]
works for Amos, and provides the Ω(log n) bound for local proofs. The reason our
technique fails is because we show that if the certificates are too short then one
can shorten the cycles that are yes-instances, which is not useful for Amos, as a
‘subinstance’ of this problem is still in the language: one can only remove selected
nodes. The authors of [67] show that one can glue different yes-instances together and
get a configuration that is still accepted by the nodes, and for Amos this basically
means one can glue different instance with one node selected, and then get an instance
with more than one node selected, and this instance is still accepted, which rises a
contradiction. Note that because of this duality, the proof technique of [67] could not
help to get lower bound for Alos, even when looking only at local proofs.

It is also worth noting that the intersection of the languages Amos and Alos, is
Leader Election. For this language, it has long been known that a PLS has size
Θ(log n), and is formed by the certificates of a spanning forest, along with the ID of
the leader given to all the nodes. The results of the current and previous sections
show that this decomposition is somehow mandatory: one basically needs a global
part of size Θ(log n), and a local part of size Θ(log n).
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4.4 Beyond free locality
The language Bipartite is the set of bipartite graphs. Local proofs of constant size
exist for this language: the prover can just describe a 2-colouring of the graph by giving
a bit to each node, and every node can check that its neighbours are given a colour
different from its own. We conjecture that for this language, even when restricting
the topology to cycles, optimal purely global proofs are larger than the sum of the
optimal local proof sizes. More precisely this sum is Θ(n), and we conjecture that
purely global proofs take Θ(n log n) bits.

Conjecture 4.1. For Bipartite, purely global proofs have size Θ(n log n).

We are not able to prove the lower bound of the conjecture, but we can prove
weaker inequalities. For this problem, the range of the identifiers is important, and
that is why we consider the maximum identifier to be a parameter M , that we do not
bound by a polynomial any more.

Theorem 4.6. For Bipartite, there exist two constants α and β such that, for
identifiers bounded by M :

αmax{n, log logM} ≤ sg(n) ≤ βmin{M,n logM}.

Note that if M = n then we get a tight Θ(n) bound. The Ω(n) lower bound
holds for any ID range, but the log logM bound shows that this cannot be tight for
every ID range: we can get arbitrarily large lower bound if we allow arbitrarily large
identifiers.

Proof idea. The O(M) upper bound corresponds to the following scheme. The prover
provides a global proof that is a table, indicating for each ID, whether the node of
with this ID is black, white or not in the graph. The verifier can check locally the
correctness of this colouring.

Now for the lower bound proof, we consider cycles. The key step is to prove
that, although a priori a proof of bipartiteness is not required to explicitly give a
2-colouring to the nodes, it actually always does. That is, for every scheme, the nodes
can extract a colour from the proof, and this colour provides a proper 2-colouring of
the yes-instances. To prove this we use the block machinery of the proof of Theorem
4.5, to define a special directed graph. We can prove that it is bipartite, by studying
its cycles and strongly connected components. Then the nodes can use this graph to
infer their colours from the proof. Once we have this property, the Ω(n) lower bound
basically follows from the fact that encoding the colour of the n nodes of the cycle
takes at least Ω(n) bits. The Ω(log logM) lower bounds comes from the fact that if
there are many possible IDs, and few certificates, then there must exist two identifiers
(or actually blocks of identifiers) such that, for every possible global certificate, they
are assigned the same colour. And this is not possible as there are even length cycles
where they are adjacent.

Proof. We start with the upper bounds. The O(n logM) upper bound comes from
the certificate made by concatenating the couples (ID, local proof) for every node, as
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in Theorem 4.1. For the O(M) upper bound, the prover strategy is to provide a vector
withM cells, where cell i will contain a bit indicating the colour of the node with ID i.
In both cases the nodes will get their own colours and the colours of their neighbours
from the certificate, and they can check locally the consistency of the colouring.

We now prove the lower bounds for the restricted case of cycles. Note that bipart-
iteness on cycles boils down to distinguishing between odd and even length cycles.
A priori, in a scheme for this language, the prover is not forced to explicitly provide
a colouring to the nodes. We show that a proof always implies a colouring. More
precisely, a node can always extract from the proof its colour and the colours of its
neighbours, and then check the consistency of the colouring. As in Section 4.3, we
will use blocks of nodes to build a large a number of instances. The blocks are paths
of 2r+ 1 nodes. The i-th block, noted bi has consecutive IDs from i(2r+ 1) + 1 up to
(i+1)(2r+1). Every block is oriented in the direction of increasing IDs. A block-based
cycle is a cycle made by concatenating blocks, with a consistent orientation.

Lemma 4.2. For every global proof c, there exists a colouring function fc : [M ] 7→
{0, 1}, such that for every block-based cycle H that is accepting with certificate c, fc
defines a proper colouring of H.

Proof (Lemma 4.2). First, note that as the blocks have odd length, a block-based
cycle has even length if and only if it is composed of an even number of blocks.
Then, for block-based cycles, replacing virtually each block by a vertex, and trying to
2-colour the resulting cycle is equivalent to 2-colour the nodes of the original instance.

Fix a certificate c. Consider the directed graph Gc, whose nodes are the blocks
(bi)i. There is an oriented edge (bi, bj) if and only if there exists a block-based cycle
for which c is an accepting certificate, and where the block bi is followed by the block
bj.

Claim 4.1. The graph Gc contains no directed odd cycle.

Suppose the graph Gc contains a directed odd cycle. Consider the corresponding
block-based cycle C. Because it has odd length, it is a no-instance. Consider a
node v of this instance that is rejecting with certificate c. Without loss of generality,
assume it is in the first half of its block bi (that is, its ID is between i(2r + 1) + 1
and i(2r + 1) + r + 1). Let bh be the block preceding bi in C. The node v can only
see (parts of) of bh and bi, because its radius is r. As (bh, bi) belongs to Gc, there
exists a yes-instance C ′, in which every node accepts with proof c, and in which bi
follows bh. This is a contradiction, because with certificate c, v is accepting in C ′,
and rejecting in C, although it has the exact same view in both instances. Thus the
graph Gc contains no directed odd cycle.

Claim 4.2. Every connected component of the graph Gc is strongly connected.

Consider the following way of building Gc: take an arbitrary ordering of the cycles
that accept with c, and add them (i.e. add their edges) to Gc, one by one. We show
the strong connectivity of the connected components by induction. The property
holds for the empty graph. Suppose every connected component is strongly connec-
ted until some step, and that we add a new cycle. As a directed cycle is strongly
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connected, merging it with one or several strongly connected components, keeps the
strong connectivity.

It is known that a strongly connected digraph with no odd length directed cycles
can be 2-coloured (see e.g. Theorem 1.8.1 in [13]). Thus, from Claim 4.1 and Claim
4.2, we get that Gc has a 2-colouring. This 2-colouring induces a 2-colouring on all the
block-based cycles accepting with c, thus it defines the function fc of the lemma.

Now fix a size n and consider the following table. The columns are indexed by the
blocks, thus there are M/(2r + 1) of them. The rows are indexed by all the possible
certificates, that is all the strings on sg(n) bits. The cell that corresponds to block b
and certificate c contains the colour given by fc to the center node of b. We will now
give two simple properties of this table that will imply the two lower bounds.

Let a balanced binary vector be a vector of bits with the same number of zeros
and ones. Let the complement of a binary vector be the same binary vector where
ones and zeros have been complemented.

Lemma 4.3. For every balanced binary vector p of length n, there exists a row of
the table such that the vector made by the n first cells is equal to either p or its
complement.

Proof (Lemma 4.3). Consider a balanced binary vector p. Consider a cycle H made
by concatenating the n first blocks, in an ordering such that colouring block i with
the ith bit of p, defines a proper colouring of the cycle. Note that, as p is balanced,
such a cycle must exist. This cycle H has even length, thus it belongs to the language
and there exists an accepting certificate c. The first n cells of the row of c must
describe a proper colouring of H, and there are only two such colourings: p and its
complement.

As for every balanced vector of length n there exists a row that it matches (or
its complement matches) on the n first cells, and that a row can only correspond to
one such vector (up to complement), the table must have at least 2n/2 rows. This
means that there are at least 2n/2 different certificates, thus the certificate size is
lower bounded by n, up to multiplicative constants.

Lemma 4.4. Two columns of the table cannot be equal.

Proof (Lemma 4.4). Suppose columns i and j are equal. Consider an even-length
block-based cycle C, where the blocks i is linked to the block j. Such a cycle always
exists. For every certificate c, the same colour is given to both blocks i and j in fc,
because the columns are equal. Thus no certificate provides a proper colouring of C,
which is a contradiction because C belongs to the language.

As there are M different columns, there is at least order of log(M) certificates.
Then the length of a certificate is in Ω(log log(M)). This finishes the proof of The-
orem 4.6.
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Chapter 5

Redundancy

This chapter deals with proof-labelling scheme having non-constant view radius. This
is first motivated by the quest for more compact schemes. Second it is a tool to study
redundancy, that is local correlation between certificates. It is based on the submitted
paper [42], which is joint work with Pierrre Fraigniaud, Juho Hirvonen, Ami Paz and
Mor Perry. It corresponds to Subsection 1.3.3 in the introduction of the thesis.

5.1 Introduction
Motivation and specific related work. Several attempts have been made to
make proof-labelling schemes more efficient. For instance, it was shown in [14] that
randomization helps a lot in term of communication costs, typically by hashing the
certificates, but this might actually come at the price of dramatically increasing the
certificate size. Sophisticated deterministic and efficient solutions have also been
provided for reducing the size of the certificates, but they are targeting specific struc-
tures only, such as MST [83]. Another direction for reducing the size of the certificates
consists of relaxing the decision mechanism, by allowing each node to output more
than just a single bit (accept of reject) [4, 5]. For instance, certifying cycle-freeness
simply requires certificates of O(1) bits with just 2-bit output, while certifying cycle-
freeness requires certificates of Ω(log n) bits with 1-bit output [82]. However, this
relaxation assumes the existence of a centralized entity gathering the outputs from
the nodes, and there are still network predicates that require certificates of Ω̃(n2) bits
even under this relaxation. Another notable approach is using approximation [24],
which reduces, e.g., the certificate size for certifying the diameter of the graph from
Ω(n) down to O(log n), but at the cost of only determining if the given value is up to
two times the real diameter.

In this chapter, we aim at designing deterministic and generic ways for reducing the
certificate size of proof-labelling schemes. This is achieved by following the guidelines
of [90], that is, trading time for space by exploiting the inherent redundancy in dis-
tributed proofs. In [90], the author allow the verification procedure to take t rounds
(t can be a function of n) in order to reduce the certificate size. For instance, it
was shown that, for the so-called universal scheme, the size of the certificates can be
reduced from Θ(n2) to Θ(n2/t) bits when increasing verification time from 1 round to

97
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t rounds. The results in [83] were another source of inspiration, as it is shown that,
by allowing O(log2 n) rounds of communication, one can verify MST using certific-
ates of O(log n) bits. In fact, [83] even describe an entire (non-silent) self-stabilizing
algorithm for MST construction based on this mechanism for verifying MST.

Background on communication complexity. In this chapter, we use results
from the well studied field of communication complexity [86, 104]. In the set-disjointness
(disj) problem on k bits, each of two players, Alice and Bob, is given a k-bit string,
denoted SA and SB, respectively, as input. They aim at deciding whether SA∩SB = ∅,
i.e., whether there does not exist i ∈ {1, . . . , k} such that SA[i] = SB[i] = 1. The
communication complexity of a given protocol solving disj is the number of bits Alice
and Bob must communicate, in the worst case, when using this protocol. The commu-
nication complexity of disj is the minimum communication complexity of a protocol
solving it.

In nondeterministic communication complexity, each of the players receives, in
addition to its input, a binary string as a non reliable hint (these hints may depend
on both input strings).1 For example, a good hint for disj, i.e., deciding whether
there exists i ∈ {1, . . . , k} such that SA[i] = SB[i] = 1, is the index i itself. Indeed, if
one of the two players receives i as a hint, he or she can send it to the other player,
and they both check that SA[i] = 1 and SB[i] = 1.

The communication complexity of a nondeterministic protocol for disj is the sum
of the number of bits the players exchange and the number of nondeterministic proof
bits provided to the players in the worst case. The nondeterministic communication
complexity of disj is the minimum, among all nondeterministic protocols for disj, of
the communication complexity of that protocol. The nondeterministic communication
complexity of disj is known to be Ω(k), as a consequence of, e.g., Example 1.23 and
Definition 2.3 in [86].

Specific notations and model definition. In this chapter, following the original
text [42], we will consider predicates, that is properties that the configuration can
satisfy or not satisfy. As said in Chapter 2, using predicates instead of languages is
just a change of terminology, the underlying notion is the same.

The radius of a proof-labelling scheme (p,v) is defined as the maximum number
of rounds of the verifier v in the LOCAL model [95], over all identity-assignments to
all the instances in G, and all arbitrary certificates. It is denoted by radius(p,v). We
will compare proof-labelling schemes of radius 1, denoted 1-PLS, with proof-labelling
scheme of radius t ≥ 1 is abbreviated into t-PLS. The value t will be given to the
nodes by an oracle at the beginning of the decision scheme (remember that the nodes
do not have access to n in general).

The minimum certificate size of a t-PLS for the predicate P on n-node labelled
graphs is denoted by size-pls(P , t), that is,

size-pls(P , t) = min
radius(p,v)≤t

size(p,v).

1Another definition of non-determinism for communication complexity, with gloabl proofs will be
used in Chapter 6.
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With this notation, size-pls(P) = size-pls(P , 1).

Definition 5.1. Let I ⊆ N+, and let f : I → N+. Let P be a boolean predicate
on labelled graphs. A set (pt,vt)t∈I of proof-labelling schemes for P, with respective
radius t ≥ 1, scales with scaling factor f on I if size(pt,vt) = O

(
1
f(t)
· size-pls(P)

)
bits for every t ∈ I. Also, (pt,vt)t∈I weakly scales with scaling factor f on I if
size(pt,vt) = Õ

(
1
f(t)
· size-pls(P)

)
bits for every t ∈ I.

In the following, somewhat abusing terminology, we shall say that a proof-labelling
scheme (weakly) scales while, formally, it should be a set of proof-labelling schemes
that scales. A definition of the redundancy of a language can be defined as the scaling
factor for the optimal t-proof-labelling scheme. Indeed if this factor is high, then it
means that one can gain a lot by having a large radius, and in turn this means that
the certificates of close nodes are very correlated.

Remark. At first glance, it may seem that no proof-labelling schemes can scale
more than linearly, i.e., one may be tempted to claim that for every predicate P
we have size-pls(P , t) = Ω

(
1
t
· size-pls(P)

)
. The rational for such a claim is that,

given a proof-labelling scheme (pt,vt) for P , with radius t and size-pls(P , t), one can
construct a proof-labelling scheme (p,v) for P with radius 1 as follows: the certificate
of every node v is the collection of certificates assigned by pt to the nodes in the ball
of radius t centered at v; the verifier v then simulates the execution of vt on these
certificates. In paths or cycles, the certificates resulting from this construction are
of size O(t · size-pls(P , t)), from which it follows that no proof-labelling scheme can
scale more than linearly. There are several flaws in this reasoning, which make it
actually erroneous. First, it might be the case that degree-2 graphs are not the worst
case graphs for the predicate P ; that is, the fact that (p,v) induces certificates of
size O(t) times the certificate size of (pt,vt) in such graphs may be uncorrelated to
the size of the certificates of these proof-labelling schemes in worst case instances.
Second, in t rounds of verification every node learns not only the certificates of its t-
neighbourhood, but also its structure, which may contain valuable information for the
verification; this idea stands out when the lower bounds for size-pls(P) are established
using labelled graphs of constant diameter, in which case there is no room for studying
how proof-labelling schemes can scale. The take away message is that establishing
lower bounds of the type size-pls(P , t) = Ω(1

t
·size-pls(P)) for t within some non-trivial

interval requires specific proofs, which often depend on the given predicate P .

5.2 All proof-labelling schemes scale linearly in trees

This section is entirely dedicated to the proof of one of our main results, stating that
every predicate on labeled trees has a proof that scales linearly. Further in the section,
we also show how to extend this result to cycles and to grids, and, more generally, to
multi-dimensional grids and toruses.
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5.2.1 Linear scaling for trees

Theorem 5.1. Let P be a predicate on labelled trees, and let us assume that there
exists a (distance-1) proof-labelling scheme (p,v) for P, with size(p,v) = k. Then
there exists a proof-labelling scheme for P that scales linearly, that is, size-pls(P , t) =
O
(
k
t

)
.

We give a more detailed sketch of the proof than in Subsection 5 of the introduc-
tion.

Proof sketch. The proof is based on a decomposition of trees that can be checked
locally. It consists in marking some nodes of the tree, so that the unmarked nodes
form clusters, that have diameter roughly t, and such that two nodes from different
clusters are separated by at least two marked nodes. We illustrate this marking on the
simpler example of a path with nodes (vi)i in the natural order. On such a path we
mark the node vi, if i is equal to 0 or 1 modulo t. Then we have p paths of unmarked
nodes, of length t−2, and between every two consecutive paths, there are two marked
nodes. The verifier will check locally this decomposition.

Consider the following t-PLS. The prover first decides what are the certificates
used in the 1-PLS, and then give their certificates only to marked nodes. For each
cluster of unmarked nodes, a marked node close to it will be chosen as its leader.
Because the cluster has small diameter, the leader can see it entirely within its t-
view, and also see all the marked nodes that are at distance 1 and 2 from it. The
verifier on a leader node will try every possible certificate assignment to the unmarked
nodes of the corresponding cluster and run the 1-round verifier on them and on their
neighbours. If there exists a certificate assignment that is accepted by all these nodes,
then, on this leader node the verifier accepts. On non-leader nodes, the verifier al-
ways accept. Because the clusters are separated by double layers of marked nodes,
the simulations performed by the leaders are independent. Therefore if all leaders
accept, then we can put all the accepting certificate assignments together and craft
an accepting assignment for the 1-PLS on the whole graph. Conversely if such an
assignment exists, then the leaders will all accept.

This scheme has certificates of size O
(

1
t
· size(p,v)

)
on average because the decom-

position ensures that there are not too many marked nodes. We can use a variation
of the spreading technique of [90] to have all the certificates of this size.

The rest of this subsection is dedicated to the detailed proof of Theorem 5.1. So,
let P be a predicate on labelled trees, and let (p,v) be a proof-labelling scheme for P
with size(p,v) = k. First, note that we can restrict attention to trees with diameter
> t. Indeed, predicates on labelled trees with diameter ≤ t are easy to verify since
every node can gather the input of the entire tree in t rounds. More precisely, if we
have a scheme that works for trees with diameter > t, then we can trivially design a
scheme that applies to all trees, by adding a single bit to the certificates, indicating
whether the tree is of diameter at most t or not.

The setting of the certificates in our scaling scheme is based on a specific decom-
position of given tree T .
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Tree decomposition. Let T be a tree of diameter > t, and let

h = bt/2c.

For assigning the certificates, the tree T is rooted at some node r. A node u such that

distT (r, u) ≡ 0 (mod h),

and u possesses a subtree of depth at least h− 1 is called a border node. Similarly, a
node u such that

distT (r, u) ≡ −1 (mod h),

and u possesses a subtree of depth at least h−1 is called a extra-border node. A node
that is a border or an extra-border node is called a special node. All other nodes are
standard nodes. For every border node v, we define the domain of v as the set of
nodes in the subtree rooted at v but not in subtrees rooted at border nodes that are
descendants of v.

Lemma 5.1.

1. The domains form a partition of the nodes in the tree T .

2. Every domain forms a tree rooted at a border node, with depth in the range
[h− 1, 2h− 1].

3. Two adjacent nodes of T are in different domains if and only if they are both
special.

Proof. Let us first prove the first item. On the one hand, every node belongs to a
domain. This is because every node has at least one border ancestor, since the root
is a border node. Indeed, the root r has depth 0, and the diameter of T is at least
t+ 1, which implies that r necessarily possesses a subtree of depth at least h− 1. On
the other hand, every node u belongs to a unique domain. This is simply because the
closest border ancestor of u is uniquely defined.

To establish second item, we consider the domain of a border node u. Note that,
for any node v in the domain of u, v is a descendent of u in T , and all the nodes in
the shortest path between u and v are also in the domain of u. Thus the domain of
u is indeed a tree rooted at u. The depth of a domain is at least h − 1. Indeed, if
the subtree rooted at u has depth < h − 1, then, by definition, u is not special. It
remains to show that the depth of a domain is at most 2h − 1. Let us assume for
the purpose of contradiction that the depth d of the domain of u satisfies d > 2h− 1.
Then there exists a path of length at least 2h starting at u, and going downward the
tree for reaching a leaf v of this domain. Then let us consider the node u′ of that
path which is at distance h from u. Node u′ is not a border node, since otherwise v
would not be in domain of u but in the domain of u′. However, node u′ is a border
node as its depth is 0 modulo k, and it has a subtree of depth at least d− h > h− 1.
This contradiction completes the proof of item 2.

Finally, for establishing the third item, let us consider an edge {u, v} in the tree
T , and let us assume, w.l.o.g., that u is the parent of v in T . By construction, there



102 CHAPTER 5. REDUNDANCY

can be three cases only. If none of the two nodes u and v is a border node, then both
belong to the same domain, as they have the same closest border ancestor. If u is a
border node, and v is a standard node, then v is in the domain of u. Finally, if v is
a border node, then necessarily u is an extra-border node, in which case u and v do
not belong to the same domain since v is in its own domain, while u cannot belong
to the domain of v. Therefore, Item 3 holds in these three cases.

Verifying the decomposition. The certificates of the distance-t proof-labelling
scheme will contains a 2-bit field indicating to each node whether it is a root, border,
extra-border, or standard node. Let us show that this part of the certificate can be
verified in t rounds. The prover orients the edges of the tree towards the root r. It is
well-known that such an orientation can be given to the edges of a tree by assigning
to each node its distance to the root, modulo 3. These distances can obviously be
checked locally, in just one round. So, in the remaining of the proof, we assume that
the nodes are given this orientation upward the tree. The following lemma proves
that the decomposition into border, extra-border, and standard nodes can be checked
in t rounds.

Lemma 5.2. Given a set of nodes marked as border, extra-border, or standard in
an oriented tree, there is a verification protocol that checks whether that marking
corresponds to a tree decomposition such as the one described above, in 2h < t rounds.

Proof. The checking procedure proceeds as follows. The root r checks that it is a
border node. Every border node checks that its subtree truncated at depth 2h fits
with the decomposition. That is, it checks that: (1) no nodes in its subtree are border
nodes except nodes at depth h and 2h, (2) no nodes in its subtree are extra-border
nodes except nodes at depth h− 1 and 2h− 1, and (3) the nodes in its subtree that
are special at depth h − 1 and h do have a subtree of depth at least h − 1. By
construction, this procedure accepts any marking which is correct with respect to the
decomposition rule.

Conversely, let us suppose that the algorithm accepts a marking of the nodes. We
prove that this marking is necessarily correct. We proceed by induction on the depth
of the nodes. At the root, the verifier checks that r is special as a border node, and
it checks that the domain of r is correctly marked. In particular, it checks that the
nodes of depth h that are not in its domain are properly marked as border nodes.
So, the base of the induction holds. Now, assume that, for α ≥ 0, all the domains
whose border nodes stand at depth at most αh are properly marked. The fact that
the border nodes at depth αh accept implies that all the nodes at depth (α+1)h that
are not in the domain of the border nodes at depth αh are properly marked. These
nodes verify their own domains, as well as all the domains down to depths (α + 1)h,
are all correct. Since none of these nodes reject, it follows that all the domains whose
border nodes stand at depth at most (α + 1)h are properly marked. This completes
the induction step, and hence the proof of the lemma.

We are now ready to describe the distance-t proof-labelling scheme. From the
previous discussions, we can assume that the nodes are correctly marked as root,
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border, extra-border, and standard, with a consistent orientation of the edges towards
the root.

The distance-t proof-labelling scheme. We are considering the arbitrarily
given predicate P on labelled trees, with its proof-labelling scheme (p,v) using cer-
tificates of size k bits. Before reducing the size of the certificates to O(k/t) by com-
municating at distance t, we describe a proof-labelling scheme at distance t which
still uses large certificates, of size O(k), but stored at a few nodes only, with all other
nodes storing no certificates.

Lemma 5.3. There exists a distance t proof-labelling scheme for P, in which the
prover assigns certificates to special nodes only, and these certificates have size O(k).

Proof. On legally labelled trees, the prover provides every special node (i.e., every
border or extra-border node) with the same certificate as the one provided by p. All
other nodes are provided with no certificates.

On arbitrary labelled trees, the verifier is active at border nodes only, and all non-
border nodes systematically accept (in zero round). At a border node v, the verifier
first gathers all information at distance 2h. This includes all the labels of the nodes
in its domain, and of the nodes that are neighbours to a node in its domain. Then v
checks whether there exists an assignment of k-bit certificates to the standard nodes
in its domain that results in v accepting at every node in its domain. If this is the
case, then v accepts, else it rejects. There is a subtle point worth to be mentioned
here. The value of k may actually depend on n, which is not necessarily known to the
nodes. Nevertheless, this can be easily fixed as follows. The t-PLS prover is required
to provide all nodes with certificates of the same size (the fact that all certificates have
identical size can trivially be checked in just one round). T hen k is simply inferred
from the certificate size in the t-PLS, by multiplying this size by t, whose value is, as
specified in Section 5.1, given as input to each node.

Note that, as every border node v has a complete view of its whole domain, and
of the nodes at distance 1 from its domain, v considers all the nodes that are used by
v executed at the nodes of its domain. Also note that the execution of v at nodes
in the domain of v concerns only nodes that are either in the domain of v, or are
special. This follows from the third item in Lemma 5.1. Thus no two border nodes
will simulate the assignment of certificates to the same node.

We now prove that, in an oriented marked tree, this scheme is correct.
– Assume first that the labelled tree satisfies the predicate P . Giving to the

special nodes the certificates as assigned by p, all the border nodes will be able to
find a proper assignment of the certificates for the standard nodes in their domain so
that v accepts at all these nodes, since, as the labelled tree satisfies the predicate P ,
there must exists at least one. This leads every node to accept.

– Suppose now that every border node accepts. It follows that, for every border
node, there is an assignment of certificates to the nodes in its domain such that
v accepts these certificates at every node. The union of these partial assignments
of certificates defines a certificate assignment to the whole tree that is well-defined
according to the first item of Lemma 5.1. A every node, v accepts since it has the
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same view as in the simulation performed by the border nodes in their respective
domains. Thus v accepts at every node of T , and therefore it follows that the labelled
tree satisfies P .

Lemma 5.3 basically states that there is a distance-t proof-labelling scheme in
which the prover can give certificates to special nodes only. We now show how to
spread out the certificates of the border and extra-border nodes to obtain smaller
certificates. The following lemma is the main tool for doing so. As this lemma is also
used further in the chapter, we provide a generalized version of its statement, and we
later show how to adapt it to the setting of the current proof.

We say that a local algorithm A recovers an assignment of certificates provided
by some prover q from an assignment of certificates provided by another prover q′

if, given the certificates assigned by q′ as input to the nodes, A allows every node to
output its certificate such as assigned by q. We define a special prover as a prover
which assigns certificates only to the special nodes, all other nodes being given empty
certificates.

Lemma 5.4. There exists a local algorithm A satisfying the following. For every
s ≥ 1, for every oriented marked tree T of depth at least s, and for every assignment
of b-bit certificates provided by some special prover q to the nodes of T , there exists
assignment of O(b/s)-bit certificates provided by a prover q′ to the nodes of T such
that A recovers q from q′ is s rounds.

Proof. We first describe the prover q′. For each border node v, let us partition the
certificate q(v) assigned to node v by the special prover q into s parts of size at
most db/se. Then one picks an arbitrary path starting from v, of length s− 1, going
downward the tree. Note that such a path exists since v is a border node. For every
i ∈ {0, . . . , s−1}, the ith part of the certificate q(v) is assigned to the ith node of that
path as its certificate in q′. As such, every node is given at most one part of the initial
certificates, as the paths starting at each of the border nodes are non intersecting.
To recover the original certificates, for every border node v, the algorithm A simply
inspects the tree at distance s− 1 downward, for gathering all the parts of the initial
certificate q(v) of v. Then v concatenates these parts, and v outputs the resulting
certificate. All other nodes output a certificate formed by the empty string.

We have now all the ingredients to prove Theorem 5.1.

Proof of Theorem 5.1. In the distance-t proof-labelling scheme, the prover chooses
a root and an orientation of the tree T , and provides every node with a counter mod-
ulo 3 in its certificate allowing the nodes to check the consistency of the orientation.
Then the prover constructs a tree decomposition of the rooted tree, and provides every
node with its type (root, border, extra-border, or standard) in its certificates. Ap-
plying Lemmas 5.3 and 5.4, the prover spreads the certificates assigned to the special
nodes by p. Every node will get at most two parts, because only the paths associated
to a border node and to its parent (an extra-border node) can intersect. Overall, the
certificates have size O(k/h) = O(k/t). The verifier checks the orientation and the
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marking, then recovers the certificates of the special nodes, as in Lemma 5.4, and
performs the simulation as in Lemma 5.3. This verification can be done with a view
of radius t ≤ 2h, yielding the desired distance-t proof labelling scheme.

5.2.2 Linear scaling in cycles and grids

For the proof techniques of Theorem 5.1 to apply to other graphs, we need to compute
a partition of the nodes into the two categories, special and standard, satisfying
three main properties. First, the partition should split the graph into regions formed
by standard nodes, separated by special nodes. Second, each region should have
a diameter small enough for allowing special nodes at the border of the region to
simulate the standard nodes in that region, as in Lemma 5.3. Third, the regions
should have a diameter large enough to allow efficient spreading of certificates assigned
to special nodes over the standard nodes, as in Lemma 5.4. For any graph family in
which one can define such a decomposition, an analogue of Theorem 5.1 holds. We
show that this is the case for cycles and grids.

Corollary 5.1. Let P be a predicate on labelled cycles, and let us assume that there
exists a (distance-1) proof-labelling scheme (p,v) for P with size(p,v) = k. Then
there exists a proof-labelling scheme for P that scales linearly, that is, size-pls(P , t) =
O
(
k
t

)
. The same holds for predicates on 2-dimensional labelled grids.

Proof. We just explain how the proof of Theorem 5.1 can be adapted to apply for
cycles and grids.

For every labelled cycle, the prover picks an arbitrary node r, which will play the
same role as the root chosen in the proof of Theorem 5.1, and an orientation of the
cycle pointing toward r. The chosen node is called leader. Let h = bt/2c. The prover
marks as border node every node u such that dist(r, u) ≡ 0 (mod h), where the
distance is taken in the oriented cycle. Similarly, the prover marks as extra-border
node every node u such that dist(r, u) ≡ −1 (mod h). Note that the border and
extra-border nodes that are the furthest away from the leader by the orientation may
actually be close to the leader in the undirected cycle. As this may cause difficulties
for spreading the certificates, the prover does not mark them, and keep these nodes
standard. The domain of a border node is defined in a way similar to trees. The
leader, the orientation, and the marking can be checked in a way similar to the proof
of Lemma 5.2. In particular, observe that that the size of each domain is at most t.
The marking separates the graph into independent domains that can be simulated in
parallel as in Lemma 5.3. The diameter of each domain is at least t/2 which allows
to do the spreading as in Lemma 5.4, resulting in certificates of size O(k/t).

For every labelled grid, the prover provides the edges with north-south and east-
west orientations, using two counters modulo 3. In a grid p × q with n = pq nodes,
this orientation induces a coordinate system with edges directed from (0, 0), defined
as the south-west corner, to (p, q), defined as the north-east corner. The leader is
the node at position (0, 0). Let h = bt/4c. The partition of the nodes is as follows.
Every node with coordinate (x, y) where both x and y are 0 modulo h are the border
nodes. Non-border nodes with coordinate (x, y) where x or y equals 0 or −1 modulo
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h are extra-border nodes. Now, as for cycles, we slightly modify that decomposition
for avoiding domains with too small diameter. Specifically, north-most border and
extra-border nodes, and the east-most border and extra-border nodes are turned
back to standard nodes. The domain of a border node is composed of all nodes
with larger x-coordinate and larger y-coordinates for which there are no closer border
node in the oriented grid. Using the same technique as in the proof of Lemma 5.2,
this partition of the nodes can be checked locally. The simulation as performed in the
proof of Lemma 5.3 can be performed similarly using that decomposition, because the
domains have diameter at most t, and are well separated by special nodes. Finally,
the spreading of the certificates as in Lemma 5.4 can be done in the following way. For
every special node (x, y) where x equals 0 or −1 modulo h, the certificate is spread
over the h− 1 nodes to the east. For every special node (x, y) where y equals 0 or −1
modulo h, the certificate is spread over the h− 1 nodes to the north. Note that there
is always enough space to the east or to the north of the special nodes as we have
removed the special nodes that could be too close to the east and north borders. Also
note that some node have their certificates spread in two directions, but this does not
cause problem as it just increases the size of the certificates by a constant factor.

By the same techniques, Corollary 5.1 can be generalized to toroidal 2-dimensional
labelled grids, as well as to d-dimensional labelled grids and toruses, for every d ≥ 2.

5.3 Universal scaling of uniform schemes

It is known [90] that, for every predicate P on labeled graphs with size-pls(P) = Ω̃(n2),
there is a proof-labelling scheme that scales linearly on the interval [1, D] in graphs
of diameter D. We show that, in fact, the scaling factor can be much larger. First,
recall that a graph G = (V,E) has growth b = b(t) if, for every v ∈ V , and every
t ∈ [1, D], we have |BG(v, t)| ≥ b(t). We say that a proof-labelling scheme is uniform
if the same certificate is assigned to all nodes by the prover.

Theorem 5.2. Let P be a predicate on labeled graphs, and let us assume that there
exists a uniform 1-PLS (p,v) for P with size(p,v) = k. There is a proof-labelling
scheme for P that weakly scales with scaling factor b(t) on graphs of growth b(t).
More specifically, let G = (V,E) be a graph, let t0 = min{t ≥ 1 | b(t) ≥ log n}, and
t1 = max{t ≥ 1 | k ≥ b(t)}. Then, in G, for every t ∈ [t0, t1], size-pls(P , t) = Õ

(
k
b(t)

)
.

Proof. Let s = (s1, . . . , sk), where si ∈ {0, 1} for every i = 1, . . . , k, be the k-bit
certificate assigned to every node of a graph G = (V,E). Let t ≥ 1 be such that k ≥
b(t) ≥ c log n for a constant c large enough. For every node v ∈ V , we set the certificate
of v, denoted s(v), as follows: for every i = 1, . . . , k, v stores the pair (i, si) in s(v)

with probability c logn
b(t)

. Recall the following Chernoff bounds: Suppose Z1, . . . , Zm are
independent random variables taking values in {0, 1}, and let Z =

∑m
i=1 Zi. For every

0 ≤ δ ≤ 1, we have Pr[Z ≤ (1− δ)EZ] ≤ e−
1
2
δ2EZ , and Pr[Z ≥ (1 + δ)EZ] ≤ e−

1
3
δ2EZ .

• On the one hand, for every v ∈ V , let Xv be the random variable equal to
the number of pairs stored in s(v). By Chernoff bounds, we have Pr[Xv ≥
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2c k logn
b(t)

] ≤ e
c k logn
3 b(t) = n−

c k
3 b(t) . Therefore, by union bound, the probability that

a node v stores more than 2c k logn
b(t)

pairs (i, si) is at most n1− c k
3 b(t) , which is less

than 1
2
for c large enough.

• On the other hand, for every v ∈ V , and every i = 1, . . . , k, let Yv,i be the
number of occurrences of the pair (i, si) in the ball of radius t centered at v.
By Chernoff bound, we have Pr[Yv,i ≤ 1

2
c log n] ≤ e−

c logn
8 = n−c/8. Therefore,

by union bound, the probability that there exists a node v ∈ V , and an index
i ∈ {1, . . . , k} such that none of the nodes in the ball of radius t centered at v
store the pair (i, si) is at most kn1−c/8, which is less than 1

2
for c large enough.

It follows that, for c large enough, the probability that no nodes store more than
Õ(k/b(t)) pairs (i, si), and every pair (i, si) is stored in at least one node of each ball
of radius t, is positive. Therefore, there is a way for a prover to distribute the pairs
(i, si), i = 1, . . . , k, to the nodes such that (1) no nodes store more than Õ(k/b(t))
bits, and (2) every pair (i, si) appears at least once in every t-neighbourhood of
each node. At each node v, the verification procedure first collects all pairs (i, si)
in the t-neighbourhood of v, in order to recover s, and then runs the verifier of the
original (distance-1) proof-labelling scheme. Finally, we emphasize that we only use
probabilistic arguments as a way to prove the existence of certificate assignment,
but the resulting proof-labelling scheme is deterministic and its correctness is not
probabilistic.

Theorem 5.2 finds direct application to the universal proof-labelling scheme [67]
using O(n2+kn) bits in n-node graphs labeled with k-bit labels. Indeed, the certificate
of each node consists of the n×n adjacency matrix of the graph, the array of n entries,
each one equal to the k-bit label at the corresponding node, and the array of n entries
listing the identities of the n nodes. It was proved in [90] that the universal proof-
labelling scheme can be scaled by a factor t. Theorem 5.2 significantly improves that
result, by showing that the universal proof-labelling scheme can actually be scaled by
a factor b(t), which can be exponential in t.

Corollary 5.2. For every predicate P on labeled graphs, there is a proof-labelling
scheme for P as follows. For every graph G with growth b(t), let t0 = min{t ≥ 1 |
b(t) ≥ log n}. Then, for every t ≥ t0 we have size-pls(P , t) = Õ

(
n2+kn
b(t)

)
.

Theorem 5.2 also tells us that, if a proof-labelling scheme is involving certificates
in which the same k-bit sub-certificate is assigned to every node, then the size of
this common sub-certificate can be drastically reduced by using a t-round verification
procedure. This is particularly interesting when the size of the common sub-certificate
is large compared to the size of the rest of the certificates. An example of such a
scheme is in essence the one described in Corollary 2.2 of [80]. Given a parameter
k ∈ Ω(log n), let isok be the predicate on graph stating that there exist two vertex-
disjoint isomorphic induced subgraphs of size k in the given graph.

Corollary 5.3. For every k ∈
[
1, n

2

]
, we have size-pls(isok) = Θ(k2) bits, and, for

every t > 1, size-pls(isok, t) = Õ(k2/b(t)).
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Proof. We first sketch a 1-PLS. Every node is given as certificate the k× k adjacency
matrix of the two isomorphic subgraphs, along with the corresponding IDs of the
nodes in the two subgraphs. The certificates also provides each node with the ID
of an arbitrary node in each subgraphs, that we call the leaders. In addition, the
nodes are given certificates that correspond to two spanning trees rooted at the two
leaders. The verification procedure works as follows. Every node first checks that
the spanning trees structures are correct. Then the roots of the spanning trees check
that they are marked as leader. Finally every node whose ID appear in one of the
two adjacency matrices checks that its actual neighbourhood corresponds to what it
should be according to the given adjacency matrices. By construction, this is a valid
1-PLS, using certificates on O(k2 + log n) bits. A simple adaptation of the proof of
Theorem 6.1 of [67] enables to prove that Ω(k2) bits are needed. The result regarding
t-PLS is a direct application of Theorem 5.2 to the part of the certificate that is
common to all nodes.

5.4 Certifying distance-related predicates

For any labeled (weighted) graph (G, x), the predicate diam on (G, x) states whether,
for every v ∈ V (G), x(v) is equal to the (weighted) diameter of G.

Theorem 5.3. There is a proof-labelling scheme for diam that scales linearly between
[c log n, n/ log n], for some constant c. More specifically, there exists c > 0, such that,
for every t ∈ [c log n, n/ log n], size-pls(diam, t) = Õ

(
n
t

)
. Moreover, no proof-labelling

schemes for diam can scale more than linearly on the interval [1, n/ log n], that is,
for every t ∈ [1, n/ log n], size-pls(diam, t) = Ω̃

(
n
t

)
.

The theorem follows from the next lemmas.

Lemma 5.5. There exists a constant c, such that for every t ∈ [c log n, n], size-pls(diam, t) =

O
(
n log2 n

t

)
.

Proof. A proof-labelling scheme for diameter with optimal certificate size Θ(n log n)
bits has been designed in [24]. We simply use this scheme for certifying that, for every
node v, the diameter of the graph is at least x(v). Indeed, [24] uses only O(log n)-bit
certificates to certify the existence of a pair of nodes at mutual distance at least x(v)
in the graph. The rest of the proof is dedicated to certifying that no pairs of nodes
are at distance more than x(v) in the graph, i.e., “diameter ≤ x(v)”. Namely, we
show how the scheme in [24] scales with the radius of verification. For this purpose,
let us briefly recall this scheme. Each node v of a graph G = (V,E) is provided
with a certificate Dv consisting of a table with n entries storing the ID of every node
in G, and the distance to these nodes. (Every certificate is therefore on O(n log n)
bits). Somewhat abusing notations, let us denote by Dv(u) the distance to node u, as
stored in table Dv. The verification proceeds by, first, having each node checking that
it stores the same set of IDs as the ones stored by its neighbours, and that its own
ID appears in its table. Second, each node checks that the distances in its certificate
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vary as expected. That is, each node v checks that: (1) Dv(v) = 0, (2) for every
node u and every neighbour v′, Dv(u) − w({v, v′}) ≤ Dv′(u) ≤ Dv(u) + w({v, v′}),
and (3) there exists a neighbour v′ such that Dv′(u) = Dv(u) − w({v, v′}). Finally,
every node v checks that Dv(u) ≤ x(v) for every node u. This verification process is
correct, as shown in [24].

Now, let t ≥ c log n for a constant c > 0 large enough, and let us construct a
proof-labelling scheme for “diameter ≤ x(v)”, with radius t. The idea is that each
node v does not store all entries in the table Dv but only a fraction t of these entries.
The issue is to select which entries to keep, and which entries to drop. For our scheme
to work, we need to guarantee that, if the distance to node u is not stored in Dv, then
there is a node v′ on a shortest path from v to u, at distance at most t from v, that
stores dist(v′, u) in its table Dv′ . To achieve this, for every node u 6= v, each node v
keeps dist(v, u) in its table Dv with probability c logn

t
. (Node v systematically keeps

Dv(v) = 0 in its table). From this setting, we derive the following two properties.

1. For every pair of nodes (u, v), let us denote by Pv,u the path of length t formed
by the t first nodes on a shortest path from v to u, and let Xv,u denote the sum
of t Bernoulli random variables with parameter c logn

t
. By the use of the same

Chernoff bound as in the proof of Theorem 5.2, we have Pr[Xv,u ≤ 1
2
c log n] ≤

e−
c
8

logn = n−c/8 < 1
2n2 for c large enough. Therefore, by union bound, the

probability that there exists a pair of nodes (u, v) such that no nodes of Pv,u
store the distance to node u is less than 1

2
.

2. For every node v, let Yv be the number of nodes for which v keeps the distance
these nodes. Again, by Chernoff bound, Pr[Yv ≥ 2cn logn

t
] ≤ e−

c n logn
3 t ≤ e−

c logn
3 =

n−c/3 < 1
2n

for c large enough. Therefore, by union bound, the probability that
there exists a node v that stores the distances to more than 2cn logn

t
nodes is less

than 1
2
.

Let Ev,u be the event “at least one node of Pv,u stores its distance to node u”, and
let E ′v be the event “node v stores no more than 2cn lnn

t
distances to other nodes”. We

derive from the above that

Pr[∀(u, v) ∈ V × V, Ev,u ∧ E ′v] > 0.

It follows that there exists an assignment of entries to be kept in each table Dv, v ∈ V ,
such that each resulting partial table is of size O

(
n log2 n

t

)
bits, and, for every two

nodes u and v, at least one node at distance at most t, on a shortest path from v to
u, stores its distance to node u.

It remains to show that these sparse certificates can be verified in t rounds. Let
B(v, t) be the ball of radius t around v. Each node v verifies that, first, for every
node v′ ∈ B(v, t) such that both v and v′ stores the distance to a same node u,
we have Dv′(u) − dist(v, v′) ≤ Dv(u) ≤ Dv′(u) + dist(v, v′), and, second, for every
node u such that v stores its distance to u, there exists a node v′ ∈ B(v, t) such that
Dv(u) = Dv′(u) + dist(v, v′). Third, using the distances collected in B(v, t), node
v constructs the table D′v where D′v(u) = Dv(u) if u is stored in Dv, and D′v(u) =
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Figure 5.1: The lower bound graph construction. Thin lines represent P -paths, thick lines
represent (2t+1)-paths, and the dashed lines represent edges who’s existence depend on the
input. The paths connecting `i and ri to their binary representations are omitted, except
for those of `0 and r0.

minv′∈B(v,t)(Dv′(u) + dist(v, v′)) otherwise. Finally, node v checks that D′v(u) ≤ x(v)
for every node u. If all these tests are passed, then v accepts, otherwise it rejects.

By the setting of the partial tables Dv, v ∈ V , in a legal instance, we get that
D′v(u) = dist(v, u) for every node u, and therefore all nodes accepts. Instead, if there
exists (u, v) ∈ V × V such that information about u are stored in Dv, but Dv(u) 6=
dist(u, v), then let us consider such a pair (u, v) where Dv(u) is minimum. For v to
accept, there must exist some node v′ ∈ B(v, t) such that Dv′(u) = Dv(u)−dist(v, v′).
By the choice of the pair (u, v), Dv′(u) = dist(u, v′), and thus Dv(u) = dist(u, v), a
contradiction. Therefore v′ cannot exist, and thus v rejects. It follows that this
scheme is a correct t-PLS for diameter, using O

(
n log2 n

t

)
-bit certificates.

Lemma 5.6. For every t ∈ [1, n/ log n], size-pls(diam, t) = Ω
(

n
t logn

)
.

Peleg and Rubinovich [96] proved distributed lower bounds by a reduction to com-
munication complexity; Abboud et al [1] gave a lower bound on the approximability
of the diameter, using a simpler reduction; both results are in the CONGEST model.
We adapt the graph construction from the latter and the simulation construction of
the former in order to prove lower bounds on the label size in the t-PLS model. In-
terestingly, in our model there are no bandwidth restrictions, which makes it more
similar to the LOCAL model than to the CONGEST model, yet our lower bounds are
based on a CONGEST lower bound.

We now describe the construction of the lower bound graph (see Figure 5.1). Let
k = Θ(n) be a parameter whose exact value will follow from the graph construction.
Alice and Bob use the graph in order to decide disj on k-bit strings. Let P ≥ 1
be a constant, and let t be the parameter of the t-PLS, which may or may not be
constant. The graph consists of the following sets of nodes: L = {`0, . . . , `k−1}, L′ ={
`′0, . . . , `

′
k−1

}
, T = {t0, . . . , tlog k−1}, F = {f0, . . . , flog k−1}, and `k and `k+1, which

will be simulated by Alice, and similarly R = {r0, . . . , rk−1}, R′ =
{
r′0, . . . , r

′
k−1

}
, T ′ =



5.4. CERTIFYING DISTANCE-RELATED PREDICATES 111

rk+1

ℓ0

ℓ1

ℓ2

ℓk−1ℓ′
k−1

ℓk ℓk+1

f0
t0

r′
k−1

r0

rk

r1

r2

rk−1

r′
0

r′
1

r′
2

t′
0

f ′
0

ℓ′
2

ℓ′
1

ℓ′
0

f1

flog k−1 t′
log k−1

t′
1

Figure 5.2: The lower bound graph construction for t = 3, and the sets of nodes simulated
by Alice in the three rounds of verification. Alice eventually knows the outputs of all the
nodes in the light-shaded set.

{
t′0, . . . , t

′
log k−1

}
, F ′ =

{
f ′0, . . . , f

′
log k−1

}
, and rk and rk+1, which will be simulated by

Bob.
The nodes are connected by paths, where the paths consist of additional, distinct

nodes. For each 0 ≤ i ≤ k−1, connect with P -paths (i.e., paths of P edges and P −1
new nodes) the following pairs of nodes: (`i, `

′
i), (`i, `k), (`k, `k+1), (ri, r

′
i), (ri, rk), and

(rk, rk+1). Add such paths also between `k+1 and all th ∈ T and fh ∈ F , and between
rk+1 and all t′h ∈ T ′ and f ′h ∈ F ′. Connect by a P -path each `i ∈ L with the nodes
representing its binary encoding, that is, connect `i to each th that satisfies i[h] = 1,
and to each fh that satisfies i[h] = 0, where i[h] is bit h of the binary encoding of
i. Add similar paths between each ri ∈ R and its encoding by nodes t′h and f ′h. In
addition, for each 0 ≤ h ≤ log k− 1, add a (2t+ 1)-path from th to f ′h and from fh to
t′h, and a similar path from `k+1 to rk+1.

Assume Alice and Bob want to solve the disj problem for two k-bit strings SA
and SB using a non-deterministic protocol. They build the graph described above,
and add the following edges: (`i, `k+1) whenever SA[i] = 0, and (ri, rk+1) whenever
SB[i] = 0. The next claim is at the heart of our proof.

Claim 5.1. If SA and SB are disjoint then D = 4P + 2t + 2, and otherwise D ≥
6P + 2t+ 1.

Proof. A more detailed analysis can be found in [1]. Each node in L, T, F or on a
path connecting two such nodes is at distance at most 2P from `k+1, and each node in
R, T ′, F ′ or in a path connecting two such nodes is at distance at most 2P from rk+1.
Since `k+1 and rk+1 are connected by a (2t+ 1)-path, the distance between every two
nodes in L,R, T, F, T ′, F ′ or on a path between them is at most 4P + 2t+ 1.

Consider two nodes `′i and r′j with indices i 6= j, an index h such that i[h] 6= j[h],
and assume w.l.o.g that h[i] = 1. In this case, there is a simple path connecting the
following nodes: `′i, `i, tj, f ′h, rj, r′j, and its length is 4P + 2t+ 1. For two nodes `′i and
r′i of the same index, a simple case analysis shows that the distance between these
nodes is at most 6P + 2t+ 1.
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To see the claim, note that if the inputs are disjoint then for every 0 ≤ i ≤ k − 1,
at least one of the edges (`i, `k+1) or (ri, rk+1) exists, and thus there is a (4P +2t+2)-
path between `′i and r′i, through `k+1 or through rk+1, e.g. `′i, `k+1, rk+1, rk, ri, r

′
i. The

other distances in the graph are not larger, and the distance between `′i and r′i is
indeed 4P + 2t + 2 whenever SA[i] 6= 0 or SB[i] 6= 0 2 so the diameter is indeed
4P + 2t + 2. On the other hand, if the sets are not disjoint, there is an index i such
that SA[i] = SB[i] = 1, and the distance between `′i and r′i is 6P + 2t + 1 so the
diameter is at least 6P + 2t+ 1.

With this claim in hand, we are ready to prove Lemma 5.6.

Proof of Lemma 5.6. Fix t ∈ [1, n/ log n], and let SA and SB be two input strings for
the disj problem on k bits. We show how Alice and Bob can solve disj on SA and
SB in a nondeterministic manner, using the graph described above and a t-PLS for
diam = 4P + 2t+ 2.

Alice and Bob simulate the verifier on the labeled graph. The nodes simulated by
Alice, denoted A, are L ∪ L′ ∪ T ∪ F ∪ {`k, `k+1} and all the paths between them,
and by Bob, denoted B, are R ∪ R′ ∪ T ′ ∪ F ′ ∪ {rk, rk+1} and the paths between
them. For each pair of nodes (a, b) ∈ A × B that are connected by a (2t + 1)-path,
let Pab be this path, and {Pab(i)}, i = 0, . . . , 2t+ 1 be its nodes in consecutive order,
where Pab(0) = a and Pab(2t + 1) = b. Let C be the set of all (2t + 1)-path nodes,
i.e. C = V \ (A∪B). The nodes in C are simulated by both players, in a decremental
way described below.

Alice interprets her nondeterministic string as the certificates given to the nodes in
A∪C, and she sends the certificates of C to Bob. Bob interprets his nondeterministic
string as the certificates of B, and gets the certificates of C from Alice. They simulate
the verifier execution for t rounds, where, in round r = 1, . . . , t, Alice simulates the
nodes of A and all nodes Pab(i) with (a, b) ∈ A × B and i ≤ 2t + 1 − r, while Bob
simulates the nodes of B and all nodes Pab(i) with i ≥ r.

Note that this simulation is possible without further communication. The initial
state of nodes in A is determined by SA, the initial state of the nodes Pab(i) with i ≤ 2t
is independent of the inputs, and the certificates of both node sets are encoded in the
nondeterministic string of Alice. In each round of verification, all nodes whose states
may depend on the input of Bob or on his nondeterministic string are omitted from
Alice’s simulation, and so she can continue the simulation without communication
with Bob. Similar arguments apply to the nodes simulated by Bob. Finally, each
node is simulated for t rounds by at least one of the players. Thus, if the verifier
rejects, that is, at least one node rejects, then at least one of the players knows about
this rejection.

Using this simulation, Alice and Bob can determine whether disj on (SA, SB)
is true as, from Claim 5.1, we know that if it is true then diam = 4P + 2t + 2,
and the verifier of the PLS accepts, while otherwise it rejects. The nondeterministic
communication complexity of the true case of disj on k-bit strings is Ω(k) = Ω(n),

2In the case where both inputs are the 0 strings, the diameter is only 4P + 2t+ 1; we can exclude
this unique case by forbidding this input to the disj problem without changing its asymptotic
complexity
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so Alice and Bob must communicate this amount of bits. From the graph definition,
|C| = Θ(t log n) which implies size-pls(diam, t) = Ω

(
n

t logn

)
, as desired.

Let β be a non-negative integer. For any labeled graph (G, x), β-additive spanner
is the predicate on (G, x) that states whether, for every v ∈ V (G), x(v) ⊆ {ID(w), w ∈
N(v)} for every v ∈ V (G), and whether the collection of edges EH = {{v, w}, v ∈
V (G), w ∈ x(v)} forms a β-additive spanner of G, i.e., a subgraph H of G such that,
for every two nodes s, t, we have distH(s, t) ≤ distG(s, t) + β. Similarly, the predic-
ate (α, β)-spanner on (G, x) states whether H is such that, for every two nodes s, t,
distH(s, t) ≤ α distG(s, t) + β.
Theorem 5.4. There is a proof-labelling scheme for additive-spanner that weakly
scales linearly on the interval [1, n/ log n]. More precisely, for every pair of integers
α ≥ 1 and β ≥ 0, there is a one-round proof-labelling scheme for (α, β)-spanner
of size O(n), and a t-round proof-labelling scheme of size Õ(n

t
). Moreover, this

is optimal for additive spanners with a constant β and t ∈ [1, n/ log n], that is,
size-pls(β-additive spanner, t) = Θ̃(n

t
) for β and t as above.

Proof. The upper bound proof is similar to the one of Lemma 5.5 for diameter. Spe-
cifically, instead of using a unique table Dv storing distances in the graph, every
node v stores two tables Dv and D̂v, where D̂v stores the distances in the spanner.
To scale, each node keeps only a fraction c logn

t
of the entries in each table, for some

constant c > 0. For c large enough, this is sufficient for every node to recover its
distance to every other node in both the graph and the spanner, by using the same
arguments as in the proof of Lemma 5.5. The verification again proceeds as in the
proof of Lemma 5.5, excepted that, instead of checking whether Dv(u) ≤ x(v) for
every node u, every node v checks that, for every node u, D̂v(u) ≤ αDv(u) + β or
D̂v(u) ≤ Dv(u) + β, depending on whether one is dealing with general spanners or
additive spanners, respectively. Correctness directly follows from the same arguments
as in the proof of Lemma 5.5.

To achieve the lower bound, we use the same construction as in the proof of
Lemma 5.6. The original graph is the graph described above for the case where both
SA and SB are the all-0 strings, i.e. all the potential edges are present in the graph.
To decide disj, Alice and Bob build a spanner for this graph in the same manner
as in the proof of Lemma 5.6, i.e. keep all the nodes and paths, and keep the edges
that correspond to zeros in their input strings. This construction guarantees that
each graph edge that is not in the spanner can be replaced by a 2P -path in it. If the
inputs are disjoint, then at most one edge in each shortest path is not in the spanner,
so the stretch is at most 2P − 1. On the other hand, if the inputs are not disjoint
then there is a pair (`′i, r

′
i) that stretches from 4P + 2t + 1 in the original graph to

6P + 2t+ 1 in the spanner.
We pick P such that the spanner is a legal (α, β)-spanner if and only if the inputs

are disjoint, that is, 4P+2t+2 ≤ α(4P+2t+1)+β, while 6P+2t+1 > α(4P+2t+1)+β.
For additive spanners, i.e. α = 1, the first condition always holds; to guarantee the
second, we choose P > β/2. The lower bound is thus Ω

(
n
βt

)
, or Ω

(
n
t

)
for a constant

β.
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5.5 Distributed proofs for spanning trees

In this section, we study two specific problems which are classical in the domain of
proof-labelling schemes: the verification of a spanning tree, and of a minimum-weight
spanning tree. The predicates ST and mst are the sets of labeled graphs where some
edges are marked and these edges form a spanning tree, and a minimum spanning
tree, respectively. We present proof-labelling schemes for them that scale linearly in
t. Note that ST and mst are problems on general labeled graphs and not on trees,
i.e., the results in this section improve upon Section 5.3 (for these specific problems),
and are incomparable with the results of Section 5.2.

Formally, let F be the family of all connected undirected, weighted, labeled graphs
(G, x). For simplicity, we assume all edge weights are distinct, and thus the minimum
spanning tree is also unique. Each label x(v) contains a (possibly empty) subset of
edges adjacent to v, which is consistent with the neighbours of v, and we denote the
collection of edges represented in x by Tx. In the ST (respectively, mst) problem, the
goal is to decide for every labeled graph (G, x) ∈ F whether Tx is a spanning tree of G
(respectively, whether Tx is a spanning tree of G with the sum of all its edge-weights
minimal among all spanning trees of G). For these problems we have the following
results.

Theorem 5.5. For every t ∈ O(log n), we have that size-pls(ST, t) = O
(

logn
t

)
.

Ostrovsky et al. [90] (Theorem 8) designed a t-distance proof-labelling scheme
for acyclicity, with (log n/t)-bit certificates, for t ≤ min {log n,D}. Here, D is the
diameter of the graph, which is at least the largest depth of a tree in it. In the scheme,
each tree is oriented outwards from an arbitrarily chosen root, and after running the
verification process, each node knows who is his parent in its tree, and the root of
each tree knows it is the root. This scheme plays an essential role in the proof of
Theorem 5.5.

Proof of Theorem 5.5. To prove that a marked subgraph Tx is a spanning tree, we
need to verify it has the following properties: (1) spanning the graph, (2) acyclic, (3)
connected. We choose an arbitrary node as the root of Tx.

The certificate of a node v is composed of three parts: a bit indicating whether
the tree is shallow as in the proof of Theorem 5.1, O(log n/t)-bits by the scheme of
Ostrovsky et al. [90] (Theorem 8) for acyclicity, and O(log n/t)-bits that are a part
of the ID of the root, as in the proof of Theorem 5.1.

In the verification process, the nodes first verify they all have the same first bit.
If the tree is shallow, all nodes but the root accept, and the root collects the whole
structure of the graph and of Tx and verifies it is a spanning tree. Otherwise, each node
verifies that at least one of its edges is marked to be in Tx, making sure Tx is spanning
all the graph. The nodes then run the verification process from [90] (Theorem 8),
while ignoring edges not in Tx, to make sure the graph is acyclic. Finally, they all run
the reconstruction process from Theorem 5.2 to find the root ID, and the root of Tx
(as defined by the acyclicity scheme) verifies this root ID is indeed its own ID. This
guarantees Tx is a connected forest, i.e. a tree, as desired.
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Theorem 5.6. For every t ∈ O(log n), we have that size-pls(mst, t) = O
(

log2 n
t

)
.

The upper bound matches the lower bound of Korman et al. [83] (Corollary 3) for
the specific case t = Θ(log n). Note that our theorem holds only for t ∈ O(log n),
meaning that we can get from proofs of size O(log2 n) to proofs of size O(log n), but
not to a constant.

Our upper bound is based on a famous 1-round PLS for MST [79, 83], which
in turn builds upon the algorithm of Gallager, Humblet, and Spira (GHS) [63] for
a distributed construction of MST. The idea behind this scheme is, given a labeled
graph (G, x), to verify that Tx is consistent with an execution of the GHS algorithm
in G.

The GHS algorithm maintains a spanning forest that is a subgraph of the minimum
spanning tree, i.e., the trees of the forest are fragments of the desired minimum
spanning tree. The algorithm starts with a spanning forest consisting of all nodes
and no edges. At each phase each of the fragments adds the minimum edge going
out of it, thus merging several fragments into one. After O(log n) iterations, all the
fragments are merged into a single component, which is the desired minimum-weight
spanning tree. We show that each phase can be verified with O(log n/t) bits, giving
a total complexity of O(log2 n/t) bits.

Proof. Let (G, x) be a labeled graph such that Tx is a minimum-weight spanning
tree. If t is greater than the diameter D of G, every node can see the entire labeled
graph in the verification process, and we are done; we henceforth assume t ≤ D. The
certificates consist of four parts.

First, we choose a root and orient the edges of Tx towards it. We give each node
its distance from the root modulo 3, which allows it to obtain the ID of its parent
and the edge pointing to it in one round. Second, we assign the certificate described
above for ST (Theorem 5.5), which certifies that Tx is indeed a spanning tree. This
takes O(log n/t) bits.

The third part of the certificate tells each node the phase in which the edge
connecting it to its parent is added to the tree in the GHS algorithm, and which of
the edge’s endpoints added it to the tree. Note that after one round of verification,
each node knows for every incident edge, at which phase it is added to the spanning
tree, and by which of its endpoints. This part uses O(log log n) bits.

The fourth part of the certificate consists of O(log2 n/t) bits, O(log n/t) for each
phase of the GHS algorithm. To define the part of a certificate of every phase, fix
a phase, a fragment F in the beginning of this phase, and let e = (u, v) be the
minimum-weight edge going out of F , where u ∈ F and v /∈ F . Our goal is that the
nodes of F verify together that e is the minimum-weight outgoing edge of F , and that
no other edge was added by F in this phase. To this end, we first orient the edges
of F towards u, i.e. set u as the root of F . If the depth of F is less than t, then in
t− 1 rounds the root u can see all of F and check that (u, v) is the lightest outgoing
edge. All other nodes just have to verify that no other edge is added by the nodes
of F in this phase. Otherwise, if the depth of F is at least t, by Theorem 5.2, the
information about ID(u) and w(e) can be spread on F such that in t rounds it can
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be collected by all nodes of F . With this information known to all the nodes of F ,
the root can locally verify that it is named as the node that adds the edge and that
it has the named edge with the right weight. The other nodes of F can locally verify
that they do not have incident edges with a smaller weight, and that no other edge is
added by F . This part takes O(log n/t) bits per iteration, which sums to a total of
O(log2 n/t) bits.

Overall, our scheme verifies that Tx is a spanning tree, and that it is consistent
with every phase of the GHS algorithm. Therefore, the scheme accepts (G, x) if and
only if Tx is a minimum spanning tree.



Chapter 6

Impact of interactivity

In this chapter, we build a hierarchy of classes, on the top of deterministic decision and
proof-labelling schemes. This is the distributed decision analogue of the polynomial
hierarchy in centralized computing. While the three first chapters of this thesis were
focused on diverse aspects of proof-labelling schemes (with theorems about specific
languages, proof sizes etc.), this chapter is more structural, with a focus on complexity
classes.

This chapter is based on the paper [41], which is joint work with Pierre Fraigniaud
and Juho Hirvonen. It corresponds to Subsection 1.3.4 in the introduction of the
thesis.

6.1 Introduction
Motivation and related work. As said in the introduction, it is possible to do
an analogy between (centralized) theory of complexity and distributed decision: the
class P corresponds to the set of languages that can be decided deterministically, and
the class NP can correspond to languages that can be recognized by proof-labelling
schemes with proofs of size O(log n). Considering O(log n) as the natural threshold
was an idea supported in [67], and we give further arguments in that direction at
the end of the introduction. This chapter is about building a hierarchy of classes of
distributed decision, and studying the problems inside these classes.

One of the lines of research that motivated us to define a local hierarchy is the study
of distributed graph automata. In particular, [97] recently proved that an analogue of
the polynomial hierarchy, where sequential polynomial-time computation is replaced
by distributed local computation, turns out to coincide with the logic called MSO.
However, while this result is important for our understanding of the computational
power of finite automata, the model does not quite fit with the standard model of
distributed computing aiming at capturing the power of large-scale computer networks
(see, e.g., [95]). Indeed, on the one hand, the model in [97] is somewhat weaker
than desired, by assuming a finite-state automata at each node instead of a Turing
machine, and by assuming anonymous computation instead of the presence of unique
node identities. On the other hand, the very same model is also stronger than the
standard model, by assuming a decision-making mechanism based on an arbitrary

117
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mapping from the collection of all node states to {true, false}. Instead, the classical
distributed decision mechanism we have defined is based on the logical conjunction
of the individual decisions.

Another hierarchy is defined in [54], where the authors investigated the local hier-
archy in which the certificates must not depend on the identity-assignment to the
nodes. Under such identity-oblivious certificates, there are distributed languages out-
side Σ1. However, all languages are in the probabilistic version of Σ1, that is, in Σ1

where the correctness of the verification is only stochastically guaranteed with con-
stant probability. Moreover, the local hierarchy collapses to Π2 [10]. In [52], it is
proved that Σ1 is exactly captured by the set of distributed languages that are closed
under lift. (A configuration (G′, x′) is a t-lift of a configuration (G, x) if there is an
input-preserving mapping from V (G′) to V (G) which preserves the t-neighbourhood
of the nodes in these graphs). Interestingly, in the same framework as [54] but where
the decision function is a global interpretation of the all the individual outputs, in-
stead of the logical conjunction of individual boolean outputs, [4, 5] proved that the
local hierarchy collapses to Σ1. Also, in the same framework as [54], but where the
certificates may depend on the identity assignment, all distributed languages are in
Σ1 (see [82]).

Specific definitions. We define an infinite hierarchy {(Σk)k≥0, (Πk)k≥0} of classes.
Informally, each class can be defined by a game between two players, called the prover
and the disprover. Both players are given a language L and an instance (G, x). In
Σk (resp., Πk), with k > 0, the prover (resp., disprover) goes first, and assigns an
O(log n)-bit certificate to each node. Then, the players alternate, assigning O(log n)-
bit certificates to each node in turn, until k certificatess c1, c2, . . . , ck are assigned.
The fact of changing the speaker is called an alternation. A language L is in the
corresponding class if there is a local algorithm A, and a prover-disprover pair such
that, given (G, x), for every set of labels that the disprover assigns, the prover can
always assign labels such that A accepts if and only if (G, x) ∈ L. That is, if (G, x) /∈
L, then the disprover can always force some node to reject, whatever the prover does.
Such a combination of a local algorithm A and a prover-disprover pair is called a
decision protocol for L in the corresponding class. More formally:

Definition 6.1. Let Σ0 = Π0 = LD, and, for k > 0, let Σk be the set of languages L
for which there exists α ≥ 0, and a local algorithm A such that

(G, x) ∈ L ⇐⇒ ∃c1,∀c2, . . . ,Q ck, A(G, x, c1, c2, . . . , ck) = 1,

where Q is the existential (resp., universal) quantifier if k is odd (resp., even), and
every label ci ∈ {0, 1}∗ is of size at most α log n in n-node graphs. The class Πk is
defined similarly, except that the acceptance condition is:

(G, x) ∈ L ⇐⇒ ∀c1,∃c2, . . . ,Q ck, A(G, x, c1, c2, . . . , ck) = 1.

Note that the class of problems that can be solved deterministically is Σ0 = Π0

(also known as LD), and that the class of problems that have a proof-labelling scheme
with proofs of size O(log n) is the level Σ1.



6.2. STRUCTURAL RESULTS 119

For both Σk and Πk, as in proof-labelling scheme before, the equivalence should
hold for every identity-assignment to the nodes with identities in [1, N ], where N is
a fixed function polynomial in n. Indeed, the membership of an instance (G, x) to
a language is independent of the identities given to the nodes. On the other hand,
the labels given by the prover, and by the disprover may well depend on the actual
identities of the nodes in the graph where the decision algorithm A is run.

In the remaining, a protocol is said to be interactive if there are several provers,
and non-interactive if there is only one prover. The study of interactivity is the study
of the impact of changing from the non-interactive to the interactive setting.

The last section of this chapter deals with a hierarchy in communication complex-
ity, that we will defined at the beginning of the section.

About the logarithmic certificate size. In this chapter we have assumed that
every certificate is on O(log n) bits at each node in an n-node graph. Indeed, this
assumption naturally extends the class LogLCP in [66], and labels on O(log n) bits
fits with the classical CONGEST model for distributed computation [95]. In this
paragraph, we briefly discuss the impact of considering smaller and larger labels.

Regarding smaller labels, remember that in Chapter 4 we proved that deciding
whether there is at least one leader in the network requires a global certificate on
Ω(n log n) bits. As we have shown, reversing a distributed decision corresponds to
certifying that at least one node rejects. It follows that local certificates on Ω(log n)
bits are required for reversing a distributed decision. This is an additional motivation
for considering certificates on at least Ω(log n) bits for the hierarchy, as otherwise
establishing connections between the classes and their complement would be cumber-
some.

Regarding larger labels, a natural idea consists in considering labels onO(polylog n)
bits. Indeed, with such label size, one could combine O(polylog n) labels into one
label, and still remain in the same class. However, this ability to combine a large
number of labels does not appear to be crucial in distributed decision, and we did
not identify scenarios for which this ability would help. In fact, the only non-artificial
problem that would be impacted by labels on O(polylog n) bits instead of labels on
O(log n) bits is MST. Indeed, MST is in Σ1 only if one allows certificates as large as
Ω(log2 n) bits, while it stands in Π2 with labels on O(log n) bits. Moreover, most of
our separation results can be extended to labels on O(polylog sn) bits. In particular,
it is worth noticing that the existence of a language L outside LH holds as long as the
labels are on o(n) bits.

6.2 Structural results

6.2.1 The odd-even collapsing, and the Λk-hierarchy

Interestingly, the ending universal quantifier in both Σ2k and Π2k+1 does not help.
The class Π1 turns out to be just slightly stronger than LD. Specifically, we prove the
following result.
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Theorem 6.1. For every k ≥ 1, Σ2k = Σ2k−1 and Π2k+1 = Π2k. Moreover, LD ⊆
Π1 ⊆ LD

#node, where LD
#node is LD enhanced with access to an oracle providing each

node with the number of nodes in the graph.

Proof. We first show that an existential quantification on labels of size O(log n) bit
is sufficient to provide the nodes with the exact size of the graph.

Claim 6.1. Let L = {(G, x) : for every v ∈ V (G), x(v) = |V (G)|}. We have L ∈ Σ1.

To establish the claim, we use a certified spanning tree, as described in the proof-
labelling scheme toolbox (Section 1.2). More specifically, on a legal instance, let T
be any spanning tree of G, and root T at an arbitrary node r. At node v, let us set
certificate c(v) = (ID(r), p(v), s(v)) where p(v) is the identity of the parent of v in
T , and s(v) is the size of the subtree of T rooted at v. The verification proceeds as
follows: each node v checks that it agrees on ID(r) and x(v) with all its neighbours
in the graph, and that s(v) = 1 +

∑
w∈p−1(v) s(w) where p−1(v) denotes the set of v’s

children, i.e., all neighbours w of v such that p(w) = v. In addition, the root r checks
that s(r) = x(r). If all tests are passed, then the node accepts, otherwise it rejects.
It follows that this algorithm accepts if and only if x(v) = n for every node v. This
completes the proof of the claim.

We now show how to use Claim 6.1 for eliminating the last universal quantifier in
the case of Σ2k, for k > 0. Let L ∈ Σ2k, and let A be a t-round local algorithm such
that:

(G, x) ∈ L ⇐⇒ ∃c1,∀c2, . . . ,∃c2k−1,∀c2k, A(G, x, c1, c2, . . . , c2k) = 1.

Recall that all certificates ci, i = 1, . . . , 2k, are of size at most α log n for some
α ≥ 0. We construct an algorithm A′ that simulates A for a protocol that does not
need the last universal quantifier on c2k. On a legal instance, the first certificate
assignment c′1 consists of some correct c1 for A, with an additional label that encodes
a spanning tree x′ (rooted at an arbitrary node), and the value of the number of nodes
in G. Regarding the remaining labellings, for each c2i−1 assigned by the disprover, the
prover assigns c2i as in the protocol for A, ignoring the bits padded to c1 for creating
c′1. After the labellings have been assigned, each node v running A′ gathers its radius-
t neighbourhood BG(v, t). Then, it virtually assigns every possible combination of
(α log n)-bit labellings c2k(u) to each node u ∈ BG(v, t), and simulates A at v to check
whether it accepts or rejects with this labelling. If every simulation accepts, then A′
accepts at v, else it rejects. Since every nodes generate all possible c2k labellings in
its neighbourhood, we get that

(G, x) ∈ L ⇐⇒ ∃c′1,∀c2, . . . ,∃c2k−1, A(G, c1, c2, . . . , c2k−1) accepts,

which places L in Σ2k−1.
The proof of Π2k+1 = Π2k is similar by using the first existential quantifier (which

appears in second position) to certify the number of nodes in the graph.
The proof of Π1 ⊆ LD

#node is also similar, since, in LD
#node, the nodes can directly

use the value of the number of nodes directly provided by the oracle #node to test
all possible (α log n)-bit labellings c1 at every node.
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A consequence of Theorem 6.1 is that only of the classes Σk for odd k, and Πk

for even k, are worth investigating, once one puts aside the particular case of Π1.
Therefore, we define the classes (Λk)k≥0 as follows:

Definition 6.2. For any k ≥ 0, let Λk =

{
Σk if k is odd;
Πk otherwise.

In particular, Λ0 = Π0 = LD. By definition, we get Λk ⊆ Λk+1 for every k ≥ 0, as
the distributed Λk+1 protocol can simply ignore the first label to decide a language in
Λk.

Definition 6.3. The local hierarchy is defined as LH = ∪k≥0Λk.

Note that, as for all hierarchies with similar flavor, a language L is in LH if and
only if there exists k ≥ 0 such that L ∈ Λk. That is, the number of alternations is
upper bounded by the same k, for all possible instances (G, x).

6.2.2 Complementary classes

We define the complement classes co-Λk, for k ≥ 0, as

co-Λk = {L : L̄ ∈ Λk}.

Note that, due to the asymmetric nature of distributed decision (unanimity is required
for global acceptance, while a single rejection is sufficient for global rejection), simply
reversing the individual decision of an algorithm deciding L is generally not appro-
priate for deciding L̄. Nevertheless, we show that an additional existential quantifier
is sufficient to reverse any decision, implying the following theorem.

Theorem 6.2. For every k ≥ 0, co-Λk ⊆ Λk+1.

Proof. The proof uses a spanning tree certificate to reverse the decision, in a way
similar to the proof that the complement of LD is contained in logLCP (i.e., according
to our terminology, co-Λ0 ⊆ Λ1) due to Göös and Suomela [66]. Let L ∈ Λk, and let
A be a t-round local algorithm deciding L ∈ Λk using labels on at most α log n bits.
We construct an algorithm A′ which simulates A, but uses an additional label ck+1 to
reverse the decisions made by A.

Let us assume that k is even (as it will appear clear later, the proof is essentially
the same for k odd). We have that

(G, x) ∈ L ⇐⇒ ∀c1,∃c2, . . . ,∃ck, A(G, x, c1, c2, . . . , ck) = 1,

with all labels ci’s of size at most α log n for some constant alpha ≥ 0. In Algorithm
A′, the prover and the disprover essentially switch their roles. From the above, we
have

(G, x) /∈ L ⇐⇒ ∃c1,∀c2, . . . ,∀ck,∃v ∈ G,A(G, v, x, c1, c2, . . . , ck) = 0.

The prover for A′ always follows the disprover for A, and can always pick labellings
c1, c3, . . . , ck−1 such that there is a rejecting node if and only if (G, x) /∈ L. In the
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protocol for A′, the prover sets ck+1 to be a spanning tree rooted at one such rejecting
node v. Every other node u 6= v simply checks that ck+1 constitutes a proper encoding
of a spanning tree, and rejects if not. If all nodes u 6= v accept, then ck+1 is indeed a
proper spanning tree, and it only remains to check that v rejects in A. To this end,
the node v designated as the root of the spanning tree encoded by ck+1 gathers all
labellings in its radius-t neighbourhood, and computes A(G, x, v, c1, c2, . . . , ck). If A
rejects at v, we set A′ to accept at v, and, otherwise, we set A′ to reject at v.

As discussed in Section 1.2, the spanning tree can be encoded using O(log n) bits.
All labellings c1, c2, . . . , ck have size at most alpha log n, therefore all labels of A′ are of
size at most α′ log n for some α′ ≥ c. The protocol is correct, as a rejecting node exists
in A if and only if (G, x) /∈ L, and A′ correctly accepts in this case. If (G, x) ∈ L,
then we have that, for every choice the prover can make, the disprover can always
choose its labellings so that A accepts. Thus, if the spanning tree ck+1 is correct, the
root of that tree will indeed detect that it is an accepting node in A, and so reject in
A′.

Corollary 6.1. For every k ≥ 0, co-Λk ⊆ co-Λk+1, and Λk ⊆ co-Λk+1.

Proof. If L ∈ co-Λk, then, by definition, L̄ ∈ Λk, and thus also L̄ ∈ Λk+1, which
implies that L ∈ co-Λk+1. If L ∈ Λk, then L̄ ∈ co-Λk, and thus, by Theorem 6.2, we
get that L̄ ∈ Λk+1, which implies that L ∈ co-Λk+1.

The following theorem shows that, for every k ≥ 0, and every language L in
Λk ∩ co-Λk, there is an algorithm deciding L such that an instance (G, x) ∈ L is
accepted at all nodes, and an instance (G, x) /∈ L is rejected at all nodes as well.

Theorem 6.3. Let k ≥ 1, and let L ∈ Λk∩ co-Λk. Then there exists a local algorithm
A such that, for every instance (G, x), and for every v ∈ V (G),

(G, x) ∈ L ⇐⇒
{
∀c1,∃c2,∀c3, . . . ,∃ck, A(G, v, x, c1, . . . , ck) = 1 if k is even
∃c1, ∀c2, . . . ,∃ck, A(G, v, x, c1, . . . , ck) = 1 otherwise

Proof. Assume first that k is even. Since L ∈ Λk ∩ co-Λk, there exist two local
algorithms B and B′ such that

(G, x) ∈ L ⇐⇒ ∀c1,∃c2, . . . ,∃ck, ∀v,B(G, v, x, c̄) = 1, (6.1)

and
(G, x) /∈ L ⇐⇒ ∀c1, ∃c2, . . . ,∃ck,∀v,B′(G, v, x, c̄) = 1. (6.2)

Now we construct the following protocol for deciding L in an unanimous manner. If
(G, x) ∈ L, then the prover assigns the labels as in Eq. (6.1). Instead, if (G, x) /∈ L,
then the prover assigns the labels as in Eq. (6.2). In addition, the first bit of ck tells
which algorithm the nodes should use, with 0 for B, and 1 for B′.

Now, the decision algorithm A proceeds as follows. For each node v, if v and all
neighbours of v have the same flag B or B′, then v simulates B (with the first bit of ck
ignored), and it outputs B(G, v, x, c1, . . . , ck). Conversely, if v and all the neighbour
of v have the same flag B′, then v simulates B′, and it outputs B′(G, v, x, c1, . . . , ck).
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Finally, if the neighbourhood of v contains both flags B and B′, then v outputs the
value of its own flag (i.e., 0 or 1). In other words, any ck-labelling with non-consistent
flag is rejecting, though not unanimously so.

It remains to check that A behaves correctly when the flag in ck is consistent. By
construction, from Eq. (6.1) and Eq. (6.2), and from the way A uses B and B′, we get
that the left to right implication in the statement of the theorem is satisfied: there is
always a way to label the graph so that yes-instances are accepted everywhere, and
no-instances are rejected everywhere.

For the other direction, let f(v) denote the flag-bit of the label ck at node v. We
consider the two cases of whether (G, x) ∈ L or not. First, assume that (G, x) ∈ L,
but f(v) = B′ for all nodes v. Since every node is simulating B′, and is reversing its
decision, it follows from Eq. (6.2) that

(G, x) ∈ L ⇐⇒ ∃c1,∀c2, . . . ,∀ck,∃v,B′(G, v, x, c1, c2, . . . , ck) = 0.

That is, if (G, x) ∈ L, then the disprover can force some node to accept, even if all
nodes are consistently running the wrong algorithm, B′.

Conversely, assume that (G, x) /∈ L, but f(v) = B for all nodes v. Similarly to
the previous case, since every node is simulating B, it follows from Eq. (6.1) that

(G, x) /∈ L ⇐⇒ ∃c1,∀c2, . . . ,∀ck,∃v, A(G, v, x, c1, c2, . . . , ck) = 0,

That is, if (G, x) /∈ L, then the disprover can force some node to reject.
The case for k odd is similar.

In Theorem 6.4 in the next section, we shall see several example of languages in Λ1∩
co-Λ1, in relation with classical optimization problems on graphs. By Theorem 6.3,
all of these languages can be decided unanimously.

6.3 Positive results

In this section, we precisely identify the position of some relevant problems for dis-
tributed computing in the local hierarchy LH.

6.3.1 Optimization problems

Given an optimization problem π on graphs (e.g., finding a minimum dominating set),
one defines two distinct distributed languages:

• the language admπ is composed of all configurations (G, x) such that x encodes
an admissible solution for π in graph G.

• the language optπ is composed of all configurations (G, x) such that x encodes
an optimal solution for π in graph G.
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The minimum-weight spanning tree (MST) problem, which is one of the most
studied problem in the context of network computing [79, 82, 83], is a typical example
of optimization problems that we aim at considering in this section. However, many
other problems, such as maximum independent set, max-cut, etc., are also of our
interest.

We show that, for any optimization problem π, if deciding whether a candidate
solution for π is admissible is “easy”, and if the objective function for π has some
natural additive form, then optπ ∈ co-Λ1, and thus optπ ∈ Λ2.

Theorem 6.4. Let π be an optimization problem on graphs. If the following two
properties are satisfied: (a) admπ ∈ Λ1 ∩ co-Λ1, and (b) the value to the objective
function for π is the sum, over all nodes, of an individual value at each node which
can be computed locally and encoded on O(log n) bits, then optπ ∈ co-Λ1.

Proof. Let us first prove the following fact. Suppose that every node u of a graph
G = (V,E) is given a value xu on O(log n) bits, and a value su also on O(log n) bits.

Claim 6.2. Checking whether su =
∑

v∈V xv for every node u can be achieved by a
Λ1-algorithm.

We describe the algorithm, with, once again, certificates based on a spanning tree.
Given a (rooted) spanning tree T , every node u is given the certificate for T , along
with the weight

∑
v∈V (Tu) xv of its subtree Tu. The node u checks that (1) the spanning

tree certificates are locally correct, (2) its value su is equal to sv for each neighbour v,
and (3) the given weight of its subtree is the sum of the weights of the subtrees rooted
at its children, plus xu. The root r also checks that the weight of the entire tree is
equal to the given value sr. If one of these properties does not hold at some node,
then this node rejects. It follows that every node accepts if and only if su =

∑
v∈V xv

for every node u.

Note that Claim 6.2, and the gathering technique used to establish that claim can
be extended to functions different from the sum, such as min or max.

Let π be an optimization problem on graphs satisfying the conditions of the the-
orem. To prove optπ ∈ co-Λ1, we show that optπ ∈ Λ1. We describe what certificates
are assigned to the nodes by the prover, given an instance (G, x) ∈ optπ. Note that
such instance may satisfy either x is not admissible in G, or x is admissible but not
optimal.

• If (G, x) /∈ admπ, then the prover flags each node with⊥, and assigns certificates
for proving that (G, x) /∈ admπ, which is possible thanks to Condition (a).

• Otherwise, i.e., (G, x) ∈ admπ \ optπ, the prover flags each node with >, and
assigns certificates for proving that (G, x) ∈ admπ and (G, x′) ∈ admπ, where
x′ is an arbitrary optimal solution. The latter two sets of certificates can be
assigned thanks to Condition (a). Finally, the prover assigns certificates using
the gathering technique used to establish Claim 6.2 for certifying the values of
the objective function for both x and x′.
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The nodes then check that all these certificates are consistent, and, in the case
with flag >, that indeed the objective function for x′ is better than the one for x.
If any of these conditions does not hold at some node, then this node rejects. As a
consequence, all the nodes accept if and only if (G, x) /∈ optπ. Thus optπ ∈ Λ1.

Let us give concrete examples of problems satisfying hypotheses (a) and (b). In
fact, most classical optimization problems are satisfying these hypotheses, and all the
ones typically investigated in the framework of local computing (cf. the survey [103])
do satisfy (a) and (b).

Corollary 6.2. Let π be one of the following optimization problems: maximum in-
dependent set, minimum dominating set, maximum matching, max-cut, or min-cut.
Then optπ ∈ co-Λ1.

Proof. In view of Theorem 6.4, it is sufficient to show that Conditions (a) and (b) are
satisfied by each problem in this list. Each of the problems maximum independent
set, minimum dominating set, and maximum matching has an easy encoding: a bit
that has value 1 if the node is in the set, and zero otherwise. These problems satisfies
admπ ∈ Λ0, because each node can check that the local condition specifying admissible
solutions holds. It follows that Condition (a) is satisfied for all these three optimization
problems. The two cut problems are even easier. The input is a bit that describes
which part of the cut the node belongs to, and every input is admissible as every
partition of the nodes defines a cut.

Regarding Condition (b), the objective function of maximum independent set, as
well as of minimum dominating set, is just the sum of a 0-1 function at each node (0
if not in the set, and 1 otherwise). For maximum matching, as well as for both cut
problems, the objective function can be defined as the sum, over all nodes, of half the
number of edges adjacent to the node that are involved in the solution.

The following other corollary of Theorem 6.4 deals with two specific optimization
problems, namely travelling salesman and MST. The former illustrates a significant
difference between the local hierarchy defined from distributed graph automata in [97],
and the one in this chapter. Indeed, we show that travelling salesman is at the second
level of our hierarchy, while it does not even belong to the graph automata hierarchy
(as Hamiltonian cycle is not in MSO).

Let travelling salesman be the distributed language formed of all configura-
tions (G, x) where G is a weighted graph, and x is an Hamiltonian cycle C in G of
minimum weight (i.e., at node u, x(u) is the pair of edges incident to u in C).

Similarly, let mst be the distributed language formed of all configurations (G, x)
where G is a weighted graph, and x is a MST T in G (i.e., at node u, x(u) is the
parent of u in T ). Note that the case of MST is also particularly interesting. Indeed,
mst is known to require labels on Θ(log2 n) bits to be certified [79, 83], and thus mst
is not in Λ1. Note also that, for mst, it is possible to trade locality for the size of the
certificates, as it was established in [83] that one can use logarithmic certificates to
certify mst in a logarithmic number of rounds.

An intersting consequence of Theorem 6.4 is the following.
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Corollary 6.3. mst ∈ co-Λ1 and travelling salesman ∈ co-Λ1 for weighted
graphs with weights bounded by a polynomial in n.

Proof. As for Corollary 6.2, it is sufficient to prove that both languages satisfy the
two conditions of Theorem 6.4. Condition (b) is satisfied for both as their objective
function can be defined as the sum, over all nodes, of half the sum of the weights of
the edges incident to the node that are involved in the solution (which can be stored
on O(log n) bits as long as all weights have values polynomial in n).

To prove Condition (a), we need to show that checking whether a collection C
of edges is an Hamiltonian cycle (resp., is a spanning tree) is in Λ1 ∩ co-Λ1. We
already noticed earlier in the chapter that spanning tree ∈ Λ1. To prove that
hamiltonian cycle ∈ Λ1, we describe a protocol for that language. Given an
Hamiltonian cycle C, the prover elects an arbitrary node r of C as a root, picks a
spanning tree T rooted at r, and orients C to form a 1-factor (each node has out-
degree 1 in C). The certificate at node u is the identity of r, the distance from u to
r in C traversed according to the chosen orientation, and the certificate for T . The
verification algorithm at node u checks the tree T (including whether u agrees with
all its neighbours on the identity of r). Node u also checks that one of its neighbours
in C is one hop closer to r, while the other neighbour in C is one hop farther away
from r. Node r checks that one of its neighbours in C is at distance 1 from it in C,
while the other it at some distance > 1. Also, a node with distance 0 in C checks
that it is the root of T . If all these tests are passed, then node u accepts, otherwise
it rejects. The check of T guaranties that there is a unique node r. The check of
the hop distance along C guaranties that all nodes are on the same cycle. If both
checks are satisfies then C is a unique cycle, covering all nodes, and therefore C is an
Hamiltonian cycle.

Now, it remains to prove that spanning tree ∈ co-Λ1 and hamiltonian cycle ∈
co-Λ1. Let F be a collection of edges that is not forming a spanning tree of G. The
following certificates are assigned to the nodes. If F is not spanning all nodes, then
let r be a node not spanned by F , and let T be a spanning tree rooted at r. The
certificate of every node u is a pair (f(u), c(u)) where the flag f(u) = 0, and c(u) is
the certificate for T . If F is spanning all nodes, but contains a cycle C, then let r be a
node of C, let us orient the edges of C in a consistent manner, and let T be a spanning
tree rooted at r. The certificate at node u is a pair (f(u), c(u)) where f(u) = 1, and
c(u) is a certificate for T . In addition, if u belongs to C, then u received as part
of its certificate its distance to r in the oriented cycle C. Finally, If F is spanning
forest, then let F = {T1, . . . , Tk} be the trees in F , with k ≥ 2, and root each one
at an arbitrary node ri, i = 1, . . . , k. Let T (resp., T ′) be a spanning tree rooted at
r1 (resp., r2). For every i ∈ {1, . . . , k}, the certificate at node u of Ti is a 4-tuple
(f(u), index(u), c(u), c′(u)) where f(u) = 2, index(u) = i, and c(u) (resp., c′(u)) is the
certificate for T (resp., T ′).

The verification procedure is as follows. All nodes checks that they have the same
flag f . A node detecting that flags differ rejects. A node with flag 0 checks the tree
certificates, and the root of the tree checks that it is not spanned by F . A node with
flag 1 checks the tree certificates, and the root r of the tree checks that it belongs
to C (i.e., was given distance 0 on the cycle). The root r also checks that it has
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one neighbours in C at distance 1, and another neighbour at distance > 1. All other
nodes on C check consistency of the distance counter. Finally, a node with flag 2
checks its tree certificates. The root of T checks that it is of index 1, while the root
of T ′ checks that it is of index 2. Moreover, every node checks that its incident edges
in F have extremities with same index. In the three cases, if all tests are passed, the
node accepts, otherwise it rejects.

By construction, if F is not a spanning tree, then all nodes accepts. Instead,
if F is a spanning tree, then certificates with different flags cannot yield all nodes
to accept since two adjacent nodes with different flags both reject. A flag 0 cannot
yield all nodes to accept because the non spanned node does not exist. Similarly, a
flag 1 cannot yield all nodes to accept because the cycle does does not exist, and a
flag 2 cannot yield all nodes to accept because there are no two different connected
components, and hence no two trees T and T ′ rooted at nodes with different indexes.

The proof of hamiltonian cycle ∈ co-Λ1 proceeds similarly. Therefore, both
Conditions (a) and (b) are satisfied for both mst and travelling salesman, and
the result follows by Theorem 6.4.

6.3.2 Non-trivial automorphism

Recall that φ : V (G)→ V (G) is an automorphism of G if and only if φ is a bijection,
and, for every two nodes u and v, we have: {u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(G).
The graph automorphism problem is the problem of testing whether a given graph
has a nontrivial automorphism (i.e., an automorphism different from the identity).
Let nontrivial automorphism be the distributed language composed of the (con-
nected) graphs that admit such an automorphism. It is known that this language is
maximally hard for locally checkable proofs, in the sense that it requires proofs with
size Ω(n2) bits [66]. Nevertheless, we prove that this language remains relatively low
in the local hierarchy.

Theorem 6.5. nontrivial automorphism ∈ Λ3.

Proof. The first label c1 at node u is an integer that is supposed to be the identity
of the image of u by a nontrivial automorphism. Let us denote by φ : V (G)→ V (G)
the mapping induced by c1. We are left with proving that deciding whether a given
φ is a nontrivial automorphism of G is in Λ2. Thanks to Theorem 6.2, it is sufficient
to prove that this decision can be made in co-Λ1. Thus let us prove that checking
that (G, φ) is not a nontrivial automorphism is in Λ1. If φ is the identity, then the
certificate can just encode a flag with this information, and each node u checks that
φ(u) is equal to its own ID. So assume now that φ is distinct from the identity, but is
not an automorphism. To certify this, the prover assigns to each node a set of at most
four spanning tree certificates, that “broadcast” to all nodes the identity of at most
four nodes witnessing that φ is not an automorphism. Specifically, if φ(u) = φ(v) with
u 6= v, then the certificates are for three spanning trees, respectively rooted at u, v,
and φ(u), and if {u, v} ∈ E(G) is mapped to {φ(u), φ(v)} /∈ E(G), or {u, v} /∈ E(G)
is mapped to {φ(u), φ(v)} ∈ E(G), then the certificates are for four spanning trees,
respectively rooted at u, v, φ(u), and φ(v). Checking such certificates can be done
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locally, and thus checking that (G, φ) is not a nontrivial automorphism is in Λ1, from
which it follows that nontrivial automorphism ∈ Λ3.

6.3.3 Problems from the polynomial hierarchy

As the local hierarchy LH is inspired by the polynomial hierarchy, it is natural to ask
about the existence of connections between their respective levels. In this section,
we show that some connections can indeed be established, for central problems in
the polynomial hierarchy. For instance, let k ≥ 0, and let us consider all (connected)
graphs G = (V,E) such that there exists X ⊆ V , |X| ≥ k, such that, for every S ⊆ X,
there is a cycle C in G containing all vertices in S, but none in X \ S. Such graphs
have Cycle-VC-dimension, VCcycle(G), at least k. Deciding whether, given G and k,
we have VCcycle(G) ≥ k is ΣP

3 -complete [99, 100]. Let cycle-vc-dimension be the
distributed language composed of all configurations (G, k) such that all nodes of G
have the same input k, and VCcycle(G) ≥ k.

Theorem 6.6. cycle-vc-dimension ∈ Λ3.

Proof. The existence of the set X can be certified setting a flag at each node in X,
together with a tree TX spanning X for proving that |X| ≥ k. Given S ⊆ X, the
cycle C can be certified in the same way as the Hamiltonian cycle in the proof of
Corollary 6.3.

Recall that QBF-k-SAT is the problem of whether a formula of the type

∃y1,∀y2, ..., QykΦ(y1, ..., yk),

can be satisfied, where the yi’s are sets of literals on (distinct) boolean variables, Φ
is formula from propositional logic (we can assume, w.l.o.g., that Φ is in conjunct-
ive normal form), and Q is the universal quantifier if k is even, and the existential
quantifier otherwise. The literals in yi are said to be at the ith level. This problem
is complete for the kth level ΣP

k of PH. It can be rephrased equivalently into a graph
problem, by defining the distributed language qbf-satk formed of all configurations
(G, x) with V (G) = C ∪ L, where C is for clauses, and L is for literals, and there is
edge between the positive and negative literals of a same variable, as well as an edge
between each clause and all the literals appearing in the clause. More precisely, the
input x(u) of a node u in G can be of the form (`, i, s) where ` stands for “literal”,
i ∈ {1, . . . , k} is the level of that literal, and s ∈ {+,−} indicates whether the literal
is positive or negative, or of the form (c) where c stands for “clause”. There is an edge
between (`, i, s) and (`, i, s̄) for all literals, and there is an edge between each clause
node (i.e., labelled (c)) and all the nodes (`, i, s) such that the corresponding literal
appears in that clause. We set (G, x) ∈ qbf-satk if and only if the corresponding
formula is in QBF-k-SAT.

Theorem 6.7. qbf-satk ∈ Λk.
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Proof. For a configuration in qbf-satk, the certificates are given to the nodes in the
natural way, assigning their values to the literals at odd levels. Each literal node can
locally check that its value is the opposite of the one given to its negation, and each
clause node can locally check that it is linked to at least one literal that has value
true.

6.3.4 Connections to descriptive complexity

The notion of locality is an important subject when considering expressibility of dif-
ferent logics on graphs, as illustrated by the locality result of Schwentick and Barthel-
mann [102] for first-order logic. It is then a natural question to ask which are the logics
that express properties in LH. A first answer was given by Göös and Suomela [66]
who proved that all properties expressible in existential-MSO are in logLCP. One can
then expect that LH contains MSO, and it is indeed the case. An easy way to prove
this fact is to use the recent result of Reiter [97].

Theorem 6.8. MSO ∈ LH.

Proof. As we pointed out earlier in the text, distributed graph automata (DGA) are
based on a combination of hypotheses, some weaker than the LOCAL model, and
other ones stronger. On the one hand, all computation and communication steps
in DGA can be simulated in the LOCAL model. On the other hand, the decision
mechanism in DGA is stronger than the one typically used in local decision, as far
as distributed network computing is concerned. Specifically, in our framework, the
nodes output true or false (i.e., 1 or 0), and the instance is accepted if and only if all
the outputs are true. That is, the decision mechanism is simply the conjunction of all
the outputs, whereas, in DGA, the outputs belong to an arbitrary finite set S, and
the decision mechanism is an arbitrary function f from the set O of the outputs to
{accept, reject}. Note that O is a set, and therefore a same output at two different
nodes appears only once in O.

Let us consider a language L at level k of the DGA hierarchy. We show that this
language is at level at most k+1 of LH. Indeed we can run exactly the same protocol as
in DGA, but the decision decision mechanism. Nevertheless, the decision mechanism
can be simulated with an additional existential quantifier certifying a spanning tree
T that is used to gather all the outputs of the nodes produced by the DGA protocol,
in a way similar to the one in Claim 6.1: each node checks that its set of outputs is
the union of the output sets of its children in T . The root of T stores the entire set
O (which can be done using O(|S| log |S|) = O(1) bits), computes f(O), and accepts
or rejects accordingly.

6.4 Separation results

From the previous results in this section, we get that the local hierarchy LH = ∪k≥0Λk

has a typical “crossing ladder” as depicted on Figure 6.1.
In addition, we can show that some of the inclusions are strict:
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⇤1 ⇤2LD

co-LD co-⇤1 co-⇤2 co-⇤3

⇤3

ALL \ LH

Figure 6.1: Structure of the local hierarchy. Arrows indicate inclusions, while hollow-headed
arrows indicate strict inclusions.

• Between level 0 and level 1. It is known for long that LD is strictly included in Λ1

(for instance, 2-colourability ∈ Λ1 \ LD). Also, Λ0∪ co-Λ0 is strictly included
in co-Λ1. Indeed, for instance, non-3-colourability ∈ co-Λ1 \(Λ0 ∪ co-Λ0).
Therefore, all inclusions between LD and co-LD and the classes at the first level
are strict.

• Between level 1 and level 2. It is known [66] that non-3-colourability /∈ Λ1,
implying that 3-colourability /∈ co-Λ1. On the other hand, both languages
are in Λ2, by application of Theorem 6.2. As a consequence, both are also in
co-Λ2. Therefore, all inclusions between the classes at the first and second levels
are strict.

For k ≥ 2, separating the classes at the kth level from the classes at the next level
appears to be not straightforward. In particular, all classical counting arguments used
to separate the first three levels (i.e., levels 0, 1, and 2) fail. On the other hand, we
show that if Λk = Λk+1 for some k, then LH collapses to the kth level.

Theorem 6.9. If there exists k ≥ 0 such that Λk = Λk+1, then Λi = Λk for all i > k,
that is, LH collapses at the kth level.

Proof. Let us assume for the purpose of contradiction, that there exists k ≥ 0 such
that Λk = Λk+1 6= Λk+2. Let L ∈ Λk+2 \ Λk+1. Let us assume that k is odd (as it
will appear clear later, the proof for k even is similar). Since L ∈ Λk+2, there exists
a local algorithm A such that

(G, x) ∈ L ⇐⇒ ∃c1,∀c2, . . . ,∃ck+2, A(G, x, c1, c2, . . . ck+2) = 1.

We then define the language L̃ as

(G, (x, c)) ∈ L̃ ⇐⇒ ∀c1,∃c2, . . . ,∃ck+1A(G, x, c, c1, . . . , ck+1) = 1.

By this definition, we get L̃ ∈ Λk+1. Now, since Λk = Λk+1, we get that there exists
a local algorithm B such that

(G, (x, c)) ∈ L̃ ⇐⇒ ∃c1,∀c2, . . . ,∃ck, B(G, x, c, c1, c2, . . . , ck) = 1.

On the other hand, by definition, (G, x) ∈ L if and only if there exists c such that
(G, (x, c)) ∈ L̃. Using Algorithm B, the latter is equivalent to

∃c,∃c1,∀c2, . . . ,∃ck, B(G, (x, c), c1, c2, . . . , ck) = 1.



6.4. SEPARATION RESULTS 131

Now, the two existential quantifiers on c and c1 can be combined to apply to a single
label, from which we get a protocol establishing L ∈ Λk, a contradiction. The proof
for k even is similar.

Finally, we show that there are languages outside LH. In fact, this result holds
even if we restrict ourselves to languages with inputs 0 or 1 on oriented paths, i.e.,
with identity-assignment where nodes are given consecutive IDs from 1 to n. The
result follows from the fact that there are “only” 22O(logn) different local algorithms for
such n-node instances at any fixed level of LH, while there are 22n different languages
on such instances.

Theorem 6.10. There exists a language on 0/1-labelled oriented paths that is outside
LH.

Proof. The proof is in two steps. First, using a counting argument, we show that,
for any fixed set of parameters, that is, for every level k, every constant α controlling
the label size α log n, and every running time t, there is language that cannot be
recognized by a protocol with such parameters. Then we combine these languages for
various sets of parameters, for building a (Turing-computable) language that cannot
be recognized by any protocol of the hierarchy.

Claim 6.3. Let k, α, and t be non negative integers. There exists an integer n, and
a language L = L(n, k, c, t) on 0/1-labelled oriented paths that cannot be recognized by
a protocol for Λk running in t rounds, and using labels of size at most α log n bits.

To establish the claim, notice that an algorithm is simply a mapping from all
possible balls (including identifiers, inputs and labels) to binary outputs (accept or
reject). On 0/1 inputs, and IDs in [1, n], The number of algorithms for Λk running in t
rounds using labels of size at most α log n bits is at most 22β log(n) , where β = β(k, α, t)
depends only on k, α, and t. On the other hand, the number of languages on words
of size n is exactly 22n . Let n be such that 22β(k,α,t) logn < 22n . By the pigeon-hole
principle, there exists a languages that cannot be decided by any algorithm for Λk

running in t rounds using labels of size at most α log n bits. This completes the proof
of the claim.

Letm be a nonnegative integer, and let S(n,m) be the set of languages on oriented
paths with n nodes that cannot be recognized by a protocol with k = c = t = m. By
Claim 6.3, for every m there exists n such that S(n,m) is not empty. We strengthen
this by observing the following two points. First, if S(n,m) is non empty, then for
everym′ < m, the set S(n,m′) is non-empty as well, since the protocol form′ could be
simulated with parameter m. Second, if S(n,m) is non-empty, then, for every n′ > n,
the set S(n′,m) is also non-empty. Indeed, let L ∈ S(n,m), and let us consider
the language L′ composed of the set of words in L padded with zeros. If L′ has an
algorithm, then we could modify this algorithm to get an algorithm recognizing L.

Let us define µ(n) as the largest integer m such that S(n,m) is non-empty, and
ν(m) the smallest integer n such that S(n,m) is non-empty. Given n and m such
that S(n,m) 6= ∅, let L(n,m) be the smallest language of S(n,m) according to the
lexicographic ordering. Finally, let L = (∪n≥1L(n, µ(n)).
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We first show that L is a distributed language, i.e., that it is Turing-computable.
We describe the algorithm deciding L. The algorithm, given an n-bit string X, com-
putes µ(n) by enumerating all m’s in increasing order, by trying, for each of them,
all local algorithms with parameter m, and by checking whether S(n,m) = ∅. This
algorithm eventually finds m such that S(n,m) = ∅, giving µ(n) = m− 1. Then the
algorithm computes L(n, µ(n)), and accepts X if and only if X ∈ L(n, µ(n)).

We complete the proof by showing that L /∈ LH. Suppose, for the sake of con-
tradiction, that L ∈ LH. Then there exists a local algorithm A deciding L ∈ Λk,
running in t rounds using labels of size at most α log n bits, for some k, c, and t. Let
m = max{k, c, t}. We can transform A to decide L ∈ Λm, running in m rounds using
labels of size at most m log n bits.

Let us consider the restriction L′ of L on words of size ν(m). By definition,
L′ = L(ν(m), µ(ν(m))), and this language cannot be recognized by a local algorithm
with parameter µ(ν(m)). On the other hand, µ(ν(m)) ≥ m, and therefore L′ cannot
be recognized by an algorithm of parameter m either. In particular, L′ cannot be
recognized by A, a contradiction. Therefore L /∈ LH.

6.5 Link with the communication complexity hier-
archy

In this section, we show that the local hierarchy is close to a hierarchy in communic-
ation complexity. This support the claim that proving a separation between Λ2 and
Λ3 is hard, as the analogue question in communication complexity has been open for
more than thirty years.

6.5.1 Global and communication complexity hierarchies

A hierarchy for global certificates. It is possible to define a hierarchy for
global proofs (as defined in Chapter 4) in the same way as we did for local proofs.
This will be useful when making the link with communication complexity. More
precisely, define ΣG

k , ΠG
k , and ΛG

k as previously, except that the labels c1, c2, . . . , ck are
global certificates seen by all nodes.

Communication complexity. We will compare the hierarchies of nondetermin-
istic local decision to the hierarchy of nondeterministic communication complexity
defined by Babai et al. [8].

In the communication complexity setting we are given a boolean function f on 2n
bits. Two entities, Alice and Bob, are each given n-bit vectors x and y, and have to
decide if f(x ∪ y) = 1. They can communicate through a reliable channel and have
unlimited computational resources. The measure of complexity is the number of bits
Alice and Bob need to communicate in order to decide f . For more details, see for
example the book [86].
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In nondeterministic communication complexity Alice and Bob have access to non-
deterministic advice (we will say that it is given by a prover).1 The cost of a protocol
is the sum of the number of bits communicated by Alice and Bob and the number
of advice bits given by the prover. This means that messages of Alice and Bob can
equivalently be encoded in the advice.

Babai et al. defined a hierarchy of nondeterministic communication complexity [8].
In addition to Alice and Bob we have two players, whom we will call prover and
disprover for consistency, giving nondeterministic advice to Alice and Bob. Prover
and disprover will alternate k times and each time give an advice string of g(n) bits.
Now we define the class Σcc

k (g(n)) of boolean functions as the set of functions such
that there exists an algorithm A for Alice, and an algorithm B for Bob such that if
f ∈ Σcc

k (g(n)), then

∀x, y,∃c1,∀c2, . . . ,Q ckA(c1, c2, ..., ck, x) = B(c1, c2, ..., ck, y) = 1 ⇐⇒ f(x, y) = 1.

Again Q denotes the existential quantifier if k is odd and the universal quantifier
otherwise. The classes Πcc

k (g(n)) are defined similarly, but with the disprover going
first. We are particularly interested in this hierarchy when g(n) = O(log n). Note
that in their work, Babai et al. consider the hierarchy for g(n) = O(poly(log n)) [8].

6.5.2 Connecting local decision and communication complex-
ity

In this subsection we partially formalize the intuition that complexity of local verific-
ation is connected to communication complexity. We show that general lower bound
proof techniques for nondeterministic local verification will also apply to communic-
ation complexity. We then show that if one considers global proofs instead of local
ones, the result can be strengthened.

Theorem 6.11. For every boolean function f , there exists a distributed language
Lf such that if f ∈ Σcc

k (g(n)) for odd k or f ∈ Πcc
k (g(n)) for even k ≥ 2, then

Lf ∈ Λk(g(n)).

The proof is by showing that there exists a family of languages such that a non-
deterministic verification scheme can simulate a nondeterministic communication pro-
tocol. The theorem partially explains why it is difficult to separate the different levels
of the local decision hierarchy — the question is inherently tied to long-standing open
questions in communication complexity [8].

Proof of Theorem 6.11. Let f be a boolean function on 2n variables. We will con-
struct an infinite family of graphs Gn =

(
G(n, t, x, y)

)
t,x,y

and a related language
Lf .

1Note that this is a form of non-deterministic communication complexity that is different from
the one we considered for lower bounds in Chapter 5
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The graph G(n,t,x,y) consists of a path P2t+1 = (v1, v2, . . . , v2t+1) of length 2t + 1,
and two sets of nodes, VA and VB of size n. Let us denote vA = v1 and vB = v2t+1.
We add an edge between each v ∈ VA and vA, and an edge between each u ∈ VB and
vB. The nodes vA and vB are labelled with their respective identities.

Parameters x and y are bit vectors of length n, corresponding to the inputs of
players A and B in the communication complexity setting. To encode the input
vectors, we use graphs on VA and VB, respectively. There are 2n possible input vectors.
We’ll define a function φ that maps each graph on n nodes to an n-bit vector. Since
the encoding of the input cannot depend on the unique identifiers, φ must map all
graphs of the same isomorphism class to the same vector. Finally, since there are at
least 2(n2)/n! = Ω(2n

2
) such graph isomorphism classes, we can find a φ such that for

all x 6= y, we have that φ−1(x) ∩ φ−1(y) = ∅.
Given φ, x, and y, we can choose two graphs GA ∈ φ−1(x) and GB ∈ φ−1(y),

identify the node sets VA and VB with V (GA) and V (GB), respectively, and add the
corresponding edges to the graph G(n, t, x, y). We will use GA and GB, respectively,
to denote these graphs on node sets VA and VB. Nodes vA and vB are labelled as
special nodes so that the structure of GA and GB can be detected. We denote this
graph construction by G(n, t, x, y).

Local verification of Gf . A single O(log n)-bit certificate is enough to verify
the structure of G(n, t, x, y). It first consists of a spanning tree of P2t+1: node vA is
marked as root, and each node vi has a pointer to vi−1 and a counter i, its distance to
the root. It also contains the value n. The nodes vA and vB can check that the sizes
of the graph GA and GB are consistent with this value. They also check that there
are no other outgoing edges from GA and GB. Nodes vA and vB can see all nodes of
GA and GB, and determine their isomorphism classes, and compute x = φ(GA) and
y = φ(GB).

Deciding Lf . We say that G ∈ Lf if and only if

1. the structure of G is that of G(n, t, x, y) for some setting of the parameters, and
2. the function f evaluates to 1 on φ(GA) ∪ φ(GB).

Now assume that f is on the kth level of the communication complexity hierarchy
with s = Ω(log n) bits of nondeterminism. We can use this implied protocol P to
solve Lf on the kth level. If the graph structure is correct, the prover and disprover
essentially simulate their counterparts from the communication complexity setting,
and label all nodes on P2t+1 as if in P . Then vA can simulate A and vB can simulate
B, accepting if and only if f(x, y) = 1. If the prover tries to deviate from this strategy,
nodes can see that its labelling of P2t+1 is not constant, and reject. If the disprover
tries to deviate, the prover can construct a certificate pointing to this error, and all
nodes will accept.

Global proofs and communication complexity. In the setting of global
proofs we can show a slightly stronger theorem.
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Theorem 6.12. For every boolean function f and every g(n) = Ω(log n) there exists a
distributed language Lf such that Lf ∈ ΛG

k (g(n)), for k ≥ 1 if and only if f is in the kth
level of the communication complexity hierarchy with O(g(n)) bits of nondeterminism,
in particular f ∈ Σcc

k for k odd or f ∈ Πcc
k for k even.

In particular, this theorem implies that any collapse in the hierarchy for global
certificates implies a collapse in the corresponding communication complexity hier-
archy.

Proof of Theorem 6.12. We show that with respect to the language Lf defined in the
proof of Theorem 6.11, the communication complexity model and the global verifica-
tion model can simulate each other.

1. Communication protocol implies a global verification protocol. The proof pro-
ceeds essentially as in the proof of Theorem 6.11. Using O(t log n) bits the
global certificate can give the list of nodes on the path between vA and vB. If a
node has degree 2, it must see its own name on this list. Nodes vA and vB can
again locally verify the structure of GA and GB and recover x and y. Finally the
prover and disprover follow the communication protocol P on instance (x, y),
allowing nodes vA and vB to simulate Alice and Bob.

2. Global verification scheme implies a communication protocol. Assume there is
a kth level global verification scheme with g(n)-bit certificates for Lf .

Alice and Bob will simulate this scheme as follows. Construct a virtual graph
G(x, y) consisting of three parts: the nodes vA and vB, a path P2t+1 of length
2t+ 1 between them, and graphs H(x) and H(y) that are the first elements (in
some order) of φ−1(x) and φ−1(y), respectively. Finally, all nodes of H(x) are
connected to vA and all nodes of H(y) to vB. Only Alice will know H(x) and
only Bob H(y).

This graph is in Lf if and only if f(x, y) = 1: the structure is exactly as in the
definition of Lf .

Now the nondeterministic prover and disprover can simulate their counterparts
in the global verification scheme. Alice and Bob accept if and only if the prover
can force all nodes they control to accept. Thus the complexity is bounded by
the complexity g(n) of the global verification scheme.
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Chapter 7

Survey of distributed decision

The objective of this chapter is to survey the recent achievements in the framework
of distributed decision. It is supposed to be readable independently of the thesis, thus
we redefine all the concepts, state the motivation again, and mention the published
results of this thesis. Also some general notations are necessary to capture different
models, thus the notations differ from the ones we have used in the thesis before. This
survey is based on the note [36], published in the Bulletin of the EATCS, and is joint
work with Pierre Fraigniaud.

7.1 Introduction
Recall that, in a construction task, processes have to collectively compute a valid
global state of a distributed system, as a collection of individual states, like, e.g.,
providing each node of a network with a colour so that to form a proper colouring of
that network. Instead, in a decision task, processes have to collectively check whether
a given global state of a distributed system is valid or not, like, e.g., checking whether
a given colouring of the nodes of a network is proper [47]. In general, a typical
application of distributed decision is checking the validity of outputs produced by the
processes w.r.t. a construction task that they were supposed to solved. This applies
to various settings, including randomized algorithms as well as algorithms subject to
any kind of faults susceptible to corrupt the memory of the processes.

The global verdict on the legality of the system state is obtained as an aggregate
of individual opinions produced by all processes. Typically, each process opinion is
a single bit (i.e., accept or reject) expressing whether the system state looks legal
or illegal from the perspective of the process, and the global verdict is the logical
conjunction of these bits. Note that this mechanisms reflects both decision procedures
in which the individual opinions of the processes are collected by some centralized
entity, and decision procedures where any process detecting some inconsistency in the
system raises an alarm and/or launches a recovery procedure, in absence of any central
entity. We will also briefly consider less common procedures where each process can
send some limited information about its environment in the system, and a central
authority gathers the information provided by the processes to forge its verdict about
the legality of the whole system state.

137
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The difficulty of distributed decision arises when the processes cannot obtain a
global perspective of the system, which is typically the case if one insists on some
form of locality in networks, or if the processes are asynchronous and subject to
failures. In such frameworks, not all boolean predicates on distributed systems can
be checked in a distributed manner, and one of the main issue of distributed decision
is to characterize the predicates that can be distributedly checked, and at which
cost. For predicates that cannot be checked, or for which checking is too costly, the
system can be enhanced by providing processes with certificates, with the objective
to help these processes for expressing their individual opinions. Such certificates
could be produced by an external entity, but they might also well be produced by
the processes themselves during a pre-computation phase. One typical framework
in which the latter scenario finds application is self-stabilization. Indeed, a self-
stabilizing algorithm may produce, together with its distributed output, a distributed
certificate that this output is correct. Of course, the certificates are also corruptible,
and thus not trustable. Hence, the checking procedure must involve a distributed
verification algorithm in charge of verifying the collection of pairs (output, certificate)
produced by all the processes. Some even more elaborated mechanisms for checking
the legality of distributed system states are considered in the literature, and we survey
such mechanisms as well.

We consider the most classical distributed computing models, including synchron-
ous distributed network computing [95]. In this setting, processes are nodes of a graph
representing a network. They all execute the same algorithm, they are fault-free, and
they are provided with distinct identities in some ID-space (which can be bounded
or not). All processes start simultaneously, and computation proceeds in synchron-
ous rounds. At each round, every process exchanges messages with its neighbouring
processes in the network, and performs individual computation. The volume of com-
munication each node can transmit and receive on each of its links at each round might
be bounded or not. The CONGEST model typically assumes that at most O(log n)
bits can be transferred along each link at each round in n-node networks. (In this
case, the ID-space is supposed to be polynomially bounded as a function of the net-
work size). Instead the LOCAL model does not limit the amount of information that
can be transmitted along each link at each round. So, a t-round algorithm A in the
LOCAL model can be transformed into another algorithm B in which every node first
collects all data available in the ball of radius t around it, and, second, simulate A
locally without communication.

We also consider other models like asynchronous distributed shared-memory com-
puting [6]. In this setting, every process has access to a global memory shared by all
processes. Every process accesses this memory via atomic read and write instructions.
The memory is composed of registers, and each process is allocated a set of private re-
gisters. Every process can read all the registers, but can only write in its own registers.
Processes are given distinct identities in [n] = {1, . . . , n} for n-process systems. They
runs asynchronously, and are subject to crashes. A process that crashes stops taking
steps. An arbitrary large number of processes can crash. Hence, an algorithm must
never include instructions leading a process to wait for actions by another process, as
the latter process can crash. This model is thus often referred to as the WAIT-FREE
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model.
Finally, we briefly consider other models, including mobile computing [45], mostly

in the fully-synchronous FSYNC model in graphs (where all mobile agents perform
in lock-step, moving from nodes to adjacent nodes in a network), and distributed
quantum computing (where processes have access to intricate variables).

7.2 Model and definitions

Given a boolean predicate, a distributed decision algorithm is a distributed algorithm
in which every process p must eventually output a value

opinion(p) ∈ {accept, reject}

such that the global system state satisfies the given predicate if and only if all processes
accept. In other word, the global interpretation of the individual opinions produced
by the processes is the logical conjunction of all these opinions:

global verdict =
∧
p

opinion(p).

Among the earliest references explicitly related to distributed decision, it is worth
mentioning [2, 7, 72]. In this section, we describe the general framework of distributed
decision, without explicit references to some specific underlying computational model.

The structure of the section is inspired from the structure of complexity classes in
sequential complexity theory. Given the “base” class P of languages that are sequen-
tially decidable by a Turing machine in time polynomial in the size of the input, the
classes NP (for non-deterministic polynomial time) and BPP (for bounded probability
polynomial time) are defined, as well as the classes ΣP

k and ΠP
k , k ≥ 0, of the poly-

nomial hierarchy. In this section we assume given an abstract class BC (for bounded
distributed computing), based on which larger classes can be defined. Such a base class
BC could be a complexity class like, e.g., the class of graph properties that can be
checked in constant time in the LOCAL model, or a computability class like, e.g., the
class of system properties that can be checked in a shared-memory distributed system
subject to crash failures. Given the “base” class BC, we shall define the classes NBC,
BPBC, ΣBC

k and ΠBC
k , that are to BC what NP, BPP, ΣP

k and ΠP
k are to P, respectively.

7.2.1 Distributed languages

A system configuration C is a (partial) description of a distributed system state. For
instance, in distributed network computing, a configuration C is of the form (G, `)
where G is a graph, and ` : V (G)→ {0, 1}∗. Similarly, in shared memory computing,
a configuration C is of the form ` : [n]→ {0, 1}∗ where n is the number of processes.
The function ` is called labelling function, and `(v) the label of v, which can be any
arbitrary bit string. In the context of distributed decision, the label of a process is
the input of that process.
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For instance, the label of a node in a processor network can be a colour, and
the label of a process in a shared memory system can be a status like “elected” or
“defeated”. Note that, in both examples, a configuration is oblivious to the content of
the shared memory and/or to the message in transit. The labelling function ` may not
describe the full state of each process, but only the content of some specific variables.

Definition 7.1. Given a distributed computing model, a distributed language is a
Turing-computable set of configurations compatible with this model.

For instance, in the framework of network computing,

proper-colouring = {(G, `) : ∀{u, v} ∈ E(G), `(u) 6= `(v)}
is the distributed language composed of all networks with a proper colouring of their
nodes (the label `(v) of node v is its colour). Similarly, in the framework of crash-prone
shared-memory computing,

agreement = {` : ∃y ∈ {0, 1}∗,∀i ∈ [n], `(i) = y or `(i) = ⊥}
is the distributed language composed of all systems where agreement between the
non-crashed processes is achieved (the label of process pi is `(i), and the symbol ⊥
refers to the scenario in which process pi crashed).

For a fixed distributed language L, a configuration in L is said to be legal, and
a configuration not in L is said to be illegal. Any distributed language L defines a
construction task, in which every process must compute a label such that the collection
of labels outputted by the processes form a legal configuration for L. In the following,
we are mostly interested in decision tasks, where the labels of the nodes are given, and
the processes must collectively check whether these labels form a legal configuration.

Notation. Given a system configuration C with respect to some distributed com-
puting model, we denote by V (C) the set of all computing entities (a.k.a. processes)
in C. This notation reflects the fact that, in the following, the set of processes will
most often be identified as the vertex-set V (G) of a graph G

7.2.2 Distributed decision

Given a distributed computing model, let us define some bounded computing class BC
as a class of distributed languages that can be decided with a distributed algorithm A
using a bounded amount of resources. Such an algorithm A is said to be bounded.
What is meant by “resource” depends on the computing model. In most of the models
investigated in this chapter, the resource of interest is the number of rounds (as in
the LOCAL and CONGEST models), or the number of read/write operations (as in
the WAIT-FREE model). A distributed language L is in BC if and only if there exists
a bounded algorithm A such that, for any input configuration C, the algorithm A
outputs A(C, v) at each process v, and this output satisfies:

C ∈ L ⇐⇒ for every v ∈ V (C), A(C, v) = accept. (7.1)

That is, for everyC ∈ L, runningA onC results in all processes acceptingC. Instead,
for every C /∈ L, running A on C results in at least one process rejecting C.
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Example. In the context of network computing, proper-colouring can be de-
cided in one round, by having each node merely comparing its colour with the ones of
its neighbours, and accepting if and only if its colour is different from all these colours.
Similarly, in the context of shared-memory computing, agreement can be decided
by having each node performing just one read/write operation, accepting if and only
if all labels different from ⊥ observed in memory are identical. In other words, as-
suming that BC is a network computing class bounding algorithms to perform in a
constant number of rounds, we have

proper-colouring ∈ BC

for any model allowing each process to send its colour to all its neighbours in a
constant number of rounds, like, e.g., the LOCAL model. Similarly, assuming that BC
is a shared-memory computing class bounding algorithms to perform in a constant
number of read/write operations, we have

agreement ∈ BC.

Notation. In the following, Eq. (7.1) will often be abbreviated to

C ∈ L ⇐⇒ A(C) = accept

in the sense that A accepts if and only if each of the processes accepts.
Note that the rule of distributed decision, i.e., the logical conjunction of the in-

dividual boolean outputs of the processes is not symmetric. For instance, deciding
whether a graph is properly coloured can be done locally, while deciding whether a
graph is not properly coloured may require long-distance communications. On the
other hand, asking for other rules, like unanimous decision (where all processes must
reject an illegal configuration) or even just majority decision, would require long-
distance communications for most classical decision problems.

7.2.3 Probabilistic distributed decision

The bounded computing class BC is a base class upon which other classes can be
defined. Given p, q ∈ [0, 1], we define the class BPBC(p, q), for bounded probability
bounded computing, as the class of all distributed languages L for which there exists
a randomized bounded algorithm A such that, for every configuration C,{

C ∈ L ⇒ Pr[A(C) = accept] ≥ p;
C /∈ L ⇒ Pr[A(C) = reject] ≥ q.

(7.2)

Such an algorithm A is called a (p, q)-decider for L. Note that, as opposed to the class
BPP of complexity theory, the parameters p and q are not arbitrary, in the sense that
boosting the probability of success of a (p, q)-decider in order to get a (p′, q′)-decider
with p′ > p and q′ > q is not always possible. Indeed, if A is repeated many times
on an illegal instance, say k times, it may well be the case that each node will reject
at most once during the k repetitions, because, at each iteration of A, rejection could
come from a different node. As a consequence, classical boosting techniques based on
repetition and taking majority do not necessarily apply.
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Example. Let us consider the following distributed language, where each process
can be labeled either white or black, i.e., ` : V (C)→ {◦, •}:

amos = {` : |{v ∈ V (C) : `(v) = •}| ≤ 1}.

Here, amos stands for “at most one selected”, where a node v is selected if `(v) = •.
There is a trivial (p, q)-decider for amos as long as p2 +q ≤ 1, which works as follows.
Every node v with `(v) = ◦ accepts (with probability 1). A node v with `(v) = •
accepts with probability p, and rejects with probability 1 − p. If C ∈ amos, then
Pr[all nodes accept C] ≥ p. If C /∈ amos, then Pr[at least one node rejects C] ≥
1− p2 ≥ q.

7.2.4 Distributed verification

Given a bounded computing class BC, we describe the class NBC, which is to BC
what NP is to P in complexity theory. We define the class NBC, for non-deterministic
bounded computing, as the class of all distributed languages L such that there exists
a bounded algorithm A satisfying that, for every configuration C,

C ∈ L ⇐⇒ ∃c : A(C, c) = accept (7.3)

where
c : V (C)→ {0, 1}∗.

The function c is called the certifying function. It assigns a certificate to every process,
and the certificates do not need to be identical. Note that the certificate c(v) of
process v must not be mistaken with the label `(v) of that process.

The bounded algorithm A is also known as a verification algorithm for L, as it
verifies a given proof c, which is supposed to certify that C ∈ L. At each process
v ∈ V (C), the verification algorithm takes as input the pair (`(v), c(v)). Note that
the appropriate certificate c leading to accept a configuration C ∈ L may depend
on the given configuration C. However, for C /∈ L, the verification algorithm A
must systematically guaranty that at least one process rejects, whatever the given
certificate function is.

Alternatively, one can interpret Eq. (7.3) as a game between a prover which, for
every configuration C, assigns a certificate c(v) to each process v ∈ V (C), and a
verifier which checks that the certificates assigned by the prover collectively form a
proof that C ∈ L. For a legal configuration (i.e., a configuration in L) the prover must
be able to produce a distributed proof leading the distributed verifier to accept, while,
for an illegal configuration, the verifier must reject in at least one node whatever the
proof provided by the prover is.

Example. Let us consider the distributed language

acyclic = {(G, `) : G has no cycles}

in the context of network computing. Note that acyclic cannot be decided locally,
even in the LOCAL model. However, acyclic can be verified in just one round. If G
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is acyclic, i.e., G is a forest, then let us select an arbitrary node in each tree of G, and
call it a root. Next, let us assign to each node u ∈ V (G) the certificate c(u) equal to
its distance to the root of its tree. The verification algorithm A then proceeds at every
node u as follows. Node u exchanges its certificate with the ones of it neighbours, and
checks that it has a unique neighbour v satisfying c(v) = c(u) − 1, and all the other
neighbours w 6= v satisfying c(w) = c(u)+1. (If u has c(u) = 0, then it checks that all
its neighbours w have c(w) = 1). If all tests are passed, then u accepts, else it rejects.
If G is a acyclic, then, by construction, the verification accepts at all nodes. Instead,
if G has a cycle, then, for every setting of the certifying function, some inconsistency
will be detected by at least one node of the cycle, which leads this node to reject.
Hence

acyclic ∈ NBC

where BC bounds the number of rounds, for every distributed computing model al-
lowing every node to exchange O(log n) bits along each of its incident edges at every
round, like, e.g., the CONGEST model.

Notation. For any function f : N → N, we define NBC(f) as the class NBC where
the certificates are bounded to be on at most f(n) bits in n-node networks. For
f ∈ Θ(log n), NBC(f) is rather denoted by log-NBC.

7.2.5 Distributed decision hierarchy

In the same way the polynomial hierarchy PH is built upon P using alternating uni-
versal and existential quantifiers, one can define a hierarchy built upon base class BC.
Given a class BC for some distributed computing model, we define the distributed
decision hierarchy DHBC as follows. We set ΣBC

0 = ΠBC
0 = BC, and, for k ≥ 1, we

set ΣBC
k as the class of all distributed languages L such that there exists a bounded

algorithm A satisfying that, for every configuration C,

C ∈ L ⇐⇒ ∃c1 ∀c2 ∃c3 . . . Qck : A(C, c1, . . . , ck) = accept

where, for every i ∈ {1, . . . , k}, ci : V (C)→ {0, 1}∗, and Q is the universal quantifier
if k is even, and the existential one otherwise. The class ΠBC

k is defined similarly, by
having a universal quantifier as first quantifier, as opposed to an existential one as
in ΣBC

k . The ci’s are called certifying functions. In particular, we have

NBC = ΣBC
1 .

Finally, we define
DHBC = (∪k≥0 ΣBC

k ) ∪ (∪k≥0 ΠBC
k ).

As for NBC, a class ΣBC
k or ΠBC

k can be viewed as a game between a prover (playing the
existential quantifiers), a disprover (playing the universal quantifiers), and a verifier
(running a verification algorithm A).
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Example. Let us consider the distributed language

vertex-cover =
{

(G, `) : {v ∈ V (G) : `(v) = 1} is a minimum vertex cover
}

in the context of network computing. We show that vertex-cover ∈ ΠBC
2 , that is,

there exists a bounded distributed algorithm A such that

(G, `) ∈ vertex-cover ⇐⇒ ∀c1 ∃c2 : A(G, `, c1, c2) = accept

where BC is any network computing class bounding algorithms to perform in a
constant number of rounds. For any configuration (G, `), the disprover tries to
provide a vertex cover c1 : V (G) → {0, 1} of size smaller than the solution `, i.e.,
|{v ∈ V (G) : c1(v) = 1}| < |{v ∈ V (G) : `(v) = 1}|. On a legal configuration
(G, `), the prover then reacts by providing each node v with a certificates c2(v) such
that the c2-certificates collectively encode a spanning tree (and its proof) aiming at
demonstrating that there is an error in c1 (like c1 is actually not smaller than `, or c1

is not covering some edge, etc.). It follows that

vertex-cover ∈ ΠBC
2

for any model allowing each process to exchange O(log n)-bits messages with its neigh-
bours in a constant number of rounds, like, e.g., the CONGEST model.

Notation. Similarly to the class NBC, for any function f : N→ N, we define ΣBC
k (f)

(resp., ΠBC
k (f)) as the class ΣBC

k (resp., ΠBC
k ) where all certificates are bounded to be

on at most f(n) bits in n-node networks. For f ∈ Θ(log n), these classes are denoted
by log-ΣBC

k and log-ΠBC
k , respectively. The classes DHBC(f) and log-DHBC are defined

similarly.

7.3 Distributed decision in networks
In this section, we focus on languages defined as collections of configurations of the
form (G, `) where G is a simple connected n-node graph, and ` : V (G)→ {0, 1}∗ is a
labelling function assigning to every node v a label `(v). Recall that an algorithm A
is deciding a distributed language L if and only if, for every configuration (G, `),

(G, `) ∈ L ⇐⇒ A(G, `) accepts at all nodes.

7.3.1 LOCAL model

Local distributed decision (LD and BPLD)

In their seminal paper [89], Naor and Stockmeyer define the class LCL, for locally
checkable labellings. Let ∆ ≥ 0, k ≥ 0, and t ≥ 0, and let B be a set of balls of
radius at most t with nodes of degree at most ∆, labeled by labels in [k]. Note that
B is finite. Such a set B defines the language L consisting of all configurations (G, `)
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where G is a graph with maximum degree ∆, and ` : V (G)→ [k], such that all balls
of radius t in (G, `) belong to B. The set B is called the set of good balls for L. LCL is
the class of languages that can be defined by a set of good balls, for some parameters
∆, k, and t. For instance the set of k-coloured graphs with maximum degree ∆ is a
language in LCL. The good balls of this LCL language are simply the balls of radius 1
where the center node is labeled with a colour different from all the colours of its
neighbours.

A series of results were achieved in [89] about LCL languages. In particular, it is
Turing-undecidable whether any given L ∈ LCL has a construction algorithm running
in O(1) rounds in the LOCAL model. Also, [89] showed that the node IDs play a
limited role in the context of LCL languages. Specifically, [89] proves that, for every
r ≥ 0, if a language L ∈ LCL has a r-round construction algorithm, then it has
also a r-round order invariant construction algorithm, where an algorithm is order
invariant if the relative order of the node IDs may play a role, but not the actual
values of these IDs. The assumption L ∈ LCL can actually be discarded, as long
as L remains defined on constant degree graphs with constant labels. That is, [5]
proved that, in constant degree graphs, if a language with constant size labels has a
r-round construction algorithm, then it has also a r-round order invariant construction
algorithm. Last but not least, [89] established that randomization is of little help in
the context of LCL languages. Specifically, [89] proves that if a language L ∈ LCL
has a randomized Monte-Carlo construction algorithm running in O(1) rounds, then
L also has a deterministic construction algorithm running in O(1) rounds.

The class LD, for local decision was defined in [54] as the class of all distributed
languages that can be decided in O(1) rounds in the LOCAL model. The class LD is
the basic class playing the role of BC in the context of local decision. Hence LCL ⊆ LD
since the set of good balls of a language in LCL is, by definition, finite. On the other
hand, LCL ⊂ LD, where the inclusion is strict since LD does not restrict the graphs
to be of bounded degree, nor the labels to be of bounded size. Given p, q ∈ [0, 1], the
class BPLD(p, q), for bounded probability local decision, was defined in [54] as the class
of languages for which there is a (p, q)-decider running in O(1) rounds in the LOCAL
model. For p2 + q ≤ 1, BPLD(p, q) is shown to include languages that cannot be even
decided deterministically in o(n) rounds. On the other hand, [54] also establishes a
derandomization result, stating that, for p2 + q > 1, if L ∈ BPLD(p, q), then L ∈ LD.
This results however holds only for languages closed under node deletion, and it is
proved in [56] that, for any every c ≥ 2, there exists a language L with a (p, q)-
decider satisfying pc + q > 1 and running in a single round, which cannot be decided
deterministically in o(

√
n) rounds. On the other hand, [56] proves that, for p2 +q > 1,

we have BPLD(p, q) = LD for all languages restricted on paths.
On the negative side, it was proved in [56] that boosting the probability of success

for decision tasks is not always achievable in the distributed setting, by considering
the classes

BPLDk =
⋃

p1+1/k+q>1

BPLD(p, q) and BPLD∞ =
⋃

p+q>1

BPLD(p, q)

for any k ≥ 1, and proving that, for every k ≥ 1, BPLDk ⊂ BPLD∞, and BPLDk ⊂
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BPLDk+1, where all inclusions are strict.

On the positive side, it was proved in [35] that the result in [89] regarding the
derandomization of construction algorithms can be generalized from LCL to BPLD.
Namely, [35] proves that, for languages on bounded degree graphs and bounded size
labels, for every p > 1

2
and q > 1

2
, if L ∈ BPLD(p, q) has a randomized Monte-

Carlo construction algorithm running in O(1) rounds, then L has also a deterministic
construction algorithm running in O(1) rounds.

Identity-oblivious algorithms (LDO)

In the LOCAL model, a distributed algorithm is identity-oblivious, or simply ID-
oblivious, if the outputs of the nodes are not impacted by the identities assigned to
the nodes. That is, for any two ID-assignments given to the nodes, the output of
every node must be identical in both cases. Note that an identity-oblivious algorithm
may use the IDs of the nodes (e.g., to distinguish them), but the output must be
oblivious to these IDs.

The class LDO, for local decision oblivious was defined in [52, 53], as the class
of all distributed languages that can be decided in O(1) rounds by an ID-oblivious
algorithm in the LOCAL model. The class LDO is the basic class playing the role of BC
in the context of ID-oblivious local decision. It is shown in [52] that LDO = LD when
restricted to languages that are closed under node deletion. However, it is proved
in [53] that LDO ⊂ LD, where the inclusion is strict. In the language L ∈ LD \ LDO
used in [53] to prove the strict inclusion LDO ⊂ LD, each node label includes a Turing
machine M . Establishing L ∈ LD makes use of an algorithm simulating M at each
node, for a number of rounds equal to the identity of the node. Establishing L /∈ LDO
makes use of the fact that an ID-oblivious algorithm can be sequentially simulated,
and therefore, if an ID-oblivious algorithm would allow to decide L, then by simulation
of this algorithm, there would exist a sequential algorithm for separating the set of
Turing machines that halts and output 0 from the set of Turing machines that halts
and output 1, which is impossible.

In [52, 59], the power of IDs in local decision is characterized using oracles. An
oracle is a trustable party with full knowledge of the input, who can provide nodes
with information about this input. It is shown in [52] that LDO ⊆ LD ⊆ LDO#node

where #node is the oracle providing each node with an arbitrary large upper bound
on the number of nodes. A scalar oracle f returns a list f(n) = (f1, . . . , fn) of n
values that are assigned arbitrarily to the n nodes in a one-to-one manner. A scalar
oracle f is large if, for any set of k nodes, the largest value provided by f to the
nodes in this set grows with k. [59] proved that, for any computable scalar oracle f ,
we have LDOf = LDf if and only if f is large, where LDf (resp., LDOf ) is the class
of languages that can be locally decided in O(1) rounds in the LOCAL model by an
algorithm (resp., by an ID-oblivious algorithm) which uses the information provided
by f available at the nodes.
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Anonymous networks

Derandomization results were achieved in [30] in the framework of anonymous network
(that is, nodes have no IDs). Namely, for every language L that can be decided locally
in any anonymous network, if there exists a randomized anonymous construction
algorithm for L, then there exists a deterministic anonymous construction algorithm
for L, provided that the latter is equipped with a 2-hop colouring of the input network.
In addition, [31] shows that, in anonymous networks, giving the ability to the nodes
of revoking their decisions (i.e., to change it as long as not all the nodes have output)
considerably changes the power of the model.

7.3.2 CONGEST model

Decision algorithms

In [76] and [27] the authors consider decision problems such as checking whether a
given set of edges forms a spanning tree, checking whether a given set of edges forms
a minimum-weight spanning tree (MST), checking various forms of connectivity, etc.
All these decision tasks require essentially Θ(

√
n + D) rounds (the lower bound is

typically obtained using reduction to communication complexity). In particular, [27]
proved that checking whether a given set of edges is a spanning tree requires Ω(

√
n+D)

rounds, which is much more that what is required to construct a spanning tree (O(D)
rounds, using a simple breadth-first search). However, [27] proved that, for some
other problems (e.g., MST), lower bounds on the round-complexity of the decision
task consisting in checking whether a solution is valid yield lower bounds on the
round-complexity of the corresponding construction task, and this holds also for the
construction of approximate solutions. (In [29], the techniques of [27] are extended
to a quantum setting, to achieve similar lower bounds).

Distributed property testing

Very few distributed languages on graphs can be checked locally in the CONGEST
model. For instance, even just deciding whether G contains a triangle cannot be done
in O(1) rounds in the CONGEST model. Distributed property testing is a framework
first investigated in [21], and recently formalized in [23]. Let 0 < ε < 1 be a fixed
parameter. Recall that, according to the usual definition borrowed from property
testing (in the so-called sparse model), a graph property P is ε-far from being satisfied
by an m-edge graph G if applying a sequence of at most εm edge-deletions or edge-
additions to G cannot result in a graph satisfying P . We say that a distributed
algorithm A is a distributed testing algorithm for P if and only if, for any graph G
modeling the actual network,{

G satisfies P =⇒ Pr[A accepts G in all nodes] ≥ 2
3
;

G is ε-far from satisfying P =⇒ Pr[A rejects G in at least one node] ≥ 2
3
.

Among other results, [23] proved that, in bounded degree graphs, bipartiteness can
be distributedly tested in O(polylogn) rounds in the CONGEST model. Moreover, it
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is also proved that triangle-freeness can be distributedly tested in O(1) rounds. (The
dependence in ε is hidden in the big-O notation). This latter result has been recently
extended in [62] to testing H-freeness, for every 4-node graph H, in O(1) rounds. On
the other hand, it is not known whether distributed testing K5-freeness or C5-freeness
can be achieved in O(1) rounds, and [62] proves that “natural” approaches based on
DFS or BFS traversals do not work. Testing Ck-freeness is O(1) rounds for every
k ≥ 3 has been achieved in [48]. These results have been recently generalized in [33],
by proving that T -freeness can be decided in O(1) rounds (see also [77]). Finally,
tight bounds on testing graph conductance are provided in [44].

Congested clique

The congested clique model is the CONGEST model restricted to complete graphs.
Deciding whether a graph given as input contains some specific patterns as subgraphs
has been considered in [22] and [28] for the congested clique. In particular, [22]
provides an algorithm for deciding the presence of a k-node cycle Ck running in
O(2O(k)n0.158)-rounds.

Recently, [78] defined the class CLIQUE(t) as the class of decision problems that
can be decided in time t in the congested clique, and provided a collection of separation
results regarding these classes, as a function of t.

In [74] an Ω(n/k2) lower bound on the number of rounds for deciding properties
such as connectivity and spanning tree is provided for the k-machine model, with
matching upper bounds in [91]. (In the k-machine model, the edges of the input
graph are randomly partitioned among k machines that are linked by a clique, and
these k machines proceed as in the CONGEST model with bandwidth limited to one
single bit per round).

7.3.3 General interpretation of individual outputs

In [4, 5], a generalization of distributed decision is considered, where every node
output not just a single bit (accept or reject), but can output an arbitrary bit-string.
The global verdict is then taken based on the multi-set of all the binary strings
outputted by the nodes. The concern is restricted to decision algorithms performing
in O(1) rounds in the LOCAL model, and the objective is to minimize the size of the
outputs. The corresponding basic class BC for outputs on O(1) bits is denoted by
ULD, for universal LD. (It is universal in the sense that the global interpretation
of the individual outputs is not restricted to the logical conjunction). It is proved
in [5] that, for any positive even integer ∆, every distributed decision algorithm for
cycle-freeness in connected graphs with degree at most ∆ must produce outputs of
size at least dlog ∆e−1 bits. Hence, cycle-freeness does not belong to ULD in general,
but it does belong to ULD for constant degree graphs.

In [15] the authors consider a model in which each node initially knows the IDs of
its neighbours, while the nodes do not communicate through the edges of the network
but via a public whiteboard. The concern of [15] is mostly restricted to the case
in which every node can write only once on the whiteboard, and the objective is to



7.4. DISTRIBUTED VERIFICATION IN NETWORKS 149

minimize the size of the message written by each node on the whiteboard. The global
verdict is then taken based on the collection of messages written on the whiteboard.
It is shown that, with just O(log n)-bit messages, it is possible to rebuild the whole
graph from the information on the whiteboard as long as the graph is planar or,
more generally, excluding a fixed minor. Variants of the model are also considered, in
which problems such as deciding triangle-freeness or connectivity are considered. See
also [73] for deciding the presence of induced subgraphs.

7.4 Distributed verification in networks

In this section, we still focus on languages defined as collections of configurations of
the form (G, `) where G is a simple connected n-node graph, and ` : V (G)→ {0, 1}∗
is a labelling function. Recall that an algorithm A is verifying a distributed language
L if and only if, for every configuration (G, `),

(G, `) ∈ L ⇐⇒ ∃c : A(G, `, c) accepts at all nodes (7.4)

where c : V (G)→ {0, 1}∗, and c(v) is called the certificate of node v ∈ V (G). Again,
the certificate c(v) of node v must not be mistaken with the label `(v) of node v.
Also, the notion of certificate must not be confused with the notion of advice. While
the latter are trustable information provided by an oracle [50], the former are proofs
that must be verified.

We survey the results about the class NBC = ΣBC
1 where the basic class BC is LD,

LDO, ULD, etc.

7.4.1 LOCAL model

It is crucial to distinguish two cases in Eq. (7.4), depending on whether the certificates
can depend on the identities assigned to the nodes, or not, as reflected in Eq. (7.5)
and (7.6) below.

Local distributed verification (ΣLD
1 , PLS, and LCP)

A distributed language L satisfies L ∈ ΣLD
1 if and only if there exists a verification

algorithm A running in O(1) rounds in the LOCAL model such that, for every config-
uration (G, `), we have{

(G, `) ∈ L ⇒ ∀ID, ∃c, A(G, `, c) accepts at all nodes
(G, `) /∈ L ⇒ ∀ID,∀c, A(G, `, c) rejects in at least one node (7.5)

where c : V (G)→ {0, 1}∗, and where, for (G, `) ∈ L, the assignment of the certificates
to the nodes may depend on the identities given to these nodes. This notion has
actually been introduced under the terminology proof-labelling scheme in [82], where
the concern is restricted to verification algorithms running in just a single round, with
the objective of minimizing the size of the certificates. In particular, it is proved that
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minimum-weight spanning tree can be verified with certificates on O(log2 n) bits in n-
node networks, and this bound in tight [79] (see also [76]). Interestingly, the Ω(log2 n)
bits lower bound on the certificate size can be broken, and reduced to O(log n) bits,
to the price of allowing verification to proceed in O(log2 n) rounds [83]. There are
tight connections between proof-labelling schemes and compact silent self-stabilizing
algorithms [18], and proof-labelling schemes can even be used as a basis to semi-
automatically derive compact time-efficient self-stabilizing algorithms [17]. Let PLS
be the class of distributed languages for which there exists a proof-labelling scheme.
We have

PLS = ALL

where ALL is the class of all distributed languages on networks (i.e., with configur-
ations of the form (G, `)). This equality is however achieved using certificates on
O(n2 +nk) bits in n-node networks, where k is the maximum size of the labels in the
given configuration (G, `). The O(n2) bits are used to encode the adjacency matrix
of the network, and the O(nk) bits are used to encode the inputs to the nodes.

The notion of proof-labelling scheme has been extended in [66] to the notion of
locally checkable proofs, which is the same as proof-labelling scheme but where the
verification algorithm is not bounded to run in a single round, but may perform
an arbitrarily large constant number of rounds1. Let LCP be the associate class of
distributed languages. By definition, we have

LCP = ΣLD
1 ,

and, more specifically,
LCP(f) = ΣLD

1 (f)

for every function f bounding the size of the certificates. Moreover, since PLS = ALL,
it follows that

PLS = LCP = ΣLD
1 = ALL.

It is proved in [66] that there are natural languages (e.g., the set of graphs with a non-
trivial automorphism, 3-non-colourability, etc.) which require certificates on Ω̃(n2)
bits in n-node networks. Recently, [14] introduced a mechanism enabling to reduce
exponentially the amount of communication in proof-l schemes, using randomization.
See also [101] for applications of locally checkable proofs to software-defined networks.

Identity-oblivious algorithms (ΣLDO
1 and NLD)

A distributed language L satisfies L ∈ ΣLDO
1 if and only if there exists a verifica-

tion algorithm A running in O(1) rounds in the LOCAL model such that, for every
configuration (G, `), we have{

(G, `) ∈ L ⇒ ∃c, ∀ID, A(G, `, c) accepts at all nodes
(G, `) /∈ L ⇒ ∀c, ∀ID, A(G, `, c) rejects in at least one node (7.6)

1Formally, proof-labelling schemes assume that the verification algorithm can use only the certi-
ficates, and does not have access to the identifiers of the neighbours, nor to their local information
— this restriction is removed in [66], as it has little impact on the results as long as we are dealing
with certificates on Ω(log n) bits.
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where c : V (G)→ {0, 1}∗, and, for (G, `) ∈ L, the assignment of the certificates to the
nodes must not depend on the identities given to these nodes. In [54], the class NLD,
for non-deterministic local decision is introduced. In NLD, even if the certificates must
not depend on the identities of the nodes, the verification algorithm is not necessarily
identity-oblivious. Yet, it was proved in [52] that restricting the verification algorithm
to be identity-oblivious does not restrict the power of the verifier. Hence,

NLD = ΣLDO
1

ΣLDO
1 is characterized in [52] as the class of languages that are closed under lift, where

H is a k-lift of G if there exists an homomorphism from H to G preserving radius-k
balls. Hence,

ΣLDO
1 ⊂ ALL

where the inclusion is strict. However, it was proved in [54] that, for every distributed
language L, and for every p, q such that p2 + q ≤ 1, there is a non-deterministic
(p, q)-decider for L. In other words, for every p, q such that p2 + q ≤ 1, we have

BPNLD(p, q) = ALL.

In [54], a complete problem for NLD was identified. However, it was recently noticed
in [10] that the notion of local reduction used in [54] is way too strong, enabling to
bring languages outside NLD into NLD. A weaker notion of local reduction was thus
defined in [10], preserving the class NLD. A language is proved to be NLD-complete
under this weaker type of local reduction.

Logarithmic-size certificates (log-ΣLD
1 and log-LCP)

It is shown in [66] that many distributed languages can be verified with Θ(log n)-bit
certificates, and hence [66] investigates the class log-LCP, that is, log-ΣLD

1 , i.e., ΣLD
1

with certificates of size O(log n) bits. This class fits well with the CONGEST model,
which allows to exchange messages of at most O(log n) bits at each round. For
instance, non-bipartiteness is in log-LCP. Also, restricted to bounded-degree graphs,
there are problems in log-LCP that are not contained in NP, but log-LCP ⊆ NP/poly,
i.e., NP with a polynomial-size non-uniform advice. Last but not least, [66] shows
that existential MSO on connected graphs is included in log-LCP.

Approximation

The decision languages considered so far are designed to capture decision tasks (e.g.,
whether a given spanning tree is a MST). For some tasks, such as verifying whether the
diameter D of the actual graph is equal to a given value k, there exists no short proof.
However, some approximation is easy to certify (e.g., whether k ≤ D ≤ 2k). The
notion of approximate proof-labelling scheme is defined in [24], where the approximate
variants of verifying diameter and verifying maximum matching are investigated.
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Space-time trade-offs

Except for MST in [83], the running time of the local verification algorithm has always
been considered as constant. The impact of allowing larger, non-constant verification
times is studied in [90]. It is shown that, for several languages, allowing a running
time of t yields verification schemes using proofs and message of sizes reduced by a
factor t compared to the classical 1-round verification schemes.

Error-sensitivity

The notion of error-sensitive proof-labelling schemes has been introduced in [37].
Such schemes guarantee that the number of nodes detecting illegal states is linearly
proportional to the edit-distance between the current state and the set of legal states.
By using error-sensitive proof-labelling schemes, states which are far from satisfy-
ing the predicate will be detected by many nodes, enabling fast return to legality.
A structural characterization of the set of boolean predicates on network states for
which there exist error-sensitive proof-labelling schemes is provided in [37]. This
characterization enables to show that classical predicates such as, e.g., acyclicity, and
leader admit error-sensitive proof-labelling schemes, while others like regular sub-
graphs don’t. Also, it is shown that the known proof-labelling schemes for spanning
tree and minimum spanning tree, using certificates on O(log n) bits, and on O(log2 n)
bits, respectively, are error-sensitive, as long as the trees are locally represented by
adjacency lists, and not just by parent pointers.

Anonymous networks

Distributed verification in the context of fully anonymous networks (no node-identities,
and no port-numbers) has been considered in [46].

7.4.2 Message complexity

Some aforementioned papers also pay attention to minimizing the message size. This
is explicitly the case of, e.g., [90].

Unicast vs. broadcast.

The CONGEST model has a broadcast variant in which each node are restricted to
send the same message to all neighbours at each round (the classical unicast variant
allows each node to send particular messages to each neighbour). The relative powers
of unicast and broadcast model in the context of proof-labelling schemes has been
studied in [94]. In particular, it is proved that some languages are insensitive to the
broadcast restriction (e.g., spanning tree), whereas others languages (e.g., matching)
are significantly impacted by this restriction.
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Congested clique

As mentioned before, [78] defined the class CLIQUE(t) as the class of decision prob-
lems that can be decided in time t in the congested clique. They also defined the
non-deterministic variant of CLIQUE(t), denoted by NCLIQUE(t). A collection of
separation results regarding these two classes are provided. The intriguing, and prob-
ably challenging open problem of whether CLIQUE(O(1)) = NCLIQUE(O(1)) is stated
in [78].

7.4.3 General interpretation of individual outputs

As already mentioned in Section 7.3.3, a generalization of distributed decision was
considered in [4, 5], where every node outputs not just a single bit (accept or reject),
but can output an arbitrary bit-string. The global verdict is then taken based on the
multi-set of all the binary strings outputted by the nodes. The concern is restricted to
decision algorithm performing in O(1) rounds in the LOCAL model, and the objective
is to minimize the size of the output. The certificates must not depend on the node
IDs, that is, verification proceed as specified in Eq. (7.6). For constant size outputs,
it is shown in [4] that the class UNLD = ΣULD

1 satisfies

UNLD = ALL

with just 2-bit-per-node outputs, which has to be consider in contrast to the fact that
NLD is restricted to languages that are closed under lift (cf. Section 7.4.1). This
result requires using certificates on O(n2 + nk) bits in n-node networks, where k is
the maximum size of the labels in the given configuration (G, `), but [4] shows that
this is unavoidable. Also, while verifying cycle-freeness using the logical conjunction
of the 1-bit-per-node outputs requires certificates on Ω(log n) bits [66], it is proved
in [4] that, by simply using the conjunction and the disjunction operators together,
on only 2-bit-per-node outputs, one can verify cycle-freeness using certificates of size
O(1) bits.

7.5 Local hierarchies in networks

In this section, we survey the results about the hierarchies ΣBC
k and ΠBC

k , k ≥ 0, for
different basic classes BC, including LD, LDO, etc.

7.5.1 Unlimited-size certificates (DHLD and DHLDO)

We have seen in Section 7.4.1 that ΣLD
1 = ALL, which implies that the local distributed

hierarchy DHLD collapses at the first level. On the other hand, we have also seen in
Section 7.4.1 that ΣLDO

1 ⊂ ALL, where the inclusion is strict as ΣLDO
1 is restricted to

languages that are closed under lift. It was recently proved in [10] that

LDO ⊂ ΠLDO
1 ⊂ ΣLDO

1 = ΣLDO
2 ⊂ ΠLDO

2 = ALL
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where all inclusions are strict. Hence, the local ID-oblivious distributed hierarchy
collapses at the second level. Moreover, it is shown that ΠLDO

2 has a complete problem
for local label-preserving reductions. (A complete problem for ALL was also identified
in [54], but using an inappropriate notion of local reduction).

In the context of a general interpretation of individual outputs (see Section 7.4.3),
[4] proved that ΣULD

1 = ALL.

7.5.2 Logarithmic-size certificates (log-DHLD)

We have previously seen that ΣLD
1 = ALL. However, this requires certificates of poly-

nomial size. The local distributed hierarchy is revisited in [41], with certificates of
logarithmic size. While it follows from [79] that mst /∈ log-ΣLD

1 , it is shown in [41]
that

mst ∈ log-ΠLD
2 .

In fact, [41] proved that, for any k ≥ 1,

log-ΣLD
2k = log-ΣLD

2k−1 and log-ΠLD
2k+1 = log-ΠLD

2k,

and thus focused only on the hierarchy (Λk)k≥0 defined by Λ0 = LD, and, for k ≥ 1,

Λk =

{
log-ΣLD

k if k is odd
log-ΠLD

k if k is even.

It is proved that if there exists k ≥ 0 such that Λk+1 = Λk, then Λk′ = Λk for all
k′ ≥ k. That is, the hierarchy collapses at the k-th level. Moreover, there exists a
distributed language on 0/1-labelled oriented paths that is outside the Λk-hierarchy,
and thus outside log-DHLD. However, deciding whether a given solution to several
optimisation problems such as maximum independent set, minimum dominating set,
maximum matching, max-cut, min-cut, traveling salesman, etc., is optimal are all in
co-Λ1, and thus in log-ΠLD

2 . The absence of a non-trivial automorphism is proved to
be in Λ3, that is log-ΣLD

3 — recall that this language requires certificated of Ω̃(n2)
bits to be placed in ΣLD

1 (see [66]). It is however not known whether Λ3 6= Λ2, that is
whether log-ΠLD

2 ⊂ log-ΣLD
3 with a strict inclusion.

7.5.3 Hierarchies in the congested clique

In the congested clique, analogues of the aforementioned hierarchies with unlimited
size certificates, as well as with logarithmic size certificates, are studied in [78]. In
particular, it is shown that, as in the LOCAL model, the hierarchy with unlimited-size
certificates also collapses in the congested clique.

7.5.4 Distributed graph automata (DHDGA)

An analogue of the polynomial hierarchy, where sequential polynomial-time compu-
tation is replaced by distributed local computation was recently investigated in [97].
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The model in [97] is called distributed graph automata. This model assumes a finite-
state automaton at each node (instead of a Turing machine), and assumes anonymous
computation (instead of the presence of unique node identities). Also, the model as-
sumes an arbitrary interpretation of the outputs produced by each automaton, based
on an arbitrary mapping from the collection of all automata states to {true, false}.
The main result in [97] is that the hierarchy DHDGA coincides with MSO on graphs.

7.6 Other computational models

7.6.1 Wait-free computing

The class WFD defined as the class of all distributed languages that are wait-free
decidable was characterized in [55] as the class of languages satisfying the so-called
projection-closeness property. For non projection-closed languages, [58] investigated
more general interpretation of the individual opinions produced by the processes,
beyond the logical conjunction of boolean opinons. In [57], it is proved that k-set
agreement requires that the processes must be allowed to produce essentially k differ-
ent opinions to be wait-free decided. The class ΣWFD

1 has been investigated in [60, 61],
with applications to the space complexity of failure detectors. Interestingly, it is
proved in [20] that wait-free decision finds applications to run-time verification.

7.6.2 Mobile computing

The class MAD, for mobile agent decision has been considered in [49], as well as the
class MAV = ΣMAD

1 , for mobile agent verification. It is proved that MAV has a complete
language for a basic notion of reduction. The complement classes of MAD and MAV
have been recently investigated in [12] together with sister classes defined by other
ways of interpreting the opinions of the mobile agents.

7.6.3 Quantum computing

Distributed decision in a framework in which nodes can have access to extra ressources,
such as shared randomness, or intricate variables (in the context of quantum com-
puting) is discussed in [3]. In [29], the techniques of [27] are extended to a quantum
setting.
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Chapter 8

Conclusion and perspectives

This thesis revolves around the notion of proof-labelling scheme defined fifteen years
ago. In the light of the recent developments of distributed decision, these schemes
can be interpreted as a form of non-determinism for distributed computing, with a
focus on locality. We have explored other forms of non-determinism, which corres-
pond to diverse practical scenarios, and allow to better understand some aspects of
proof-labelling schemes. Namely, forcing a stronger rejection leads to define and char-
acterize error-sensitivity. Also allowing larger radius or global proofs is useful to study
redundancy and uniformity. Finally alternation is an interesting form of interactivity.

After this work, a lot of questions remain open, and we describe some of them
in the rest of this chapter. We first list problems that are specific to each chapter,
and then complete that list with a few more general problems. Section 8.2 is also an
opportunity to give a new point of view on this thesis.

8.1 Open problems chapter by chapter

8.1.1 Error-sensitivity

Our study of error-sensitive proof-labelling schemes raises intriguing questions. In
particular, we observe that every distributed language seems to fit in one of the
following two scenarios: either it is not error-sensitive, or it admits an error-sensitive
proof-labelling scheme that achieves the same performance (in terms of proof size)
as the optimal scheme without the sensitivity constraint. We do not know whether
there exists a distributed language that contradicts this dichotomy. This is the main
open question of this chapter.

Open problem 8.1. Does there exist a (natural) error-sensitive language, with a
proof-labelling scheme of size f(n), such that every error-sensitive proof-labelling scheme
has size at least g(n) with f(n) � g(n)? Loosely speaking: does error-sensitivity,
whenever achievable, always come for free?

Another interesting topic is about where rejection happens. Error-sensitivity is
basically about comparing the sizes of two sets of nodes: the nodes that are rejecting,
and the nodes whose inputs we can edit in order to produce a labelling that is correct

157
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for the language. A natural constraint is to require that the nodes to edit are the
rejecting nodes. This way, in some practical scenarios, it would be possible for a node
to both detect, and fix a bad configuration. We can call this constraint proximity
sensitivity. Note that, as we mentioned in the corresponding chapter, spanning trees
are error-sensitive, but do not satisfy this stronger property. Characterizing languages
that are proximity-sensitive is a natural first step for understanding this notion.

Open problem 8.2. Characterize the languages that are proximity-sensitive.

On a more technical level, the proof that the classic scheme for minimum spanning
trees is error-sensitive is complex, thus the following open problem.

Open problem 8.3. Does there exist a simpler proof that the classic scheme for
minimum spanning is error-sensitive? Does there exist another scheme, with a simpler
proof?

Finally, it is known that spanning trees, and minimum spanning trees are related
to the notion of (graphic) matroid. This notion implicitly appears in the proofs of
Corollaries 3.2 and 3.3.

Open problem 8.4. Is the notion of local stability related to the notion of matroid?
Are there other examples of matroids that are, in some sense, locally stable?

8.1.2 Uniformity

After the theorems of Chapter 4, it seems that we have a pretty good grasp of the
relations between mixed proofs and local proofs. However purely global proofs are still
not completely understood. We have already discussed the following open question
in the corresponding chapter.

Open problem 8.5. For the set of bipartite graphs, is the optimal size for a global
proof Θ(n log n) bits? If not, are there languages with local proofs of constant size,
but global proof of super-linear size?

Also, it seems worth studying the relations between error-sensitivity and global
proofs. For example a positive answer to the following question seems plausible.

Open problem 8.6. Is every language error-sensitive if we consider purely global
proofs?

Indeed the typical prover strategy to make few nodes reject, and then violate the
sensitivity constraint, consists in telling half of the nodes that they live in some graph,
and the other half that they live in some other graph; but this is not possible with a
global proof.
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8.1.3 Redundancy

In the chapter about redundancy, we proved that, for many classic problems, there
are proof-labelling schemes that scale linearly with the radius of the view. This even
holds for every language, if the topology is restricted to cycles or trees. Thus the
following problem:

Open problem 8.7. Does every language scale linearly?

In fact, the scaling factor might even be larger than the radius t, and be as large
as b(t) in graphs with ball growth b. For example, we have proved that the uniform
part of any proof-labelling scheme can be scaled by such a factor b(t). This yields the
following further open problem:

Open problem 8.8. Does every language scale by the size of the ball?

The first step to give an answer to these questions may be to understand colouring
problems. In Chapter 4, we saw that colourability questions, such as bipartiteness,
provide examples of languages that are far from being uniform. Thus we may expect
that the languages such as k-colourable are not very redundant. Therefore these
languages are good candidates to disprove the existence of a good scaling for every
language. Note that colourability with a constant number of colours does not make
much sense for scaling, as the original proofs use only a constant number of bits. Thus
the following question.

Open problem 8.9. What is the scaling for the set of f(n)-colourable graphs, where
f is some increasing function?

The basic prover strategy for colourability problems is to provide every node with
its colour, and the classic way to scale a scheme is to start by removing some certi-
ficates. Then the question is: if a fairly large fraction of colours is removed, how to
reconstruct locally the colouring? Note that in the case of a path, if the nodes that
are coloured are spread evenly, this local reconstruction is easy. But, in some sense,
we already knew that: we proved that for constrained topologies, such as paths, every
language, including colourability languages, scales linearly.

8.1.4 Interactivity

In Chapter 6, we defined classes on different levels of a hierarchy, and the main
question was:

Open problem 8.10. Are the second level and the third level of the hierarchy separ-
ated? If yes, are all the levels separated?

As said before, this question is probably out of reach for the moment if we focus
on techniques from communication complexity. However it may be possible to prove
lower bounds in a different way.

Another topic of interest is whether Theorem 6.10 can be generalized. This the-
orem states that there are languages outside of the local hierarchy, if we assume that
the verifier is a Turing machine.
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Open problem 8.11. Are there problems outside the hierarchy if we do not restrict
the nodes to run a Turing machine? In other words can every language be described
by a protocol of the hierarchy?

8.2 Cross-cutting view and new questions

8.2.1 Building blocks for proofs

When we survey the classic proof-labelling schemes, it appears that a few basic ideas
are used for many purposes. For example, using distances or counters is a very
common primitive. We now list these classic primitives, and state what are their
characteristics in terms of sensitivity, uniformity, redundancy, and interactivity. This
is an opportunity to give a cross-cutting view on the thesis. Most of these primitives
do not have standard names, therefore we coin the following terms: distance-based
proofs, counter-based proofs, name-based proofs, and local structure proofs.

• Distance-based proofs consist in providing each node with its distance to some
leader node along some tree. This can be relaxed by only requiring to have an
ordering which respects the property that parents have smaller ranks than their
children. These proofs are mainly used to show acyclicity, and to show that
some pattern appears in the graph. As we have seen in Chapter 4, such proofs
are far from being uniform, as the corresponding price of locality is constant.
However, this does not mean that the proofs are not redundant. Indeed the
distances of two adjacent nodes are very correlated, which is captured by the
linear scaling appearing with a larger radius (Chapter 5). Finally such proofs
are, in some sense, sensitive to errors because, given the good encoding, the
tasks that are using those proofs are error-sensitive.

• Counter-based proofs are a refinement of distance-based proofs. On top of a
tree with distances, it is possible to enrich the certificates to provide more in-
formation. This additional information comes in the form of some number, or
some boolean value. These values are aggregate along the tree, and the root
can check that this aggregated number is correct with respect to the language.
For example, we can check whether the number of edges in a matching is equal
to some given number. The idea is that every node is given by the prover, the
number of edges of the matching that are adjacent to one of its descendants.
Then every node can check that the numbers given to its neighbours are con-
sistent with its own number, and its neighbourhood. The proof of Claim 6.2, is
a more general use of this technique.

• Name-based proofs are proofs that are uniform, and consist in the name of
an edge, a node, or an input. These are useful when many nodes need the
same information, for example to certify that some pattern appears at most
once. They are uniform by definition, thus very redundant, as witnessed by an
extremely good scaling.
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• Universal proofs are uniform proofs where every node is basically given the
adjacency matrix of the graph. As in the previous type of proof mentioned,
these are uniform proofs, thus they are redundant. Universal proofs are the
archetype of proofs that are not sensitive. For some languages such as the set
of symmetric graphs, one can avoid using such proofs if alternation is allowed.
Indeed with alternation, one can use only distance-based and name-based proofs,
that are more compact.

• Local-structure proofs are proofs that, loosely speaking, provide some local in-
formation, such as a colour, the name of an adjacent edge in a matching, and so
on. In general it is difficult to capture this notion with a satisfying definition.
However if we restrict to degree-bounded graphs with port-numbers, one can
define local-structure proofs as the proofs that can be encoded on a constant
number of bits. For example, in this restricted setting, encoding a matching
can be done with a constant number of bits: every node is just given the port
number of the edge in the matching it is adjacent to. More generally all the
languages that correspond to construction problems in the class LCL in [89] fit
into this definition. These local-structure proofs elude some of our techniques,
in particular it is not clear how uniform or redundant they are. Finally, sensitiv-
ity depends on the scheme itself, and on the precise parameters of the language.
For example, 3-colourings in general graphs are not locally stable, but colourings
with ∆ + 1 colours, in graphs of maximum degree ∆, are locally stable.

8.2.2 Towards a canonical form for local proofs

Now, given this list of ubiquitous primitives, a natural question is the following.

Open problem 8.12. Can every proof-labelling scheme be transformed into another
scheme, satisfying the two following properties: it is as compact as the original scheme,
and it only uses the primitives of the list? More generally, is it possible to define a
canonical form for local proofs?

The rationale behind this question is twofold. First, there has been quite a few
papers on proof-labelling schemes, but they almost always use the same building
blocks. Second, the proofs mentioned in the previous subsection are sufficient to
certify fundamental languages such as Amos and Alos, so maybe they are versatile
enough to capture the essence of local proofs. A hurdle to overcome to answer this
question is to precisely define how to compose these primitives. For example, proof-
labelling schemes for minimum spanning trees and for diameter use these primitives,
but in a complicated, interleaved, manner. Thus, as a first step, it may be easier to
restrict ourselves to the study of languages with O(log n)-bit proofs, that avoids these
two examples.

Open problem 8.13. Is it true that on graphs with constant degrees and constant-size
inputs, every scheme with O(log n)-bit proofs, can be replaced by a scheme using only
distance, counter, and name-based proofs, along with some constant-size additional
information?
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Such general results would be very helpful in proving properties of proof-labelling
schemes. Indeed, instead of proving theorems about general unknown proofs, one
could simply prove the statement for each primitive, and then prove that composing
these primitives does not change the correctness of the result. For example, in this
thesis, we have often proved theorems for particular languages, such as spanning trees,
but if some canonical form would exist, then we may be able to say that these special
cases are actually the only ones to consider.

8.3 Perspectives
To conclude, let us broaden the focus, by considering the impact of proof-labelling
schemes outside of distributed decision.

First remember that proof-labelling schemes originated from the study of self-
stabilizing algorithms. Self-stabilizing algorithms are distributed algorithms that cope
with faults. To detect these faults, a common strategy consists in providing the nodes
with additional information. In their seminal paper, Korman, Kutten and Peleg,
advocated a modular approach to study self-stabilization. In particular they isolated
the part concerned with additional information, and modelled it as non-determinism.
This process gave birth to proof-labelling schemes, which became a topic of research
on its own. After fifteen years of research, we have a better understanding of proof-
labelling schemes. It may be time to use the knowledge gathered along the way
to improve on self-stabilizing algorithms. In particular, we have mentioned diverse
practical scenarios for different types of non-determinism, and it would be nice to have
self-stabilizing algorithms for these settings. Also, a very related topic is the dynamic
setting. In this thesis we have always assumed that the graph and the inputs do
not change over time. Understanding how robust proof-labelling schemes can be in
presence of changes is a natural next step.

The second topic outside of distributed decision that may benefit from further
knowledge on proof-labelling schemes is graph theory. As we mentioned in Section 1.4,
we have ongoing work concerned with the graph classes that can be described with
some forbidden ordered patterns. More precisely, we call pattern, graphs whose nodes
are ordered, and pattern family, a finite set of such patterns. Given a pattern family,
one can consider the following class of graphs: the graphs for which there exists an
ordering of the nodes such that none of the patterns of the family appears. The
graph classes defined this way are all in NP, because given the ordering, it is easy to
check whether the graph is in the class or not. The link with proof-labelling schemes
is that, for some classes, we can actually provide this ordering in the form of local
proofs. That is, for some pattern families, we can design a scheme that provides each
node with its rank in the ordering, and the nodes can both verify the ordering, and
check whether a pattern appears. It is not clear yet which are exactly the classes
that can be recognized by this type of schemes. On a more general perspective, it is
probably fruitful to use the point of view of proof-labelling schemes in the study of
graph classes. For example, the size of the optimal proofs for certifying a class may
be an interesting parameter to bring to the graph theory community.
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