
HAL Id: tel-01962544
https://hal.science/tel-01962544v1

Submitted on 20 Dec 2018 (v1), last revised 26 Feb 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning socio-communicative behaviors of a humanoid
robot by demonstration

Duc-Canh Nguyen

To cite this version:
Duc-Canh Nguyen. Learning socio-communicative behaviors of a humanoid robot by demonstration.
Robotics [cs.RO]. Université Grenoble - Alpes, 2018. English. �NNT : �. �tel-01962544v1�

https://hal.science/tel-01962544v1
https://hal.archives-ouvertes.fr


 

 
 

THÈSE

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ DE GRENOBLE
ALPES

Spécialité : Signal Image Parole Télécoms

Arrêté ministériel : 7 août 2006

Présentée par
Duc-Canh NGUYEN

Thèse dirigée par Gérard BAILLY et
codirigée par Frédéric ELISEI

préparée au sein du
GIPSA-lab
dans l'École doctorale Electronique, Electrotechnique,
Automatique, Traitement du Signal (EEATS)

Learning socio-communicative
behaviors of a humanoid robot
by demonstration

Thèse soutenue publiquement le 22 octobre 2018,
devant le jury composé de:

Mohamed CHETOUANI
Professeur, UPMC, ISIR/Paris (Rapporteur)
Philippe GAUSSIER
Professeur,UCP, ETIS/Cergy Pontoise (Rapporteur)
Denis PELLERIN
Professeur,UGA, GIPSA-lab/Grenoble, (Examinateur)
Mathieu LEFORT
Maître de conférence, UCB, LIRIS/Lyon (Examinateur)
Gérard BAILLY
Directeur de recherche CNRS, GIPSA-lab/Grenoble (Directeur de
thèse)
Frédéric ELISEI
Ingénieur de recherche CNRS, GIPSA-lab/Grenoble (Co-directeur de
thèse)





Acknowledgements

First and foremost I would like to thank my advisors, Gérard Bailly and Frédéric Elisei, who
gave me the opportunity to do this thesis. Over the course of three years, they have constantly
o�ered their guidence and support, and spent time and energy in helping me to dive into new
and complementary areas of research.

I would also like to thank my two rapporteurs (Mohamed Chetouani and Philippe Gaussier)
and other jury members (Denis Pellerin and Mathieu Lefort), who helped me to improve this
thesis.

A very special gratitude Agence nationale de la rechercher (ANR) and SOMBRERO
project designed by Gipsa-lab for helping and providing the funding for the work.

I am grateful to my litter family, espcially my wife Van Anh and my daughter Myla , who
have provided me through moral and emotional support in my life. I am also grateful to my
other family members and friends who have supported me along the way.

And �nally, last but by no means least, also to everyone in the Gipsa-lab, it was great
sharing laboratory with all of you during last three years.

i





Contents

Introduction 1

1 Social Robots 5

1.1 Potential of Assistive Robots in our Society . . . . . . . . . . . . . . . . . . . . 5

1.2 De�ning social Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 De�nition & Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Humanoid robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Why Social Robots as Assistants? . . . . . . . . . . . . . . . . . . . . . 9

1.2.4 Socially Assistive Robot (SAR): Long-Term vs. Short-Term Interactions 11

1.2.4.1 Long-term Interactive Robot . . . . . . . . . . . . . . . . . . . 11

1.2.4.2 Short-term Interactive Robots . . . . . . . . . . . . . . . . . . 13

1.2.5 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Developmental Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Learning by Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2.1 Demonstrating Low-level skills . . . . . . . . . . . . . . . . . . 17

1.3.2.2 Learning high-level behaviors - multimodal interactive behaviors 18

1.3.2.3 Incremental vs. Batch Learning . . . . . . . . . . . . . . . . . 18

1.4 The SOMBRERO Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Human-Human Interactive Data: experimental design, acquisition, annota-

tion & characterization 23

2.1 "Put That There" (PTT) data . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



iv Contents

2.1.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Data Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Selective Reminding Test data (RL/RI) . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Multimodal Interactive Behavioral Models 37

3.1 State of the art: modeling multimodal interactive behaviors . . . . . . . . . . . 39

3.1.1 Rule-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Machine learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Recurrent Neural Network - Long-Short Term Memory . . . . . . . . . . . . . . 43

3.2.1 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1.1 Simple Recurrent Neural Network . . . . . . . . . . . . . . . . 44

3.2.1.2 Long-Short Term Memory . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Application of RNNs in human interactions . . . . . . . . . . . . . . . . 46

3.3 Generating discrete events: Arm and Gaze . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Modeling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.2 Dynamic Bayesian networks . . . . . . . . . . . . . . . . . . . . 51

3.3.1.3 Long-Short Term Memory . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2.1 O�-line task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Prediction accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 53



Contents v

Coordinate Histogram . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 On-line tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Generating discrete variables from continous estimations: Backchannels . . . . . 60

3.4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Rule-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Data-driven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Interactive data: Train and validation data . . . . . . . . . . . . . . . . 61

3.4.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.3.1 Conditional Random Field . . . . . . . . . . . . . . . . . . . . 62

3.4.3.2 Input window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.4 Backchannel prediction and generation . . . . . . . . . . . . . . . . . . . 63

3.4.5 Subjective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.5.1 Lexical Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.5.2 Relevance of BC generation . . . . . . . . . . . . . . . . . . . . 66

3.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Generating continuous variables: Head Motions . . . . . . . . . . . . . . . . . . 69

3.5.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.1.1 Head motion, gaze and speech . . . . . . . . . . . . . . . . . . 69

3.5.1.2 Generating head motions . . . . . . . . . . . . . . . . . . . . . 70

3.5.2 Multimodal interactive behavioral models for generating head motions . 71

3.5.2.1 Analyzing data . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



vi Contents

3.5.3 Conclusions & perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Gesture Controllers: Design and evaluation 81

4.1 Adapt the RL/RI scenario from HHI to HRI . . . . . . . . . . . . . . . . . . . 83

4.1.1 Substituting sheets of paper with displays . . . . . . . . . . . . . . . . . 83

4.1.2 Dealing with response times . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Designing gesture controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2 Arm gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.3 Gaze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.4 Eyelids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Evaluating gesture controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Evaluation of HRI systems: state of the art . . . . . . . . . . . . . . . . 89

4.3.2 Designing and performing on-line vs o�-line evaluation . . . . . . . . . . 90

4.3.2.1 The �rst evaluation . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2.2 The second evaluation . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.3 Comparing the two evaluations . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.3.1 Yuck responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.3.2 Subjective ratings . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.3.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Towards Autonomous Robots and Evaluations 101

5.1 Towards an autonomous robot performing the Put That There scenario . . . . . 102

5.1.1 Required Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.2 A strategy to assess/evaluate the modules . . . . . . . . . . . . . . . . . 103



Contents vii

5.1.3 The robot replicating the PTT scenario . . . . . . . . . . . . . . . . . . 105

5.1.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 A basic (immature) Autonomous Robot performing the RL/RI scenario . . . . 107

5.2.1 Rules-based interactive models for the RL/RI scenario . . . . . . . . . . 107

5.2.2 An Autonomous Control Framework . . . . . . . . . . . . . . . . . . . . 109

5.2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Challenges remaining to achieve a widely acceptable autonomous robot . . . . . 112

5.4 Bene�ts of the Wizard of Oz approach . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.1 The Beaming System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.2 Enhancing the system for the RL/RI scenario . . . . . . . . . . . . . . . 116

5.4.3 Evaluating the Immersive Teleoperation system . . . . . . . . . . . . . . 117

5.4.3.1 An Evaluation Framework . . . . . . . . . . . . . . . . . . . . . 119

5.4.3.2 Item selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.3.3 Illustrative Examples of Evaluating Data . . . . . . . . . . . . 119

5.4.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Conclusions and Perspectives 125

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.1 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.2 Collecting and Annotating Interactive Data . . . . . . . . . . . . . . . . 127

6.2.3 Improving and Adapting Robots' Behaviors . . . . . . . . . . . . . . . . 127

6.2.3.1 Sharing Control . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.3.2 Generating variably interactive behaviors . . . . . . . . . . . . 128

6.2.3.3 Adapting the Interactive Models: Transfer Learning . . . . . . 128



viii Contents

A Sensorimotor Calibration for Pointing 131

A.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B Finite State Machine of the RL/RI scenario 135

B.1 FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2 FSM models of the sub-tasks of the RL/RI scenario . . . . . . . . . . . . . . . . 136

B.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

List of publications 141

Resumé 161

Abstract 161



List of Figures

1.1 Classifying social robots according to function and appearance [HNI] . . . . . . 8

1.2 Comparing robot and display in guiding and recommending shopping [Kan+09] 9

1.3 Long-term interaction robot: companion robots . . . . . . . . . . . . . . . . . . 12

1.4 Robovie Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 KiliRo, a parot robot, interacting with autism children [Bha+17]. . . . . . . . . 14

1.6 Examples of short-term robot interaction . . . . . . . . . . . . . . . . . . . . . . 15

1.7 The robot is chatting with custom, recommending them shopings/ restaurants
and using deictic gestures to guiding them in a mall [Kan+09]. . . . . . . . . . 15

1.8 Nina, the iCub2 humanoid robot with mouth and lips articulation which has
been used in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 The three main steps of learning interaction by demonstration. . . . . . . . . . 20

2.1 Collect representative interactive behaviors from human coaches in HHI scenario 24

2.2 Table of "Put That There" scenario. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 First-person view of the interaction captured from the instructor's head-mounted
scene camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 The instructor's head and right arm movements are monitored by the MoCap
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Semi-automatic segmentation of arm movements according to speech and target
of the pointing gesture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Speech production waiting for arm movement planning . . . . . . . . . . . . . . 30

2.7 Capturing the multimodal behavior of the human tutor during HHI. . . . . . . 31

2.8 Semi-automatically annotated data with Elan software. . . . . . . . . . . . . . 33

2.9 Number of occurrences of the 34 di�erent lexical markers used by the interviewer
to encourage the subjects [Bai+16]. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Timing of ends (blue) and beginnings (rose) of interlocutors' speeches surround-
ing backchannels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



x List of Figures

3.1 Face-to-face interaction within the time scale of human actions [Thó99] . . . . . 38

3.2 SOMBRERO learning framework: Modeling multimodal interactive behavioral
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 The three stages of SAIBA and the two mediating languages: FML (function
markup language) and BML (behaviour markup language) . . . . . . . . . . . . 40

3.4 An example of a BML block [Kop+06] . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Situated modules controlled by episode rules [Kan+02] . . . . . . . . . . . . . . 42

3.6 A multimodal interactive behavioral modal using DBN for a humanoid robot
in a narration task [HM14]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Unfold RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 RNN vanishing problem [Den] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 The LSTM unit is a memory block that can be updated, erased or read out
according its internal activation ct and the current input xt. . . . . . . . . . . . 47

3.10 LSTM unroll. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.11 Bi-directional RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.12 Schematic of HMM-based multimodal interactive modeling . . . . . . . . . . . . 50

3.13 The learned structure of the DBN model . . . . . . . . . . . . . . . . . . . . . . 51

3.14 Schematic model of multi-tasking LSTMs . . . . . . . . . . . . . . . . . . . . . 53

3.15 O�ine generation: comparing performance of the joint estimation . . . . . . . . 55

3.16 Input and output sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.17 Computing coordinate histogram corresponding to SP by cumulating delays
between each SP event and adjacent events in the other two streams GT and FX. 57

3.18 Comparing ground truth coordination histograms with those computed with
streams predicted by di�erent o�ine methods . . . . . . . . . . . . . . . . . . . 58

3.19 Performance of the di�erent methods for the on-line prediction tasks. Same
conventions as for Figure 3.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.20 Inputs concatenated w -context windows . . . . . . . . . . . . . . . . . . . . . . 63

3.21 Precision-Recall curve of backchannel prediction with CRF and LSTM . . . . . 64

3.22 Backchannel prediction and generation by CRF vs. LSTM from speech activi-
ties of both speakers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



List of Figures xi

3.23 Number of backchannels generated by di�erent methods . . . . . . . . . . . . . 66

3.24 Subjective evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.25 Inputs with concatenated two frames t and t+w . . . . . . . . . . . . . . . . . . 68

3.26 Correlation of CCAs between each of H1, H2, H3 and FX, IU, GT, SP, MP and
F0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.27 Single vs. Multi-task models generating head motions . . . . . . . . . . . . . . 73

3.28 Average H1 RMSE at di�erent epochs corresponding to the di�erent cascaded
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.29 (a) H1 real vs. prediction streams between di�erent models; (b) input streams
(FX ground truth& SP) and FX prediction from LSTM1. . . . . . . . . . . . . 75

3.30 Coordination histograms among H1 and (IU,SP). . . . . . . . . . . . . . . . . . 76

3.31 Chi-squared distances of the di�erent prediction models. . . . . . . . . . . . . . 77

3.32 Average H1 RMSE of the Baseline model without and with SP shifted frames
corresponding to number of training epoch. . . . . . . . . . . . . . . . . . . . . 78

3.33 CCA of Hs vs. SP with various number of shifted frame. . . . . . . . . . . . . . 79

3.34 Average H1 RMSE without and with SP shifted frames corresponding to the
di�erent models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Gesture controllers: design and evaluation. . . . . . . . . . . . . . . . . . . . . . 82

4.2 Adapted RL/RI scenario for human-robot interaction . . . . . . . . . . . . . . . 83

4.3 An example of di�erent durations between a robot action and a human action
when performing the same event. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Predicting prosody with superposition of functional contours . . . . . . . . . . . 86

4.5 Robot's arm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Two examples of robot's gaze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Robot's eyelids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Schematic model of continuous quality rating with scale [HK99]. . . . . . . . . . 90

4.9 The Nina robot from the subject's perspective. . . . . . . . . . . . . . . . . . . 91

4.10 General framework of evaluation gesture controllers. . . . . . . . . . . . . . . . 92



xii List of Figures

4.11 The yucking probability as a function of time for �rst by participants. . . . . . 93

4.12 Density of yuck responses for our replayed interaction. . . . . . . . . . . . . . . 93

4.13 Comparing the yucking probability as a function of time for �rst vs. second
assessment by the subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.14 Comparing subjective ratings according to conditions (same conventions as �g-
ure 4.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.15 Overall repartition of ratings to questions 1 and 3 according to sex . . . . . . . 97

5.1 A strategy of evaluating the robot step-by-step: from a replicated version to an
autonomous version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Excerpts from the PTT replicating scenario. . . . . . . . . . . . . . . . . . . . . 106

5.3 Schematic model of a baseline autonoumous robot interacting with a human
subject in the RL/RI scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Autonomous robot performing RL/RI task with human subject using rule-based
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Collecting Human-Robot Interaction data with immersive teleoperation . . . . 113

5.6 Immersive teleoperation system used to collect interactive data for the RL/RI . 116

5.7 An example of the robot using the Beaming system performs the RL/RI scenario.117

5.8 Beaming evaluation using a virtual tablet (c) and a screen for items (b) . . . . 120

5.9 Distributed distance between two consecutive items . . . . . . . . . . . . . . . . 121

5.10 The items are sorted and merged to exhibit a balanced order . . . . . . . . . . 121

5.11 Gaze and head movement of a subject in clicking-beaming evaluation . . . . . . 122

A.1 Di�erent possible approaches for mapping pointing gestures [Lem+13]. . . . . . 132

A.2 Schematic model of arm pointing with laser spotter attached on the index �nger.132

B.1 A simple FSM model of a Turnstile . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2 A more detailed FSM model of a Turnstile . . . . . . . . . . . . . . . . . . . . . 136

B.3 A sub-FSM modeling the learning phase . . . . . . . . . . . . . . . . . . . . . . 137

B.4 Sub-FSMs of counting and testing phase . . . . . . . . . . . . . . . . . . . . . . 138



List of Figures xiii

B.5 A sub-FSM of recognition phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 139





List of Tables

2.1 Semi-active labeling discrete events . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Chi squared distances between the coordination histograms of ground truth vs.
those of the di�erent o�-line models . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Chi-squared distances between the coordination histograms of ground truth vs.
those of the di�erent on-line models . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Precision, recall and F1 score of the two methods in BC prediction task. . . . . 64

3.4 F1 score of the two methods with inputs concatenating current frame and only
a past frame with distance w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Head motions generated by rules [LM06] . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Root mean square errors (Pearson correlations) between ground truth and pre-
dicted head motions with di�erent models. . . . . . . . . . . . . . . . . . . . . . 75

4.1 Adapting events from HHI to HRI . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Causes of yuck behaviors of the �rst evaluation and modi�cations for the second
evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xv





Introduction

Recently, socially assistive robotic (SAR) that not only helps people via physical interactions
but also via social skills, have been receiving attention by researchers. This is due to the fact
that SARs can engage in conversation with humans or even create strong a�ective relations
with humans. One major goal of building SARs is to build robots that are accepted by people
in human-centered environments. Because humans interact with each other through compli-
cated bidirectional multimodal signals to convey and perceive information, SARs need to be
designed to conform to human expectations in communication. The robot behaviors have to
follow human communication norms, social values and standards so that people might be able
to intuitively understand the robots just as they could understand other people [Bre04]. Oth-
erwise, people will be confused and have di�culties to anticipate reactions, even reject robot
interactions. Therefore, SARs need to be provided with multimodal interactive behaviors,
which are �uently coordinated with verbal (speech) and non-verbal (e.g. arm gestures, eye
movements) behaviors of its human partners.

Depending on the objectives of Human-Robot Interaction (HRI), SAR faces di�erent chal-
lenges. One of the important dimensions is the duration of this interaction. Some of SARs
are concerned with long-term (LT) interaction, aiming at providing users with social glue and
a�ective relations. Others are designed to engage into more short-term (ST) task-oriented
interactions with a large range variety of users who are mostly unknown beforehand. The
challenge of ST interactions is more oriented towards attention and quick adaptation.

The objective of this thesis is to endow a humanoid robot with sociocommunicative abilities
in order to perform ST taks-oriented interactions. A way to provide the robot with ST
interaction skills is to teach the robot behaviors by demonstration. In this thesis, our robot
learns social skills from a human coach by a series of demonstrations of situated Human-Human
interactions (HHI). This HHI-based framework faces several challenges:

Adaptability to di�erent humans and situations Social robots should adapt their be-
haviors to interact with humans with di�erent social pro�les (personality, gender, age,
emotional state, etc.). For example, introvert people prefer to interact with a robot that
expresses introvert behaviors thirobot(e.g. speaking slowly, moving its arms narrowly,
praising users). In contrast, extrovert people are more likely to prefer extrovert behav-
iors of robots (e.g. speaking fast, opening its arms widely). robots should also adapt
their language level (lexicon, syntax . . . ) with regards to the linguistic competence of
the human partner, such as using simple phrasal constructions with children.

Transferring skills from HHI to HRI Another problem is to scale the human model to
the speci�c interaction capabilities of the robot in term of physical limitations (degrees
of freedom), perception, action and reasoning. For example, robots have imperfect
perception modules (e.g. speech recognition, especially to recognize infants' or elderly
speech). Or the robot could not have a �exible hand to open, close or write on a notebook
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using a pen as humans do. Therefore, when transferring HHI-based data, the scenario or
the interaction tools need to be re-designed to cope with the current robot sensorimotor
abilities.

Modeling of joint interactive behaviors Because humans tend to apply social models
when interacting with robots [BSS11], SAR need to be endowed with multimodal in-
teractive models. The modeling of multimodal interactive behaviors � that consists in
mapping the partenes' sensorimotor streams � is rather challenging since human-human
interaction are paced by complex perception-action loops.

To generate natural behaviors, the models have to capture intra- vs inter-coordination
between the modalities. Intra-coordination means relationships between modalities in-
side the robot (e.g. robot speech, gaze, head motions and hand pointing gestures). In
contrast, inter-coordination relates to the coordination between modalities of the robot
and its human partners (e.g. turn taking or backchanneling).

The replay and evaluation of these behaviors by the robot In order to train and eval-
uate the models, objective metrics are often used in machine learning methods such as
maximizing F1-score or minimizing RMS errors. However, in the context of human-robot
interaction, this should be completed with subjective evaluation, in order to measure
the satisfaction (succesful and meaningful actions) of the human users with regards to
the robot's behaviors. In this thesis, we propose a method for the online evaluation of
interactive behaviors that provide timestamps of the robot's faulty behaviors.

The SOMBRERO project designed in our laboratory aims to solve all of these challenges
in order to provide an iCub humanoid robot with social skills for ST interactions. My thesis
contributes to the project by addressing the two last challenges: (3rd) building interactive
multimodal interactive models to generate adequate robot actions; (4th) implementing and
evaluating the actions on the robot. Also, we give discussions and our perspectives to solve
the two �rst challenges in the context of the SOMBRERO project.

With regards to the third challenge, there are two main approaches to model multimodal
interactive behaviors: rule-based vs. machine-learning methods. The rule-based methods with
hand crafted rules are time consuming and require a lot of human labor. In addition, they have
di�culties in taking into account many factors conditioning the multimodal behaviors (task,
personality, social context, emotion, gender, etc.). In contrast, the machine-learning methods
are expected to solve this problem by automatically �nding behavioral regularities from data.
Up to now, few machine-learning methods have been applied to interactive multimodal data
for building behavioral models. Most of them are often based on statistical methods such
as Hidden Markov Model, Dynamic Bayesian Networks, etc. or more sophisticated graphical
models capturing causal relations between multimodal data. However, these methods have
di�culty in capturing long-term temporal dependencies between random variables, which are
crucial for the coordination of modalities. In this work, we explore deep learning (DL) with
recurrent connections to deal with the time dependencies. However, training end-to-end DL
models usually requires a lot of interaction data which are not always available due to expensive
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collecting cost. We however show that DL models can outperform other statistical models in
generating the robot's behaviors, even with a limited training dataset.

The fourth challenge faces two issues. Firstly, we have to design gesture controllers to
drive robot actions. These controllers should exploit the robot's sensorimotor capabilities but
also be judged equivalent to the social behaviors of human coaches. For example, a human-
like hand pointing gesture should move fast towards the target. This control policy is not
optimal for a robot that would prefer to slow down progressively to minimize vibrations and
optimize accuracy. A robot without eyebrows nor frowning capabilities would have di�culties
in signaling astonishment or irritation. This should be compensated with enhanced verbal or
other coverbal behaviors. Secondly, evaluating robot behaviors requires a method to detect
WHEN and WHAT wrong social behaviors occur so that these behaviors can be repaired in
order to increase human acceptance.

This thesis manuscript is organized in �ve chapters:

In the �rst chapter, we will brie�y introduce SARs, motivation of SARs, long-term (LT)
vs. short-term (ST) applications of SARs. We also introduce approaches to learn robot's
behaviors. We introduce the SOMBRERO project, in which this work is inscribed. this
project proposes a learning framework to solve the two �rst challenges for HHI-based
frameworks: scale human-human interaction to human-robot interaction and compen-
sate for possible drastic changes of human behaviors in front of robot by using demon-
strations from immersive teleoperation of the robot.

In the second chapter, we detail our ST interactive scenarios and how we process and
annotate the data in order to get useful features to train interactive models. The robot
will be involved in two scenarios: (a) a neuro-psychological test (RL/RI) in which the
robot intends to play the role of a psychologist interacting with elderly people and
performing a memory test; (2) a collaborative task named Put That There (PTT) in
which the robot instructs a manipulator how to move cubes. Both tasks require the �uent
coordination of co-verbal and nonverbal behaviors such as gaze, head, arm movement
etc. with adequate verbal behaviors. We explain how we convert raw signals into discrete
events before building interactive models.

In the third chapter, we develop and train multimodal interactive behavioral models that
generate appropriate action events from perception streams. The models could then be
used to generate coverbal behaviors for our iCub humanoid robot. We here focus on a
Deep Learning architecture named Long-Short TermMemory (LSTM) which can capture
temporal dependencies between social signals over a long period of time. We compare
its performances with several statistical models such as Hidden Markov Model (HMM),
Dynamic Bayesian Network (DBN), Conditional Random Field (CRF). We show that,
due to the ability of capturing long-term dependencies between hidden states, the best
accuracy of generating gaze and arm movements is achieved by the LSTM method.

We also used the LSTM method to generate continuous head motions. Using Canonical
Correlation Analysis (CCA), we found that the gaze highly correlates with head motion
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in the PTT corpus. We propose a cascaded LSTM model: a �rst LSTM layer is used
to predict gaze and its output is further fed into another LSTM layer generates head
motions. The two LSTM models can be trained separately and the cascaded model
further �ne-tuned. This cascaded model � that explicitly takes into account the causal
relations between saccades and head movements � performs a better prediction of head
motion than a baseline predicting head motion & gaze from speech activities without
any a priori hierarchy. In this chapter, we also illustrate how LSTM and Conditional
Random Field (CRF) can be used to generate verbal back-channels from speech activities
and how to use window contexts to improve prediction and generation results.

The fourth chapter mainly focuses on the 4th challenge. This chapter proposes to adapt
the RL/RI scenario in order to cope with the limitations of the robot's motor cabilities.
We design and evaluate gesture controllers to execute actions events (generated by mul-
timodal interactive behavioral models). We also propose an original on-line evaluation
framework that not only detects the robot's faulty behaviors but also suggest how to
iteratively improve the quality of the robot's behaviors so that the robot can achieve
higher acceptance rate by humans.

The �fth chapter presents our work in progress to build autonomous robots that can per-
form interactive scenarios as well as how to improve social skills for the autonomous
robots in the near future. For the Put That There scenario, robot can autonomously
perform gaze and pointing gestures with the trained interactive models. Further, we
give some perspectives on building perception modules which have been not developed
on this thesis. For the RL/RI scenario, we design a �rst autonomous robot with gesture
controllers and backchannels generated by interactive models described in 3th chapter
and some additional rules. To improve the robot behaviors, we propose to establish
experiments to collect social signals for the robot using immersive teleoperation. We
also depict our plan to evaluate and improve our current beaming system.

Finally, we give conclusions and perspectives about our approaches and future works
about how to improve quality of robot behaviors and complete the autonomous control of our
humanoid robot.



Chapter 1

Social Robots

We have found that individuals' interaction with computers,

television and new media are fundamentally social and natural,

just like interactions in real life. Reeves et al. [RN96]

This chapter motivate applications of the Socially Assistive Robots (SAR). The chapter
also introduces the state of the art of methodologies used to teach such robots how to per-
form speci�c tasks. We �nally sketch our approach to build a SAR within the SOMBRERO
framework.

1.1 Potential of Assistive Robots in our Society

There is a dramatic increase of elderly population. Today, the world's population over 60
is approximated about 10 percents and the number can double by 2050 [Pol05]. Especially,
there are 10 percent of elderly persons over 65 and 50 percent over 85 with Alzheimer's
disease [Heb+03]. One of the speci�c of sensory-motor and psychosocial issue of aging is
cognitive decline. Therefore, there will be fewer and fewer young people for assisting the
elderly people to cope with the challenges of aging. Also, the cost of nursing home for elderly
may increase dramatically in the future [Roy+00]. In addition, people prefer to live in their
own homes as long as possible rather than in nursing houses when they have health problem
concerning age. One of the major challenges of our society is to take care of elderly people
personally at home at low costs.

Recently, robotics technologies are growing with a major revolution. With a considerable
cheaper computational cost and increasing signi�cant quality as well as quantity of sensor
technologies (e.g. speech recognition, machine vision), and remarkable improvement of ma-
chine learning in particular thanks to the performances reached by deep learning techniques (
e.g. image recognition, speech generation, etc.), we are closer to the goal of intelligent service
robots that can assist people in their daily living activities more than ever before. Therefore,
robots will become more and more popular and be able to interact with people in human
environments in near future.

These service robots promise to solve the growing personnel shortage, which are used in
daily life for taking care of the elderly people, motivating cognitive and physical exercise. For
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example, robots might assist people in cooking, cleaning, talking or provide treatments in
emergency stroke, involving people with cognitive tasks such as reminding medication sched-
ules, maintaining healthy habits as well as socially engaging with people at home in order to
delay cognitive decline and health-related problems, etc.

There are more and more people accepting robots being part of their daily life. According
to a survey of accepting social robots in three countries � US (1369 people), German (1382
people) and Japan (1390 people) � performed by Hiroyuki et al [HNI], 60 to 70 percent of
the participants report as being "very comfortable" or "somewhat comfortable" when asked
if they would accept robots being part of their daily lives. Indeed, a human can develop a
social relationship with a robot even when the robot's cognitive, behavioral and interactive
capacities are much simpler than those of any human being or any social animals. However,
di�erent types of relationships can exist along the spectrum that ranges from treating a robot
as a machine to perceiving it as a social and persuasive agent.

1.2 De�ning social Robots

Humans have always been developing �social" relationships and get attached to objects in the
world around them [Dau03].

Traditionally, robots were machines primarily used in clearly de�ned environments with
speci�ed tasks [Dau03], in particular in manufacturing environments. Humans have been
interacting with such robots in the same way they interact with other machines. If any
relationship exists at all with such robots, then it is the same type of relationship that humans
may have with fridges or cars. For example, we often name our car or even talk to it. However,
this relationship is not strong and is uni-directional because these objects remain passive, and
never initiate interactions. Moving to domestic environments, some kind of service robots
such as cleaner robots, another kind of machine-like robots, have capabilities of moving in a
home and sweeping up dirt. Although the robots do not have any interactive communicative
abilities with humans, they can create social relations with some families. For example, some
people named the robot, used them in groups of two vacuum robots or sometimes say "excuse
me" to the vacuum if he/she bumped into it [FD06] .

These machine-like robots are really di�erent from recent developments of robotics with
social skills that can interact with humans through verbal and non-verbal communication in
human environments. These Social Robots are robots designed to interact with us through
social behaviors such as recognizing and engaging humans in conversation or even have strong
a�ective relations or intimate relations with human and they are expected to help people in
many aspects (e.g. physical care, episodic and autobiographic memory). The two next sub-
sections will describe a de�nition of Social Robots and motivation of Socially Assitive Robot, a
particular type of social robots, aiming at helping people through interactive communication.
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1.2.1 De�nition & Classi�cation

Bartneck and Forlizzi [BF04] de�ned a social robot as follows:

�A social robot is an autonomous or semi-autonomous robot that interacts and commu-

nicates with humans by following the behavioral norms expected by the people with whom the

robot is intended to interact�

Like other robots, social robots are physically embodied (avatars or on-screen synthetic
social characters are not embodied and thus distinct). However, some robots using a screen
to display the robot's head such as JIBO [RMK14] or Buddy [Rob16] can be considered to be
social robots because the screen-based head sets expectations of verbal interaction.

Following their de�nition, a requirement for a social robot is autonomy. Therefore, a
remotely controlled robot will not be considered as a social robot because it does not make
decisions by itself. However, semi-autonomous robots � with shared control with human pilots
� somehow can be de�ned as a social robot if it interacts with an acceptable set of situated
social skills.

Based on the de�nition, the social robots can be characterized according to several param-
eters: (1) form (abstract, biomorphic or anthropomorphic), (2) modality (from unimodal to
multimodal communication channels), (3) the knowledge about social norms, (4) the degree
of autonomy, and (5) interactivity - the potential to exhibit causal behaviors.

Hiroyuki et al [HNI] classi�ed social robots according to function and appearance (see
Figure 1.1). For example, from left to right, an Amazon Echo robot has mechanical appearance
and performs some practical functions such as checking weather, tra�c, user's calendar, etc.
Some companion robots such as JIBO, BUDDY are endowed with ability to communicate
with human though speech and express some emotions, turning head to people, etc. At the
bottom of the �gure, robots with human-like appearance such as Pepper and Nao have the
ability to express non-verbal behaviors.

1.2.2 Humanoid robots

Comparing with other robots, humanoid robot's behaviors seem to be more attractive be-
cause of human-like appearance [Kie+08]. Humanoid robots are believed to be suitable for
communicating naturally with human due to their human-like bodies that enable humans to
immediately understand their social cues such as gaze, gestures. Therefore, humanoid robots
could be used to help people in many communication tasks such as guiding people in public
space such as museums, train stations or shops. For example, Hayashi et al [Hay+07] demon-
strated a positive scoring of communicative robots at a train station where customers stop to
watch humanoid robots greeting and giving some information.

Human even treat humanoid robots as if they treat other people following their culture
(e.g. we do not want to interrupt a conversation between two other people). For example,
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Figure 1.1 � Classifying social robots according to function and appearance [HNI]

Hayashi et al [Hay+07] let two humanoid robots to provide information for passengers in
a train station. They found that people were much less likely to interrupt a conversation
between the two robots. They suggested that people did not want to be engaged because
they felt that the robot couple would be less likely to open the conversation to them. They
suggest that people use the same culturally-grounded social norms to decide how to interact
with robots.

In a museum, after experiencing a guidance by a humanoid robot, children were interested
in more exhibits, especially, items that were introduced by the robot [Shi+06].

Humanoid robots could be more e�ective than display devices in advertising or provid-
ing information. For example, Kanda et al [Kan+09] found that robots provide more useful
information and encourage more shopping than display devices in a mall where robot guide
and recommend people go to shopping/restaurants. They conclude that the establishment and
development of human-robot relationship could increase advertisement e�ects. Figure 1.2 pro-
vides subjective evaluations comparing the e�ciency of robots vs. display devices in providing
information and interesting in shopping after interacting with them.
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Figure 1.2 � Comparing robot and display in guiding and recommending shopping [Kan+09]

Another advantage of humanoid robots is that we could more easily design and evaluate
their social behaviors using established socio-psychological metrics, because they have simi-
lar physical morphologies with humans. The problem of mapping perception to behavioral
responses could then be simpli�ed [BS02].

We just mention humanoid robots, a speci�c type of social robots with some useful features.
The next sub-section describes several interesting properties of social robots and why they
attract both users and researchers.

1.2.3 Why Social Robots as Assistants?

In recent years, there has been an increase in the application of social robots in helping
people such as assistant in hospitals, shopping assistant, tele-medicine, hotel service, taking
care elderly, helping daily people in daily life at home (household), and educating children.
There are many reasons why the robots are expected to be popular to assist people in the
applications.

The text below lists some of the reasons:

Engagement Social robots have more engagement abilities than other interactive technolo-
gies. Physical robots elicit more favorable social responses than other interactive tech-
nologies. In contrast to traditional interactive interfaces such as screen and voice inter-
faces, social robots provide for an alternative mode of interaction: an embodied interac-
tive experience for users [LHZ17]. Comparing with applications on mobile phones/virtual
agents, robotic technologies have stronger social engagements and are more e�ective re-
minding users to keep their health-care schedule [RMB14]. In fact, robotic devices could
be useful to promote health monitoring and health behavior such as diet and exercise.
Especially, a humanoid robot (one kind of social robots) with human-like body move-
ments such as shaking hands, greeting, and pointing could be more likely understood by
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adults and children than interaction with an electronic interface such as button or touch
screen [Shi+06]. Mann et al [Man+15] showed that embodied robots make people feel
more relaxed and respond better comparing with computer tablets used to give health
care instructions.

Trust Humans trust a social robot as much as � or even more � they trust a human.

When robots have convincing social kills, people tend to trust them as they trust humans.
For example, Kahn et al [KJ+15] suggested that people will form increasingly intimate
and trusting psychological relationships with humanoid robots when the robots increase
their social interaction abilities. In their study, they compared a 20 minutes interaction
of participants in three conditions with: (1) a humanoid robot with a high level of social
sophistication (controlled by Wizard of Oz) and (2) a rudimentary social robot and (3)
with a human. The three agents performed a lab tour guide. In each condition, the lab
tour guide would share a failure (at the end of the interaction) and asked each participant
to keep it secret from the experimenter. Their results showed that the majority of the
participant kept secrets of the highly social robot (59%) as well as the human (61%) and
there is no statistical di�erent between the two conditions. In contrast, the percentage
who kept the robot with rudimentary social interaction (11%) is signi�cantly di�erent
from the other conditions. In another work, Bethel et al [BSS11] showed that children
shared a secret delivered to them by another person, with a humanoid robot as much as
they share it with an adult human. The results of these studies suggested that human
may trust social robots. Therefore, there is a promise of a �persuasive robot" area,
where robots are designed to encourage people to change their behaviors (e.g. robots
play roles of weight loss coach [KB07]) or asking for intimate questions about health or
sensorimotor skills.

Role Robots can easily exchange their roles with humans. In education applications, robots
can play many roles for helping children to learn. In one hand, robots can take many
roles such as acting as peer learning companions, tutors or mentors [Mub+13]. For
example, robots help students in remembering vocabulary [Sae+10] by playing a game
with them and encourage students each time they remember a vocabulary item. In the
CoWriter project [Lem+16], a robot plays the role of a "bad writer" that is taught by
children who were diagnosed with visuo-constructive de�cits (e.g. di�culty to write) .
By shifting the roles of the child from the �underperformer� to �the one who knows and

teach�, the robot helps children not only practice to write better but also recover their
self-con�dence.

Companions Animal-like social robots can play roles of pets while avoiding disadvantages of
the living animals (e.g. allergies, hygiene, etc). In therapy applications [ASI01], animals
can actually help people to signi�cantly reduce their blood pressure, heart rate and
anxiety levels, etc.. However, there are some disadvantages of using animals for therapy
such as hygiene risks (e.g. infection), fear of animals (e.g. biting), allergies, etc [Sch06].
Animal-like social robots can solve this problem while keeping the advantage of living
animals. For example, there are several e�ective roles [Abd+18] of animal-like robots
found in elderly care such as:
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A�ective therapy Reducing depression, agitation scores and increase quality of life
scores of elderly people [Sai+03]; [Wad+03]; [Jør+16]; [VS+15].

Cognitive training Improving aspects of cognition, such as working memory or exec-
utive function [Tan+12]; [Kim+13]; [Wad+08]; [Tap09].

Social facilitator Improving sociability between human and robot or between the sub-
jects with other people [KFB09]; [Sab+13]; [KTT06]; [Chu+17]

Companionship Reducing signi�cantly loneliness scores of participants after they in-
teracting with the robots [Kan+03]; [Mac06]; [Rob+13].

Physiological therapy Even the e�ect of SAR on physiological therapy is less clear,
some studies show that social robots can decrease blood pressure when participant
interact with the robots longer [RMB15].

1.2.4 Socially Assistive Robot (SAR): Long-Term vs. Short-Term Interac-
tions

SARs can be classi�ed following two operational groups [Abd+18]: (1) service robots and
(2) companion robots. Service robots aim at helping people's activities of their daily-life.
In contrast, companion robots often play the role of pets or majordomos to improve the
psychological status and overall well-being of its users (e.g. Sony AIBO [Kan+03]).

SARs are typically facing two situations with quite di�erent timescales and related chal-
lenges:

Long-term interaction . Long-term (LT) interactions often target one single user with the
challenge of engaging into open-domain conversations, establishing a�ecting relation. In
other words, the robots service for individual customers and enhance relationships with
them.

Short-term interaction . In contrast, short-term (ST) interactive robot could be less re-
quired a�ective relation and more focus on task demands, but they still requires atten-
tion.

1.2.4.1 Long-term Interactive Robot

Long-term robots are social robots that used with human in a long period of time (several
months, years) or in everyday life. They often share the private like of a few set of users,
being able to establish social glue and share common experiences. In order to kept engage
with human users, the robots need to be provided with emotional and a�ective skills.

There are several main applications of LT interactive social robots such as elderly care,
autism therapy and education. For examples, one of landmark examples of long-term social
robot is Paro, a animal shaped like (with a seal embodiment shown in Figure 1.3 (a)) therapy
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(a) Paro, an animal robot used for therapy
and household [WS07]

(b) Sony Aibo ERS-210 - a robot
dog [Mel+09]

Figure 1.3 � Long-term interaction robot: companion robots

robot, which is used for interacting with patients with three purposes: psychological, physi-
ological and social e�ects [WS07]. The Paro robot was introduced in a public area at Care
House where they interact with elderly people in total 9,5 hours per day. Wada and Shitaba
found that people interacting with the robot reduce their stress level and establish strong ties
with the robot (e.g. they greet the robot when seeing it again).

One of the most sophisticated long-term interaction robot is Sony's AIBO, also an animal-
shaped robotic 'dog' shown in Figure 1.3 (b). The robot was designed to mimic biomechanical
motions of dogs with sophisticated adaptation capacities. Melson et al [Mel+09] compared
the way children interact with AIBO and found that almost all children (96%) engage into
interaction using social movements, e.g. 'o�ering the ball'. Especially, children o�ered the
ball to the robot dog more often than to the living dog. However, the children were more
likely to talk (e.g. give questions) with the live dog than the robot dog. The results showed
that children could engage with the robot dog as an believable interactive partner.

Another study on long-term human robot interaction was conducted with a robot Robovie
(designed to have safe and stable hardware for interactive communication using gestures,
shown in Figure 1.4) in an elderly care center [SKH11]. The robot was placed here for 3.5
months and controlled by a non-robotic sta� of the center. The robot gave emotional support
to elderly by conversation such as greeting (calling them by name) or encouraging them
perform some di�cult tasks. The robot also played as role of a child to ask the elderly some
question such as "what is this?" and the sta� con�rmed that the elderly perceived the robot
as a child. The authors found that the elderly tend to interact with robot, even though at the
�rst time they were not sure how to approach the robot.

For autism therapy, Bharatharaj et al used KiliRo [Bha+17], a Parrot robot (shown in Fig-
ure 1.5), to improve the social interaction abilities of children with autism spectrum disorders
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(a) Robovie used in an elderly care
center to greet people by name and
played as a child to communicate with
the elderly [SKH11]

(b) Robovie interacting with children
in elementary school [Kan+04]

Figure 1.4 � Robovie Robots

without risks of being harmed by real parrots such as biting.

For education, Kanda et al [Kan+04] used two Robovies (provided with many interactive
behaviosr such as hugging, shaking hands, exercising, greeting, etc.; each arm of robot have
four degrees of freedom requiring minimum torque motor to control so that it could be used
easily and physically stop in case of dangerous situations [KI16]). The robots interacted with
children at elementary school to teach them English language during two weeks. The research
found that most of children did stop interacting with the robot after the �rst week because
they had high expectation from robot behaviors and were disappointed. However, the rest of
children who kept interacting with the robot got higher English scores. Because the improved
scores just show after the second week, they suggest that the robot's in�uence will depend
on its ability to create a relationship with the user. The children interaction also gradually
reduced, especially during the second week. That means the robot fail to maintain long-term
relations with humans. They suggested this was because of the body and appearance of the
robot. They also recommended that the duration of interaction could be increased if the robot
possesses a humanoid body (the iCub-humanoid used in my work could be expected to make
the robot more interesting due to its human like appearance with mouth articulation as shown
in Figure 1.8)

1.2.4.2 Short-term Interactive Robots

Short-term interactions are typically task-oriented, repetitive and usually performed with
many users in a short period of time. The robots often perform tasks in a professional en-
vironement such as welcoming a client, giving directions, conducting interviews etc. The
short-term robot should cope with a large variety of user pro�les and be able to adapt in a
very short period of time.
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Figure 1.5 � KiliRo, a parot robot, interacting with autism children [Bha+17].

For example, Foster et al [FKL14] built a bartender robot, named JAMES, interacting with
multiple customers for serving drinks to them in a bar. They actually learn action selection
policy for the robot from simulated environment with Markov Decision Prossess (MDP) models
that map state features to actions so that to maximize expected cumulative reward. The robot
was provided with a limited set of actions including dialogue acts for clarifying drink order
(e.g. "Did you say 'blue lemonade'?").

Bethe et al [Bet+16] used Nao robot to interview children whether they were bullying
victim or not. Their hypothesis is that children would be more likely reporting bullying to
a robot than human interviewer. However, they found that the are no signi�cant di�erences
between human and robot interviewers rated by their parents in terms of niceness, trust,
helpfulness, discomfort, etc.

The Robovie robot was also used to interact with visitors and provide them with ex-
planation about items in a museum [Shi+06]. The visitors were provided a radio frequency
identi�cation (RFID) tag, a technology which enables the robot to easily identify individu-
als and get visitors' personal information, times of registration/return tags, when the visitor
approach the particular exhibits and so on. Therefore, the robot can greet visitors by name
or wish them a happy birth day, say goodbye to the departing visitors, etc. With the ability
of calling users by their names, the robot make the users feel more friendly and can be more
a�ected. By questioning participants, they found that most of people feel robot interesting
and friendly and just few of people reported anxiety about robot's interactions and future
robots. Based on feedback from visitors, they found that after guided by robot, children
seems developed an interest in new exhibits. However, there were few children being afraid or
not caring about interacting with robots.
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(a) Robot bartender, namely JAMES
[FKL14].

(b) Nao, a humanoid robot interview-
ing bullying with a child.

Figure 1.6 � Examples of short-term robot interaction

Figure 1.7 � The robot is chatting with custom, recommending them shopings/ restaurants
and using deictic gestures to guiding them in a mall [Kan+09].

Humanoid robots could also be used to guide customers in a mall and recommend them
go to shops/restaurants [Kan+09]. When the robot detects a person near the robot, it greets
the person. The robot can chat with the person and ask his/her preference and o�er route
guidance or shopping information of the day. The robot used some nonverbal behaviors such
as deistic gestures for giving direction to the custom as shown in Figure 1.7. They found that
robot could encourage shopping and is rated more useful than display devices in the mall.

1.2.5 Our work

Even though short-term robots require less a�ective relation and are more focusing on task-
oriented behaviors, they still require to monitor attention and engagement. Our work focuses
on the development of socio-communicative abilities for enabling a humanoid robot to perform
short-term interactions. Particularly, we build here a learning framework for providing a
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humanoid robot with multimodal interactive behaviors � using speech, gaze, arm gestures,
etc.

The target scenario is a neuropsychological interview with an elderly person. A corpus
recorded with a professional interviewer will serve as demonstration data.

1.3 Learning Methods

One of the most advantage of "semi-autonomous� robots is that they have the ability to
actively �learn� about themselves and their surrounding world, which heavily distinguishes
them from traditional computing technology [AS05].

One way in the direction of embodied cognition and socialization is to let robots train via
developmental learning: in a process similar to humans, the robot will improve its control
system through interaction over time, acquiring new skills through interaction with its envi-
ronment. This process is often ruled by a try-and-error policy, necessitating clear rewarding
procedures and pre-existing operation modules for decoding intentions of others.

Alternatively, SOMBRERO (described below) builds on immersive teleoperation and ex-
plores the possibility for robots to learn optimal cognitive and social behaviors via demonstra-
tions performed by humans.

1.3.1 Developmental Robotics

In the "developmental" approach, the robot learns by accumulating knowledge and skills
through self-experience. The aim of developmental robots is to allow robots to learn new
skills and new knowledge in life-long and open-ended interaction via autonomous exploration
of the world and social interactions with caregivers.

Mohammad et al [MN15] proposed an approach to endow social robots with interactive
skills through three stages:

interaction babbling the robot learns basic sensorimotor skills.

interaction structure learning the robot uses the learned basic skills to learn a hierarchy
of probabilistic/ dynamical systems.

interactive adaptation the robot engages in HRI to adapt the hierarchical model to di�er-
ent social situations and partners.

The term developmental refers here to these stages where the robot accumulates basic
skills by itself. Then, the basic skills are used to achieve the higher stages. This requires
actual engagement or motivation � also termed as �curiosity� in the literature � in interactions
to achieve any progress in learning.
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The key idea of the learning developmental robot lies on intrinsic motivation (IM) that
enables the robot for self-directed exploration, automatically learn features of environment for
its inherent satisfaction [OK09]. For example, Castro et al [CG+14] de�ned several motivations
for for a social robot (named Maggie) (e.g. energy is motivation of survival, loneliness is
motivation of social, etc.). Then the robot learned to decide which action is to deal with each
motivation (e.g. if the robot perceives low energy, the motivation of survival is augmented so
that the robot go to charge at a docking station; if there is a person are close to the robot,
social motivation is strengthen, then the robot tends to interact with the person). As an other
example, Breazeal et al [Bre04] built a robot head (named Kismet) aiming at developing social
intelligence by interacting with people as if they teach an infant. By providing Kismet with
a Theory of Mind and a synthetic nervous system, it pro-actively engages in social exchanges
with the caregiver and to acquire interesting and relevant information from the environment.

The concept of the developmental robotics is really di�cult to apply to professional skills,
especially for running multimodal interactions with humans since it requires a lot of motiva-
tions and social rewards that are di�cult to implement. Exposing people to true negatives
� i.e. failures of its social behaviors � is also illicit. Developmental robotics requires the
accumulation of many basic skills like a child before it can learn high-level skills.

Therefore, in order for a robot to perform professional interactive tasks (e.g. playing roles
of an neuro-psychologist interacting with Alzheimer patient described in the next chapter),
we study another approach � termed as Learning by Demonstration (described bellow) � to
endow our robot with multimodal socio-communicative behaviors.

1.3.2 Learning by Demonstration

Learning from demonstration (LfD) aims at enabling non-robotic experts to teach a robot new
skills without requiring professional robotic backgrounds. The demonstration can ensure that
the robot will directly learn and control actions via its sensori-motor abilities. Demonstrations
are often used to limits searching space of Reinforcement Learning [BG13].

There are various ways to train robots from demonstrations that could be classi�ed in low
vs. high level.

1.3.2.1 Demonstrating Low-level skills

Low-level learning refers to the terms of skill, motor skill, or primitive action. The goal of this
kind of learning is to build a library of primitive actions that could be used in some speci�c
tasks. For example Pastor et al [Pas+11] learn a PR2 robot to play with a pool stroke and
manipulate a box with chopsticks.

Learning robot motor skills could be done using supervised methods such as Neural
Networks, Hidden Markov Model or Gaussian Mixture Regression. For example, Asada et
al [Asa90] used a feed-forward neural network to map a measured force with a corrected tra-
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jectory. So�ane et al [Sof+14] also used a feed-forward neural network to enable a humanoid
robot learns di�erent postures by associating what it did with what it saw (the robot �rst
produced a random prede�ned posture, then see how a teacher mimics the posture). Rahma-
tizadeh et al [Rah+16] used Long-Short Term Memory (LSTM) layers combined with Mixture
Density Networks to train robot arm to pick and place boxes in a virtual environment. Fur-
thermore, there are several dynamic-based model methods are used. For example, Pastor et
al [Pas+11] proposed to use the Dynamic Movement Primitive (DMP) framework to generate
varieties of elementary movements while controlling via -points. The key idea of the DMP
method is based on the assumption that complex movements may be decomposed into a set
of primitive movements executed in sequence and/or in parallel. Motor skills also could be
learned by reinforcement learning (RL) combined with DMP. For example, Kormushev et
al [KCC10] developed a compact framework with two consecutive steps: (1) using DMP to
learn primitive actions, then, (2) using Reinforcement Learning to re�ne the coordination be-
tween the set of primitives. They succeed in performing Reaching and Pancake-Flipping tasks
with an 7-DOF arm robot [PS08].

1.3.2.2 Learning high-level behaviors - multimodal interactive behaviors

While learning low-level tasks focus on trajectories of primitive actions, the learning high-level
tasks concentrates on how to textbfalign/coordinate these actions to ful�ll an elaborated task.
Especially, in the context of social robots, learning high-level behaviors can be consider as
learning multimodal interactive behaviors � nonverbal behaviors such as arm gestures,
head movement, etc. that coordinate with speech activities � so that to conduct a successful
dialog.

Teaching robots such interactive behaviors is more complex than teaching them the low-
level skills (object related skills) because of the inherent ambiguity of the nonverbal be-
haviors, which depends on many factors such as the social context, cultural and personal
traits, etc. [MN15]. The social behaviors of robots here do not only refer to endogenous
actions/movements for achieving tasks but also to reactive behaviors when interacting with
humans.

1.3.2.3 Incremental vs. Batch Learning

Incremental learning is a process that enables a robot to learn when performing the task.

Most of on-line training methods teach robots with low-level skills. For example, Ribsky et
al [Ryb+07] alternates between dialogs and demonstrations for teaching robot to perform some
simple tasks like picking up a block. They train the robot in 2 phases: (1) LearnTask and (2)
FollowLearnTask. The �rst phase checks if the state of the environment is satisfactory. Then,
the second phase triggers the robot following human command. All of tasks and learning
methods are hand-coded by rules and encoded by a directed graphical model. Similarly,
Qureshi et al [Qur+16] used deep Q-learning to enable robot to learn social interaction skills
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by interacting directly with people rather than by imitating human partners.

Active learning is a speci�c type of incremental learning in which robots collect labels
during the learning process by generating actions that impose the learning performance. In
particular, the robot with active learning becomes more active to provide feedback to human
teacher. As an example, this method enables the robot to ask questions to the teacher in
order to obtain labels for unlabeled training data. As a result, the teacher could save time by
giving to the robot the most e�cient information.

In contrast, batch learning consists in providing all of training data at once and producing
models.

1.4 The SOMBRERO Framework

Our works focus on the development of sociocommunicative abilities of a SAR for short-
term interactions. In this section, we present the SOMBRERO framework which aims at
providing a humanoid robot with multimodal interactive behaviors � such as speech, gaze arm
gestures, etc. � in order to perform a neuropsychological test, demonstrated by professionals.

Figure 1.8 � Nina, the iCub2 humanoid robot with mouth and lips articulation which has been
used in this work.

In the SOMBRERO approach, learning framework is performed in three main steps il-
lustrated in Figure 1.9. Firstly, we collect representative interactive behaviors from human
tutors especially by professional coaches. Secondly, comprehensive models of interactive hu-
man behaviors are trained from the collected data with considering a priori knowledge of users'
models and task decomposition. Finally, gesture controllers are build in order to execute the
desired behaviors by the target robot.

We proposes two strategies to collect interactive data:
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Figure 1.9 � The three main steps of learning interaction by demonstration: collecting interac-
tive data, learning a behavioral model and building appropriate sensorimotor controllers. The
collection data could be drawn from HHI or HRI data. In our work, it is necessary to collect
HHI for designing HRI with immersive teleoperation as well as gesture controllers. HHI is also
used for designing baseline multimodal interactive behavioral models.

HHI Firstly, HHI data are collected to design robot actions. Based on the data, we analyze
and model primitive actions that robot is able to mimic. Here, the scenario can be
redesigned so that to overcome limitations of our humanoid robot (such as taking notes
on a paper notebook). At that time, gesture controllers are also built according to the
action requirements for the adapted scenario.

This �rst strategy is necessary for designing gesture controllers and the data could be
used to train multimodal interactive behavior models for the humanoid robot. However,
HHI data are not easily applicable to the robot because of its limited both perceptuo-
motor abilities compared with humans.

Beaming The second strategy consists in endowing humanoid robots with cognitive, emo-
tional and social skills via immersive teleoperation by human pilots. This technique
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called Beaming [Gui+15] allowing the human pilot to perceive, analyze and interact
with a remote environment through a robot embodiment. The work is based on a hy-
pothesis that the human operator will deal with both scaling and social problems by
optimally exploiting the robot's a�ordances. This is due to the fact that humans are
much better in performing social interactions than in engineering social models. Instead
of transferring Human-Human Interaction (HHI) to HRI by adapting these behaviors
to the robot, this strategy solve this problem by 2 steps: �rst using beaming tech-
nique to deal with technological, psychological and sociological constraints and then
using machine learning to model interactive behavioral model directly on the HRI data.
Therefore, by shaping pilots' perception and action skills through a robotic embodiment,
the framework provides a simple way to study the social acceptance and usage pro�les
of robots without autonomous reasoning, scene understanding and action planning. The
scaling actions from human-human interaction to human-robot interaction, therefore, is
implicitly solved.

This strategy, at least, guarantees that the robot actions could be performed. However, it
does not as certain that the perception modules can signi�cantly be transferred because
the perceptual limitation of the robot are not feedback to the pilot during HRI.

In order to solve this later problem, semi-autonomous shared control [YD02]; [CG02]
between the pilot and autonomous robot could be used. By enabling the pilot to control
part-by-part the robot while giving him/her the perceptional feedback that actually
follows the perception states of the robot, we can transfer smoothly both perception and
action from beaming control to the autonomous robot. With such semi-autonomous
robots, we can enable robot to learn incrementally behaviors.

1.5 Summary

In this chapter, we present motivation and application of SAR and the necessity to endow
humanoid robots with multimodal interactive behaviors. We present some approaches to learn
social behaviors for robots and why we choose Learning from Demonstration for some situated
professional interactions. We also brie�y introduce our SOMBRERO framework to collect
human-robot interaction data that could be used to train multimodal interactive models.

In the following chapter, we will present how we designed interaction scenarios studied in
our work and collect/process human-human interactive (HHI) data of these speci�c scenarios.





Chapter 2

Human-Human Interactive Data:

experimental design, acquisition,

annotation & characterization

Face-to-face communication is one of the most natural and e�ective form of human com-
munication. We use multiple modalities such as speech, body, head, arm movements, gaze
and make facial expression in communication with each other in daily life. As stated in the
previous chapter, we study in this thesis short-term task-oriented face-to-face interactions.
Furthermore, the tasks we have studied are designed so that to focus on low-level cognitive
resources such as mutual attention rather than high-level cognitive functions that involve rea-
soning or perspective-taking: the tasks are easily described as �nite-state automata, the roles
and objectives of each agent are clearly de�ned at the start of the interactions, etc. Tasks
are also quite repetitive, enabling us to implicitly control the statistical coverage of the free
parameters of the tasks such as locations of objects, task ordering, etc.

In our work, we processed data collected during two interaction scenarios, especially de-
signed to confront our modeling frameworks with particular challenges:

Put That There (PTT) is a collaborative game focusing on multimodal deixis. An elemen-
tary game last around 2/3 minutes: an instructor and a manipulator have to collaborate
in order to reproduce a given layout of cubes. The layout is only known to the instructor
while the manipulator can move and position the cubes. The task thus requires the coor-
dination of verbal and nonverbal deictic behaviors � such as head and gaze movements,
arm pointing, speech � in order to reach e�ective and e�cient collaboration with the
manipulator. If the instructions are clear and timely delivered, the manipulator's task is
rather straightforward and instructor's perception is mainly dedicated to the monitoring
of his/her moves for triggering the next instruction.

Free and Cued Reminding test (RL/RI) is a more complex collaborative interaction fo-
cusing on mutual attention and encouragement. This interaction scenario resumes
a neuro-psychological test used to assess episodic memory: the RL/RI test with 16
items [Lin+04] is an adpated version of the Free and Cued Selective Reminding Test [Bus84]
that professional psychologists use to evaluate the memory and diagnose some potential
loss of the episodic memory of patients. The interaction scenario requires the instructor

23
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� the psychologist � to be endowed with particular verbal and non-verbal behaviors for
maintaining engagement and encouraging the patients in word retrieval.

Figure 2.1 � Collect representative interactive behaviors from human coaches in HHI scenario

This chapter presents how these experiments have been designed to collect relevant HHI
signals (e.g. speech, gaze, arm of head motion, etc.) in both scenarios. The collection data
process is the initial (and crucial) step of the learning framework as shown in Figure 2.1.
The data should provide useful features for further training of the multimodal interactive
behavioral models (see chapter 3). Here, we are interesting in coordinating both mid-level
behaviors (abstract behaviors such as naming, arm pointing, �xating particular objects) and
low-level skills (raw signals such as trajectory of head movements). For mid-level behavioral
features, raw signals are processed (often via semi-automatic annotation) to get discrete events,
organized in multimodal scores. These HHI scores can be easily played back by our humanoid
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robot with few adaptations to emulate HRI (see chapter 3).

2.1 "Put That There" (PTT) data

2.1.1 Scenario

The PTT dataset1 has been collected by Mihoub et al [Mih+16]. This face-to-face interaction
involves an instructor and a manipulator who performed a collaborative task called �Put That
There�. The experimental setting is shown in Figure 2.3. In this scenario, the manipulator
should move cubes from a reservoir close to him to a central chessboard, following instructions
given by the instructor. The instructor is the only one to know the target arrangement of the
cubes, while the manipulator is the only one being able to move the cubes (see Figure 2.2).

Figure 2.2 � Table of "Put That There" scenario.

The initial arrangement of cubes in the reservoir and the set of moves for each game are
pre-computed so that deitic gestures are equally distributed among cubes and locations. These
pre-computed instructions are therefore given to the instructor on demand via a tablet placed
in front of the instructor and which screen is only visible to him/her: the instructor can browse
a .pdf �le that displays the elementary updates of the chessboard.

Therefore, this task requires the instructor and manipulator to cooperate: share knowledge
and coordinate their sensory-motor abilities. Each of the instructor/manipulator dyads per-
formed 10 games consisting in reproducing a target arrangement of ten out of sixteen cubes,
with an implicit control of the gaze and hand gestures thanks to the initial and �nal dispo-
sition of the cubes. This balanced statistical coverage of behaviors � via the pre-computing
instructions � provides an interesting benchmark to collect human strategies used to maintain

1http://www.gipsa-lab.fr/projet/SOMBRERO/data.html

http://www.gipsa-lab.fr/projet/SOMBRERO/data.html
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mutual attention and coordinate multimodal deixis (�nger pointing, head, gaze, etc.) towards
objects and locations.

Figure 2.3 � First-person view of the interaction captured from the instructor's head-mounted
scene camera. At a game onset, the cube reservoir close to the manipulator is full (16 cubes).
The instructor then asks the manipulator to put given cubes at certain places on the cen-
tral chessboard: at the center at game onset then left/right/on top/at the bottom of cubes
already moved. On the �gure, the current eye �xation (point of interest) is depicted by a
circle [Mih+16]. Note that the tablet on the left hand side of the instructor only timestamps
videos

2.1.2 Data Acquisition

HHI data will be used to analyze and train multimodal interactive behavioral models that
can generate actions of the instructor as well as to design primitive actions for the humanoid
robot. The models are then used to generate actions for the iCub humanoid robot which plays
the role of the instructor. Therefore, the collected data should include the multimodal score
of the instructor's actions, but the behaviors of the manipulator � the instructor's percepts �
should be extracted from the instructor's viewpoint.

The interactive data are collected by:

Motion capture A Qualysis R© Motion Capture system (MoCap) monitors motions of in-
structor's head and right arm (as illustrated in Figure 2.4). The instructor wore a
helmet, to which 5 re�ective markers are glued in order to capture head movements.
His/her arm gestures were detected by 5 other re�ective markers glued on his/here right
hand and index �ngers. The MoCap system consists of 4 infrared cameras facing the
instructor.

Eye camera A head-mounted monocular Pertech R© eyetracker includes: (1) a eye camera
providing gaze �xation data at 25Hz; and (2) a scene camera providing the corresponding
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point of interest in the scene for visual perception and annotation. This �rst-person view
provided by the scene camera is shown in Figure 2.3.

Microphone A head-mounted microphone used to record the instructor's speech.

Figure 2.4 � The instructor's head and right arm movements are monitored by the MoCap
system: red points cue positions of the re�ective markers. The instructor browses instructions
on the tablet �gured by a mauve rectangle placed in front of him.

The observations also include the three continuous motions of the instructor's head (converted
to Euler angles: pitch (H1), roll (H2), and yaw (H3)) automatically delivered by the mocap
system.

Those data will be used as ground truth for modeling interactive models that generate gaze,
head motions and hand movements of the instructor given his speech and hand movements of
the manipulator.

2.1.3 Data Annotation

The data here include 30 games performed by one instructor and played with 3 di�erent part-
ners. For each game, the dyad has to replicate an arrangement of 10 cubes on the chessboard
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from an initial random layout in the reservoir. The mean duration of a game is around 80
seconds. The total duration of recorded interactive data is about 30 minutes.

All raw streams are re-sampled at 25Hz. Additional annotations were performed using
Elan [HU04] and Praat [Boe+02]. The �nal observations consist of 5 streams of discrete
variables:

Instructor's speech (SP) Audio signals collected by the head mounted microphone are �rst
aligned with text. This �rst alignement is hand-corrected (hesitations, false-starts if any
are then added). Speech of the instructor is further segmented into 6 parts-of-speech:
manipulated cube, reference cube, relative positioning, else, none.

Instructor's arm gesture (GT) The instructor right arm movements are segmented semi-
automatically by detecting strokes and labelled in accordance with speech annotation
as shown in Figure 2.5. In fact, the maximum velocity at each movement onset is often
aligned with the corresponding onset of part-of-speech. There are 5 regions of interest
pointed by the instructor's index: manipulated cube, target location, reference cube, rest
or none

Instructor's gaze (FX) The region of interest �xated by the instructor's gaze provided by
the head mounted eye camera are labelled with 7 values: manipulator's face, reservoir,
task space, manipulated cube, target location, reference cube, tablet, else.

Manipulator's arm gestures(MP) Manipulator's arm gestures are manually annotation
from the scene videos with 5 values: rest, grasp, manipulate, put, none

Interaction Units (IU) Each game is further segmented into interaction units � that could
be also termed as elementary skills or sub-tasks � describing the sequential organization
of a repetitive elementary interaction. Interaction Units are distinguished between 6
di�erent values mirroring the activities of the instructor: get instruction from tablet,
seek the cube to be manipulated, point the cube, indicate target position of the cube, check
the manipulation and validate the result. These IU pace the activities of both agents
that are characterized by the about observations.

The challenge is to predict the instructor's co-verbal gestures GT and FX given his verbal
activity (SP) and the interlocutor's gestures (MP). The behavioral models (proposed in chapter
3) should thus generate endogenous co-verbal behaviors from endogenous verbal behaviors
and exogenous percepts. These models should capture the co-correlation between all of the
modalities some of them are both intra-coordination (the relation of modalities that insides
the instructor: for example, his gaze (FX) looking the cube, then his arm's pointing gestures
(GT) to the cube, and his speech indicates the cube) and inter-coordination (the relation
between the instructor's modalities and manipulator's modalities: for example, the gaze of
instructors should be driven by arm movements of manipulator to verify the position of target
cube). The interactive data should provide rich information of the micro-coordinations (in
both intra vs. inter) among the modalities so that the interactive models can captures the
coordinations.
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Figure 2.5 � Semi-automatic segmentation of arm movements according to speech and target
of the pointing gesture (computed as the intersection (crosses) of the direction of the extended
index (lines connecting the 5 landmarks of the hand) with the workbench. The instructor sits
at the bottom.

2.1.4 Comments

If onsets of hand gesture are often synchronized with speech onsets of referred locations, we
found that speech o�sets are �waiting� for the gesture to be performed (see �gure 2.5). In
many cases, the speech is pausing in order for the gaze to �nd the location the instructor has in
mind and to accomplish the deictic gesture. Speech production � waiting for current co-verbal
action to end or next co-verbal action to be planned � is delayed via di�erent strategies: �nal
syllabic lengthening, pausing as well as the production of hesitation ("euh"). These startegies
are co-occuring in case of large waiting time (see �gure 2.6).

This means the speech, arm movements and gaze are interdependent with each other: while
speech often orchestrate co-verbal behaviors, these behaviors � that can be slower than speech
articulation because of inertia or cognitive constraints � can in turn in�uence speech produc-
tion. This complex relationships of the modalities is a big challenge of building incremental

multimodal behavioral models.
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Figure 2.6 � Speech production waiting for arm movement planning: the last syllable of
instructor's parts-of-speech cueing cubes or locations is often lengthened in order to wait for
current co-verbal action to end or next co-verbal action to be planned. This waiting time is
performed via di�erent strategies: �nal syllabic lengthening (blue), pausing (yellow) as well
as the production of hesitation ("euh" in cyan).

2.2 Selective Reminding Test data (RL/RI)

2.2.1 Scenario

The second task that our robot will be involved in is acting like a neuro-psychologist that
interacts with elderly people for performing a memory test. This short-term interactive sce-
nario is a French adaptation of the Selective Reminding Test, so-called RL/RI 16 (rappel
libre/rappel indicé, avec 16 mots) [Dio+15]. It is often used to diagnose early loss of episodic
memory. The test includes four phases:

Learning The subject is instructed to memorize a set of 16 words (e.g. apple) at the
same time as their semantic categories (e.g. fruit) (aka learning). The words are learned
4 by 4.
Testing The interviewer tests the recall capability of the subject by asking him/her to
spell out as many words as possible either freely or with the hint of their categories.
Recognition Subjects are asked to recognize the learned words amongst a list with
outliers
Distractive task Cognitive load is increased by asking the subject to periodically per-
form a distractive task (such as reverse counting).

In the Learning phase, the subject learns 16 words, four by four. This phase consists of 2
tasks:

Identi�cation (the interviewer shows each time 4 items and asks the subject to speak
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out loud the items corresponding to the requested categories)
Immediate recall (after the 4 items are identi�ed, the interviewer hides all items and
asks the subject to spell out those items again; if a item is missing, the interview will
hint by giving its category).

The Test phase includes three successive recall tasks separated by a distractive task (reverse
counting). Each test consists of a free recall (the subject freely recalls as many items as
possible) followed by an indexed-by-category recall (missing items will be recalled by cueing
their distinctive categories, such as furniture, fruit etc).

The �nal Recognition phase is a recognition task in which the subject should identify the
16 learned items spoiled by 32 distractors (16 words with the same semantic categories and
16 words of di�erent semantic categories). The interviewer reports answers on a score sheet.

Figure 2.7 � Capturing the multimodal behavior of the human tutor during HHI. Movements
of the upper limbs (head, arms and hands) are monitored by tracking 22 markers glued on
these segments with a Qualysis R© mocap system. Gaze was tracked using a Pertech R© head-
mounted eye tracker.

2.2.2 Data Acquisition

Interactive data of this scenario were collected by Bailly et al [Bai+16]. The interviews were
conducted by one unique interviewer � so that subject-adaptive behavior remains consistent
across multiple interactions with 5 di�erent subjects. Because the interactive data will serve as
demonstration for our iCub humanoid robot, therefore, most of the signals are captured from
the interviewer's perspective and there are thus no invasive sensors placed on the subjects.

The experiment setup was almost similar with collecting interactive data in the Put That
There scenario. We are interested in the multiple modalities of interactions including head
motion, arm movements, gaze, and speech. The motion of 25 re�ective markers glued on the
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plexus, shoulders, head, arms, indexes and thumbs of the professional interviewer was moni-
tored thanks to a Qualysis R© system with 4 cameras. The interviewer also wore a Pertech R©
head-mounted monocular eye tracker that monitors her gaze (see Figure 2.7). Speech data
were captured via OKMII high-quality ear microphones and are recorded synchronously with
a side-view video by an HD camera (see Figure 2.7).

2.2.3 Annotation

HHI demonstrations were performed by a female professional psychologist (the robot's teacher),
whose behaviors our robot will imitate. We collected her multimodal behavior (speech, head
movement, arm gestures and gaze, see �gure 2.7) when interviewing �ve di�erent elderly
patients as well as the speech of the interviewees. These continuous signals were then semi-
automatically converted into time-stamped events using Elan [Wit+06] and Praat [Boe+02]
editors.

With Elan (shown in Figure 2.8), we basically determined hand strokes triggered by the
interviewer to grasp and act on resources (workbook, notebook, chronometer) and regions of
interest for �xations. With Praat, we hand-checked the phonetic alignment performed by an
automatic speech recognition system and added prosodic annotations as well as special pho-
netic events related to backchannels and breath noises. Some values of each labeled modalities
are shown in Table 2.1.

Table 2.1 � Semi-active labeling discrete events

Modalities Values

Gaze target subject face, book items (subject tablet)
and score sheet (interview tablet)

Arm gesture preparing scoring, scoring, showing/hiding items, rest
Speech turns, words, sentences
Task execution sub-tasks such as item identi�cation,

immediate recall, counting, free recall,etc.
Backchannel yes, no
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Figure 2.8 � Semi-automatically annotated data with Elan software.

This HHI multimodal data thus consists in time-stamped phones, head/arm/hand gestures
and gaze events. We then developed modality-speci�c gesture controllers to map these events
to robotic actions that a human observer could perceive with the correct semantics. HHI to
HRI re-targeting is thus performed using multimodal events as pivots.

Figure 2.9 � Number of occurrences of the 34 di�erent lexical markers used by the interviewer
to encourage the subjects [Bai+16]. This distribution is dominated by 5 items: oui, très bien,
humm humm, d'accord, humm.



34 Chapter 2. Human-Human Interactive Data

2.2.4 Comments

In this scenario, Bailly et al [Bai+16] quanti�ed speci�cally backchannels such as assessment,
incentive, closure of sub-task, optional reply and con�rmation. Interactive speech is in fact
characterized by a larger number of backchannels such as oui, très bien, humm humm, d'accord,
humm. The interviewer produced around 500 backchannels in the corpus (see Figure 2.9).
These backchannels ful�ll di�erent functions such as assessing or encouraging interlocutor's
delivery of information, replying to doubts, etc. Their lexical contents and prosodic patterns
are very important for encouraging cognitive activity. The choice of words and prosodic
patterns in fact strongly determine the function of these backchannels.

Figure 2.10 � Timing of ends (blue) and beginnings (rose) of interlocutors' speeches surround-
ing backchannels. The thick vertical bars align all verbal activities to the onsets and o�sets
of the backchannels (the distance between them is arbitrary and does not re�ect the average
duration of backchannels). The majority of backchannels are triggered immediately at the end
of interlocutors' speeches.

Moreover the majority of these backchannels are timely produced just after one interlocu-
tor's spurt (see Figure 2.10) so that to minimally interrupt his/her turn. In order to generate
backchannels, incremental interactive models should mainly spot items in the subject's speech
in order to instantaneously trigger scoring and interviewer's feedbacks.

2.3 Conclusion and Discussion

In this chapter, we illustrated how our SAR behaviors modeling and evaluation objectives
constrained our data acquisition and annotation task, with the example of the two scenarios
in which our robot will be involved. The �rst scenario is a collaborative task - Put That There
(PTT) scenario where the robot will become an instructor to collaborate with an human
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manipulator by giving him/her guidance to move cubes from a reservoir to a chessboard
between the human and the robot. In the second scenario, the robot will play the role of
a neuro-psychologist to interact with elderly people in a memory test - Selective Reminding

Tests (RL/RI) scenario. In both scenarios, the robot is expected to generate multimodal
interactive behaviors that smoothly engage human subjects. In the PTT scenario, in order
to reach e�ective collaboration with human partner, the task requires the robot to perform
precise coordinations of verbal and nonverbal behaviors such as head and gaze movements
for joint attention with the manipulator, arm pointing to the cube, etc. That way, if the
manipulator cannot capture the instruction from the robot speech (due to the quality of
the speech synthesis system), the partner would still be able to �nish the task by infering
information from other nonverbal behaviors such as gaze, pointing gestures, etc. In the RL/RI
scenario, when interacting with elderly person, the robot has to generate high co-occurrences
of verbal behaviors with non-verbal behaviors. The task requires the robot interviewer to
perform the professional skills exhibited by the psychologist such as engagement, incentive,
politeness, etc. in order to encourage the patient trying his/her best to recall learned items
(e.g. a lot of backchannels should be used to respond and reward the subject's answers).

In this chapter, we also present how to collect data from human-human interaction and
and how to convert the data to useful features that are used in further steps of the learning
framework. The features can be used to train the multimodal interactive behaviors for the
robot (in chapter 3) as well as to design gesture controllers (in chapter 4) and the speech
synthesizer for the robot. In the learning framework, we are interested in modeling multimodal
interactive behavioral models at both low- (trajectory of movement) and mid-level (discrete
events) that could be used to drive the gesture controllers.

In order to improve HRI quality, the robot should adapt its behaviors to the pro�le of
the current subject, in particular his/her cognitive abilities and physiological capabilities.
Therefore, a large set of interactive HHI data should be collected to uncover the impact of
these factors as well as social factors such as gender, culture, etc. We then have to �nd ways to
bias interactive behavioral models with parameters related to these style features (see current
proposals made in the domain of speech synthesis by [Wan+18]) and incrementally estimate
these parameters as the interaction unfolds (see the concept of gesture follower proposed by
Bevilacqua et al [Bev+09]).

Using the large set of HHI data to run HRI also faces the challenge of scaling behaviors
from human demonstrators to the robot that has di�erent perception and action abilities. In
order to solve a part of this problem, we will further discuss how to collect interactive data by
an immersive tele-operation system that enables robot-mediated HHI interaction. Chapter 5
will detail the immersive teleoperation system that is now used in the lab to collect interactive
data that is more compatible with the robot's sensorimotor abilities. We believe that this
embodiment technique will provide robots with faithful and rich data, as needed in a machine
learning framework, with the additional bene�t of easing the semi-automatic data annotation.





Chapter 3

Multimodal Interactive Behavioral

Models

Human interaction takes place via multimodal behaviors. We use speech, gaze and facial
expression as well as head, arm and body movements for communicating with each other
in daily life. The purpose of this interaction is not only to transfer task-related speci�c
information in a particular goal [Thó99] but also overt (visible external behaviors, e.g. arm
gestures, head motions) and covert mental (internal states, e.g. taking-turn, giving-turn)
and physiological states. In order for humans to communicate �uently, many tasks such as
speech and scene understanding, dialogue planning, turn-taking, gaze control, arm gestures,
etc. should be processed and controlled in parallel. Elementary end actions such as gazing
to an agent, nodding or pointing to an object should be coordinated with each other because
they often jointly contribute to the encoding of a unique task, such as trying to get the
turn [CCD00] � e.g. via gazing, nodding and backchanneling � or attracting attention of the
conversational partner to a speci�c region of interest of the joint space � e.g. via gazing,
hand pointing and naming. This multimodal coordination is really important to maintain the
conversation. While the�GO� signals of these elementary behaviors are certainly triggered by
elementary tasks, speech activity is often used as a baseline timer to which all other modalities
coordinate [CCD00].

Note that the multimodal interactive models not only have to capture the coordination
pattern between the modalities for a given agent but also inter-personal coordination (relation-
ship between modalities of the human and those of his/her partner). Modeling human-human
interactions are in fact complex tasks, because HHI is endowed with multiple modalities that
are paced by multi-level perception-action loops [BER08]. An interactive conversation be-
tween humans is paced by hierarchical components which have timing relations to each other
as shown in Figure 3.1. Particularly, the conversation can be decomposed into turns (1-30 sec)
and each turns into multimodal actions, each multimodal action driving motor movements,
such as pointing or backchannelling (100-300 msec).

Humans tend to apply social models when interacting with social robots [BSS11] and even
apply their social norms (e.g. culture) to decide how to interact with humanoid robots [Hay+07].
In order to achieve e�ective and natural interaction with humans, ideally, humanoid robots
need to perceive, understand and generate interactive multimodal behaviors in order to set
the mutual interactive ground that enables the development of the many cognitive and social

37
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Figure 3.1 � Face-to-face interaction within the time scale of human actions [Thó99]

bounds between rational and emotional agents (see Figure 3.1). Conversational skill is one of
the main objectives of our learning framework displayed in Figure 3.2.

Interactive behavioral models are typically built using rule-based methods or statistical
approaches such as Hidden Markov Model (HMM), Dynamic Bayesian Network (DBN), etc.
In this chapter, we present interactive behavioral models based on recurrent neural networks,
namely Long-Short Term Memory (LSTM). We are interested in generating both abstract-level
(�GO� signals for elementary movements) and skill-level (trajectory of motions) behaviors:

abstract-level behaviors The behavioral model here triggers elementary actions such as the
activation of an eye saccade, a pointing gesture or a back-channel given actions of others
and an internal estimation of the state of the conversation. Speech, gaze and gestures
of the two subjects involved in the PTT task are here modeled jointly. The results show
that the proposed LSTM networks are more e�ective than the conventional statistical
methods in generating appropriate overt actions. We also applied these methods to
generate backchannels in the RL/RI task.

skill-level behaviors The behavioral model here maps directly perception to gesture with-
out considering intermediate representations/actions. We generate head motions of the
instructor in the PTT task with a cascaded LSTM architecture. This solution can cap-
ture the coordination between head motions and the others better than a baseline LSTM
model.
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Figure 3.2 � SOMBRERO learning framework: Modeling multimodal interactive behavioral
models

3.1 State of the art: modeling multimodal interactive behaviors

This section overviews current approaches for modeling multimodal interactive behaviors.
There are classically two main approaches to this challenging issue: rule-based vs. machine
learning methods.

3.1.1 Rule-based methods

In rule-based methods, researchers �rst analyze the recordings of human interactions and try to
semi-automatically �nd lawful patterns in multimodal streams. Computational frameworks
are then proposed to operationalize those �ndings. Such systems usually incorporate set
of rules that map perceptual cues to multimodal actions via an intermediate estimation of
communicative intentions.
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We presents here several examples of rule-based interactive systems.

The BEAT system [CVB01] is quite emblematic of what was developed in the late 90s. It
basically augments textual dialog with nonverbal behaviors by enriching the linguistic struc-
ture with language tags such as rheme/theme contrasts, objects and actions. The BEAT
system extracts linguistic and contextual information from raw input text to control the
movements of arms, hands, and face of an avatar as well as the intonation of its voice. A set
of rules derived from nonverbal conversational behavior research was used. For example, rules
used to control gaze are: "For each THEME: If at beginning of utterance or 70 percents of
the time, suggest gazing away from user"; or " For each RHEME: If at end of utterance or 73
percents of the time, suggest gazing towards the user".

Figure 3.3 � The three stages of SAIBA and the two mediating languages: FML (function
markup language) and BML (behaviour markup language). The �gure is reproduced from
[Kop+06]

Figure 3.4 � An example of a BML block [Kop+06]

A framework for real-time generating multimodal behaviors is SAIBA (Situation Agent
Intention Behavior Animation) [Kop+06]. The framework includes three successive stages:
(1) planning communicative intent, (2) planning multimodal realization of the intent, and (3)
realization of the planned behaviors as shown in Figure 3.3. There are two mediating XML
based languages between the stages: Functional Markup Language (FML) that describes
intentions and Behavior Markup Language (BML) that describes nonverbal/verbal behaviors
and should be realized by an animated agent. Mutimodal behaviors such as speech, gesture,
gaze, body movement, head motion are coordinated in a BML block, which consists of rules.
Each behavior is split into six phases which is bound by two of seven sync-points: start, ready,
stroke-start, stroke-end, relax and end. Behaviors are coordinated by assigning a sync-point
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of one behavior to a sync-point of another. Figure 3.4 illustrates an example of a BML block.
In this example, a speech tab de�nes a sentence �This is an example", which is spoken by a
text-to-speech system. Head nodding is aligned with the speech's start sync-point; and arm
gesture is trigged by a wb3 event which is a new sync-point de�ned in the speech tab. Based
on the SAIBA, Lee and Marsella [LM06] built a Nonverbal Behavior Generator system to
generate behaviors according to communicative functions. The system generates nonverbal
behaviors such as head movements, facial expressions and body gesture by analyzing syntactic
and semantic structure of input text. Particularly, the nonverbal behaviors are assigned with
some speci�c words, phrase or speech acts by rules derived from analyzing a number of video
clips.

Thorisson [Thó02] proposed an event-based language where a �nite state machine (FSM)
describes an interaction scenario as a series of states with pre-conditions and post-actions struc-
tured in three hierarchical layers (reactive, process and content). They built a dialogue model,
namely Ymir, which was used to drive a virtual agent named Gandalf in task-oriented dia-
logues. The architecture includes several modules: perception, decision, as well as knowledge
and action scheduler. The perception modules include two types: (1) Unimodal Perceptors
that detect important events of single modalities such as prosodic, speech, positional, direc-
tional and then (2) Multimodal Integrators that collect all the information from the unimodal
ones to come up with a more comprehensive description of user's behavior. The perceptual
modules receive and prepare input data to be used as the basis for decisions to act. The
knowledge base of the system contains any knowledge that have to do with dialog such as par-
ticipants, their body parts, etc. The decision modules decide to read mental and world states
from perceptive modules and other information from knowledge base module and decide what
will be acted. Most of the perceptual and decision modules produce Boolean output (on/o�)
with the intent to help building larger systems. The decision modules are based on rules
and send behavior requests to action modules when preconditions are satis�ed and following
top-down priority levels: reactive layer (highest), process control layer and content layer. The
action modules will manage the behavior requests and execute the behaviors following an
any-time algorithm [Dea87] (managing life-span, when activating, deactivating action, etc.).

As another example of rule-based model, Kanda et al [Kan+02] built a tool named Episode

Editor. The tool is used to drive behaviors of a humanoid robot (a Robovie robot) by building
situated modules which are orchestrated by episode rules. A situated module realizes an
action�reaction pair as an interactive and reactive behavior between human and robot in a
particular situation. Each situated module (shown in Figure 3.5.a) includes three parts: pre-
condition, indication and recognition, which is used to perform certain interactive behaviors
such as shaking hands, greeting people, guiding visitors, etc. The pre-condition part veri�es
if the situated module can be executed or not. Then, if the pre-condition is satis�ed, the
indication part will generate the robot's action (utterance/ gestures), for example, "lets wave
right hand to greet people". After that, the recognition part checks the expected human
reaction with regards to the robot's actions generated by the indication so that a human pilot
can trigger the most suitable action of the robot. The situated module could be executed
consecutively and controlled by episode rules to establish a sequence of situated modules
(robot's behaviors) shown in Figure 3.5 (b). One disadvantage of situated modules is their
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(a) Situated module

(b) Sequence of situated module controlled by episode rules

Figure 3.5 � Situated modules controlled by episode rules [Kan+02]

limited ability to perform multiple tasks at the same time as well as monitoring complex
sequences.

While being quite e�cient and easy to deploy for speci�c interactive tasks, hand-crafted
rules have di�culty in taking into account the many factors conditioning the multimodal
behaviors (task, personality, social context, emotion, gender, etc.) while maintaining a �ne-
grained life-like variability.

Another popular approach is based on machine learning techniques which try to �nd
behavior regularities and possibly some of its variability directly from data.
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3.1.2 Machine learning methods

The non-verbal behaviors depend on many factors such as gender, cultural, personalities,
etc. For example, cultural norms decide for how long or when and in what situations it is
appropriate to gaze into another person's eyes. They also exhibit quite some variability, that
systematic rules cannot capture. Therefore, with rule-based methods, the implementation
of these complex pre-conditions and conditioning variables will be really expensive and time-
consuming or just impossible. So, to avoid these di�culties, we need other approaches to more
automatically �nding useful rules instead of hand-crafted rules. Fortunately, because overt
nonverbal behaviors are inherently observable, therefore, supervised machine learning method
can be used to train models of communication that can generate robot adequate behaviors.
Recently, researchers have begun to study robot behavior models by applying machine learning
methods.

As an example, Huang et al [HM14] proposed a learning-based approach using DBN to
model human multimodal interactive behaviors � i.e. speech, gaze, and hand gestures � during
narration and used this model to generate the multimodal behaviors of a humanoid robot.
They de�ned four streams of observations: a cognitive process (C) that rules how humans
coordinate their multimodal behaviors (speech, gaze, gestures). They also assumed that speech
(S) further in�uences gestures (Ge) and gaze (Ga). These causal relations are illustrated
in Figure 3.6. Otsuka et al [OSY07] also proposed Dynamic Bayesian Networks (DBN) to
estimate addressing and turn taking (�who responds to whom and when?�) while using the
conversational regime as a latent variable. Similarly, Mihoub et al [MBW15] introduced so-
called interaction units � that could be considered as elementary skills or sub-tasks � using
Hidden Markov Models (HMM) to generate the gaze of an interlocutor given his own speech
activity and the gaze and speech activity of his partner. Then, they improve the model with
semi-HMM, which further constrains durations of hidden states. Mihoub et al [Mih+16] then
showed that DBN outperform both full- and semi-HMM in predicting co-verbal behaviors in
the �Put That There� game.

Actually, few works have been devoted to the modeling of joint behaviors while incred-
ible amount of research have been successfully dealing with recognition of human activities
from multimodal behaviors [VNK15]; [Liu+17] and as well as generation of robot behaviors
[Nod+14]; [Vog+14].

3.2 Recurrent Neural Network - Long-Short Term Memory

Recently, Deep Neural Networks (DNN) learning gained much success in image processing,
speech recognition and speech generation. However, there are few applications of that tech-
nique to build models for interactive behaviors. In our work, we applied DNN to incremental
sequence-to-sequence mapping where each input frame of perception streams will produce one
output frame of action streams.In particular, Long Short Term Memory, a popular method
in sequential modeling to generate multimodal interactive behavior such as gaze, arm, head
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Figure 3.6 � A multimodal interactive behavioral modal using DBN for a humanoid robot in
a narration task [HM14]).

movements and backchannels.

3.2.1 Recurrent neural networks

3.2.1.1 Simple Recurrent Neural Network

Recently, recurrent neural networks (RNN) have been applied to sequential data due to its
ability to use past information which has been getting through.

Figure 3.7 � Unfold RNN
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The schematic model of a RNN is shown in Figure 3.7, that unfolds the sequential process-
ing into a full network. xt is input vector of the model at time step t; st gathers the hidden
states at time step t and could be understood as memory of the network. The hidden state
at time step t is calculated based on the current input step xt and the previous hidden state
ht−1, so that it can capture information of all sequence in previous steps, following Eq. 3.1.

st = f(U · xt +W · st−1) (3.1)

where, f is a linear or nonlinear (sigmoid, RELU, atan, etc.) activation function.

The output of the network at time step t is ot calculated from the hidden state st by this
equation: ot = softmax(V · st). U, V,W are parameters of the networks which should be
learned during the training step. Unlike time-delayed neural network, U, V,W are kept the
same across time so that the number of parameters of the RNN could be signi�cantly reduced.
Also, because of the constraint, the RNN could be expected to ovoid over-�tting.

Ideally, the RNN can model in long-term dependency between hidden states. However,
standard RNNs have di�culty in capturing long-term dependencies because of the vanishing
problem of �xed feedback i.e. the convergence of geometric series. The vanishing problem
occurs during training the neural network using the Back Propagation Through Time (BPTT)
method [Wer90]. To look in more detail the vanishing problem, let us calculate the derivative
of loss function at time step t = 3 with W , which is following chain-rules and illustrated
following equation

∂E3

∂W
=

3∑
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∂E3

∂o3

∂o3
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∂s3
∂sk

∂sk
∂sW

(3.2)

Because W is used in every step from t = 0 to the end of the sequence, back propagation is
performed from the current time step t through network all the way to t = 0 as illustrated
in Figure 3.8. Because each neurons have bounded activations in range of (0,1), the multipli-
cations make the gradient values shrinking exponentially. That means the gradient of a time
step far from current one become zero and does no contribute to the processing of the current
step. Therefore, the RNN cannot learn long-term dependencies. RNN with gate mechanisms
� such as Long-Short Term Memory (described bellow), Gated Recurrent Units (GRU) � have
been proposed to solve this vanishing problem.

3.2.1.2 Long-Short Term Memory

Long-short term memory (LSTM) RNN is able to prevent the vanishing problem by adding
binary gates to each neuron. These gates determine whether each memory cell should process
the available input, use feedback or deliver output (see Figure 3.9 ). Figure 3.10 illustrates
the LSTM unroll in time steps: �o� means the gate is opened � i.e. allows information to pass
through the gate � while sign �-� means that the memory cell is closed � preventing information
running through. Because the cell is able to close its input gate and thus disable writing to
the cell, it may prevent any changes if the cell activity remains unmodi�ed over many time
steps, so that longer term dependencies can be learned and preserved.
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Figure 3.8 � RNN vanishing problem [Den]

The following sets of equations [HS97] illustrate the forward pass of a LSTM block that
computes output activations ht from input activations xt given the previous internal states
ct−1 of the units as follows:

ft = σg(Wf .xt + Uf .ht−1 + bf ) (3.3a)

it = σg(Wi.xt + Ui.ht−1 + bi) (3.3b)

ot = σg(Wo.xt + Uo.ht−1 + bo) (3.3c)

ct = ft ◦ ct−1 + it ◦ σc(Wc.xt + Uc.ht−1 + bc) (3.3d)

ht = ot ◦ σh(ct) (3.3e)

,where ft, it, ot are respectively forget, input and output gates; ct cell states and ht output
of the LSTM block; σg, σc and σh typically are sigmoid, hyperbolic tangent vs. hyperbolic
tangent functions.

The architecture shown in Figure 3.11 features a bidirectional recurrent neural network
(BiRNN). It consists in combining the processing of the same data sequence in both forward
and backward direction performed by two distinct RNN. Their two output layers are then
connected to one additional layer that combines the outputs once the whole sequence has
been processed. BiRNN has improved the performance in many sequence learning tasks,
where the result can be postponed at the end of the sequence [BS14] [GJM13].

3.2.2 Application of RNNs in human interactions

Recently, Recurrent Neural Networks (RNN) have been shown to outperform statistical mod-
els in sequence recognition. Gated recurrent units (GRUs) and Long-Short Term Memory
(LSTM) cells have been introduced to cope with long-term temporal dependencies. Because
of their ability to modulate between short- and long-term dependencies, they are particu-
larly suited for building latent spaces that mediates input-to-output co-variations. Therefore,
LSTM becomes state of art of many applications related to sequential data such as statisti-
cal language modeling [DMBM15], machine translation [SVL14], and generation of captions
from an image or a video [KFF15], etc. Another advantage of LSTM is that it can learn
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Figure 3.9 � The LSTM unit is a memory block that can be updated, erased or read out
according its internal activation ct and the current input xt.

Figure 3.10 � LSTM unroll.

timing intervals between sub-patterns in sequences [GSS02]. Such coordination patterns are
particularly crucial to multimodal behaviors such as those involved in natural human-robot
interaction.

Most of LSTM-based models have been proposed so far for the recognition of human
activities. For example, Ordóñez et al combined Convolution Neural Network (CNN) with
LSTM to build a DeepConvLSTM framework which is able to recognize human activities
from wearable sensors with minimal pre-preprocessing [OR16]. Furthermore, Tsironi et al also
build a CNN-LSTM to learn gestures which have varying duration and complexity [TBW16].
Tian et al [TML15] performed successful emotional recognition in spontaneous dialogs with
LSTM.

Fewer works have been devoted to the prediction or generation of interactive behaviors.
Alahi et al [Ala+16] used LSTM with social pooling of hidden states which combines the infor-
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Figure 3.11 � Bi-directional RNN

mation from all neighboring states to predict human trajectories in crowded space. Ravichan-
dar et al [Rav+16] built a promising model of sequential tasks using LSTM in order for a
robot to predict what human will do next. LSTM-based conversation models [JH16] have
also recently proposed to predict turns in two-party conversations. Schydlo et al [Sch+18]
used LSTMs to predict of human intent (multiple and variable length actions) from body pose
and gaze cues.

Because of ability to capture long-term dependency of latent variables, we propose to
use based on Long-Short Term Memory (LSTM) to model multimodal interactive behavioral
models. In the following sections, we present how to build and evaluate the multimodal
interactive models to generate discrete variables (gaze, arm, backchannel) and continuous
variables (head motions).

3.3 Generating discrete events: Arm and Gaze

In this section, we present multimodal interactive behavioral models using Long-Short Term
Memory (LSTM) and Bidirectional LSTM (BiLSTM), that predict gaze and arm gestures in
the Put That There task. We compare both accuracy and coordination of prediction from our
models with those of other methods (using HMM, DBN) proposed by Mihoub et al [MBW15];
[Mih+16] on the same dataset. We tested two versions of each model:

o�-line models that perform estimations once the whole sequence has been observe

on-line models that perform estimations incrementally at each time frame.
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3.3.1 Modeling techniques

3.3.1.1 Hidden Markov Models

A multimodal interactive model based on HMM was proposed in [MBW15]. In this model,
each interactive unit (IU) is modeled by one Discrete Hidden Markov Model (DHMM) that
models joint multimodal sensorimotor behaviors via its hidden states. Eq. 3.10 de�nes the
parameters of the DHMM models

λp = (Ap, Bp, πp) (3.4)

where p = 1..P is the index of each interaction unit (the number of DHMMs P equals to 6 for
the PTT game).

Op = (opt )t=1..T = (SPt,MPt)t=1..T (3.5a)

Oa = (oat )t=1..T = (GTt, FXt)t=1..T (3.5b)

O = (ot)t=1..T = (opt , o
a
t )t=1..T = (SPt,MPt, GTt, FXt)t=1..T (3.5c)

The observation vectors � T is length of the observation sequence � are separated in two
parts: the perceptual streams and the action streams illustrated in Eq. 3.11.

Each DHMM can be trained using Expectation and Maximization (EM) algorithm. The
DHMMs were trained with joint streams aligned by IUs. Global transition probabilities be-
tween the DHMMs were calculated by a bi-gram model. At training stage, all data streams
are available, while in testing only the endogenous verbal stream and exogenous observations
are available as shown in Figure 3.12a. After training, two sub-models (a hidden state decoder
and an action generator) are thus extracted and used in two steps as shown in Figure 3.12b.
Firstly, the hidden state decoder estimates sensorimotor states from perceptual observations
only shown in Eq. 3.6. The decoding of sensorimotor state sequence is performed o�ine by
Viterbi alignment and online by a bounded Short-Time Viterbi algorithm with no lookahead.

S? = argmax
S

P
(
S|OP , λ

)
(3.6)

where S is the sequence of states, S? is the optimized sequence estimated from the Viterbi
algorithms.

Next, the action generator determines actions from these estimated states as shown in Eq.
3.7.

OA = argmax
S

P (Oa|S?, λ) (3.7)

where, OA is the stream of actions generated by the generation model.
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(a) Training with joint perception and action streams

(b) Estimating hidden states from perception stream and then
generating action stream

Figure 3.12 � Schematic of HMM-based multimodal interactive modeling: (a) training (b)
generating. Emission is drawn in cyan color and transition probabilities in single DHMM and
global HMM are draw in gray and black arrowed lines respectively
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The HMM model was implemented with 5 hidden units for each single DHMM using
PMTK3 toolkit of Matlab [DM12]. Mihoub et al [MBW15] showed that the results were not
improved by using 6 or 7 unit states.

3.3.1.2 Dynamic Bayesian networks

A Dynamic Bayesian network (DBN) is a Bayesian network (BN) with variables linked by
temporal dependencies. The network is a probabilistic graphical model that features the
probabilistic relationships between random variables via a directed graph (DAG) in which
nodes represent random variables and edges present conditional dependencies. A DBN has
the ability to deal with uncertainty and to model complex temporal relationship among vari-
ables thanks to the intra-slice and inter-slice dependency structures which can be learnt from
data by measuring mutual information between children and parent nodes as illustrated in
Figure 3.13. In addition, parameters of the DBN model can be also learnt by the Expectation
and Maximization (EM) method.

Figure 3.13 � The learned structure of the DBN model: gray circles cue the predicted variables
in the inference stage (reproduced from [Mih+16])

The learned DBN model can be used for inference with junction tree algorithm. There are
several inference methods to estimate the sequence of actions either on-line or o�-line. The
�ltering inference method estimates unobserved nodes Xt = (IUt, GTt, FXt) of the model at
time t given the sequence of observed nodes Y1..t = (SP1..t,MP1..t) as shown in Eq. 3.8 bellow:

X?
t = argmax

Xt

P (Xt|Y1..t, λ) (3.8)

The smooth inference method estimates the action X?
t given the whole perception sequence
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as given in Eq. 3.9.

X?
t = argmax

Xt

P (Xt|Y1..T , λ) (3.9)

The DBN model was implemented using Bayes Net Toolbox [Mur+01] for inference and
training in which the intra-slice structure and inter-slice structure were leant by the K2 [CH92]
and REVEAL [LFS98] algorithms, respectively.

3.3.1.3 Long-Short Term Memory

We have built discriminative multimodal interactive models using LSTM so as to improve the
sensitivity of internal/latent variables to long-range structural dependencies. LSTM can be
trained to directly map perception to action, in particular without necessarily considering a
priori knowledge of the underlying structure of the interaction, i.e. the interaction units (IU)
introduced by Mihoub et al [MBW15].

We will however show that such a priori knowledge can be bene�cial to performance, in
particular when training data is limited. A way to implicitely inform the LSTM hidden units
about the underlying structure of the interaction is Multi-tasking. Multi-task learning [ZZ14] is
meant to (1) implicitly structure the main mapping task by feeding the network with additional
objectives and (2) prevent over-�tting with additional and related tasks. We thus applied the
multi-task methodology to implicitly structure the prediction of actions (main task) by also
predicting interaction units (cognitive states/subtasks). Long-term and short-term processing
capabilities of the multi-tasking LSTM are expected to bene�t both to high-frequency (i.e.
mapping actions) and low-frequency (i.e. recognizing units) tasks.

Figure 3.14 illustrates the training of multimodal interactive behavioral model using multi-
tasking RNNs. The main task remains to predict action events (FX and GT) from perceptual
events (MP and SP) shown. The secondary task consists in predicting IU. The loss function of
LSTM model will thus be the sum of the loss function of IU, GT and FX. Since all variables are
discrete with almost identical cardinal, no weighting was performed. Neither did we decrease
IU contribution as a function of iterations.

In this research, we build each multi-tasking RNN models with minimal number of hidden
layers. The LSTM model has only one LSTM layer with 35 gated units. The BiLSTM model
has one forward LSTM layer and one backward LSTM layer with the same number of gated
units. The outputs of the two LSTMs are then fed to a time distributed dense layer applied
at each time step (i.e. the output layer of the BiLSTM) with soft-max activation functions.
The cardinal of the outputs of the forward and backward LSTM as well as the BiLSTM equals
the sum of the cardinals of the di�erent classifying tasks. Both of LSTM and BiLSTM model
were implemented by using Keras [Cho+15].
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Figure 3.14 � Schematic model of multi-tasking LSTMs. As for DBN, input streams include
MP and SP. Identically, output streams are GT and FX. IU is treated as a secondary task for
regularization purpose.

3.3.2 Results and Discussion

The LSTM and Bi-LSTM can automatically learn contextual variables from the interaction
scenario. In order to compare the e�ciency of the methods, actions (FX and GT) generated
o�ine by BiLSTM are �rst compared with HMM [MBW15] and DBN [Mih+16]. In addition,
on-line predictions of the actions by LSTM are also compared with short-term Viterbi decoding
of HMM and on-line �lter prediction of DBN.

For all models, leave-one-out cross validation is applied to the 30 folded games. Both
frame-by-frame comparison and Levenshtein distance estimation [YB07] are performed. We
also perform coordination histogram, as proposed by Mihoub et al [Mih+16], in order to
compare global coordination patterns between di�erent modalities given synchronous streams
of discrete events. A coordination histogram computed for one modality cumulates the delays
between each event in this modality and the nearest events observed in the other modalities.
We compare the ground-truth coordination histograms with those predicted by the various
models.

3.3.2.1 O�-line task

Prediction accuracy Figure 3.15 summarizes the prediction accuracy and Levenshtein
distance between ground-truth and models'outputs for o�-line prediction tasks. Because of
the possibility to a direct conditional dependency between input and output observations,
DBN outperform HMM for all features: IU (74% vs. 59%), GT (82% vs. 78%) and FX (61%
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vs. 49%). The BiLSTM model surpasses both other methods for IU (79%) and FX (64%)
prediction (95% con�dence level), respectively, while the accuracy of GT prediction caps at
83%. All prediction accuracy rates are much higher than the empirical chance levels of the
tasks, i.e. 21% for IU, 34% for GT and 20% for FX. The same observations apply for the
Levenshtein distance. These good results may be explained by the ability of LSTM to learn
the complex syntactic organization of the features from the surface structure, notably causal
relations that are spanning across IUs.

Figure 3.16 displays chronograms of input and output sequences predicted by the di�erent
models. The two �rst rows show the input sequences from the instructor: speech SP with 5
values (cube, location, reference, none, else) and arm gesture of manipulator MP with 4 values
(rest, grasp, manipulate, end). The three �nal rows superimpose predictions of output streams
GT and FX and IU in the di�erent methods to the ground truth. Most onsets of predicted
events by BiLSTM for the output streams are close to onsets observed in the ground truth,
while onsets predicted by HMM are generally the most distant ones. This is con�rmed by
evaluating coordination histograms (see next).

Table 3.1 � Chi squared distances between the coordination histograms of ground truth vs.
those of the di�erent o�-line models. Note that degrees of freedom (df < 10) depend on
the distribution of delays in the di�erent percentiles. Since events are sampled at 25Hz, the
minimum bin is 40ms.

Stream HMM DBN Bi-LSTM df

SP 1054 78 72 8

GT 783 375 112 6
FX 1327 199 92 8

Coordinate Histogram Coordination histograms give a global picture of the micro-coordination
patterns between each modality and the other ones. These histograms proposed by Mihoub et
al [Mih+16] basically collect the delays between events in one modality and the closest ones
in the others 3.17. Figure 3.18 shows coordination histograms for ground truth (�rst row),
BiLSTM (second row), DBN (third row) and HMM (�nal row) corresponding to SP (�rst
column), GT (second column) and FX (last column). Pearson's chi-squared (χ2) distances
between the histograms of the ground truth and the di�erent models are calculated and shown
in Table 3.1. Note that cue-speci�c bins are computed as 10-quantiles of the distribution of
events collected by all systems. All histograms signi�cantly di�er from each other (p < 1e−3)
except DBN and Bi-LSTM for SP. The smallest χ2 distances are those of BiLSTM, which
demonstrates that the BiLSTM generates the most faithful behavioral coordination patterns.

3.3.3 On-line tasks

One of the main challenges of the multimodal interactive behavioral model is to on-line feed
the gesture controllers of one humanoid robot in face-to-face interaction with a human partner.
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(a) raw F-score

(b) F-score with relaxed alignment

Figure 3.15 � O�ine generation: comparing performance of the joint estimation of the 3
di�erent streams (IU, GT, FX) with the methods HMM, DBN vs. BiLSTM. (a) raw F-score,
(b) F-score with relaxed alignment. The number of stars above the links between scores cue
signi�cant F-probability of Tukey post-hoc tests ′ ? ??′ with p < 1e−3, ′ ? ?′ with p < 1e−2,
′?′ with p < 0.05). For each box, the internal line gives the mean value of the score while the
circle gives its median value.
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(a) Input sequences

(b) Output sequences

Figure 3.16 � Input and output sequences: (a) the two top inputs MP and SP. (b) superposition
of ground truth and output streams (GT, FX) and IU estimated by the di�erent methods
proposed in the paper
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Figure 3.17 � Computing coordinate histogram corresponding to SP by cumulating delays
between each SP event and adjacent events in the other two streams GT and FX.

For this purpose, the model's output should be computed incrementally as the input sequence
unveils.

Table 3.2 � Chi-squared distances between the coordination histograms of ground truth vs.
those of the di�erent on-line models

Stream HMM DBN Bi-LSTM df

SP 1114 1167 253 6
GT 1225 1004 252 4
FX 749 402 56 7

The comparison of exact-rate prediction and Levenshtein distances for all of the methods
in the on-line prediction tasks are respectively shown in Figure 3.19(a) and Figure 3.19(b).
Similarly to the o�-line results, with Levenshtein estimation, DBN signi�cantly (with 95%
con�dent level) outperforms HMM for both IU (69.64% vs 67.64%) and FX (64.31% vs 60.97%)
predictions. While the GT prediction of LSTM is almost the same as the others (84.72% for
LSTM, 84.87% for DBN, 83.85% for HMM), LSTM surpasses the other methods for the
prediction of IU and FX at respectively 82.93% and 70.72%.

Similarly to Table 3.1, Table 3.2 gives the χ-squared distances between coordination his-
tograms of the ground-truth and predictions of the three methods with the di�erent cues.
All histograms signi�cantly di�er from each other (p < 1e−3) except HMM and DBN for SP.
Again, the smallest distances are those of LSTM method. These results show the e�ectiveness
of LSTM in online prediction of faithful multimodal streams which are properly coordinated
with each other.

3.3.4 Discussion

The LSTM behavioral model bene�ts from extracting contextual information from data, in-
stead of being limited to the boundaries of the hidden states of HMM or the immediate previous
frames of the DBN dependency graph. We explored several ways to introduce latent variables
in the DBN structure, notably by using HMM states as additional latent variables. This does
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Figure 3.18 � Comparing ground truth coordination histograms (top) with those computed
with streams predicted by di�erent o�ine methods, from top to bottom BiLSTM, DBN and
HMM respectively. (a) speech coordination with gesture and gaze (b) gesture coordination
with speech and gaze (c) gaze coordination with speech and gesture.

not improve DBN performance in any way. In contrast, LSTM behavioral model has the pos-
sibility to collect contextual information far away in the past history. Contextual information
may in fact span large lags. As an example, Richardson et al [RDS08] have notably shown
that a listener will most likely be looking at an object 2s after his/her interlocutor has been
paying attention to. Mihoub et al [MBW15] have e�ectively shown that adding one frame
at around 2 seconds before the current input as contextual information optimally boosted
HMM performance for gaze prediction from speech activity. Coordination histograms show
that ground truth intermodal coordination does not exhibit �xed delays between events but
a rather complex cue-dependent distribution. LSTM has the capacity to modulate memory
span according to the current input and the progress of the interaction without unnecessarily
increasing the input window.

Note also that our task involves a sequence of elementary interactive skills (our IUs) with
low complexity. We expect the ability of LSTM to implicitly stack features to ease the carry-
over of information when the task complexity increases.
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(a) raw F-score

(b) F-score with relaxed alignment

Figure 3.19 � Performance of the di�erent methods for the on-line prediction tasks. Same
conventions as for Figure 3.15
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3.4 Generating discrete variables from continous estimations:
Backchannels

Backchannelling (BC) makes conversation smooth and natural. These short feedbacks uttered
by the listener signal that he/she is understanding and paying attention to the speaker. Es-
pecially, when talking with patients, psychologists or coaches produce numerous backchannels
to encourage them and reward their responses.

Verbal backchannels uttered by conversational agents improve the quality of human-
computer interaction. A key research problem for building immersive virtual humans and
robots is learning to predict timing of these backchannels [Mor10]. Most of previous research
used statistical models to predict and generate backchannels from produced and perceived
audiovisual features. We here present a backchannel predictor based on a Long-Short Term
Memory (LSTM) recurrent neural network. Training and test data have been collected during
interviews conducted by a professional neuropsychologist. The proposed system aims at com-
plementing a spoken dialog system with automatic generation of backchannels during active
listening of the speaker's interventions: the challenge is to predict backchannels utterered by
the interviewer given parts of speech uttered by both the subject and the interviewer. F1-
measures of backchannels opportunities are computed to compare the proposed predictor with
a baseline model using Conditional Random Fields (CRF). Subjective ratings of the e�ective
generations of verbal backchannels are also performed. The LSTM model outperforms the
state-of-the-art model both in terms of prediction accuracy, alignment with speech turns and
subjective ratings by third parties.

3.4.1 State of the art

Two main approaches have been proposed for BC generation: rule-based vs. data-driven
methods.

Rule-based Ward and Tsukahara [WT00] �ne-tuned a pitch-pause model by analyzing En-
glish and Japanese conversations. The model generated backchannels after detecting backchan-
nel opportunities, cued by a downward pitch slope lasting at least 110ms followed by a pause
of at least 700ms.

A rule-based method was also proposed by Truong et al [TPH10] using pitch and pause
information. A backchannel is triggered when a pause exceeds a certain length and is led by
a falling or rising pitch. Cathcart et al [CCK03] built a Pause Duration Model which decides
if backchannelling occurs at a Transition Relevance Place (TRP) where the listener may take
over or not. They argue that most of TRPs contain backchannels.

Data-driven More recently, data-based methods have been proposed. Nishimura et al [NKN07]
used the decision tree method to generate dialog system's responses and their timings based on
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prosodic features and response preparation status of user. Morency et al [MKG10] evaluated
several probabilistic methods such as HMM and CRF. Several input features such as eye gaze
and prosody are combined to make prediction.

Ruede et al [Rue+17] proposed to detect BC opportunities using LSTM. The model gets a
modest F1-score (0.37) with prosodic features as input. The score raised to 0.39 when adding
linguistic information such as word embeddings. In another work, Maier et al [MHS17] also
built a LSTM model which uses acoustic and linguistic features to predict end-of-turn events
incrementally for situated spoken dialogue systems. Skantze [Ska17] also used LSTM with
both voice activity and pitch features to predict whether a turn-shift will occur.

Our work will focus on generating BC for the humanoid robot to perform the RI/RL
scenario. Interactive data was described section 2.

3.4.2 Interactive data: Train and validation data

The interactive data includes conversations of an interviewer with 4 di�erent subjects. Leave-
one-out validation is performed to optimize generation thresholds: the training set includes
data from 3 subjects while the remaining one is used for validating.

For BC detection and prediction, acoustic features such as pitch slopes and pause lengths
are mostly used. However, by accumulating the timing relation between interlocutors' utter-
ance around backchannels, Bailly et al [Bai+16] revealed that in the context of the RL/RI
scenario, the majority of backchannels are trigged in order to both con�rm correct responses
as well as foster further retrieval items. Therefore, selected features should directly consider
the cognitive activities of each person in the interaction such as introducing the sub-tasks,
questioning, correcting answers, etc. In particular, there are two input streams including:

• SI speech of the interviewer with 5 discrete values: introduction the task, pause , give
question, listen, feedback. In prediction task, the feedback value is treated as listen.

• SS speech of subjects with 3 discrete values: speaking, listen, good answer.

3.4.3 Methodologies

Similar to [MKG10], BC are generated in two steps:

prediction: where our model predicts the probability of a backchannel to occur, frame-by-
frame

e�ective generation: backchannels are generated by thresholding this time-varying proba-
bility distribution.

In the interactive scenario, the prediction of a continuous backchanneling probability is
performed every 40ms on the basis of the speech activity of both speakers. Actual backchannels
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are then triggered when this probability exceeds an optimal threshold (computed on the basis
of Precision-Recall curves as described in the following).

The prediction task here consists in estimating BC as a function of SI and SS activations.
We compare performances of two prediction techniques: Conditional Random Field (CRF)
vs. LSTM.

3.4.3.1 Conditional Random Field

A Conditional Random Field (CRF) is a statistical modeling method, more speci�cally a
discriminative undirected probabilistic graphical model [LMP01]. The discriminative model
make conditional independence assumptions among output sequences y but do not assume
conditional independence among input sequences x [SM+12]. CRF can have much simpler
structure than a joint HMM model [Mih+16] and thus requires a smaller amount of data.
This is rather appreciable for interactive scenario where the data are scarce and di�cult to
collect.

The conditional probability backchannel predictor y = BC1..T = [y1, y2, ..., yT ] given ob-
served sequences x = [SI, SS]1..T = [x1, x2, ..., xT ] is given by Eq. 3.10:

p(y|x) =
∏T

t=1 exp(
∑K

t=1 θifi(yt−1, yt, xt))

Z(x)
(3.10)

where, Z(x) is an input-dependent normalization function:

Z(x) =
∑
y

T∏
t=1

exp(

K∑
t=1

θifi(yt−1, yt, xt)) (3.11)

and fi(yt−1, yt, xt)) is feature function, which illustrates the conditional dependency of yt on xt
and can be understood as a partial likelihood of each possible yt given xt, θi are the parameters
to be learned. Based on the equations, HMM can be considered as a particular case of CRF
where the feature functions fi are indicator functions and θi are constants, which are used to
model state transitions.

In the �rst-order CRF used by Morency et al [MKG10], the current BC only depends on
the local neighborhood of the input features and the preceding BC estimation. The �rst-order
CRF is similar to a �rst-order HMM which modeling the dependence of the current frame
with the previous one, but the former tries to directly model the conditional distribution
p(y|x) while the latter explicitly attempts to model a joint probability distribution p(y,x).
Therefore, the generative HMM results in poor accuracy, which is the metric of interest [SP03],
especially in case of data where true positives are rare. On the contrary, the CRF attempts
to di�erentiate between the two situations [MKG10].
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3.4.3.2 Input window

We built two other prediction models by supplementing the CRF and LSTM models with
delayed input, i.e. the current frame [SI, SS]t together with [SI, SS]t−W frames shown in
Figure 3.20. More precisely, the current frame will be concatenated with previous W frames
to enlarge the input of the models. The respective models are referenced as CRFW and
LSTMW . We varied the time shift W so that to get the maximum increase of the F1-score.
The accuracy e�ectively increases with the number of frames. However, when W becomes
large, over-�tting occurs that decreases the accuracy. The optimal empirical value for W
equals to 5 for CRF vs. 6 for LSTM (i.e. 200ms vs. 240ms).

Figure 3.20 � Inputs concatenated w -context windows

3.4.3.3 Implementation

The CRF method is implemented by using HCRF toolkit [HLY06]. The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm is used to train parameters of the CRF models. The
LSTMmethod is implemented using the Keras framework with the Theano back-end [Cho+15].
The LSTM layer is set with the standard activation functions tanh for input, output and forget
gates; and hard sigmoid activation functions for recurrent steps. We used a single LSTM layer
with 30 units and a softmax output layer is used for two classes (yes/no). A Cross-Entropy
loss as a cost function and the Adam optimizer [KB14] are used to train the model. Grid-
search is implemented to �nd the optimal number of epochs. Because of the limited amount of
interactive data, leave-one-out validation is used to select the best number of epochs (n=75)
that gives minimal number of errors in the validation set.

3.4.4 Backchannel prediction and generation

In the prediction task, the SI stream considers ground-truth BC signals as a listening activity.
The prediction task outputs BC opportunities as continuous probabilities. These probabili-
ties are then thresholded to actually generate BCs for an e�ective incremental human-robot
interaction: a BC is generated when the probability exceeds an optimal threshold. Note that
the BC generator then remains silent for 3 seconds.
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Figure 3.21 � Precision-Recall curve of backchannel prediction with CRF and LSTM

Figure 3.21 features precision-recall curves for CRF vs. LSTM in the prediction task
(horizontal axis is recall while vertical axis is precision). The precision-recall curve of CRF
method (displayed in blue) lay rather below that of LSTM method (displayed in red). This
con�rms LSTM predicts back-channeling opportunities more precisely than CRF. The two
black star points give the respective optimal thresholds for which the distance of (precision,
recall) is nearest from (1,1). Table 3.3 shows the precision, recall and F1-measure at these
optimal thresholds. The LSTM method can predict BC (F1-score = 0.434) far better than
CRF model (F1-score = 0.185).

Table 3.3 � Precision, recall and F1 score of the two methods in BC prediction task.

Methods Precision Recall F1-measure

CRF (baseline) 0.104 0.863 0.185
LSTM (W = 0) 0.342 0.731 0.439

CRF (W = 5) 0.317 0.762 0.434
LSTM (W = 6) 0.342 0.731 0.486

Figure 3.22 displays the BC predictions for CRF and LSTM methods, respectively. In
many cases, CRF over-predicts BC: BC opportunities are sometimes generated before the
subject's answers or predicted during e�ective silent listening frames. The LSTM seems to
better capture the relevance of BC in this task as well as their relative short durations, i.e.
mainly signaling correct answers or too large periods of verbal inactivity.
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Figure 3.22 � Backchannel prediction and generation by CRF (2 top captions) vs. LSTM (2
next captions) from speech activities of both speakers (bottom caption). E�ective generation
is performed by optimally thresholding backchannel prediction. Underlying BC activity is
considered as "listening" activity in the input interviewer's speech stream.

Figure 3.23 displays the number of BC generated by the di�erent methods together with
the original ones for the di�erent subjects (1-4). While the number of BCs generated by the
CRF baseline model strongly di�ers from the ground-truth, the CRFW and LSTMW get closer
to the empirical distribution. They however still over generate BC for interviewees 1 and 2.
Are these extra BC however acceptable? Are they relevant and acceptable BC opportunities
that the interviewer did not catch? We performed a subjective evaluation to resolve this issue.

3.4.5 Subjective Evaluation

We evaluated if the BC events generated by the predictor are acceptable in a simulated
interaction. We e�ectively generate BCs and insert synthetic verbal BC at the places predicted
by the di�erent models. We then ask third parties to rate the acceptability of these talk spurts.
Note that this process is also performed for the ground truth, for the sake of fair comparison:
original BC are thus erased and replaced by synthetic verbal BC triggered at the same ground
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Figure 3.23 � Number of backchannels generated by di�erent methods (ground truth, CRF ,
CRFW , LSTMW ) for four subjects and original one during the two steps of the learning phase
(immediate vs. indexed recall).

truth onsets.

3.4.5.1 Lexical Choice

The BC generators trigger BC events, but they do not now predict the verbal content nor
the prosodic patterns of the BCs. During our interviews, the interviewer used 34 di�erent
lexical markers to encourage the subject [Bai+16]. Bailly et al showed that 5 lexical markers
dominate the distribution: �oui� (yes), �très bien� (excellent) and �d'accord� (okay) together
with basic continuers �humm-humm� and �hum�. In this evaluation, BC are chosen randomly
among the �ve lexicons following their empirical distribution shown in Figure 2.9. We here
pick natural BC whatever their prosodic patterns.

3.4.5.2 Relevance of BC generation

Kok et al [KH12] surveyed methods for evaluating BC generations. For example, Mohri et
al [MPR08] compared two methods by asking participants to rate short human-robot interac-
tions with a �ve-level Likert scale. Similarly, Huang et al [HMG10] evaluated BC generation
via a para-social consensus sampling method. In their work, participants saw videos of a
virtual agent giving feedback to a speaker by using head nods. Multi-criteria questions are
then used to evaluate rapport, believability, wrong head nods & missed opportunities.

Following [MKG10], we asked subjects to rate the relevance of BC generation after listening
short speech excerpts centered on one unique BC in context, i.e. starting 2.5sec before the BC



3.4. Generating discrete variables from continous estimations: Backchannels 67

and ending 0.5sec after it. The evaluation was performed by crowd sourcing: we released a
website 1 where participants where asked to rate BC generated by either models in a standard
�ve-level Likert item (�very bad�, �bad�, �why not�, �good�, and �very good�).

In order to focus on the analysis of di�erences between models, we decided to exclude BCs
generated almost at the same positions as the ground truth (i.e. whose onsets di�er by less
than 0.5sec). This procedure eliminates about half of the generated BCs. We end up with 76,
30 and 36 BC for CRF , LSTMW and CRFW respectively. 66 original ORG BC were also
considered.

We got ratings from 31 participants (20 males, 11 females, age = 32.5+/-9). Each partic-
ipant heard 40 BC, 10 for each of ORG, CRF CRFW vs. LSTMW . Remember that the BC
of original interviews were also replaced by synthetic BC.

Figure 3.24 gives the evaluation results. All distributions are statistically di�erent (R
package �ordinal�, p < 1e−12). Only subject 4 signi�cantly deviates from this behavior. CRF
gets the worst score while LSTMW got the highest score. CRFW was rated better than the
baseline but still generates a signi�cant amount of �bad� BCs. The under-performance of
ORG may be due to the randomly selection of synthetic BC or the non conservative behavior
of the interviewer who sometimes interrupts the interviewee.

Figure 3.24 � Subjective evaluation results

3.4.6 Discussion

The strategy consisting in augmenting the input frame with w previous frames (called full-
concatenated models) actually improves the prediction results with an optimal value w = 5 for
CRF and w = 6 for LSTM. Similar results can be obtained by concatenating the current frame
with only one past frame at distance w as illustrated in Figure 3.25 (called �x-concatenated
models). Table 3.4 illustrates the optimal distance frames w = 5 of two methods (CRF and
LSTM) using this �x-concatenated window strategy but have signi�cant lower performance
than the LSTM full-concatenated model.

1http://www.gipsa-lab.fr/ duccanh.nguyen/bch_evaluation_short/
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Although without window contexts, the LSTM (no windows) model still generates backchan-
nels better than CRF (w = 5). This con�rms again that LSTM model can learn automatically
the relationship between the frames through its hidden states.

Figure 3.25 � Inputs with concatenated two frames t and t+w

Table 3.4 � F1 score of the two methods with inputs concatenating current frame and only a
past frame with distance w.

Methods F1-measure

CRF (baseline) 0.185
LSTM (no windows) 0.439
CRF (w = 5) 0.433
LSTM (w = 5) 0.443

For now, our works just focus on when backchannels are generated, but in fact, in order to
apply to real robot, which lexicon of backchannels generated are also really important. Bailly et
al [Bai+16] showed that lexical choices depend on not only their respective frequencies but also
conform to syntactic constraints (e.g. there is a high probability of humm than humm humm

after a backchannel d'accord). In fact, lexicon of backchannels should be chosen according
to their functions. In this task, there are �ve main functions of backchannels: assessment,
incentive, closure of subtask, optional reply and con�rmation. The joint prediction of �When
and What to backchannel� by statistical methods would require more training material.

3.4.7 Conclusion

In this section, we compare two methods (CRF vs. LSTM) in both prediction and generation
tasks using data from a dialog-oriented scenario. In both cases, LSTM models outperform
CRF models. LSTM seems to better capture the relevance and timing of BC in the dialog
scenario, where the interviewer usually uses BC to encourage the elderly people to be con�dent
in answering questions.

The results from LSTM will be used to generate on-line BCs for a humanoid robot [NBE16]
that autonomously performs the neuro-psychological test. An on-line situated evaluation [NBE17]
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will be performed to subjectively evaluate the BC generator. Another issue is evidenced in
�g. 3.23: LSTMW still generate too many BCs, in particular for interviewees 1 and 2, with
no memory impairments. BC generation should therefore be modulated by high-level settings
such as incremental estimation of success rate.

Note that verbal contents and prosodic patterns of BCs should also be appropriately
chosen [Bai+16] according to the sub-task and the previously generated ones. The joint
prediction of �When and What to backchannel� by statistical methods would require more
training material.

3.5 Generating continuous variables: Head Motions

Head motion contributes to multiple functions such as visual attention, emotional display
as well as back-channeling and is in�uenced by multiple social, physiological and cognitive
factors.

In this section, we investigate how to generate continuous head motion in the context of
the collaborative scenario where head motion contributes to co-verbal as well as non-verbal
behaviors. We show that in this scenario, the fundamental frequency of speech (F0 feature)
is a poor predictor of head motion, while the gaze signi�cantly contributes to the head mo-
tion generation. We propose a cascaded Long-Short Term Memory (LSTM) model that �rst
estimates the gaze from speech content and hand gestures performed by the partner. This
estimation is further used as one of the inputs for the generation of the head motion. The
results show that the proposed method outperforms a single-task model with the same inputs.

We analyze here head motion data of a human subject involved in a face-to-face cooperative
interactive game (see section 2) that both elicits verbal communication and visual attention.
We challenge the problem of generating continuous head movements from speech activities
and gestures of both partners. We will show how the exploitation of the main causal relations
between speech, gestures, gaze and head motion into the modeling architecture bene�ts to
both prediction accuracy and coordinative structures.

3.5.1 State of the art

3.5.1.1 Head motion, gaze and speech

The study of human eye-head coordination during orienting movements to targets has a long
history [GV87]. For example, when the head is free to move, the amplitude of the eye saccade
is a function of head velocity (e.g. the faster head movements, the smaller the eye movements).
Those coordination is in�uenced by numerous factors including the nature of the target, its
position in the �eld of vision and with respect to the previous �xation, etc. Freedman et
al [Fre01] studied the coordinations between eye and head movements in single gaze shift
and showed that, in saccades with moving freely head, gaze amplitude is linearly related to
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head amplitude. In addition, when the amplitude of the head motions are increased, eye
velocity declines and eye movement duration increases. Fang et al [Fan+15] studied eye-
head coordination during visual search and revealed that there are multiple saccades during a
single head movement and the peak of the distribution of eye �xations is biased toward head
orientation. Nakashima et al [NS14] suggested that visual search performance is best when
eyes and head are oriented in the same direction. This could suggest a relationship between
head and eye movements of the instructor in PTT scenario while most of the time his tasks
are �nding target positions (e.g. cube in reservoir space, target location, reference cube, etc.).
For a conversational system, if the directions of the head and of the gaze are too di�erent, the
conversational system can produce an unnatural rotation of eyes [Bev+07].

Head motion also contribute to active listening: it complements binaural cues [BBA13]
and has been shown to enhance automatic source diarization and localization [MMB15]. Head
motion is also important to acknowledge or replace verbal back-channels (e.g., nodding for
acknowledging or shaking for signaling doubt), but also for many aspects of human communi-
cation. Munhall et al [Mun+04] showed that vision of head motion improves speech perception.
Graf et al [Gra+02] demonstrated that the timings of head motion and the prosodic structure
of the text are consistent and suggest that head motion is useful to segment the spoken con-
tent. Yehia et al [YKVB00] notably evidenced high correlation between head motion, eyebrow
movements and the fundamental frequency (F0) of speech. Head motion also provides useful
information about the mood of the speaker [Bus+07].

3.5.1.2 Generating head motions

Rule-based systems are common methods to monitor human interactions. For example, Liu et
al [Liu+12] proposed to generate head pan by analyzing utterance structure and identifying
backchannels, while head tilt was depending on phrase length. Lee and Marsella [LM06]
proposed Generator system that associates multimodal patterns with given communication
functions. The system can generate head motions and other non-verbal behaviors from surface
texts. They de�ned several primitive head movements: nods, shakes, head moved to the side,
head tilt, pulled back, pulled down. Then, they created rules of the movements matching with
their functions (e.g. co-occurring with words) as shown in table 3.5. For an example, a surface
text is given: �I do, I do. I'm looking forward to that but I can't rest until I get this work

done.� Rules applied to the text are: a�rmation rule from I do and I'm; and negation rule
from can't (contrast rule applied from but is overridden by the negation rule. Therefore, head
motions will be generated as follow: head nods on I do, I do and I'm looking forward ; head
shakes on I can't rest.

Machine learning techniques have been proposed to generate head motions. For example,
Busso et al [Bus+07] proposed to use Hidden Markov Models (HMM) to drive head motion
from prosodic features. Ben Youssef et al [BYSB13] used articulatory features to drive head
motion synthesis. Another HMM-based framework to generate body movement from prosody
was proposed by Levin [LTK09]. Ding et al [DPA13] also trained an HMM to generate head
and eyebrow movements. Mariooryad et al [MB12] further explore dynamic Bayesian networks
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Table 3.5 � Head motions generated by rules [LM06]. The priority of each rule is marked by
the numbers in the parenthesis

Functions Head motions Rules

(1) Interjection Head nod, shake, or tilt co-occurring with these words: yes, no, well
(1) Negation Head shakes throughout the whole sentence or phrase

these words occur: no, not, nothing, cannot
(2) A�rmation Head nods throughout the whole sentence or phrase

these words occur: yes , yeah, I do, I am,

We have, We do, You have, true, OK

(3) Obligation Head nod once co-occurring with these words:
have to, need to, ought to

(3) Assumption Head nod throughout the sentence or phrase when
occurring these words I guess, I suppose, I think

(4) Contrast Head moved to the side co-occurring with these words but, however
(lateral movement)
and brow raise

etc. ... ...

(DBN) for coupling speech with head and eyebrow movements. More recently Sadoughi et
al [SB17] introduced latent variables to consider speaker intentions.

Recently, Recurrent Neural Networks (RNN) have been shown to outperform statistical
models in sequence recognition and generation. Gated recurrent units (GRUs) and Long-Short
Term Memory (LSTM) cells have been introduced to cope with long-term temporal dependen-
cies. Few works using LSTM have been performed to model human machine interaction. For
example, Alahi et al [Ala+16] used LSTM with social pooling of hidden states which combine
the information from all neighboring states to predict human trajectories in crowded space.
Haag et al [HS16] proposed Bidirectional LSTM with stacked Bottleneck feature to improve
the quality of head motion generation.

In this section, we present a multimodal behavioral model to generate the head motion of
an instructor during a collaborative task with a manipulator (the interactive data are described
in section 2.1). We proposed a cascaded multi-task learning method, where gaze prediction is
considered as an intermediary task for further improving head motion generation. The results
can be used partially to drive multimodal interactive behaviors of a humanoid robot.

3.5.2 Multimodal interactive behavioral models for generating head mo-
tions

In previous research, Mihoub [Mih+16] built multimodal behavioral models which are able
to generate GT and FX given input streams SP and MP. At training stage, all of discrete
streams (IU, GT, FX, SP and MP) are available, while in generating stage, only SP and MP
are observed.
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In this work, we investigate interactive models to generate continuous variables - head
motions of the instructor head (H1, H2, H3) with the same observed input SP and MP.

3.5.2.1 Analyzing data

Canonical Correlation Analysis (CCA) is often used to measure the interdependence between
two sets of sequential data with di�erent or equal feature dimensions [DFC00].

Using CCA, we computed the correlations between each modality (IU, GT, FX, SP, MP
and F0) and head motions (H1, H2, H3). Figure 3.26 displays the mean correlations of this
analysis. For all of angles, the highest correlations are with IU and FX. The pitch angle
(H1) exhibits the highest mean correlation (0.7) while the others are about 0.5. This can be
explained by the fact that FX on face, source's cube space, tablet are well separated in pitch
direction while the roll and yaw (H2, H3) are actually not separated into di�erent azimuthal
regions. The least correlated feature with head motions is F0! Therefore � for this speci�c
collaborative task � F0 is a minor predictor of head motion. This is expected since speech
chunks partly refers to movable regions of interest in the visual scene that are intrinsically
referred via nonverbal signals such as gaze.

Figure 3.26 � Correlation of CCAs between each of H1, H2, H3 and FX, IU, GT, SP, MP and
F0

We compare here the performance of mainly three di�erent models:

Baseline. The baseline model for generating head motion uses one LSTM layer with linear
activations to generate directly H1,H2,H3 as shown in Figure 3.27(a). This model uses
the same inputs than the DBN proposed by Mihoub [Mih+16], i.e. the observed variables
(SP and MP).
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Figure 3.27 � Single vs. Multi-task models: (a) Baseline model with inputs (SP,MP); (b)
The control model with additional FX modality; (c) Cascaded model that combines the
prediction of FX by LSTM1 with the prediction of head motions by LSTM2 using combined
input; (d) Cascaded single output model without the intervening FX-prediction task; (e)
Cascaded multiple outputs model predicting both FX and Hs by LSTM2

Control. Based on CCA analysis results (IU and FX have higher correlation with H1), the
control model uses FX as an additional input feature as illustrated in Figure 3.27(b).
Our generation models will compete with this control model that is informed by the FX
ground truth. Since the correlation of FX with H1 is the highest comparing with H2
and H3, the model is expected to improve signi�cantly the H1 generation quality.

Cascaded. In practice, neither FX nor IU can be used as input feature to train and test
data since they are not always available and need to be inferred from observed data such
as SP and MP [Mih+16]. The incremental estimation of IU is rather di�cult with no
look-ahead of observations. On the other end, FX are much more likely to be estimated
on-line. We thus propose to use a multitask learning, in which FX is generated by a
�rst LSTM layer, called LSTM1 in Figure 3.27(c). The output of this model is then
aggregated with the original input and fed into a second LSTM layer, called LSTM2.
This multitask model � with discrete FX and continuous H objectives � is trained in
two steps: LSTM1 and LSTM2 are �rst trained separately and �ne-tuning is further
performed on the multitask model with both outputs: FX and (H1, H2, H3).

Two other models also have been considered, for fairness:

Cascaded single output. This single-output cascaded model has the same structure as the
cascaded model but without the intervening FX-prediction task shown in Figure 3.27(d).

Cascaded multiple output. Including two LSTMs stacked to each other and predicting
both FX and Hs illustrated in Figure 3.27(e).
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Figure 3.28 � Average H1 RMSE at di�erent epochs corresponding to the di�erent cascaded
models.

3.5.2.2 Results

To compare the performance of each model, leave-one-out cross-validation was performed in
which 9 interaction sequences were used to train while the remaining one is used for testing.
All models use a total of 80 LSTM neurons. Each layer of the cascaded models (LSTM1
and LSTM2) has thus 40 LSTM neurons. Pre-training for LSTM1 & LSTM2 and �ne tuning
are both performed with 50 iterations. All models are implemented on Keras with Theano
back-end.

Figure 3.28 displays root mean square error (RMSE) of H1 as a function of number of
epochs and model. The control model clearly outperforms the others at epoch 110 with
a RMSE of 0.045 rad. While the Cascaded model is able to handle over-�tting and get a
minimum RMSE of 0.057 rad at epoch 76, other methods tend to over-�t sooner.

Figure 3.29.a displays a chronogram of ground truth vs. predicted H1. As expected, the
Control model generates the most faithful movements notably in the vicinity of FX events (see
around 7.0 sec). In contrast, the H1 generated by baseline model (driven by the sole SP & MP
events) generates delayed head motion. The head motion generated by the cascaded model
is close to the one generated by the control model, notably respecting coordination with gaze
shifts.

Table 3.6 gives root mean square errors (RMSE) between ground truth and predicted head
motions with di�erent models. As expected from CCA analysis and chronograms, the largest
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Figure 3.29 � (a) H1 real vs. prediction streams between di�erent models; (b) input streams
(FX ground truth& SP) and FX prediction from LSTM1.

Table 3.6 � Root mean square errors (Pearson correlations) between ground truth and pre-
dicted head motions with di�erent models.

Models H1 [rad] H2[rad] H3[rad]

Baseline 0.059 (0.84) 0.035 (0.67) 0.066 (0.57)
Control 0.045 (0.91) 0.033 (0.72) 0.066 (0.65)
Cascaded 0.057 (0.84) 0.035 (0.67) 0.065 (0.64)

and lowest RMSE are performed respectively by the Baseline (0.059) and Control (0.045)
models. The Cascaded model exhibits an intermediate performance (0.057). Since the CCA of
FX, SP and MP are not signi�cantly di�erent for H2 and H3, their RMSE are not signi�cantly
improved. Pearson correlations, also given in Table 3.6, corroborate these observations.

In order to compare the micro-coordination patterns, we computed the so-called coordi-

nation histograms (CH) proposed by Mihoub et al [Mih+16]. In order to conform to their
proposal, continuous streams of head motions (H1, H2, H3) are �rst converted to discrete
events by detecting peaks of local maximum velocity. CH are then built by tabulating the
time-delay between each event of one given modality and the nearest events from other modal-
ities.

We further compared ground-truth coordinate histogram for H1 with those produced by
the di�erent prediction models. Figure 3.30 displays the histogram computed from ground
truth vs. CH predicted by the Baseline, Control vs. Cascaded models. Figure 3.31 displays
Chi-squared distances between the ground-truth histogram � considered as the target coordi-
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Figure 3.30 � Coordination histograms among H1 and (IU,SP).

nation pattern � with those produced by the di�erent prediction models for the three angles.
These �gures show that the Cascaded model outperforms the Baseline model both in terms
of accuracy and coordination. This result is partly due to the fact that both Baseline and
Control models are directly driven by triggered events (SP, MP) or FX, while the Cascaded

model is able to handle the coordination pattern � in particular causal relations � between
these events.

3.5.2.3 Discussion

Our experiments evidence that prediction models can bene�t from a priori knowledge about
causal relations between features. While recurrent neural networks can implicitly construct
latent representations using massive data, explicit knowledge given as goals or cost functions
help them to build and structure intermediate layered mappings.

Several algorithms to explore the intra- and inter-slice causal relations between observa-
tions have been built for DBN and other statistical models. These analysis tools that help to
shape probabilistic graphical models (PGM) may be used to automatically structure neural
network layers and give ways to shape latent representations with task-related semantic or
pragmatic information.
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Figure 3.31 � Chi-squared distances of the di�erent prediction models.

We analyze the e�ect of shifted speech frames using CCA to see the correlation between
each features of head movements with the shifted frames. The �gure 3.33 illustrates the CCA
between H1,H2,H3 and SP, correspondingly. When increasing shifted frame, the CCA of H1
is growing up until 10 frames and get maximum at 0.675. In contrast, the CCA of H2 and H3
reduce when increasing the number of shifted frames.

Although LSTM model can remember events triggered by gaze so that they can drive
head motion following the gaze event, it is di�cult to deal with subsequent speech events,
which are conversely triggered by preceding eye �xations. A way to improve the head motion
generation can be done by time-shifting speech, which then becomes the forerunner of head
motion. Figure 3.32 displays the H1 RMSE of the baseline model with and without time-
shifted input SP frames. SP is here shifted by 10 frames (∼ 0.4 sec): it generates lower RMS
compared with the original model. Figure 3.34 shows the H1 RMSE obtained at the optimal
epoch corresponding to the di�erent models. Almost all shifted SP generate head motion with
lower error. This is well in accordance with the chain of attention driven by gaze � with a
rapid eye followed by a slower head motion � that triggers pointin gestures and speech.

Of course, bidirectional LSTM can be used and combined with a soft attention mechanism
to optimally probe contextual information (exogenous as well as intentional). But we here
consider reactive models that are able to cope with on-line interactive behaviors: the horizon
of the contextual information does not extend beyond the current frame.

3.5.3 Conclusions & perspectives

In this section, we propose an e�cient solution to structure the intermediate representations
built by layered LSTM. We have shown that gaze can be used e�ectively as a driving signal
for head motion generation. This intervention is e�ective both in terms of accuracy and
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Figure 3.32 � Average H1 RMSE of the Baseline model without and with SP shifted frames
corresponding to number of training epoch.

coordination patterning.

For now, the cascaded model with HHI data, predicting FX before generating head motion
improve just pitch (H1) angle. This could be explained by in the task, there is a larger distance
between the tablet (used to info the cube position) and the manipulator space so that the
head pitch has a large contribute in gazing. Since the target and manipulator spaces are
close to each other and the movement of eyes between these two positions lays in the �eld
of view, the head movement will less contribute to the gaze. Therefore, the H2 and H3 have
a smaller correlation with the gaze target comparing to H1. In future, within the immersive
teleoperation system, the pilot will perhaps move his/her eyes slower than normal in order
to overcome the sensorimotor latency of the oculomotor control. The head movement is thus
expected to have a larger contribution to gaze shifts. So, the proposed model could improve
all of degrees of head movements by intermediate gaze prediction.

The quality of prediction may be enhanced in several ways. Other contextual information
can be used as additional input � precise regions of interest for the gaze, gaze contacts,
communicative functions of speech, etc. � as well as intermediate objectives � e.g. eyebrow
movements or respiratory patterns. In addition, we did not use the segmentation of the task
into IUs because most of these IUs were triggered by gaze or speech events. More complex tasks
involving switching between multiple interaction styles with multiple agents may motivate the
structuring of the interaction by IUs, notably when alternative cues are used to trigger similar
pragmatic frames.

Furthermore, the head motion generation model will be used to drive the head of our
iCub-humanoid robot when autonomously instructing human manipulators. We �rst plan
to perform the subjective assessment of our multimodal behavioral model (see [NBE16] for
our crowd-sourcing methodology). Another challenge is to adapt this model to multiple ma-
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Figure 3.33 � CCA of Hs vs. SP with various number of shifted frame.

nipulators, notably those with motor disabilities. In this case, the behavioral model should
both incrementally estimate the best action and the optimal interaction style according to the
goodness of �t between the actual and expected behavior of the interlocutor predicted by the
joint behavioral model.

3.6 Summary

In this chapter, we present multimodal interactive behavioral models based on recurrent neural
networks, namely Long-Short Term Memory (LSTM) RNN for predicting discrete (arm, gaze,
backchannel) and continuous (head motion) variables.

The predictions of arm, gaze and interaction units are compared between LSTM for on-
line prediction and Bidirectional LSTM (BiLSTM) for o�-line prediction with other statistical
methods: HMM and DBN. The LSTM behavioral models bene�t from extracting contextual
information from data, instead of being limited to the boundaries of the hidden states of HMM
or the immediate previous frames of the DBN dependency graph. The LSTM methods achieve
a better performance than statistical methods with regards to both prediction performance
and intermodal coordination.
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Figure 3.34 � Average H1 RMSE without and with SP shifted frames corresponding to the
di�erent models.

For backchannel generation, we compare two methods (CRF vs. LSTM) with and without
contextual windows using data from the RL/RI scenario. The LSTM models outperform CRF
models. LSTM seems to better capture the relevance and timing of BC in the dialog scenario,
where the interviewer usually uses BC to encourage the elderly people to be con�dent in
answering questions.

We also investigated how to use LSTM models to generate continuous head motions.
Because of the ability of capturing long-term dependence between latent variables, a LSTM
with single layer was used as a base-line model. We used CCA to analyze the PTT interactive
data and found that head motions the highest correlation with gaze (FX) and interaction unit
(IU) comparing with other features (speech, manipulator's arm, F0). A control model with an
additional FX input has a signi�cantly improving head motion generation quality. In order to
improve the quality of prediction but kept the same inputs as the baseline model, we built a
cascaded LSTM model which uses an other LSTM to predict FX as an input of another that
generate head motion. We found that the cascaded LSTM model (pre-trained and �ne-tuned
parameter) not only improves the head motion accuracy comparing with the baseline, but also
has the best coordination.



Chapter 4

Gesture Controllers: Design and

evaluation

In chapter 2, we described how to collect human-human interactive (HHI) data and extract
useful features for training multimodal interactive behavioral models. Then, we built interac-
tive models (as described in chapter 3) that can generate actions from perception streams in
two interactive tasks (Put That There and Selective Reminding Test).

Note that the interactive models can generate multimodal robot behaviors at both lev-
els: abstract-level vs.skill-level. The abstract level represents elementary behavioral skills of
the target task (e.g.�look at (ROI)�, �say (text)�, �hand-point to (ROI)�), which are described
by discrete events. In contrast, the skill-level behavior is related to speci�c motions such
as head trajectories. The feature-level behaviors are generated so that the score they com-
pute can directly command the robot's motor micro-controllers while the skill-level behaviors
should trigger speci�c gesture controllers that further convert events into skill-level trajecto-
ries. Gesture controllers are thus here the analog of the gesticon, the central gesture repository
introduced by Krenn and Pirker [KP04], that stored gesture snippets and facial expressions
relevant for the generation of dialogue accompanying non verbal behavior of virtual agents.

In this chapter, we focus on designing gesture controllers that can be used to execute the
discrete events for our humanoid robot. Building gesture controllers is a fundamental step of
developing robot behaviors, which enable us to realize how our robot interacts physically with
humans (see Figure 4.1).

For future works, the gesture controllers will be used to build up semi-autonomous as well as
autonomous robots to perform the interactive tasks (see chapter 5). Hence, we need to ensure
that the events and their synchronization are still perceived correctly by human observers
for which they are created. In this chapter, we propose an evaluation framework to spot the
robot's faulty behaviors so that they can be redesigned or better adapted. Observing HHI is a
good way to design and evaluate the gesture controllers and their relative synchronization. For
evaluation, reusing the scores of the HHI data allow to evaluate how the robotic gestures are
perceived by human targets, without evaluating the interactive behavioral model at the same
time. This leads to focus on corrections of how gesture controllers encode elementary skills
and when events are triggered, and thus partly disentangle execution from planning problems.

In fact, robots have di�culties in performing many actions that tutoring humans can easily
perform (e.g. using one's hand to open/close a notebook or use a pen to write). Therefore,

81
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Figure 4.1 � Gesture controllers: design and evaluation. HHI data are used not only to design
gesture controllers, but also to evaluate the capability of the robot in reproducing coordinated
verbal and co-verbal behaviors.

in order for our iCub humanoid robot to perform acceptably the interactive scenarios, some
actions of the robot will be changed to better match robot's abilities. In particular, in the
RL/RI task, instead of opening/closing a notebook to show/hide items, the robot simulates
item display and scoring events just by clicking on a faked tablet. This chapter covers how
we adapt the HHI events to the HRI situation so that the events could be executed easier by
the robot while maintaining equivalent semantics of the demonstrated HHI events.

We focus here on the RL/RI scenario, which requires the robot to perform much more
complex multimodal behaviors and to exhibit more varied social skills than the Put That

There scenario. We will detail how to adapt the HHI protocol to HRI, design and evaluate
gesture controllers for this scenario.
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Figure 4.2 � Adapted RL/RI scenario for human-robot interaction: the robot uses a tablet
to convince the subject that it drives the display of items and that it e�ectively takes notes.
Another tablet facing the subject displays/hides items according to the robot's needs.

4.1 Adapt the RL/RI scenario from HHI to HRI

In chapter 2, we presented the HHI multimodal data, which consists in time-stamped speech,
arm/hand gestures and gaze events labeled with their discrete values (e.g. looking at subject's
face, tablet . . . ; uttering a text/backchannel with di�erent attitudes; . . . ), organized in HHI
multimodal scores. Now, we concentrate on developing modality-speci�c gesture controllers
to map these events to robotic actions that a human observer could perceive and understand.

4.1.1 Substituting sheets of paper with displays

Because it is di�cult to shape gesture controllers to mimic the interviewer's arm behaviors
such as writing on sheets of paper or opening/closing a booklet to show/hide items, the RL/RI
scenario is adapted to ease an implementation on the robot. Particularly, instead of using the
sheet of papers and the book containing items, an adapted scenario utilizing two tablets is
proposed as illustrated in Figure 4.2. A tablet is hold by the robot's left arm and replace the
scoring sheets and the other is placed in front of subjects to show/hide the items. In fact,
subjects project human skills and capabilities onto agents � including mnesic capabilities �
and probably expect the arti�cial interviewer to still take notes despite its superior memory.
Such a behavior is imposed by social rules. Another advantage of the robot's tablet is that it
can be used as an augmented display for the operator of an immersive teleoperation system
(see chapter 5)
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4.1.2 Dealing with response times

Several adapted events from HHI to HRI scenarios are shown in Table 4.1. Actually, when we
adapt from HHI to the new HRI scenario, timestamps of adapted events should be changed
because of di�erences in response times and bandwidths between human's and robot's actions.
For example, when a robot action takes a longer duration (due to robot's physical limitations)
and could not be anticipated, the next action of the robot will be delayed (see Figure 4.3).

In order to minimize this unnatural behaviors, we select robot actions so that their dura-
tions will be smaller or equal to those of human actions. As an example, the writing events
for taking notes in HHI will be replaced by rapid clicking events in HRI. When performing
preparing score event, the human interviewer can move his/her arm smoothly and fast from
a rest position to the score-sheet paper position for writing, while the robot can produce vi-
brations when moving his arm as the human. In this case, the preparing score event will be
converted to a prepare clicking event where robot's right hand is close to its scoring tablet �
hold by its left arm � so that the duration of preparing click actions can be performed fast
enough.

Figure 4.3 � An example of di�erent durations between a robot action and a human action
(action 2) when performing the same event. If the duration of robot action is longer than the
human one, this can delay the next robot action (action 3).
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Table 4.1 � Adapting events from HHI to HRI

Modalities HHI HRI

Gaze target book containing items subject tablet
sheet of papers interview tablet

Arm gesture preparing scoring prepare clicking
scoring (writing) clicking
showing/hiding items clicking

4.2 Designing gesture controllers

4.2.1 Speech

In the RL/RI scenario, the robot will play the role of the interviewer who interacts with
Alzheimer patients. This task requires the robot to ask questions and give appropriately
feedbacks to the subject about the on-going RL/RI scenario. The robot should also encourage
the subjects by giving them rewards and incentives. HHI data show that some sentence
constructions are recurrent, and that speci�c prosodic patterns are recruited [Bai+16]. So we
will use the default audiovisual text-to-speech (TTS) system, but with a speci�cally trained
prosodic model.

The built-in TTS system (named COMPOST) was �rst designed by Alissali et al [AB93]
at GIPSA-lab. It controls the several processing stages (text preprocessing, morphological
analyzer, part-of-speech tagger, letter-to-sound pronunciation, prosody generation and corpus-
based synthesis). The visual component of corpus-based synthesis of French was adapted to
the degrees-of-freedom of Nina (vertical movements of the jaw, lower and upper lips, and
horizontal movements of the two lip corners; see [Par+15]).

As mentioned in chapter2, speech uttered by the interviewer and the subjects during HHI
was transcribed and aligned its phonetic content. The transcription of the interviewer's speech
was further augmented with breathing noises � when clearly audible � and discourse mark-
ers related to attitudes e�ectively used in the interaction (assertion, full question, incentive
continuation, standard continuation, unmarked utterance).

From the recorded speech data, a speci�c model for rhythm and melody was trained using
the SFC [BH05], a trainable prosodic model developed in the lab. This model considers
the prosody as the superposition of multi-parametric contours as shown Figure 4.4. Each
contour encodes a speci�c function: attitudes at the level of the utterance (green), syntactic
dependency relations between syntactic constituents at the level of phrases (blue) and emphasis
at the level of words (orange). The shape of these contours are learned via an analysis-by-
synthesis process that trains feed-forward neural networks to associate positional features of
each syllable with its F0 pattern and lengthening factor (see recent developments performed
by Gerazov et al [GB18]; [GBX18]).

An excerpt of the interviewer's speech � ready as robot's speech input � during her inter-
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Figure 4.4 � Predicting prosody with superposition of functional contours: top for melody and
bottom for rhythm. There are several speci�c functions in di�erent levels: utterance in green,
syntactic of phrase in blue and words in orange.

action with the �rst subject is given below:

[...]

<debit;tm=3.8> #CT <hr;duree=266> hh ALORS NOUS.

<debit;tm=4.6> #CTp ON VA APPRENDRE SEIZE MOTS ENSEMBLE.

<debit;tm=6.9> #CT <hr;duree=261> hh ON VA LES APPRENDRE PETIT A&2 PETIT, QUATRE PAR QUATRE.

<debit;tm=9.7> #DC DONC, IL FAUT BIEN VOUS CONCENTRER POUR BIEN RETENIR LES MOTS QUE JE VOUS MONTRE.

<debit;tm=13.4> #QS D'ACCORD?

<debit;tm=14.2> #DC <hr;duree=434> hh ALORS VOICI LES QUATRE PREMIERS MOTS.

<debit;tm=16.8> #QI <hr;duree=309> hh EST-CE QUE VOUS POUVEZ ME LIRE LE NOM DU POISSON?

<debit;tm=21.2> #EX OUI.

<debit;tm=21.8> #QI LE NOM DU VE&3TEMENT?

<debit;tm=24.7> #EX OUI!

<debit;tm=25.2> #QI LE NOM DU JEU?

<debit;tm=27.7> #QS ET LE NOM DE LA FLEUR?

<debit;tm=30.0> #QS LA FLEUR, REDITES-MOI?

<debit;tm=32.0> #DC D'ACCORD.

<debit;tm=33.0> #EX ALORS, J' ENLE&2VE LES MOTS.

<debit;tm=34.4> #QI EST-CE QUE VOUS POUVEZ ME REDIRE LE NOM DU POISSON?

<debit;tm=37.6> #QI <hr;duree=597> hh LE NOM DU VE&3TEMENT.

<debit;tm=40.4> #QI <hr;duree=535> hh LE NOM DU JEU.

<debit;tm=46.1> #QS <hr;duree=381> hh ET LE NOM DE LA FLEUR.

<debit;tm=49.2> #DC OUI .

<debit;tm=49.9> #QI ET CE JEU ALORS?

<debit;tm=52.7> #QS IL EST PARTI?

<debit;tm=54.8> #DC ALORS, JE VOUS REMONTRE.

[...]

In the excerpt above, the attribute tm of the global variable debit sets the triggering time
of the say command of the speech controller. Objects starting with # set the prosodic attitude
of the following sentence(s) � DC for assertion, QS for full question, EX incentive continuation,
CT standard continuation . . . � They overwrite the default modal prosody given by the �nal
punctuations. The attribute duree of the phone hr sets the duration of a breathing noise. The
phone hh is a glottal stop with a default duration of 50ms. Orthographic input is provided
via uppercase letters, accents being provided by numbers preceeded by & � &2 is grave, &6 is
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acute, &3 is circum�ex . . .

4.2.2 Arm gestures

While the human interviewer was scoring and displaying word items using sheets of paper,
we decided to use tablets to take notes and display items while pretending to tick boxes (see
Figure 4.5). Note that subjects are easely fooled by such a magic �nger : Hood et al [HLD15]
similarly convinced children that the Nao robot was able to perform cursive hand-writing!
This sensorimotor integration is all the more credible if the tracing/gesture synchronization
is neat.

(a) scoring. (b) resting.

Figure 4.5 � Robot's arm.

Arm displacements and �nger clicks are triggered to synchronously trigger display on the
subject's tablet (show/hide items) and take notes (monitor responses, whether correct or
not). The arm gesture controller uses the iCub Cartesian Interface [Pat+10], which enables
the control of the robot's arm by providing the desired position and orientation of one end-
e�ector (here the index �nger of the right hand) directly in the 3D space. Our arm controller
also provides task-speci�c movements: preparing to click, clicking, and going back to rest
position. Figure 4.5 illustrates the position of robot's right arm while scoring and resting. In
the experiment, the left arm remains �xed. It holds the scoring tablet, while the right arm
movements are adapted so as to follow � as closely as possible � the timing of the original
writing actions of the human interviewer.

4.2.3 Gaze

We distinguish three main regions of interest for the interviewer's gaze: (1) the subject's
face; (2) the scoring tablet (i.e. the scoring sheet and chronometer used in the original HHI);
(3) the subject's tablet (i.e. the notebook used in HHI demonstrations). Note that all arm
gestures are performed with visuomotor supervision: since robot motion is often slower than
human motion, all arm motions are preceded by one �xation towards the target, if any, and
accompanied by gaze smooth pursuit till completion. This visuomotor supervision supersedes
the original �xation patterns.
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The gaze gesture controller uses the iCub gaze controller [Ron+16], which provides direct
control of saccades, �xations and smooth pursuit while implementing the binoccular ver-
gence, the oculo-collic and vestibule-ocular re�exes. These gestures can be performed by a
parametrized combination of neck and eyes movements. For simplicity, the Cartesian gaze
controller is provided with the 3D position of the current region of interest and a �xed contri-
bution of neck movements of 50%. Figure 4.6 presents the �nal robot's head position for two
targets: (a) looking at subject's face, (b) looking at scoring tablet.

(a) looking at subject's face. (b) looking at scoring tablet.

Figure 4.6 � Two examples of robot's gaze.

(a) gaze looking down. (b) gaze looking straight.

Figure 4.7 � Robot's eyelids.

4.2.4 Eyelids

Although we did not track eyelids' movements, we developed a speci�c eyelids gesture con-
troller in order to provide Nina's behavior with additional socio-communicative cues such as
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blinking as well as redundant cues such as the coupling of eyelids aperture with eyes eleva-
tion [FBE15]; [Bai+06] as well with speech articulation [Bad+02]. Figure 4.7 illustrates the
coupling of eyelids aperture with eyes elevation. Note that the lack of such coupling of eye-
lids aperture with eyes elevation may result in wrong interpretation of the associated facial
expression [San+07].

4.3 Evaluating gesture controllers

Can we ensure that these complex and coordinated behaviors are correctly perceived and
interpreted by human subjects? Evaluating a fully autonomous robotic system would cumulate
both weaknesses of the gesture controllers and the behavioral controller � i.e. the event
generator � at the same time. We would like to evaluate the ability of the gesture controller
to reproduce the interactive behavior of interviewer independently of the high level behavioral
controller. Therefore, the gesture controller will be �rst driven by events extracted from the
human-annotated events from HHI data , further adapted for HRI as described above.

Since subjects can not both experience and rate the interaction on-line, we thus asked third
parties to rate the rendering of a multimodal HHI score �replayed� by our robotic system in
order to check if the reconstructed robot's behavior is still relevant and if the mapping between
discrete events and gestures are correctly performed by our gestural controllers.

4.3.1 Evaluation of HRI systems: state of the art

Quality of social HRI is often assessed from three perspectives [You+11]: (1) visceral factors
of interaction, (2) social mechanics and (3) social structures. The �rst perspective focuses
on instinctual aspects such as fear, excitement, joy, happiness. Uncanny valley is one of
highlighted example of this perspective in which the shape, speed, and patterns of a robot's
movements contribute to visceral reactions [Mor70]. The second perspective concentrates on
social techniques used in the interaction, such as range of gestures: facial expressions and body
language, eye-contact rules. The �nal perspective focuses on social relationships over long
period of time. The two �rst perspectives serve as guidelines for our evaluation paradigm: we
used post-hoc questionnaires to question visceral reactions and on-line detection of violations
of social techniques.

Most subjective evaluations of HRI behavior have been performed using questionnaires,
where subjects or third parties are asked to score speci�c dimensions of the experienced inter-
action on a Likert scale, after having watching it. Fasola et al [FM13] rated several aspects
such as pleasure, interest, satisfaction, entertainment and excitation. Huang et al [HM14] as-
sessed a narration humanoid robot along several dimensions such as immediacy, naturalness,
e�ectiveness, likability and credibility. Zheng et al [ZWM15] compared control strategies for
robot arm gestures along dimensions such as intelligibility, likeability, anthropomorphism and
safety. Scholtz and Bahrami [SB03] focused on predictability of behavior, capability aware-
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Figure 4.8 � Schematic model of continuous quality rating with scale [HK99].

ness, as well as interaction awareness and global user satisfaction. Nomura et al [Nom+05]
analyzed the feeling of visitors about robots exhibitions (greeting and guiding the visitors and
so on) in several aspects: interest, friendliness, e�ectiveness, anxiety toward interaction and
anxiety toward social in�uence. Heerink et al [Hee+09]; [Hee+10] published a rather exten-
sive questionaire for measuring acceptance of an assistive social robot, in particular by elderly
users.

Although delivering very useful information, notably for sorting between competing con-
trol policies or settings, these questionnaire-based evaluations provide developers with poor
information about how to correct faulty behaviors since the evaluation is performed o�-line
and questions address global properties of the entire interaction.

4.3.2 Designing and performing on-line vs o�-line evaluation

On-line evaluation methods have been proposed for audio [HK99] and video [HR95]. In these
works, raters continuously indicate the perceived strength of sound or image quality by mov-
ing a slider along a graphical scale (shown in Figure 4.8). Similarly, Tanaka et al [Tan+06]
proposed a continuous evaluation method in order to evaluate long-term interaction relation-
ship: they ask participants to rate continuously in 1-5 scale when watching a recorded video
in which the QRIO robot is dancing with children in canned and interactive conditions. The
evaluation results showed that children loss interest on the robot as time progressed.

Following the procedure proposed by de Kok & Heylen [KH11], we opted for a method
that enable raters to signal faulty events, since the HRI behaviors are essentially controlled
by events. We thus designed an on-line evaluation technique that consists in asking raters to
immediately signal faulty behaviors by pressing on the �ENTER� bar of their computer when
they just experience them. Following Kok & Heylen, we will use the term yuck responses to
name these calls for rejection.
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Figure 4.9 � The Nina robot from the subject's perspective.

Since raters cannot both experience and assess an interaction, we ask them to put them-
selves in the place of the subject who has originally experienced the interaction (i.e. to feel
the experience without actually performing it). In order to gather a signi�cant amount of
yuck responses for a set of identical stimuli, we here ask our raters to evaluate the replay by
the robot of the multimodal behavior, originally performed by our psychologist in front of one
unique subject. We in fact �lmed the robot's performance from face � giving the impression
of a �rst-person view � while fed by the multimodal score of the original situated interaction
(arm gestures, head movement, gaze...). For now, the only original play-backed behavior is
the subject's speech input. The camera remains �xed at the mean position of the location of
the eyes of the subject: this subject's perspective is shown in Figure 4.9). The raters can see
the robot facing them, but not the patient that they �replace�. They can hear the robot, as
well as what the subject says: they are spectators, but occupy the subject's seat.

A general framework of designing and evaluating gesture controllers is shown in Figure 4.10.
The purpose of the framework is to locate faulty behaviors and correct these behaviors before
a new evaluation. The framework is like an ecosystem that enables us to analyze and enhance
the faulty behaviors of gesture controllers as well as suggest missing events in the HRI score.

In each evaluation, peach articipant also �lled a post-hoc questionnaire just after the
experiment that ask judgments (�ve-level Likert scale) on nine points:

1. Did the robot adapt to the subject?
2. Did the subject adapt to the robot?
3. Did you feel relaxed?
4. Did you feel secure?
5. Was the rhythm of the robot's behavior well adapted?
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Figure 4.10 � General framework of evaluation gesture controllers. Blue lines illustrate pro-
cesses of the �rst evaluation. Red lines illustrate the second evaluation after repairing detected
faulty behaviors of the �rst evaluation.

6. Was the interaction pleasant?
7. Was the multimodal behavior appropriate?
8. Did the robot pay attention while speaking?
9. Did the robot pay attention while listening?

4.3.2.1 The �rst evaluation

For our �rst experimental assessment [NBE16], we created a website 1 where we ask people
to look at a �rst-person video and to press the �ENTER� key anytime they feel the robot
behavior is incorrect. This on-line evaluation task is preceded by a quick screening of subjects
(age, sex and mother tongue) and a familiarization exercise. 50 French natives (26 males / 24
females) performed the �rst evaluation. The age of the participants is 32± 12 years.

The cumulated yuck responses provide a time-varying normalized histogram of incorrect
behaviors (cf Figure 4.11). The maxima of the density function are cueing time-intervals for
which a majority of raters estimate the behavior is inappropriate or hinders the interaction.
Further diagnostic of what cues cause these faulty behaviors are later performed by roboticists
and system designers, seeking for incongruous behaviours around 200ms before the peaks, i.e;

1http://www.gipsa-lab.fr/~duccanh.nguyen/assessment/

http://www.gipsa-lab.fr/~duccanh.nguyen/assessment/


4.3. Evaluating gesture controllers 93

taking response time into account.

Figure 4.11 � The yucking probability as a function of time for �rst by participants.

Figure 4.12 � Density of yuck responses for our replayed interaction. Each yuck response
is weighted by a Hanning window of 5s in order to smooth the density of responses and
overlapped/added to the others. Maxima of this time-dependent histogram reveal multimodal
behaviours that are judged inadequate by a majority of raters.

Most of the time, the maxima of this density function have clear interpretation. We then
use Elan (see Figure 4.12) to pair these majority yuck responses with multimodal events. Here
are the 26 most signaled events:

unknown click 1, 4, 6 & 7: the robot performed clicking gestures on its tablet to show or hide
items onto the subject's display that was not available to raters (!). Such ungrounded
gestures are thus perceived as distractors by subjects. These yuck responses are located
at the beginning of the interview, during the learning phase.

missing gaze 2, 3, 5, 9, 17, 20, 21, 22, 25 & 26: participants also detected that gaze towards
the subject was missing or too much delayed with reference to the interviewee's answers
to questions or when delivering instructions. While such a behavior is quite legible when
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performed by the interviewer � who did not want to interfere with the subject's thoughts
� but seems completely unacceptable when performed by a SAR, whose intentions are
much less readable.
The lack of gazing at subject face is also caused by delayed clicks. In fact, in the
adapted scenario, the robot performs clicking actions on its tablet instead of writing on
a notebook. As a natural behavior, we opted for a simple rule: when the robot's arm
clicks to the tablet, the gaze should be directed to the tablet. However, these clicking
actions are often delayed because of wait-motion-done options which makes preparing
clicking actions longer than expected (see Figure 4.3).

remaining still 10, 11, 12, 13, 16, 18, 19 & 24: the robot remains still � with the exception
of quasi-periodic blinks � for too long, notably during periods of poor interactive activity
of the interviewee such as reverse counting or covert thinking. This absence of input
observations results in no generated movements.

open mouth 14 & 15: these particular misbehaviors are explained by the persistence of a
large mouth opening well after �nishing speaking. This failure is now identi�ed and
has been corrected: it was due to a faulty audiovisual segment that was improperly
articulated during a silent pause.

no empathy 23: In several place, the subject joked and laughed. The lack of SAR response
to this strong call for social support during episodes of embarrassment is rightly penalized
by raters.

unknown 8: We did not found any obvious explanation for this particular yuck response.

4.3.2.2 The second evaluation

Following the �rst evaluation, we tried to remedy to these problems, in particular by adding
a default scanning gaze pattern towards the interviewee's face, correcting visual turn tak-
ing/closing gestures and implementing a better synchronization between the subject's re-
sponses and scoring gestures performed by the robot.

Table 4.2 � Causes of yuck behaviors of the �rst evaluation and modi�cations for the second
evaluation

First evaluation Second evaluation

Yucks Caused by Modi�cation

missing gaze - clicking delay wait-motion-done (WMD) disable WMD
remaining still poor interactive activity gaze at previous state
open mouth articulatory mapping error correct mapping data
unknown click show/hide items no modi�cation
no smile no robot smile yet no modi�cation

Table 4.2 lists the main detected faulty behaviors of the �rst evaluation such as artic-
ulation errors (open-static mouth), still-remain behaviors, ungrounded clicking gestures for
showing/hiding items, no smile and clicking-delay.
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After correcting these faulty behaviors, we performed a new experimental assessment us-
ing the same experimental protocol. The second experimental assessment was performed by
46 French native subjects (16 males, 30 females, 36±16 years). 8 of these raters already
participated in the �rst assessment.

4.3.3 Comparing the two evaluations

4.3.3.1 Yuck responses

In the second experiment, we remedied to these faulty behaviors by adding extra-rules to
our gesture controllers. For example, in order to avoid immobility due to periods of poor
external stimulation, the gaze controller automatically randomly loops on the two last regions
of interest when the delay from the last �xation exceeds 3 sec. With this rule, the number
of yucks at timestamps 10, 11,12, 13, 16, 18, 19 and 24 are signi�cantly reduced as shown in
Figure 4.13.

However, this randomization should not be equally distributed and should favor the sub-
ject's face, since the participants still complain about its lack of engagement with the human
subject (e.g. around peak 11,12,13 in counting task). This problem will be suppressed by
systematically adding the subject's face to the current attention stack and favoring this region
of interest in the gaze distribution.

In the �rst evaluation, yucks such as those occurring at timestamps 2, 3, 5 were due to
the wait-motion-done setting. In the re-design, these faulty behaviors have been removed
by disabling the wait-motion-done option that discard any new command while the current
gesture has not reached its target according a given precision. We supposed that viewers
are able to decode intentions and authorize the interruption of the robot's movements . This
policy is e�cient: the yuck responses at landmarks 2,3,5 are signi�cantly reduced in the second
evaluation. The yucks at landmarks 14 and 15 were repaired by forcing the closing gesture at
the end of phonation.

Although many of the faulty behaviors are suppressed, several faulty detections still remain
while some new yucks emerge from the background, notably the absence of expressiveness,
e.g. emphatic responses to subject's embarrassment or head nodding normally associated with
incentives, respectively cued by yellow vs. cyan extrema.

We compared the probability distributions of yucking for the �rst vs. second assessments.
We also further distinguished between subjects who performed both assessments. The average
yucking frequency is respectively 0.013, 0.007 and 0.007 yucks/s for the three groups. The
di�erence of the average yucking frequency between the �rst vs. second assessment is statisti-
cally signi�cant, whether subjects participated to both experiments or not. This clearly shows
that we e�ectively succeeded in resolving some of the faulty multimodal behaviors since the
average yucking probability is divided by a factor of two between the two evaluation sessions.
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Figure 4.13 � Comparing the yucking probability as a function of time for �rst vs. second
assessment by the subjects.

Figure 4.14 � Comparing subjective ratings according to conditions (same conventions as
�gure 4.13).
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(a) Robot adapts

(b) Feels relaxed

Figure 4.15 � Overall repartition of ratings to questions 1 and 3 according to sex
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4.3.3.2 Subjective ratings

We also compared subjective ratings from the �rst vs. second assessment (see �gure 4.14).
While the new behavioral score results in an e�ective decrease of the yuck responses �
and the rating of descent behavior e�ectively improves � most other o�-line subjective rat-
ings degrade. Likelihood ratio tests comparing the combined multinomial model RATINGS
∼ SEX+SESSION+EXPOSURE with the individual models RATINGS ∼ SEX+SESSION,
RATINGS ∼ SEX+EXPOSURE and RATINGS ∼ EXPOSURE+SESSION show that SEX
signi�cantly contributes to the ratings of questions 1 and 3 as shown in Figure 4.15 (females
being less convinced by the robot's adaptation capabilities but more relaxed than males). In
addition, the second version has signi�cant contributions on two ratings, i.e. feel relaxed (p <
0.02) and pleasant interaction (p < 0.09). This means that people feel more relaxed and the
robot was rated as more friendly in the �rst evaluation.

4.3.3.3 Comments

In the free comments, some raters of the �rst evaluation campaign mentioned the rather
directive style of our female interviewer and the absence of emotional vocal and facial displays
of our SAR � e.g. laughs and smiles. While most raters of the second evaluation campaign
underly the quality of gaze behavior, the majority criticize the poorness of emotional displays:
"robot without human warmth!", "why robots never smile?", "[the robot] does not react
to humor", "in its behavior, I sometimes felt boredom or weariness", etc. It seems that the
increased behavioral quality and appropriateness also increased the participants' expectations.
As they have the impression that the robot is reactive, aware of the situation and monitors
the interaction task in an appropriate way, they can allocate more attentional resources to the
social and emotional aspects of the interactive behavior.

These critical reviews concur with Masahiro Mori statements [Mor70] about the uncanny
valley, or perhaps more likely the uncanny cli� hypothesis [Bar+07] that postulates that the
likability of robots may evolve on an uncanny cli� without necessarily falling in the valley.
The challenge is then to maintain performative, socio-communicative and emotional behaviors
at the same level of acceptability.

Moreover, these experiments show the limits of HHI-to-HRI transfer learning: multimodal
behaviors exhibited by human tutors may not be fully acceptable by SAR. Here, while the
neuropsychologist is quite licensed to concentrate on her score sheet while the subject is
performing a counting task or trying to retrieve an item from memory, such a casual behavior
is associated with carelessness and coldness from a SAR. This has to be con�rmed by asking
our web subjects to rate � using the same methodology � the behaviors of a panel of human
neuropsychologists. Cormons et al [CDP16] are notably comparing bahaviours of practitioners
as a function of their curriculum: nero-psychologists, clinicians vs. speech therapists.

Goetz et al [GK02] found that robots with playful behaviors are usually rated more positive
than robot with serious personality, but people followed the instructions of �serious robots"
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for longer. Therefore, the elderly people may not interact with the robot if they do not behave
seriously. Therefore, we will still keep this version of the gesture controllers for further works.

4.4 Conclusions

In this chapter, we illustrate how to transfer action abilities from HHI to HRI by adapting
the RL/RI scenario. In fact, the robot has di�culty in reproducing several actions that the
human interviewer usually use when performing the task (e.g. writing, opening/closing a
book). Therefore, some actions of HHI scenario were modi�ed to be suitable for the robot's
abilities. In particular, instead of using sheet of papers to note scores and using the book
to show/hide items, the adapted scenario uses two tablets so that the complex actions (e.g.
writing, opening/ closing the book) of the human interviewer will be converted to simple
actions for the robot by just monitoring the tablet (e.g. clicking, prepare clicking).

Then, gesture controllers (speech, gaze, arm, eye-lids) were designed in order for the robot
to be able to execute action events of the adapted scenario. In the following chapter 5), the
gesture controllers will be used to drive semi-autonomous as well as autonomous robots.

An evaluation framework was also proposed to detect the robot's faulty behaviors as well
as to adapt HHI scores to HRI (e.g. adding more gaze at subject's face in the counting
tasks). We perform here two evaluations: the �rst one for detecting faulty behaviors and the
second one to verify the e�ectiveness of the corrections. The yuck responses of the second
evaluation are signi�cantly reduced compared with those of the �rst one. This demonstrates
the e�ectivness of our evaluation framework. We however found that, after repairing the faulty
behaviors, people seem have higher expectation on the robot's behaviors (e.g. they expect
the robot to smile; they feel the robot more serious). We will still keep the second version of
gesture controllers for future work because we believe that performance and reliability is more
important in these short-term task-oriented interactions than pleasure.





Chapter 5

Towards Autonomous Robots and

Evaluations

In previous chapters, we described how to collect HHI data of two interactive scenarios, process
the data to scale the multimodal score to the robot's sensorimotor abilities and train interactive
behavioral models which are able to generate action events from perception streams. We
have interactive models to generate gaze, arm events and head motions for the Put That

There scenario, and backchannels for the RL/RI scenario. With these multimodal interactive
behavioral models, we are getting closer to build an autonomous robot that can interact with
human subjects. This chapter presents our ongoing works to achieve autonomous robots

that can perform automatically the two short-term interactive scenarios.

An autonomous robot, here, is a robot that can perceive its environment and has the ability
to generate actions automatically to interact with human subjects in order to perform the
situated tasks. We construct such an autonomous robot by several main modular subsystems:

• Perception Modules to enable the robot to percept correctly human environments
(e.g. human actions/ behaviors).

• Interactive Modules to generate adequate actions from perception streams.

• Gesture Controllers to execute actions generated by the Interactive Models

• A task model to manage sub-tasks to guarantee that the scenarios are performed
completely.

For the quality of the whole autonomous system, each module should be built and evaluated
adequately. We develop each module step-by-step in a �sca�olding� way so that we can focus
on improving and verifying the quality of each module. This chapter covers which modules
are available and how to evaluate them in a proper way, as well as which modules are still
unavailable and how to build them in the future.

The next section will present works in progress to build an autonomous robot that will
collaborate with humans in the PTT scenario. For the RL/RI scenario with almost available
modules, we will present a �rst autonomous architecture based mainly on the results we
have done so far. This autonomous robot architecture, designed for a basic autonomous

robot, will be used as a baseline to improve its behaviors in the future. Next, we analyze
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the remaining challenges of building the higher-level cognitive abilities of the social robot and
propose approaches for solving step-by-step these challenges.

5.1 Towards an autonomous robot performing the Put That

There scenario

This section focuses on designing an autonomous robot that can perform the PTT in the
future. We describe here modules that have been achieved so far and speci�cations for the
missing modules. Then we present our strategy to evaluate available modules and discuss our
perspectives on building remaining modules.

5.1.1 Required Modules

Four main modules to run an autonomous robot performing the PTT are detailed as following
(shown in �gure 5.1 (c)):

• Interactive models were built to generate gaze, arm events and continuous head move-
ments (see chapter 3).

• Gesture controllers

Gaze and speech controllers are designed almost in a similar way to gesture controllers
replicating the RL/RI scenario (see chapter 4).

The arm controller is designed to enable the robot moving from a rest position to pointing
at a target position (e.g. reservoir, target location or reference cube). To make a
precise pointing gesture that matches with gazing at the same position, we perform a
sensorimotor calibration in order to map precisely from gaze �xation to arm pointing
target. The calibration process is described in detail in appendix A.

• Perceptions Modules

To run an autonomous robot performing the PTT scenario, complex perception modules
are required, however, their building is outside the boundaries of this thesis. Here, we
give some discussions about the requirements of these modules and our perspective to
achieve this.

In order to capture inter-coordinations between the robot and a manipulator, inputs of
the interactive behavioral models require information about the manipulator's behaviors.
In our work, in order to achieve natural interactions, we did not use any external sensors
or wearable devices for manipulators, therefore, all of necessary information of the scene
should be extracted from robot eye cameras. In particular, perception modules should
predict movements of manipulator's arm in real-time such as �resting', �grasping a cube�,
�moving the cube�, �end�, �none�.
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For this task, a speci�c way to solve this problem is using image processing technique
(e.g. object detection) to detect a manipulated cube and to track its movements, also
assign a GO event to an action whenever stroke of movements happen. Some rules
should be used to assign a score to an event (e.g. if a cube start moving from a reservoir
to the task space, the event can be set as �moving the cube" value, then if the cube stop
at the task space, an �end� event is triggered, etc.).

In general, Deep Learning methods can be used to detect human activities [Bac+11];
[Qi+17]; [MR+18]. However, there are still challenges in predicting GO events of ac-
tivities in real-time. Training interactive models directly on image streams may solve
this problem. If a lot of data are available, interactive models can be trained end-to-end
directly from raw image data (provided by the robot's eye cameras) instead of detecting
the primitive actions. For example, a deep learning model combining Convolutional
Neural Network (CNN) with LSTM [Don+15]; [Xin+15]) can be use to train end-to-end
interactive models in which CNN captures feature of manipulators' activities inside an
image frame while LSTM directly captures temporal dependencies between manipulator
activities and instructor's interactive modalities.

Another important role of perception modules is to verify the performance of ma-

nipulators. For example, a perception module should check if a cube placed in a correct
position so that it can provide signals for a task model to switch to a new sub-task.

• A task model

In our interactive scenarios, there are many repetitive sub-tasks that the robot needs to
perform in sequence. A task model can be considered as a planner that manages the
order of sub-tasks. Finite State Machine (FSM) can be used to easily describe this task
model (see appendix B for examples of a task model for the RL/RI scenario).

5.1.2 A strategy to assess/evaluate the modules

As mentioned before, each module should be built/veri�ed in both independent and

combined ways. Our evaluation strategy can be splited in two steps:

• Independent Evaluations: each module should be evaluated independently from others.

• Combined Evaluation: all modules will be combined to construct an autonomous robot
then they are evaluated in general by letting the autonomous robot interacting with
humans.

Our strategy to build/verify modules is shown in Figure 5.1. Firstly, in order to evaluate
gesture controllers independently with interactive models as well as perception modules, we
used directly HHI data to drive robot behaviors as shown in Figure 5.1 (a). Then, we can
evaluate (and possibly correct) interactive models generating actions directly on the robot
by using HHI data instead of perception modules as depicted in Figure 5.1 (b). Finally, we
can evaluate a fully autonomous robot by running all modules (as shown in Figure 5.1 (c)):



104 Chapter 5. Towards Autonomous Robots and Evaluations

(a) Firstly, actions are driven by HHI data, in order to evaluate gesture controllers.

(b) Secondly, Actions are driven by interactive models and HHI data: inputs (perception
streams) are provided by ground-truth HHI data in order to evaluate the outputs of the
interactive models on the robot.

(c) Finally, perception modules and a task model are integrated too so that the fully au-
tonomous robot can be evaluated

Figure 5.1 � A strategy of evaluating the robot step-by-step: from a replicated version to an
autonomous version.
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interactive modules receive feedbacks from perception modules to generate actions in order to
drive gesture controllers interacting with human subjects.

Robot behaviors are generated in order to interact naturally with humans, therefore, each
module (gesture controller, interactive models) should be evaluated by humans. We use here
"Wizard-with-Oz" technique (�with� to express that the measurement of Oz is not precise
and/or not measured at all [SJS09]) to help evaluate the robot behaviors in the steps. Par-
ticularly, the robot here will replicate the scenario where the actions are generated from the
interactive data (for evaluating gesture controllers) or interactive models (for evaluating the
models). The human here plays as a manipulator and moves the cubes following robot guid-
ance. Here we can use two approaches to evaluate the interactions:

• Subjective evaluation In order to detect the �when� and �what� of the behavior errors,
we can use our proposed online evaluation framework, as we did to evaluate gesture
controllers replicating the RL/RI scenario as described in chapter 4.

• Objective evaluationWe can evaluate the e�ectiveness of robot behaviors by analyzing
how far do manipulators complete the task (e.g. how many cubes are manipulated in
right positions, how fast do manipulators respond after the robot gave an instruction,
etc.).

As an example of our strategy, we demonstrate here our robot that instructs a manipulator
to move cubes, whose behaviors are generated by interactive models and used to evaluate the
models.

5.1.3 The robot replicating the PTT scenario

In this section, we describe the robot that can replicate the Put That There scenario in
order to evaluate its interactive models in future. In particular, robot actions are generated
by the interactive models, while inputs (perception streams) are feed by HHI data as shown in
Figure 5.2 (b). By the way, the interactive models are evaluated independently from perception
modules which are not available now as well as independently from gesture controllers which
are assumed built and veri�ed before. The interactions are demonstrated in a video following
this link1. Several robot behaviors are illustrated in Figure 5.2. In the task, the robot �rst
directs its gaze to a tablet to read information of a manipulating cube shown in Figure 5.2(a),
then the robot looks at the manipulator face to engage with the manipulator or to con�rm
he is concentrating on the task (Figure 5.2 (b)). Then, the robot gazes at a reservoir to seek
the cube and uses pointing gestures to indicate the cube 5.2 (c)) to be moved to the target
position 5.2 (d)).

In the video, we implement the robot replicating the scenario with just arm movements
generated by the interactive models, while gaze (drives head movements) and speech are driven

1https://youtu.be/t0CiJaIbJ1w

https://youtu.be/t0CiJaIbJ1w
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(a) Reading information from a virtual tablet

(b) Looking at the manipulator face

(c) Pointing at a cube in a reservoir

(d) Indicating target position

Figure 5.2 � Excerpts from the PTT replicating scenario, in which arm action events are
generated by interactive models, while gaze and speech are driven from HHI interactive data.
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by interactive data. However, gaze/ head movements are also available to be driven part-by-
part by interactive models. Using the replications (the robot are driven patly by interactive
models and partly by interactive data or fully interactive data) can help to evaluate interactive
models by analyzing how manipulators' performance is impacted. In particular, the actions
of the robot driven fully by interactive data can be used as a �ground truth� so that we can
measure how much does he/she �nish the task, or compare performance of the robot driven
by interactive models to the ground truth.

5.1.4 Comments

In the illustrated video, the manipulator can �nish the task even when the words of the robot
are not much clear. This shows that the interactive models may generate somehow adequate
robot actions (e.g. arm movements) to complement speech so that the manipulator can infer
correct information that the robot provided.

For the PTT scenario, due to the requirements of perception modules, which is out of
scope of this thesis, we do not have an autonomous robot to perform the task yet. In the
next scenario, we will present the complete realization of a basic autonomous robot that can
perform the other task (RL/RI scenario).

5.2 A basic (immature) Autonomous Robot performing the
RL/RI scenario

In this section, we present a basic autonomous control model, which is used as a demonstrator
of some of our results and will serve as a baseline for improving robot behaviors in the future.

We focus here on a basic autonomous control model for the RL/RI scenario,
because the perception module basically required in this task just requires a speech recognition
for capturing subjects' answers during the interaction. Building real-time perception modules
for the robot is out of the scope of this thesis, but speech recognition packages do exist and
have be used with success.

5.2.1 Rules-based interactive models for the RL/RI scenario

For this scenario, we already built gesture controllers, which were able to reproduce the RL/RI
scenario by using events extracted from HHI data (see chapter 4). In particular, in order
to transfer actions from HHI to HRI, some extra-rules were implemented on the gesture
controllers. In this sub-section, we will describe some of the rules and additional rules to
enable a robot interact with human subjects.

In fact, the rules designed for gesture controllers provide intra-coordinations for robot
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behaviors (relationships of endogneous modalities). They are listed below:

• Arm and Gaze The robot should move arm to click to its tablet and mark scores, after
gazing at the click-area.

• Neck and eyes Neck and eye movements are driven synchronously by solving inverse
kinematic of gazing at 3D points [Ron+16].

• Eyelids and speech

Eyelids have blinking gestures with frequencies following Gausian distribution 0.5Hz +

/ − 0.1Hz. Amplitudes of opening and closing eyelids are coupled with eyes elevation:
the higher eye elevation, the more openning eyelids. And eyelids also couple with speech.

• Speech and Gaze The robot should gaze at a subject's face when asking questions.

• Speech Utterances are selected based on uniform distribution of the interviewer's per-
formances. For example, for asking a question in indexed recall, the robot can select
randomly one of sentences below:

1. Est-ce-que vous pouvez me redire le nom du ... ? (Could you retell me the name of
... ?)

2. Le nom du ... (The name of ...?)

3. Et alors, ce ...? (Well, the ...?)

4. C'est quoi? ce ...? (What is ...?)

• Lexicon of Backchannels Backchannels are selected randomly according to the empirical
distribution.

In order to interact with human, we added some rules to provide inter-coordinations
between the robot actions and human patterns. Here are robot actions responding to the
human subjects' actions:

• Subjects gives a correct answer The robot mark the score (gazing at tablet and arm
moving to click on it) as soon as the subject gives a correct answer.

• Subjects do not answer The robot should give encouragements or reminders to the
subject.

• Subjects �nish a sub-task The robot speaks to and gazes at the subject face to introduce
the next sub-tasks triggered by the dialog FSM.

With these intra- and inter- coordination rules, we have a baseline rule-based

interactive model to drive the basic autonomous robot with �naive" behaviors (we call
it naive because the robot just performs the tasks without adapting to human subjects).
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Figure 5.3 � Schematic model of a baseline autonoumous robot interacting with a human
subject in the RL/RI scenario. In the framework, the interactive model includes: backchannels
generated from a LSTM model and other non-verbal behaviors (head, gaze, arm) generated
by rules. The perception module uses a speech recognition system to recognize answers of the
human subject. YARP, a middle-ware, provides a protocol to transfer commands from the
interactive models to gestures controllers (arm, gaze, head, and backchannels) and to execute
the robot behaviors. A Nodejs server is implemented with FSM to manage sub-tasks as well
as monitor the displays on the two tablets.

5.2.2 An Autonomous Control Framework

The human being can be seen as a distributed system which is consisted of multiple subsystems
working independently but communicating with each other at di�erent scales and levels, e.g.
organs, cells, molecules. Inspired by this, a framework for controlling an autonomous humanoid
robot is built from modular subsystems, which can reduce workloads of the robot's brain (here,
interactive models).

We design a framework to run the basic autonomous robot as shown in Figure 5.3. The
framework includes several main modules: perception of subjects' feedback, interactive models
to generate actions (head, arm, gaze, backchannels); and a task model to manage sub-tasks
of the scenario.

For implementation, the framework consists of several main components:

• YARP, an open-source midlleware is designed for development of distributed robot con-
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trol system [MFN06].

YARP provides intercommunications among subsystems/modules through Port mech-
anism, which manages multiple asynchronous input and output connections between
modules. Each module can create many di�erent ports for sending as well as receiv-
ing data through network. YARP supports cross-platform compilation and di�erent
programing languages, so, easier for us to run di�erent programs/modules on di�erent
computers.

Link to human being, our brain controls our body through connections made by the
nervous system. The nervous system carries electrical impulses send action signals from
our brain to the body. We can imagine that YARP plays the role of the nervous system
to transfer signals (here, data bundles).

• Interactive Models

In our work, interactive models can be consider as a part of brain of our robot that
perceives the environment and produce actions signals to run the robot body.

For now, robot action events are generated by interactive models, which are learned from
HHI data or constructed by rules as described above. Some modules we provide for the
robot to run the RL/RI task including: arm and gaze are following described about,
head motions are driven by gaze events, eyelids are following speech and elevation of
eyes (see chapter 4). Backchannel events are generated from the LSTM-based interactive
model (in chapter 3).

• A Task Model

The robot should be provided a task model in order to manage the state of the interactive
scenarios. In the interactive scenario, there are repetitive sub-tasks needed to be run in
sequence. In order for the human-robot interactive scenarios to perform smoothly and
correctly, we propose to use Finite State Machine (FSM) that are used as a task model
to manager sub-tasks that used as a task model for running the autonomous robot. The
FSM is implemented on Nodejs and described in detail in appendix (see section B).

• Perception Modules

Perception modules provide inputs for the interactive models.

For interacting basically the RL/RI scenario, input streams of the interactive model
generating backchannels include speech activities of the robots (the robot's speech events
are driven by FSM and speech activities of human subjects recognized by Google Cloud
Speech API through web-sockets communication protocols using a JavaScript framework
(named yarp.js) [Cil17].

A video demonstrating the basic autonomous robot is available via the gipsa-lab website1.
It shows the robot giving instructions to the human partner, leading the learning step of words
4 by 4, and then validating the answers when they are correct, either in the free recall or in
the indexed recall steps. The robot uses the tablet in its hand, clicking to tablet to express
making scores, gazing to it or to the user, etc.

1http://www.gipsa-lab.fr/projet/SOMBRERO/videos.html

http://www.gipsa-lab.fr/projet/SOMBRERO/videos.html
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Figure 5.4 � Autonomous robot performing RL/RI task with human subject using rule-based
model. Speech recognition uses the Google Cloud Speech API.

5.2.3 Comments

For the RL/RI scenario, backchannels of the interviewer often overlap with subjects' speeches.
Therefore, in order to emit these backchannel adequately, an incremental speech recognition
module should be used to react in real-time to relevant subjects' utterances. For now, we
have been used Google Speech Recognition API in synchronous mode which performs recog-
nition on speech audio data sent to the server whenever a subject �nish speaking. Therefore,
backchannels generated from the LSTM model are seem delayed. In future, we should use a
streaming recognition that provides interim results while subject is still speaking. Another
solution is to develop a End-of-Utterance (EoU) prediction...

For conceptual design of gazing behaviors, for now, we assume that subjects' face is located
in a speci�c place in 3D space in front of the robot. As a consequence, human subjects can
feel robot does not actually look at them. In future, in order to engage with human subjects,
the robot should be provided a face detection module to capture locations of subjects' face to
gaze at right position.

In fact, the rule-based autonomous robot is just made to interact basically with human
subjects. It is not designed to adapt behaviors to di�erent people with di�erent characteristics.
In the next section, we describe the challenges and our approaches to step-by-step increase
the behaviors and achieve a mature autonomous with higher social level in future.
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5.3 Challenges remaining to achieve a widely acceptable au-
tonomous robot

This section overviews these challenges that we still face to get a mature robot with high social
levels to interact naturally and adaptively with di�erent subjects. These challenges are:

1. Modeling of users' pro�les: The robot should adapt its behaviors according to human
subjects.

In order for the robot to be acceptable by a wide range of humans, the robot should adapt
its behaviors to di�erent subjects. For example, the robot should change its speech's
tone, volume or speech of body movement, etc. in concordance with users' personality
and preferences [TM08]).

A large set of interactive data should be collected to cover statistically signi�cant social
factors such as gender, culture, etc. so that the interactive models can capture these
aspects. Using such large HHI data to run HRI faces a challenge of scaling from human
demonstrators to the robot in term of di�erent perception and action abilities (the
corresponding problem). As a consequence, the cost of semi-automatically annotation
(see chapter 2) will be really expensive and time-consuming. Therefore, we need more
automatic way of annotating interactive data in order to reduce the time-consuming
task of hand-crafted annotations.

2. Transferring actions from human teacher to the robot: There exists unnatural be-
haviors due to di�erent durations of robot actions and human actions when adapting
scenarios from HHI to HRI.

In chapter 4, in order to cope with limitations of the robot action abilities, we proposed
new scenarios (e.g. using tablets instead of paper sheets). However, there are di�erent
durations between robot actions and human actions. Therefore, if we use directly HHI
to drive passively autonomous robot, some action events can be delayed. This causes
the robot to perform unnatural behaviors. To avoid this problem, we chose adapted
actions of robot (see chapter 4) so that their duration time are shorter than those of
human actions, but this is just temporal solution. In fact, in order to solve radically this
problem, we should collect data directly from human-robot interaction where human is
in-the-loop to handle when action events of the robot should be triggered.

3. Transferring perception: Scaling from human to robot in term of perceptive abilities

Although there are breakthrough of Arti�cial Intelligence (AI) in image, speech recog-
nition, robot's perceptive abilities are still far from human levels. Particularly, when
teaching robot, human teacher should be aware if the learner (the robot) could under-
stand/ capture what human are currently doing/saying/looking at or not. This problem
requires the learning framework to scale from humans' perceptive abilities to robot per-
ceptive abilities. So, the learning framework should give the teacher feedback on what
the robot perceives and what is not seen/perceived/understood. However, it would be
quite di�cult (or even cognitively impossible) for the human teacher to handle both
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the interaction with human subjects and at the same time to track and react to the
level of perception achieved by the robot sensors/algorithms. To solve this problem, the
learning framework should smoothly enable the human teacher to teach/correct part-
by-part of the multimodal modalities so that the human teacher can actually handle the
multi-tasking problems.

Figure 5.5 � Collecting Human-Robot Interaction data with immersive teleoperation, com-
bined with FSMs. A human pilot picks realtime decisions and actions through the robot
body/sensors

The two �rst problems are mainly related to the interactive data, particularly, how to
collect a large amount of data that are comparable with the robot's active abilities and to
capture properties of actions corresponding to di�erent users' pro�les.

Collecting data from HHI is not straightforward, and complexity their reuse by robots
due to corresponding problem. To solve these problems, we propose to collect interactive

data by an immersive tele-operation system that enables human-to-human interaction
naturally through the robot body (robot-mediated interaction). This system allows the robot
to observe directly which and when interaction events occur, but also to record how this is
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translated into interaction signals: the ones that should be synthesized by an autonomous
robot. Therefore, the interactive data, in fact, are collected from the robot's point of view
and matches a real, e�cient, solution with the sensors/actuators of the involved robot, thanks
to embodied demonstration performed by the human pilot, in the same usage context that
the planned HRI. This might enable a humanoid robot to learn faster as well as reduce

time-consuming data annotation. The next section will detail the immersive teleoperation
system used to collect interactive data more comparable with the robot abilities.

In the next section, we will present a speci�c WoZ system: the immersive teleoperation
system (called Beaming, developed by Gomez et al [G.G+15] in our Gipsa-lab) and detail
how to use the Beaming system for the robot performing the RL/RI scenario (see Figure 5.5)
in order to collect e�ective HR interactive data. Also, we propose a method to evaluate the
Beaming system before using it to record interactive data.

5.4 Bene�ts of the Wizard of Oz approach

In fact, there exist various behaviors of human subjects when interacting with social robots:
some will be interested by the robot while some feel anxious about them; some may have
high expectations on robots because they do not have any preconceptions about the robot
capabilities and can be disappointed by faulty behaviors from the robot. Therefore, humans

should be in the loop during the robot training in order to avoid unexpected behaviors
from users caused by the robot limitations/appearance as well as to collect natural data
between human and robot interaction: a model has to be learned in a situation/context

matching its future use. One common technique to enable human remotely operating
robots is Wizard-of-Oz (WoZ) technique. The technique refers to a person remotely controlling
a robot interacting with its environment such as navigation, verbal, non-verbal behaviors, etc.
WoZ enables researcher to simulate capabilities for autonomous robots that are not fully
developed or do not exist yet.

There are many bene�ts of conducting Wizard of Oz in HRI. One of the purposes is to test
and evaluate a simulated target robots. Actually, using WoZ is more human-human interaction
via a robot body than human-robot interaction. Therefore, the WoZ interaction also could be
used to simulate a target robot for measuring acceptability as well as suggesting re-designs.
Another purpose of WoZ is to collect interactive data of both Wizard and users. The data
can be used to analyze users' behaviors in front of the robot. Also, the data can be used to
train multimodal interactive models to achieve an autonomous robot version.

There are several ways that a Wizard can drive robot movements such as joystick for
navigation [GHE04], camera capturing key joints for robots' body movements [OKA06], or
even drive by kinesthetic driving where the robot is physically guided by human. The WoZ
methods are usually used to drive low-level motor skills or tasks where a Wizard forcus on
single interactions/skills. For multimodal interactive behaviors, a WoZ system that should not
divert the cognitive resources of the wizard from its main task, the targeted interaction with
his/her human partner, nor delay the action/reaction times. Typing on a keyboard to let the
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robot speak or using a joystick to orientate the head/gaze will not generate the human-like
expected reaction times or humanoid head trajectories.

We use here an immersive teleoperation system, called Beaming to collect multimodal
interactive data. The Beaming stands for Being in Augmented Multimodal Naturally

Networked Gatherings, which was �srt introduced by Steed et al [Ste+12], and was de-
veloped in our Gipsa-lab by Gomez et al [G.G+15] for an iCub-humanoid robot. With the
Beaming system, a Wizard (pilot) is limited to use the robot's own sensors and body to control
robot actions. Here, the pilot can drive naturally motions of head, gaze and mouth and speech
of the robot to interact with humans as if (s)he were in the robot place. Therefore, the pilot
can handle complexed situations when the robot interacts with human subjects.

In this section, we detail the immersive teleoperation system and how to setup the system
to collect interactive data of the RL/RI scenario. We also describe our plan to evaluate the
system.

5.4.1 The Beaming System

As mentioned before, the immersive teleoperation system implemented in our robot is called
Beaming technique. The technique is the name of a process that allows a human pilot to trans-
fer him/her-self immediately from one physical place to another body (here, the robot body)
in another place. The aim of the Beaming technique is to enable a pilot to feel the strong sen-
sation of ownership regarding his/her body represented by the robot (a.k.a. Embodiment).
The technique involves two simultaneous parts:

1 Teleoperation, to drive robot actions directly by the pilot's actions, physiological states
and emotions;

2 Immersion, by streaming visual, audio, spatial and context information back from the
distant destinations [Gom+15].

In particular, the beaming technique allows the real-time remapping of the pilot's movements
to the robot's degrees of freedom so that the robot could mimic the pilot movements. At the
same time, the beaming makes it possible for the pilot to sense the scene of the robot local
environment thanks to a head-mounted headset worn by the pilot (as seen in Figure 5.6). The
pilot can perceive the robot environment through the videos from the cameras embedded in
the robot eyes and the stereo sound captured by the microphone inside each robot ear.

An advantage of the immersive teleoperation technique is that it can guarantee actions
from the human pilot that can be performed by the robot, which solves immediately the
problem of scaling HHI to HRI in term of action skills. For example, during Beaming process,
a pilot should drive his head motions in order to adapt to the limited velocity of the robot
neck as well as to the limited range of joints.

Figure 5.6 illustrates the Gipsa-lab Beaming system, already described in [G.G+15]. A
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(a) Training with joint perception and action streams

(b) Qualysis R© mocap system capturing mouth movement

Figure 5.6 � Immersive teleoperation system used to collect interactive data for the RL/RI

head mounted display (HTC Vive) displays views of the robot eyes cameras to the pilot and an
eye tracking SensoMotoric Instruments (SMI) is used to track his eye movements. Earphones
are used by the pilot to hear sound from robot ears microphones. A Qualysis R© motion capture
system captures the pilot's mouth movement to drive robot mouth articulation movements,
while a microphone allows to transfer his voice to the speaker located behind the robot's
mouth.

5.4.2 Enhancing the system for the RL/RI scenario

In the RL/RI scenario, a pilot will interact with a human subject for around 20 minutes
per test. Therefore, keeping the scenario running smoothly is really important to get natural
interaction data between the robot and the human subject. So, the human pilot needs infor-
mation of sub-tasks of the scenario as well as scores which the human subjects are achieving
in order to anticipate actions and give rewards to encourage the human subject. To do that,
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we use the �fake� tablet with a virtual-reality marker to display necessary information for the
pilot. With an autonomous robot the fake tablet ensures that human subjects �trust� the
robot, but with WoZ, the tablet actually provides useful information for the pilot to conduct
the scoring as well as to perform more natural interactions. One example of information (16
items words, scores, and state of the scenario), which is displayed on the virtual tablet, is
shown in Figure 5.8 (a) & (c).

Figure 5.7 � An example of the robot using the Beaming system performs the RL/RI scenario.
In the picture, the robot is performing its arm clicking behavior (triggered by a mouse-clicking
action of a human pilot) on its �fake� tablet when a human subject give a correct answer.

While the Beaming system just enables the pilot to drive the robot head (neck, gaze, mouth
and eyelids), we implement here an additional mouse-control to drive the robot arm

with clicking movements. as shown in Figure 5.7. With the additional arm movements, we
expect that the robot will be perceived more natural and engaged by human subjects rather
than just using only head movements.

5.4.3 Evaluating the Immersive Teleoperation system

In future, in order to collect the most natural data of the robot interacting with elderly people,
we need to verify that our beaming system is adequate. Not only should it be comfortable for
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the human pilot (low cognitive load, no dual task e�ect...), but also we must verify that the
pilot behaviors is reproduced smoothly by the robot and perceived correctly and timely

by the users facing the robot. In this section we propose a simple way to evaluate the
system.

There are three methods to measure telepresence systems (e.g. virtual/robotics agents)
including subjective measures, behavioral measures and physiological measures [Ins03], which
may be used to measure human-robot interactive systems:

• Subjective evaluations usually rely on using post-immersion questions. The advantage of
the method is that the questions are designed to directly measure the concept we propose
to measure. However, the post-immersion questionnaires have the major disadvantage
that they do not measure time-varying results and are by nature more biased by events
toward the end of the immersion.

• Behavioral measures are methods measuring participant feeling by observing behaviors
of participant (e.g. participant's movements and postures). These methods can be
e�ected by biases of experimenters (e.g. people, who already used a previous similar
system maybe feel familiar than other people who have not any experience on the same
systems).

• There are plenty of physiological techniques that can be used to measure HRI systems.
For example, change in heart rate, with either increasing or decreasing heartbeats per
time unit, can be used to analyze some state of a person such as stress, fear, emotion,
etc. Change in skin conductance will track the level of conductivity of one's skin and
can be used to measure the degree of stress.

Physiological measures are more objective than subjective measures and behavioral measures
because they are continuous measure. However, the physiological levels can vary broadly from
person to person.

We would like to evaluate the Beaming system in several aspects:

1. comfortable for human pilot,

2. e�ectiveness of the system,

3. acceptance from human subject.

Because behavioral and physiological measurements are quite expensive to setup experiments,
in this work, we propose an evaluation which combines both subjective evaluation using ques-
tionnaires and objective evaluation to rate the e�ectiveness of the immersive teleoperation
system.
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5.4.3.1 An Evaluation Framework

Here, we design an evaluation framework to evaluate the Beaming system which will be used
by a real neuro-psychologist in future to collect interactive data for the RL/RI scenario.

The evaluation framework is illustrated in Figure 5.8 (a). Each participant will use the
Beaming system to control the gaze and/or head orientation of a robot in an �identify and
click� task. They will wear a Virtual Reality headset to see through the robot cameras eyes,
and to let the robot potentially imitate their head movements. In their �eld of view, they
can �nd a screen displaying a word (the target word, as in Figure 5.8) (b), and a virtual
tablet with a list of words (shown in 5.8 (c)), including the target word. The task requires
participants to look at the screen to read a target word, and then to click on the same word
in the list on the virtual tablet display. We want to capture here objectively the time delay
between subject's eyes capturing an item in the item screen and clicking event at the item in
the virtual tablet. We expect that the shorter delays, the more comfortable the participant
as well as more e�ective system may be. For rating acceptable aspect, we design questions for
the participants.

Each participant will perform three conditions of the beaming:

• Fixed Head & moving gaze

• Fixed Gaze & moving head orientation

• Both movable: head & gaze

5.4.3.2 Item selection

In each condition, 16 selected items will be tested in two rounds. The distance between two
consecutive testing items will follow uniform distribution which cover all of distance in the
table of items as shown in Figure 5.9. The items are sorted and merged to be balanced in
order and avoid that two neighbor items are in consecutive tests, as shown in Figure 5.10.

5.4.3.3 Illustrative Examples of Evaluating Data

1Figure 5.11 illustrates eyes and head movements of a participant performing the clicking-
beaming evaluation in the three conditions. In the �xed head condition, the gazes move with
higher amplitude (gaze-1 and gaze-2) and the time for �nishing the test is the largest one from
the three conditions due to the large saccade errors. In the �xed robot eyes condition, the
head just seems to move to one position (see Figure 5.11 (b) so that the participant can see
the items from the 2 sources (tablet and desktop screen) in the head-mounted display screens.
At that time, he tries to do his best to just move his eyes to see the displayed item and
click. Therefore, the duration time for this test become shortest. Finally, with movable both
of eyes-head conditions, the participant move both head and eye at the same time. Because
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(a) Schematic modal of a beaming evaluation

(b) A target word, as seen on the screen (c) The list of words on the virtual tablet,
where the target word should be found and
clicked

Figure 5.8 � Beaming evaluation using a virtual tablet (c) and a screen for items (b)
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Figure 5.9 � Distributed distance between two consecutive items

Figure 5.10 � The items are sorted and merged to exhibit a balanced order

of latency between the participant eyes movement and the display from robot camera, the
participant tend to move slower his/her eyes so that the head will contribute more largely in
gazing targets as is the case when human gaze with their own head/eyes.

The evaluation system is ready to perform: in near future, we will have more data to
analyze and validate the Beaming system performances before its use to collect interactive
data.

5.4.4 Comments

The evaluation framework focused on pilot's point-of-view, which measures the e�ective of
the Beaming system. In future, we also can measure acceptance of the Beaming system in
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(a) Eye movements (b) Head movements

Figure 5.11 � Gaze and head movement of a subject in clicking-beaming evaluation

subject's point-of-view, in which participants interacting directly with the robot controlled
by a professional human pilot.

5.5 Conclusion

In this chapter, we discuss our perspective on how to build autonomous robots that can
perform the short-term interactions. For now, the robot has been able to replicate the PTT
scenario, in which actions are generated from interactive models as well as from interactive
data. We discuss our strategy to build perception modules and evaluate required modules
(gesture controllers and interactive models) so that the robot can collaborate with human
naturally and e�ectively in future.

For RL/RI scenario, a basic autonomous robot is built with rule-based models to drive
gaze, arm, speech while backchannels are generated by interactive models; and a speech recog-
nition system is used to provide inputs for the interactive models. We also presented the
challenges we are facing to achieve a more mature autonomous system with higher social
levels.

Most of the challenges are concerned by interactive data. In order to progress against
these limitations, we propose to apply immersive teleoperation system, which are integrated
with Finite State Machine to collect naturally interactive data for HRI.

The immersive teleoperation system allows a pilot (e.g. a neuro-psychologist) to interact
with human subject through the robot body. In fact, the human pilot can perceive the scene
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through robot eye cameras and ear microphones. At the same time, (s)he can drive the robot
verbal and nonverbal behaviors such as head, gaze and arm movement. Therefore, the pilot
can control robot to adapt its behaviors when interacting with di�erent subjects. We also
present how to evaluate the immersive teleoperation system before using it to collect the
interactive data.

In fact, with the immersive teleoperation system, the interactive data could be more natural
for teaching the robot how to perform social interaction, with more variability. However, it
still has di�culties in scaling from human perception abilities to the robot abilities. The
pilot would have di�culties at the same time interacting with human subjects and care what
the robot can learn. We will discuss a semi-autonomous robot which shares control between
human pilot and the robot in the next chapter. Therefore it can reduce loading of the human
pilot and enable the pilot to focus on the robot perception limitations.





Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This thesis main concern/goal is about a humanoid robot that can interact naturally with
humans through verbal and co-verbal behaviors. We propose here a learning framework

that enables a humanoid robot to learn multimodal interactive behaviors from human
coaches, which we detail and use with 2 short-term interactions and dedicated behavior models,
with a �nal demo implementation on the iCub robot.

The learning framework includes three main parts: (1) collecting interactive data of mul-
tiple modalities (speech, head, arm, gaze, etc.) from human-human interaction (HHI) and
process the data to get events and features that can be scaled to HRI; then (2) build mul-
timodal interactive behavioral models, which can capture both inter- vs. intra-coordinations
between the modalities of interactions (e.g. speech, arm, gaze, head motions, etc.) to gen-
erate actions from perception streams; �nally (3) make gesture controllers to execute actions
generated from the models.

We focused on short-term interactions in order to collect more easily enough interactive
data to train interactive models. We selected here two short-term interactive scenarios,
which our robot will be involved:

Collaborative performative task The �rst scenario is �Put That There� (PTT), in which
the robot will play the role of an instructor who instructs manipulator to move cubes.
This scenario requires the robot to perform precise coordination between speech and
other non-verbal behaviors (arm pointing, gaze attention, etc.). The intra-coordinations
concerns the time relations between triggered events of the robot's speech and its gaze
and arm movements. In contrast, the inter-personal coordinations concern the robot's
sensitivity to the actions of its human partner (here, manipulator's arm movements). By
these multimodal interactions, the manipulator is expected to better perceive the robot's
instructions than ones given by unimodal interaction (e.g. just by speech). Therefore,
the collaborative task can be performed more e�ciently.

Interview The second task is a neuro-psychological test, namely a Selective Reminding Test
(French RL/RI). In this task, the robot plays the role of a neuro-psychologist who
interviews elderly people to diagnose potential Alzheimer disease. This task requires the
robot to perform not only adequate verbal and nonverbal coordinations but also mimic
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professional skills of the psychologist to keep engagement of the subjects and encourage
them to foster their memory. In particular, the right choice and timing of backchannels
play an important role.

Multimodal data collected during HHI experiments are then processed to get useful fea-
tures for training multimodal interactive behavioral models. We compared performance of
Long-Short Term Memory (LSTM), a Deep Learning method, with that of statistical models,
previously developped in the laboratory, to construct interactive models. The LSTM-based
techniques are used to generate discrete events (gaze, arm, interaction units for the PTT
scenario, backchannels for the RL/RI scenario) as well as continuous variables (head mo-
tions for the PTT scenario). Compared with the statistical methods, LSTM generates

not only better prediction performance but also provides better coordinations

between multimodal streams (measured by Coordination Histogram). These good results
are explained by the ability of LSTM to capture long-term time dependencies, which provide
decision layers with relevant contextual information. For head motion generation, we
proposed a cascaded LSTM model, which �rst uses one LSTM layer to predict gaze as an
intermediate task and a second LSTM to generate head motion. By this way, we explicitly
provide a causal relation between head and gaze.

We then build gesture controllers that are used to execute action events generated
from the interactive models. We also propose an online evaluation framework to de-

tect faulty behaviors of gesture controllers, and helps improving the models. The online
evaluation requires participants to continuously watch a video from the viewpoint of a sub-
ject interacting with the robot and just press a key (ENTER key) to signal faulty behaviors.
Time distribution of these �yuck� responses exhibits clear maxima that cue elementary faulty
behaviors that system devloppers can then handle. We evaluated the gesture controllers with
action events directly driven by HHI data in two versions of the robot: (1) an initial version;
(2) a corrected version that bene�ts from the correction of faulty behaviors identi�ed bythe
�rst assesment. We found that the corrected version e�ectively reduces the number of yuck
responses. This con�rms the e�ectiveness of the framework for detecting the robot's

faulty behaviors. By analyzing the post-hoc questionnaires and the free comments given at
the end of the test, we found that people seem to have higher expectations when the

robot is less faulty. For example, in the second experiment, participants usually comment
"why does the robot not smile?� or �it is better if the robot give a joke�, which did not usually
happen in the �rst experiment. In future, the same procedure can be used to actually rate
the autonomous robot with fully functional interactive models.

6.2 Perspectives

In order to build interactive behavioral models for the autonomous robot which would cope
with the di�erent users' pro�les, our learning framework faces many challenges. In this section,
we discuss some of them.
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6.2.1 Evaluation Framework

For now, while watching the video of robot behaviors, the participants just press a key to
signal the faulty behaviors and give their comments at the end of the video. Participants may
not remember all of faulty behaviors for giving comments. Therefore, the inverse engineering
step to annotate the faulty behaviors cannot be performed automatically. In the future, the
evaluation framework can be improved by enabling participants to signal the faulty behaviors
and give comments on-the-�y by selecting some options � e.g. select di�erent keys � or
pause-to-comment. In this way, we can annotate the faulty behaviors automatically or semi-
automatically without the bias induced by inverse engineering.

6.2.2 Collecting and Annotating Interactive Data

Collecting and processing data are important steps of our learning framework. These oper-
ations as well the scaling from HHI to HRI are time-consuming works. In our last chapter,
we proposed to use our new immersive teleoperation system which enables a pilot to interact
with a human subject through the robot body. By shaping the pilot's action of humans to
the sensorimotor abilities of the robot, we can collect directly suitable features for training in-
teractive models. Therefore, the time-consuming annotations and adaptation are signi�cantly
reduced.

6.2.3 Improving and Adapting Robots' Behaviors

In this section, we will describe our perspective on how to improve and adapt our robot
behaviors in the future.

6.2.3.1 Sharing Control

When a pilot teaches the robot his/her interactive behaviors, in fact, he/she should aware of
what the robot is able to perceive so that the pilot can provide adequate actions for the robot.
With full teleoperation, the pilot has di�culties in both handling natural interactions with
the human subjects and caring about robot perceptive abilities.

In order to solve this problem, it could be interesting to transfer smoothly perceptive abil-
ities from the human pilot to the robot. In this approach, the robot will take control over the
pilot part-by-part, starting with low-level autonomous levels to higher-level behaviors. This
technique can be found in literature as semi-autonomous teleoperation or shared autonomy,
or assisted teleoperation [Mas+15]; [HC18]; [Li+15]. This continuous adaptation of shared
control should enable the pilot to progressively concentrate on high-level cognitive abilities
and decision making, while the robot takes in charge the low-level sensorimotor abilities and
reactive behaviors. By the way, the robot will increase knowledge and abilities, therefore, the
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number of necessary teleoperator interventions will decrease over time [Mas+15]; [Mas+10];
[Shi+15].

6.2.3.2 Generating variably interactive behaviors

In fact, human behaviors (e.g. head motions) are quite various, complex and stochastic in
nature. However, for now, due to limited interactive data collected, we build here interactive
models that generate robot behaviors in a deterministic way (e.g. deterministic output of
discrete events/ continuous values). In future, in order to generate robot behaviors with
more variability, the interactive models should generate outputs in stochastic ways instead of
deterministic outputs. For example, an approach might combine LSTM and Gaussian Mixture
Model (GMM), in which LSTM will predict parameters of GMM (e.g. means, covariances),
then, the GMM is used to generate randomly outputs (as is the case of handwriting generation
in [Gra13])

6.2.3.3 Adapting the Interactive Models: Transfer Learning

When we release the robots to the world, robots should be able to learn new behaviors by
themself or update pre-trained interactive models in order to improve behavioral qualities.
How to make robots �exible enough to learn new skills and adapt to new environments (in-
teracting with new subjects) so that the robot can perform open-ended learning?

In fact, collecting a lot of real-world data to train robots performing multimodal interac-
tions is expensive and time-consuming. Therefore, robots should be able to learn new skills
that require just a few of new interactive data to perform new tasks based on prior knowledge
learned before. Transfer learning (TL) refer to techniques that enable a machine to learn a
new task (called target task) faster from an already learned task (called source task) (see a
survey of transfer learning in [PY+10]). Therefore, TL is a good choice to reduce the burden
of the collecting data. We discuss here several potential applications of transfer learning to
provide new skills for robots:

• Transferring tasks: Starting from a task already learned, a robot using TL can learn
new similar tasks faster [Ros14]. This is like human beings, e.g. one, who can play
guitar, is able to learn playing piano faster than another who does not have any skills
in musical instruments.

• Transferring styles: In order to be accepted by di�erent human subjects, the robot
should be able to change its behaviors according to di�erent user pro�les. A concept of
style embedding [Wan+18] could be used to encode di�erent types of interactive behav-
iors so that the robot can adjust its behaviors according to di�erent human subjects.

• Sharing knowledge between di�erent robots: For now, we just teach behaviors
for only one robot. However, if robots can share sensorimotor experiences and cognitive
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abilities to each other, this will foster learning new skills and enable robots to adapt
with di�erent human environments. TL is not only to help a robot learn new skills from
its own experiments but also can learn experiences from other robots [HS17]. This is
promising technique to enable robots to share knowledges to each other in order to learn
new skills faster to adapt with unstructured human environments.

• Atomic interactions: A very challenging issue is here to be able to segment the ob-
served or demonstrated behaviors into elementary skills that can be scaled from existing
ones or that are new and require explicit training. The concept of pragmatic frames
proposed by Vollmer et al [Vol+16] is quite similar to our interaction units and may
constitute an interesting bootstrapping framework.





Appendix A

Sensorimotor Calibration for Pointing

A humanoid robot has many degrees of freedom (DoF) with many sensors and motors as well
as other mechanical elements. Therefore, the limited accuracy of sensors or errors from mis-
alignment among mechanical parts can result in imprecise robot behaviors. In this appendix,
we present a sensorimotor calibration procedure that links gaze to index pointing. While
based on the inverse kinematics, it ensures that the robot actually points its hand/�nger more
precisely to the object's location to which it is gazing at (the robot points to where it looks).

There are three main approaches for sensorimotor calibration: model-based, model-free
and hybrid. Model-based methods require mathematical models of the robot kinematics as
well as models of the robot's eye cameras. These methods demand complex calculation and
precise calibrations of cameras and other sensors (e.g. position, velocity). In contrast, model-
free approaches use machine learning to map directly perception cues to motor commands
(e.g. from pixels to arm positions), but their precision depends on an extensive training set.
Hybrid methods combine both of above methods: a baseline uses mathematical models (e.g.
kinematic models) that is corrected by machine learning methods (e.g. neural networks).

There are also several ways to make the robot's arm point to the object location where the
eyes are gazing at (see Figure A.1). In our work, gaze-arm mapping (arrow (2)) for pointing
is performed by an hybrid method so that we can use available modules of our robot. More
precisely, the built-in Cartesian Controller module [Pat+10] provides the mathematical model
of the robot arm's kinematics as well as the inverse-kinematics model (mapping (5)). The
module computes commands for the robot' arm to perform pointing under a set of constraints
� here straight line relating its shoulder, index �nger and the pointed object � so that we
can easier collect a large of training data. The iKinGazeController [Ron+16] module provides
invert kinematics of the robot head (neck & eyes) as well as mapping (3) between 3D points
and pixels coordinates of the robot eye cameras. Based on the iKinGazeController, we built a
program called stereo-click that instructs the robot to gaze at a 3D position in space given
the pixel coordinates of the desired location on the two eye cameras.

We used a red laser pointer attached on the robot index �nger to spot where the robot is
e�ectively pointing at and further use the di�erence between the red spot on the eye cameras
and the desired target.

The Cartesian controller is �rst used to drive robot's arm to point at positions on a
chess board in front of the robot. Once the movement is performed, we collect the e�ective
pointed spot using the stereo-click program. We collect the position and orientation (xd, od)
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Figure A.1 � Di�erent possible approaches for mapping pointing gestures [Lem+13].

of end e�ector and 3D positions (xl) provided by the robot eye cameras using the pixel-to-3D
mapping (3). Finally, we use a nonlinear method (e.g neural network) to map (xl) and (xd, od)
(mapping 4a). This mapping to directly compute arm and wrist motions for pointing an exact
3D position by selecting pixels from the robot eye cameras (following mapping 3 and 4a).

(a) A horizontal view (b) A vertical view

Figure A.2 � Schematic model of arm pointing with laser spotter attached on the index �nger.

A.1 Comments

In this work, we perform a sensorimotor calibration of arm-gaze pointing gestures. The main
purpose of this calibration is to enable a better coordination between gaze and arm to perform
the PTT scenario, in which cubes are placed on a table in front of the robot. Therefore, the
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data that we collected here are positions of laser re�ection points in a chessboard attached on
a table. The same strategy can be used to calibrate the pointing gesture in an extended 3D
space by placing targets in di�erent positions in the sensorimotor working space of the robot.
This training could be performed incrementally and incorporate more DoF such as head and
torso movements.





Appendix B

Finite State Machine of the RL/RI

scenario

In the interactive scenarios, there are many repetitive sub-tasks and sequences of sub-tasks
that robots have to perform. In order the HRI scenarios to perform smoothly and correctly, we
used Finite State Machine (FSM) models: they describe the dialog as a series of conditioned
interactive sub-tasks.

In this appendix, we introduce FSM and their application to the modeling of the sub-tasks
of the RL/RI scenario.

B.1 FSM

FSM is an abstract machine that can be in exactly one of a �nite number of states at any
given time. The FSM can change from one state to another in response to some external
inputs; the change from one state to another is called a transition.

Figure B.1 � A simple FSM model of a Turnstile

An example of a simple FSM is a turnstile which is used in a subway station to rotate gate
with a coin receiver shown in �gure B.1. At the beginning, the machine is in the (locked) state
which does not allow to pass through. When a passenger inserts a coin, the machine switches
to the (unlocked) state that allows passing the gate. However, this simple FSM model does not
explicit all the turntile's behaviors. For example, what should happen when someone passes
through the gate without depositing a coin? Or what should happen if a coin is deposited
before the turnstile is locked. In both cases, the state of the gate should be inquired. The
�nal transitions of the detailed turnstile is shown in �gure B.2. A system could be modeled
by a FSM if it satis�es several conditions:
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Figure B.2 � A more detailed FSM model of a Turnstile

• The number of states of the system should be �nite

• There are a set of �nite events that trigger transitions between states

• The behavior of the system only depends on the current state and the current event
triggering that state.

• The system has an initial state

Each condition in the FSM corresponds to a logical state transition in the machine. At a
particular moment, the machine is only in one state and the state of machine will only be
changed to other state when an event is triggered.

B.2 FSM models of the sub-tasks of the RL/RI scenario

We built an FSM of the RL/RI scenario which is used by the robot to control the sub-tasks
of the scenario that includes 4 main phases: learning, testing, recognition and counting. The
FSM thus includes several sub-FSMs corresponding to each phase of the RL/RI scenario.

The sub-FSM of the learning phase is shown in Figure B.3. From an initial state, when
a �select group� event is triggered, the machine will change to the Selected Group state.
There, if a �select ID" event is triggered, the machine will switch to Identifying Items state.
At this state, some actions are to be executed: displaying the 4 items, scores made available
to the robot � or its pilot when teleoperated � so that the scoring sheet is updated when the
subject's answers are correct, etc. Then it goes to Immediate Recall state when a �select
IRC" event occurs: ready for the sub-task of the learning phase. When all items have been
found, a ��nish IRC� event is triggered. If the 4th group is �nished, a "�nish �nal group"
event is �red immediately and the FSM will turn to the Ready Counting Phase state that
is the initial state of the next sub-task FSM.

The FSM of Counting sub-task is shown Figure B.4. It has 4 states: Ready Counting

task, Counting, End Count and Done Count. When the state of the machine is Ready
Counting task and a �start count� even is triggered, the state is changed to Counting.



B.2. FSM models of the sub-tasks of the RL/RI scenario 137

Figure B.3 � A sub-FSM modeling the learning phase

From the Counting state, if a �Stop Count" event is triggered, the state will be changed
to End Count. From here, if a �count again" event is �red, the state will change back to
Ready Counting. This allows the counting task to be performed many times. Otherwise, if
a �done count" event occurs, the state will change to Done Count state. This is the end of
the counting task and the state is ready for the testing phase.

The testing phase includes 2 states, which is Free Recall andRelearn. When the machine
state is Free Recall and a �Re-learn" event is triggered, the state will turn to Relearn. From
here, if a �Finish re-learn� event is triggered, the state will turn back to Ready Counting

task. After visiting 3 times the Free Recall and Relearn states, the machine will change
to Ready Recognition step state. It's ready for the �nal phase of the scenario.

The �nal sub-FSM is designed for recognition phase as illustrated in Figure B.5. From
the state Ready Recognition step, if a �show word� event is triggered, the state will turn
to Show word state. At this time, if a �make score� event is �red, the state will turn to a
Subject answered state. From this state, if �show word" event is triggered, the machine
will come-back to the �Show word� state. This is performed repeatedly until 48 words are
tested. An event �Finish 48 words� is then triggered and the system switches to End Test

state.
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Figure B.4 � Sub-FSMs of counting and testing phase

B.3 Comments

The Finite State Machine (FSM) module was developed to manage the sub-tasks of interactive
scenarios, which can be used for both autonomous robots and WoZ systems. It not only
keeps the interaction running smoothly by informing the pilot about the state of the scenario,
but also compensates for the limitation of the Beaming system such as controlling the arm
movements. For example, in the RL/RI scenario, when the pilot wants to mark scores for
the subject's answer, he/she just clicks on a virtual tablet (where the state information is
displayed) and the system takes in charge the sets of actions to be performed by the robot, such
as selecting the right position on the robot's tablet to click with the arm gesture controller.
Furthermore, in the autonomous version, the gaze is also driven to anticipate the targeted
clicking area. Thus, the FSM is used as a hybrid interaction strategy controller [Seq+16],
playing the role of a planner to drive autonomous robots.
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Figure B.5 � A sub-FSM of recognition phase
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Resumé/Abstract

Résumé � Un robot d'assistance sociale (SAR) est destiné à engager les gens dans une inter-
action située comme la surveillance de l'exercice physique, la réadaptation neuropsychologique
ou l'entraînement cognitif. Alors que les comportements interactifs de ces systèmes sont
généralement scriptés, nous discutons ici du cadre d'apprentissage de comportements interac-
tifs multimodaux qui est proposé par le projet SOMBRERO. Dans notre travail, nous avons
utilisé l'apprentissage par démonstration a�n de fournir au robot des compétences nécessaires
pour e�ectuer des tâches collaboratives avec des partenaires humains. Il y a trois étapes prin-
cipales d'apprentissage de l'interaction par démonstration: (1) recueillir des comportements
interactifs représentatifs démontrés par des tuteurs humains; (2) construire des modèles des
comportements observés tout en tenant compte des connaissances a priori (modèle de tâche
et d'utilisateur, etc.); et ensuite (3) fournir au robot-cible des contrôleurs de gestes appropriés
pour exécuter les comportements souhaités. Les modèles multimodaux HRI (Human-Robot
Interaction) sont fortement inspirés des interactions humain-humain (HHI). Le transfert des
comportements HHI aux modèles HRI se heurte à plusieurs problèmes: (1) adapter les com-
portements humains aux capacités interactives du robot en ce qui concerne ses limitations
physiques et ses capacités de perception, d'action et de raisonnement limitées; (2) les change-
ments drastiques des comportements des partenaires humains face aux robots ou aux agents
virtuels; (3) la modélisation des comportements interactifs conjoints; (4) la validation des
comportements robotiques par les partenaires humains jusqu'à ce qu'ils soient perçus comme
adéquats et signi�catifs. Dans cette thèse, nous étudions et faisons des progrès sur ces quatre
dé�s. En particulier, nous traitons les deux premiers problèmes (transfert de HHI vers HRI)
en adaptant le scénario et en utilisant la téléopération immersive. En outre, nous utilisons des
réseaux neuronaux récurrents pour modéliser les comportements interactifs multimodaux (tels
que le discours, le regard, les mouvements de bras, les mouvements de la tête, les canaux). Ces
techniques récentes surpassent les méthodes traditionnelles (Hidden Markov Model, Dynamic
Bayesian Network, etc.) en termes de précision et de coordination inter-modalités. A la �n
de cette thèse, nous évaluons une première version de robot autonome équipé des modèles
construits par apprentissage.

Mots clés : Socially Assistive Robot, Comportements Interactifs Multimodaux, LSTM,
Téléopération Immersive, Apprendre par Démonstration

Abstract � A socially assistive robot (SAR) is meant to engage people into situated in-
teraction such as monitoring physical exercise, neuropsychological rehabilitation or cognitive
training. While the interactive behavioral policies of such systems are mainly hand-scripted,
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we discuss here key features of the training of multimodal interactive behaviors in the frame-
work of the SOMBRERO project. In our work, we used learning by demonstration in order to
provide the robot with adequate skills for performing collaborative tasks in human centered
environments. There are three main steps of learning interaction by demonstration: we should
(1) collect representative interactive behaviors from human coaches; (2) build comprehensive
models of these overt behaviors while taking into account a priori knowledge (task and user
model, etc.); and then (3) provide the target robot with appropriate gesture controllers to ex-
ecute the desired behaviors. Multimodal HRI (Human-Robot Interaction) models are mostly
inspired by Human-Human interaction (HHI) behaviors. Transferring HHI behaviors to HRI
models faces several issues: (1) adapting the human behaviors to the robot's interactive ca-
pabilities with regards to its physical limitations and impoverished perception, action and
reasoning capabilities; (2) the drastic changes of human partner behaviors in front of robots
or virtual agents; (3) the modeling of joint interactive behaviors; (4) the validation of the
robotic behaviors by human partners until they are perceived as adequate and meaningful. In
this thesis, we study and make progress over those four challenges. In particular, we solve the
two �rst issues (transfer from HHI to HRI) by adapting the scenario and using immersive tele-
operation. In addition, we use Recurrent Neural Networks to model multimodal interactive
behaviors (such as speech, gaze, arm movements, head motion, backchannels) that surpass
traditional methods (Hidden Markov Model, Dynamic Bayesian Network, etc.) in both accu-
racy and coordination between the modalities. We also build and evaluate a proof-of-concept
autonomous robot to perform the tasks.

Keywords: Socially Assistive Robot, Multimodal Interactive Behaviors, LSTM, Immer-
sive Teleoperation, Learning by Demonstration
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