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Abstract
Impurity transport is an issue of utmost importance for tokamaks. One reason
is the choice of tungsten for ITER divertor. Indeed high-Z materials are only
partially ionized in the plasma core, so that they can lead to prohibitive radiative
losses even at low concentrations, and impact dramatically plasma performance
and stability. On-axis accumulation of tungsten has been widely observed in
tokamaks. While the very core impurity peaking is generally attributed to neo-
classical effects, turbulent transport could well dominate in the gradient region
at ITER relevant collisionality. The transport of low and medium-Z impurities
also results from both neoclassical and turbulent transport. Up to recently, first
principles simulations of corresponding fluxes were performed with different ded-
icated codes, implicitly assuming that both transport channels are separable and
therefore additive. The validity of this assumption can be questionned.
Preliminary simulations obtainedwith the gyrokinetic codeGYSELA have shown

clear evidences of a neoclassical-turbulence synergy for impurity transport. How-
ever no clear theoretical explanation was given. New simulations have been
done using a new and more accurate collision operator, improved boundary con-
ditions and more flexible sources. The new simulations confirm the neoclassical-
turbulence synergy and allow identification of a mechanism that underly this syn-
ergy.
Turbulence can induce poloidal asymmetries. An analytical work performed

during this thesis allows to compute the level and the structure of the axisym-
metric part of the electric potential knowing the turbulence intensity. Two mecha-
nisms are found for the generation of poloidal asymmetries of the electric poten-
tial: at large frequencies, flow compressibility is a key player for the generation
of poloidal asymmetries. In this case a sin θ structure is predicted as in the case
of GAMs. For lower frequencies, the ballooning of the turbulence is instrumental
in the generation of the poloidal asymmetries. In this case, a cos θ structure is
predicted.
A new prediction for the neoclassical impurity flux in presence of large poloidal

asymmetries and pressure anisotropies has been derived during this thesis. It
turns out that both banana/plateau and Pfirsch-Schlüter contributions are signif-
icantly impacted by the presence of large poloidal asymmetries and pressure
anisotropies. A fair agreement has been found between the new theoretical
prediction for neoclassical impurity flux and the results of a GYSELA simulation
displaying large poloidal asymmetries and pressure anisotropies induced by the
presence of turbulence.
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Résumé court
La compréhension du transport d’impuretés dans les tokamaks est cruciale. Une
des raisons vient du choix d’utiliser du tungstène pour le divertor d’ITER. En ef-
fet, les noyaux lourds ne sont que partiellement ionisés dans le cœur du plasma,
ils peuvent alors fortement rayonner et entrainer une diminution importante de
la qualité du plasma. Une accumulation des impuretés au cœur du plasma
est souvent observée au sein des tokamaks. Cette accumulation est souvent
attribuée à la physique néoclassique mais le transport turbulent pourrait bien
dominer dans la zone de gradient dans ITER. Dans le cas des impuretés légères,
les transports néoclassique et turbulent sont du même ordre de grandeur dans
les machines actuelles. Jusqu’à récemment, le calcul des flux néoclassique
et turbulent étaient réalisés de façon distincte, supposant implicitement que les
deux canaux de transport sont indépendants. On peut se demander si cette
hypothèse est valide.
En effet, des simulations préliminaires obtenues avec le code gyrocinétique

GYSELA ont montré l’existence d’une synergie entre transports néoclassique
et turbulent dans le cas des impuretés. Mais la compréhension théorique de
cette synergie était manquante. Des simulations utilisant un nouvel opérateur de
collision, des conditions aux limites plus réalistes et des sources plus flexibles
ont été réalisées. Ces simulations ont permis de confirmer l’existence d’une
synergie et un mécanisme permettant sa compréhension a été trouvé.
La turbulence peut générer des asymétries poloidales. Un travail analytique

réalisé pendant cette thèse permet de prédire le niveau et la structure de la par-
tie axisymétrique du potentiel électrique. Deux mécanismes sont à l’origine des
asymétries poloidales du potentiel électrique: à haute fréquence, la compress-
ibilité du flot est à l’origine de l’asymétrie et la théorie prédit une structure en
sin θ comme dans le cas des GAMs. Pour les fréquences plus basses, le bal-
lonnement de la turbulence engendre l’asymétrie poloidale. Dans ce cas une
structure en cos θ est prédite par le modèle analytique.
Une nouvelle prédiction du flux d’impureté néoclassique en présence d’asymétries

poloidales et d’anisotropie de la pression a été réalisée. Il s’avère que les con-
tributions banane/plateau et Pfirsch-Schlüter sont fortement impactées par la
présence d’asymétries poloidales et d’anisotropie de la pression. Un bon ac-
cord a été trouvé entre la nouvelle prédiction et une simulation réalisée avec
GYSELA pour laquelle la turbulence est à l’origine des asymétries poloidales et
de l’anisotropie de la pression.
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Résumé long
Les étoiles sont alimentées par l’énergie dégagée par les réactions de fusion.
La fusion est la réaction de deux noyaux légers pour produire un noyau plus
lourd. Les réactions de fusion libèrent énormément d’énergie en comparaison
des réactions chimiques. La réaction la plus facile à obtenir sur Terre est la
fusion du deutérium avec le tritium.
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Cette réaction produit un noyau d’hélium, un neutron et libère 17.6 MeV par
réaction ce qui est considérable. Le deutérium est présent en quantités quasi
illimitées sur Terre. Les réserves en tritium sont en revanche faibles (quelques
dizaines de kilogrammes) dû à la radioactivité de cet isotope de l’hydrogène.
Heureusement il est possible de générer du tritium en bombardant du lithium
avec des neutrons énergétiques comme ceux produits par les réactions de fu-
sion. La fusion du deutérium avec le tritium nécessite des températures de
l’ordre de 100 millions de degrés.
Dans ces conditions extrêmes l’état de la matière est un plasma: les élec-

trons sont totalement découplés des noyaux (au moins pour les plus légers). Un
plasma peut être considéré en première approximation comme un gaz sensible
au champ électromagnétique. Cette sensibilité vient du découplage des élec-
trons et des noyaux rendant le plasma conducteur. La sensibilité du plasma au
champ électromagnétique peut être utilisée pour le confiner. Plusieurs types de
pièges électromagnétiques ont été testés. En l’état actuel des connaissances le
tokamak est le dispositif le plus prometteur pour générer les conditions néces-
saires pour produire des réactions de fusion contrôlée sur Terre. Le tokamak
ITER, qui sera de loin le plus grand tokamak au monde, est actuellement en
construction sur le site de Cadarache.
Le tokamak est un piège magnétique qui repose sur le fait que des particules

chargées en présence d’un champ magnétique effectuent un mouvement de gi-
ration autour des lignes de champ magnétique (en première approximation). Si
les lignes de champ se referment sur elle-mêmes, on a alors créé un piège mag-
nétique. Le champmagnétique principal du tokamak est donc un champ toroidal
imposé par des bobines extérieures. Cependant, il existe une vitesse de dérive
magnétique lorsque le champ magnétique n’est pas homogène. Dans le cas
d’un piège magnétique purement toroidal, cette dérive est verticale et dépend
du signe de la charge de la particule. Cette dérive verticale détériore fortement
le confinement en créant une séparation de charge qui conduit finalement à une
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expulsion du plasma vers l’extérieur du tokamak via une dérive électrique. Pour
compenser la séparation de charge engendrée par la dérive magnétique, un
champ magnétique secondaire dans la direction poloïdale est ajouté au champ
principal. Ce champ poloïdal, généré par le courantcirculant dans le plasma,
permet de connecter magnétiquement le haut et le bas de la machine et limite
fortement le déconfinement lié à la dérive verticale. Ce piège magnétique per-
met de confiner les particules chargées dans une zone délimitée de l’espace
(l’intérieur du tokamak). Une fois le confinement assuré, il est possible de chauf-
fer le plasma en injectant de l’énergie au sein de la machine notamment avec
l’utilisation d’ondes. On atteint ainsi des températures suffisantes pour que les
réactions de fusion puissent avoir lieu.
Un plasma de fusion parfait est composé uniquement de deutérium, de tri-

tium et d’électrons. Toute autre espèce est considérée comme une impureté.
Les impuretés peuvent provenir des réactions de fusion (hélium), être injectées
pour l’opération de la machine (par exemple de l’argon) ou encore venir des
parois du tokamak (cas typique du tungstène W). Les impuretés ont deux ef-
fets néfastes sur les performances d’un tokamak. Tout d’abord elles diluent les
réactifs et diminuent ainsi le nombre potentiel de réactions de fusion. Ensuite
les impuretés lourdes (comme le W) ne sont pas totalement ionisées même à
des températures de l’ordre de 100 millions de degrés. Pour cette raison ces
impuretés rayonnent énormément d’énergie même à des concentrations très
faibles et refroidissent ainsi le plasma. De plus, les impuretés lourdes ont ten-
dance à s’accumuler au centre du tokamak. Pour ces deux raisons il est crucial
de comprendre comment se transportent les impuretés au sein d’un tokamak
afin de tenter de les évacuer du centre du tokamak. C’est la problématique prin-
cipale de cette thèse.

Il existe plusieurs approches distinctes pour décrire un plasma: l’approche
particulaire qui suit chaque particule individuellement, l’approche cinétique qui
est une méthode statistique reposant sur le très grand nombre de particules
présentes dans le tokamak et enfin l’approche fluide qui peut être vue comme
une réduction en moments de l’approche cinétique. Chacune de ces méthodes
possède des avantages et des inconvénients. Dans l’étude présentée dans cette
thèse, c’est l’approche cinétique qui est choisie afin de décrire correctement un
maximum d’effets avec un minimum d’approximations. L’approche cinétique fait
évoluer temporellement une fonction de distribution dans un espace à 6 dimen-
sions (3 d’espace et 3 de vitesse) appelé espace des phases. La fonction de
distribution représente une densité de probabilité de trouver une particule à un
certain endroit de l’espace des phases à un instant donné. Cette fonction de
distribution évolue temporellement à cause de la présence du champ électro-
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magnétique. Du fait de l’évolution temporelle de la fonction de distribution, la
densité et le courant qui en sont des moments, évoluent également. Finale-
ment, dû aux équations de Maxwell le champ électromagnétique est modifié.
A ce stade, très peu d’approximations ont été faites mais le système est très
complexe à résoudre.
Il s’avère qu’à cause du fort champ magnétique présent dans les tokamaks

(∼ 5T ), la fréquence de giration des particules autour des lignes de champ mag-
nétique est beaucoup plus grande que la plupart des autres fréquences typiques
du plasma. Grâce à cette séparation d’échelle, il est possible de réduire l’espace
des phases accessible aux particules en moyennant sur leur mouvement de gi-
ration. On passe alors d’un espace des phases à 6 dimensions à un espace
des phases à 4 dimensions plus un paramètre (l’invariant adiabatique µ). Cette
réduction du problème s’appelle la théorie gyrocinétique. Cette théorie possède
un domaine de validité assez large. Elle est à l’heure actuelle la théorie avec le
moins d’approximations qui reste numériquement abordable.
Il existe plusieurs codes gyrocinétiques dans le monde. Chacun possède des

points forts et des points faibles dépendant des choix réalisés par ses développeurs.
GYSELA (Fig.0.1) est un code gyrocinétique développé par une collaboration de
laboratoires français et suisses et allemands, depuis le début des années 2000.
Les points forts de ce code sont qu’il permet de simuler l’ensemble de la partie
confinée du plasma (global) sans séparation d’échelles entre l’équilibre et les
fluctuations (F total). L’état quasi-stationnaire peut être atteint en ajoutant des
sources (forcé par le flux) et il autorise plusieurs espèces ioniques ce qui est
crucial pour l’étude du transport des impuretés. GYSELA possède plusieurs lim-
itations. En effet un champ magnétique simplifié est utilisé empêchant l’étude
d’une géométrie plus réaliste. De plus l’hypothèse électrostatique est utilisée ce
qui limite le nombre d’instabilités pouvant se développer. Remarquons tout de
même que l’hypothèse électrostatique est plutôt bien vérifiée dans les plasmas
de tokamak. En particulier, les deux instabilités principales se développant à
l’échelle ionique on Temperature Gradient ou ITG, et Trapped Electron Modes
ou TEM, sont bien décrites dans cette approximation. Enfin les électrons sont
supposés avoir une réponse adiabatique dans cette thèse même si GYSELA
autorise à présent de traiter les électrons cinétiquement.
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Figure 0.1.: Potentiel electrique en sortie du code GYSELA

Un des canaux majeurs de transport des impuretés est associé à la présence
de collisions entre les particules du plasma. On peut distinguer deux types de
collisions dans les plasmas (cf Fig.0.2). Les collisions dites fortes résultent d’une
interaction importante entre deux particules (α ∼ 1) où α est l’angle de déflec-
tion défini sur la figure 0.2 . Les trajectoires des particules sont alors fortement
modifiées en seulement quelques interactions. L’autre type de collision est com-
munément appelé collision faible (α� 1). Dans ce cas, chaque interaction en-
tre deux particules est faible d’où leur nom. Il faut alors un très grand nombre
d’interactions pour modifier significativement la trajectoire d’une particule. Les
collisions faibles, majoritaires, sont celles qui jouent un rôle prépondérant dans
les questions de transport des particules. Ce sont les seules décrites dans cette
thèse.
La fréquence de collision entre particules décroît avec la température. Au vu

des températures régnant au cœur des tokamaks, les plasmas de cœur sont peu
collisionnels. Il est toutefois nécessaire de prendre en compte les collisions en-
tre particules pour une prédiction réaliste du transport de particules au sein d’un
tokamak. En effet, elles sont à l’origine d’un transport dit néoclassique qui est im-
portant pour les impuretés. De plus, les collisions amortissent les écoulements
macroscopiques et influencent ainsi le niveau de saturation de la turbulence. En-
fin, les collisions dissipent les fluctuations à petites échelles et stabilisent ainsi
les simulations numériques en limitant le développement de structures sous ré-
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solues.
Pour ces raisons un opérateur de collision linéarisé adapté au code GYSELA a

été développé au cours de cette thèse. Il est valide quelle que soit la nature des
espèces considérées (masse, charge, concentration). Une de ses particular-
ités est qu’il prend en compte les dérivées par rapport à l’invariant adiabatique
µ. Cela permet à cet opérateur de collision d’avoir une propriété essentielle:
la relaxation collisionnelle des fonctions de distribution vers une Maxwellienne
isotrope. Les dérivées par rapport à µ ont été prises en compte en utilisant une
méthode de projection de la fonction de distribution sur une base de polynômes
orthogonaux dans la direction µ. Cette technique permet un traitement analy-
tique d’une grande partie de l’opérateur de collision, réduisant d’autant le coût
de son traitement numérique. Les dérivées par rapport à la vitesse parallèle v‖
sont traitées en différences finies.
Il a été vérifié numériquement que l’opérateur de collision possédait les pro-

priétés attendues: conservations (particules, impulsion, énergie), taux de relax-
ation (isotropisation, échanges d’impulsion et d’énergie entre espèces). Cette
étude numérique a également permis de connaître la résolution minimale néces-
saire à l’opérateur de collision. En l’occurrence une discrétisation

(
Nv‖, Nµ

)
=

(128, 64) est suffisante pour l’opérateur de collision.

Figure 0.2.: Gauche: Déviation d’une particule chargée par intéraction Coulombi-
enne avec une autre particule chargée. Droite: Nombre de particules
avec un paramètre d’impacte compris entre b et b+ δb

Il existe deux sortes de particules dans les tokamaks: les particules dites pas-
santes qui suivent les lignes de champ magnétique avec une vitesse parallèle
v‖ à peu près constante et les particules dites piégées. Le piégeage vient de
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la dépendance du champ magnétique avec le grand rayon B ∝ R−1. Les par-
ticules n’ayant pas assez d’énergie dans la direction parallèle au champ restent
alors piégées du côté bas champ (extérieur). Les collisions peuvent modifier les
trajectoires des particules en modifiant leur contenu énergétique (valeur totale
et répartition entre direction parallèle et perpendiculaire au champ). La théorie
néoclassique permet de quantifier l’effet des collisions sur les trajectoires des
particules et de calculer le transport associé.
Il existe trois régimes de collisionalité (cf Fig.0.3). Le régime “banane” corre-

spond au cas le moins collisionnel. Dans ce cas, les trajectoires des particules
sont peu affectées par les collisions. Le régime de collisionalité intermédiaire
est appelé “plateau”. Pour ce régime de collisionalité, les trajectoires des partic-
ules piégées sont fortement impactées par les collisions alors que les particules
passantes le sont marginalement. Enfin dans le régime de forte collisionalité
appelé “Pfirsch-Schlüter” toutes les trajectoires de particules sont fortement im-
pactées par les collisions. Les prédictions de la théorie néoclassique dépen-
dent fortement de la collisionalité. Chaque espèce a sa propre collisionalité qui
dépend essentiellement de sa densité, sa température mais aussi de sa masse,
sa charge et la présence des autres espèces. L’ion majoritaire est typiquement
dans le régime “banane” dans tout le coeur du tokamak alors que les impuretés
sont plutôt en régime “plateau” ou “Pfirsch-Schlüter” selon les cas.
Pour un plasma sans impuretés, trois résultats néoclassiques sont importants.

Tout d’abord la théorie néoclassique prévoit un transport diffusif de chaleur pro-
portionnel au gradient de température. Même si ce transport est souvent sous
dominant devant le transport turbulent, il peut se révéler compétitif lorsque la
turbulence est localement réduite comme par exemple dans le piedéstal d’un
plasma en mode H. La théorie néoclassique prévoit également une rotation
poloïdale du plasma proportionnelle au gradient de température. Cette rotation
est souvent en bon accord avec les mesures expérimentales. Enfin la théorie
néoclassique prévoit un amortissement collisionel des structures aux grandes
échelles comme les écoulements zonaux. Ces écoulements étant connus pour
réguler la turbulence, la prise en compte des collisions est importante pour une
prédiction quantitative du niveau de turbulence.
La théorie néoclassique est également très importante pour la compréhension

du transport d’impuretés. En effet, le transport néoclassique est souvent domi-
nant devant le transport turbulent dans le cas des impuretés lourdes. Ceci est
dû au fait que la collisionalité d’une impureté est proportionnelle au carré de sa
charge. Elle peut donc être un ou deux ordres de grandeur plus grande que
pour l’ion majoritaire. La théorie néoclassique standard (sans asymétrie poloï-
dale autre que celle du champ magnétique) prévoit que le transport d’impureté,
hormis le terme de diffusion, est dominé par deux termes convectifs en opposi-
tion: le gradient de densité de l’ion majoritaire engendre une vitesse de pince-
ment conduisant à une accumulation des impuretés au centre. Au contraire,
un gradient de température conduit en général à un flux sortant pour l’impureté.
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Ceci se retrouve sur l’équation (0.0.1). Pour cette equation, Γz,neo est le flux
d’impureté prédit par la théorie néoclassique, Nz la densité d’impureté, Ni la
densité d’ions majoritaires, T la température (supposée égale pour toutes les
espèces). D est un coefficient de diffusion proportionnel à la fréquence de colli-
sion des impuretés sur les ions.

Γz,neo = −NzD

[
∂rNz

Nz

− Zz
Zi

∂rNi

Ni

−Htheo
Zz
Zi

∂rT

T

]
(0.0.1)

Tous les phénomènes décrits ci-dessus ont été testés avec succès en utilisant
le nouvel opérateur de collision dans GYSELA. Ces tests ont permis de vérifier
l’ensemble des propriétés de l’opérateur de collision.

Figure 0.3.: Gauche: Coupe poloidale d’une trajectoire de particule passante.
Droite: Coupe poloidale d’une trajectoire de particule piégée. (Extrait
de la soutenance de D. Estève)

La turbulence est souvent associée à une ou plusieurs instabilités sous-jacentes.
Une instabilité provient toujours d’un écart à l’équilibre thermodynamique. Cet
écart correspond à un réservoir d’énergie libre qui peut être utilisé pour faire
grandir une instabilité. Une fois l’instabilité développée, elle génère des fluctu-
ations (typiquement du potentiel électrique) que l’on appelle turbulence. Dans
le cas de la turbulence se développant à l’échelle ionique, une des principales
instabilités sous-jacentes est due au gradient de température de l’ion majoritaire.
Cette instabilité, dite ITG (Ion Temperature Gradient), est de type interchange.
Cela signifie qu’elle nécessite un gradient de l’intensité du champ magnétique
colinéaire au gradient de température (dans le cas où β = 2µ0P

B2 � 1. Cette sit-
uation arrive typiquement du côté bas champ du tokamak (vers l’extérieur). On
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obtient donc souvent une turbulence dite ballonnée. Cela signifie que l’intensité
de la turbulence est plus grande du côté bas champ que du côté fort champ.
Cette caractéristique est visible sur la figure 0.1.
Il existe plusieurs mécanismes de saturation de la turbulence. Un premier

mécanisme de saturation est associé au transfert non-linéaire de l’énergie tur-
bulente vers des grandes structures comme les écoulements zonaux (structure
axisymétrique sans dépendance poloïdale). Ces écoulements zonaux sont en-
suite saturés à cause des collisions et des effets non linéaires. D’autres mé-
canismes de saturation de la turbulence existent. Par exemple, le transport en-
gendré par la turbulence peut réduire les gradients et donc la source d’énergie
libre à l’origine de la turbulence. Les non linéarités dues à la turbulence peuvent
également générer des petites échelles qui peuvent être efficacement dissipées
par les collisions.
La turbulence est le principal mécanisme de transport pour l’ion majoritaire.

Dans le cas des impuretés, elle peut également jouer un rôle important en partic-
ulier dans le cas où la collisionalité est suffisamment faible. C’est typiquement le
cas pour les impuretés légères. La prédiction turbulente du flux d’impuretés est
composée de quatre termes. Trois sont de type diffusif et associés respective-
ment aux gradients de densité, température et de vitesse parallèle de l’impureté.
Le dernier terme est purement convectif. Le flux d’impureté prévu par la turbu-
lence est proportionnel à l’intensité turbulente au carré.

Il est souvent observé expérimentalement que la densité des impuretés pos-
sède une asymétrie poloïdale importante (cf Fig.0.4). Dans les tokamaks actuels,
cette asymétrie est souvent associée à l’utilisation de sources de chauffage ex-
térieur. La présence d’une asymétrie poloïdale de la densité d’impureté mod-
ifie le flux néoclassique d’impureté dit “Pfirsch-Schlüter” jusqu’à un ordre de
grandeur. La prise en compte de cette modification du flux néoclassique par
l’asymétrie poloïdale de la densité d’impureté permet de trouver un bon accord
avec les résultats expérimentaux dans les tokamaks actuels.
On peut toutefois se demander si le cadre théorique actuel est suffisant pour

la prédiction du transport d’impuretés dans des machines plus grandes telles
qu’ITER. En effet, pour ces machines la collisionalité des impuretés sera plus
faible à cause notamment d’une température plus élevée. Les impuretés lour-
des devraient typiquement être dans le régime de collisionalité intermédiaire dit
“plateau”. Dans ce régime, l’anisotropie de pression joue un rôle crucial. Cette
anisotropie peut être générée par des sources externes mais aussi par la tur-
bulence. Les prédictions actuelles du transport d’impuretés néoclassique ne
prennent pas en compte la présence d’une éventuelle anisotropie en pression
importante et doivent donc être révisée pour des machines de la taille d’ITER.
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De plus, le poids relatif des sources extérieures par rapport à l’auto-organisation
du plasma devrait décroitre avec la taille de la machine. Dans ce cadre, deux
questions sont posées. Tout d’abord comment le flux banane/plateau d’impureté
est-il modifié en prenant en compte une anisotropie de pression importante. En-
suite est-ce que la turbulence peut générer une anisotropie en pression et des
asymétries poloïdales suffisantes pour impacter significativement la prédiction
néoclassique du transport d’impureté. Si c’est le cas, on parlera de synergie en-
tre les transports turbulent et néoclassique pour le transport de l’impureté. On
entend par synergie la non additivité des deux mécanismes de transport. De
telles synergies ont déjà été observées dans d’autres contextes comme par ex-
emple le flux de chaleur porté par l’ion majoritaire.

Figure 0.4.: Asymétrie poloidale du rayonement associé à la présence d’impuretés

Le calcul du flux d’impuretés néoclassique en présence d’une part d’asymétrie
poloïdale de densité et de pression, et d’autre part d’anisotropie en pression a
été effectué. Plusieurs conclusions résultent de ce calcul. Tout d’abord le flux
“banane/plateau” peut être largement amplifié par la présence d’une anisotropie
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en pression présentant une asymétrie poloïdale. De plus, le flux “Pfirsch-Schlüter”
est lui aussi modifié par la présence d’une anisotropie en pression.
Cette prédiction du flux d’impureté a été comparée aux résultats d’une simu-

lation à haute résolution effectuée avec le code GYSELA. Cette simulation a été
effectuée en considérant l’ionmajoritaire comme étant du deutérium et l’impureté
comme étant du tungstène avec une charge effective de Z=40 et présente à l’état
de trace. Le choix d’une impureté trace a été fait pour simplifier l’analyse. Ce
choix est pertinent dans le cas du tungstène. L’ion majoritaire est en régime
banane sur tout le domaine de simulation. L’impureté est en régime Pfirsch-
Schlüter partout mais est très proche du régime plateau dans une certaine zone
spatiale. La simulation est turbulente et aucune source susceptible de générer
une asymétrie poloïdale n’a été employée.
Dans cette simulation, des asymétries poloïdales importantes (∼ 30% dans

le cas de la densité) ont été observées. De plus, une anisotropie importante
s’est également développée dans la zone spatiale où le tungstène est proche
du régime plateau. Le niveau d’asymétrie poloïdale et d’anisotropie est suffisant
pour impacter le flux néoclassique ce qui montre que la turbulence est capable
de modifier la prédiction néoclassique du flux d’impuretés. Une comparaison
entre le flux prédit par le modèle théorique et le flux obtenu directement en sortie
du code GYSELA a été réalisée. Un bon accord a été obtenu sur l’ensemble du
domaine de simulation. Sans la prise en compte de l’anisotropie en pression, il
n’y aurait pas d’accord dans la zone où l’impureté est proche de régime plateau.

La charge importante des impuretés lourdes, les rend sensibles aux asymétries
du potentiel électrique. En effet, une réponse de type Boltzmann stipule que
δNz
NZ
∼ Z eδφ

T
où les quantités avec les deltas sont à comprendre comme un écart

à la valeur moyenne sur la surface de flux. Par conséquent, une asymétrie
poloïdale même modérée du potentiel électrique engendrera une asymétrie im-
portante sur l’impureté. La dernière partie de cette thèse permet la compréhen-
sion du mécanisme de génération d’asymétrie poloïdale du potentiel électrique
par la turbulence.
Le modèle analytique développé permet de comprendre la génération turbu-

lente des écoulements zonaux, des GAMs (Geodesic Acoustic Modes) et des
cellules de convection avec un seul formalisme. Les cellules de convection sont
des modes de potentiel présentant une asymétrie poloïdale et évoluant à une
fréquence faible devant celle des GAMs. Deux mécanismes de génération de
cellule de convection ont été identifiés. Le premier est dû à la compressibilité du
flot (comme dans le cas des GAMs) et domine aux fréquences intermédiaires.
Ce mécanisme conduit à une asymétrie de type sin θ, où θ est l’angle poloïdal
(θ = 0 sur le plan équatorial, côté faible champ). Le second mécanisme est dû
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au ballonnement de la turbulence. Il domine à basse fréquence et conduit à une
asymétrie de type cos θ.

En résumé, cette thèse a permis d’identifier un mécanisme de synergie en-
tre physique néoclassique et turbulence dans le cadre du transport d’impuretés.
Cette synergie passe par la génération d’asymétries poloïdales par la turbulence.
Ce mécanisme est d’autant plus important que le tokamak est grand. En effet,
le rapport de l’asymétrie poloïdale générée par la turbulence sur celle provenant
des sources extérieures devrait augmenter avec la taille de la machine. Ce mé-
canisme doit donc être pris en compte pour une prédiction quantitative du trans-
port d’impuretés sur ITER et les futures machines de taille comparable.
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A. Derivation of the Vlasov with ḡ . . . . . . . . . . . . . . . . . . . . 153
B. Vlasov equation of the resonant part of the distribution in balloon-

ing representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
C. Linear response of the distribution function . . . . . . . . . . . . . 155
D. Derivation of the collisional parallel momentum exchange for trace

and heavy impurities . . . . . . . . . . . . . . . . . . . . . . . . . 155
E. Flux of vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
F. Treatment of the resonant functions Lj (Ω) and numerical solution 158

Bibliography 170

19



List of Tables
1.1. Typical values in a Tokamak . . . . . . . . . . . . . . . . . . . . . 37

6.1. Parameters scanned . . . . . . . . . . . . . . . . . . . . . . . . . . 119

List of Figures
0.1. Potentiel electrique en sortie du code GYSELA . . . . . . . . . . . 7
0.2. Gauche: Déviation d’une particule chargée par intéraction Coulom-

bienne avec une autre particule chargée. Droite: Nombre de par-
ticules avec un paramètre d’impacte compris entre b et b+ δb . . . 8

0.3. Gauche: Coupe poloidale d’une trajectoire de particule passante.
Droite: Coupe poloidale d’une trajectoire de particule piégée. (Ex-
trait de la soutenance de D. Estève) . . . . . . . . . . . . . . . . . 10

0.4. Asymétrie poloidale du rayonement associé à la présence d’impuretés 12

1.1. The Aston curve represents the average binding energy per nu-
cleon as a function of the number of nucleons. Large values cor-
responds to stable nucleus. The maximum is reached for Fe56,
which is therefore the most stable nucleus. . . . . . . . . . . . . . 26

1.2. Reaction rate of various fusion reactions. The curve in red corre-
sponds to the reaction of deuterium with tritium Eq.(1.1.1) which
is the one envisaged for fusion reactors. . . . . . . . . . . . . . . . 28

1.3. Left : Coulomb collision between two particles in the frame of the
particle b. The deflection angle α depends on the impact param-
eter b. Right : number of particle colliding with a particle a with an
impact parameter between b and b+ δb. It increases with b. . . . . 30

1.4. Drift instability of a plasma in a pure toroidal magnetic field. The
drift velocity depends on the sign of the charge. It leads to a sep-
aration of charge and so a vertical electric field. The E × B drift
then leads to an outward movement of the plasma. . . . . . . . . 32

1.5. A general magnetic surface. . . . . . . . . . . . . . . . . . . . . . 33

20



1.6. Magnetic field lines (blue) definemagnetic surfaces (yellow) which
are toruses. The toroidal component of the magnetic field is cre-
ated by the coils depicted in red. . . . . . . . . . . . . . . . . . . . 34

1.7. Poloidal projection of an unperturbed particle trajectories. On the
left for a passing particle and on the right for a trapped particle . . 36

1.8. Radiative collapse due to tungsten accumulation in the core. The
top left graph shows the increase of radiative power as a function
of time. The right hand side figure shows a radiative spot in the
core due to tungsten accumulation. . . . . . . . . . . . . . . . . . 38

2.1. Potential fluctuations obtained with the gyrokinetic code GYSELA 48
2.2. In Lagrangian-PIC methods, markers initial positions are loaded

pseudo- (or quasi-) randomly in phase space (A). Markers are
evolved along their orbits (B). Charge and current perturbations
are assigned (projected) to real space (C). Field equations are
solved (D), e.g. on a fixed grid in real space. Figure coming from
[34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3. In Eulerian methods, a fixed grid is defined in phase space (A).
Finite difference expressions are used (B) in order to obtain value
of f at grid point at the next time step (C). Field equations are then
solved (D) after integration over velocity space. Figure coming
from [34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4. In semi-Lagrangianmethods, a fixed grid is defined in phase space
(A). The orbits are integrated back in time from each grid point
(B). The value of f at grid points is obtained by interpolation at
the foot of the orbit (C) and using the property f = const along
orbits. Field equations are then solved (D) after integration over
velocity space. Figure coming from [34]. . . . . . . . . . . . . . . . 53

3.1. Velocity dependence of the velocity modulus diffusion rate νv,ab
(blue), the deflection frequency νd,ab (red), the slowing-down fre-
quency νs,ab (black) and the absolute value of the energy-loss rate
|νE,ab| (green). All quantities are normalized to νHSab . . . . . . . . . 59

3.2. Velocity dependence ofDd,ab (solid line) and of its fit (dashed line)
defined by Eq.(3.3.11) . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3. Velocity dependence of νv,ab−νd,ab (solid line) and of its fit (dashed
line) defined by Eq.(3.3.12) . . . . . . . . . . . . . . . . . . . . . . 69

3.4. Initial (top) and final (bottom) slices of the distribution function in
velocity space are given. The initial distribution function is far from
a Maxwellian in the v⊥ direction on the left and in the v‖ direction
on the right. In both cases, the converged state is an isotropic
Maxwellian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

21



3.5. Top : Time evolution of the perpendicular T⊥ (red), the parallel
temperature T‖ (green), and the total temperature Ttot = 2T⊥+T‖

3
(blue). Bottom : Time evolution of the logarithmic difference of
temperatures. The slope of the curve gives the relaxation rate. . . 76

3.6. Left : Time evolution of the parallel velocity of the main species
V‖,0 (red), and of a trace impurity V‖,1 (blue). Right : Time evolution
of the logarithmic difference of parallel velocities. The slope of the
curve gives the momentum exchange rate. . . . . . . . . . . . . . 77

3.7. Left : Time evolution of the temperature of the main species T0
(red), and of a trace impurity T1 (blue). Right : Time evolution of
the logarithmic difference of temperatures. The slope of the curve
gives the thermal energy exchange rate. . . . . . . . . . . . . . . . 78

4.1. Trajectory of a particle (red) in the phase space
(
θ, v‖

)
in presence

of collisions. The jumps in the v‖ direction represent the effect of
the diffusion in the velocity due to collisions. Due to this diffusion,
a particle can cross the frontier between the trapping and passing
domains (green) and change its nature. . . . . . . . . . . . . . . . 81

4.2. Pfisrch-Schlüter diffusion. On the top, collisions lead to an out-
ward flux. On the bottom collisions lead to an inward flux. . . . . 83

4.3. Comparison between the classical prediction (blue), the banana-
pateau contribution (red) and the Pfirsch-Schlüter contribution (green)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4. kneo = eB vθ
∇T versus ν? predicted by theory (dashed line) com-

pared with GYSELA results (red dots) . . . . . . . . . . . . . . . . 86
4.5. χneo = − Q

N∇T versus ν? predicted by theory (dashed line) com-
pared with GYSELA results (red dots) . . . . . . . . . . . . . . . . 86

4.6. Time evolution of the normalized φ00 coming from the code GY-
SELA (red) compared with the theoretical prediction (blue). . . . . 88

4.7. Normalized particle flux of impurities versus density gradients.
The solid line corresponds to GYSELA results and the dotted line
to its linear fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8. Normalized particle flux of impurities versus temperature gradient.
The solid line corresponds to GYSELA results and the dotted line
to its linear fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1. Qualitative explanation of an interchange instability. The initial
potential fluctuations (blue and red circles) are growing due to an
umbalanced vE advection. Indeed due to the pressure gradient,
there are more particles going to the right than in the opposite
direction. Combined with the vertical drift due to magnetic curva-
ture, this leads to an instability. . . . . . . . . . . . . . . . . . . . . 101

5.2. Linear threshold for the ITG instability in the case s = q . . . . . . 106

22



5.3. Mechanism for turbulence generation and saturation by zonal flows
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1. Poloidal reconstruction of radiative power loss in a JET discharge
[57]. This radiative power is attributed to impurity. . . . . . . . . . 112

6.2. Radial variation of collisionality of the impurity (blue). The limit
between plateau and Pfirsch-Schlüter regime is represented by
the black line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3. Radial variation of the impurity fluxes. These fluxes are time av-
eraged on approximately 3000ωci. . . . . . . . . . . . . . . . . . . 121

6.4. Left: poloidal asymmetry of the impurity density. Right: recon-
struction of the poloidal asymmetry with δ (ψ) and ∆ (ψ) . . . . . . 123

6.5. Radial shape of Eq.(6.3.5) in red and Eq.(6.3.6) in green. The blue
curve represents the radial shape of Eq.(6.3.5) in the absence of
poloidal asymmetry of the impurity density, i.e. for δ = ∆ = 0. . . 124

6.6. Left: parallel pressure. Middle: perpendicular pressure. Right:
CGL tensor divided by the magnetic field. . . . . . . . . . . . . . . 124

6.7. Components of the neoclassical flux. The banana/plateau contri-
bution Eq.(6.2.12) is represented in green. The Pfirsch-Schlüter
contribution Eq.(6.2.13) with H = −1

2 and H = 0 are depicted re-
spectively by the red and the blue curves. The various profiles,
including their possible asymmetries, are taken from the GYSELA
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8. Radial comparison of the theoretical predictions of the neoclassi-
cal radial impurity flux (H = −1

2 in red, H = 0 in blue) with the
neoclassical flux coming from the GYSELA code (black). . . . . . 127

6.9. Mach number of the impurity . . . . . . . . . . . . . . . . . . . . . 128

7.1. Amplitude of the non zonal electric potentital in the GYSELA sim-
ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2. Comparison of density poloidal asymmetry with (solid line) or with-
out (dotted line) poloidal asymmetry of electric potential. A time
average on several turbulence correlation time has been performed.133

7.3. Absolute value of Ωh0,Ω and Ωh1,Ω . . . . . . . . . . . . . . . . . . 146
7.4. Real and imaginary parts of the ratio h1,Ω

h−1,Ω
vs Ω . . . . . . . . . . . 146

7.5. Phase of h1,Ω
h0,Ω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.6. Real and imaginary parts of the ratio h1,Ω

h−1,Ω
vs Ω for Krρi = 0.25 . . 148

23



1. Introduction

Contents
1.1. Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2. Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.1. Basic description . . . . . . . . . . . . . . . . . . . . 28
1.2.2. Characteristic scales in hot magnetized plasmas . . . . 29

1.3. Tokamak . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.1. Lawson criteria . . . . . . . . . . . . . . . . . . . . . 30
1.3.2. Magnetic configuration . . . . . . . . . . . . . . . . . 31
1.3.3. Particle trajectories . . . . . . . . . . . . . . . . . . . 34
1.3.4. Transport accross the magnetic field: underlying mecha-

nisms . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3.5. Typical values . . . . . . . . . . . . . . . . . . . . . . 37

1.4. Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . 37

24



1.1. Fusion
Stars are hot and dense astronomic objects. They release a considerable amount
of energy by radiation over billions of years. One could consider that the totality
of this energy comes from the gravitational energy lost by the star while contract-
ing. The Kelvin-Helmholtz time scale τKH is the approximate time it takes for a
star to radiate away its gravitational energy content at its current luminosity rate.
In the case of the sun, τKH ∼ 3 · 107years which is small compared to the sun
lifetime τs ∼ 1.5 · 1010years. Hence the sun, and all stars in general, needs to
produce their own energy.
There are two kinds of reactions that can produce energy : chemical and nu-

clear. Chemical reactions consist in an exchange of electrons between atoms,
that can either produce or require energy. In any case, chemical reactions leave
atomic nucleii untouched. On the contrary, nuclear reactions are by definition as-
sociated with an evolution of the nucleus composition. Chemical reactions are
long range interactions (∼ 10−9m) compared with nuclear reactions (∼ 10−15m).
For this reason, the energetic density of nuclear reactions is approximately 106

larger than the one of chemical reactions. Considering the sun composition
(∼ 74% of hydrogen, ∼ 24% of helium) and the relatively small energetic density
of chemical reactions, one can safely discard chemical reactions to explain the
enormous amount of energy contained in stars.
Nuclear reactions consist in a evolution of nucleus, which are composed of nu-

cleons (neutrons and protons). The coherence of a nucleus is due to a binding
energy between nucleons. The average binding energy per nucleon represents
the stability of a nucleus. This quantity depends on the nucleus which is consid-
ered. The Aston curve, shown in the figure 1.1, represents the average binding
energy per nucleon as a function of the number of nucleons in the nucleus. For
small nucleii, the average binding energy per nucleon increase with the size of
the nucleus. That means that small nucleii can react together to create heavier
elements while releasing energy. This kind of reaction is called a fusion reaction.
For elements heavier than Fe56, the Aston curve is decreasing. That means that
heavy elements can release energy if they become lighter. This kind of reaction
is called fission.
Fission reactions are already exploited in conventional nuclear reactors to pro-

duce energy. Indeed these reactions are relatively easy to trigger on earth. Even-
though fission reactions allow producing large amount of energy for a relatively
low cost, the drawbacks of this energy are well known. The main drawback of
fission is the treatment of its nuclear wastes. Indeed, no sustainable solution
has been found yet and the storage of nuclear wastes in a safe place for tens
of thousands of years is a challenging issue. Another issue with current fission
reactors is related to safety. Indeed, eventhough nuclar accidents are rare, they
have led to major catastrophes for both humans and nature like Tchernobyl and
Fukushima accidents.

25



Figure 1.1.: The Aston curve represents the average binding energy per nucleon
as a function of the number of nucleons. Large values corresponds to
stable nucleus. The maximum is reached for Fe56, which is therefore
the most stable nucleus.

Stars are fuelled by fusion reactions. Indeed, stars are mainly composed of
hydrogen, which is the lighter element. The fusion of hydrogen in helium is the
nuclear reaction that produces the largest energy per mass. Indeed, the slope
of the Aston curve (fig.1.1) is maximal in absolute value for light elements. The
chain reactions of fusion in stars are complex and would be really difficult to
be reproduced on earth. Nethertheless, this proves the enormous potential of
fusion energy production. Furthermore, light elements are abundant on earth.
Hence fusion reactions are good candidates to obtain a new source of sustain-
able energy on earth.
Different fusion reactions can be envisaged on earth. The figure 1.2 shows

the reaction rate 〈σv〉 which measures the probability of reaction for two species
at equilibria (Boltzmann distribution function) as a function of temperature for
different reactions. This curve shows that the best candidate for a fusion reaction
on earth is the fusion of deuterium (D) with tritium (T), both isotopes of hydrogen.
This reaction produces an helium nucleus, a neutron and releases 17.6 MeV by
reaction.

2
1D +3

1 T →4
2 He+1

0 n (1.1.1)

Deuterium is abundant on earth. Indeed the massic concentration of deu-
terium in water is ∼ 33g · m−3. On the other hand tritium is rare as it is a ra-
dioactive element with a half time life of approximately 12 years. Tritium can
be produced either naturally in the atmosphere by cosmic rays or industrially in
fission plants and laboratories. The current stock is approximately 20 kg. This
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stock will not be enough for a fusion plant. Indeed a 800 MW fusion plant will
require ∼ 300 g of tritium per day [54]. Fortunately, it is possible to produce tri-
tium by bombarding lithium with energetic neutrons like those created by fusion
reactions. It is envisaged to use this method to generate tritium in fusion plants.
The lithium stock is by far enough for fusion plants operation using this method
of tritium generation.
The required conditions to achieve fusion reactions are unusual on earth. In-

deed one can make a rapid estimation of the energy required to overcome the
Coulomb repulsion between nucleus by assuming that fusion reactions require
that both nucleus are at a distance of the same order as the typical size of a
nucleus (' 10−15m). Because nucleus are much smaller than atoms ( ' 10−10m)
one can neglect electron screening. As both nucleus are positively charged, they
repel. The typical energy of Coulomb interaction between a deuterium and a tri-
tium nucleus at a distance r ' 10−15m is given by ECoulomb = e2

4πε0r ' 106eV . This
is an enormous energy. In fact due to a tunnel effect, the probability of fusion
between nuclei at a distance larger than r ' 10−15m is increased, therefore the
required conditions to produce fusion reactions are less stringent. The figure
1.2 accounts for the tunnel effect and shows a maximum for ∼ 105eV for the
reaction of deuterium with tritium (1.1.1). This is two orders of magnitude higher
than the temperature at the center of the sun. We mention here that star core
temperature (∼ 103eV ) is typically two order of magnitude lower that the tem-
perature of the maximum efficiency of fusion reactions. Nethertheless, fusion
reactions are efficient in stars thanks to the enormous densities and excellent
confinement resulting from gravity. These criteria are of great importance to as-
sess the performance of a laboratory device. They will be detailed in the section
1.3. In anycase, the extreme temperature required for fusion reactions is one
of the reason why it is so hard to produce fusion reactions on earth. But this
difficulty is also a good news concerning safety issues : if fusion conditions were
met in a reactor and an incident was to occur, the pressure would decay rapidly
and the energy production would drop extremely fast. For such high tempera-
tures, matter is in the form of a plasma. In the next section we present briefly
what is a plasma.
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Figure 1.2.: Reaction rate of various fusion reactions. The curve in red corresponds
to the reaction of deuterium with tritium Eq.(1.1.1) which is the one
envisaged for fusion reactors.

1.2. Plasmas

1.2.1. Basic description
A plasma is composed of nuclei and electrons. In a plasma some or all electrons
are unbounded to nuclei, thus plasma are conductors. On the other hand, nuclei
are also in an unorganized state, as in gases. The easiest way to understand a
plasma is then to consider it as a conductor gas, and as such, it is sensitive to
electromagnetic fields and can also generate them.
A plasma can be either partially or fully ionized. The ionisation rate depends

on the density, the temperature and the different elements which compose the
plasma. If the plasma is partially ionized, some nuclei conserve bounded elec-
trons. Atomic physics then plays a role as these ions may absorb or produce
photons and may also change their ionization state. In this thesis we will study
hot plasmas. In this case, only heavy impurities are not fully ionized. In the
following of this thesis, no atomic physics effects will be taken into account.
Another important parameter to characterize a plasma is the plasma coupling

parameter defined as Γ ' 〈Ep〉
〈Ec〉 '

e2N1/3

ε0kBT
where N is the density of the plasma, e

the charge of a proton, ε0 the vaccum permitivity and kBT is the thermal energy.
Note that in the rest of this manuscript, we will omit kB, therefore the notation T
will corresponds to a energy. If Γ� 1 , the plasma is strongly coupled meaning
that a particle experiences some large interactions with other particles. On the
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other hand, if Γ� 1 the plasma is weakly coupled meaning that collective effects
play a key role. In the following, we will study diluted and hot plasmas and so
Γ� 1.

1.2.2. Characteristic scales in hot magnetized plasmas
In hot magnetized plasmas many characteristic lengths, frequencies and veloci-
ties need to be introduce to study the physics of plasmas. In this section we give
a brief overview of the most frequent ones. Other quantities will be introduced
when needed.

Characteristic frequencies: In presence of a constant and homogenous mag-
netic field, charged particles exhibit a cyclotron motion. In a plane orthogonal
to the magnetic field, trajectories are circular. The characteristic pulsation as-
sociated with this motion is known as the cyclotron pulsation ωc,s = esB

ms
, where

es is the charge of the particle considered and ms its mass. The magnetic field
is noted B and the index s design the species considered (s = e for electrons,
s = i for the main ion and s = z for an impurity). Another important quantity is the
plasma pulsation ωp,s = es

√
Ns
ε0ms

, which is the typical frequency of response of
charges to an electrostatic field. Finally, the collision frequency associated with a
species a colliding on a species b, νab = 4

√
2π

3
e2ae

2
b ln Λ

(4πε0)2
Nb
ma

(
1
ma

+ 1
mb

)
1

(v2
Ta+v2

Tb)
3/2 will

play an important role. Here ln Λ ' 20 is the Coulomb logarithm and vT,s =
√

Ts
ms

is the thermal velocity of the species s. A full chapter (chapter III) will be dedi-
cated to collisions.

Characteristic lengths: The first characteristic length that can be defined is the
typical distance between ions. It is known as the Loschmidt length and defined
as λl,s = N−1/3

s . The second one is the radius associated with the gyromotion. It
is known as the Larmor radius (or gyroradius) and defined as ρL,s = vT,s

ωc,s
. The De-

bye length λD,s =
√

ε0Ts
e2Ns

is the typical length above which a charge is screened by
the others. The Landau distance λL,s = e2s

4πε0Ts is the minimal distance approach
when considering two particles of identical charge es. Note that Γ = λL

λl
allowing

a clearer interpretation of the coupling parameter. Indeed, Γ � 1 ⇔ λL � λl.
It means that strong (α ∼ 1) collisions, which are collisions with an impact pa-
rameter b ∼ λL and so a large deflection angle α ∼ 1, are rare events. In this
case, the main contribution of the collisions comes from weak collisions, which
means that a particle experiences a huge number of small interactions (α � 1)
with other particles instead of few strong interaction with other particles. The left
hand side of the Fig.1.3 depicts a Coulomb collisions between two particles and
clarify the notions of impact parameter b and deflection angle α. The right hand
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side of Fig.1.3 shows all the particles interacting with the particle of reference. In
practice, all particles with an impact parameter in the range λL � b� λD partic-
ipate to weak collisional processes. The upper limit is the Debye length. Indeed,
λD corresponds to the maximal distance of interaction between two charged par-
ticles. We introduce also the parameter Λ which is in the Coulomb logarithm is
simply given by Λ ' λD

λL
.

Figure 1.3.: Left : Coulomb collision between two particles in the frame of the
particle b. The deflection angle α depends on the impact parameter b.
Right : number of particle colliding with a particle a with an impact
parameter between b and b+ δb. It increases with b.

1.3. Tokamak

1.3.1. Lawson criteria
We have seen in the part ?? that fusion reactions can produce a large amount
of energy. But the condition on the temperature to get efficient fusion reactions
is extreme. Two other parameters are critical for a fusion reactor : the density
and the confinement time of energy defined as τE = W

Ploss
where W is the inter-

nal energy and Ploss the power loss. The number of fusion reactions is indeed
proportionnal to the square of the density (if deuterium and tritium are present in
the same proportion). On the other hand the confinement of energy is naturally
an important parameter to maintain a hot plasma.
In principle, the energy needed to sustain the temperature of a burning plasma

can be entirely produced by fusion reactions. Indeed α particles (=helium) cre-
ated by the DT fusion reaction have a large energy (Eα ' 3.5MeV ). If the number
of fusion reactions is large enough and α particles are confined long enough to
transfer their energy to the deuterium/tritium mixture, then no external heating
system is required. This is called ignition. A 0D model allows to compute a cri-
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terion to obtain ignition. In this model, the only ion species are deuterium and
tritium in equal proportions. They have the same density N

2 and temperature T
(no temporal or spatial dependences is taken into account). The internal energy
is given by W = 3NT whereas the fusion power is given by Pfus = Eα

N2

4 〈σv〉 .
For ignition, this power has to be greater than the power loss Pfus ≥ Ploss. This
inequality can be writen as

NTτE ≥
12T 2

Eα 〈σv〉

This is the Lawson criteria. The minimum of T 2

〈σv〉 is obtained for a temperature
of Topt. ' 14keV . For this temperature, one get NTτE ≥ 3 · 1021m−3 · keV · s.
With the help of this criterion, we see that two kinds of approaches can been

envisaged to obtain fusion on earth. Indeed, the temperature is more or less
fixed around Topt.. Then one can try either to increase the density or the confine-
ment time.
The first approach consists in maximizing the density. This is called inertial

fusion. It consists in compressing and heating a target via lasers. This solu-
tion relies on the use of powerful, carefully shaped and well synchronized lasers.
Inertial fusion energy production at large scales seems currently unrealistic. In-
deed it suffers major drawbacks : low frequency rate, lack of energy efficiency
for laser production, high cost of target production. For these reasons, inertial
fusion research is mainly dedicated to military purposes. The two largest instal-
lations are the NIF in the USA and the Laser Mégajoule in France.
The second category of device that can be used to obtain fusion relies on the

sensitivity of plasmas to electromagnetic fields. The idea is to create a static
electromagnetic trap for charged particles. Different kinds of devices have been
studied like Z-pinches, θ-pinches, stellarators and tokamaks. Tokamaks have
demonstrated the most promising performances in the past. The present record
of fusion energy production has indeed been obtained in 1997 in the tokamak
JET, the current biggest tokamak in the world, located in UK. In the rest of this
thesis, only tokamaks are considered.

1.3.2. Magnetic configuration
Tokamaks use a magnetic field to confine a plasma. The main magnetic field is
toroidal and is created by magnetic coils. If charged particles were only follow-
ing magnetic field lines, this toroidal magnetic field would be enough to confine
perfectly a plasma. Indeed, it produces closed field lines. Unfortunately, if the
magnetic field is not uniform, particles experience a magnetic drift. It is possible
to show that this velocity takes the form vD = 1

2ωc

(
v2
⊥ + 2v2

‖

)
B×∇B
B2 in the low β

limit. Where the parameter β = NT
B2
2µ0

is the ratio between the thermal pressure
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and the magnetic pressure. For tokamaks, the limit β � 1 is relevant. Here v‖
represents the velocity of the particle projected on the direction of the magnetic
field v‖ = v · b with b = B

B
and v⊥ is the norm of the velocity component perpen-

dicular to the magnetic field line (we assume isotropy in the plan perpendicular

to the magnetic field) v⊥ =
√

v2−v2
‖

2 .
In a pure toroidal magnetic field B = B0R0

R
eϕ, this velocity is vertical and de-

pends on the sign of the charge vD = 1
2ωcR

(
v2
⊥ + 2v2

‖

)
ez. Notice that the major

radius dependence of the toroidal magnetic field comes from the Maxwell equa-
tion divB=0. Since ions and electrons have opposite charges, the magnetic drift
creates a separation of charge and thus a vertical electric field. A charge in the
presence of both a magnetic and an electric field experiences an electric drift
velocity vE = E×B

B2 . This velocity does not depend on mass or charge. There-
fore it corresponds to a velocity of the whole plasma. The electric field created
by the charge separation then causes a net movement of the plasma in the out-
ward direction leading to a rapid loss of confinement. This simple mechanism of
deconfinement is illustrated in Fig.1.4.

Figure 1.4.: Drift instability of a plasma in a pure toroidal magnetic field. The drift
velocity depends on the sign of the charge. It leads to a separation of
charge and so a vertical electric field. The E ×B drift then leads to
an outward movement of the plasma.

To solve this problem, a secondary magnetic field is added. It is a poloidal
magnetic field created by the plasma current flowing in the toroidal direction.
This secondary magnetic field reduces drastically the electric field by averaging
poloidaly the distribution of charge. A tertiary vertical magnetic field is added for
stability reasons.
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It can be shown that for an axisymmetric magnetic field (∂B
∂ϕ

= 0), the existence
of magnetic surfaces is ensured. In this case, the magnetic field has to take the
form

B = I (ψ) ∇ϕ+ ∇ϕ×∇ψ

where I = µ0Ip(Ψ)
2π and ψ = −ψp

2π with Ip =
∫
S J ·dS the current and ψp =

∫
SB·dS

the flux of the magnetic field accross the surface S defined as the intersection
of the magnetic surface considered and a poloidal plane. The notations are
illustrated on Fig.1.5. We can define an intrinsic poloidal angle θ? such that the
safety factor q is a flux function B·∇ϕ

B·∇θ? = q?(ψ).

Figure 1.5.: A general magnetic surface.

In the rest of this thesis we consider the limit case of circular magnetic surfaces
for which the magnetic field lines lay down on circular concentric toruses as
illustrated on Fig.1.6. In this case, it possible to show that I (ψ) = B0R0 = cst
where R0 is the major radius of the plasma and B0 the norm of the magnetic field
on the magnetic axis. The magnetic field then takes the form

B = B0R0∇ϕ+ ∇ϕ×∇ψ

An alternative form of the magnetic field is given by

B = Bθeθ +Bϕeϕ

with Bϕ = B0R0
R

where R is the local major radius. It is stressed here that the
angle θ is the geometric angle and not the intrinsic poloidal angle θ?. Indeed, it
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can be shown that

θ? = 2 arctan
√1− ε

1 + ε
tan

(
θ

2

)
where we have use the local inverse aspect ratio ε = r

R0
, r being the local minor

radius. The large aspect ratio limit ε � 1 is often considered for which the
difference between the two angles is small. Anyway, the use of the geometrical
angle implies the introduction of a new the safety factor q (r, θ) = B·∇ϕ

B·∇θ = rBϕ
RBθ

,
Bϕ is the local toroidal field and Bθ the local poloidal field. One can introduce
the cylindrical safety factor which is the limit of the previous safety factor for
infinite aspect ratio qcyl (r) = rBϕ

R0Bθ
and allows to rewrite the safety factor q (r, θ) =

qcyl (r) R0
R
. The advantage of qcyl is that it is a function of the radius only. Finally,

one can also define the aspect ratio of themachine R0
a
where a is theminor radius

of the plasma. Most tokamaks have an aspect ratio in the range 3
2 ≤

R0
a
≤ 6.

Figure 1.6.: Magnetic field lines (blue) define magnetic surfaces (yellow) which are
toruses. The toroidal component of the magnetic field is created by
the coils depicted in red.

1.3.3. Particle trajectories
The unperturbed equation of motion of a particle in a tokamak is integrable, since
there exists three motion invariants, namely

• the unperturbed Hamiltionian Heq = 1
2mv

2 + eΦeq. It comes from the sta-
tionarity of the electromagnetic field.

• the magnetic moment µ = mv2
⊥

2B which is an adiabatic invariant coming from
the fast cyclotron motion.
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• the kinetic toroidal momentum Pϕ = −eψ +mRBϕ
B
v‖. Its invariance comes

from the invariance of the problem by rotation in the ϕ direction.

The parallel velocity can be written as a function of the Hamiltonian and the
magnetic moment

∣∣∣v‖∣∣∣ =
√

2
m

(Heq − µB). This formula implies that the parallel
velocity changes along a magnetic field line due to the variation of B. If Heq >
µBmax then the sign of the parallel velocity has to be constant. This particle
is called passing or circulating. On the other hand if Heq < µBmax , there is
a point on the trajectory of the particle where v‖ = 0 and the particle bounces
back. The particle is trapped on the low field side of the tokamak. Making a
development at leading order with respect to ε, the trapping condition can be
recast as v‖

v⊥

∣∣∣
θ=0
≤
√

2ε
If µBmax � Heq, then the variation of v‖ along the particle trajectory can be

neglected. The particle trajectory projected on the poloidal plan is a circle. The
pulsation of the motion in the toroidal direction is given by ωϕ = v‖

R0
whereas the

one associated with the poloidal direction is given by ωθ = v‖
qR0

. Due to the term
Bϕv‖ in the definiton of Pϕ, there is a shift of particle trajectories compared to the
reference magnetic surface which depends on the sign of eBϕv‖ . If eBϕv‖ > 0
then the shift is in the low field side direction whereas for eBϕv‖ < 0 the shift is
in the opposite direction. The shift is given by δc = qvDR0

v‖
' qv‖

ωc
.

If µBmax � Heq, the particle is deeply trapped on the low field side of the
tokamak. The bounce frequency is given by ωb =

√
µB0r
mq2R3

0
. Again, due to the

term Bϕv‖ in the definition of Pϕ, there is a shift of particle trajectories compared
to the reference magnetic surface which depends on the sign of eBϕv‖ This gives
a banana width δb = 2q

ε

v‖,θ=0
ωc

.
The two kinds of trajectories are represented on Fig.1.7. In absence of colli-

sions and electromagnetic field evolution, the type of trajectory cannot change.
The particle is thus perfectly confined. It is shown in the next section that colli-
sions or the evolution of the electromagnetic field can lead to transport.

35



Figure 1.7.: Poloidal projection of an unperturbed particle trajectories. On the left
for a passing particle and on the right for a trapped particle

�c

Flux surface

Par�cle trajectory

�b

1.3.4. Transport accross the magnetic field: underlying
mechanisms

The description of the particle trajectories is an opportunity to introduce particle
transport. Indeed, one can imagine different ways to perturb particle trajecto-
ries, leading to transport. The easiest way to impact particle trajectories is to
change the magnetic field. Indeed, particles are following closely magnetic field
lines. The large parallel motion of particles lead to an efficient homogeneiza-
tion of all quantities (density, temperature...) along a magnetic field line. There-
fore, if a magnetic field line connects two areas with different densities and/or
temperature, it creates a huge transport leading to a rapid loss of confinement.
Depending on the areas which are connected, this loss of confinement can be
either localized radially (i.e. magnetic island) or global (i.e. disruption). The
magnetic stability of a plasma is described within the MagnetoHydroDynamics
(MHD) theory.

Another way to perturb particle trajectories is to include collisions. Indeed, col-
lisions are responsible for a diffusion in the velocity space. Therefore, a particle
trajectory can change in nature (trapped/passing) as time goes by. As δc < δb,
a change of nature for the particle leads to a net radial transport. Note that the
detrapping frequency of the main ion species is νdetrap = νii

2ε . One can therefore
create a diffusion coefficient D = νdetrapδ

2
b . This simple reasoning gives the right

order of magnitude for the diffusion coefficient in the low collision frequency limit.
The neoclassical theory describes the effects of collisions on particle trajecto-
ries and the resulting transport. The chapter 4 is dedicated to the neoclassical
theory.
Finally, turbulence that corresponds to small scales and rapid fluctuations of

the electromagnetic field around its equilibrium state can be responsible for a
large transport. These fluctuations are the signature of the non linear response
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Table 1.1.: Typical values in a Tokamak
distance values (m)
ρL 3 · 10−3

δc 6 · 10−3

δb 4 · 10−2

λL 10−13

λD 6 · 10−4

λl 2 · 10−7

frequency value (Hz)
ωc 2 · 108

ωθ 105

ωb 4 · 104

νii 2 · 103

ωp 1010

velocity value (m/s)
vT 7 · 105

vE 2 · 103

vD 3 · 102

of the plasma to different instabilities. Different instabilities are possible in a
tokamak and they can co-exist. In this thesis, we will focus on only one instability
: the Ion Temperature Gradient (ITG) driven instability. It is one of the main
instability in the core region (along with trapped electron modes). More details
about this instability and the turbulence associated are given in the chapter 5.
In principle, these three channels of transport should be treated on equal foot-

ing. However in this thesis, only neoclassical and turbulent transport are consid-
ered.

1.3.5. Typical values
In this section some typical values of the different quantities introduced previ-
ously are given. These quantities are just indicative and can of course vary
depending on the machine considered. We consider a tokamak with a central
ion density of N ∼ 1020m−3, a central temperature of T ∼ 104eV , and a toroidal
magnetic field of Bϕ ∼ 5T . The minor radius is a ∼ 1m and the major radius
R0 ∼ 3m. For the values given we place ourselves at r = a

2 so ε ∼ 1
6 . We

consider a safety factor of q ∼ 2 and a typical radial electric field of 104V/m.
The considered species is deuterium. The typical values are given in Tab.1.1.
One can also introduce four dimensionless parameters: the normalized Debye
length ρL,i

λD
∼ 5, the normalized gyro-radius ρ? = ρi

a
∼ 3 · 10−3, the collisionality

ν? = νdetrap.
ωb

= νii
2ε3/2 vT

qR

∼ 4 · 10−1 and the bêta parameter β = nT
B2
2µ0

∼ 10−2. These
four dimensionlees parameters will serve to establish the model that will be used
to described the plasma. The model will be detailed in the chapter 2.

1.4. Impurities
An ideal fusion plasma is composed of deuterium, tritium and electrons. Any
other species is considered as an impurity. Impurities may come from fusion
reactions (helium), the wall (tungsten, berillium) or be injected on purpose to ra-
diate energy and reduce the heat flux on plasma facing component (e.g. argon).
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Impurities have a deleterious effect on plasma performance. Indeed impurities
that accumulate in the core of the plasma can dilute the fuel (N ↘), thus lead-
ing to a decrease of the fusion reactions rate and/or radiate intensely (τE ↘)
if they are not fully ionized. This is typically the case for heavy impurities like
tungsten. The radiation of energy is critical even for tokamaks without fusion
reactions. Indeed, even at low concentration, heavy impurities can cool down
efficiently a plasma and lead eventually to a radiative collapse. An exemple is
given in Fig.1.8 [57] where a radiative collapse due to accumulation of tungsten
in the core of JET is shown.

Figure 1.8.: Radiative collapse due to tungsten accumulation in the core. The top
left graph shows the increase of radiative power as a function of time.
The right hand side figure shows a radiative spot in the core due to
tungsten accumulation.

The understanding of impurity transport is therefore of utmost importance for
core plasma performance. Like any particles, impurities are transported via three
channels : neoclassical, turbulent and MHD. MHD activity is known to be able
to impact significantly impurity transport [3]. But in this thesis we will focus on
the two other channels.
For heavy impurities, neoclassical transport is expected to be dominant. In

absence of strong poloidal asymmetries, neoclassical theory predict an inward
flux due to the gradient of density of the main species and an outward flux due to
the temperature gradient [46]. But it has been recently shown that neoclassical
prediction is significantly affected by poloidal asymmetries [4]. These poloidal
asymmetries may originate from turbulence [25] or sources [7, 5]. For light im-
purities, turbulence is expected to play an predominant role.
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In this context, one can ask many questions on impurity transport:

• What is the dominant channel of transport depending on the nature of the
impurity (light versus heavy), plasma parameters (density and temperature
profiles, geometry...) and the nature of the sources?

• Can transport processes interact?

• Can we predict the impurity flux with a simple model?

The aim of the present work is to tackle these questions on both theoretical
and numerical grounds. In chapter 2, the numerical tool used to described the
plasma is detailed. Chapter 3 is dedicated to collisions. Chapter 4 is dedicated to
the standard neoclassical physics. Chapter 5 deals with turbulent prediction for
impurity transport. Chapter 6 gives numerical results for the impurity transport
in the case of turbulent generated poloidal asymmetries. Chapter 7 clarifies the
turbulent generation of poloidal asymmetries. Finally a conclusion is drawn.
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2. The gyrokinetic code GYSELA

Contents
2.1. Gyrokinetic theory . . . . . . . . . . . . . . . . . . . . . 41

2.1.1. Kinetic description . . . . . . . . . . . . . . . . . . . 42
2.1.2. From kinetic to gyrokinetic . . . . . . . . . . . . . . . 43
2.1.3. Quasi-neutrality equation : limit of adiabatic electrons . 45

2.2. The GYSELA code . . . . . . . . . . . . . . . . . . . . . 48
2.2.1. Main features . . . . . . . . . . . . . . . . . . . . . . 48
2.2.2. Numerical aspects . . . . . . . . . . . . . . . . . . . . 50

40



2.1. Gyrokinetic theory
As mentionned in the introduction, plasmas are composed of charged nuclei in
presence of electrons. One can envisage three kinds of description to calculate
the plasma response.

• Particle description: the evolution of each particle is described in a 6D
phase space (3 dimensions of space and 3 of velocity). The particles are
interacting via Maxwell equations. In this approach all informations are re-
tained. This approach is by far too costly to be envisaged as the density
of a fusion plasma is Ne ' 1020particles /m3. Even if this kind of approach
was possible, it would contain a lot of useless information: there is no need
to follow each particle individually to understand phenomena happening in
the plasma.

• Kinetic description: given the huge number of particles, a clever way to de-
scribe a plasma is to use a statistical approach. An assembly of particles
of a same type (for instance electrons) is statistically described by a distri-
bution function living in a bounded 6D phase space : three dimensions of
space bounded by the physical space in which the plasma is evolving ( for
instance the tokamak chamber) and three dimensions of speed bounded
for instance by the speed of light. In this approach the elementary vol-
ume of phase space f (x,v) dxdv represents the probability for a particle
to be in the elementary volume dxdv centered on the point (x,v) times
the total number of particles. The distribution function is evolved via the
Fokker-Planck equation which needs to be coupled to Maxwell equations
for a complete description. This approach allows a description of all phe-
nomena of interest but stays at the moment challenging from the numerical
point of view.

• Fluid description: this approach is obtained by considering a limited number
of moments of the distribution function. These moments evolve in a 3D
space. The major advantage of this approach is the reduction of the space
allowing a huge reduction of computational cost. On the other hand a part
of the physics is overlooked in this approach. For instance wave-particles
interactions that often involve resonances in the velocity space cannot been
studied. Moreover certain classes of particles (e.g. trapped, fast) require
a specific treatment. The limited number of moments which is retained
implies a closure procedure that remains a delicate problem.
The fluid approach is valid in different cases. For instance, if collisions
are strong enough, they will push the distribution function to evolve in the
direction of Maxwellian which is fully described by three moments. But
core fusion plasmas are almost collisionless and distribution functions can
be far from Maxwellians especially in presence of external drives like those
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used to heat the plasma. The fluid approach is also valid, if wave-particles
interactions and the effect of trapped particles is negligible. This is typically
the case if the two following conditions are fulfilled kv � ω and kδ � 1 with
k the wave number of the wave, ω its puslsation and δ the trajectory width.

2.1.1. Kinetic description
In this part we show how to obtain the Fokker-Plack equation starting from the
equation of motion of a particle. Two approaches are possible for this demon-
stration: one based on the Klimontovich approach and another one starting from
the Liouville equation and using the so-called BBGKY (Bogoliubov Born Green
Kirkwood Yvon) hierarchy [67]. A brief presentation the Klimontovich approach
is given. More details on the two derivations can be found in [72].
The phase space density Ns corresponding to N0 particles of the species s is

given by

Ns (x,v, t) =
N0∑
i=1

δ (x−X i (t)) δ (v − V i (t))

where X i (t) and V i (t) are respectively the position and the velocity of the
particle i at time t. Taking the time derivative, one obtains

∂

∂t
Ns (x,v, t) = −

N0∑
i=1

dX i

dt
· ∇x [δ (x−X i (t)) δ (v − V i (t))]

−
N0∑
i=1

dV i

dt
· ∇v [δ (x−X i (t)) δ (v − V i (t))]

Using the equations of motions and the fact that aδ (a− b) = bδ (a− b), one
get

∂

∂t
Ns (x,v, t) = −

N0∑
i=1
v · ∇x [δ (x−X i (t)) δ (v − V i (t))]

− es
ms

N0∑
i=1

(Em + v ×Bm) · ∇v [δ (x−X i (t)) δ (v − V i (t))]

⇔ ∂Ns

∂t
+ v · ∇xNs + es

ms

(Em + v ×Bm) · ∇vNs = 0 (2.1.1)

Where es is the charge of the species s and ms its mass. This equation is
known as the Klimontovich equation. It is exact but still contains all the infor-
mation on the position in phase space of all particles. To remove useless in-
formation, a statistical average of the Klimontovich equation is considered. We
define
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Ns = Fs + δFs

Em = E + δE

Bm = B + δB

where Fs = 〈Ns〉, E = 〈Em〉 and B = 〈Bm〉 are statistical mean values
of respectively Ns, Em and Bm. Taking the statistical average denoted 〈·〉 of
Eq.(2.1.1). one find

∂Fs
∂t

+ v · ∇xFs + es
ms

(E + v ×B) · ∇vFs =
∑
s′
C (Fs, Fs′)

where C (fs) = − es
ms
〈(δE + v × δB) · ∇vδfs〉 is the collision operator which

will be discuss in detail in the third chapter. This equation is the Fokker-Planck
equation. Note that using the ergodic hypothesis, the statistical average can be
replaced by a temporal average. This statistical approach holds if the number of
particles in an elementary volume of phase space∆x∆v is large enough. Indeed,
if one consider fluctuations δN∆x∆v of the order of

√
N∆x∆v , where N∆x∆v is the

number of particles in the elementary volume ∆x∆v then the statistical approach
can be considred as valid if the fluctuations are much smaller than the mean
value. For instance, δN∆x∆v

N∆x∆v
≤ 10%⇔ N∆x∆v ≥ 100.

In practice, this thesis considers the following assumption ∆x ≥ λD. In the
Debye sphere there are Nλ3

D ' 1010 particles. These particles need to be dis-
tributed in a 3D velocity space. The constraint N∆x∆v ≥ 100 left more than 100
values in each direction if one consider a cartesian description. It will be con-
sidered as sufficient and we will consider in the following that the statistical ap-
proach is valid. The Fokker Planck equation needs to be coupled with Maxwell’s
equations to have a self consistent description of the evolution of the distribution
function together with the electromagnetic field.

2.1.2. From kinetic to gyrokinetic
We have mentionned in the section I.3.2 that the motion of particles in a toka-
mak is integrable if the electromagnetic field is static and the system considered
as toroidally symmetric. If the perturbations are weak enough, the KAM (Kol-
mogorov Arnold Moser) theorem states that some of the quasi-periodic motion
persists. In core fusion plasmas, electromagnetic fluctuations are small and slow
compared to the ion cyclotron frequency. Indeed, experimental results suggest
the following ordering for small scale turbulence [34]

δB

B
∼ eδφ

Ti
∼ ω

ωc,i
∼ O (ρ?,i)� 1
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where the subscript i stands for the main ion species. Due to this ordering,
the gyromotion which is the fastest of the three quasi periodic motions, is only
slightly affected by the electromagnetic perturbations and the adiabatic invariant
µ which is proportional to the action associated with this moment (J‖ = m

e
µ) can

be redefined to give another invariant. The gyrokinetic approach is basically a
change of variable ensuring that the new adiabatic invariant µ̄ = µ+o (µ) is a time
invariant (in absence of collisions). With this change of variable, the phase space
associated with the gyromotion is orthogonal to the rest of the phase space.
Therefore, the dimensionality of the problem is reduced: one passes from a 6D
phase space to a 4D phase space plus a parameter µ̄.
A rigorous derivation of the gyrokinetic equation that will be used can be found

in the review paper of A.Brizard [12]. Details on the derivation of the model are
not given in this thesis. We just mention that the derivation of the gyrokinetic
equation from the Fokker-Planck equation is done in two steps: the first step
allows one to obtain the evolution equation of the guiding center by eliminating
the gyroangle coordinate from the Fokker-Planck equation. At this stage, the
guiding center magnetic moment µ is a dynamical invariant. The introduction of
low-frequency electromagnetic fluctuations reintroduces the gyroangle depen-
dence in the perturbed guiding-center problem. A second transformation allows
one to remove the gyrocenter gyroangle coordinate of the problem and leads to
the gyrokinetic equation

∂F̄s
∂t

+ dXG,s

dt
·∇GF̄s + dvG,‖

dt

∂F̄s
∂vG,‖

=
∑
s′
C̄
(
F̄s, F̄s′

)
(2.1.2)

where the index G stands for the gyrocenter coordinates. The equation of
motion of the gyrocenters is given by

dXG,s

dt
= vG,‖b

?
s + vE×B,s + vD,s

where vE×B,s and vD,s are respectively the electric andmagnetic drift velocities
that have been introduced in the section 1.3.2 but expressed in the gyrocenter
framework. We also define b?s = B

B?‖s
+msvG,‖
qsB?‖sB

∇×B withB?
‖s = B+ms

qs
vG,‖b·(∇× b)

which corresponds to the Jacobian of the gyrocenter system of coordinates.The
gyrocenter parallel velocity evolution equation is given by

ms

dvG,‖
dt

= −µ̄sb?s ·∇B − qsb?s · ∇φ̄+ msvG,‖
B

vE×B,s ·∇B

where φ̄ = J ·φ is the gyro-average potential with J the gyroaverage operator.
One should note that the new adiabatic invariant µ̄ is a real invariant only with-

out collisions. In this thesis, we will also consider the slow evolution of this quan-
tity due to collisions. One could question the validity of the gyrokinetic approach
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when collisions are accounted for because of the evolution of the magnetic mo-
ment. Fortunately, core fusion plasmas have collision frequencies much smaller
than gyration frequencies νs,s′ � ωc and the gyrokinetic approach is relevant to
study core fusion plasmas even when collisions are accounted for.

2.1.3. Quasi-neutrality equation : limit of adiabatic electrons
The gyrokinetic equation has to be coupled with the evolution equation of the
electromagnetic field. In the following, the electrostatic limit is considered. It
consists in neglecting the time derivative of the potential vector ∂tA = 0. With
this assumption, the evolution of the electric field is linked to the one of the po-
tential E = −∇φ. The evolution of the potential is governed by the Poisson
equation

∇2φ = − 1
ε0

∑
s

NsZse

where Ns =
∫
Fsd

3v is the density of the particles and the sum is on all the
species considered. Defining the dimentionless parameters φ̂ = eφ

Te0
, N̂s = Ns

Ne0
and L the typical dimension of the problem considered, the Poisson equation
can be recast

λ2
D,e

L2 ∇̂
2φ̂ = −

∑
s

N̂sZs

where λD,e is the Debye length of electrons. As seen previously, if one consider
scales larger than the Debye length λD,e � L, then the plasma can be treated
as quasi-neutral. This result is retrieved here and the quasi-neutrality is simply
given by ∑

s

nsZs = 0

ITG (Ion Temperature Gradient) turbulence, which is the one considered in
this thesis, develops at scales of the order of a few Larmor radii of the main
ions (with ρi ∼ 10−3m) whereas the Debye length is typically λD ∼ 10−4m. The
scale separation justifies the quasi-neutrality approach. One should note that
λD,e ∼ ρe, which means that for a turbulence developing at the electron scale like
ETG (Electron Temperature Gradient), one should not use the quasi neutrality
equation.
At this stage, the gyro-average potential dependence is not obvious. Moreover,

one should note that the quasi-neutrality equation uses the density of particles
and not the the density of gyrocenters. We can rewrite the quasi-neutrality con-
dition to make the dependence on the potential and the density of gyrocenters
explicit. To do so, one can use the link between the distribution function of gyro-
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center F̄s and the one of particles Fs:

Fs (x,v, t) = − Zse

Teq,s (x)Feq,s (x,v)
[
φ (x, t)− φ̄ (xG, t)

]
+ F̄s (xG,vG, t) (2.1.3)

where Feq,s is the equilibrium distribution function of the species s, which is a
Maxwellian. Integrating over the velocity space, one has

Ns (x, t) =
∫
Fs (x,v, t) d3v = NG,s (x, t) +Npol,s (x, t)

where

NG,s (x, t) =
∫ [
J F̄s

]
(x,vG, t) d3vG

is the density of gyrocenters and

Npol,s (x, t) = − Zse

Teq,s (x)

∫
Feq,s (x,v)

[
φ (x, t)−

[
J 2φ

]
(x, t)

]
d3vG

is the polarisation density. Indeed, the gyroaverage operator J can been under-
stood as an operator allowing to pass from particle space to the gyrocenter space.
From now on we do not explicit the spatial dependence. The quasi-neutrality in
the gyrokinetic framework can be written

∑
s

eZs

∫
J F̄sd3v =

∑
s

(Zse)2

Teq,s

∫
Feq,s

(
φ− J 2φ

)
d3v (2.1.4)

In the long wavelength limit, the gyroaverage operator reads

J φ ' φ+ 1
2∇ ·

(
msµ

(Zse)2Beq

∇⊥φ
)

(2.1.5)

Using Eq.(2.1.5) in Eq.(2.1.4), the quasi-neutrality becomes

∑
s

Zs

∫
J F̄sd3v = −

∑
s

∇ ·
(
Neq,sms

eB2
eq

∇⊥φ
)

(2.1.6)

where Neq,s is the unperturbed density of the species s. Notice that, due to the
proportionality to the mass of the polarization density, one can restrict the sum
over the ions on the RHS of Eq.2.1.6. At this stage, we assume that electrons
have an adiabatic response on a flux surface, namely

Ne (x, t) = Ne0 (r) exp
[
e (φ (x, t)− 〈φ〉FS (x, t))

Te0 (r)

]
(2.1.7)

where Ne0 and Te0 are respectively the electron density and temperature and
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〈φ〉FS the flux surface average of the potential defined as

〈φ〉FS =
∫
J?xφdθ

?dϕ∫
J?xdθ

?dϕ

where θ? is the intrinsic angle introduce in the section 1.3.2 and J?x = 1
B·∇θ?

is
the the Jacobian in space. Note that in the special case of a circular geometry,
using the geometrical angle θ, one has

〈φ〉FS =
∫
Jxφdθdϕ∫
Jxdθdϕ

Jx = J?x
B·∇θ?

B·∇θ
= 1

B·∇θ
. This adiabatic response is chosen to reduce the numerical

cost of the simulation. Indeed it reduces the number of species to treat. More-
over, the gyrokinetic resolution of electrons requires to refine the grid size and
the time step. Indeed, if one considers the main species to be deuterium, then
ωce
ωci

= mi
me
∼ 3.6 · 103 and ρe

ρi
= vTeωci

vTiωce
=
√

me
mi
∼ 1

60 . The development of a version
of GYSELA retaining the gyrokinetic contribution of trapped electrons has been
developed recently but has not been used during this thesis. The fact that only
ions are treated on a gyrokinetic framework implies that only ITG turbulence is
retained. The instability underlying this kind of turbulence will be explained in the
chapter 5. We just mention here that this is the main type of turbulence observed
in the core of current tokamaks. Introducing the adiabatic response Eq.(2.1.7) in
the quasi-neutrality Eq.(2.1.6), one gets

∑
s

Zs

∫
J F̄sd3v−Ne0 (r) exp

[
e (φ (x, t)− 〈φ〉FS (x, t))

Te0 (r)

]
= −

∑
s

∇·
(
Neq,sms

eB2
eq

∇⊥φ
)

(2.1.8)
where the sum is from now on understood as a sum on the ionic species only.
Eq.(2.1.8) contains a degree of freedom being the initial value of the poten-

tial. If one is not careful in this choice, a large potential appears rapidly and
the numerical resolution of Eq.(2.1.8) becomes tricky. To avoid this problem, we
assume that there exist a distribution of ions F̄eq,s such that the potential is zero.
This distribution function is chosen at initial state. Furthermore, the potential fluc-
tuations are expected to be small eδφ

T
= o (ρ?). Therefore one can develop the

exponential exp
[
e(φ(x,t)−〈φ〉FS(x,t))

Te0(r)

]
' 1 + e(φ(x,t)−〈φ〉FS(x,t))

Te0(r) .
Dividing by Ne0 (r) Eq.(2.1.8) one gets

1
Ne0 (r)

∑
s

Zs

∫
J
(
F̄s − F̄eq,s

)
d3v =

− 1
Ne0 (r)

∑
s

∇ ·
(
Neq,sms

eB2
eq

∇⊥φ
)

+ e (φ (x, t)− 〈φ〉FS (x, t))
Te0 (r) (2.1.9)
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This is the version of quasi-neutrality that is used in GYSELA.

2.2. The GYSELA code
The gyrokinetic code GYSELA (Fig.2.1) is developed since the beginning of the
2000’s. It evolves continuously to include more and more physics, taking advan-
tage of the development of bigger computers and uses state-of-the-art high per-
formance computing. Despite access to a large amount of numerical ressources
(≈ 100 millions of CPU hours per year) it is currently impossible to describe all
the physics happening in a tokamak with a single code. Some choices have
been made to retain some part of the physics and simplify others. This choice is
not unique and different codes have emerged, each with its strenghs and weak-
nesses. In this section, we will first make a short overview of the main char-
acteristics of the GYSELA code and then give some numerical aspects of the
code.

Figure 2.1.: Potential fluctuations obtained with the gyrokinetic code GYSELA

2.2.1. Main features
As mentioned previously, the GYSELA model uses the electrostatic limit. It im-
plies that the magnetic field is static. Furthermore GYSELA uses of a simplified
geometry for the magnetic field which is given by B = B0R0

R

(
r

qGY S(r)R0
eθ + eϕ

)
.

The definition of qGY S corresponds to the cylindrical safety factor introduce in the
section 1.3.2: qGY S (r) = qcyl (r). The radial shape of the safety factor qGY S(r)
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is an input parameter of the GYSELA code. Despite its simplicity, this approx-
imated magnetic field retains the main characteristics of the magnetic field in
a tokamak as described in the introduction. Unfortunately, the electrostatic as-
sumption implies that all MHD activity is neglected removing de facto one chan-
nel of transport. Moreover only electrostatic turbulence can be studied.
GYSELA is a full-F code, meaning that the full distribution function can evolve

and in particular the background profiles are free to evolve. The code is also
global, which means that the domain of simulation is not limited to the neigh-
boring of a magnetic field line but is on the contrary extended to the totality of
the core of the tokamak. The fact that GYSELA is both a full-F and global code
raises the question of evolution of background profiles on long times scales. In-
deed, without sources, the heat radial transport would lead to a flattening of the
temperature profile, which would ultimately reach marginal stability. To avoid this
phenomenon, GYSELA is flux driven. It means that a source is added in the right
hand side of Eq.(2.1.2). This source term can in principle model a source or a
sink of any moment of the distribution function. In GYSELA, the source term can
represent a source of particles, momentum, energy or vorticity [37].
The global feature of GYSELA raises the question of boundary conditions. The

use of polar coordinates to describes the poloidal plan implies an unphysical
boundary condition on the magnetic axis. This boundary condition has been
recently removed [62]. On the other hand, a physical boundary condition exists
at the outer edge of the simulation domain. Indeed, this boundary corresponds
to the passage between the core to the scrape-off-layer which is magnetically
connected to the wall. The physics in the scrape-off-layer is complex and is not
tackled by GYSELA. On the point of view of the core, the scrape-off-layer can be
seen at leading order as a sink of energy (and a source of particles). To mimic
this effect, the exhaust of energy on the outer region of the domain simulation
is assured via a Krook term which makes the distribution function relax toward
a target distribution function, in practice a Maxwellian with low temperature [23].
This approach allows one to limit the impact of numerical boundary conditions
which are often unphysical. Another thesis is currently dedicated to the improve-
ment of the outer boundary condition in GYSELA. The goal is to mimic the effect
of a limiter. The limiter like boundary condition has not been used in this thesis.
The last main feature of GYSELA is that it allows different species to evolve

simultaneously, tacking into account accurately intra and interspecies collisions.
The description of the multispecies collision operator developed during this the-
sis is presented in the chapter 3. The multi species characteristic of the code
and the use of a precise collision operator is of prime importance for this study
which aims at studying the transport of impurities.
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2.2.2. Numerical aspects
The GYSELA code has to solve self-consistently the evolution of the distribution
function Eq.(2.1.2) and compute the electric potential at each time step thanks
to the quasi-neutrality Eq.(2.1.9). Different methods of resolution are available
in the GYSELA code. In this part, we present the method of resolution used for
the results presented in this thesis.
The evolution of the distribution function Eq.(2.1.2) can be splitted into two

parts. One part consists in an advection in phase space assuming collisions
and sources to be zero. It is the Vlasov part of the equation

∂F̄s
∂t

+ dXG,s

dt
·∇GF̄s + dvG,‖

dt

∂F̄s
∂v̄‖

= 0 (2.2.1)

The second one corresponds to the evolution of the distribution due to colli-
sions and sources only

∂F̄s
∂t

=
∑
s′
C̄
(
F̄s, F̄s′

)
+ S̄s (2.2.2)

The evolution of the distribution function due to collisions and sources Eq.(2.2.2)
is solved independently of the Vlasov part Eq.(2.2.1) of the gyrokinetic equation
and can be done with a different time step. This separation allows a critical re-
duction of numerical cost of collisions (and sources) and respect the time scale
separation between turbulent time scales τturb and collision time scales τcoll. In-
deed, except in some singular cases like the one of heavy impurities, we have
τturb � τcoll.
The resolution of the turbulent time scale described by the set of equations

((2.1.9)-(2.2.1)) is the following : at the begining of each time step, the electric
field is computed E (tn) by solving the quasi-neutrality Eq.(2.1.9) and taking its
gradient. The distribution function is evolved by solving the Vlasov Eq.(2.2.1)
on half a time step allowing the computation of F̄s

(
tn+ 1

2

)
. This new distribu-

tion function is employed to compute the new electric field E
(
tn+ 1

2

)
thanks to

the quasi-neutrality Eq.(2.1.9). Finally, the electric field at time t is replaced by
E
(
tn+ 1

2

)
in Vlasov Eq.(2.2.1) to compute the evolution of the distribution function

on a full time step F̄s (tn+1) starting from F̄s (tn). This method of resolution called
predictor-corrector requires the temporary saving of two distribution functions
F̄s (tn) and F̄s

(
tn+ 1

2

)
but increases dramaticaly the precision of the resolution.

There exists a large number of gyrokinetic codes. Each code has its strenghs
and weaknesses both in terms of physics which is described and numerical as-
pects. One way to distinguish these codes (not unique) is to consider the choice
for the numerical resolution of the Vlasov equation (2.2.1). Three categories exist
for solving of the Vlasov equation.
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• Lagrangian-PIC code (Fig.2.2): The Lagrangian approach, often referred
to as “particle-in-cell” (PIC), relies on the invariance of the distribution func-
tion along trajectories during the solving of Eq.(2.2.1). The method consists
in sampling initially the 5D phase-space with markers and then follow their
orbits in the phase-space. At each time step, the density and currents are
recomputed to feed the Maxwell equations (or a subset) to compute the 3D
electromagnetic field which is then used to compute the particle trajectories
at the next time step. The main advantage of this method is its relatively
easy parallelization. The main drawback of the method is the numerical
noise associated with the computing of the fields (“assignment”). Indeed,
the “assignment” can be interpreted as a Monte Carlo integration having
a relative error proportionnal to

√
1
N

where N is the the number of mark-
ers in the cell. A large number of particles is therefore needed to increase
the signal-to-noise level. Historically, the PIC approach has been the first
to be used. Several codes are based on this PIC method e.g. GTC[63],
ORB5[58], XGC[39] (the list is not exhaustive).

Figure 2.2.: In Lagrangian-PIC methods, markers initial positions are loaded
pseudo- (or quasi-) randomly in phase space (A). Markers are evolved
along their orbits (B). Charge and current perturbations are assigned
(projected) to real space (C). Field equations are solved (D), e.g. on a
fixed grid in real space. Figure coming from [34].
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• Eulerian code (Fig.2.3): The Eulerian approach uses a fixed grid in the 5D
phase space. Finite differences or spectral methods are used to obtain
the value of the distribution function at time t + δt knowing the distribution
function at time t. Eulerian codes are not subject to numerical sampling
noise and are able to accurately treat the E ×B non linearity. On the other
hand, these codes often use an explicit time step and are therefore subject
to the Courant-Friedrichs-Lewy (CFL) stability condition, which reduces the
time step. The Eulerian technic is used by the gyrokinetic codes GS2[27],
GYRO[14], GENE[55], GKV[85], GKW[71] and GT5D[52] (the list is not ex-
haustive).

Figure 2.3.: In Eulerian methods, a fixed grid is defined in phase space (A). Finite
difference expressions are used (B) in order to obtain value of f at grid
point at the next time step (C). Field equations are then solved (D)
after integration over velocity space. Figure coming from [34].

• Semi-Lagrangian code (Fig.2.4): The last method is an hybrid method
between the two previous methods. It is called semi-Lagrangian. It is
based on a fixed Eulerian grid but uses the invariance of the distribution
function along trajectories when solving of Eq.(2.2.1) like PIC codes. GY-
SELA [37] (GYrokinetic SEmi LAgrangian) is the only large gyrokinetic code
to use this method of resolution. The method of resolution used in GY-
SELA is the following : starting from a grid point of the phase space at
time t + ∆t, one computes the position of this point at time t by solving
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the trajectory equation (2.2.1) backward in time. At this stage, the value
of the distribution function is the same as the one at the starting point
F̄s (t+ ∆t, z (t+ ∆t)) = F̄s (t, z (t)) where z (t+ ∆t) is the coordinate of
the starting point and z (t) the corresponding coordinate at time t. Unfortu-
nately, in most cases z (t) does not correspond to a mesh point. An interpo-
lation is thus done to compute F̄s (t, z (t)) knowing the distribution function
at all points of the mesh at time t.
This method is not subject to numerical sampling noise nor CFL condition,
but the time step is constrained by accuracy requirements. Moreover two
difficulties appear with the semi-Lagrangian method. The first one is the
choice of interpolation operators. Indeed a trade-off between numerical
dissipation and unphysical oscillations coming from the high order interpo-
lation technic has to be found. Moreover the conservation of particle is not
granted. Small errors made on particle conservation, lead to large unphys-
ical electric potential.

Figure 2.4.: In semi-Lagrangian methods, a fixed grid is defined in phase space
(A). The orbits are integrated back in time from each grid point (B).
The value of f at grid points is obtained by interpolation at the foot
of the orbit (C) and using the property f = const along orbits. Field
equations are then solved (D) after integration over velocity space.
Figure coming from [34].

53



3. A multi-species collision operator
for GYSELA
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The containt of this chapter is coming from [26].

3.1. Introduction
The perpendicular transport in core fusion plasmas is dominated by turbulent
processes. Nevertheless, accounting for collisions remains essential for several
reasons. First, to a large extent, collisions govern the level of large scale flows –
both the mean ion poloidal flow and turbulence-driven zonal flows – via the fric-
tion on trapped particles. Second, neoclassical transport can reveal dominant
(or at least competitive) with respect to turbulent transport in certain regimes
such as transport barriers, or for certain classes of particles such as heavy im-
purities like tungsten. Third, collisions are essential for trapped electrons which
are often in a collisional regime. Finally, and more fundamentally, collisions en-
sure the relaxation of the distribution function towards a Maxwellian. In turn, they
are critical for gyrokinetic simulations since they smooth out small scale struc-
tures in velocity space, contributing to numerical stability.
The full collision operator and its properties are well known but its non linear

character makes it impossible to use numerically with present gyrokinetic codes.
It is then necessary to develop a linearized model of collision operator easier
to handle numerically. Different model operators have been developed in the
literature [1]. Depending on its specificity, each code chooses a different model.
A PIC code like ORB5[80] uses a different operator than an Eulerian code like
GENE[36], GKW [64] or GS2 [9]. In the framework of the GYSELA code, one of
the major difficulties is to write an operator in the variables

(
v‖, µ

)
whereas the

collision operator is separable in the set of variables
(
v,

v‖
v

)
. This difficulty has

been overcome by Esteve [29]. The collision operator is linearized around un-
shifted Maxwellians and is gyroaveraged using the method developed by Brizard
[12]. It is valid for arbitrary species and can be shown to fulfill all properties re-
quired for a model collision operator. Its derivation and analytical verification can
be found in detail in [29]. A simplified version of this operator has been imple-
mented in GYSELA and benchmarked against neoclassical theory [29]. It uses
the slow limit approximation (energy and pitch-angle scattering are assumed
equal) and removes all µ derivatives. A particular consequence of these approx-
imations is that the implemented model is only valid for trace thermal impurities.
This article describes the treatment of the collision operator without those two
assumptions, hence alleviating the former restrictions regarding the domain of
validity.

The outline of this chapter is the following. In 3.2 the important results of the
model derived by Esteve et al [29] are recalled. Part 3.3 is dedicated to the
description of analytical approximations for an optimized numerical treatment
of the collision operator. Part 3.4 presents different aspects of the numerical
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implementation. Finally, the section 3.5 consists in a serie of tests which validate
the collision operator.

3.2. Presentation of the model
The model described here is derived directly from [29]. The linearized collisional
operator describing the collisions of species a colliding on species b takes the
form

Cab(Fa, Fb) = C0
ab(FM0a, FM0b) + C1

ab(Fa, Fb)

where FM0a represents the local unshifted Maxwellian with density na and tem-
perature Ta

FM0a(x,v, t) = Na(x, t)
(

1
2πv2Ta

)3/2

exp
(
−x2

a

)
The normalized speed has been used xa = v√

2vTa
,with vTa =

√
Ta
ma

the thermal
velocity.
C0
ab represents the exchange of energy between the unshifted Maxwellians

C0
ab(FM0a, FM0b) = Tb − Ta

Tb
x2
aνE,abFM0a (3.2.1)

Neglecting all finite Larmor radius effects, C1
ab is composed of three terms

C1
ab(Fa, Fb) = Cv,ab(Fa) + Cd,ab(Fa) + C‖,ab(Fa, Fb)

Cv,ab is an operator acting on the norm of the velocity. When written in the set
of variables

(
v‖, v⊥

)
, it reads as follows (gab is close to the normalized distribution

function and is defined below):

Cv,ab (Fa) = 1
2v⊥

∂

∂v⊥

[
FM0aνv,abv

2
⊥

(
v⊥
∂gab
∂v⊥

+ v‖
∂gab
∂v‖

)]

+ 1
2
∂

∂v‖

[
FM0aνv,abv‖

(
v⊥
∂gab
∂v⊥

+ v‖
∂gab
∂v‖

)]
(3.2.2)
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Conversly Cd,ab only modifies the direction of the velocity vector (deflection)

Cd,ab (Fa) = 1
2v⊥

∂

∂v⊥

[
FM0aνd,abv⊥v‖

(
v‖
∂gab
∂v⊥

− v⊥
∂gab
∂v‖

)]

+ 1
2
∂

∂v‖

[
FM0aνd,abv⊥

(
−v‖

∂gab
∂v⊥

+ v⊥
∂gab
∂v‖

)]
(3.2.3)

Finally the term C‖,ab ensures momentum exchange between species and con-
servation of the total parallel momentum.

C‖,ab (Fa, Fb) = −νs,ab(v)
v2
Ta

v‖
(
U‖d,a − U‖ba

)
FM0a (3.2.4)

The normalized distribution function has to be shifted to ensure that Cv,ab and
Cd,ab conserve momentum and energy

gab = fa −
v‖U‖d,a
v2
Ta

− x2
aqba with fa = Fa

FM0a

More specifically, U‖d,a ensures that Cv,ab and Cd,ab conserve momentum.

v

v2
Ta

U‖d,a (v) = 3
2

∫
dξξfa with ξ = v‖

v

Then in order to take into account momentum exchange between species
while keeping the total momentum constant, a second velocity U‖ab is chosen
as

U‖ab =

〈
νs,abv

2U‖d,a
〉
v

〈νs,abv2〉v
A dimensionless parameter qab accounting for energy exchange between species

is defined as

qab = Tb

〈
νE,ab

mav2

2 fa
〉
v〈

νE,ab
(
mav2

2

)2
〉
v

The bracket corresponds tomean values in velocity space< ... >v=
∫
d3v FM0a

Na
....

Various frequencies appear in the previous expressions. They are defined as fol-
lows :

• the Hirshman and Sigmar’s inter-species collision frequency [46] νHSab =√
2NbZ

2
b

NaZ2
a
νaa where νaa = 4

√
π

3
Z4
ae

4 ln Λ
(4πε0)2

Na
m2
av

3
Ta

is the intraspecies collision fre-
quency and ln Λ ' 20 is the Coulomb logarithm.

• the velocity modulus diffusion rate νv,ab (xa) = νHSab xba
Θ(xb)
x2
a

• the deflection frequency νd,ab (xa) = νHSab xba
Ψ(xb)
x2
a
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• the slowing-down frequency νs,ab = νHSab

(
1 + ma

mb

)
x3
baΘ(xb)

• the energy-loss rate νE,ab = − 1
v4FM0a

∂
∂v

(νv,abFM0av
5)

Where the ratio between the thermal velocities is introduced xba = vTa
vTb

. The
following functions are also define

Ψ (x) = 3
√
π

4
1
x

[Φ (x)−G (x)]

Θ (x) = 3
√
π

2
G (x)
x

G (x) = 1
2x2

[
Φ (x)− xΦ′ (x)

]
Φ (x) = 2√

π

∫ x

0
dy exp

(
−y2

)
The function Φ is the error function and G is the Chandrasekhar function. The

different frequencies normalized to νHSab are plotted in Fig.(3.1).
Wemention here that a Jacobian appears in the original model, namely prefac-

tors B?
‖,a = B+ mav‖

Za
b · (∇× b) in the definitions of Cv,ab and Cd,ab (equations (73)

and (74) of [29]). These terms have been dropped as B?
‖,a = B + O

(
ρa
a

)
where

ρa = vTa
ωca

is the Larmor radius and a the minor radius of the tokamak considered.
In all cases considered, one has ρa

a
≤ 10−2 justifying the approximation used in

this article B?
‖,a ' B. With this approximation, the magnetic field dependence

disappears and one gets the definitions given previously (3.2.2) and (3.2.3). To
ensure rigourously the conservation of particles, the B?

‖,a dependence should be
taken into account. The loss of accuracy on particle conservation due to the ap-
proximation B?

‖,a = B is partly compensated by the use of a numerical treatment
detailed in part 3.4.2. The mismatch on particle conservation is presented in
part 3.5.1.
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Figure 3.1.: Velocity dependence of the velocity modulus diffusion rate νv,ab (blue),
the deflection frequency νd,ab (red), the slowing-down frequency νs,ab
(black) and the absolute value of the energy-loss rate |νE,ab| (green).
All quantities are normalized to νHSab .
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3.3. Analytical approximations for an optimized
numerical treatment of the collision operator

This section is devoted to the description of various approximations required for
an efficient numerical implementation of the collision operator. Section 3.3.1
describes the separation of the collision operator in three sub parts. The first
one (C0 (3.2.1)) acts on the Maxwellian distribution functions and corresponds
to the exchange of energy between species. This term is detailed in section
3.3.2. A second part of the operator (C‖(3.2.4)) corresponds to the evolution
of the parallel momentum. Section 3.3.3 is mostly devoted to the description
of this part of the operator. The last part of the operator (Cv + Cd (3.2.2) and
(3.2.3)) is the trickiest one as it governs the evolution of the distribution function
in velocity space. Section 3.3.4 details to the treatment of µ derivatives, using a
projection on a set of orthogonal polynomials. Finally section 3.3.5 describes a
complete rewritting of the evolution of the distribution due to Cv + Cd using the
approximations presented in the parts 3.3.3 and 3.3.4.
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3.3.1. Separation of the different collision terms
The collision operator is difficult to treat as a whole. It is much easier to split
the different parts of the operator and treat them separately with a time splitting
scheme. The first step is to discriminate the evolutions of FM0a and δFa via
collisions. The equation that needs to be solved is

∂Fa
∂t

=
∑
b

Cab (Fa, Fb)

which can be split as 
∂FM0a
∂t

= ∑
bC

0
ab (FM0a, FM0b)

∂δFa
∂t

= ∑
bC

1
ab (Fa, Fb)

The second equation of the system can be recast as the evolution of the total
distribution assuming that the Maxwellian is unchanged. This alternative expres-
sion is valid provided that the evolution of the Maxwellian is treated by the first
equation. This new expression is useful especially for the treatment of the µ
derivatives.

∂Fa
∂t

=
∑
b

C1
ab (Fa, Fb) with FM0a = cst

A second step is to separate the evolution of δFa in two parts for the numerical
resolution. Indeed, the evolution governed by Cv,ab + Cd,ab is difficult to treat as
it includes µ derivatives. It will be treated differently from C‖,ab which is easier
to implement. In the end, the problem can be split in three parts for the numer-
ical resolution: the evolution of the Maxwellian due to C0

ab, the evolution of the
distribution function due to C‖,ab , and the evolution of the distribution function
due to Cv,ab + Cd,ab . The last two steps are performed by keeping constant the
Maxwellian FM0a.

∂FM0a
∂t

= ∑
bC

0
ab (FM0a, FM0b)

∂Fa
∂t

= ∑
bC‖,ab (Fa, Fb) (FM0a = cst)

∂Fa
∂t

= ∑
bCv,ab (Fa, Fb) + Cd,ab (Fa, Fb) (FM0a = cst)

(3.3.1)

3.3.2. Evolution of thermal energy
Here we detail how the thermal energy evolves due to collisions. The effect of
C0
ab is to exchange thermal energy between Maxwellians. The thermal energy

exchange is exactly known in the case of Maxwellians. It is made of two contri-
butions : the first term corresponds to the thermal energy equipartition and the
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second one corresponds to the opposite of the work of the friction force.

QM,ab = −3na
ma

ma +mb

νab (Ta − Tb) + namaνabV‖a
(
V‖a − V‖b

)
where V‖a = 1

na

∫
FMav‖d

3v is the parallel velocity associated to the Maxwellian.
The evolution of thermal energy is governed by QM,ab

3
2na

∂Ta
∂t

=
∑
b

QM,ab

which is equivalent to

∂Ta
∂t

=
∑
b

maνab

[ 2
ma +mb

(Tb − Ta) + 2
3V‖a

(
V‖a − V‖b

)]
(3.3.2)

This relation will be used to compute the evolution of the Maxwellian distribu-
tion in eq.(3.3.1). Note that the total (thermal + kinetic) energy remains unaffected
by the latter term, as it should to preserve Galilean invariance.

3.3.3. Approximation of the distribution function
The quantities U‖ab and qab are difficult to compute numerically . Indeed both
include collision frequencies (νs,ab and νE,ab) that depend on the mass ratio ma

mb
and the integrals are then difficult to compute in the two limits ma

mb
� 1 and ma

mb
� 1.

An analytical approach is used to overcome this difficulty.

3.3.3.1. Expansion on a set of orthogonal polynomials

Following the method developed by Hirshman and Sigmar [47], the distribution
function is projected on a set of orthogonal polynomials

F (v, θ, ϕc) =
∑
`,m

F`,m(v)Y`,m(θ, ϕc)

with ϕc the phase of the cyclotronic motion and Y`,m(θ, ϕc) the spherical har-
monics

Y`,m(θ, ϕc) = P`,m(ξ)eimϕc and cos θ = ξ = v‖
v

As the method is used in a gyrokinetic approach only them = 0 component is
kept :

F (v, θ) =
∑
`

F`(v)P`(ξ)

where P` are Legendre polynomials.
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Then each component F`(v) is expanded in Laguerre polynomials

F`(v) =
∑
j

(
v

2v2Ta

)`
F (`)
j L

(`+ 1
2 )

j (x2
a)FM0a (3.3.3)

with

F (`)
j =

〈
F`|L

(`+ 1
2 )

j

〉
= 2π3/2j!

Γ(j + `+ 3
2)

∫ ∞
0

v`L
(`+ 1

2 )
j (x2

a)
F`(v)
na

v2dv

whereL(`+ 1
2 )

j is the generalized Laguerre polynomial of order `+1
2 .Note that the

L
(`+ 1

2 )
j are chosen as functions of v2. The underlying rationale is that the lowest

order terms of the expansion capture explicitely the dependence with respect to
the two motion invariants: the kinetic energy E = mv2

2 =
mv2
‖

2 +µB and the kinetic
toroidal momentum Pϕ = −eΨ + mRvϕ, where Ψ is the poloidal magnetic flux
and vϕ = Bϕ

B
v‖ is the velocity in the toroidal direction. Note that in the present

study, Ψ is a parameter as the problem is spatially local due to the neglect of
finite Larmor radius effect. Finally, (l = 1, j = 0) scales like v‖, hence capturing
the Pϕ dependence, while (l = 0, j = 1) scales like v2 which corresponds to the
energy. Using these definitions it is possible to show that F (0)

0 = 1, F (0)
1 = 0,

F (1)
0 = 2V‖a , F (0)

2 = 2
15 〈x

4
a (fa − 1)〉 and

F (1)
1 = − 4q‖a

5naTa
= −4

5

〈
v‖

(
x2
a −

5
2

)
fa

〉
v

(3.3.4)

where q‖a respresents the parallel heat flux. Then keeping only the first two
polynomials in both directions, the normalized distribution function can be ap-
proximated by

fa ' 1 + v‖
v2
Ta

[
V‖a −

q‖a
naTa

(
1− 2x2

a

5

)]
(3.3.5)

We mention here that the expansion (3.3.5) is the minimal expansion in order
to recover the predictions of the standard neoclassical theory [46], in particular
the thermal screening effect studied in section 4.4. The expansion is restricted to
the lowest required orders since keeping higher order corrections would require
a refined discretization of the velocity space, hence increasing the numerical
cost of the operator. Note however that it has been recently pointed out that
higher order moments could modify the screening factor (see the discussion in
section 6.3.4)
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3.3.3.2. Expression of C‖,ab

The C‖,ab term deals with momentum exchange between different species. In-
deed one can show that the rate of momentum exchange of the total operator is
given by

R‖ab = −namaνab
(
U‖ab − U‖ba

)
To evaluate the two quantities U‖d,a (v) and U‖ab the approximate distribution

function (3.3.5) is used. It gives :

U‖d,a = V‖a −
q‖a
naTa

(
1− 2

5x
2
a

)
(3.3.6)

U‖ba = V‖b −
3
5
q‖b
nbTb

(
1

1 + x2
ba

)
and so

C‖,ab = νs,ab
ma

Ta
v‖FM0a

[
V‖b − V‖a + q‖a

naTa

(
1− 2

5x
2
a

)
− 3

5
q‖b
nbTb

(
1

1 + x2
ba

)]

The collisional drag force becomes

R‖ab = −namaνab

[
V‖a − V‖b −

3
5
q‖a
naTa

(
1

1 + x2
ab

)
+ 3

5
q‖b
nbTb

(
1

1 + x2
ba

)]

For a Maxwellian, the result is exact and reduces to the friction force :

R‖M,ab = −namaνab
[
V‖a − V‖b

]
To ensure this property, one needs q‖a = 0 for a Maxwellian distribution func-

tion. Then the definition of q‖a is adapted accordingly :

q‖a = 1
2

∫
d3vma

[(
v‖ − V‖a

)2
+ v2

⊥

] (
v‖ − V‖a

)
Fa

This new definition is equivalent to the one used in Eq.(3.3.4) in the limit of
small Mach number. It is the one used in [29].
A long but straightforward calculation allows one to show that for the simplified

distribution function (3.3.5) qab = 0. This approximation will be used in the rest
of this article. Then gab reduces to

ga = fa −
mav‖U‖d,a

Ta
(3.3.7)
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3.3.4. Treatment of the µ derivatives
Derivatives with respect to µ are present in the terms Cv,ab and Cd,ab. The treat-
ment of these derivatives by finite differences may be problematic if one wants
to use a relatively low resolution in the µ direction. An alternative method based
on a projection on orthogonal polynomials in µ is adopted. It allows one to solve
the problem while keeping a relatively low resolution in the µ direction (typically
Nµ = 64). The equation solved with this method is

∂Fa
∂t

=
∑
b

Cv,ab (Fa, Fb) + Cd,ab (Fa, Fb)⇔
∂fa
∂t

=
∑
b

C̄ab (3.3.8)

where we have introduced the normalized collision operator C̄ab(F ) = Cv,ab(F )+Cd,ab(F )
FM0a

.
This approach is possible because a Maxwellian is in the kernel of Cv,ab + Cd,ab.
This term can be expressed differently to simplify its numerical treatment.

C̄ab(ga) = K1,ab
∂ga
∂v‖

+K2,ab
∂2ga
∂v2
‖

+K3,abu
∂2ga
∂v‖∂u

+K4,abu
∂ga
∂u

+ C̄m,ab(ga)

where u = µB
Ta

. Defining Dd,ab = 1
2νd,abv

2, it is possible to show that

K1,ab = v‖

[
1
v

∂Dd,ab

∂v
− Dd,ab

v2
Ta

]
+ v‖v

2
∂ (νv,ab − νd,ab)

∂v

+v‖ (νv,ab − νd,ab)
(
2− x2

a

)
K2,ab = Dd,ab +

v2
‖

2 (νv,ab − νd,ab)

K3,ab = 2v‖ (νv,ab − νd,ab)

K4,ab =
(

1−
v2
‖

v2
Ta

)
(νv,ab − νd,ab) +

v2
‖

v

∂ (νv,ab − νd,ab)
∂v

C̄m,ab(ga = 2
v2
TaFM0a

∂

∂u

[
FM0a

(
Dd,ab + v2

Tau (νv,ab − νd,ab)
)
u
∂ga
∂u

]

f is projected on a set of orthogonal polynomials:

fa(r, v‖, u, t) =
∑
l

α`,a(r, v‖, t)P`(u)

Projecting equation (3.3.8) on polynomial P` gives

∂α`,a
∂t

=
∑
b

〈
C̄ab (ga) |P`

〉
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In practice, Laguerre polynomials are chosen. Thus it defines the scalar product
as

〈f |g〉 =
∫ ∞

0
dxe−xf (x) g (x)

3.3.5. Evolution equation of the distribution function
components

3.3.5.1. Projection of ga on Laguerre polynomials

The first step is to compute the projection of ga on Laguerre polynomials. Starting
from the equation(3.3.7), one gets

ga = fa + P0(u)κ0,a + P1(u)κ1,a

with

κ0,a = −
{
mav‖
Ta

[
V‖a −

q‖a
NaTa

(
3
5 −

mav
2
‖

5Ta

)]}
and

κ1,a = 2mav‖q‖a
5NaT 2

a

So ga can be easily projected on Laguerre polynomials

ga =
∑
i

α′i,aPi

with α′i,a = αi,a + κi,a if i < 2
α′i,a = αi,a otherwise

3.3.5.2. Expression of the Cv + Cd part of the operator

Using the properties of Laguerre polynomials, and summing over the species,
Eq.(3.3.8) can be written

∂α`,a
∂t

=
∑
j

α′i,aN jl
0,a +

∂α′i,a
∂v‖

N jl
1,a +

∂2α′i,a
∂v2
‖
N jl

2,a

 (3.3.9)
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with

N jl
0,a =

∑
b

〈
jK4,ab (Pj − Pj−1) + C̄m,ab(Pj)|Pl

〉
N jl

1,a =
∑
b

〈K1,abPj + jK3,ab (Pj − Pj−1) |Pl〉

N jl
2,a =

∑
b

〈K2,abPj|Pl〉

At this stage, these quantities remain somewhat too intricate to be computed
analytically. Using the definitions given in the previous part and defining the fol-
lowing quantities

PjP` =
j+∑̀
i=0

Ci
j`u

i

L
(0)
i,ab =

〈
Dd,ab

v2
Ta

|ui
〉

L
(1)
i,ab =

〈
1
v

∂Dd,ab

∂v
|ui
〉

L
(2)
i,ab =

〈
νv,ab − νd,ab|ui

〉
L

(3)
i,ab =

〈
v

2
∂ (νv,ab − νd,ab)

∂v
|ui
〉

L
(4)
i,ab =

〈
v2Ta
v

∂ (νv,ab − νd,ab)
∂v

|ui
〉

(3.3.10)

It can be shown that

N jl
0,a = j

∑
b

j+∑̀
i=0

Ci
j`


(

3−
v2
‖

v2
Ta

)
L

(2)
i,ab +

(
2 +

v2
‖

v2
Ta

)
L

(4)
i,ab

−2L(0)
i,ab + 2L(1)

i,ab − 2L(2)
i+1,ab



− j
∑
b

j+`−1∑
i′=0

Ci′

j−1,`

 2L(1)
i′,ab +

(
3−

v2
‖

v2
Ta

)
L

(2)
i′,ab

+
(

2 +
v2
‖

v2
Ta

)
L

(4)
i′,ab



N jl
1,a = v‖

∑
b

j+∑̀
i=0

Ci
j`

 −L(0)
i,ab + L

(1)
i,ab − L

(2)
i+1,ab + L

(3)
i,ab

+
(

2 + 2j −
v2
‖

2v2
Ta

)
L

(2)
i,ab


− v‖

∑
b

j+`−1∑
i′=0

Ci′

j−1,`2jL
(2)
i′,ab
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N jl
2,a =

∑
b

j+∑̀
i=0

Ci
j`v

2
Ta

[
L

(0)
i,ab +

v2
‖

2v2
Ta

L
(2)
i,ab

]

3.3.5.3. Computation of the scalar products

Integrating by parts the expressions of the L(j)
i,ab Eq.(3.3.10), it is possible to show

that L
(1)
0,ab = −Dd,ab(v‖,u=0)

v2
Ta

+ L
(0)
0,ab

L
(1)
i>0,ab = L

(0)
i,ab − iL

(0)
i−1,ab

L
(3)
0,ab =

v2
‖

2v2
Ta

[
L

(2)
0,ab − (νv,ab − νd,ab)

(
v‖, u = 0

)]
+L(2)

1,ab − L
(2)
0,ab

L
(3)
i>0,ab =

v2
‖

2v2
Ta

[
L

(2)
i,ab − iL

(2)
i−1,ab

]
+ L

(2)
i+1,ab − (i+ 1)L(2)

i,abL
(4)
0,ab = L

(2)
0,ab − (νv,ab − νd,ab)

(
v‖, u = 0

)
L

(3)
i>0,ab = L

(2)
i,ab − iL

(2)
i−1,ab

The only last difficulty is then to compute L(0)
i,ab and L

(2)
i,ab. Unfortunately, the v

dependences of νv,ab and νd,ab prevent one from computing these scalar products
analytically without approximation. On the other hand a numerical approach
would be too costly. A solution consists in fitting the v dependence of Dd,ab and
(νv,ab − νd,ab) by suitable functions that enable an analytic computation of the
scalar products. The following fits are made

Dd,ab

v2
Ta

= 0.75
√
π√

x2
a + 9π

16

(
vTa
vTb

)2
νHSab (3.3.11)

νv,ab-νd,ab = − 0.75
√
π(

x2
a + 2.1

(
vTa
vTb

)2
)3/2ν

HS
ab (3.3.12)

The fits are given respectively in Fig.3.2 and Fig.3.3 for the self collision case
which is the most sensitive one. These fits have been obtained by building con-
tinuous functions matching the two asymptotic cases v√

2vTa
� 1 and v√

2vTa
� 1.

The case v√
2vTa

∼ 1 is therefore the most stringent test for the fits as one can
notice in Fig.3.2 and Fig.3.3.
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Figure 3.2.: Velocity dependence of Dd,ab (solid line) and of its fit (dashed line)
defined by Eq.(3.3.11)
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Figure 3.3.: Velocity dependence of νv,ab − νd,ab (solid line) and of its fit (dashed
line) defined by Eq.(3.3.12)
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Thanks to these fits, the scalar products can be approximated by analytical
expressions :

L
(0)
i,ab = 0.75

√
πνHSab I

(0)
i

(
v2
‖

2v2
Ta

+ 9π
16
v2
Tb

v2
Ta

)

L
(2)
i,ab = −0.75

√
πνHSab I

(1)
i

(
v2
‖

2v2
Ta

+ 2.1v
2
Tb

v2
Ta

)

With

I
(n)
i (x) =

∫ ∞
0

du
uie−u

(u+ x)n+1/2

= ex
i∑

k=0

(
i
k

)
(−x)i−k Jk−n (x)

where Ji (x) =
∫∞
x du e−uui−1/2, can be easily computed by recurrence.
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3.4. Numerical implementation
This section describes some numerical aspects associated with the implemen-
tation of the collision operator.

3.4.1. Numerical schemes
An explicit scheme is used to compute the evolution of the distribution function
due to C0

ab and C‖ab. For stability reasons Eq.(3.3.9) is solved with a Crank-
Nicholson scheme [20], detailed here: the problem can be written in a vectorized
form:

∂α

∂t̂
= Tα+ S

with

α =



:
α

(k)
0

α
(k)
1
:

α
(k)
Npol−1
α

(k+1)
0
:


and 0 ≤ k ≤ kmax,

T =



B0 C0 0 0 0 0 0
A1 B1 C1 0 0 0 0
0 A2 B2 C2 0 0 0
0 0 . . . 0 0
0 0 0 . . . 0
0 0 0 0 . . Ckmax−1
0 0 0 0 0 Akmax Bkmax


where Npol is the number of Laguerre polynomials that are kept, k is the index
associated with the v‖ direction, and the Ak, Bk, Ck are square blocks of size
Npol. Their respective components are

a
(k)
lj = − N̂

jl(k)
1,a

2∆v‖
+ N̂

jl(k)
2,a

∆v2
‖

b
(k)
lj = N̂

jl(k)
0,a − 2 N̂

jl(k)
2,a

∆v2
‖

c
(k)
lj = N̂

jl(k)
1,a

2∆v‖
+ N̂

jl(k)
2,a

∆v2
‖
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and

S =



:
S

(k)
0 = κ

(k)
0,aN̂

jl
0,a + ∂κ

(k)
0,a

∂v̂‖
N̂ jl

1,a + ∂2κ
(k)
0,a

∂v̂2
‖
N̂ jl

2,a

S
(k)
1 = κ

(k)
1,aN̂

jl
1,a + ∂κ

(k)
1,a

∂v̂‖
N̂ jl

1,a + ∂2κ
(k)
1,a

∂v̂2
‖
N̂ jl

2,a

S
(k)
2 = 0

:
S

(k)
Npol−1 = 0

:


The Cranck Nicholson scheme is split in the following way

(
I − ∆t

4 T
n
)
α̃ =

(
I + ∆t

4 T
n
)
αn

˜̃α = α̃+ ∆tSn(
I − ∆t

4 T
n
)
αn+1 =

(
I + ∆t

4 T
n
)

˜̃α

where n stands for the time index and I is the identity matrix. The scheme is
split for stability reason. Indeed, the tridiagonal by blocks inversion problem can
be solved thanks to a LU decomposition valid only if the left hand side matrix is
diagonal dominant. This condition gives a limit on the time step for collision as
the dominant off diagonal term is proportional to ∆t

∆v2
‖
. Interestingly the splitting

allows for a time step twice bigger than the one without splitting.

3.4.2. Numerical implementation of conservation properties
Due to numerical and physical (B?

‖ ' B) approximations, conservation prop-
erties are not perfectly satisfied. We present here a method used to improve
these conservation laws. It is used to correct only the C1 part. Indeed the way
C0 is treated automatically satisfies conservation properties. All fluid quantities
without indices correspond to the initial values. The ones noted with the prime
correspond to values after the use of C1. Finally the quantities with two primes
are corrected values. The procedure is the following, in chronological order :
i)Density is corrected by simply applying an homothety on the distribution func-

tion

F ′′ = F ′N

N ′

ii) the parallel velocity and the temperature are then corrected simultanously
by removing the Maxwellian after collisions F ′M and adding a new Maxwellian
F ′′M with the corrected moments defined as
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V ′′‖a = V‖a + ∆t∑b
R‖ab
Nama

T ′′a = Ta

The corrected parallel velocity comes from the momentum evolution equation

Nama

∂V‖a
∂t

=
∑
b

R‖ab

where the exchange rate of momentum is given by Eq.(3.3.7). The temperature
has to be kept constant T ′′ = T to be consistent with the development made in
section 3.3.2. Indeed, one can show that the exchange rate of energy due to C1

ab

is :
W 1
ab = W‖ab +Wv,ab +Wd,ab

with W‖ab the work of the drag force

W‖ab = V‖aR‖ab

and
Wv,ab +Wd,ab = 3TaTbnamaνab

ma +mb

(
qba
Ta
− qab
Tb

)
= 0 as qab = 0

It follows that the energy evolution of species a due to the C1 part is then given
by

3
2na

∂Ta
∂t

∣∣∣∣∣
C1

+ namaV‖a
∂V‖a
∂t

=
∑
b

W 1
ab ⇒

∂Ta
∂t

∣∣∣∣∣
C1

= 0

3.4.3. Choice of numerical parameters
The choice of the main numerical parameters used for the collision operator
is detailed here. The first choice is the number of polynomials Npol kept for
the projection in the µ direction. For this choice, the most stringent test is to
retrieve neoclassical prediction for the poloidal rotation presented in the section
4.3.1. The minimal number of polynomials to have the expected poloidal rotation
is Npol = 3. Once the number of polynomials is set, one has to choose the
discretization in the µ direction. A necessary condition for the projection to work
properly is to ensure the orthonormality of the polynomials and so to check the
condition ∥∥∥∥δij − ∫ due−uPi(u)Pj(u)

∥∥∥∥� 1 for any i,j

The optimal choice for the number of points in the µ direction has been found
to be Nµ = 64 and the optimal value for the upper limit in the µ direction is
µmax ' 16T

B
. The number of points in the v‖ direction is less critical in terms of

numerical cost. 128 points reveal sufficient for the collision operator.
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The last point is to choose the collisional time step ∆tcoll. Indeed in order to
save computational resources, the collision operator can be used on a different
time scale compared with the rest of the code GYSELA. Of course, the collisional
time step ∆tcoll has to scale with (max (ν?s ))−1where ν?s is the collisionality of the
s species . In practice, a collisional time step ∆tcoll ' 2 · 10−2νii

−1 is sufficient
to recover the main results of neoclassical theory. In the case of developed
turbulence, the collisional time step should be reduced compared with a pure
neoclassical case to properly take into account the effect of collisions on turbu-
lence. An upper limit for the collisional time step ∆tcoll ≤ 10∆tGY S is suggested.
This limit already allows reducing drastically the numerical cost of collisions.

3.5. Verification of the collision operator
To validate the collision operator, a first step is to perform conservation and re-
laxation tests by solving collisions only, i.e. without the effects of trajectories

∂fa
∂t

=
∑
b

Cab

In this section critical physical properties of the collision operator are tested
: conservation properties, relaxation toward the Maxwellian and its dynamics
and the exchange rates of momentum and energy between species. All the
results shown here are obtained with a discretization of (Nv‖ , Nµ) = (128, 64)
which is the optimal discretization for this operator. For these simulations, the
collisionality of the main species is ν? = 1. For the single species cases, the
time step in GYSELA is ∆t = 100ωci. For the multispecies cases performed
with deuterium as first species and tungsten as second species, the time step is
reduced to take into account that the collisionality of the impurity is higher than
the one of the main species. These tests are performed without gyroaverage
to be consistent with the fact that FLR effects are not included in the present
version of the collision operator.

3.5.1. Single species tests
Collisions should conserve particles N =

∫
Fd3v, parallel momentum p‖ =∫

mv‖Fd
3v and kinetic energy Ek =

∫ 1
2mv

2Fd3v. Conservation laws are tested
by initializing a Maxwellian that belongs to the kernel of the operator and should
therefore remain constant in time. After approximately one collision time, the
following conservations are observed for an initial mach numberM‖ = 0 :

∆N
N
' 7 · 10−7 ∆p‖ ' 10−9 ∆Ek

Ek
' 6 · 10−6
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For an initial Mach number of M‖ = 1 comparable conservation properties
are found. The mismatches are much smaller than the ones (of the order of few
percents) obtained when running the entire code in the turbulent regime [37].
This means that the collision operator can be used for Mach numbers M‖ ≤ 1
without any breakdown of its conservation properties.

Relaxation toward the Maxwellian has been tested by initializing two different
distribution functions. For the parallel direction, the initial distribution function is
chosen as

Fa = FM0a

(
1 +

mav
2
‖

2Ta

)
For the perpendicular direction, the initial distribution function is

Fa = FM0a

(
1 + mav

2
⊥

2Ta

)

The results are shown on Fig.3.4 . As expected, a relaxation toward the
Maxwellian is observed in both cases after a few collision times.

Figure 3.4.: Initial (top) and final (bottom) slices of the distribution function in
velocity space are given. The initial distribution function is far from a
Maxwellian in the v⊥ direction on the left and in the v‖ direction on the
right. In both cases, the converged state is an isotropic Maxwellian.

To investigate the dynamical relaxation to the Maxwellian, a case with T‖ 6= T⊥

and T‖−T⊥
Ta
� 1 is launched

Fa = Na

(
ma

2πT‖a

)1/2
ma

2πT⊥a
exp

(
−
mav

2
‖

2T‖a
− mav

2
⊥

2T⊥a

)
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where Ta = T‖a+2T⊥a
3 . Then at first order in T‖−T⊥

Ta
� 1

fa = 1 + T‖a − T⊥a
3Ta

1
v2
Ta

(
v2
‖ −

v2
⊥
2

)
Integrating ∂tfa, weighted by the energy, over the velocity space leads to :

d ln
(
T‖ − T⊥

)
dt

= 16
15
√
π

∫ ∞
0

dxe−x
2
x6
(
νv + 3

2νd
)

This integral can be computed either with the actual expressions of νv and νd
or their approximate values :

d ln(T‖−T⊥)
dt

= −0.80νaa for actual expressions
d ln(T‖−T⊥)

dt
= −0.78νaa for fitted values

The discrepancy is small, thus justifying the fits represented in Fig.3.2 and
Fig.3.3. The prediction for the actual expressions of νv and νd is used as a
theoretical prediction and compared with GYSELA results in Fig.3.5. Amismatch
of 15% percent is found. This discrepancy is acceptable as most of physics
processes studied with gyrokinetic codes are independent of the isotropisation
rate.
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Figure 3.5.: Top : Time evolution of the perpendicular T⊥ (red), the parallel
temperature T‖ (green), and the total temperature Ttot = 2T⊥+T‖

3
(blue). Bottom : Time evolution of the logarithmic difference of
temperatures. The slope of the curve gives the relaxation rate.

3.5.2. Test with two species
The exchange rates of parallel momentum and energy between two Maxwellians
are respectively

R‖,Mab = −Namaνab
(
V‖a − V‖b

)
QM,ab = −3 Nama

ma +mb

νab (Ta − Tb)
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It is then easy to show that

d ln
(
V‖a − V‖b

)
dt

= − (νab + νba)

d ln (Ta − Tb)
dt

= −2maνab +mbνba
ma +mb

These two relations have been checked. The results for the velocities are
shown in Fig.3.6 and for temperature in Fig.3.7. The agreement regarding relax-
ation rates is within one percent. Notice that, in each case, the time evolution is
governed by the impurity. This is a direct consequence of the trace impurity limit
which is considered here, implying a negligible impact on the main species.

Figure 3.6.: Left : Time evolution of the parallel velocity of the main species V‖,0
(red), and of a trace impurity V‖,1 (blue). Right : Time evolution of
the logarithmic difference of parallel velocities. The slope of the curve
gives the momentum exchange rate.
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Figure 3.7.: Left : Time evolution of the temperature of the main species T0 (red),
and of a trace impurity T1 (blue). Right : Time evolution of the
logarithmic difference of temperatures. The slope of the curve gives
the thermal energy exchange rate.

78



4. Standard neoclassical physics
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4.1. Introduction
As mentionned in the part 1.3.4, neoclassical physics is one of the three mech-
anisms that lead to transport. Physically, it represents the effect of collisions on
particle trajectories. In conventional neoclassical theory, it is assumed that the
system is axisymmetric and in steady state. In addition, the poloidal asymmetry
of the magnetic field plays a key role. This poloidal asymmetry comes from the
dependence of the toroidal magnetic field with the major radius Bϕ = Bϕ,0

R0
R
.

This is why neoclassical theory scales with the ε = r
R0

parameter. Other poloidal
asymmetries coming from the plasma are weak but non zero. A generaliza-
tion of the conventional neoclassical theory by removing one or more of these
assumptions is often needed. For instance, the effect of ripple can be tack-
led by removing the axisymmetric assumption [33]. Concerning the transport
of impurities, poloidal asymmetries of the impurity density are often observed
experimentally[53]. These poloidal asymmetries are large compared with those
predicted by the neoclassical theory and are often associated with the presence
of external heating sources like NBI [15] or ICRH [73, 59]. Poloidal asymmetries
lead to significant modifications of the neoclassical theory [31, 42, 4]. These
effects will be addressed in chapter 6. In the current chapter, we restrict our-
selves to the framework of conventional neoclassical theory. The goal is to give
some insight into the neoclassical physics while avoiding too heavy calculation.
Moreover, this approach allows a verification of the collision operator described
in chapter 3.
This chapter starts with a qualitative description of the conventional neoclas-

sical physics allowing the introduction of the three neoclassical regimes. Then
some predictions for the single species case are given and compared with GY-
SELA results. Finally, the neoclassical prediction of impurity flux in the trace limit
and neglecting poloidal asymmetries of the impurity is derived. This prediction
is compared with GYSELA simulations.

4.2. Physical description of neoclassical theory
Neoclassical physics is the effect of collisions on particle trajectories with finite
orbit width. Let us consider an axisymmetric case and assume a steady state
situation. It is reminded that in absence of collisions and electromagnetic field
evolution, the motion of particles is integrable as mentionned in the section 1.3.3.
There are two classes of particles, some are passing and others trapped. When
collisions are added, this simple vision is somewhat modified. Indeed, at leading
order collisions are equivalent to a diffusion in the velocity space. Therefore, a
particle can pass from the trapped to the passing domain (and vice-versa) as
shown in Fig. 4.1.
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Figure 4.1.: Trajectory of a particle (red) in the phase space
(
θ, v‖

)
in presence

of collisions. The jumps in the v‖ direction represent the effect of
the diffusion in the velocity due to collisions. Due to this diffusion,
a particle can cross the frontier between the trapping and passing
domains (green) and change its nature.

The neoclassical theory predicts a diffusive transport of particles. The neo-
classical diffusion coefficient is the sum of two contributions

Dneo = DBP +DPS

• The first one comes from a collisional layer in the phase space near the
trapped/passing boundary and is called banana-plateau DBP . As men-
tionned above, a particle can pass from the trapped to the passing domain
due to collisions. The detrapping frequency due to collisions is given by
νdetrap = ν

ε
. Trapped particles explore a much larger region than passing

ones in the radial direction: their distance with respect to their reference
magnetic surface reaches δb, which is of the order of δb ≈ 10ρc for typical
plasma parameters. δb is the characteristic radial step of trapped particles
per collision in the low collisionality regime (banana). As the trapped frac-
tion of particles is given by ft '

√
ε, the diffusion coefficient associated

with collisional detrapping is roughly given by ftνdetrapδ2
b ∼ q2

ε3/2
νρ2. This

expression is valid only if νdetrap ≤ ωb. Indeed if ωb ≤ νdetrap, trapped par-
ticles do not have the time to experience a full ’banana’ orbit before being
untrapped by collisions. Therefore the banana-plateau diffusion saturates
when ωb ∼ νdetrap and is even a decreasing function of the collision fre-
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quency for large collisionalities 1 � ν? where the collisionality has been
introduced ν? = νdetrap

ωb
. Finally, the banana-plateau diffusion takes the

form DBP ∼ q2

ε3/2
νρ2 1

(1+C1ν?)(1+C2ε3/2ν?) with C1, C2 ∼ 1. This expression
allows one to retrieve the two usual limit expressions: for low collisionality
ν? ≤ 1, the diffusion coefficient takes the form DBP ∼ q2

ε3/2
νρ2. For interme-

diate collisionality 1 ≤ ν? ≤ ε−3/2, the diffusion coefficient takes the form
DBP ∼ q2

ε3/2
ν
ν?
ρ2 ∼ vT

R0
qρ2.

• The second contribution to the neoclassical transport is associated to pass-
ing particles and called Pfirsch-SchlüterDPS. The reasoning for the Pfirsch-
Schlüter is the following : the radial diffusion is due to the curvature drift
vD. Therefore, due to collisions there are jumps in the radial direction over
a typical length ∆r ∼ vD∆t ∼ ρvT

R0
∆t. It is clear from the Fig.4.2 that if the

drift is upward, a radial jump on the top of the tokamak leads to an outward
flux whereas a radial jump on the bottom of the tokamak leads to an inward
flux. Therefore the typical time ∆t corresponds to the time for a particle to
pass from the top to the bottom. As the parallel motion is interrupted by
collisions, it is also a diffusive process with a diffusion coefficient D‖ ∼ v2

T

ν
.

Therefore, the time for a particle to pass from the top to the bottom is given
by ∆t ∼ (qR0)2

D‖
∼ ν

(
qR0
vT

)2
. Finally, the Pfirsch-Schlüter diffusion coefficient

is given by DPS ∼ (∆r)2

∆t ∼ ν (qρ)2.
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Figure 4.2.: Pfisrch-Schlüter diffusion. On the top, collisions lead to an outward
flux. On the bottom collisions lead to an inward flux.

The neoclassical diffusion can be compared with the classical prediction com-
ing from the effect of collisions on the gyromotion and simply given by Dcl = νρ2.
The comparison is shown in Fig.4.3. This curve allows one to distinguish the
definiton of the three colisionality regimes: The banana regime for low collision-
alities (ν? ≤ 1), the plateau regime for intermediate collisionalities (1 ≤ ν? ≤ ε−3/2)
and finally the Pfirsch-Schlüter regime for large collisionlities (ε−3/2 ≤ ν?).
In the next sections, the results coming from GYSELA simulations in the ab-

scence of turbulence are compared with neoclassical predictions. These tests
are performed for the verification of the collision operator described in chapter
3.
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Figure 4.3.: Comparison between the classical prediction (blue), the banana-pateau
contribution (red) and the Pfirsch-Schlüter contribution (green)

4.3. Neoclassical test of the collision operator :
single species case

Satisfying the intrinsic properties of the collision operator, as reported in the sec-
tion 3.5, is mandatory but relatively easy. A more challenging test is provided
by neoclassical theory. For the single species case, the poloidal rotation and
heat diffusion coefficient can be compared with theoretical predictions in a pure
axisymmetric case, i.e. not allowing any helical instability. These tests allow one
to assess different parts of the collision operator depending on the collisionality
regime and are useful as their results are sensitive to the details of the colli-
sion operator. Before starting, one should notice that neoclassical physics is by
nature local. Therefore, for an effective verification of the code, one should en-
sure for each neoclassical simulation a scale separation between the gradients
lengths of the background quantities and the banana width : δb � LN , LT where
LN and LT are respectively, the gradient lengths of density and temperature.

4.3.1. Neoclassical diffusion and poloidal rotation
The neoclassical theory is tested by filtering out non axisymmetric (n 6= 0, where
n is the toroidal mode number) components of the electrical potential. This fil-
tering prevents the onset of turbulence. Four simulations are performed with a
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scan in ν? going from 10−2 to 10. The phase space grid used for these simu-
lations is

(
r, θ, ϕ, v‖, µ

)
= (256, 256, 32, 128, 64). The dimension of the tokamak

that is simulated is fixed by ρ? = ρi
a

= 1
150 . The results from GYSELA are taken

at mid-radius where the inverse aspect ratio ε = 0.15 and the safety factor is
q =1.6. The local gradients are given by R0

LT
' 6 and R0

Ln
' 0 where R0 is the ma-

jor radius. The collisional time step depends on ν? and the numerical time step
is adapted consistently to keep the same temporal resolution of collisions. In
the single species neoclassical theory, two quantities are of utmost importance
: the poloidal rotation and heat diffusivity. These two quantities are compared
with neoclassical predictions.

In neoclassical theory, the poloidal velocity is tied to the thermal gradient via
the relation vθ = kneo (ν?, ε) ∇TeB . Theoretical predictions of kneo are accurate in the
asymptotic banana and Pfirsch-Schlüter regimes and approximate in the plateau
regime. The sign of the poloidal velocity depends on the collisionality regime :
rotation in the ion diamagnetic direction (kneo > 0) is expected in the banana
regime and the opposite (kneo < 0) in the Pfirsch-Schlüter regime. The transition
is expected to take place in the plateau regime. A model inspired by Hirshman
and Sigmar is given by [60] and predicts kneo in all collisionality regimes including
corrections due to finite aspect ratio ε. This theoretical prediction is used to
benchmark GYSELA’s operator. The results are shown in Fig.4.4. The shape of
the curve is the same and the inversion of sign takes place in the plateau regime
as expected by theory. The agreement is better for the banana regime where
the theoretical prediction is more accurate.
Another important quantity predicted by neoclassical theory is the thermal dif-

fusion coefficient χneo. Even if neoclassical transport is subdominant as com-
pared to the turbulent one for the main species, it can be important for heavy im-
purities like tungsten and for the main species close to transport barriers where
turbulent transport is reduced. To check their validity, GYSELA results are com-
pared with the Chang-Hinton prediction [16] valid in all collisionality regimes .
The results are shown in Fig.4.5. Again a satisfactory agreement with analytical
prediction is found.
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Figure 4.4.: kneo = eB vθ
∇T versus ν? predicted by theory (dashed line) compared

with GYSELA results (red dots)

Figure 4.5.: χneo = − Q
N∇T versus ν? predicted by theory (dashed line) compared

with GYSELA results (red dots)
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4.3.2. Zonal flow damping
Zonal flows are known to control the level of turbulence by energy transfer from
low to high wavenumbers [21]. The only linear damping mechanism for these
flows comes from collisional friction. It is then critical to get the correct damping
rate of zonal flows to predict the right level of turbulence.
Collisionless plasmas are known to exhibit linearly undamped axisymmetric

potential φ00 although the amplitude of this mode may evolve due to plasma
polarization [76]. There is therefore a residual axisymmetric potential φ00 in the
collisionless limit. The level of this residual flow is given by

φ00(t→∞)
φ00(t = 0) = 1

α
in the collisionless limit (4.3.1)

where α = 1 + 1.6 q2
√
ε
. Hinton and Rosenbluth [44] have predicted the collisional

damping of this residual flow.

φ00(t′)
φ00(t′ = 0) = exp

(
β2

α2 t
′
)
erfc

(
β

α

√
t′
)

+ erf (ν0t
′)αB

2
θ

B2

[
1.8 (ν0t

′)5/9 exp
(
− (3ν0t

′)2/3
)

+1 + 1.4
ε
exp (−νdt′)

]
(4.3.2)

with β = 3πq2ν̄1/2

εΛ3/2 , Λ = λ ln
(

16
(
ε
ν̄t

)1/2
)

with λ ' 1 and some frequencies
associated with collisions are defined as ν̄ = 0.61νii, ν0 = 1.9νii, νd = νii

0.64
√
ε
.

Note that the initial time in Eq.4.3.2 (t′ = 0) corresponds to the case where
all GAM oscillations have been Landau damped and therefore corresponds to
the limit (t → ∞) of Eq.4.3.1. Details on GAM oscillation and damping can be
found in the literature [90, 78]. The first term of Eq.4.3.2 corresponds to the fast
collisional smoothing of the distribution function in the trapping boundary layer.
The last term is the contribution from high-energy ions which have small collision
frequencies and thus dominate the long time behaviour. An extra term erf (ν0t)
has been added in front of the last term of the right hand side to ensure the
relation also holds for the initial time.
The collisional damping of the residual can be tested by first launching a colli-

sionless simulation, waiting for GAM decay and then adding collisions. The dis-
cretization of the simulation is

(
r, θ, ϕ, v‖, µ

)
= (127, 64, 8, 255, 64). Flat profiles

of density and temperature have been chosen to avoid the radial dependence
of the collision frequencies. For the same reason, the profile of the safety factor
q = 1.4 is flat. The other parameters of the simulation are ρ? = 1

160 , ε = 0.1 at
mid radius. A good agreement is found between predicted and computed φ00
decay once collisions are activated as can be seen in Fig.4.6. To have a better
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match, the value of λ has been adjusted (λ = 1.04). Note that in the comparison
between theory and simulation, GAMs are not fully damped in the simulation.
This is the reason of the oscillations observed in Fig.4.6.

The previous bunch of tests provides a successful verification of the intraspecies
collisions. In the next section, the conventional neoclassical predictions regard-
ing the transport of heavy impurity is derived analytically and then compared with
GYSELA results. These tests allow a verification of the interspecies collisions.

Figure 4.6.: Time evolution of the normalized φ00 coming from the code GYSELA
(red) compared with the theoretical prediction (blue).

4.4. Neoclassical test of the collision operator :
trace impurity

As mentionned in the section 1.4, heavy impurities are not fully ionized even in
the core of a tokamak. Therefore, they lead to an important radiative power loss
even at low concentration. Neoclassical transport is expected to be dominant for
heavy impurities. Furthermore, the divertor of ITER will be in tungsten. In this
context, it is natural to test the neoclassical transport of a trace (α = NzZ2

z

NiZ2
i
� 1)

heavy impurity like tungsten. As a starting point, the conventional neoclassical
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prediction of a trace impurity in the Pfirsch-Schlüter regime is derived. It is then
compared with the results of simulations performed with the code GYSELA.

4.4.1. Neoclassical prediction
A derivation of the theoretical prediction for trace impurity transport in the Pfirsch-
Schlüter regime can be found in [46]. The main steps for this derivation are the
following: first the particle flux is linked to the collisional exchange of momentum
via the toroidal momentum conservation. Second, the parallel flows of particle
and heat are linked to the gradients. Finally, the parallel flows are linked to the
perpendicular ones using conservation of particles and energy respectively. This
procedure allows one to write explicitely the dependance of the impurity particle
flux with respect to the gradients.

4.4.1.1. Link between neoclassical impurity flux and collisional exchange of
momentum

The starting point is to link the radial flux of particles to the collisional friction
force. The easiest way to do it is to use the toroidal momentum conservation
equation for each species s [77, 2, 51]

∂tLϕ,s = Ze
(
Γψs − ΓψE,s

)
− ∂ψΠψ

ϕ,s +
〈
I

B
R‖,s

〉
ψ

(4.4.1)

with the toroidal momentum Lϕ,s, the particle flux Γψs , the turbulent flux ΓψE,s and
the Reynolds stress Πψ

ϕ,s respectively defined as

Lϕ,s = ms

∫
dτuϕFs

Γψs =
∫
dτFsv

ψ = 〈Γ⊥,s · ∇ψ〉ψ

ΓψE,s =
∫
dτFs∂ϕφ̄

Πψ
ϕ,s = ms

〈∫
d3vuϕv

ψFs

〉

Where uϕ = I
B
v‖, vψ = (vE×B + vD,s) · ∇ψ and φ̄ is the gyro-averaged electric

potential. Here dτ = d3v dθdϕ
B·∇θ is the phase space volume element in between two

magnetic surfaces ψ and ψ+dψ and 〈...〉ψ indicates the flux surface average. R‖,s
is the total collisional drag force applied on the species s R‖,s = ∑

s′ R‖,ss′. Neo-
classical theory is done assuming a steady state and no toroidal dependence.
Furthermore, the Reynolds stress Πψ

ϕ,s is often neglected. Therefore, the rela-
tionship Eq.(4.4.1) allows one to express the neoclassical impurity flux coming
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from the collisional exchange of parallel momentum between species as

Γψs,neo = − 1
Ze

〈
I

B
R‖,s

〉
(4.4.2)

The collisional exchange of parallel momentum is linked to the parallel velocity
V‖s and the parallel heat flux q‖s via the equation [26]

R‖ab = −Namaνab

[
V‖a − V‖b −

3
5
q‖a
naTa

(
1

1 + x2
ab

)
+ 3

5
q‖b
nbTb

(
1

1 + x2
ba

)]
(4.4.3)

4.4.1.2. Structure of perpendicular flows

To compute the parallel quantities required for the solving of Eq.(4.4.3), one
needs to express first perpendicular quantities. To do so, the idea is to derive a
vectorial expressions of particle and heat fluxes. This is not obvious because of
the scalar form of the gyrokinetic equation, i.e.

∂tF̄ + 1
B∗||
∇z ·

(
żB∗||F̄

)
= C

(
F̄
)

(4.4.4)

It must be kept in mind that the actual trajectories of particles differ from those of
gyrocenters by a cyclotron motion. We consider the limit of large scale flows,
which is well described by the drift kinetic limit k⊥ρs → 0 of the gyrokinetic
equation Eq.(4.4.4). At first order in ρ∗ the particle velocity is of the form v =
v‖b + vE + vD, where b = B

B
, vE is the E ×B drift velocity and vD is the sum of

curvature and∇B drift velocities. Taking the first moment of Eq.(4.4.4), one gets
∇ · Γ = 0 in steady-state, where Γ = Γ‖b + Γ⊥. Note however that this is a flux
of guiding centers. One needs the particle flux. This is done by adding the mag-
netization flux, whose divergence is zero and does not change the conservative
form ∇ · Γ = 0. Hence

Γ⊥ = NVE +N 〈vD〉 − ∇ ×
[
N
〈
µ

Ze
b
〉
v

]
(4.4.5)

where the bracket is an average over the distribution function.

〈...〉v = 1
N

∫
d3vF̄ ...

The perpendicular flow associated with the curvature drift plus magnetization
term is

ΓD
⊥ =

(
P‖ − P⊥

) 1
ZeB

(b× κ) + B
ZeB2 ×∇P⊥
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where
P‖ =

∫
d3vF̄mv2

‖

P⊥ =
∫
d3vF̄ µB

This perpendicular fluxΓD
⊥ can be reexpressed as the divergence of a CGL stress

tensor
Πij =

∫
d3vF̄mvivj = P‖bibj + P⊥ (δij − bibj)

by noting that

∇ ·Π = ∇P⊥ +
(
P‖ − P⊥

)
κ+

[
(B · ∇)

(
P‖ − P⊥

B

)]
b (4.4.6)

so that
Γ⊥ = NVE + B

ZeB2 ×∇ ·Π (4.4.7)

A similar calculation can be done for the perpendicular energy flux

Q⊥ = 3
2NTVE +N

〈
mv2

2 vD
〉
−∇×

[
N

〈
mv2

2
µ

e
b
〉]

(4.4.8)

Introducing the ”energy flux tensor”

Θij =
∫
d3vF̄mvivj

mv2

2 = Θ‖bibj + Θ⊥ (δij − bibj)

where
Θ‖ =

∫
d3vF̄mv2

‖
mv2

2

Θ⊥ =
∫
d3vF̄ µB

mv2

2
one gets

Q⊥ = 3
2NTVE + B

ZeB2 ×∇ ·Θ (4.4.9)

where

∇ ·Θ = ∇Θ⊥ +
(
Θ‖ −Θ⊥

)
κ+

[
(B · ∇)

(
Θ‖ −Θ⊥

B

)]
b (4.4.10)

We now consider a Maxwellian distribution function, the average over the distri-
bution function can be recast as

〈...〉v =
∫ +∞

0
du exp (−u)

∫ +∞

−∞

dζ√
2π

exp
(
−ζ

2

2

)
... (4.4.11)
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where ζ = v‖/vT and u = µB/T are normalized parallel velocity and perpendicu-
lar energy (vT =

√
T/m). One recovers that P‖ = P⊥ = P and Θ‖ = Θ⊥ = 5

2NT
2

so that the perpendicular flux reads

Γ⊥ = N
B ×∇ψ
B2 Ω (4.4.12)

where Ω (ψ) = ∂φ
∂ψ

+ 1
ZeN

∂P
∂ψ

and

q⊥ = Q⊥ −
5
2TΓ⊥ = 5

2P
B

ZeB2 ×∇T − PVE (4.4.13)

The second term−PVE in Eq.( 4.4.13 ) is usually neglected in standard neoclas-
sical theory as its contribution to the flux average flux is small. The correction
−PVE appears because the convective energy flux due to the E × B drift is
5
2PVE in the hydrodynamic formulation (it is the enthalpy that is convected, not
the energy), whereas in kinetic theory, the energy flux can only be 3

2PVE since
the E×B drift velocity does not depend on energy. This problem has been here
and there for a long time, without a satisfactory answer. If one accepts to neglect
this term, the perpendicular heat flux appears to be simply

q⊥ = 5
2P

B
ZeB2 ×∇T (4.4.14)

which is the classical expression for the perpendicular diamagnetic heat flux.

4.4.1.3. Structure of parallel flows

Now that the perpendicular flows are known, the idea is to use the conservation
equations (particle and energy) to link them to parallel quantities. We begin
with the particle flux. We use the fact that B × ∇ψ = I (ψ)B − B2R2∇ϕ to
separate the perpendicular flow of particle Eq.(4.4.12) in a compressible part
and an incompressible part Γ⊥ = Γc + Γi with

Γc = N
I

B2ΩB

Γi = −NΩR2∇ϕ

It is easy to show the incompressibility of the total particle flux. Indeed the
local conservation of particles reads

∂N

∂t
+∇ · Γ = 0

Using the steady state assumption, one gets the incompressibility condition
∇ · Γ = 0 over the total particle flux, which is used to link the compressible part
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of the perpendicular flux to the parallel flux

∇ · Γ = ∇ ·

(
Γc⊥ + Γ‖

)
B

B

 = B∇‖
[

Γc⊥ + Γ‖
B

]
= 0

with Γc⊥ = N I
B

Ω. Since the system is assumed axisymmetric here, it is equiv-
alent to:

Γ‖ = K (ψ)B − Γc⊥

⇔ NV‖ = K (ψ)B −N I

B
Ω

with K (ψ) an unknown function at this stage. And so

V‖ = K (ψ)B
N

− I

B
Ω

Then multiplying by the magnetic field and taking the flux surface average, it is
possible to computeK (ψ)

K (ψ)
N

=

〈
BV‖

〉
ψ

〈B2〉ψ
+ I (ψ) Ω
〈B2〉ψ

Finally one gets the expression of parallel velocity

V‖ =

〈
BV‖

〉
ψ
B

〈B2〉ψ
− IΩ

(
1
B
− B

〈B2〉ψ

)
(4.4.15)

For the parallel heat flux, a similar derivation is performed. To prove that the
heat flux is incompressible, the local energy conservation is required

∂E

∂t
+∇ ·Q = 0

whereE is the total energyE = Ek+Ep andQ is the total flux of energy. Here we
neglect the contribution of the electric field. In this caseE ' Ek andQ ' q+ 5

2TΓ.
Using the stationarity one gets

∇ · q + 5
2 (T∇ · Γ +∇T · Γ) = 0

Using the incompressibility of the particle flux (∇ · Γ = 0) one gets

∇ · q + 5
2∇T · Γ = 0
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In this section it has been assumed that the temperature is a flux function T (ψ)
such that ∇T · Γ = ∂T

∂ψ
∇ψ · Γ⊥. As the perpendicular flux of particle Eq.(4.4.12)

is orthogonal to ∇ψ then ∇T · Γ = 0. Therefore, the heat flux is incompressible
∇ · q = 0. Then using exactly the same procedure as for the parallel velocity,
one gets

q‖ =

〈
Bq‖

〉
ψ
B

〈B2〉ψ
− 5

2
P

Ze

∂T

∂ψ
I (ψ)

(
1
B
− B

〈B2〉ψ

)
(4.4.16)

4.4.1.4. Impurity flux

Using the previously derived expressions of the parallel quantities Eq.(4.4.15)
and Eq.(4.4.16), and the definition of the collisional exchange of momentum
Eq.(4.4.3), one can compute the parallel exchange ofmomentum between species
due to collisions

R‖zi = νzi
mzTzI

Zze

(
1
B
− B

〈B2〉ψ

)
Nz

×
[
∂ lnNz

∂ψ
− Zz
Zi

∂ lnNi

∂ψ
−Htheo

Zz
Zi

∂ lnT
∂ψ

]
(4.4.17)

In this expression, the contribution of the impurity parallel heat flux has been
dropped due the mass ratio between impurity and the main species. Identical
temperatures have also been assumed for both species. Using the parallel mo-
mentum exchange due to collisions Eq.(4.4.17), one can compute the neoclassi-
cal particle flux Eq.(4.4.2)

Γz,neo = 〈Γz · ∇r〉ψ = −NzDtheo

[
∂rNz

Nz

− Zz
Zi

∂rNi

Ni

−Htheo
Zz
Zi

∂rT

T

]
with

Dtheo = νzi
mzTzI

2

(Zze)2

(〈 1
B2

〉
ψ
− 1
〈B2〉ψ

)(
dr

dψ

)2

In circular geometry, one has dr
dψ

= q
r
and I2

(〈
1
B2

〉
ψ
− 1
〈B2〉ψ

)
' 2r2. Therefore

Dtheo ' 2q2νziρ
2
z

This expression is close to the one found in the qualitative approach in the first
section.
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4.4.2. Comparison with GYSELA results
In fusion plasmas, tungsten is only partially stripped and its ionization state de-
pends on the local temperature. But only a single charge state is allowed in
the current version of the GYSELA code. Thus a fixed charge is chosen for
the tungsten ZW = 40. The main species is deuterium in the banana regime
(ν?D = 0.1 at mid radius). Tungsten is therefore in the Pfirsch-Schlüter regime as
ν?W '

√
2Z2

W

√
mD
mW

ν?D ' 236ν?D = 23, 6.
Recovering the expected neoclassical expression of the thermal screening co-

efficient Htheo reveals being a stringent test of both the Vlasov part (the left hand
side of the gyrokinetic equation, governing the trajectories) and the collision op-
erator. More precisely, the final value – and sign – of Htheo results from a partial
compensation between two different contributions: one coming from the parallel
velocities of both species (of the order of 1 in the Pfirsch-Schlüter regime), and
another one coming from the parallel heat flux of the main ions (of the order of
−3

2 in the Pfirsch-Schlüter regime).
In this framework, the accurate computation of q‖i is a critical issue. As a mat-

ter of fact, its neoclassical expression Eq.(4.4.16) results from the incompress-
ibility of the total flux ∇ · qi = 0. The transverse flux q⊥i computed in GYSELA is
in perfect agreement with the neoclassical prediction, Eq.(4.4.14). Conversely,
the present accuracy of the energy balance is not sufficient to recover the ex-
pected expression of q‖i: while the poloidal shape is properly recovered, the
magnitude is not. More precisely, the parallel heat flux coming from GYSELA is
approximately half of its theoretical prediction. Note however that this issue is
not related to the collision operator, although it impacts neoclassical transport.
Indeed, it comes from the treatment of the Vlasov part of the gyrokinetic equa-
tion. For the time being, the solution to overcome this difficulty is to impose that
the parallel heat flux takes the expected value Eq.(4.4.16) in the collision oper-
ator. This temporary solution has been used to obtain the results in the rest of
this section.
The diffusion coefficient and the screening factor in the Pfirsch-Schlüter regime

with trace impurities are given respectively by Dtheo = 2q2 ρ2
i νiz/α and Htheo '

−0.5 + 0.29/
(
0.59 + 1.34g-2

)
with g = ν?i ε

3/2 [46]. To test this prediction we as-
sume that the flux computed in GYSELA takes the general form

Γgysz = −nZDgys

[
∂rNz

Nz

−KgysZ
∂rNi

Ni

−HgysZ
∂rT

T

]
(4.4.18)

with a modified definition of the impurity flux

Γgysz = dr

dψ

[
Γψz − ΓψE,z −

1
Zze

(
∂tLϕ,z + ∂ψΠψ

ϕ,z

)]

The modification of the definition of the impurity flux is required for an accurate
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comparison between simulation and theoretical prediction. Indeed in the simu-
lations, the contribution of the other terms is non-vanishing and they need to be
taken into account.
Using the ansatz Eq.(4.4.18), one can measure Dgys, Kgys and Hgys and to

compare them with their analytical predictions Dtheo, Ktheo = 1 and Htheo . To
do so, two simulations are used. The first one with ∇T ' 0 is used to com-
pute Dgys and Kgys. Radial density profiles are chosen to get a radial scan of
∂rNz
Nz

(r)− Z ∂rNi
Ni

(r) around zero. It is then possible to plot Γgysz /Nz as a function
of −Dgys

[
∂rNz
Nz
−KgysZ

∂rNi
Ni

]
, with Dgys and Kgys as free parameters determined

via a least square method. This approach uses the global character of GYSELA
and the locality of the neoclassical transport. Small gradients of density and tem-
perature are considered to minimize the radial dependence of Dtheo and Htheo,
making the analysis simpler. For the same reason, a flat profile of the safety
factor is chosen (q = 2). The other parameters of the simulation are ρ? = 1

150 ,
ε = 0.15 at mid radius as in the previous part. The result of this simulation is
given in Fig.4.7. The good fit gives confidence in the dependence of the flux
of tungsten on the density gradients of both species. The discrepancy with the
theoretical prediction for Kgys is of few percents and the one on the diffusion
coefficient Dgys is below 15%.
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Figure 4.7.: Normalized particle flux of impurities versus density gradients. The
solid line corresponds to GYSELA results and the dotted line to its
linear fit.

The second step consists in a simulation with ∇Nz
Nz
− Z∇Ni

Ni
= 0 . In this case

the flux is expected to be directly proportional to the temperature gradient Γz =
−NZDgysHgysZ

∇T
T

since the previous simulation has shown thatKgys ' 1. Using
also the fact that the diffusion coefficient is close to the theoretical prediction, we
can replace Dgys by Dtheo in the previous expression and then directly measure
Hgys using a method similar to the one presented previously. The result is given
in Fig.4.8. Again a discrepancy of few percent is found between the results from
the code and the theoretical prediction.
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Figure 4.8.: Normalized particle flux of impurities versus temperature gradient.
The solid line corresponds to GYSELA results and the dotted line to
its linear fit.

Summary of the chapter
In conclusion, the tests performed in this chapter have shown that GYSELA, with
its new collision operator presented in the chapter 3, is able to reproduce suc-
cessfully the results coming from the conventional neoclassical theory derived
in absence of turbulence and external sources. This is an important result in the
perspective of impurity transport studies as neoclassical transport is expected
to be the main contributor to heavy impurity transport.

98



5. Turbulent prediction of impurity
flux
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Turbulence is one of the three mechanisms of particle transport in tokamak.
It is the dominant one for the main ion species and can also have an impact on
impurity transport, especially in the case of light impurities or if the collisionality
of the impurity is not too large. Turbulence in plasmas is a very rich topic and an
exhaustive presentation of its specificities is beyond the scope of this thesis. In-
stead, a general view of the turbulence observed in tokamak plasmas is given in
the first part of this chapter. The second part is devoted to the turbulent transport
of impurities.

5.1. ITG turbulence

5.1.1. Underlying instability
Turbulence in plasmas often comes from an underlying linear instability. This
instability is always associated with a deviation from thermodynamic equilibrium,
providing the necessary source of free energy. The source of free energy can
be due to the existence of radial gradients or come from deviation from the
Maxwellian distribution function as in the case of the bump on tail instability.
In the nonlinear simulations performed in the frame of this thesis, the instabil-

ity that leads to turbulence is due to the temperature gradient of the main ion
species. Therefore the resulting turbulence is called ITG (Ion Temperature Gra-
dient) driven turbulence. ITG is akin to the so-called “interchange instability”. In-
terchange instability is locally unstable (stable) on the low (high) field side of the
tokamak. These instabilities are indeed due to the presence of the magnetic drift
combined with density and/or temperature gradients. A schematic description of
an interchange instability is depicted in Fig.5.1. This figure shows a typical situa-
tion found on the low field side of a tokamak. Initial potential fluctuations (red and
blue circles) are amplified because of an unbalanced advection (vE) due to the
gradient of pressure. In the case depicted, the gradient of the magnetic field in-
tensity∇B and the gradient of the pressure are pointing in the same direction. In
this case, the unbalanced advection leads to an increase of the fluctuations, and
therefore to an instability. Conversely, if the gradients were pointing in opposite
directions, the situation would be stable. This is the reason why ITG turbulence
like other interchange instabilites exhibits stronger turbulence intensity in the low
field side of the tokamak.
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Figure 5.1.: Qualitative explanation of an interchange instability. The initial po-
tential fluctuations (blue and red circles) are growing due to an um-
balanced vE advection. Indeed due to the pressure gradient, there
are more particles going to the right than in the opposite direction.
Combined with the vertical drift due to magnetic curvature, this leads
to an instability.

The low field side of the tokamak is always locally unstable to interchange
instability, while the high field side is stable. As both areas are magnetically
connected, a pending question is whether the overall magnetic field line is stable
or not. We know derive the linear stability criterion for ITG turbulence.

5.1.2. Linear stability
5.1.2.1. Equilibrium field, particle trajectories and gyrokinetic equation

The unperturbed part of the magnetic field is written in Clebsch representation,

Beq = ∇α×∇ψ

where α = ϕ − q(ψ)θ, where ψ, ϕ, and θ are respectively the poloidal flux nor-
malised to −2π, the toroidal and poloidal angles, and q(ψ) is the safety factor.
This structure of the field is identical to the one defined in the section 1.3.2
Beq = I(ψ)∇ϕ + ∇ϕ × ∇ψ for a straight field line coordinate θ such that Beq ·
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∇ϕ/Beq · ∇θ = q(ψ). In the special case of a large aspect ratio tokamak with
circular concentric magnetic surfaces labeled by their minor radius r, the func-
tion ψ is given by dψ

dr
= r

q(r)
B0
R0
, where R0 is the major radius. The inverse aspect

ratio ε = r
R0

is considered as a small parameter, and calculations are done at
first order in ε. The unperturbed equation of motion is integrable, since there
exists three invariants of motion, namely the unperturbed Hamiltonian Heq, the
magnetic moment µ, and the toroidal canonical momentum Pϕ = −eψ + mRvϕ
where vϕ is the particle toroidal velocity. The gyrocenter distribution function F̄ is
a function of the variables (Heq, µ, Pϕ, θ, ϕ) (strictly speaking there should also be
a label giving the sign of the parallel velocity). The action m

e
µ is conjugated with

the gyroangle, while the toroidal canonical momentum is conjugated with the
toroidal angle. The last degree of freedom (Heq, θ) can be replaced by a set of
action/angle variable, which does not need to be detailed here. The gyrokinetic
Vlasov equation reads

∂F̄

∂t
−
{
H̄, F̄

}
= 0 (5.1.1)

where H̄ = Heq+ h̄ is the total Hamiltonian, and {, } denotes the Poisson bracket.
This Poisson bracket is fully determined at this stage by the equations of motion
expressed in the set of coordinates (Heq, µ, Pϕ, θ, ϕ). It is convenient to write the
distribution function as

F̄ (Heq, µ, Pϕ, θ, ϕ, t) = Feq(H̄, µ, Pϕ, t) + ḡ(Heq, µ, Pϕ, θ, ϕ, t)

where Feq(Heq, µ, Pϕ) is the unperturbed distribution function that depends on
motion invariants only. Noting that Feq(H̄, µ, Pϕ) ' Feq(Heq, µ, Pϕ) + h̄∂HeqFeq for
small values of the perturbed Hamiltonian, and using {ϕ, Pϕ} = 1, {θ, Pϕ} = 0,
the following equation over the “resonant”distribution function (i.e. non adiabatic)
ḡ is derived in the appendix A.

∂ḡ

∂t
−
{
H̄, ḡ

}
= Feq
Teq

(
∂

∂t
+ Ω∗ ∂

∂ϕ

)
h̄ (5.1.2)

where 1
Teq

= − ∂
∂Heq

lnFeq is the inverse of a “temperature”and Ω∗ = Teq
∂ lnFeq
∂Pϕ

is
the kinetic diamagnetic frequency. Both quantities depend on the motion invari-
ants only. Teq is the usual local temperature when Feq is a Maxwellian. Accord-
ingly, the kinetic diamagnetic frequency can be reexpressed using the approxi-
mation Pϕ ' −eψ:

Ω∗ = −q
r

Teq
eB0

∂ lnNeq

∂r
+
(
Heq

Teq
− 3

2

)
∂ lnTeq
∂r

+

(
v‖ − V‖,eq

)
v2
T

∂V‖,eq
∂r


There and in the following, Feq is considered to be a Maxwellian. The function
ḡ is then expressed as a function of the non canonical set of gyrocenter coordi-
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nates
(
r, θ, ϕ, v‖

)
. The corresponding Poisson bracket in the gyrokinetic Vlasov

equation on ḡ reads

{F,G} = B∗

mB∗||
·
(
∇F ∂G

∂v‖
− ∂F

∂v‖
∇G

)
− beq
eB∗||
· ∇F ×∇G (5.1.3)

where m is the mass, e the charge, beq = Beq

Beq
the unit vector along the magnetic

field, B∗ = Beq + mv‖
e
∇× beq and B∗|| = beq ·B∗ is the Jacobian of the gyrocenter

transformation. The Poisson bracket Eq.(5.1.3) fully determines the equations
of motion. In the electrostatic limit, these are

dx
dt

= −{Heq,x} = vD + vE + v‖beq

m
dv‖
dt

= −
{
Heq,mv‖

}
= −beq · ∇ (µBeq + eJ φ) +mv‖κ · (vD + vE)

where
vD = 1

e

beq
B∗||
×
(
µ∇Beq +mv2

‖κ
)

is the magnetic drift velocity (κ = (beq · ∇)beq is the field curvature) and

vE = beq
eB∗||
×∇h̄

the E×B drift velocity ( h̄ = eJ φ is the perturbed Hamiltonian, φ is the perturbed
electric potential and J the gyroaverage operator). The volume element in the
velocity space reads d3v = 2π 1

m
B∗||dµdv‖.

At this stage, no approximation was done apart from the ones based on the
standard collisionless gyrokinetic ordering. ITG is coming from the passing parti-
cles. Therefore we now focus on the role of passing particles, i.e. neglect particle
trapping. For highly passing particles, this is equivalent to ignore the mirror force
and the parallel electric force in the parallel equation of motion (weak non linear
term). Given this framework, the compressional term in the parallel equation of
motion can be ignored as well because it is of the same order of magnitude as
the terms neglected. The parallel velocity then appears to be a motion invariant,
as expected for highly passing particles. The gyrokinetic Vlasov equation can
then be reformulated as follows:

∂ḡ

∂t
−
{
H̄, ḡ

}
= ∂ḡ

∂t
+ v‖∇‖ḡ + vE · ∇ḡ + vD · ∇ḡ

= Feq
Teq

(
∂

∂t
+ Ω∗ ∂

∂ϕ

)
h̄ (5.1.4)
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5.1.2.2. Linearization

The electric potential is split in an axisymmetric component 〈φ〉ϕ (ψ, θ) and a he-
lical perturbation φ̃ (ψ, θ, ϕ), i.e. φ = 〈φ〉ϕ + φ̃. We place ourselves in the rotating
referential for which the flux surface averaged electric field is zero. Therefore
the term vE · ∇ḡ is strictly non linear and neglected for the linear analysis. In
the following we are interested in the helical part, which is the one which can be
unstable. The ballooning representation is used [18, 75, 86], i.e.

φ̃(ψ, θ, ϕ, t) =
∑
kω
φnω(θk, θ + 2pπ) exp {in [ϕ− q(ψ) (θ − θk + 2pπ)]− iωt}

(5.1.5)

where k = (n, θk, p). The integer p spans the interval ] −∞,+∞[. However for
a ballooned turbulence, it is sufficient to keep the component p = 0 only. In this
case, a useful reformulation of Eq.(5.1.5) in the set of field aligned coordinates
is

φ̃(ψ, α, θ, t) =
∑
kω
φkω exp {i [nθkq(ψ) + nα− ωt]} (5.1.6)

where we recall that α = ϕ − q (ψ) θ. Considering large toroidal numbers n �
1 and after a bit of algebra detailed in the appendix B , it can be shown that
Eq.(5.1.4) can be written

Ωt
∂ḡkω

∂θ
− i (ω − ωD) ḡkω = −i (ω − ω?)hkω

Feq
Teq

(5.1.7)

where the transit frequency is defined as Ωt = v‖
qR0

. ωD stands for a frequency
associated to the field curvature

ωD = kθvD [cos θ + s (θ − θk) sin θ]

where vD = ‖vD‖ and finally, a modified diamagnetic frequency is defined as

ω? = nΩ∗ = kθTeq
eB0

∂ lnNeq

∂r
+
(
Heq

Teq
− 3

2

)
∂ lnTeq
∂r

+

(
v‖ − V‖,eq

)
v2
T

∂V‖,eq
∂r

 (5.1.8)

Also, the poloidal wavevector is defined as kθ = −nq
r
and the magnetic shear

is s = r
q
dq
dr
. Eq.(5.1.7) is a first order linear differential equation. The solution of

this equation is an integral form

ḡkω = −iω − ω?Ωt

Feq
Teq

∫ θ

θmin
dθ′ exp {i [Λkω (θ)− Λkω (θ′)]}hkω (θ′)

with ∂Λkω
∂θ

= ω−ωD
Ωt . The causality imposes the choice θmin = −sign (Ωt)×∞. This
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expression can be written differently by using the Heaviside function H:

ḡkω = ω − ω?
ω

Feq
Teq

∫ ∞
−∞

dθ′G (θ, θ′)hkω (θ′) (5.1.9)

with
G (θ, θ′) = −i ωΩt

exp {i [Λkω (θ)− Λkω (θ′)]}H [(θ − θ′) sign(Ωt)]

The next step consists in using the Poisson equation to link the ”resonant”
distribution function g with the potential φ. This equation reads∫

d3vJ ḡ = Neq

Teq
(1 + τ) eφ (5.1.10)

where τ = Ti
Te
. The dispersion relation then reads

∫
d3vJ

[
ω − ω?
ω

Feq
Teq

∫ ∞
−∞

dθ′G (θ, θ′)J φkω (θ′)
]

= Neq

Teq
(1 + τ)φkω

This expression is equivalent to the one derived by Romanelli (Eq.(5) of [74]).
This formula is pretty general but difficult to exploit directly due to its integro-
differential form. Different limits have been derived analytically, allowing for sim-
pler expressions but with restrained validity domains.
ITG is an instability with a threshold value [61]. This threshold is of utmost

importance for confinement. Indeed, above the threshold the turbulent flux is
rapidly increasing thus leading to a profile relaxation. In practice, profiles are
close to the threshold value. This is called “profile stiffness” [32].
An extensive study of the linear stability criteria with a gyrokinetic code [56]

allows one to derive a linear threshold criteria in the infinite aspect ratio limit
ε→ 0

R

LlT,c
= max

{
(1 + τ)

(
1.33 + 1.91s

q

)
, 0.8 R

LN

}
(5.1.11)

Fig.5.2 illustrates Eq.(5.1.11) in the case s = q. Above the curve, ITG is un-
stable and below it is stable. From Eq.(5.1.11) it is clear that τ and s

q
have a

stabilizing effect for ITG, as well as large values of R
LN

.
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Figure 5.2.: Linear threshold for the ITG instability in the case s = q

5.1.3. Turbulence saturation processes
In the previous section, a linear stability analysis of ITG mode has been derived.
This approach gives a threshold temperature gradient for the ITG turbulence. It is
known that in the non-linear regime, the effective threshold is larger. This charac-
teristics, sometimes called “Dimits shift” in reference to the pionnering work done
by A. M. Dimits et al. [24], is often attributed to the non-linear generation of zonal
flows by turbulence. Part of the free energy extracted from the instability is then
transferred by non-linear coupling to the large scale zonal flow. Zonal flows back
react on turbulence by transferring energy from low wavelengths to high wave-
lengths via a diffusion process in k-space [21]. These processes reduce the ef-
fective source of energy available for turbulence growth. Ultimately, a zonal flow
saturates at a level governed either by collisional damping [44, 26] and/or the non
linear destabilization of the zonal mode via different possible mechanisms [21]
(Kelvin-Helmholtz instability, other tertiary mode instability, hyper diffusion). This
mechanism of turbulence saturation is depicted in Fig.5.3. It is an efficient satu-
ration mechanism because zonal flows are not Landau damped [76], therefore
they can saturate at a relatively large level. A new and more general approach of
the turbulent generation of large scale structures including zonal flows is derived
in the chapter 7.
Note that other saturation mechanisms for turbulence can be at play. For in-

stance, mode-mode coupling transfer energy to small scales structures which
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are eventually damped (for instance by collisions). Background profiles can
also relax thus leading to a decrease of the linear drive for turbulence. Non-
linear wave-particle interaction can also transfer energy to another species (i.e.
electrons in the case of ITG).

Figure 5.3.: Mechanism for turbulence generation and saturation by zonal flows

5.2. Theoretical prediction of impurity transport
related with turbulence

In the previous section, the generation and saturation of ITG turbulence has been
presented. This turbulence can generate an impurity particle flux. The turbulent
impurity flux takes the general form

Γz,turb = 〈Γz,turb · ∇r〉 =
〈∫

d3vfz
(
vn6=0
E · ∇r

)〉
ψ,t

where fz = Fz − Feq,z is the perturbed distribution function of the impurity and
〈.〉ψ,t refers to both flux surface and time average. Note that only modes n 6= 0
are considered here. Indeed, although axisymmetric modes (n = 0) can be
generated by turbulence via non linear coupling (cf. chapter 7), they are linearly
stable. Therefore, restricting the definition of the turbulent flux to the modes
linearly unstable, one discards the contribution of n = 0 modes in Γz,turb. Using
the fact that vE · ∇r ∼ −∂θφ

B
and taking the Fourier transform, one obtains

Γz,turb =
∑
kω

∫
fz,kω

(
−ikθ

φkω
B

)?
d3v (5.2.1)

The linear response of the distribution function is given by (proof can be find in
the appendix C)

fz,kω = −
[
1− ω − ω?

ω − ωd − k‖v‖
J
]
eZφkω

Fz,eq
Tz,eq

(5.2.2)
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where k‖ is the wavevector associated to the parallel direction. Combining Eq.(5.2.1)
and (5.2.2), one gets

Γz,turb = −
∑
kω

∫ Fz,eq
Tz,eq

(
−ikθ

φkω
B

)? [
1− J ω − ω?

ω − ωd − k‖v‖
J
]
eZφkωd

3v (5.2.3)

The non resonant part (term proportional to <
(

1− J ω−ω?
ω−ωd−k‖v‖

J
)
) is exactly

zero as ∑k,ω kθ |φk,ω|
2 = 0 and can be discarded. Eq.(5.2.3) is the flux of par-

ticles. In GYSELA, the computed flux corresponds to the flux of gyrocenters. It
is given by

Γ̄z,turb =
〈∫

d3vF̄z
(
v̄n 6=0
E · ∇r

)〉
ψ,t

Both definitions differ by a polarization term. By a similar procedure as for the
particule flux, the gyrocenter flux can be shown to take the form:

Γ̄z,turb =
∑
kω

∫
=
(

ω − ω?
ω − ωd − k‖v‖

)(
−ikθ

J φkω
B

)?
eZJ φkω

Fz,eq
Tz,eq

d3v

=
∑
kω

∫
=
(

ω − ω?
ω − ωd − k‖v‖

)
ieZB

kθTz,eq

(
−ikθ

J φkω
B

)(
−ikθ

J φkω
B

)?
Fz,eqd

3v

=
∑
kω

∫
=
(

ω − ω?
ω − ωd − k‖v‖

)
ieZB

kθTz,eq
|v̄E,kω|2 Fz,eqd3v

where |v̄E,k,ω|2 =
∣∣∣kθ Jφk,ω

B

∣∣∣2. Using the Sokhotski–Plemelj theorem, the imag-

inary part can be replaced by =
(

ω−ω?
ω−ωd−k‖v‖

)
= −iπ (ω − ω?) δ

(
ω − ωd − k‖v‖

)
.

Therefore the turbulent flux can be reexpressed as

Γ̄z,turb = π
∑
kω

∫
(ω − ω?)

eZB

kθTz,eq
δ
(
ω − ωd − k‖v‖

)
|v̄E,k,ω|2 Fz,eqd3v

Using the expression of the diamagnetic frequency Eq.(5.1.8), one gets

Γ̄z,turb = −πZ
∑
kω

∫
δ
(
ω − ωd − k‖v‖

)
|v̄E,k,ω|2 Fz,eqd3v

×

∂ lnNz,eq

∂r
+
(
Heq

Tz,eq
− 3

2

)
∂ lnTz,eq
∂r

+

(
v‖ − V‖z,eq

)
v2
T

∂V‖z,eq
∂r

− eB

kθTz,eq
ω


(5.2.4)
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The velocity integral is intricate due to the resonance condition. But it is clear
from Eq.(5.2.4) that the flux of impurity takes the general form

Γ̄z,turb = DNNz,eq

[
∂ lnNz,eq

∂r
+ CT

∂ lnTz,eq
∂r

+ CV
∂V‖z,eq
∂r

+ Vp

]
(5.2.5)

with

DN = − πZ

Nz,eq

∑
kω

∫
δ
(
ω − ωd − k‖v‖

)
|v̄E,k,ω|2 Fz,eqd3v

DNNz,eqCT = −πZ
∑
kω

∫ (
Heq

Tz,eq
− 3

2

)
δ
(
ω − ωd − k‖v‖

)
|v̄E,k,ω|2 Fz,eqd3v

DNNz,eqCV = −πZ
∑
kω

∫ (
v‖ − V‖z,eq

)
v2
T

δ
(
ω − ωd − k‖v‖

)
|v̄E,k,ω|2 Fz,eqd3v

DNNz,eqVp = πZ
∑
kω

∫ eB

kθTz,eq
ωδ
(
ω − ωd − k‖v‖

)
|v̄E,k,ω|2 Fz,eqd3v

The terms DN , CT , CV and Vp represent respectively diffusion, thermo-diffusion,
roto-diffusion and pure convection. The values of these coefficients can be found
for instance in [5] where they were derived in the plasma rotating frame. The
latter approach makes explicit the specific contributions of the centrifugal force
and of the Coriolis force.
Some qualitative conclusions can be drawn from Eq.(5.2.5). First of all, the tur-

bulent impurity flux scales like the turbulence intensity squared Γ̄z,turb ∝ |v̄E,k,ω|2.
This result is intuitive: more turbulent fluctuations lead to a larger turbulent flux.
Thermo-diffusion and roto-diffusion are expected to change sign depending on
the turbulence nature of the underlying instability. Both terms are expected to
give an outward flux for ITG turbulence [13]. The sign of the pure convection is
not as clear and depends on the specific situation.
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6. Neoclassical impurity flux in
presence of poloidal asymmetries
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6.1. Experimental evidence of poloidal asymmetries
of impurity

Poloidal asymmetry of the impurity distribution is often observed experimentally.
An example coming from a JET discharge [57] is shown in the Fig.6.1. In this fig-
ure, the radiated power shows a large poloidal asymmetry in the center. This
asymmetry is associated with a density asymmetry of the impurity. Poloidal
asymmetries are often associated with external heating systems. A way to ap-
preciate how heating systems can generate poloidal asymmetries of the impurity
density is to consider the following formula [10, 15]

Nz (ψ, θ)
N?
z (ψ) = T⊥,z (ψ, θ)

T ?⊥,z (ψ)

× exp
{
−eZ [φ (ψ, θ)− φ? (ψ)]

T‖,z (ψ) + mzΩ2
z

2T‖,z (ψ)
[
R2 (ψ, θ)−R?2 (ψ)

]}
(6.1.1)

where the quantities with a star are taken at the outermid-plane f ? (ψ) = f (ψ, θ = 0).
In this formula, a rigid body like rotation is assumed for the impurity Ωz. In
Eq.(6.1.1), the poloidal asymmetry of the perpendicular temperature is associ-
ated with anisotropy.

T⊥,z (ψ, θ)
T ?⊥,z (ψ) =

[
T ?⊥,z (ψ)
T‖,z (ψ) +

(
1−

T ?⊥,z (ψ)
T‖,z (ψ)

)
B? (ψ)
B (ψ, θ)

]
(6.1.2)

Eq.(6.1.1) clearly shows that toroidal rotation can generate density asymmetry.
This is in particular the case when Neutral Beam Injection (NBI) is used for cur-
rent generation [6]. The combination of Eq.(6.1.1) and Eq.(6.1.2) indicates that
anisotropic heating like the one provided by Ion Cyclotron Resonance Heating
(ICRH) can produce an asymmetric density distribution [59, 73].
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Figure 6.1.: Poloidal reconstruction of radiative power loss in a JET discharge [57].
This radiative power is attributed to impurity.

6.2. Neoclassical impurity flux in presence of large
poloidal asymmetries and pressure anisotropy

In current tokamaks, heavy impurities like tungsten are in the Pfirsch-Schlüter
regime. But on larger devices, like ITER, heavy impurities should be in the
plateau regime due to higher temperatures. The banana-plateau contribution
of the impurity flux is expected to be linked to the pressure anisotropy. Moreover,
the poloidal asymmetry of the impurity density is known to modify significantly
(up to an order of magnitude) neoclassical flux of impurity in the Pfirsch-Schlüter
regime [4]. It is therefore natural to take into account both pressure anisotropy
and poloidal asymmetries of the impurity for the computation of the neoclassical
flux of impurities.
The computation of the neoclassical impurity flux in this framework is done in

three steps. First, the perpendicular flow is expressed. An unknown function
Kz (ψ, θ), related to the impurity poloidal velocity, is then determined using the
incompressibility of the flow and parallel force balance. It leads to the expression
of the impurity flux.
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6.2.1. Structure of the impurity flow in presence of poloidal
asymmetries

We come back to the computation performed in section 4.4.1. For the main
ion species, it is assumed that there are no changes. In other words, poloidal
asymmetries and anisotropy of the ion species are still at their neoclassical level
which is small. On the other hand, large poloidal asymmetries and anisotropy
are now allowed for the impurity.
We now come back to the general expression of the impurity flux derived in

the drift kinetic limit (i.e. neglecting finite Larmor radius effects) in section 4.4.1.

Γz = Γ‖zbeq +Nz
B
B2 ×∇φ+ B

ZeB2 ×∇ ·Πz (6.2.1)

where the CGL tensor Πz reads

Πz = P⊥zI + Π‖zbeqbeq

and Π‖z = P‖z − P⊥z. It has been shown (Eq.(4.4.6)) that the divergence of the
CGL tensor reads

∇ ·Πz = ∇P⊥z + Π‖zκ+
[
(B · ∇)

(
Π‖z
B

)]
beq

Where κ = −beq × (∇× beq) is the field curvature. Noting that ∇φ = ∂φ
∂ψ
∇ψ +

∂φ
∂θ
∇θ and ∇P⊥z = ∂P⊥z

∂ψ
∇ψ + ∂P⊥z

∂θ
∇θ, and using the identity

B
B2 ×∇ψ = I

B
B2 −R

2∇ϕ

one can express the impurity flux as follow

Γz = KzB−NzΩzR
2∇ϕ+ Π‖z

ZeB
(beq × κ) +

(
Nz

∂φ

∂θ
+ 1
Ze

∂P⊥z
∂θ

)
B
B2 ×∇θ

All quantities depend on (ψ, θ) and the following definitions have been introduced

Ωz = ∂φ

∂ψ
+ 1
NzZe

∂P⊥z
∂ψ

Kz = Γ‖z
B

+ I

B2NzΩz
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6.2.2. Determination of the poloidal variation of Kz

The poloidal variation of Kz(ψ, θ) is constrained by the incompressibility of the
flow ∇ · Γz = 0, which reads

(B · ∇)Kz +∇ · Γ̃z = 0 (6.2.2)

where
Γ̃z = Π‖z

ZeB
(beq × κ) +

(
Nz

∂φ

∂θ
+ 1
Ze

∂P⊥z
∂θ

)
B
B2 ×∇θ

The expression of the divergence of a vector V that does not depend on ϕ is

∇ · V
B · ∇θ

= ∂

∂ψ

(
V · ∇ψ
B · ∇θ

)
+ ∂

∂θ

(
V · ∇θ
B · ∇θ

)

Using the following relations

(beq × κ) · ∇ψ = IB · ∇θ ∂
∂θ

( 1
B

)
(beq × κ) · ∇θ = −IB · ∇θ ∂

∂ψ

( 1
B

)
(B×∇θ) · ∇ψ = −IB · ∇θ

one then obtains

∇ · Γ̃z

B · ∇θ
= ∂

∂θ

[
1
B

∂

∂ψ

(
IΠ‖z
ZeB

)]
− ∂

∂ψ

{
I

ZeB2

[
NzZe

∂φ

∂θ
+ ∂P⊥z

∂θ
+B

∂

∂θ

(
Π‖z
B

)]}
(6.2.3)

At this stage, one can note that in the absence of poloidal asymmetries (∂θ = 0)
and pressure anisotropy

(
Π‖z = 0

)
, ∇· Γ̃z = 0. Therefore Kz depends on ψ only

as in the case developed in section 4.4.1. For low Mach number, the parallel
force balance reads

B · ∇θ
[
NzZe

∂φ

∂θ
+ ∂P⊥z

∂θ
+B

∂

∂θ

(
Π‖z
B

)]
= BR‖zi (6.2.4)

Then putting together Eq.(6.2.2), (6.2.3) and (6.2.4) an equation for Kz can be
derived

∂

∂θ

[
Kz + 1

B

∂

∂ψ

(
IΠ‖z
ZeB

)]
= ∂

∂ψ

[
IR‖zi

ZeB (B · ∇θ)

]
(6.2.5)

We note here that an integration on θ of Eq.(6.2.5) leads to ∂Γψz,neo
∂ψ

= 0, where the
neoclassical impurity flux is given by Eq.(4.4.2) Γψz,neo = − I

Ze

〈
R‖zi
B

〉
ψ
. This con-
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dition can seem surprising at first sight. But on second thoughts, this condition
is natural. Indeed, in the approach considered, there is no source of particles,
no turbulence and we consider a steady state solution. The neoclassical flux of
impurity is therefore equal to a constant. To alleviate this conceptual paradox,
one should keep in mind that we neglect time derivatives in the neoclassical the-
ory because they typically scale as the inverse of the confinement time which
is much larger than any other typical time of the problem. But rigorously, time
derivatives are not equal to zero. Having this fact in mind, we continue our anal-
ysis.
Unfortunately, the analytical solution of Eq.(6.2.5) is not trivial as R‖zi is an

implicit function ofKz. To continue the analytical derivation, we neglect the rhs of
Eq.(6.2.5). This is the equivalent of neglecting locally the collisional contribution
in the parallel force balance Eq.(6.2.4). It can be shown that this approximation is
valid if Z

√
εν?,iq � 1. This approximation is therefore valid for light impurities or

if the collisionality of the main ion species is low enough. Note that even though
the collision friction is neglected locally in the parallel force balance Eq.(6.2.4),
it has to be kept in its flux surface average version, for the expression of the
neoclassical flux. It is quite remarkable that no solubility problem arises when
the friction force is neglected locally in Eq.(6.2.4). The function Kz then reads
Kz(ψ, θ) = Kz0(ψ) +Kz1(ψ, θ), where

Kz0 = 〈Kz〉ψ

Kz1 = − 1
B

∂

∂ψ

(
IΠ‖z
ZeB

)
+
〈

1
B

∂

∂ψ

(
IΠ‖z
ZeB

)〉
ψ

(6.2.6)

Here, the bracket denotes the flux surface average :

〈f〉ψ =
∮ dθdϕ

B·∇θf∮ dθdϕ
B·∇θ

6.2.3. Neoclassical flux
If the main ion is in the banana regime, it can be shown that the friction force
reads (proof is in appendix D)

R‖zi = mzνzi

{
−NZ

Ti
eB

I

Lψ
+B (Nzu−Kz)

}
(6.2.7)

where 1
Lψ

= 1
Lψ,i

+ 1
Lψ,z

with 1
Lψ,i

= ∂ lnPi
∂ψ
− 3

2
∂ lnTi
∂ψ

and 1
Lψ,z

= − 1
TiZNz

∂P⊥z
∂ψ

. Lψ,i
is a flux function whereas Lψ,z is a function of ψ and θ. In Eq.(6.2.7) u is a flux
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function given by
u =

(
kneo −

3
2

)
I

e 〈B2〉ψ
∂Ti
∂ψ

(6.2.8)

This quantity is closely link to the poloidal rotation of the main ion species as
can be seen in its expression. If the main ion is in the banana regime, impurities
in the trace limit NzZ2

Ni
� 1 and large aspect ratio are considered ε � 1, then

kneo ' 1.17 and u takes the limit given in the literature [31] u ' −0.33 I
e〈B2〉

∂Ti
∂ψ

.
This value is used in the following. Note that νzi is also a flux function. Using
Eq.(6.2.4), while keeping the friction force leads to the solubility constraint〈

BR‖zi
Nz

〉
ψ

=
〈

B · ∇θ
Nz

[
∂P⊥z
∂θ

+B
∂

∂θ

(
Π‖z
B

)]〉
ψ

(6.2.9)

Combining Eq.(6.2.6), Eq.(6.2.7) and Eq.(6.2.9), one finds

Kz0 = −TiI
e

〈
1
Lψ

〉
ψ

〈
B2

NZ

〉−1

ψ

+ u
〈
B2
〉
ψ

〈
B2

Nz

〉−1

ψ

+
〈
B

Nz

∂

∂ψ

(
IΠ‖z
ZeB

)〉
ψ

〈
B2

Nz

〉−1

ψ

−
〈

1
B

∂

∂ψ

(
IΠ‖z
ZeB

)〉
ψ

− 1
mzνzi

〈
B · ∇θ
Nz

[
∂P⊥z
∂θ

+B
∂

∂θ

(
Π‖z
B

)]〉
ψ

〈
B2

Nz

〉−1

ψ

(6.2.10)

These expression of Kz0 can then be plugged into the friction force to calculate
the impurity radial flux Γψz,neo, i.e.

Γψz,neo = Γψz,BP+ Γψz,PS (6.2.11)

Γψz,BP = − I

Ze

1〈
B2

Nz

〉
ψ

〈
B · ∇θ
Nz

[
∂P⊥z
∂θ

+B
∂

∂θ

(
Π‖z
B

)]〉
ψ

(6.2.12)
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Γψz,PS = I

Ze
mzνzi

Tie I

Lψ,i

〈Nz

B2

〉
ψ
− 1〈

B2

Nz

〉
ψ

− u
〈Nz〉ψ −

〈B2〉ψ〈
B2

Nz

〉
ψ


+TiI

e

〈 Nz

B2Lψ,z

〉
ψ

−
〈

1
Lψ,z

〉
ψ

1〈
B2

Nz

〉
ψ



−
〈

1
B

∂

∂ψ

(
IΠ‖z
ZeB

)〉
ψ

+

〈
B
Nz

∂
∂ψ

(
IΠ‖z
ZeB

)〉
ψ〈

B2

Nz

〉
ψ

 (6.2.13)

Eq.(6.2.12) can be seen as amodification of the banana-plateau flux. Note that
it is independent of the interspecies collisionality and will therefore dominate for
low collisionality regimes.
The first and second terms of Eq.(6.2.13) are identical to Eq.(10) of [4] for which

only poloidal density asymmetries are considered. The third term corresponds
to a simple diffusion which is often neglected but can become important when
impurity peaking is strong. The last two terms are entirely controlled by Kz1,
and represent a modification of the friction force due to the impurity pressure
anisotropy.

6.3. Comparison with results from gyrokinetic
simulations

The goal of this section is to assess the relative importance of the various contri-
butions in the neoclassical prediction derived in the previous section Eq.(6.2.11)
using the results of simulations performed with the GYSELA code.

6.3.1. Choice of the simulation parameters
Different simulations have been performed with the GYSELA code to test the the-
oretical prediction previously derived. Two parameters have been played with:
the nature of the impurity (He versus W) and the collisionality of the main ion at
mid-radius. Helium is considered as fully ionized Z = 2, whereas a fixed charge
state (Z = 40) is taken for tungsten cases. For these simulations, the main ion
species is deuterium and the impurity is in the trace limit

(
NzZ2

Ni
∼ 10−3

)
. The elec-

tron response is adiabatic. The size of the machine simulated is fixed by the di-
mensionless parameter ρ?,i = ρi

a
= 1

190 where ρi is the Larmor radius of a thermal
ion at mid-radius. GYSELA uses a simplified geometry with circular concentric
magnetic surfaces characterized by an inverse aspect ratio R0

a
= 4.4 and a safety
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factor profile q (r) = 1.5 + 1.3 exp
[
2.5 log

(
r
a

)]
. The two ion species are initiated

with identical density and temperature profiles d lnns(r)
dr

= −2.2 cosh−2
(
ρ−0.5
0.04

)
and

d lnTs(r)
dr

= −6 cosh−2
(
ρ−0.5
0.04

)
. To approach a statistical steady state, an isotropic

source of energy is added [37]. Its amplitude depends only on the radius. Fi-
nally, the outer boundary condition is ensured via a penalization technique [23].
More precisely, a krook term with a radial dependence is applied on the distribu-
tion function. It allows to extract the energy coming from the heat flux without
injecting/removing particles.
The phase-space grid is well resolved. In the case of helium impurity, the nu-

merical resolution is
(
Nr, Nθ, Nϕ, Nv‖ , Nµ

)
= (256, 512, 32, 127, 64), whereas for

tungsten the resolution is higher
(
Nr, Nθ, Nϕ, Nv‖ , Nµ

)
= (512, 1024, 32, 127, 64).

This difference of resolution comes from the dependence of the Larmor radius
of the impurity ρz = 1

Z

√
mz
mi
ρi (assuming Ti = Tz). In both cases, the time step

is ∆tωci = 16 and is chosen to resolve accurately both turbulent and collisional
time scales. Because of this high resolution and the presence of two species,
the numerical cost of this simulation is very large. In order to reduce this cost,
the following strategy has been used: in a first stage, the code is run without
impurity until statistical steady-state with a resolution of

(
Nr, Nθ, Nϕ, Nv‖ , Nµ

)
=

(256, 512, 32, 127, 64) which is enough for the main ion species. If the impurity that
is studied is tungsten, a second step is performed, with a resolution increased in
view of the later impurity introduction

(
Nr, Nθ, Nϕ, Nv‖ , Nµ

)
= (512, 1024, 32, 127, 64).

This step, performed without impurities, is done to allow for some reorganization
of the system when numerical resolution is increased. Eventhough this reor-
ganization is rather short, it is numerically cheaper to perform it in absence of
impurities. Finally, the impurity is added when statistical steady-state is reached
without impurities. Despite this strategy, the convergence of a simulation with
impurity toward a statistical steady-state still requires several millions of CPU
hours.
The various scanned parameters are given in Tab.6.1. The result of the three

performed simulations has been used to derive the theoretical prediction pre-
sented in section 6.2. But it has been rapidly realized that the numerical cost
of a converged simulation would severely limit the number of cases that could
be studied. In particular, the cases with the lower collisionalities were really far
from convergence. It has therefore been decided to focus on a single well re-
solved simulation for a quantitative comparison between theory and simulation.
Considering the problem of convergence, the choice of a “large” collisionality
has been made: ν?i

(
r
a

= 0.5
)

= 10−1. Tungsten has been chosen for this well
resolved simulation for two reasons: Firstly, the understanding of tungsten trans-
port is important in current tokamak discharges, in particular for the tokamak
WEST which should run with full tungsten divertor and walls. Secondly, tung-
sten has been chosen to have a collisionality profile of the impurity close to the
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Table 6.1.: Parameters scanned
simulation ν?i

(
r
a

= 0.5
)

impurity
A 10−2 He
B 10−2 W
C 10−1 W

plateau/Pfirsch-Schlüter transition in order to compare the simulation and the-
oretical predictions of the banana/plateau and the Pfirsch-Schlüter fluxes with
a single simulation. The collisionality of tungsten in the considered simulation
is given in the Fig.6.2. The impurity is in the Pfirsch-Schlüter regime in all the
simulation domain but in the region ranging between 0.15 ≤ r

a
≤ 0.4 where it is

close to the plateau regime.
Despite the choice to focus on a single simulation, this simulation is not in the

quasi steady-state and departure from stationarity is expected to play a role in
particular in the parallel force balance Eq.(6.2.4). As the model derived in the
previous section is strictly valid only for steady-state, a perfect match between
the neoclassical flux given by the code and the theoretical prediction is not ex-
pected. Nevertheless, it turns out that the flux predicted by the model presented
in section 6.2.3 gives the right order of magnitude for the impurity flux coming
from GYSELA as will be discussed hereafter. Note that the cost of this single
simulation is approximately 3 millions of CPU hours. This cost did not allow a
large scan of parameters.
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Figure 6.2.: Radial variation of collisionality of the impurity (blue). The limit
between plateau and Pfirsch-Schlüter regime is represented by the
black line

6.3.2. Definitions of fluxes
The flux of particles coming from GYSELA does not make any difference be-
tween neoclassical and turbulent fluxes as both are treated self-consistently
within the code. This observation raises the question of how to separate the
two contributions a posteriori. For this purpose, the definitions proposed by Es-
teve et al. [30] are used:

〈Γneos · ∇ψ〉ψ =
〈∫

d3vf̄s
(
vD,s + v̄n=0

E

)
· ∇ψ

〉
ψ

(6.3.1)〈
Γturbs · ∇ψ

〉
ψ

=
〈∫

d3vf̄sv̄
n6=0
E · ∇ψ

〉
ψ

(6.3.2)

where v̄n=0
E = 〈v̄E〉ϕ and v̄n6=0

E = v̄E − v̄n=0
E . The definition of these fluxes is not

unique and some authors call “turbulent” the flux associated with the E×B drift
and “neoclassical” the flux associated with the magnetic field drift. These fluxes
are defined as
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〈
ΓDs · ∇ψ

〉
ψ

=
〈∫

d3vf̄svD,s · ∇ψ
〉
ψ

(6.3.3)〈
ΓEs · ∇ψ

〉
ψ

=
〈∫

d3vf̄sv̄E · ∇ψ
〉
ψ

(6.3.4)

Fig.6.3 depicts the different fluxes for the impurity in the simulation presented
in the previous section. There is a clear difference between the definitions of
the turbulent and neoclassical fluxes (solid lines) and the definitions sometimes
found in the literature (dotted lines). This observation tells us that the axisymmet-
ric modes of the electric potential actively contribute to the impurity flux. Note
also that turbulent and neoclassical fluxes are of the same order of magnitude,
although sometimes of different signs. The overall transport of tungsten is mainly
inward in this simulation.
For a fair comparison with the theoretical prediction of the neoclassical flux

derived in the section 6.2, it is mandatory to use the definition given in this thesis
Eq.(6.3.1). This comparison is discussed in section 6.3.4.

Figure 6.3.: Radial variation of the impurity fluxes. These fluxes are time averaged
on approximately 3000ωci.
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6.3.3. Poloidal asymmetries and anisotropy
In the considered GYSELA simulation, the poloidal asymmetries are generated
by turbulence. The poloidal asymmetry of the tungsten density Fig.6.4 is of the
order of 30% and can be expressed in the form [4]

Nz = 〈Nz〉 (ψ) [1 + δ (ψ) cos θ + ∆ (ψ) sin θ]

The knowledge of δ (ψ) and ∆ (ψ) then allows one to compute the impact of
density asymmetries on the first and third terms of (6.2.11), which correspond
to terms already present in the literature [4]. Indeed, one can show that these
terms take the following simple expressions [4]:

〈
Nz

B2

〉
ψ
− 1〈

B2

NZ

〉
ψ

=
〈Nz〉ψ
〈B2〉ψ

[
2ε (ε+ δ) + δ2 + ∆2

2

]
(6.3.5)

〈Nz〉ψ −
〈B2〉ψ〈
B2

Nz

〉
ψ

= 〈Nz〉ψ

[
εδ + δ2 + ∆2

2

]
(6.3.6)

In these expressions, the contribution of density poloidal asymmetry is con-
tained only in the δ and ∆ terms. Fig.6.5 shows the radial shape of Eq.(6.3.5)
and Eq.(6.3.6) for the GYSELA simulation. It readily appears that both expres-
sions remain close to their value at δ = ∆ = 0, i.e. in the absence of any poloidal
asymmetry. More precisely, the relative impact of the poloidal asymmetry of den-
sity compared with the one of the magnetic field is moderate in the deep core
and weak in the outer part of the simulation.
Fig.6.6 shows that the poloidal asymmetries of both parallel and perpendic-

ular pressure are significant in the inner part of the simulation where the ba-
nana/plateau contribution is expected to be important (0.15 ≤ r

a
≤ 0.4).
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Figure 6.4.: Left: poloidal asymmetry of the impurity density. Right: reconstruc-
tion of the poloidal asymmetry with δ (ψ) and ∆ (ψ)
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Figure 6.5.: Radial shape of Eq.(6.3.5) in red and Eq.(6.3.6) in green. The blue
curve represents the radial shape of Eq.(6.3.5) in the absence of poloidal
asymmetry of the impurity density, i.e. for δ = ∆ = 0.

Figure 6.6.: Left: parallel pressure. Middle: perpendicular pressure. Right: CGL
tensor divided by the magnetic field.

6.3.4. Comparison between GYSELA results and theoretical
predictions

An important point for the comparison between the theoretical prediction and
the results of the GYSELA code is the value of the screening factor. From the
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theoretical point of view, the Pfirsch-Schlüter component of the screening fac-
tor should be HPS

theo = −1
2 . This can be seen in the derivation performed in

section 4.4.1. Alternatively, this value is contained in the expression of 1
Lψ,i

=
∂ lnPi
∂ψ
− 3

2
∂ lnTi
∂ψ

= ∂ lnNi
∂ψ
− 1

2
∂ lnTi
∂ψ

. In this expression, there is a factor +1 coming
from the difference of velocities (∂ lnPi

∂ψ
) and a factor −3

2 coming from the paral-
lel heat flux (−3

2
∂ lnTi
∂ψ

). It has already been mentioned in section 4.4.2 that the
value of the parallel heat flux coming from GYSELA is not in agreement with the
theoretical prediction Eq.(4.4.16). More precisely, the poloidal shape is in fair
agreement with the theoretical prediction but the amplitude is approximately half
the one predicted. For the neoclassical benchmark presented in section 4.4.2,
this problem has been circumvented by imposing the parallel heat flux to take its
theoretical value. With this trick a fair agreement has been found between the
pure neoclassical case performed with GYSELA and the standard neoclassical
prediction. In the simulation presented in this chapter, this trick was not used to
avoid any artificial modification of the results of GYSELA. In the simulation used
in this chapter, the parallel heat flux is still about one half of its theoretical pre-
diction Eq.(4.4.16). The effect of this disagreement is to reduce drastically the
thermal screening factor of the Pfirsch-Schlüter component HPS

GY S ' 0.
The origin of the disagreement between the predicted parallel heat flux and

the one observed in the code is still unclear. A remaining bug in the advection
part of the code appears unlikely given the numerous tests and benchmarks
already successfully performed [37], although it cannot be ruled out completly.
Alternatively, the discrepancy could be due to some shortcomings of the theoret-
ical prediction. Interstingly, we mention here that a benchmark of the gyrokinetic
code GT5D against the standard neoclassical prediction in presence of impurity,
in the same spirit as the one performed in section 4.4.2, seems to give a screen-
ing factor in the Pfirsch-Schlüter regime close to zero HPS

GT5D ' 0, in line with
GYSELA’s results. The relative agreement between GYSELA and GT5D which
are two independent codes points in the direction of a limitation of the thermal
screening prediction. This observation could results from the necessity to take
more moments in the development made in section 3.3.3. Indeed, it has been
recently realized that the Pfirsch-Schlüter screening factor can be modified by
the third moment of the distribution function in the development (j=2 in Eq.(3.3.3))
[49, 68]. If the third moments is retained, the Pfirsch-Schlüter screening factor
is predicted to be close to zero. This explanation is still under investigation to
explain the observations made by both codes. In the rest of this section, two
distinct predictions are then used for the Pfirsch-Schlüter contribution of the flux
Eq.(6.2.13). The first one, labeled withH = −0.5, is the one coming from the the-
ory, i.e. with 1

Lψ,i
= ∂ lnPi

∂ψ
− 3

2
∂ lnTi
∂ψ

= ∂ lnNi
∂ψ
− 1

2
∂ lnTi
∂ψ

. The second, labeled H = 0,
is the same prediction but using a different definition of the ion gradient contribu-
tion 1

Lψ,i
= ∂ lnPi

∂ψ
− ∂ lnTi

∂ψ
= ∂ lnNi

∂ψ
. This distinction makes a huge difference in the

outer part of the simulation, as discussed in the following.
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Fig.6.7 shows the radial dependence of the banana/plateau contribution Eq.(6.2.12)
(green curve) and the Pfirsch-Schlüter contribution Eq.(6.2.13) with the two def-
initions for Lψ,i. The Pfirsch-Schlüter prediction with H = −1

2 is depicted in red
and the one wit H = 0 is depicted in blue. From this figure, it is clear that the
banana/plateau contribution is large where the impurity is close to the plateau
regime (0.15 ≤ r

a
≤ 0.4) as expected . For the Pfirsch-Schlüter component,

there is a large impact of the screening factor, especially in the outer part of the
simulation.
The final test consists in comparing the neoclassical flux coming fromGYSELA

with the neoclassical prediction Eq.(6.2.11). The definition of the neoclassical
flux is given in Eq.(6.3.1).The comparison between the GYSELA results (black
curve) and the theoretical prediction (red and blue curves) is depicted on Fig.6.8.
The right order of magnitude is recovered with a vanishing thermal screening
H = 0 (blue curve) as expected from the previous discussion.

Figure 6.7.: Components of the neoclassical flux. The banana/plateau contribution
Eq.(6.2.12) is represented in green. The Pfirsch-Schlüter contribution
Eq.(6.2.13) with H = −1

2 and H = 0 are depicted respectively by the
red and the blue curves. The various profiles, including their possible
asymmetries, are taken from the GYSELA simulation.
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Figure 6.8.: Radial comparison of the theoretical predictions of the neoclassical ra-
dial impurity flux (H = −1

2 in red, H = 0 in blue) with the neoclassical
flux coming from the GYSELA code (black).

6.4. Discussion on the theoretical model
There is a rather good agreement between the theoretical prediction and the
neoclassical flux coming from GYSELA provided a vanishing thermal screening
factor H ' 0 is assumed. This point has already been discussed in the previous
section. In this section, other limitations of the theoretical model developed in
section 6.2 are discussed. The goal of this discussion is to clarify the limitations
of the current theoretical prediction in view of future developments.
A first limitation of the model is to assume subsonic flows even for the impurity.

Supersonic flows of impurity are indeed often observed in tokamaks, especially
when NBI is applied. Note that in the GYSELA simulation used to test the model,
the maximumMach number is∼ 40% as shown in Fig.6.9. As the corrections are
proportional to the square of the Mach number (see for instance the dependence
in Ω2

z of Eq.(6.1.1)), the approximation of subsonic flows is acceptable in this
particular case. To take into account the corrections due to supersonic flows,
the full gyrokinetic equation should be used in the derivation instead of its drift
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kinetic limit. It would also introduce the gyroviscous stress tensor which is due to
FLR effects. In the same spirit, the model should take into account the Reynolds
stress contribution to the stress tensorΠz. Indeed, due to presence of turbulence
there is a non negligible force (divergence of the Reynolds stress) that should
be taken into account in the parallel force balance. This is a difficult task but it
would probably lead to a modification of the neoclassical flux.

Figure 6.9.: Mach number of the impurity

Another limitation of the model concerns the main ion species. More precisely,
the derivation of Eq.(6.2.8) is done assuming that the main ion species is rotating
poloidally at the speed prescribed by neoclassical theory (cf derivation of u in
appendix D). This hypothesis can easily breaks down due to the presence of
turbulence [22]. This is the case in the GYSELA simulation presented in the
previous section.
Finally, it is mentioned that the rhs of Eq.(6.2.5) has been neglected. This

approximation could modify the theoretical prediction, especially in the Pfirsch-
Schlüter regime. But it is probably a small effect.
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Summary of the chapter
In this chapter, a theoretical prediction of the neoclassical impurity flux in pres-
ence of large anisotropy and poloidal asymmetries has been derived. This pre-
diction has been compared with the neoclassical flux coming from a simulation
performed with the code GYSELA in presence of turbulence. In this simulation
large anisotropy and poloidal asymmetries are generated by the turbulence. A
good agreement is found between the theoretical prediction and the flux coming
from the code GYSELA if a vanishing thermal screening factor is taken for the
theoretical prediction.
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A large part of the results of this chapter can be found in the article [25]. This
chapter clarifies how turbulence can generate low frequency structures of the
electric potential with poloidal asymmetries. These structures in turn impact the
poloidal repartition of impurities which finally modifies the neoclassical flux as
shown in the previous chapter.
The chapter is organised as follows. First, it is shown numerically that poloidal

asymmetry of the electric potential generates poloidal asymmetry of the impu-
rity. Secondly, a general introduction on the problem of turbulent generation of
poloidal asymmetries of the electric potential in a tokamak is given. It allows
one to clarify the relationship between several large scale structures of the elec-
tric potential which are often studied separately. The method used to calculate
poloidal asymmetries of the electric potential is then described in section 7.3.
The link between the turbulence drive term and the turbulent Reynolds stress
is established in section 7.4. Finally, the main properties of poloidal convective
cells are given in section 7.5.

7.1. Evidence of impurity poloidal asymmetries
generated by poloidal asymmetries of the
electric potential

In the previous chapter, a turbulent simulation performed with the code GYSELA
has been presented. In this simulation, strong poloidal asymmetries of the im-
purity quantities are present. These poloidal asymmetries are not generated
by external sources as the only source used is an isotropic source of energy
which depends only on the radius. Moreover, neoclassical theory predicts weak
poloidal asymmetries. In the simulation, poloidal asymmetries are therefore gen-
erated by turbulence. One way for turbulence to generate poloidal asymmetries
of the impurity fluid moments (density, temperature..) is to generate an electric
potential with poloidal asymmetries. Indeed, it has been shown in the previous
chapter that there is a link between those poloidal asymmetries Eq.(6.1.1)[10, 15]

Nz (ψ, θ)
N?
z (ψ) = T⊥,z (ψ, θ)

T ?⊥,z (ψ)

times exp
{
−eZ [φ (ψ, θ)− φ? (ψ)]

T‖,z (ψ) + mzΩ2
z

2T‖,z (ψ)
[
R2 (ψ, θ)−R?2 (ψ)

]}

From Eq.(6.1.1), it is clear that even weak poloidal asymmetries of the electric
field can lead to significant poloidal asymmetries for heavy impurities due to their
large charge Z. Fig.7.1 shows that in the considered simulation, the poloidal
asymmetry of the electric potential is of order of e(φn=0−φm=0,n=0)

T
∼ 1% where m
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and n are respectively the poloidal and toroidal mode numbers. As a reminder,
the amplitude of the density asymmetry for the impurity is of the order of 30%.
As the charge of the impuriy is Z = 40, the right order of magnitude of poloidal
asymmetry of the impurity density is retrieved with this simple argument. This
was already observed in a previous study with the code GYSELA [30].

To quantify the relationship between electric potential and impurity poloidal
asymmetries, a numerical test has been performed. The same simulation as
the one presented in chapter 6 has been performed except that a numerical filter
allowing to remove all axisymmetric modes of the potential with poloidal asym-
metries (m 6= 0, n = 0) has been applied at each time step. Fig.7.2 depicts the
poloidal asymmetry of the impurity density in both cases using the following defi-
nitionsNz = 〈Nz〉 (ψ) [1 + δ (ψ) cos θ + ∆ (ψ) sin θ]. From this figure, it is clear that
the poloidal asymmetry of the electric field has an impact on the poloidal asym-
metry of the impurity density. In the following of this chapter a clarification of the
mechanism of turbulent generation of axisymmetric modes (n = 0) of the electric
potential is given. One should note that there are still poloidal asymmetries of
the impurity density when the axisymmetric part of the electric field exhibits no
poloidal asymmetry. This is due to non linear coupling between modes (m1, n)
and (m2,−n) where m1 + m2 6= 0 and n 6= 0. This point will also be clarified in
this chapter.

Figure 7.1.: Amplitude of the non zonal electric potentital in the GYSELA simula-
tion
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Figure 7.2.: Comparison of density poloidal asymmetry with (solid line) or without
(dotted line) poloidal asymmetry of electric potential. A time average
on several turbulence correlation time has been performed.

7.2. Context for the generation of axisymmetric
modes of the electric potential

Poloidal asymmetries of the E × B plasma flow are usually neglected in neo-
classical transport. Indeed the predicted level of asymmetry is quite small in
conventional neoclassical theory, so that its effect is considered as negligible
[45, 43]. Toroidal momentum transport is however an exception, since it ap-
pears to be sensitive to poloidal asymmetries, even at the neoclassical level
[88]. This picture changes somewhat if poloidal variations of the electric poten-
tial are generated by turbulence. Steady or slowly varying structures may then
boost neoclassical fluxes. These structures are know called ”poloidal convective
cells”, since once isolated from axisymmetric flows (mean and zonal flows), and
turbulence vortices (helical patterns), poloidal asymmetries of the electric poten-
tial are usually characterized by closed streamlines with typically a few lobes in
the poloidal plane of a tokamak, and no variation in the toroidal direction. In other
words, poloidal convective cells are modes with a toroidal wave number n = 0
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and poloidal wave numbers m 6= 0 (usually m = 1 prevails). In this classification
, zonal flows are n = 0,m = 0 modes, while turbulent vortices are characterized
by n 6= 0,m 6= 0. Convective cells have a long history in the context of drift waves,
sometimes related to different objects [69, 17, 70, 50, 65]. The word ”poloidal” is
used here to make their definition more precise. One should note that recent ex-
perimental measurements have evidenced asymmetries of the plasma poloidal
flow which may be related to steady convective cells [81, 82]. One important
point related to both observations and theory is the difference between asymme-
tries of the electric potential and the flow. The E ×B drift velocity is vE = B×∇φ

B2 ,
where B is the unperturbed magnetic field and φ the electric potential. Any fully
symmetric potential, i.e. that depends on the radial coordinate only, already pro-
duces flow poloidal asymmetries because the magnetic field depends on the
poloidal angle. One cause is that the magnetic field strength decreases as the
major radius in a tokamak. Other sources of asymmetries come into play for
shaped geometries. It turns out that this effect could only partially explain flow
asymmetries on the Tore Supra tokamak. Poloidal asymmetries of the electric
potential were invoked to explain the observation [81, 82]. In the following, a
large aspect ratio, circular equilibrium limit is considered. In this case poloidal
asymmetries in potential imply poloidal asymmetries in poloidal flow.

One obvious mechanism for the effect of convective cells on neoclassical
transport is the modification of the distribution function by the asymmetric po-
tential, that correlates with its associated E×B electric drift velocity, and/or with
the magnetic drift velocity to produce additional fluxes to the standard neoclas-
sical value. One has however to be careful when using this argument, since the
flux driven by the E×B drift velocity contains a contribution due to the response
of the distribution function to the magnetic drift that tends to counter-balance this
effect [41, 83]. Also poloidal variations of the electric potential induce asymme-
tries of the density of an impurity, which in turn enhance its neoclassical flux
[4]. This effect is expected to be particularly large for heavy impurities in core
plasmas, since a Boltzmann type response is proportional to the charge num-
ber. It was proposed as an explanation for synergies between turbulent and
neoclassical fluxes of impurities observed with the GYSELA code [30]. Another
reason for investigating poloidal flow asymmetries is their potential role in turbu-
lence self-organisation, via vortex shearing. The understanding of turbulence
self-organization has been an active area of research in the past decades. It is
well known that zonal flows are instrumental in these processes. Indeed they are
generated by turbulence via the Reynolds stress, and in turn self-regulate turbu-
lence by transferring energy from large scales to small scales [21]. The intensity
of Zonal Flows is quite large compared with other helical turbulent structures,
because they are not Landau damped [76, 79]. Another player in turbulence
self-regulation is the Geodesic Acoustic Mode (GAM) [87] , which is the sum of
two axisymmetric components of the potential: a zonal plus an up-down asym-
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metric component, i.e. a combination of n = 0,m = 0 and n = 0,m = ±1 modes.
The whole GAM structure oscillates at a frequency that scales with the acous-
tic frequency, and is driven by perpendicular flow compression, proportional to
the geodesic curvature (hence the name GAM [87, 40]). These modes are also
driven by turbulence via mode coupling, and can back-react on the turbulence
background [19]. GAMs have been shown however to be less effective than
zonal flows in this retro-action process, due to their high frequency [38]. More-
over they are Landau damped in contrast with Zonal Flows. Therefore one open
issue is whether low frequency poloidal flow asymmetries can have an impact
on turbulence in a way similar to Zonal Flows, as proposed in [84]. Let us note
that some recent turbulence simulations seem to indicate that this effect is weak,
while the synergy with neoclassical fluxes appears to be prominent in most trans-
port channels, except momentum transport [8].

Quite curiously a predictive analytical calculation of the dynamics and ampli-
tude of poloidal convective cells is not available in the literature. A previous
attempt exists [35], which was originally intended to explain the anti-correlation
between fluxes of momentum driven byE×B andmagnetic drifts seen in several
gyrokinetic simulations. However this calculation does not account for the coex-
istence of convective cells with zonal flows and GAMs, an important expected
property of a comprehensive theory. A model that enables a simultaneous es-
timate of Zonal Flows, GAMs and convective cells is proposed. A complete
theory of convective cells generation is out of scope here, as it requires to keep
the whole dynamics of trapped and passing particles and the inclusion of colli-
sions, to recover the correct dynamics of zonal flows at low frequency [76, 44].
Instead a simpler model that keeps only passing particles, and neglects the ef-
fect of trapped particles is used. The Vlasov gyrokinetic equation can then be
solved for n = 0,m = 0,±1 modes, assuming non linear terms are given. The
latter corresponds to the turbulence drive, and can be shown to be related to the
turbulent Reynolds stress. The calculation is done at low Mach number and in
absence of RF heating sources. So asymmetries found here differ from those re-
lated to the centrifugal force or RF effects [15, 73], though these effects could be
addressed in the present approach. This method allows one to recover exactly
the GAMs dispersion relation, and to compute poloidal convective cells in an in-
termediate range of frequencies that goes down to the trapping frequency. Two
mechanisms of generation are identified: the generation of cells due to compres-
sional effect of zonal flows, and the poloidal asymmetry of the Reynolds stress
due to turbulence ballooning. The first one is dominant in the range of frequency
of the order of the curvature frequency, while the latter appears to be prominent
at very low frequency. One interesting finding is that the asymmetry of poloidal
convective cells is in-out at low frequencies, and up-down at intermediate and
high frequencies (GAMs).
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7.3. Evolution of a toroidally symmetric mode
For the simple geometry of concentric circular magnetic surfaces considered
here, flow asymmetries are due to asymmetries of the electric potential, i.e. with
a toroidal wavenumber N = 0, and poloidal wavenumbers |M | ≥ 1. The elec-
tric potential is first split in an axisymmetric component 〈φ〉ϕ (ψ, θ) and a helical
perturbation φ̃ (ψ, θ, ϕ), i.e. φ = 〈φ〉ϕ + φ̃. The axisymmetric part is written as a
Fourier series

〈φ〉ϕ (ψ, θ) =
∑
MΩ

φMΩ(ψ) exp {i (Mθ − Ωt)}

As in the chapter 5, a ballooning representation is used for the non axisymmetric
part Eq.(5.1.6):

φ̃(ψ, α, θ, t) =
∑
kω
φkω(θ) exp {i [nθkq(ψ) + nα− ωt]}

Different notations are used for the frequencies Ω and poloidal wave numbersM
of the axisymmetric potential on the one hand, and the toroidal wave numbers
and frequencies n, ω of the helical perturbations. We omit to specify the null
toroidal wave number N = 0 of axisymmetric perturbations, which are made
distinct from helical fluctuations by these different notations (i.e. capital vs lower
case letters). Taking the Fourier transform in radial position and assuming M

r
�

Kr, one can compute the linear solution of the Vlasov equation Eq.(5.1.4) for the
axisymmetric perturbations

−i (Ω−MΩt) ḡMΩ +ΩD (ḡM+1,Ω − ḡM−1,Ω) = −iΩFeq
Teq

h̄MΩ−
[
˜̄vE · ∇˜̄g

]
MΩ

(7.3.1)

where ΩD = KrρivT
4R0

(
2
v2
‖
v2
T

+ v2
⊥
v2
T

)
and Ωt = v‖

q(r)R0
. Note that the direct basis

(er, eθ, eϕ) has been chosen. The non linear term
[
〈vE〉ϕ · ∇ 〈ḡ〉ϕ

]
MΩ
' 0 is ne-

glected, since 1st order terms only are kept. However this term may play a role
in the dynamics, and could actually provide a saturation mechanism that does
not have a counter-part for zonal flows. In principle, poloidal asymmetries are
associated with modes with N = 0 and |M | ≥ 1... However it appears that the
ratio of theM poloidal harmonic of the electric potential to itsM = 0 value goes
like (Krρi)M , as already well known for GAMs [79]. Hence the analysis is re-
stricted to low values of krρi in order to keep only 3 modes M = 0 and M = 1,
andM = −1. The relation Eq.(7.3.1) can then be written

{ḡ} = −iΩG−1Feq
Teq

{
h̄
}
−G−1

{[
˜̄vE · ∇˜̄g

]}
(7.3.2)
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where

{ḡ} =

 ḡ−1,Ω
ḡ0,Ω
ḡ1,Ω


{
h̄
}

=

 h̄−1,Ω
h̄0,Ω
h̄1,Ω



{[
˜̄vE · ∇˜̄g

]}
=


[
˜̄vE · ∇˜̄g

]
−1,Ω[

˜̄vE · ∇˜̄g
]

0,Ω[
˜̄vE · ∇˜̄g

]
1,Ω


and

G =

 −iΩ+ ΩD 0
−ΩD −iΩ ΩD

0 −ΩD iΩ−


where Ω± = Ωt±Ω. The determinant of theGmatrix is det G=-iΩ (Ω+Ω− + 2Ω2

D).
A useful quantity is the transpose of its comatrix, given by

com Gt =

 Ω−Ω + Ω2
D −iΩDΩ− Ω2

D

iΩDΩ− Ω+Ω− iΩDΩ+
Ω2
D −iΩDΩ+ −Ω+Ω + Ω2

D


Assuming adiabatic electrons and keeping a single hydrogenoid (charge number
Z = 1) ion species, the quasi-neutrality equation reads

Neq

Teq
[1 + (1− δ (M)) τ ] {h} =

∫
J {ḡ} d3v (7.3.3)

where τ = Ti
Te

is the ratio of ion to electron temperatures, and J is the gyro-
average operator. Combining the quasi-neutrality condition Eq.(7.3.3) with the
equation on {ḡ} Eq.(7.3.2), and assuming the gyroaverage operator commutes
with all quantities at all frequencies, one gets

Neq

Teq
[1 + (1− δ (M)) τ ] {h}+ iΩ

∫
G−1Feq

Teq
J 2 {h} d3v (7.3.4)

= −
∫
G−1J

{[
˜̄vE · ∇˜̄g

]}
d3v

Eq.(7.3.4) is the formal solution that gives the amplitude of the poloidal convec-
tive cells. It can be expressed as E · {h} = {S}. Defining 〈·〉v =

∫
·d3v and using
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the fact that 〈g〉v = 0 whatever g odd with respect to v‖, one can show that

E = Neq

Teq

 Ea −iEc Ed
iEc Eb −iEc
Ed iEc Ea


where

Ea = 1 + τ + L0 (Ω)− L2 (Ω)
Eb =

〈
1− J 2

〉
v

+ 2L2 (Ω)
Ec = L1 (Ω)
Ed = −L2 (Ω) (7.3.5)

where
Lj (Ω) =

〈
Ω2−jΩj

D

Ω+Ω− + 2Ω2
D

J 2
〉
v

(7.3.6)

Assuming that J
[
˜̄vE · ∇˜̄g

]
M,Ω

is an even function of v‖, it can be shown that

{S} = 1
Ω

 S1,0 + i (S0,−1 − S2,−1 − S2,1)
−iS ′ − S1,−1 + S1,1 + 2iS2,0
−S1,0 + i (S0,1 − S2,−1 − S2,1)


where

Sj,M =
∫ Ω2−jΩj

D

(Ω+Ω− + 2Ω2
D)J

[
˜̄vE · ∇˜̄g

]
M,Ω

d3v

and
S ′ =

∫
J
[
˜̄vE · ∇˜̄g

]
0,Ω
d3v

Two typical frequencies Ωth = vT
q(r)R0

, ΩDth = KrρivT
R0

= qKrρiΩth, and two
dimensionless parameters K̃ = Krρi and Ω̃ = Ω

Ωth
have been introduced. It is

reminded that the hypothesis K̃ � 1 is used, consistently with the low number of
poloidal harmonics that are keptM = 0, 1,−1. In this limit, one has 〈1− J 2〉v =
K̃2.

7.3.1. GAMs
In this section, large frequencies are considered Ω̃ = O(1). In this case, noting
that J = 1 +O

(
K̃2
)
, and the fact that whatever the function f even with respect

to v‖ 〈
f

Ω+Ω−

〉
v

= 1
2Ω

(〈
f

Ω−

〉
v

−
〈
f

Ω+

〉
v

)
= 1

Ω

〈
f

Ω−

〉
v

(7.3.7)
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one can show that the coefficients Lj (Ω) Eq.(7.3.6) become at leading order

L0 (Ω) = Ω̃√
2
ζ

(
Ω̃√
2

)

L1 (Ω) = qK̃

2
√

2

[√
2Ω̃ +

(
1 + Ω̃2

)
ζ

(
Ω̃√
2

)]

L2 (Ω) = q2K̃2

4

[
3 + Ω̃2 +

√
2

Ω̃

(
Ω̃4

2 + Ω̃2 + 1
)
ζ

(
Ω̃√
2

)]
(7.3.8)

where ζ (z) = 1√
π

∫∞
−∞

e−x
2

x−z dx is the plasma dispersion function. The simplification
Eq.(7.3.7) implies also Sj,M =

∫ Ω1−jΩjD
Ω− J

[
˜̄vE · ∇˜̄g

]
M,Ω

d3v at leading order. The
following quantities are defined

X0 = Neq

Teq
[1 + τ + L0 (Ω)]

X1 = Neq

Teq
L1 (Ω)

X2 = Neq

Teq

[
K̃2 + 2L2 (Ω)

]
(7.3.9)

where the functions Lj (Ω) are given by Eq.(7.3.8) when Ω̃ = O(1). At this stage,
one should remark that notations have been chosen such that Xj = O

(
K̃j
)
and

Sj,M = O
(
K̃j
)
. These properties greatly simplify the computation. With these

notations, the determinant of E is given by

detE = X0
[
X0X2 − 2X2

1

]
+O

(
K̃4
)

(7.3.10)

One should notice that the relation detE = 0 gives the kinetic GAM disper-
sion relation. Indeed, replacing the coefficients Xi Eq.(7.3.9) in the expression
Eq.(7.3.10) leads to

ζ

(
Ω̃√
2

){
Ω̃√
2

+ q2
√

2

[
τ

2Ω̃3 +
(3

2 + τ
)

Ω̃ + 1 + τ

Ω̃

]}

+ 1 + τ + τ

2q
2Ω̃2 + 3

2q
2 (1 + τ) + q2

4 ζ
2
(

Ω̃√
2

)
= 0
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which is the fully kinetic dispersion relation of GAMs [89, 91, 79]. Assuming that
the order of J

[
˜̄vE · ∇˜̄g

]
M,Ω

is independent ofM , it appears that

iΩh−1,ΩdetE = iX0X1S
′ +X0X1 (S1,−1 − S1,1)

+
(
X2

1 −X0X2
)
S0,−1 +X2

1S0,1 +O
(
K̃3
)

iΩh1,ΩdetE = − iX0X1S
′ +X0X1 (S1,1 − S1,−1)

+
(
X2

1 −X0X2
)
S0,1 +X2

1S0,−1 +O
(
K̃3
)

iΩh0,ΩdetE = X2
0S
′ + iX2

0 (S1,1 − S1,−1) + iX0X1 (S1,−1 − S1,1) +O
(
K̃2
)

At leading order, one has h−1,Ω = −h1,Ω. Hence the mode poloidal depen-
dence is sin θ (up-down asymmetry), as expected for GAMs. It is shown in sec-
tion 7.4 that S ′ is linked to the turbulent Reynolds stress tensor. This calculation
shows that for the GAM limit, the side bands M = ±1 are mainly fed via the
toroidal coupling with the modeM = 0. This result is new and non trivial, as one
could have also expected a direct feeding via a source of the form J

[
˜̄vE · ∇˜̄g

]
1,Ω

to be competitive.

7.3.2. Poloidal convective cells
Lower frequencies are now considered Ω̃ � K̃ � 1. The analysis is restricted
to the first order terms in Ω̃. Using the property〈

f

Ω2
t + 2Ω2

D

〉
v

= − i√
2

〈
f

ΩD

(
Ωt − i

√
2ΩD

)〉
v

(7.3.11)

for any even function f(v‖), it turns out that at leading order the functions Lj
Eq.(7.3.6) become

L0 (Ω) = −
√
π

Ω̃2

qK̃
ln
(
i

Ω̃
qK̃

)

L1 (Ω) =
√
π

2 Ω̃

L2 (Ω) =
√
π

4 qK̃ (7.3.12)
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The simplification Eq.(7.3.11) leads to the redefinition of the source term:

Sj,M = − i√
2

∫ Ω2−jΩj−1
D

Ωt − i
√

2ΩD

J
[
˜̄vE · ∇˜̄g

]
M,Ω

d3v

= O
(
K̃j−1

)
×O

(
Ω̃2−j

)
Using this ordering, the potential at leading order is given by

iΩh−1,Ω = Teq
Neq

1
(1+τ)qK̃

(
iΩ̃S ′ + qK̃ (S2,−1 + S2,1)

)
iΩh1,Ω = Teq

Neq

1
(1+τ)qK̃

(
−iΩ̃S ′ + qK̃ (S2,−1 + S2,1)

)
iΩh0,Ω = Teq

Neq

2S ′
√
πqK̃

Two limit cases are found. In the intermediate frequency regime K̃2 � Ω̃ � K̃,
one gets

−h−1,Ω = h1,Ω = − Teq
Neq

S ′

(1 + τ) qK̃Ωth

This corresponds to a sin(θ) poloidal structure (up-down asymmetry). It appears
that the main drive comes from the source S ′ that is a N = 0,M = 0 component
of the source. It is shown in the next section that it is related to the flux surface
average of the turbulent Reynolds stress , i.e. the same source as zonal flows.
The underlying mechanism is flow compressibility, that results in a pumping of
N = 0,M = ±1 modes by N = 0,M = 0 zonal flows - i.e. a sideband effect.
The second limit corresponds to quasi-stationary structures, i.e. very low fre-

quencies Ω̃� K̃2, for which at leading order

h−1,Ω = h1,Ω = Teq
Neq

(S2,−1 + S2,1)
iΩ (1 + τ)

It corresponds to a cos(θ) poloidal variation (in-out asymmetry). The source
terms S2,±1 corresponds toM = ±1 components of the turbulent source. Hence
the drive rather comes from turbulence ballooning, which induces in turn a bal-
looning of the turbulence source, i.e. non zero poloidal harmonics of the turbu-
lent drive.
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7.4. Link between source terms and turbulent
Reynolds stress tensor

It turns out that the leading term is often proportional to the source term S ′. In this
part a connection is established between this quantity and the Reynolds stress
tensor. In other words a kinetic version of the Taylor identity [66] is demonstrated.
The first step, detailed in appendix E consists in demonstrating that the turbulent
source J [vE · ∇ḡ]MΩ can be written as a flux, J [vE · ∇ḡ]MΩ = ∂ΓΠ

∂ψ
, where the

flux ΓΠ is a flux of vorticity

ΓΠ =
∫ T

0

dt

T

∫ 2π

0

dθ

2πe
−iMθ+iΩt

∫ 2π

0

dα

2πJ
(
Ēαf̄

)
and Ēα = ∂(Jφ)

∂α
is the α component of the gyroaverage electric field. Therefore

S ′ = ∂

∂ψ

[∫ T

0

dt

T
eiΩt

∫ 2π

0

dθ

2πσ
]

(7.4.1)

where σ =
∫ dα

2π
∫
d3vJ

(
Ēαf̄

)
and the time T should be longer than the time scale

of convective cells, i.e. typically longer than a turbulence auto-correlation time.
One is left with the computation of σ. From now on, the calculation is restricted
to the large wavelength limit k⊥ρi < 1. Using J ' 1 + mµ

2e2Beq∇
2
⊥, one finds

J
(
Ēαf̄

)
= EαJ f̄ + mµ

e2Beq

f̄∇2
⊥Eα + mµ

e2Beq

∇⊥Eα · ∇⊥f̄

It is convenient to calculate the contribution of J f̄ by using the Poisson equation
that writes

Neqe
2

Te,eq

(
φ− 〈φ〉ψ

)
−∇ ·

(
Neqm

B2
eq

∇⊥φ
)

= e
∫

d3vJ f̄

Then ∫
d3vJ

(
Ēαf̄

)
= Eα

Neqe

Te,eq

(
φ− 〈φ〉ψ

)
− Eα∇ ·

(
Neqm

eB2
eq

∇⊥φ
)

+ m

e2B2
eq

∇ ·
(
P̄⊥∇⊥Eα

)

where P̄⊥ =
∫
d3vµBeqf̄ . The next step consists in integrating with respect to

α. The terms proportional to
(
φ− 〈φ〉ψ

)
is obviously not contributing. The terms
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Neqm
eB2

eq
are varying at large scales and so their derivatives can be neglected. Then

σ = Neqm

eB2
eq

∫ 2π

0

dα

2π
[

1
eNeq
∇ ·

(
P̄⊥∇⊥Eα

)
− Eα∇ · (∇⊥φ)

]

Using integration by part and the fact that Eα∇·(∇⊥φ) = ∇·(Eα∇⊥φ)− 1
2∂α |∇⊥φ|

2.
One can show that

σ = −Neqm

eB2
eq

∫ 2π

0

dα

2π∇ ·
[(
Eα + Pα

eNeq

)
∇⊥φ

]

where Pα = ∂P̄⊥
∂α

. The definition of the divergence in ballooning coordinates is

∇ ·U = 1
√
g

∂

∂ψ
(√gU · ∇ψ) + 1

√
g

∂

∂α
(√gU · ∇α)

where √g = 1
Beq ·∇θ is the Jacobian. The ψ dependence of g can be neglected.

One then finds

σ = − ∂

∂ψ

[
Neqm

eB2
eq

∫ dα

2π
(
Eα + Pα

eNeq

) (
Eψ |∇ψ|2 + Eα∇ψ · ∇α

) ]

where Eψ = ∂φ
∂Ψ . Note that ∇ψ · ∇α = −q∇ψ · ∇θ− ∂q

∂ψ
θ |∇ψ|2. Moreover one has

the following properties in ballooning representation

φ =
∑

k
φk(θ, t) exp {i [nθkq(ψ) + nα]}

Eψ =
∑

k
in
∂q

∂ψ
θkφk(θ, t) exp {i [nθkq(ψ) + nα]}

Eα =
∑

k
inφk(θ, t) exp {i [nθkq(ψ) + nα]}

where it is reminded that nφk � ∂φk
∂θ

. Similar relations can be derived for the
perpendicular pressure. Using also the limit Ω ≪ ω, one gets

σ = ∂

∂ψ

[
Neqm

eB2
eq

∑
k

n2
(
φk + P̄⊥,k

Neqe

)
φ?k

(
∂q

∂ψ
(θ − θk) |∇ψ|2 + q∇ψ · ∇θ

)]

If we moreover assume the distribution function is mainly advected by the turbu-
lent E ×B drift velocity, then f̄k,ω = −Feq

Teq
nΩ?
ω
hk,ω, and one has

σ = ∂

∂ψ

[
Neqm

eB2
eq

∑
k

n2
(
1− nΩ?

ω

)
|φk|2

(
∂q

∂ψ
(θ − θk) |∇ψ|2 + q∇ψ · ∇θ

)]

143



It then appears that σ is close to− ∂
∂r

(
∂ψ
∂r

Neqm
eBeq

ΠRS

)
, whereΠRS = 〈vEr (vEθ + V ∗θ )〉

is the turbulent Reynolds stress tensor, with FLR effects. It is a function of radius
r, poloidal angle θ, and time t. Using Eq.(7.4.1), source S ′ is then shown to be
related to theM = 0 component of the stress tensor

S ′ = −NeqeBeq

Teq
ρ2
i

∂2

∂r2 ΠRS,0 (r,Ω)

where ρi is the thermal ion gyroradius. Radial variations of ∂ψ
∂r

and all equilibrium
quantities have been ignored compared to variations of the turbulence intensity
to get this estimate. Other source components Si,M are more difficult to estimate
accurately, but can be shown to scale as the Reynolds stress tensor.

7.5. Discussion

7.5.1. Phase and amplitude of poloidal convective cells
The results obtained for poloidal convective cells are now examined. In the in-
termediate frequency regime Ω ≤ ΩD, the level of the M = 1 mode is given
by

φ1,Ω

Beq

= −φ−1,Ω

Beq

= −Krρi
ΠRS,0(Ω)
(1 + τ) vT

R0

This corresponds to an up-down asymmetric potential, i.e. sin θ structure. This
level is finite. For Ω ∼ ΩD, the level of zonal flow is given by φ0,Ω ∼ ΠRS

vT /R0
. Hence

the level of poloidal convective cell is smaller than a typical saturated zonal flow
by a factor Krρi. The main drive mechanism is in this case the perpendicular
compressibility of the flow.
The low frequency regime Ω ≤ ΩDKρi is more intriguing. Admitting that the

source term (S2,−1 + S2,1) is of the order of S ′ times a factor fbal representative
of the level of turbulence ballooning, one gets the estimate

φ1,Ω

Beq

= φ−1,Ω

Beq

= −iK2
rρ

2
i fbal

ΠRS,0(Ω)
(1 + τ) Ω

No convergence is found for Ω→ 0 unless the Reynolds stress frequency spec-
trum vanishes at low frequency, which is unlikely. The same behavior occurs for
zonal flows. This indicates a lack of dissipative processes, probably due to a
break-down of the theory in absence of particle trapping. Note however that the
ratio φ1,Ω

φ0,Ω
is regular and of the order of Krρi. The poloidal asymmetry is of the

form cos θ, i.e. in-out, and the drive appears to be the asymmetry of the turbulent
stress tensor due to turbulence ballooning.
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7.5.2. Numerical solution
We assume that the source terms are separable in energy, Ω and M , i.e. we
prescribe the following form{[

˜̄vE · ∇˜̄g
]}

= FeqsMS(Ω̃)

where s−M = sM is real, and the frequency spectrum S(Ω̃) is chosen as a
Lorentzian

S(Ω̃) = 1
π

∆Ω̃
Ω2 + ∆Ω̃2

All matrix EMM ′ and source elements SM can then be expressed as combina-
tions of the functions Lj(Ω). The latter can be calculated numerically using a
collocation method (see appendix F)[11, 28]. Inverting numerically the matrix
E then provides the values of h = E−1 · S. In the following, parameters are
safety factor q = 1.5, normalised radial wavenumber Krρi = 0.1 , ion to electron
temperature ratio τi = 1 , amplitude of source term s0 = −1, sideband ratios
s1/s0 = s−1/s0 = 0.5, and frequency width of the source ∆Ω̃ = 0.1.

Fig.7.3 shows the frequency spectra of Ωh0,Ω and Ωh1,Ω. A GAM signature ap-
pears clearly at high frequency, while zonal flows and poloidal convective cells
appear at low frequencies. Hence the level of the m = 1 component of the
electric potential is smaller than them = 0 component by a factorKrρi, in agree-
ment with estimate

∣∣∣Ωh1,Ω
Ωh0,Ω

∣∣∣ ∼ Krρi. Fig.7.4 and Fig.7.5 show respectively the ratio
h1,Ω
h−1,Ω

and the phase of h1,Ω
h0,Ω

. It appears that the ratio h1,Ω
h−1,Ω

is about −1 in the GAM
range, while the angle of h1,Ω

h0,Ω
is 90◦ (up-down asymmetry). At lower frequency

ΩqR0
vT
∼ Krρi, the ratio h1,Ω

h−1,Ω
is again close to −1, i.e. up-down asymmetry, but

with a polarity closer to −90◦, i.e. opposite to GAMs. The very low frequency
limit ΩqR0

vT
≤ (Krρi)2 is more difficult to assess. The collocation method imposes

to choose a frequency mesh with the same mesh size as the velocity variable.
Low frequency then means a highly resolved velocity space, and therefore a
large computation time. The difficulty is circumvented by increasing the value of
Krρi up to 0.25. It can then be checked in Fig.7.6 that the ratio h1,Ω

h−1,Ω
is close to 1

at vanishing frequency, in agreement with a mostly in-out asymmetrical poloidal
convective cells. In summary, GAMs and convective cells in the intermediate
frequency range are up-down asymmetrical, while low frequency cells are in-out
asymmetrical. It also stressed that the polarity of a poloidal convective cell is
rarely as clean cut as a GAM, i.e. it varies continuously with the frequency.
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Figure 7.3.: Absolute value of Ωh0,Ω and Ωh1,Ω

Figure 7.4.: Real and imaginary parts of the ratio h1,Ω
h−1,Ω

vs Ω

7.5.3. Limits of the model
The model does not account for trapped particles. This is visible by considering
the limit ΩD / Ω and looking at the dynamics of the mode M = 0. In this case,
at leading order in K̃ = Krρi, one gets

iΩh0,ΩdetE = X2
0S
′
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Figure 7.5.: Phase of h1,Ω
h0,Ω

where

detE '
(
Neq

Teq

)3

(1 + τ)2 K̃2
[
1 + q2

2

(
1 + π

2 (1 + τ) + i

√
2π
Ω̃

)]

Since the source S ′ is equal to K̃2NeqeBeq
Teq

ΠRS,0 (Ω), where ΠRS(t) is theM = 0,
component of the turbulent Reynolds stress at scale K, one finds the following
equation for the zonal flow[

1 + q2

2

(
1 + π

2 (1 + τ)

)]
∂

∂t

(
φ0

Beq

)
= −ΠRS,0(t)−

√
π

2
qvT
R0

φ0

Beq

The right hand side of the equation is the expected value with a neoclassical
damping in plateau regime. The factor in front of the time derivative corresponds
to the renormalisation of inertia due to the passing particles. It differs from the
fluid classical value 1 + 2q2 [48] since the prefactor of q2 is of the order of 1, i.e.
twice smaller. If the trapped particles were taken into account, this factor should
be 1 + 1.6 q2

√
ε
[76], where ε = r

R0
.

Trapping is important when the frequency Ω is of the order of the bounce fre-
quency vT

qR0

√
ε. The present modelis valid for Ω ∼ ΩD only if Krρi >

√
ε
q
. This
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Figure 7.6.: Real and imaginary parts of the ratio h1,Ω
h−1,Ω

vs Ω for Krρi = 0.25

obviously excludes large scale flows, and requires small values of the inverse
aspect ratio. The very low frequency regime Ω ∼ ΩDKrρi seems even more
difficult to reach since is requires K2

rρ
2
i >

√
ε
q
, which would only occur for highly

corrugated flows in the radial direction. We also recall that the non linear term[
〈vE〉ϕ · ∇ 〈ḡ〉ϕ

]
MΩ
' 0, which represents the advection by the convective cell of

the associated distribution function, was ignored in this analysis, though it may
play some role in the dynamics. Recent numerical simulations actually suggest
that its amplitude is comparable to the Reynolds stress tensor S ′ in some cases
[8].

7.5.4. Poloidal asymmetry of the distribution function
Most of this chapter is dedicated to the turbulent generation of axisymmetric
modes (n = 0) of the electric potential. But the numerical test presented in
section 7.1 has shown that even in the abscence of poloidal asymmetry of the
electric field, the distribution function can displays large poloidal asymmetries
(density in the case shown in section 7.1). An explanation of this observation is
contained in Eq.(7.3.2)

{ḡ} = −iΩG−1Feq
Teq

{
h̄
}
−G−1

{[
˜̄vE · ∇˜̄g

]}
Indeed, if one considers a special case without poloidal asymmetry for the ax-
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isymmetric part of the potential h̄−1,Ω = h̄1,Ω = 0, the axisymmetric part of the
distribution function can still dispays poloidal asymmetries ḡ−1,Ω, ḡ1,Ω 6= 0. This is
due to the perpendicular compressibility of the flow (off diagonal terms ofG−1 pro-
portionnal toΩD) and the ballooning of the turbulence (

[
˜̄vE · ∇˜̄g

]
−1,Ω

,
[
˜̄vE · ∇˜̄g

]
1,Ω
6=

0).

Summary of the chapter
In this chapter, the turbulent generation of poloidal asymmetry for heavy impu-
rities has been clarified. Two mechanisms have been identified. On the one
hand, perpendicular compressibility of the flow allows the excitation of M = ±1
modes by the M = 0 mode. This mechanism is dominant for large frequencies.
On the other hand, the ballooning of the turbulence directly produces a poloidal
asymmetry of the source term for the axisymmetric modes of the potential and
distribution function. This mechanism seems to be dominant for lower frequen-
cies.
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Conclusion
In fusion plasmas, impurities refer to any species different from deuterium and
tritium, the fusion nuclei. Reactor plasmas will have both intrinsic – the he-
lium ashes (alpha particles) – and extrinsic impurities, the latter coming from
the plasma-wall interactions or being voluntarily injected (light impurities in this
case) so as to radiate the power at the plasma periphery. Understanding impu-
rity transport is of utmost importance as core accumulation has a deleterious
effects on plasma performance, by diluting the deuterium-tritium fuel and by ra-
diating energy. In worst cases, the latter can lead to disruptions, i.e. the sudden
loss of plasma confinement. There are three mechanisms of impurity transport.
One is associated with turbulence, the second is coming from neoclassical (i.e.
collisions) physics and the last one is due to MHD activity. This thesis focuses
on the two firsts mechanisms and on their possible synergies. For this study,
both mechanisms must be treated on an equal footing. Therefore a gyrokinetic
approach has been adopted and the gyrokinetic code GYSELA has been chosen
for the numerical calculation.
A new linearized collision operator valid for arbitrary species (mass, charge)

and arbitrary concentration (trace or non-trace) has been developed and imple-
mented in the GYSELA code. This collision operator possesses the most rele-
vant properties which should be fulfilled by any full-f linearized operator within
the gyrokinetic framework 1, in marked difference with the previous GYSELA ver-
sion on two aspects. Firstly, it takes into account derivatives with respect to the
adiabatic invariant µ , which is crucial for the isotropisation role of collisions in
the velocity space. To do so, a projection of the distribution function on Laguerre
polynomials in the µ direction allows treating the derivatives with respect to µ
analytically. Finite differences are used for the parallel velocity derivatives. Sec-
ondly, a distinction has been made between the modulus diffusion rate νv and
the deflection frequency νd . This distinction is especially crucial for treating ac-
curately the collisions of electrons on ions and the case of non-trace impurities.
The conservation properties (number of particles, momentum and energy) have
been tested successfully. The relaxation toward the isotropic Maxwellian and
the exchange rates of momentum and energy between species are also in good
agreement with theoretical prediction.

1The present operator still proceeds from 2 simplifications, which are regarded as less important:
(i) it does not account for the classical diffusion coefficient, which emerges when accounting for
the gyroaverage of the distribution function, and (ii) the Jacobian coming from the gyrokinetic
transform is neglected (technically speaking, B∗‖ is replaced by B).

150



Neoclassical physics has been tested with the new collision operator. In the
single species case, diffusion and poloidal rotation have been tested success-
fully in all collisionality regimes. Moreover, zonal flow collisional damping is in
good agreement with theoretical prediction. This is a crucial point for the tur-
bulence saturation, since these large-scale turbulence-driven poloidal flows are
known to efficiently contribute to the saturation of ion-scale turbulence. Concern-
ing the impurity transport, the standard neoclassical prediction (assuming weak
poloidal asymmetries of the impurity fluid moments and of the electric potential)
of diffusion, pinch velocity and thermal screening has been retrieved.
Poloidal asymmetry of the impurity density is often observed experimentally.

This asymmetry is known to modify significantly the neoclassical prediction of im-
purity flux: the diffusion coefficient can vary by orders of magnitudes, while the
pinch velocity can even reverse sign. Impurity density asymmetries boost only
the Pfirsch-Schlüter contribution of the neoclassical flux. This regime is relevant
for heavy impurities in current tokamaks. But heavy impurities should be closer
to the banana/plateau regime in larger machines like ITER. The banana/plateau
contribution is associated with pressure anisotropy. Therefore, a generalized ap-
proach of neoclassical impurity transport allowing for large pressure anisotropy
and poloidal asymmetries of the impurity quantities has been developed. The
main conclusion is that the banana/plateau flux of impurities can also be strongly
impacted by the combined presence of pressure anisotropy and poloidal asym-
metries. Large pressure anisotropy and poloidal asymmetries can be externally
controlled by means of anisotropic heating sources (e.g. Ion Cyclotron Reso-
nance Heating) and torque injection (e.g. Neutral Beam Injection) in the view of
impurity control and/or self-generated by turbulence. The simulations reported in
this PhD thesis, performedwith GYSELA have confirmed that turbulence can pro-
duce pressure anisotropy and poloidal asymmetries by turbulence. Neoclassical
theory has been modified to account for large pressure anisotropy and poloidal
asymmetries. This analytical model agrees well with simulation results.
In this framework, so as to help reaching quantitative predictions regarding

impurity transport, but also to provide a tentative explanation to some reported
experimental evidence of asymmetric flows, the turbulent generation of poloidal
asymmetries has been clarified by means of an original derivation which encom-
passes – and extends to the low frequency regime – the physics of the Geodesic
Acoustic Modes. Two mechanisms have been identified for the generation of
so-called convective cells, which correspond to axisymmetric modes (i.e. in-
dependent of the toroidal coordinate, characterized by a vanishing toroidal wave
number n = 0) of the electric potential with large poloidal wave length (in practice
mainly m = ±1 modes, with m the poloidal wave number). The first mechanism
comes from the fact that turbulence is ballooned. That means that the Reynolds
stress is larger where the turbulence intensity is maximum, i.e. on the low field
side. In this case, the mode displays an in-out asymmetry. The second mecha-
nism is associated with the compressibility of the flow. The mode then displays
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an up-down asymmetry.
In summary, it has been established that the standard neoclassical theory

must be modified for heavy impurities in situations where turbulence drives pres-
sure anisotropy and poloidal asymmetries. A new model has been derived, that
allows a better understanding of the synergies between neoclassical and turbu-
lent impurity transport observed with the code GYSELA. This study has demon-
strated the necessity to take into account different parameters for a quantita-
tive prediction of impurity transport in large devices like ITER. Firstly, the ba-
nana/plateau component of the neoclassical flux and its modification by large
anisotropy and poloidal asymmetries is required. Secondly, it is necessary to
account for the effect of turbulent generated poloidal asymmetry on neoclassi-
cal transport. This point is even more critical in large devices for which external
sources should have a smaller impact than in current devices.
This study opens the way to various possible continuations. Firstly, a paramet-

ric scan could be done near the reference case presented in this thesis. Themost
critical parameters for a quantitative prediction on larger devices are the collision-
ality ν? and the normalized Larmor radius ρ?. Secondly, external sources could
be added to demonstrate the predictive capability of the code GYSELA by com-
paring with experimental results. Once this capability proven, the study of the
competition between externally and turbulent driven poloidal asymmetry would
be necessary to evaluate the capability to control impurity transport by external
sources on large devices. Finally, the inclusion of kinetic electrons (trapped elec-
trons can now be treated kinetically in GYSELA), would also be highly desirable,
keeping in mind the limitations imposed by the large numerical resources re-
quired by such multi-species flux-driven simulations. Indeed, this could change
the nature of the turbulence by allowing more instabilities.
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Appendix

A. Derivation of the Vlasov with ḡ
The goal of this appendix is to derive Eq.(5.1.2) starting from Eq.(5.1.1)

∂F̄

∂t
−
{
H̄, F̄

}
= 0

Using the relationship F̄ (Heq, µ, Pϕ, θ, ϕ, t) = Feq(H̄, µ, Pϕ, t)+ḡ(Heq, µ, Pϕ, θ, ϕ, t),
one gets

∂ḡ

∂t
−
{
H̄, ḡ

}
= − ∂

∂t
Feq(H̄, µ, Pϕ, t) +

{
H̄, Feq(H̄, µ, Pϕ, t)

}
For the time derivative on the rhs, we use the relationshipFeq(H̄, µ, Pϕ) ' Feq(Heq, µ, Pϕ)+
h̄∂HeqFeq(Heq, µ, Pϕ) where H̄ = Heq + h̄. Adding the fact that ∂

∂t
Feq(Heq, µ, Pϕ, t),

one gets
∂

∂t
Feq(H̄, µ, Pϕ, t) = ∂HeqFeq(Heq, µ, Pϕ)∂h̄

∂t

To treat the Poisson bracket on the rhs, one uses the fact Feq is a function of
the invariants Feq = ∑

k Jk
∂Feq
∂Jk

where Jk are the actions of the movement. As
{Heq, Jk} = 0 whatever k, one gets

{
H̄, Feq(H̄, µ, Pϕ, t)

}
=
∑
k

∂Feq
∂Jk

{
h̄, Jk

}

The only non vanishing Poisson bracket is
{
h̄, Pϕ

}
. As {ψ, Pϕ} = 0, {θ, Pϕ} = 0

and {ϕ, Pϕ} = 1 then
{
h̄, Pϕ

}
= ∂h̄

∂ϕ
. Therefore

∂ḡ

∂t
−
{
H̄, ḡ

}
= Feq

(
−∂ lnFeq

∂Heq

∂

∂t
h̄+ ∂ lnFeq

∂Pϕ

∂h̄

∂ϕ

)

Defining the inverse of a “temperature” 1
Teq

= − ∂
∂Heq

lnFeq and the kinetic geo-
magnetic frequency Ω∗ = Teq

∂ lnFeq
∂Pϕ

, one finally gets Eq.(5.1.1)

∂ḡ

∂t
−
{
H̄, ḡ

}
= Feq
Teq

(
∂

∂t
+ Ω∗ ∂

∂ϕ

)
h̄
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B. Vlasov equation of the resonant part of the
distribution in ballooning representation

The goal of this appendix is to derive Eq.(5.1.7) starting from Eq.(5.1.4):

∂ḡ

∂t
+ v‖∇‖ḡ + vE · ∇ḡ + vD · ∇ḡ = Feq

Teq

(
∂

∂t
+ Ω∗ ∂

∂ϕ

)
h̄

and using the ballooning representation Eq.(5.1.6):

φ̃(ψ, α, θ, t) =
∑
kω
φkω exp {i [nθkq(ψ) + nα− ωt]}

The parallel derivative present in Eq.(5.1.4) can be written

v‖∇‖ḡ = v‖
R0

(
∂ϕ + 1

q
∂θ

)
ḡ

= v‖
R0

∑
kω

[
in

(
1− q

q

)
ḡkω + 1

q
∂θḡkω

]
exp {i [nθkq(ψ) + nα− ωt]}

= Ωt

∑
kω
∂θḡkω exp {i [nθkq(ψ) + nα− ωt]} (B.1)

where Ωt = v‖
qR0

. The term with the magnetic drift becomes

vD · ∇ḡ = vD

(
sin θ∂r + cos θ

r
∂θ

)
ḡ

= −vD
∑
kω
in
q

r

[
cos θ + (θ − θk) sin θr

q
∂rq(ψ)

]
ḡkω exp {i [nθkq(ψ) + nα− ωt]}

The derivatives of ḡkω have been neglected ∂rḡkω � n (θk − θ) ∂rq(ψ)ḡkω and
∂θḡkω � nqḡkω because large toroidal wavenumbers are considered. Using the
relationships s = r

q
∂rq(ψ) and kθ = −nq

r
, one get

vD · ∇ḡ = i
∑
kω
ωDḡkω exp {i [nθkq(ψ) + nα− ωt]} (B.2)

where

ωD = kθvD [cos θ + s (θ − θk) sin θ]
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Using Eq.(B.1) and Eq.(B.2), then Eq.(5.1.7) is naturally coming from Eq.(5.1.4):

Ωt
∂ḡkω

∂θ
− i (ω − ωD) ḡkω = −i (ω − ω?)hkω

Feq
Teq

C. Linear response of the distribution function
The goal of this appendix is to derive the linear response of the distribution func-
tion Eq.(5.2.2). The first step is to link the perturbed distribution function of par-
ticles to the resonant distribution function of gyrocenters Eq(2.1.3)

Fz (x,v, t) = − Ze

Tz,eq (x)Fz,eq (x,v)
[
φ (x, t)− φ̄ (xG, t)

]
+ F̄z (xG,vG, t)

This relation combinedwith the definition of ḡ: F̄ (Heq, µ, Pϕ, θ, ϕ, t) = Feq(H̄, µ, Pϕ, t)+
ḡ(Heq, µ, Pϕ, θ, ϕ, t) and the development of the distribution functionFeq(H̄, µ, Pϕ) '
Feq(Heq, µ, Pϕ) + ZeJ φ∂HeqFeq(Heq, µ, Pϕ) where H̄ = Heq + h̄ gives

fz = −eZFz,eq
Tz,eq

φ+ ḡz

The second step of the computation is to use the linear response of the reso-
nant part of the gyro center distribution function ḡz that is directly coming from
Eq.(5.1.7)

ḡz,kω = ω − ω?
ω − ωd − k‖v‖

J eZφkω
Fz,eq
Tz,eq

where the term Ωt
∂ḡkω
∂θ

has been replaced by ik‖v‖ḡkω for the simplicity of the
notation. Rigorously, the notation k‖v‖ has to be understood has an operator.
Putting all together, one gets Eq.(5.2.2)

fz,kω = −
[
1− ω − ω?

ω − ωd − k‖v‖
J
]
eZφkω

Fz,eq
Tz,eq

D. Derivation of the collisional parallel momentum
exchange for trace and heavy impurities

The goal of this appendix is to derive Eq.(6.2.7) and Eq.(6.2.8). We begin our
derivation by taking the expression of the collisional exchange of momentum
Eq.(4.4.17) in the case of a trace

(
NzZ2

Ni
� 1

)
heavy impurity

(
mz
mi
� 1

)
R‖zi = −Nzmzνzi

[
V‖z − V‖z + 3

5
q‖i
NiTi

]
(D.1)
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Moreover, the parallel velocity of any species can be expressed in the form

V‖s = Ks

Ns

B − IΩs

B
(D.2)

with Ωs = ∂φ
∂ψ

+ 1
NzeZ

∂P⊥s
∂ψ

for any species s. In the same spirit, the parallel heat
flux of the main ion takes the form

q‖i
NiTi

= LiB −
5
2
I

eB

∂Ti
∂ψ

(D.3)

where Li is a flux function. Substituting Eq.(D.2) and Eq.(D.3) in Eq.(D.1), one
gets directly Eq.(6.2.7)

R‖zi = mzνzi

{
−NZ

Ti
eB

I

Lψ
+B (Nzu−Kz)

}

at the condition to define 1
Lψ

= 1
Lψ,i

+ 1
Lψ,z

with 1
Lψ,i

= ∂ lnPi
∂ψ
− 3

2
∂ lnTi
∂ψ

and 1
Lψ,z

=
− 1
TiZNz

∂P⊥z
∂ψ

and

u = Ki

Ni

− 3
5Li

The second step of this appendix is to prove the expression of u Eq.(6.2.8). The
first step is to compute Ki

Ni
, to do so we use the vector expression of the ion

velocity
V i = Ki

Ni

B − ΩiR
2∇ϕ (D.4)

The poloidal velocity of the main ion is kown in the neoclassical theory vθ =
kneo (ν?, ε) ∇TeB . The poloidal projection of Eq.(D.4) then leads to

Ki

Ni

= kneo
I

e 〈B2〉ψ
∂Ti
∂ψ

Li can be computed directly with Eq.(4.4.16)

Li =

〈
B

q‖i
NiTi

〉
ψ

〈B2〉ψ
− 5

2
I

e 〈B2〉ψ
∂Ti
∂ψ

It has been showned [46] that
〈
B

q‖i
NiTi

〉
ψ
∼
√
εLi. Then at lowest order in ε,

Eq.(6.2.8) is retrieved
u =

(
kneo −

3
2

)
I

e 〈B2〉ψ
∂Ti
∂ψ
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E. Flux of vorticity
We calculate in this appendix, the turbulent drive of poloidal convective cells
J [vE · ∇ḡ]MΩ. This source term can be recast as

J [vE · ∇ḡ]MΩ = J
[
Beq

B2
eq

· (∇ (J φ)×∇ḡ)
]
MΩ

The gradient of any field can be written as ∇φ = ∂φ
∂θ
∇θ + ∂φ

∂ψ
∇ψ + ∂φ

∂α
∇α. Let us

note that
∂φ

∂θ
|∇θ| � ∂φ

∂ψ
|∇ψ| , ∂φ

∂α
|∇α|

in the frame of the ballooning representation, i.e. the gradient of fluctuations
along the field lines is much smaller than the transverse gradients. This also im-
plies that transverse gradients of fluctuations are larger than gradients of metric
elements or of any equilibrium quantity. Another consequence is that the gyroav-
erage operator J commutes with quantities that depend on θ only. This implies
that

∇ (J φ)×∇ḡ =
(
∂ (J φ)
∂α

∂ḡ

∂ψ
− ∂ (J φ)

∂ψ

∂ḡ

∂α

)
Beq

Using integration by part on the α integral, it is possible to show that

[vE · ∇ḡ]MΩ =
∫ T

0

dt

T
eiΩt

∫ dθ

2πe
−iMθ

∫ dα

2π
∂

∂Ψ
(
Ēαḡ

)
where Ēα = ∂(Jφ)

∂α
. Using the large wavelength limit k⊥ρi � 1 the gyroaverage

can be expressed simply J ' 1 + mµ
2e2Beq . The perpendicular laplacian is in fact

close to the complete laplacian ∇2
⊥ for small parallel gradients. Moreover, the

general definition of the laplacian for the set of coordinates xi = (ψ, α, θ) is

∇2
⊥φ = 1

√
g

∂

∂xi

(
√
g∇xi · ∇xj ∂φ

∂xj

)

where √g = 1
Beq∇θ is the Jacobian. With the ordering given before, and a quasi-

circular equilibrium ∇α · ∇ψ ' 0, one gets the following approximation

∇2
⊥φ '

1
√
g

∂

ψ

(
√
g |∇ψ|2 ∂φ

∂ψ

)
+ |∇α|2 ∂

2φ

∂α2

where the metric elements |∇ψ|2, and |∇α|2 do not depend on α . It can then be
shown that J [vE · ∇ḡ]MΩ = ∂ΓΠ

∂ψ

ΓΠ =
∫ T

0

dt

T

∫ dθ

2πe
−iMθ+iΩt

∫ dα

2πJ
(
Ēαḡ

)
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We note that ḡ can be replaced safely by f̄ since the adiabatic response does
not contribute to the flux as ∫ dα

2π Ēα (J φ) = 0.

F. Treatment of the resonant functions Lj (Ω) and
numerical solution

The Bessel functions are expanded at lowest order in K2. It then appears that
the matrix E and the source {S} can be expressed as

Ea = (1 + τ) 〈1〉v + L0 − L2

Eb = K2 + 2L2

Ec = L1

Ed = −L2 (F.1)

and

−iΩ {S}M=−1 = (−iL1 + L0 − 2L2)S(Ω)s−1

−iΩ {S}M=0 = (−1 + 2L2)S(Ω)s0

−iΩ {S}M=1 = (iL1 + L0 − 2L2)S(Ω)s1 (F.2)

where
Lj (Ω) =

〈
Ω2−jΩj

D

Ω+Ω− + 2Ω2
D

〉

and the prefactor Neq
Teq

has been removed in all kinetic integrals. The potential {h}
is given by the relation {h} = E−1 {S}.
The dimensionless functions Lj (Ω) can be expressed in normalized form as

Lj
(
Ω̃
)

=
(

Ω̃
q

)2−j ∫ +∞

0
due−u

∫ +∞

−∞

dζ√
π
e−ζ

2 Ω̄j
D

R
(F.3)

where u = 1
2
v⊥2
v2
T
, ζ = 1√

2
v‖
vT
, R = 2

q2 ζ
2 + 2Ω̄2

D −
(

Ω̃
q

)2
, and Ω̄D = K̃

2 (u+ 2ζ2).
These are resonant integrals, which must be continued analytically to ensure a
proper inverse Laplace transport (Landau prescription). This is most easily done
by introducing an elliptical change of variables

ζ(ρ, θ) = q√
2K̃ρ sin θ

u(ρ, θ) =
√

2ρ cos θ − K̃2q2ρ2 sin2 θ
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The quantities of interest (magnetic drift frequency, resonance, and energy) have
still simple expressions in this set of variables

R(ρ, θ) = K̃2ρ2 −
(

Ω̃
q

)2

Ω̄D(ρ, θ) = K̃√
2ρ cos θ

E(ρ, θ) = u+ ζ2 =
√

2ρ cos θ − 1
2K̃

2q2ρ2 sin2 θ

The Jacobian of the change of this variables is J = qK̃ρ. The resonant integrals
Eq.(F.3) can then be recast in the following convenient form

Lj ($) = qK̃√
π
$2−j

∫ +∞

0
dρ

2ρ
ρ2 −$2

∫ θ0(ρ)

0
dθe−EΩ̄j

D

where the angle θ0(ρ) is such that cos θ0 = −a +
√

1 + a2, a = 1√
2K̃2q2ρ

, Ω̄D =
1√
2ρ cos θ, and $ = Ω̃

qK̃
. The cut-off θ ≤ θ0 ensures that the perpendicular energy

u is always positive. For positive and real values of K̃, the Laplace contour
prescription in Ω translates to the same one on the normalized variable$. Hence
the integrals to be calculated are of the form

Lj($) = $2−j
∫ +∞

0
dρ

2ρGj(ρ)
ρ2 −$2

where the functions
Gj(ρ) = qK̃√

π

∫ θ0(ρ)

0
dθe−EΩ̄j

D

are smooth in ρ. This formulation allows an easy implementation of the Landau
prescription by using the identity

2ρ
ρ2 −$2 = 1

ρ−$
+ 1
ρ+$

Restricting the analysis to <(Ω) > 0, one find the rule

Lj($) =


$2−j ∫+∞

0 dρ2ρGj(ρ)
ρ2−$2 =($) > 0

$2−jP.P.
∫+∞

0 dρ2ρGj(ρ)
ρ2−$2 + iπ$2−jGj($) =($) = 0

$2−j ∫+∞
0 dρ2ρGj(ρ)

ρ2−$2 + 2iπ$2−jGj($) =($) < 0

The principal part that appears in the function L0 exhibits a logarithmic singularity
near $ = 0 that is regularized by the $2 prefactor . The functions L1 and L2 are
regular near $ = 0. The functions Lj can be computed in the domain <(Ω̃) < 0
by using the properties Lj(−Ω̃) =

[
Lj(Ω̃)

]∗
for positive K̃. All these integrals

are calculated numerically by using a collocation integration method [11, 28].
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The asymptotic forms Eq.(7.3.8) are recovered when Ω̃ ≥ 1 with an excellent
accuracy.
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