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We study option pricing problems in stochastic volatility models. In the first part of this thesis we focus on American options in the Heston model. We first give an analytical characterization of the value function of an American option as the unique solution of the associated (degenerate) parabolic obstacle problem. Our approach is based on variational inequalities in suitable weighted Sobolev spaces and extends recent results of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop (2015). We also investigate the properties of the American value function. In particular, we prove that, under suitable assumptions on the payoff, the value function is nondecreasing with respect to the volatility variable. Then, we focus on an American put option and we extend some results which are well known in the Black and Scholes world. In particular, we prove the strict convexity of the value function in the continuation region, some properties of the free boundary function, the Early Exercise Price formula and a weak form of the smooth fit principle. This is done mostly by using probabilistic techniques.

In the second part we deal with the numerical computation of European and American option prices in jump-diffusion stochastic volatility models. We first focus on the Bates-Hull-White model, i.e. the Bates model with a stochastic interest rate. We consider a backward hybrid algorithm which uses a Markov chain approximation (in particular, a "multiple jumps" tree) in the direction of the volatility and the interest rate and a (deterministic) finite-difference approach in order to handle the underlying asset price process. Moreover, we provide a simulation scheme to be used for Monte Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed methods.

Finally, we analyse the rate of convergence of the hybrid algorithm applied to general jumpdiffusion models. We study first order weak convergence of Markov chains to diffusions under quite general assumptions. Then, we prove the convergence of the algorithm, by studying the stability and the consistency of the hybrid scheme, in a sense that allows us to exploit the probabilistic features of the Markov chain approximation.

Introduction

The seminal work by Black and Scholes ( [START_REF] Black | The pricing of options and corporate liabilities[END_REF], 1973) was the starting point of equity dynamics modelling and it is still widely used as a useful approximation. It owns its great success to its high intuition, simplicity and parsimonious description of the market derivative prices.

Nevertheless, it is a well known fact that it disagrees with reality in a number of significant ways. Even F. Black, 15 years after the publication of the original paper, wrote about the flaws of the model [START_REF] Black | The holes in Black-Scholes[END_REF]. Indeed, empirical studies show that in the real market the log-return process is not normally distributed and its distribution is often affected by heavy tail, jumps and high peaks. Moreover, the assumption of a constant volatility turns out to Introduction as the underlying asset. Here, we can find the so-called local volatility models, where the volatility is assumed to be a function of time and of the current underlying asset price. Therefore, the asset price S is modeled by a diffusion process of the type dS t = µ(t, S t )S t dt + σ(t, S t )S t dB t .

Under classical assumptions these models preserve the completeness of the market and all the Black-Sholes pricing and hedging theory can be adapted (see, for example, [START_REF] Bergomi | Stochastic volatility modeling[END_REF]Chapter 2]). The choice of a suitable local volatility function σ = σ(t, S), is a delicate problem. Bruno Dupire proved in [START_REF] Dupire | Pricing and hedging with smiles[END_REF] that it is possible to find a function σ = σ(t, S) which gives theoretical prices matching a given configuration of vanilla options' prices. Typically, the local volatility function is calibrated at t = 0 on the market smile and kept frozen afterwards. Therefore, it does not take into account the daily changes in the volatility smile observed in the market. For this reason, local volatility models seem to be an analytically tractable simplification of the reality rather than a representation of how volatility really evolves.

Other different models presented in the literature belong to this first class, for instance path dependent volatility models, in which volatility depends on the whole past trajectory of the asset price (see [START_REF] Foschi | Path dependent volatility[END_REF][START_REF] Hobson | Complete models with stochastic volatility[END_REF]).

The second class of models consists of the so-called stochastic volatility models. Here, the volatility is modelled by an autonomous stochastic process Y driven by some additional random noise. Typically, a stochastic volatility model is a Markovian model of the form dS t = µ S (t, S t )S t dt + σ S (Y t )S t dB t ,

dY t = µ Y (t, Y t )dt + σ Y (t, Y t )dW t ,
where B and W are possibly correlated Brownian motions. Moreover, often jumps are added to the dynamics of the assets prices and/or their volatilities. The literature on stochastic volatility models is huge. The most successful model is the one introduced by S. Heston [START_REF] Heston | A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[END_REF], which will be extensively studied later on in this thesis. Among the others we cite, for example, the models by Hull and White [START_REF] Hull | The pricing of options on assets with stochastic volatilities[END_REF], Bates [START_REF] Bates | Jumps and stochastic volatility: exchange rate processes implicit in Deutsch mark options[END_REF] and Stein and Stein [START_REF] Stein | Stock price distributions with stochastic volatility: an analytic approach[END_REF]. Moreover, there are also examples of local-stochastic volatility models (such as the famous SABR model [START_REF] Hagan | Arbitrage free sabr[END_REF]) in which the volatility coefficient σ S (Y t ) of the underlying asset price is more general and has the form σ S (S t , Y t ), that is it depends also on the current asset price. These models are, in general, not complete: the derivative securities are usually not replicable by trading in the underlying. However, this does not affect the practice since the Introduction market can be completed with well known procedures of market completion (for example by trading a finite number of vanilla options).

We point out that the research is still fervent in this area. For example, empirical studies have questioned the smoothness of the volatility dynamics. As a consequence, new models called rough volatility models have recently been introduced. They are non-Markovian models in which the volatility is driven by a Fractional Brownian motion, see the reference paper [START_REF] Gatheral | Volatility is rough[END_REF] and the comprehensive website [START_REF]The rough volatility network[END_REF], which gathers all the developments on this subject.

In this thesis we consider Markovian stochastic volatility models and we collect some results on the problem of pricing European and American options. It is divided into two strongly correlated parts. In the first one we study some theoretical properties of the American option prices in Heston-type models. In the second part, we deal with the problem of the numerical computation of the prices, describing and theoretically studying hybrid schemes for pricing European and American options in jump-diffusion stochastic volatility models. More precisely, the thesis is organized as follows:

• Part I: American option prices in Heston-type models -Chapter 1. Variational formulation of American option prices in Heston-type models;

-Chapter 2. American option price properties in Heston-type models.

• Part II: Hybrid schemes for pricing options in jump-diffusion stochastic volatility models -Chapter 3. Hybrid Monte Carlo and tree-finite differences algorithm for pricing options in the Bates-Hull-White model; -Chapter 4. Weak convergence of Markov chains and numerical schemes for jump diffusion processes.

The above chapters are extracted, sometimes verbatim, from the papers [START_REF] Lamberton | Variational formulation of American option prices in the Heston model[END_REF][START_REF] Lamberton | American option price properties in Heston-type models[END_REF][START_REF] Briani | Convergence rate od Markov chains and hybrid numerical schemes to jump-diffusions with application to the Bates model[END_REF][START_REF] Briani | On a hybrid method using trees and finite-difference for pricing options in complex models[END_REF] respectively. We now give a brief outline of the main results collected in this thesis.
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Part I: American option prices in Heston-type models

The model introduced by S. Heston in 1993 [START_REF] Heston | A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[END_REF] is one of the most widely used stochastic volatility models in the financial world and it was the starting point for several generalizations. In this model, the dynamics under the pricing measure of the asset price S and the volatility process Y are governed by the stochastic differential equation system    dS t = (r -δ)S t dt + √ Y t S t dB t , S 0 = s > 0,

dY t = κ(θ -Y t )dt + σ √ Y t dW t , Y 0 = y ≥ 0, (0.0.1)
where B and W denote two correlated Brownian motions with d B, W t = ρdt, ρ ∈ (-1, 1).

Here r ≥ 0 and δ ≥ 0 are the risk free rate of interest and the continuous dividend rate respectively. The dynamics of the volatility follows a square-root diffusion process, which was originally introduced by E. Feller in 1951 [START_REF] Feller | Two singular diffusion problems[END_REF] and then rediscovered by Cox, Ingersoll and Ross as an interest rate model in [START_REF] Cox | A theory of the term structure of interest rates[END_REF]. For this reason this process is known in the financial literature as the CIR process. The parameters κ ≥ 0 and θ > 0 are known respectively as the mean-reversion rate and the long run state, while the parameter σ > 0 is called the vol-vol (volatility of the volatility). One can observe that the volatility (Y t ) t tends to fluctuate around the value θ and that κ indicates the velocity of this fluctuation and determines its frequency. This is the mean reversion feature of the CIR process and justifies the names of the constants κ and θ.

It is well known (see, for example, [5,Section 1.2.4]) that under the so called Feller condition 2κθ ≥ σ 2 , the process Y with starting condition Y 0 = y > 0 remains always positive. On the other hand, if the Feller condition is not satisfied, as happens in many cases of practical importance (see e.g. the calibration results in [START_REF] Brigo | Interest Rate Models -Theory and Practice[END_REF][START_REF] Duffie | Transform analysis and asset pricing for affine jump-diffusions[END_REF]), Y reaches zero with probability one for any Y 0 = y ≥ 0.
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In this framework, the price at time t ∈ [0, T ] of an American option with payoff function ϕ and maturity T is given by P (t, S t , Y t ), where P (t, s, y) = sup τ ∈T t,T E e -r(τ -t) ϕ(S t,s,y τ ) ,

T t,T being the set of all the stopping times with values in [t, T ] and S t,s,y denoting the solution to (0.0.1) with starting condition S t = s, Y t = y.

If we consider, as usual, the log-price process X t = log S t , the 2-dimensional diffusion (X, Y ) has infinitesimal generator given by

L = y 2 ∂ 2 ∂x 2 + 2ρσ ∂ 2 ∂y∂x + σ 2 ∂ 2 ∂y 2 + r -δ - y 2 ∂ ∂x + κ(θ -y) ∂ ∂y
and defined on the set O = R × (0, ∞). Note that the differential operator L has unbounded coefficients and it is not uniformly elliptic: it degenerates on the boundary of O, that is, when the volatility vanishes. This degenerate property gives rise to some technical difficulties when dealing with the theoretical properties of the model, in particular when the problem of pricing American options is considered. In the first part of this thesis we address some of these issues.
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Once we have the existence and uniqueness of an analytical weak solution, in Section 1. [START_REF] Alfonsi | High order discretization schemes for the CIR process: Application to affine term structure and Heston models[END_REF] we identify it with the solution to the optimal stopping problem, that is the American option value function. In order to do this, we use suitable estimates on the joint distribution of the log-price process and the volatility process. Moreover, we rely on semi-group techniques and on the affine property of the model.

Chapter 2: American option price properties in Heston type models

In Chapter 2 we study some qualitative properties of an American option value function in the Heston model. We first prove in Section 2.3 that, if the payoff function is convex and satisfies some regularity assumptions, then the option value function is increasing with respect to the volatility variable. Then, in Section 2.4, we focus on the standard put option, that is we fix the payoff function ϕ(s) = (K -s) + , and we extend to the Heston model some results which are well known in the Black and Scholes world, mostly by using probabilistic techniques. In particular, in Section 2.4.1 we introduce the so called exercise boundary or critical price, that is the map

b(t, y) = inf{s > 0 | P (t, s, y) > (K -s) + }, (t, y) ∈ [0, T ) × [0, ∞),
and we study some features of this function such as continuity properties. Then, in Section 4.3.1 we prove that the American put value function is strictly convex with respect to the stock price in the continuation region, and we do it by using purely probabilistic arguments.

In Section 2.4.3 we extend to the stochastic volatility Heston model the early exercise premium formula, that is, we prove that P (0, S 0 , Y 0 ) = P e (0, S 0 , Y 0 ) -T 0 e -rs E[(δS s -rK)1 {Ss≤b(s,Ys)} ]ds,

where P e (0, S 0 , Y 0 ) is the price at time 0 of a European put with the same maturity T and strike price K of the original American put with price P . Finally, in Section 2.4.4 we prove a weak form of the smooth fit principle, a well known concept in optimal stopping theory.

Introduction particular, we consider the Heston model and some generalizations of it which have other random sources such as jumps and a stochastic interest rate (see [START_REF] Bates | Jumps and stochastic volatility: exchange rate processes implicit in Deutsch mark options[END_REF][START_REF] Hull | The pricing of options on assets with stochastic volatilities[END_REF]).

From a computational point of view, the most delicate point is the treatment of the CIR dynamics for the volatility process in the full parameter regime -it is well known that the standard techniques fail when the square root process is considered. Moreover, one has to be careful in choosing the approximation method according to the European or American option case. In fact, when dealing with European options, i.e. solutions to Partial (Integro) Differential Equation (hereafter P(I)DE) problems, numerical approaches involve tree methods [START_REF] Akyildirim | Approximating stochastic volatility by recombinant trees[END_REF][START_REF] Nieuwenhuis | A tree-based method to price American Options in the Heston Model[END_REF], Monte Carlo procedures [START_REF] Alfonsi | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF][START_REF] Alfonsi | High order discretization schemes for the CIR process: Application to affine term structure and Heston models[END_REF][START_REF] Altmayer | Discretising the Heston model: an analysis of the weak convergence rate[END_REF][START_REF] Andersen | Simple and efficient simulation of the Heston stochastic volatility model[END_REF][START_REF] Zheng | Weak convergence rate of a time-discrete scheme for the Heston stochastic volatility model[END_REF], finite-difference numerical schemes [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF][START_REF] Itkin | Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials[END_REF][START_REF] Toivanen | A Componentwise Splitting Method for Pricing American Options Under the Bates Model[END_REF] or quantization algorithms [START_REF] Pagès | Functional quantization for numerics with an application to option pricing[END_REF]. When American options are considered, that is, solutions to specific optimal stopping problems or P(I)DEs with obstacle, it is very useful to consider numerical methods which are able to easily handle dynamic programming principles, for example trees or finite-difference.

In this thesis we consider a backward "hybrid" algorithm which combines:

• finite difference schemes to handle the jump-diffusion price process;

• Markov chains (in particular, multiple jumps trees) to approximate the other random sources, such as the stochastic volatility and the stochastic interest rate.

Chapter 3: Hybrid Monte Carlo and tree-finite differences algorithm for pricing options in the Bates-Hull-White model

In Chapter 3 we focus on the Bates-Hull-White model, where the volatility Y is a CIR process and the underlying asset price process S contains a further noise from a jump as introduced by Merton [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF]. Moreover, the interest rate r is stochastic and evolves according to a generalized Ornstein-Uhlenbeck (hereafter OU) process. More precisely, under the pricing measure, we consider the following jump-diffusion model: Recall that the hybrid algorithm uses tree approximations and that, in their turn, tree methods rely on Markov chains. So, we first consider in Section 4.3 a d-dimensional diffusion process (Y t ) t∈[0,T ] which evolves according to the SDE

dS t S t - = (
dY t = µ Y (Y t )dt + σ Y (Y t )dW t .
Fix a natural number N ≥ 1, h = T /N and assume that (Y nh ) n=0,...,N is approximated by a Markov chain (Y h n ) n=0,...,N . It is well known that the weak convergence of Markov chains to diffusions relies on assumptions on the local moments of the approximating process up to order 3 or 4. We prove that, stressing these assumptions, we can study the rate of the weak convergence. This analysis is independent of the financial framework but, as an example, we apply our results to the multiple jumps tree approximation of the CIR process introduced in [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF] and used in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF][START_REF] Briani | On a hybrid method using trees and finite-difference for pricing options in complex models[END_REF]. Let us mention that our general convergence result (Theorem 4.3.1) may in principle be applied to more general trees constructed through the multiple jumps approach by Nelson and Ramaswamy [START_REF] Nelson | Simple binomial processes as diffusion approximations in financial models[END_REF], on which the tree in [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF] is based -to our knowledge, a theoretical study of the rate of convergence for such trees is missing in the literature. And it could also be used in other cases, e.g. the recent tree method for the Heston model developed in [START_REF] Akyildirim | Approximating stochastic volatility by recombinant trees[END_REF].

Then, in Section 4.4 we combine the Markov chain approach with other numerical techniques in order to handle the different components in jump-diffusion coupled models. In particular, we link (Y t ) t∈[0,T ] with a jump-diffusion process (X t ) t∈[0,T ] which evolves according to a stochastic differential whose coefficients only depend on the process. In mathematical terms, we consider the stochastic differential equation system
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Markov chain, so we cannot apply the convergence results obtained in Section 4.3. Therefore, the idea is to follow the hybrid nature of the procedure: we use classical numerical techniques, that is an analysis of the stability and of the consistency of the method, but in a sense that allows us to exploit the probabilistic properties of the Markov chain approximating the process Y . Again, we provide examples from the financial framework, applying our convergence results to the tree-finite difference algorithm in the Heston or Bates model. XX Chap.. 1 -Variational formulation of American option prices probabilistic representation of the solution, that is the identification with the price function, is far from trivial in the case of non regular payoffs.

It should be emphasized that a clear analytic characterization of the price function allows not only to formally justify the theoretical convergence of some classical pricing algorithms but also to investigate the regularity properties of the price function (see [START_REF] Jaillet | Variational inequalities and the pricing of American options[END_REF] for the case of the Black and Scholes models).

Concerning the existing literature, E. Ekstrom and J. Tysk in [START_REF] Ekstrom | The Black-Scholes equation in stochastic volatility models[END_REF] give a rigorous and complete analysis of these issues in the case of European options, proving that, under some regularity assumptions on the payoff functions, the price function is the unique classical solution of the associated PDE with a certain boundary behaviour for vanishing values of the volatility. However, the payoff functions they consider do not include the case of standard put and call options.

Recently, P. Daskalopoulos and P. Feehan in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF][START_REF] Daskalopoulos | C 1,1 regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF] studied the existence, the uniqueness, and some regularity properties of the solution of this kind of degenerate PDE and obstacle problems in the elliptic case, introducing suitable weighted Sobolev spaces which clarify the behaviour of the solution near the degenerate boundary (see also [START_REF] Canale | Analytic approach to solve a degenerate parabolic PDE for the Heston model[END_REF]). In another paper ( [START_REF] Feehan | Stochastic representation of solutions to degenerate elliptic and parabolic boundary value and obstacle problems with Dirichlet boundary conditions Trans[END_REF]) P. Feehan and C. Pop addressed the issue of the probabilistic representation of the solution, but we do not know if their assumptions on the solution of the parabolic obstacle problem are satisfied in the case of standard American options. Note that Feehan and Pop did prove regularity results in the elliptic case, see [START_REF] Feehan | Higher-order regularity for solutions to degenerate elliptic variational equations in mathematical finance[END_REF]. They also announce results for the parabolic case in [START_REF] Feehan | Stochastic representation of solutions to degenerate elliptic and parabolic boundary value and obstacle problems with Dirichlet boundary conditions Trans[END_REF].

The aim of this chapter is to give a precise analytical characterization of the American option price function in the Heston model for a large class of payoffs which includes the standard put and call options. In particular, we give a variational formulation of the American pricing problem using the weighted Sobolev spaces and the bilinear form introduced in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF].

The chapter is organized as follows. In Section 2, we introduce our notations and we state our main results. Then, in Section 3, we study the existence and uniqueness of the solution of the associated variational inequality, extending the results obtained in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF] in the elliptic case. The proof relies, as in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF], on the classical penalization technique introduced by Bensoussan and Lions [START_REF] Bensoussan | Applications of variational inequalities in stochastic control[END_REF] with some technical devices due to the degenerate nature of the problem. We also establish a Comparison Theorem. Finally, in section 4, we prove that Sec. 1.2 -Notations and main results the solution of the variational inequality with obstacle function ψ is actually the American option price function with payoff ψ, with conditions on ψ which are satisfied, for example, by the standard call and put options. In order to do this, we use the affine property of the underlying diffusion given by the log price process X and the volatility process Y . Thanks to this property, we first identify the analytic semigroup associated with the bilinear form with a correction term and the transition semigroup of the pair (X, Y ) with a killing term.

Then, we prove regularity results on the solution of the variational inequality and suitable estimates on the joint law of the process (X, Y ) and we deduce from them the analytical characterization of the solution of the optimal stopping problem, that is the American option price.

Notations and main results

The Heston model

We recall that in the Heston model the dynamics under the pricing measure of the asset price S and the volatility process Y are governed by the stochastic differential equation We exclude the degenerate case ρ = ±1, that is the case in which the same Brownian motion drives the dynamics of X and Y . Actually, it can be easily seen that, in this case, S t reduces to a function of the pair Y t , t 0 Y s ds and the resulting degenerate model cannot be treated with the techniques we develop in this chapter. Moreover, this particular situation is not very interesting from a financial point of view.

Moreover, we recall that r ≥ 0 and δ ≥ 0 are respectively the risk free rate of interest and the continuous dividend rate. The dynamics of Y follows a CIR process with mean reversion rate κ > 0, long run state θ > 0 and volatility of the volatility θ > 0. We stress that we do not require the Feller condition 2κθ ≥ σ 2 : the volatility process Y can hit 0 (see, for example, [5,Section 1.2.4]).

Chap.. 1 -Variational formulation of American option prices

We are interested in studying the price of an American option with payoff function ψ.

For technical reasons which will be clarified later on, hereafter we consider the process Note that, in this framework, we have to consider payoff functions ψ which depend on both the time and the space variables. For example, in the case of a standard put option (resp. a call option) with strike price K we have ψ(t, x) = (K -e x+ct ) + (resp. ψ(t, x) = (e x+ct -K) + ). So, the natural price at time t of an American option with a nice enough payoff (ψ(t, X t , Y t )) 0≤t≤T is given by P (t, X t , Y t ), with

X t = log S t -ct, with c = r -δ - ρκθ σ , (1.2 
P (t, x, y) = sup θ∈T t,T
E[e -r(θ-t) ψ(θ, X t,x,y θ , Y t,y θ )],

where T t,T is the set of all stopping times with values in [t, T ] and (X t,x,y s , Y t,y s ) t≤s≤T denotes the solution to (1.2.2) with the starting condition (X t , Y t ) = (x, y).

Our aim is to give an analytical characterization of the price function P . In this chapter we denote by L the infinitesimal generator of the two dimensional diffusion (X, Y ), given by L = y 2

∂ 2 ∂x 2 + 2ρσ ∂ 2 ∂y∂x + σ 2 ∂ 2 ∂y 2 + ρκθ σ - y 2 
∂ ∂x + κ(θ -y) ∂ ∂y ,
which is defined on the open set O := R × (0, ∞). Note that L has unbounded coefficients and is not uniformly elliptic: it degenerates on the boundary ∂O = R × {0}.

American options and variational inequalities

Heuristics

From the optimal stopping theory, we know that the discounted price process P (t, X t , Y t ) = e -rt P (t, X t , Y t ) is a supermartingale and that its finite variation part only decreases on the set P = ψ with respect to the time variable t. We want to have an analytical interpretation of these features on the function P (t, x, y). So, assume that P ∈ C This relation has to be satisfied dt -a.e. along the trajectories of (t, X t , Y t ). Moreover, we have the two trivial conditions P (T, x, y) = ψ(T, x, y) and P ≥ ψ.

The previous discussion is only heuristic, since the price function P is not regular enough to apply Itô's formula. However, it suggests the following strategy:

(i) Study the obstacle problem (

         ∂u ∂t + Lu ≤ 0, u ≥ ψ, in [0, T ] × O,
(ii) Show that the discounted price function P is equal to the solution of (1.2.3) where ψ is replaced by ψ(t, x, y) = e -rt ψ(t, x, y).

We will follow this program providing a variational formulation of system (1.2.3).

Weighted Sobolev spaces and bilinear form associated with the Heston operator

We consider the measure first introduced in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]: m γ,µ (dx, dy) = y β-1 e -γ|x|-µy dxdy, with γ > 0, µ > 0 and β := 2κθ σ 2 . It is worth noting that in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF] the authors fix µ = 2κ σ 2 in the definition of the measure m γ,µ . This specification will not be necessary in this chapter, but it is useful to mention it Sec. 1.2 -Notations and main results Moreover, for every T > 0, p ∈ [1, +∞) and i = 0, 1, 2, we set We also define L ∞ ([0, T ]; H i ) with the usual essential sup norm.

Note that we have the inclusion

L p ([0, T ]; H i (O, m γ,µ )) = u : [0, T ] × O → R Borel measurable : u(t, •, •) ∈ H i (O, m γ,µ )
We can now introduce the following bilinear form.

Definition 1.2.2. For any u, v ∈ H 1 (O, m γ,µ ) we define the bilinear form a γ,µ (u, v) = 1 2 O y u x v x (x, y) + ρσu x v y (x, y) + ρσu y v x (x, y) + σ 2 u y v y (x, y) dm γ,µ + O y (j γ,µ (x)u x (x, y) + k γ,µ (x)u y (x, y)) v(x, y)dm γ,µ , where

j γ,µ (x) = 1 2 (1 -γsgn(x) -µρσ) , k γ,µ (x) = κ - γρσ 2 sgn(x) - µσ 2 2 .
(1.2.4)

Chap.. 1 -Variational formulation of American option prices

We will prove that a γ,µ is the bilinear form associated with the operator L, in the sense that for every u ∈ H 2 (O, m γ,µ ) and for every v ∈ H 1 (O, m γ,µ ), we have (Lu, v) H = -a γ,µ (u, v).

In order to simplify the notation, for the rest of this chapter we will write m and a(•, •) instead of m γ,µ and a γ,µ (•, •) every time the dependence on γ and µ does not play a role in the analysis and computations.

Variational formulation of the American price

Fix T > 0. We consider an assumption on the payoff function ψ which will be crucial in the discussion of the penalized problem.

Assumption H 1 . We say that a function ψ satisfies Assumption H 1 if ψ ∈ C([0, T ]; H), √ 1 + yψ ∈ L 2 ([0, T ]; V ), ψ(T ) ∈ V and there exists Ψ ∈ L 2 ([0, T ]; V ) such that ∂ψ ∂t ≤ Ψ.

We will also need a domination condition on ψ by a function Φ which satisfies the following assumption.

Assumption H 2 . We say that a function Φ ∈ L 2 ([0, T ]; H 2 (O, m)) satisfies Assumption H 2 if (1 + y) 3 2 Φ ∈ L 2 ([0, T ]; H), ∂Φ ∂t + LΦ ≤ 0 and √ 1 + yΦ ∈ L ∞ ([0, T ]; L 2 (O, m γ,µ )) for some 0 < µ < µ.
The domination condition is needed to deal with the lack of coercivity of the bilinear form associated with our problem. Similar conditions are also used in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF].

The first step in the variational formulation of the problem is to introduce the associated variational inequality and to prove the following existence and uniqueness result.

Theorem 1.2.3. Assume that ψ satisfies Assumption H 1 together with 0 ≤ ψ ≤ Φ, where Φ satisfies Assumption H 2 . Then, there exists a unique function

u such that u ∈ C([0, T ]; H)∩ L 2 ([0, T ]; V ), ∂u ∂t ∈ L 2 ([0, T ]; H) and                -∂u ∂t , v -u H + a(u, v -u) ≥ 0, a.e. in [0, T ] v ∈ L 2 ([0, T ]; V ), v ≥ ψ, u ≥ ψ a.e. in [0, T ] × R × (0, ∞), u(T ) = ψ(T ), 0 ≤ u ≤ Φ.
(1.2.5)

Sec. 1.3 -Existence and uniqueness of solutions to the variational inequality

The proof is presented in Section 3 and essentially relies on the penalization technique introduced by Bensoussan and Lions (see also [START_REF] Friedman | Variational principles and free-boundary problems[END_REF]) with some technical devices due to the degenerate nature of the problem. We extend in the parabolic framework the results obtained in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF] for the elliptic case.

The second step is to identify the unique solution of the variational inequality (1.2.5) as the solution of the optimal stopping problem, that is the (discounted) American option price. In order to do this, we consider the following assumption on the payoff function. for some a, b ∈ R.

Assumption H * . We say that a function ψ : [0, T ] × R × [0, ∞) → R satisfies Assumption H * if ψ is continuous and there exist constants C > 0 and L ∈ 0, 2κ σ 2 such that, for all (t, x, y) ∈ [0, T ] × R × [0, ∞), 0 ≤ ψ(t,
Note that the payoff functions of a standard call and put option with strike price K ) .

(that is, respectively, ψ = ψ(t, x) = (K -e x+ct ) + and ψ = ψ(t, x) = (e x+ct -K) + ) satisfy

Existence and uniqueness of solutions to the variational inequality 1.3.1 Integration by parts and energy estimates

The following result justifies the definition of the bilinear form a.
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Proposition 1.3.1. If u ∈ H 2 (O, m) and v ∈ H 1 (O, m), we have (Lu, v) H = -a(u, v). (1.3.8)
This result is proved with the same arguments of [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]Lemma 2.23] or [START_REF] Daskalopoulos | C 1,1 regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]Lemma A.3] but we prefer to repeat here the proof since it clarifies why we have considered the process X t = log S t -ct instead of the standard log-price process log S t .

Before proving Proposition 1.3.1, we show some preliminary results. The first one is about the standard regularization of a function by convolution.

Lemma 1.3.2. Let ϕ : R × R → R + be a C ∞ function with compact support in [-1, +1] × [-1
, 0] and such that ϕ(x, y)dxdy = 1. For j ∈ N we set ϕ j (x, y) = j 2 ϕ(jx, jy). Then, for every function u locally square-integrable on R × (0, ∞) and for every compact set K, we have

lim j→∞ K (ϕ j * u -u) 2 (x, y)dxdy = 0.
Proof. We first observe that, by using Jensen's inequality with respect to the measure ϕ j (ξ, ζ)dξdζ, we get

K (ϕ j * u) 2 (x, y)dxdy ≤ K dxdy ϕ j (ξ, ζ)u 2 (x -ξ, y -ζ)dξdζ = ϕ j (ξ, ζ)dξdζ 1 K (x + ξ, y + ζ)u 2 (x, y)dxdy.
We deduce, for j large enough,

K (ϕ j * u) 2 (x, y)dxdy ≤ K u 2 (x, y)dxdy,
where K = {(x, y) ∈ O|d ∞ (x, y), K) ≤ 1 j }. Let be a positive constant and v be a continuous function such that K (u(x, y) -v(x, y)) 2 dxdy ≤ . By using the well known inequality (x

1 + • • • + x l ) 2 ≤ l(x 2 1 + • • • + x 2 l ), we have K (ϕ j * u -u) 2 (x, y)dxdy ≤ 3 K (ϕ j * u -ϕ j * v) 2 (x, y)dxdy + 3 K (ϕ j * v -v) 2 (x, y)dxdy + 3 K (v -u) 2 (x, y)dxdy ≤ 3 K (v -u) 2 (x, y)dxdy + K (ϕ j * v -v) 2 (x, y)dxdy + K (v -u) 2 (x, y)dxdy ≤ 6 + 3 K (ϕ j * v -v) 2 (x, y)dxdy.
Since v is continuous, we have |ϕ j * v| ≤ sup x,y∈ K |v(x, y)| and lim j→∞ ϕ j * v(x, y) = v(x, y) on K. Therefore, by Lebesgue Theorem, we can pass to the limit in the above inequality and we get lim sup j→∞ K (ϕ j * u -u) 2 (x, y)dxdy ≤ 6 , which completes the proof.

Then, the following two propositions justify the integration by parts formulas with respect to the measure m. 

O |u x (x, y)v(x, y)| + |u(x, y)v x (x, y)| + |u(x, y)v(x, y)| dm < ∞.
Then, we have

O u x (x, y)v(x, y)dm = - O u(x, y) (v x (x, y) -γsgn(x)v) dm. (1.3.9) 
Proof. First we assume that v has compact support in R × (0, ∞). For any j ∈ N we consider the C ∞ functions u j = ϕ j * u and v j = ϕ j * v, with ϕ j as in Lemma 1.3.2. Note that supp v j ⊂ supp v + supp ϕ j and so, for j large enough, supp v j ⊂ R × (0, ∞). For any > 0, integrating by parts, we have

∞ -∞ (u j ) x (x, y)v j (x, y)e -γ √ x 2 + dx = - ∞ -∞ u j (v j ) x (x, y) -γ x √ x 2 + v j (x, y) e -γ √ x 2 + dx, and, letting → 0, ∞ -∞ (u j ) x (x, y)v j (x, y)e -γ|x| dx = - ∞ -∞ u j (v j ) x (x, y) -γsgn(x)v j (x, y) e -γ|x| dx.
Multiplying by y β-1 e -µy and integrating in y we obtain

O (u j ) x (x, y)v j (x, y)dm = - O u j (x, y) (v j ) x (x, y) -γsgn(x)v j (x, y) dm.
Recall that, for j large enough, v j has compact support in R × (0, ∞) and m is bounded on this compact. By using Lemma 1.3.2, letting j → ∞ we get

O u x (x, y)v(x, y)dm = - O u v x (x, y) -γsgn(x)v(x, y dm.
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Now let us consider the general case of a function v without compact support. We introduce a C ∞ -function α with values in [0, 1], α(x, y) = 0 for all (x, y) /

∈ [-2, +2] × [-2, +2], α(x, y) = 1 for all (x, y) ∈ [-1, +1] × [-1, +1]
and a C ∞ -function χ with values in [0, 1], χ(y) = 0 for all y ∈ [0, 1 2 ], χ(y) = 1 for all y ∈ [+1, ∞). We set

A j (x, y) = α x j , y j χ(jy), j ∈ N.
For every j ∈ N, A j has compact support in O and we have

O u x (x, y)A j (x, y)v(x, y)dm = - O u(x, y) v x (x, y) -γsgn(x)v(x, y) A j (x, y)dm - O u(x, y)v(x, y)(A j ) x (x, y)dm.
The function A j is bounded by α ∞ χ ∞ and lim j→+∞ A j (x, y) = 1 for every (x, y) ∈ O.

Moreover (A j ) x (x, y) = 1 j α x x j , y j χ(jy), so that O u(x, y)v(x, y)(A j ) x (x, y)dm ≤ C j O 1 {|x|≥j} |u(x, y)v(x, y)|dm,
where C = α x ∞ χ ∞ . Therefore, we obtain (1.3.9) letting j → ∞. 

O yu y (x, y)v(x, y)A j (x, y)dm = - O yu(x, y)v y (x, y)A j (x, y)dm - O (β -µy)u(x, y)v(x, y)A j (x, y)dm - O yu(x, y)v(x, y)(A j ) y (x, y)dm,
where A j (x, y) = α( x j , y j )χ(jy), as in the proof of Proposition 1.3.3 but choosing χ such that, moreover, yχ (y) ∞ < ∞. We have (A j ) y (x, y) = 1 j α y ( x j , y j )χ(jy) + jα( x j , y j )χ (jy). Note that

O yu(x, y)v(x, y)jα x j , y j χ (jy)dm ≤ O 1 y≤ 1 j |u(x, y)v(x, y)| α ∞ sup ζ>0 |ζχ (ζ)|dm.
The last expression goes to 0 as j → ∞ since O |u(x, y)v(x, y)|dm < ∞. The assertion follows by passing to the limit j → ∞.

We can now prove Proposition 1.3.1.

Proof of Proposition 1. 

+ O ρκθ σ - y 2 ∂u ∂x + κ(θ -y) ∂u ∂y vdm = -a(u, v).
Remark 1.3.5. By a closer look at the proof of Proposition 1.3.1 it is clear that the choice of c in (1.2.1) allows to avoid terms of the type (u x + u y )vdm in the associated bilinear form a. This trick will be crucial in order to obtain suitable energy estimates.
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Recall the well-known inequality

bc = ( ζb) c √ ζ ≤ ζ 2 b 2 + 1 2ζ c 2 , b, c ∈ R, ζ > 0. (1.3.11)
Hereafter we will often apply (1.3.11) in the proofs even if it is not explicitly recalled each time.

We have the following energy estimates.

Proposition 1.3.6. For every u, v ∈ V , the bilinear form a(•, •) satisfies

|a(u, v)| ≤ C 1 u V v V , (1.3.12) a(u, u) ≥ C 2 u 2 V -C 3 (1 + y) 1 2 u 2 H , (1.3.13) 
where

C 1 = δ 0 + K 1 , C 2 = δ 1 2 , C 3 = δ 1 2 + K 2 1 2δ 1 , with δ 0 = sup s 2 1 +t 2 1 >0, s 2 2 +t 2 2 >0 |s 1 s 2 + ρσs 1 t 2 + ρσs 2 t 1 + σ 2 t 1 t 2 | 2 (s 2 1 + t 2 1 )(s 2 2 + t 2 2 ) , (1.3.14) 
δ 1 = inf s 2 +t 2 >0 s 2 + 2ρσst + σ 2 t 2 2(s 2 + t 2 ) , (1.3.15) 
and

K 1 = sup x∈R j 2 γ,µ (x) + k 2 γ,µ (x). (1.3.16)
It is easy to see that the constants δ 0 , δ 1 and K 1 defined in (1.3.14) and (1.3.16) are positive and finite (recall that the functions j γ,µ = j γ,µ (x) and k γ,µ = κ γ,µ (x) defined in (1.2.4) are bounded).

These energy estimates were already proved in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]Lemma 2.40] with a very similar statement. Here we repeat the proof for the sake of completeness, since we will refer to it later on.

Proof of Proposition 1.3.6. In order to prove (1.3.13), we note that

1 2 O y u x v x + ρσu x v y + ρσu y v x + σ 2 u y v y dm ≥ δ 1 O y|∇u| 2 dm.
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a(u, u) ≥ δ 1 O y|∇u| 2 dm -K 1 O y|∇u||u|dm ≥ δ 1 O y|∇u| 2 dm - K 1 ζ 2 O y|∇u| 2 dm - K 1 2ζ O (1 + y)u 2 dm = δ 1 - K 1 ζ 2 O y|∇u| 2 + (1 + y)u 2 dm -δ 1 - K 1 ζ 2 + K 1 2ζ O (1 + y)u 2 dm.
The assertion then follows by choosing ζ = δ 1 /K 1 . (1.3.12) can be proved in a similar way.

Proof of Theorem 1.2.3

Among the standard assumptions required in [START_REF] Bensoussan | Applications of variational inequalities in stochastic control[END_REF] for the penalization procedure, there are the coercivity and the boundedness of the coefficients. In the Heston-type models these assumptions are no longer satisfied and this leads to some technical difficulties. In order to overcome them, we introduce some auxiliary operators.

From now on, we set Note that ā is symmetric. As in the proof of Proposition (1.3.6) we have, for every u, v ∈ V ,

a(u, v) = ā(u, v) + ã(u, v),
|ā(u, v)| ≤ δ 0 O y|∇u||∇v|dm, ā(u, u) ≥ δ 1 O y|∇u| 2 dm, and 
|ã(u, v)| ≤ K 1 O y|∇u||v|dm,
Chap.. 1 -Variational formulation of American option prices with δ 0 , δ 1 and K 1 defined in Proposition 1.3.6. Moreover, for λ ≥ 0 and M > 0 we consider the bilinear forms

a λ (u, v) = a(u, v) + λ O (1 + y)uvdm, āλ (u, v) = ā(u, v) + λ O (1 + y)uvdm, ã(M) (u, v) = O (y ∧ M ) ∂u ∂x j γ,µ + ∂u ∂y k γ,µ vdm and a (M ) λ (u, v) = āλ (u, v) + ã(M) (u, v).
The operator a λ was introduced in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF] to deal with the lack of coercivity of the bilinear form a, while the introduction of the truncated operator a (M ) λ

with M > 0 will be useful in order to overcome the technical difficulty related to the unboundedness of the coefficients. 

|a λ (u, v)| ≤ C u V v V , u, v ∈ V, (1.3.17) 
a λ (u, u) ≥ δ 1 2 u 2 V , u ∈ V, (1.3.18)
and |a

(M ) λ (u, v)| ≤ C u V v V , u, v ∈ V, (1.3.19) a (M ) λ (u, u) ≥ δ 1 2 u 2 V , u ∈ V. (1.3.20)
where

C = δ 0 + K 1 + λ.
Proof. The proof for the bilinear form a λ follows as in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]Lemma 3.2]. We give the details for a (M ) λ

to check that the constants do not depend on M . Note that, for every u, v ∈ V ,

|ã (M ) (u, v)| ≤ K 1 O y|∇u||v|dm,
so that by straightforward computations we get

|a (M ) λ (u, v)| ≤ (δ 0 + λ + K 1 ) u V v V .

Sec. 1.3 -Existence and uniqueness of solutions to the variational inequality

On the other hand, for every ζ > 0,

a (M ) λ (u, u) ≥ δ 1 O y|∇u| 2 dm + λ O (1 + y)u 2 dm -K 1 O y|∇u||u|dm ≥ δ 1 - K 1 ζ 2 O y|∇u| 2 dm + λ - K 1 2ζ O (1 + y)u 2 dm. By choosing ζ = δ 1 /K 1 , we get a (M ) λ (u, u) ≥ δ 1 2 O y|∇u| 2 dm + λ - K 2 1 2δ 1 O (1 + y)u 2 dm ≥ δ 1 2 u 2 V , for every λ ≥ δ 1 2 + K 2 1 2δ 1 .
From now on in the rest of this chapter we assume λ

≥ δ 1 2 + K 2 1 2δ 1 as in Lemma 1.3.7. Moreover, we will denote by b = sup u,v∈V,u,v =0 |b(u,v)| u V v V the norm of a bilinear form b : V × V → R. Remark 1.3.8. We stress that Lemma 1.3.7 gives us sup M >0 a (M ) λ ≤ C, (1.3.21) 
where C = δ 0 + K 1 + λ. This will be crucial in the penalization technique we are going to describe in Section 1.3.2. Roughly speaking, in order to prove the existence of a solution of the penalized coercive problem we will introduce in Theorem 1.3.10, we proceed as follows.

First, we replace the bilinear form a λ with the operator a

(M )
λ , which has bounded coefficients, and we solve the associated penalized truncated coercive problem (see Proposition 1.3.11). Then, thanks to (1.3.21), we can deduce estimates on the solution which are uniform in M (see Lemma 1.3.12) and which will allow us to pass to the limit as M goes to infinity and to find a solution of the original penalized coercive problem.

Finally, we define

L λ := L -λ(1 + y)
the differential operator associated with the bilinear form a λ , that is

(L λ u, v) H = -a λ (u, v), u ∈ H 2 (O, m), v ∈ V.
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Penalized problem

For any fixed ε > 0 we define the penalizing operator

ζ ε (t, u) = - 1 ε (ψ(t) -u) + = 1 ε ζ(t, u), t ∈ [0, T ], u ∈ V. (1.3.22)
Since for every fixed t ∈ [0, T ] the function x → -(ψ(t) -x) + is nondecreasing, we have the following well known monotonicity result (see [START_REF] Bensoussan | Applications of variational inequalities in stochastic control[END_REF]).

Lemma 1.3.9. For any fixed t ∈ [0, T ] the penalizing operator

(1.3.22) is monotone, in the sense that (ζ ε (t, u) -ζ ε (t, v), u -v) H ≥ 0, u, v ∈ V.
We now introduce the intermediate penalized coercive problem with a source term g. We consider the following assumption:

Assumption H 0 .
We say that a function g satisfies Assumption

H 0 if √ 1 + yg ∈ L 2 ([0, T ]; H).
Theorem 1.3.10. Assume that ψ satisfies Assumption H 1 and g satisfies Assumption H 0 . Then, for every fixed ε > 0, there exists a unique function

u ε,λ such that u ε,λ ∈ L 2 ([0, T ]; V ), ∂u ε,λ ∂t ∈ L 2 ([0, T ]; H) and, for all v ∈ L 2 ([0, T ]; V ),    - ∂u ε,λ ∂t , v H + a λ (u ε,λ , v) + (ζ ε (t, u ε,λ ), v) H = (g, v) H , a.e. in [0, T ],
u ε,λ (T ) = ψ(T ).

(1.3.23)

Moreover, the following estimates hold:

u ε,λ L ∞ ([0,T ],V ) ≤ K, (1.3.24) ∂u ε,λ ∂t L 2 ([0,T ];H) ≤ K, (1.3.25) 1 √ ε (ψ -u ε,λ ) + L ∞ ([0,T ],H) ≤ K, (1.3.26) 
where

K = C Ψ L 2 ([0,T ];V ) + √ 1 + yg L 2 ([0,T ];H) + √ 1 + yψ L 2 ([0,T ];V ) + ψ(T ) 2 V , with C > 0 independent of ε, and Ψ is given in Assumption H 1 .
The proof of uniqueness of the solution of the penalized coercive problem follows a standard monotonicity argument as in [START_REF] Bensoussan | Applications of variational inequalities in stochastic control[END_REF], so we omit the proof.

The proof of existence in Theorem 1.3.10 is quite long and technical, so we split it into two propositions. We first consider the truncated penalized problem, which requires less stringent conditions on ψ and g.

Proposition 1.3.11. Let ψ ∈ C([0, T ]; H) ∩ L 2 ([0, T ]; V ) and g ∈ L 2 ([0, T ]; H). Moreover, assume that ψ(T ) ∈ H 2 (O, m), (1 + y)ψ(T ) ∈ H, ∂ψ ∂t ∈ L 2 ([0, T ]; V ) and ∂g ∂t ∈ L 2 ([0, T ]; H). Then, there exists a unique function u ε,λ,M such that u ε,λ,M ∈ L 2 ([0, T ]; V ), ∂u ε,λ,M ∂t ∈ L 2 ([0, T ]; V ) and for all v ∈ L 2 ([0, T ]; V )    - ∂u ε,λ,M ∂t , v H + a (M ) λ (u ε,λ,M , v) + (ζ ε (t, u ε,λ,M ), v) H = (g, v) H , a.e. in [0, T ), u ε,λ,M (T ) = ψ(T ). (1.3.27)
Proof. (i) Finite dimensional problem We use the classical Galerkin method of approximation, which consists in introducing a nondecreasing sequence (V j ) j of subspaces of V such that dimV j < ∞ and, for every v ∈ V, there exists a sequence (v j ) j∈N such that v j ∈ V j for any j ∈ N and v -v j V → 0 as j → ∞. Moreover, we assume that ψ(T ) ∈ V j , for all j ∈ N. Let P j be the projection of V onto V j and ψ j (t) = P j ψ(t). We have ψ j (t) → ψ(t) strongly in V and ψ j (T ) = ψ(T ) for any j ∈ N.

The finite dimensional problem is, therefore, to find

u j : [0, T ] → V j such that    - ∂u j ∂t (t), v H + a (M ) λ (u j (t), v) -1 ε ((ψ j (t) -u j (t)) + , v) H = (g(t), v) H , v ∈ V j , u j (T ) = ψ(T ). (1.3.28) 
This problem can be interpreted as an ordinary differential equation in

V j (dim V j < ∞), that is    - ∂u j ∂t (t) + A (M ) λ,j u j (t) -1 ε Q j ((ψ j (t) -u j (t)) + ) = Q j g(t) u j (T ) = ψ(T ),
where

A (M ) λ,j : V j → V j is a finite dimensional linear operator and Q j is the projection of H onto V j . Note that the function u → Q j ((ψ j (t) -u) + ) is Lipschitz continuous, since Q j ((ψ j (t) -u) + ) -Q j ((ψ j (t) -v) + ) V j ≤ C j Q j ((ψ j (t) -u) + ) -Q j ((ψ j (t) -v) + ) H ≤ C j u -v H .
On the other hand, the function (t, u) → Q j ((ψ j (t) -u(t) + ) is continuous with values in V j . In fact, we can easily prove that it is weakly continuous, that is, for v ∈ V j , the Chap.. 1 -Variational formulation of American option prices

application (t, u) → (Q j ((ψ j (t) -u) + ), v) is continuous. In fact Q j ((ψ j (t) -u) + ) -Q j ((ψ j (s) -w) + ), v ≤ Q j ((ψ j (t) -u) + ) -Q j ((ψ j (s) -u) + ), v + Q j ((ψ j (s) -u) + ) -Q j ((ψ j (s) -w) + ), v . (1.3.29)
The second term in the right hand side of (1.3.29) goes to 0 by using the Lipschitz continuity proved above. On the other hand, it is easy to prove that for any u ∈

V, v ∈ H 2 (O, m), one has |(u, v) V | ≤ C u H v H 2 (O(m))
. Since v ∈ V j we can assume without loss of generality that v ∈ H 2 (O, m), so that for the first term in the right hand side of (1.3.29), we easily get

Q j ((ψ j (t) -u) + ) -Q j ((ψ j (s) -u) + ), v ≤ ψ j (t) -ψ j (s) H v H 2 (O,m) ,
which goes to 0. Finally, it is easy to see that the term Q j g belongs to L 2 ([0, T ]; V j ).

Therefore, we can use the Cauchy-Lipschitz Theorem and we deduce the existence and the uniqueness of a solution u j of (1.3.28), continuous from [0, T ] into V j , a.e. differentiable and with integrable derivative.

(ii) Estimates on the finite dimensional problem First, we take v = u j (t) -ψ j (t) in (1.3.28). We get

- ∂u j ∂t (t), u j (t) -ψ j (t) H + a (M ) λ (u j (t), u j (t) -ψ j (t)) - 1 ε ((ψ j (t) -u j (t)) + , u j (t) -ψ j (t)) H = (g(t), u j (t) -ψ j (t)) H ,
which can be rewritten as

- 1 2 d dt u j (t) -ψ j (t) 2 H - ∂ψ j ∂t (t), u j (t) -ψ j (t) H + a (M ) λ (u j (t) -ψ j (t), u j (t) -ψ j (t)) H + 1 ε ((ψ j (t) -u j (t)) + , ψ j (t) -u j (t)) H + a (M ) λ (ψ j (t), u j (t) -ψ j (t)) = (g(t), u j (t) -ψ j (t)) H .
We integrate between t and T and we use coercivity and u j (T ) = ψ j (T ) to obtain

1 2 u j (t) -ψ j (t) 2 H + δ 1 2 T t u j (s) -ψ j (s) 2 V ds + 1 ε T t (ψ j (s) -u j (s)) + 2 H ds ≤ 1 2ζ T t ∂ψ j (s) ∂t 2 H ds + ζ 2 T t u j (s) -ψ j (s) 2 H ds + 1 2ζ T t g(s) 2 H ds + ζ 2 T t u j (s) -ψ j (s) 2 H ds + a (M ) λ ζ 2 T t u j (s) -ψ j (s) 2 V ds + a (M ) λ 2ζ T t ψ j (s) 2 V ds,
for any ζ > 0. Recall that ψ j = P j ψ, and so ψ j (t) 2 V ≤ ψ(t) 2 V . In the same way

∂ψ j (t) ∂t 2 H ≤ ∂ψ j (t) ∂t 2 V ≤ ∂ψ(t) ∂t 2 V . Choosing ζ = δ 1 4+2 a (M ) λ
after simple calculations we deduce that there exists C > 0 independent of M , ε and j such that

1 4 u j (t) 2 H + δ 1 8 T t u j (s) 2 V ds + 1 ε T t (ψ j (s) -u j (s)) + 2 H ds ≤ C ∂ψ ∂t 2 L 2 ([t,T ];V ) + g 2 L 2 ([t,T ];H) + ψ 2 L 2 ([t,T ];V ) + ψ(T ) 2 H .
(1.3.30)

We now go back to (1.3.28) and we take v = ∂u j ∂t (t) so we get

- ∂u j ∂t (t) 2 H + āλ u j (t), ∂u j ∂t (t) + ã(M) u j (t), ∂u j ∂t (t) - 1 ε (ψ j (t) -u j (t)) + , ∂u j ∂t (t) H = g(t), ∂u j ∂t (t) H . Note that - 1 ε (ψ j (t) -u j (t)) + , ∂u j ∂t (t) H = 1 ε (ψ j -u j ) + , ∂(ψ j -u j ) ∂t (t) H - 1 ε (ψ j (t) -u j (t)) + , ∂ψ j ∂t (t) H = 1 2ε d dt (ψ j -u j ) + (t) 2 H - 1 ε (ψ j (t) -u j (t)) + , ∂ψ j ∂t (t) H .
Therefore, using the symmetry of āλ , we have

- ∂u j ∂t (t) 2 H + 1 2 d dt āλ (u j (t), u j (t)) + ã(M) u j (t), ∂u j ∂t (t) + 1 2ε ∂ ∂t (ψ j (t) -u j (t)) + 2 H - 1 ε (ψ j (t) -u j (t)) + , ∂ψ j ∂t (t) H = g(t), ∂u j ∂t (t) H .
Integrating between t and T , we obtain

T t ∂u j ∂t (s) 2 H ds + 1 2 āλ (u j (t), u j (t)) + 1 2ε (ψ j (t) -u j (t)) + 2 H = T t ã(M) u j (s), ∂u j ∂s (s) ds + 1 2 āλ (ψ j (T ), ψ j (T )) - T t 1 ε (ψ j (s) -u j (s) + , ∂ψ j ∂s (s) H ds - T t g(s), ∂u j ∂s (s) 
H ds.
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Recall that āλ (u j (t),

u j (t)) ≥ δ 1 2 u j (t) 2 V , |ã (M ) (u, v)| ≤ K 1 O y ∧ M |∇u||v|dm and āλ (ψ j (T ), ψ j (T )) = āλ (ψ(T ), ψ(T )) ≤ āλ ψ(T ) 2
V , so that, for every ζ > 0,

T t ∂u j ∂s (s) 2 H ds + δ 1 4 u j (t) 2 V + 1 2ε (ψ j (t) -u j (t)) + 2 H ≤ K 1 T t ds O y ∧ M |∇u j (s, .)| ∂u j ∂t (s, .) dm + āλ 2 ψ(T ) 2 V + 1 ε T t (ψ j (s) -u j (s)) + H ∂ψ j ∂s (s) H ds + T t g(s) H ∂u j ∂s (s) H ds ≤ K 1 2ζ T t u j (s) 2 V ds + K 1 M 2 ζ T t ∂u j ∂s (s) 2 H ds + āλ 2 ψ(T ) 2 V + ζ 2ε T t (ψ j (s) -u j (s)) + 2 H ds + 1 2ζε T t ∂ψ j ∂t (s) 2 H ds + 1 2ζ T t g(s) 2 H ds + ζ 2 T t ∂u j ∂s (s) 2 H ds.
From (1.3.30), we already know that

T t u j (s) 2 V ds + 1 ε T t (ψ j (s) -u j (s)) + 2 H ds ≤ C ∂ψ ∂t 2 L 2 ([t,T ];V ) + g 2 L 2 ([t,T ];H) + ψ 2 L 2 ([t,T ];V ) + ψ(T ) 2 H ,
then we can finally deduce

T t ∂u j ∂t (s) 2 H ds + u j (t) 2 V + 1 2ε (ψ j (t) -u j (t)) + 2 H ≤ C ε,M ∂ψ ∂t 2 L 2 ([t,T ];V ) + g 2 L 2 ([t,T ];H) + ψ 2 L 2 ([t,T ];V ) + ψ(T ) 2 V , (1.3.31) 
where C ε,M is a constant which depends on ε and M but not on j.

We will also need a further estimation. If we denote ūj = ∂u j ∂t and we differentiate the equation (1.3.28) with respect to t for a fixed v independent of t, we obtain that ūj satisfies

- ∂ ūj ∂t (t), v H +a (M ) λ (ū j (t), v)- 1 ε ∂ψ j ∂t (t) -ūj (t) 1 {ψ j (t)≥u j (t)} , v H = ∂g ∂t (t), v H , (1.3.32) 
for any v ∈ V j . As regards the initial condition, from (1.3.28) computed in t = T , for every v ∈ V j we have

∂u j (T ) ∂t , v H = a (M ) λ (ψ(T ), v) -(g(T ), v) H . = -(Lψ(T ), v) H + λ ((1 + y)ψ(T ), v) H + ((y ∧ M -y)(j γ,µ u x + k γ,µ u y ), v) H + (g(T ), v) H . Choosing v = ∂u j (T )
∂t , we deduce that

∂u j (T ) ∂t H ≤ C ( Lψ(T ) H + (1 + y)ψ(T ) H + (y -M ) + ∇ψ(T ) H + g(T ) H ) ≤ C ψ(T ) H 2 (O,m) + (1 + y)ψ(T ) H + g(T ) H ,
that is,

∂u j (T ) ∂t H ≤ C ψ(T ) H 2 (O,m) + (1 + y)ψ(T ) H + g(T ) H .
We can take v = ūj (t) in (1.3.32) and we obtain Integrating between t and T , with the usual calculations, we obtain, in particular, that

- ∂ ūj ∂t (t), ūj (t) H + a (M ) λ (ū j (t), ūj (t)) - 1 ε ∂ψ j ∂t (t) -ūj (t)
ūj (t) 2 H + δ 1 2 T t ūj (s) 2 V ds ≤ C ε ψ(T ) 2 H 2 (O,m) + (1 + y)ψ(T ) 2 H + g(T ) 2 H + ∂ψ ∂t 2 L 2 ([t,T ];H) + ∂g ∂t 2 L 2 ([t,T ];H) , (1.3.33)
where C ε is a constant which depends on ε, but not on j.

Chap.. 1 -Variational formulation of American option prices (iii) Passage to the limit Let ε and M be fixed. By passing to a subsequence, from (1.3.31) we can assume that ∂u j ∂t weakly converges to a function u ε,λ,M in L 2 ([0, T ]; H). We deduce that, for any fixed t ∈ [0, T ], u j (t) weakly converges in H to

u ε,λ,M (t) = ψ(T ) - T t u ε,λ,M (s)ds.
Indeed, u j (t) is bounded in V , so the convergence is weakly in V . Passing to the limit in (1.3.33) we deduce that

∂u ε,λ,M ∂t ∈ L 2 ([0, T ]; V )
. Moreover, from (1.3.31), we have that (ψ j -u j (t)) + weakly converges in H to a certain function χ(t) ∈ H. Now, for any v ∈ V we know that there exists a sequence (v j ) j∈N such that v j ∈ V j for all j ∈ N and v -v j V → 0. We have

- ∂u j ∂t (t), v j H + a (M ) λ (u j (t), v j ) H - 1 ε ((ψ j (t) -u j (t)) + , v j ) H = (g(t), v j ) H so, passing to the limit as j → ∞, - ∂u ε,λ,M ∂t (t), v H + a λ (u ε,λ,M (t), v) H - 1 ε (χ(t), v) H = (g(t), v) H .
We only have to note that χ(t) = (ψ(t) -u ε,λ,M (t)) + . In fact, ψ j (t) → ψ(t) in V and, up to a subsequence, 1 U u j (t) → 1 U u ε,λ,M (t) in L 2 (U, m) for every open U relatively compact in O. Therefore, there exists a subsequence which converges a.e. and this allows to conclude the proof.

We now want to get rid of the truncated operator, that is to pass to the limit for M → ∞.

In order to do this we need some estimates on the function u ε,λ,M which are uniform in M .

Lemma 1.3.12. Assume that, in addition to the assumptions of Proposition 1.3.11,

√ 1 + yψ ∈ L 2 ([0, T ]; V ), ∂ψ ∂t ≤ Ψ with Ψ ∈ L 2 ([0, T ]; V )
and g satisfies Assumption H 0 . Let u ε,λ,M be the solution of (1.3.27). Then,

T t ∂u ε,λ,M ∂s (s) 2 H ds + u ε,λ,M (t) 2 V + 1 ε (ψ(t) -u ε,λ,M (t)) + 2 H ≤ C Ψ L 2 ([0,T ];V ) + √ 1 + yg L 2 ([0,T ];H) + √ 1 + yψ 2 L 2 ([0,T ];V ) + ψ(T ) 2 V , (1.3 
.34) where C is a positive constant independent of M and ε.

Proof. To simplify the notation we denote u ε,λ,M by u and u ε,λ,M -ψ = u -ψ by w. For n ≥ 0, define ϕ n (x, y) = 1 + y ∧ n. Since ϕ n and its derivatives are bounded, if v ∈ V , we have vϕ n ∈ V . Choosing v = (u -ψ)ϕ n = wϕ n in (1.3.27) 

≥ δ 1 O y |∇w(t)| 2 ϕ n dm + λ O (1 + y)w 2 (t)ϕ n dm -K 1 O y |∇w(t)| |w(t)|ϕ n dm -K 2 O y |∇w(t)| |w(t)|1 {y≤n} dm,
where

K 2 = √ ρ 2 σ 2 +σ 4 2
. Note that, if n = 0, the last term vanishes, and that, for all n > 0,

O y |∇w(t)| |w(t)|1 {y≤n} dm ≤ w(t) 2 V .
Therefore, for all ζ > 0,

a (M ) λ (w(t), w(t)ϕ n ) ≥ δ 1 O y |∇w(t)| 2 ϕ n dm + λ O (1 + y)w 2 (t)ϕ n dm -K 1 O y ζ 2 |∇w(t)| 2 + 1 2ζ |w(t)| 2 ϕ n dm -K 2 w(t) 2 V ≥ δ 1 - K 1 ζ 2 O y |∇w(t)| 2 ϕ n dm + λ - K 1 2ζ O (1 + y)w 2 (t)ϕ n dm -K 2 w(t) 2 V ≥ δ 1 2 O y |∇w(t)| 2 + (1 + y)w 2 (t) ϕ n dm -K 2 w(t) 2 V ,
where, for the last inequality, we have chosen ζ = δ 1 /K 1 and used the inequality λ ≥ δ 1 2 + K 2 1 2δ 1 . Again, in the case n = 0 the last term on the righthand side can be omitted.
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Hence, we have, with the notation v 2

V,n = O y |∇v| 2 + (1 + y)v 2 ϕ n dm, 1 2 d dt O w 2 (t)ϕ n dm + δ 1 2 w(t) 2 V,n + 1 ε O (-w(t)) 2 + ϕ n dm ≤ g(t) + ∂ψ ∂t (t), w(t)ϕ n H -a (M ) λ (ψ(t), w(t)ϕ n ) + K 2 w(t) 2 V .
In the case n = 0, the inequality reduces to

- 1 2 
d dt O w 2 (t)dm+ δ 1 2 w(t) 2 V + 1 ε O (ψ-u) 2 + dm ≤ g(t) + ∂ψ ∂t (t), w(t) H -a (M ) λ (ψ(t), w(t)).
Now, integrate from t to T and use u(T ) = ψ(T ) to derive

1 2 O w(t) 2 ϕ n dm + δ 1 2 T t ds w(s) 2 V,n + 1 ε T t ds O (-w(s)) 2 + ϕ n dm ≤ T t g(s) + ∂ψ ∂t (s), w(s)ϕ n H ds + T t a (M ) λ (ψ(s), w(s)ϕ n )ds + K 2 T t w(s) 2 V ds, (1.3.35) 
and, in the case n = 0,

1 2 w(t) 2 H + δ 1 2 T t w(s) 2 V ds + 1 ε T t ds O (-w(s)) 2 + dm ≤ T t g(s) + ∂ψ ∂t (s), w(s) 
H ds + T t a (M )
λ (ψ(s), w(s)) ds.

( .

Moreover, it is easy to check that, for all

v 1 , v 2 ∈ V , |a (M ) λ (v 1 , v 2 ϕ n )| ≤ K 3 v 1 V,n v 2 V,n , with K 3 = δ 0 + K 1 + K 2 + λ, so that, for any ζ 2 > 0, T t |a (M ) λ (ψ(s), w(s)ϕ n )|ds ≤ K 3 T t ds ψ(s) V,n w(s) V,n ≤ K 3 ζ 2 2 T t ds w(s) 2 V,n + K 3 2ζ 2 T t ds ψ(s) 2 V,n .
Sec. 

+ 2K 2 3 δ 1 T t ψ(s) 2 V,n ds + K 2 w 2 L 2 ([t,T ];H) , ≤ 4 δ 1 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 4K 2 3 δ 1 1 + yψ 2 L 2 ([t,T ];V ) + K 2 w 2 L 2 ([t,T ];H) , (1.3.37) 
where the last inequality follows from the estimate v 2 V,n ≤ 2

√ 1 + yv 2
V , and, in the case n = 0,

1 2 w(t) 2 H + δ 1 4 T t w(s) 2 V ds + 1 ε T t ds O (-w(s)) 2 + dm ≤ 4 δ 1 g 2 L 2 ([t,T ];H) + Ψ 2 L 2 ([t,T ];H) + 2K 2 3 δ 1 ψ 2 L 2 ([t,T ];V ) . (1.3.38)
From (1.3.38) recalling that w = u -ψ we deduce 

T t u(s) 2 V ds ≤ T t 2( w(s) 2 V + ψ(s) 2 V )ds ≤ 32 δ 2 1 g 2 L 2 ([t,T ];H) + Ψ 2 L 2 ([t,T ];H) + 16K 2 3 δ 2 1 + 2 ψ 2 L 2 ([t,T ];V ) . (1 
+ 4K 2 3 δ 1 1 + 2K 2 δ 1 1 + yψ 2 L 2 ([t,T ];V ) .
In particular,

T t ds O y|∇u(s)| 2 ϕ n dm ≤ T t u(s) 2 V,n ds ≤ 2 T t w(s) 2 V,n ds + 2 T t ds ψ(s) 2 V,n ds ≤ 8 δ 1 4 δ 1 + 16K 2 δ 2 1 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 32K 2 3 δ 2 1 1 + 2K 2 δ 1 + 4 1 + yψ 2 L 2 ([t,T ];V )
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T t |y|∇u(s)| 2 H ds ≤ K 4 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 1 + yψ 2 L 2 ([t,T ];V ) , (1.3.40) 
where

K 4 = 8 δ 1 4 δ 1 + 16K 2 δ 2 1 ∨ 32K 2 3 δ 2 1 1 + 2K 2 δ 1 + 4 .
We are now in a position to prove (1.3.34) 

d dt (ψ(t) -u(t)) + 2 H ≤ 1 2 (K 1 y|∇u(t)| H + g(t) H + Ψ(t) H ) 2 + a (M ) λ u(t) 2 V Ψ(t) 2 V + g(t) H Ψ(t) H .
Integrating between t and T , we get,

1 2 ∂u ∂s 2 L 2 ([t,T ];H) + 1 2 āλ (u(t), u(t)) + 1 2ε (ψ(t) -u(t)) + 2 H ≤ 1 2 āλ (ψ(T ), ψ(T )) + 2 g 2 L 2 ([t,T ];H) + 2 Ψ 2 L 2 ([t,T ];H) + 3K 2 1 2 y|∇u| 2 L 2 ([t,T ];H) + a (M ) λ 2 u L 2 ([t,T ];V ) + a (M ) λ 2 Ψ L 2 ([t,T ];V ) , so, recalling that āλ (u(t), u(t) ≥ δ 1 O y|∇u(t)| 2 dm + λ O (1 + y)u 2 dm ≥ (δ 1 ∧ λ) u(t) 2 V , 1 2 
∂u ∂s 2 L 2 ([t,T ];H) + δ 1 ∧ λ 2 u(t) 2 V + 1 2ε (ψ(t) -u(t)) + 2 H ≤ āλ 2 ψ(T ) 2 V + 2 g 2 L 2 ([t,T ];H) + 2 Ψ 2 L 2 ([t,T ];H) + 3K 2 1 2 y|∇u| 2 L 2 ([t,T ];H) + a (M ) λ 2 u 2 L 2 ([t,T ];V ) + a (M ) λ 2 Ψ 2 L 2 ([t,T ];V ) ≤ āλ 2 ψ(T ) 2 V + 2 g 2 L 2 ([t,T ];H) + 2 Ψ 2 L 2 ([t,T ];H) + 3K 2 1 2 K 4 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 1 + yψ 2 L 2 ([t,T ];V ) + a (M ) λ 2 32 δ 2 1 g 2 L 2 ([t,T ];H) + Ψ 2 L 2 ([t,T ];H) + 16K 2 3 δ 2 1 + 2 ψ 2 L 2 ([t,T ];V ) + a (M ) λ 2 Ψ 2 L 2 ([t,T ];V ) ,
where the last inequality follows from (1.3.39) and (1.3.40). Rearranging the terms, we deduce that there exists a constant C > 0 independent of M and ε such that

1 2 ∂u ∂s 2 L 2 ([t,T ];H) + δ 1 ∧ λ 4 u(t) 2 V + 1 2ε (ψ(t) -u(t)) + 2 H ≤ C 1 + yg 2 L 2 ([t,T ];H) + Ψ 2 L 2 ([t,T ];V ) + 1 + yψ 2 L 2 ([t,T ];V ) + ψ(T ) 2 V ,
which concludes the proof.

Chap.. 1 -Variational formulation of American option prices Proof of Theorem 1.3.10: existence. Assume for a first moment that we have the further assumptions ψ(T ) ∈ H 2 (O, m), (1 + y)ψ(T ) ∈ H, ∂ψ ∂t ∈ L 2 ([0, T ]; V ) and ∂g ∂t ∈ L 2 ([0, T ]; H). Thanks to (1.3.34) we can repeat the same arguments as in the proof of Proposition 1.3.11 in order to pass to the limit in j, but this time as M → ∞. Therefore, we deduce the existence of a function u ε,λ ∈ L 2 ([0, T ]; V ) with

∂u ε,λ ∂t ∈ L 2 ([0, T ]; H) and such that - ∂u ε,λ ∂t (t), v H + a λ (u ε,λ (t), v) H - 1 ε ((ψ(t) -u ε,λ (t)) + , v) H = (g(t), v) H .
The We have now to weaken the assumptions on g and ψ. We can do this by a regularization procedure. In fact, let us assume that ψ satisfies Assumption H 1 (so, in particular, ∂ψ ∂t ≤ Ψ for a certain Ψ ∈ L 2 ([0, T ]; V ) and g satisfies Assumption H 0 . Then, by standard regularization techniques (see for example [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]Corollary A.12]), we can find sequences of functions (g n ) n , (ψ n ) n and (Ψ n ) n of class C ∞ with compact support such that, for any n ∈ N, n ∈ N, | ∂ψn ∂t | ≤ Ψ n and all the regularity assumptions required in the first part of the proof are satisfied. Moreover, it is easy to see that 

√ 1 + yg n - √ 1 + yg L 2 ([0,T ];H) → 0, √ 1 + yψ n - √ 1 + yψ L 2 ([0,T ];V ) → 0, Ψ n -Ψ L 2 ([0,T ];V ) → 0, ψ n (T ) -ψ(T ) V → 0 as n → ∞.
2 H ds + u n ε,λ,M (t) 2 V + 1 ε (ψ n (t) -u n ε,λ,M (t)) + 2 H ≤ C √ 1 + yg n L 2 ([0,T ];H) + √ 1 + yψ n 2 L 2 ([0,T ];V ) + Ψ n 2 L 2 ([0,T ];V ) + ψ n (T ) 2 V .
(1.3.42) Then, we can take the limit for n → ∞ in (1.3.42) and the assertion follows as in the first part of the proof. Moreover, we have the following Comparison principle for the coercive penalized problem. Proposition 1.3.13. (i) Assume that ψ i satisfies Assumption H 1 for i = 1, 2 and g satisfies Assumption H 0 . Let u i ε,λ be the unique solution of (1.3.23) with obstacle function ψ i and source function g. If

ψ 1 ≤ ψ 2 , then u 1 ε,λ ≤ u 2 ε,λ .
(ii) Assume that ψ satisfies Assumption H 1 and g i satisfy Assumption H 0 for i = 1, 2. Let u i ε,λ be the unique solution of (1.3.23) with obstacle function ψ and source function

g i . If g 1 ≤ g 2 , then u 1 ε,λ ≤ u 2 ε,λ .
(iii) Assume that ψ i satisfies Assumption H 1 for i = 1, 2 and g satisfies Assumption H 0 . Let u i ε,λ be the unique solution of (1.3.23) with obstacle function ψ i and source function

g. If ψ 1 -ψ 2 ∈ L ∞ , then u 1 ε,λ -u 2 ε,λ ∈ L ∞ and u 1 ε,λ -u 2 ε,λ ∞ ≤ ψ 1 -ψ 2 ∞ .
Proposition 1.3.13 can be proved with standard techniques introduced in [19, Chapter 3] so we omit the proof.

Coercive variational inequality

Proposition 1.3.14. Assume that ψ satisfies Assumption H 1 and g satisfies Assumption

H 0 . Moreover, assume that 0 ≤ ψ ≤ Φ with Φ ∈ L 2 ([0, T ]; H 2 (O, m)) such that ∂Φ ∂t + LΦ ≤ 0 and 0 ≤ g ≤ -∂Φ ∂t -L λ Φ.
Then, there exists a unique function u λ such that

u λ ∈ L 2 ([0, T ]; V ), ∂u λ ∂t ∈ L 2 ([0, T ]; H) and                -∂u λ ∂t , v -u λ H + a λ (u λ , v -u λ ) ≥ (g, v -u λ ) H , a.e. in [0, T ], v ∈ L 2 ([0, T ]; V ), v ≥ ψ, u λ (T ) = ψ(T ), u λ ≥ ψ a.e. in [0, T ] × R × (0, ∞). (1.3.43) Moreover, 0 ≤ u λ ≤ Φ.
Proof. The uniqueness of the solution of (1.3.43) follows by a standard monotonicity argument introduced in [19, Chapter 3] (see [START_REF] Touzi | American options exercise boundary when the volatility changes randomly[END_REF]). As regards the existence of a solution, we follow the lines of the proof of [START_REF] Bensoussan | Applications of variational inequalities in stochastic control[END_REF]Theorem 2.1] but we repeat here the details since we use a compactness argument which is not present in the classical theory.

For each fixed ε > 0 we have the estimates (1.3.24) and (1.3.25), so, for every t ∈ [0, T ], we can extract a subsequence u ε,λ such that u ε,λ (t)

u λ (t) in V as ε → 0 and u ε (t) u λ (t) in H for some function u λ ∈ V .
Note that u = 0 is the unique solution of (1.3.23) when ψ = g = 0, while u = Φ is the unique solution of (1.3.23) when ψ = Φ and g = -∂Φ ∂t -L λ Φ = -∂Φ ∂t -LΦ + λ(1 + y)Φ. Therefore, Proposition 1.3.13 implies that 0 ≤ u ε,λ ≤ Φ. Recall that u ε,λ (t) → u λ (t) in L 2 (U, m) for every relatively compact open U ⊂ O. This, together with the fact that dm is a finite measure, allows to conclude that we have strong convergence of u ε,λ to u λ in H. In Chap.. 1 -Variational formulation of American option prices fact, if δ > 0 and

O δ := (-1 δ , 1 δ ) × (δ, 1 δ ), T 0 ds O |u ε,λ (s) -u λ (s)| 2 dm ≤ T 0 ds O δ |u ε,λ (s) -u λ (s)| 2 dm + T 0 ds O c δ |u ε,λ (s) -u λ (s)| 2 dm ≤ T 0 ds O δ |u ε,λ (s) -u λ (s)| 2 dm + T 0 ds O c δ 4Φ 2 (s)dm
and it is enough to let δ goes to 0.

From (1.3.26) we also have that (ψ(t) -u ε,λ (t)) + → 0 strongly in H as ε → 0 . On the other hand (ψ(t) -u ε,λ (t)) + χ(t) weakly in H and χ = (ψ -u λ ) + since there exists a subsequence of u ε,λ (t) which converges pointwise to u λ (t). Therefore, (ψ(t) -u λ (t)) + = 0, which means u λ (t) ≥ ψ(t).

Then we consider the penalized coercive equation in (1.3.23) 

replacing v by v -u ε,λ (t), with v ≥ ψ(t). Since ζ ε (t, v) = 0 and (ζ ε (t, v) -ζ ε (t, u ε,λ (t)), v -u ε,λ (t)) H ≥ 0 we easily deduce that - ∂u ε,λ ∂t (t), v -u ε,λ (t) H + a λ (u ε,λ (t), v -u ε,λ (t)) ≥ (g(t), v -u ε,λ (t)) H
so that, letting ε goes to 0, we have

- ∂u λ ∂t (t), v -u λ (t) H + a λ (u λ (t), v) ≥ (g(t), v -u λ (t)) H + lim inf ε→0 a λ (u ε,λ (t), u ε,λ (t)) ≥ (g(t), v -u λ (t)) H + a λ (u λ (t), u λ (t)).
Moreover, since 0 ≤ u ε,λ ≤ Φ for every ε > 0 and u λ = lim ε→0 u ε,λ , we have 0 ≤ u λ ≤ Φ and the assertion follows.

The following Comparison Principle is a direct consequence of Proposition 1.3.13,.

Proposition 1.3.15. (i) For i = 1, 2, assume that ψ i satisfies Assumption H 1 , g satisfies Assumption H 0 and 0

≤ ψ i ≤ Φ with Φ ∈ L 2 ([0, T ]; H 2 (O, m)) such that ∂Φ ∂t + LΦ ≤ 0 and 0 ≤ g ≤ -∂Φ ∂t -L λ Φ.
Let u i λ be the unique solution of (1.3.43) with obstacle function ψ i and source function g. If

ψ 1 ≤ ψ 2 , then u 1 λ ≤ u 2 λ .
(ii) For i = 1, 2, assume that ψ satisfies Assumption H 1 , g i satisfy Assumption H 0 and 

0 ≤ ψ ≤ Φ with Φ ∈ L 2 ([0, T ]; H 2 (O, m)) such that ∂Φ ∂t + LΦ ≤ 0 and 0 ≤ g i ≤ -∂Φ ∂t -L λ Φ. Let u i λ be
. If ψ 1 -ψ 2 ∈ L ∞ , then u 1 λ -u 2 λ ∈ L ∞ and u 1 λ -u 2 λ ∞ ≤ ψ 1 -ψ 2 ∞ .

Non-coercive variational inequality

We can finally prove Theorem 1. From the energy estimate (1.3.13), we know that

a(u(t), u(t)) ≥ C 1 u(t) 2 V -C 2 (1 + y) 1 2 u(t) 2 H , so that 1 2 d dt w(t) 2 H + C 2 (1 + y) 1 2 w(t) 2 H ≥ 0.
By integrating from t to T , since w(T ) = 0, we have

w(t) 2 H ≤ C 2 T t (1 + y) 1 2 w(s) 2 H ds ≤ C 2 T t ds O 1 {y≤λ} (1 + y)w 2 (s)dm + T t ds O 1 {y>λ} (1 + y)w 2 (s)dm ≤ C T t ds O (1 + λ)w 2 (s)y β-1 e -γ|x| e -µy dxdy + C + T t ds O 1 {y>λ} (1 + y)w 2 (s)y β-1 e -γ|x| e -(µ-µ )y e -µ y dxdy ≤ C T t ds O dxdy(1 + λ)w 2 (s)y β-1 e -γ|x| e -µy + C e -(µ-µ )λ T t ds O dxdy(1 + y)Φ 2 (s)y β-1 e -γ|x| e -µ y ,
where µ < µ and λ > 0. Since C 2 = O dxdy(1 + y)Φ 2 (s)y β-1 e -γ|x| e -µ y < ∞, we have

w(t) 2 H ≤ C(1 + λ) T t w(s) 2 H ds + C 2 (T -t)e -(µ-µ )λ
, so, by using the Gronwall Lemma,

w(t) 2 H ≤ C 2 T e -(µ-µ )λ+C(T -t)(1+λ) .
Sending λ → ∞, we deduce that w(t) = 0 in [T, t] for t such that T -t < µ-µ C . Then, we iterate the same argument: we integrate between t and t with t -t < µ-µ C and we have w(t) = 0 in [T, t ] and so on. We deduce that w(t) = 0 for all t ∈ [0, T ] so the assertion follows.

Proof of existence in Theorem 1.2.3. Given u 0 = Φ, we can construct a sequence (u n ) n ⊂ V such that

u n ≥ ψ a.e. in [0, T ] × O, n ≥ 1, (1.3.44) - ∂u n ∂t , v -u n H + a(u n , v -u n ) + λ((1 + y)u n , v -u n ) H ≥ λ((1 + y)u n-1 , v -u n ) H , v ∈ V, v ≥ ψ, a.e. on [0, T ] × O, n ≥ 1, (1.3.45) 
u n (T ) = ψ(T ), in O, (1.3.46) Φ ≥ u 1 ≥ u 2 ≥ • • • ≥ u n-1 ≥ u n ≥ • • • ≥ 0, a.e. on [0, T ] × O. (1.3.47)
In fact, if we have 0 ≤ u n-1 ≤ Φ for all n ∈ N, then the assumptions of Proposition 1.3.14 are satisfied with

g n = λ(1 + y)u n-1 .
Indeed, since (1+y) 

g n = λ(1 + y)u n-1 ≤ λ(1 + y)u n-2 = g n-1 so that u n ≤ u n-1 . Now, recall that u n L ∞ ([0,T ],V ) ≤ K, ∂u n ∂t L 2 ([0,T ];H) ≤ K, where K = C Ψ L 2 ([0,T ];V ) + √ 1 + yg n L 2 ([0,T ];H) + √ 1 + yψ L 2 ([0,T ];V ) + ψ(T ) V . Note that the constant K is independent of n since |g n | = |λ(1 + y)u n-1 , | ≤ λ(1 + y)Φ,
for every n ∈ N. Therefore, by passing to a subsequence, we can assume that there exists a function u such that u ∈ L 2 ([0, T ]; V ), ∂u ∂t ∈ L 2 ([0, T ]; H) and for every t ∈ [0, T ], u n (t) u (t) in H and u n (t) u(t) in V . Indeed, again thanks to the fact that 0 ≤ u n ≤ Φ, we can deduce that u n (t) → u(t) in H. Therefore we can pass to the limit in

- ∂u n ∂t , u n -v H + a(u n , v -u n ) + λ((1 + y)u n , v -u n ) H ≥ λ((1 + y)u n-1 , v -u n ) H
and the assertion follows.

Remark 1.3.16. Keeping in mind our purpose of identifying the solution of the variational inequality (1.2.5) with the American option price we have considered the case without source term (g = 0) in the variational inequality (1.2.5). However, under the same assumptions of Theorem 1.2.3, we can prove in the same way the existence and the uniqueness of a solution of

               -∂u ∂t , v -u H + a(u, v -u) ≥ (g, v -u) H , a.e. in [0, T ] v ∈ L 2 ([0, T ]; V ), v ≥ ψ, u ≥ ψ a.e. in [0, T ] × R × (0, ∞), u(T ) = ψ(T ), 0 ≤ u ≤ Φ,
where g satisfies Assumption H 0 and 0 ≤ g ≤ -∂Φ ∂t -LΦ.

We conclude stating the following Comparison Principle, whose proof is a direct consequence of Proposition 1.3.15 and the proof of Proposition 1.2.3.

Proposition 1.3.17. For i = 1, 2, assume that ψ i satisfies Assumption H 1 and 0 ≤ ψ i ≤ Φ with Φ satisfying Assumption H 2 . Let u i λ be the unique solution of (1.3.43) with obstacle function ψ i . Then:

(i) If ψ 1 ≤ ψ 2 , then u 1 λ ≤ u 2 λ . (ii) If ψ 1 -ψ 2 ∈ L ∞ , then u 1 λ -u 2 λ ∈ L ∞ and u 1 λ -u 2 λ ∞ ≤ ψ 1 -ψ 2 ∞ .
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Connection with the optimal stopping problem

Once we have the existence and the uniqueness of a solution u of the variational inequality (1.2.3), our aim is to prove that it matches the solution of the optimal stopping problem, that is

u(t, x, y) = u * (t, x, y), on [0, T ] × Ō,
where u * is defined by

u * (t, x, y) = sup τ ∈T t,T E ψ(τ, X t,x,y τ , Y t,x,y τ ) ,
T t,T being the set of the stopping times with values in [t, T ]. Since the function u is not regular enough to apply Itô's Lemma, we use another strategy in order to prove the above identification. So, we first show, by using the affine character of the underlying diffusion, that the semigroup associated with the bilinear form a λ coincides with the transition semigroup of the two dimensional diffusion (X, Y ) with a killing term. Then, we prove suitable estimates on the joint law of (X, Y ) and L p -regularity results on the solution of the variational inequality and we deduce from them the probabilistic interpretation.

Semigroup associated with the bilinear form

We introduce now the semigroup associated with the coercive bilinear form a λ . With a natural notation, we define the following spaces

L 2 loc (R + ; H) = f : R + → H : ∀t ≥ 0 t 0 f (s) 2 H ds < ∞ , L 2 loc (R + ; V ) = f : R + → V : ∀t ≥ 0 t 0 f (s) 2 V ds < ∞ .
First of all, we state the following result:

Proposition 1.4.1. For every ψ ∈ V , f ∈ L 2 loc (R + ; H) with √ yf ∈ L 2 loc (R + ; H), there exists a unique function u ∈ L 2 loc (R + ; V ) such that ∂u ∂t ∈ L 2 loc (R + ; H), u(0) = ψ and ∂u ∂t , v H + a λ (u, v) = (f, v) H , v ∈ V. (1.4.48)
Moreover we have, for every t ≥ 0, 

u(t) 2 H + δ 1 2 t 0 u(s) 2 V ds ≤ ψ 2 H + 2 δ 1 t 0 f (s)
→ H such that √ 1 + yf ∈ L 2 loc (R + , H). Then, the solution of    ∂u ∂t , v H + a λ (u, v) = (f, v) H , v ∈ V, u(0) = 0, is given by u(t) = t 0 P λ s f (t -s)ds = t 0 P λ t-s f (s)ds.
Proof. Note that V is dense in H and recall the estimate (1.4.49), so it is enough to prove the assertion for f = 1 (t 1 ,t 2 ] ψ, with 0 ≤ t 1 < t 2 and ψ ∈ V . If we set u(t) = t 0 P λ t-s f (s)ds, we have

u(t) = 1 {t≥t 1 } t∧t 2 t 1 P λ t-s ψds =      t 2 t 1 P λ t-s ψds = t-t 1 t-t 2 P λ s ψds if t ≥ t 2 t t 1 P λ t-s ψds = t-t 1 0 P λ s ψds if t ∈ [t 1 , t 2 )
.

Therefore, for every v ∈ V , we have

(u t , v) H + a λ (u, v) = 0 if t ≤ t 1 and, if t ≥ t 1 , ∂u ∂t , v H + a λ (u(t), v) =    P λ t-t 1 ψ -P λ t-t 2 ψ, v H + a λ t-t 1 t-t 2 P λ s ψds, v if t ≥ t 2 P λ t-t 1 ψ, v H + a λ t-t 1 0 P λ s ψds, v if t ∈ [t 1 , t 2 )
.

The assertion follows from ( P

λ t ψ, v) H + t 0 a λ ( Ps ψ, v)ds = (ψ, v) H . Remark 1.4.3. It is not difficult to prove that P λ t : L p (O, m) → L p (O, m
) is a contraction for every p ≥ 2, and it is an analytic semigroup. This is not useful to our purposes so we omit the proof.

Transition semigroup

We define E x 0 ,y 0 ( ) = E( |X 0 = x 0 , Y 0 = y 0 ). Fix λ > 0. For every measurable positive function f defined on R × [0, +∞), we define

P λ t f (x 0 , y 0 ) = E x 0 ,y 0 e -λ t 0 (1+Ys)ds f (X t , Y t ) .
The operator P λ t is the transition semigroup of the two dimensional diffusion (X, Y ) with the killing term e -λ t 0 (1+Ys)ds . Set E y 0 ( ) = E( |Y 0 = y 0 ). We first prove some useful results about the Laplace transform of the pair (Y t , t 0 Y s ds). These results rely on the affine structure of the model and have already appeared in slightly different forms in the literature (see, for example, [5, Section 4.2.1]). We include a proof for convenience. Proposition 1.4.4. Let z and w be two complex numbers with nonpositive real parts. The equation

ψ (t) = σ 2 2 ψ 2 (t) -κψ(t) + w (1.4.50)
has a unique solution ψ z,w defined on [0, +∞), such that ψ z,w (0) = z. Moreover, for every t ≥ 0, E y 0 e zYt+w t 0 Ysds = e y 0 ψz,w(t)+θκφz,w(t) , with φ z,w (t) = t 0 ψ z,w (s)ds.

Proof. Let ψ be the solution of (1.4.50). We define ψ 1 (resp. w 1 ) and ψ 2 (resp. w 2 ) the real and the imaginary part of ψ (resp. w). We have

ψ 1 (t) = σ 2 2 ψ 2 1 (t) -ψ 2 2 (t) -κψ 1 (t) + w 1 , ψ 2 (t) = σ 2 ψ 1 (t)ψ 2 (t) -κψ 2 (t) + w 2 .
From the first equation we deduce that

ψ 1 (t) ≤ σ 2 2 ψ 1 (t) -2κ σ 2 ψ 1 (t)+w 1 and, since w 1 ≤ 0, the function t → ψ 1 (t)e -σ 2 2 t 0 (ψ 1 (s)-2κ σ 2 )ds is nonincreasing. Therefore ψ 1 (t) ≤ 0 if ψ 1 (0) ≤ 0.
Multiplying the first equation by ψ 1 (t) and the second one by ψ 2 (t) and adding we get

1 2 d dt |ψ(t)| 2 = σ 2 2 ψ 1 (t) -κ |ψ(t)| 2 + w 1 ψ 1 (t) + w 2 ψ 2 (t) ≤ σ 2 2 ψ 1 (t) -κ |ψ(t)| 2 + |w||ψ(t)| ≤ σ 2 2 ψ 1 (t) -κ |ψ(t)| 2 + |ψ(t)| 2 + |w| 2 4 .
We deduce that |ψ(t)| cannot explode in finite time and, therefore, ψ z,w actually exists on [0, +∞). Now, let us define the function F z,w (t, y) = e yψz,w(t)+θκφz,w(t) . F z,w is C 1,2 on [0, +∞) × R and it satisfies by construction the following equation

∂F z,w ∂t = σ 2 2 y ∂ 2 F z,w ∂y 2 + κ(θ -y) ∂F z,w ∂y + wyF z,w .
Therefore, for every T > 0, the process (M t ) 0≤t≤T defined by

M t = e w t 0 Ysds F z,w (T -t, Y t ) (1.4.51)
is a local martingale. On the other hand, note that

|M t | = e w t 0 Ysds e Ytψz,w(T -t)+θκφz,w(T -t) ≤ 1
since w, ψ z,w (t) and φ z,w (t) = t 0 ψ z,w (s)ds all have nonpositive real parts. Therefore the process (M t ) t is a true martingale indeed. We deduce that F z,w (T, y 0 ) = E y 0 e w T 0 Ysds e zY T and the assertion follows.

We also have the following result which specifies the behaviour of the Laplace transform of (Y t , t 0 Y s ds) when evaluated in two real numbers, not necessarily nonpositive. Proposition 1.4.5. Let λ 1 and λ 2 be two real numbers such that

σ 2 2 λ 2 1 -κλ 1 + λ 2 ≤ 0.
Then, the equation

ψ (t) = σ 2 2 ψ 2 (t) -κψ(t) + λ 2 (1.4.52)
has a unique solution ψ λ 1 ,λ 2 defined on [0, +∞) such that ψ λ 1 ,λ 2 (0) = λ 1 . Moreover, for every t ≥ 0, we have

E y 0 e λ 1 Yt+λ 2 t 0 Ysds ≤ e y 0 ψ λ 1 ,λ 2 (t)+θκφ λ 1 ,λ 2 (t) , with φ λ 1 ,λ 2 (t) = t 0 ψ λ 1 ,λ 2 (s)ds.
Proof. Let ψ be the solution of (1.4.52) with ψ(0) = λ 1 . We have

ψ (t) = (σ 2 ψ(t) -κ)ψ (t).
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Therefore, the function t → ψ (t)e -t 0 (σ 2 ψ(s)-κ)ds is a constant, hence ψ (t) has constant sign. Moreover, the assumption on λ 1 and λ 2 ensures that ψ (0) ≤ 0. We deduce that ψ (t) ≤ 0 and ψ(t) remains between the solutions of the equation

σ 2 2 λ 2 -κλ + λ 2 = 0.
This proves that the solution is defined on the whole interval [0, +∞). Now the assertion follows as in the proof of Proposition 1.4.4: just note that the process (M t ) t defined as in (1.4.51) is no more uniformly bounded, so we cannot directly deduce that it is a martingale. However, it remains a positive local martingale, hence a supermartingale.

Remark 1.4.6. Let us now consider two real numbers λ 1 and λ 2 such that

σ 2 2 λ 2 1 -κλ 1 + λ 2 < 0.
From the proof of Proposition 1.4.5, by using the optional sampling theorem we have

sup τ ∈T 0,T E y e λ 2 τ 0 Ysds e ψ λ 1 ,λ 2 (T -τ )Yτ +θκφ λ 1 ,λ 2 (T -τ ) ≤ e yψ λ 1 ,λ 2 (T )+θκφ λ 1 ,λ 2 (T ) .
Consider now > 0 and let λ 1 = (1 + )λ 1 and λ 2 = (1 + )λ 2 . For small enough, we have

σ 2 2 (λ 1 ) 2 -κλ 1 + λ 2 < 0. Therefore sup τ ∈T 0,T E y e λ 2 τ 0 Ysds e ψ λ 1 ,λ 2 (T -τ )Yτ +θκφ λ 1 ,λ 2 (T -τ ) ≤ e yψ λ 1 ,λ 2 (T )+θκφ λ 1 ,λ 2 (T ) . If we have ψ λ 1 ,λ 2 ≥ (1 + )ψ λ 1 ,λ 2 , we can deduce that sup τ ∈T 0,T E y e λ 2 (1+ ) τ 0 Ysds e (1+ )(ψ λ 1 ,λ 2 (T -τ )Yτ +θκφ λ 1 ,λ 2 (T -τ )) ≤ e yψ λ 1 ,λ 2 (T )+θκφ λ 1 ,λ 2 (T ) ,
and, therefore, that the family

e λ 2 τ 0 Ysds e ψ λ 1 ,λ 2 (T -τ )Yτ +θκφ λ 1 ,λ 2 (T -τ ) τ ∈T 0,T is uniformly
integrable. As a consequence, the process (M t ) t is a true martingale and we have

E y e λ 1 Yt+λ 2 t 0 Ysds = e yψ λ 1 ,λ 2 (t)+θκφ λ 1 ,λ 2 (t) . So, it remains to show that ψ λ 1 ,λ 2 ≥ (1 + )ψ λ 1 ,λ 2 .
In order to do this we set g (t) =

ψ λ 1 ,λ 2 (t) -(1 + )ψ λ 1 ,λ 2 (t).
From the equations satisfied by ψ λ 1 ,λ 2 and ψ λ 1 ,λ 2 we deduce that

g (t) = σ 2 2 ψ 2 λ 1 ,λ 2 (t) -(1 + )ψ 2 λ 1 ,λ 2 (t) -κ ψ λ 1 ,λ 2 (t) -(1 + )ψ λ 1 ,λ 2 (t) = σ 2 2 ψ 2 λ 1 ,λ 2 (t) -(1 + ) 2 ψ 2 λ 1 ,λ 2 (t) -κg (t) + σ 2 2 (1 + ) 2 -(1 + ) ψ 2 λ 1 ,λ 2 (t) = σ 2 2 ψ λ 1 ,λ 2 (t) + (1 + )ψ λ 1 ,λ 2 (t) g (t) -κg (t) + σ 2 2 (1 + )ψ 2 λ 1 ,λ 2 (t) = f (t)g (t) + σ 2 2 (1 + )ψ 2 λ 1 ,λ 2 (t),
where

f (t) = σ 2 2 ψ λ 1 ,λ 2 (t) + (1 + )ψ λ 1 ,λ 2 (t) -κ.
Therefore, the function g (t)e -t 0 f (s)ds is nondecreasing and, since g (0) = 0, we have g (t) ≥ 0.

We can now prove the following Lemma, which will be useful in Section 1.4.4 to prove suitable estimates on the joint law of the process (X, Y ).

Lemma 1.4.7. For every q > 0 there exists C > 0 such that for all y 0 ≥ 0,

E y 0 t 0 Y v dv -q ≤ C t 2q . (1.4.53) 
Proof. If we take λ 1 = 0 and λ 2 = -s with s > 0 in Proposition 1.4.5, we get E y 0 e -s t 0 Yvdv = e y 0 ψ 0,-s (t)+θκφ 0,-s (t) .

Since ψ 0,-s (0) = -s < 0, we can deduce by the proof of Proposition 1.4.5 that ψ 0,-s (t) = -se t 0 (σ 2 ψ(u)-κ)du . Therefore, since ψ 0,-s = 0, we have

ψ 0,-s (t) = -s t 0 e u 0 (σ 2 ψ(v)-κ)dv du. (1.4.54)
Again from the proof of Proposition 1.4.5,

ψ 0,-s (t) ≥ κ σ 2 - κ σ 2 2 + 2 s σ 2 ≥ -2s/σ 2 ,
so, by using (1.4.54), we deduce that

ψ 0,-s (t) ≤ -s t 0 e u 0 -(σ √ 2s+κ)dv du = -s t 0 e -λsu du = - s λ s (1 -e -tλs ).
where

λ s = σ √ 2s + κ. Since φ 0,-s (t) = t 0 ψ 0,-s (u)du, we have φ 0,-s (t) ≤ - s λ 2 s tλ s -1 + e -tλs .
Therefore, since ψ 0,-s (t) ≤ 0, for any y 0 ≥ 0 we get

E y 0 e -s t 0 Yvdv ≤ e κθφ 0,-s (t) ≤ e -κθs λ 2 s (tλs-1+e -tλs ) .
Now, recall that for every q > 0 we can write

1 y q = 1 Γ(q) ∞ 0 s q-1 e -sy ds. Therefore E y 0 t 0 Y v dv -q = E y 0 1 Γ(q) ∞ 0 s q-1 e -s t 0 Yvdv ds ≤ 1 Γ(q) 1 0 s q-1 e -κθs λ 2 s (tλs-1+e -tλs ) ds + 1 Γ(q) ∞ 1 s q-1 e -κθs λ 2 s
(tλs-1+e -tλs ) ds.

Recall that λ s = σ √ 2s + κ, so the first terms in the right hand side is finite. Moreover, for s > 1, we have κθs λ 2 s ≤ C. Then, by noting that the function u → tu -1 + e -tu is nondecreasing, we have

E y 0 t 0 Y v dv -q ≤ C + 1 Γ(q) ∞ 1 s q-1 e -C(tσ √ 2s-1+e -tσ √ 2s ) ds ≤ C + 1 t 2q Γ(q) ∞ 0 v q-1 e -C(σ √ 2v-1+e -σ √ 2v ) dv ≤ C t 2q ,
which concludes the proof. Now recall that the diffusion (X, Y ) evolves according to the following stochastic differ-

ential system    dX t = ρκθ σ -Yt 2 dt + √ Y t dB t , dY t = κ(θ -Y t )dt + σ √ Y t dW t . If we set Xt = X t -ρ σ Y t , we have    d Xt = ρκ σ -1 2 Y t dt + 1 -ρ 2 √ Y t d Bt , dY t = κ(θ -Y t )dt + σ √ Y t dW t .
(1.4.55)

where Bt = (1 -ρ 2 ) -1/2 (B t -ρW t ). Note that B is a standard Brownian motion with B, W t = 0.

Proposition 1.4.8. For all u, v ∈ R, for all λ ≥ 0 and for all (x 0 , y 0 ) ∈ R × [0, +∞) we have

E x 0 ,y 0 e iuXt+ivYt e -λ t 0 Ysds = e iux 0 +y 0 (ψ λ 1 ,µ (t)-iu ρ σ )+θκφ λ 1 ,µ (t) ,
where

λ 1 = i(u ρ σ + v), µ = iu ρκ σ -1 2 -u 2 2 (1 -ρ 2 )
-λ and the function ψ λ 1 ,µ and φ λ 1 ,µ are defined in Proposition 1.4.4.

Proof. We have

E x 0 ,y 0 e iuXt+ivYt-λ t 0 Ysds = E x 0 ,y 0 e iu( Xt+ ρ σ Yt)+ivYt-λ t 0 Ysds and Xt = x 0 - ρ σ y 0 + t 0 ρκ σ - 1 2 Y s ds + t 0 (1 -ρ 2 )Y s d Bs .
Since B and W are independent,

E e iu Xt | W = e iu(x 0 -ρ σ y 0 + t 0 ( ρκ σ -1 2 )Ysds)-u 2 2 (1-ρ 2 ) t 0 Ysds
and

E x 0 ,y 0 e iuXt+ivYt-λ t 0 Ysds = e iu(x 0 -ρ σ y 0) E y 0 e i(u ρ σ +v)Yt+ iu( ρκ σ -1 2 )-u 2 2 (1-ρ 2 )-λ t 0 Ysds .
Then the assertion follows by using Proposition 1.4.4.

Identification of the semigroups

We now show that the semigroup P λ t associated with the coercive bilinear form can be actually identified with the transition semigroup P λ t . Recall the Sobolev spaces L p (O, m γ,µ ) introduced in Definition 1.2.1 for p ≥ 1. In order to prove the identification of the semigroups, we need the following property of the transition semigroup.

Theorem 1.4.9. For all p > 1, γ > 0 and µ > 0 there exists λ > 0 such that, for every compact K ⊆ R × [0, +∞) and for every T > 0, there is C p,K,T > 0 such that

P λ t f (x 0 , y 0 ) ≤ C p,K,T t β p + 3 2p ||f || L p (O,mγ,µ) , (x 0 , y 0 ) ∈ K.
for every measurable positive function f on R × [0, +∞) and for every t ∈ (0, T ].

Theorem 1.4.9 will also play a crucial role in order to prove Theorem 1.2.4. Its proof relies on suitable estimates on the joint law of the diffusion (X, Y ) and we postpone it to the following section. Then, we can prove the following result.

Proposition 1.4.10. There exists λ > 0 such that, for every function f ∈ H and for every t ≥ 0, P λ t f (x, y) = P λ t f (x, y), dxdy a.e.

Proof. We can easily deduce from Theorem 1.4.9 with p = 2 that, for λ large enough, if (f n ) n is a sequence of functions which converges to f in H, then the sequence (P λ t f n ) n converges uniformly to P λ t f on the compact sets. On the other hand, recall that P λ t is a contraction semigroup on H so that the function f → P λ t f is continuous and we have P λ t f n → P λ t f in H. Therefore, by density arguments, it is enough to prove the equality for f (x, y) = e iux+ivy with u, v ∈ R. We have, by using Proposition 1.4.8,

P λ t f (x, y) = E x,y e -λ t 0 (1+Ys)ds e iuXt+ivYt = e -λt e iux+y(ψ λ 1 ,µ (t)-iu ρ σ )+θκφλ 1 ,µ (t) , with λ 1 = i(u ρ σ + v), µ = iu ρκ σ -1 2 -u 2 2 (1 -ρ 2 ) -λ. The function F (t, x, y) defined by F (t, x, y) = e -λt e iux+y(ψ λ 1 ,µ (t)-iu ρ σ )+θκφλ 1 ,µ (t) satisfies F (0, x, y) = e iux+ivy and ∂F ∂t = (L -λ(1 + y)) F.
Moreover, since the real parts of λ 1 and µ are nonnegative, we can deduce from the proof of Proposition 1.4.4 that the real part of the function t → ψ(t) is nonnegative. Then, it is straightforward to see that, for every t ≥ 0, we have

F (t, •, •) ∈ H 2 (O, m) and t → F (t, •, •) is continuous, so that, for every v ∈ V , (LF (t, ., .), v) H = -a(F (t, ., .), v). Therefore ∂F ∂t , v H + a λ (F (t, ., .), v) = 0 v ∈ V,
and F (t, ., .) = P λ t f .

Estimates on the joint law

In this section we prove Theorem 1.4.9. We first recall some results about the density of the process Y .

With the notations

ν = β -1 = 2κθ σ 2 -1, y t = y 0 e -κt , L t = σ 2 4κ 1 -e -κt ,
it is well known (see, for example, [72, Section 6.2.2]) that the transition density of the process Y is given by

p t (y 0 , y) = e - y t 2L t 2y ν/2 t L t e -y 2L t y ν/2 I ν √ yy t L t ,
where I ν is the first-order modified Bessel function with index ν, defined by

I ν (y) = y 2 ν ∞ n=0 (y/2) 2n n!Γ(n + ν + 1)
.

It is clear that near y = 0 we have

I ν (y) ∼ 1 Γ(ν+1) y 2
ν while, for y → ∞, we have the asymptotic behaviour I ν (y) ∼ e y / √ 2πy (see [1, page 377]).

Proposition 1.4.11. There exists a constant C β > 0 (which depends only on β) such that, for every t > 0,

p t (y 0 , y) ≤ C β L β+ 1 2 t e - ( √ y- √ y t ) 2 2L t y β-1 L 1/2 t + (yy t ) 1/4 , (y 0 , y) ∈ [0, +∞)×]0, +∞).
Proof. From the asymptotic behaviour of I ν near 0 and ∞ we deduce the existence of a constant C ν > 0 such that

I ν (x) ≤ C ν x ν 1 {x≤1} + e x √ x 1 {x>1} . Therefore p t (y 0 , y) = e - y t +y 2L t 2y ν/2 t L t y ν/2 I ν √ yy t L t ≤ e - y t +y 2L t 2y ν/2 t L t y ν/2 C ν   (yy t ) ν/2 L ν t 1 {yyt≤L 2 t } + e √ yy t L t (yy t ) 1/4 /L 1/2 t 1 {yyt>L 2 t }   = C ν 2 e - y t +y 2L t   y ν L ν+1 t 1 {yyt≤L 2 t } + y ν 2 -1 4 e √ yy t L t (y t ) ν 2 + 1 4 L 1/2 t 1 {yyt>L 2 t }   . On {yy t > L 2 t }, we have y -1 t ≤ y/L 2 t and, since ν + 1 > 0, y ν 2 -1 4 (y t ) ν 2 + 1 4 = y 1/4 t y ν 2 -1 4 (y t ) ν 2 + 1 2 ≤ y 1/4 t y ν+ 1 4 L ν+1 t . So p t (y 0 , y) ≤ C ν 2 e - y t +y 2L t   y ν L ν+1 t 1 {yyt≤L 2 t } + (yy t ) 1/4 y ν e √ yy t L t L ν+ 3 2 t 1 {yyt>L 2 t }   ≤ C ν 2L ν+ 3 2 t e - y t +y 2L t y ν e √ yy t L t L 1/2 t 1 {yyt≤L 2 t } + (yy t ) 1/4 1 {yyt>L 2 t } = C ν 2L ν+ 3 2 t e - ( √ y- √ y t ) 2 2L t y ν L 1/2 t 1 {yyt≤L 2 t } + (yy t ) 1/4 1 {yyt>L 2 t } ,
and the assertion follows.

We are now ready to prove Theorem 1.4.9, which we have used in order to prove the identification of the semigroups in Proposition 1.4.10 and which we will use again later on in this chapter.

Proof of Theorem 1.4.9. Note that

P λ t f (x 0 , y 0 ) = E x 0 ,y 0 e -λ t 0 (1+Ys)ds f ( Xt , Y t ) , where f (x, y) = f x + ρ σ y, y and Xt = X t - ρ σ Y t .
Recall that the dynamics of X is given by (1.4.55) so we have

Xt = x0 + κ t 0 Y s ds + ρ t 0 Y s d Bs , with x0 = x 0 - ρ σ y 0 , κ = ρκ σ - 1 2 , ρ = 1 -ρ 2 .
Recall that the Brownian motion B is independent of the process Y . We set

Σ t = t 0 Y s ds and n(x) = 1 √ 2π e -x 2 /2 . Therefore P λ t f (x 0 , y 0 ) = E y 0 e -λt-λΣ 2 t f x0 + κΣ 2 t + ρΣ t z, Y t n(z)dz ≤ E y 0 e -λΣ 2 t f x0 + κΣ 2 t + ρΣ t z, Y t n(z)dz = E y 0 e -λΣ 2 t f (x 0 + z, Y t ) n z -κΣ 2 t ρΣ t dz ρΣ t .
Hölder's inequality with respect to the measure e -γ|z|-μYt dzdP y 0 , where γ > 0 and μ > 0 will be chosen later on, gives, for every p > 1

P λ t f (x 0 , y 0 ) ≤ E y 0 e -γ|z|-μYt f p (x 0 + z, Y t ) dz 1/p J q , (1.4.56) 
with q = p/(p -1) and (J q ) q = E y 0 e (q-1)γ|z|+(q-1)μYt-qλΣ 2 t n q z -κΣ 2

t ρΣ t dz (ρΣ t ) q .
Using Proposition 1.4.11 we can write, for every z ∈ R,

E y 0 e -μYt f p (x 0 + z, Y t ) = ∞ 0 dyp t (y 0 , y)e -μy f p (x 0 + z, y) ≤ C β σ 2 4κ + y 1/4 0 L β+ 1 2 t ∞ 0 dye - ( √ y- √ y t ) 2 2L t -μy y β-1 1 + y 1/4 f p (x 0 + z, y) . If we set L ∞ = σ 2 /(4κ), for every ∈ (0, 1) we have e - ( √ y- √ y t ) 2 2L t ≤ e -( √ y-√ y t ) 2 2L∞ = e -y 2L∞ e √ yy t L∞ - y t 2L∞ ≤ e -y 2L∞ e y 2L∞ e y t 2 L∞ e -y t 2L∞ = e -(1-) y 2L∞ e y t 2 L∞ (1-) ≤ e -(1-) y 2L∞ e y 0 2 L∞ (1-) .
It is easy to see that e

-y μ+ 1- 2L∞ (1 + y 1/4 ) ≤ C ,σ,κ e -y μ+ 1-2
2L∞ . Therefore, we can write

E y 0 e -μYt f p (x 0 + z, Y t ) ≤ C β e y 0 (1-) 2 L∞ σ 2 4κ + y 1/4 0 L β+ 1 2 t ∞ 0 dye -y μ+ 1- 2L∞ y β-1 1 + y 1/4 f p (x 0 + z, y) ≤ C β,σ,κ, e y 0 (1-) L∞ L β+ 1 2 t ∞ 0 dye -y μ+ 1-2 2L∞ y β-1 f p (x 0 + z, y) .
As regards J q , setting z = z-κΣ 2 t ρΣt , we have

(J q ) q = E y 0 e (q-1)γ|z ρΣt+κΣ 2 t |+(q-1)μYt-qλΣ 2 t n q z dz (ρΣ t ) q-1
≤ E y 0 e (q-1)γ ρΣt|z|+(q-1)μYt+((q-1)|κ|γ-qλ)Σ 2 t n q (z) dz (ρΣ t ) q-1 .

Note that e (q-1)γ ρΣt|z| n q (z) dz = 1 ( √ 2π) q e (q-1)γ ρΣt|z| e -qz 2 /2 dz

≤ 2 √ 2π e (q-1)γ ρΣtz e -qz 2 /2 dz = 2 √ 2π e (q-1) 2 2q γ 2 ρ2 Σ 2 t e -1 2 √ qz- (q-1)γ ρΣ t √ q 2 dz = 2 √ q e (q-1) 2 2q γ 2 ρ2 Σ 2 t , so that (J q ) q ≤ 2 √ q E y 0 e (q-1)μYt+ λqΣ 2 t 1 (ρΣ t ) q-1 , with λq = (q -1)|κ|γ + (q -1) 2 2q γ 2 ρ2 -qλ = 1 p -1 |κ|γ + 1 2p γ 2 ρ2 -pλ .
Using Hölder's inequality again we get, for every p 1 > 1 and

q 1 = p 1 /(p 1 -1), (J q ) q ≤ 2 q E y 0 e p 1 (q-1)μYt+p 1 λqΣ 2 t 1/p 1 E y 0 1 (ρΣ t ) q 1 (q-1) 1/q 1 ≤ C q,q 1 t q-1 E y 0 e p 1 (q-1)μYt+p 1 λqΣ 2 t 1/p 1 ,
where the last inequality follows from Lemma 1.4.7.

We now apply Proposition 1.4.5 with λ 1 = p 1 (q -1)μ and λ 2 = p 1 λq . The assumption on λ 1 and λ 2 becomes

σ 2 2 p 1 (q -1)μ 2 -κμ + |κ|γ + 1 2p γ 2 ρ2 -pλ ≤ 0 or, equivalently, λ ≥ σ 2 2p(p -1) p 1 μ2 -κ μ p + |κ| γ p + 1 2p 2 γ 2 ρ2 .
Note that the last inequality is satisfied for at least a p 1 > 1 if and only if

λ > σ 2 2p(p -1) μ2 -κ μ p + |κ| γ p + 1 2p 2 γ 2 ρ2 . (1.4.57)
Going back to (1.4.56) under the condition (1.4.57), we have

P λ t f (x 0 , y 0 ) ≤ C p, L β p + 1 2p t t 1/p e Ap, y 0 dze -γ|z| ∞ 0 dye -y μ+ 1-2 2L∞ y β-1 f p (x 0 + z, y) 1/p ≤ C p, e Ap, y 0 t β p + 3 2p dze -γ|z| ∞ 0 dye -y μ+ 1-2 2L∞ y β-1 f p x0 + z + ρ σ y, y 1/p = C p, e Ap, y 0 t β p + 3 2p dze -γ|z-x 0 -ρ σ y| ∞ 0 dye -y μ+ 1-2 2L∞ y β-1 f p (z, y) 1/p ≤ C p, e Ap, y 0 +γ|x 0 | t β p + 3 2p dze -γ|z| ∞ 0 dye -y μ-γ |ρ| σ + 1-2 2L∞ y β-1 f p (z, y) 1/p
.

If we choose = 1/2 and μ = µ + γ |ρ| σ , the assertion follows provided λ satisfies

λ > σ 2 2p(p -1) µ + γ |ρ| σ 2 -κ µ + γ |ρ| σ p + |κ| γ p + 1 p 2 γ 2 ρ2 . 1.4.5 Proof of Theorem 1.2.4
We are finally ready to prove the identification Theorem 1.2.4. We first prove the result under further regularity assumptions on the payoff function ψ, then we deduce the general statement by an approximation technique.

Case with a regular function ψ

The following regularity result paves the way for the identification theorem in the case of a regular payoff function.

Proposition 1.4.12. Assume that ψ satisfies Assumption H 1 and 0

≤ ψ ≤ Φ with Φ satisfying Assumption H 2 . If moreover we assume ψ ∈ L 2 ([0, T ]; H 2 (O, m)) and ∂ψ ∂t + Lψ, (1 + y)Φ ∈ L p ([0, T ]; L p (O, m)) for some p ≥ 2, then there exist λ 0 > 0 and F ∈ L p ([0, T ]; L p (O, m)) such that for all λ ≥ λ 0 the solution u of (1.2.5) satisfies - ∂u ∂t , v H + a λ (u, v) = (F, v) H , a.e. in [0, T ], v ∈ V. (1.4.58)
Proof. Note that, for λ large enough, u can be seen as the solution u λ of an equivalent coercive variational inequality, that is

- ∂u λ ∂t , v -u λ H + a λ (u λ , v -u λ ) ≥ (g, v -u λ ) H ,
where g = λ(1 + y)u satisfies the assumptions of Proposition 1.3.14. Therefore, there exists a sequence (u ε,λ ) ε of non negative functions such that lim ε→0 u ε,λ = u λ and

- ∂u ε,λ ∂t , v H + a λ (u ε,λ , v) - 1 ε (ψ -u ε,λ ) + , v H = (g, v) H , v ∈ V.
Since both u ε,λ and ψ are positive and ψ belongs to

L p ([0, T ]; L p (O, m)), we have (ψ - u ε,λ ) + ∈ L p ([0, T ]; L p (O, m)).
In order to simplify the notation, we set w = (ψ -u ε,λ ) + .

Taking v = w p-1 and assuming that ψ is bounded we observe that v ∈ L 2 ([0, T ]; V ) and we can write

- ∂u ε,λ ∂t , w p-1 H + a λ (u ε,λ , w p-1 ) - 1 ε w p L p (O,m) = g, w p-1 H , so that 1 p d dt w p L p (O,m) -a λ (ψ-u ε,λ , w p-1 )- 1 ε w p L p (O,m) = g, w p-1 H - ∂ψ ∂t , w p-1 H +a λ (ψ, w p-1 ).
Integrating from 0 to T we get

- 1 p w(0) p L p (O,m) - T 0 a λ ((ψ -u ε,λ )(t), w p-1 (t))dt - 1 ε T 0 w(t) p L p (O,m) dt = T 0 g(t), w p-1 (t) H dt - T 0 ∂ψ ∂t (t), w p-1 + (t) H dt + T 0 a λ (ψ(t), w p-1 (t))dt.
(1.4.59)

Now, with the usual integration by parts,

a λ (w, w p-1 ) = O y 2 (p -1)w p-2 ∂w ∂x 2 + 2ρσ ∂w ∂x ∂w ∂y + σ 2 ∂w ∂y 2 dm + O y j γ,µ (x) ∂w ∂x + k γ,µ (x) ∂w ∂y w p-1 dm + λ O (1 + y)w p dm ≥ δ 1 (p -1) O yw p-2 ∂w ∂x 2 + ∂w ∂y 2 dm + O y j γ,µ (x) ∂w ∂x + k γ,µ (x) ∂w ∂y w p-1 dm + λ O yw p dm = O yw p-2 δ 1 (p -1) ∂w ∂x 2 + j γ,µ (x) ∂w ∂x w + λ 2 w 2 dm + O yw p-2 δ 1 (p -1) ∂w ∂y 2 + k γ,µ (x) ∂w ∂y w + λ 2 w 2 dm ≥ 0, since, for λ large enough, the quadratic forms (a, b) → δ 1 (p -1)a 2 + j γ.µ ab + λ 2 b 2 and (a, b) → δ 1 (p -1)a 2 + k γ.µ ab + λ 2 b 2 are both positive definite. Recall that ψ ∈ L 2 ([0, T ]; H 2 (O, m)), ∂ψ ∂t + Lψ ∈ L p ([0, T ], L p (O, m)), (1 + y)ψ ≤ (1 + y)Φ ∈ L p ([0, T ], L p (O, m)) and g = (1 + y)u ≤ (1 + y)Φ ∈ L p ([0, T ]; L p (O, m))
. Therefore, going back to (1.4.59) and using Hölder's inequality,

1 ε T 0 w(t) p L p (O,m) dt ≤   T 0 g(t) p L p (O,m) dt 1 p + T 0 ∂ψ ∂t (t) + L λ ψ(t) p L p (O,m) dt 1 p   T 0 w p L p (O,m) dt p-1 p
.

Recalling that w = (ψ -u ε,λ ) + , we deduce that

1 ε (ψ -u ε,λ ) + L p ([0,T ];L p (O,m)) ≤ C, (1.4.60) 
for a positive constant C independent of ε. Note that the estimate does not involve the L ∞ -norm of ψ (which we assumed to be bounded for the payoff) so that by a standard approximation argument, it remains valid for unbounded ψ. The assertion then follows passing to the limit for ε → 0 in

- ∂u ε,λ ∂t , v H + a λ (u ε,λ , v) = 1 ε (ψ -u ε,λ ) + , v H + (g, v) H , v ∈ V.
Now, note that we can easily prove the continuous dependence of the process X with respect to the initial state.

Lemma 1.4.13. Fix (x, y) ∈ R × [0, +∞). Denote by (X x,y t , Y y t ) t≥0 the solution of the system

dX t = ρκθ σ -Yt 2 dt + √ Y t dB t , dY t = κ(θ -Y t )dt + σ √ Y t dW t ,
with X 0 = x, Y 0 = y and B, W t = ρt. We have, for every t ≥ 0 and for every

(x, y), (x , y ) ∈ R × [0, +∞), E Y y t -Y y t ≤ |y -y| and E X x ,y t -X x,y t ≤ |x -x| + t 2 |y -y| + t|y -y|.
The proof of Lemma 1.4.13 is straightforward so we omit the details: the inequality E Y y t -Y y t ≤ |y -y| can be proved by using standard techniques introduced in [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF] (see the proof of Theorem 3.2 and its Corollary in Section IV.3) and the other inequality easily follows.

Then, we can prove the following result. 

(x, y) ∈ R × [0, +∞). Then, if λ > ab|ρ|σ + b 2 σ 2 2 -κb + a 2 -a 2 ,
we have

P λ t |ψ|(x, y) < ∞ for every t ≥ 0, (x, y) ∈ R × [0, +∞) and the function (t, x, y) → P λ t ψ(x, y) is continuous on [0, ∞) × R × [0, ∞).
Proof. We can prove, as in the proof of Proposition 1.4.8, that

E x,y e aXt+bYt-λ t 0 Ysds = e a(x-ρ σ y) E y e (a ρ σ +b)Yt+ a( ρκ σ -1 2 )+ a 2 2 (1-ρ 2 )-λ t 0 Ysds . Thanks to Proposition 1.4.5, if σ 2 2 a ρ σ + b 2 -κ a ρ σ + b + a( ρκ σ - 1 2 ) + a 2 2 (1 -ρ 2 ) -λ < 0, (1.4.61) 
we have, for any T > 0 and for any compact

K ⊆ R × [0, +∞[, sup (t,x,y)∈[0,T ]×K E x,y e aXt+bYt-λ t 0 Ysds < ∞. Note that (1.4.61) is equivalent to λ > abρσ + b 2 σ 2 2 -κb + a 2 -a 2 .
Therefore, under the assumptions of the Proposition, we have, for any T > 0 and for any compact set

K ⊆ R × [0, +∞[, sup (t,x,y)∈[0,T ]×K E x,y e a|Xt|+bYt-λ t 0 Ysds < ∞.
Moreover, for small enough, sup

(t,x,y)∈[0,T ]×K E x,y e a(1+ )|Xt|+b(1+ )Yt-λ(1+ ) t 0 Ysds < ∞. (1.4.62)
Then, let ψ be a continuous function on R × [0, +∞[ such that |ψ(x, y)| ≤ Ce a|x|+by . It is evident that P λ t |ψ|(x, y) < ∞ and we have 

P λ t ψ(x, y) = E e -λ t 0 (1+Y y s )ds ψ(X x,y t , Y y t ) . If ((t n , x n , y n )) n converges to (t,
C([0, T ]; H) ∩ L 2 ([0, T ]; V ), with ∂u ∂t ∈ L 2 ([0, T ]; H) such that    ∂u ∂t , v H + a λ (u(t), v) = (f (t), v) H , v ∈ V, u(0) = ψ, with ψ continuous, ψ ∈ V , √ 1 + yf ∈ L 2 ([0, T ]; H) and f ∈ L p ([0, T ]; L p (O, m)).
Then, if ψ and λ satisfy the assumptions of Proposition 1.4.14, we have

(i) For every t ∈ [0, T ], u(t) = P λ t ψ + t 0 P λ s f (t -s)ds. (ii) The function (t, x, y) → u(t, x, y) is continuous on [0, T ] × R × [0, +∞). (iii) If Λ t = λ t 0 (1 + Y s
)ds, the process (M t ) 0≤t≤T , defined by

M t = e -Λt u(T -t, X t , Y t ) + t 0 e -Λs f (T -s, X s , Y s )ds, with X 0 = x, Y 0 = y is a martingale for every (x, y) ∈ R × [0, +∞).
Proof. The first assertion follows from Proposition 1.4.2.

The continuity of (t, x, y) → P λ t ψ(x, y) is given by Proposition 1.4.14. The continuity of (t, x, y) →

t 0 P λ s f (t -s, .)(x, y)ds is trivial if (t, x, y) → f (t, x, y) is bounded continuous. If f ∈ L p ([0, T ]; L p (O, m
)), f is the limit in L p of a sequence of bounded continuous functions and we have

t 0 P λ s f n (t -s, •)ds → t 0 P λ s f (t -s, •)ds uniformly in [0, T ] × K for every compact K of R × [0, +∞)).
In fact, thanks to Theorem 1.4.9, we can write for t ∈ [0, T ] Chap.. 1 -Variational formulation of American option prices and (x, y) ∈ K

t 0 P λ s |f n -f |(t -s, •, •)(x, y)ds ≤ t 0 C p,K,T s 2β+3 2p ds||(f n -f )(t -s, •, •)|| L p (O,m) ≤ C p,K,T t 0 ||(f n -f )(t -s, •, •)|| p L p (O,m) ds 1/p t 0 ds s 2β+3 2(p-1) 1-1 p ≤ C p,K,T T 0 ||(f n -f )(s, •, •)|| p L p (O,m) ds 1/p T 0 ds s 2β+3 2(p-1)
1-1 p .

(1.4.63)

The assumption p > β + 5 2 ensures the convergence of the integral in the right hand side. For the last assertion, note that

M T = e -Λ T ψ(X T , Y T ) + T 0 e -Λs f (T -s, X s , Y s )ds.
Then, we can prove that M t is integrable with the same arguments that we used to show the continuity of (t, x, y) → u(t, x, y). Moreover, by using the Markov property,

E x,y (M T | F t ) = e -Λt P λ T -t ψ(X t , Y t ) + t 0 e -Λs f (T -s, X s , Y s )ds + e -Λt T t P λ s-t f (T -s, ., .)(X t , Y t )ds = e -Λt P λ T -t ψ(X t , Y t ) + T -t 0 P λ s f (T -t -s, ., .)(X t , Y t )ds + t 0 e -Λs f (T -s, X s , Y s )ds = e -Λt u(T -t, X t , Y t ) + t 0 e -Λs f (T -s, X s , Y s )ds = M t .
We are now ready to prove the following proposition. where u * is defined by

u * (t, x, y) = sup τ ∈T t,T E ψ(τ, X t,x,y τ , Y t,y τ ) .
Proof. We first check that ψ satisfies the assumptions of Proposition 1.4.12. Note that, thanks to the growth condition (1.2.6), it is possible to write 0 ≤ ψ(t, x, y) ≤ Φ(t, x, y) with Φ(t, x, y) = C T (e x-ρκθ σ t + e Ly-κθLt ), where L ∈ 0, 2κ σ 2 and C T is a positive constant which depends on T . Moreover, recall the growth condition on the derivatives (1.2.7). Then, it is easy to see that we can choose γ and µ in the definition of the measure m (see (1.2.2)) such that ψ satisfies Assumption H 1 , Φ satisfies Assumption H 2 (note that ∂Φ ∂t + LΦ ≤ 0) and (1 + y)Φ, ∂ψ ∂t + Lψ ∈ L p ([0, T ]; L p (O, m)). Therefore we can apply Proposition 1.4.12 and we get that, for λ large enough, there exists

F ∈ L p ([0, T ]; L p (O, m)) such that u satisfies - ∂u ∂t , v H + a λ (u, v) = (F, v) H , v ∈ V, that is - ∂u ∂t , v H + a(u, v) = (F -λ(1 + y)u, v) H , v ∈ V.
On the other hand we know that

         -∂u ∂t , v -u H + a(u, v -u) ≥ 0, a.e. in [0, T ] v ∈ V, v ≥ ψ, u(T ) = ψ(T ), u ≥ ψ a.e. in [0, T ] × R × (0, ∞).
From the previous relations we easily deduce that F -λ(1 + y)u ≥ 0 a.e. and, taking v = ψ, that (F -λ(1 + y)u, ψ -u) H = 0. Moreover, note that the assumptions of Proposition 1.4.15 are satisfied, so the process (M t ) 0≤t≤T defined by

M t = e -Λt u(t, X t , Y t ) + t 0 e -Λs F (s, X s , Y s )ds, (1.4.65)
with X 0 = x, Y 0 = y is a martingale for every (x, y) ∈ R × [0, +∞). Then, we deduce that the process

Mt = u(t, X t , Y t ) + t 0 (F (s, X s , Y s ) -λ(1 + Y s )u(s, X s , Y s )) ds
is a local martingale. In fact, from (1.4.65) we can write

d Mt = d e Λt M t -e Λt t 0 e -Λs F (s, X s , Y s )ds + F (t, X t , Y t )dt -λ(1 + Y t )u(t, X t , Y t )dt = e Λt dM t + λ(1 + Y t )e Λt M t -λ(1 + Y t )e Λt t 0 e -Λs F (s, X s , Y s )ds -e Λt e -Λt F (t, X t , Y t ) + F (t, X t , Y t ) -λ(1 + Y t )u(t, X t , Y t ) dt = e Λt dM t .
So, for any stopping time τ there exists an increasing sequence of stopping times (τ n ) n such that lim n τ n = ∞ and

E x,y [u(τ ∧τ n , X τ ∧τn , Y τ ∧τn )] = u(0, x, y)-E x,y τ ∧τn 0 (F (s, X s , Y s ) -λ(1 + Y s )u(s, X s , Y s ))ds .
(1.4.66) Since F -λ(1 + y)u ≥ 0 we can pass to the limit in the right hand side of (1.4.66) thanks to the monotone convergence theorem. Recall now that an adapted right continuous process (Z t ) t≥0 is said to be of class D if the family (Z τ ) τ ∈T 0,∞ , where T 0,∞ is the set of all stopping times with values in [0, ∞), is uniformly integrable. Moreover, recall that 0 ≤ u(t, x, y) ≤ Φ(x, y) = C T (e x-ρκθ σ t + e Ly-κθLt ). The discounted and dividend adjusted price process (e -(r-δ)t S t ) t = (e Xt-ρκθ σ t ) t is a martingale (we refer to [START_REF] Ressel | Moment explosions and long-term behavior of affine stochastic volatility models[END_REF] for an analysis of the martingale property in general affine stochastic volatility models), so we deduce that it is of class D. On the other hand, we can prove that the process (e LYt-κθt ) t is of class D following the same arguments used in Remark 1.4.6. Therefore, the process (Φ(t + s, X t,x,y s

)) s∈[t,T ] is of class D for every (t, x, y) ∈ [0, T ] × R × [0, ∞).
So we can pass to the limit in the left hand side of (1.4.66) and we get that

lim n→∞ E x,y [u(τ ∧ τ n , X τ ∧τn , Y τ ∧τn )] = E x,y [u(τ, X τ , Y τ )].
Therefore, passing to the limit as n → ∞, we get

E x,y [u(τ, X τ , Y τ )] = u(0, x, y) -E x,y τ 0 (F (s, X s , Y s ) -λ(1 + Y s )u(s, X s , Y s ))ds ,
for every τ ∈ T 0,T . Recall that F -λ(1 + y)u ≥ 0, so the process u(t, X t , Y t ) is actually a supermartingale. Since u ≥ ψ, we deduce directly from the definition of Snell envelope that u(t, X t , Y t ) ≥ u * (t, X t , Y t ) a.e. for t ∈ [0, T ].

In order to show the opposite inequality, we consider the so called continuation region

C = {(t, x, y) ∈ [0, T ) × R × [0, ∞) : u(t, x, y) > ψ(t, x, y)}, its t-sections C t = {(x, y) ∈ R × [0, ∞) : (t, x, y) ∈ C}, t ∈ [0, T ),
and the stopping time

τ t = inf{s ≥ t : (s, X s , Y s ) / ∈ C} = inf{s ≥ t : u(s, X s , Y s ) = ψ(s, X s , Y s )}. Note that u(x, X s , Y s ) > ψ(s, X s , Y s ) for t ≤ s < τ t . Moreover, recall that (F -λ(1+y)u, ψ- u) = 0 a.e., so Leb{(x, y) ∈ C t : F -λ(1+y)u = 0} = 0 dt a.e.. Since the two dimensional dif- fusion (X, Y ) has a density, we deduce that E F (s, X s , Y s ) -λ(1 + Y s )u(s, X s , Y s )1 {(Xs,Ys)∈Cs} = 0, and so F (s, X s , Y s ) -λ(1 + Y s )u(s, X s , Y s ) = 0 ds, dP -a.e. on {s < τ t }. Therefore, E [u(τ t , X τt , Y τt )] = E [u(t, X t , Y t )] ,
and, since u(τ t , X τt , Y τt ) = ψ(τ t , X τt , Y τt ) thanks to the continuity of u and ψ,

E [u(t, X t , Y t )] = E [ψ(τ t , X τt , Y τt )] ≤ E [u * (t, X t , Y t )] ,
so that u(t, X t , Y t ) = u * (t, X t , Y t ) a.e.. With the same arguments we can prove that u(t, x, y) = u * (t, x, y) and this concludes the proof.

Weaker assumptions on ψ

The last step is to establish the equality u = u * under weaker assumptions on ψ, so proving 

u n (t, x, y) = u * n (t, x, y) on [0, T ] × Ō.
Now, the left hand side converges to u(t, x, y) thanks to the Comparison Principle. As regards the right hand side, sup

τ ∈T t,T E ψ n (τ, X t,x,y τ , Y t,x,y τ ) → sup τ ∈T t,T E e -r(τ -t) ψ(τ, X t,x,y τ , Y t,x,y τ )
thanks to the uniform convergence of ψ n to ψ.

Therefore, it is enough to prove that, if ψ satisfies Assumption H * , then it is the uniform limit of a sequence of functions ψ n which satisfy the assumptions of Proposition 1.4.16. This can be done following the very same arguments of [66, Lemma 3.3] so we omit the technical details (see [START_REF] Touzi | American options exercise boundary when the volatility changes randomly[END_REF]).

Appendix: Proof of Proposition 1.4.1

The proof of Proposition 1.4.1 can be carried out following the very same lines of the proof of Proposition 1.3.14. For this reason, we retrace here only the main steps of the proof. So, the first step is to solve the following truncated coercive problem.
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Proposition 1.5.1. Assume λ ≥ δ 1 2 + K 2 1 2δ 1 . For every ψ ∈ V , f ∈ L 2 loc (R + , H) and M > 0, there exists a unique function u (M ) ∈ L 2 loc (R + , V ), such that u (M ) t ∈ L 2 loc (R + , H), u (M ) (0) = ψ and (u (M ) t , v) H + a (M ) λ (u (M ) , v) = (f, v) H , v ∈ V.
Moreover, for every t ≥ 0,

u (M ) (t) 2 H + δ 1 2 t 0 u (M ) (s) 2 V ds ≤ ψ 2 H + 2 δ 1 t 0 f (s) 2 H ds (1.5.67)
and

1 2 t 0 u (M ) t (s) 2 H ds + δ 1 4 u (M ) (t) 2 V ≤ 1 2 āλ (ψ, ψ) + 1 2 t 0 f (s) 2 H ds + K 1 t 0 ds y ∧ M |∇u (M ) (s) u (M ) t (s)|dm.
(1.5.68)

Proof. Fix ψ ∈ V and f ∈ L 2 loc (R + , H).
Let (V j ) j be an increasing sequence of subspaces of V with finite dimension such that j V j is dense in V and ψ ∈ V 0 . For every j, denote by u j the unique solution of the differential equation

∂u j ∂t , v H + a (M ) λ (u j , v) = (f, v) M , v ∈ V j , with u j (0) = ψ.
Taking v = u j and using the inequality a

(M ) λ (u, u) ≥ δ 1 2 u V , we get ∂u j ∂t , u j H + a (M ) λ (u j , u j ) = (f, u j ) H 1 2 d dt u j (t) 2 H + a (M ) λ (u j (t), u j (t)) = (f (t), u j (t)) H 1 2 d dt u j (t) 2 H + δ 1 2 u j (t) 2 V ≤ (f (t), u j (t)) H .
Integrating between 0 and t, we get

1 2 u j (t) 2 H + δ 1 2 t 0 u j (s) 2 V ds ≤ 1 2 ψ 2 H + t 0 f (s) H u j (s) H ds. So, if f = 0, u j (t) 2 H + δ 1 t 0 u j (s) 2 V ds ≤ ψ 2 H ,
and, for f = 0,

1 2 u j (t) 2 H + δ 1 2 t 0 u j (s) 2 V ds ≤ 1 2 ψ 2 H + δ 1 4 t 0 u j (s) 2 H ds + 1 δ 1 t 0 f (s) 2 H ds.
Therefore,

1 2 u j (t) 2 H + δ 1 4 t 0 u j (s) 2 V ds ≤ 1 2 ψ 2 H + 1 δ 1 t 0 f (s) 2 H ds.
By taking v = ∂u j /∂t, we get, using the symmetry of āλ ,

∂u j ∂t 2 H + a (M ) λ u j , ∂u j ∂t = f, ∂u j ∂t H ∂u j ∂t 2 H + āλ u j , ∂u j ∂t + ã(M) u j , ∂u j ∂t = f, ∂u j ∂t H ∂u j ∂t 2 H + 1 2 d dt āλ (u j , u j ) + ã(M) u j , ∂u j ∂t = f, ∂u j ∂t H ,
and, integreting from 0 to t,

t 0 ∂u j ∂t (s) 2 H ds + 1 2 āλ (u j (t), u j (t)) = 1 2 āλ (ψ, ψ) + t 0 f (s), ∂u j ∂t (s) H ds - t 0 ã(M) u j (s), ∂u j ∂t (s) H ds.
Therefore,

t 0 ∂u j ∂t (s) 2 H ds + δ 1 4 u j (t) 2 V ≤ 1 2 āλ (ψ, ψ) + t 0 f (s), ∂u j ∂t (s) H ds + K 1 t 0 ds O y ∧ M |∇u j (s, .)| ∂u j ∂t (s, .) dm ≤ 1 2 āλ (ψ, ψ) + t 0 f (s) H ∂u j ∂t (s) H ds + t 0 ds O K 1 y 2ζ |∇u j (s, .)| 2 + K 1 M ζ 2 ∂u j ∂t (s, .) 2 dm ≤ 1 2 āλ (ψ, ψ) + t 0 f (s) H ∂u j ∂t (s) H ds + K 1 2ζ t 0 u j (s) 2 V ds + K 1 M 2 ζ t 0 ∂u j ∂t (s) 2 H ds.
Then the assertion follows by passing to the limit as j tends to infinity and by using the estimates above.

Then, we have the following Lemma.

Lemma 1.5.2. If, in addiction to the assumptions of Proposition 1.5.1 we also assume

√ 1 + yf ∈ L 2 loc (R + , H), we have 1 4 t 0 u (M ) t (s) 2 H ds + δ 1 4 u (M ) (t) 2 V ≤ 1 2 āλ (ψ, ψ) + 1 2 t 0 f (s) 2 H ds + 4K 2 1 K 3 δ 1 1 + yψ 2 H + t 0 ds 1 + yf (s) 2 H .
Proof. Let us denote φ M (x, y) = y ∧ M . Since φ M and its derivatives are bounded, if

u (M ) ∈ V , u (M ) φ M ∈ V . Then, taking v = u (M ) φ M , we get ∂u (M ) ∂t , u (M ) φ M H + a (M ) λ (u (M ) , u (M ) φ M ) = f, u (M ) φ M H ,
which, setting φ M = ∂φ M /∂y, can be rewritten as

O ∂u (M ) ∂t u (M ) φ M dm + O y 2 ∂u (M ) ∂x ∂u (M ) ∂x + σ 2 ∂u (M ) ∂y ∂u (M ) ∂y + 2ρσ ∂u (M ) ∂x ∂u (M ) ∂y φ M dm + O y 2 ρσ ∂u (M ) ∂x + σ 2 ∂u (M ) ∂y u (M ) φ M dm + O y ∂u (M ) ∂x j γ,µ + ∂u (M ) ∂y k γ,µ u (M ) φ M dm + λ O (1 + y)(u (M ) ) 2 φ M dm = (f, u (M ) φ M ) H .
Then, by using 0

≤ φ M ≤ 1 {y≤M } , 1 2 
d dt O (u (M ) ) 2 φ M dm + δ 1 O y ∇u (M ) 2 φ M dm + λ O (1 + y)(u (M ) ) 2 φ M dm ≤ (f, u (M ) φ M ) H + K 1 O y ∇u (M ) u (M ) |φ M dm + O y 2 ρσ ∂u (M ) ∂x + σ 2 ∂u (M ) ∂y u (M ) |φ M dm ≤ (f, u (M ) φ M ) H + K 1 O y ∇u (M ) u (M ) |φ M dm + ρ 2 σ 2 + σ 4 2 O y ∧ M ∇u (M ) |u (M ) |dm ≤ (f, u (M ) φ M ) H + K 1 ζ 2 O y ∇u (M ) 2 φ M dm + K 1 2ζ O y u (M ) 2 φ M dm + ρ 2 σ 2 + σ 4 2 O y ∧ M ∇u (M ) |u (M ) |dm. By taking ζ = δ 1 /K 1 and noting that O y ∧ M ∇u (M ) |u (M ) |dm ≤ u (M ) 2 V , we get 1 2 d dt O (u (M ) ) 2 φ M dm + δ 1 2 O y ∇u (M ) 2 φ M dm + λ - K 2 1 2δ 1 O (1 + y)(u (M ) ) 2 φ M dm ≤ (f, u (M ) φ M ) H + K 2 u (M ) 2 V with K 2 = √ ρ 2 σ 2 +σ 4 2
and, by using

λ ≥ δ 1 2 + K 2 1
2δ 1 and integrating from 0 to t,

1 2 O (u (M ) ) 2 (t, .)φ M dm + δ 1 2 t 0 ds O y ∇u (M ) (s) 2 + (1 + y)(u (M ) ) 2 (s) φ M dm ≤ t 0 (f (s), u (M ) (s)φ M ) H ds + 1 2 O ψ 2 φ M dm + K 2 t 0 ds u (M ) (s) 2 V dm.
We have, for every ζ > 0,

t 0 (f (s), u (M ) (s)φ M ) H ds ≤ ζ 2 t 0 ds O φ M u (M ) (s) 2 dm + 1 2ζ t 0 ds O φ M |f (s)| 2 dm and, taking ζ = δ 1 /2, 1 2 O (u (M ) ) 2 (t, .)φ M dm + δ 1 4 t 0 ds O y ∇u (M ) (s) 2 + (1 + y)(u (M ) ) 2 (s) φ M dm ≤ 1 δ 1 t 0 ds O φ M |f (s)| 2 dm + 1 2 O ψ 2 φ M dm + K 2 t 0 u (M ) (s) 2 V ds.
Then, by using (1.5.67),

1 2 O (u (M ) ) 2 (t, .)φ M dm + δ 1 4 t 0 ds O y ∇u (M ) (s) 2 + (1 + y)(u (M ) ) 2 (s) φ M dm ≤ 1 δ 1 t 0 ds O φ M |f (s)| 2 dm + 1 2 O ψ 2 φ M dm + 2K 2 δ 1 ψ 2 H + 4K 2 δ 2 1 t 0 f (s) 2 H ds ≤ K 3 1 + yψ 2 H + t 0 ds 1 + yf (s) 2 H ,
where

K 3 = max 1 δ 1 , 1 2 , 2K 2 δ 1 , 4K 2 δ 2 1
. Note that K 3 does not depend on M . We deduce from the last inequality that

t 0 ds O ∇u (M ) (s) 2 φ 2 M dm ≤ 4K 3 δ 1 1 + yψ 2 H + t 0 ds 1 + yf (s) 2
H and, by using (1.5.68),

1 2 t 0 u (M ) t (s) 2 H ds + δ 1 4 u (M ) (t) 2 V ≤ 1 2 āλ (ψ, ψ) + 1 2 t 0 f (s) 2 H ds + K 1 t 0 ds O y ∧ M |∇u (M ) (s) u (M ) t (s)|dm ≤ 1 2 āλ (ψ, ψ) + 1 2 t 0 f (s) 2 H ds + K 1 ζ 2 t 0 ds O |u (M ) t (s)| 2 dm + K 1 2ζ t 0 ds O φ 2 M |∇u (M ) (s)| 2 dm
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By taking ζ = 1/(2K 1 ), we get

1 4 t 0 u (M ) t (s) 2 H ds + δ 1 4 u (M ) (t) 2 V ≤ 1 2 āλ (ψ, ψ) + 1 2 t 0 f (s) 2 H ds + 4K 2 1 K 3 δ 1 1 + yψ 2 H + t 0 ds 1 + yf (s) 2 H .
Now, in order to prove Proposition 1.4.1, it is enough to let M go to infinity.

Chapter 2

American option price properties in Heston type models

Introduction

One of the strengths of the Black and Scholes type models relies in their analytical tractability. A large number of papers have been devoted to the pricing of European and American options and to the study of the regularity properties of the price in this framework.

Things become more complicated in the case of stochastic volatility models. Some properties of European options were studied, for example, in [START_REF] Ould Aly | Monotonicity of prices in Heston model[END_REF] but if we consider American options, as far as we know, the existing literature is rather poor. One of the main reference is a paper by Touzi [START_REF] Touzi | American options exercise boundary when the volatility changes randomly[END_REF], in which the author studies some properties of a standard American put option in a class of stochastic volatility models under classical assumptions, such as the uniform ellipticity of the model.

However, the assumptions in [START_REF] Touzi | American options exercise boundary when the volatility changes randomly[END_REF] are not satisfied by the well known Heston model because of its degenerate nature and some of the analytical techniques used in [START_REF] Touzi | American options exercise boundary when the volatility changes randomly[END_REF] cannot be directly applied.

This chapter, which is extracted from [START_REF] Lamberton | American option price properties in Heston-type models[END_REF], is devoted to the study of some properties of the American option price in the Heston model. Our main aim is to extend some well known results in the Black and Scholes world to the Heston type stochastic volatility models. We do it mostly by using probabilistic techniques.

In more details, the chapter is organized as follows. In Section 2.2 we set up our new notation. In Section 2.3, we prove that, if the payoff function is convex and satisfies some regularity assumptions, the American option value function is increasing with respect to the volatility variable. This topic was already addressed in [START_REF] Assing | Monotonicity of the value function for a twodimensional optimal stopping problem[END_REF] with an elegant probabilistic approach, under the assumption that the coefficients of the model satisfy the well known Feller condition. Here, we prove it without imposing conditions on the coefficients.

Then, in Section 2.4 we focus on the standard American put option. We first generalise to the Heston model the well known notion of critical price or exercise boundary and we study some properties of this function. Then we prove that the American option price is strictly convex in the continuation region with respect to the stock price. This result was already proved in [START_REF] Touzi | American options exercise boundary when the volatility changes randomly[END_REF] for uniformly elliptic stochastic volatility by using PDE techniques. Here, we extend the result to the degenerate Heston model by using a probabilistic approach.

We also give an explicit formulation of the early exercise premium, that is the difference in price between an American option and an otherwise identical European option, and we do it by using results first introduced in [START_REF] Jacka | Local times, optimal stopping and semimartingales[END_REF]. Finally, we provide a weak formulation of the so called smooth fit property. The chapter ends with an appendix, which is devoted to the proofs of some technical results.

Notation

Recall that in the Heston model we have

   dSt St = (r -δ)dt + √ Y t dB t , S 0 = s > 0, dY t = κ(θ -Y t )dt + σ √ Y t dW t , Y 0 = y ≥ 0, (2.2.1)
where B and W denote two correlated Brownian motions with correlation coefficient ρ ∈ (-1, 1). Through this chapter we denote by L the infinitesimal generator of the pair (S, Y ), that is the differential operator given by

L = y 2 s 2 ∂ 2 ∂s 2 + 2sρσ ∂ 2 ∂s∂y + σ 2 ∂ 2 ∂y 2 + (r -δ) s ∂ ∂s + κ(θ -y) ∂ ∂y . (2.2.2)
Let (S t,s,y u , Y t,y u ) u∈[t,T ] be the solution of (2.2.1) which starts at time t from the position (s, y). When the initial time is t = 0 and there is no ambiguity, we will often write (S s,y u , Y y u ) or directly (S u , Y u ) instead of (S 0,s,y u , Y 0,y u ). We recall that the price of an American option Sec. 2.3 -Monotonicity with respect to the volatility with a nice enough payoff (ϕ(S t )) t∈[0,T ] and maturity T is given by P t = P (t, S t , Y t ), where

P (t, s, y) = sup τ ∈T t,T E[e -r(τ -t) ϕ(S t,s,y τ )],
T t,T being the set of the stopping times with values in [t, T ].

It will be useful in this chapter to consider the log-price process, so we set X t = log S t .

In this case, recall that the pair (X, Y ) evolves according to

   dX t = r -δ -1 2 Y t dt + √ Y t dB t , X 0 = x = log s ∈ R, dY t = κ(θ -Y t )dt + σ √ Y t dW t , Y 0 = y ≥ 0, (2.2.3)
and has infinitesimal generator given by L = y 2

∂ 2 ∂x 2 + 2ρσ ∂ 2 ∂x∂y + σ 2 ∂ 2 ∂y 2 + r -δ - y 2 ∂ ∂x + κ(θ -y) ∂ ∂y . (2.2.4)
With this change of variables, the American option price function is given by u(t, x, y) = P (t, e x , y), which can be rewritten as

u(t, x, y) = sup τ ∈T t,T E[e -r(τ -t) ψ(X t,x,y τ )],
where ψ(x) = ϕ(e x ).

Monotonicity with respect to the volatility

In this section we prove the increasing feature of the option price with respect to the volatility variable under the assumption that the payoff function ϕ is convex and satisfies some regularity properties. The same topic was addressed by Touzi in [START_REF] Touzi | American options exercise boundary when the volatility changes randomly[END_REF] for uniformly elliptic stochastic volatility models and by Assing et al. [START_REF] Assing | Monotonicity of the value function for a twodimensional optimal stopping problem[END_REF] for a class of models which includes the Heston model when the Feller condition is satisfied.

For convenience we pass to the logarithm in the s-variable and we study the monotonicity of the function u. Note that the convexity assumption on the payoff function

ϕ ∈ C 2 (R) corresponds to the condition ψ -ψ ≥ 0 for the function ψ(x) = ϕ(e x ).
Let us recall some standard notation. For γ > 0 we introduce the following weighted Sobolev spaces

L 2 (R, e -γ|x| ) = u : R → R : u 2 2 = u 2 (x)e -γ|x| dx < ∞ , W 1,2 (R, e -γ|x| ) = u ∈ L 2 (R, e -γ|x| ) : ∂u ∂x ∈ L 2 (R, e -γ|x| ) , W 2,2 (R, e -γ|x| ) = u ∈ L 2 (R, e -γ|x| ) : ∂u ∂x , ∂ 2 u ∂x 2 ∈ L 2 (R, e -γ|x| ) .
Theorem 2.3.1. Let ψ be a bounded function such that ψ ∈ W 2,2 (R, e -γ|x| ) ∩ C 2 (R) and ψ -ψ ≥ 0. Then the value function u is nondecreasing with respect to the volatility variable.

In order to prove Theorem 2.3.1, let us consider a smooth approximation

f n ∈ C ∞ (R) of the function f (y) = y + , such that f n has bounded derivatives, 1/n ≤ f n ≤ n, f n (y) is increasing in y, f 2 n is Lipschitz continuous uniformly in n and f n → f locally uniformly as n → ∞.
Then, we consider the sequence of SDEs

   dX n t = r -δ - f 2 n (Y n t ) 2 dt + f n (Y n t )dB t , X n 0 = x, dY n t = κ θ -f 2 n (Y n t ) dt + σf n (Y n t )dW t , Y n 0 = y.
(2.3.5)

Note that, for every n ∈ N, the diffusion matrix a n (y) = 1 2 Σ n (y)Σ n (y) t , where

Σ n (y) = 1 -ρ 2 f n (y) ρf n (y) 0 σf n (y)
, is uniformly elliptic. For any fixed n ∈ N the infinitesimal generator of the diffusion (X n , Y n ) is given by

Ln = f 2 n (y) 2 ∂ 2 ∂x 2 + 2ρσ ∂ 2 u ∂x∂y + σ 2 ∂ 2 ∂y 2 + r -δ - f 2 n (y) 2 ∂ ∂x + κ θ -f 2 n (y)
∂ ∂y and it is uniformly elliptic with bounded coefficients.

We will need the following result.

Lemma 2.3.2. For any λ > 0, we have

lim n→∞ P sup t∈[0,T ] |X n t -X t | ≥ λ = 0 (2.3.6)
and

lim n→∞ P sup t∈[0,T ] |Y n t -Y t | ≥ λ = 0. (2.3.7)
The proof is inspired by the proof of uniqueness of the solution for the CIR process (see [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF]Section IV.3]). We postpone it to the Appendix.

From now on, let us set

E x,y [•] = E[•|(X 0 , Y 0 ) = (x, y)].
For every n ∈ N, we consider the American value function with payoff ψ and underlying diffusion (X n , Y n ), that is

u n (t, x, y) = sup τ ∈T 0,T -t E x,y e -rτ ψ(X n τ ) , (t, x, y) ∈ [0, T ] × R × [0, ∞).
We prove that u n is actually an approximation of the function u, at least for bounded continuous payoff functions.

Proposition 2.3.3. Let ψ be a bounded continuous function. Then,

lim n→∞ |u n (t, x, y) -u(t, x, y)| = 0, (t, x, y) ∈ [0, T ] × R × [0, ∞).
Proof. For any λ > 0,

sup τ ∈T 0,T -t E x,y e -rτ ψ(X n τ ) -sup τ ∈T 0,T -t E x,y e -rτ ψ(X τ ) ≤ sup τ ∈T 0,T -t E x,y e -rτ (ψ(X n τ ) -ψ(X τ )) ≤ E x,y sup t∈[0,T ] |ψ(X n t ) -ψ(X t )| ≤ E x,y sup t∈[0,T ] |ψ(X n t ) -ψ(X t )|1 {|X n t -Xt|≤λ} + 2 ψ ∞ P sup t∈[0,T ] |X n t -X t | > λ .
Then the assertion easily follows using (2.3.6) and the arbitrariness of λ.

We can now prove that, for every n ∈ N, the approximated price function u n is nondecreasing with respect to the volatility variable.

Proposition 2.3.4. Assume that ψ ∈ W 2,2 (R, e -γ|x| dx) ∩ C 2 (R) and ψ -ψ ≥ 0. Then ∂u n
∂y ≥ 0 for every n ∈ N.

Proof. Fix n ∈ N. We know from the classical theory of variational inequalities that u n is the unique solution of the associated variational inequality (see, for example, [START_REF] Jaillet | Variational inequalities and the pricing of American options[END_REF]). Moreover, u n is the limit of the solutions of a sequence of penalized problems. In particular, consider a family of penalty functions ζ ε : R → R such that, for each ε > 0, ζ ε is a C 2 , nondecreasing and concave function with bounded derivatives, satisfying

ζ ε (u) = 0, for u ≥ ε and ζ ε (0) = b,
where b is such that Ãn ψ ≥ b with the notation Ãn = Ln -r (see the proof of Theorem 3 in [START_REF] Lamberton | Error estimates for the binomial approximation of American put options[END_REF]). Then, there exists a sequence (u n ε ) ε>0 such that lim ε→0 u n ε = u n in the sense of distributions and, for every ε > 0,

   -∂u n ε ∂t -A n u n ε + ζ ε (u n ε -ψ) = 0, u n ε (T ) = ψ(T ).
In order to simplify the notation, hereafter in this proof we denote by u the function u n ε . Recall that, from the classical theory of parabolic semilinear equations, since ψ ∈ C 2 (R) we have that u ∈ C 2,4 ([0, T ), R × (0, ∞)) (here we refer, for example, to [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF]). Set now ū = ∂u ∂y . Differentiating the equation satisfied by u n , we get that ū satisfies

   -∂ ū ∂t -Ān ū = f n (y)f n (y) ∂ 2 u ∂x 2 -∂u ∂x , ū(T ) = 0, where Ān = f 2 n (y) 2 
∂ 2 ∂x 2 + 2ρσ ∂ 2 u ∂x∂y + σ 2 ∂ 2 ∂y 2 + r -δ - f 2 n (y) 2 + 2ρσf n (y)f n (y) ∂ ∂x + κ θ -f 2 n (y) + σ 2 f n (y)f n (y) ∂ ∂y -2κf n (y)f n (y) + ζ ε (u n ε -ψ) -(r -δ).
By using the Comparison principle, we deduce that, if f n (y)f n (y) ∂ 2 u ∂x 2 -∂u ∂x ≥ 0, then ū ≥ 0 and the assertion follows letting ε tend to 0.

Since f n is positive and nondecreasing, it is enough to prove that ∂ 2 u ∂x 2 -∂u ∂x ≥ 0. We write the equations satisfied by u = ∂u ∂x and u = ∂ 2 u ∂x 2 . We have

   -∂u ∂t -Ãn u + ζ ε (u -ψ)(u -ψ ) = 0, u(T ) = ψ, (2.3.8) and    -∂u ∂t -Ãn u + ζ ε (u -ψ)(u -ψ ) 2 + ζ ε (u -ψ)(u -ψ ) = 0, u (T ) = ψ .
(2.3.9) Using (2.3.8) and (2.3.9), we get that u -u satisfies

   -∂(u -u ) ∂t -A n (u -u ) + ζ ε (u -ψ)(u -u ) = ζ ε (u -ψ)(ψ -ψ ) -ζ ε (u -ψ)(u -ψ ) 2 , u (T ) -u (T ) = ψ -ψ .
(2.3.10)

Recall that ψ -ψ ≥ 0 by assumption and that ζ ε is increasing and concave. Then,

ζ ε (u -ψ)(ψ -ψ ) -ζ ε (u -ψ)(u -ψ ) 2 ≥ 0, u (T ) -u (T ) = ψ -ψ ≥ 0,
hence, by using again the Comparison principle, we deduce that u -u ≥ 0 which concludes the proof.

The proof of Theorem 2.3.1 is now almost immediate.

Proof of Theorem 2.3.1. Thanks to Proposition 2.3.4, the function u n is increasing in the y variable for all n ∈ N. Then, the assertion follows by using Proposition 2.3.3.

The American put price

From now on we focus our attention on the standard put option with strike price K and maturity T , that is we fix ϕ(s) = (K -s) + and we study the properties of the function

P (t, s, y) = sup τ ∈T t,T E[e -r(τ -t) (K -S t,s,y τ ) + ]. (2.4.11) 
The following result easily follows from (2.4.11).

Proposition 2.4.1. The price function P satisfies:

(i) (t, s, y) → P (t, s, y) is continuous and positive;

(ii) t → P (t, s, y) is nonincreasing;

(iii) y → P (t, s, y) is nondecreasing;

(iv) s → P (t, s, y) is nonincreasing and convex.

Proof. The proofs of 1. and 2. are classical and straightforward. As regards 3., we note that ϕ is convex and the function ψ(x) = (K -e x ) + belongs to the space W 1,2 (R, e -γ|x| ) for a γ > 1 but it is not regular enough to apply Proposition 2.3.1. However, we can use an approximation procedure. Indeed, thanks to density results and [66, Lemma 3.3], we can approximate the function ψ with a sequence of functions ψ n ∈ W 2,2 (R, e -γ|x| ) ∩ C 2 (R) such that ψ n -ψ n ≥ 0, so the assertion easily follows passing to the limit. 4. follows from the fact that ϕ(s) = (K -s) + is nonincreasing and convex.

Moreover, thanks to the Lipschitz continuity of the payoff function, we have the following result.

Proposition 2.4.2. The function x → u(t, x, y) is Lipschitz continuous while the function y → u(t, x, y) is Hölder continuous. If 2κθ ≥ σ 2 the function y → u(t, x, y) is locally Lipschitz continuous on (0, ∞).

Proof. It is easy to prove that, for every fixed t ≥ 0 and y, y ≥ 0 with y ≥ y ,

E Y y t -Y y t ≤ y -y .
(2.4.12)

Then, for (x, y), (x , y

) ∈ R × [0, ∞) we have |u(t, x, y) -u(t, x , y )| = sup θ∈T t,T E[e -r(θ-t) (K -e X t,x,y θ ) + ] -sup θ∈T t,T E[e -r(θ-t) (K -e X t,x ,y θ ) + ] ≤ sup θ∈T t,T E e -r(θ-t) (K -e X t,x,y θ ) + -e -r(θ-t) (K -e X t,x ,y θ ) + ≤ CE sup u∈[t,T ] |X t,x,y u -X t,x ,y u | ≤ C |x -x | + T t E[|Y t,y u -Y t,y y |]du + E sup s∈[t,T ] s t ( Y t,y u -Y t,y u )dW u ≤ C   |x -x | + T t E[|Y t,y u -Y t,y y |]du +   E sup s∈[t,T ] s t ( Y t,y u -Y t,y u )dW u 2   1 2    ≤ C   |x -x | + T t E[|Y t,y u -Y t,y u |]du + E T t (Y t,y u -Y t,y u )du 1 2   ≤ C T (|x -x | + |y -y |).
Now, recall that, if 2κθ ≥ σ 2 , the volatility process Y is strictly positive so we can apply Itô's Lemma to the square root function and the process Y t in the open set (0, ∞). We get

Y y t = √ y + t 0 1 2 Y y u dY y u - 1 2 t 0 1 4(Y y u ) 3 2 σ 2 Y y u du = √ y + κθ 2 - σ 2 8 t 0 1 Y y u du - κ 2 t 0 Y y u du + σ 2 W t .
Differentiating with respect to y (see also [START_REF] Ould Aly | Monotonicity of prices in Heston model[END_REF]) we deduce that ). Therefore, let us consider y, y ≥ a. Repeating the same calculations as before

Ẏ y t 2 Y y t = 1 2 √ y + κθ 2 - σ 2 8 t 0 - Ẏ y u 2(Y y u ) 3 2 du - κ 2 t 0 Ẏ y u 2 Y y u du ≤ 1 2 √
|u(t, x, y) -u(t, x, y )| ≤ C    T t E[|Y t,y u -Y t,y u |]du +   E sup s∈[t,T ] s t ( Y t,y u -Y t,y u )dW u 2   1 2    ≤ C   T t E[|Y t,y u -Y t,y u |]du + E T t ( Y t,y u -Y t,y u ) 2 du 1 2   = C    T t E[|Y t,y s -Y t,y s |]du +   E   T t du y y Ẏ t,w u 2 Y t,w u dw 2     1 2    ≤ C T   |y -y | + E T t 1 2 √ a |y -y | 2 du 1 2   ≤ C T |y -y |,
which completes the proof.

Remark 2.4.3. Studying the properties of the put price also clarifies the behaviour of the call price since it is straightforward to extend to the Heston model the symmetry relation between call and put prices. In fact, let us highlight the dependence of the prices with respect to the parameters K, r, δ, ρ, that is let us write

P (t, x, y; K, r, δ, ρ) = sup τ ∈T t,T E[e -r(τ -t) (K -S t,s,y τ ) + ],
for the put option price and

C(t, s, y; K, r, δ, ρ) = sup τ ∈T t,T E[e -r(τ -t) (S t,s,y τ -K) + ],
for the call option. Then, we have C(t, s, y; K, r, δ, ρ) = P (t, K, y; x, δ, r, -ρ).

In fact, for every τ ∈ T t,T , we have 

Ee -r(τ -t) se τ t r-δ- Y t,y s 2 ds+ τ t √ Y t,y s dBs -K + = Ee -δ(τ -t) e τ t √ Y t,
-K + = Êe -δ(τ -t) x-Ke τ t δ-r- Y t,y s 2 ds-τ t √ Y t,y s dBs + .
Under the probability P, the process (-B, W ) is a Brownian motion with correlation coefficient -ρ so that the assertion follows.

The exercise boundary

Let us introduce the so called continuation region

C = {(t, s, y) ∈ [0, T ) × (0, ∞) × [0, ∞) : P (t, s, y) > ϕ(s)}
and its complement, the exercise region

E = C c = {(t, s, y) ∈ [0, T ) × (0, ∞) × [0, ∞) : P (t, s, y) = ϕ(s)}.
Note that, since P and ϕ are both continuous, C is an (relative) open set while E is a closed set.

Generalizing the standard definition given in the Black and Scholes type models, we consider the critical exercise price or free exercise boundary, defined as

b(t, y) = inf{s > 0|P (t, s, y) > (K -s) + }, (t, y) ∈ [0, T ) × [0, ∞).
We have P (t, s, y) = ϕ(s) for s ∈ [0, b(t, y)) and also for s = b(t, y), due to the continuity of P and ϕ. Note also that, since P > 0, we have b(t, y) ∈ [0, K). Moreover, since P is convex, we can write

C = {(t, s, y) ∈ [0, T ) × (0, ∞) × [0, ∞) : s > b(t, y)} and E = {(t, s, y) ∈ [0, T ) × (0, ∞) × [0, ∞) : s ≤ b(t, y)}.
We now study some properties of the free boundary b We deduce by the definition of b that lim n→∞ b(t n , y) ≤ b(t, y) which concludes the proof.

: [0, T ) × [0, ∞) → [0, K). First
2. The second assertion can be proved with the same arguments, this time recalling that y → P (t, s, y) is a nondecreasing function.

Recall that b(t, y) ∈ [0, K). Indeed, we can prove the positivity of the function.

Proposition 2.4.5. We have b(t, y) > 0 for every (t, y)

∈ [0, T ) × [0, ∞).
Proof. Without loss of generality we can assume that 0 < t < T , since T is arbitrary and the put price is a function of T -t. Suppose that b(t * , y * ) = 0 for some (t * , y * ) ∈ (0, T ) × [0, ∞). Since b(t, y) ≥ 0, t → b(t, y) is nondecreasing and y → b(t, y) is nonincreasing, we have b(t, y) = 0 for (t, y) ∈ (0, t * ) × (y * , ∞), so that

P (t, s, y) > ϕ(s), (t, s, y) ∈ (0, t * ) × (0, ∞) × (y * , ∞).
To simplify the calculations, we pass to the logarithm in the space variable and we consider the functions u(t, x, y) = P (t, e x , y) and ψ(x) = ϕ(e x ). We have u(t, x, y) > ψ(x) and

(∂ t + L -r)u = 0 on (0, t * ) × R × (y * , ∞),
where L was defined in (2.2.4). Since t → u(t, x, y) is nondecreasing, we deduce that, for t ∈ (0, t * ), ( L-r)u = -∂ t u ≥ 0 in the sense of distributions. Therefore, for any nonnegative and C ∞ test functions θ, φ and ζ which have support respectively in (0, t * ), (-∞, ∞) and (y * , ∞), we have

t * 0 θ(t)dt ∞ -∞ dx ∞ y * dy Lu(t, x, y)φ(x)ζ(y) ≥ r t * 0 θ(t)dt ∞ -∞ dx ∞ y * dy(K-e x )φ(x)ζ(y),
or equivalently, by the continuity of the integrands in t, As regards the left hand side of (2.4.14), we have

∞ -∞ dx ∞ y * dy Lu(t, x, y)φ(x)ζ(y) ≥ r ∞ -∞ dx ∞ y * dy(K -e x )φ(x)ζ(y). ( 2 
+∞ -∞ dx ∞ y * Lu(t, x, y)φ(x)ζ(y)dy = +∞ -∞ dx ∞ y * y 2 ∂ 2 u ∂x 2 (t, x, y) + 2ρσ ∂ 2 u ∂x∂y (t, x, y) + σ 2 ∂ 2 u ∂y 2 (t, x, y) λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy + +∞ -∞ dx ∞ y * r -δ - y 2 ∂u ∂x (t, x, y) + κ(θ -y) ∂u ∂y (t, x, y) λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy.
We first study the second order derivatives term. Integrating by parts two times we have

+∞ -∞ dx ∞ y * y 2 ∂ 2 ∂x 2 u(t, x, y)λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy = +∞ -∞ dx ∞ y * y 2 u(t, x, y)λ 3 χ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy = λ 3 2 +∞ -∞ dx ∞ 0 1 2 y + √ λy * u t, x λ , y √ λ + y * χ 1 (x)χ 2 (y)dy.
Since u is bounded and χ 2 has support in [0, 1], the last term goes to 0 as λ tends to 0. For the mixed derivative term, since

χ 2 (0) = 0, +∞ -∞ dx ∞ y * ρσy ∂ 2 ∂x∂y u(t, x, y)λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy = -ρσ +∞ -∞ dx ∞ y * y ∂ ∂y u(t, x, y)λ 2 χ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy = ρσ +∞ -∞ dx ∞ y * u(t, x, y)λ 2 χ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy + ρσ +∞ -∞ dx ∞ y * u(t, x, y)λ 2 χ 1 (λx)λχ 2 ( √ λ(y * -y))dy = λρσ +∞ -∞ dx ∞ 0 u t, x λ , y √ λ + y * χ 1 (x)χ 2 (y)dy + λ 3 2 ρσ +∞ -∞ dx ∞ 0 u t, x λ , y √ λ + y * χ 1 (x)χ 2 (y)dy,
which goes to 0 as λ tends to 0 with the same arguments as before.

Moreover, integrating by parts two times, we have

+∞ -∞ dx ∞ y * y 2 σ 2 ∂ 2 ∂y 2 u(t, x, y)λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy = - +∞ -∞ dx ∞ y * σ 2 2 ∂ ∂y u(t, x, y)λχ 1 (λx) √ λχ 2 ( √ λ(y -y * )) + yλχ 2 ( √ λ(y -y * )) dy = +∞ -∞ dx ∞ y * σ 2 2 u(t, x, y) 2λχ 1 (λx)λχ 2 ( √ λ(y -y * )) dy = √ λσ 2 +∞ -∞ dx ∞ 0 u t, x λ , y √ λ + y * χ 1 (x) λχ 2 (y) + 1 2 λ
the first order derivatives of u. First, note that

+∞ -∞ dx ∞ y * r -δ - y 2 ∂ ∂x u(t, x, y)λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy = - +∞ -∞ dx ∞ y * r -δ - y 2 u(t, x, y)λ 2 χ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy = - √ λ +∞ -∞ dx ∞ 0 √ λr - √ λδ - 1 2 y + √ λy * u t, x λ , y √ λ + y * χ 1 (x)χ 2 (y)dy.
Again, passing to the limit, the last term tends to 0. On the other hand,

+∞ -∞ dx ∞ y * κ(θ -y) ∂ ∂y u(t, x, y)λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy = +∞ -∞ dx ∞ y * κθ ∂ ∂y u(t, x, y)λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy - +∞ -∞ dx ∞ y * κy ∂ ∂y u(t, x, y)λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy.
Integrating by parts and doing the usual change of variables we have As regards the regularity of the free boundary, we can prove the following result.

+∞ -∞ dx ∞ y * κθ ∂ ∂y u(t, x, y)λχ 1 (λx) √ λχ 2 ( √ λ(y -y * ))dy = - √ λ +∞ -∞ dx ∞ 0 κθu t, x λ , y √ λ + y * χ 1 (x)
Proposition 2.4.6. For any t ∈ [0, T ) there exists a countable set

N ⊆ (0, ∞) such that b(t -, y) = b(t, y), y ∈ (0, ∞) \ N .
Proof. Without loss of generality we pass to the logarithm in the s-variable and we prove the assertion for the function b(t, y) = ln b(t, y). Fix t ∈ [0, T ) and recall that y → b(t, y) is a nonincreasing function, so it has at most a countable set of discontinuity points. Let y * ∈ (0, ∞) be a continuity point for the maps y → b(t, y) and y → b(t -, y) and assume that b(t -, y * ) < b(t, y * ).

(2.4.17)

Set = b(t,y * )-b(t -,y * ) 2
. By continuity, there exist y 0 , y 1 > 0 such that for any y ∈ (y 0 , y 1 Therefore, by using (2.4.17), we get, for any y ∈ (y 0 , y 1 ), By the continuity of the integrands in t, we deduce that ( L -r)u(t, •, •) ≥ 0 in the sense of distributions on the set (b -, b + ) × (y 0 , y 1 ). On the other hand, for any (s, x, y) ∈ (t, T ) × (b -, b + ) × (y 0 , y 1 ), we have x ≤ b(t, y) ≤ b(s, y), so that u(s, x, y) = ψ(x). Therefore, it follows from ∂u ∂t + ( L -r)u ≤ 0 and the continuity of the integrands that ( L-r)u(t•, •) = ( L-r)ψ(•) ≤ 0 in the sense of distributions on the set (b -, b + ) × (y 0 , y 1 ).

b(t, y) > b(t, y * ) - 4 > b(t -, y * ) + 3 4 > b(t -, y * ) + 4 > b(t -, y).
We deduce that ( L -r)ψ = 0 on the set (b -, b + ) × (y 0 , y 1 ), but it is easy to see that ( L-r)ψ(x) = ( L-r)(K -e x ) = δe x -rK and thus cannot be identically zero in a nonempty open set.

Remark 2.4.7. It is worth observing that the arguments used in [START_REF] Villeneuve | Exercise Regions of American Options on Several Assets[END_REF] in order to prove the continuity of the exercise price of American options in a multidimensional Black and Scholes model can be easily adapted to our framework. In particular, if we consider the t-sections of the exercise region, that is

E t = {(s, y) ∈ (0, ∞) × [0, ∞) : P (t, s, y) = ϕ(s)}, = {(s, y) ∈ (0, ∞) × [0, ∞) : s ≤ b(t, y)}, t ∈ [0, T ), (2.4.18) 
we can easily prove that

E t = u>t E u , E t = u<t E u . (2.4.19)
However, unlike the case of an American option on several assets, in our case (2.4. [START_REF] Bensoussan | Applications of variational inequalities in stochastic control[END_REF]) is not sufficient to deduce the continuity of the function t → b(t, y).

Strict convexity in the continuation region

We know that P is convex in the space variable (see Proposition 2.4.1). In [START_REF] Touzi | American options exercise boundary when the volatility changes randomly[END_REF] it is also proved that, in the case of non-degenerate stochastic volatility models, P is strictly convex in the continuation region but the proof follows an analytical approach which cannot be applied in our degenerate model. In this section we extend this result to the Heston model by using purely probabilistic techniques.

We will need the following Lemma, whose proof can be found in the Appendix.

Lemma 2.4.8. For every continuous function s : [0, T ] → R such that s(0) = S 0 and for every > 0 we have

P sup t∈[0,T ] |S t -s(t)| < , sup t∈[0,T ] |Y t -Y 0 | < > 0.
Theorem 2.4.9. The function s → P (t, s, y) is strictly convex in the continuation region.

Proof. Without loss of generality we can assume t = 0. We have to prove that, if (s 1 , y), (s 2 , y) ∈ (0, ∞) × [0, ∞) are such that (0, s 1 , y), (0, s 2 , y) ∈ C, then

P (0, θs 1 + (1 -θ)s 2 , y) < θP (0, s 1 , y) + (1 -θ)P (0, s 2 , y). (2.4.20)
Let us rewrite the price process as S s,y t = se

t 0 (r-δ-Yu 2 )du+ t 0 σ √ YudBu := sM y t
, where M y t = S 1,y t and assume that, for example, s 1 > s 2 . We claim that it is enough to prove that, for ε > 0 small enough,

P (θs 1 + (1 -θ)s 2 )M y t > b(t, Y t ) ∀t ∈ [0, T ) & (θs 1 + (1 -θ)s 2 )M y T ∈ (K -ε, K + ε) > 0. (2.4.21)
In fact, let τ * be the optimal stopping time for P (0, θs 1 +(1-θ)s 2 , y). If (θs 1 +(1-θ)s 2 )M y t > b(t, Y t ) for every t ∈ [0, T ), then we are in the continuation region for all t ∈ [0, T ), hence τ * = T . Then, the condition (θs 1 + (1 -θ)s 2 )M y T ∈ (K -ε, K + ε) for ε > 0 small enough ensures on one hand that s 1 M y τ * > K, since

s 1 M y τ * = (θs 1 + (1 -θ)s 2 )M y τ * + (1 -θ)(s 1 -s 2 )M y τ * > K -ε + (1 -θ)(s 1 -s 2 )(K -ε) θs 1 + (1 -θ)s 2 > K,
for ε small enough. On the other hand, it also ensures that s 2 M y τ * < K, which can be proved with similar arguments. Therefore, we get

P ((K -s 1 M y τ * ) + = 0 & (K -s 2 M y τ * ) + > 0) > 0,
which, from a closer look at the graph of the function x → (K -x) + , implies that

E[e -rτ * (K -(θs 1 + (1 -θ)s 2 )M y τ * ) + ] < θE[e -rτ * (K -s 1 M y τ * ) + ] + (1 -θ)E[e -rτ * (K -s 2 M y τ * ) + ],
and, as a consequence, (2.4.20). So, the rest of the proof is devoted to prove that (2.4.21) is actually satisfied.

With this aim, we first consider a suitable continuous function m : [0, T ] → R constructed as follows. In order to simplify the notation, we set s = θs 1 + (1 -θ)s 2 . Note that, for ε > 0 small enough, we have s = θs 1 + (1 -θ)s 2 > b(0, y) + ε since (0, s 1 , y) and (0, s 2 , y) are in the continuation region C, that is s 1 , s 2 ∈ (b(0, y), ∞). By the right continuity of the map t → b(t, y), we know that there exists t ∈ (0, T ) such that s > b(t, y) + ε 2 for any t ∈ [0, t]. Moreover the function y → b( t, y) is left continuous and nonincreasing, so there exists η ε > 0 such that s > b( t, z) + ε 4 for any z ≥ y -η ε . Assume now that s ≤ K + ε 2 and set

m(t) =    1 + t t K+ ε 2 s -1 , 0 ≤ t ≤ t, K+ ε 2 s , t ≤ t ≤ T.
Note that m is continuous, m(0) = 1 and, recalling that t → b(t, y) is nondecreasing and b(t, y) < K,

sm(t) =    s + t t K + ε 2 -s ≥ s > b( t, y -η ε ) + ε 4 , 0 ≤ t ≤ t, K + ε 2 ≥ b(t, y -η ε ), t ≤ t ≤ T.
Moreover, by Lemma 2.4.8, we know that, for any > 0,

P sup t∈[0,T ] |sM y t -sm(t)| < , sup t∈[0,T ] |Y t -y| < > 0.
Therefore, by applying Lemma 2.4.8 with = min ε 8 , η ε , we have that, with positive probability, sM y t > sm(t) -

ε 8 ≥ b(t, y -η ε ) + ε 8 ≥ b(t, Y t ).
and sM y T ≤ sm(T ) +

ε 8 ≤ K + ε, sM y T ≥ sm(T ) - ε 8 ≥ K -ε,
which proves (2.4.21) concluding the proof. If s > K + ε 2 , then it is enough to take m(t) as a nonincreasing continuous function such that m(0) = 1 and sm(T ) = K + ε 2 . Then, the assertion follows with the same reasoning.

Early exercise premium

We now extend to the stochastic volatility Heston model a well known result in the Black and Scholes world, the so called early exercise premium formula. It is an explicit formulation of the quantity P -P e , where P e = P e (t, s, y) is the European put price with the same strike price K and maturity T of the American option with price function P = P (t, s, y).

Therefore, it represents the additional price you have to pay for the possibility of exercising before maturity. The proof of Proposition 2.4.10 relies on purely probabilistic techniques and is based on the results first introduced in [START_REF] Jacka | Local times, optimal stopping and semimartingales[END_REF]. Let U t = e -rt P (t, S t , Y t ) and Z t = e -rt ϕ(S t ). Since U t is a supermartingale, we have the Snell decomposition

U t = M t -A t , (2.4.22) 
where M is a martingale and A is a nondecreasing predictable process with A 0 = 0, continuous with probability 1 thanks to the continuity of ϕ. On the other hand,

Z t = e -rt (K -S t ) + = Z 0 -r t 0 e -rs (K -S s ) + ds - t 0 e -rs 1 {Ss≤K} dS s + t 0 e -rs dL K s (S) = m t + a t ,
where

L K t (S) is the local time of S in K, m t = Z 0 - t 0 e -rs 1 {Ss≤K} S s Y s dB s
is a local martingale, and

a t = -r t 0 e -rs (K -S s ) + ds - t 0 e -rs 1 {Ss≤K} S s (r -δ)ds + t 0 e -rs dL K s (S)
is a predictable process with finite variation and a 0 = 0. Recall that a t can be written as the sum of an increasing and a decreasing component, that is a t = a + t + a - t . Since (L K t ) t is increasing, we deduce that the decreasing process (a - t ) t is absolutely continuous with respect to the Lebesgue measure, that is

da - t dt.
We denote by k t = k(t, S t , Y t ) the density of a - t w.r.t. dt. We now define

ζ t = U t -Z t ≥ 0.
Thanks to Tanaka's formula,

ζ t = ζ + t = ζ 0 + t 0 1 {ζs>0} dζ s + 1 2 L 0 t (ζ),
where L 0 t (ζ) is the local time of ζ in 0. Therefore,

ζ t = ζ 0 + t 0 1 {ζs>0} d(U s -Z s ) + 1 2 L 0 t (ζ) = ζ 0 + t 0 1 {ζs>0} dM s - t 0 1 {ζs>0} dm s - t 0 1 {ζs>0} da s + 1 2 L 0 t (ζ),
where the last equality follows from the fact that the process A t only increases on the set {ζ t = 0}. Then, we can write

U t = U 0 + Mt - t 0 1 {ζs>0} da s + 1 2 L 0 t (ζ) + a t = U 0 + Mt + t 0 1 {ζs=0} da s + 1 2 L 0 t (ζ),
where Mt =

t 0 1 {ζs>0} d(M s -m s ) + m t is a local martingale.
Thanks to the continuity of U t we have the uniqueness of the decompositions, so 

-A t = t 0 1 {ζs=0} da s + 1 2 L 0 t (ζ). ( 2 
1 {ζt=0} da - t dt.
We define µ t the density of 1 2 L 0 t (ζ) w.r.t. dt and, by Motoo Theorem (see [START_REF] Dellacherie | Probabilités et potentiel[END_REF]), we can write µ t = µ(S t , Y t ). Moreover, let us consider the t-sections of the exercise region defined in (2.4.18). We can easily prove the following Lemma.

Lemma 2.4.11. For any t ∈ [0, T ) we have

E t = Et , and Et = {(s, y) ∈ (0, ∞) × [0, ∞) : 0 < s < b(t, y + )} = ∅, where b(t, y + ) = lim y→y + b(t, y).
The proof is given in the Appendix for the sake of completeness. Now, let us prove the following preliminary result.

Lemma 2.4.12. The local time L 0 t (ζ) is indistinguishable from 0.

Proof. In order to simplify the notation, we set L 0 t = L 0 t (ζ) in this proof. We want to prove that

L 0 t = t 0 1 {ζs=0} dL 0 s = 0.
Note that, for a = 0, we have 

O = {s ∈ (0, t) | ∃ > 0, ∀τ ∈ (s -, s + ) ζ τ = 0}.
We note that

O ⊆ O, (2.4.24) 
where O = {s ∈ (0, t) | S s < j(s, Y s )}, with j(s, y) = sup τ <s,ζ>y b(τ, s).

In fact, if S s < j(s, Y s ), there exists τ < s and ζ > Y s such that S s < j(τ, ζ). By the continuity of the trajectories, there exists > 0 such that

S θ < b(τ, ζ), θ ∈ (s -ε, s + ε).
Therefore, for θ ∈ (s -ε, s + ε) and θ near enough to s, we have which concludes the proof.

We can now prove Proposition 2.4.10.

Proof of Proposition 2.4.10. Thanks to (2.4.23) and Proposition 2.4.12 we can rewrite (2.4.22) as

U t = M t + t 0 1 {Us=Zs} da s = M t + t 0 e -rs (L -r)ϕ(S s )1 {Ss≤b(s,Ys)} ds,
where the last equality derives from the application of the Itô formula to the discounted payoff Z. In particular, we have

U 0 = M 0 = E[M T ] = E[U T ] -E T 0 e -rs (L -r)ϕ(S s )1 {Ss≤b(s,Ys)} ds = E[U T ] - T 0 e -rs E[(δS s -rK)1 {Ss≤b(s,Ys)} ]ds.
The assertion follows recalling that U 0 = P (0, S 0 , Y 0 ) and

E[U T ] = E[Z T ] = E[e -rT (K - S T ) + ]
, which corresponds to the price P e (0, S 0 , Y 0 ) of an European put with maturity T and strike price K.

Smooth fit

In this section we analyse the behaviour of the derivatives of the value function with respect to the s and y variables on the boundary of the continuation region. In other words, we prove a weak formulation of the so called smooth fit principle.

In order to do this, we need two technical lemmas whose proofs can be found in the appendix. The first one is a general result about the behaviour of the trajectories of the CIR process.

Lemma 2.4.13. For all y ≥ 0 we have, with probability one,

lim sup t↓0 Y y t -y 2t ln ln(1/t) = -lim inf t↓0 Y y t -y 2t ln ln(1/t) = σ √ y.
The second one is a result about the behaviour of the trajectories of a standard Brownian motion.

Lemma 2.4.14. Let (B t ) t≥0 be a standard Brownian motion and let (t n ) n∈N be a deterministic sequence of positive numbers with lim n→∞ t n = 0. We have, with probability one,

lim inf n→∞ B tn √ t n = -∞ (2.4.25)
We are now in a position to prove the following smooth fit result. Proof. The general idea of the proof goes back to [START_REF] Bather | Optimal stopping problems for Brownian motion[END_REF] for the Brownian motion (see also [START_REF] Peskir | Optimal Stopping and Free-Boundary Problem[END_REF]Chapter 4]). Without loss of generality we can fix t = 0. Note that, for h > 0, since b(0, y) -h ≤ b(0, y), we have

P (0, b(0, y) -h, y) -P (0, b(0, y), y) h = ϕ(b(0, y) -h) -ϕ(b(0, y)) h ,
so that, since ϕ is continuously differentiable near b(0, y), ∂ - ∂s P (0, b(0, y), y) = ϕ (b(0, y)). On the other hand, for h > 0 small enough, since P ≥ ϕ and P (0, b(0, y), y) = ϕ(b(0, y)), we get Now, for the other inequality, we consider the optimal stopping time related to P (0, b(0, y)+ h, y), i.e.

P (0, b(0, y) + h, y) -P (0, b(0, y), y) h ≥ ϕ(b(0, y) + h) -ϕ(b(0, y)) h ,
τ h = inf{t ∈ [0, T ) | S 0,b(0,y)+h,y t < b(t, Y y t )} ∧ T = inf t ∈ [0, T ) | M y t ≤ b(t, Y y t ) b(0, y) + h ∧ T,
where M y t = S 1,y t . Recall that P (0, b(0, y), y) ≥ E e -rτ h ϕ(b(0, y)M y τ h ) , so we can write 

P (0, b(0, y) + h, y) -P (0, b(0, y), y) h = E (e -rτ h ϕ((b(0, y) + h)M y τ h ) -P (0, b(0, y), y) h ≤ E e -rτ h ϕ ((b(0, y) + h)M y τ h ) -ϕ (b(0, y)M y τ h ) h .

Assume for the moment that lim

, y) + h)M y τ h ) -ϕ(b(0, y)M y τ h ) h = ϕ (b(0, y)). Moreover, recall that M y τ h ≤ b(t,Y y t )
b(0,y)+h ≤ K b(0,y) if τ h < T and M y τ h = M y T if τ h = T . Therefore, by using the fact that ϕ is Lipschitz continuous and the dominated convergence, we obtain lim sup h↓0 P (0, b(0, y) + h, y) -P (0, b(0, y), y) h ≤ ϕ (b(0, y)) 

and
M y t < b(0, y) b(0, y) + h ≤ b(t, Y y t ) b(0, y) + h , so that τ h ≤ inf t ≥ 0 | M y t < b(0, y) b(0, y) + h & Y y t = y . (2.4.27)
We now show that we can find a sequence t n ↓ 0 such that Y y tn = 0 and M y tn < 1. First, recall that with a standard transformation we can write

   dSt St = (r -δ)dt + √ Y t ( 1 -ρ 2 d Wt + ρdW t ), S 0 = s > 0, dY t = κ(θ -Y t )dt + σ √ Y t dW t , Y 0 = y ≥ 0, (2.4.28) 
where W is a standard Brownian motion independent of W . Set Λ y t = ln M y t . We deduce from Lemma 2.4.13 that there exists a sequence t n ↓ 0 such that Y y tn = y P y -a.s. . Therefore, from (2. We deduce that, up to extract a subsequence of t n , we have Λ y tn < 0 and, as a consequence, M y tn < 1. Therefore, for any any fixed n, there exists h small enough such that M y tn < b(0,y) b(0,y)+h so that, by definition, τ h ≤ t n . We conclude the proof passing to the limit as n goes to infinity.

As regards the derivative with respect to the y variable, we have the following result. Proof. Again we fix t = 0 with no loss of generality. Since y → P (t, s, y) in nondecreasing, for any h > 0 we have P (0, b(0, y), y -h) ≤ P (0, b(0, y), y) = ϕ(b(0, y)) so that P (0, b(0, y), y -h) = ϕ(b(0, y)). Therefore, P (0, b(0, y), y -h) -P (0, b(0, y), y) h = 0, hence ∂ - ∂y P (0, b(0, y), y) = 0. On the other hand, since y → P (t, x, y) is nondecreasing, for any h > 0 we have lim inf

h↓0 P (0, b(0, y), y + h) -P (0, b(0, y), y) h ≥ 0,
To prove the other inequality, we consider the stopping time related to P (0, b(0, y), y + h), that is We have

τ h = inf t ∈ [0, T ) | S 0,b(0,y),y+h t < b(t, Y y+h t ) ∧T = inf t ∈ [0, T ) | M y+h t < b(t, Y
P (0, b(0, y), y + h) -P (0, b(0, y), y) h = E e -rτ h ϕ b(0, y)M y+h τ h -P (0, b(0, y), y) h ≤ E   e -rτ h ϕ b(0, y)M y+h τ h -ϕ(b(0, y)M y τ h ) h   ≤ K E M y+h τ h -M y τ h h , (2.4.30) 
where the last inequality follows from the fact that ϕ is Lipschitz continuous and b(0, y) ≤ K. Now, if the Feller condition 2κθ ≥ σ 2 is satisfied, we can write 

M y+h t -M y t = y+h y   t 0 Ẏ ζ s 2 Y ζ s dB s - 1 2 t 0 Ẏ ζ s ds   e (r-
P (0, b(0, y), y + h) -P (0, b(0, y), y) h ≤ e rT K h y+h y dζ Ê   τ h 0 Ẏ ζ s 2 Y ζ s d Ŵs   ≤ e rT K h y+h y dζ  Ê   τ h 0   Ẏ ζ s 2 Y ζ s   2 ds     1/2 ≤ e rT K h y+h y 1 2 √ ζ Ê[ √ τ h ]dζ
which tends to 0 as h tends to 0. Therefore, as in the proof of Proposition 2.4.15, it remains to prove that lim h↓0 τ h = 0. In order to do this, we can proceed as follows. Again, set Λ y t = ln(M y t ) = (r -δ)t -

1 2 t 0 Y y s ds + t 0 Y y s dW s , so that τ h = inf t ∈ [0, T ) | Λ y+h t ≤ ln b(t, Y y+h t ) b(0, y) ∧ T.
We deduce from Lemma (2.4.13) that, almost surely, there exist two sequences (t n ) n and ( tn ) n which converge to 0 with 0 < t n < tn and such that Y y tn = y, and, for t ∈ (t n , tn ), Y t < y.

In fact, it is enough to consider a sequence ( tn ) n such that lim n→∞ tn = 0 and Y tn < y and define t n = sup{t ∈ [0, tn ) | Y y t = y}. Proceeding as in the proof of Proposition 2.4.15, up to extract a subsequence we can assume Λ y tn < 0.

On the other hand, up to extract a subsequence of h converging to 0, we can assume that, almost surely, lim

h↓0 sup t∈[0,T ] Y y+h t -Y y t = lim h↓0 sup t∈[0,T ] Λ y+h t -Λ y t = 0.
Now, let us fix n ∈ N. For h small enough, there exists δ > 0 such that

Λ y+h t < 0, t ∈ (t n -δ, t n + δ).
Then, for any tn ∈ (t n -δ, t n + δ) ∩ (t n , tn ), we have at the same time Λ y+h 

Appendix: some proofs

We devote the appendix to the proof of some technical results used in this chapter.

Proofs of Section 2.3

Proof of Lemma 2.3.2.

Consider 1 > a 1 > a 2 > • • • > a m > • • • > 0 defined by 1 a 1 1 u du = 1, . . . , a m-1 am 1 u du = m, . . . .
We have that a m tends to 0 as m tends to infinity. Let (η m ) m≥1 , be a family of continuous functions such that

supp η m ⊆ (a m , a m-1 ), 0 ≤ η m (u) ≤ 2 um , a m-1 am η m (u)du = 1.
Moreover, we set

φ m (x) := |x| 0 dy y 0 η m (u)du, x ∈ R. It is easy to see that φ m ∈ C 2 (R), |φ m | ≤ 1 and φ m (x) ↑ |x| as m → ∞. Fix t ∈ [0, T ].
Applying Itô's formula and passing to the expectation we have, for any m ∈ N,

E[φ m (Y n t -Y t )] = κ t 0 E φ m (Y n s -Y s )(Y s -f 2 n (Y n s )) ds + σ 2 2 t 0 E φ m (Y n s -Y s )(f n (Y n s ) -Y s ) 2 ds (2.5.31)
Let us analyse the right hand term in (2.5.31). Since |φ m | ≤ 1, we have

κ t 0 E φ m (Y n s -Y s )(Y s -f 2 n (Y n s )) ds ≤ κ t 0 E |f 2 n (Y n s ) -Y n s | ds + κ t 0 E [|Y n s -Y s |] ds
On the other hand,

σ 2 2 t 0 E φ m (Y n s -Y s )(f n (Y n s ) -Y s ) 2 ds ≤ σ 2 t 0 E |φ m (Y n s -Y s )|(f n (Y n s ) -Y n s ) 2 ]ds + σ 2 t 0 E |φ m (Y n s -Y s )|( Y n s -Y s ) 2 ds ≤ σ 2 t 0 E 2 m|Y n s -Y s | (f n (Y n s ) -Y n s ) 2 1 {am≤Y n s -Ys≤a m-1 } ]ds + σ 2 t 0 E 2 m|Y n s -Y s | |Y n s -Y s | ds ≤ 2σ 2 ma m t 0 E (f n (Y n s ) -Y n s ) 2 ]ds + 2σ 2 t m .
Observe that, if |x| ≥ a m-1 ,

φ m (x) ≥ |x| a m-1 dy = |x| -a m-1 .
Therefore, for any m large enough,

E[|Y n t -Y t |] ≤ κ t 0 E[|Y n s -Y s |]ds + κ t 0 E |f 2 n (Y n s ) -Y n s | ds + 2σ 2 ma m t 0 E (f n (Y n s ) -Y n s ) 2 ]ds + 2σ 2 t m + a m-1 .
Recall that f n (y) → f (y) ≡ y locally uniformly and that Y n has continuous paths. Moreover, since f 2 n (x) ≤ A(|x| + 1) with A independent of n, it is easily to see that for any p > 1 there exists C > 0 independent of n such that

E sup t∈[0,T ] |Y n t | p ≤ C. (2.5.32)
Therefore, by using Lebesgue's Theorem and recalling that lim m→∞ a m = 0, we deduce that for any δ > 0 it is possible to choose n such that for every n ≥ n

E[|Y n t -Y t |] < C t 0 E[|Y n s -Y s |] + δ.
We can now apply Gronwall's inequality and we deduce that

E[|Y n t -Y t |] < δe Ct , so that lim n→∞ E[|Y n t -Y t |] = 0 (2.5.33)
from the arbitrariness of δ.

Now, note that sup t∈[0,T ] |Y n t -Y t | ≤ κ T 0 |Y s -Y n s |ds + sup t∈[0,T ] t 0 ( Y s -f n (Y n s ))dW s (2.5.34)
The first term in the right hand side of (2.5.34) converges to 0 in probability thanks to (2.5.33), so it is enough to prove that the second term converges to 0. We have

E sup t∈[0,T ] t 0 ( Y s -f n (Y n s ))dW s ≤ T 0 E[| Y s -f n (Y n s )| 2 ]ds 1 2 (2.5.35) 
and

E | Y s -f n (Y n s )| 2 ≤ 2E | Y s -Y n s | 2 + 2E | Y n s -f n (Y n s )| 2 ≤ 2E [|Y s -Y n s |] + 2E | Y n s -f n (Y n s )| 2 .
Therefore, we can conclude that (2.5.35) tends to 0 as n goes to infinity by using (2.5.33) and the Lebesgue Theorem so that (2.5.38) is proved.

As regards (2.3.6), for every n ∈ N we have

X n t = x + t 0 r -δ - f 2 n (Y n s ) 2 ds + t 0 f n (Y n s )dB s , so that sup t∈[0,T ] |X n t -X t | ≤ 1 2 T 0 |f 2 n (Y n s ) -Y s |ds + sup t∈[0,T ] t 0 (f n (Y n s ) -Y s )dB s . (2.5.36)
It is enough to show that the two terms in the right hand side of (2.5.36) converge to 0 in probability.

Concerning the first term, note that, since Y has continuous paths, for every ω ∈ Ω, Y [0,T ] (ω) is a compact set and K := {x|d(x, Y [0,T ] ) ≤ 1} is compact as well. For n large enough, Y n lies in K, so

T 0 |f 2 n (Y n s ) -f 2 (Y s )|ds ≤ T 0 |f 2 n (Y n s ) -f 2 (Y n s )|ds + T 0 |f 2 (Y n s ) -f 2 (Y s )|ds,
which goes to 0 as n tends to infinity, since f 2 n → f 2 locally uniformly and f 2 is a continuous function.

On the other hand, for the second term in the right hand side of (2.5.36), we have

E sup t∈[0,T ] t 0 f (Y n s ) -Y s dW s ≤ T 0 E[(f (Y n s ) -Y s ) 2 ]ds 1 2
and we can prove with the usual arguments that the last term goes to 0.

Proofs of Section 2.4

Proofs of Lemma 2.4.8. To simplify the notation we pass to the logarithm and we prove the assertion for the pair (X, Y ). We can get rid of the correlation between the Brownian motions with a standard transformation, getting

   dX t = (r -δ -1 2 Y t )dt + √ Y t ( 1 -ρ 2 d Wt + ρdW t ), X 0 ∈ R, dY t = κ(θ -Y t )dt + σ √ Y t dW t , Y 0 ≥ 0,
where W is a standard Brownian motion independent of W . Moreover, from the SDE satisfied by Y we deduce

t 0 √ Y s dW s = 1 σ Y t -Y 0 - t 0 κ(θ -Y s )ds .
Conditioning with respect to Y , we reduce to prove that, for every continuous function m : [0, T ] → R such that m(0) = X 0 and for every > 0 we have

P sup t∈[0,T ] |X t -m(t)| < | Y > 0,
(2.5.37)

and

P sup t∈[0,T ] |Y t -Y 0 | < > 0. (2.5.38)
As regards (2.5.37), by using the Dubins-Schwartz Theorem, there exists a Brownian motion W such that

P sup t∈[0,T ] x + t 0 r -δ - Y s 2 - ρκ σ (θ -Y s ) ds + ρ σ (Y t -y) + 1 -ρ 2 t 0 Y s d Ws -m(t) < | Y = P sup t∈[0,T ] 1 -ρ 2 t 0 Y s d Ws -m(t) < | Y = P sup t∈[0,T ] 1 -ρ 2 W t 0 Ysds -m(t) < | Y ,
where m(t) = m(t) -x -

t 0 r -δ -Ys 2 -ρκ σ (θ -Y s ) ds -ρ σ (Y t -y)
is a continuous function which, conditioning w.r.t. Y , can be considered deterministic. Then, (2.5.37) follows by the support theorem for Brownian motions.

In order to prove (2.5.38), we distinguish two cases. Assume first that Y 0 = y 0 > 0 and, for a ≥ 0, define the stopping time

T a = inf {t > 0 | Y t = a} .
Moreover, let us consider the function

η(y) =    √ y, if y > y 0 2 , √ y 0 2 if y ≤ y 0 2 ,
and the process ( Ỹt ) t∈[0,T ] , solution to the uniformly elliptic SDE

d Ỹt = κ(θ -Ỹt )dt + ση( Ỹt )dW t , Ỹ0 = Y 0 .
It is clear that Y t = Ỹt on the set t ≤ T y 0 2 so we have, if < y 0 2 ,

P sup t∈[0,T ] |Y t -Y 0 | < = P sup t∈[0,T ] | Ỹt -Y 0 | < ,
where the last inequality follows from the classical Support Theorem for uniformly elliptic diffusions (see, for example, [START_REF] Stroock | On the support of diffusion processes with applications to the strong maximal principle[END_REF]).

On the other hand, if we assume Y 0 = 0, then we can write

P sup t∈[0,T ] Y t < = P T 2 ≥ T + P T 2 < T, ∀t ∈ T 2 , T Y t < .
Now, if P T 2 < T > 0, we can deduce that the second term in the right hand side is positive using the strong Markov property and the same argument we have used before in the case with Y 0 = 0. Otherwise, P T 2 ≥ T = 1 which concludes the proof.

Proof of Lemma 2.4.11. Let us define Ẽt = {(s, y) ∈ (0, ∞) × [0, ∞) : s < b(t, y + )}. Note that Ẽt = ∅ since b > 0. We first show that Ẽt = E t . If (s, y) ∈ Ẽt , then s < b(t, y + ) ≤ b(t, y), since y → b(t, y) is nonincreasing. Therefore, Ẽt ⊆ E t so that, since E t is closed, Ẽt ⊆ E t .

On the other hand, let (s, y) ∈ E t and consider the sequence ((s n , y n )) n = ((s -1/n, y -1/n)) n . Then, (s n , y n ) → (s, y) and we prove that (s n , y n ) ∈ Ẽt , so that (s, y) ∈ Ẽt . In fact, for each n ∈ N, we can consider the sequence ((s n,k , y n,k )) k>n , = s -

1 n + 1 k , y -1 n + 1 k k>n . We have s n,k = s - 1 n + 1 k < s ≤ b(t, y) ≤ b t, y - 1 n + 1 k = b (t, y n,k ) .
Letting k tends to infinity, we get The assertion is equivalent to

s n < s ≤ b(t, y + n ), hence (s n , y n ) ∈ Ẽt ,
P lim sup n→∞ B tn √ t n ≤ c = 0, c > 0, that is P   m≥1 n≥m B tn √ t n ≤ c   = 0, c > 0.
Therefore, it is sufficient to prove that P n≥m Bt n √ tn ≤ c = 0 for every m ∈ N and c > 0. Take, for example, m = 1 and consider the random variables

Bt 1 √ t 1 and Bt n √ tn , for some n > 1. Then, B t 1 √ t 1 , B tn √ t n ∼ N (0, 1),
where N (0, 1) is the standard Gaussian law and

Cov B t 1 √ t 1 , B tn √ t n = t 1 ∧ t n √ t 1 t n < t 1 t n ,
which tends to 0 as n tends to infinity. We deduce that

P B t 1 √ t 1 ≤ c, B tn √ t n ≤ c → P(Z 1 ≤ c, Z 2 ≤ c) = P(Z 1 ≤ c) 2 ,
where Z 1 and Z 2 are independent with Z 1 , Z 2 ∼ N (0, 1). Take now m n ∈ N such that t mn > nt n . Then, we have

B t 1 √ t 1 , B tn √ t n , B tm n √ t mn ∼ N (0, 1)
and

Cov B t 1 √ t 1 , B tm n √ t mn , Cov B tn √ t n , B tm n √ t mn ≤ t n t mn .
which again tends to 0 ad n tends to infinity. Therefore, we have

P B t 1 √ t 1 ≤ c, B tn √ t n ≤ c, B tm n √ t mn ≤ c → P(Z 1 ≤ c) 3
with Z 1 ∼ N (0, 1). Iterating this procedure, we can find a subsequence (t n k ) k∈N such that t n k → ∞ and

P   k≥1 B tn k √ t n k ≤ c   = 0 which proves that lim sup n→∞ Bt n √ tn = +∞.
Chapter 3

Hybrid Monte Carlo and tree-finite differences algorithm for pricing options in the Bates-Hull-White model

Introduction

In this chapter, which is extracted from [START_REF] Briani | On a hybrid method using trees and finite-difference for pricing options in complex models[END_REF], we focus on the so called Bates-Hull-White model. Following the previous work in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF], we further develop and study the hybrid tree/finite-difference approach and the hybrid Monte Carlo technique in order to numerically evaluate option prices.

The Bates model [START_REF] Bates | Jumps and stochastic volatility: exchange rate processes implicit in Deutsch mark options[END_REF] is a stochastic volatility model with price jumps: the dynamics of the underlying asset price is driven by both a Heston stochastic volatility [START_REF] Heston | A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[END_REF] Hull-White. In the case of plain vanilla European options, Fourier inversion methods [START_REF] Carr | Option valuation using the Fast Fourier Transform[END_REF] lead to closed-form formulas to compute the price under the Bates model. Nevertheless, in the American case the numerical literature is limited. Typically, numerical methods
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simulation schemes for the CIR process have been introduced by Alfonsi [START_REF] Alfonsi | High order discretization schemes for the CIR process: Application to affine term structure and Heston models[END_REF]. Other methods are available in the literature, see e.g. [START_REF] Andersen | Efficient Simulation of the Heston Stochastic Yolatility Model[END_REF], but in this chapter the Alfonsi technique is the one we compare with. In fact, in our numerical experiments we also apply a hybrid Monte Carlo technique: we couple the simulation of the approximating tree for the volatility and the interest rate components with a standard simulation of the underlying asset price, which uses Brownian increments and a straightforward treatment of the jumps. In the case of American option, this is associated with the Longstaff and Schwartz algorithm [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF],

allowing to treat the dynamic programming principle.

As already observed in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF], roughly speaking our methods consist in the application of the most efficient method whenever this is possible: a recombining binomial tree for the volatility and the interest rate, a standard PIDE approach or a standard simulation technique in the direction of the asset price. The results of the numerical tests again support the accuracy of our hybrid methods and besides, we also justify the good behavior of the methods from the theoretical point of view (see also Chapter 4).

This chapter is devoted to present in detail the hybrid procedures introduced in [START_REF] Briani | On a hybrid method using trees and finite-difference for pricing options in complex models[END_REF] to compute functionals of the Bates jump model with stochastic interest rate. In particular, we consider a hybrid tree-finite differences procedure which uses a tree method in the direction of the volatility and the interest rate and a finite-difference approach in order to handle the underlying asset price process. We also propose hybrid simulations for the model, following a binomial tree in the direction of both the volatility and the interest rate, and a space-continuous approximation for the underlying asset price process coming from a Euler-Maruyama type scheme. As regards the theoretical analysis of the algorithm, we study here the stability properties of the procedure and we refer to Chapter 4 for an analysis of the rate of convergence of a generalization of this algorithm under quite general assumptions. We provide numerical experiments which show the reliability and the efficiency of the algorithms.

The chapter is organized as follows. In Section 3.2, we introduce the Bates-Hull-White model. In Section 3.3 we describe the tree procedure for the volatility and the interest rate pair (Section 3.3.1), we illustrate our discretization of the log-price process (Section 3.3.2)

and the hybrid Monte Carlo simulations (Section 3.3.3). Section 3.4 is devoted to the hybrid tree/finite-difference method: we first set the numerical scheme for the associated local PIDE problem (Section 3.4.1), then we apply it to the solution of the whole pricing scheme the Bates-Hull-White model (Section 3.4.2) and analyze the numerical stability of the resulting tree/finite-difference method (Section 3.4.3). Section 3.5 refers to the practical use of our methods and numerical results and comparisons are widely discussed.

The Bates-Hull-White model

We recall that in the Bates-Hull-White model the volatility is assumed to follow the CIR process and the underlying asset price process contains a further noise from a jump as introduced by Merton. Moreover, the interest rate follows a stochastic model, which we assume to be described by a generalized Ornstein-Uhlenbeck (hereafter OU) process. More precisely, the dynamics under the risk neutral measure of the share price S, the volatility process Y and the interest rate r, are given by the following jump-diffusion model:

dS t S t - = (r t -δ)dt + Y t dZ S t + dH t , dY t = κ Y (θ Y -Y t )dt + σ Y √ Y t dZ Y t , dr t = κ r (θ r (t) -r t )dt + σ r dZ r t , (3.2.1) 
where δ denotes the continuous dividend rate, S 0 , Y 0 , r 0 > 0, Z S , Z Y and Z r are correlated Brownian motions and H is a compound Poisson process with intensity λ and i.i.d. jumps

{J k } k , that is H t = Kt k=1 J k , (3.2.2)
K denoting a Poisson process with intensity λ. We assume that the Poisson process K, the jump amplitudes {J k } k and the 3-dimensional correlated Brownian motion (Z S , Z Y , Z r ) are independent. As suggested by Grzelak and Oosterlee in [START_REF] Grzelak | On the Heston model with stochastic interest rates[END_REF], the significant correlations are between the noises governing the pairs (S, Y ) and (S, r). So, as done in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF], we assume that the couple (Z Y , Z r ) is a standard Brownian motion in R 2 and Z S is a Brownian motion in R which is correlated both with Z Y and Z r :

d Z S , Z Y t = ρ 1 dt and d Z S , Z r t = ρ 2 dt.
We , ensuring that the process Y never hits 0. So, we allow the volatility Y to reach 0. The interest rate r t is described by a generalized OU process, in particular θ r is time-dependent but deterministic and fits the zero-coupon bond market values, for details see [START_REF] Brigo | Interest Rate Models -Theory and Practice[END_REF]. We write the process r as follows:

r t = σ r R t + ϕ t (3.2.3)
where

R t = -κ r t 0 R s ds + Z r t
and ϕ t = r 0 e -κrt + κ r t 0 θ r (s)e -κr(t-s) ds.

(3.2.4)

From now on we set

Z Y = W 1 , Z r = W 2 , Z S = ρ 1 W 1 + ρ 2 W 2 + ρ 3 W 3 ,
where W = (W 1 , W 2 , W 3 ) is a standard Brownian motion in R 3 and the correlation parameter ρ 3 is given by

ρ 3 = 1 -ρ 2 1 -ρ 2 2 , ρ 2 1 + ρ 2 2 ≤ 1.
By passing to the logarithm X = ln S in the first component, by taking into account the above mentioned correlations and by considering the process R as in (3.2.3)-(3.2.4), we reduce to the triple (X, Y, R) given by

dX t = µ X (Y t , R t , t)dt + √ Y t ρ 1 dW 1 t + ρ 2 dW 2 t + ρ 3 dW 3 t + dN t , X 0 = ln S 0 ∈ R, dY t = µ Y (Y t )dt + σ Y √ Y t dW 1 t , Y 0 > 0, dR t = µ R (R t )dt + dW 2 t , R 0 = 0, (3.2.5)
where We also recall that the Lévy measure associated with N is given by

µ X (y, r, t) = σ r r + ϕ t -δ - 1 2 y, (3.2.6) µ Y (y) = κ Y (θ Y -y), (3.2.7) µ R (r) = -κ r r, ( 3 
ν(dx) = λP(log(1 + J 1 ) ∈ dx),
and whenever log(1 + J 1 ) is absolutely continuous then ν has a density as well:

ν(dx) = ν(x)dx = λp log(1+J 1 ) (x)dx, (3.2.9)
p log(1+J 1 ) denoting the probability density function of log(1 + J 1 ). For example, in the Merton model [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF] it is assumed that log(1 + J 1 ) has a normal distribution, that is

log(1 + J 1 ) ∼ N (µ, η 2 ).
This is the choice we will do in our numerical experiments, as done in Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF].

But other jump-amplitude measures can be selected. For instance, in the Kou model [START_REF] Kou | A Jump-Diffusion Model for Option Pricing[END_REF] the law of log(1 + J 1 ) is a mixture of exponential laws:

p log(1+J 1 ) (x) = pλ + e -λ + x 1 {x>0} + (1 -p)λ -e λ -x 1 {x<0} ,
1 A denoting the indicator function of A. Here, the parameters λ ± > 0 control the decrease of the distribution tails of negative and positive jumps respectively, and p is the probability of a positive jump.

Given this framework, our aim is to numerically compute the price of options with maturity T and payoff given by a function of the underlying asset price process S. By passing to the transformation X = ln S, we assume that the payoff is a function of the log-price process: European payoff: Ψ(X T ),

American payoff: (Ψ(X t )) t∈[0,T ] ,
where Ψ ≥ 0. The option price function P (t, x, y, r) is then given by European price: P (t, x, y, r) = E e -T t (σrR t,r s +ϕs)ds Ψ(X (3.2.4). Hereafter, (X t,x,y,r , Y t,y , R t,r ) denotes the solution of the jump-diffusion dynamic (3.2.5) starting at time t in the point (x, y, r).

The dicretized process

We first set up the discretization of the triple (X, Y, R) we will take into account.

The 2-dimensional tree for (Y, R)

We consider an approximation for the pair (Y, R) on the time-interval [0, T ] by means of a 2-dimensional computationally simple tree. This means that we construct a Markov chain running over a 2-dimensional recombining bivariate lattice and, at each time-step, both components of the Markov chain can jump only upwards or downwards. We consider the "multiple-jumps" approach by Nelson and Ramaswamy [START_REF] Nelson | Simple binomial processes as diffusion approximations in financial models[END_REF]. A detailed description of this procedure and of the benefits of its use, can be found in [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF][START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]. Here, we limit the reasoning to the essential ideas and to the main steps in order to set-up the whole algorithm. We start by considering a discretization of the time-interval [0, T ] in N subintervals [nh, (n + 1)h], n = 0, 1, . . . , N , with h = T /N .

For the CIR volatility process Y , we consider the binomial tree procedure firstly introduced in [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF]. For n = 0, 1, . . . , N , consider the lattice

Y n = {y n k } k=0,1,...,n with y n k = Y 0 + σ Y 2 (2k -n) √ h 2 1 { √ Y 0 + σ Y 2 (2k-n) √ h>0} . (3.3.11)
Note that y 0 0 = Y 0 , so that Y h 0 = {Y 0 }. Moreover, the lattice is binomial recombining and, for n large, the "small" points degenerate at 0. Let us briefly recall how this lattice arises (see [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF] for all the details). The idea is to reduce to a process with a constant diffusion coefficient. So, let us consider the process Ŷt = √ Y t . If we (heuristically) apply Itô formula, we get that the dynamics of Ŷt is given by

d Ŷt = µ Ŷ ( Ŷt )dt + σ 2 dZ Y t ,
for a suitable drift coefficient µ Ŷ = µ Ŷ (y). The term σ 2 dB t gives the foremost contribution to the local movement of Ŷt . The standard binomial recombining tree for the Brownian motion lives on the lattice

σ 2 (2k -n) √ h, 0 ≤ k ≤ n ≤ N.
Coming back to Y , we get the lattice in (3.3.11). Note that the term 1

{ √ Y 0 + σ Y 2 (2k-n) √ h>0}
is inserted in order to deal with invertible functions. the Bates-Hull-White model

We now define the multiple "up" and "down" jumps: the discretized process can jump just on two nodes which in turn are not necessarily the closest ones to the starting node.

In particular, for each fixed y n k ∈ Y n , we define the "up" and "down" jump by y n+1 ku(n,k) and y n+1 k d (n,k) , k u (n, k) and k d (n, k) being respectively defined as

k u (n, k) = min{k * : k + 1 ≤ k * ≤ n + 1 and y n k + µ Y (y n k )h ≤ y n+1 k * }, (3.3.12) k d (n, k) = max{k * : 0 ≤ k * ≤ k and y n k + µ Y (y n k )h ≥ y n+1 k * } (3.3.13)
where µ Y is the drift of Y , defined in (3.2.6), and with the understanding 

k u (n, k) = n + 1, respectively k d (n, k) = 0, if
p Y u (n, k) = 0 ∨ µ Y (y n k )h + y n k -y n+1 k d (n,k) y n+1 ku(n,k) -y n+1 k d (n,k) ∧ 1 and p Y d (n, k) = 1 -p Y u (n, k) (3.3.14)
respectively. We recall that the multiple jumps and the transition probabilities are set in order to best fit the local first moment of the diffusion Y . We will see in Chapter 4 that this property will be crucial in order to study the theoretical convergence of the procedure.

We follow the same approach for the binomial tree for the process R. For n = 0, 1, . . . , N consider the lattice

R n = {r n j } j=0,1,...,n with r n j = (2j -n) √ h. (3.3.15)
Notice that r 0,0 = 0 = R 0 . For each fixed r n j ∈ R n , we define the "up" and "down" jump by means of j u (n, j) and j d (n, j) defined by

j u (n, j) = min{j * : j + 1 ≤ j * ≤ n + 1 and r n j + µ R (r n j )h ≤ r n+1 j * }, (3.3.16) j d (n, j) = max{j * : 0 ≤ j * ≤ j and r n j + µ R (r n j )h ≥ r n+1 j * }, (3.3.17)
µ R being the drift of the process R, see (3.2.8). As before, j u (n, j) = n + 1, respectively j d (n, j) = 0, if the set in the r.h.s. of (3.3.16), respectively (3.3.17), is empty and the transition probabilities are as follows: starting from the node (n, j), the probability that the process jumps to j u (n, j) and j d (n, j) at time-step n + 1 are set as

p R u (n, j) = 0 ∨ µ R (r n j )h + r n j -r n+1 j d (n,j) r n+1 ju(n,j) -r n+1 j d (n,j) ∧ 1 and p R d (n, j) = 1 -p R u (n, j) (3.3.18) the Bates-Hull-White model (Y t , R t ) t∈[0,T ] solution to dY t = µ Y (Y t )dt + σ Y Y t dW 1 t , Y 0 > 0, dR t = µ R (R t ) dt + dW 2 t , R 0 = 0.
This can be seen by using standard results (see e.g. the techniques in [START_REF] Nelson | Simple binomial processes as diffusion approximations in financial models[END_REF]) and the convergence of the chain approximating the volatility process proved in [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF]. And this holds independently of the validity of the Feller condition 2κ Y θ Y ≥ σ 2 Y . Details and remarks on the extension of this procedure to more general cases can be found in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]. In particular, if the correlation between the Brownian motions driving (Y, R) was not null, one could define the jump probabilities by matching the local cross-moment (see Remark 3.1 in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]).

The approximation on the X-component

We describe here how we manage the X-component in (3.2.5) by taking into account the tree procedure given for the pair (Y, R). We go back to (3.2.5): by isolating √ Y t dW 1 t in the second line and dW 2 t in the third one, we obtain (Y,R). Then, we insert the discretization ( Ȳ h , Rh ) for (Y, R) in the coefficients of (3.3.21). Therefore, the final process Xh approximating X is set as follows: Xh 0 = X 0 and for t ∈ (nh, (n + 1)h] with n = 0, 1, . . . , N -1

dX t = µ(Y t , R t , t)dt + ρ 3 Y t dW 3 t + ρ 1 σ Y dY t + ρ 2 Y t dR t + dN t (3.3.21) with µ(y, r, t) = µ X (y, r, t) -ρ 1 σ Y µ Y (y) -ρ 2 √ y µ R (r) = σ r r + ϕ t -δ -1 2 y -ρ 1 σ Y κ Y (θ Y -y) + ρ 2 κ
Xh t = Xh nh + µ( Ȳ h nh , Rh nh , nh)(t -nh) + ρ 3 Ȳ h t (W 3 t -W 3 nh ) + ρ 1 σ Y ( Ȳ h t -Ȳ h nh ) + ρ 2 Ȳ h t ( Rh t -Rh nh ) + (N t -N nh ). (3.3.23)
straightforward. So, we numerically compute the above expectation by means of the one done on the approximating processes, that is,

E f ( Xh (n+1)h ) | Xh nh = x, Ȳ h nh = y, Rh nh = r = E f ( Zh (n+1)h + ρ 1 σ Y ( Ȳ h (n+1)h -Ȳ h nh ) + ρ 2 Ȳ h nh ( Rh (n+1)h -Rh nh )) | Zh nh = x, Ȳ h nh = y, Rh nh = r ,
in which we have used the process Zh in (3.4.26). Since ( Ȳ h , Rh ) is independent of the Brownian noise W 3 and on the compound Poisson process N driving Zh in (3.4.27), we have the following: we set

Ψ f (ζ; x, y, r) = E(f ( Zh (n+1)h + ζ) | Zh nh = x, Ȳ h nh = y, Rh nh = r) (3.4.28)
and we can write

E(f ( Xh (n+1)h ) | Xh nh = x, Ȳ h nh = y, Rh nh = r) = E Ψ f ρ 1 σ Y ( Ȳ h (n+1)h -Ȳ h nh ) + ρ 2 √ y( Rh (n+1)h -Rh nh ); x, y, r Ȳ h nh = y, Rh nh = r . (3.4.29)
Now, in order to compute the quantity Ψ f (ζ) in (3.4.28), we consider a generic function g and set

u(t, x; y, r) = E(g( Zh (n+1)h ) | Zh t = x, Ȳ h t = y, Rh t = r), t ∈ [nh, (n + 1)h].
By (3.4.27) and the Feynman-Kac representation formula we can state that, for every fixed r ∈ R and y ≥ 0, the function (t, x) → u(t, x; y, r) is the solution to    ∂ t u(t, x; y, r) + L (y,r) u(t, x; y, r) = 0 y ∈ R, t ∈ [nh, (n + 1)h), u((n + 1)h, x; y, r) = g(y)

x ∈ R, (3.4.30) where L (y,r) is the integro-differential operator

L (y,r) u(t, x; y, r) = µ(y, r)∂ x u(t, x; y, r) + 1 2 ρ 2 3 y∂ 2 xx u(t, x; y, r) + +∞ -∞ [u(t, x + ξ; y, r) -u(t, x; y, r)] ν(ξ)dξ, (3.4.31)
where µ is given in (3.3.22) and ν is the Lévy measure associated with the compound Poisson process N , see (3.2.9). We are assuming here that the Lévy measure is absolutely continuous (in practice, we use a Gaussian density), but it is clear that the procedure we are going to describe can be straightforwardly extended to other cases. the Bates-Hull-White model

Finite-difference and numerical quadrature

In order to numerically compute the solution to the PIDE (3.4.30) at time nh, we generalize the approach already developed in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]: we apply a one-step finite-difference algorithm to the differential part of the problem coupled now with a quadrature rule to approximate the integral term.

We start by fixing an infinite grid on the x-axis X = {x i = X 0 + i∆x} i∈Z , with ∆x =

x i -x i-1 , i ∈ Z.
For fixed n and given r ∈ R and y ≥ 0, we set u n i = u(nh, x i ; y, r) the discrete solution of (3.4.30) at time nh on the point x i of the grid X -for simplicity of notations, in the sequel we do not stress in u n i the dependence on (y, r). First of all, to numerically compute the integral term in (3.4.31) we need to truncate the infinite integral domain to a bounded interval I, to be taken large enough in order that I ν(ξ)dξ ≈ λ.

(3.4.32)

In terms of the process, this corresponds to truncate the large jumps. We assume that the tails of ν rapidly decrease -this is not really restrictive since applied models typically require that the tails of ν decrease exponentially. Hence, we take L ∈ N large enough, set I = [-L∆y, +L∆y] and apply to (3.4.32) the trapezoidal rule on the grid X with the same step ∆x previously defined. Then, for ξ l = l∆x, l = -L, . . . , L, we have

+L∆y -L∆y [u(t, x + ξ) -u(t, x)] ν(ξ)dξ ≈ ∆x L l=-L (u(t, x + ξ l ) -u(t, x)) ν(ξ l ). (3.4.33)
We notice that x i + ξ l = X 0 + (i + l)∆x ∈ X , so the values u(t, x i + ξ l ) are well defined on the numerical grid X for any i, l. These are technical settings and can be modified and calibrated for different Lévy measures ν.

But in practice one cannot solve the PIDE problem over the whole real line. So, we have to choose artificial bounds and impose numerical boundary conditions. We take a positive integer M > 0 and we define a finite grid X M = {x i = X 0 + i∆x} i∈J M , with

J M = {-M, .
. . , M }, and we assume that M > L. Notice that for x = x i ∈ X M then the integral term in (3.4.33) splits into two parts: one part concerning nodes falling into the numerical domain X M and another part concerning nodes falling out of X M . As an example, at time t = nh we have

L l=-L u(nh, x i + ξ l )ν(ξ l ) ≈ L l=-L u n i+l ν(ξ l ) = l : |l|≤L,|i+l|≤M u n i+l ν(ξ l ) + l : |l|≤L,|i+l|>M ũn i+l ν(ξ l ),
where ũn

• stands for (unknown) values that fall out of the finite numerical domain X M . This implies that we must choose some suitable artificial boundary conditions. In a financial context, in [START_REF] Cont | A finite difference scheme for option pricing in jumpdiffusion and exponential Lévy models[END_REF] it has been shown that a good choice for the boundary conditions is the payoff function. Although this is the choice we will do in our numerical experiments, for the sake of generality we assume here the boundary values outside X M to be settled as as already done in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF], we apply an implicit in time approximation. However, to avoid to solve at each time step a linear system with a dense matrix, the non-local integral term needs anyway an explicit in time approximation. We then obtain an implicit-explicit (hereafter IMER) scheme as proposed in [START_REF] Cont | A finite difference scheme for option pricing in jumpdiffusion and exponential Lévy models[END_REF] and [START_REF] Briani | Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory[END_REF]. Notice that more sophisticated IMER methods may be applied, see for instance [START_REF] Briani | Implicit-Explicit Numerical Schemes for Jump-Diffusion Processes[END_REF][START_REF] Salmi | IMEX schemes for pricing options under jump-diffusion models[END_REF]. Let us stress that these techniques could be used in our framework, being more accurate but expensive.

As done in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF], to achieve greater precision we use the centered approximation for both first and second order derivatives in space. The discrete solution u n at time nh is then computed in terms of the known value u n+1 at time (n + 1)h by solving the following discrete problem: for all i ∈ J M ,

u n+1 i -u n i h +μ X (y, r) u n i+1 -u n i-1 2∆x + 1 2 ρ 2 3 y u n i+1 -2u n i + u n i-1 ∆x 2 +∆x R l=-R u n+1 i+l -u n+1 i ν(ξ l ) = 0.
(3.4.34)

We then get the solution u n = (u n -M , . . . , u n M ) T by solving the following linear system

A u n = Bu n+1 + d, (3.4 

.35)

where A = A(y, r) and B are (2M + 1) × (2M + 1) matrices and d is a (2M + 1)-dimensional boundary vector defined as follows.

The matrix A. From (3.4.34), we set A as the tridiagonal real matrix given by µ being defined in (3.3.22). We emphasize that at each time step n, the quantities v and x are constant and known values (defined by the tree procedure for (Y, R)) and then α and β are constant parameters.

A =           1 + 2β -α -β α -β 1 + 2β -α -β . . . . . . . . . α -β 1 + 2β -α -β α -β 1 + 2β           , ( 3 
The matrix B. Again from (3.4.34), B is the (2M + 1) × (2M + 1) real matrix given by

B = I + h∆x        ν(0) -Λ ν(∆x) . . . ν(L∆x) 0 ν(-∆x) ν(0) -Λ ν(∆x) . . . ν(L∆x) . . . . . . . . . 0 ν(-L∆x) . . . ν(-∆x) ν(0) -Λ        , (3.4. 38 
)
where I is the identity matrix and

Λ = L l=-L ν(ξ l ).
The boundary vector d. The vector d ∈ R 2M +1 contains the numerical boundary values:

d = a n b + a n+1 b , (3.4.39)
with

a n b = ((β -α)b n -M -1 , 0, . . . , 0, (β + α)b n M +1 ) T ∈ R 2M +1 and a n+1 b ∈ R 2M +1 is such that (a n+1 b ) i =                    h∆x -M -i-1 l=-L ν(x l ) b n+1 i+l , for i = -M, . . . , -M + L -1, 0 for i = -M + L, . . . , M -L, h∆x L l=M -i+1 ν(x l ) b n+1 i+l , for i = M -L + 1, . . . , M -1,
where we have used the standard notation b n i = b(nh, x i ), i ∈ J M . In practice, we numerically solve the linear system (3.4.35) with an efficient algorithm (see next Remark 3.5.1). We notice here that a solution to (3.4.35) really exists because

Pricing European and American options

We are now ready to approximate the function P h solution to the dynamic programming principle (3.4.25). We consider the discretization scheme ( Xh , Ȳ h , Rh ) discussed in Section 3.4.1 and we use the approximation (3.4.41) for the conditional expectations that have to be computed at each time step n. So, for every point (x i , y n k , r n j ) ∈ X M × Y n × R n , by (3.4.41) we have

E P h (n + 1)h, X nh,x i ,y n k ,r n j (n+1)h , Y nh,y n k (n+1)h , R nh,r n j (n+1)h u n i,k,j
where u n •,k,j = (u n i,k,j ) i∈J M solves the linear system

A n k,j u n •,k,j = B a,b∈{u,d} p ab (n, k, j)× ×P h (n + 1)h, y • + ρ 1 σ Y (y n+1 ka(n,k) -y n k ) + ρ 2 √ y(r n+1 j b (n,j) -r n j , y n k , r n j ), y n+1 ka(n,k) , r n+1 j b (n,j) + d n . (3.4.42)
We then define the approximated price Ph (nh, x, y, r) for (x, y, r)

∈ X M × Y n × R n and n = 0, 1, . . . , N as    Ph (T, x i , y N k , r N j ) = Ψ(x i
) and as n = N -1, . . . , 0: Ph (nh, x i , y n k , r n j ) = max Ψ(x i ), e -(σrr n j +ϕ nh )h ũn i,k,j (3.4.43) in which ũn •,k,j = (ũ n i,k,j ) i∈J M is the solution to the system in (3.4.42) with P h replaced by Ph . Note that the system in (3.4.42) requires the knowledge of the function y → Ph ((n + 1)h, x, y, r) in points x's that do not necessarily belong to the grid X M . Therefore, in practice we compute such a function by means of linear interpolations, working as follows.

For fixed n, k, j, a, b, we set I n,k,j,a,b (i), i ∈ J M , as the index such that

x i + ρ 1 σ Y (y n+1 ka(n,k) -y n k ) + ρ 2 √ y(r n+1 j b (n,j) -r n j ) ∈ [x I n,k,j,a,b (i) , x I n,k,j,a,b (i)+1 ), with I n,k,j,a,b (i) = -M if x i + ρ 1 σ Y (y n+1 ka(n,k) -y n k ) + ρ 2 √ y(r n+1 j b (n,j) -r n j ) < -M and I n,k,j,a,b (i) + 1 = M if x i + ρ 1 σ Y (y n+1 ka(n,k) -y n k ) + ρ 2 √ y(r n+1 j b (n,j) -r n j ) > M . We set q n,k,j,a,b (i) = x i + ρ 1 σ Y (y n+1 ka(n,k) -y n k ) + ρ 2 √ y(r n+1 j b (n,j) -r n j ) -x I n,k,j,a,b (i) ∆x .
Note that q n,k,j,a,b (i) ∈ [0, 1). We define (I a,b Ph )((n + 1)h, x i , y n+1 ka(n,k) , r n+1 j b (n,j) ) = Ph ((n + 1)h, x I n,k,j,a,b (i) , y n+1 ka(n,k) , r n+1 j b (n,j) ) (1 -q n,k,j,a,b (i)) + Ph ((n + 1)h, x I n,k,j,a,b (i)+1 , y n+1 ka(n,k) , r n+1 j b (n,j) ) q n,k,j,a,b (i)

and we set Ph (n + 1)h,

x i + ρ 1 σ Y (y n+1 ka(n,k) -y n k ) + ρ 2 √ y(r n+1 j b (n,j) -r n j ), y n+1 ka(n,k) , r n+1 j b (n,j) = (I a,b Ph )((n + 1)h, x i , y n+1 ka(n,k) , r n+1 j b (n,j) ).
Therefore, starting from (3.4.42), in practice the function ũn

•,k,j = (ũ n i,k,j ) i∈J M in (3.4.43
) is taken as the solution to the linear system

A n k,j ũn •,k,j = B a,b∈{u,d} p ab (n, k, j)(I a,b Ph )((n + 1)h, x • , y n+1 ka(n,k) , r n+1 j b (n,j) ) + d n . (3.4.44)
We can then state our final numerical procedure: ) is just a linear convex combination of translations of x i → Ph ((n + 1)h, x i , y n+1 ka(n,k) , r n+1 j b (n,j) ).

   Ph (T, x i , y N k , r N j ) = Ψ(x i ) and as n = N -1, . . . , 0: Ph (nh, x i , y n k , r n j ) = max Ψ(x i ), e -(σrr n j +ϕ nh )h ũn i,k,j (3. 

Stability analysis of the hybrid tree/finite-difference method

We analyze here the stability of the resulting tree/finite-difference scheme. To this purpose, we consider a norm, defined on functions of the variables (x, y, r), which is the uniform norm with respect to the volatility and the interest rate components (y, r) and coincides with the standard l 2 norm with respect to the direction x (see next (3.4.51)). The choice of the l 2 norm allows one to perform a von Neumann analysis in the component x on the infinite grid X = {x i = X 0 + i∆x} i∈Z , that is, without truncating the domain and without imposing boundary conditions. Therefore, our stability analysis does not take into account boundary effects. This approach is extensively used in the literature, see e.g. [START_REF] Duffy | Finite difference methods in financial engineering. A partial differential equation approach[END_REF], and yields good criteria on the robustness of the algorithm independently of the boundary conditions. the Bates-Hull-White model

Let us first write down explicitly the scheme (3.4.45) on the infinite grid X = {x i } i∈Z .

For a fixed function f = f (t, x, y, r), we set g = f (in the case of American options) or g = 0 (in the case of European options) and we consider the numerical scheme given by

   F h (T, x i , y N k , r N j ) = f (T, x i , y N k , r N j
) and as n = N -1, . . . , 0: F h (nh, x i , y n k , r n j ) = max g(nh, x i , y n k , r n j ), e -(σrr n j +ϕ nh )h u n i,k,j (3.4.46) where 4.47) in which α n,k,j and β n,k,j are the coefficients α and β defined in (3.4.37) when evaluated in the pair (y n k , r n j ). Note that (3.4.47) is simply the linear system (3.4.44) on the infinite grid, with d n ≡ 0 (no boundary conditions are needed). Let us stress that in next Remark 3.4.3 we will see that, since β n,k ≥ 0, a solution to (3.4.47) does exist, at least for "nice" functions f . It is clear that the case g = f is linked to the American algorithm whereas the case g = 0 is connected to the European one: (3.4.46) gives our numerical approximation of the function

u n •,k,j = (u n i,k,j ) i∈Z is the solution to (α n,k,j -β n,k )u n i-1,k,j + (1 + 2β n,k )u n i,k,j -(α n,k,j + β n,k )u n i+1,k,j = a,b∈{d,u} p ab (n, k, j) × (I a,b F h )((n + 1)h, x i , y n+1 ka(n,k) , r n+1 j b (n,j) )+ +h∆x l ν(ξ l ) (I a,b F h )((n + 1)h, x i+l , y n+1 ka(n,k) , r n+1 j b (n,j) ) -(I a,b F h )((n + 1)h, x i , y n+1 ka(n,k) , r n+1 j b (n,j) ) , (3. 
F (t, x, y, r) =      E e -(σr T t R t,r s ds+ T t ϕsds) f (T, X t,x,y,r T , Y t,y T , R t,r T ) if g = 0, sup τ ∈T t,T E e -(σr τ t R t,r s ds+ τ t ϕsds) f (τ, X t,x,y,r τ , Y t,y τ , R t,r τ ) if g = f, (3.4.48) 
at times nh and in the points of the grid X × Y n × R n .

The "discount truncated scheme" and its stability

In our stability analysis, we consider a numerical scheme which is a slight modification of (3.4.46): we fix a (possibly large) threshold ϑ > 0 and we consider the scheme

   F ϑ h (T, x i , y N k , r N j ) = f (T, x i , y N k , r N j ) and as n = N -1, . . . , 0: F ϑ h (nh, x i , y n k , r n j ) = max g(nh, x i , y n k , r n j ), e -(σrr n j 1 {r n j >-ϑ} +ϕ nh )h u n i,k,j (3.4.49) 
with g = f or g = 0, where u n •,k,j = (u n i,k,j ) i∈Z is the solution to (3.4.47), with (I a,b F h ) replaced by (I a,b F ϑ h ). Let us stress that the above scheme (3.4.46) really differs from (3.4.49) only when σ r > 0 (stochastic interest rate). And in this case, in the discounting factor of (3.4.49) we do not allow r n j to run everywhere on its grid: in the original scheme (3.4.46), the exponential contains the term r n j whereas in the present scheme (3.4.49) we put r n j 1 {r n j >-ϑ} , so we kill the points of the grid R n below the threshold -ϑ. And in fact, (3.4.49) aims to numerically compute the function

F ϑ (t, x, y, r) =        E e -(σr T t R t,r s 1 {R t,r s >-ϑ} ds+ T t ϕsds) f (T, X t,x,y,r T , Y t,y T , R t,r T ) if g = 0, sup τ ∈T t,T E e -(σr τ t R t,r s 1 {R t,r s >-ϑ} ds+ τ t ϕsds) f (τ, X t,x,y,r τ , Y t,y τ , R t,r τ ) if g = f, (3.4.50) 
at times nh and in the points of the grid X × Y n × R n . Recall that in practice h is small but fixed, so that the implemented scheme incorporates a threshold (see for instance the tree given in Figure 3.1). And actually, in our numerical experiments we observe a real stability.

However, we will discuss later on how much one can lose with respect to the solution of (

For n = N, . . . , 0, the scheme (3.4.49) returns a function in the variables (x, y, r)

∈ X × Y n × R n . Note that Y n × R n ⊂ I Y n × I R n ,
where

I Y n = [y n 0 , y n n ] and I R n = [r n 0 , r n n ],
that is, the intervals between the smallest and the biggest node at time-step n:

y n 0 = Y 0 - σ Y 2 n √ h 2 1 { √ Y 0 - σ Y 2 n √ h>0} , y n n = Y 0 + σ Y 2 n √ h 2 , r n 0 = -n √ h, r n n = n √ h.
As n decreases to 0, the intervals I Y n and I R n are becoming smaller and smaller and at time 0 they collapse to the single point y 0 0 = Y 0 and r 0 0 = R 0 = 0 respectively. So, the norm we are going to define takes into account these facts: at time nh we consider for φ = φ(t, x, y, r) In particular,

the norm φ(nh, •) n = sup (y,r)∈I Y n ×I R n φ(nh, •, y, r) l 2 (X ) = sup (y,r)∈I Y n ×I R n i∈Z |φ(nh, x i , y, r)| 2
φ(0, •) 0 = φ(0, •, Y 0 , R 0 ) l 2 (X ) = i∈Z |φ(x i , Y 0 , R 0 )| 2 ∆y 1/2 and φ(T, •) N ≤ sup (y,r)∈R + ×R φ(x i , y, r) l 2 (X ) = sup (y,r)∈R + ×R i∈Z |φ(x i , y, r)| 2 ∆y 1/2
.

We are now ready to give our stability result.

Theorem 3.4.2. Let f ≥ 0 and, in the case g = f , suppose that

sup t∈[0,T ] |f (t, x, y, r)| ≤ γ T |f (T, x, y, r)|,
for some γ T > 0. Then, for every ϑ > 0 the numerical scheme (3.4.49) is stable with respect to the norm (3.4.51):

F ϑ h (0, •) 0 ≤ C N,ϑ T F ϑ h (T, •) N = C N,ϑ T f (T, •) N , ∀h, ∆y,
where

C N,ϑ T =    e 2λcT +σrϑT -N n=1 ϕ nh h N →∞ -→ C ϑ T = e 2λcT +σrϑT -T 0 ϕtdt if g = 0, max γ T , e 2λcT +σrϑT -N n=1 ϕ nh h N →∞ -→ C ϑ T = max γ T , e 2λcT +σrϑT -T 0 ϕtdt if g = f,
in which c > 0 is such that l ν(ξ l )∆x ≤ λc. In the standard Bates model, that is σ r = 0 and deterministic interest rate r t = ϕ t , the discount truncated scheme (3.4.49) coincides with the standard scheme (3.4.45) and the stability follows for (3.4.45).

Proof. In order to simplify the notation, we set g n i,k,j = g(nh, x i , y n k , r n j ) and, similarly,

F n i,k,j = F ϑ h (nh, x i , y n k , r n j ), (I a,b F n+1 h ) i,ka,j b = (I a,b F ϑ h )((n+1)h, x i , y n+1 ka(n,k) , r n+1 j b (n,j
) ) (we have also dropped the dependence on ϑ). The scheme (3.4.49) says that, at each time step n < N and for each fixed 0 ≤ k, j ≤ n,

F n i,k,j = max g n i,k,j , e -(σrr n j 1 {r n j >-ϑ} +ϕ nh )h u n i,k,j , (3.4.52) 
where, according to (3.4.47),

u n i,k,j solves (α n,k,j -β n,k )u n i-1,k,j + (1 + 2β n,k )u n i,k,j -(α n,k,j + β n,k )u n i+1,k,j = a,b∈{d,u} p ab (n, k, j) (I a,b F n+1 ) i,ka,j b + h∆x l ν(ξ l ) (I a,b F n+1 ) i+l,ka,j b -(I a,b F n+1 ) i,ka,j b . (3.4.53) 
Sec. 3.4 -The hybrid tree/finite difference approach Let Fϕ denote the Fourier transform of ϕ ∈ l 2 (X ), that is,

Fϕ(θ) = ∆x √ 2π s∈Z ϕ s e -i s∆yθ , θ ∈ R,
i denoting the imaginary unit. We get from (3.4.53)

(α n,k,j -β n,k )e -i θ∆x + 1 + 2β n,k -(α n,k,j + β n,k )e i θ∆x Fu n k,j (θ) = 1 + h∆x l ν(ξ l )(e i lθ∆x -1) a,b∈{d,u} p ab (n, k, j)F(I a,b F n+1 ) ka,j b (θ). (3.4.54) 
Note that

|(α n,k,j -β n,k )e -i θ∆x + 1 + 2β n,k -(α n,k,j + β n,k )e i θ∆x | ≥ Re (α n,k,j -β n,k )e -i θ∆x + 1 + 2β n,k -(α n,k,j + β n,k )e i θ∆x = 1 + 2β n,k (1 -cos(θ∆x)) ≥ 1,
for every θ ∈ [0, 2π) (recall that β n,k ≥ 0). And since l ν(ξ l )∆x ≤ λc, we obtain

|Fu n k,j (θ)| ≤ 1 + h∆x l∈Z |e i lθ∆x -1|ν(ξ l ) a,b∈{d,u} p ab (n, k, j)|F(I a,b F n+1 ) ka,j b (θ)| ≤ (1 + 2λch) a,b∈{d,u} p ab (n, k, j)|F(I a,b F n+1 ) ka,j b (θ)|.
Therefore,

Fu n k,j L 2 ([0,2π),Leb) ≤ (1 + 2λch) a,b∈{d,u} p ab (n, k, j) F(I a,b F n+1 ) ka,j b L 2 ([0,2π),Leb) .
We use now the Parseval identity Fϕ L 2 ([0,2π),Leb) = ϕ l 2 (X ) and we get

u n •,k,j l 2 (X ) ≤ (1 + 2λch) a,b∈{d,u} p ab (n, k, j) (I a,b F n+1 ) •,ka,j b l 2 (X ) = (1 + 2λch) a,b∈{d,u} p ab (n, k, j) F n+1 •,ka,j b l 2 (X ) ,
the first equality following from the fact that i

→ (I a,b F n+1 ) i,ka,j b is a linear convex combi- nation of translations of i → F n+1 i,ka,j b (see Remark 3.4.1). This gives sup 0≤k,j≤n e -(σrr n j 1 {r n j >-ϑ} +ϕ nh )h u n •,k,j l 2 (X ) ≤ (1 + 2λch)e σrϑh-ϕ nh h sup 0≤k,j≤n+1 F n+1 •,k,j l 2 (X ) 123 
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F n •,k,j l 2 (X ) ≤ max sup 0≤k,j≤n g n •,k,j l 2 (X ) , (1 + 2λch)e σrϑh-ϕ nh h sup 0≤k,j≤n+1 F n+1 •,k,j l 2 (X ) .
We now continue assuming that g = f , the case g = 0 following in a similar way. So, sup 0≤k,j≤n

F n •,k,j l 2 (X ) ≤ max γ T f (T, •) N , (1 + 2λch)e σrϑh-ϕ nh h sup 0≤k,j≤n+1 F n+1 •,k,j l 2 (X ) .
For n = N -1 we then obtain sup 0≤k,j≤n

F N -1 •,k,j l 2 (X ) ≤ max γ T f (T, •) N , (1 + 2λch)e σrϑh-ϕ (N -1)h h f (T, •) N
and by iterating the above inequalities, we finally get

F 0 0 = F 0 •,0,0 l 2 (X ) ≤ max γ T f (T, •) N , (1 + 2λch) N e N σrLh-N n=1 ϕ nh h f (T, •) N .
Remark 3.4.3. We have incidentally proved that, as n varies, the solution u n •,k,j to the infinite linear system (3.4.47) actually exists and is unique if f (T, •) N < ∞. In fact, starting from equality (3.4.54), we define the function ψ k,j (θ), θ ∈ [0, 2π), by

(α n,k,j -β n,k )e -i θ∆x + 1 + 2β n,k -(α n,k,j + β n,k )e i θ∆x ψ k,j (θ) = 1 + h∆x l ν(ξ l )(e i lθ∆x -1) a,b∈{d,u} p ab (n, k, j)F(I a,b F n+1 ) ka,j b (θ).
As noticed in the proof of Proposition 3.4.2, the factor multiplying ψ k,j (θ) is different from zero because β n,k ≥ 0. So, the definition of ψ k,j is well posed and moreover, ψ k,j ∈ L 2 ([0, 2π, ), Leb). We now set u n •,k,j as the inverse Fourier transform of ψ k,j , that is, Then there exist positive constants c T and C T (x, y, r) (depending on (x, y) in a polynomial way and on r in an exponential way) such that for every ϑ > 0

u n l,k,j = 1 ∆y √ 2π 2π 0 ψ k,j (θ) 
|F (t, x, y, r) -F ϑ (t, x, y, r)| ≤ σ r C T (x, y, r)e -c T |ϑ+xe -κr (T -t) | 2 , for every t ∈ [0, T ] and (x, y, r) ∈ R × R + × R.
Proof. In the following, C denotes a positive constant, possibly changing from line to line, which depends on (x, y, r) polynomially in (x, y) and exponentially in r. We have

|F (t, x, y, r) -F ϑ (t, x, y, r)| ≤ CE sup t≤u≤T |f (u, X t,x,y,r u , Y t,y u , R t,r u )| × e -σr u t R t,r s 1 {R t,r s >-ϑ} ds × e -σr u t R t,r s 1 {R t,r s <-ϑ}
ds -1 .

(3.4.55)

Set now τ t,r -ϑ = inf{s ≥ t : R t,r s ≤ -ϑ}.

Notice that {R s < -θ} ⊆ {τ -θ < s} ⊆ {τ -θ < T }. Therefore, one has 1 {R t,r s <-ϑ} ≤ 1 {τ t,r -ϑ <T } and -σ r u t R t,r s 1 {R t,r s <-ϑ} ds = u t |σ r R t,r s |1 {R t,r s <-ϑ} ds ≤ σ r 1 {τ t,r -ϑ <T } u t |R t,r s |ds.
So we can write

0 ≤ e -σr u t R t,r s 1 {R t,r s <-ϑ} ds -1 ≤ e σr1 {τ t,r -ϑ <T } u t |R t,r s |ds -1 = e σr u t |R t,r s |ds -1 1 {τ t,r -ϑ <T } 125 
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|F (t, x, y, r) -F ϑ (t, x, y, r)| ≤ CE sup t≤u≤T |f (u, X t,x,y,r u , Y t,y u , R t,r u )|e -σr u t R t,r s 1 {R t,r s >-ϑ} ds e σr u t |R t,r s |ds -1 1 {τ t,r -ϑ <T } ≤ CE sup t≤u≤T |f (u, X t,x,y,r u , Y t,y u , R t,r u )| 2 e 2σr u t |R t,r
s |ds e σr u t |R t,r s |ds -1

2 1/2 × P 1 {τ t,r -ϑ <T } 1/2 ≤ CE sup t≤u≤T |f (u, X t,x,y,r u , Y t,y u , R t,r u )| 2 × e 4σr T t |R t,r s |ds 1/2 × P 1 {τ t,r -ϑ <T } 1/2 ≤ CE sup t≤u≤T |f (u, X t,x,y,r u , Y t,y u , R t,r u )| 4 1/4
× E e 8σr T t |R t,r s |ds

1/4 × P 1 {τ t,r -ϑ <T } 1/2 . (3.4.56) 
The first term in the left hand side of (3.4.56) is finite since f has polynomial growth in the space variables, uniformly in the time variable, and by using standard estimates. Also the second term in (3.4.56) is finite. This is because, for every c > 0,

E e c sup t≤s≤T |R t,r s | < ∞. (3.4.57) 
In fact, recalling that that R t,r s = re -κr(s-t) + s t e -κr(s-u) dW 2 u , (3.4.57) follows from the fact that, for a Brownian motion W , sup 0≤s≤T |W s | has finite exponential moments of any order, for every T > 0. This is true since sup 0≤s≤T |W s | ≤ sup 0≤s≤T W s + sup 0≤s≤T (-W s ) and E(e p sup 0≤s≤T Ws ) < ∞ for every p > 0. As regards the third term in (3.4.56), note that

P(τ t,r -ϑ ≤ T ) = P( inf s∈[t,T ] R t,r s < -ϑ) = P inf s∈[t,T ] re -κr(s-t) + s t e -κr(s-u) dW 2 u < -ϑ ≤ P sup s∈[t,T ] s t e κru dW 2 u > ϑ + re -κr(T -t) ≤ 2 exp - |ϑ + re -κr(T -t) | 2 2 T t e 2κru du .
By inserting the above estimates in (3.4.56), we get the result.

Further remarks

As already stressed, the introduction of the threshold -ϑ allows one to handle the discount term. In order to get rid of the discount, a possible approach consists in the use of a Sec. 3.4 -The hybrid tree/finite difference approach transformed function, as developed by several authors (see e.g. Haentjens and in't Hout [START_REF] Haentjens | Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation[END_REF] and references therein). This is a nice fact for European options (PIDE problem), being on the contrary a non definitive tool when dealing with American options (obstacle PIDE problem). Let us see why.

First of all, let us come back to the model for the triple (X, Y, R), see (3.2.5). The infinitesimal generator is

L t u = σ r r + ϕ t -δ - 1 2 y ∂ x u + κ Y (θ Y -y)∂ y u -κ r r∂ r u + 1 2 y∂ 2 xx u + σ 2 Y y∂ 2 yy u + ∂ 2 rr u + 2ρ 1 σ Y y∂ 2 xy u + 2ρ 2 √ y ∂ 2 xr u + +∞ -∞
[u(t, x + ξ; y, r) -u(t, x; y, r)] ν(ξ)dξ.

(

We set

G(t, r) = E e -σr T t R t,r s ds
and we recall several known facts: one has (see e.g. [START_REF] Lamberton | Introduction to stochastic calculus applied to finance[END_REF])

G(t, r) = e -rσrΛ(t,T )- σ 2 r 2κ 2 r (Λ(t,T )-T +t)- σ 2 r 4κr Λ 2 (t,T ) , Λ(t, T ) = 1 -e -κr(T -t) κ r (3.4.59) 
and moreover, G solves the PDE

∂ t G -κ r x∂ x G + 1 2 ∂ 2 rr G -σ r rG = 0, t ∈ [0, T ), r ∈ R, G(T, r) = 1.
(3.4.60)

Lemma 3.4.5. Let L t denote the infinitesimal generator in (3.4.58).

Set u = u•G -1 . Then ∂ t u + L t u -ru = G ∂ t u + L t u ,
where

L t = L t -σ r 1 -e -κr(T -t) κ r ρ 2 √ y∂ x u + ∂ r u .
Proof. Since G depends on t and r only, straightforward computations give . the Bates-Hull-White model

∂ t u + L t u -xu =G ∂ t u + L t u + ∂ r G(t, r) ρ 2 √ y∂ x u + ∂ r u + u ∂ t G -κ r r∂ r G + 1 2 ∂ 2 rr G -σ r rG .
We notice that the operator L t in Lemma 3.4.5 is the infinitesimal generator of the jumpdiffusion process (X, Y , R) which solves the stochastic differential equation as in (3.2.5), with the same diffusion coefficients and jump-terms but with the new drift coefficients

µ X (t, y, r) = µ X (y, r) -σ r 1 -e -κr(T -t) κ r ρ 2 √ y, µ Y (y) ≡ µ Y (y), µ R (r) = µ R (t, r) -σ r 1 -e -κr(T -t) κ r .
Let us first discuss the scheme (3.4.46) with g = 0 (European options), which gives the numerical approximation for the function F in (3.4.48). By passing to the associated PIDE, Lemma 3.4.5 says that

F (t, x, y, r) = G(t, r)F (t, x, y, r),
where

F (t, x, y, r) = E(e -T t ϕsds f (T, X t,x, y,r T , Y t,y T , R t,r T )). 
Therefore, in practice one has to numerically evaluate the function F . By using our hybrid tree/finite-difference approach, this means to consider the scheme in (3.4.49), with the new coefficient α n,k,j (written starting from the new drift coefficients) but with a discount depending on the (deterministic) function ϕ only, that is, with e -(σrr n j 1 {r n j >-L} +ϕ nh )h replaced by e -ϕ nh h . And the proof of the Proposition 3.4.2 shows that one gets

F h (0, •) 0 ≤ max γ T , e 2λcT -N n=0 ϕ nh h f (T, •) N .
In other words, by using a suitable transformation, the European scheme is always stable and no thresholds are needed.

Let us discuss now the American case, that is, the scheme (3.4.46) with g = f , giving an approximation of the function F in (3.4.48). One could think to use the above transformation in order to get rid of the exponential depending on the process R. Set again

F (t, x, y, r) = G(t, r) -1 F (t, x, y, r).
By using the associated obstacle PIDE problem, Lemma 3.4.5 suggests that

F (t, x, y, r) = sup τ ∈T t,T E(e -τ t ϕsds f (τ, X t,x,y,r τ , Y t,y τ , R t,r τ 
)), the Bates-Hull-White model

The bivariate tree for (Y, R) is now settled. Our hybrid tree/finite-difference algorithm can be resumed as follows:

(FD1) set a mesh grid x i for the solution of all the PIDE's;

(FD2) for each node (y N k , r N j ), 0 ≤ k, j ≤ N , compute the option prices at maturity for each x i , i ∈ X M , by using the payoff function;

(FD3) for n = N -1, . . . 0: for each (y n k , r n j ), 0 ≤ k, j ≤ n, compute the option prices for each x i ∈ X M , by solving the linear system (3.4.44).

Notice that, at each time step n, we need only the one-step PIDE solution in the time interval [nh, (n+1)h]. Moreover, both the (constant) PIDE coefficients and the Cauchy final condition change according to the position of the volatility and the interest rate components on the bivariate tree at time step n. Remark 3.5.1. We observe that in order to compute the option price by the hybrid tree/finitedifference procedure, in step (FD3) we need to solve many times the tridiagonal system (3.4.44). This is typically solved by the LU-decomposition method in O(M ) operations (recall that the total number of the grid values x i ∈ X M is 2M + 1). However, due to the approximation of the integral term (3.4.33), at each time step n < N we have to compute the sum

ũn+1 i+l ν(ξ l ), (3.5.61) 
which is the most computationally expensive step of this part of the algorithm: when applied directly, it requires O(M 2 ) operations. Following the Premia software implementation [START_REF]Premia: An Option Pricer[END_REF], in our numerical tests we use the Fast Fourier Transform to compute the term (3.5.61) and the computational costs of this step reduce to O(M log M ).

We conclude by briefly recalling the main steps of the hybrid Monte Carlo method:

(MC1) let the chain ( Ŷ h n , Rh n ) evolve for n = 1, . . . , N , following the probability structure in (T4); (MC2) generate ∆ 1 , . . . , ∆ N i.i.d. standard normal r.v.'s independent of the noise driving the chain ( Ŷ h , Rh ); practice (MC3) generate K 1 h , . . . , K N h i.i.d. positive Poisson r.v.'s of parameter λh, independent of both the chain ( Ŷ h , Rh ) and the Gaussian r.v.'s ∆ 1 , . . . , ∆ N , and for every n = 1, . . . , N , if K n h > 0 simulate the corresponding amplitudes log(1 + J n 1 ), . . . , log(1

+ J n K n h );
(MC4) starting from Xh 0 = X 0 , compute the approximate values Xh n , 1 ≤ n ≤ N , by using (3.3.24);

(MC5) following the desired Monte Carlo method (European or Longstaff-Schwartz algorithm [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF] in the case of American options), repeat the above simulation scheme and compute the option price. Remark 3.5.2. In Section 3.5.2 we develop numerical experiments in order to study the behavior of our hybrid methods. Our tests involve also the standard Bates model, that is without any randomness in the interest rate. Recall that in the standard Bates model the dynamic reduces to

dS t S t - = (r -δ)dt + Y t dZ S t + dH t , dY t = κ Y (θ Y -Y t )dt + σ Y √ Y t dZ Y t , (3.5.62) 
with S 0 > 0, Y 0 > 0 and r ≥ 0 constant parameters. We assume a correlation between the two Brownian noises:

d Z S , Z Y t = ρdt, |ρ| < 1.
Finally, H t is the compound Poisson process already introduced in Section 3.2, see (3.2.2).

We can apply our hybrid approach to this case as well: it just suffices to follow the computational steps listed above except for the construction of the binomial tree for the process R. Consequently, we do not need the bivariate tree for (Y, R), specifically we omit steps (T3)-(T4) and we replace step (MC1) with (MC1') let the chain Ŷ h n evolve for n = 1, . . . , N , following the probability structure in (T2).

And of course, in all computations we set equal to 0 the parameters involved in the dynamics for r, except for the starting value r 0 . In particular, we have σ r = 0 and ϕ t = r 0 for every t.

Numerical results

We develop several numerical results in order to assess the efficiency and the robustness of the hybrid tree/finite-difference method and the hybrid Monte Carlo method in the case of the Bates-Hull-White model plain vanilla options. The Monte Carlo results derive from our hybrid simulations and, for American options, the use of the Monte Carlo algorithm by Longstaff and Schwartz in [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF].

We first provide results for the standard Bates model (see Remark 3.5.2) and secondly, for the case in which the interest rate process is assumed to be stochastic, see (3.2.1).

Following Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF], in our numerical tests we assume that the jumps for the log-returns are normal, that is,

log(1 + J 1 ) ∼ N γ - 1 2 η 2 , η 2 , (3.5.63) 
N denoting the Gaussian law (we also notice that the results in [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF] correspond to the choice γ = 0). In Section 3.5.2, we first compare our results with the ones provided in Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF]. Then in Section 3.5.2 we study options with large maturities and when the Feller condition is not fulfilled. Finally, Section 3.5.2 is devoted to test experiments for European and American options in the Bates model with stochastic interest rate. The codes have been written by using the C++ language and the computations have all been performed in double precision on a PC 2,9 GHz Intel Core I5 with 8 Gb of RAM.

The standard Bates model

We refer here to the standard Bates model as in (3.5.62). In the European and American option contracts we are dealing with, we consider the following set of parameters, already used in the numerical results provided in Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF]:

• initial price S 0 = 80, 90, 100, 110, 120, strike price K = 100, maturity T = 0.5;

• (constant) interest rate r = 0.03, dividend rate δ = 0.05;

• initial volatility Y 0 = 0.04, long-mean θ Y = 0.04, speed of mean-reversion κ Y = 2, vol-vol σ Y = 0.4, correlation ρ = -0.5, 0.5;

• intensity λ = 5, jump parameters γ = 0 and η = 0.1 (recall (3.5.63)).

It is known that the case ρ > 0 may lead to moment explosion, see. e.g. [START_REF] Andersen | Moment explosions in stochastic volatility models[END_REF]. Nevetheless, we report here results for this case as well, for the sake of comparisons with the study in Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF].

In order to numerically solve the PIDE using the finite difference scheme, we first localize the variables and the integral term to bounded domains. We use for this purpose the practice In the American case the benchmark values B-AMC are obtained by the Longstaff-Schwartz [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF] Monte Carlo algorithm with 300 exercise dates, combined with the accurate third-order Alfonsi method with 3000 discretization time steps and 1 million iterations.

(a) ρ = -0.
The numerical results suggest that large maturities bring to a slight loss of accuracy for HTFD and HMC, even if both methods provide a satisfactory approximation of the true option prices, being in turn mostly compatible with the results from the Alfonsi Monte Carlo method. It is worth noticing that for long maturity T = 5 we have developed experiments with the same number of steps both in time (N t ) and space step (∆x) as for T = 0.5. So, the numerical experiments are not slower, and it is clear that one could achieve a better accuracy for larger values of N t . the Bates-Hull-White model 3.9 for S 0 = 100, ρ Sr = -0.5. jump-diffusion processes

T = 0.5, δ = 0.05, r 0 = 0.03, κ r = 1, σ r = 0.2, Y 0 = 0.04, θ Y = 0.04, κ Y = 2, σ Y = 0.4, λ = 5, γ = 0, η = 0.1, ρ SY = -0.
(Y t ) t∈[0,T ] solution to dY t = µ Y (Y t )dt + σ Y (Y t )dW t .
In this framework, the weak convergence is well known to be governed by the behaviour of the local moments up to order 3 or 4 (see e.g. [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF]). In order to get the speed of convergence, we need to stress such requests, making further but quite general assumptions on the behaviour of the moments, and in Theorem 4.3.1 we prove a first order weak convergence result. As an application, we give an example from the financial framework: we theoretically study the convergence rate of the tree approximation proposed in [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF] for the CIR process (and described in Section 3.3.1). Several trees are considered in the literature, see e.g. [START_REF] Costabile | Evaluating fair premiums of equity-linked policies with surrender option in a bivariate model[END_REF][START_REF] Hilliard | Bivariate binomial pricing with generalized interest rate processes[END_REF][START_REF] Tian | A reexamination of lattice procedures for interest rate-contingent claims[END_REF], but all of them work poorly from the numerical point of view when the Feller condition fails. Our result for the tree in [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF] (Theorem 4.3.2) works in any parameter regime. Recall that in equity markets, one often requires large values for the vol-vol σ whereas in interest rates context, σ is markedly lower (see e.g. the calibration results in [START_REF] Duffie | Transform analysis and asset pricing for affine jump-diffusions[END_REF] and in [START_REF] Brigo | Interest Rate Models -Theory and Practice[END_REF] p. 115, respectively). So, a result in the full parameter regime is actually essential. We stress that our convergence Theorem 4.3.1 is completely general and may in principle be applied to more general trees constructed through the multiple jumps approach by Nelson and Ramaswamy [START_REF] Nelson | Simple binomial processes as diffusion approximations in financial models[END_REF] or also to other cases, e.g. the recent tree method developed in [START_REF] Akyildirim | Approximating stochastic volatility by recombinant trees[END_REF].

In the second part (Section 4.4), we link to (Y t ) t∈[0,T ] a jump-diffusion process (X t ) t∈[0,T ] which evolves according to a stochastic differential equation whose coefficients only depend on the process (Y t ) t∈[0,T ] :

dX t = µ X (Y t )dt + σ X (Y t )dB t + γ X (Y t )dH t ,
where H is a compound Poisson process independent of the 2-dimensional Brownian motion (B, W ). So, the pair (X t , Y t ) t∈[0,T ] evolves following a Stochastic Differential Equation It is worth mentioning that the test functions on which we study the rate of convergence are smooth. In fact, there is a strict connection between such hybrid schemes and the use of a discrete noise in the approximation procedure. This means that we cannot use regularizing arguments à la Malliavin in order to relax the smoothness requests, as it can be done when the approximation algorithm is based on the Brownian noise (see the seminal paper [START_REF] Bally | The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function[END_REF] or the recent [START_REF] Altmayer | Discretising the Heston model: an analysis of the weak convergence rate[END_REF] for the Heston model) or on a noise having at least a "good piece of absolutely continuous part" (Doeblin's condition, see [START_REF] Bally | Approximation of Markov semigroups in total variation distance[END_REF]).

We then consider two possible finite-difference schemes (Section 4.4.3) to handle the (local) PIDE related to the component X: an implicit in time/centered in space scheme (Section 4.4.3) and an implicit in time/upwind in space scheme (Section 4.4.3). In both cases, the numerical treatment of the nonlocal term coming from the jumps involves implicitexplicit techniques, as well as numerical quadratures. We apply the convergence Theorem 4.4.1 and we obtain that the hybrid algorithm has a rate of convergence of the first order in time and of a order in space according to the chosen numerical scheme. As an application, we give the weak convergence rate of the hybrid procedure written on the Heston and on the Bates model for pricing European options (Section 4.5). Finally, in Section 4.6 we give a theoretical result on the convergence rate in the case of American options.

Notation

In this section we establish the notation which will be used in this chapter. Let d ∈ N * = N \ {0}.

• For a multi-index l = (l 1 , . . . , l d ) ∈ N d we define |l| = d j=1 l j and for y ∈ R d , we define • Let D ⊆ R d be a domain (possibly closed) and q ∈ N. C q (D) is the set of all functions on D which are q-times continuously differentiable. We set C q pol (D) the set of functions g ∈ C q (D) such that there exist C, a > 0 for which 

∂ l y = ∂ l 1 y 1 • • • ∂ l d y d and y l = y l 1 1 • • • y l d d .
|∂ l y g(y)| ≤ C(1 + |y| a ), y ∈ D, |l| ≤ q. For [a, b] ⊆ R + , we set C q pol,[a,b] (D) the set of functions v = v(t, y) such that v ∈ C q/2 ,q ([
|∂ k t ∂ l y v(t, y)| ≤ C(1 + |y| c ), y ∈ D, 2k + |l| ≤ q.
For brevity, we set

C(D) = C 0 (D), C pol (D) = C 0 pol (D) and C pol,[a,b] (D) = C 0 pol,[a,b] (D)
. We also need another functional space, that we call

C p,q pol (R m , D), p ∈ [1, ∞], q ∈ N, m ∈ N * : g = g(x, y) ∈ C p,q pol (R m , D) if g ∈ C q pol (R m × D)
and there exist C, c > 0 such that

|∂ l x ∂ l y g(•, y)| L p (R m ,dx) ≤ C(1 + |y| c ), |l | + |l| ≤ q.
Similarly as above, we set

C p,q pol,[a,b] (R m , D) the set of the function v ∈ C q pol,[a,b] (R m × D) such that sup t∈[a,b) |∂ k t ∂ l x ∂ l y v(t, •, y)| L p (R m ,dx) ≤ C(1 + |y| c ), 2k + |l | + |l| ≤ q.
If [a, b] = [0, T ], to simplify the notation, we set C q pol,[0,T ] (D) = C q pol,T (D) and C p,q pol,[0,T ] (D) = C p,q pol,T (D).

• For fixed X 0 = (X 01 , . . . , X 0d ) ∈ R d and ∆x = (∆x 1 , . . . , ∆x d ) ∈ (0, +∞) d (spatial

step), X = {x = (X 01 + i 1 ∆x 1 , . . . , X 0d + i d ∆x d )} i∈Z d denotes a discrete grid in R d . For p ∈ [1, ∞],
we set l p (X ) the discrete l p -space of the functions ϕ : X → R with the norm

|ϕ| p = ( x∈X |ϕ(x)| p ∆x 1 • • • ∆x d ) 1/p if p ∈ [1, ∞) and |ϕ| ∞ = sup x∈X |ϕ(x)| if p = ∞.
Moreover, for a linear operator Γ : l p (X ) → l p (X ), the induced norm is denoted by |Γ| p = sup |ϕ|p≤1 |Γϕ| p . And for a function g : R d → R, we set |g| p the l p (X ) norm of the restriction of g on X . When d = 1, we identify (ϕ(x)) x∈X with (ϕ i ) i∈Z through ϕ i = ϕ(X 0 + i∆x), i ∈ Z.

• L p (Ω) is the short notation for the standard L p -space on the probability space (Ω, F, P), on which the expectation is denoted by E. We set • p the norm in L p (Ω).

First order weak convergence of Markov chains to diffusions

Let d ∈ N * and D ⊆ R d be a convex domain or a closure of it. On a probability space (Ω, F, P), we consider a d-dimensional diffusion process driven by

dY t = µ Y (Y t )dt + σ Y (Y t )dW t , Y 0 ∈ D, (4.3.1) 
where W is a -dimensional standard Brownian motion. From now on, we set

a Y = σ Y σ Y ,
the notation denoting transpose. We recall that the associated infinitesimal generator is

given by

A = 1 2 Tr(a Y D 2 y ) + µ Y • ∇ y , (4.3.2) 
where Tr denotes the matrix trace, D 2 y and ∇ y are, respectively, the Hessian and the gradient operator w.r.t. the space variable y and the notation "•" stands for the scalar product.

Hereafter, we fix T > 0, f : D → R and we define

u(t, y) = E[f (Y t,y T )], (t, y) ∈ [0, T ] × D, (4.3.3) 
where Y t,y denotes the solution to the SDE in (4.3.1) that starts at t in the position y. We do not enter in specific requests for the diffusion coefficients or for f , we just ask that the following properties are met: The above proverties (a), (b) and (c) will be assumed to hold throughout this section.

We are interested in the numerical evaluation of u(0, Y 0 ) = E(f (Y T )). A widely used and computationally convenient method is by computing the above expectation on an approx- We can now state the following first order weak convergence result.

Theorem 4.3.1. Let assumptions A 1 and A 2 hold and assume that u ∈ C 4 pol,T (D), u being defined in (4.3.3). Then there exist h > 0 and C > 0 such that for every h < h one has

|E[f (Y h N )] -E[f (Y T )]| ≤ CT h. Proof. The proof is quite standard. Since E[f (Y h N )] = E[u(T, Y h T )] and E[f (Y T )] = u(0, Y 0 ), we have E[f (Y h T )] -E[f (Y T )] = E[u(T, Y h T ) -u(0, Y 0 )] = N -1 n=0 E[u((n + 1)h, Y h n+1 ) -u(nh, Y h n )].
Since u ∈ C 4 pol,T (D), we can apply Taylor's formula to t → u(t, y) around nh up to order 1 and to the functions y → u(t, y) and y → ∂ t u(t, y) around Y h n up to order 3 and 1 respectively. We obtain

u((n+1)h, Y h n+1 ) = 0≤|l|+2l ≤3 ∂ l y ∂ l t u(nh, Y h n ) h l (Y h n+1 -Y h n ) l |l|!l ! +R 1 (n, h, Y h n , Y h n+1 ), (4.3.13)
where the remaining term R 1 is given by

R 1 (n, h, Y h n , Y h n+1 ) = h 2 1 0 (1 -τ )∂ 2 t u(t + τ h, Y h n+1 )dτ + h |k|=2 (Y h n+1 -Y h n ) k 1 0 (1 -ξ)∂ k y ∂ t u(nh, Y h n + ξ(Y h n+1 -Y h n ))dξ + |k|=4 (Y h n+1 -Y h n ) k 3! 1 0 (1 -ξ) 3 ∂ k y u(nh, Y h n + ξ(Y h n+1 -Y h n ))dξ.
We now pass to the conditional expectation w.r.t. Y h n in (4.3.13) and use (4.3.5) and (4.3.6). By rearranging the terms we obtain On the other hand, if y n k ≥ θ * /h the up jump is single, that is y n+1 ku = y n+1 k+1 , while the down jump can be multiple but, in every case, is still true that

E[u((n + 1)h, Y h n+1 ) -u(nh, Y h n )] = hE ∂ t u(nh, Y h n ) + µ Y (Y h n ) • ∇ y u(nh, Y h n ) + 1 2 Tr(a Y D 2 y u(nh, Y h n )) + 5 i=1 R i n (h), ( 4 
y n+1 k d ≤ y n+1 k = y n k + σ 2 4 h -σ y n k h. Finally, if y n k ≤ θ * h, we have y n+1 k d = y n+1 k
, while the up jump can be multiple but we can always write

y n+1 ku ≤ y n k + C * h ≤ y n k + C * h + σ y n k h.
Summing up, if we set C = max C * , σ 2 4 , for every h small we can write

0 ≤ Y h n+1 ≤ Y h n + Ch + σ Y h n h Z h n+1 ,
where Z h n+1 is a random variable such that

P(Z h n+1 = +1|Y h n = y n k ) = p u (n, k) and P(Z h n+1 = -1|Y h n = y n k ) = p d (n, k). Note that E(Z h n+1 |Y h n = y n k ) = p u (n, k) -p d (n, k) = 2p u (n, k) -1. Then, the random variable W h n+1 = Z h n+1 -E[Z h n+1 |Y h n ]
has exactly the law given in (4.3.21). We also define the function 

P u (y n k ) = p u (n, k). Therefore, 0 ≤Y h n+1 ≤ Y h n + Ch + σ Y h n h (2P u (Y h n ) -1) + σ Y h n h W h n+1 ≤Y h n + Ch + σ √ θ * Y h n h θ * 2P u (Y h n ) -1 1 {Y h n ≥ θ * h } + σ Y h n h 2P u (Y h n ) -1 1 {Y h n < θ * h } + σ Y h n h W h n+1 . Now, if Y h n ≥ θ * h then Y h n h θ * ≤ Y h n h θ * and, since P u ∈ [0, 1], we have |2P u (Y h n ) -1| ≤ 1. Then, 0 ≤ Y h n+1 ≤ (1 + bh)Y h n + Ch + σ Y h n h 2P u (Y h n ) -1 1 {Y h n < θ * h } + σ Y h n h W h n+1 , where b = σ √ θ * . Let us study the quantity σ Y h n h (2P u (Y h n ) -1)1 {Y h n < θ * h } . If θ * h < y n k < θ * /h,
σ y n k h (2P u (y n k ) -1) = σ y n k h 2 1 2 + 4µ Y (v n k ) -σ 2 8σ y n k h h -1 = µ Y (v n k )h - σ 2 4 h ≤ κθh.

jump-diffusion processes

If instead y n k ≤ θ * h, then by using 2. in Proposition 4.3.3 we have , we get

σ y n k h (2P u (y n k ) -1) = σ y n k h 2µ Y (y n k )h + 2y n k -y n+1 k d (n,k) -y n+1 ku(n,k) y n+1 ku(n,k) -y n+1 k d (n,k) ≤ σ y n k h 2µ Y (y n k )h + 2y n k y n+1 k+1 -y n+1 k ≤ σ y n k h 2κθh + 2θ * h 2σ y n k h = (κθ + θ * )h. So,
E[(Y h n+1 ) p ] ≤ l 1 +l 2 +l 3 =p p! l 1 !l 2 !l 3 ! (1 + bh) l 1 σ l 2 C l 3 E (Y h n ) l 1 + l 2 2 h l 3 + l 2 2 (W h n+1 ) l 2 . So, it is sufficient to control E(l 1 , l 2 , l 3 ) = E (Y h n ) l 1 + l 2 2 h l 3 + l 2 2 (W h n+1 ) l 2 for l 1 + l 2 + l 3 = p. Assume first that l 1 + l 2 2 ≤ p - 3 
E(l 1 , l 2 , l 3 ) ≤ |E(l 1 , l 2 , l 3 )| ≤ E (Y h n ) l 1 + l 2 2 2 l 2 h l 3 + l 2 2 ≤ C p-1 2 l 2 h 3 2 . Therefore l 1 +l 2 +l 3 =p l 1 +l 2 /2≤p-3/2 p! l 1 !l 2 !l 3 ! (1 + bh) l 1 σ l 2 C l 3 E(l 1 , l 2 , l 3 ) ≤ C p-1 h 3 2 l 1 +l 2 +l 3 =p p! l 1 !l 2 !l 3 ! (1 + bh) l 1 (2σ) l 2 C l 3 ≤ C p-1 h 3 2 (1 + b + 2σ + C) p .
The case l 1 + l 2 2 > p-3 2 gives 4 further contributions, namely (l 1 , l 2 , l 3 ) = (p, 0, 0), (p-1, 0, 1), (p -1, 1, 0) and (p -2, 2, 0). So, we get

E[(Y h n+1 ) p ] ≤ C p-1 (1 + b + 2σ + C) p h 3 2 + (1 + bh) p E[(Y h n ) p ] + p(1 + bh) p-1 ChE[(Y h n ) p-1 ] + p(1 + bh) p-1 σCh 1/2 E[(Y h n ) p-1/2 W h n+1 ] + p(p -1) 2 (1 + bh) p-2 σ 2 hE[(Y h n ) p-1 (W h n+1 ) 2 ]. jump-diffusion processes
Let (X t,x,y s , Y t,x s ) s∈[t,T ] be the solution of (4.4.22) with starting condition (X t , Y t ) = (x, y). Hereafter, we fix T > 0 and f : R m × D → R. We are interested in computing the quantity u(0, X 0 , Y 0 ), where, as specified from time to time, u is given by

u(t, x, y) = E f (X t,x,y T , Y t,y T ) , (t, x, y) ∈ [0, T ] × R m × D, (4.4.25) 
or From now on, the following assumptions (1), ( 2) and (3) will be in force throughout this chapter:

u(t, x, y) = sup τ ∈T t,T E f (X t,x,y τ , Y t,y τ ) , (t, x, y) ∈ [0, T ] × R m × D, (4.4 
(1) there exists a unique weak solution of (4.4.22) such that P((X t , Y t ) ∈ R m × D ∀t) = 1;

(2) µ and σ have polynomial growth;

(3) the function u in (4.4.25) solves the PDE

   ∂ t u(t, x, y) + Lu(t, x, y) = 0 (t, x, y) ∈ [0, T ) × R m × D, u(T, x, y) = f (x, y), in R m × D.
(4.4.27)

The hybrid procedure

The European case

Let u be given in (4.4.25). We study here the computation of u(0, X 0 , Y 0 ) by a backward hybrid algorithm which generalizes the procedure developed in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF][START_REF] Briani | On a hybrid method using trees and finite-difference for pricing options in complex models[END_REF] and described in Chapter 3. Roughly speaking, one uses a Markov chain in order to approximate the process Chap.. 4 -Weak convergence rate of Markov chains and hybrid numerical schemes for jump-diffusion processes where L (y) is the integro-differential operator acting on the functions g = g(x) given by

L (y) g(x) = µ X (y)•∇ x g(x)+ 1 2 Tr(a X (y)D 2 x g(x))+γ X (y)• g(x+ζ)-g(x) ν(ζ)dζ. (4.4.31)
Here a X (y) = σ X (y)σ X (y), while ∇ x and D 2 x are the m dimensional gradient vector and the Hessian matrix with respect to the x variable respectively. Recall that here y is just a parameter and that for each fixed y ∈ D, L (y) has constant coefficients. We consider now a numerical solution of the PIDE (4.4.30). Let ∆x = (∆x 1 , . . . , ∆x m ) denote a fixed spatial step and set X denote a grid on R m given by X = {x :

x = ((X 0 ) 1 + i 1 ∆x 1 , . . . , (X 0 ) m + i m ∆x m ), (i 1 , . . . , i m ) ∈ Z m }. For y ∈ D, let Π h ∆x ( 
y) be a linear operator (acting on suitable functions on X ) which gives the approximating solution to the PIDE (4.4.30) at time nh. Then we get the numerical approximation

E u (n + 1)h, X nh,x,y (n+1)h , Y nh,y (n+1)h ≈ E Π h ∆x (y)u (n + 1)h, •, Y h n+1 (x) Y h n = y , x ∈ X .
Therefore, by inserting in (4.4.28), the hybrid numerical procedure works as follows: the

function x → u(0, x, Y 0 ), x ∈ X , is approximated by u h 0 (x, Y 0 ) backwardly defined as    u h N (x, y) = f (x, y), (x, y) ∈ X × Y h N , and as n = N -1, . . . , 0: u h n (x, y) = E[Π h ∆x (y)u h n+1 (•, Y h n+1 )(x) | Y h n = y], (x, y) ∈ X × Y h n . (4.4.32) 
The American case

Let us now consider the function u defined in (4.4.26). Again, we want an approximation of the quantity u(0, X 0 , Y 0 ). In practice, at times nh, the function u is approximated by the function ũh n defined through the backward programming dynamic principle, that is, In financial terms, ũh 0 corresponds to approximate the original continuous time American option price at t = 0 by the price of an option which can be exercised only at the discrete times nh, n = 0, . . . , N (Bermudean option). Now, at each step of (4.4.33), we can use the procedure described in Section 4.4.1 in order to compute the conditional expectations therein. Therefore, the hybrid numerical jump-diffusion processes the backward programming principle (4.4.33). In the standard hypotheses on the model, that is, for sublinear and Lipschitz continuous diffusion coefficients and standard semiconvex payoff function, this error is known to be of the first order in h (we refer, for example, to Theorem 2 in [START_REF] Bally | Error analysis of the optimal quantization algorithm for obstacle problems[END_REF]). The degenerate models such as the Heston model do not satisfy such requests, so we might just argue a first order error in time. The second type of error is the one related to the approximation of ũh 0 with the function u h 0 defined in (4.4.34). Here, we focus on studying the latter one.

   ũh N (x, y) = f (x, y) and as n = N -1, . . . , 0 ũh n (x, y) = max f (x, y), E ũh n+1 X nh,x,y (n+1)h , Y nh,y (n+1) 

Convergence speed of the hybrid scheme

The idea is to follow the hybrid nature of the procedure by using numerical techniques, that is, an analysis of the stability and of the consistency of the method. This will be done in a sense that allows us to exploit the probabilistic properties of the Markov chain approximating the process Y .

We introduce the following assumption on the linear operator Π h ∆x (y) in (4.4.32) (recall the notation l p (X ) in Section 4.2).

Assumption B(p, c, E). Let p ∈ [1, ∞], c = c(y) ≥ 0, y ∈ D and E = E(h, ∆x) ≥ 0 such that lim (h,∆x)→0 E(h, ∆x) = 0. We say that the linear operator Π h ∆x (y) : l p (X ) → l p (X ), y ∈ D, satisfies Assumption B(p, c, E) if |Π h ∆x (y)| p ≤ 1 + c(y)h (4.4.37)
and, ũh n being defined in (4.4.35), for every n = 0, . . . , N -1, one has

E Π h ∆x (Y h n )ũ n+1 h (•, Y h n+1 )(x) Y h n = y = E[ũ h n (X nh,x,y , Y nh,y n )] + R h n (x, y), (4.4.38) 
where the remainder R h n (x, y), (x, y) ∈ X × Y h n satisfies the following property: there exist h < 1 and C > 0 such that for every n ∈ N, h < h, |∆x| < 1 and n ≤ N = T /h one has

e n l=1 c(Y h l )h |R h n (•, Y h n )| p p ≤ ChE(h, ∆x), if p ∈ [1, ∞), e n l=1 c(Y h l )h |R h n (•, Y h n )| ∞ 1 ≤ ChE(h, ∆x), if p = ∞. (4.4.39)
Assumption B(p, c, E) is inspired by the Lax-Richtmeyer's convergence theorem [START_REF] Lax | Survey of the stability of linear finite difference equations[END_REF]. In fact, recall that at each time step n, the hybrid scheme isolates the component y and applies the discrete operator Π h ∆x (y) for solving (one step in time) the PIDE

∂ t v(t, x) + L (y) v(t, x) = 0, (t, x) ∈ [nh, (n + 1)h) × R m .
Here, y is just a parameter (the current position of the Markov chain), so the coefficients of L (y) (see (4.4.31)) are indeed constant. That's why the Lax-Richtmeyer technique can be adapted, as it follows in the next result.

Theorem 4.4.1. Assume that Π h ∆x (y), y ∈ D, satisfies Assumption B(p, c, E). Let ũh n be the function defined in(4.4.35) and u h n be the approximation through the scheme (4.4.36). Then, there exist h ∈ (0, 1) and C > 0 such that for every h < h and ∆x < 1 one has

|ũ h 0 (•, Y 0 ) -u h 0 (•, Y 0 )| p ≤ CT E(h, ∆x). (4.4.40) Proof. Set err h n (•, Y h n ) = ũh n (•, Y h n )-u h n (•, Y h n ). By using the relation | max{(a, b)}-max{(a , b )}| ≤ max{|a -a |, |b -b |} we get |err h n (x, Y h n )| ≤ E ũh n+1 (X nh,x,y n+1 , Y nh,y (n+1)h ) y=Y h n -E Π h ∆x (Y h n )u h n+1 (•, Y h n+1 )(x) Y h n ≤ E[Π h ∆x (Y h n )err h n+1 (•, Y h n+1 )(x)|Y h n ] + |R h n (x, Y h n )|,
in which we have used (4.4.38). Since err h n (x i , Y h N ) = 0, by iterating one gets

|err h 0 (•, Y 0 )| ≤ N -1 n=0 E n-1 l=0 Π h ∆x (Y h l ) R h n (•, Y h n ) ,
in which we use the convention -1 l=0 (•) = Id. We use now (4.4.39). For p = ∞,

|err 0 h (•, Y 0 )| p ≤ N -1 n=0 E n-1 l=0 Π h ∆x (Y h l ) R h n (•, Y h n ) p ≤ N -1 n=0 E n-1 l=0 Π h ∆x (Y h l ) R h n (•, Y h n ) p p 1/p ≤ N -1 n=0 E e n l=1 pc(Y h l )h |R h n (•, Y h n )| p p 1 p ≤ N -1 n=0 hCE(h, ∆x) ≤ T CE(h, ∆x).
The case p = ∞ follows the same lines. shows that this assumption can be relaxed. In fact, we can replace C and E in (4.4.39) by C h,n and E h,n which depend on h and n but such that lim (h,∆x)→(0,0)

N -1 n=0 hC h,n E h,n (h, ∆x) = 0. However, in this case we do not get information about the rate of convergence of the method. jump-diffusion processes

An example: finite difference schemes

We specify here some settings ensuring that the assumptions of Theorem 4.4.1 are satisfied.

In particular, we choose the operator Π h ∆x (y) in (4.4.32) by means of two different finite difference schemes: the first one is a generalization of the procedure described in Chapter 3 and allows us to study the convergence in the l 2 -norm, while the second one works l ∞ . For the sake of readability, we consider the case m

= d = = 1 = 2 = 1.
As regards the Markov chain (Y h n ) n=0,...,N , in addition to Assumption A 1 and A 2 (see Section 4.3), we will need also the following:

Assumption A 3 (g) Let g = g(y) ≥ 0, y ∈ D. (Y h n ) n=0,...,N satisfies Assumption A 3 (g) if E e N l=1 g(Y h l ) < ∞.
Moreover, we assume hereafter that the Lévy measure ν satisfies the following property:

there exists c ν > 0 such that for every ∆x < 1 one has

l∈Z ν(l∆x)∆x ≤ λc ν , (4.4.41) 
where λ is the intensity of the Poisson process K in the definition of the coumpound Poisson process H in (3.2.2).

Convergence in l 2 -norm

We study here a hybrid procedure which generalizes the one introduced in [27] and described in Chapter 3 for the Bates model. For y ∈ D, Π h ∆x (y) gives the numerical solution on X = {x i = X 0 + i∆x} i∈Z a time nh to the PIDE (4.4.30), the operator L (y) therein being given in (4.4.31). It is clear that the solution v of (4.4.30) depends on y and ζ as well, but these are just parameters (and not variables of the PIDE), so for simplicity we drop here such dependence. We split the operator L

(y) = L (y) diff + L (y)
int in its differential and integral part:

L (y) diff v(x) = µ X (y)∂ x v(x) + 1 2 σ 2 X (y)∂ 2 x v(x), (4.4.42) L (y) int v(x) = γ X (y) v(x + z) -v(x) ν(z)dz. ( 4 

.4.43) jump-diffusion processes

Note that

|(α h ∆x (y) -β h ∆x (y))e -i θ∆x + 1 + 2β h ∆x (y) -(α h ∆x (y) + β h ∆x (y))e i θ∆x | ≥ Re (α h ∆x (y) -β h ∆x (y))e -i θ∆x + 1 + 2β h ∆x (y) -(α h ∆x (y) + β h ∆x (y))e i θ∆x = 1 + 2β h ∆x (y)(1 -cos(θ∆x)) ≥ 1,
for every θ ∈ [0, 2π). So, ψ ∈ L 2 ([0, 2π), dx) and we can define v • as its inverse Fourier transform:

v j = 1 ∆x √ 2π 2π 0 ψ(θ)e ijθ∆x dθ, j ∈ Z.
Straightforward computations give that v is the unique solution to (4.4.48), hence A h ∆x is invertible. Moreover, from (4.4.49) we obtain |ψ In the following we will use functions v ∈ C p,q pol,[nh,(n+1)h] (R, D) a.e. uniformly in n and h. This means that v ∈ C q/2 ,q ([a, b), R × D) a.e. and there exist C, c > 0 independent of n and h such that

(θ)| ≤ | ŵ(θ)|, so that |ψ(θ)| L 2 ([0,2π),dx) ≤ | ŵ(θ)| L 2 ([0,2π),dx) . We use now the Parseval identity | φ| L 2 ([0,2π),dx) = |ϕ| 2 and we get |(A h ∆x ) -1 (y)w| 2 ≤ |w| 2 , which gives |(A h ∆x ) -1 (y)| 2 ≤ 1. Finally, for w ∈ l 2 (X ) we have (B h ∆x (y)w) j = w j + h∆xγ X (y) l ν(l∆x)w j+l - l ν(l∆x)w j , so that B h ∆x (y)w(θ) = 1 + h∆xγ X (y) l ν(l∆x)(e ilθ -1) ŵ(θ).
sup t∈[nh,(n+1)h) |∂ k t ∂ l x ∂ l y v(t, •, y)| L p (R m ,dx) ≤ C(1 + |y| c ), 2k + |l | + |l| ≤ q.
We can now state the convergence result. For fixed h < T , ∆x > 0 and γ ≥ 0, consider the functions defined by

Π h ∆x (y) = (A h ∆x ) -1 B h ∆x (y), jump-diffusion processes Lemma 4.4.7. Let g : [0, T ] × R × D → R be such that ∃ a, A > 0 : sup t∈[0,T ) |∂ k x g(t, •, y)| L 2 (R,dx) ≤ A(1 + |y| a ), k = 0,
Ψ 1 (t, x, y) = l ν(l∆x) g(t, x + l∆x, y) -g(t, x, y) ∆x, (t, x, y) ∈ [0, T ] × R × D, Ψ 2 (t, x, y) = 1 0 (1 -τ ) γ g(t + τ h, , y)dτ, (t, x, y) ∈ [0, T -h] × R × D, Ψ 3 (t, x, y) = 1 0 (1 -η) γ g(t, x + η∆x, y)dη, (t, x, y) ∈ [0, T ] × R × D, Ψ 4 (t, x, y, z) = 1 0 (1 -ζ) γ g(t, x, y + ζ(z -y))dζ, (t, x, y, z) ∈ [0, T ] × R × D × D.
Then there exists C > 0 such that 

sup t∈[0,T ] |Ψ n (t, •, y)| 2 ≤ C(1 + |y| a ), n = 1, 2, 3, (4.4 

The European case in the Heston/Bates model

As an application in finance, in this section we apply our convergence results to to a treefinite difference procedure for pricing European options in the Heston ( [START_REF] Heston | A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[END_REF]) or Bates ([17]) model: the asset price process S and the volatility process Y evolve following the stochastic Then, there exist h, C > 0 such that for every h < h and ∆x < 1 one has

differential system dS t S t - = (r -δ)dt + µ Y t dZ 1 t + γd Ht , dY t = κ(θ -Y t )dt + σ Y t dZ 2 t , (4 
|u(0, •, Y 0 ) -u h 0 (•, Y 0 )| ∞ ≤ CT (h + ∆x).
Proof. We apply Theorem 4.4.4 for (i) and Theorem 4.4.10 for (ii). The validity of assumptions A 1 and A 2 is proved in Proposition 4.3.4 and since here γ X = γ ∈ {0, 1}, A 3 (4λc ν |γ X |) trivially holds. So, we need only to prove that if

∂ 2j x f ∈ C 2,6-j pol (R, R + ) as j = 0, 1, . . . , 6, resp. ∂ 2j x f ∈ C ∞,4-j pol (R, R + ) as j = 0, 1, . . . , 4, then u ∈ C 2,6 pol,T (R, R + ), resp. u ∈ C ∞,4
pol,T (R, R + ). This is proved in next Proposition 4.5.3 (set ρ = 0, a = r -δ -ρ σ κθ and b = ρ σ κ -1 2 therein), the whole Section 4.5.1 being devoted to.

Remark 4.5.2. In Chapter 3 we have considered the Bates-Hull-White model [START_REF] Briani | On a hybrid method using trees and finite-difference for pricing options in complex models[END_REF], which is a Bates model coupled with a stochastic interest rate. Recall that the dynamics follows (4.5.72) in which r is not constant but given by the Vasicek model

dr t = κ r (θ r -r t )dt + σ r dZ 3 t ,
Z 3 being a Brownian motion correlated with Z 1 (and possibly Z 2 ). Here, there is no global transformation allowing one to reduce to our reference model. Nevertheless, a similar convergence result can be proved by means of the local transformation introduced in Section 3.4.1, acting on each time interval [nh, (n + 1)h].

A regularity result for the Heston PDE/Bates PIDE

We deal here with a slightly more general model: we consider the SDE where, hereafter, we set L int u(t, x, y) = γ X u(t, x + ζ, y) -u(t, x, y) ν(ζ)dζ.

dX t = (a + bY t ) dt + Y t dW 1 t + γ X dH t , dY t = κ(θ -Y t )dt + σ Y t dW 2 t , (4 
So, the present section is devoted to the proof of the following result.

Proposition 4.5.3. Let p ∈ [1, ∞], q ∈ N and suppose that ∂ 2j x f ∈ C p,q-j pol (R, R + ) for every j = 0, 1, . . . , q. Set u(t, x, y) = E f (X t,x,y T , Y t,y T ) .

Then u ∈ C p,q pol,T (R, R + ). Moreover, the following stochastic representation holds: for m + 2n ≤ 2q, where ∂ m x ∂ n-1 y u := 0 when n = 0 and (X n,t,x,y , Y n,t,x,y ), n ≥ 0, denotes the solution starting from (x, y) at time t to the SDE (4. For our purposes, we need both the polynomial growth condition for (x, y) → u(t, x, y) and the L p property for x → u(t, x, y), and similarly for the derivatives. A closer jump-diffusion processes look to the proof of Proposition 4.5.3 shows that the result holds also when one is not interested in the latter L p condition. In this case, Proposition 4.5.3 reads: for q ∈ N, if ∂ 2j

x f ∈ C q-j pol (R × R + ) for every j = 0, 1, . . . , q then u ∈ C q pol,T (R × R + ). Moreover, the stochastic representation (4.5.76) holds and, if q ≥ 2, u solves PIDE (4.5.78).

As an immediate consequence of Proposition 4.5.3, we obtain the already known regularity result for the CIR process which has been already proved in Proposition 4.1 of [START_REF] Alfonsi | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF].

Corollary 4.5.5. Assume that f = f (y) and set u(t, y) = E f (Y t,y T ) . If f ∈ C q pol (R + ), then u ∈ C q pol,T (R + ). Moreover, for n ≤ q, We first need some preliminary results. First of all, recall that X and Y have uniformly bounded moments: for every T > 0 and a ≥ 1 there exist A > 0 such that for every For the second property in (4.5.79), we refer, for example, to [START_REF] Alfonsi | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF], whereas the first one follows from standard techniques. , Y t,y T ) in L 1 and 1 s>tn E e (s-tn) h(s, X tn,xn,yn s , Y tn,yn s ) → 1 s>t E e (s-t) h(s, X in which we have used twice the Cauchy-Schwarz inequality. Then, by using (4.5.79), we have u 2 ∈ C p,0 pol,T (R, R + ). The case p = ∞ follows the same lines.

To simplify the notation, from now on we set E t,x,y By replacing above, it follows that v ≡ u in Q. Whence, the first assertion is proved. Suppose now that 2κθ ≥ σ 2 and that g has polynomial growth. Let w ∈ C([0, T ] × Ō) denote a solution to (4.5.82) with polynomial growth. We prove that w = u. Let S n < T and let R n denote a sequence rectangles as before such that

Q n = [0, S n ) × R n ↑ [0, T ) × O. Let w n the unique solution to    ∂ t w n + Lw n + w n = h, in Q n , w n = w, in ∂ 0 Q n .
Since w trivially solves the above PIDE problem, we get w n = w and e t w(t, x, y) = E t,x,y e Sn∧τ Rn w(S n ∧ τ Rn , X Sn∧τ Rn , Y Sn∧τ Rn ) -Sn∧τ Rn t e r h(r, X r , Y r )dr . Now, as n → ∞, one has τ Rn ↑ ∞ because, by the Feller condition, P t,y (Y s > 0 ∀s) = 1. Then, we pass to the limit and since w is continuous and has polynomial growth, we easily obtain w ≡ u.

Lemma 4.5.8. Let u be defined in (4.5.80), with g and h such that, as j = 0, 1, ∂ 2j

x g ∈ C 1-j pol ( Ō) and ∂ 2j

x h ∈ C 1-j pol,T ( Ō). Then u ∈ C 1 pol,T ( Ō). Moreover, ∂ 2 x u ∈ C pol,T ( Ō) and one has Proof. First, the stochastic flow w.r.t. x is differentiable (here, (X * ) t,x,y s = x + Z t,y s and Z t,y s does not depend on x). Hence, by using the polynomial growth hypothesis, by (4. where L * is the infinitesimal generator of (X * , Y * ) and * = -κ, h * = ∂ y h -b∂ x u -1 2 ∂ 2 x u, g * = ∂ y g. By using (4.5.83) and Lemma 4.5.6, h * ∈ C pol,T ( Ō). Moreover, the Feller condition 2κ * θ * ≥ σ 2 * holds, and by Lemma 4.5.7 the unique solution with polynomial growth in (x, y) to the above PIDE is v(t, x, y) = E t,x,y e (T -t) g * (X * T , Y Le us first show that ∂ y u k ∈ C pol,T (O). Since the diffusion coefficients associated to (X k , Y k ) are good enough, we can consider the first variation process: by calling Z k,t,x,y s = (∂ y X k,t,x,y for suitable constants C k , a k > 0. Moreover, from the standard theory of parabolic PIDEs, u k is a solution to    We can now prove the result which this section is devoted to.

∂ t u k + L k u k + u k = h, in [0, T ) × O,
Proof of Proposition 4.5.3. We follow an induction on q. If q = 0, Lemma 4.5.6 gives the result. Suppose the statement is true up to q -1 ≥ 1 and let us prove it for q.

Take f such that ∂ 2j x f ∈ C p,q-j pol (R, R + ) for every j = 0, 1, . . . , q. Then, by induction, ∂ l t ∂ m x ∂ n y u ∈ C p,0 pol,T (R, R + ) when 2l + m + n ≤ q -1. So, we just need to prove that ∂ l t ∂ m x ∂ n y u ∈ C p,0 pol,T (R, R + ) for any l, m, n such that 2l + m + n = q. Assume first l = 0. For n = 0, we use that X t,x,y where L n is the generator in (4.5.75) with the (new) parameters in (4.5.77). Therefore, the general case concerning ∂ l t ∂ m x ∂ n y u with 2l + m + n = q follows by an iteration on l: by (4.5.86),

∂ l t ∂ m x ∂ n y u = -L n ∂ l-1 t ∂ m x ∂ n y u + nκ∂ l-1 t ∂ m x ∂ n y u -n 1 2 ∂ l-1 t ∂ m+2 x ∂ n-1 y u + b∂ l-1 t ∂ m+1 x ∂ n-1 y u .

The American case in the Heston/Bates model

In this section we focus on the American case. We first prove a simple lemma which better specifies the behaviour of the moments in the Heston and Bates model. ) 2p ]ν(dz).

(4.6.87) now follows by using Hölder inequality, the estimate (4.6.89) and the existence of all moments under ν.

Let us consider a function f ∈ C ∞ pol (R × D) such that for any l, l ∈ N there exist C l ,l , a l,l > 0 such that |∂ l

x ∂ l y f (•, y)| L 2 (R,dx) ≤ C l ,l (1 + y a l,l ), y ∈ D. (4.6.90)

We point out that in the statement of the theorem we actually require that there exist C, a > 0 such that C l ,l ≤ C and a l ,l ≤ a for any l, l ∈ N. We will use this strong assumption only at the end of the proof, when it will be clear why we need it in order to get the assertion.

We proceed by a backward iteration. For n = N -1 we have v h N -1 (t, x, y) = E f (X t,x,y T , Y t,y T ) . By the proof of Proposition 4.5.3 and by using (4.6.87) and (4.6.88), we deduce that, if l = 0, by using (4.6.87)-(4.6.88) we have sup t∈[(N -1)h,T )

|∂ l

x v h N -1 (t, •, y)| L 2 (R,dx) ≤ C l ,0 (1 + C 0 h)(1 + y a l ,0 ).

On the other hand, again from the proof of Proposition 4.5.3, we have that, for t ∈ [(N -1)h, T ),

∂ l x ∂ l y v h N -1 (t, x, y) = E e -lκ(T -t) ∂ l x ∂ l y f (X l,t, x,y T , Y l,t,x,y T 
) + l E T t 1 2 ∂ l +2 x ∂ l-1 y v h N -1 + b∂ l +1
x ∂ l-1 y v h N -1 (s, X l,t,x,y s , Y l,t,x,y s )ds , = a l +2l,l .

As regard the derivatives w.r.t. the time variable, again from the proof of Proposition 4.5.3, we have Moreover, the assumption that there exist C, a > 0 such that C l ,l ≤ C and a l ,l ≤ a for any l, l ∈ N now comes in. Thanks to this, we can deduce that v h n ∈ C Recalling that h = T /N , we note that there exists C > 0 such that

∂ l t ∂ l x ∂ l y v h N -1 = -L l ∂ l-1 t ∂ l x ∂ l y v h N -1 + lκ∂ l -1 t ∂ l x ∂ l y v h N -1 -l 1 2 ∂ l-1 t ∂ l +2 x ∂ l-1 y v h N -1 + b∂ l -1 t ∂ l +1 x ∂ l-1 y v h N -1 , so that sup t∈[nh,(n+1)h) |∂ l t ∂ l x ∂ l y v h N -1 (t, •, y)| L 2 (R,dx) ≤ clC
y n k h ≤ y N N h = Y 0 + σ 2 N √ h 2 h = Y 0 T N + σ 2 T 2 ≤ C.
Therefore Thanks to Federica and to my Sardinia girls, who were very close to me in the last year, and to my neighbour and friend Giulia.

y n+1 0 -y n k -µ Y (y n k )h ≤ Y 0 - θ * h + κC < 0 for h < θ * Y 0 +κC . So, K d (n, k) = ∅. Now,
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  r -δ)dt + √ Y t dB t , S 0 = s > 0, dY t = κ(θ -Y t )dt + σ √ Y t dW t , Y 0 = y ≥ 0,where B and W denote two correlated Brownian motions with d B, W t = ρdt, ρ ∈ (-1, 1).

∂u∂t+

  Lu (ψ -u) = 0, in [0, T ] × O, u(T, x, y) = ψ(T, x, y).

H 2 (

 2 O, m γ,µ ) ⊂ H 1 (O, m γ,µ ) and that the spaces H k (O, m γ,µ ), for k = 0, 1, 2 are Hilbert spaces with the inner products(u, v) H = (u, v) L 2 (O,mγ,µ) = O uvdm γ,µ , (u, v) V = (u, v) H 1 (O,mγ,µ) = O (y (∇u, ∇v) + (1 + y)uv) dm γ,µ and (u, v) H 2 (O,mγ,µ) := O y 2 D 2 u, D 2 v + (1 + y) 2 (∇u, ∇v) + (1 + y)uv dm γ,µ ,where (•, •) denotes the standard scalar product in R n .

  for a.e. t ∈ [0, T ] andT 0 u(t, •.•) p H i (O,mγ,µ) dt < ∞ and u p L p ([0,T ];H i (O,mγ,µ)) = T 0 u(t, •.•) p H i (O,mγ,µ) dt.

Proposition 1 . 3 . 4 .

 134 Let us consider u, v : O → R locally square-integrable on O, with derivatives u y and v y locally square-integrable on O as well. Moreover, assume that O y |u y (x, y)v(x, y)| + |u(x, y)v x y(x, y)| + |u(x, y)v(x, y)|dm < ∞. Then, we have O yu y (x, y)v(x, y)dm = -O yu(x, y)v y (x, y)dm -O (β -µy)u(x, y)v(x, y)dm. (1.3.10) Proof. If v has compact support in O, we obtain (1.3.10) as in the proof of Proposition 1.3.3. On the other hand, if v does not have compact support,

Proposition 1 . 4 . 14 .

 1414 Let ψ : R × [0, ∞) → R be continuous and such that there exist C > 0 and a, b ≥ 0 with |ψ(x, y)| ≤ Ce a|x|+by for every

Proposition 1 . 4 . 16 .

 1416 Assume that ψ satisfies Assumption H * . Moreover, fix p > β + 5 2 and assume that ψ ∈ L 2 ([0, T ]; H 2 (O, m)) and ∂ψ ∂t + Lψ ∈ L p ([0, T ]; L p (O, m)). Then, the solution u of the variational inequality (1.2.5) satisfies u(t, x, y) = u * (t, x, y), on [0, T ] × Ō, (1.4.64)

  .4.14) Let χ 1 and χ 2 be two nonnegative C ∞ functions such that supp χ 1 ⊆ [-1, 0], supp χ 2 ⊆ [0, 1] and χ 1 (x)dx = χ 2 (x)dx = 1. Let us apply (2.4.14) with φ(x) = λχ 1 (λx) and ζ(y) = √ λχ 2 ( √ λ(y -y * )), with λ > 0. For the right hand side of (2.4.14), we have r -e x )φ(x)ζ(y) = rK -r -e x )φ(x)ζ(y) = rK > 0. (2.4.15)

  ) we have b(t, y) > b(t, y * ) -4 , and b(t -, y) < b(t -, y * ) + 4 .

  Now, set b -= b(t -, y * )+ 4 and b + = b(t -, y * )+3 4 and let (s, x, y)∈ (0, t)×(b -, b + )×(y 0 , y 1 ). Since t → b(t, •) is nondecreasing, we have x > b(t -, y) > b(s, y), so that u(s, x, y) > ψ(x). Therefore, on the set (0, t) × (b -, b + ) × (y 0 , y 1 ) we have ( L -r)u(s, x, y) = -∂u ∂t (s, x, y) ≥ 0.This means that, for any nonnegative and C ∞ test functions θ, ψ and ζ which have support respectively in (0, t), (b -, b + ) and (y 0 , y 1 ) we can write -r)u(t, x, y)φ(x)ζ(y) ≥ 0.

Proposition 2 . 4 . 10 .

 2410 Let P e (0, S 0 , Y 0 ) be the European put price at time 0 with maturity T and strike price K. Then, one has P (0, S 0 , Y 0 ) = P e (0, S 0 , Y 0 ) -T 0 e -rs E[(δS s -rK)1 {Ss≤b(s,Ys)} ]ds.

0 1

 0 to the right continuity of the local time with respect to a, we have t {s∈O} dL 0 s = 0, where O is the interior of the the set {s | ζ s = 0}, i.e.

1t 0 1t 0 1 0 ds 1

 0001 Y θ < ζ and θ > τ , so that b(τ, ζ) ≤ b(θ, Y θ )and so ζ θ = 0. Therefore (2.4.24) is proved and we have {j(s,Ys)≤Ss≤b(s,Ys)} dL 0 s = {j(s,Ys)≤Ss≤b(s,Ys)} dL 0 s = {j(s,Ys)≤Ss≤b(s,Ys)} µ(S s , Y s )ds = t {j(s,y)≤x≤b(s,y)} µ(x, y)p(s, x, y)dxdy = 0, if we can prove that j(s, y) = b(s, y) dsdy a.e. In order to prove this, note that j(s, y) = sup τ <s sup ζ>y b(τ, ζ) . For any fixed τ ≥ 0, we set b + (τ, y) = sup ζ>y b(τ, ζ) = lim n→∞ b τ, y + 1 n , since the function y → b(τ, y) is nonincreasing. On the other hand, s → b(s, y) is nondeany y ≥ 0 j(s, y) = b + (s, y), ds a.e. and, for any s > 0 b + (s, y) = b(s, y), dy a.e.so that j(s, y) = b(s, y), dsdy a.e.

Proposition 2 . 4 . 15 .

 2415 For any (t, y) ∈ [0, T ) × [0, ∞) we have ∂ ∂s P (t, b(t, y), y) = ϕ (b(t, y)).

P

  (0, b(0, y) + h, y) -P (0, b(0, y), y) h ≥ ϕ (b(0, y)).

  -Y y s )ds for all n ∈ N. So, we have Λ y tn = (r -δ)t nused the Dubins-Schwartz Theorem and we have applied Lemma 2.4.14 to the standard Brownian motion W and the sequence tn 0 Y y s ds which can be considered deterministic.
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 2416 If 2κθ ≥ σ 2 , for any (t, y) ∈ [0, T )×(0, ∞) we have ∂ ∂y P (t, b(t, y), y) = 0.

  h small enough. Recalling that t → b(t, y) is nondecreasing and y → b(t, y) is nonincreasing, we deduce that b( tn , Y y+h tn ) ≥ b(0, Y y+h tn ) ≥ b(0, y). a consequence, τ h ≤ tn ≤ tn so (2.4.29) follows.

  and a compound Poisson jump process of the type originally introduced by Merton [77]. Such a model was introduced by Bates in the foreign exchange option market in order to tackle the well-known phenomenon of the volatility smile behavior. Here, we assume a possibly stochastic interest rate following the Vasicek model, and we call the full model as Bates-

  ũn i = b(nh, x i ), where b = b(t, x) is a fixed function defined in [0, T ] × R. Going back to the numerical scheme to solve the differential part of the equation (3.4.30),

. 4 . 36 )

 436 the Bates-Hull-White model with α = h 2∆x µ(nh, y, r) and β = h 2∆x

Remark 3 . 4 . 1 .

 341 4.45) ũn•,k,j = (ũ n i,k,j ) i∈J M being the solution to the system (3.4.44). In the case of an infinite grid, that is M = +∞, i → I n,k,j,a,b (i) is a translation: I n,k,j,a,b (i) = I n,k,j,a,b (0) + i. So, x i → (I a,b Ph )((n + 1)h, x i , y n+1 ka(n,k) , r n+1 j b(n,j) 

  ∆y
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 3 Hybrid Monte Carlo and tree-finite differences algorithm for pricing options in the Bates-Hull-White model

Proposition 3 . 4 . 4 .

 344 e i lθ∆y dθ, l ∈ Z.Straightforward computations give that u n•,k,j fulfils the equation system(3.4.47).Of course, Theorem 3.4.2 gives a stability property for the scheme introduced in[START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF] for the Heston-Hull-White model: just take λ = 0 (no jumps are considered).Back to the original scheme(3.4.46) Let us now discuss what may happen when one introduces the threshold ϑ. We recall that the original scheme(3.4.46) gives the numerical approximation of the function F in(3.4.48) whereas the discount truncated scheme (3.4.49) aims to numerically compute the function F ϑ in (3.4.50). Proposition 3.4.4 below shows that, under standard hypotheses, F ϑ tends to F as ϑ → ∞ very fast. This means that, in practice, we lose very few in using(3.4.49) in place of(3.4.46). Suppose that f = f (t, x, y, r) has a polynomial growth in the variables (x, y, r), uniformly in t ∈ [0, T ]. Let F and F ϑ , with ϑ > 0, be defined in (3.4.48) and (3.4.50) respectively.

By ( 3 . 4 .

 34 [START_REF] Hobson | Complete models with stochastic volatility[END_REF], the last term is null. The statement now follows by observing that ∂ r ln G(t, r) = -σ r 1-e -κr (T -t) κr

  Test parameters: K = 100, T = 0.5, r = 0.03, δ = 0.05, Y 0 = 0.04, θ Y = 0.04, κ Y = 2, σ Y = 0.4, λ = 5, γ = 0, η = 0.1, ρ = -0.5, 0.5. the Bates-Hull-White model (a) ρ = -0.

Table 3 . 5 :

 35 Standard Bates model. HTFDb-ratio (3.5.64) for the price of American call options as the starting point S 0 varies with fixed space step ∆x = 0.0025. Test parameters: T = 0.5, r = 0.03, δ = 0.05, Y 0 = 0.04, θ = 0.04, κ = 2, σ = 0.4, λ = 5, γ = 0, η = 0.1, ρ = -0.5.

Figure 3 . 2 :

 32 Figure 3.2: Standard Bates model. Moneyness vs implied volatility for European call options. Test parameters: T = 0.5, r = 0.03, δ = 0.05, Y 0 = 0.04, θ Y = 0.04, κ Y = 2, σ Y = 0.4, λ = 5, γ = 0, η = 0.1, ρ = -0.5.
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 3313835 Figure 3.3: Standard Bates model. Maturity vs implied volatility for European call options. Test parameters: S 0 = 100, K = 100, r = 0.03, δ = 0.05, Y 0 = 0.04, θ Y = 0.04, κ Y = 2, σ Y = 0.4, λ = 5, γ = 0, η = 0.1, ρ = -0.5.

  Test parameters: K = 100,T = 0.5, δ = 0.05, , r 0 = 0.03, κ r = 1, σ r = 0.2, Y 0 = 0.04, θ Y = 0.04, κ Y = 2, σ Y = 0.4, λ = 5, γ = 0, η = 0.1, ρ SY = -0.5,ρ Sr = -0.5, 0.5. practice (a)

(

  hereafter SDE) with jumps. Given a function f , we consider the numerical computation ofE[f (X T , Y T )] or sup τ ∈T 0,T E[f (X τ , Y τ )]through a method (Section 4.4.1), which works backwardly by approximating the process Y with a Markov chain and by using a different numerical scheme for solving a (local) PIDE allowing us to work in the direction of the process X. Then (Section 4.4.2), in Theorem 4.4.1 we give a general result on the rate of convergence of the hybrid approach. We stress that the approximating algorithm is not directly written on a Markov approximation, so one cannot extend the convergence result Sec. 4.2 -Notation provided in the first part of the chapter. We then study the stability and the consistency of the hybrid method, but in a sense that allows us to exploit the probabilistic properties of the Markov chain approximating the process Y .

  Moreover, we denote by |y| the standard Euclidean norm in R d and for any linear operator A : R d → R d , we denote by |A| = sup |y|=1 |Ay| the induced norm. • L p (R d , dm) denotes the standard L p -space w.r.t. the measure m on (R d , B d ), B d denoting the Borel σ-algebra on R d , and we set | • | L p (R d ,dm) the associated norm. The Lebesgue measure is denoted through dx. jump-diffusion processes

  a, b)× D) and there exist C, c > 0 for which sup t∈[a,b)

  (a) µ Y has polynomial growth; (b) for every (t, y) ∈ [0, T ] × D there exists a unique weak solution (Y t,y s ) s∈[t,T ] of (4.3.1) such that P(∀s ∈ [t, T ], Y t,y s ∈ D) = 1; (c) the function u in (4.3.3) solves the PDE    ∂u ∂t + Au = 0, in [0, T ) × D, u(T, y) = f (y), in D.

Remark 4 . 4 . 2 .

 442 In Assumption B(p, c, E) we have required that the constant C and the function E in (4.4.39) do not depend on h and n. A closer look at the proof of Theorem 4.4.1

  ∆x (y)w| L 2 ([0,2π),dx) ≤ (1 + 2λc ν |γ X (y)|h)| ŵ| L 2 ([0,2π),dx) , because |e ilθ -1| ≤ 2 and l ν(l∆x)∆x ≤ λc ν . By the Parseval relation, |B h ∆x (y)w| 2 ≤ (1 + 2λc ν |γ X (y)|h)|w| 2 , which concludes the proof.

Theorem 4 . 4 . 4 .

 444 Let ũh n be defined in (4.4.35) and u h n be given by (4.4.36) with the choice

  .5.72) where S 0 > 0, Y 0 ≥ 0, Z = (Z 1 , Z 2 ) is a correlated Brownian motions with d Z 1 , Z 2 t = ρdt, |ρ| < 1, H is a compound Poisson process with intensity λ and i.i.d. jumps { Jk } k as in (4.4.23). Here, γ = 1 (Bates model) or γ = 0 (Heston model). The above quantities r and δ are the interest rate and the dividend interest rate respectively. We assume, as usual, that the Poisson process K, the jump amplitudes { Jk } k and the correlated Brownian motion (Z 1 , Z 2 ) are independent. With a simple transformation, we can reduce the model (4.5.72) to our reference model (4.4.22). To get rid of the correlated Brownian motion, we set ρ = 1 -ρ 2 and Z 2 = W, Z 1 = ρZ 2 + ρB, in which (B, W ) denotes a standard 2-dimensional Brownian motion. Moreover, considering the process X t = log S t -ρ σ Y t , we reduce to the jump-diffusion pair (X, Y ), which evolves jump-diffusion processes (ii) [Convergence in l ∞ (X )] Suppose that • A h ∆x (y) and B h ∆x (y) are defined in (4.4.71) and (4.4.47) respectively; • ν ν , ν ν ∈ L 1 (R, dν) and ν has finite moments of any order; • ∂ 2j x f ∈ C ∞,4-j pol (R, R + ) for every j = 0, . . . , 4.

  .5.74) where W 1 , W 2 are correlated Brownian motions with d W 1 , W 2 t = ρdt and H is a compound Poisson process with intensity λ and Lévy measure ν, which is assumed hereafter to have finite moments of any order. Here, a, b ∈ R and γ X ∈ {0, 1} denote constant parameters. Note that when a = r -δ (interest rate minus dividend rate), b = -1 2 and γ X = 0 (resp. γ X = 1), then (X, Y ) is the standard Heston (resp. Bates) model for the log-price and volatility. When instead ρ = 0, a = r -δ -ρ σ κθ and b = ρ σ κ-1 2 , we recover the equation (4.5.73) discussed in Theorem 4.5.1.Let L denote the infinitesimal generator associated to (4.5.74), that is,Lu = y 2 ∂ 2 x u + 2ρσ∂ x ∂ y u + σ 2∂ 2 y u + (a + by) ∂ x u + κ(θ -y)∂ y u + L int u, (4.5.75)

  t, x, y) = E e -nκ(T -t) ∂ m x ∂ n y f (X n,t,x

  5.74) with parametersρ n = ρ, a n = a + nρσ, b n = b, κ n = κ, θ n = θ + nσ 2 2κ , σ n = σ. (4.5.77) In particular, if q ≥ 2 then u ∈ C 1,2 ([0, T ] × Ō), Ō = R × R + , solves the PIDE    ∂ t u(t, x, y) + Lu(t, x, y) = 0, t ∈ [0, T ), (x, y) ∈ Ō, u(T, x, y) = f (x, y), (x, y) ∈ Ō.

( 4 . 5 . 78 )

 4578 Remark 4.5.4.

  ∂ n y u(t, y) = E e -nκ(T -t) ∂ n y f (Y n,t,y T ) ,where Y n,t,y denotes a CIR process starting from y at time t which solves the CIR dynamics with parametersκ n = κ, θ n = θ + nσ 2 2κ , σ n = σ. In particular, if q ≥ 2 then u ∈ C 2 pol (R + ) solves the PDE    ∂ t u + Au = 0, (t, y) ∈ [0, T ) × R + , u n (T, y) = ∂ n y f (y), y ∈ R + ,where A is the CIR infinitesimal generator (see (4.3.2)).

t

  ∈ [0, T ], sup s∈[t,T ] E[|X t,x,y s | a ] ≤ A(1 + |x| a + y a) and sup s∈[t,T ] E[|Y t,y s | a ] ≤ A(1 + y a ). (4.5.79)

Lemma 4 . 5 . 6 .

 456 Let p ∈ [0, ∞], g ∈ C p,0 pol (R, R + ), h ∈ C p,0pol,T (R, R + ) and consider the functionu(t, x, y) = E e (T -t) g(X t,xwhere ∈ R. Then u ∈ C p,0 pol,T (R, R + ).

4 . 5 . 7 .

 457 [•] = E[•|X t = x, Y t = y] and O = R × (0, ∞).. jump-diffusion processes Lemma Let g ∈ C pol ( Ō) and h ∈ C pol,T ( Ō) be such that O z → h(t, z) is locally Hölder continuous uniformly on the compact sets of [0, T ). Let u be defined in(4.5.80).Then, u ∈ C([0, T ] × Ō) ∩ C 1,2 ([0, T ) × O) and solves the PIDE    ∂ t u + Lu + u = h, in [0, T ) × O, u(T, z) = g(z),in O.

( 4 . 5 . 82 )

 4582 Moreover, if the Feller condition holds, that is, 2κθ ≥ σ 2 , then u is the unique solution to (4.5.82) in the class C pol,T ( Ō).Proof. Let S ∈ [0, T ), R = R×( , ∞), > 0, Q = [0, S)×R and consider the PIDE problem    ∂ t v + Lv + v = h, in Q, v = u, in ∂ 0 Q, ∂ 0 Q denoting the parabolic boundary of Q.The coefficients satisfy in Q all the classical assumptions (see e.g.[START_REF] Garroni | Green Functions for Second Order Parabolic Integro-Differential Problems[END_REF][START_REF] Mikulevicius | On Cauchy-Dirichlet problem in half-space for linear integro-differential equations in weighted Hölder spaces[END_REF]), so a unique (bounded) solution v ∈ C 1,2 ([0, T ) × R) ∩ C([0, T ] × R)actually exists (and have Hölder continuous derivatives v t , ∇ z v and D 2 z v in Q). As a consequence,Z s := e s v(s, X s , Y s ) -s t e r h(r, X r , Y r )dr is a martingale over [t, S ∧ τ R ],where τ R denotes the exit time of (X, Y ) from R. Then,e t v(t, x, y) = E t,x,y (Z t ) = E t,x,y (Z S∧τ R ) = E t,x,y e S∧τ R u(S ∧ τ R , X S∧τ R , Y S∧τ R ) -S∧τ R t e r h(r, X r , Y r )dr . Now, by the strong Markov property, e S∧τ R u(S ∧ τ R , X S∧τ R , Y S∧τ R ) = E e ρT g(X T , Y T ) -T S∧τ R e r h(r, X r , Y r )dr F S∧τ R .

  ∂ m x u(t, x, y) = E t,x,y e (T -t) ∂ m x g(X T , Y T ) -T t e (s-t) ∂ m x h(s, X s , Y s )ds , m = 1, 2, (4.5.83) ∂ y u(t, x, y) = E t,x,y e ( -κ)(T -t) ∂ y g(X * T b∂ x u (s, X * s , Y * s )ds ,(4.5.84) where (X * t , Y * t ) solves (4.5.74) with new parameters ρ * = ρ, a * = a + ρσ, b * = b, κ * = κ, θ * = θ + σ 2 2κ , σ * = σ.

  5.80) one gets (4.5.83). Let us prove (4.5.84). By Lemma 4.5.7 u solves (4.5.82). So, setting v = ∂ y u, by derivating (4.5.82) one has   ∂ t v + L * v + * v = h * , in [0, T ) × O, v(T, z) = g * (z), in O.

u

  k (T, z) = g(z), in O. By differentiating, v k = ∂ y u k solves the problem    ∂ t v k + L k, * v k + * v k = h k, * , in [0, T ) × O, v k (T, z) = g * (z), in O.whereL k, * v = ϕ 2 k (y) 2 ∂ 2 x v + 2ρσ∂ x ∂ y v + σ 2 ∂ 2 y v + a + by + 2ρσϕ k ϕ k (y) ∂ x v + κ(θ -y) + σ 2 ϕ k ϕ k (y) ∂ y v + Iv and h k, * = ∂ y h -b∂ x u k -ϕ k ϕ k (y)∂ 2 x u k .By developing the same arguments as before, we get h k, * ∈ C pol,T ( Ō). The PIDE for v k has a unique solution in C pol,T (O) (recall that, by construction, the second order operator is uniformly elliptic). Thus, the Feynman-Kac formula gives∂ y u k (t, x, Y ) = E t,x,y e (T -t) g * (X k, * T , Y k, * T ) -T t e (s-t) h k, * (s, X k, * s , Y k, * s )ds ,where (X k, * , Y k, * ) is the diffusion with infinitesimal generator given by L k, * . Now, the standard L p estimates for (X k , Y k ) and (X k, * , Y k, * ) hold uniformly in k (recall that ϕ k is sublinear uniformly in k and ϕ k ϕ k is bounded uniformly in k): for every p ≥ 1 there exist C, a > 0 such that sup k sup t≤T E t,x,y |X k t | p + |Y k t | p + sup k sup t≤T E t,x,y |X k, * t | p + |Y k, * t | p ≤ C(1 + |x| a + |y| a ). This gives that sup k sup t<T |u k (t, x, y)| + sup k sup t<T ∂ y u k (t, x, y) ≤ C(1 + |x| a + |y| a ), for suitable C, a > 0 (possibly different from the ones above). Moreover, using the stability results of [12] one obtains lim n→∞ u k (t, x, y) = u(t, x, y) and lim n→∞ ∂ y u k (t, x, y) = v(t, x, y) for every (t, x, y) ∈ [0, T ) × O. And thanks to the above uniform polynomial bounds for u k and ∂ y u k , for every φ ∈ C ∞ (O) with compact support we easily get v(t, x, y)φ(x, y)dxdy = lim k ∂ y u k (t, x, y)φ(x, y)dxdy = -lim k u k (t, x, y)∂ y φ(x, y)dxdy = -u(t, x, y)∂φ(x, y)dxdy. Therefore, v(t, x, y) = ∂ y u(t, x, y) in [0, T ) × O. The statement now follows. jump-diffusion processes

T

  = x + Z t,yT and we get ∂ m x u(t, x, y) = E t,x,y ∂ m x f (X T , Y T ) . Since ∂ m x f ∈ C p,0 pol (R, R + )for any m ≤ 2q, by Lemma 4.5.6 we obtain ∂ m x u ∈ C p,0 pol,T (R, R + ) for every m ≤ 2q. Fix now n > 0 and m ≥ 0. Recursively applying Lemma 4.5.8, we get formula (4.5.76). Let us stress that, because of the presence of the derivatives ∂ m+2 x ∂ n-1 y u and ∂ m+1 x ∂ n-1 y u in (4.5.76), the recursively application of Lemma 4.5.8 gives the constraint m + 2n ≤ q.Then, by Lemma 4.5.6, it follows that ∂ m x ∂ n y u ∈ C p,0 pol,T (R, R + ) for every m, n ∈ N such that m + 2n ≤ 2q, and in particular when m + n = q.Consider now the case l > 0. By (4.5.76), Lemma 4.5.7 ensures that if m + 2n ≤ 2q thenu n,m = ∂ m x ∂ n y u solves    ∂ t u m,n + L n u m,n -nκu m,n = -n 1 2 u m+2,n-1 + bu m+1,n-1 in [0, T ) × O,u m,n (T, x, y) = ∂ m x ∂ n y f (x, y) in O, (4.5.86)

Lemma 4 . 6 . 1 .

 461 For every p ≥ 2 there exists C > 0 (depending on p and on the model parameters) such that sup t∈[nh,(n+1)h] E[|X

( 4 . 6 . 91 )h 1 2 C=

 46912 where b = ρ σ κ -1 2 and (X l , Y l ) is the solution of the Heston/Bates model with new coefficientsr l = r + lρσ, κ l = κ, θ l = θ + lσ 2 2κ , σ l = σ. Denote by C l the constant such that sup t∈[(N -1)h,T ) E t,y [(Y l (n+1)h ) p ] ≤ (1 + y p )(1 + C l h).Then, if l = 1, by (4.6.91) we getsup t∈[(N -1)h,T ) |∂ l x ∂ y v h N -1 (t, •, y)| ≤ C l ,1 (1 + C 1 h)(1 + y a l ,1 ) + l +2,0 (1 + C 1 h)(1 + y a l +2,0 ) + |b|C l +1,0 (1 + C 1 h)(1 + y a l +1,0 ) .Without loss of generality we can assume that 1 2 +|b| ≤ C 1 , C i ≤ C i+1 and that the constants C l,l and a l,l are nondecreasing in both l and l . Then, we easily deduce that supt∈[(N -1)h,T ) |∂ l x ∂ y v h N -1 (t, •, y)| L 2 (R,dx) ≤ C l +2,1 (1 + C 1 h) 2 (1 + y a l +2,1 ). jump-diffusion processesWith the same arguments, if l = 2, we get supt∈[N -1)h,T ) |∂ l x ∂ 2 y v h N -1 (t, •, y)| L 2 (R,dx) ≤ C l +4,1 (1 + C 2 h) 3 (1 + y a l +4,1). By iterating, it can be easily seen that sup t∈[N -1)h,T ) |∂ l x ∂ l y v h N -1 (t, •, y)| L 2 (R,dx) ≤ C C l +2l,l (1 + C l h) l+1 , a (N -1) l ,l

93 )- 1 l- 2 =

 9312 c is a constant which depends on the coefficient of the model. Therefore, ũh N -1 (x, y) = max{f (x, y), v h N -1 ((N -1)h, x, y)} is a continuous function, whose derivatives, of any order, a.e. continuously exist and for every l , l,|∂ l x ∂ l y ũh N -1 (•, y)| L 2 (R,dx) ≤ C (h,N -1)Note that the estimates (4.6.92) on the time derivatives of v h N -1 are not involved in the estimate (4.6.93) and, as a consequence, in the iterative procedure.At time step n = N -2 the function v h N -2 is defined byv h N -2 (t, x, y) = E ũh N -1 (X t,x,y (N -1)h , Y t,y (N -1)h ) , t ∈ [(N -2)h, (N -1)h].By developing arguments already done for n = N -1, we get supt∈[N -1)h,T ) |∂ l x ∂ y v h N -2 (t, •, y)| L 2 (R,dx) ≤ C +2l,l (1 + C l h) l+1 = C l +4l,l (1 + C l h) 2(l+1) (t, •, y)| L 2 (R,dx) ≤ clC h,N -2 l +,l+2 1 + y a N -2 l ,l +l.Therefore, the functionũh N -2 (x, y) = max{f (x, y), v h N -2 ((N -2)h, x, y)}is a continuous function, whose derivatives, of any order, a.e. continuously exist and for every l , l,|∂ l x ∂ l y ũh N -2 (•, y)| L 2 (R,dx) ≤ C h,N -2 l ,l 1 + y a N -2 l ,l +l a.e.,By iterating, we get that, at time stepn = N -k, the function v h N -k satisfies |∂ l x ∂ l y v h N -k (•, y)| L 2 (R,dx) ≤ C (h,N -k) C l +2kl,l (1 + C l h) k(l+1) , a (N -k) l ,l = a l +2kl,l . Again sup t∈[nh,(n+1)h) |∂ l t ∂ l x ∂ l y v h N -k (t, •, y)| L 2 (R,dx) ≤ clC (h,N -k) l +2,l+2 1 + y a (N -k) l ,l +l .In order to have v h n ∈ C 2,6 pol,[nh,(n+1)h] (R, D) a.e. and uniformly in n and h, we need estimates of the derivatives ∂ l x ∂ l y v h n for l + l ≤ 6 which are uniform in n and h. It is clear that for each k ≤ N , since h = T /N and l ≤ 6, (1 + C l h) k(l+1) ≤ e C l hN (l+1) ≤ e 7T C 6 .

  )h ≥ Y 0 -θ * h -κθh = Y 0 -(θ * + κθ)h > 0 for h < Y 0 /(θ * + κθ), which gives k u (n, k) < n + 1. Therefore K u (n, k) = ∅ for every (n, k). As regards K d (n, k), if y n k < θ * /h then k d (n, k) = k by Proposition 4.3.3, so that K d (n, k) = ∅. If instead y n k ≥ θ * /h, then y n+1 0 -y n k -µ Y (y n k )h ≤ Y 0 -θ * h -κθh + κy n k h ≤ Y 0 -θ * h + κy n k h.

) 2 . 6 |Ψ 5 | 2 L 2 (

 26522 For Ψ 3 and Ψ 4 the assertion follows in a similar way. Finally, again from (ii) of Lemma (4.4.5),|Ψ 5 | 2 2 ≤ |Ψ 5 | 2 L 2 (R,dx) + ∆x 2 R,dx) + |Ψ 5 | L 2 (R,dx) × |Ψ 5 | L 2 (R,dx) . (4.7.98) It's the turn to thank my friends, who have been standing close to me during all these years. Thanks to all the fantastic people I met in Paris, with whom I have shared unforgettable moments. In particular, thanks to Danilo and Vanessa, best Roman presents Paris could have given me. Thanks to Anna, Anna Paola, Martina and Maurizia, my favourite, amazing, women in maths: your support helped me in many situations, thanks! Thanks also to my old university colleagues, who are now dear friends of mine.

  1,2 ((0, T ) × O). Then, by Sec. 1.2 -Notations and main results applying Itô's formula, the finite variation part of P (t, X t , Y t ) is its finite variation part decreases only on the set P (t, X t , Y t ) = ψ(t, X t , Y t ), we

	∂ ∂t P	+ L P (t, X t , Y t ).
	Since P is a supermartingale, we can deduce the inequality
			∂ ∂t P	+ L P ≤ 0
	and, since can write	
	∂ ∂t P	+ L P (ψ -P ) = 0.

  x, y) ≤ C(e x + e Ly ),

							(1.2.6)
	and						
	∂ψ ∂t	(t, x, y) +	∂ψ ∂x	(t, x, y) +	∂ψ ∂y	(t, x, y) ≤ C(e a|x|+by ),	(1.2.7)

  Proposition 1.3.3. Let us consider u, v : O → R locally square-integrable on O, with derivatives u x and v x locally square-integrable on O as well. Moreover, assume that

  3.1. By using Lemma 1.3.3 we have

							O	y	∂ 2 u ∂x 2 vdm = -	O	y	∂u ∂x	∂v ∂x	-γsgn(x)v dm,
				O	y	∂ 2 u ∂y 2 vdm = -	O	y	∂u ∂y	∂v ∂y	dm +	O	(µy -β)	∂u ∂y	vdm,
						O	y	∂ 2 u ∂x∂y	vdm = -	O	y	∂u ∂y	∂v ∂x	-γsgn(x)v dm
	and		O	y	∂ 2 u ∂x∂y	vdm = -	O	y	∂u ∂x	∂v ∂y	dm +	O	(µy -β)	∂u ∂x	vdm.
	Recalling that													
	L =	y 2		∂ 2 ∂x 2 + 2ρσ	∂ 2 ∂x∂y	+ σ 2 ∂ 2 ∂y 2 +	ρκθ σ	-	y 2	∂ ∂x	+ κ(θ -y)	∂ ∂y
	and using the equality β = 2κθ/σ 2 , we get
	(Lu, v) H = -	O	y 2				∂u ∂x	∂v ∂x	+ σ 2 ∂u ∂y	∂v ∂y	+ ρσ	∂u ∂x	∂v ∂y	+ ρσ	∂u ∂y	∂v ∂x	dm
	+													

O 1 2 ∂u ∂x (yγsgn(x) + ρσ(µy -β)) vdm + O 1 2 ∂u ∂y µσ 2 y -βσ 2 + ρσyγsgn(x) vdm

  , with simple passages we get

					-	∂w ∂t	(t), w(t)ϕ n	H	+ a	(M ) λ (w(t), w(t)ϕ n ) + (ζ ε (t, u(t)), w(t)ϕ n ) H
							=	∂ψ ∂t	(t) + g(t), w(t)ϕ n	H	-a (M ) λ (ψ(t), w(t)ϕ n ).
	With the notation ϕ n = ∂ϕn ∂y = 1 {y≤n} , we have
	a (M ) λ (w(t), w(t)ϕ n ) =						
	O	y 2		∂w ∂x	(t)	2	+ 2ρσ	∂w ∂x	(t)	∂w ∂y	(t) + σ 2 ∂w ∂y	(t)	2	ϕ n dm + λ	O	(1 + y)w 2 (t)ϕ n dm
	+	O	y 2	ρσ	∂w ∂x	(t) + σ 2 ∂w ∂y	(t) w(t)ϕ n dm +	O	y ∧ M	∂w ∂x	(t)j γ,µ +	∂w ∂y	(t)k γ,µ w(t)ϕ n dm

  1.3 -Existence and uniqueness of solutions to the variational inequality Now, if we chose ζ 1 = K 3 ζ 2 = δ 1 /4 and we go back to (1.

													3.35) and (1.3.36), using ∂ψ ∂t ≤ Ψ
	we get										
	1 2 O	w 2 (t)ϕ n dm +	δ 1 4	t	T	w(s) 2 V,n ds +	1 ε	t	T	ds	O	(-w(s)) 2 + ϕ n dm
	≤	4 δ 1	1 + yg 2 L 2 ([t,T ];H) +	1 + yΨ 2 L 2 ([t,T ];H)

  Therefore, the solution u n ε,λ,M of the equation (1.3.23) with source function g n and obstacle function ψ n satisfies

	T t	∂u n ε,λ,M ∂s	(s)

  For i = 1, 2, assume that ψ i satisfies Assumption H 1 , g satisfies Assumption H 0 and 0≤ ψ i ≤ Φ with Φ ∈ L 2 ([0, T ]; H 2 (O, m)) such that ∂Φ ∂t + LΦ ≤ 0 and 0 ≤ g ≤ -∂Φ∂t -L λ Φ. Let u i λ be the unique solution of (1.3.43) with obstacle function ψ i and source function g

	(iii)
	the unique solution of (1.3.43) with obstacle function ψ and
	source function g i . If g 1 ≤ g 2 , then u 1 λ ≤ u 2 λ .

  2.3. Again, we first study the uniqueness of the solution and then we deal with the existence.Proof of uniqueness in Theorem 1.2.3. Suppose that there are two functions u 1 and u 2 which satisfy (1.2.5). As usual, we take v = u 2 in the equation satisfied by u 1 and v = u 1 in the one satisfied by u 2 and we add the resulting equations. Setting w := u 2 -u 1

				, we get
	that, a.e. in [0, T ],			
	∂w ∂t	(t), w(t)	H	-a(w(t), w(t)) ≥ 0.

  x, y), we deduce from Lemma 1.4.13 that X xn,yn

	tn 0 (1+Ys)ds ψ(X xn,yn → X x,y t , s ds in probability. Therefore e -λ tn 0 Y y t tn , Y yn tn ) 0 (1+Ys)ds ψ(X x,y tn 0 Y yn s ds → converges to e -λ t Y yn tn → Y y t and t , Y y t ) in probability. The estimate (1.4.62) ensures the uni-formly integrability of e -λ tn 0 (1+Ys)ds ψ(X xn,yn tn , Y yn tn ) so that lim n→∞ P λ tn ψ(x n , y n ) = P λ t ψ(x, y)
	which concludes the proof.

Proposition 1.4.15. Fix p > β +

5 

2 and λ as in Theorem 1.4.9. Let us consider u ∈

  Proof of Theorem 1.2.4. First assume that there exists a sequence (ψ n )

	Theorem 1.2.4.

n∈N of continuous functions on [0, T ]×R×[0, ∞) which converges uniformly to ψ and such that, for each n ∈ N, ψ n satisfies the assumptions of Proposition 1.4.16. For every n ∈ N, we set u n = u n (t, x, y) the unique solution of the variational inequality (1.2.3) with final condition u n (T, x, y) = ψ n (T, x, y) and u * n (t, x, y) = sup τ ∈T t,T E[ψ n (τ, X t,x,y τ , Y t,y τ )]. Then, thanks to Proposition 1.4.16, for every n ∈ N we have

  ds ) s∈[t,T ] is a martingale. Then, note that the process Bt = B t -Y t,y t t is a Brownian motion under the probability measure P which has density d P/dP = e

							y s dBs-τ t	Y s t,y 2 ds x -Ke	τ t	δ-r+	Y s t,y 2	ds-τ t dBs
	= Ee -δ(τ -t) e	T t	√	Y t,y s dBs-T t	Y s t,y 2 ds x -Ke	τ t	δ-r+	Y s t,y 2	ds-τ t	√	+ Y t,y s dBs	,
													+
	where the last equality follows from the fact that (e 2 T s t √ Y t,y Y t,y s s dBs-s t t √ Y t,y s dBs-T t Y t,y s 2 ds . Therefore
	Ee -r(τ -t) se	τ t	r-δ-	Y s t,y 2		ds+ τ t	√	Y t,y s dBs		

  of all, we have the following simple result.

	Proposition 2.4.4. We have:
	(i) for every fixed y ∈ [0, ∞), the function t → b(t, y) is nondecreasing and right contin-
	uous;

(ii) for every fixed t ∈ [0, T ), the function y → b(t, y) is nonincreasing and left continuous.

Proof. 1. Recalling that the map t → P (t, s, y) is nonincreasing, we directly deduce that t → b(t, y) is nondecreasing. Then, fix t ∈ [0, T ) and let (t n ) n≥1 be a decreasing sequence such that lim n→∞ t n = t. The sequence (b(t n , y)) n is nondecreasing so that lim n→∞ b(t n , y) exists and we have lim n→∞ b(t n , y) ≥ b(t, y). On the other hand, we have

P (t n , b(t n , y), y) = ϕ(b(t n , y)) n ≥ 1,

and, by the continuity of P and ϕ, P (t, lim n→∞ b(t n , y), y) = ϕ( lim n→∞ b(t n , y)).

  .4.23) Chap.. 2 -American option price properties in Heston type models

	This means in particular that	t 0 1 {ζs=0} da s + 1 2 L 0 t (ζ) is decreasing, but L 0 t (ζ) is increasing
	so -	t 0 1 {ζs=0} da s must be an increasing process and
			1 2	dL 0 t (ζ)

  recall that the volatility process Y follows a CIR dynamics with mean reversion rate κ Y , long run variance θ Y and σ Y denotes the vol-vol (volatility of the volatility). We assume that θ Y , κ Y , σ Y > 0 and we stress that we never require in this chapter that the CIR process Sec. 3.2 -The Bates-Hull-White model satisfies the Feller condition 2κ Y θ Y ≥ σ 2 Y

  .2.8)and N t is the compound Poisson process with intensity λ and the i.i.d. jumps {log(1+J k )} k , J k ), the Bates-Hull-White model K being a Poisson process with intensity λ. Recall that K, the jump amplitudes {log(1 + J k )} k and the 3-dimensional standard Brownian motion (W 1 , W 2 , W 3 ) are all independent.

	that is	Kt
	N t =	log(1 +
		k=1

  denotes the set of all stopping times taking values on [t, T ]. Note that we have used the relation between the interest rate (r t ) t and the process (R t ) t , see (3.2.3) and

		t,x,y,r T	) ,	
	American price: P (t, x, y, r) = sup τ ∈T t,T	E e -τ t (σrR t,r s +ϕs)ds Ψ(X t,x,y,r τ	) ,	(3.2.10)
	where T t,T			

  the set in the r.h.s. of (3.3.12), respectively (3.3.13), is empty. The transition probabilities are defined as follows: starting from the node (n, k) the probability that the process jumps to k

u (n, k) and k d (n, k) at time-step n + 1 are set as

Table 3 . 1 :

 31 Standard Bates model. Prices of European call options.

Table 3 . 2 :

 32 Standard Bates model. Prices of American call options. Test parameters: K = 100, T = 0.5, r = 0.03, δ = 0.05, Y 0 = 0.04, θ Y = 0.04, κ Y = 2, σ Y = 0.4, λ = 5, γ = 0, η = 0.1, ρ = -0.5, 0.5.

	5	∆x	HTFDa	HTFDb	PSOR	MOL		N MC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
		0.01	1.1365	1.1365				10000	1.03±0.08	1.14±0.09	1.06±0.09	1.03±0.09
		0.005	1.1356	1.1358				50000	1.19±0.04	1.14±0.04	1.18±0.04	1.12±0.04
	S 0 = 80	0.0025	1.1354	1.1356	1.1359	1.1363		100000	1.15±0.03	1.13±0.03	1.13±0.03	1.13±0.03
		0.00125	1.1353	1.1355				200000	1.14±0.02	1.14±0.02	1.14±0.02	1.14±0.02
		0.01	3.3579	3.3563				10000	3.39±0.15	3.44±0.16	3.38±0.15	3.48±0.16
		0.005	3.3564	3.3551				50000	3.46±0.07	3.33±0.07	3.46±0.07	3.32±0.07
	S 0 = 90	0.0025	3.3560	3.3548	3.3532	3.3530		100000	3.35±0.05	3.35±0.05	3.33±0.05	3.36±0.05
		0.00125	3.3559	3.3547				200000	3.35±0.03	3.33±0.03	3.35±0.03	3.34±0.03
		0.01	7.6010	7.6006				10000	7.68±0.23	7.88±0.24	7.63±0.23	7.80±0.24
		0.005	7.6001	7.5992				50000	7.75±0.11	7.59±0.10	7.76±0.10	7.53±0.10
	S 0 = 100	0.0025	7.5997	7.5989	7.5970	7.5959		100000	7.56±0.07	7.61±0.07	7.56±0.07	7.61±0.07
		0.00125	7.5996	7.5989				200000	7.58±0.05	7.55±0.05	7.58±0.05	7.57±0.05
		0.01	13.8853	13.8854				10000	13.90±0.29	14.28±0.30	13.84±0.29	14.10±0.29
		0.005	13.8836	13.8842				50000	14.05±0.13	13.89±0.12	14.07±0.13	13.86±0.12
	S 0 = 110	0.0025	13.8832	13.8839	13.8830	13.8827	100000	13.80±0.09	13.91±0.09	13.84±0.09	13.89±0.09
		0.00125	13.8831	13.8838				200000	13.86±0.06	13.84±0.06	13.87±0.06	13.83±0.06
		0.01	21.7180	21.7199				10000	21.83±0.34	22.07±0.33	21.71±0.30	22.04±0.34
		0.005	21.7168	21.7187				50000	21.91±0.15	21.76±0.13	21.90±0.15	21.72±0.13
	S 0 = 120	0.0025	21.7166	21.7184	21.7186	21.7191	100000	21.59±0.10	21.78±0.10	21.64±0.10	21.72±0.10
		0.00125	21.7165	21.7183				200000	21.68±0.07	21.65±0.07	21.68±0.07	21.67±0.07
						(b)				
	ρ = 0.5	∆x	HTFDa	HTFDb	PSOR	MOL		N MC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
		0.01	1.4817	1.4837				10000	1.32±0.11	1.03±0.09	1.51±0.13	0.66±0.08
		0.005	1.4809	1.4830				50000	1.51±0.05	1.31±0.05	1.54±0.05	1.47±0.05
	S 0 = 80	0.0025	1.4807	1.4828	1.4843	1.4848		100000	1.50±0.04	1.50±0.04	1.51±0.04	1.48±0.04
		0.00125	1.4807	1.4828				200000	1.50±0.03	1.49±0.02	1.49±0.03	1.47±0.02
		0.01	3.7134	3.7148				10000	3.83±0.19	3.79±0.17	3.89±0.19	3.95±0.19
		0.005	3.7121	3.7139				50000	3.81±0.08	3.70±0.08	3.84±0.08	3.69±0.08
	S 0 = 90	0.0025	3.7118	3.7137	3.7145	3.7146		100000	3.69±0.06	3.75±0.06	3.72±0.06	3.70±0.06
		0.00125	3.7118	3.7137				200000	3.70±0.04	3.71±0.04	3.72±0.04	3.70±0.04
		0.01	7.7044	7.7051				10000	7.74±0.26	7.85±0.25	7.96±0.26	7.99±0.26
		0.005	7.7036	7.7039				50000	7.85±0.12	7.68±0.11	7.87±0.12	7.68±0.11
	S 0 = 100	0.0025	7.7033	7.7036	7.7027	7.7018		100000	7.66±0.08	7.75±0.08	7.65±0.08	7.73±0.08
		0.00125	7.7032	7.7036				200000	7.69±0.06	7.67±0.05	7.68±0.06	7.69±0.05
		0.01	13.6770	13.6756				10000	13.57±0.32	13.98±0.31	13.88±0.32	14.12±0.33
		0.005	13.6752	13.6742				50000	13.83±0.14	13.67±0.13	13.89±0.14	13.64±0.13
	S 0 = 110	0.0025	13.6747	13.6739	13.6722	13.6715	100000	13.56±0.09	13.74±0.10	13.58±0.10	13.71±0.10
		0.00125	13.6747	13.6738				200000	13.65±0.07	13.65±0.07	13.64±0.07	13.64±0.07
		0.01	21.3668	21.3671				10000	21.45±0.32	21.60±0.35	21.39±0.33	21.84±0.34
		0.005	21.3655	21.3658				50000	21.54±0.15	21.40±0.14	21.61±0.16	21.40±0.13
	S 0 = 120	0.0025	21.3653	21.3655	21.3653	21.3657	100000	21.26±0.10	21.43±0.10	21.27±0.10	21.38±0.10
		0.00125	21.3652	21.3653				200000	21.31±0.07	21.33±0.07	21.31±0.07	21.31±0.07
		∆x		HTFDa	HTDFb	N MC	HMCa	HMCb	AMCa	AMCb	CF
		0.01	0.09	0.34	10000	0.007		0.16	0.16	0.30
		0.005	0.18	0.72	50000	0.36		0.72	0.79	1.51
		0.0025	0.46	1.62	100000	0.71		1.44	1.57	3.12	0.001
		0.00125	0.84	3.53	200000	1.45		2.95	3.14	6.17

Table 3 . 3 :

 33 Standard Bates model. Computational times (in seconds) for European call options in Table3.1 for S 0 = 100, ρ = -0.5. practice

	∆x	HTFDa	HTDFb	N MC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
	0.01	0.10	0.37	10000	0.09	0.23	0.20	0.45
	0.005	0.19	0.77	50000	0.47	1.11	1.01	2.25
	0.0025	0.48	1.77	100000	1.07	2.25	2.01	4.57
	0.00125	0.95	3.61	200000	1.94	4.55	4.05	8.98

Table 3 . 4 :

 34 Standard Bates model. Computational times (in seconds) for American call options in Table3.2 for S 0 = 100, ρ = -0.5.

	N	S 0 = 80	S 0 = 90	S 0 = 100	S 0 = 110	S 0 = 120
	200	1.919250	1.961063	1.894156	2.299666	2.109026
	400	2.172836	2.209762	2.556021	1.673541	1.996332
	800	1.544849	1.851932	1.463712	2.935697	2.106880

Table 3 . 6 :

 36 Standard Bates model. Prices of European call options. Test parameters: K = 100, T = 5, r = 0.03, δ = 0.05, Y 0 = 0.04, θ Y = 0.04, κ Y = 2, σ Y = 0.7, λ = 5, γ = 0, η = 0.1, ρ = -0.5. Case 2κ Y θ Y < σ 2 Y .

	ρ = -0.5	∆x	HTFDa	HTFDb	CF		N MC		HMCa		HMCb	AMCa	AMCb
		0.01	9.0085	8.9457			10000	9.21±0.55	9.09±0.55	8.69±0.53	8.56±0.51
		0.0050	9.0032	8.9405			50000	9.13±0.25	8.92±0.24	8.81±0.24	9.04±0.24
	S 0 = 80	0.0025	9.0020	8.9392	8.9262	100000	9.01±0.17	8.81±0.17	8.92±0.17	8.88±0.17
		0.00125	9.0016	8.9389		200000	8.99±0.12	8.92±0.12	8.95±0.12	8.90±0.12
		0.01	12.7405	12.6520			10000	12.95±0.67	12.95±0.67	12.29±0.65	12.15±0.6
		0.0050	12.7342	12.6458			50000	12.87±0.30	12.64±0.29	12.49±0.29	12.76±0.3
	S 0 = 90	0.0025	12.7327	12.6442	12.6257	100000	12.72±0.21	12.50±0.21	12.63±0.21	12.58±0.21
		0.00125	12.7323	12.6438		200000	12.71±0.15	12.61±0.15	12.66±0.15	12.61±0.15
		0.01	17.0324	16.9176			10000	17.24±0.80	17.24±0.80	16.43±0.77	16.29±0.75
		0.0050	17.0254	16.9106			50000	17.18±0.36	16.91±0.35	16.73±0.35	17.03±0.35
	S 0 = 100	0.0025	17.0237	16.9089	16.8855	100000	17.00±0.25	16.74±0.25	16.91±0.25	16.84±0.25
		0.00125	17.0232	16.9084		200000	16.99±0.18	16.86±0.18	16.94±0.18	16.88±0.18
		0.01	21.8149	21.6741			10000	22.04±0.93	22.04±0.93	21.06±0.93	20.91±0.88
		0.0050	21.8067	21.6659			50000	21.96±0.42	21.67±0.41	21.43±0.41	21.82±0.41
	S 0 = 110	0.0025	21.8047	21.6639	21.6364	100000	21.76±0.29	21.47±0.29	21.69±0.29	21.59±0.29
		0.00125	21.8042	21.6634		200000	21.76±0.21	21.59±0.20	21.70±0.20	21.63±0.20
		0.01	27.0196	26.8539			10000	27.26±1.05	27.26±1.05	26.12±1.03	25.94±1.01
		0.0050	27.0108	26.8452			50000	27.17±0.47	26.86±0.46	26.56±0.46	27.02±0.47
	S 0 = 120	0.0025	27.0086	26.8430	26.8121	100000	26.94±0.33	26.63±0.33	26.89±0.33	26.78±0.33
		0.00125	27.0081	26.8425		200000	26.95±0.23	26.75±0.23	26.89±0.23	26.81±0.23
	ρ = -0.5	∆y	HTFDa	HTFDb	B-AMC		N MC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
		0.01	9.8335	9.7978			10000	10.15±0.46	10.20±0.46	10.47±0.47	9.80±0.42
		0.0050	9.8283	9.7927			50000	9.93±0.20	9.86±0.20	9.89±0.19	9.78±0.19
	S 0 = 80	0.0025	9.8271	9.7914	9.7907± 0.04	100000	9.76±0.14	9.69±0.13	9.74±0.14	9.76±0.13
		0.00125								

Table 3 . 8 :

 38 Bates-Hull-White model. Prices of European call options.

Table 3 . 9 :

 39 Bates-Hull-White model. Prices of American call options. Test parameters: K = 100,

	ρ Sr = -0.5	∆x	HTFDa	HTFDb	B-AMC	N MC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
		0.02	1.0561	1.0470		10000	0.76±0.07	0.56±0.06	0.95±0.08	0.82±0.08
		0.01	1.0598	1.0588		50000	1.08±0.04	0.91±0.04	1.01±0.04	0.96±0.04
	S 0 = 80	0.0050	1.0597	1.0596	1.0544±0.01	100000	1.07±0.03	1.03±0.03	1.07±0.03	1.04±0.03
		0.0025	1.0596	1.0595		200000	1.05±0.02	1.04±0.02	1.07±0.02	1.05±0.02
		0.01	3.2511	3.2364		10000	3.28±0.15	3.39±0.16	3.35±0.16	3.07±0.15
		0.01	3.2537	3.2493		50000	3.33±0.07	3.21±0.07	3.25±0.07	3.30±0.07
	S 0 = 90	0.0050	3.2528	3.2494	3.2273±0.01	100000	3.23±0.05	3.24±0.05	3.27±0.05	3.25±0.05
		0.0025	3.2528	3.2495		200000	3.22±0.03	3.23±0.03	3.25±0.03	3.24±0.03
		0.02	7.6012	7.5952		10000	7.64±0.22	7.99±0.23	7.80±0.23	7.68±0.22
		0.01	7.6020	7.5976		50000	7.72±0.10	7.58±0.09	7.61±0.10	7.65±0.10
	S 0 = 100	0.0050	7.6022	7.5980	7.5589±0.02	100000	7.54±0.07	7.62±0.07	7.61±0.07	7.54±0.07
		0.0025	7.6022	7.5980		200000	7.54±0.05	7.54±0.05	7.56±0.05	7.60±0.05
		0.02	14.1510	14.1524		10000	14.22±0.28	14.61±0.29	14.35±0.29	14.07±0.28
		0.01	14.1443	14.1425		50000	14.25±0.13	14.11±0.12	14.16±0.12	14.17±0.13
	S 0 = 110	0.0050	14.1420	14.1401	14.0909±0.03	100000	14.03±0.09	14.18±0.09	14.10±0.09	14.06±0.09
		0.0025	14.1419	14.1399		200000	14.05±0.06	14.04±0.06	14.07±0.06	14.13±0.06
		0.02	22.2466	22.2505		10000	22.38±0.32	22.84±0.33	22.46±0.32	22.15±0.32
		0.01	22.2412	22.2419		50000	22.35±0.15	22.27±0.14	22.24±0.14	22.28±0.14
	S 0 = 120	0.0050	22.2398	22.2402	22.1736±0.03	100000	22.12±0.10	22.27±0.10	22.19±0.10	22.17±0.10
		0.0025	22.2394	22.2397		100000	22.12±0.10	22.27±0.10	22.19±0.10	22.17±0.10
						(b)				
	ρ Sr = 0.5	∆x	HTFDa	HTFDb	B-AMC	N MC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
		0.02	1.3551	1.3470		10000	1.18±0.09	1.29±0.10	1.12±0.09	0.80±0.08
		0.01	1.3576	1.3566		50000	1.35±0.05	1.17±0.04	1.33±0.05	1.25±0.05
	S 0 = 80	0.0050	1.3573	1.3570	1.3559±0.01	100000	1.33±0.03	1.30±0.03	1.33±0.03	1.27±0.03
		0.0025	1.3571	1.3569		200000	1.35±0.02	1.31±0.02	1.38±0.02	1.34±0.02
		0.01	3.7696	3.7606		10000	3.72±0.17	3.78±0.17	3.82±0.18	3.72±0.17
		0.01	3.7705	3.7688		50000	3.86±0.08	3.71±0.08	3.80±0.08	3.81±0.08
	S 0 = 90	0.0050	3.7694	3.7685	3.7633±0.02	100000	3.75±0.06	3.74±0.05	3.76±0.05	3.74±0.05
		0.0025	3.7694	3.7686		200000	3.75±0.04	3.74±0.04	3.80±0.04	3.79±0.04
		0.02	8.1285	8.1249		10000	8.12±0.24	8.52±0.26	8.25±0.26	8.15±0.25
		0.01	8.1308	8.1301		50000	8.25±0.11	8.08±0.11	8.15±0.11	8.18±0.11
	S 0 = 100	0.0050	8.1311	8.1308	8.1122±0.03	100000	8.07±0.08	8.16±0.08	8.11±0.08	8.10±0.08
		0.0025	8.1312	8.1309		200000	8.08±0.06	8.07±0.06	8.14±0.06	8.16±0.06
		0.02	14.4455	14.4468		10000	14.48±0.32	14.84±0.33	14.43±0.32	14.51±0.32
		0.01	14.4409	14.4414		50000	14.60±0.15	14.40±0.14	14.45±0.14	14.47±0.14
	S 0 = 110	0.0050	14.4389	14.4395	14.3884±0.03	100000	14.34±0.10	14.47±0.10	14.39±0.10	14.38±0.10
		0.0025	14.4388	14.4394		200000	14.35±0.07	14.37±0.07	14.38±0.07	14.48±0.07
		0.02	22.2859	22.2893		10000	22.23±0.36	22.87±0.39	22.45±0.36	22.29±0.35
		0.01	22.2815	22.2827		50000	22.50±0.17	22.29±0.16	22.27±0.16	22.28±0.16
	S 0 = 120	0.0050	22.2802	22.2813	22.2039±0.04	100000	22.17±0.12	22.31±0.12	22.24±0.12	22.22±0.12
		0.0025	22.2798	22.2808		200000	22.17±0.08	22.17±0.08	22.17±0.08	22.32±0.08

  5,ρ Sr = -0.5, 0.5. the Bates-Hull-White model

	∆x	HTFDa	HTDFb	N MC	HMCa	HMCb	AMCa	AMCb
	0.02	2.77	22.95	10000	0.13	0.25	0.36	0.48
	0.01	6.15	48.17	50000	0.66	1.35	1.11	2.48
	0.005	12.12	99.19	100000	1.37	2.56	1.82	4.99
	0.0025	27.61	204.88	200000	2.56	5.08	3.70	9.96

Table 3 .

 3 10: Bates-Hull-White model. Computational times (in seconds) for European call options in Table3.8 for S 0 = 100, ρ Sr = -0.5.

	∆x	HTFDa	HTDFb	N MC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
	0.02	2.77	23.10	10000	0.28	0.43	0.40	0.62
	0.01	6.39	48.65	50000	0.80	1.79	1.30	2.72
	0.005	12.50	99.85	100000	1.91	3.89	3.02	6.15
	0.0025	27.92	205.60	200000	4.03	8.11	5.20	10.75

Table 3 .

 3 11: Bates-Hull-White model. Computational times (in seconds) for American call options in Table

  .3.14) By Proposition 4.3.3, for h < h, if θ * h < y n k < θ * /h the up and down jumps are both single,

	hence y n+1 ku = y n+1 k+1 and y n+1 k d = y n+1 k

  by using (4.3.19) and point 1. of Proposition 4.3.3, we can explicitly write

  ≤ Y 0 + κθ(n + 1)h ≤ Y 0 + κθT and the case p = 1 is proved. So, assume that (4.3.11) holds for p -1 and let us prove its validity for p. Using (4.3.20), we have

	by inserting, for every n ≤ N -1 we get
	0 ≤ Y h n+1 ≤ (1 + bh)Y h n + Ch + σ(κθ + θ * )h + σ Y h n h W h n+1
	and (4.3.20) is proved.
	Now, we repeat step by step the proof of Lemma 2.6 in [3] in order to get (4.3.11). We
	use induction on p. For p = 1, by definition one has E[Y h n+1 |Y h n ] = Y h n + µ Y (Y h n )h and, by
	passing to the expectation, E[Y h n+1 ] = E[Y h n ] + E[µ Y (Y h n )h] ≤ E[Y h n ] + κθh, from which we
	obtain E[Y h n+1 ]

  .26) where T t,T denotes the set of all stopping times taking values on [t, T ].This can be, in general, a problem of interest in a large number of applications. Of course, the immediate application in this thesis is in the financial world, where X can represent the log-price (or a transformation of it) and Y can be interpreted as a random source such as a stochastic volatility and/or a stochastic interest rate. In this framework, the function defined in (4.4.25) is the price value at time t of a European option with maturity T and

(discounted) payoff f , while the function u as defined in

(4.4.26) 

is the value function of the corresponding American option. Therefore, from now on we will refer to the European case when u is defined as in

(4.4.25) 

and to the American case where u is given by (4.4.26).

  and (4.4.47). For all n = 0, . . . , N -1, let v h n be the function defined in(4.4.50). By rewriting the proof of Proposition 4.4.8 in terms of the norm in l ∞ (X ), one gets that Π h ∆x (y) satisfies B(∞, 2λc ν |γ X |, h + ∆x). The statement now follows by applying Theorem 4.4.1. We only notice that here one applies (4.4.52) to the remaining term R 5 in (4.4.68). Since this term contains just v h n , one does not need more regularity for v h n , that's why we do not need that v h n ∈ C ∞,6 pol,T (R, D) and the class C ∞,4 pol,T (R, D) is enough.It is natural to look for conditions on the function f which ensure that the regularity assumptions on the function v h n for n = 0, . . . , N , which are required In Theorem 4.4.10, are actually satisfied. Of course, these conditions depend on the regularity of the model. In Sections 4.5 and 4.6 we will study the case of the degenerate Heston or Bates model.

	jump-diffusion processes
	Proof.
	.56)
	sup
	t∈[0,T ]
	(4.4.58)
	We can now prove the following key result.
	Proposition 4.4.8. Set Π h ∆x (y) = (A h ∆x ) -1 B h ∆x (y), with A h ∆x (y) and B h ∆x (y) given in
	(4.4.45) Suppose that
	• ν ν , ν ν ∈ L 2 (R, dν);

|Ψ 4 (t, •, y, z)| 2 ≤ C(1 + |y| a + |z| a ). (4.4.57) Moreover, set Ψ 5 (t, x, y) = g(t, x+ξ, y)ν(ξ)dξl g(t, x+l∆x, y)ν(l∆x)∆x, (t, x, y) ∈ [0, T ]×R×D. If (4.4.54) holds also with k = 3, 4, there exists C > 0 such that sup t∈[0,T ] |Ψ 5 (t, •, y)| 2 ≤ λC(1 + |y| a ) ∆x 2 .

  By (4.5.81), u 2 (t n , x n , y n ) → u 2 (t, x, y) thanks to the Lebesgue's dominated convergence and moreover, u 2 grows polynomially. So, u 2 ∈ C pol,T (R × R + ).Fix now p = ∞. We have sup

																t,x,y s	, Y t,y s ) ,
								T							
								e (s-t) h(s, X t,•,y s	, Y t,y s )ds	
							t									L p (R,dx)
	≤ C sup t≤T	E	t	T	h(s, X t,•,y s	, Y t,y s )	p L p (R,dx)	1/p	= C sup t≤T	E	t	T	h(s, • + H t,y s , Y t,y s )	L p (R,dx) p	1/p
	= C sup t≤T	E	t	T	h(s, •, Y t,y s )	p L p (R,dx)	1/p	≤ CT sup			

a.e. s ∈ [0, T ]. t≤T u 2 (t, •, y) L p (R,dx) = sup t≤T E t≤s≤T (1 + E[(Y t,y s ) pa ]) 1/p

  (s, X * s , Y * s )ds . jump-diffusion processes In order to identify v with v = ∂ y u we would need to know that ∂ y u ∈ C pol,T (O). If the diffusion coefficient of Y * was more regular, one could use arguments from the stochastic flow. But this is not the case, hence we use a density argument inspired by [47]. For k ≥ 1, let ϕ k be a C ∞ (R) approximation of |y| such that ϕ k (y) ≥ 1/k, ϕ k (y) → |y| uniformly on the compact sets of [0, +∞) and ϕ 2 k is Lipschitz continuous uniformly in k (which means that ϕ k ϕ k is bounded uniformly in k). Consider the diffusion process (X k , Y k ) + bY k t dt + ϕ k (Y k t )dB t + dH t , dY k t = κ(θ -Y k t )dt + σϕ k (Y k t )dW t , + 2ρσ∂ x ∂ y u + σ 2 ∂ 2 y u + (a + by) ∂ x u + κ(θ -y)∂ y u + Iu.

	defined by		
			  dX k t = a (4.5.85)
			
	whose generator is	
	L k u =	ϕ 2 k (y) 2	∂ 2 x u

* T ) -T t e (s-t) h * Set u k (t, x, y) = E t,x,y e (T -t) g(X k T , Y k T ) -T t e (s-t) h(s, X k s , Y k s )ds .

  t,x,y (n+1)h | p ] ≤ (1 + Ch)(1 + |x| p + y p ), Proof. It can be easily proved that there exists C > 0 such that sup t∈[0,T ] E[|X t | p ] ≤ C(1 + |x| p + y p ), sup t∈[0,T ] E[(Y t,y t ) p ] ≤ C(1 + y p ). (4.6.89) We start by proving (4.6.88). Let us fix p ≥ 1. By using Itô's Lemma, for any t ∈ [nh, (n + 1)h] we have (Y t,y (n+1)h ) p = y p + p Passing to the expectation and using (4.6.89), we can find C > 0 (depending on p and on the coefficients of the model) such that sup Ns ) 2p -(X t,x,y s -) 2p dK s + ) 2p-1 dB s , K denoting the Poisson process driving the compound Poisson process H, whose associated Lévy measure is ν. Passing to the expectation, and using the martingale properties (which hold thanks to (4.6.89)) we get E[|X t,x,y (n+1)h | 2p ] = x 2p +

						(4.6.87)
				sup t∈[nh,(n+1)h]	E[(Y t,y (n+1)h ) p ] ≤ (1 + Ch)(1 + y p ).	(4.6.88)
						t	(n+1)h	κθ -	p -1 2	σ 2 (Y t,y s ) p-1 -κ(Y t,y s ) p ds
					+ pσ	(n+1)h	(Y t,y s ) p-1 2 dW s .
						t
						n+1)h]
	we get				
	|X t,x,y (n+1)h | 2p = x p +	t	(n+1)h	2pµ X (Y t,y s )(X t,x,y s -) 2p-1 + p(2p -1)σ 2 X (Y t,y s )(X t,x,y s -) 2p-2 ds
	+	t	(n+1)h	(X t,x,y s (n+1)h t s -(n+1)h 2pσ X (Y t,y s )(X t,x,y
						E[2pµ X (Y t,y s )(X t,x,y s	) 2p-1 + p(2p -1)σ 2 X (Y t,y s )(X t,x,y s	) 2p-2 ] ds
					t
				(n+1)h
			+		ds E[(X t,x,y s	+ z) 2p -(X t,x,y s
				t	

t∈[nh,(n+1)h] E[(Y t,y (n+1)h ) p ] ≤ y p + hC(1 + y p-1 + y p ) ≤ (1 + 2Ch)(1 + y p ),

from which (4.6.88) follows. As regards (4.6.87), again by Itô's Lemma, for t ∈ [nh, (-+ J

  2,6 pol,[nh,(n+1)h] (R, D) a.e. and uniformly in n and h, so by Theorem 4.4.4 we get the result. jump-diffusion processes and the statement holds. If instead k u (n, k) ≥ k + 2, then by (4.3.16) we have We apply the third inequality in (4.7.94) (with n replaced by n + 1 and k= k u (n, k)) and + 2σ y n+1 ku(n,k)-1 h + σ 2 h -y n k ≤ µ Y (y n k )h + 2σ (y n k + µ Y (y n k )h)h + σ 2 h ≤ (κθ + 2σ θ * + κθ + σ 2 )h ≤ C * h.3. The statement follows from (4.7.95). 4. Formula (4.3.19) follows from the fact that the sets K u (n, k) and K d (n, k) are nonempty. Indeed, if y n k > θ * h then k u = k + 1, so K u (n, k) = ∅. And if y n k < θ * h,

	y n+1 ku(n,k)-1 -y n k < µ Y (y n k )h.
	we get
	0 ≤ y n+1 ku(n,k) -y n k ≤ y n+1 ku(n,k)-1 y n+1 n+1 -y n

k -µ Y (y n k

  by (4.3.17) and (4.3.16), since K d (n, k) = ∅ and K u (n, k) = ∅, We apply (4.4.52) to the function g 2 . Note that if g, g , g ∈ L 2 (R, dx) then g 2 and its derivatives up to order 2 belong to L 1 (R, dx). Moreover,R g 2 (x)dx = |g| 2 L 2 and |(g 2 ) | L 1 ≤ 2|g | 2 L 2 + 2|g| L 2 |g | L 2 ,and (4.4.53) immediately follows. Proof of Lemma 4.4.7. Hereafter, C > 0 denotes a constant which can vary from line to line.As regard Ψ 1 , we recall that i → ν(i∆x)∆x/ l ν(l∆x)∆x is a probability measure on X and l ν(l∆x)∆x ≤ cλ. Then, (t,x i+l , y) + g 2 (t, x i , y)]∆x 2 ≤ 2c 2 λ 2 |g| 2 2 .By (ii) of Lemma 4.4.5 and (4.4.54), we can write|Ψ 1 | 2 2 ≤ 2c 2 λ 2 |g| 2 L 2 (R,dx) + ∆x 2 6 |∂ y g| 2 L 2 (R,dx) + |g| L 2 (R,dx) × |∂ 2 y g| L 2 (R,dx) ≤ C(1 + |y| a ) 2 .

			jump-diffusion processes		
	(ii) |Ψ 1 | 2 2 =				2	∆x
		i	l			
	≤ 2cλ ν(l∆x)[g 2 Concerning Ψ 2 , by using again (ii) of Lemma 4.4.5 we have i l
	1					
	|Ψ 2 | 2 2 ≤	(1 -τ ) 2γ			
	0					
	µ Y (y n k )h + y n k -y n+1 k d (n,k) y n+1 ku(n,k) -y n+1 k d (n,k)	≥ 0,	µ Y (y n k )h + y n k -y n+1 k d (n,k) y n+1 ku(n,k) -y n+1 k d (n,k)	= 1 +	µ Y (y n k )h + y n k -y n+1 ku(n,k) y n+1 k d (n,k) ku(n,k) -y n+1	≤ 1.

ν(l∆x)[g(t, x i+l , y) -g(t, x i , y)]∆x i g 2 (t + τ h, x i , y)∆x dτ ≤ 1 0 (1 -τ ) 2γ |g(t + τ h, •, y)| 2 L 2 (R,dx) + ∆x 2 6 |∂ y g(t + τ h, •, y)| 2 L 2 (R,dx) + |g(t + τ h, •, y)| 2 L 2 (R) × |∂ 2 y g(t + τ h, •, y)| 2 L 2 (R,dx) dτ ≤ C(1 + |y| a

2 y + √ λy * χ 2 (y) dy which again tends to 0 as λ goes to 0. We now study the terms in (2.4.14) which contains

1/2 ≤ Ch 4 .
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Part II

Hybrid schemes for pricing options in jump-diffusion stochastic volatility models

Chap.. 3 -Hybrid Monte Carlo and tree-finite differences algorithm for pricing options in the Bates-Hull-White model are based on the use of the dynamic programming principle to which one applies either deterministic schemes from numerical analysis and/or from tree methods or Monte Carlo techniques.

The option pricing hybrid tree/finite-difference approach we deal with, derives from applying an efficient recombining binomial tree method in the direction of the volatility and the interest rate components, whereas the asset price component is locally treated by means of a one-dimensional partial integro-differential equation (PIDE), to which a finite-difference scheme is applied. Here, the numerical treatment of the nonlocal term coming from the jumps involves implicit-explicit techniques, as well as numerical quadratures.

The existing literature on numerical schemes for the option pricing problem in this framework is quite poor. Tree methods are available only for the Heston model, see [START_REF] Vellekoop | A tree-based method to price American Options in the Heston Model[END_REF], but they are not really efficient when the Feller condition does not hold. Another approach is given by the dicretization of partial differential problems. When the jumps are not considered, namely for the Heston and the Heston-Hull-White models, available references are widely recalled in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]. In the standard Bates model, that is, presence of jumps but no randomness in the interest rate, the finite-difference methods for solving the 2-dimensional PIDE associated with the option pricing problems can be based on implicit, explicit or alternating direction implicit schemes. The implicit scheme requires to solve a dense sparse system at each time step. Toivanen [START_REF] Toivanen | A Componentwise Splitting Method for Pricing American Options Under the Bates Model[END_REF] proposes a componentwise splitting method for pricing American options. The linear complementarity problem (LCP) linked to the American option problem is decomposed into a sequence of five one-dimensional LCP's problems at each time step. The advantage is that LCP's need the use of tridiagonal matrices. Chiarella et al.

[34] developed a method of lines algorithm for pricing and hedging American options again under the standard Bates dynamics. More recently Itkin [START_REF] Itkin | Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials[END_REF] proposes a unified approach to handle PIDE's associated with Lévy's models of interest in Finance, by solving the diffusion equation with standard finite-difference methods and by transforming the jump integral into a pseudo-differential operator. But to our knowledge, no deterministic numerical methods are available in the literature for the Bates-Hull-White model, that is, when the the interest rate is assumed to be stochastic.

From the simulation point of view, the main problem consists in the treatment of the CIR dynamics for the volatility process. It is well known that the standard Euler-Maruyama discretization does not work in this framework. As far as we know, the most accurate respectively. Starting from the node (n, k, j), which corresponds to the position (y n k , r n j ) ∈ Y n × R n , we define the four possible jumps by means of the following four nodes at time n + 1:

(n + 1, k u (n, k), j u (n, j)) with probability p uu (n, k, j) = p Y u (n, k)p R u (n, j), (n + 1, k u (n, k), j d (n, j)) with probability p ud (n, k, j) = p Y u (n, k)p R d (n, j), (n + 1, k d (n, k), j u (n, j)) with probability p du (n, k, j) = p Y d (n, k)p R u (n, j), (n + 1, k d (n, k), j d (n, j)) with probability p dd (n, k, j) = p Y d (n, k)p R d (n, j), (3.3.20) where the above nodes k u (n, k), k d (n, k), j u (n, j), j d (n, j) and the above probabilities (3.3.18). The factorization of the jump probabilities in (3.3.20) follows from the orthogonality property of the noises driving the two processes. This procedure gives rise to a Markov chain ( Ŷ h n , Rh n ) n=0,...,N that weakly converges, as h → 0, to the diffusion process

The Monte Carlo approach

Let us show how one can simulate a single path by using the tree approximation (3.3.19) for the couple (Y, R) and the Euler scheme (3.3.23) for the X-component.

Let ( Xn ) n=0,1,...,N be the sequence approximating X at times nh, n = 0, 1, . . . , N , by means of the scheme in (3.3.23): Xh 0 = X 0 and for t ∈ [nh, (n + 1)h] with n = 0, 1, . . . , N -1 then

where µ is defined in (3.3.22) ) for k = 1, . . . , K n+1 h are simulated. Then, the observed jump of the compound Poisson process is written as the sum of the simulated log-amplitudes, so that

), (3.3.24) in which the last sum is set equal to 0 if

The above simulation scheme is plain: at each time step n ≥ 1, one lets the pair (Y, R) evolve on the tree and simulate the process X by using (3.3.24). We will refer to this procedure as hybrid Monte Carlo algorithm, the word "hybrid" being related to the fact that two different noise sources are considered: we simulate a continuous process in space (the component X) starting from a discrete process in space (the tree for (Y, R)).

The simulations just described will be used in Section 3.5 in order to set-up a Monte Carlo procedure for the computation of the option price function (3.2.10). In the case of American options, the simulations are coupled with the Monte Carlo algorithm by Longstaff and Schwartz in [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF].

The hybrid tree/finite difference approach

The price-function P (t, x, y, r) in (3.2.10) is typically computed by means of the standard backward dynamic programming algorithm. So, consider a discretization of the time interval [0, T ] into N subintervals of length h = T /N . Then the price P (0, X 0 , Y 0 , R 0 ) is numerically approximated through the quantity P h (0, X 0 , Y 0 , R 0 ) backwardly given by    P h (T, x, y, r) = Ψ(x) and as n = N -1, . . . , 0,

So, what is needed is a good approximation of the expectations appearing in the above dynamic programming principle. This is what we first deal with, starting from the dicretized process ( Ȳ h , Ȳ h , Rh ) introduced in Section 3.3.

The local 1-dimensional partial integro-differential equation

Let Xh denote the process in (3.3.23). If we set

then we have

that is, Zh solves a jump-diffusion stochastic equation with constant coefficients and at time nh it starts from Ȳ h nh . Take now a function f : we are interested in computing

We actually need a function f of all variables (x, y, r) but at the present moment the variable x is the most important one, we will see later on that the introduction of (y, r) is for β = |α|, the matrix A = A(y, r) is invertible (see e.g. Theorem 2.1 in [START_REF] Brugnano | Tridiagonal matrices: Invertibility and conditioning[END_REF]). Then, at time nh, for each fixed y ≥ 0 and r ∈ R, we approximate the solution x → u(nh, x; y, r) of (3.4.30) on the points x i 's of the grid in terms of the discrete solution u n = {u n i } i∈J M , which in turn is written in terms of the value u n+1 = {u n+1 i } i∈J M at time (n + 1)h. In other words, we set

The final local finite-difference approximation

We are now ready to tackle our original problem: the computation of the function Ψ f (ζ; x, y, r) in (3.4.28) allowing one to numerically compute the expectation in (3.4.29). So, at time step n, the pair (y, r) is chosen on the lattice Y n × R n : y = y n k , r = r n j for 0 ≤ k, j ≤ n. We call A n k,j the matrix A in (3.4.36) when evaluated in (y n k , r n j ) and d n the boundary vector in (3.4.39) at time-step n. Then, (3.4.40) gives

Therefore, by taking the expectation w.r.t. the tree-jumps, the expectation in (3.4.29) is finally computed on X M × Y n × R n by means of the above approximation:

where u n •,k,j = (u n i,k,j ) i∈J M solves the linear system

Finally, if f is a function on the whole triple (x, y, r), by using standard properties of the conditional expectation one gets

(3.4.41)

Sec. 3.5 -The hybrid Monte Carlo and tree/finite-difference approach algorithms in practice with f (t, x, y, r) = G -1 (t, r)f (t, x, y, r). So, in order to numerically compute F , one needs to set up the scheme (3.4.49) with the new coefficient α n,k,j , with f replaced by f , g = f and with the discounting factor e -(σrr n j 1 {r n j >-L} +ϕ nh )h replaced by e -ϕ nh h . So, again one is able to cancel the unbounded part of the discount. Nevertheless, the unpleasant point is that even if f (T, •) N has a bound which is uniform in N then f (T, •) N may not have because G -1 (t, r) has an exponential containing r, see (3.4.59). In other words, the unboundedness problem appears now in the obstacle.

The hybrid Monte Carlo and tree/finite-difference approach algorithms in practice

The present section is devoted to our numerical experiments. We first summarise the main steps of our algorithms and then we present several numerical tests.

A schematic sketch of the main computational steps in our algorithms

In short, we outline here the main computational steps of the two proposed algorithms.

First, the procedures need the following preprocessing steps, concerning the construction of the bivariate tree: (T4) for the 2-dimensional process (Y, R), merge the binomial trees in the bivariate tree (y n k , r n j ), 0 ≤ k, j ≤ n ≤ N , by using (3.3.19), then compute the jump-nodes (k a (n, k), j b (n, j)) and the transitions probabilities p ab (n, k, j), (a, b) ∈ {d, u}, by using (3.3.20). Sec. 3.5 -The hybrid Monte Carlo and tree/finite-difference approach algorithms in practice estimates for the localization domain and the truncation of large jumps given by Yoltchkova and Tankov [START_REF] Voltchkova | Deterministic methods for option pricing in exponential Lévy models[END_REF]. For example, for the previous model parameters the PIDE problem is solved in the finite interval [ln S 0 -1.59, ln S 0 + 1.93].

The numerical study of the hybrid tree/finite-difference method HTFD is split into two cases:

-HTFDa: time steps N t = 50 and varying mesh grid ∆x = 0.01, 0.005, 0.0025, 0.00125;

-HTFDb: time steps N t = 100 and varying mesh grid ∆x = 0.01, 0.005, 0.0025, 0.00125.

Concerning the Monte Carlo method, we compare the results by using the hybrid simulation scheme in Section 3.3.3, that we call HMC. We compare our hybrid simulation scheme with the accurate third-order Alfonsi [START_REF] Alfonsi | High order discretization schemes for the CIR process: Application to affine term structure and Heston models[END_REF] discretization scheme for the CIR stochastic volatility process and by using an exact scheme for the interest rate. In addition, we simulate the jump component in the standard way. The resulting Monte Carlo scheme is here called AMC. In both Monte Carlo methods, we consider varying number of Monte Carlo iterations N MC and two cases for the number of time discretization steps iterations:

-HMCa and AMCa: N t = 50 and N MC = 10000, 50000, 100000, 200000;

-HMCb and AMCb: N t = 100 and N MC = 10000, 50000, 100000, 200000.

All Monte Carlo results include the associated 95% confidence interval.

Table 3.1 reports European call option prices. Comparisons are given with a benchmark value obtained using the Carr-Madan pricing formula CF in [START_REF] Carr | Option valuation using the Fast Fourier Transform[END_REF] that applies Fast Fourier Transform methods (see the Premia software implementation [START_REF]Premia: An Option Pricer[END_REF]).

In Table 3.2 we provide results for American call option prices. In this case we compare with the values obtained by using the method of lines in [START_REF] Chiarella | The evaluation of barrier option prices under stochastic volatility[END_REF] Tables 3.3 and 3.4 refer to the computational time cost (in seconds) of the various algorithms for ρ = -0.5 in the European and American case respectively.

In order to make some heuristic considerations about the speed of convergence of our approach HTFD, we consider the convergence ratio proposed in [START_REF] D'halluin | A semi-Lagrangian Approach for American Asian options under jump-diffusion[END_REF], defined as ratio =

where P N denotes here the approximated price obtained with N = N t number of time steps.

Recall that P N = O(N -α ) means that ratio = 2 α . Table 3.5 suggests that the convergence ratio for HTDFb is approximatively linear. The analysis of the convergence in Chapter 4

will confirm this heuristic deduction.

We notice that the above argument does not formally allow to state the speed of convergence of a method knowing its ratio. We will come back on this topic in the next chapter of this thesis. However, we anticipate here that our theoretical analysis of the convergence confirms the first order in time rate of convergence of the procedure.

The numerical results in Table 3.1-3.4 show that HTFD is accurate, reliable and efficient for pricing European and American options in the Bates model. Moreover, our hybrid Monte Carlo algorithm HMC appears to be competitive with AMC, that is the one from the accurate simulations by Alfonsi [START_REF] Alfonsi | High order discretization schemes for the CIR process: Application to affine term structure and Heston models[END_REF]: the numerical results are similar in term of precision and variance but HMC is definitely better from the computational times point of view.

Additionally, because of its simplicity, HMC represents a real and interesting alternative to AMC.

As a further evidence of the accuracy of our hybrid methods, in Figure 3.2 and 3.3 we study the shapes of implied volatility smiles across moneyness K S 0 and maturities T using HTFDa with N t = 50 and ∆y = 0.005, HMCa with N t = 50 and N MC = 50000 and we compare the graphs with the results from the benchmark values CF. practice

Bates model with stochastic interest rate

We consider now the case of Bates model associated with the Vasiceck model for the stochastic interest rate. For the Bates model we consider the parameters from Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF] already used in Section 3.5.2. Moreover, for the interest rate parameter we fix the following parameters:

• initial interest rate r 0 = 0.03, speed of mean-reversion κ r = 1, interest rate volatility σ r = 0.2;

• time-varying long-term mean θ r (t) fitting the theoretical bond prices to the yield curve observed on the market, here set as P r (0, T ) = e -0.03T .

We study the cases

No correlation is assumed to exist between r and Y . We consider the mesh grid ∆y = 0.02, 0.01, 0.005, 0.0025, the case ∆y = 0.00125 being removed because it requires huge computational times. The numerical results are labeled HTFDa-b, HMCa-b, AMCa-b, HMCLSa-b, AMCLSa-b, their settings being given at the beginning of Section 3.5.2.

When the interest rate is assumed to be stochastic, no references are available in the literature. Therefore, we propose benchmark values obtained by using a Monte Carlo method in which the CIR paths are simulated through the accurate third-order Alfonsi [START_REF] Alfonsi | High order discretization schemes for the CIR process: Application to affine term structure and Heston models[END_REF] discretization scheme and the interest rate paths are generated by an exact scheme. For these benchmark values, called B-AMC, the number of Monte Carlo iterations and of the discretization time steps are set as N MC = 10 6 and N t = 300 respectively. In the American case, B-AMC is evaluated through the Longstaff-Schwartz [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF] algorithm with 20 exercise dates. All Monte Carlo results report the 95% confidence intervals.

European and American call option prices are given in tables 3.8 and 3.9 respectively. Tables 3.10 and 3.11 refer to the computational time cost (in seconds) of the different algorithms in the European Call case and American Call case respectively. The numerical results confirm the good numerical behavior of HTFD and HMC in the Bates-Hull-White model as well.

Chapter 4

Weak convergence rate of Markov chains and hybrid numerical schemes for jump-diffusion processes

Introduction

This chapter is devoted to the study of the weak convergence rate of numerical schemes allowing one to handle specific jump-diffusion processes which include the Heston and Bates models in the full parameters regime. We generalize the hybrid tree-finite difference method described in Chapter 3 for the computation of European and American options in the stochastic volatility context and we study the rate of convergence. Let us mention that, under these models, the literature is rich in numerical methods but, as far as we know, poor in results on the rate of convergence, with the exception of the papers [START_REF] Alfonsi | High order discretization schemes for the CIR process: Application to affine term structure and Heston models[END_REF][START_REF] Altmayer | Discretising the Heston model: an analysis of the weak convergence rate[END_REF][START_REF] Bossy | Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs[END_REF][START_REF] Zheng | Weak convergence rate of a time-discrete scheme for the Heston stochastic volatility model[END_REF], all of them either dealing with schemes written on Brownian increments or requiring restrictions on the Heston diffusion parameters. So, we first study the convergence rate of tree methods and then we tackle the hybrid procedure.

Tree methods rely heavily on Markov chains. So, in the first part (Section 4.3) we study the rate at which a sequence of Markov chains weakly converges to a diffusion process jump-diffusion processes that weakly converges to the diffusion process Y , see e.g. the classical references [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF]. We will see in Section 4.3.1 an application to tree methods, that is, when the process Y is approximated by means of a computationally simple Markov chain. Here, our aim is to study, under suitable but quite general assumptions, the order of weak convergence. So, let N ∈ N * and set h = T /N . The parameters N and h are fixed once for all. Let (Y h n ) n=0,...,N denote a Markov chain, whose state space, at time-step n, is given by Y h n ⊂ D. In our mind, (Y h n ) n=0,...,N is a Markov process which is a discrete weak approximation in time (and possibly in space) of the d-dimensional diffusion Y , namely, Y h n approximates Y at times nh, for every n = 0, . . . , N . Of course, we assume that

Without loss of generality, we may assume that (Y h n ) n=0,...,N is defined in (Ω, F, P). In order to study the rate of the weak convergence of (Y h n ) n=0,...,N to Y , we need to stress the requests that are usually done in order to merely prove the convergence (see e.g. [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF]).

In particular, we need the following assumption.

Assumption A 1 . There exists h > 0 such that, for every h < h, the first three local moments satisfy

where f h : D → R d , g h : D → R d×d and j h,l : D → R satisfy the following properties: there exist p > 1 and C > 0 such that

We also need the following behavior of the moments.

Assumption A 2 . There exists h > 0 such that for every p > 1 there exists C p > 0 for Chap.. 4 -Weak convergence rate of Markov chains and hybrid numerical schemes for jump-diffusion processes in which

Thanks to (4.3.4), the first term in (4.3.14) is null, so

We now prove that |R i n (h)| ≤ Ch 2 , for every i = 1, . . . 5. Let h > 0 such that both assumptions A 1 and A 2 hold and let h < h. Since the derivatives of u have polynomial growth, one has

where C, a > 0 denote constants that are independent of h and, from now on, may change from a line to another. Then, by using the Cauchy-Schwarz inequality, (4.3.11) and (4.3.12), we get

As regards R 2 n (h), we use the polynomial growth of ∇ y ∂ t u, the Cauchy-Schwarz inequality and the Hölder inequality, so that

where p is given in (4.3.8) and q is its conjugate exponent. Since µ Y has polynomial growth, by (4.3.8) and (4.3.11) we get

The remaining terms R 3 n (h), R 4 n (h) and R 5 n (h) can be handled similarly, so the statement follows.

An example: a first order weak convergent binomial tree for the CIR process

We now fix d = 1 and D = R + = [0, ∞). We consider the CIR process (Y t ) t∈[0,T ] solution to the SDE

We assume that θ, κ, σ > 0 and we do not require the Feller condition. Therefore, the process Y can reach 0.

We consider here the "multiple jumps" tree approximation for the CIR process described in Section 3.3.1. We first briefly recall how the tree works and then, as an application of Theorem 4.3.1, we study the rate of convergence.

Recall that, for n = 0, 1, . . . , N we have the lattice

) 

respectively. We will see in next Proposition 4.3.3 that for h small enough the parts "0∨"

and "∧1" can be omitted.

We call (Y h n ) n=0,1,...,N the Markov chain governed by the above jump probabilities. As an application of Theorem 4.3.1, we shall prove the following result.

Then, there exist h > 0 and C > 0 such that for every

jump-diffusion processes

In order to discuss the assumptions A 1 and A 2 of Theorem 4.3.1, we need some preliminary results which pave the way to the analysis of the convergence.

Proposition 4.3.3. There exist θ * , θ * , C * , h > 0 such that for any h < h the following properties hold.

(iv) The jump probabilities are

The proof of Proposition 4.3.3 relies on a boring study of the properties of the lattice, so we postpone it in Appendix 4.7.1. This is all we need to prove that A 2 holds: Proposition 4.3.4. The CIR approximating tree {Y h n } n=0,...,N satisfies Assumption A 2 .

Proof.

Step 1: proof of (4.3.11). We use a technique firstly developed in [START_REF] Alfonsi | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF] for a CIR discretization scheme based on Brownian increments. The key point is the proof of a monotonicity property allowing one to control the moments of the tree: there exist b, C, h > 0 such that for every h < h and n = 0, . . . , N -1 one has

where W h n+1 is a r.v. such that

To this purpose, fix a node (n, k). For the sake of simplicity, we write k u , resp. k d , in place of k u (n, k), resp. k d (n, k). We have (see (4.7.94)) that

Consider the last two terms above. For the first, we note that

and for the second, we recall that |W h n+1 | ≤ 2. So, we easily obtain

By recursion on n, we get

and 4.3.11 now follows.

Step 2: proof of (4.3.12). We can write

where we have used that, on the set

. Now, by using (4.3.11), Proposition 4.3.3, the Cauchy-Swartz and the Markov inequality,

and (4.3.12) follows.

Proposition 4.3.5. The CIR approximating tree {Y h n } n=0,...,N satisfies Assumption A 1 .

Proof. 
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We study separately the first two terms of the above r.h.s. If

So, 

Therefore, 

Hybrid schemes for jump-diffusions and convergence rate

We now introduce a m-dimensional jump-diffusion (X t ) t∈[0,T ] whose dynamics is given by coefficients depending on the process (Y t ) t∈[0,T ] discussed in Section 4.3. More precisely, we consider the stochastic system

where B is a 1 -dimensional Brownian motion and H is a 2 -dimensional compound Poisson process with intensity λ and i.i.d. jumps {J k } k , that is

K denoting a Poisson process with intensity λ. We assume that the Poisson process K, the jump amplitudes {J k } k and the Brownian motions B and W are independent. Moreover, we ask that J 1 has a density p J 1 , so that the Lévy measure associated with H has a density as well:

Hereafter, we denote by L the infinitesimal generator associated with the diffusion pair (X, Y ), i.e.

Lg(x, y) = 1 2 Tr(a(y)D 2 x,y g(x, y)) + µ(y) • ∇ x,y g(x, y)

where µ(y) = (µ X (y), µ Y (y)) and a(y) = σσ (y), where

.

Here, D 2 x,y and ∇ x,y are respectively the Hessian and the gradient operator w.r.t. the space variables x and y. We assume that the coefficients of X do not depend on the time variable just to simplify the notation, but all the proofs in this chapter are still valid in the time-depending case under non restrictive classical assumptions. Y and a different numerical procedure to handle the jump-diffusion component X. Let us briefly recall the main ideas and set up the approximation of u.

We start from the representation of u(t, x, y) at times nh, h = T /N and n = 0, . . . , N , by the usual (backward) dynamic programming principle: for (x, y) ∈ R m × D,    u(T, x, y) = f (x, y) and as n = N -1, . . . , 0, 

Recall that Y h n ⊆ D is the state space of Y h n and that Y h 0 = {Y 0 }. As a second step, we approximate the component X on [nh, (n + 1)h] by freezing the coefficients in (4.4.22) at the observed position Y h n = y, that is, for t ∈ [nh, (n + 1)h],

Therefore, by using that the Markov chain, B and H are all independent, we write is the solution at time nh of the parabolic PIDE Cauchy problem

Sec. 4.4 -Hybrid schemes for jump-diffusions and convergence rate procedure becomes: for n = 0, 1, . . . , N and (x, y) ∈ X × Y h n , ũh n (x, y) is approximated by u h n (x, y) defined as

, and as n = N -1, . . . , 0:

The general hybrid procedure

As we have done in Chapter 3, it is useful to put together in a unique formulation the numerical procedures described respectively in Section 4.4.1 for the European case and in Section 4.4.1 for the American case. In both cases we have to consider at time nh the function ũh n defined as f (x, y), in the American case.

We stress that, in the European case, the function ũh n coincides with the function u defined in (4.4.25) at time nh, while, in the American case, it is the Bermudean approximation of the (continuous monitored) American option value given in (4.4.33).

Then, for n = 0, 1, . . . , N and (x, y) ∈ X × Y h n , we approximate the function ũh n by the function u h n defined as

, and as n = N -1, . . . , 0:

Our aim is to study the speed of convergence of the scheme (4.4.36) that is, we give a quantitative estimate for

As regards the American case, we recognize two types of error. The first one is the error induced by the approximation of the function u(0, •) in (4.4.26) with the function ũh 0 (•) in

We now apply the trapezoidal rule in order to approximate the integral term L (y)

int v and we use the central finite difference scheme to solve L (y) diff v. Applying an implicit-explicit method in time, we obtain an approximating solution v n = (v n j ) j∈Z to the PIDE (4.4.30) given by the solution of the linear equation

(recall that v n+1 is known). Here A h ∆x (y) is the linear operator given by

and B h ∆x (y) is the linear operator defined as 

, where c ν is defined in (4.4.41).

Proof. Fix y ∈ D and w ∈ l 2 (X ). Then A h ∆x (y)v = w, for some v ∈ l 2 (X ), if and only if 

j∈Z ϕ j e -ij∆xθ , θ ∈ [0, 2π), i denoting the imaginary unit. We define the function ψ(θ), θ ∈ [0, 2π), by

.4.49)

A h ∆x (y) and B h ∆x (y) being given in (4.4.45) and (4.4.47) respectively. Moreover, for n = 0, . . . , N, consider the function

Assume that

pol,[nh,(n+1)h] (R, D) a.e. and uniformly in n and h.

Then, there exist h, C > 0 such that for every h < h and ∆x < 1 one has

We stress that, from (4.4.51), the rate of convergence is of the second order in space, because of the choice of a second order finite difference scheme, and of first order in time, as it is natural also for the presence of the approximating Markov chain Y h (see Theorem 

Remark 4.4.6. In our convergence result Theorem 4.4.4 or also in the following Theorem 4.4.10, we require that ν ν , ν ν ∈ L 1 (R, dν) (recall that ν is a finite positive measure), and this implies that ν, ν , ν ∈ L 1 (R, dx). By using (4.4.52), (4.4.41) 

which can be rewritten as

Step 1. Taylor expansion of the l.h.s. of (4.4.60). We set

As regard the first term in the r.h.s. above, we first apply Taylor's expansion to t → v h n (t, x i , Y h n+1 ) around nh up to order 1 and, then, we consider the Taylor expansion of y → v h n (nh, x i , y) around Y h n up to order 3 and of y → ∂ t v h n (nh, x i , y) around Y h n up to order 1. Rearranging the terms we obtain

where R 1 is given by

.4.62) jump-diffusion processes

For the second term in the right hand side of (4.4.61), we stop the Taylor expansion of t → v h n ((n + 1)h, x i+l , Y h n+1 ) around nh at order 0 and of y → v h n (nh, x i+l , y) around Y n h at order 1, obtaining

where the remaining term R 2 contains the integral terms:

By resuming, we obtain

where

Step 2. Taylor expansion of the first addendum in the r.h.s. of (4.4.60). We set

We expand with Taylor x → v h n (nh, x, Y h n ) around x i up to order 3 and we insert the values of α h ∆x and β h ∆x in (4.4.46). Rearranging the terms we get

where

Step 3. Rearranging the terms. By resuming, from (4.4.64) and (4.4.66) we have

where

Now, note that, by the Feynman-Kac formula, the function

Then, by passing to the conditional expectation and by using formulas (4.3.5), (4.3.6) and (4.3.7) for the local moments of order 1, 2 and 3, we obtain

where we have set

f h , g h and j h being defined in (

Step 4. Estimate of the remainder. Hereafter, C denotes a positive constant which may vary from a line to another and is independent of n, h, ∆x. By (4.4.60), the remaining we have to study is 

Now, by applying the Cauchy-Schwarz inequality and by using Assumption

So, by using the increment estimates (4.3.11), the moment estimates (4.3.12) and the Cauchy-Schwartz inequality, we obtain

R 4 in (4.4.67) can be handled in a similar way: recalling that µ X and σ X have polynomial growth, we apply now (4.4.56) for Ψ 3 and we get

The same approach can be used for R 6 in (4.4.69): we use first (4.4.53), then the Hölder inequality and (4.3.8), (4.3.9), (4.3.10). Thus, with simple calculations

In order to study R 2 in (4.4.63), let us first set

Then, for k = 0, 1, 2,

so, by (4.4.56) for Ψ 1 , we obtain

the latter because γ X has sublinear growth. And if we define

Therefore, by the Cauchy-Schwartz inequality, (4.3.12) and (4.3.11), we finally obtain (4.4.42). As usually done in convection-diffusion problems, we distinguish the cases in which µ X (y) is positive or negative in order to take into account the asymmetry given by the convection term and we use one sided difference in the appropriate direction. Specifically, if µ X (y) ≥ 0, we approximate L (y) diff u by using the scheme

while, if µ X (y) ≤ 0, we use the approximation

The resulting scheme is

where A h ∆x (y) is the linear operator given by

with

and B h ∆x (y) is the linear operator defined in (4.4.47). Then we have:

Lemma 4.4.9. For every y ∈ D, the operator

Proof. We write A h ∆x (y) = η(y)I -P (y), where η(y) = 1 + 2β h ∆x (y) + |α h ∆x (y)|, I is the identity operator and P ij (y) = 0 if |i -j| = 1 and

The assertion for B h ∆x (y) immediately follows from (4.4.47). Finally, (A h ∆x ) -1 ij (y) ≥ 0 for all i, j because all entries of P (y) are non negative and (B h ∆x ) ij (y) ≥ 0 if µ X ≡ 1. Moreover, Π h ∆x (y)1 = 1 because, by construction, A h ∆x (y)1 = 1 and B h ∆x (y)1 = 1 when µ X ≡ 1.

We can now state the convergence result. Assume that

pol,[nh,(n+1)h] (R, D) a.e. and uniformly in n and h.

Then, there exist h, C > 0 such that for every h < h and ∆x < 1 one has

according to x f ∈ C 2,6-j pol (R, R + ) for every j = 0, . . . , 6.

Then, there exist h, C > 0 such that for every h < h and ∆x < 1 one has 

Then, there exist h, C > 0 such that for every h < h and ∆x < 1 one has

(ii) [Convergence in l ∞ (X )] Suppose that 

Then, there exist h, C > 0 such that for every h < h and ∆x < 1 one has

Proof. We prove (i), (ii) following in the same way. The validity of assumptions A 1 and A 2 is proved in Proposition 4.3.4 and since γ X ≡ 1 or γ X ≡ 0, A 3 (4λc ν |γ X |) trivially holds. So, as in the European case, in order to apply Theorem 4.4.4 it is enough to prove that the function v h n defined in (4.4.50) belongs to the space C 2,6 pol,[nh,(n+1)h] (R, D) a.e. and uniformly in n and h. jump-diffusion processes Remark 4.6.3. In Theorem 4.6.2 we require really strong regularity and boundedness assumptions on the test function f . On the other hand, let us stress that our algorithm is strongly based on numerical analysis techniques. When these procedures are used, as far as we know, literature is missing in results on the rate of convergence of numerical schemes for obstacle problems.

Let us mention that, in some particular cases, different approaches could in principle be followed. For example, let us consider the scheme introduced in Section 4.4.3, where the linear operator is given by

A h ∆x (y) and B h ∆x (y) being defined in (4.4.71) and (4.4.47) respectively. Here, we have proved in Lemma 4.4.9 that Π h ∆x (y) is a stochastic operator. From a probabilistic point of view, this means that the algorithm can be written through a Markov chain (see [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF]). Then, one could apply purely probabilistic methods to prove the convergence of the procedure, for example by developing techniques similar to the ones introduced in [START_REF] Bally | Error analysis of the optimal quantization algorithm for obstacle problems[END_REF]. On the other hand, in this case, Π h ∆x (y) is a monotone linear operator, so another possible way to proceed is to use the theory introduced by Barles [START_REF] Barles | Convergence of Numerical Schemes for Degenerate Parabolic Equations[END_REF], which uses viscosity solutions. In order to do this, we need a comparison principle for viscosity solutions of Heston-type degenerate parabolic problems (note that in Section 1.3 we have proved such a result in the case of weak solutions). However, both the mentioned approaches give in principle just the convergence, that is, no information about the rate of convergence is provided.

Appendix

Lattice properties of the CIR approximating tree

The aim of this section is to prove Propostition 4.3.3. For later use, let us first give some (trivial) properties of the lattice. First, by construction, k d (n, k) ≤ k < k u (n, k), so that We first recall the Poisson summation formula. It is worldwide famous but is usually written on the Schwartz space. We propose here the following version. x -x -1 2 g (x)dx.

We recall that ϕ(±N ) → 0 as N → ∞ (because ϕ, ϕ ∈ L 1 (R, dy)). Moreover, the Fourier series representation gives