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Abstract

We study option pricing problems in stochastic volatility models. In the first part of this thesis we
focus on American options in the Heston model. We first give an analytical characterization of the
value function of an American option as the unique solution of the associated (degenerate) parabolic
obstacle problem. Our approach is based on variational inequalities in suitable weighted Sobolev
spaces and extends recent results of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop
(2015). We also investigate the properties of the American value function. In particular, we prove
that, under suitable assumptions on the payoff, the value function is nondecreasing with respect to
the volatility variable. Then, we focus on an American put option and we extend some results which
are well known in the Black and Scholes world. In particular, we prove the strict convexity of the
value function in the continuation region, some properties of the free boundary function, the Early
Exercise Price formula and a weak form of the smooth fit principle. This is done mostly by using
probabilistic techniques.

In the second part we deal with the numerical computation of European and American option
prices in jump-diffusion stochastic volatility models. We first focus on the Bates-Hull-White model,
i.e. the Bates model with a stochastic interest rate. We consider a backward hybrid algorithm which
uses a Markov chain approximation (in particular, a “multiple jumps” tree) in the direction of the
volatility and the interest rate and a (deterministic) finite-difference approach in order to handle
the underlying asset price process. Moreover, we provide a simulation scheme to be used for Monte
Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed methods.

Finally, we analyse the rate of convergence of the hybrid algorithm applied to general jump-
diffusion models. We study first order weak convergence of Markov chains to diffusions under quite
general assumptions. Then, we prove the convergence of the algorithm, by studying the stability and
the consistency of the hybrid scheme, in a sense that allows us to exploit the probabilistic features

of the Markov chain approximation.

Keywords: stochastic volatility; European options; American options; degenerate parabolic

problems; optimal stopping; tree methods; finite-difference.
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Résumé

L’objet de cette these est I’étude de problemes d’évaluation d’options dans les modeles a volatilité
stochastique. La premieére partie est centrée sur les options américaines dans le modele de Hes-
ton. Nous donnons d’abord une caractérisation analytique de la fonction de valeur d’une option
américaine comme 'unique solution du probleme d’obstacle parabolique dégénéré associé. Notre ap-
proche est basée sur des inéquations variationelles dans des espaces de Sobolev avec poids étendant
les résultats récents de Daskalopoulos et Feehan (2011, 2016) et Feehan et Pop (2015). On étudie
aussi les propriétés de la fonction de valeur d’une option américaine. En particulier, nous prouvons
que, sous des hypothéeses convenables sur le payoff, la fonction de valeur est décroissante par rapport a
la volatilité. Ensuite nous nous concentrons sur le put americain et nous étendons quelques résultats
qui sont bien connus dans le monde Black-Scholes. En particulier nous prouvons la convexité stricte
de la fonction de valeur dans la région de continuation, quelques propriétés de la frontiere libre,
la formule de Prime d’Exercice Anticipée et une forme faible de la propriété du smooth fit. Les
techniques utilisées sont de type probabiliste.

Dans la deuxieme partie nous abordons le probleme du calcul numérique du prix des options eu-
ropéenne et américaines dans des modeles a volatilité stochastique et avec sauts. Nous étudions
d’abord le modele de Bates-Hull-White, c’est-a-dire le modele de Bates avec un taux d’intérét
stochastique. On considére un algorithme hybride rétrograde qui utilise une approximation par
chaine de Markov (notamment un arbre “avec sauts multiples”) dans la direction de la volatilité
et du taux d’intérét et une approche (déterministe) par différence finie pour traiter le processus de
prix d’actif. De plus, nous fournissons une procédure de simulation pour des évaluations Monte
Carlo. Les résultats numériques montrent la fiabilité et I'efficacité de ces méthodes. Finalement,
nous analysons le taux de convergence de I'algorithme hybride appliqué a des modeles généraux de
diffusion avec sauts. Nous étudions d’abord la convergence faible au premier ordre de chaines de
Markov vers la diffusion sous des hypothéses assez générales. Ensuite nous prouvons la convergence
de lalgorithme: nous étudions la stabilité et la consistance de la méthode hybride par une technique

qui exploite les caractéristiques probabilistes de ’approximation par chaine de Markov.

Mots clés : volatilité stochastique ; options américaines ; options européennes ; probléemes

paraboliques dégénérés ; arrét optimal ; approximation par arbres ; différences finies.
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Introduction

The seminal work by Black and Scholes ([21], 1973) was the starting point of equity dynamics
modelling and it is still widely used as a useful approximation. It owns its great success to
its high intuition, simplicity and parsimonious description of the market derivative prices.
Nevertheless, it is a well known fact that it disagrees with reality in a number of significant
ways. Even F. Black, 15 years after the publication of the original paper, wrote about
the flaws of the model [20]. Indeed, empirical studies show that in the real market the
log-return process is not normally distributed and its distribution is often affected by heavy
tail, jumps and high peaks. Moreover, the assumption of a constant volatility turns out to
be too rigid to model the real world financial market. It is enough to analyse the so-called
implied volatility (that is the value of the volatility parameter that, replaced in the Black
and Scholes formula, gives the real market price) in a set of traded call options to recognize
the well known smile/skew effect. In fact, if we plot the implied volatility against the strike
price, we can observe that the resulting shape is not a horizontal line, as it should derive
from assuming a constant volatility, but it is usually convex and can present higher values
for high and low values of the strike price (a smile) or asymmetries (from which the term
skew). Furthermore, the assumption of a constant volatility does not allow to properly
price and hedge options which strongly depend on the volatility itself, such as the options
on the realized variance or the cliquet options.

These results have called for more sophisticated models which can better reflect the
reality. Various approaches to model volatility have been introduced over time, paving the
way for a huge body of literature devoted to this subject. Let us briefly recall some of the
most famous ones.

Roughly speaking, we can recognize two different classes of models. The first class is

given by models in which the volatility is assumed to depend on the same noise source
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Introduction

as the underlying asset. Here, we can find the so-called local volatility models, where the
volatility is assumed to be a function of time and of the current underlying asset price.

Therefore, the asset price S is modeled by a diffusion process of the type
dSt = ,U,(t, St)Stdt + O'(t, St)StdBt.

Under classical assumptions these models preserve the completeness of the market and all
the Black-Sholes pricing and hedging theory can be adapted (see, for example, [22, Chapter
2]). The choice of a suitable local volatility function o = o(t,S), is a delicate problem.
Bruno Dupire proved in [46] that it is possible to find a function o = o(t,S) which gives
theoretical prices matching a given configuration of vanilla options’ prices. Typically, the
local volatility function is calibrated at ¢ = 0 on the market smile and kept frozen afterwards.
Therefore, it does not take into account the daily changes in the volatility smile observed
in the market. For this reason, local volatility models seem to be an analytically tractable
simplification of the reality rather than a representation of how volatility really evolves.
Other different models presented in the literature belong to this first class, for instance path
dependent volatility models, in which volatility depends on the whole past trajectory of the
asset price (see [511 [60]).

The second class of models consists of the so-called stochastic volatility models. Here,
the volatility is modelled by an autonomous stochastic process Y driven by some additional

random noise. Typically, a stochastic volatility model is a Markovian model of the form

dS; = ps(t, S¢)Sedt 4+ 05(Y3)Sid By,
dYy = py (t,Y3)dt + oy (t,Y:)dWy,

where B and W are possibly correlated Brownian motions. Moreover, often jumps are added
to the dynamics of the assets prices and/or their volatilities. The literature on stochastic
volatility models is huge. The most successful model is the one introduced by S. Heston
[58], which will be extensively studied later on in this thesis. Among the others we cite, for
example, the models by Hull and White [61], Bates [I7] and Stein and Stein [90]. Moreover,
there are also examples of local-stochastic volatility models (such as the famous SABR model
[57]) in which the volatility coefficient og(Y};) of the underlying asset price is more general
and has the form og(S;,Y?), that is it depends also on the current asset price.

These models are, in general, not complete: the derivative securities are usually not

replicable by trading in the underlying. However, this does not affect the practice since the
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Introduction

market can be completed with well known procedures of market completion (for example
by trading a finite number of vanilla options).

We point out that the research is still fervent in this area. For example, empirical studies
have questioned the smoothness of the volatility dynamics. As a consequence, new models
called rough wvolatility models have recently been introduced. They are non-Markovian
models in which the volatility is driven by a Fractional Brownian motion, see the reference
paper [54] and the comprehensive website [86], which gathers all the developments on this
subject.

In this thesis we consider Markovian stochastic volatility models and we collect some
results on the problem of pricing European and American options. It is divided into two
strongly correlated parts. In the first one we study some theoretical properties of the
American option prices in Heston-type models. In the second part, we deal with the problem
of the numerical computation of the prices, describing and theoretically studying hybrid
schemes for pricing European and American options in jump-diffusion stochastic volatility

models. More precisely, the thesis is organized as follows:

e Part I: American option prices in Heston-type models
— Chapter 1. Variational formulation of American option prices in Heston-type
models;
— Chapter 2. American option price properties in Heston-type models.

e Part II: Hybrid schemes for pricing options in jump-diffusion stochastic volatility

models
— Chapter 3. Hybrid Monte Carlo and tree-finite differences algorithm for pricing
options in the Bates-Hull-White model;

— Chapter 4. Weak convergence of Markov chains and numerical schemes for jump

diffusion processes.

The above chapters are extracted, sometimes verbatim, from the papers [73] [74 26] 27]

respectively. We now give a brief outline of the main results collected in this thesis.
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Introduction

Part I: American option prices in Heston-type models

The model introduced by S. Heston in 1993 [58] is one of the most widely used stochastic
volatility models in the financial world and it was the starting point for several generaliza-
tions. In this model, the dynamics under the pricing measure of the asset price S and the

volatility process Y are governed by the stochastic differential equation system

dSt = (T - 5)Stdt + \/?tStch SO =8 > O’
dY; = k(0 = Yy)dt + o/ Y dW,, Yo=1y>0,

(0.0.1)

where B and W denote two correlated Brownian motions with
d<va>t = pdt, pE (_171)

Here r > 0 and 6 > 0 are the risk free rate of interest and the continuous dividend rate
respectively. The dynamics of the volatility follows a square-root diffusion process, which
was originally introduced by E. Feller in 1951 [50] and then rediscovered by Cox, Ingersoll
and Ross as an interest rate model in [38]. For this reason this process is known in the
financial literature as the CIR process. The parameters « > 0 and 8 > 0 are known
respectively as the mean-reversion rate and the long run state, while the parameter ¢ > 0
is called the vol-vol (volatility of the volatility). One can observe that the volatility (Y):
tends to fluctuate around the value # and that x indicates the velocity of this fluctuation
and determines its frequency. This is the mean reversion feature of the CIR process and
justifies the names of the constants x and 6.

It is well known (see, for example, [5, Section 1.2.4]) that under the so called Feller
condition 2k > o2, the process Y with starting condition Yy = y > 0 remains always
positive. On the other hand, if the Feller condition is not satisfied, as happens in many
cases of practical importance (see e.g. the calibration results in [30} [44]), Y reaches zero
with probability one for any Yy =y > 0.

The great success of the Heston model is due to the fact that the dynamics of the underly-
ing asset price can take into account the non-lognormal distribution of the asset returns and
the observed mean-reverting property of the volatility. Moreover, it remains analytically
tractable and provides a closed-form valuation formula for vanilla European options using

Fourier transform.
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Introduction

In this framework, the price at time ¢t € [0, 7] of an American option with payoff function
¢ and maturity T is given by P(t,S;,Y;), where
P(t,s,y) = sup E [e_T(T_t)cp(Si’s’y)] ,
TG'E’T
T, being the set of all the stopping times with values in [t,7] and S"*Y denoting the
solution to (0.0.1)) with starting condition S; = s, Y; = y.
If we consider, as usual, the log-price process X; = log.S;, the 2-dimensional diffusion

(X,Y) has infinitesimal generator given by

2 2 2
L= % ((9(9952+2p0858x +02£]2> + (r—é—g) 8630+H(0_y)§y
and defined on the set O = R x (0, 00). Note that the differential operator £ has unbounded
coefficients and it is not uniformly elliptic: it degenerates on the boundary of O, that
is, when the volatility vanishes. This degenerate property gives rise to some technical
difficulties when dealing with the theoretical properties of the model, in particular when
the problem of pricing American options is considered. In the first part of this thesis we

address some of these issues.

Chapter Variational formulation of American option prices in Heston
type models

Chapter [I] is devoted to the identification of the American option value function as the
unique solution of the associated obstacle problem. Indeed, despite the great success of the
Heston model, as far as we know, an exhaustive analysis of the analytic characterization of
the value function for American options in Heston-type models is missing in the literature,
at least for a large class of payoff functions which include the standard call and put options.

Our approach is based on variational inequalities and extends recent results of Daskalopou-
los and Feehan [42] 43] and Feehan and Pop [48] (see also [32]). More precisely, we first study
the existence and uniqueness of a weak solution of the associated degenerate parabolic obsta-
cle problem in suitable weighted Sobolev spaces introduced in [42] (Section . Moreover,
we also get a comparison principle. The proof essentially relies on the classical penaliza-
tion technique (see [19]), with some technical devices due to the degenerate nature of the

problem.

XV



Introduction

Once we have the existence and uniqueness of an analytical weak solution, in Section [I.4]
we identify it with the solution to the optimal stopping problem, that is the American option
value function. In order to do this, we use suitable estimates on the joint distribution of
the log-price process and the volatility process. Moreover, we rely on semi-group techniques

and on the affine property of the model.

Chapter [2: American option price properties in Heston type models

In Chapter [2] we study some qualitative properties of an American option value function
in the Heston model. We first prove in Section that, if the payoff function is convex
and satisfies some regularity assumptions, then the option value function is increasing with
respect to the volatility variable. Then, in Section we focus on the standard put option,
that is we fix the payoff function ¢(s) = (K —s)4, and we extend to the Heston model some
results which are well known in the Black and Scholes world, mostly by using probabilistic
techniques. In particular, in Section [2.4.1]| we introduce the so called ezercise boundary or

critical price, that is the map
b(tay) - inf{s >0 ‘ P(tv Svy) > (K - 8)4—}7 (tay) € [OaT) X [0,00),

and we study some features of this function such as continuity properties. Then, in Section
4.3.1] we prove that the American put value function is strictly convex with respect to the
stock price in the continuation region, and we do it by using purely probabilistic arguments.
In Section [2.4.3] we extend to the stochastic volatility Heston model the early exercise

premium formula, that is, we prove that
T
P(Oa SOJ Y‘E)) = Pe(oa S07 }/0) - / e*TSE[(ass - TK)]I{SSSb(S,YS)}]dS7
0

where P, (0, Sp, Yp) is the price at time 0 of a European put with the same maturity 7" and
strike price K of the original American put with price P. Finally, in Section we prove

a weak form of the smooth fit principle, a well known concept in optimal stopping theory.
Part II: Hybrid schemes for pricing options in jump-diffusion
stochastic volatility models

In the second part of this thesis we face up with the problem of the numerical computation

of European and American options prices in jump-diffusion stochastic volatility models. In
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particular, we consider the Heston model and some generalizations of it which have other
random sources such as jumps and a stochastic interest rate (see [17, 61]).

From a computational point of view, the most delicate point is the treatment of the
CIR dynamics for the volatility process in the full parameter regime - it is well known
that the standard techniques fail when the square root process is considered. Moreover,
one has to be careful in choosing the approximation method according to the European or
American option case. In fact, when dealing with European options, i.e. solutions to Partial
(Integro) Differential Equation (hereafter P(I)DE) problems, numerical approaches involve
tree methods [2, 80], Monte Carlo procedures [3, 4, 6 8, 98], finite-difference numerical
schemes [34], 64, [02] or quantization algorithms [82]. When American options are considered,
that is, solutions to specific optimal stopping problems or P(I)DEs with obstacle, it is very
useful to consider numerical methods which are able to easily handle dynamic programming
principles, for example trees or finite-difference.

In this thesis we consider a backward “hybrid” algorithm which combines:
e finite difference schemes to handle the jump-diffusion price process;

e Markov chains (in particular, multiple jumps trees) to approximate the other random

sources, such as the stochastic volatility and the stochastic interest rate.

Chapter [3 Hybrid Monte Carlo and tree-finite differences algorithm for
pricing options in the Bates-Hull-White model

In Chapter [3| we focus on the Bates-Hull-White model, where the volatility Y is a CIR
process and the underlying asset price process S contains a further noise from a jump as
introduced by Merton [77]. Moreover, the interest rate r is stochastic and evolves according
to a generalized Ornstein-Uhlenbeck (hereafter OU) process. More precisely, under the
pricing measure, we consider the following jump-diffusion model:

dSy g

5= (re — 8)dt + /Y dZ + dHy,

dY; = ky (Oy — Y)dt + oy /Y dZ)

dry = kp (0, (t) — ry)dt + 0,.dZ7,

where, as usual, § denotes the continuous dividend rate, So,r9 > 0, Yy > 0, Z%, Z¥ and

Z" are correlated Brownian motions and H is a compound Poisson process with intensity
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A and ii.d. jumps {Jg}k, that is,
Ky
Hy =) Jk,
k=1
K denoting a Poisson process with intensity A. We assume that the random sources , given
by the Poisson process K, the jump amplitudes {J}, and the 3-dimensional correlated
Brownian motion (Z%,ZY,Z"), are independent.

We refer to the introduction of Chapter [3| for an overview on the existing numerical
schemes for pricing options in this model.

Our pricing procedures work as follows. We first approximate both the stochastic volatil-
ity and the interest rate processes with a binomial “multiple jumps” tree approach which is
based on the techniques originally introduced in [79]. Such a multiple jumps tree approxi-
mation for the CIR process was first introduced and analysed in [10], where it is shown to
be reliable and accurate without imposing restrictions on the coefficients.

Then, we develop two different pricing procedures. In Section we propose a (forward)
Monte Carlo method, based on simulations for the model following the binomial tree in the
direction of both the volatility and the interest rate, and a space-continuous approximation
for the underlying asset price process coming from a Euler-Maruyama type scheme.

In Section we describe a hybrid backward procedure which works following the tree
method in the direction of the volatility and the interest rate and a finite-difference approach
in order to handle the underlying asset price process. We also give a first theoretical result
on this algorithm, studying some stability properties of the procedure.

Finally, Section [3.5.2] is entirely devoted to numerical results. Several experiments are
provided, both for European and American options, with different values of the parameters
of the model. In particular, we also consider cases in which the Feller condition for the
volatility process is not satisfied. All numerical results show the reliability, the accuracy

and the efficiency of both the Monte Carlo and the hybrid algorithm.
Chapter [4; Weak convergence rate of Markov chains and hybrid numerical
schemes for jump-diffusion processes

We devote Chapter [4] to the study of the theoretical convergence of a generalization of the
hybrid numerical procedure described in Chapter |3 Here we just briefly describe our main

results, referring to Section for an overview on the existing literature on the rate of
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convergence of numerical methods for pricing options in Heston-type models.
Recall that the hybrid algorithm uses tree approximations and that, in their turn, tree
methods rely on Markov chains. So, we first consider in Section [4.3]a d-dimensional diffusion

process (Y)eo,r] which evolves according to the SDE
dY; = py (Yy)dt + oy (Yz)dWr.

Fix a natural number N > 1, h = T//N and assume that (Y;,5)n=0,.. n is approximated by
a Markov chain (Y,?)nzow, ~- It is well known that the weak convergence of Markov chains
to diffusions relies on assumptions on the local moments of the approximating process up to
order 3 or 4. We prove that, stressing these assumptions, we can study the rate of the weak
convergence. This analysis is independent of the financial framework but, as an example, we
apply our results to the multiple jumps tree approximation of the CIR process introduced in
[10] and used in [24] 25| 27]. Let us mention that our general convergence result (Theorem
4.3.1)) may in principle be applied to more general trees constructed through the multiple
jumps approach by Nelson and Ramaswamy [79], on which the tree in [10] is based — to
our knowledge, a theoretical study of the rate of convergence for such trees is missing in
the literature. And it could also be used in other cases, e.g. the recent tree method for the
Heston model developed in [2].

Then, in Section .4 we combine the Markov chain approach with other numerical tech-
niques in order to handle the different components in jump-diffusion coupled models. In par-
ticular, we link (Y;);e[o,7) with a jump-diffusion process (Xt);c[o,7] which evolves according
to a stochastic differential whose coefficients only depend on the process. In mathematical

terms, we consider the stochastic differential equation system

dX; = pux(Yy)dt + ox(Yy)dBy + vx (Yy)dHy,
dY; = py (Yr)dt + oy (Yz)dWr,

where H is a compound Poisson process independent of the 2-dimensional Brownian mo-
tion (W, B). We generalize the hybrid procedure developed in [24] 25, 27] which works
backwardly by approximating the process Y with a Markov chain and by using a different
numerical scheme for solving a (local) PIDE allowing us to work in the direction of the
process X. We study the speed of convergence of this hybrid approach. The main difficulty

comes from the fact that, in general, the hybrid procedure cannot be directly written on a
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Markov chain, so we cannot apply the convergence results obtained in Section [£-3] There-
fore, the idea is to follow the hybrid nature of the procedure: we use classical numerical
techniques, that is an analysis of the stability and of the consistency of the method, but in
a sense that allows us to exploit the probabilistic properties of the Markov chain approxi-
mating the process Y. Again, we provide examples from the financial framework, applying

our convergence results to the tree-finite difference algorithm in the Heston or Bates model.
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Chapter 1

Variational formulation of

American option prices

1.1 Introduction

The Heston model is the most celebrated stochastic volatility model in the financial world.
As a consequence, there is an extensive literature on numerical methods to price derivatives
in Heston-type models. In this framework, besides purely probabilistic methods such as
standard Monte Carlo and tree approximations, there is a large class of algorithms which
exploit numerical analysis techniques in order to solve the standard PDE (resp. the obstacle
problem) formally associated with the European (resp. American) option price function.
However, these algorithms have, in general, little mathematical support and in particular,
as far as we know, a rigorous and complete study of the analytic characterization of the

American price function is not present in the literature.

The main difficulties in this sense come from the degenerate nature of the model. In
fact, the infinitesimal generator associated with the two dimensional diffusion given by the
log-price process and the volatility process is not uniformly elliptic: it degenerates on the
boundary of the domain, that is when the volatility variable vanishes. Moreover, it has
unbounded coefficients with linear growth. Therefore, the existence and the uniqueness
of the solution to the pricing PDE and obstacle problem do not follow from the classical
theory, at least in the case in which the boundary of the state space is reached with positive

probability, as happens in many cases of practical importance (see [7]). Moreover, the

3
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probabilistic representation of the solution, that is the identification with the price function,

is far from trivial in the case of non regular payoffs.

It should be emphasized that a clear analytic characterization of the price function allows
not only to formally justify the theoretical convergence of some classical pricing algorithms
but also to investigate the regularity properties of the price function (see [66] for the case
of the Black and Scholes models).

Concerning the existing literature, E. Ekstrom and J. Tysk in [47] give a rigorous and
complete analysis of these issues in the case of European options, proving that, under some
regularity assumptions on the payoff functions, the price function is the unique classical
solution of the associated PDE with a certain boundary behaviour for vanishing values
of the volatility. However, the payoff functions they consider do not include the case of

standard put and call options.

Recently, P. Daskalopoulos and P. Feehan in [42], 43] studied the existence, the uniqueness,
and some regularity properties of the solution of this kind of degenerate PDE and obstacle
problems in the elliptic case, introducing suitable weighted Sobolev spaces which clarify the
behaviour of the solution near the degenerate boundary (see also [32]). In another paper
([48]) P. Feehan and C. Pop addressed the issue of the probabilistic representation of the
solution, but we do not know if their assumptions on the solution of the parabolic obstacle
problem are satisfied in the case of standard American options. Note that Feehan and Pop
did prove regularity results in the elliptic case, see [49]. They also announce results for the

parabolic case in [4§].

The aim of this chapter is to give a precise analytical characterization of the American
option price function in the Heston model for a large class of payoffs which includes the
standard put and call options. In particular, we give a variational formulation of the Amer-
ican pricing problem using the weighted Sobolev spaces and the bilinear form introduced
in [42].

The chapter is organized as follows. In Section 2, we introduce our notations and we
state our main results. Then, in Section 3, we study the existence and uniqueness of the
solution of the associated variational inequality, extending the results obtained in [42] in the
elliptic case. The proof relies, as in [42], on the classical penalization technique introduced
by Bensoussan and Lions [I9] with some technical devices due to the degenerate nature of

the problem. We also establish a Comparison Theorem. Finally, in section 4, we prove that

4
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the solution of the variational inequality with obstacle function v is actually the American
option price function with payoff ¢, with conditions on v which are satisfied, for example,
by the standard call and put options. In order to do this, we use the affine property of the
underlying diffusion given by the log price process X and the volatility process Y. Thanks
to this property, we first identify the analytic semigroup associated with the bilinear form
with a correction term and the transition semigroup of the pair (X,Y’) with a killing term.
Then, we prove regularity results on the solution of the variational inequality and suitable
estimates on the joint law of the process (X,Y) and we deduce from them the analytical
characterization of the solution of the optimal stopping problem, that is the American

option price.

1.2 Notations and main results

1.2.1 The Heston model

We recall that in the Heston model the dynamics under the pricing measure of the asset
price S and the volatility process Y are governed by the stochastic differential equation
system

@ = (r —6)dt + VYidBy, Sp=s>0,

dY; = k(0 — Yy)dt + o/YedW;, Yo =1y >0,

where B and W denote two correlated Brownian motions with
d<B7 W>t = pdt, pe (_L 1)

We exclude the degenerate case p = %1, that is the case in which the same Brownian motion
drives the dynamics of X and Y. Actually, it can be easily seen that, in this case, S; reduces
to a function of the pair (Yt, fot sts> and the resulting degenerate model cannot be treated
with the techniques we develop in this chapter. Moreover, this particular situation is not
very interesting from a financial point of view.

Moreover, we recall that » > 0 and § > 0 are respectively the risk free rate of interest
and the continuous dividend rate. The dynamics of Y follows a CIR process with mean
reversion rate £ > 0, long run state § > 0 and volatility of the volatility 8 > 0. We stress
2.

that we do not require the Feller condition 2k6 > ¢~: the volatility process Y can hit 0

(see, for example, [5, Section 1.2.4]).
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We are interested in studying the price of an American option with payoff function .

For technical reasons which will be clarified later on, hereafter we consider the process

9
X, =logS; —at, withe=r—g§— 2 (1.2.1)
(o2

which satisfies
dX, = (252 — Y1) dt + \/Y;dBy,
=T =) o (1.2.2)
dY; = k(0 — Yy)dt + o/Y,dW,.

Note that, in this framework, we have to consider payoff functions v which depend
on both the time and the space variables. For example, in the case of a standard put
option (resp. a call option) with strike price K we have 9(t,z) = (K — e*T%), (resp.
P(t,z) = (" — K).). So, the natural price at time ¢ of an American option with a nice
enough payoff (¢(t7 Xta YE))OStST is given by P(tv Xt, Y;f)) with

P(t,a,y) = sup Ele "Dy, X;7, V)],
0cTi, T

where T 1 is the set of all stopping times with values in [¢t, T] and (XL, Yst’y)tg s<T denotes
the solution to ([1.2.2]) with the starting condition (X¢,Y;) = (x,y).
Our aim is to give an analytical characterization of the price function P. In this chapter

we denote by £ the infinitesimal generator of the two dimensional diffusion (X,Y’), given

by
0? 0? 0? 0 0 0
£:y(+2pa + 2>+<m—y>x+n(0—y)

2 \ 022 Oyox ’ 0y?
which is defined on the open set O := R x (0,00). Note that £ has unbounded coefficients
and is not uniformly elliptic: it degenerates on the boundary 0O = R x {0}.

1.2.2 American options and variational inequalities

Heuristics

From the optimal stopping theory, we know that the discounted price process P(t, X, Y =
e " P(t, X;,Y;) is a supermartingale and that its finite variation part only decreases on the
set P = ¢ with respect to the time variable t. We want to have an analytical interpretation

of these features on the function P(t,z,y). So, assume that P € C12((0,T) x O). Then, by

6
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applying Itd’s formula, the finite variation part of P(t, X;,Y;) is

oP -

Since P is a supermartingale, we can deduce the inequality

oP .-
—_— <
o FLP<0

and, since its finite variation part decreases only on the set P(t, X, Y;) = ¥(t, Xy, Yy), we

<M5+LP>(¢—P):().

can write

ot

This relation has to be satisfied dt — a.e. along the trajectories of (¢, X3, Y;). Moreover, we
have the two trivial conditions P(T,z,y) = ¥ (T, z,y) and P > 1.
The previous discussion is only heuristic, since the price function P is not regular enough

to apply It6’s formula. However, it suggests the following strategy:
(i) Study the obstacle problem
9u + Lu <0, w>1, in[0,T] x O,
(%% + Lu) (¥ —u) =0, in[0,T]x O, (1.2.3)
uw(T,z,y) = (T, z,y).
(ii) Show that the discounted price function P is equal to the solution of (1.2.3) where 1)
is replaced by 9(t, x,y) = e "t (t, x, y).

We will follow this program providing a variational formulation of system (|1.2.3]).

Weighted Sobolev spaces and bilinear form associated with the Heston operator

We consider the measure first introduced in [42]:
m, ,(dz, dy) = yPle =1 g dy,

with v > 0, u>0and6::%'—”20.
It is worth noting that in [42] the authors fix u = 3—’; in the definition of the measure

m,, ,. This specification will not be necessary in this chapter, but it is useful to mention it

7
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in order to better understand how this measure arises. In fact, recall that the density of the
speed measure of the CIR process is given by yﬁfle_%y. Then, the term yﬁfle_%gy in the
definition of m, , has a clear probabilistic interpretation, while the exponential term eIzl
is classically introduced just to deal with the unbounded domain in the x—component.
For u € R™ we denote by |u| the standard Euclidean norm of u in R™. Then, we recall
the weighted Sobolev spaces introduced in [42]. The choice of these particular Sobolev
spaces will allow us to formulate the obstacle problem in a variational framework

with respect to the measure m, .

Definition 1.2.1. For every p > 1, let LP(O,m, ) be the space of all Borel measurable
functions u : O — R for which

[l 2= | P < o0,
and denote HY(O,m, ) := L*(O,m, ).
(1) If Vu := (ug, uy) and uy, uy are defined in the sense of distributions, we set

HY(O,m,,) = {ue L*(O,m,,): \/1+yu and /y|Vu| € L*(O,m, )},

and
lalsom. o = /O (yIVul + (1 + y)a?) dm,.

(ii) If D*u = (Ugg, Usy, Uys, Uyy) and all derivatives of u are defined in the sense of

distributions, we set
HZ(Oam%u) ={ue L2(Oam%u) :V/1+yu, (1+y)|Vul, y|D?ul € LQ((’),m%u)}

and
[l 0y = [ (PP + (14 9P Fu + (14 )0 din

For brevity and when the context is clear, we shall often denote
H:=H0,m,,), V:=H'(Om,,)

and

lulle = llullz2om,,y,  lulv = lulayom,,.)-

8
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Note that we have the inclusion
H*(0, my ;) C HY(0, my )

and that the spaces H k((’),mWL), for Kk =0, 1,2 are Hilbert spaces with the inner products

(u,v)m = (u, U)L2(O,m.y,u) = /Ouvdm%m

<mwv=cmmmmeyz¢;Mvam+u+ymwmmw
and

(4, 0) 2 (0m, ) = /o (v* (D*u, D*v) + (1 + y)* (Vu, Vo) + (1 + y)uv) dm,,,

where (+,-) denotes the standard scalar product in R"™.

Moreover, for every T'> 0, p € [1,+00) and i = 0, 1,2, we set
LP([0,T); H(O,m, ) = {u : [0,T] x O — R Borel measurable : u(t,-,-) € H'(O, m, )

T
P
for a.e. t € [0,7] and /0 [lu(t, )] 1(O’mw)alt < oo}

and
T
p _ p
”“”Lp([o,TLHi(o,mw,u))_/0 lut: )0 m -

We also define L°°([0,T]; H') with the usual essential sup norm.

We can now introduce the following bilinear form.
Definition 1.2.2. For any u,v € H*(O,m., ) we define the bilinear form
ary pu(u,v) :% /(9 Y (ugva(z, ) + pougvy(z, y) + pouyvg (2, y) + o uyvy(z,y)) dmy,
+ [0 @uela) + kol .9) o g

where
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We will prove that a,,, is the bilinear form associated with the operator £, in the sense

that for every u € H*(O,m, ) and for every v € H'(O, m, ), we have
(Lu,v)g = —a~yu,(u,v).

In order to simplify the notation, for the rest of this chapter we will write m and a(-,-)
instead of m, , and a, ,(-,-) every time the dependence on v and p does not play a role in

the analysis and computations.

1.2.3 Variational formulation of the American price

Fix T' > 0. We consider an assumption on the payoff function ¢ which will be crucial in

the discussion of the penalized problem.

Assumption H!. We say that a function ¢ satisfies Assumption H! if 1 € C([0,T]; H),
VIFTyy e L2[0,T); V), ¢(T) € V and there exists ¥ € L?([0,T]; V) such that ‘%—’f‘ < V.

We will also need a domination condition on v by a function ® which satisfies the following

assumption.

Assumption H2. We say that a function ® € L?([0,7T]; H%(O,m)) satisfies Assumption
H2 if (1+y)2® € L2([0,T); H), 9 + £ < 0and I+ y® € L([0,T); L*(O, m, ) for
some 0 < p < p.

The domination condition is needed to deal with the lack of coercivity of the bilinear
form associated with our problem. Similar conditions are also used in [42].
The first step in the variational formulation of the problem is to introduce the associated

variational inequality and to prove the following existence and uniqueness result.

Theorem 1.2.3. Assume that 1 satisfies Assumption H' together with 0 < ¢ < &, where ®
satisfies Assumption H?. Then, there exists a unique function u such that u € C([0,T]; H)N
L¥([0,T);V), 2 € L*([0,T); H) and

(_ (%,v - U)H +a(u,v —u) >0, ae in[0,7] veL*[0,T];V), v>1,
u > ae in[0,T] x R x (0,00),
u(T) = ¢(T),

0<u<o.

(1.2.5)

10
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The proof is presented in Section 3 and essentially relies on the penalization technique
introduced by Bensoussan and Lions (see also [52]) with some technical devices due to
the degenerate nature of the problem. We extend in the parabolic framework the results
obtained in [42] for the elliptic case.

The second step is to identify the unique solution of the variational inequality
as the solution of the optimal stopping problem, that is the (discounted) American option

price. In order to do this, we consider the following assumption on the payoff function.

Assumption H*. We say that a function v : [0,T] X R x [0, 00) — R satisfies Assumption
H* if 1 is continuous and there exist constants C' > 0 and L € [0, (27—’;) such that, for all
(t,2,y) € [0,7] x R x [0,00),

0 < 9(t,z,y) < Ce” + ™), (1.2.6)
and 5 5 5

for some a,b € R.

Note that the payoff functions of a standard call and put option with strike price K
(that is, respectively, ¥ = (t,z) = (K — ™), and ¢ = ¢(t,z) = (e*T¢ — K) ) satisfy
Assumption H*. Moreover, it is easy to see that, if 1) satisfies Assumption H*, then it is
possible to choose v and p in the definition of the measure m, ,, (see ) such that 1
satisfies the assumptions of Theorem [1.2.3] Then, for such v and u, we get the following

identification result.

Theorem 1.2.4. Assume that 1 satisfies Assumption H*. Then, the solution u of the
variational inequality (1.2.5)) associated with ) is continuous and coincides with the function
uw* defined by

w(t,z,y) = sup E [(r, XLV, V2]
T€Ty, T

1.3 Existence and uniqueness of solutions to the variational
inequality
1.3.1 Integration by parts and energy estimates

The following result justifies the definition of the bilinear form a.

11
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Proposition 1.3.1. Ifu € H*(O,m) and v € H'(O,m), we have
(Lu,v)g = —a(u,v). (1.3.8)

This result is proved with the same arguments of [42, Lemma 2.23] or [43, Lemma A.3]
but we prefer to repeat here the proof since it clarifies why we have considered the process
X; = log Sy — ¢t instead of the standard log-price process log S;.

Before proving Proposition [1.3.1] we show some preliminary results. The first one is

about the standard regularization of a function by convolution.

Lemma 1.3.2. Let ¢ : R x R — RT be a C™ function with compact support in [—1,+1] x
[—1,0] and such that [ [ @(z,y)dzdy = 1. For j € N we set ¢j(z,y) = j%p(jz,jy). Then,
for every function u locally square-integrable on R x (0,00) and for every compact set K,

we have

lim // (¢; * u —u)*(z,y)drdy = 0.
K

Jj—o0
Proof. We first observe that, by using Jensen’s inequality with respect to the measure
@; (€, C)dEd(, we get

// %) :Uydl:dy<// dacdy//%ﬁC (z — &y — ()déd¢
— [[esc.0eic [ [ 1w+ &+ O ta,y)dody.

We deduce, for j large enough,

//K(Spj*u)z(x,y)dxdyg//I_(u2(a:,y)dxdy,

where K = {(z,y) € Oldo((2,y), K) < %} Let € be a positive constant and v be a
continuous function such that [[(u(z,y) — v(z,y))*dzdy < e. By using the well known
inequality (z1 + - +x)? <I(2% + -+ 2}), we have

// (pj * u —u)?(z,y)drdy
<3// (5 % u — @; v) (mydxdy+3// x v — v)2(x, y)dady
+3// (v — w)?(x, y)dzdy
<3(// (v —u) xyda:dy—i—// k=) xy)da;dy+//(v—u) (x,y)dwdy)

§6e+3// (p; * v — v)*(x,y)dzdy.
K

12
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Since v is continuous, we have [p; * v| < sup, ,c g |v(z,y)| and lim; . ¢ *xv(2,y) = v(2,y)

on K. Therefore, by Lebesgue Theorem, we can pass to the limit in the above inequality

and we get
lim sup // (pj *u— u)?(x, y)dzdy < Ge,
j—0o0 K
which completes the proof. O

Then, the following two propositions justify the integration by parts formulas with respect

to the measure m.

Proposition 1.3.3. Let us consider u,v : O — R locally square-integrable on O, with

derivatives u, and v, locally square-integrable on O as well. Moreover, assume that

/O (It (z, y)v(z, )] + [u(z, y)ve (@, y)| + |u(@, y)v(@, y)|)dm < co.

Then, we have

/ Uy (x, y)v(x,y)dm = —/ u(z,y) (v (z,y) — ysgn(x)v) dm. (1.3.9)
@] @

Proof. First we assume that v has compact support in R x (0,00). For any j € N we
consider the C*° functions u; = ¢; * u and v; = @; * v, with ¢; as in Lemma [I.3.2] Note
that supp v; C supp v +supp ¢; and so, for j large enough, supp v; C R x (0,00). For any
€ > 0, integrating by parts, we have

/ () (@, y)vj (2, y)e V" Heda = —/ uj <(vj)x(:c,y) - ’YX/szﬂvj(x,yO e Ve,

o —00

and, letting € — 0,

| et pusage e == [ us((0)a(e.) — rsgnla)us o) .

—00 —00

Multiplying by y®~'e™"¥ and integrating in y we obtain

/(Uj)x(x,y)vj(ﬂ:?y)dm = —/ wj(,y) ((v5)z (2, y) — ysgn(x)v(z,y))dm.
(@) (@)

Recall that, for j large enough, v; has compact support in R x (0, 00) and m is bounded on
this compact. By using Lemma letting j — oo we get

/ ug (2, y)v(z, y)dm = _/ u(vx(x,y) - ysgn(x)v(x,y)dm.
@)

o

13
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Now let us consider the general case of a function v without compact support. We introduce
a C*°—function a with values in [0,1], a(z,y) = 0 for all (z,y) ¢ [—2,+2] x [-2,+2],
a(z,y) =1 for all (x,y) € [-1,+1] x [-1,+1] and a C*°—function x with values in [0, 1],
x(y) =0forally € [0,3], x(y) =1 for all y € [+1,00). We set
'y . .
Aj(z,y) = a (j, j> x(jy),  JEN.

For every j € N, A; has compact support in O and we have

/ Ux(CC, y)Aj(mv y)v(m, y)dm
@

= —/ U(w,y)(vz(%y)—vsgn(:v)v(:v,y))Aj(w,y)dm—/ u(@,y)o(x,y)(Aj)e(z, y)dm.
O ]

The function A; is bounded by ||aloo||X||oo and lim; 4o Aj(z,y) = 1 for every (z,y) € O.

Moreover (A;)z(x,y) = %am %,% x(jy), so that

C
[ )etenan) < S [ 1 late ot i,
where C = ||ag||loo||X||co- Therefore, we obtain ([1.3.9) letting j — oo. O

Proposition 1.3.4. Let us consider u,v : O — R locally square-integrable on O, with

derivatives u, and vy locally square-integrable on O as well. Moreover, assume that
[ v gyot] + futa posate o)) + e, g)ole, ) dm < o
Then, we have
/Oyuy(ﬂf,y)v(fv,y)dmz —/OyU(:c,y)vy(w,y)dm—/O(ﬁ—uy)U(w,y)v(%y)dm- (1.3.10)

Proof. If v has compact support in O, we obtain ((1.3.10) as in the proof of Proposition
1.3.3] On the other hand, if v does not have compact support,

/yuy(aﬁ,y)v(x,y)Ag‘(m,y)dm:—/ yu(z, y)vy(x, y)Aj(z,y)dm
O O

- / (6 — py)ulz, y)o(e, y)A; (z, y)dm — / yu(z, y)o(e, y)(A;)y (. y)dm,
O @)

14
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where Aj(z,y) = a( )X(jy) as in the proof of Proposition m but choosing x such

that, moreover, ny( )HOO < 0o. We have (4;)y(z,y) = J ay (5, Dx(y) + ja(5, )X (y)-
Note that

[ teetemio (5.4) xtsin| < [ 10 et ol s o (Ol

The last expression goes to 0 as j — oo since [, [u(z,y)v(z,y)|dm < co. The assertion

follows by passing to the limit j — oco. O

We can now prove Proposition [1.3.1

Proof of Proposition|1.5.1. By using Lemma we have

0%u ou ( Ov
/C)yax2vdm —/Oyaw <8x ysgn(z)v >dm,

82 au v ou
0%y au ov
/Oyaﬂayvdm =— /Oyay <8x — 'ysgn(x)v) dm

and

0%u ou
yaxayvdm——/Oym:aydm—i—/o(uy—ﬁ)axvdm.
Recalling that
£=14 P ool 2 TN () D gy D
o T 500y T a2 o 2)ox Yoy

and using the equality 3 = 2xf/0?, we get
/ <8u v 2 Ou v du v 8u 8@)
dm

(Lu,v)g = — S o TPOgTtp

Oz Ox 0y Oy Oz Oy 8 0

P ou
+/ ;au (yysgn(x )+p0(uy—ﬁ>)”d‘“+/ ;8 (no?y — Bo? + poyysgn(z)) vdm

+/O[<”§9_2> o (0~ y)gy} vdm = —a(u,v).

O

Remark 1.3.5. By a closer look at the proof of Proposition|1.3.1]it is clear that the choice
of ¢ in (1.2.1) allows to avoid terms of the type [(uy + uy)vdm in the associated bilinear
form a. This trick will be crucial in order to obtain suitable energy estimates.
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Recall the well-known inequality

1
be = (\/Cb) <\jZ> < ng—kQCcQ, bc€R, ¢>0. (1.3.11)

Hereafter we will often apply ((1.3.11]) in the proofs even if it is not explicitly recalled each
time.

We have the following energy estimates.

Proposition 1.3.6. For every u,v € V, the bilinear form a(-,-) satisfies

la(u, v)| < Cillullvvllv, (1.3.12)
1
a(u,u) > Collullf — C3[| (1 +y)2ullf, (1.3.13)
where
01 5 K?
Ci=6+K Co=—, (C3=—+—
1 0+ Ky, 2= 5 8= 5 T o5
with
t t 2yt
5o = sup [s152 + kil +2'00822 ! ta 12| (1.3.14)
s2412>0, s2+t2>0 2\/(51 +11)(s3 + 13)
52 + 2post + o2t?
01 = inf 1.3.15
L7 eieso . 2(s2182) ( )
and
K, = sup \/j?W(x) + k2, (z). (1.3.16)

It is easy to see that the constants g, 1 and K; defined in (|1.3.14) and (|1.3.16]) are
positive and finite (recall that the functions j,, = j () and ky, = K, ,(x) defined in

(1.2.4) are bounded).

These energy estimates were already proved in [42] Lemma 2.40] with a very similar
statement. Here we repeat the proof for the sake of completeness, since we will refer to it

later on.

Proof of Proposition[I.5.6, In order to prove (1.3.13), we note that

1
5 /(’) Yy (umvz + pougvy + potyvy + a2uyvy) dm > 6 /(9 y|Vu|2dm.
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Therefore

a(u,u) 251/ y]Vu|2dm—K1/ y|Vul|u|dm
@ @]

K K
> 51/ y|Vul2dm — LS y|Vul>dm — -1 (1+ y)u’dm
o 2 Jo 2¢ Jo

= (61 - K21<) /o (y|Vul® + (1 + y)u?) dm — <51 — % + I;Cl) /0(1 + y)uldm.

The assertion then follows by choosing ¢ = 6;/K;. (1.3.12) can be proved in a similar
way. O
1.3.2 Proof of Theorem [1.2.3]

Among the standard assumptions required in [19] for the penalization procedure, there are
the coercivity and the boundedness of the coefficients. In the Heston-type models these
assumptions are no longer satisfied and this leads to some technical difficulties. In order to
overcome them, we introduce some auxiliary operators.

From now on, we set

a(u,v) = a(u,v) + a(u,v),

where

EL(U, U) — / y @@ + U@@ + 0—%@ +U2@@ dm
’  Jo2 \0zx 0z p Ox Oy P Oy Ox Oy Oy ’
ou ou
a(u,v) = Y7, vdm—l—/ Y-k odm.
O R
Note that a is symmetric. As in the proof of Proposition (1.3.6]) we have, for every u,v € V,

la(u,v)| < 6O/y|VuHVv|dm,
O

() = & [ yiTuPdm,
O

and

a(u, )| < K / Y| Vaulloldm,
O

17



Chap.. 1 - Variational formulation of American option prices

with dg, 61 and K defined in Proposition[I.3.6] Moreover, for A > 0 and M > 0 we consider

the bilinear forms
ax(u,v) = alu,v)+ )\/ (14 y)uvdm,
(@]

ay(u,v) = a(u,v)%—A/@(l—Fy)uvdm,

ou ou
~(M) _ ou . vu
a‘“"(u,v) = /O(y A M) ( Jyp t+ yk%u> vdm

and
aE\M)(u,v) = ax(u,v) + a (u,v).

The operator ay was introduced in [42] to deal with the lack of coercivity of the bilinear
form a, while the introduction of the truncated operator aE\M) with M > 0 will be useful in

order to overcome the technical difficulty related to the unboundedness of the coefficients.

Lemma 1.3.7. Let 6y, 01, K1 be defined as in (1.3.14), (1.3.15)) and (1.3.16) respectively.
2
For any fired A > %1 + % the bilinear forms ay and ag\M) are continuous and coercive.

More precisely, we have

lax(u,0)| < Cllullv|ollv,  wveV, (1.3.17)
ay(u,u) > %Hu”%/, uev, (1.3.18)
and
1 (w,0)| < Clullvlolly,  wveV. (1.3.19)
o™ (u, u) > %Hu”%/, uwev. (1.3.20)

where C = dg + K7 + .

Proof. The proof for the bilinear form ay follows as in [42, Lemma 3.2]. We give the details

for ag\M) to check that the constants do not depend on M. Note that, for every u,v € V,

0 (u, v)] < Kl/ y|Vulfo|dm,
@
so that by straightforward computations we get
(M)
lay ™" (u,v)] < (b0 + A+ Ki)llullvvllv.

18
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On the other hand, for every ¢ > 0,

a™ (u, )

Vv

51/ y\Vu]Qdm+)\/(1+y)u2dm—K1/ oVl [uldm
O O (@)

> <51 - K21C> /OyIVu|2dm+ <)\— éi%) /0(1+y)u2dm.

By choosing ¢ = 41 /K71, we get

V

5 K2 5
M) > X yvuPdm+ (2 - EL / (1+ y)u2dm > L2,
2 Jo 201 ) Jo 2
5 K?
for every A > 5 + 55+ O

2
From now on in the rest of this chapter we assume A > %1 + % as in Lemma |1.3.7]

Moreover, we will denote by [|b]] = sup, yev,uv0 % the norm of a bilinear form

b:VxV —=R.
Remark 1.3.8. We stress that Lemma[1.3.7 gives us

sup o) < C, (1.3.21)
M>0

where C = §g + K1 + X. This will be crucial in the penalization technique we are going to
describe in Section[1.5.3, Roughly speaking, in order to prove the existence of a solution of
the penalized coercive problem we will introduce in Theorem we proceed as follows.
First, we replace the bilinear form ay with the operator ag\M), which has bounded coefficients,
and we solve the associated penalized truncated coercive problem (see Proposition .
Then, thanks to , we can deduce estimates on the solution which are uniform in M
(see Lemma and which will allow us to pass to the limit as M goes to infinity and

to find a solution of the original penalized coercive problem.

Finally, we define
LY =L—-N1+y)

the differential operator associated with the bilinear form ay, that is
(L u,v) g = —ax(u,v), ue H*(O,m),veV.
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Penalized problem
For any fixed € > 0 we define the penalizing operator

1 1
C(tyu) = —g(w(t) —u)y = g((t,u), te[0,T),ueV. (1.3.22)
Since for every fixed ¢ € [0, T the function x — —(1(t) — z)4+ is nondecreasing, we have the

following well known monotonicity result (see [19]).

Lemma 1.3.9. For any fizred t € [0, T the penalizing operator (1.3.22)) is monotone, in the

sense that
(G(t,u) — C(t,v),u—v)g >0, u,v € V.

We now introduce the intermediate penalized coercive problem with a source term g. We

consider the following assumption:

Assumption H. We say that a function g satisfies Assumption H° if /T + yg € L%([0,T); H).

Theorem 1.3.10. Assume that 1 satisfies Assumption H' and g satisfies Assumption H°.

Then, for every fized € > 0, there ewists a unique function u. x such that u. € L2([0,T); V),

algt% € L*([0,T); H) and, for all v € L?([0,T];V),

_ 8u€’/\ _ .

( ot ’,U)H + a)\(us,)\; U) + (Cs(t7 ua,)\)a U)H — (ga U)Ha a.e. 1 [0, T]’ (1323>
us\(T) = (7).
Moreover, the following estimates hold:
el oo (o,17,v) < K, (1.3.24)
H Ouie <K, (1.3.25)
Ot 2o,y
1

NG 1 = ue )| oo o) < K (1.3.26)

where K = C (19| 2 jo,r1:v) + VT + 99l 20,03:m) + VT F 98l 20,10y + [T ) s with
C > 0 independent of €, and ¥ is given in Assumption H' .

The proof of uniqueness of the solution of the penalized coercive problem follows a stan-
dard monotonicity argument as in [19], so we omit the proof.

The proof of existence in Theorem is quite long and technical, so we split it into
two propositions. We first consider the truncated penalized problem, which requires less

stringent conditions on v and g.
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Proposition 1.3.11. Let ¢ € C([0,T]; H) N L?([0,T); V) and g € L?([0,T); H). Moreover,
assume that Y(T) € H*(O,m), (1+y)¥(T) € H, %Lf € L2([0,T); V) and % e L2([0,T); H).
Then, there exists a unique function uecxnr such that uexy € L*([0,T); V), Busa,;,M c

L%([0,T); V) and for all v € L*([0,T]; V)

Ou, M .
— < ua’;’M,v>H —i—ag\ )(ug,)\7M,v) + (C(t,ue ), 0)m = (9,0) 1, a.e. in [0,T),

ue A M (T) = (7).
(1.3.27)

Proof. (i) Finite dimensional problem We use the classical Galerkin method of ap-
proximation, which consists in introducing a nondecreasing sequence (V;); of sub-
spaces of V' such that dimV; < oo and, for every v € V, there exists a sequence
(vj)jen such that v; € V; for any j € N and |lv — vj||y — 0 as j — oo. Moreover,
we assume that ¢(7T") € Vj, for all j € N. Let P; be the projection of V onto V; and
;(t) = Pjy(t). We have 9;(t) — 1(t) strongly in V and ¢;(T") = ¢(T") for any j € N.
The finite dimensional problem is, therefore, to find w; : [0,7] — V; such that

— (B 0.v) +a00,0) = M@0 = w(0)+, ) = (900, eV,

u;(T) = ¢(T).
(1.3.28)

This problem can be interpreted as an ordinary differential equation in V; (dim V; <
o0), that is

ou; M
=G0 + AL us(1) = LQi (1) — (1)) = Qug(t)
ui(T) = (T),
where AE\A?) : V; = Vj is a finite dimensional linear operator and (); is the projection

of H onto Vj. Note that the function v — Q;((¢;(t) — u)4) is Lipschitz continuous,

since

1Qs((¥5(t) —u)y) — Q;((¥5(t) —v)4)llv;
< GjllQ;((¥5(t) —u)+) = Q;((¥5(t) —v) )l < Cjllu —vl|m.

On the other hand, the function (¢,u) — Q;((v;(t) —u(t)+) is continuous with values

in Vj. In fact, we can easily prove that it is weakly continuous, that is, for v € V;, the

21



Chap.. 1 - Variational formulation of American option prices

application (t,u) = (Q;((v;(t) — u)+),v) is continuous. In fact

[(Q((w(t) — uw)+) = Qi ((¥(s) — w)+),v)| < [(Qs((W5(t) — w)+) — Q;((W5(s) — w)4),v)]|
+[(Qi(((5) — w)+) — Qi ((¥(5) — w)+),v)] -
(1.3.29)
The second term in the right hand side of goes to 0 by using the Lipschitz

continuity proved above. On the other hand, it is easy to prove that for any u €
V,v € H*(O,m), one has |(u,v)yv| < O|jul|z||v | 72(0(m))- Since v € V; we can assume
without loss of generality that v € H?(O,m), so that for the first term in the right
hand side of , we easily get

[(Qi (5 (1) — u)4) = Qi((W3(s) — w)4), )| < 5 (t) — ()l llvll 20 m)
which goes to 0. Finally, it is easy to see that the term Q;g belongs to L?([0,T]; V;).

Therefore, we can use the Cauchy-Lipschitz Theorem and we deduce the existence
and the uniqueness of a solution u; of ([1.3.28), continuous from [0,7] into Vj, a.e.

differentiable and with integrable derivative.

(i) Estimates on the finite dimensional problem First, we take v = u;(t) — 1;(t)

in . We get
- (i;f(tmj(t) 050+ a0, = 1,(0)
= L) w0 05 (0) — 50 = (o0, 50) 500

which can be rewritten as

- 5l ® - w Ol - (GOm0 - u6)

g (6) = 5(2),u5(0) = 3O+ Z(W50) — w50 1, 85(0) — w5 ()
a0 (8), 1y () = (1)) = (9(0), w5 (8) = vy

We integrate between t and 7" and we use coercivity and u;(T") = v;(T) to obtain

T
) - <>HH+5; [ o)~ ws@as + 2 [0 o) s

0
<o ||| Pl Hd +C/ Hg >HHds+2C
(M)
LS / g 5) — 63(5) s -+ 1S / g (s) — oy (s) [ + 121 / It ()13 s
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

for any ¢ > 0. Recall that v; = Pj3, and so [|1;(t)[12 < [[¢(t)||3-. In the same way
Haw’ 12 < Haw] 12 < HB%—EQH% . Choosing ¢ = m after simple calculations
X

we deduce that there exists C' > 0 independent of M, € and j such that

Iy 8 L s s+ 2T 1005) = s)) s

gt
0 R R LT T AR

<C (H (1.3.30)

)
e}
ot

L2([t,T)V)

We now go back to ((1.3.28) and we take v = %(t) so we get
2
_ Ou; _ Ou;
- (10, 520 + 390 (0. 520)

((%( - w), G0) = (a0, 50)

8uj
E(t)

Note that

m\._.

-2 (wo-woGo)
:1<(¢j_uj)+,W<t>>H HCCRTORE 0N

3

1

= 5 gl = w0 - 1 (00 - w01 520) .

Therefore, using the symmetry of ay, we have

2
g OO+ (w0, 520 )+ 0w

(B0 -wonGi0) = (a0.50)

3

Ou;
o 7

Integrating between ¢ and T', we obtain

/T
_ / " a0 (u](s), "’alg@) ds + 5ax(W5(T), 45(T))

- [ (- 526) as= [ (509, 5200) as

23
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Chap.. 1 - Variational formulation of American option prices

Recall that ay(u;(t),u;(t)) > 71H 0%, @M (u,0)| < Ky Joy A M|Vullv|dm and
ax(1;(T), ¢;(T )) = ax((T),%(T)) < [lax[lll4(T)I[}, so that, for every ¢ > 0,

/ 8u]
¢

Nis | )
T

<K; ds | yANM|Vu;(s,.)|
t (@)
T

+/t 15(5) — ()4l

3

K KM
< 2; Sl + S [

%H%()HM 1w (8) = g (8))+- 17

Ou;
ot
5o,

@]l

(D)1

s+ [ ool 560
(5

(s,.)‘dm—i—

ds
H

S

%

2 _
a
as + | 2 Loz
H

A
aTJ(S)

! ds+ 1 [ o)
2C g H

2C Ji

/ (45 (s —uj< )4ll3rds + =
515

From (|1.3.30)), we already know that

8u]

ds.

T T
/t \\uj<s>rr%ds+1 / 165(5) — u3(5))+ 121

()

then we can ﬁnally deduce

|

gz ) + 101270 + H¢(T)H%{> ;
L2(t,T]V)

8uj
5 (5)

<cun(|2]

where C; jr is a constant which depends on € and M but not on j.

ds +lw @Y + 5 H(%( ) = ui (0)+Il7

(1.3.31)

+ H9H%2([t,T];H) + \WH%%[t,T];v) + ‘W(T)H%/) ,
L2([t,T];V)

We will also need a further estimation. If we denote u; = % and we differentiate the
equation (1.3.28)) with respect to ¢ for a fixed v independent of ¢, we obtain that u;

satisfies

~(Giow) ! a0).0)- (520 - 50) tosmon) - (S “>H’
(1.3.32)
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

for any v € V;. As regards the initial condition, from ((1.3.28)) computed in ¢ = T, for
every v € V; we have
ou; (T M
2utT) ) = af(T). ) ~ (a(T). )
ot i

= (LY(T),v) g + A (L +y)o(T),v)y
+ (Y AM = y)(yptia + Fypuy),v) g + (9(T),v) g -

Choosing v = 8“(?§§T), we deduce that

|

that is,

8’U,j (T)
ot

HH < C(ILHT) + 10+ 90T + Gy — M)V + 9(T) )

< C (I Dlzom + 1L +)W(D)la + lg(T)lla)

Ou,; (T)
ot

| < CU@mom + 10+ 96Dl + l9(T)n)-
We can take v = @;(¢) in and we obtain

<35;J t),a -(t))H +a™ (1), w;(t)) — <<8§ff (t) — Uj(t)> Ly (0)2u;0)) “j(t)>

- (Foao) .

H

so that
d 5
;dt Jas 1% + Hias o)1
=z ((8{? () - @(t)) ﬂ{wj<t>>uj},ﬂj(t)>H+ <g§(t),ﬁj(t)>H

< - <aau; ()L s, (0)2u, U (¢ )> <g§() ’ (t)>H'

Integrating between ¢ and T, with the usual calculations, we obtain, in particular,
that

_ s (T
s+ 5 [ sl

0
< C. (D B0+ 1L+ OO + oD+ | 51

L2(L1):H >>’

(1.3.33)

2
L2([t,T);H) H

where C is a constant which depends on ¢, but not on j.
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(iii) Passage to the limit

Let € and M be fixed. By passing to a subsequence, from ([1.3.31)) we can assume that
% weakly converges to a function . , ;, in L?([0,T); H). We deduce that, for any
fixed t € [0, T, u;(t) weakly converges in H to

T
uep(t) = O(T) - /t ey na(8)ds.

Indeed, u;(t) is bounded in V', so the convergence is weakly in V. Passing to the limit

in ((1.3.33) we deduce that % € L?([0,T); V). Moreover, from (1.3.31)), we have
that (1), — u;j(t))" weakly converges in H to a certain function x(t) € H. Now, for

any v € V we know that there exists a sequence (v;) jen such that v; € Vj for all j € N
and ||v — vj||ly = 0. We have

ou; 1
—(a;waH+aW%wwﬂwH—gwuw—w@»ﬂwH:@@me
so, passing to the limit as j — oo,

_(%EMQWOH+MWMM@WM—1&@&%=@@WM-

m

We only have to note that x(t) = (¥(t) —ue xnm(t))+. In fact, ¢;(t) — ¢(t) in V and,
up to a subsequence, Iyu;j(t) — Lyueya(t) in L2(U, m) for every open U relatively
compact in O. Therefore, there exists a subsequence which converges a.e. and this
allows to conclude the proof.

O

We now want to get rid of the truncated operator, that is to pass to the limit for M — oco.

In order to do this we need some estimates on the function u. » 5y which are uniform in M.
Lemma 1.3.12. Assume that, in addition to the assumptions of Proposition|1.3.11, \/1+ yy €
L2([0,T); V), ‘%‘ < U with ¥ € L*([0,T);V) and g satisfies Assumption H°. Let uc x m
be the solution of (1.3.27)). Then,

T || Oue 2
S| 252 0)| | ds 4 lepar @I + 21 = wennr ()11

< C (19 2o mav) + IVTFBllagorym + IWITF 51220 ryry + 1D )
(1.3.34)

where C' is a positive constant independent of M and .
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Proof. To simplify the notation we denote wu.  ps by v and u. x ps — % = u — % by w. For
n > 0, define ¢, (z,y) = 1+ y A n. Since ¢, and its derivatives are bounded, if v € V', we
have vp,, € V. Choosing v = (u — ¥)p, = we, in (1.3.27)), with simple passages we get

- (%If“%w(t)%) +a (w(t), w(t)pn) + (Gt u(®)) w(b)pn)n
H
@f( )+ g(t), (t)gon)H — a{™ (1), w(t)pn).

With the notation ¢/, =

y = 1yy<ny, we have

o
>\ w w
2 2
/g[ t + 20 Zw(t)ZZ’(t)+02 <‘;Z’(t)> ]cpndm—l—)\/o(l—i—y)wQ(t)SOndm
+

| (p gw (t) + 0221;@)) wgidm+ [ yn M (gjum - ZZ(t)m) w(t)pndm

>4 /O y [Veo(t)[? pndm + A /O (1 + y)w? (t)pndm — K, /O y [V ()] [w(t) [ pndm

_ K /O y [ V()] [w(t)|Lgy<ppdm,

/ 4
where Ky = %ﬂ’. Note that, if n = 0, the last term vanishes, and that, for all n > 0

/waw(t)\ w(t)| L gy<nydm < [lw(®)][}-
Therefore, for all ¢ > 0,

(M)

o (w(t), w(t)pn) > 61 / y [V ()2 pndm + A / (1+ y)w?(t)pndm
O O
51 [y (C Vuw(t)? + 214|w<t>|2) ondm — Kallw(t)[}

> (5= 558) [uiuPenm+ (3= 51) [ @+ nudendn - Kl
S 01

>5[ (ITuOF + (4 9u)) eudm — Kalu ().

where, for the last inequality, we have chosen ¢ = ¢; /K and used the inequality A > 51 +X 5 51 .
Again, in the case n = 0 the last term on the righthand side can be omitted.
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Hence, we have, with the notation [[v[[3,, = [, (y Vo2 + (1 + y)112> opdm,

d

5 L e udm + Lol +

[ o) puin <
O

(500 + o000 ) =00 w0)e) + Kaluwl0]}-
H

In the case n = 0, the inequality reduces to

1d 0 1 0
g [ s Sl [ wmwtim < (50)+ 50.00)) a0, 000)
(@] H
Now, integrate from ¢ to T and use u(T") = ¢(T') to derive

1 6 [T
/ w(t)ngndm—l-l/ ds||lw(s an / ds/ +cpndm
2 Jo 2 /i

T 8w (M) T
< [ (st + Fwten) do+| [ Do) urmas] + K [ o

(1.3.35)
and, in the case n =0,
)
o+ % [t + 2 [ as [ (-
o0 (1.3.36)
</ (g()—i—m()w(s) ||d8—|—/ ‘(M) w(s))|ds.
t
We have, for all (; > 0,
T 81/}
/ (g< 9+ G e ) ds
2
/ ds/ lw(s) gondm—i- E ds (s)| @ndm
< / dS/ ”U) gondm—i——H\/1+ gHL2 [tT]H C H 1/} .
L2([t,T);H)

Moreover, it is easy to check that, for all vy, v € V,

with K3 =09 + K1 + Ko + A,

‘aE\M) (Ula U2‘Pn) <

so that, for any (2 > 0,

T M
/t 108 ((5), w(s)pn) ds

T K¢ [T 2 K; [T 2
< K3 ) ds||v(s)|lvnllw(s)|lva < 2 J, dus(s)Hv,nJr@ ) ds||(s) |-
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Now, if we chose (1 = K32 = §1/4 and we go back to (1.3.35]) and (1.3.36]), using ‘%—f <
we get
1
2/ *(t)pndm + —- / [w(s)[I;,ds + = / dS/ +g0ndm
@
4 2 2 2K3 9
< 5 (IVIF 9l + IV 0 o) + ()12 nds

1.3.37
+ Kol|wl| 22 1700 ( )

< = (IWTF 01 uan + IV TF 92 W*H\ﬂf o

+ Kollwl 2 7y

L2([t,T);V)

where the last inequality follows from the estimate ||v||Vn < 2|ly/T+yv||?, and, in the case
n =20,

T T
ol + 5 [+ [ ds [ (ul)han
<

) - (1.3.38)
< 5 (ol + 100y ) + 75,2 100y
From ([1.3.38]) recalling that w = u — 1 we deduce
/ Jus) I3 ds < / 2([[w($)IE + l(s)I3)ds
o (1.3.39)

16 K2
< P (HgHLQ ez T 1727, H)) T (3

2
52 +2> 1122t
Moreover, combining ((1.3.37)) and (1.3.38)), we have

1

5 [t Opudm+ / lw(s) [ nds + 2 / ds [ (0(s)
4 16K2

< <51 > (A VAR ] H))

4AK? 2K
+T3 <1+2> IV + 90l 72 1)

In particular,

T T T -
/ ds/ y|Vu(s)|2gandm§/ IIu(s)yFdesgz/ |w(s)|%/7nds+2/ ds||0(s) |3 ds
t ‘ ]

8 (4 16 K.
<+ <5 2> (ITF 991z + IV F 92 )

32K? 2K
+< 57 <1+ 512> +4> IV +ylZ )
1
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and, by using the Monotone convergence theorem, we deduce
4 2
| wivuias
< Ky (||\/ L+ ygl 22y + IV + 99152 oy + V1 + y¢||%2([t,T};v)> :
32K
where K4 = % (% + 1%?2) \Y, ( 5%3 (1+ %) +4>.
We are now in a position to prove (|1.3.34)). Taking v = % in (1.3.27)), we have

(1.3.40)

oull* ou _ ou 1 ou ou
|3, e () e (1w 5) -2 (-0 ), = (g0 50),
Note that, since @, is symmetric, Say (u(t), u(t)) = 2ay (u(t), %—?(t)). On the other hand,
(00— 5 ) = =5 510 — )l + (w0 - ) Gro)
so that
ou, > 1d_ 1d
O] 5 (). ) = 3 L1000 = ult)s

=30 (a0 50) = (a0 550) =2 (00— ut 570)

<[ (a0, 5o ) | + ool Go0]| + (o - a9,
< (K T+ o) | 50|+ 2 (000 = w0 %00

Moreover, if we take v = ¥(¢) in (1.3.27)), we get

- (?ﬁ(w, w)) +al ), W(0) 1 (00) = ult) 4, W(0) s = (90, W(0))
H

€

so that

1 ou

2 (0~ a0 ¥y < | 50| 19O+ 1N 19O + @l 19O
(1.3.41)
Therefore,
2
GO~ 5 0.u(0) = L0 — w0
< G lITuOlls + a0l + 190l | 50|+ 1 a1y vy

+ gl ® @,
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hence
2
350 5w ) - - HwO = o).l

S%(Kl lyVu®) g + 9@ e+ 1¥ 1) + a5 @I E @I+ lg@la @ ()]l

Integrating between ¢ and T, we get,

oul|? 1 1
‘ 3 + 50 (u(t), u(t)) + 2*||(¢(t) —u(t)+ %

SllL2([t,1);H) €
1— 2 2 3K12 2

< WD), (1)) + Mgl oy + 208N 22eryony + —5 WVl @y m)

M M

Dl ||a< i

+ 9 lull 22 ey + 1| 2,50y

so, recalling that ay (u(t),u(t) > 61 fo y|Vu(t)Pdm + X [ (14 y)uidm > (61 AN)[[u(®)]|}

1 ‘ oul? 51 /\)\ 1 ,
>1152 a2 + —[1(o(t) — u(t)) |
2|9s LQ([t,T];H) 2e H
ay
< LBy 7y, + 2l )+ 219 2y
M
3K? > oS ||aA )|

+ = IyIVulllzage i + THUH%%[,:,T];V) 19022 v
@l
< TW(T)H%/ + 20190122 1.0 + 20912 1y

K2
71K4 (H\/ L+ yal 2a ey + IV + 9972y + V1 + WHQLz([t,T];V)>

||a | 16K2

5 52 <”9HL2([tT + H\I/H%?([t,T];H)) + 5%3 + 2 ) 10122 )
oS

+ /\2 H\IIHH([t,T};V)?

where the last inequality follows from (|1.3.39)) and (|1.3.40). Rearranging the terms, we
deduce that there exists a constant C' > 0 independent of M and e such that

1| 0ul? 61/\)\ | )
1= — t) —u(t
5|5 P LCl e = (CORSTO
< & (IVTF 30y + 190y + | VIF 0] o+ IEDIR )
which concludes the proof. O
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Proof of Theorem [I.53.10: existence. Assume for a first moment that we have the further
assumptions ¢(T) € H*(O,m), (1+y)y(T) € H, %—f € L*([0,T); V) and % € L*([0,T); H).
Thanks to (1.3.34)) we can repeat the same arguments as in the proof of Proposition |1.3.11
in order to pass to the limit in j, but this time as M — oo. Therefore, we deduce the
existence of a function ., € L?([0,T]; V) with 813? € L?([0,T); H) and such that

B (62? <t>,v> Fax(uealt), 0 — (W) = uen0)+,0) = (9(2),0).
H

3

The estimates (1.3.24]), (1.3.25) and ([1.3.26)) directly follow from ((1.3.34) as M — oo.

We have now to weaken the assumptions on g and ¥. We can do this by a regulariza-

tion procedure. In fact, let us assume that v satisfies Assumption H' (so, in particular,
%—ﬂ < W for a certain ¥ € L2([0,T]; V) and g satisfies Assumption H°. Then, by standard

regularization techniques (see for example [42] Corollary A.12]), we can find sequences of

functions (gn)n, (¢¥n)n and (¥,), of class C*° with compact support such that, for any

neN,neN, |6(3ft" | < ¥, and all the regularity assumptions required in the first part of the
proof are satisfied. Moreover, it is easy to see that |[v/T+ygn — VT + ygllr2o,r,m) — 0,

IVI+yon = VIFydllrzqomvy = 05 1Wn = ¥llz2o,rpv) = 05 [¥n(T) = 9(T)llv — 0 as
n — o0o. Therefore, the solution ul\ v of the equation (|1.3.23)) with source function g,, and

obstacle function v, satisfies

n
6u5,)\,M

2
S50 ds + s a1 + 2 () = w0 0413
< C (H Vv I+ Yy nHLQ([O,T];H) + HV 1T+ ylpn"%z([oj];v) =+ H\I’n”%%[o’ﬂ;v) + "@bn(T)”%/) :

(1.3.42)
Then, we can take the limit for n — oo in (|1.3.42]) and the assertion follows as in the first
part of the proof. O

Moreover, we have the following Comparison principle for the coercive penalized problem.

Proposition 1.3.13. (i) Assume that 1); satisfies Assumption H' for i = 1,2 and g
satisfies Assumption HY. Let u;/\ be the unique solution of (1.3.23)) with obstacle
function v; and source function g. If 11 < 1, then ué)\ < ug»\.

(i) Assume that 1 satisfies Assumption H' and g; satisfy Assumption H° fori=1,2. Let
uf:,)\ be the unique solution of (1.3.23)) with obstacle function i and source function
gi- If g1 < g, then ul, <uZ,.
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

(iii) Assume that 1; satisfies Assumption H' for i = 1,2 and g satisfies Assumption H°.
Let uz ) be the unique solution of (1.3.23)) with obstacle function 1; and source function
g. If Y1 — 1o € L, then u;’A - ug’A € L>* and Hu;A - ug)\Hoo < |1 — Y2 so-

Proposition [1.3.13| can be proved with standard techniques introduced in [19, Chapter 3]

so we omit the proof.

Coercive variational inequality

Proposition 1.3.14. Assume that ¢ satisfies Assumption H' and g satisfies Assumption
HY. Moreover, assume that 0 < ¢ < ® with ® € L%([0,T]; H*(O,m)) such that %—f +

LO <0and 0 < g < —%—? — L2®. Then, there exists a unique function uy such that

uy € L2([0,T); V), 2 € 12((0,T); H) and

— <68Lt*,v — u,\)H + ax(un,v —uy) > (g,v —ur)g, a.e. in[0,T],

ve LX([0,T];V), v>1,
ux(T) = (T),
uy > a.e. in [0,T] x R x (0,00).

(1.3.43)
Moreover, 0 < uy < O.

Proof. The uniqueness of the solution of ((1.3.43)) follows by a standard monotonicity argu-
ment introduced in [19, Chapter 3] (see [93]). As regards the existence of a solution, we
follow the lines of the proof of [19, Theorem 2.1] but we repeat here the details since we use

a compactness argument which is not present in the classical theory.

For each fixed € > 0 we have the estimates ([1.3.24) and (1.3.25)), so, for every ¢ € [0, 7],

we can extract a subsequence u, ) such that u. (t) — ux(t) in V ase — 0 and u(t) — v/ (¢)

in H for some function uy € V.

Note that © = 0 is the unique solution of when ¢ = g = 0, while u = ® is the
unique solution of when ¢ = ® and ¢g = —%—‘f — L\ = —%—‘f — LO + A1+ y).
Therefore, Proposition implies that 0 < u.y < ®. Recall that u. (t) — ux(t) in
L?(U,m) for every relatively compact open U C O. This, together with the fact that dm is

a finite measure, allows to conclude that we have strong convergence of u. y to uy in H. In
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Chap.. 1 - Variational formulation of American option prices

fact, if § > 0 and Oy := (_%7 %) x (0, %)’

T
/ ds/ uex(s) — ux(s)|*dm
0
/ ds/ lue x(s) — ux(s) dm+/ dS/ [ue A (8) — ux(s )‘zdm
Os 5
/ds lue x(s) —ux(s |dm+/ ds/ 4®%(s)dm
0 Os C

and it is enough to let § goes to 0.

From we also have that (¢(t) — ue A (t))™ — 0 strongly in H as ¢ — 0 . On the
other hand (¢(t) — uc A(t))+ — x(t) weakly in H and x = (¢ — uy)4+ since there exists a
subsequence of u. »(t) which converges pointwise to uy (). Therefore, (¢(t) — ux(t))" =0,
which means wy(t) > ¥(t).

Then we consider the penalized coercive equation in replacing v by v — u. A(t),
with v > 9(t). Since ((t,v) = 0 and (((t,v) — C(t,us\(t)),v — u- A(t)) g > 0 we easily
deduce that

- <ag? (t),v— Ue,,\(t)>H + ax(ue (1), v — ue a (1)) 2 (9(8), v — usn(8) 1

so that, letting € goes to 0, we have

<8§t’\( )y v — u,\(t)>H +ax(ux(t),v) > (9(t),v —ur(t))m + hl;g%ﬁ ax(uz A (t), uea (1))

> (g(t),v —ux(t)) g + ax(ux(t), ux(t)).

Moreover, since 0 < u, y < ® for every € > 0 and uy) = lim._,g ue ), we have 0 < uy < @

and the assertion follows. O

The following Comparison Principle is a direct consequence of Proposition [I.3.13].

Proposition 1.3.15. (i) For i = 1, 2, assume that v; satisfies Assumption H!, g sat-
z'sﬁes Assumption H° and () < < @ with @ € L*([0,T); H*(O,m)) such that
—|—£<I> <0and0< g< -2 _ L \D. Let uA be the unique solution of (|1.3.43] m with

obstacle function Y; and source functwn g. If Y1 < 1o, then u)\ < u/\.

(ii) Fori = 1,2, assume that v satisfies Assumption H', g; satisfy Assumption H° and
0 < ¢ < & with ® € L*([0,T); H*(O,m)) such that %2 + L& < 0 and 0 < g; <
-5 — L D, Let u/\ be the unique solution of (|1.3.43| wzth obstacle function ¢ and
source function g;. If g1 < g2, then u/\ < u)\.
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

(iii) Fori =1, 2, assume that 1; satisfies Assumption H', g satisfies Assumption H® and
O < w, < ® with ® € L*([0,T); H*(O,m)) such that a<1> +LP <0and 0 < g <
— 5 — LD, Let ul, be the unique solution of (1.3.43 wzth obstacle function ; and
source function g. If 1 —19 € L%, then ul —u3 € L™ and ||u} —u3|loo < [|t1 —t2]/oo-

Non-coercive variational inequality

We can finally prove Theorem Again, we first study the uniqueness of the solution

and then we deal with the existence.

Proof of uniqueness in Theorem [I.2.3 Suppose that there are two functions u; and us
which satisfy . As usual, we take v = us in the equation satisfied by u; and v = uy
in the one satisfied by us and we add the resulting equations. Setting w := us — u1, we get
that, a.e. in [0, 7],

(Grou) = atwo.u) 2o
ot o
From the energy estimate ([1.3.13)), we know that
1
a(u(t),u(t)) = Cillu®)[§, — C2ll (1 +y)Zu(®) |3,

so that
1d

2dt

By integrating from ¢ to T', since w(T") = 0, we have

w3 + Call(1+y)2w() |3 > 0.

T 1
lw(®)lIF < 02/ 11+ y)zw(s)|Fds

<CQ</ ds/ ]l{y<)\} +y)w dm+/ ds/ ]l{y>)\} (1+yw (s)dm)
< C(/ ds/ (1+ /\)w2(s)yﬂ167|x|e“ydm‘dy>
t (@

T
+ C'< + / ds/ Tgysap(1+ y)wQ(s)yﬁleﬂxe(“”/)ye“/ydmdy>

< (/ ds/dxdy1+)\ 25yl el o My)

+ C’<e_(”_“/)’\/ ds/ dxdy(1 —l—y)‘1>2(s)yﬁ_1e_7x|e—“,y>,
t @
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where i/ < pand X > 0. Since Cy = [, dzdy(1 + y)®2(s)yPteMele=HY < 00, we have

T
lw(®)||F < C(1+ ) /t |w(s)||%rds + Co(T — t)e™ HHIA,
so, by using the Gronwall Lemma,
lw(t)||% < CoTe W rIATCT—1)(1+A)

Sending A — oo, we deduce that w(¢) = 0 in [T,¢] for ¢ such that T'— ¢ < “_T“/ Then, we
iterate the same argument: we integrate between t' and ¢ with ¢t — ¢/ < “_T“/ and we have
w(t) = 0 in [T,¢] and so on. We deduce that w(t) = 0 for all ¢t € [0,7] so the assertion
follows. O

Proof of existence in Theorem [1.2.5 Given ug = ®, we can construct a sequence (uy), C V
such that

Up > ace. in [0,T] x O, n>1, (1.3.44)
Oup
- <gt’ v— un> + a(tn, v — up) + A1+ y)un, v —un)g > M1+ y)tun—1,v — up) g,
H

veV, v>1, ae onl0,T]xO0O, n>1,
(1.3.45)
un(T) = (T), in O, (1.3.46)
D>up >us > > Uy > Uy > >0, a.e. on [0,7] x O. (1.3.47)

In fact, if we have 0 < u,—1 < @ for all n € N, then the assumptions of Proposition
are satisfied with
gn = A1+ y)up—_1.
Indeed, since (1+y)%q) € L?([0,T); H), we have that g,, and /T + yg,, belong to L*([0,T]; H)
and, moreover, 0 < g, < A(1+y)® < —%—f — L£,®. Therefore, step by step, we can deduce
the existence and the uniqueness of a solution u,, to such that 0 < u,, < ®. (|1.3.47)
is a simple consequence of Proposition In fact, proceeding by induction, at each step
we have
gn = >‘(1 + y)un—l < )\(1 + y)un—Q = gn—1

so that u, < u,_1. Now, recall that

|unl Lo o,y < K,
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

<K,

H Ouy,

L2([0,T};H)

where K = C (19| 2 (jo.13:v) + VT +99nll 20,00 + VT + 98l 20,0350 + 10(T)[lv)- Note
that the constant K is mdependent of n since |gn| = A1+ y)un—1,| < A(1+y)®, for every

n € N. Therefore, by passing to a subsequence, we can assume that there exists a function

u such that u € L2([0,T]; V), % € L?([0,T); H) and for every t € [0,T], ul,(t) — u/(t) in H
and up(t) — w(t) in V. Indeed, again thanks to the fact that 0 < u,, < ®, we can deduce
that u,(t) — u(t) in H. Therefore we can pass to the limit in

0
_ (g;,un — v> + a(tup, v — up) + AM(1+ 9)un, v — up)g > M1+ y)up—1,v — up) g
H
and the assertion follows. .

Remark 1.3.16. Keeping in mind our purpose of identifying the solution of the variational
inequality (1.2.5)) with the American option price we have considered the case without source
term (g = 0) in the variational inequality (1.2.5)). However, under the same assumptions of

Theorem we can prove in the same way the existence and the uniqueness of a solution

of

(B o)y (v —w) 2 (o —wu, e in[0,T] ve 20, ThV), v 2,
u>1 ae in[0,7T] x R x (0,00),
u(T) = (T),
0<u<o,

where g satisfies Assumption H® and 0 < g < —%2 — L.

We conclude stating the following Comparison Principle, whose proof is a direct conse-

quence of Proposition [1.3.15| and the proof of Proposition [1.2.3

Proposition 1.3.17. Fori = 1,2, assume that ¥; satisfies Assumption H' and 0 < ; < ®
with ® satisfying Assumption H?. Let ul)\ be the unique solution of (1.3.43|) with obstacle
function ;. Then:

(i) If Y1 < o, then u} < 3.
(ii) If Y1 — 1po € L™, then u}\ — ui € L*® and Hu}\ — “&Hoo < ||Y1 — ¥2]|co-
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1.4 Connection with the optimal stopping problem

Once we have the existence and the uniqueness of a solution u of the variational inequality
, our aim is to prove that it matches the solution of the optimal stopping problem,
that is

u(t,z,y) = u*(t,x,y), on [0,T] x O,

where u* is defined by

u*(t,z,y) = sup E [v(r, X", Y"Y)],
T€Tt, T

T: 1 being the set of the stopping times with values in [¢,7]. Since the function u is not
regular enough to apply It6’s Lemma, we use another strategy in order to prove the above
identification. So, we first show, by using the affine character of the underlying diffusion,
that the semigroup associated with the bilinear form ay coincides with the transition semi-
group of the two dimensional diffusion (X,Y") with a killing term. Then, we prove suitable
estimates on the joint law of (X,Y’) and LP-regularity results on the solution of the varia-

tional inequality and we deduce from them the probabilistic interpretation.

1.4.1 Semigroup associated with the bilinear form

We introduce now the semigroup associated with the coercive bilinear form ay. With a

natural notation, we define the following spaces

t
Lﬁ@wﬁﬂ:{fﬂw-+ﬂnwzo/uﬂﬁﬁm5<m},
0

t
leoc(R+;V) = {f R - Vive> 0/0 Hf(S)H%/dS < OO} .

First of all, we state the following result:

loc loc

exists a unique function u € L2 (R*; V) such that % € L? (RT:H), u(0) = and

loc loc

Proposition 1.4.1. For every ¢ € V, f € L} (R"; H) with \/yf € L} (R"; H), there

0
<u,v> +ax(u,v) = (f,v)g, veV. (1.4.48)
ot i
Moreover we have, for everyt > 0,

o [* 2 [
@+ % [ s < ol + 2 [ 17l (1.4.49)
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Sec. 1.4 - Connection with the optimal stopping problem

and

la(®)l1% + /||ut ||Hds<0<||w|v+ /Wﬁf ||Hds),

with C' > 0.

The proof can be found in the appendix of this chapter. Moreover, we can prove a
Comparison Principle for the equation as we have done for the variational inequality.
We denote u(t) = P the solution of corresponding to u(0) = ¢ and f = 0.
From we deduce that the operator PtA is a linear contraction on H and, from

uniqueness, we have the semigroup property.

Proposition 1.4.2. Let us consider f : RT™ — H such that /T +yf € L} (R*,H). Then,

the solution of
(i
) 7
u(0) =0,
is given by u(t) fOP’\ftfsds—foPt S(s)ds

Proof. Note that V is dense in H and recall the estimate (|1.4.49)), so it is enough to prove
the assertion for f = 1, 4,19, with 0 < ¢ < tg and ¢ € V. If we set u(t) = fg P} . f(s)ds,

we have

® =1 /t/\t2 P g tt; P} apds = ftt tz PMpds  ift >ty
u(t) = N pds = _ 1 .
tenk J o / P bds = / Plpds  ift € [t t2)
t1 0

Therefore, for every v € V', we have (ug,v)mg + ax(u,v) = 0if t <¢; and, if t > ¢,

<8U U) TLa ( ( ) v) (Pt)\ftlw — Pt/\,th, ) + a) (ftt b PAwdS U) lf t Z tQ
YR A = _ .
o’ )y (PX4 b, 0) y + ax (jg B PAyds, v) if £ € [t1, o)

The assertion follows from (P, v) g + f(f ax(Ps,v)ds = (¢, v)y. O

Remark 1.4.3. It is not difficult to prove that P} : LP(O,m) — LP(O,m) is a contraction
for every p > 2, and it is an analytic semigroup. This is not useful to our purposes so we

omit the proof.
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1.4.2 Transition semigroup

We define E; () =E( |Xo = z0,Yy = yo). Fix A > 0. For every measurable positive
function f defined on R x [0, +00), we define

t
PXf(20,50) = Eag g (e 00H% (X, 1) ).

The operator P} is the transition semigroup of the two dimensional diffusion (X,Y) with
the killing term e~ Jo (1+Ys)ds,

Set Eyo( ) = E( |Yo = yo). We first prove some useful results about the Laplace
transform of the pair (Y7, fg Yids). These results rely on the affine structure of the model
and have already appeared in slightly different forms in the literature (see, for example, [3],

Section 4.2.1]). We include a proof for convenience.
Proposition 1.4.4. Let z and w be two complex numbers with nonpositive real parts. The
equation
2
o
Y (t) = ?wz(t) — k() +w (1.4.50)
has a unique solution v, ,, defined on [0,+00), such that 1, .,(0) = z. Moreover, for every
t>0,
E,, (ezYt+w Jo sts) — oV +0kdz 0 (b),
with ¢z (t) = [ 2w(s)ds.

Proof. Let 1 be the solution of (1.4.50). We define 11 (resp. wi) and g (resp. ws) the
real and the imaginary part of ¢ (resp. w). We have

2

Pi(t) = % (1) — ¥3(1)) — Kbr(t) +wr,
Vy(t) = o1y ()2 (t) — Kba(t) + wa.

From the first equation we deduce that 1] (t) < %2 (v (t) — 3—’;) ¥1(t)+wq and, since wy < 0,
0'2 t K

the function ¢ — 1, (t)e” 2 Jo (W1(5)=25)ds i nonincreasing. Therefore 11 (t) < 0 if 11 (0) < 0.

Multiplying the first equation by 11 (¢) and the second one by 12(t) and adding we get

2
i (BOP) = (G0 = x) O + wrta(6) + i)

2dt
0.2
< (G0 =) WOP +ulvo)
< (Zye )2 piz 4 1wl
< (Sl —r) pOP +duioP +
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We deduce that |¢(t)| cannot explode in finite time and, therefore, v, ,, actually exists on
[0, +00).
Now, let us define the function F, ,,(t,y) = e¥¥=wO+0:=0®) [ is C12 on [0, +00) x R

and it satisfies by construction the following equation

8Fz,w . Oj 82Fz,w
o 27 0y?

OF, v

dy

+ k(0 —y) + wyF, 4.

Therefore, for every T > 0, the process (M;)o<t<7 defined by
My = e o Ysdsp (T — 1Y) (1.4.51)
is a local martingale. On the other hand, note that

M = [

eY't”L/Jz,w(T—t)‘f'GHQSz,w(T_t)‘ <1

since w, 1, ,(t) and ¢, (1) = fg Y w(8)ds all have nonpositive real parts. Therefore the
process (M;); is a true martingale indeed. We deduce that F, .,(T', yo) = Ey, (ew Jo stseZYT>

and the assertion follows. O

We also have the following result which specifies the behaviour of the Laplace transform

of (Y3, fg Yids) when evaluated in two real numbers, not necessarily nonpositive.

Proposition 1.4.5. Let \; and Ao be two real numbers such that

02
?A% — kAL + A <0.

Then, the equation
2

W =5

has a unique solution 1y, x, defined on [0,+00) such that ¥y, x,(0) = X\i. Moreover, for

() — mY(E) + A (1.4.52)

every t > 0, we have

A Yi+As [T ved t)+0 t
E (6 1Yt 2f0 S) < eyodb\l,)\g() K¢>\1,A2( )7

Yo
with $a, 2e (1) =[5 Yag e (5)ds.

Proof. Let 1 be the solution of with 9(0) = A\;. We have
V(1) = (@*(t) — Ry ().
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Therefore, the function t — 9'(t)e” Jo(o*u(s)=r)dsig 5 constant, hence v’(t) has constant
sign. Moreover, the assumption on \; and Ag ensures that ¢’(0) < 0. We deduce that
¢'(t) < 0 and ¢ (¢t) remains between the solutions of the equation

2
%AZ—EA—F)Q:O.

This proves that the solution is defined on the whole interval [0, +00). Now the assertion
follows as in the proof of Proposition just note that the process (M;); defined as in
(1.4.51)) is no more uniformly bounded, so we cannot directly deduce that it is a martingale.

However, it remains a positive local martingale, hence a supermartingale. ]

Remark 1.4.6. Let us now consider two real numbers A1 and My such that

0.2
?)\% — KA + X2 < 0.

From the proof of Proposition[1.4.5, by using the optional sampling theorem we have

sup E, (eAQfOT stsew,\l,xg(T—T)YT+9'€¢A1,A2(T—T)) < YA 20 (T)+0rPx; 2o (T)
T€T0,

Consider now € > 0 and let \{ = (1 + €)A\1 and X5 = (1 + €)Aa2. For € small enough, we
have %(AE)Q — KA] + A§ < 0. Therefore

sup E,

(6)\5 I stsew/\i,/\g(T_T)YT"‘G"WbAi,/\%(T_T)) < Vs g (T)H0rdNe 3o (T)
T€T0, 7

If we have e xs > (1 + €)1, 2y, we can deduce that

sup E, (e,\2(1+e) fOTstse(1+e)('¢v>\1,>\2(Tf‘r)YTJrQnd))\l’)\Q(TfT))> < ey"vz’xi,)\g(T)-F@H(#)\i,)\g(T)’
TE%,T
and, therefore, that the family (e)‘2 Jo stsewlh(T_T)YTMWMM(T_T)) . is uniformly
T7€lo, T

integrable. As a consequence, the process (My); is a true martingale and we have

E, <6A1Yt+A2 Js sts> — e¥¥n g (D) F0Dx, 3, (1)

So, it remains to show that e e > (1 + €)Pr, n,- In order to do this we set ge(t) =
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Yas xg () = (L+€)1ha, 2, (t). From the equations satisfied by s xs and 1y, x, we deduce that

gt = % (V35 (0 = (L4 U3, 0,0) = 5 (g2 (0) = (1 + a1 (1)
= % (?/Jx ag ( 1+e¢)? %\1 2 (1 )) — Kge(t % (1+ ) —(1+ €)) ¢§1,>\2(75)
= T Wagag)+ (1 1) 6(8) — () + Tl + 03, 0, (0)
0.2
= fet)ge(t) + S e(l+ v 0, (),
where

0.2
ft) = = (Was s (1) 4+ (1 + €)tha, 2, (1)) — 5.

Therefore, the function g.(t)e™ Jo fe(s)ds g nondecreasing and, since ge(0)

ge(t) > 0.

= 0, we have

We can now prove the following Lemma, which will be useful in Section to prove

suitable estimates on the joint law of the process (X,Y).

Lemma 1.4.7. For every q > 0 there exists C > 0 such that for all yo > 0,

t —-q
C
E,, < /O Y,,du> < o

(1.4.53)

Proof. If we take A1 = 0 and Ay = —s with s > 0 in Proposition we get

E, (e—sfot Yvdv) — oYoto,—s(8)+0reo,—s(t)

Since ¥ _4(0) = —s < 0, we can deduce by the proof of Proposition 5| that ¥ () =

_seo (P () —r)du, Therefore, since ¢y s = 0, we have

wO fs = —S/ fo (024 (v)— H)dvdu

Again from the proof of Proposition

K K\2 s
Yo,—s(t) =2 — — (ﬁ) t25 2V 2s/0?,

o
so, by using (|1.4.54f), we deduce that

S

t ¢
Yo,—s(t) < —s/ el ~(oV2stmdv g, —s/ e MU dy = —)\i(l —e
0 0
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where \s = 0v/2s + k. Since ¢o _s(t) = fg o, —s(u)du, we have

¢o,—5(t) < _)\% (t)\s 14 e_t>‘5> .

Therefore, since ¢y _(t) < 0, for any yo > 0 we get

KOs —tAs
E,, (e—sfg Yvdv) < ef0%0,—s(t) < o7 A2 (ths—1+e )'

Now, recall that for every ¢ > 0 we can write

i = L /OO s4 e % s,
vyt T'(q) Jo
Therefore

E </tYd >—q E ( 1 /OO q—1 —sngdvd>
AU = S e v S
“\Jo Y \T(q) Jo

1 KOs —tAs KUs —tlAs
< L / sq_le_%(w\s_l—i_e ” )ds + L /00 sq_le_%(tks_l—s_6 ” )ds.
I'(q) Jo I'(g) J1

Recall that Ay = 0v/2s + Kk, so the first terms in the right hand side is finite. Moreover,
for s > 1, we have ”)\025 < C. Then, by noting that the function v — tu — 1 + e~ is
nondecreasing, we have

t —-q
Ey, (/ Yvdv) <C+ L /Oo sq_le_c(w\/g—l—ke*t”\/g)ds
0

I'(q) J1
1 o0 —oV2v
< q—1_—C(ov2v—1+e )
<C+ 7t2qf(q) /0 vl e dv
C
= th,
which concludes the proof. ]

Now recall that the diffusion (X,Y") evolves according to the following stochastic differ-

ential system

dX, = (PT“@ _ %) dt + \/Y,d B,
dY, = k(6 — Y,)dt + o/Y,dW,.
If we set X; = X; — 2Y;, we have

dXt = (% — %) Ytdt + 1-— p2\/}7td.ét,
dY;, = k(0 — Yy)dt + o+/Y;dW.

(1.4.55)
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where By = (1 — p?)~'/2(B; — pW;). Note that B is a standard Brownian motion with
(B,W); =0.

Proposition 1.4.8. For all u, v € R, for all A > 0 and for all (xo,y0) € R x [0, +00) we
have

Ezo,yo (eiuXt—l—ithe—A fot sts) _ eiU$O+?JO(¢/\1,p(t)—iug)'i‘eff(bkl,u(t)’

where A\ = i(ul +v), p=iu (2 —1) - “—22(1 — p?) — X and the function ¥y, ,, and Py, ,
are defined in Proposition |1.4.4]

Proof. We have

0,90

E (eiuXtJrithf/\ I sts) _E <€iu()2t+§y;)+wyﬁ)\ I sts>
Z0,Y0 -

and

N t 1 t -
X, = a0 — gyo +/ (ff - 2) Yids +/ V(1 = p2)Y.dB,.
0 0
Since B and W are independent,
E <eiuXt ’ W> _ eiu(mo—gyo—l—fg(%—%)sts)—%(l_p% fot Ysds
and

E (eiuXt—i-z'th—AfOt sts) _ ciu(zo—Lwo) <ei(ug+v)n+<m(?;)uj(lpz)x) Ji sts>
20,90 = Yo .
Then the assertion follows by using Proposition [1.4.4 O

1.4.3 Identification of the semigroups

We now show that the semigroup P, associated with the coercive bilinear form can be
actually identified with the transition semigroup P;. Recall the Sobolev spaces LP(O,m., ,,)
introduced in Definition for p > 1. In order to prove the identification of the semi-

groups, we need the following property of the transition semigroup.

Theorem 1.4.9. For allp > 1, v > 0 and p > 0 there exists A\ > 0 such that, for every
compact K C R x [0,4+00) and for every T > 0, there is Cp g7 > 0 such that

Cp7K7T |

P} f (o, y0) < | fllze0m, ) (zo,90) € K.

e
for every measurable positive function f on R x [0,+00) and for every t € (0,T].
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Theorem will also play a crucial role in order to prove Theorem Its proof
relies on suitable estimates on the joint law of the diffusion (X,Y’) and we postpone it to

the following section. Then, we can prove the following result.

Proposition 1.4.10. There exists A > 0 such that, for every function f € H and for every
t>0,
P f(z,y) = P f(x,y), dady a.e.

Proof. We can easily deduce from Theorem [[.4.9] with p = 2 that, for X large enough, if
(fn)n is a sequence of functions which converges to f in H, then the sequence (P} f,),
converges uniformly to P)f on the compact sets. On the other hand, recall that P} is
a contraction semigroup on H so that the function f — P{\ f is continuous and we have
P)f, — P} f in H.

Therefore, by density arguments, it is enough to prove the equality for f(x,y) =e

ur+ivy

with u, v € R. We have, by using Proposition [1.4.8

PtAf(x’ y) = E%y (e_)‘f(f(l‘f'YS)dSeiuXH-ith)

efAteiua:—l—y(w,\l,M(t)—iug)—i—Gn(b)\l’u (t)7

with Ay = i(u2 + ), p = iu (2 — 1) - “2—2(1 — p%) — \. The function F(t,z,y) defined by
F(t,z,y) = e—)\teiua:er(ll’)\l,M(t)fiug)+91{¢>>\1,u(t) satisfies F(0,z,y) = UTHiIVY 414

oF

—=(L-X1 F.

ey

Moreover, since the real parts of A\; and p are nonnegative, we can deduce from the proof
of Proposition that the real part of the function ¢t — ¢ (t) is nonnegative. Then, it is
straightforward to see that, for every ¢ > 0, we have F(t,-,-) € H*(O,m) and t — F(t,-,-)
is continuous, so that, for every v € V| (LF(t,.,.),v)g = —a(F(t,.,.),v). Therefore

<8F,v> + a)(F(t,.,.),v) =0 veV,

and F(t,.,.) = P} f. O

1.4.4 Estimates on the joint law

In this section we prove Theorem We first recall some results about the density of
the process Y.
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With the notations

— g —
I/:,B—lzﬁ—, Yt = Yoe€ “ Lt:ﬂ(l—e”t),

it is well known (see, for example, [72, Section 6.2.2]) that the transition density of the

process Y is given by

_ Yt

2L

pi(Yo,y) = ¢ /Qt e‘?LLtyl’/%u (\/@>7
2y;/ Lt Lt

where I, is the first-order modified Bessel function with index v, defined by

vV S (/2"
L(y) = (5) Z nl(n+v+1)

n=0

It is clear that near y = 0 we have I,(y) ~ ﬁ (%)V while, for y — oo, we have the

asymptotic behaviour I, (y) ~ e¥/y/2my (see [I, page 377]).

Proposition 1.4.11. There exists a constant Cg > 0 (which depends only on () such that,
for every t > 0,

Cg _Wi—vm? . ./ 15
pilyoy) < —Pre e (L2 4 ) (90,y) € [0,400)x]0, +ox).
L, *?

Proof. From the asymptotic behaviour of I, near 0 and co we deduce the existence of a

constant C}, > 0 such that

e$

I,,(:E) <C, <:Ey]l{x§1} + \/E]l{m>1}> .

Therefore
-
€ t Yyt
pe(oy) =~y < T >
2yt Lt 13
— Y (yye)"/? .
€ t Yyt e -t
< v2¢ 1 o+ — -1 2
= v v {yye<L?} {yye>L3}
2yt /2Lt Ll/ Yyt t <yyt)1/4/L;/2 Yyt t
C ytty yY %_%e iltyt
- J7as! Lyyye<rzy + %JriL%/z Liyye>r2y
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On {yy; > L?}, we have y; ' < y/L? and, since v + 1 > 0,

v 1 v 1 1
yz 1 _ yz * _ yl/wwrZ
bt T @Rt T L
So
C v ( )1/4 v .
v —ute [y yy) Ty“e b
plyoy) < e 2 Fﬂ{yytsﬁ} + vl {y>12}
t
C, _—wty | Vi 7 19 1/4
< Lse ye (Lt/ Lyyye<rzy + (o) / ]l{yyt>L?})
2L,
C, _Wwi—vm? 1/2
= ,,:; e oy <Lt/ Lyyye<rzy + (yyt)1/4]l{yyt>Lf}> )
oL, "2
and the assertion follows. O

We are now ready to prove Theorem [1.4.9) which we have used in order to prove the
identification of the semigroups in Proposition [1.4.10| and which we will use again later on
in this chapter.

Proof of Theorem [1.4.9 Note that
t ~ o~
Pf‘f(l’o,yo) = Ex07y0 (€_>‘ fo (1+Ys)dsf(Xt7Y;‘/)) P

where

flz,y)=1f <x+ gy,y) and X; = X; — th'
Recall that the dynamics of X is given by (1.4.55) so we have

t t
Xt:;i(rl—/%/ y;ds+p/ V/Y.dB;,
0 0

with
_— P __pr 1 — 2
To=x0— —Y, k=——5, p=V1-p-
o o 2
Recall that the Brownian motion B is independent of the process Y. We set ¥y = 4/ fg Y.ds
and n(z) = \/%78_%2/2. Therefore

Pt)‘f(xg,yo) = E, (e—At—)\Ef /f(io + RE? + ﬁEtz,Yt) n(z)dz)

IN

E,, <6A2§ /f (Zo + RE] + pe2, Yy) n(z)dz)

_ —RY2\ dz
- F —AE?/ s Y, 2T Rey )
v (e Flot=Yon (=557 ) o5
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Hoélder’s inequality with respect to the measure e‘”‘z|_ﬁy’fdzdIP>yO, where v > 0 and it > 0

will be chosen later on, gives, for every p > 1

o 1/p
P) f(x0,50) < [Eyo < / e VE=EY £ (70 4 2. V) dzﬂ Ju, (1.4.56)
with ¢ =p/(p — 1) and
- — RY.? dz
IV = E /e(q—1>v|z|+<q—1>/m—q»z%nq (Z Y ) i ) .
( Q) Yo < pzt (pzt)q
Using Proposition we can write, for every z € R,

B (717 o+ 2%0) = [ dumlonn)e P o + 29

> 1/4

Cﬁ( Tt % > ©  (Vi-ym? - _

< s / dye” e Myl (1+y1/4> fP (30 +2,9).
2 0

Ly
If we set Lo, = 02/(4r), for every e € (0,1) we have
e_wagxtm? _ e*(@lfﬂ
y VYVt Yt

= e 2L oo e Loo 2Loo

Y Yt Yt
< 6 QLOO e 2Loo e2¢Loo e T 2Lco

y
(1* )2Loo 6251}00 (1—¢)

<e —(1= 6)2L00626L00(1 6)

g+ l=c ol g 1=2¢
It is easy to see that e y(“+ 2L°°>(1 + y1/4) < Cegre y(“+2L°°). Therefore, we can write

Ey (77 (30 +2,77))

yo(1—e¢) 2 1/4
C/Be Zeboo < Zn + Yo

<

) /Oodye—y(u+21%§)yﬁ—1 (1 n y1/4) i (Zo + 2,y)
0

B+3
L, *?
C WA oo 1-2
< W;il/() dye Y PHITE) o1 o (o + 2,9).
L, *?

2—RY2
=5, We have

dz'
J)Y — | (a=1)71%" P2 +REE+(a—1)AYe—aASF g
(Jq) Yo </ n (Z) (pSy)a—1

& dz
< E, < / (=171 =+ (a= DAY+ (- DIRh =N a )(mt)q—l)‘

As regards Jg, setting 2’ =
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Note that
_ 1 ~ )
/ (g=1)vpZ || I(2)dz = / (a=D)p%Sezl a4z /24
e n? (2)dz e e 2
(V2m)a
2 _ 2
< —— [ ela Bzt /2,
o \/271'/
_ — 2
L [,
V2T
= 16%72ﬁ22%7
Va
so that
2 - 3 2 1
J) < Rk <e(q—1)uYt+Ath _ >7
R (=
with

Y - (q—1)2 29 1 — L 9
A= (g—1 M 2= ——— —~20 —pA ).
g = (¢ — D[R]y + I |Rly + oy 7P

Using Holder’s inequality again we get, for every p1 > 1 and ¢1 = p1/(p1 — 1),

2 v 52\ /P 1 Vo
7 < z P1(g—1)AYi+p1AgE
(Jg)? < p (Eyo (e ’ t)) <]Ey0 <(p2t)‘h(q_1))>

Coan R, (epra—DaYetpiAS7 1/p
| Yo ’

where the last inequality follows from Lemma [1.4.
We now apply Proposition with Ay = p1(¢ — 1)p and Ag = pl/_\q. The assumption

on A1 and Ay becomes

2

o B o 1 5.
S Pi(a— Dp® — ki + Ry + %’YZP2 —pA <0

or, equivalently,
2 _
g - H 7 I 9
A> i’ = kS RS 4 o570
2p(p— 1) p p o 2p?

Note that the last inequality is satisfied for at least a p; > 1 if and only if

o? i v 1
A> —— % — k= 4 |k + =202 1.4.57
-1) p | ‘p 2p? ( )
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Going back to (1.4.56)) under the condition (|1.4.57]), we have
C 0 (g l=2e . 1/p
PMf(zo,y0) < —5 et </dzeV|Z|/ dye y(wu“’)yﬂ*lfp (i‘oJrZ,Z/))
0

6_1_7

Lp 21’7t1/p
C ¢ €Yo l/p
L (/dze 7|z|/ e V(T 5EE) o1 o (x0+z+ L, y>>
tp
A ,eYo l/p
_ G ﬁii </dze Yz :royl/ dye ¥ <H+2LOO> B=1p (7, y)>
tp
C € Ap,eyo+v|Zol ﬂ 25) 1/p
< & E (/dze el dye = yﬁlfp(z,y)> :
tp

If we choose e =1/2 and i = pu + *y'p | the assertion follows provided A satisfies

2 o]

o p Rt O S Sy

>\>(u+7‘ ’) — + R + 570"
2p(p — 1) P p D

1.4.5 Proof of Theorem [1.2.4]

We are finally ready to prove the identification Theorem We first prove the result
under further regularity assumptions on the payoff function v, then we deduce the general

statement by an approximation technique.

Case with a regular function

The following regularity result paves the way for the identification theorem in the case of a
regular payoff function.
Proposition 1.4.12. Assume that v satisfies Assumption H' and 0 < ¢p < P with )
satisfying Assumption H2. If moreover we assume ¢ € L2([0,T]; H*(O, m)) cmd +
Ly, (1 +y)® € LP([0,T]; LP(O,m)) for some p > 2, then there exist A9 > 0 and F €
LP([0,T]; LP(O,m)) such that for all X > Ao the solution u of (1.2.5)) satisfies
0
- <(,;:,v> + ax(u,v) = (F,v) g, a.e. in[0,T], veV. (1.4.58)
H

Proof. Note that, for A large enough, u can be seen as the solution u) of an equivalent

coercive variational inequality, that is

ou
— <)‘ v — u,\> + ax(ux,v —uy) > (g, v —u\) g
H

o1
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where g = A(1 + y)u satisfies the assumptions of Proposition |1.3.14] Therefore, there exists

a sequence (ug ). of non negative functions such that lim. o u. » = uy and

Ou, 1
— < atv)‘,v> +(l)\(U5,)\,'U) _ (('l/]-u&)\)_;’_7’l)> = (g’U)H’ v E V
H e

H
Since both wu, ) and 1 are positive and ¢ belongs to LP([0,T]; LP(O,m)), we have (¢ —
us ) )+ € LP([0,T]; LP(O,m)). In order to simplify the notation, we set w = (¢ — uz ))+.
Taking v = wP~! and assuming that 1 is bounded we observe that v € L2([0,T]; V) and we

can write
Oue \ —1 -1 1 P -1
(TR o) = el = (007,
so that
(% .
Dl 0y 7 (e 2 0™ 0]y = (908) —( - ) an (e, wPL).
pdt LP(O,m) LP(Om) — H ot’ H

Integrating from 0 to T we get
1 T ) 1 [T
O o = [ x(( = w00 )= 2 [ Ol o

T T T
- [ woo)ga- [ (Growro) ar [Cawo.e o
(1.4.59)

Now, with the usual integration by parts,

2 2
oty _ [ Y4y, 2 ow ow Ow 5 [ Ow
a)(w,wP™") /O 2(p Dw [<8x> + 2po 0o By +o n dm

. ow ow _
+/Oy<]%,£(a:)&c+k%u(x)8y> wP 1dm+)\/(1+y)wpdm

(@)
=i [ (3) + (5)

ow ow
d ' — 4k p=lq
m+/(9y (J%u(l‘) o7 + Ky (@ )ay) w m
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since, for A large enough, the quadratic forms (a,b) — d1(p — 1)a® + j,.ab + %bQ and
(a,b) = 61(p — 1)a® + k. ,ab + 3b% are both positive definite.

Recall that v € L2([0,T]; H2(O,m)), & + L € LP([0,T], LP(O,m)), (1 + y)¢ < (1 +
y)® € LP([0,T], LP(O,m)) and g = (1 + y)u < (1 + y)® € LP([0,T]; LP(O,m)). Therefore,
going back to ([1.4.59)) and using Holder’s inequality,

1 T
S I

< ([ 150 o it );+</0

Recalling that w = (¢ — uc \)+, we deduce that

p—1

p % T 5
dt (/ ||wy\§p(am)dt> .
LP(O,m) 0

9y

S+ L9()

<, (1.4.60)
Lp([O,T] ?Lp(o’m))

Hi(w — Ue )+

for a positive constant C independent of . Note that the estimate does not involve the
L>-norm of ¢ (which we assumed to be bounded for the payoff) so that by a standard
approximation argument, it remains valid for unbounded . The assertion then follows

passing to the limit for ¢ — 0 in

Ou, 1
— ( 8t,/\,v> + ax(uez,v) = <(1/; — us’,\)+,v> + (g9,v)m, veV.
H € H
U

Now, note that we can easily prove the continuous dependence of the process X with

respect to the initial state.

Lemma 1.4.13. Fiz (z,y) € R x [0,+00). Denote by (XY, Y!)i>0 the solution of the

system

dX, = (PT“@ _ %) dt + \/Y,d B,

dY; = k(0 — Yy)dt + o/YidWy,
with Xo = =, Yy = y and (B,W); = pt. We have, for every t > 0 and for every
(2,9), (&) €R X [0,+00), B[V = V| < | — 9| and

! /
E‘Xf Y _Xtmvy

t
<o’ —al+ 5l =yl + Vily' =yl
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The proof of Lemma is straightforward so we omit the details: the inequality
E ‘Y;y/ - Y;y‘ < |y’ — y| can be proved by using standard techniques introduced in [63] (see
the proof of Theorem 3.2 and its Corollary in Section IV.3) and the other inequality easily
follows.

Then, we can prove the following result.

Proposition 1.4.14. Let ¢ : R x [0,00) — R be continuous and such that there exist C > 0
and a, b > 0 with [¢(z,y)| < Cel®H for every (z,y) € R x [0,400). Then, if

2 2 2

b _
)\>ab|p|0+%—/€b+a > a’

we have P} |Y|(x,y) < oo for everyt >0, (x,y) € R x [0,4+00) and the function (t,z,y) —

PMp(x,y) is continuous on [0,00) x R x [0, 00).

Proof. We can prove, as in the proof of Proposition that

<e(ag+b)n+(a(’;"—§)+“;(1—p2)—A) I sts> .

t
E,, (eaXt+b1"t—>\f0 sts) _ ea(xfgy)Ey

Thanks to Proposition if
2

o? (p \? p pr 1. a® >
(P i (a” PRy LTy 1.4.61
2<“a+b> ”<“a+b>+<“(a P T =r)=A) <0, (1.4.61)

we have, for any 7" > 0 and for any compact K C R x [0, +o0],

t
sup Ezy <eaXt+bYt_>‘ Jo sts) < 00.
(t:2,y)€[0,T]x K

Note that (1.4.61) is equivalent to

2 2 2

b _
)\>abpa+Ta—mb+a 5 ?

Therefore, under the assumptions of the Proposition, we have, for any 7' > 0 and for any
compact set K C R x [0, +o0],

t
sup Esy (6“|Xt|+byt*)‘f0 sts) < 0.
(t@,y)€0,TIx K

Moreover, for € small enough,

sup  Egy (e“(”e)‘Xt|+b<1+€>yt—“1+€> lo stS) < 0. (1.4.62)
(tay)e0TIxK
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Then, let 1 be a continuous function on R x [0, 400 such that |¢(z,y)| < Ce®*I T, Tt is
evident that P} |¢|(r,y) < co and we have

PtA@Z’(fan) = E( >‘f0(1+Y dsw( xy Yy))

If ((tn, Tn, Yn))n converges to (t,x,y), we deduce from Lemma that X" — XY,
V" — Y and fO" V¥ ds — [} Yi¥ds in probability. Therefore e—/\fo"(1+Ys)d51/J(an"’y", Y;r)
converges to e A fy (1Y) dsoh(X7Y, YY) in probability. The estimate ensures the uni-
formly integrability of e~ A" (1+Ys dap( X9 Y, so that limy,—e Ptnw(zn, yn) = PMp(z,y)
which concludes the proof. ]

Proposition 1.4.15. Fix p > § + % and A as in Theorem . Let us consider u €
C([0,7); H) N L*([0,T); V), with 2% € L*((0,T); H) such that

(5t:0) g +aA<u<t>,v>=<f<t>,v>H, vev,
) =

<

@)

u

with v continuous, ¥ € V, /T +yf € L*([0,T); H) and f € LP([0,T]; LP(O,m)). Then, if
¥ and X satisfy the assumptions of Proposition we have

(i) For everyt € [0,T), u(t) = PMp + fot PMf(t — s)ds
(11) The function (t,x,y) — u(t,x,y) is continuous on [0,T] x R x [0, 400).

(i1i) If Ay = )\fo +Y)ds, the process (My)o<i<T, defined by

t
M; = e ™ Mu(T — t, X, ;) + / e M f(T — 5, X5, Ys)ds,
0

with Xo = z, Yo = y is a martingale for every (z,y) € R x [0, +00).

Proof. The first assertion follows from Proposition [1.4.2]

The continuity of (t,z,y) — P)(z,y) is given by Proposition The continuity of
(t,z,y) — fg PMf(t —s,.)(x,y)ds is trivial if (t,x,y) — f(t,z,y) is bounded continuous. If
fe LP(0,T]; LP(O,m)), f is the limit in LP of a sequence of bounded continuous functions
and we have fg P fo(t — s,-)ds — fot P f(t — s,-)ds uniformly in [0,7] x K for every
compact K of R x [0,+00)). In fact, thanks to Theorem we can write for ¢ € [0,T]
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and (z,y) € K

t N t Cp,K,T
A&VVJW—&JWM%S/ DT Gl — )& — 52w om)

0 82p

t 1/p t ds -3
< Cp kT </ I[(fr — ')HLp (O,m) > / o513 (1.4.63)
0 0 g2(-1)
T 1/p T g -
s%xT/Www—xﬂwmom | =)
0 0 g2(p-1)

The assumption p > 8 + g ensures the convergence of the integral in the right hand side.
For the last assertion, note that My = e AT (Xp, Yr) + fOT e M f(T — 5, X,,Ys)ds.

Then, we can prove that M, is integrable with the same arguments that we used to show

the continuity of (¢, z,y) — u(t,z,y). Moreover, by using the Markov property,
By y (M7 | Ft)

t T
= eiAtP%ftw(Xta }/t) + / eiASf(T - S, X87 YS)dS + eAt/ P.S/\ftf(T EECERY) ')(Xt7 Y})dS
0 t

T—t

t
= e_At <P’1)’\'_t¢(Xt,}/t)+ 0 PsAf(TtS,,)(Xt,}/t)dS)+/ e_ASf(T*S,Xs,Y;)dS

0

¢
= e_Atu(T —t, X, ;) + / e_ASf(T — 5, X5, Ys)ds = M.
0

We are now ready to prove the following proposition.

Proposition 1.4.16. Assume that 1 satisfies Assumption H*. Moreover, fit p > B+ %
and assume that ¢ € L2([0,T};H2(O,m)) cmd —|— Ly € LP([0,T]; LP(O,m)). Then, the
solution u of the variational inequality (|1.2.5] satzsﬁes

u(t,x,y) = u*(t,xz,y), on [0,T] x O, (1.4.64)
where u* is defined by

() = p B [ X0, ¥20].
T€Ti, T

Proof. We first check that i satisfies the assumptions of Proposition [[.4.12] Note that,
thanks to the growth condition (|1.2.6)), it is possible to write 0 < ¢ (t, z,y) < ®(¢,z,y) with
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K6
O(t,z,y) = Cp(e” 5 ' 4 eLv=r0Lt) where L € [0, 3—’;) and Cr is a positive constant which

depends on T'. Moreover, recall the growth condition on the derivatives (1.2.7). Then, it is
easy to see that we can choose v and p in the definition of the measure m (see (1.2.2))) such
that ¢ satisfies Assumption H!, ® satisfies Assumption H? (note that %—f + LP <0) and
(1+y)®, % + Ly € LP([0,T]; LP(O,m)). Therefore we can apply Proposition |1.4.12 and
we get that, for A large enough, there exists F' € LP([0, T]; LP(O,m)) such that u satisfies

—(au,v> + ax(u,v) = (F,v) g, v eV,
ot I

that is
57
On the other hand we know that

_ <‘9“ U>H +a(w) = (F=A1+y)uv)g, veV.

—(%,U—U)H+Q(U,U_U)ZO7 a.e. in [O,T] veV, v>,
u(T) = ¢(T),

u>1 ae. in [0,T] x R x (0,00).

From the previous relations we easily deduce that F'—A\(1+y)u > 0 a.e. and, taking v = 1,
that (F'—A(14+y)u, v —u)g = 0. Moreover, note that the assumptions of Proposition |1.4.15
are satisfied, so the process (M;)o<i<7 defined by

t
Mt:eA‘u(t,Xt,Yt)—F/ e M F(s, X, Ys)ds, (1.4.65)
0

with Xo = z, Yj = y is a martingale for every (z,y) € R x [0, +00). Then, we deduce that

the process
~ t
My = u(t, X, Yy) +/ (F(s,Xs,Ys) — A1+ Ys)u(s, Xs,Ys))ds
0
is a local martingale. In fact, from ([1.4.65) we can write
t
dM; = d [eAtMt — M / e M F (s, XS,YS)ds] + F(t, Xy, Yy)dt — M1+ Y)u(t, Xy, Yy)dt
0

t
= eMdM, + [)\(1 +Y)eMM; — A1+ Y;)e / e M F(s, Xy, Ys)ds
0

— M MP(E X, V) + F(8 X4, V) — AL+ Yoult, X, Yt)} dt

= €Atht.
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So, for any stopping time 7 there exists an increasing sequence of stopping times (7,)p

such that lim,, 7,, = oo and

TATn
Ey y[w(TATh, Xonrs Yenr, )] = w(0,2,y)—E; 4 [/ (F(s,Xs,Ys) — M1+ Ys)u(s, Xs,Ys))ds|.
’ (1.4.66)
Since F'— A\(1+y)u > 0 we can pass to the limit in the right hand side of thanks to
the monotone convergence theorem. Recall now that an adapted right continuous process
(Zt)t>0 is said to be of class D if the family (Z:)e7 ., where To o is the set of all stopping
times with values in [0, 00), is uniformly integrable. Moreover, recall that 0 < u(t, z,y) <
O(x,y) = C’T(ez_anet + eMv=r0Lt) - The discounted and dividend adjusted price process
(e=(r=9)tG,), = (eXﬁ%t)t is a martingale (we refer to [67] for an analysis of the martingale
property in general affine stochastic volatility models), so we deduce that it is of class D.

eLYt*I{Ht)

On the other hand, we can prove that the process ( ¢ is of class D following the

same arguments used in Remark Therefore, the process (®(t + s, Xﬁ’x’y))se[tj] is of
class D for every (t,x,y) € [0,7] x R x [0,00). So we can pass to the limit in the left hand

side of ([1.4.66) and we get that lim, o Ey y[u(T A 70, Xonr,, Year, )] = Egylu(r, X7, Y7)].
Therefore, passing to the limit as n — oo, we get

Eeylu(T, Xr, Y2)] = u(0,2,y) — Euy [/ (F'(s, X5, Ys) = A1+ Yo)u(s, X, Ys))ds |,
0

for every 7 € Tor. Recall that F' — A(1 + y)u > 0, so the process u(t, Xy, Y:) is actually a
supermartingale. Since u > 1, we deduce directly from the definition of Snell envelope that
u(t, X¢, Yy) > u*(t, X4, ;) ae. for t € [0,7].
In order to show the opposite inequality, we consider the so called continuation region
C=A{(t,z,y) €[0,T) xR x [0,00) : u(t, z,y) > ¢(t,,9)},
its t-sections
Co={(z,y) e Rx[0,00): (t,z,y) €C},  t€[0,T),
and the stopping time
7 =inf{s >t: (s, X5, Ys) ¢ C} =inf{s >t : u(s, Xs, Ys) = (s, X5, Ys)}.

Note that u(z, X, Ys) > ¥(s, X, Ys) for t < s < 73. Moreover, recall that (F—A(1+y)u, ¥ —
u) =0 a.e., so Leb{(z,y) € C; : F—A(14+y)u # 0} = 0dt a.e.. Since the two dimensional dif-
fusion (X,Y’) has a density, we deduce that E [F (s, X, Yy) — M1+ Ys)u(s, X5, Yo) Ly x, vy ec.}]
=0, and so F(s, X, Ys) — A(1 + Yy)u(s, X5, Ys) =0 ds, dP — a.e. on {s < 1y}. Therefore,

E [u(Tt7 X’Ftv YTt)] =E [u(t, X, Y;f)] )
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and, since u(1, Xr,, Yr,) = ¥(7, X4, Yr,) thanks to the continuity of u and 1,
E [U(t, Xt? )/;f)] = E [w(Tta XTt? Y’Tt)] S E [U*(ta Xt7 5/:‘/)] )

so that wu(t, X;,Y:) = u*(t, Xy, Y;) a.e.. With the same arguments we can prove that
u(t,z,y) = u*(t,z,y) and this concludes the proof. O

Weaker assumptions on v

The last step is to establish the equality © = u* under weaker assumptions on 1, so proving

Theorem [[.2.4]

Proof of Theorem [1.2.). First assume that there exists a sequence (¢, )nen of continuous
functions on [0, 7] xR x [0, 00) which converges uniformly to ) and such that, for each n € N,
1, satisfies the assumptions of Proposition For every n € N, we set u,, = u,(t,z,y)
the unique solution of the variational inequality with final condition u, (T, z,y) =
Y (T,z,y) and uy,(t,z,y) = sup,c7, . E[tn (T, Xﬁ’x’y,YTt’y)]. Then, thanks to Proposition
for every n € N we have 7

un(t, z,y) = uy (t, z,y) on [0,T] x O.

Now, the left hand side converges to u(t,z,y) thanks to the Comparison Principle. As
regards the right hand side,

sup E [t (7, XEWY, V"Y)] — sup E [e*“F%(T, Xixvy,yj»wvy)}
7'€72,T TE'E’T

thanks to the uniform convergence of 1, to 1.

Therefore, it is enough to prove that, if ¢ satisfies Assumption H*, then it is the uniform
limit of a sequence of functions 1, which satisfy the assumptions of Proposition[1.4.16] This
can be done following the very same arguments of [66, Lemma 3.3] so we omit the technical
details (see [93]). O

1.5 Appendix: Proof of Proposition [1.4.1

The proof of Proposition [I.4.1] can be carried out following the very same lines of the proof
of Proposition For this reason, we retrace here only the main steps of the proof. So,

the first step is to solve the following truncated coercive problem.
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Chap.. 1 - Variational formulation of American option prices

Proposition 1.5.1. Assume A > & 5+ 25 . For everyy €V, fe L} (R",H) and M >0,
there exists a unique function u(™ ) € L (RT,V), such that ug ) e L2 (R, H), u™(0) =
¥ and

@™, o)+ @™, 0) = (f0)n,  veV.

Moreover, for every t > 0,

o1 [ 2 [
WO+ 5 [ @) s < ol + 5 [ 1) s (1.5.67)

/ )3 + 2L (1)

()| 5ds + Ky | ds [ | y A MIVu®) (8)][ul™(s)|dm.
2 fef]

Proof. Fix ¢ € V and f € L? (RT, H). Let (V;); be an increasing sequence of subspaces
of V' with finite dimension such that Uj Vj is dense in V' and ¢ € Vj . For every j, denote

(1.5.68)

l\.')\r—l

by u; the unique solution of the differential equation

<au] ) 0wy 0) = (fo), eV
a '),

with u;(0) = 1.
Taking v = u; and using the inequality aE\M) (u,u) > 71||uHV, we get

R O R B G ORI
SOl + L@ < (0,050

Integrating between 0 and ¢, we get
1 2 61 t 2 1 2 !
SusONa + = [ Nug)lds < SI0lE + [ 1f$)llmllui(s)lads.
2 2 Jo 2 0
So, if f =0,
2 ! 2 2
||uj(75)||H+51/0 luj(s)llvds < [[¥ll7,
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and, for f # 0,

51 1 5 [? 1 [t
s ()13 / lu()lpds < Sl + 5 / s () s + - / 1£(s)Idls.
0 1Jo

Therefore,

1 5 [t 1 1t
Doz + & / lu)2ds < ol + = / 1£(s)3ds.
2 1), 2 5 Jo

By taking v = Ou;/0t, we get, using the symmetry of ay,

Ou; 2 (M) ou;j B 8uj

’87& o\ ) =\
ous ||* Ou an (0w auj
’at;“ (“ m)*“ Yige ) =\
Ou;

ot

2
1d_ - ou; ou
‘ HW%‘“(“J"“J')”(M) <“j’ atj> N <f’ ]>

and, integreting from 0 to t,

8uj
W(S)

2 t
st g (0. w0) = g )+ [ (6. 506)) as

_ /Ot 400 <uj(s), %?(5)> ds.

Therefore,
3u- 6 2
S (s) d + 2 01
ou t ou,;
ak<w,w>+/ <f() G asr [as [ ynanius | G e
¢ o Jo ot
1 ou,;
< o)+ [ 16| 5| as
Kiyo o2 KlMg“ du; 2
—i—/o ds/o< 5 |Vu;(s,.)]” + 5 at( Jl | dm
1 t ou; KlM ou;
< —a J 9 .
<o)+ [ 1560|520 as+ 52 [ uotpas+ K5 i
Then the assertion follows by passing to the limit as j tends to infinity and by using the
estimates above. O

61



Chap.. 1 - Variational formulation of American option prices

Then, we have the following Lemma.

Lemma 1.5.2. If, in addiction to the assumptions of Proposition [1.5.1 we also assume

VIFyfe L (RT, H), we have
ds 2 o 1 L 2d
§ [ s+ S0 < Jaw+ g [ 16
4KK t
L (1T el [ sV Rl ).

Proof. Let us denote ¢pr(z,y) = y A M. Since ¢ps and its derivatives are bounded, if
uM) eV uM gy € V. Then, taking v = u™ gy, we get

ou™M)
(M) (M), (M) (M) — (M)
( at , U ¢M>H+a>\ (U , U ¢M) (f)u ¢M>H’
which, setting ¢}, = d¢par/dy, can be rewritten as

(M) (M) 9y (M) (M) 9y (M) (M) §qy(M)
ou WD s dm + / ou'™) ou + o2 ou'™) ou + 20 ou'™) ou dm
16 ot 16 2 or 8:1/

or O oy 0Oy
AuM) SuM) OuM) AuM)
2 [ @ )2 opdm = (7.u 631 ) i
o

Then, by using 0 < ¢, < T¢<an,

1 2
2i/( <M>)2¢Mdm+51/ y‘Vu(M)‘ ¢Mdm+)\/(1+y)(u(M))2¢Mdm
(@) O

ouM) n 28U(M)
P b 7 y

2 2+ 4
< (1 oa)u + K | y(wM)Hu(M)\@MdMW [ 80 [0 | O
O

< (f,u™ ¢M)H+/ ]vuM)’ <;5Mdm+

< (fu™on)m + Ky / [T w0 grsdm + / > Mgy dm
(@)

o2

24 ‘“(M) ‘2 Orrdm

2 +2 4
+P02+0/ yAM‘WmMu(MWm,
(@]

By taking ¢ = §1/K) and noting that [,y A M ‘VU(M)‘ [ |dm < [|u™)||2,, we get

Ld [ (e gt ik K3 (M) 2
vt Jo 0y ondm S |y [TuDgydm - (3= S0 ) [ (1 ) @) g

201
< (f,u™p) i + Kollu™)|2,
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/252 4 2
with Ko = p++a and, by using A > 0 5 + 251 and integrating from 0 to t,

;/( DAt Jomdm+ 5 /d3/< VU (s)| (1+y)(u(M)>2(s)> $ardm
S/O(f(s% '(s)orr)mds + 5 /w ¢Mdm+K2/ ds||u®™) ()% dm.

We have, for every ¢ > 0,

[0 @us < [as [ a1

and, taking ¢ = 61/2,
5 t
;/(MM))?@, .)¢Mdm+1/ ds/ <y‘Vu(M)(s)‘2+(1+y)(u(M))2(s)) ardm
</ ds/¢M|f )P dm + = /¢¢Mdm+K2/ [u™) ()|} ds.
Then, by using ,
t
5 a2 douan + % s [ (][0 + @4 p@2e)) owam
I 9 1 5 2Ky .o 4K
<5 [as Lot an s} [ oam+ 2210+ 52 [

t
< Ky (\\/1 Tl + /0 ds|l /1T yf(s)H%q) ,

dm+— ds/qﬁM]f )2 dm

where K3 = max (%, %, %, %). Note that K3 does not depend on M. We deduce from
1

the last inequality that
t
[as [ [0 Gam < S (Tl + [ asivITusol

and, by using (15.68),

1w 1

5 / 0 () s + 0 0) 3

L 2 : (M) 431, M)
w5 [ I Hds+ K [ ds [y 290 0 () am

}

2

1 1 [t K t K, [t
< Larw, )+ 1 / 1F () 3ds + 216 / ds/ ™) (s) 2dm + 21 / ds [ 63, [Vul™ (s)2dm
2 2 Jo 2 Jo o 2¢ Jo Jo
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By taking ¢ = 1/(2K), we get
L[t §
3 [ 1 @) s + OO
0

t KZK t
< g0+ 5 [ 1 Ras+ L (1T pl+ [ aslvITusel ).
0 1 0

Now, in order to prove Proposition [1.4.1] it is enough to let M go to infinity.

64



Chapter 2

American option price properties

in Heston type models

2.1 Introduction

One of the strengths of the Black and Scholes type models relies in their analytical tractabil-
ity. A large number of papers have been devoted to the pricing of European and American
options and to the study of the regularity properties of the price in this framework.

Things become more complicated in the case of stochastic volatility models. Some prop-
erties of European options were studied, for example, in [81] but if we consider American
options, as far as we know, the existing literature is rather poor. One of the main reference
is a paper by Touzi [93], in which the author studies some properties of a standard American
put option in a class of stochastic volatility models under classical assumptions, such as the
uniform ellipticity of the model.

However, the assumptions in [93] are not satisfied by the well known Heston model because
of its degenerate nature and some of the analytical techniques used in [93] cannot be directly
applied.

This chapter, which is extracted from [74], is devoted to the study of some properties of
the American option price in the Heston model. Our main aim is to extend some well known
results in the Black and Scholes world to the Heston type stochastic volatility models. We
do it mostly by using probabilistic techniques.

In more details, the chapter is organized as follows. In Section we set up our new
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notation. In Section [2.3] we prove that, if the payoff function is convex and satisfies some
regularity assumptions, the American option value function is increasing with respect to the
volatility variable. This topic was already addressed in [I1] with an elegant probabilistic
approach, under the assumption that the coefficients of the model satisfy the well known
Feller condition. Here, we prove it without imposing conditions on the coefficients.

Then, in Section [2.4] we focus on the standard American put option. We first generalise to
the Heston model the well known notion of critical price or exercise boundary and we study
some properties of this function. Then we prove that the American option price is strictly
convex in the continuation region with respect to the stock price. This result was already
proved in [93] for uniformly elliptic stochastic volatility by using PDE techniques. Here,
we extend the result to the degenerate Heston model by using a probabilistic approach.
We also give an explicit formulation of the early exercise premium, that is the difference in
price between an American option and an otherwise identical European option, and we do
it by using results first introduced in [65]. Finally, we provide a weak formulation of the
so called smooth fit property. The chapter ends with an appendix, which is devoted to the

proofs of some technical results.

2.2 Notation
Recall that in the Heston model we have

L= (r = 0)dt + VYidBy, Sp=s>0,
dY; = k(0 — Yy)dt + o/YedW;, Yo =y >0,

(2.2.1)

where B and W denote two correlated Brownian motions with correlation coefficient p €
(—1,1). Through this chapter we denote by L the infinitesimal generator of the pair (S,Y),
that is the differential operator given by

2 2 2
£:y<s288+2sp0 0 + 29 >+(7“—5)S§$+/€(9—y)6 (2.2.2)

osay " 02 oy’

Let (SZ’S’y,YJ’y)UE[t’T] be the solution of (2.2.1)) which starts at time ¢ from the position
(s,y). When the initial time is ¢ = 0 and there is no ambiguity, we will often write (53", YY)

or directly (S,,Y,) instead of (So*¥, Y,"¥). We recall that the price of an American option
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with a nice enough payoff (¢(St))ic(o,r) and maturity T' is given by P, = P(t, St, Y;), where

P(t,s,y) = sup Ele™" " 0p(505))
€T, T

T: T being the set of the stopping times with values in [t, T'.
It will be useful in this chapter to consider the log-price process, so we set X; = log S;.

In this case, recall that the pair (X,Y’) evolves according to

dX; = (T—(S—%}/t)dt‘F\/?tdBt, Xo=x=logs € R,

(2.2.3)
dY; = k(0 — Y)dt + o /YidWy,  Yo=1y >0,
and has infinitesimal generator given by
oy [ 07 02 5 02 y\ O 0
L=2|-5+2 — e e 0—1y)—. 2.2.4
2 <8x2 + pa@xay to 0y? + <T 2) ox + y)ay ( )

With this change of variables, the American option price function is given by u(t,z,y) =
P(t,e®,y), which can be rewritten as

u(t,a,y) = sup Ele T 0p(X)],

T€T, T

where ¢(x) = @(e?).

2.3 Monotonicity with respect to the volatility

In this section we prove the increasing feature of the option price with respect to the
volatility variable under the assumption that the payoff function ¢ is convex and satisfies
some regularity properties. The same topic was addressed by Touzi in [93] for uniformly
elliptic stochastic volatility models and by Assing et al. [I1] for a class of models which
includes the Heston model when the Feller condition is satisfied.

For convenience we pass to the logarithm in the s—variable and we study the monotonicity
of the function u. Note that the convexity assumption on the payoff function ¢ € C?(R)
corresponds to the condition ¢ — ¢’ > 0 for the function ¥ (z) = ().

Let us recall some standard notation. For v > 0 we introduce the following weighted

Sobolev spaces
L*(R,e ey = {u ‘R—=R:|ul} = /u2(m)e_7‘”|d$ < oo} ,
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WHAR ) = {” € L*(R, ey % € L*(R, e—”')} :
2
wag,e ) = {u e 12 et 08 O e i)

Theorem 2.3.1. Let ¢ be a bounded function such that 1 € W22(R, e~ 71?1y 0 C?(R) and
" — ) > 0. Then the value function u is nondecreasing with respect to the volatility

variable.

In order to prove Theorem let us consider a smooth approximation f,, € C*°(R) of
the function f(y) = \/yTr , such that f, has bounded derivatives, 1/n < f, < n, f,(y) is
increasing in y, f2 is Lipschitz continuous uniformly in n and f,, — f locally uniformly as
n — oo.

Then, we consider the sequence of SDEs

axp = (r—o—2G0) at 4 (A, X =,

(2.3.5)
AY; = k(6 — J2VP)) dt + 0 fu(0F)W,, Y5 =y,

Note that, for every n € N, the diffusion matrix a,(y) = 35, (y)E,(y)!, where

| V1=p2faly) pfa(y)
En<y) - )

0 Ufn(y>

is uniformly elliptic. For any fixed n € N the infinitesimal generator of the diffusion (X", Y™)

is given by
i faly) (0 &u 2 O° faly)\ 2 2 9
Lt == — +2 — —0— =) — 0 — —
2 Ox? + poaxay to 0y? T 2 Ox (0= fiw) Oy
and it is uniformly elliptic with bounded coefficients.
We will need the following result.
Lemma 2.3.2. For any A > 0, we have
lim P sup |[X{'—X¢|>A] =0 (2.3.6)
n—00 te[0,T]
and
lim P| sup |V =Y >)\]| =0. (2.3.7)
n—roo \ t€l0,1]
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The proof is inspired by the proof of uniqueness of the solution for the CIR process (see
[63, Section IV.3]). We postpone it to the Appendix.

From now on, let us set E, ,[-] = E[-|(Xo, Yy) = (z,y)]. For every n € N, we consider the
American value function with payoff ¢) and underlying diffusion (X", Y"), that is

u'(t,z,y) = sup Egy [e7TY(XT)], (t,z,y) € [0,T] x R x [0, 00).
T€T0, 17—t

We prove that u™ is actually an approximation of the function u, at least for bounded

continuous payoff functions.

Proposition 2.3.3. Let ¥ be a bounded continuous function. Then,

lim |[u"(t,z,y) —u(t,z,y)| =0, (t,xz,y) € [0,T] x R x [0, 00).

n—o0

Proof. For any A > 0,

sup Euy [e7T(XD)] = sup Euy [e7T0(Xr)] ‘
T€To,T—¢ TETo, Tt

< s By [T - w0
T€To, 17—t
<Eey | sup [0(XP) —Wﬁl]
t€[0,T]
By | sup [0OXF) — (XD g x,j<x) +2”¢"°°P< Cof 'X?_X”M)'
t€[0.7] tel0.1]

Then the assertion easily follows using (2.3.6)) and the arbitrariness of . O

We can now prove that, for every n € N, the approximated price function u" is nonde-

creasing with respect to the volatility variable.

Proposition 2.3.4. Assume that ¢ € W22(R, e *ldz) 0 C%(R) and ¢ — ' > 0. Then
%L; >0 for every n € N.

Proof. Fixn € N. We know from the classical theory of variational inequalities that u™ is the
unique solution of the associated variational inequality (see, for example, [66]). Moreover,
u” is the limit of the solutions of a sequence of penalized problems. In particular, consider
a family of penalty functions (. : R — R such that, for each ¢ > 0, (. is a C?, nondecreasing

and concave function with bounded derivatives, satisfying (. (u) = 0, for u > ¢ and (- (0) = b,
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where b is such that A™) > b with the notation A" = £" — r (see the proof of Theorem
3 in [71]). Then, there exists a sequence (ul)c~o such that lim._,ou = u" in the sense of

distributions and, for every € > 0,

O A 4 G (u — ) = 0,
ut(T) = (7).

In order to simplify the notation, hereafter in this proof we denote by u the function 7.
Recall that, from the classical theory of parabolic semilinear equations, since 1) € C?(R)
we have that u € C?%([0,7),R x (0,00)) (here we refer, for example, to [70]). Set now

U= %Z' Differentiating the equation satisfied by u"™, we get that u satisfies

g dn = L) (- %),

a(T) =0,
where
2( 2 2 2 2
= — 42 - — 5 - 4 9sa f, il
A 5 <&E2 t2000 s g ) T 5 T 200 fay)fny) | oo
0
+ (5 (0= fa(®) + 0 faly) [1(v)) gy~ S Way) + Gl =) = (r = 9).
By using the Comparison principle, we deduce that, if f,,(y)f},(y) (% — %) > 0, then
% > 0 and the assertion follows letting € tend to 0.
Since f,, is positive and nondecreasing, it is enough to prove that % — g—g > 0. We write

the equations satisfied by v’ = % and v’ = g% We have

—O A 4 L (u— ) (u — ) =0,

(2.3.8)
and _
— O A+ ¢ — ) (0 — )2+ L — ) (W — ") =0, (2.3.9)

u//(T) — 1/}//‘
Using (2.3.8)) and ([2.3.9), we get that u” — ' satisfies

SO — A — ) L )W ) = L= ) (W = ) = L ) =),

u”(T) _ u’(T) =" — .
(2.3.10)
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Recall that 1" — ¢’ > 0 by assumption and that (. is increasing and concave. Then,

Clu—) (" =) = L(w—p)(u' = ¢')? 20, u"(T)—u/(T) ="~ >0,

hence, by using again the Comparison principle, we deduce that u” —u’ > 0 which concludes
the proof. O

The proof of Theorem [2.3.1] is now almost immediate.

Proof of Theorem [2.3.1. Thanks to Proposition the function u" is increasing in the
y variable for all n € N. Then, the assertion follows by using Proposition [2.3.3] O

2.4 The American put price

From now on we focus our attention on the standard put option with strike price K and

maturity 7', that is we fix ¢(s) = (K — s)+ and we study the properties of the function

P(t,s,y) = sup E[e"U7D(K — St ]. (2.4.11)
TET:, T

The following result easily follows from .

Proposition 2.4.1. The price function P satisfies:
(i) (t,s,y)— P(t,s,y) is continuous and positive;
(ii) t — P(t,s,y) is nonincreasing;

(iii) y — P(t,s,y) is nondecreasing;

(iv) s — P(t,s,y) is nonincreasing and convez.

Proof. The proofs of 1. and 2. are classical and straightforward. As regards 3., we note that
¢ is convex and the function ¥ (z) = (K — %), belongs to the space W12(R,e~1#l) for
a v > 1 but it is not regular enough to apply Proposition [2.3.1 However, we can use an
approximation procedure. Indeed, thanks to density results and [66, Lemma 3.3], we can
approximate the function v with a sequence of functions 1, € W22(R, e~1#1) N C2(R) such
that ¢! — 4!, > 0, so the assertion easily follows passing to the limit. 4. follows from the

fact that ¢(s) = (K — s)4+ is nonincreasing and convex. O
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Moreover, thanks to the Lipschitz continuity of the payoff function, we have the following

result.

Proposition 2.4.2. The function x — u(t,z,y) is Lipschitz continuous while the function
y — u(t,z,y) is Holder continuous. If 2k > o2 the function y +— u(t,x,y) is locally

Lipschitz continuous on (0, 00).
Proof. Tt is easy to prove that, for every fixed t > 0 and y,y’ > 0 with y > ¢/,
E [Y;f - Y;}/} <y—y. (2.4.12)

Then, for (z,y), (2',y’) € R x [0,00) we have

sup Ele "0~ (K — eXé’:c,y)H _ sup Ele0-0 (K — XL ]
0T, T 0T, 7

‘U(t,l’,y) - U,(t, x,ay/)’ =

!’

< i e, -

967;,7“

< CE | sup |XL®Y — Xty

u€(t,T)

S
/ (, /Yut,y . YJJJ')
/ VAR IRYA AR

1
T T 2
<C||z—2]+ / E[|YEY — YEV ||du + (]E [/ (Vv — vty )du])
t t

< Or(lz — 2|+ ]y — ')

Now, recall that, if 2k6 > o2, the volatility process Y is strictly positive so we can apply

sup

T
<Oz -2+ / E[|[Y Y — Y ||du + E
t s€t,T)

1)
1)

sup
s€(t,T]

T
<C||x—a —|—/ E[|[Y:Y — Y ||du+ | E
¢

It6’s Lemma to the square root function and the process Y; in the open set (0, 00). We get

Lt 1
VY +/ y—/ o*YYdu
=V 0 2Jo 4(vy)2
t
du—g/ \/Yuydu—k%Wt.
i 0

(39 [ o
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Differentiating with respect to y (see also [81]) we deduce that

YV 1 0 2 t vy toyy 1
: :+<“_U)/ —ugdu—’i/ Yy < ——, as (24.13)
2/YY 2y \2  8)Jo 2y 2Jo 2V 2y

since k0 > 02/2 > ¢%/4 and Y > 0, Y > 0 (see [85, Theorem 3.7, Chapter 9]).

Therefore, let us consider y, 1’ > a. Repeating the same calculations as before

1
]2 2

|U(t, €, y) - ’LL(t, z, y,)|

sup
s€(t,T]

1
T T - 2
<C /E[]Yj’y—Yj’y'Hdqu(E [/ (\/quvy—\/yqfvy)%u])
t t
T t ty T v Yt’w ?
=C /EHYSW—YS”JHdu—i— E / du / ——— dw
¢ ¢ v 2V Y

[ Gavr)+])

which completes the proof. O

T
<C / E[Y Y — VI |ldu+ | E
t

[y,

t

< Cp !y—y’|+<E

< CT‘y - y/’7

Remark 2.4.3. Studying the properties of the put price also clarifies the behaviour of the
call price since it is straightforward to extend to the Heston model the symmetry relation
between call and put prices. In fact, let us highlight the dependence of the prices with respect

to the parameters K,r, 6, p, that is let us write

P(ta L, Y, Ka T 57 p) = sup E[E_T(T_t) (K - S£7S7y)+]7
TGTt,T

for the put option price and

C(t,s,y; K,r,6,p) = sup Ele """ I(SL* — K) ],
TeﬂyT

for the call option. Then, we have C(t,s,y; K,r,0,p) = P(t,K,y;x,d,r,—p).
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In fact, for every T € Ty, we have

Ee (7= <seft (

_ B0y VYIAB— [} Yo < _Kef;(‘s_’"+

S ty s
)d +J7 VY ¥dB —K)
+

t,y
LES )ds— I7 dBS>
+

t,
v, ) ds— [T \/Y;’ydBS>

)

+

tay T §—
_ R d(r—t) oS VYEVdB— [T Yy ds<x_K6ft (5 r+

S 5 s Yst Y .
where the last equality follows from the fact that (eft VYSUdBs- [ 5 ds)se[tﬂ s a mar-

tingale. Then, note that the process B, = B, — Ytt’yt 1s a Brownian motion under the

Y
s Therefore

)ds I \/Tyd&)

t
probability measure P which has density dP/dP = el VYIaB— [l

— s LY4B, R r—2
Ee—r(T—t) (Seft ( )d I FdB ) = ]Ee_é(T_t) <I‘—K€ft (6
+

Under the probability I@’, the process (—B, W) is a Brownian motion with correlation coeffi-

+

cient —p so that the assertion follows.

2.4.1 The exercise boundary

Let us introduce the so called continuation region
C={(t,5,9) €[0,T) x (0,00) x [0,00) : P(t,5,9) > ¢(s)}
and its complement, the exercise region
E=C={(t,s,y) €[0,T) x (0,00) x [0,00) : P(t,s,y) = p(s)}.

Note that, since P and ¢ are both continuous, C is an (relative) open set while £ is a closed
set.
Generalizing the standard definition given in the Black and Scholes type models, we

consider the critical exercise price or free exercise boundary, defined as
b(t,y) = inf{s > 0|P(t,s,y) > (K —s)+}, (t,y) €[0,T) x [0,00).

We have P(t,s,y) = ¢(s) for s € [0,b(t,y)) and also for s = b(t,y), due to the continuity
of P and ¢. Note also that, since P > 0, we have b(t,y) € [0,K). Moreover, since P is
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convex, we can write

C=A{(t,s,y) €]0,T) x (0,00) x [0,00) : s > b(t,y)}
and

E=A(t,s,y) €[0,T) x (0,00) x [0,00) : s < b(t,y)}.

We now study some properties of the free boundary b : [0,7) x [0,00) — [0, K). First of

all, we have the following simple result.
Proposition 2.4.4. We have:

(i) for every fized y € [0,00), the function t — b(t,y) is nondecreasing and right contin-

uous;
(ii) for every fizedt € [0,T), the function y — b(t,y) is nonincreasing and left continuous.

Proof. 1. Recalling that the map t — P(t,s,y) is nonincreasing, we directly deduce that
t — b(t,y) is nondecreasing. Then, fix t € [0,T") and let (¢,)n,>1 be a decreasing sequence
such that lim,_,~ t, = t. The sequence (b(t,,y))n is nondecreasing so that lim, o b(ty,y)

exists and we have lim,,_,o b(tp, y) > b(t,y). On the other hand, we have
P(tn7 b(tna y)vy) = @(b(tmy)) n>1,

and, by the continuity of P and ¢,
P(t, lim b(tn, y),y) = ¢( lim_ b(tn, y)).

We deduce by the definition of b that lim, 0 b(tn,y) < b(t,y) which concludes the proof.
2. The second assertion can be proved with the same arguments, this time recalling that

y +— P(t,s,y) is a nondecreasing function. O
Recall that b(t,y) € [0, K). Indeed, we can prove the positivity of the function.
Proposition 2.4.5. We have b(t,y) > 0 for every (t,y) € [0,T) x [0, 00).

Proof. Without loss of generality we can assume that 0 < ¢t < 7', since 7' is arbitrary and the
put price is a function of T'—¢. Suppose that b(t*, y*) = 0 for some (t*,y*) € (0,T) x [0, c0).
Since b(t,y) > 0, t — b(t,y) is nondecreasing and y — b(t,y) is nonincreasing, we have
b(t,y) =0 for (t,y) € (0,t*) x (y*,00), so that

Pt s,y) > @(s),  (ts,y) € (0,£7) x (0,00) x (y*; 00).
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To simplify the calculations, we pass to the logarithm in the space variable and we consider
the functions u(t,z,y) = P(t,e”,y) and ¥(z) = p(e*). We have u(t, z,y) > ¢ (z) and

(O +L—-rju=0  on (0,t") xR x (y*,00),

where £ was defined in ([2.2.4). Since t — u(t,x,y) is nondecreasing, we deduce that, for
€ (0,t*), (L—r)u = —0yu > 0 in the sense of distributions. Therefore, for any nonnegative
and C'* test functions 6, ¢ and ¢ which have support respectively in (0,t*), (—o0, 00) and

(y*,00), we have

/Ot* 0(t)dt /oo dx /yoo dyLu(t, =, y)d(x)C(y) > r/ot* o(t)dt /oo dx /yoo dy(K —e®) ()¢ (),

—00 * —00 *

or equivalently, by the continuity of the integrands in t,

/_Z dx/:dyﬁu(t 2,y)6 / dx/ dy(K — e)o@)C(y).  (24.14)

Let x1 and x2 be two nonnegative C* functions such that supp x1 C [—1,0], supp x2 C

[0,1] and [ x1(z)dz = [ x2(x)dx = 1. Let us apply (2.4.14) with ¢(z) = Axi(Az) and
C(y) = \f)@(\f(y — %)), with A > 0. For the right hand side of (2.4.14]), we have

e [Ty —emyotnc) = vk = [ by

—0o0

Since supp x1 C [—1,0], lim,\_>ofe§xl(w)dx =0, so that

A—0

lim T/[Rdx /_yoo dy(K — e*)o(z)((y) =rK > 0. (2.4.15)

As regards the left hand side of (2.4.14)), we have

- +oo oo 24 24 2u

= /_Oo dm/y* Z(g 5 (62 y)+2p0888 (t,w,y)+02gy2(tx,y)) A1 (Ax)VAx2(VA(y — y*))dy
—+o0 [e%¢]

+ / N / * ((r —5-) g (t,2,y) + (0 — y>gy (t, y>) M (Az) VA (VA — y*))dy.
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We first study the second order derivatives term. Integrating by parts two times we have

T [T 2 VA (VA — o
/ e / S sult, . ) ) VA (VA — ")) dy

/+°odx/ u(t, z, ) A3 (A2)Vaxe (VA(y

- S’/+Ood;p/ y+fy) <t

—y"))dy

X y * 1
-7 dy.
5% ﬁer )xl(fv)m(y) y

Since u is bounded and x3 has support in [0, 1], the last term goes to 0 as A tends to 0. For
the mixed derivative term, since x2(0) = 0,

+o00 00 82
/oo d:n/y PoY S

| * 2y 2, ) M1 (M) VA2 (VA(y — y*))dy

—p0/+oo dw/ yQU(tvw,y)/\2x'1(Aw)\5\X2(\5(y—y*))dy
+00
o / da / u(t,, y) N0 A2V Wxa(VA(Y — y*)dy
tpo / e / ult, 2, Y A2 ) ME(VAY" — 1)dy
:)\pa/Jroodx/oou(t,i >
+A2pa/+ooda:/ ( y)xl( )X5(y)dy,

which goes to 0 as A tends to 0 with the same arguments as before

Moreover, integrating by parts two times, we have

+oo (o) 2
/ de‘/ g0' a—u
oo y

. 3% gt e aGa)Vie(VAl - y)dy

y\a 3‘@

[T 7aﬁuw, D) (Vixa(VA ~ 1) + (VA — 57) ) dy
/+Oo dx/ ult, =, y) (2A><1(M)Ax’z(\5(y - y*))) dy

= Vo? /+Oodx/ ( +3/>X1(x)<)\xl2()+ A?(@Hrfy) ())dy

which again tends to 0 as A goes to 0. We now study the terms in (2.4.14) which contains
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the first order derivatives of u. First, note that

+oo o
/ dm/ r—0- Q) §U(t, 2, y) A1 (Az)Vax2 (VA(y — y7))dy

+o0o
/ dx/ (r =0 = 2) ult, 2, y)AE ) VM (VAW — ) dy

_ _ 4 * Ly * /
= \f)\/_oo dac/o <\F)\r VS 5 (y+ﬁy )) U (t, R ﬁ—i—y >X1(x)x2(y)dy.
Again, passing to the limit, the last term tends to 0. On the other hand,
“+o00 [e%¢] a
| [T R0 gt ) VRl VAG - o))y
—00 y*
o0 [e’e] a
=/ dx/ HH@U(t,w,y)Axl(Ax)ﬁxQ(\[\(y—y*))dy
—00 y*
“+o00 [e%¢] 8
—/ dfc/ HyafyU(t,x,y)Axl(M)ﬁxQ(ﬁ(y—y*))dy-
—00 y*

Integrating by parts and doing the usual change of variables we have

400 ) 8
| / 075 ult,2,5)A )Y A (VA — 7)) dy

\ﬁ/mdx/ ﬁe“( % 7 )Xl(w)xé(y)dy,

which tends to 0 as A tends to 0, while

+oo [ee] o N
—/ d:r/y /iyafyu(t,‘r,y)>\X1(A$)‘&X2(\5\(y—Z/ ))dy,

—00 *

\ 8

which is nonpositive, since u is nondecreasing in y. We finally deduce that

“+o00 0
limsup/ d:c/ dyLu(t,z,y)o(z)((y) <0, (2.4.16)
A—0 00 y*
which, together with ([2.4.15)), contradicts (2.4.14]). Then, the assertion follows. ]

As regards the regularity of the free boundary, we can prove the following result.

Proposition 2.4.6. For any t € [0,T) there exists a countable set N' C (0,00) such that
b(t™,y) =bt,y),  ye€(0,00)\N.
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Proof. Without loss of generality we pass to the logarithm in the s—variable and we prove
the assertion for the function b(t,y) = Inb(t,y). Fix t € [0,T) and recall that y — b(t,y)
is a nonincreasing function, so it has at most a countable set of discontinuity points. Let
y* € (0,00) be a continuity point for the maps y — b(t,y) and y — b(t~,y) and assume
that

b(t™,y") < b(t,y"). (2.4.17)

Set € = w. By continuity, there exist yg,y1 > 0 such that for any y € (yo,y1)

we have

b(ty) > b(ty) =7 and  B(y) < B,y + T

Therefore, by using (2.4.17)), we get, for any y € (yo,y1),

T T * € T(4— % 3 T(4— % € —

Now, set b~ = b(t ™, y*)+§ and bt = B(t*,y*)—i—% and let (s, z,y) € (0,t)x (b=, b7) X (y0,y1)-
Since t — b(t,-) is nondecreasing, we have = > b(t~,y) > b(s,y), so that u(s,z,y) > ¥ (x).
Therefore, on the set (0,¢) x (b=,b") x (yo,y1) we have

(£~ ryu(s, 7,) = ~ 2 (5,2,9) 2 0

This means that, for any nonnegative and C*° test functions 6, 1) and ¢ which have support

respectively in (0,¢), (b=,b%) and (yo,y1) we can write

/tH(t)dt /OO dz /00 dy(L — ru(t, z,y)p(x)C(y) > 0.

0 —o00 y*

By the continuity of the integrands in ¢, we deduce that (£ — r)u(t,-,-) > 0 in the sense of
distributions on the set (b=,b%) x (yo,y1)-

On the other hand, for any (s,z,y) € (t,T) x (b=,b%) x (yo,y1), we have x < b(t,y) <
b(s,y), so that u(s,z,y) = (x). Therefore, it follows from % + (£ —7)u < 0 and the
continuity of the integrands that (£—r)u(t-,-) = (£L—7)1(-) < 0 in the sense of distributions
on the set (b=,b") X (yo,y1)-

We deduce that (£ — 7)1 = 0 on the set (b~,b%) x (yo,41), but it is easy to see that
(L—r)Y(z) = (L—r)(K —e®) = de* —rK and thus cannot be identically zero in a nonempty
open set. ]

Remark 2.4.7. It is worth observing that the arguments used in [95] in order to prove

the continuity of the exercise price of American options in a multidimensional Black and
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Scholes model can be easily adapted to our framework. In particular, if we consider the

t-sections of the exercise region, that is

& ={(s,y) € (0,00) x [0,00) : P(t;5,y) = ¢(s)},

(2.4.18)
={(s,y) € (0,00) x [0,00) : s < b(t,y)}, tel0,7),

we can easily prove that

& =)Ew &=\Jé& (2.4.19)

u>t u<t
However, unlike the case of an American option on several assets, in our case (2.4.19) is
not sufficient to deduce the continuity of the function t — b(t,y).

2.4.2 Strict convexity in the continuation region

We know that P is convex in the space variable (see Proposition [2.4.1). In [93] it is also
proved that, in the case of non-degenerate stochastic volatility models, P is strictly convex
in the continuation region but the proof follows an analytical approach which cannot be
applied in our degenerate model. In this section we extend this result to the Heston model
by using purely probabilistic techniques.

We will need the following Lemma, whose proof can be found in the Appendix.

Lemma 2.4.8. For every continuous function s : [0,T] — R such that s(0) = Sy and for

every € > 0 we have

P( sup |S:—s(t)] <e sup |Y;—Yo| <e] >0.
t€[0,T] t€[0,T)]

Theorem 2.4.9. The function s — P(t,s,y) is strictly convex in the continuation region.

Proof. Without loss of generality we can assume t = 0. We have to prove that, if (s1,y), (s2,y) €
(0,00) x [0,00) are such that (0, s1,¥), (0, s2,y) € C, then

P(Oa 981 + (1 - 0)82)y) < HP(O7 Slvy) + (1 - H)P(O’ 527?/)‘ (2420)

t Y t
Let us rewrite the price process as S5*Y = selo (r=6—3")dut-fy ov/¥udBu sM}, where M} =
St1 Y and assume that, for example, s; > so. We claim that it is enough to prove that, for

€ > 0 small enough,

P((Gsl + (1= 0)sg) MY > b(t, )Vt € [0,T) & (651 + (1 — 0)s) MY € (K — e, K + 5)) > 0.
(2.4.21)
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In fact, let 7* be the optimal stopping time for P(0, 0s1+(1—0)s2,y). If (0s1+(1—0)sy) M} >
b(t,Y:) for every t € [0,T), then we are in the continuation region for all ¢ € [0,7'), hence
7* = T. Then, the condition (§s1 + (1 — )s2) M. € (K — ¢, K + ¢) for £ > 0 small enough

ensures on one hand that s;MY. > K, since

SlMg* = (981 + (1 — Q)SQ)ME_J* + (1 — 9)(81 — SQ)M}_/*
(1—=0)(s1 —s2)(K —¢)

K —
~ e Os1+ (1 —6)sy

> K,

for € small enough. On the other hand, it also ensures that soMY. < K, which can be

proved with similar arguments. Therefore, we get
P(K—s1M%): =0& (K — soMY)+ > 0) > 0,
which, from a closer look at the graph of the function z — (K — z)4, implies that
Ele™ (K — (051 + (1 — 0)s2) M%) 4] < OE[e™" (K — 51 M%) 4]+ (1 — 0)E[e™™ (K — saMY)4],

and, as a consequence, ([2.4.20)).
So, the rest of the proof is devoted to prove that (2.4.21)) is actually satisfied.

With this aim, we first consider a suitable continuous function m : [0, 7] — R constructed
as follows. In order to simplify the notation, we set s = fs; + (1 — #)s2. Note that, for
e > 0 small enough, we have s = sy + (1 — 6)s2 > b(0,y) + ¢ since (0, s1,y) and (0, s2,y)
are in the continuation region C, that is s1,s9 € (b(0,y),00). By the right continuity of
the map ¢ — b(t,y), we know that there exists ¢ € (0,7') such that s > b(t,y) + § for any
t € [0,%]. Moreover the function y +— b(t,y) is left continuous and nonincreasing, so there
exists 1. > 0 such that s > b(t, z) + § for any z > y — .. Assume now that s < K + § and

set .
144 (52 -1), 0<e<d,
m(t) = K+£ _
*2, F<t<T.
Note that m is continuous, m(0) = 1 and, recalling that ¢ — b(¢,y) is nondecreasing and
b(t,y) < K,
s+L(K+E—s)>s>bty—m)+5, 0<t<H,
()= 1 ° K59 (by=ne)+ 5, 0
K45 20ty =), t<t<T.

Moreover, by Lemma [2.4.8] we know that, for any € > 0,

P| sup [sM/ —sm(t)| <e, sup |Y;—y|<e] >0.
te[0,T] t€[0,77]
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Therefore, by applying Lemma with € = min{%,ng}, we have that, with positive
probability,

sMY > sm(t) — < > b(t,y —ne) + % > b(t, V).

ol ™

and
stﬁSsm(T)+%§K+e, sM%Esm(T)—%ZK—&,

which proves (2.4.21)) concluding the proof. If s > K + §, then it is enough to take m(t) as
a nonincreasing continuous function such that m(0) = 1 and sm(T") = K + 5. Then, the

assertion follows with the same reasoning.

O]

2.4.3 Early exercise premium

We now extend to the stochastic volatility Heston model a well known result in the Black and
Scholes world, the so called early exercise premium formula. It is an explicit formulation
of the quantity P — P., where P, = P,.(t,s,y) is the European put price with the same
strike price K and maturity 7" of the American option with price function P = P(t, s,y).
Therefore, it represents the additional price you have to pay for the possibility of exercising

before maturity.

Proposition 2.4.10. Let P.(0,Sy,Yy) be the European put price at time 0 with maturity
T and strike price K. Then, one has

T
P(0, S, Yo) = Pu(0, So, Y) — / T E(6S, — 1K) L5, <ys v,y )ds.
0

The proof of Proposition [2.4.10| relies on purely probabilistic techniques and is based on
the results first introduced in [65]. Let Uy = e "' P(t,S;,Y;) and Z; = e "p(S;). Since Uy

is a supermartingale, we have the Snell decomposition
Uy = My — Ay, (2.4.22)

where M is a martingale and A is a nondecreasing predictable process with Ag = 0, con-
tinuous with probability 1 thanks to the continuity of ¢. On the other hand,

t t t
Zt = €_rt(K — St)Jr = ZO — 7“/ G_TS(K — SS)+dS — / €_TS]].{SSSK}dSS —|—/ e_rdef(S)
0 0 0

= my + ag,
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where LI () is the local time of S in K,

t
my = ZO —/ efrs]l{SSSK}SS\/ Ytgst
0
is a local martingale, and

¢ t t
a; = —r/ e (K — Ss)yds — / e " ls,<kySs(r —d)ds +/ e " dLE(9)
0 0 0

is a predictable process with finite variation and ag = 0. Recall that a; can be written as
the sum of an increasing and a decreasing component, that is a; = a;” + a; . Since (LX),
is increasing, we deduce that the decreasing process (a; )¢ is absolutely continuous with

respect to the Lebesgue measure, that is
da; < dt.

We denote by k: = k(t, S, Y;) the density of a; w.r.t. dt.
‘We now define
G=U— 2 > 0.

Thanks to Tanaka’s formula,
t 1 0
G =G =Gt [ Leondd+ 31000)
where LY() is the local time of ¢ in 0. Therefore,
t 1 0
G =Co +/0 ]l{Cs>0}d(Us - Zs) + iLt (C)

t t t
1
= (o +/0 Ty s01dMs —/0 Tie,s01dms —/0 Ty s01das + ng(C%

where the last equality follows from the fact that the process A; only increases on the set

{¢; = 0}. Then, we can write
] ' Lo — t 1.,
Ur=Uo+ M — | Ly soydas+ §Lt () +ar=Uo+ M+ [ Tye,—oydas + §Lt (©),
0 0

where M; = fot ]l{§5>0}d(M5 — ms) + my is a local martingale. Thanks to the continuity of

U; we have the uniqueness of the decompositions, so
t 1 0
— At = / ]l{CSZO}daS + §Lt (() (2423)
0
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This means in particular that fg Ty, —oydas + $LY(¢) is decreasing, but LY () is increasing

SO — fg 14¢,—0ydas must be an increasing process and
1.9 _
Est (C) < ]].{Ctzo}dat < dt

We define g the density of 1L9(¢) w.r.t. dt and, by Motoo Theorem (see [41]), we can
write pp = (St Y). Moreover, let us consider the ¢-sections of the exercise region defined
in (2.4.18). We can easily prove the following Lemma.

Lemma 2.4.11. For anyt € [0,T) we have
gt = tha
and & = {(5,9) € (0,00) x [0,00) 0 < 5 < b(t,y )} £ 0, where b{t, y+) = limy .+ b(t,)-

The proof is given in the Appendix for the sake of completeness. Now, let us prove the

following preliminary result.
Lemma 2.4.12. The local time LY(¢) is indistinguishable from 0.

Proof. In order to simplify the notation, we set LY = L?(¢) in this proof. We want to prove
that

¢
L = /0 Tqc,—oydL = 0.
Note that, for a # 0, we have
¢
/ ]]‘{CSZO}dL? - O
0
Therefore, due to the right continuity of the local time with respect to a, we have
¢
/ LiscoydLy =0,
0
where O is the interior of the the set {s | (s = 0}, i.e.
O={se(0,t)|Fe>0,Vr € (s—¢,5+¢€)( =0}

We note that
0 Co, (2.4.24)

where O" = {s € (0,1) | Ss < j(s,Y5)}, with j(s,y) = sSup, <5 ¢, b(7; 5).
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In fact, if Sy < j(s,Ys), there exists 7 < s and ¢ > Y; such that Sy < j(7,{). By the

continuity of the trajectories, there exists € > 0 such that
S < b(T,(), fe(s—es+e).

Therefore, for § € (s —e,s+ ) and 0 near enough to s, we have Yy < ¢ and 6 > 7, so that
b(7,¢) < b(#,Yy)and so (p = 0. Therefore (2.4.24)) is proved and we have

t
/O ]l{Ss<j(57Ys)}dL2 = 0.

Now,

t
R R

t

= /0 1, <p(sv,) LS
t t

S/O ]l{ss<j(s,ys)}dL2+/0 L gj(s.v,) <8 <b(s,vs)} ALY
t

:/0 Lgj(s.v2)<50<b(s,vs) ALY
t

:/O Lijs,vo)<s,<(s,va)p(Ss, Ys)ds

t
:/0 ds/]l{j(s,y)gwgb(s,y)}/j’(xay)p(37m7y)dxdy =0,

if we can prove that j(s,y) = b(s,y) dsdy a.e.
In order to prove this, note that j(s,y) = sup,., (sup<>y b(, C)) For any fixed 7 > 0,

we set

1
bi(7,y) =supb(r,{) = lim b<7,y+>,
() = spb(r, €)= lim, _

since the function y — b(7,y) is nonincreasing. On the other hand, s — b(s,y) is nonde-

creasing, so

T<S

j(s.y) = supby (r,y) = lim b, (s _ iy) |
Therefore, for any y > 0
J(s,y) = by(s,9), dsa.e.
and, for any s > 0

bi(s,y) =0b(s,9),  dya.e.
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so that
Jj(s,y) =b(s,y), dsdy a.e.

which concludes the proof. O
We can now prove Proposition [2.4.10

Proof of Proposition[2.4.10, Thanks to (2.4.23) and Proposition [2.4.12we can rewrite (2.4.22)

as

t t
Up = My +/ 1,=zydas = M, +/ e (L = 1)p(Ss) L s, <b(s,v:)} 45,
0 0

where the last equality derives from the application of the It6 formula to the discounted

payoff Z. In particular, we have
T
Uo = Mo = Er] = BU] - B | [ (0 = oS s, cxeminds
0
T
= E[UT] — / €7TSE[(5SS — TK)]I{SSSb(s,YS)}]dS‘
0

The assertion follows recalling that Uy = P(0, So, Yo) and E[Ur] = E[Z7] = E[e T (K —
St)+], which corresponds to the price P.(0,Sp,Yy) of an European put with maturity 7’
and strike price K. ]

2.4.4 Smooth fit

In this section we analyse the behaviour of the derivatives of the value function with respect
to the s and y variables on the boundary of the continuation region. In other words, we
prove a weak formulation of the so called smooth fit principle.

In order to do this, we need two technical lemmas whose proofs can be found in the
appendix. The first one is a general result about the behaviour of the trajectories of the

CIR process.

Lemma 2.4.13. For all y > 0 we have, with probability one,

Yy _ Yy _
lim sup 2t =Y liminf—t Y VY.

tl0 /2tInln(1/t) tl0 /2tInin(1/t)

The second one is a result about the behaviour of the trajectories of a standard Brownian

motion.
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Lemma 2.4.14. Let (B)i>0 be a standard Brownian motion and let (tn)nen be a deter-

ministic sequence of positive numbers with lim,_, . t, = 0. We have, with probability one,

lim 1nf —= = —00 (2.4.25)

n—0o0 n

We are now in a position to prove the following smooth fit result.
Proposition 2.4.15. For any (t,y) € [0,T) x [0, 00) we have 2 5 P(t,b(t,y),y) = &' (b(t,y)).

Proof. The general idea of the proof goes back to [18] for the Brownian motion (see also
[83, Chapter 4]). Without loss of generality we can fix t = 0. Note that, for A > 0, since
b(0,y) — h < b(0,y), we have

P(0,b(0,y) — h,y) — P(0,b(0,),y)  ¢(b(0,y) —h) — p(b(0,y))

h h ’

so that, since ¢ is continuously differentiable near b(0,7), 2 5 P(0,0(0,%),y) = ¢'(b(0,y)).
On the other hand, for h > 0 small enough, since P > ¢ and P(0,5(0,y),y) = ©(b(0,y)),
we get

P(07 b(ov y) + h? y) — P(O7 b(oa Z/), y)
h

5 #(0,y) + 1) — ¢(b(0, y))
- h )

so that

Now, for the other inequality, we consider the optimal stopping time related to P(0,b(0,y)+
h,y), ie

7, = inf{t € [0,7) | SPPOVY <t YY)} AT = inf {t e [0.7) | MY < (0( f ) } AT,

where M} = S, 'Y Recall that P(0,b(0,y),y) > E(e "™ p(b(0,y)M?,)), so we can write

P(O7 b(07 y) + ha y) — P(()? b(07 y)? y) E (6_r7h90((b<07 y) + h)M;'/h) — P(07 b(oa y)7 y)
h h
g (o 000 TIIE) —p (O.E))

Assume for the moment that
lim7, =0 a.s. 2.4.26
hl 0 h ) S ( )
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so we have
p((6(0,y) + R)MZ)) — (b0, y)M?,)

I = ¢’ :
lim 7 ©'(b(0,y))

Moreover, recall that MY, < lzgt;;+)h < (é(y) if 7, < T and MY, = MY. if 7, = T. Therefore,

by using the fact that ¢ is Lipschitz continuous and the dominated convergence, we obtain

P .y
Jim sup (0,6(0,y) + h,y) — P(0,b(0,y),y)
10 h

< ¢'(b(0,9))

and the assertion is proved

It remains to prove Since t + b(t,y) is nondecreasing, if M} < b(b(O,)z,/lh and

Y)Y =y, we have
b(0,y) b, Y)

M} < ,
" b(0,y) +h T b(0,y) + b

so that

. b(0,y)
7, < inf > MY ! Yy . 2.4.2
n < in {t 0| M; <b(0,y) h& h y} ( 7)

We now show that we can find a sequence t, J 0 such that Yfi = 0 and an < 1. First,

recall that with a standard transformation we can write

dS—S: = (r—8)dt + VY (/1 — p2dW; + pdWy), So=s>0,

(2.4.28)
dYy = k(0 = Yi)dt + o/Y;dW, Yo=y2>0,

where W is a standard Brownian motion independent of W. Set A} = In M. We deduce
from Lemma[2.4.13|that there exists a sequence t,, | 0 such that Y =y Py-a.s. . Therefore,

from ([2.4.28)) we can write fg” VYIdW, = =& [7(0 — Y{)ds for all n € N. So, we have
tn Yy n _ n
N, = (r=8ta— | ds+ /1= p2/ VYW, — “/ (0 — YY)ds.
0 0 g Jo

Conditioning with respect to W we have

— 8)tn Jam ¥ s \/1 — P2 [ YEAW, 25 (0 - Y )ds

lim inf Ay =lim inf —

i "—>°0 \/fon des t" Ysyds \ Jo t" Ylds \/fot" Y¥ds

(r=0)ta  Jy Wds V1P Winyaa 8 g - Yi)ds

- hgggf \/fon Y¥ds \/fon Y¥ds i \/fg" YZds - \/fot" YZds

where we have used the Dubins-Schwartz Theorem and we have applied Lemma to

the standard Brownian motion W and the sequence 1/ fot" YYds which can be considered

deterministic.
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We deduce that, up to extract a subsequence of t,,, we have Atyn < 0 and, as a consequence,

Mt?i < 1. Therefore, for any any fixed n, there exists h small enough such that Mtyn <

b(0,y)
b(0,y)+h

to infinity.

so that, by definition, 7, < t". We conclude the proof passing to the limit as n goes

O

As regards the derivative with respect to the y variable, we have the following result.

Proposition 2.4.16. If2x0 > o2, for any (t,y) € [0,T)x (0, 00) we have %P(t, b(t,y),y) =
0.

Proof. Again we fix ¢ = 0 with no loss of generality. Since y — P(t,s,y) in nonde-
creasing, for any h > 0 we have P(0,6(0,y),y — h) < P(0,6(0,y),y) = ©(b(0,y)) so that
P(Oa b(oa y)vy - h‘) = Qo(b(07y)) Therefore,

P(Ov b(ovy)vy - h) - P(07 b(ovy)vy)
h

=0,

hence %—;P(O, b(0,y),y) = 0. On the other hand, since y — P(t,x,y) is nondecreasing, for
any h > 0 we have

fiming £(0:000:9),y + h) = P(0,b(0,), y)
hl0 h

>0

i

To prove the other inequality, we consider the stopping time related to P(0,b(0,y),y + h),
that is

i 0,6(0,9),y+h y+h . y+h _ (1, Yty+h)
Th:lnf{tG[O,T)|St < b(t,Y; )}/\T:mf tel0,7)| M <W AT

and we assume for the moment that

li = 0. 2.4.29
fim (2:4.29)
We have
—7T +h
PO0,b(0,),y+ 1) — PO,b(0,9),5) B (77 (b0 9)ME")) = P(0,6(0,9).)

h h
@ (b0, 9)ME") = o(b(0,y)MY,)

(2.4.30)

89



Chap.. 2 - American option price properties in Heston type models

where the last inequality follows from the fact that ¢ is Lipschitz continuous and b(0,y) < K.

Now, if the Feller condition 2k6 > o2 is satisfied, we can write

y+h t 1 . S
MPh = / / / Vids | er=00=fs dstf v/ YSdBs g
Y 0

Yo

s WASS .
Fix ¢ and observe that the exponential process e~ Jo 5-ds+Jy VYSdBs gatisfies the assump-

tions of the Girsanov Theorem, namely it is a martingale. Therefore, we can introduce a
new probability measure P under which the process Wt = W; — fg v Y,ds is a standard

Brownian motion. If we denote by [ the expectation under the probability P, substituting

in (2.4.30) and using (|2.4.13]) we get
P(0,b(0,y),y + h) — P(0,b(0,y),y) _eTK [vth Th
;000,9),y 0(0,9),9) / dch /
h
Y 0

- h

Yy oo
dW,
24/ Y
2 1/2

T ryth . Th YSC TR (y+h 1
< / ¢ | & / ds <¢ 2 / B[\ /T]dC
h y 0 24 /YSC h y 2\/Z

which tends to 0 as h tends to 0.
Therefore, as in the proof of Proposition [2.4.15| it remains to prove that limy g7, = 0.

In order to do this, we can proceed as follows. Again, set

1 t t
A = In(M}) = (r =8t — / Y¥ds + / JYZaw,,
0 0

_ b(t, YT
o =infte0,T) | AT < | =2t L) AAT.
h { [ ) | t b(O,y)

We deduce from Lemma ([2.4.13]) that, almost surely, there exist two sequences (t,), and
(n)n which converge to 0 with 0 < t,, < £,, and such that

so that

}/t:i — y7 and, fOr t S (tnyfn)) }/t < y

In fact, it is enough to consider a sequence (%), such that lim, ., = 0 and Y; <yand
define t,, = sup{t € [0,%,) | Y = y}.
Proceeding as in the proof of Proposition [2.4.15] up to extract a subsequence we can
assume
A <.
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On the other hand, up to extract a subsequence of h converging to 0, we can assume that,
almost surely,

lim sup ‘Yy+h — Yy‘ = lim sup ‘Ay+h — Ay‘ =0.
hi0 tefo, 1] ! ! hi0 tefo,1] ! !

Now, let us fix n € N. For h small enough, there exists § > 0 such that

AT 0, te (b — 0, tn + 0).

Then, for any t, € (t, — 6,t, + ) N (tn,t,), we have at the same time Aif+h < 0 and, since
ny <y, Y5y+h < y for h small enough. Recalling that t — b(t,y) is nondecreasing and

y +— b(t,y) is nonincreasing, we deduce that
z h h
b(tn, YT) = 5(0,Y/T) > (0, y).

Therefore ,
- -
AYHh <In M
tn b(0,y)

and, as a consequence, 7, < t, < t, so (2.4.29) follows.

2.5 Appendix: some proofs

We devote the appendix to the proof of some technical results used in this chapter.

2.5.1 Proofs of Section 2.3

Proof of Lemma[2.3.2 Consider 1 > a1 > ag > -+ > ay, > -+ > 0 defined by

1 A —
1 m—1 1
/duzl,...,/ —du=m, ....
ap W am U

We have that a,, tends to 0 as m tends to infinity. Let (1m,)m>1, be a family of continuous
functions such that
2

Supp Nm € (ams am-1), 0 < np(u) <
um

Am—1
, / N (w)du = 1.

Moreover, we set

| Yy
Pm () :/0 dy/o N (u)du, z € R.
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It is easy to see that ¢, € C*(R), |¢, | < 1 and ¢ (z) 1 |z| as m — oo. Fix t € [0,T].

Applying It6’s formula and passing to the expectation we have, for any m € N,
t
Bl (V' ~ Yi)] = / E [%(YS Y)Y - 207 ds
+Z / Vo) (fa(Y) = V)] ds

Let us analyse the right hand term in (2.5.31)). Since |¢,,| < 1, we have

(2.5.31)

/OE [1£2v7) — Y] ds+n/0tE[m"—stds

o (B[00 - v - 207 <
0

On the other hand,

i / E (o, (07— YU (47 — VY] s
<o / 0 = Yl = VIIs] o [ & [0 = YOI TE — Vo) s
<o {myw — (fa (Y — VY, <vn_vi<an 1y)ds }
o / E[mwf— v vl s
202 [ n - 207215
< R [0 - VFPas] + 2

Observe that, if |z| > ap—1,

||
¢m(x) > / dy = ’Hf‘ — m—1-
am—1
Therefore, for any m large enough,

t t
By - ¥il) < v [ E(Yy - Yillds [ E[£207) - v2) ds
0 0
2

+ 22 8 [0 - V] + 2

M,

Recall that f,(y) — f(y) = y locally uniformly and that Y™ has continuous paths. More-
over, since f2(z) < A(|z|+ 1) with A independent of n, it is easily to see that for any p > 1
there exists C' > 0 independent of n such that

E | sup [¥"[P

te[0,7

(2.5.32)
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Therefore, by using Lebesgue’s Theorem and recalling that limy, ,~c an, = 0, we deduce that

for any § > 0 it is possible to choose 7 such that for every n > n
t
By - Yill <C | B[Y? - Vi) +6
0
We can now apply Gronwall’s inequality and we deduce that E[|Y;" — Y;|] < 6e“?, so that
lim E[|Y)" — Y] =0 (2.5.33)
n—oo

from the arbitrariness of §.
Now, note that

/0 t(J?s — [ (YI)dW, (2.5.34)

T
sup [V = Vil <5 [ ¥, = ¥ylds + sup
te[0,T) 0 t€[0,T7]

The first term in the right hand side of (2.5.34]) converges to 0 in probability thanks to
(12.5.33)), so it is enough to prove that the second term converges to 0. We have

[T pvnaw]| < ([ ivr. - fn(Y;"b)P]ds)é (2:5.35)

E | sup
t€[0,T

and
E[[VY:— fu(Y))P] < 2B ||VYe = VYTP| + 2B [ VYT — fu(V)P]
<2E[|Y, - Y + 2B VY7 - faY)].

Therefore, we can conclude that (2.5.35)) tends to 0 as n goes to infinity by using ([2.5.33))
and the Lebesgue Theorem so that ([2.5.38]) is proved.

As regards (2.3.6)), for every n € N we have

Xt"—a:—i-/t <7"—<5—‘}L}QL(QYSH))cls—|—/tfn(st)st7
0 0

so that

1 T
sup X7 =X < 5 [ IF07) = Vilds + sup
te[0,T) 0 te[0,T]

[t =van. @s30)

It is enough to show that the two terms in the right hand side of (2.5.36) converge to 0 in
probability.
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Concerning the first term, note that, since Y has continuous paths, for every w €
Q, Yjo,m(w) is a compact set and K := {z|d(z,Y]g7]) < 1} is compact as well. For n

large enough, Y™ lies in K, so

T T T
/ F2(YT) — F2(Ya)|ds < / 2V — AV ds + / Y - 2Y)ds,
0 0 0

which goes to 0 as n tends to infinity, since f2 — f2 locally uniformly and f2 is a continuous

function.
On the other hand, for the second term in the right hand side of (2.5.36)), we have

[ = v,

te[0,7

] < </OTE[(f(YS") _ \/?S)Q]ds)é

E[sup

and we can prove with the usual arguments that the last term goes to 0.

2.5.2 Proofs of Section [2.4]

Proofs of Lemma[2.4.8 To simplify the notation we pass to the logarithm and we prove
the assertion for the pair (X,Y). We can get rid of the correlation between the Brownian

motions with a standard transformation, getting

dXt = (T - v %Y;‘/)dt + \/Yt( \% 1- deWt + det)7 XO € R’
dY, = 5(0 — Y,)dt + o/VidW,, Yo > 0,

where W is a standard Brownian motion independent of W. Moreover, from the SDE
satisfied by Y we deduce fg VY dW, = L (Yt —-Yy — f(f k(0 — Ys)ds). Conditioning with

g
respect to Y, we reduce to prove that, for every continuous function m : [0,7] — R such

that m(0) = Xy and for every ¢ > 0 we have

P( sup |Xi—m(t)|<e|Y | >0, (2.5.37)
te[0,T7]
and
P| sup |V} —Yp| <e] >0. (2.5.38)
te[0,7)
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As regards (2.5.37)), by using the Dubins-Schwartz Theorem, there exists a Brownian motion
W such that

t
]P’(sup x—i—/(r— —E—f(e Y)>ds+ y)++/1—p /\Fdw ’<e\y>
te[0,7) 0

2
= sup
t€[0,T]

(sup ’\/1—7W tyids )‘<6’Y>

te[0,T]

V1= p? \/Zdws—m(t)‘ <eyY>

where m(t) = m(t) —x—fg (r—6—2% — L2560 —Y,))ds—£(Y;—y) is a continuous function
which, conditioning w.r.t. Y, can be considered deterministic. Then, follows by
the support theorem for Brownian motions.

In order to prove , we distinguish two cases. Assume first that Yy = yo > 0 and,
for a > 0, define the stopping time

T, =inf{t >0|Y; =a}.

Moreover, let us consider the function

VY, ify>%
=1 "% . .
o ifysg

and the process (f/t)te[o,Tp solution to the uniformly elliptic SDE
dY; = k(0 — Y)dt + on(Y)dW;, Yy =Y.

It is clear that Y; = f/t on the set {t < T%o} so we have, if € < %O,

P| sup Vi —Yo|<e|=P| sup |V —Yy|<e],
te[0,T7] t€[0,T

where the last inequality follows from the classical Support Theorem for uniformly elliptic
diffusions (see, for example, [88]).

On the other hand, if we assume Yy = 0, then we can write

P sup V; <e :P<T52T>+P<T£<T,Vte{T;,T}Yt<e>.
te[0,7 2 2 2
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Now, if P <T§ < T) > 0, we can deduce that the second term in the right hand side is
positive using the strong Markov property and the same argument we have used before in
the case with Yp # 0. Otherwise, P (T <> T ) = 1 which concludes the proof. O

Proof of Lemma[2.4.11 Let us define & = = {(s,y) € (0,00) x [0,00) : s < b(t,y")}. Note
that & # 0 since b > 0. We first show that & = &. If (s,y) € &, then s < b(t,y ) <o(t,y),
since y — b(t,y) is nonincreasing. Therefore, & C & so that, since & is closed, & C &, .
On the other hand, let (s,y) € & and consider the sequence ((Sn,yn))n = ((s — 1/n,y —
1/n))n. Then, (s,,yn) — (s,y) and we prove that (s,,yn) € &, so that (s,y) € &. In fact,
for each n € N, we can consider the sequence ((sp, &, Yn.k) ) k>n, = ((s — % + %, Yy — % + %))k>n

We have
S =S ——|——<8<b(t )<b t -+ - _—b(t )
n,k n A > YY) > Y n A yUnk) -

Letting k tends to infinity, we get
Sn < 8 S b(tvy:,_)?

hence (s, yn) € &, and the assertion is proved.

Then, we show that & = &. Note that & is an open set, since the function (s,y) —
b(t,yt) — s is lower semicontinuous. Therefore & C &. Let us now consider an open set
AC&. Fix (s,y) € A, then (s + %,y + %) € A for n large enough. Therefore,

1 1
s< s+~ §b<t,y+> < b(t,y"),
n n

hence (s,y) € &. O

Proof of Lemma[2.4.13. We have
t t
Yy —y= H/ (0 — Y¥)ds +a/ VYZaw,
0
:a\/th+;</(9 YY) ds+o/ (VY& = vyg) aw,

so it is enough to prove that, if (Hy)¢>0 is a predictable process such that lim; g Hy = 0 a.s.,

we have
) fot H,dW's

m — =
tl0 \/2tInln(1/t)
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This follows by using standard arguments, we include a proof for the sake of completeness.
By using Dubins-Schwartz inequality we deduce that, if f(t) = \/2tInln(1/t), for ¢ near to

0 we have
t t
/ HydWs| < Cf </ Hfds) :
0 0
Let us consider € > 0. For ¢t small enough, we have fg H?2ds < et and, since f increases
near 0,
t
/ HydWs| < Cf(et).
0
We have

f?(et)  etlnln(l/et) Eln (In(1/t) +1n(1/¢))
f2(t)  tlnln(1/t) Inln(1/t)

In(In(1/8)) + mde In(1 /)

STmmn (1 T in(i/0) 1n1n<1/t>> |

where we have used the inequality In(z + h) < In(z) + 2 (for 2,h > 0). Therefore

lim sup, 10 % < /e and the assertion follows. O

Proof of Lemma[2.4.14 With standard inversion arguments, it suffices to prove that, for a

sequence t, such that lim, . t, = 0o, we have, with probability one,

B;
lim sup —= = +o0. 2.5.39

The assertion is equivalent to

By
P(limsup —= <c¢| =0, c >0,
( nHOOp V tn o >

that is

P Uﬂ{%gc} =0, ¢>0.

m>1n>m

By,
Vin

¢ > 0. Take, for example, m = 1 and consider the random variables \/—% and B—’;”, for some
n > 1. Then,

Therefore, it is sufficient to prove that P (ﬂan{ < c}) = 0 for every m € N and

By B,
Vit Vi,
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where N(0,1) is the standard Gaussian law and
B:;, B; > t1 ANty t1
Cov L) = <4/,
<\/t7 Vin) Vit tn
which tends to 0 as n tends to infinity. We deduce that
By By
]P) 1 S C, n
(x/ﬂ Vin
where Z; and Z are independent with Z1, Zy ~ N(0,1).

Take now m,, € N such that ¢,,, > nt,. Then, we have

< C> — P(Zl <eg, Zz < C) = P(Zl < C)2,

B,, B, B
) & b = ~ N O? 1
V tl V tn vV tmn ( )

B, B, B, B, tn
Cov , ~ |, Cov , N N
V tl vV tmn V tn vV tmn tmn

which again tends to 0 ad n tends to infinity. Therefore, we have

and

By By B, >
P Lo, =<, = <o) 5 P(Zy <)
(x/tl =V T Ve, (Zr<e)

with Z; ~ N(0,1). Iterating this procedure, we can find a subsequence (t,, )ren such that

By
P ﬂ{ _— SC} =0
k>1 b
Btn _
Vin

tn, — oo and

which proves that limsup,,_, +o0.
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Chapter 3

Hybrid Monte Carlo and tree-finite
differences algorithm for pricing
options in the Bates-Hull-White

model

3.1 Introduction

In this chapter, which is extracted from [27], we focus on the so called Bates-Hull-White
model. Following the previous work in [24] 25], we further develop and study the hybrid
tree/finite-difference approach and the hybrid Monte Carlo technique in order to numerically
evaluate option prices.

The Bates model [I7] is a stochastic volatility model with price jumps: the dynamics
of the underlying asset price is driven by both a Heston stochastic volatility [568] and a
compound Poisson jump process of the type originally introduced by Merton [77]. Such a
model was introduced by Bates in the foreign exchange option market in order to tackle
the well-known phenomenon of the volatility smile behavior. Here, we assume a possibly
stochastic interest rate following the Vasicek model, and we call the full model as Bates-
Hull-White. In the case of plain vanilla European options, Fourier inversion methods [33]
lead to closed-form formulas to compute the price under the Bates model. Nevertheless,

in the American case the numerical literature is limited. Typically, numerical methods
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are based on the use of the dynamic programming principle to which one applies either
deterministic schemes from numerical analysis and/or from tree methods or Monte Carlo

techniques.

The option pricing hybrid tree/finite-difference approach we deal with, derives from ap-
plying an efficient recombining binomial tree method in the direction of the volatility and
the interest rate components, whereas the asset price component is locally treated by means
of a one-dimensional partial integro-differential equation (PIDE), to which a finite-difference
scheme is applied. Here, the numerical treatment of the nonlocal term coming from the

jumps involves implicit-explicit techniques, as well as numerical quadratures.

The existing literature on numerical schemes for the option pricing problem in this frame-
work is quite poor. Tree methods are available only for the Heston model, see [94], but they
are not really efficient when the Feller condition does not hold. Another approach is given
by the dicretization of partial differential problems. When the jumps are not considered,
namely for the Heston and the Heston-Hull-White models, available references are widely
recalled in [24, 25]. In the standard Bates model, that is, presence of jumps but no random-
ness in the interest rate, the finite-difference methods for solving the 2-dimensional PIDE
associated with the option pricing problems can be based on implicit, explicit or alternating
direction implicit schemes. The implicit scheme requires to solve a dense sparse system at
each time step. Toivanen [92] proposes a componentwise splitting method for pricing Amer-
ican options. The linear complementarity problem (LCP) linked to the American option
problem is decomposed into a sequence of five one-dimensional LCP’s problems at each time
step. The advantage is that LCP’s need the use of tridiagonal matrices. Chiarella et al.
[34] developed a method of lines algorithm for pricing and hedging American options again
under the standard Bates dynamics. More recently Itkin [64] proposes a unified approach to
handle PIDE’s associated with Lévy’s models of interest in Finance, by solving the diffusion
equation with standard finite-difference methods and by transforming the jump integral into
a pseudo-differential operator. But to our knowledge, no deterministic numerical methods
are available in the literature for the Bates-Hull-White model, that is, when the the interest

rate is assumed to be stochastic.

From the simulation point of view, the main problem consists in the treatment of the CIR
dynamics for the volatility process. It is well known that the standard Euler-Maruyama

discretization does not work in this framework. As far as we know, the most accurate
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simulation schemes for the CIR process have been introduced by Alfonsi [4]. Other methods
are available in the literature, see e.g. [7], but in this chapter the Alfonsi technique is the
one we compare with. In fact, in our numerical experiments we also apply a hybrid Monte
Carlo technique: we couple the simulation of the approximating tree for the volatility and
the interest rate components with a standard simulation of the underlying asset price,
which uses Brownian increments and a straightforward treatment of the jumps. In the
case of American option, this is associated with the Longstaff and Schwartz algorithm [76],

allowing to treat the dynamic programming principle.

As already observed in [24] 25], roughly speaking our methods consist in the application
of the most efficient method whenever this is possible: a recombining binomial tree for
the volatility and the interest rate, a standard PIDE approach or a standard simulation
technique in the direction of the asset price. The results of the numerical tests again
support the accuracy of our hybrid methods and besides, we also justify the good behavior

of the methods from the theoretical point of view (see also Chapter |4)).

This chapter is devoted to present in detail the hybrid procedures introduced in [27] to
compute functionals of the Bates jump model with stochastic interest rate. In particular,
we consider a hybrid tree-finite differences procedure which uses a tree method in the
direction of the volatility and the interest rate and a finite-difference approach in order
to handle the underlying asset price process. We also propose hybrid simulations for the
model, following a binomial tree in the direction of both the volatility and the interest
rate, and a space-continuous approximation for the underlying asset price process coming
from a Euler-Maruyama type scheme. As regards the theoretical analysis of the algorithm,
we study here the stability properties of the procedure and we refer to Chapter [4] for an
analysis of the rate of convergence of a generalization of this algorithm under quite general
assumptions. We provide numerical experiments which show the reliability and the efficiency

of the algorithms.

The chapter is organized as follows. In Section [3.2] we introduce the Bates-Hull-White
model. In Section we describe the tree procedure for the volatility and the interest rate
pair (Section , we illustrate our discretization of the log-price process (Section
and the hybrid Monte Carlo simulations (Section. Section is devoted to the hybrid
tree/finite-difference method: we first set the numerical scheme for the associated local
PIDE problem (Section , then we apply it to the solution of the whole pricing scheme
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(Section [3.4.2)) and analyze the numerical stability of the resulting tree/finite-difference
method (Section [3.4.3)). Section |3.5|refers to the practical use of our methods and numerical

results and comparisons are widely discussed.

3.2 The Bates-Hull-White model

We recall that in the Bates-Hull-White model the volatility is assumed to follow the CIR
process and the underlying asset price process contains a further noise from a jump as
introduced by Merton. Moreover, the interest rate follows a stochastic model, which we
assume to be described by a generalized Ornstein-Uhlenbeck (hereafter OU) process. More
precisely, the dynamics under the risk neutral measure of the share price S, the volatility

process Y and the interest rate r, are given by the following jump-diffusion model:

%St = (ry — 8)dt + /Y dZ} + dHy,
-
4Y; = ry (Oy — Yi)dt + oy V¥ dZ} (3.2.1)

dry = kp(0,(t) — r¢)dt + 0,dZ]

where & denotes the continuous dividend rate, So, Yy, 70 > 0, Z%, ZY¥ and Z" are correlated
Brownian motions and H is a compound Poisson process with intensity A and i.i.d. jumps
{Jk}k, that is

K
H, = Z Ji, (3.2.2)
k=1

K denoting a Poisson process with intensity A. We assume that the Poisson process K, the
jump amplitudes {J;}, and the 3-dimensional correlated Brownian motion (2%, 2", Z")
are independent. As suggested by Grzelak and Oosterlee in [55], the significant correlations
are between the noises governing the pairs (S,Y) and (S,r). So, as done in [25], we assume
that the couple (ZY, Z") is a standard Brownian motion in R? and Z* is a Brownian motion
in R which is correlated both with Z¥ and Z":

(25,2, = prdt and d(Z°,Z"), = padt.

We recall that the volatility process Y follows a CIR dynamics with mean reversion rate ky,
long run variance fy and oy denotes the vol-vol (volatility of the volatility). We assume

that Oy, ky, oy > 0 and we stress that we never require in this chapter that the CIR process
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satisfies the Feller condition 2kyfy > 0}2/, ensuring that the process Y never hits 0. So,
we allow the volatility Y to reach 0. The interest rate 7, is described by a generalized OU
process, in particular 6, is time-dependent but deterministic and fits the zero-coupon bond

market values, for details see [30]. We write the process r as follows:
Tt = O'TRt + bt (323)
where
t t
Ry = —Hr/ Rsds+ Z] and o = roe "' + /@r/ HT(s)e_“T(t_S)ds. (3.2.4)
0 0
From now on we set
ZY:W17 ZrZWQ? ZS:PIW1+02W2+,03W37
where W = (W1, W2 W3) is a standard Brownian motion in R3 and the correlation pa-

ps=1J1—p}—p3, pi+p5<L

By passing to the logarithm X = In S in the first component, by taking into account the

above mentioned correlations and by considering the process R as in (3.2.3))-(3.2.4), we
reduce to the triple (X,Y, R) given by

rameter ps is given by

dX; = px (Ye, Ry, t)dt + /Y; (p1dW, + podW§ + p3dWE) +dN;,  Xo=InSp € R,
d}/t = MY(Yt)dt + O-Y\/Ytthla }/0 > 07
th == ,UR(Rt)dt + thQ, RQ == 0,

(3.2.5)
where
px(y,r,t) =opr+ o — 6 — %y, (3.2.6)
py (y) = Ky 0y —y), (3.2.7)
pR(r) = —fKpr, (3.2.8)

and N, is the compound Poisson process with intensity A and the i.i.d. jumps {log(1+ Ji) }«,
that is

K
Ny =) log(1+ Jp),
k=1
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K being a Poisson process with intensity A. Recall that K, the jump amplitudes {log(1 +
Ji)}x and the 3-dimensional standard Brownian motion (W, W2 W?3) are all independent.

We also recall that the Lévy measure associated with N is given by
v(dx) = A\P(log(1 + J1) € dx),
and whenever log(1 + Ji) is absolutely continuous then v has a density as well:
v(dr) = v(x)dr = Apiog(14.4,) (7)dz, (3.2.9)

Dlog(14,) denoting the probability density function of log(1 + J1). For example, in the
Merton model [77] it is assumed that log(1 + J;) has a normal distribution, that is

log(1 + J1) ~ N(u,n%).

This is the choice we will do in our numerical experiments, as done in Chiarella et al. [34].
But other jump-amplitude measures can be selected. For instance, in the Kou model [69]

the law of log(1 + J;) is a mixture of exponential laws:

Plog(i+.1) (@) = pAre M gy + (1= p)A_e™* Ly,
14 denoting the indicator function of A. Here, the parameters AL > 0 control the decrease
of the distribution tails of negative and positive jumps respectively, and p is the probability
of a positive jump.

Given this framework, our aim is to numerically compute the price of options with ma-
turity 7" and payoff given by a function of the underlying asset price process S. By passing
to the transformation X = InS, we assume that the payoff is a function of the log-price
process:

European payoff: ¥ (X7p),
American payoff:  (¥(Xy))se(0,1)5
where ¥ > 0. The option price function P(t,x,y,r) is then given by

European price:  P(t,x,y,r) = E(e* ftT(UTR?TJ“PS)dS\IJ(X%x’y’T)),

American price:  P(t,z,y,r) = sup E(e_ ftT(””R?T""Ps)dslll(Xﬁ’x’y’T)), (3:2.10)
TE€T, T

where T; 7 denotes the set of all stopping times taking values on [t,T]. Note that we have

used the relation between the interest rate (r;); and the process (R:):, see and

(3.2.4). Hereafter, (Xb*¥" Yt¥ RLT) denotes the solution of the jump-diffusion dynamic

(3.2.5) starting at time ¢ in the point (z,y, 7).
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3.3 The dicretized process

We first set up the discretization of the triple (X, Y, R) we will take into account.

3.3.1 The 2-dimensional tree for (Y, R)

We consider an approximation for the pair (Y, R) on the time-interval [0,7] by means
of a 2-dimensional computationally simple tree. This means that we construct a Markov
chain running over a 2-dimensional recombining bivariate lattice and, at each time-step,
both components of the Markov chain can jump only upwards or downwards. We consider
the “multiple-jumps” approach by Nelson and Ramaswamy [79]. A detailed description
of this procedure and of the benefits of its use, can be found in [I0, 24 25]. Here, we
limit the reasoning to the essential ideas and to the main steps in order to set-up the
whole algorithm. We start by considering a discretization of the time-interval [0,7] in N
subintervals [nh, (n + 1)h|, n =0,1,..., N, with h = T/N.

For the CIR volatility process Y, we consider the binomial tree procedure firstly intro-
duced in [I0]. For n =0,1,..., N, consider the lattice

n : n a 2
yn = {yk }kZO,L...,n Wlth yk = ( }/0 + TY(Qk - n)\/ﬁ) ]]'{\/70+UTY(2]€_”)\/E>O}- (3311)

Note that yJ = Yp, so that y{; = {Yu}. Moreover, the lattice is binomial recombining and,
for n large, the “small” points degenerate at 0. Let us briefly recall how this lattice arises
(see [10] for all the details). The idea is to reduce to a process with a constant diffusion
coefficient. So, let us consider the process Y, = VY. If we (heuristically) apply It6 formula,
we get that the dynamics of Y; is given by

d¥; = g (Yt + 5 dz)

for a suitable drift coefficient 1y = py-(y). The term $dB; gives the foremost contribution

to the local movement of Y;. The standard binomial recombining tree for the Brownian

motion lives on the lattice
%(2k—n)\/ﬁ, 0<k<n<N.

Coming back to Y, we get the lattice in (3.3.11]). Note that the term ]l{\/VOJraTy(%fn)\/ﬁw}

is inserted in order to deal with invertible functions.
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We now define the multiple “up” and “down” jumps: the discretized process can jump

just on two nodes which in turn are not necessarily the closest ones to the starting node.

‘up” and “down” jump by yZJr(; 0 and

¢

In particular, for each fixed yj € V,, we define the
n+1

Yhey(n k)’ ky(n, k) and kq(n, k) being respectively defined as
ku(n k) =min{k* : k+1<k* <n+1and y +py(y)h <y}, (3.3.12)
ka(n, k) = max{k* : 0 < k* <k and y}' + py (yp)h >y} (3.3.13)

where py is the drift of Y, defined in , and with the understanding k,(n,k) =

n + 1, respectively kq(n, k) = 0, if the set in the r.h.s. of , respectively , is

empty. The transition probabilities are defined as follows: starting from the node (n, k) the

probability that the process jumps to ky(n, k) and kq(n, k) at time-step n 4 1 are set as
n+1

wy W) + 98 = Yo

+1 +1
yﬁum,k) - yZd(n,k>

Al and pY(n,k)=1-p(n,k) (3.3.14)

py(n,k) =0V

respectively. We recall that the multiple jumps and the transition probabilities are set in
order to best fit the local first moment of the diffusion ¥. We will see in Chapter [4] that
this property will be crucial in order to study the theoretical convergence of the procedure.

We follow the same approach for the binomial tree for the process R. Forn =0,1,..., N

consider the lattice

Ry = {r1}j=01,.n with 77 = (2j —n)Vh. (3.3.15)

Notice that rgg = 0 = Ry. For each fixed ri € Rn, we define the “up” and “down” jump
by means of j,(n,7) and jg(n,j) defined by

Ju(n, j) = min{j* : j+1<5" <n+1and r] + pg(ri)h < r?fl , (3.3.16)
ja(n, j) = max{j* : 0 < j* <jand r} + pg(ri)h > rit}, (3.3.17)

g being the drift of the process R, see (3.2.8]). As before, j,(n,j) = n + 1, respectively
ja(n,j) = 0, if the set in the r.h.s. of (3.3.16), respectively (3.3.17)), is empty and the
transition probabilities are as follows: starting from the node (n,j), the probability that

the process jumps to j,(n,7) and jg(n,j) at time-step n + 1 are set as

+1
pr(ri)h 41 =i

n+l _  n+l
Ju(n,5) Ja(n.j)

pi(n,j) =0V Al and pf(n,j)=1-pi(n,j)  (3.3.18)
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respectively.
Figure shows a picture of the lattices ), (left) and R,, (right), together with possible

instances of the up and down jumps.
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Figure 3.1: The tree for the process Y (left) and for R (right), showing as the trees may be

visited.

The whole tree procedure for the pair (Y, R) is obtained by joining the trees built for ¥
and for R. Namely, for n =0,1,..., N, consider the lattice

Y X R = { (g 77 ) tej=0,1,...n- (3.3.19)

Starting from the node (n, k, j), which corresponds to the position (y;,r}) € V5 X Ry, we

define the four possible jumps by means of the following four nodes at time n + 1:

(n+ 1, ku(n, k), ju(n, j)) with probability puu(n,k,j) = py (n, k)pfi(n, j),
(n+ 1,ky(n, k), ja(n,5)) with probability pua(n, k, j) = pY (n, k)p%(n, j), (3:3.20)
(n+1,kq(n, k), ju(n,j)) with probability pg,(n,k,j) = p}i/(n, k)pﬁ(n,j),
(n+1,kq(n,k),ja(n,j)) with probability pga(n, k,j) = p};(n, k)pg(n,j),

where the above nodes ky(n,k), kq(n,k), ju(n,j), ja(n,j) and the above probabilities
pY (n, k), pY (n, k), pE(n, j), pf(n, j) are defined in (3:3.12)-(3-3-13), (3-3.16)-(3-3-17), (3-3-14)
and (3.3.18). The factorization of the jump probabilities in (3.3.20) follows from the or-

thogonality property of the noises driving the two processes. This procedure gives rise to

a Markov chain (er‘, Rﬁ)nzo,m’ ~ that weakly converges, as h — 0, to the diffusion process
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(Y2, Rt)sejo,7) solution to

dYy = py (Y)dt + oy/Ye dW}, Yy >0,
dRy = pp(Ry) dt + dW2, Ry =0.

This can be seen by using standard results (see e.g. the techniques in [79]) and the con-
vergence of the chain approximating the volatility process proved in [10]. And this holds
independently of the validity of the Feller condition 2ky 8y > cr%.

Details and remarks on the extension of this procedure to more general cases can be found
in [25]. In particular, if the correlation between the Brownian motions driving (Y, R) was
not null, one could define the jump probabilities by matching the local cross-moment (see
Remark 3.1 in [25]).

3.3.2 The approximation on the X-component

We describe here how we manage the X-component in (3.2.5) by taking into account the
tree procedure given for the pair (Y, R). We go back to ([3.2.5): by isolating v/Y;dW! in the

second line and dW? in the third one, we obtain
dX, = p(Ys, Ry, t)dt + p3 /Y dWP + j—ldYt + p2\/YidR; + AN, (3.3.21)
Y

with

uly,r,t) = nx(y,r,t) = oy (y) = p2v/y ur(r) (3.3.22)

=0, + o0 =0 — 5y — E-ky (Oy —y) + parsT /[y

(1x, py and pg are defined in (3.2.6)), (3.2.7) and (3.2.8)) respectively). To numerically solve
(3-3-21]), we mainly use the fact that the noises W3 and N are independent of the processes

Y and R. So, we first take the approximating tree (Y,f, Rn)n:071’,_.7 n—1 discussed in Section

3.3.1{and we set (Y, Rﬁ)te[o,ﬂ = (Yﬁ/hJ +1, R}th/hj +1)sej0,) the associated time-continuous

cadlag approximating process for (Y, R). Then, we insert the discretization (Y", R?) for
(Y, R) in the coefficients of ([3.3.21)). Therefore, the final process X" approximating X is
set as follows: X' = X, and for t € (nh, (n+1)h] with n =0,1,..., N — 1

K= Kyl Rl (¢ = )+ ROV W)
. (3.3.23)
vh _yh Yh(Rh — RP Ni — Npp).
+0’y( f nh)—l—pz\/T( t ) 1+ (Vg )
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3.3.3 The Monte Carlo approach

Let us show how one can simulate a single path by using the tree approximation ((3.3.19)
for the couple (Y, R) and the Euler scheme ([3.3.23|) for the X-component.

Let (Xn)n:O,l .....
means of the scheme in ([3.3.23)): X{f = Xp and for ¢t € [nh, (n+1)h] withn =0,1,...,N—1
then

~ be the sequence approximating X at times nh, n = 0,1,..., N, by

Xr}zl—i-l X’r}zl + /,L(Y,,?, RZ? nh)h +p3 hYnhAnJrl

+UY (Yn+1 5}7’?) + p2 \/ (Rn—l—l RZ) + (N(n—l—l)h - Nnh)a

where p is defined in and Aq,..., Ay denote i.i.d. standard normal r.v.’s, indepen-
dent of the noise driving the chain (Y, R) The simulation of N, 1), — Npp, is straightfor-
ward: one first generates a Poisson r.v. K ;:H of parameter Ah and if K ,’ZH > () then also the
log-amplitudes log(1 + J,’;H) fork=1,... ,K,’ZH are simulated. Then, the observed jump
of the compound Poisson process is written as the sum of the simulated log-amplitudes, so
that

Xﬁﬂ = XP o+ u(VE, RE nh)h+ p3y[RY A
K+t (3.3.24)

FIETl = V) + o\ V(R — RE) 4+ 3 los(1+ 1),
k=1

in which the last sum is set equal to 0 if KZ'H =0.

The above simulation scheme is plain: at each time step n > 1, one lets the pair (Y, R)
evolve on the tree and simulate the process X by using . We will refer to this
procedure as hybrid Monte Carlo algorithm, the word “hybrid” being related to the fact
that two different noise sources are considered: we simulate a continuous process in space

(the component X)) starting from a discrete process in space (the tree for (Y, R)).

The simulations just described will be used in Section in order to set-up a Monte
Carlo procedure for the computation of the option price function . In the case of
American options, the simulations are coupled with the Monte Carlo algorithm by Longstaff
and Schwartz in [76).
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3.4 The hybrid tree/finite difference approach

The price-function P(t,z,y,r) in is typically computed by means of the standard
backward dynamic programming algorithm. So, consider a discretization of the time interval
[0,T] into N subintervals of length h = T'/N. Then the price P(0, Xy, Yo, Rp) is numerically
approximated through the quantity Py (0, Xo, Yo, Ro) backwardly given by

Py(T,x,y,r) =¥ (x) andasn=N—1,...,0,

= —(orr+op, nh,z,y,r nh, nh,r
Py(nh,z,y,r) = max {‘I’(fv), e~ (orrtean)hg (Ph((n + Dh XG5 Yo m R(n+1)h)) }

for (x,y,r) € R x Ry x R, in which
0 in the European case,
U(z) in the American case.

So, what is needed is a good approximation of the expectations appearing in the above
dynamic programming principle. This is what we first deal with, starting from the dicretized
process (Y, Y" R") introduced in Section

3.4.1 The local 1-dimensional partial integro-differential equation

Let X" denote the process in (3.3.23)). If we set

Zl = X[ — %(ﬁh — Vi) - Pz\/ﬁ(R? — Rup), t€[nh,(n+1)h] (3.4.26)

then we have
dZth = ,u(?#h, RZ,L, nh)dt + p3 Yé‘h dWE’, +dN; t € (nh,(n+1)h], (3.4.27)
Zﬁh = Xﬁha

that is, Z" solves a jump-diffusion stochastic equation with constant coefficients and at time

nh it starts from ?:h' Take now a function f: we are interested in computing
E(f(X(n—l—l)h) | Xnh =2, Yon =y, Rop = T)-

We actually need a function f of all variables (x,y,r) but at the present moment the

variable z is the most important one, we will see later on that the introduction of (y,r) is
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straightforward. So, we numerically compute the above expectation by means of the one

done on the approximating processes, that is,
E(f(X{. (n+ )‘Xh—th—yaRh—T)

(<Zm+1h+ (Vi = Vi) + o2\ Vs (Rl = o) | Zi = 2.5y = v Rl = 7).
in which we have used the process Z" in . Since (Yh,Rh) is independent of the

Brownian noise W2 and on the compound Poisson process N driving Z" in (3.4.27), we

have the following: we set

\I/f(C7 €,Y, 7’) = E(f(Zganrl)h + C) ’ ZT}LZh =, Ynh =Y, R = 71) (3428)
and we can write
E(f(X(n+1 h) ’X h = T Yh—y,Rthr)

= E(‘I’f (? (Y(};LH) Y+ 92\/?7(}??n+1)h —R}))ia,y, 7") ’ Vi =y Ry, = 7“)-
(3.4.29)
Now, in order to compute the quantity W;(¢) in (3.4.28), we consider a generic function g

and set
u(t,x;y,r) = E(g(z(hn—l—l)h) | Zth = 1:7}_/;’1 =Y, Réz = T)) le [nha (n + 1)h]

By (3.4.27) and the Feynman-Kac representation formula we can state that, for every fixed
r € R and y > 0, the function (¢, z) — u(t, z;y,r) is the solution to

Opu(t, Ty y,r) + £(y’r)u(t,m;y, r)=0 yeR,te€nh (n+1)h),

(3.4.30)
u((n+1h,zyy,1) = g(y) z € R,
where £ is the integro-differential operator
LY u(t,z;y,r) = ply, r)Ozult, z;y,7) + 53505, ult, 23, 7)
oo (3.4.31)
+ [ latta s Gyr) — ult ) m@)de,
—0o0

where p is given in (3.3.22) and v is the Lévy measure associated with the compound
Poisson process N, see (3.2.9). We are assuming here that the Lévy measure is absolutely
continuous (in practice, we use a Gaussian density), but it is clear that the procedure we

are going to describe can be straightforwardly extended to other cases.
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Finite-difference and numerical quadrature

In order to numerically compute the solution to the PIDE ([3.4.30]) at time nh, we generalize
the approach already developed in [24), 25]: we apply a one-step finite-difference algorithm
to the differential part of the problem coupled now with a quadrature rule to approximate
the integral term.

We start by fixing an infinite grid on the z-axis X = {x; = X¢ + iAx}icz, with Az =
xj — Tj—1, © € Z. For fixed n and given r € R and y > 0, we set u = u(nh,z;;y,r) the
discrete solution of at time nh on the point x; of the grid X — for simplicity of
notations, in the sequel we do not stress in v the dependence on (y, ).

First of all, to numerically compute the integral term in (3.4.31]) we need to truncate the

infinite integral domain to a bounded interval Z, to be taken large enough in order that

/V({)d& ~ A (3.4.32)
T

In terms of the process, this corresponds to truncate the large jumps. We assume that
the tails of v rapidly decrease — this is not really restrictive since applied models typically
require that the tails of v decrease exponentially. Hence, we take L € N large enough, set
7 = [-LAy,+LAy| and apply to (3.4.32)) the trapezoidal rule on the grid X with the same

step Az previously defined. Then, for § = [Axz, | = —L,..., L, we have
L

+LAy
[t 4 )~ ult ) v(de ~ Ax Y (ulta &) - ult. o) v (3433

—LAy I=—L
We notice that z; + & = Xo + (i + [)Az € X, so the values u(t, z; + &) are well defined
on the numerical grid X for any i,l. These are technical settings and can be modified and
calibrated for different Lévy measures v.

But in practice one cannot solve the PIDE problem over the whole real line. So, we
have to choose artificial bounds and impose numerical boundary conditions. We take a
positive integer M > 0 and we define a finite grid Xy = {z; = Xo + iAz}ics,,, with
I = {—M,...,M}, and we assume that M > L. Notice that for z = z; € X then
the integral term in splits into two parts: one part concerning nodes falling into
the numerical domain X); and another part concerning nodes falling out of Xj3;. As an

example, at time ¢t = nh we have
L

L
doulnhw+ (&) = Y ufw(@) = Y wig @+ Y ik v(&)

I=—1L I=—L L l|<LyJi41| <M L U|<LyJi41|> M
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where 4" stands for (unknown) values that fall out of the finite numerical domain X;. This
implies that we must choose some suitable artificial boundary conditions. In a financial
context, in [39] it has been shown that a good choice for the boundary conditions is the
payoff function. Although this is the choice we will do in our numerical experiments, for
the sake of generality we assume here the boundary values outside X3; to be settled as
a = b(nh,x;), where b = b(t, x) is a fixed function defined in [0, 7] x R.

Going back to the numerical scheme to solve the differential part of the equation ,
as already done in [25], we apply an implicit in time approximation. However, to avoid to
solve at each time step a linear system with a dense matrix, the non-local integral term needs
anyway an explicit in time approximation. We then obtain an implicit-explicit (hereafter
IMER) scheme as proposed in [39] and [28]. Notice that more sophisticated IMER methods
may be applied, see for instance [29, 87]. Let us stress that these techniques could be used
in our framework, being more accurate but expensive.

As done in [25], to achieve greater precision we use the centered approximation for both
first and second order derivatives in space. The discrete solution u™ at time nh is then
computed in terms of the known value u™*! at time (n + 1)h by solving the following

discrete problem: for all i € 7y,

uftt - wihy —uiy 1o wl = 2ud gty & +1 1
ZTlﬂiX(yy T)T‘i‘il):a Yy N +Az ZZR (U?H —uy ) v(&) = 0.
(3.4.34)
We then get the solution u™ = (u",,, ... ,u’]\LJ)T by solving the following linear system
Au™ = Bu"! 4 d, (3.4.35)

where A = A(y,r) and B are (2M +1) x (2M + 1) matrices and d is a (2M + 1)-dimensional

boundary vector defined as follows.

» The matrix A. From (3.4.34]), we set A as the tridiagonal real matrix given by

1+28 —a-—p

a—0p 1428 —a-p

A= , (3.4.36)

a—p 1428 —a-p
a—3 1+28
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with
h (nh,y,r) and S h 2 (3.4.37)
a=——nu(n r n =—7 4.
AL H » Ys 2ALL‘2 P3Y,
u being defined in (3.3.22). We emphasize that at each time step n, the quantities v and x

are constant and known values (defined by the tree procedure for (Y, R)) and then o and 3

are constant parameters.

» The matrix B. Again from (3.4.34), B is the (2M +1) x (2M + 1) real matrix given by

v(0)— A  v(Ax) ... v(LAzx) 0
B < I+hAz v(—Az) V(O.) —A I/(.A:ZI) . v(LAz) | (3.4.38)
0 v(—LAz) ... v(-Az) v(0)—A

where [ is the identity matrix and

L
A=) &)

I=—L

» The boundary vector d. The vector d € R?M*! contains the numerical boundary
values:
d=af +a*, (3.4.39)
with
ay = ((B—a)b”y;1,0,...,0,(8+ a)bnMH)T c R2M+1

and a?“ € RZM+1 g guch that

—M—i—1
hAz Z I/(])l)b?_:_ll, fori=-M,...,.—M+L -1,
I=—L
(ap™); =< 0 fori=-M+L,...,M—L,
L
hAz > wla) b, fori=M—L+1,...,M-1,
=M —i+1

where we have used the standard notation b} = b(nh,z;), i € Jum.

In practice, we numerically solve the linear system (3.4.35) with an efficient algorithm
(see next Remark [3.5.1). We notice here that a solution to (3.4.35|) really exists because
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for g # |af, the matrix A = A(y,r) is invertible (see e.g. Theorem 2.1 in [31]). Then, at
time nh, for each fixed y > 0 and r € R, we approximate the solution = — u(nh,z;y,r)
of on the points z;’s of the grid in terms of the discrete solution u"” = {u}ic7,,,
which in turn is written in terms of the value u" ' = {u""},c 7,, at time (n+1)h. In other

words, we set
u(nh,zi;y,r) =~ ul, i € Jur, where u' = (ul)icg,, solves (3.4.35)) (3.4.40)

The final local finite-difference approximation

We are now ready to tackle our original problem: the computation of the function W¢(¢; x,y,r)
in allowing one to numerically compute the expectation in . So, at time
step n, the pair (y,r) is chosen on the lattice YV, x Rp: y =y, r = 7’;-1 for 0 < k,j <n. We
call A} ; the matrix A4 in when evaluated in (yi,r7) and d" the boundary vector in
at time-step n. Then, gives

U p (G i,y ry) = ufy j, where uly o = (ufy ;)ie7,, solves the linear system

Therefore, by taking the expectation w.r.t. the tree-jumps, the expectation in (3.4.29)) is

finally computed on Xy; x YV, X R, by means of the above approximation:
E(f(X(hn—f—l)h) | Xﬁh = Li, Y:h = ykthh =Ty i) =~ U?,k,j,
where u’y . = (u}') ;)icgy, solves the linear system
Apul = Y pab(nakvj)Bf(x + &(yﬁ,ﬂ g k) o2y — 7"?)) +d”.
a,be{u,d}

Finally, if f is a function on the whole triple (z,y,7), by using standard properties of the

conditional expectation one gets

E(f(Xh Y(?H-l)h? R(n+1)h) | X! nh — xl,Y nh — ykthh = T;Z) = UZIW-,

(n+1)h’
where u’ ;= (uf'). ;)icg,, solves the linear system

AUk

= 2wl kDB (o Do )+ oL = )

a,be{u,d}
(3.4.41)
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3.4.2 Pricing European and American options

We are now ready to approximate the function P, solution to the dynamic programming
principle . We consider the discretization scheme (X", Y" R") discussed in Section
and we use the approximation for the conditional expectations that have to
be computed at each time step n. So, for every point (z;,yp,r") € Xy X Vi X Ry, by

J
(13.4.41)) we have

nh xlzy 5T nhy TLh,T".L
E(Ph((n + DR X[ F Y(n+1)h,R(n+;)h)) ~ ol

where u”) . = (u?). ;)ie7,, solves the linear system

Ay july ;=B Z Pab(n, k, j) ¥
a,be{u,d}

P1
X P, ((” +Dh,y. + — (?JZJF(; k) yr) + p2/y( Z)J(rij DY), y;<;1+(:z k)’ T?;(r;,j)) +d".
(3.4.42)
We then define the approximated price Py(nh,z,y,r) for (z,y,r) € Xy X Vo X R, and

n=20,1,...,N as

Pu(T, i,y ,r) = ¥(z;) andasn=N—1,...,0:

J
3.4.43
(UTT +§Dnh)hu } ( )
7 7.7

If’h(nh,xi,yz,r?) = max{\f/(mi) e
in which a7 ; = (ﬂ?kj)ze 7y 1s the solution to the system in with Py, replaced by
Py.

Note that the system in requires the knowledge of the function y — Ph((n +
1)h,x,y,r) in points x’s that do not necessarily belong to the grid AXj;. Therefore, in
practice we compute such a function by means of linear interpolations, working as follows.

For fixed n,k, j,a,b, we set I, 1 j.ab(7), i € Jur, as the index such that

P1
T + 7(ylrcl+(711 k) k) + p2v/y( ;z;(r;] - Jn) € ["Tfn,k,j,a,b(i)’ $In,k,j,a,b(i)+1)’

1=Mifz; + (yZ:r(ilk) yk)—i-pzf( ;l;(rij - j)>M. Weset

+1 +1
. ﬂfi + oy (y]?a(’l’b k‘) ) + p2f( ;7;, TL]) :;l) - xl’n,k,j,a,b(i)
Qn,k,j,a,b(z) = Az .
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Note that ¢, jas(7) € [0,1). We define
(ja,bph)((n + 1)h7 Ly yZJr(i k)v"";r(r; j)) = ph((n + 1)h, :EIn,k’j’a’b(i)a yZ:r(:Lk) ;L;(ré])) (1 - Qn,k,j,a,b(i))

+ Po((n+ Dhar, 601 Yy Titn ) Gskgianb (0)
and we set
P+ Db iy — ) + oL = T )
= GusP)((n+ Do Yl i),

Therefore, starting from ((3.4.42)), in practice the function ﬂ"k] = ('Ilzhj)ieJM in (3.4.43) is

taken as the solution to the linear system

ARl =B Y pan(ni k. §)(TapBa)(n+ Dhyz,yifd ooritl ) 4dh (3.4.44)
a,be{u,d}

We can then state our final numerical procedure:

Pa(T iy, 77) = W(as) andasn=N—1,....0: (3.4.45)

~

Pulnh i it ) = mas {0 (i), e~ 03 embizn, L

aly ;= (agk’j)iejM being the solution to the system ([3.4.44]).

Remark 3.4.1. In the case of an infinite grid, that is M = 400, i — Ik jap(i) s a

translation: Injap(i) = Inkjap(0) + . So, i = (JapPr)((n+ Dhoas yil) 1 it o) s

n+1 n+1
)

Just a linear convex combination of translations of x; — Pp((n + 1)h, x4, Yo (k) "y (s

3.4.3 Stability analysis of the hybrid tree/finite-difference method

We analyze here the stability of the resulting tree/finite-difference scheme. To this purpose,
we consider a norm, defined on functions of the variables (x, y, r), which is the uniform norm
with respect to the volatility and the interest rate components (y, ) and coincides with the
standard lo norm with respect to the direction x (see next (3.4.51])). The choice of the Iy
norm allows one to perform a von Neumann analysis in the component x on the infinite grid
X = {x; = Xo + iAz}icz, that is, without truncating the domain and without imposing
boundary conditions. Therefore, our stability analysis does not take into account boundary
effects. This approach is extensively used in the literature, see e.g. [45], and yields good

criteria on the robustness of the algorithm independently of the boundary conditions.
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Let us first write down explicitly the scheme (3.4.45) on the infinite grid X = {z;}icz.
For a fixed function f = f(t,z,y,r), we set ¢ = f (in the case of American options) or

g = 0 (in the case of European options) and we consider the numerical scheme given by

Fh(T,a:i,y,]CV,r;-V) :f(T,mi,y,]CV,r;-V) andasn=N—1,...,0:

i (3.4.46)
Fp(nh,zi,yg,r}) = max {g(nh, Tis Y T3 ) e~ (o7 +‘P”h)hu2k,j}
where u?q’kj = (U?kj)iez is the solution to
(ankj = Br)uiq gy + (L4280 p)uly ;= (Qnkg + Buk)uiliy p
- Z pab(nakaj) X [(ja,th)((n + 1)@%;92:227;?)77“?:(1]))4‘
abetdu 1 1 (3.4.47)
+hAz Y (&) ((TapFr)(n+ Dhyzipr, yp ) it )

l

~(TapFr)((n+ 1)h, x4, yZIi,w rZJ(rij)))} ’

in which o, 1 ; and 3, ; are the coefficients o and 3 defined in when evaluated
in the pair (yg,77). Note that is simply the linear system on the infinite
grid, with d” = 0 (no boundary conditions are needed). Let us stress that in next Remark
we will see that, since 3, > 0, a solution to does exist, at least for “nice”
functions f. It is clear that the case g = f is linked to the American algorithm whereas the
case g = 0 is connected to the European one: (3.4.46]) gives our numerical approximation
of the function

I S e Py e R

767;,1“
(3.4.48)

at times nh and in the points of the grid X x Y, X R,.

The “discount truncated scheme” and its stability

In our stability analysis, we consider a numerical scheme which is a slight modification of
(3.4.46)): we fix a (possibly large) threshold ¥ > 0 and we consider the scheme

Fg(T,xi,y,iV,rév) :f(T,:L‘i,y,]CV,rév) andasn=N—1,...,0:

9 n - _(Urrﬂ]l{r".l>—19}+59nh)h
Fy (nh, x;, yk,r;'“) = max {g(nh, Tiy Ype s r?), e 3y uZ,w-

(3.4.49)
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with g = f or g = 0, where u”) ; = (u}; ;)icz is the solution to (3.4.47), with (Jq,F%)
replaced by (J,,F}). Let us stress that the above scheme really differs from
only when o, > 0 (stochastic interest rate). And in this case, in the discounting factor of
we do not allow 77 to run everywhere on its grid: in the original scheme , the
exponential contains the term 77" whereas in the present scheme we put T;?]l{rjn>,19},
so we kill the points of the grid R,, below the threshold —9. And in fact, aims to

numerically compute the function

T pt,r T
E(g—(ar ft R ]1{1?,2”>719}d5+ft SOst)f(T7 X’?m,y,r’ Y;‘,y’ Réﬂ")) if g= 07
Fﬂ(t,.l"y’T') = —(O'TJ:— Ré’r]]. t,r ds—&-f;— gDst) tCE’yT ty t.r .
Sl;_p E(e {Rs">—0} flr, X209 YIY R )) it g=f,
7€, T

(3.4.50)
at times nh and in the points of the grid X x V,, x R,,. Recall that in practice h is small but
fixed, so that the implemented scheme incorporates a threshold (see for instance the tree
given in Figure . And actually, in our numerical experiments we observe a real stability.
However, we will discuss later on how much one can lose with respect to the solution of
(3-240).

For n = N,...,0, the scheme returns a function in the variables (z,y,r) €
X X YVp, X R,. Note that V,, x R,, C I}L/ X If‘, where

IV =g yr] and I =[rg, 0],

that is, the intervals between the smallest and the biggest node at time-step n:

2 2

Ty = —nVh, Ty = nVh.

As n decreases to 0, the intervals I and IF are becoming smaller and smaller and at time 0
they collapse to the single point yg =Yy and r8 = Ry = 0 respectively. So, the norm we are
going to define takes into account these facts: at time nh we consider for ¢ = ¢(t,x,y,r)

the norm

1
H(b(nhv )HTL = sup ”¢(nha'7yvr)Hl2(X) = Sup (Z‘(b(nhvmi?y?T)‘QAy)Q-

(y,r)ely xIt (y,r)elY xIt ~ ey

(3.4.51)
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In particular,

1/2
160, )llo = 16(0, -, Yo, Ro)lly ey = (D 9(zi, Yo, Ro)PAy) " and

1EZL

/
@ ln < s oy luw = sw (Xl nlPay)

(y,r)€R+ xR (y,T‘)ER+ xR i€Z
We are now ready to give our stability result.

Theorem 3.4.2. Let f > 0 and, in the case g = f, suppose that

sup |f(t,$7y77’)’ < ’)/T|f(T,QZ,y,T‘)’,
te[0,7T

for some yp > 0. Then, for every ¥ > 0 the numerical scheme (3.4.49)) is stable with respect
to the norm (3.4.51)):

120, o < O IEX(T, v = O 1 (T, )y, Vhy Ay,

N T

62)\CT+UT19T7211:1 Onnh Ni;o Cr}z — 62)\CT—|—UT’L9T—IO prdt ng = O’
N N— _ (T .

max {’YT7 e2A T +ordT=32,_, %hh} —3° C¥ = max {WTa e2AeT+ordT—fy ‘Ptdt} ifg=1,

in which ¢ > 0 is such that Y, v(&)Ax < Xc. In the standard Bates model, that is o, = 0
and deterministic interest rate ry = ¢, the discount truncated scheme (3.4.49)) coincides
with the standard scheme (3.4.45) and the stability follows for (3.4.45)).

Proof. In order to simplify the notation, we set gznkj = g(nh,z;,y;, 7'?

Fiilk,j = Ff?(nhv Ti, Y T?)v (ja,bFITLLJrl)i,ka,jb = (jme,’?)((n—{—l)h, L, y]?:r(;,k)a TZ)J(F:W‘)) (we have

also dropped the dependence on 7). The scheme (3.4.49) says that, at each time step n < N
and for each fixed 0 < k,j < n,

) and, similarly,

n _ n _(U'F"’n]l{r"?>—19}+90nh)h n
Fikj = max {gzyk,j’e o Uik,j |

where, according to (3.4.47)), u?k] solves

(3.4.52)

(kg = Brg)ui g gy + (L4 2Bnp)uly ; — (Ong + Bk )iy g

= > pa(n,k, ) ((ja,bF”H)i,ka,jb +hAz Y () [FapF™ ) ivikasy — TasF™ikoss] ) :
a,be{d,u} l
(3.4.53)
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Let ¢ denote the Fourier transform of ¢ € [3(X), that is,

— Ay@
S0 E pseis 0 R,
\/27r

i denoting the imaginary unit. We get from ([3.4.53))
(g = Brade 037 414 28,4 = (g + Bup) 027 ) Ful (6)

= (14 hAT S (@) 1)) Lo e gy Pav(s B )T (Fa s P i 3, (0):

Note that

(3.4.54)

’(an,k,‘,j - Bn’k)e_igAl' + 1+ 2611,]4: — (an,k,j + Bn,k)eieAI’
> ‘me[(an,kz,j - /8717k)€_i9Ax +1+ QﬁTL,k — (an7k7j + ank)eiGA:c] ‘
=1+ 28, (1 — cos(Az)) > 1,

for every 6 € [0, 2m) (recall that £, > 0). And since ), v(§)Az < Ac, we obtain
Fu O] < (1402 Y[ 1(©)) Y pun ki) EusF s O)

IeZ a,be{du}

< (1 + 2)\Ch) Z pab(n7 k7j)|3(ja,bFn+1)ka7jb(0)|‘
a,be{d,u}

Therefore,
ngijL? ([0,27),Leb) = < (1+2Xch) Z Pab(, k?.j)Hg(ij,bFnJrl)ka,jbHLZ([O,QW),Leb)'
a,be{d,u}
We use now the Parseval identity [|F¢||12(j0,27),Leb) = [[¢ll1(x) and we get
[y jlliz ey < (14 2Ach) Z Pab(n, by N (Tap ™). ki 2 ()
a,be{d,u}

= (1+2xch) Y pas(n ks DHIFSL )
a,be{d,u}

the first equality following from the fact that ¢ — (Jg . F n+1)i7ka7jb is a linear convex combi-

nation of translations of i — Fl”; 1],, (see Remark . This gives

—(orr? Mg ne )R _
sup [le (7T Ty mor o) ul illiary < (14 22ch)e P =#mhsup || FRE| L x
0<k,j<n 0<k,j<n+1
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and from (3.4.52)), we obtain

b(x) < maX( sup [|g"% o2y, (14 2Ach)e " =¢mr sup HF’,’J}HZQ(X))-
0<k,j< 0<k,j<n+1

sup [ F7%
0<k,j<n

We now continue assuming that g = f, the case g = 0 following in a similar way. So,

sup(1F7 ey < ma (3l 7T, v, (1 2Ack)eo et sup [[F%H ).
0<k,j<n 0<k,j<n+1

For n = N — 1 we then obtain

sup ([FX S ey < max (37T, )|, (1 22eh)em 0ot £(T, ) | )
SR,ISN

and by iterating the above inequalities, we finally get
N
1E% = 1F% oy < max (vl F(T, v, (14 2Ach)NeNor b= ennt £(T, ).

g

Remark 3.4.3. We have incidentally proved that, as n varies, the solution u”kj to the
infinite linear system (3.4.47) actually exists and is unique if || f(T, )|y < oo. In fact,
starting from equality (3.4.54), we define the function 1y ;(0), 6 € [0,2m), by

((Oén,k,j — Brge)e VAT 4 1428, 1 — (anpj + Bn,k)eian) Vg, (0)

= <1 + hAz Zl V(&)(eilé’Am - 1)) Za,be{d,u} pab(n7 kvj)g(ja,bFnJrl)kmjb (0)

As noticed in the proof of Proposition the factor multiplying 1y ;(0) is different
from zero because B, > 0. So, the definition of vy, ; is well posed and moreover, vy, ; €

L3([0, 27, ), Leb). We now set u?y, i as the inverse Fourier transform of ¥y, ;, that is,

1 2m .
o= (0)el"Pvgqp, 1 e 7.
Ul k,j Ay\/%/o Vi (0)e

Straightforward computations give that uly ; fulfils the equation system (3.4.47)).

Of course, Theorem m gives a stability property for the scheme introduced in [25] for
the Heston-Hull-White model: just take A = 0 (no jumps are considered).
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Back to the original scheme ([3.4.46))

Let us now discuss what may happen when one introduces the threshold 9. We recall that
the original scheme gives the numerical approximation of the function F in
whereas the discount truncated scheme (3.4.49) aims to numerically compute the function
FY in . Proposition below shows that, under standard hypotheses, F? tends
to F' as ¥ — oo very fast. This means that, in practice, we lose very few in using

in place of (3.4.46)).

Proposition 3.4.4. Suppose that f = f(t,z,y,r) has a polynomial growth in the variables
(z,y,7), uniformly in t € [0,T]. Let F and F?, with ¥ > 0, be defined in (3.4.48) and
(3.4.50) respectively. Then there exist positive constants cp and Cp(z,y,r) (depending on

(z,y) in a polynomial way and on r in an exponential way) such that for every ¥ > 0
|F(t,z,y,r) — FO(t,z,y,7)| < UTCT(QU,y,r)e_CTw”eiHr(Tit)'Q,
for every t € [0,T] and (x,y,7) € R x Ry x R.

Proof. In the following, C' denotes a positive constant, possibly changing from line to line,

which depends on (z,y,r) polynomially in (x,y) and exponentially in 7. We have
|F(t,a:,y,r) - Fﬂ(t,l',y,’l"”

—oy [ RZ’T]I r ds —op [ Ré’r]l IS ds
< CE ( sup |f(u, XLV VRV RET)| x e rle {RS">-0)"" % <e rli (R <—0}"" 1) | .
t<u<T

(3.4.55)

Set now

70 =inf{s >t : RL" < —9}.

Notice that {Rs < —6} C {7—g < s} C {r—p < T}. Therefore, one has 1
1

(RiT <9} =

{Ti’g <T} and

“ t,r _ “ t,r “ t,r
_UT‘\/; RS ]l{R‘tS,T‘<_19}dS —/t ’arRs ‘]I{R?T<—’l9}d8 S O-T]]-{Tt_’:;<T}\/t\ |RS |d8.

So we can write

_ u pt,r G"r]l r “ Rt’T ds u T
O S e O'Tft RS ]]'{R?T<_19}ds _ 1 S e {TE,@<T} ft ‘ s | _ 1 — (eo'rft ‘Rfs |d8 _ 1) ]1

{rt5<T}
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Substituting in (3.4.55)) and applying Holder inequality, we get

\F(t,x,y,r) - Fﬁ<t,x7y77")’

< tayr yty gty o B s (o iRETas _ 1) g
< CE| sup |f(u, X;*%" Y,V R, )|e s e Ji -1 {rtr <1y
t<u<T g

1/2
< CE < sup ‘f(u,XZ’x’y’T,YJ’y, RZ,TNQGQUT ftu |R’;W‘ds (GGT ftu |R2’T|ds B 1)2) o
t<u<T
1/2
P <]]'{TE7;<T})
2 ., Ao, [ |RY|d " 1/2
< CE | sup |f(u, XL5U7 Yy REN? x elor Jo [BTlds ) o p <]l{7_t,r<T}>
t<u<T _9

1/4
by yhy Rhry(d 8o S 1B ds) /' 12
< CE <t<SL1£>T\f(u,Xu”T,Yuy,RJ)I ) X E(e 7r e I ) X P(]I{Ti’:;a}) :

(3.4.56)
The first term in the left hand side of (3.4.56)) is finite since f has polynomial growth in

the space variables, uniformly in the time variable, and by using standard estimates. Also
the second term in (3.4.56|) is finite. This is because, for every ¢ > 0,

E (ecsungng |R?T|> < 00. (3.4.57)

In fact, recalling that that Rg’ = perr(s=t) 4 fs —hr(s—u sz m ) follows from the
fact that, for a Brownian motion W, supy<s<7 |[Ws| has finite exponential moments of any
order, for every 7' > 0. This is true since supg<s<7 |Ws| < supg<s<r Ws + supg<s<r(—Ws)
and E(ePsPoss<t Ws) < o0 for every p > 0. As regards the third term in (3.4:56), note that

LT~ _ t,r : —kr(s—t) ° —kr(s—u) 2 _
P(roy <T) P(SGIE%“]R < —0) = P<selﬁ,fT] (7”6 + t e qu> < 19)

—kr(T—1)|2
%T(m)> < 2exp ( _ |29+7;6 | )
2 [, e2rrudu

S]P’( sup ‘/ erridv
s€[t,T)

By inserting the above estimates in (3.4.56]), we get the result.

Further remarks

As already stressed, the introduction of the threshold —v allows one to handle the discount

term. In order to get rid of the discount, a possible approach consists in the use of a
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transformed function, as developed by several authors (see e.g. Haentjens and in’t Hout
[56] and references therein). This is a nice fact for European options (PIDE problem), being
on the contrary a non definitive tool when dealing with American options (obstacle PIDE
problem). Let us see why.

First of all, let us come back to the model for the triple (X,Y, R), see . The

infinitesimal generator is

1
Liu= (grr +@p— 06— §y> Ozt + Ky (By — y)Oyu — KprOru
Liyo2 2902 u+ 02 u+2 02 2 o
+2 YOz + 0yy yy W + Onu 4 2p10vy 2y + p2\/§ zrU (3458)

+o00
+/ [u(t,z + &y, r) —ult,x;y,r)| v(€)dE.

We set
G(t,r) =B (e i 1)

and we recall several known facts: one has (see e.g. [72])

—rorA(t T)—i(A(t T)—T+t)—iA2(t T) 1 — e rr(T=1)
G(t,r)=e BT A e AT (3.4.59)

Ry
and moreover, GG solves the PDE

1
G — kpx20,G + 202G —0,rG =0, tc[0,T),r€R,
2 (3.4.60)

G(T,r)=1.
Lemma 3.4.5. Let L£; denote the infinitesimal generator in (3.4.58). Setw = u-G~t. Then
8tu + Et’LL —Tru = G(@tﬂ + Ztﬂ),

where
. 1— efnr(Tft)
Ly=Ly—op———[p2/y0,u + O,u].

T

Proof. Since G depends on ¢ and r only, straightforward computations give
1
du+ Lou — zu =G [0u + Leu] + 0,G(t,r) [p2y/y0uu + O,u| + u[0,G — k,70,G + 58ZTG —o,7G].

By (3.4.60)), the last term is null. The statement now follows by observing that 9, In G(¢,r) =
17€—KT(T—t)
= 0O

—0
T or
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We notice that the operator L; in Lemma is the infinitesimal generator of the jump-
diffusion process (X,Y, R) which solves the stochastic differential equation as in (3.2.5),
with the same diffusion coefficients and jump-terms but with the new drift coefficients

1— e—nT(T—t)
px(ty,r) = px(y,r) — O P2\/¥, py(y) = py (y),

1 — e Hr (T—1)

pn(r) = pn(tr) — o,

r
Let us first discuss the scheme with ¢ = 0 (European options), which gives the
numerical approximation for the function F' in . By passing to the associated PIDE,
Lemma [3.4.5| says that

F(t,z,y,7) = G(t,7)F(t,x,y,7),

where

F(tz,y,r) = E(e™ I #8 f(0, X5 Vi Ry)).

Therefore, in practice one has to numerically evaluate the function F. By using our hybrid
tree/finite-difference approach, this means to consider the scheme in (3.4.49), with the new
coefficient @, , ; (written starting from the new drift coefficients) but with a discount de-

_(UTT]T'L]I{T;P>—L}+‘Pnh)h

pending on the (deterministic) function ¢ only, that is, with e replaced

by e~#nr And the proof of the Proposition shows that one gets
— N
IF5(0, )]0 < max (yp, T~ 2n=0 et || £(T, .|| .

In other words, by using a suitable transformation, the European scheme is always stable
and no thresholds are needed.

Let us discuss now the American case, that is, the scheme with g = f, giving an
approximation of the function F' in . One could think to use the above transforma-

tion in order to get rid of the exponential depending on the process R. Set again
F(t,z,y,r) = G(t,r) ' F(t,z,y,r).

By using the associated obstacle PIDE problem, Lemma suggests that

F@? z,Y, T) = zl;P E(e* ftT 905d3f<7-7 Yixvyﬂ"7 ?iy’ EZT)),
TC T
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with f(t,z,y,7) = G=L(t,7)f(t,z,y,7). So, in order to numerically compute F, one needs to
set up the scheme (3.4.49) with the new coefficient @, 1 ;j, with f replaced by f,g=f and

(UTT;L]I{v‘;’-l>7L}+Lpn}L)h

with the discounting factor e replaced by e~#nn*. So, again one is able

to cancel the unbounded part of the discount. Nevertheless, the unpleasant point is that
even if || f(T,-)||x has a bound which is uniform in N then || f(7,-)||; may not have because
G~1(t,r) has an exponential containing 7, see (3.4.59)). In other words, the unboundedness

problem appears now in the obstacle.

3.5 The hybrid Monte Carlo and tree/finite-difference ap-

proach algorithms in practice

The present section is devoted to our numerical experiments. We first summarise the main

steps of our algorithms and then we present several numerical tests.

3.5.1 A schematic sketch of the main computational steps in our algo-
rithms

In short, we outline here the main computational steps of the two proposed algorithms.
First, the procedures need the following preprocessing steps, concerning the construction

of the bivariate tree:

(T1) define a discretization of the time-interval [0,7] in N subintervals [nh, (n + 1)h],
n=0,...,N—1, with h=T/N;

(T2) for the process Y, set the binomial tree y!, 0 < k < n < N, by using (3.3.15)), then
compute the jump nodes kq(n, k) and the jump probabilities p} (n, k), a € {u,d}, by

using (3.3.12)-(3.3.13) and (3.3.14);

(T3) for the process R, set the binomial tree r?, 0 < j < N, by using (3.3.15), then
compute the jump nodes j,(n,j) and the jump probabilities pf(n, 7), b € {u,d}, by

using (3.3.16)-(3.3.17) and (3.3.18);

(T4) for the 2-dimensional process (Y, R), merge the binomial trees in the bivariate tree

(v, 'r;‘), 0<k,7 <n < N,byusing (3.3.19), then compute the jump-nodes (k,(n, k), jp(n, 7))

and the transitions probabilities puy(n, k, j), (a,b) € {d,u}, by using (3.3.20).
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The bivariate tree for (Y, R) is now settled. Our hybrid tree/finite-difference algorithm can

be resumed as follows:

(FD1) set a mesh grid x; for the solution of all the PIDE’s;

(FD2) for each node (y,]cv , rj-v ), 0 < k,7 < N, compute the option prices at maturity for each
xi, 1 € Xy, by using the payoff function;
(FD3) for n = N —1,...0: for each (yg,r?), 0 < k,j < n, compute the option prices for

each x; € Xy, by solving the linear system (|3.4.44)).

Notice that, at each time step n, we need only the one-step PIDE solution in the time
interval [nh, (n+1)h]. Moreover, both the (constant) PIDE coefficients and the Cauchy final
condition change according to the position of the volatility and the interest rate components

on the bivariate tree at time step n.

Remark 3.5.1. We observe that in order to compute the option price by the hybrid tree/finite-
difference procedure, in step (FD3) we need to solve many times the tridiagonal system
(3.4.44). This is typically solved by the LU-decomposition method in O(M) operations (re-
call that the total number of the grid values x; € Xy is 2M + 1). However, due to the

approzimation of the integral term (3.4.33)), at each time step n < N we have to compute
the sum

> ariv(&), (3.5.61)

which is the most computationally expensive step of this part of the algorithm: when applied
directly, it requires O(M?) operations. Following the Premia software implementation [84)],
in our numerical tests we use the Fast Fourier Transform to compute the term (3.5.61)) and

the computational costs of this step reduce to O(M log M).
We conclude by briefly recalling the main steps of the hybrid Monte Carlo method:

(MC1) let the chain (Y}, R!) evolve for n = 1,..., N, following the probability structure in
(T4);

(MC2) generate Ay, ..., Ay ii.d. standard normal r.v.’s independent of the noise driving the
chain (Y", R");
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(MC3) generate K}L, .. .,K}JZV i.i.d. positive Poisson r.v.’s of parameter A\h, independent of
both the chain (Yh,f{h) and the Gaussian r.v.’s Aq,...,Ay, and for every n =
1,...,N, if K} > 0 simulate the corresponding amplitudes log(1 + J1'),...,log(1l +

n .
JKZ)?
(MC4) starting from X{)‘ = Xo, compute the approximate values X’f{, 1 <n < N, by using

E320)

(MC5) following the desired Monte Carlo method (European or Longstaff-Schwartz algorithm
[76] in the case of American options), repeat the above simulation scheme and compute

the option price.

Remark 3.5.2. In Section we develop numerical experiments in order to study the
behavior of our hybrid methods. Our tests involve also the standard Bates model, that is
without any randommness in the interest rate. Recall that in the standard Bates model the

dynamic reduces to

ds, p
SOt (r — 8)dt + \/Y: dZ5 + dH,,
5. e ' (3.5.62)

dY; = ky 0y — Yi)dt + oy /Y, dZ}
with Sy > 0, Yy > 0 and r > 0 constant parameters. We assume a correlation between the
two Brownian noises:
(25,2 ) = pdt, |p| < 1.
Finally, Hy is the compound Poisson process already introduced in Section see .
We can apply our hybrid approach to this case as well: it just suffices to follow the com-
putational steps listed above except for the construction of the binomial tree for the process

R. Consequently, we do not need the bivariate tree for (Y, R), specifically we omit steps
(T3)-(T4) and we replace step (MC1) with

(MCY’) let the chain Ynh evolve forn =1,..., N, following the probability structure in (T2).

And of course, in all computations we set equal to 0 the parameters involved in the dynamics
for r, except for the starting value ro. In particular, we have o, = 0 and p; = 1o for every
t.

3.5.2 Numerical results

We develop several numerical results in order to assess the efficiency and the robustness of

the hybrid tree/finite-difference method and the hybrid Monte Carlo method in the case of
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plain vanilla options. The Monte Carlo results derive from our hybrid simulations and, for
American options, the use of the Monte Carlo algorithm by Longstaff and Schwartz in [76].
We first provide results for the standard Bates model (see Remark and secondly,
for the case in which the interest rate process is assumed to be stochastic, see .
Following Chiarella et al. [34], in our numerical tests we assume that the jumps for the
log-returns are normal, that is,

1
log(1+4 Ji) ~ N(*y SELE 772), (3.5.63)

N denoting the Gaussian law (we also notice that the results in [34] correspond to the choice
v =0). In Section we first compare our results with the ones provided in Chiarella et
al. [34]. Then in Section we study options with large maturities and when the Feller
condition is not fulfilled. Finally, Section is devoted to test experiments for European
and American options in the Bates model with stochastic interest rate. The codes have

been written by using the C++ language and the computations have all been performed in
double precision on a PC 2,9 GHz Intel Core I5 with 8 Gb of RAM.

The standard Bates model

We refer here to the standard Bates model as in (3.5.62). In the European and American
option contracts we are dealing with, we consider the following set of parameters, already

used in the numerical results provided in Chiarella et al. [34]:
e initial price Sy = 80,90, 100, 110, 120, strike price K = 100, maturity T = 0.5;
e (constant) interest rate r = 0.03, dividend rate 6 = 0.05;

e initial volatility Yy = 0.04, long-mean 0y = 0.04, speed of mean-reversion Ky = 2,

vol-vol oy = 0.4, correlation p = —0.5,0.5;

e intensity A = 5, jump parameters v = 0 and n = 0.1 (recall (3.5.63)).

It is known that the case p > 0 may lead to moment explosion, see. e.g. [9]. Nevetheless,
we report here results for this case as well, for the sake of comparisons with the study in
Chiarella et al. [34].

In order to numerically solve the PIDE using the finite difference scheme, we first localize

the variables and the integral term to bounded domains. We use for this purpose the
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estimates for the localization domain and the truncation of large jumps given by Yoltchkova
and Tankov [96]. For example, for the previous model parameters the PIDE problem is
solved in the finite interval [In Sy — 1.59,1n Sy + 1.93].

The numerical study of the hybrid tree/finite-difference method HTFD is split into two

cases:

- HTFDa: time steps N; = 50 and varying mesh grid Ax = 0.01, 0.005, 0.0025,
0.00125;

- HTFDb: time steps N; = 100 and varying mesh grid Ax = 0.01, 0.005, 0.0025,
0.00125.

Concerning the Monte Carlo method, we compare the results by using the hybrid sim-
ulation scheme in Section that we call HMC. We compare our hybrid simulation
scheme with the accurate third-order Alfonsi [4] discretization scheme for the CIR stochas-
tic volatility process and by using an exact scheme for the interest rate. In addition, we
simulate the jump component in the standard way. The resulting Monte Carlo scheme is
here called AMC. In both Monte Carlo methods, we consider varying number of Monte

Carlo iterations Nyic and two cases for the number of time discretization steps iterations:

- HMCa and AMCa: N; = 50 and Ny = 10000, 50000, 100000, 200000

- HMCb and AMCb: N; = 100 and Nyc = 10000, 50000, 100000, 200000.

All Monte Carlo results include the associated 95% confidence interval.

Table [3.1] reports European call option prices. Comparisons are given with a benchmark
value obtained using the Carr-Madan pricing formula CF in [33] that applies Fast Fourier
Transform methods (see the Premia software implementation [84]).

In Table [3:2] we provide results for American call option prices. In this case we compare
with the values obtained by using the method of lines in [35], called MOL, with mesh
parameters 200 time-steps, 250 volatility lines, 2995 asset grid points, and the PSOR
method with mesh parameters 1000, 3000, 6000 that Chiarella et al. [34] used as the true
solution. Moreover, we consider the Longstaff-Schwartz [76] Monte Carlo algorithm both
for AMC and HMC. In particular

- HMCLSa and AMCLSa: 10 exercise dates, N; = 50 and Ny = 10000, 50000, 100000,
200000;
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- HMCLSb and AMCLSDb: 20 exercise dates, N; = 100 and Ny = 10000, 50000, 100000,
200000.

Tables and refer to the computational time cost (in seconds) of the various algo-
rithms for p = —0.5 in the Furopean and American case respectively.
In order to make some heuristic considerations about the speed of convergence of our

approach HTFD, we consider the convergence ratio proposed in [40], defined as

Py — Py
ratio = ﬁ, (3564)
2

where Py denotes here the approximated price obtained with N = N; number of time steps.
Recall that Py = O(N~%) means that ratio = 2%. Table suggests that the convergence
ratio for HTDFb is approximatively linear. The analysis of the convergence in Chapter 4
will confirm this heuristic deduction.

We notice that the above argument does not formally allow to state the speed of conver-
gence of a method knowing its ratio. We will come back on this topic in the next chapter
of this thesis. However, we anticipate here that our theoretical analysis of the convergence
confirms the first order in time rate of convergence of the procedure.

The numerical results in Table show that HTFD is accurate, reliable and efficient
for pricing European and American options in the Bates model. Moreover, our hybrid
Monte Carlo algorithm HMC appears to be competitive with AMC, that is the one from
the accurate simulations by Alfonsi [4]: the numerical results are similar in term of precision
and variance but HMC is definitely better from the computational times point of view.
Additionally, because of its simplicity, HMC represents a real and interesting alternative
to AMC.

As a further evidence of the accuracy of our hybrid methods, in Figure and we
study the shapes of implied volatility smiles across moneyness S% and maturities T" using
HTFDa with Ny = 50 and Ay = 0.005, HMCa with N; = 50 and Nyc = 50000 and we

compare the graphs with the results from the benchmark values CF.
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(a)

p=—0.5 Ax HTFDa HTFDb CF Nnc HMCa HMCb AMCa AMCb
0.01 1.1302 1.1302 10000 1.08£0.09 1.11+£0.09 1.00+£0.09 1.08+0.09
0.005 1.1293 1.1294 50000 1.12+0.04 1.17£0.04 1.07£0.04 1.10£0.04
Sp = 80 0.0025 1.1291 1.1292 1.1293 100000 1.1440.03 1.1440.03 1.13+0.03 1.13+0.03
0.00125 1.1291 1.1292 200000 1.13+0.02 1.1440.02 1.114+0.02 1.1240.02
0.01 3.3331 3.3312 10000 3.27+0.17 3.27+0.17 3.19+0.16 3.224+0.16
0.005 3.3315 3.3301 50000 3.32+0.08 3.40+0.08 3.24+0.07 3.26+0.0
Sp = 90 0.0025 3.3311 3.3298 3.3284 100000 3.34+0.05 3.34+0.05 3.32+0.05 3.33+0.05
0.00125 3.3310 3.3297 200000 3.3240.04 3.3540.04 3.2840.04 3.314+0.04
0.01 7.5245 7.5239 10000 7.4640.25 7.4640.25 7.371+0.24 7.36+0.25
0.005 7.5236 7.5224 50000 7.534+0.11 7.6240.11 7.40%0.11 7.431+0.11
Sp = 100 0.0025 7.5231 7.5221 7.5210 100000 7.5440.08 7.5240.08 7.5340.08 7.5240.08
0.00125 7.5230 7.5220 200000 7.5040.06 7.5440.06 7.46+0.06 7.50£0.06
0.01 13.6943 13.6940 10000 13.6940.34 13.6940.34 13.524+0.33 13.48+0.33
0.005 13.6923 13.6924 50000 13.714+0.15 13.814+0.15 13.554+0.15 13.584+0.15
Sp =110 0.0025 13.6918 13.6921 13.6923 100000 13.724+0.11 13.6940.11 13.6740.11 13.70+0.11
0.00125 13.6917 13.6920 200000 13.6440.08 13.7140.08 13.63+0.07 13.69+0.08
0.01 21.3173 21.3185 10000 21.4040.41 21.40+£0.41 21.08+0.40 21.03+0.41
0.005 21.3156 21.3168 50000 21.3540.18 21.46+0.19 21.17+£0.18 21.21+40.18
So = 120 0.0025 21.3152 21.3164 21.3174 100000 21.3640.13 21.3240.13 21.29+40.13 21.334+0.13
0.00125 21.3152 21.3163 200000 21.2540.09 21.3340.09 21.26+0.09 21.33£0.09
(b)
p=0.5 Ax HTFDa HTFDb CF Nnc HMCa HMCb AMCa AMCb
0.01 1.4732 1.4751 10000 1.4240.12 1.40+£0.12 1.37£0.12 1.35+0.12
0.005 1.4724 1.4744 50000 1.49+£0.06 1.47+£0.05 1.40+£0.05 1.42+0.05
Sp = 80 0.0025 1.4723 1.4742 1.4760 100000 1.48+0.04 1.46£0.04 1.46+0.04 1.4940.04
0.00125 1.4722 1.4741 200000 1.47£0.03 1.48+0.03 1.48+0.03 1.48+0.03
0.01 3.6849 3.6859 10000 3.63+0.19 3.63+0.19 3.48+0.19 3.49+0.19
0.005 3.6836 3.6849 50000 3.70£0.09 3.70+0.09 3.57+0.09 3.60+0.09
Sp =90 0.0025 3.6832 3.6847 3.6862 100000 3.67+0.06 3.67+0.06 3.66+0.06 3.71+0.06
0.00125 3.6832 3.6847 200000 3.66+£0.04 3.70+0.04 3.69+0.04 3.68+0.04
0.01 7.6247 7.6245 10000 7.5840.28 7.58+0.28 7.35+£0.28 7.361+0.27
0.005 7.6238 7.6232 50000 7.664+0.13 7.654+0.13 7.47£0.12 7.5240.12
Sp = 100 0.0025 7.6234 7.6229 7.6223 100000 7.6140.09 7.5940.09 7.584+0.09 7.66+0.09
0.00125 7.6233 7.6228 200000 7.5840.06 7.6440.06 7.6240.06 7.61+0.06
0.01 13.4863 13.4835 10000 13.484+0.36 13.484+0.36 13.21+0.36 13.194+0.36
0.005 13.4842 13.4818 50000 13.554+0.17 13.4940.16 13.274+0.16 13.35+0.16
Sp =110 0.0025 13.4837 13.4814 13.4791 100000 13.474+0.12 13.414+0.12 13.4440.12 13.5440.12
0.00125 13.4836 13.4813 200000 13.4240.08 13.4940.08 13.4740.08 13.48+0.08
0.01 20.9678 20.9661 10000 21.04+0.44 21.04+0.44 20.67+0.44 20.64+0.43
0.005 20.9659 20.9642 50000 21.0540.20 20.98+0.20 20.71+£0.20 20.81+£0.20
Sp = 120 0.0025 20.9655 20.9636 20.9616 100000 20.9640.14 20.87+0.14 20.92+0.14 21.04+£0.14
0.00125 20.9654 20.9635 200000 20.8840.10 20.96+0.10 20.97+£0.10 20.98+0.10

Table 3.1: Standard Bates model. Prices of European call options. Test parameters: K = 100,
T =05, r=0.03, 6 =0.05, Yo =004, 6y =0.04, ky =2, 0y =04, A=5,v7=0,n=0.1,
p=—0.5,0.5.
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(a)

p=-—0.5 Ax HTFDa HTFDb PSOR MOL Nwyc HMCLSa HMCLSb AMCLSa AMCLSb
0.01 1.1365 1.1365 10000 1.03£0.08 1.14+£0.09 1.06£0.09 1.03+0.09
0.005 1.1356 1.1358 50000 1.1940.04 1.1440.04 1.184+0.04 1.12+0.04
Sp = 80 0.0025 1.1354 1.1356 1.1359 1.1363 100000 1.15£0.03 1.13+0.03 1.13+0.03 1.13+0.03
0.00125 1.1353 1.1355 200000 1.14£0.02 1.14£0.02 1.144+0.02 1.14+0.02
0.01 3.3579 3.3563 10000 3.3940.15 3.44+0.16 3.38+0.15 3.48+0.16
0.005 3.3564 3.3551 50000 3.461+0.07 3.33+0.07 3.46+0.07 3.32+0.07
So = 90 0.0025 3.3560 3.3548 3.3532 3.3530 100000 3.3540.05 3.354+0.05 3.3340.05 3.36+0.05
0.00125 3.3559 3.3547 200000 3.3540.03 3.334+0.03 3.3540.03 3.344+0.03
0.01 7.6010 7.6006 10000 7.684+0.23 7.8840.24 7.631+0.23 7.80+0.24
0.005 7.6001 7.5992 50000 7.754+0.11 7.5940.10 7.7640.10 7.5340.10
Sp = 100 0.0025 7.5997 7.5989 7.5970 7.5959 100000 7.561+0.07 7.611+0.07 7.561+0.07 7.611+0.07
0.00125 7.5996 7.5989 200000 7.5840.05 7.5540.05 7.58+0.05 7.57+0.05
0.01 13.8853 13.8854 10000 13.90+0.29 14.2840.30 13.8440.29 14.1040.29
0.005 13.8836 13.8842 50000 14.054+0.13 13.8940.12 14.0740.13 13.861+0.12
Sp =110 0.0025 13.8832 13.8839 13.8830 13.8827 100000 13.80+0.09 13.914+0.09 13.8440.09 13.89+0.09
0.00125 13.8831 13.8838 200000 13.86+0.06 13.8440.06 13.87+0.06 13.83+0.06
0.01 21.7180 21.7199 10000 21.83+0.34 22.0740.33 21.7140.30 22.04+£0.34
0.005 21.7168 21.7187 50000 21.91+0.15 21.7640.13 21.90+0.15 21.7240.13
So =120 0.0025 21.7166 21.7184 21.7186 21.7191 100000 21.59+0.10 21.7840.10 21.64£0.10 21.7240.10
0.00125 21.7165 21.7183 200000 21.68+0.07 21.65+0.07 21.68+0.07 21.67+0.07
(b)
p=0.5 Ax HTFDa HTFDb PSOR MOL Nnvc HMCLSa HMCLSb AMCLSa AMCLSb
0.01 1.4817 1.4837 10000 1.32£0.11 1.03£0.09 1.51+£0.13 0.66+0.08
0.005 1.4809 1.4830 50000 1.51£0.05 1.31£0.05 1.54+£0.05 1.47+0.05
Sp =80 0.0025 1.4807 1.4828 1.4843 1.4848 100000 1.50£0.04 1.50£0.04 1.51+£0.04 1.48+0.04
0.00125 1.4807 1.4828 200000 1.50+0.03 1.4940.02 1.4940.03 1.47+0.02
0.01 3.7134 3.7148 10000 3.8340.19 3.79+0.17 3.89+0.19 3.95+0.19
0.005 3.7121 3.7139 50000 3.8140.08 3.70+0.08 3.84+0.08 3.69+0.08
So = 90 0.0025 3.7118 3.7137 3.7145 3.7146 100000 3.6940.06 3.75+0.06 3.72+0.06 3.70+0.06
0.00125 3.7118 3.7137 200000 3.7010.04 3.71+0.04 3.72+0.04 3.70+0.04
0.01 7.7044 7.7051 10000 7.74+0.26 7.85+0.25 7.964+0.26 7.99+0.26
0.005 7.7036 7.7039 50000 7.8540.12 7.684+0.11 7.8740.12 7.68+0.11
Sp = 100 0.0025 7.7033 7.7036 7.7027 7.7018 100000 7.6640.08 7.7540.08 7.6540.08 7.731£0.08
0.00125 7.7032 7.7036 200000 7.6940.06 7.6740.05 7.68+0.06 7.69£0.05
0.01 13.6770 13.6756 10000 13.574+0.32 13.98+0.31 13.8840.32 14.124+0.33
0.005 13.6752 13.6742 50000 13.83+0.14 13.67+0.13 13.8940.14 13.64+0.13
Sp =110 0.0025 13.6747 13.6739 13.6722 13.6715 100000 13.561+0.09 13.7440.10 13.584+0.10 13.7140.10
0.00125 13.6747 13.6738 200000 13.654+0.07 13.654+0.07 13.6440.07 13.64+0.07
0.01 21.3668 21.3671 10000 21.45+0.32 21.60+0.35 21.39+0.33 21.84+0.34
0.005 21.3655 21.3658 50000 21.54+0.15 21.4040.14 21.61+£0.16 21.40+£0.13
So =120 0.0025 21.3653 21.3655 21.3653 21.3657 100000 21.26£0.10 21.4340.10 21.2740.10 21.38+0.10
0.00125 21.3652 21.3653 200000 21.31£0.07 21.3340.07 21.314+0.07 21.314+0.07

Table 3.2: Standard Bates model. Prices of American call options. Test parameters: K = 100,
T =05, r=0.03, 6§ =005, Yy =004, 6y =004, ky =2, 0y =04, A=5,v=0,n=0.1,

p=—0.5,0.5.
Ax HTFDa HTDFb Nnvc HMCa HMCb AMCa AMCb CF
0.01 0.09 0.34 10000 0.007 0.16 0.16 0.30
0.005 0.18 0.72 50000 0.36 0.72 0.79 1.51
0.0025 0.46 1.62 100000 0.71 1.44 1.57 3.12 0.001
0.00125 0.84 3.53 200000 1.45 2.95 3.14 6.17

Table 3.3: Standard Bates model. Computational times (in seconds) for European call options in
Table for Sy =100, p = —0.5.
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Az HTFDa HTDFb Nnic HMCLSa HMCLSb AMCLSa AMCLSb
0.01 0.10 0.37 10000 0.09 0.23 0.20 0.45
0.005 0.19 0.77 50000 0.47 1.11 1.01 2.25
0.0025 0.48 1.77 100000 1.07 2.25 2.01 4.57
0.00125 0.95 3.61 200000 1.94 4.55 4.05 8.98

Table 3.4: Standard Bates model. Computational times (in seconds) for American call options in
Table[3.3 for Sy = 100, p = —0.5.

N Sp = 80 Sop = 90 Sp = 100 Sp = 110 Sp = 120
200 1.919250 1.961063 1.894156 2.299666 2.109026
400 2.172836 2.209762 2.556021 1.673541 1.996332
800 1.544849 1.851932 1.463712 2.935697 2.106880

Table 3.5: Standard Bates model. HTFDb-ratio (3.5.64)) for the price of American call options as
the starting point Sy varies with fized space step Az = 0.0025. Test parameters: T = 0.5, r = 0.03,

§=0.05,Yy =004, 0 =004, k=2, 0=04, A\=5,v=0,n=0.1, p=—0.5.
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Figure 3.2:  Standard Bates model. Moneyness vs implied volatility for European call options. Test
parameters: T = 0.5, 7 = 0.03, § = 0.05, Y5 = 0.04, 0y = 0.04, ky =2, 0y =04, A =5, v =0,
n=20.1, p=-0.5.
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Figure 3.3: Standard Bates model. Maturity vs implied volatility for European call options. Test
parameters: Sg = 100, K = 100, » = 0.03, § = 0.05, Yy = 0.04, 8y = 0.04, ky = 2, oy = 0.4,
A=5,v=0,n7=0.1, p=—-0.5.
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Options with large maturity in the standard Bates model

In order to verify the robustness of the proposed algorithms we consider experiments when
the Feller condition 2xky 0y > a% is not fulfilled for the CIR volatility process. We addi-
tionally stress our tests by considering large maturities. For this purpose we consider the
parameters from Chiarella et al. [34] already used in Section with p = —0.5, except
for the maturity and the vol-vol, which are modified as follows: T = 5 and oy = 0.7
respectively.

Table [3.6] reports European call option prices, which are compared with the true values
(CF). In Table we provide results for American call option prices. The settings for the
experiments HTFDa-b, HMCa-b and AMCa-b are the same as described at the begin-
ning of Section The settings for the experiments in the American case HMCLSa-b
and AMCLSa-b are changed

- HMCLSa and AMCLSa: 20 exercise dates, N; = 100 and Ny;c = 10000, 50000, 100000,
200000;

- HMCLSb and AMCLSD: 40 exercise dates, Ny = 200 and Nyc = 10000, 50000, 100000,
200000.

In the American case the benchmark values B- AMC are obtained by the Longstaff-Schwartz
[76] Monte Carlo algorithm with 300 exercise dates, combined with the accurate third-order
Alfonsi method with 3000 discretization time steps and 1 million iterations.

The numerical results suggest that large maturities bring to a slight loss of accuracy for
HTFD and HMC, even if both methods provide a satisfactory approximation of the true
option prices, being in turn mostly compatible with the results from the Alfonsi Monte Carlo
method. It is worth noticing that for long maturity 7' = 5 we have developed experiments
with the same number of steps both in time (V;) and space step (Ax) as for T'= 0.5. So,
the numerical experiments are not slower, and it is clear that one could achieve a better

accuracy for larger values of IV;.
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p=—0.5 Ax HTFDa HTFDb CF Nnic HMCa HMCb AMCa AMCb
0.01 9.0085 8.9457 10000 9.2140.55 9.09+0.55 8.69+0.53 8.56+0.51
0.0050 9.0032 8.9405 50000 9.134+0.25 8.92+0.24 8.81+0.24 9.04+0.24
Sp = 80 0.0025 9.0020 8.9392 8.9262 100000 9.0140.17 8.81+0.17 8.9240.17 8.884+0.17
0.00125 9.0016 8.9389 200000 8.9940.12 8.92+0.12 8.954+0.12 8.904+0.12
0.01 12.7405 12.6520 10000 12.954+0.67 12.9540.67 12.2940.65 12.154+0.6
0.0050 12.7342 12.6458 50000 12.87+0.30 12.6440.29 12.4940.29 12.7640.3
Sp =90 0.0025 12.7327 12.6442 12.6257 100000 12.7240.21 12.50+0.21 12.634+0.21 12.58+0.21
0.00125 12.7323 12.6438 200000 12.714+0.15 12.614+0.15 12.664+0.15 12.61+0.15
0.01 17.0324 16.9176 10000 17.2440.80 17.2440.80 16.434+0.77 16.294+0.75
0.0050 17.0254 16.9106 50000 17.184+0.36 16.914+0.35 16.731+0.35 17.034+0.35
S = 100 0.0025 17.0237 16.9089 16.8855 100000 17.001+0.25 16.7440.25 16.914+0.25 16.84+0.25
0.00125 17.0232 16.9084 200000 16.9940.18 16.86+0.18 16.9440.18 16.88+0.18
0.01 21.8149 21.6741 10000 22.04£0.93 22.0440.93 21.064+0.93 20.9140.88
0.0050 21.8067 21.6659 50000 21.96+£0.42 21.6740.41 21.4340.41 21.8240.41
So =110 0.0025 21.8047 21.6639 21.6364 100000 21.76£0.29 21.47+0.29 21.6940.29 21.5940.29
0.00125 21.8042 21.6634 200000 21.76£0.21 21.59+0.20 21.7040.20 21.63£0.20
0.01 27.0196 26.8539 10000 27.26£1.05 27.264+1.05 26.124+1.03 25.94+1.01
0.0050 27.0108 26.8452 50000 27.17£0.47 26.8640.46 26.56+0.46 27.0240.47
So =120 0.0025 27.0086 26.8430 26.8121 100000 26.94£0.33 26.63+0.33 26.8940.33 26.784+0.33
0.00125 27.0081 26.8425 200000 26.95+0.23 26.75+0.23 26.8940.23 26.81+0.23

Table 3.6: Standard Bates model. Prices of European call options. Test parameters: K = 100,
T =5 r=0.03 6 =005 Yy =004, 0y =004, ky =2, 0y =07, A=5,~v=0,n=0.1,
p=—0.5. Case 2ky by < 032,.

p=—0.5 Ay HTFDa HTFDb B-AMC Nyc HMCLSa HMCLSb AMCLSa AMCLSb
0.01 9.8335 9.7978 10000 10.154+0.46 10.204+0.46 10.474+0.47 9.8040.42
0.0050 9.8283 9.7927 50000 9.93+0.20 9.86+0.20 9.8940.19 9.784+0.19
So = 80 0.0025 9.8271 9.7914 9.7907+ 0.04 100000 9.76+0.14 9.69+0.13 9.7440.14 9.76£0.13
0.00125 9.8267 9.7911 200000 9.79+0.10 9.70+0.09 9.734+0.10 9.72+0.09
0.01 14.0801 14.0318 10000 14.58+0.56 14.46+0.55 14.9440.58 14.08+0.51
0.0050 14.0741 14.0258 50000 14.134+0.24 14.1440.24 14.1940.23 14.1240.23
So = 90 0.0025 14.0726 14.0244 14.0030+ 0.05 100000 13.98+0.16 13.87+0.16 13.944+0.16 13.894+0.16
0.00125 14.0722 14.0240 200000 13.93+0.12 13.91+0.11 13.9440.12 13.96+0.11
0.01 19.0658 19.0075 10000 19.59+0.66 19.4440.63 19.88+0.66 19.134+0.59
0.0050 19.0594 19.0011 50000 19.10+0.27 19.06+0.27 19.261+0.26 19.01+0.26
Sp = 100 0.0025 19.0578 18.9995 18.9632+ 0.05 100000 18.924+0.19 18.884+0.18 18.854+0.19 18.90+0.18
0.00125 19.0574 18.9991 200000 18.80+0.13 18.84+0.13 18.85+0.13 18.9240.13
0.01 24.7434 24.6788 10000 25.02£0.74 24.84+0.72 25.32£0.72 24.78+0.67
0.0050 24.7364 24.6719 50000 24.79£0.30 24.57£0.29 24.94+0.29 24.72+0.29
Sp = 110 0.0025 24.7347 24.6701 24.6289+ 0.06 100000 24.53£0.21 24.47+0.20 24.50£0.21 24.51+0.20
0.00125 24.7343 24.6697 200000 24.42+40.14 24.45+0.14 24.50+0.15 24.53+0.14
0.01 31.0646 30.9983 10000 30.88+0.74 31.15£0.75 31.184+0.74 31.0440.71
0.0050 31.0577 30.9914 50000 31.10£0.32 30.94£0.31 31.3240.32 30.9840.32
Sp = 120 0.0025 31.0559 30.9896 30.905240.07 100000 30.89+£0.23 30.72£0.22 30.7040.22 30.7240.22
0.00125 31.0555 30.9892 200000 30.72£0.16 30.73£0.16 30.7740.16 30.8940.15

Table 3.7: Standard Bates model. Prices of American call options. Test parameters: K = 100,
T =5 r=0.03,6 =005 Yg =004, 0y =004, ky =2, 0y =07, A=5,v=0,d =0.1,
p=—0.5. Case 2ky by < 032,.
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Bates model with stochastic interest rate

We consider now the case of Bates model associated with the Vasiceck model for the stochas-
tic interest rate. For the Bates model we consider the parameters from Chiarella et al. [34]
already used in Section Moreover, for the interest rate parameter we fix the following

parameters:

e initial interest rate ro = 0.03, speed of mean-reversion k, = 1, interest rate volatility
o, = 0.2;

e time-varying long-term mean 6,.(¢) fitting the theoretical bond prices to the yield curve

observed on the market, here set as P,(0,7) = e~0-03T,

We study the cases
p1=psy = —0.5 and po =pg- = —0.5,0.5.

No correlation is assumed to exist between r and Y. We consider the mesh grid Ay =
0.02, 0.01, 0.005, 0.0025, the case Ay = 0.00125 being removed because it requires huge
computational times. The numerical results are labeled HTFDa-b, HM Ca-b, AMCa-b,
HMCLSa-b, AMCLSa-b, their settings being given at the beginning of Section [3.5.2

When the interest rate is assumed to be stochastic, no references are available in the lit-
erature. Therefore, we propose benchmark values obtained by using a Monte Carlo method
in which the CIR paths are simulated through the accurate third-order Alfonsi [4] dis-
cretization scheme and the interest rate paths are generated by an exact scheme. For these
benchmark values, called B-AMC, the number of Monte Carlo iterations and of the dis-
cretization time steps are set as Nyic = 10° and N; = 300 respectively. In the American
case, B-AMC is evaluated through the Longstaff-Schwartz [76] algorithm with 20 exercise
dates. All Monte Carlo results report the 95% confidence intervals.

European and American call option prices are given in tables and respectively.
Tables and refer to the computational time cost (in seconds) of the different
algorithms in the European Call case and American Call case respectively. The numerical
results confirm the good numerical behavior of HTFD and HMC in the Bates-Hull-White

model as well.
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(a)

psr = —0.5 | Az HTFDa HTFDb B-AMC Nmc HMCa HMCb AMCa AMCb
0.02 1.0169 1.0079 10000 1.0040.09 0.9640.09 1.00+0.09 1.06+0.10
0.01 1.0201 1.0188 50000 1.0240.04 0.9740.04 0.9840.04 1.0140.04
So = 80 0.0050 1.0199 1.0194 | 1.015340.01 100000 1.0040.03 1.00+£0.03 1.0140.03 1.03+0.03
0.0025 1.0197 1.0193 200000 1.0140.02 1.0140.02 1.02+0.02 1.00+0.02
0.01 3.1172 3.1032 10000 3.05+0.16 3.05+0.16 3.07+0.16 3.14£0.17
0.01 3.1186 3.1137 50000 3.1040.07 3.0340.07 3.0240.07 3.0940.07
So = 90 0.0050 3.1174 3.1135 | 3.100840.02 100000 3.0740.05 3.0840.05 3.0940.05 3.1440.05
0.0025 3.1174 3.1136 200000 3.0940.04 3.1040.04 3.1140.04 3.0820.04
0.02 7.2528 7.2472 10000 7.17+0.24 7.1740.24 7.2040.24 7.2440.25
0.01 7.2528 7.2479 50000 7.2140.11 7.1840.11 7.1240.11 7.2140.11
So = 100 0.0050 7.2528 7.2480 | 7.231540.02 100000 7.18+0.08 7.24+0.08 7.2040.08 7.2740.08
0.0025 7.2528 7.2480 200000 7.2240.05 7.25+0.05 7.2440.05 7.2040.05
0.02 13.4553  13.4565 10000  13.30£0.32  13.30£0.32  13.41+0.33  13.39+0.33
0.01 13.4465  13.4440 50000  13.3740.15  13.4040.15  13.2740.15  13.38+0.15
So = 110 0.0050  13.4435  13.4407 | 13.425640.03 | 100000  13.35+0.10  13.46+0.10  13.3840.10  13.48+0.10
0.0025  13.4432  13.4404 200000  13.4040.07  13.474+0.07  13.43+0.07  13.3940.07
0.02 21.1320  21.1356 10000  20.89+0.40  20.89+0.40  21.08+0.40  20.99+0.41
0.01 21.1243  21.1239 50000  21.03+0.18  21.09+0.18  20.924+0.18  21.03+0.18
So = 120 0.0050  21.1222  21.1214 | 21.107040.04 | 100000  21.01+0.13  21.1740.13  21.044+0.13  21.17+0.13
0.0025  21.1215  21.1207 200000  21.0640.09  21.164+0.09  21.12+0.09  21.060.09
(b)
psr =05 | Az HTFDa HTFDb B-AMC Nmc HMCa HMCb AMCa AMCb
0.02 1.3459 1.3379 10000 1.2940.11 1.2840.11 1.3240.10 1.4140.11
0.01 1.3482 1.3471 50000 1.344+0.05 1.3040.05 1.32+40.05 1.3540.05
So = 80 0.0050 1.3479 1.3475 1.3446+0.01 100000 1.3240.03 1.31+0.03 1.34+40.03 1.34+40.03
0.0025 1.3477 1.3473 200000 1.3340.02 1.34+40.02 1.3540.02 1.3240.02
0.01 3.7320 3.7233 10000 3.6240.18 3.6240.18 3.64+0.18 3.76+0.19
0.01 3.7323 3.7304 50000 3.6940.08 3.6540.08 3.6440.18 3.7640.19
So = 90 0.0050 3.7311 3.7208 | 3.726340.02 100000 3.6640.06 3.6840.06 3.7140.06 3.7340.06
0.0025 3.7311 3.7299 200000 3.6940.04 3.7240.04 3.7340.04 3.68-40.04
0.02 8.0100 8.0073 10000 7.83+0.26 7.8340.26 7.8240.26 8.00£0.27
0.01 8.0112 8.0102 50000 7.92+0.12 7.9340.12 7.9340.12 7.9740.12
So =100 | 0.0050 8.0114 8.0107 | 8.0069+0.03 | 100000 7.91+0.08 7.9740.08 7.9940.08 8.02-40.08
0.0025 8.0114 8.0107 200000 7.95+0.06 8.0240.06 8.0040.06 7.9540.06
0.02 14.1482  14.1505 10000  13.89+0.35  13.89+0.35  13.88+0.35  14.07£0.36
0.01 14.1413  14.1414 50000  14.01+0.16  14.05+0.16  14.03+0.16  14.09+0.16
Sp =110 | 0.0050  14.1388  14.1388 | 14.132340.03 | 100000  14.01£0.11  14.1040.11  14.12+0.11  14.1440.11
0.0025  14.1386  14.1386 200000  14.06+0.08  14.174+0.08  14.13+0.08  14.0740.08
0.02 21.6737  21.6772 10000  21.374£0.42  21.37+0.42  21.35+£0.42  21.5140.43
0.01 21.6670  21.6674 50000  21.50+0.19  21.55+0.19  21.524+0.19  21.60+0.19
Sp =120 | 0.0050 21.6651  21.6653 | 21.650140.04 | 100000  21.52+0.13  21.63£0.13  21.64+0.13  21.68+0.14
0.0025  21.6645  21.6646 200000  21.5740.10  21.714+0.10  21.65+0.10  21.58+0.09

Table 3.8: Bates-Hull-White model. Prices of European call options. Test parameters: K = 100,
T=05,0=0.05,,r=0.03, k. =1, 0. =02, Yy =0.04, 0y = 0.04, ky =2, oy =04, A =5,
v=0,n=0.1, psy = —0.5,p5, = —0.5,0.5.
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(a)

psr = —0.5 Ax HTFDa HTFDb B-AMC Nnic HMCLSa HMCLSb AMCLSa AMCLSb
0.02 1.0561 1.0470 10000 0.76£0.07 0.56+0.06 0.95+0.08 0.82+0.08

0.01 1.0598 1.0588 50000 1.08£0.04 0.91+0.04 1.01£0.04 0.96+0.04

Sp = 80 0.0050 1.0597 1.0596 1.054440.01 100000 1.07+0.03 1.03+0.03 1.07+0.03 1.044+0.03
0.0025 1.0596 1.0595 200000 1.05£0.02 1.04+0.02 1.07+0.02 1.05+0.02

0.01 3.2511 3.2364 10000 3.284+0.15 3.39+0.16 3.35+0.16 3.07+0.15

0.01 3.2537 3.2493 50000 3.331+0.07 3.21+0.07 3.25+0.07 3.30+0.07

Sp = 90 0.0050 3.2528 3.2494 3.2273+0.01 100000 3.2340.05 3.24+0.05 3.27+0.05 3.25+0.05
0.0025 3.2528 3.2495 200000 3.2240.03 3.2340.03 3.2540.03 3.2440.03

0.02 7.6012 7.5952 10000 7.6440.22 7.9940.23 7.8040.23 7.681+0.22

0.01 7.6020 7.5976 50000 7.7240.10 7.584+0.09 7.6140.10 7.65+0.10

Sp = 100 0.0050 7.6022 7.5980 7.558940.02 100000 7.544+0.07 7.6240.07 7.611+0.07 7.5440.07
0.0025 7.6022 7.5980 200000 7.5440.05 7.5440.05 7.564+0.05 7.60+0.05

0.02 14.1510 14.1524 10000 14.2240.28 14.614+0.29 14.354+0.29 14.074+0.28

0.01 14.1443 14.1425 50000 14.254+0.13 14.114+0.12 14.161+0.12 14.1740.13

Sp =110 0.0050 14.1420 14.1401 14.0909+0.03 100000 14.03%+0.09 14.1840.09 14.1040.09 14.0640.09
0.0025 14.1419 14.1399 200000 14.054+0.06 14.0440.06 14.0740.06 14.13+0.06

0.02 22.2466 22.2505 10000 22.38+0.32 22.8440.33 22.46+0.32 22.15+0.32

0.01 22.2412 22.2419 50000 22.35+0.15 22.2740.14 22.2440.14 22.28+0.14

Sp =120 0.0050 22.2398 22.2402 22.1736+0.03 100000 22.12+0.10 22.2740.10 22.1940.10 22.1740.10
0.0025 22.2394 22.2397 100000 22.12+0.10 22.2740.10 22.1940.10 22.1740.10

(b)

psr = 0.5 Ax HTFDa HTFDb B-AMC Nyvc HMCLSa HMCLSb AMCLSa AMCLSb
0.02 1.3551 1.3470 10000 1.18£0.09 1.294£0.10 1.1240.09 0.80+0.08

0.01 1.3576 1.3566 50000 1.35£0.05 1.17£0.04 1.33£0.05 1.25+0.05

Sp = 80 0.0050 1.3573 1.3570 1.3559+£0.01 100000 1.33£0.03 1.30£0.03 1.33£0.03 1.27+0.03
0.0025 1.3571 1.3569 200000 1.35£0.02 1.31£0.02 1.38+0.02 1.34+0.02

0.01 3.7696 3.7606 10000 3.724+0.17 3.78+0.17 3.82+0.18 3.72+0.17

0.01 3.7705 3.7688 50000 3.8640.08 3.71£0.08 3.80+0.08 3.81+0.08

Sp =90 0.0050 3.7694 3.7685 3.7633+0.02 100000 3.7540.06 3.74+0.05 3.76+0.05 3.74+0.05
0.0025 3.7694 3.7686 200000 3.751+0.04 3.74+0.04 3.80+0.04 3.79+0.04

0.02 8.1285 8.1249 10000 8.1240.24 8.52+0.26 8.25+0.26 8.154+0.25

0.01 8.1308 8.1301 50000 8.25+0.11 8.08+0.11 8.15+0.11 8.184+0.11

Sp = 100 0.0050 8.1311 8.1308 8.11224+0.03 100000 8.0740.08 8.16+0.08 8.11+0.08 8.10+0.08
0.0025 8.1312 8.1309 200000 8.0840.06 8.07+0.06 8.14+0.06 8.16+0.06

0.02 14.4455 14.4468 10000 14.484+0.32 14.8440.33 14.4340.32 14.514+0.32

0.01 14.4409 14.4414 50000 14.601+0.15 14.404+0.14 14.454+0.14 14.474+0.14

Sp =110 0.0050 14.4389 14.4395 14.388440.03 100000 14.344+0.10 14.474+0.10 14.3940.10 14.384+0.10
0.0025 14.4388 14.4394 200000 14.354+0.07 14.374+0.07 14.384+0.07 14.484+0.07

0.02 22.2859 22.2893 10000 22.23+0.36 22.8740.39 22.4540.36 22.29+40.35

0.01 22.2815 22.2827 50000 22.50+0.17 22.2940.16 22.2740.16 22.28+0.16

Sp = 120 0.0050 22.2802 22.2813 22.203940.04 100000 22.17+£0.12 22.3140.12 22.2440.12 22.22+40.12
0.0025 22.2798 22.2808 200000 22.17+0.08 22.1740.08 22.1740.08 22.3240.08

Table 3.9: Bates-Hull-White model. Prices of American call options. Test parameters: K = 100,
T =05,68=005r =003, kK, = 1, 0, = 0.2, Yy = 0.04, Oy = 0.04, ky = 2, oy = 0.4, A\ = 5,
v=0,n=0.1, psy = —0.5,p5, = —0.5,0.5.
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Ax HTFDa HTDFb Nnvc HMCa HMCb AMCa AMCb
0.02 2.77 22.95 10000 0.13 0.25 0.36 0.48
0.01 6.15 48.17 50000 0.66 1.35 1.11 2.48
0.005 12.12 99.19 100000 1.37 2.56 1.82 4.99
0.0025 27.61 204.88 200000 2.56 5.08 3.70 9.96

Table 3.10: Bates-Hull-White model. Computational times (in seconds) for European call options
in Table [3.8 for So = 100, ps, = —0.5.

Ax HTFDa HTDFb Nnic HMCLSa HMCLSb AMCLSa AMCLSb
0.02 2.77 23.10 10000 0.28 0.43 0.40 0.62
0.01 6.39 48.65 50000 0.80 1.79 1.30 2.72
0.005 12.50 99.85 100000 1.91 3.89 3.02 6.15
0.0025 27.92 205.60 200000 4.03 8.11 5.20 10.75

Table 3.11: Bates-Hull-White model. Computational times (in seconds) for American call options
in Table[3.9 for So = 100, pg, = —0.5.
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Chapter 4

Weak convergence rate of Markov
chains and hybrid numerical
schemes for jump-diffusion

processes

4.1 Introduction

This chapter is devoted to the study of the weak convergence rate of numerical schemes
allowing one to handle specific jump-diffusion processes which include the Heston and Bates
models in the full parameters regime. We generalize the hybrid tree- finite difference method
described in Chapter [3| for the computation of European and American options in the
stochastic volatility context and we study the rate of convergence. Let us mention that,
under these models, the literature is rich in numerical methods but, as far as we know, poor
in results on the rate of convergence, with the exception of the papers [4] [6l 23] O8], all of
them either dealing with schemes written on Brownian increments or requiring restrictions
on the Heston diffusion parameters. So, we first study the convergence rate of tree methods

and then we tackle the hybrid procedure.

Tree methods rely heavily on Markov chains. So, in the first part (Section [4.3) we study

the rate at which a sequence of Markov chains weakly converges to a diffusion process
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(Y2)1e[o, 7] solution to
aY; = py (Yy)dt + oy (Yz)dW;.

In this framework, the weak convergence is well known to be governed by the behaviour
of the local moments up to order 3 or 4 (see e.g. [89]). In order to get the speed of con-
vergence, we need to stress such requests, making further but quite general assumptions
on the behaviour of the moments, and in Theorem we prove a first order weak con-
vergence result. As an application, we give an example from the financial framework: we
theoretically study the convergence rate of the tree approximation proposed in [10] for the
CIR process (and described in Section [3.3.1)). Several trees are considered in the literature,
see e.g. [36, 59, 1], but all of them work poorly from the numerical point of view when
the Feller condition fails. Our result for the tree in [I0] (Theorem works in any
parameter regime. Recall that in equity markets, one often requires large values for the
vol-vol o whereas in interest rates context, o is markedly lower (see e.g. the calibration
results in [44] and in [30] p. 115, respectively). So, a result in the full parameter regime is
actually essential. We stress that our convergence Theorem is completely general and
may in principle be applied to more general trees constructed through the multiple jumps
approach by Nelson and Ramaswamy [79] or also to other cases, e.g. the recent tree method
developed in [2].

In the second part (Section , we link to (Y;)iepo,r) a jump-diffusion process (X)o7
which evolves according to a stochastic differential equation whose coefficients only depend

on the process (Y3);ec(o,77:
dX; = px (Yo)dt + ox (Y1)dB; + yx (Yy)dHy,

where H is a compound Poisson process independent of the 2-dimensional Brownian motion
(B,W). So, the pair (Xy,Y;)icpo,r) evolves following a Stochastic Differential Equation
(hereafter SDE) with jumps. Given a function f, we consider the numerical computation
of E[f(Xr,Yr)] or sup ¢y . E[f(Xr,Y7)] through a method (Section , which works
backwardly by approximating the process Y with a Markov chain and by using a different
numerical scheme for solving a (local) PIDE allowing us to work in the direction of the
process X. Then (Section , in Theorem we give a general result on the rate of
convergence of the hybrid approach. We stress that the approximating algorithm is not

directly written on a Markov approximation, so one cannot extend the convergence result
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provided in the first part of the chapter. We then study the stability and the consistency
of the hybrid method, but in a sense that allows us to exploit the probabilistic properties
of the Markov chain approximating the process Y.

It is worth mentioning that the test functions on which we study the rate of convergence
are smooth. In fact, there is a strict connection between such hybrid schemes and the
use of a discrete noise in the approximation procedure. This means that we cannot use
regularizing arguments d la Malliavin in order to relax the smoothness requests, as it can
be done when the approximation algorithm is based on the Brownian noise (see the seminal
paper [16] or the recent [6] for the Heston model) or on a noise having at least a “good
piece of absolutely continuous part” (Doeblin’s condition, see [14]).

We then consider two possible finite-difference schemes (Section to handle the
(local) PIDE related to the component X: an implicit in time/centered in space scheme
(Section and an implicit in time/upwind in space scheme (Section . In both
cases, the numerical treatment of the nonlocal term coming from the jumps involves implicit-
explicit techniques, as well as numerical quadratures. We apply the convergence Theorem
and we obtain that the hybrid algorithm has a rate of convergence of the first order in
time and of a order in space according to the chosen numerical scheme. As an application,
we give the weak convergence rate of the hybrid procedure written on the Heston and on
the Bates model for pricing European options (Section . Finally, in Section we give

a theoretical result on the convergence rate in the case of American options.

4.2 Notation

In this section we establish the notation which will be used in this chapter. Let d € N* =
N\ {0}.

e For a multi-index [ = (Iy,...,lq) € N we define |I| = Z?Zl l; and for y € RY, we define
8ly = 3511 . .-a};; and y! = yll1 : yild Moreover, we denote by |y| the standard Euclidean
norm in R? and for any linear operator A : R? — R, we denote by |A| = sup),_; |Ay| the

induced norm.

e [P(R? dm) denotes the standard LP-space w.r.t. the measure m on (R%, B,), By denoting
the Borel o-algebra on R? and we set | - | Lp(Rd,dm) the associated norm. The Lebesgue

measure is denoted through dzx.
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e Let D C R? be a domain (possibly closed) and ¢ € N. C%(D) is the set of all functions
on D which are g-times continuously differentiable. We set CEOI(D) the set of functions

g € C4(D) such that there exist C,a > 0 for which
09()| <CA+ 1Y),  yeD [il<q

For [a,b] € RT, weset C7 | 10, (D) the set of functions v = v(t, y) such that v € Cla/214([a, b) x

D) and there exist C, ¢ > 0 for which

sup [0F0lo(t,y)| < CL+ 1), yeD, 2k + [l <q
tela,b)

For brevity, we set C(D) = C°(D), Cpo1(D) = CY

pol

(D) and Cpol(a,4) (D) = C’OOL[G’b] (D). We
also need another functional space, that we call C’g’gl(]Rm,D), p € [1,00], ¢ € N, m € N*:

g=g(z,y) € C’gfl(]Rm,D) if g e Cgol(]Rm x D) and there exist C, ¢ > 0 such that

009, 9| ioem awy < CALH1yl), U]+ 11 < q.

Similarly as above, we set C”?  (R™ D) the set of the function v € C?

pol,[a,b] pol,[a,b] (Rm X D)
such that

tx%W%%wmwmwmmxm+ma 2k + ||+l < ¢
If [a, b] = [0, T, to simplify the notation, we set Cgol,[o,T] (D) = CgOLT(D) and Cﬁgl,[O,T} (D) =
Cporr(P)-

e For fixed Xo = (Xo1,...,X0q) € R? and Az = (Axy,...,Axg) € (0,+00)? (spatial
step), X = {z = (Xo1 + 11421, ..., Xod + 14A%4) };cza denotes a discrete grid in R, For
p € [1,00], we set [,(X) the discrete l,-space of the functions ¢ : X — R with the norm
Pl = (Coen lp(@)PAz - Acg)V? if p € [1,00) and |ploo = sup,ey [9(@)] if p = oc.
Moreover, for a linear operator I' : [,(X) — [,(X), the induced norm is denoted by |I'|, =
sup|,|,<1 [T'¢lp- And for a function g : R? — R, we set |g|, the I,(X) norm of the restriction
of g on X. When d = 1, we identify (¢(x))zex with (¢;)icz through ¢; = p(Xo + iAz),
i € 7.

e LP(Q) is the short notation for the standard LP-space on the probability space (2, F,P),
on which the expectation is denoted by E. We set || - ||, the norm in LP(2).
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4.3 First order weak convergence of Markov chains to diffu-

sions

Let d € N* and D € R? be a convex domain or a closure of it. On a probability space

(Q, F,P), we consider a d-dimensional diffusion process driven by
dYy = py (Ya)dt + oy (Y)dWe, Yo € D, (4.3.1)

where W is a ¢-dimensional standard Brownian motion. From now on, we set ay = oy oy,
the notation x denoting transpose. We recall that the associated infinitesimal generator is
given by

A= %Tr(ayDg) + py - Vy, (4.3.2)

where Tr denotes the matrix trace, Dg and V, are, respectively, the Hessian and the gradient

“w.»

operator w.r.t. the space variable y and the notation
Hereafter, we fix T'> 0, f : D — R and we define

stands for the scalar product.

ut,y) = E[f (Y71, (t,y) € [0,T] x D, (4.3.3)

where Y%¥ denotes the solution to the SDE in (4.3.1)) that starts at ¢ in the position y. We
do not enter in specific requests for the diffusion coefficients or for f, we just ask that the

following properties are met:
(a) py has polynomial growth;

(b) for every (t,) € [0,T] x D there exists a unique weak solution (Y+¥) sefe,) of (4.3.1)
such that P(Vs € [t,T], Yi¥ € D) = 1;

(c) the function w in (4.3.3]) solves the PDE

% 1 Au=0, inl0,T)xD,

u(T,y) = f(y), inD.

(4.3.4)

The above proverties (a), (b) and (c¢) will be assumed to hold throughout this section.
We are interested in the numerical evaluation of u(0,Yy) = E(f(Y7)). A widely used and
computationally convenient method is by computing the above expectation on an approx-

imation of the process Y. Here, we consider an approximation through a Markov chain

149



Chap.. 4 - Weak convergence rate of Markov chains and hybrid numerical schemes for
Jump-diffusion processes

that weakly converges to the diffusion process Y, see e.g. the classical references [89]. We
will see in Section an application to tree methods, that is, when the process Y is
approximated by means of a computationally simple Markov chain. Here, our aim is to

study, under suitable but quite general assumptions, the order of weak convergence.

So, let N € N* and set h = T'//N. The parameters N and h are fixed once for all. Let
(Y#)n:07.,_,N denote a Markov chain, whose state space, at time-step n, is given by y{; c D.
In our mind, (Y,?)nzow, ~ is a Markov process which is a discrete weak approximation in
time (and possibly in space) of the d-dimensional diffusion Y, namely, YT? approximates Y
at times nh, for every n = 0, ..., N. Of course, we assume that Yoh =Yy, that is, J/gf ={Y,}.
Without loss of generality, we may assume that (Y,?),—o_. n is defined in (Q, F,P).

In order to study the rate of the weak convergence of (Y#)nzo’,_y]v to Y, we need to stress
the requests that are usually done in order to merely prove the convergence (see e.g. [89]).

In particular, we need the following assumption.

Assumption A;. There exists h > 0 such that, for every h < h, the first three local

moments satisfy

EY, ) = Y | Y] = py (V)b + fa(Yo), (4.3.5)
E[(Yi — Y (VE — Y1) | Y] = ay (Y0)h + gn(VR), (4.3.6)
B[Vl — Y Y =Y, 1eN i =3, (4.3.7)

where f, : D — R%, gy : D — R4 gnd Jni : D — R satisfy the following properties: there
exist p > 1 and C' > 0 such that

sup sup ||fh(er‘)Hp < Ch?, (4.3.8)
h<hn=0,..,N
sup sup [[gn(Y;)[l, < Ch?, (4.3.9)
h<hn=0,....N
sup sup ldna (Y1), < Ch2, 1] = 3. (4.3.10)
h<hn=0,...,N

We also need the following behavior of the moments.

Assumption As. There exists h > 0 such that for every p > 1 there exists C, > 0 for
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which
sup sup HYpr < Cp, (4.3.11)
he<h 0<n<N
sup sup || il — Y, < C,. (4.3.12)
h<h 0<n<N

We can now state the following first order weak convergence result.

Theorem 4.3.1. Let assumptions Ay and Az hold and assume that u € C2 vol (D), u being
defined in . Then there exist h > 0 and C > 0 such that for every h < h one has

E[f(Y)] - E[f(Yr)]| < CTh.
Proof. The proof is quite standard. Since E[f(Y{)] = E[u(T,Y2)] and E[f(Yr)] = u(0, Yp),
we have

E[f (Y1) - E[f(Y7)] = E[u(T, Y7") — u(0, Yp)] Z Efu((n + 1h, Y1) — u(nh, Y;!)].

Since u € C’éoLT(D), we can apply Taylor’s formula to t — wu(t,y) around nh up to order

1 and to the functions y ~ u(t,y) and y ~ dwu(t,y) around Y,* up to order 3 and 1

respectively. We obtain

hl ( n—+1 Yh)
|7

w((n+ DY) = > 9,0 u(nh, Y,
o<l +21'<3

+Ri(n, h, Y V), (4.3.13)

where the remaining term R; is given by

1
Ri(n,h, YY) = h2/ (1 —7)02u(t + Th, Y, )dr
0

1
0 Y0000 =Y [ ob0utnn, Y+ (vl — vi)de
|k|—2 0
n+1 Yqﬁ) 3 ok h h h
+ Z ( - §) ayu(nhv Yn + g(Yn—l—l - Yn ))d§
k=4 °
We now pass to the conditional expectation w.r.t. Y," in (4.3.13)) and use (4.3.5)) and (4.3.6)).

By rearranging the terms we obtain

Efu((n + 1)h, Y1) = u(nh, ;)]

1
- [@“(”hm + (V) - Vyu(nh, Y2) + 5 Tr(ay Diu(nh, Y1) ] +ZRI
(4.3.14)
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in which
RA(h) = B[Ry (n, b, V], Vi) R2() = WE[(ny (V) + Fu(¥0) - V,0unh, Y1),
RA(h) = EL(VD) - Vyu(nh, Y, RA(R) = SE[Te(on (V) Diu(nh, Y1),
R3() = = S Blofu(nh, V)i k(v
|k|=3

Thanks to (4.3.4]), the first term in (4.3.14)) is null, so
[Blu((n+ 1)h, Yi1) = u(nh, Y,1)]| < Z IRi (h

We now prove that |R (k)] < Ch?, for every i = 1,...5. Let h > 0 such that both
assumptions A; and As hold and let h < h. Since the derivatives of u have polynomial

growth, one has
(R, Y2, Yl < O (1 V0 1l ]) (12 4 BV = Y2 Yty = YY),

where C,a > 0 denote constants that are independent of h and, from now on, may change

from a line to another. Then, by using the Cauchy-Schwarz inequality, (4.3.11]) and (4.3.12]),

we get

IRL(R)] < C||(1+ [V + [V, |2+ h(Yy — Y2+ (v — Y|, < on2.

n

As regards R2(h), we use the polynomial growth of V,du, the Cauchy-Schwarz inequality
and the Holder inequality, so that

|R2(R)| < CE[(1+ ) lny (YO B + CE[(1 + [Y[) | fa (Y]
< Ol + 110y [y (V) |y 22+ Cl+ 1] (LA (D

where p is given in (4.3.8)) and g is its conjugate exponent. Since py has polynomial growth,

by (4.3.8]) and (4.3.11)) we get

[R2(h)| < C12.

The remaining terms R3(h), R:(h) and R (h) can be handled similarly, so the statement
follows. =
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4.3.1 An example: a first order weak convergent binomial tree for the
CIR process

We now fix d = 1 and D = R} = [0,00). We consider the CIR process (Y;);c[o,7] solution
to the SDE

dY; = k(0 — Y;)dt + o+/Y; dW,, Yy > 0.

We assume that 6,x,0 > 0 and we do not require the Feller condition. Therefore, the
process Y can reach 0.

We consider here the “multiple jumps” tree approximation for the CIR process described
in Section We first briefly recall how the tree works and then, as an application of
Theorem [4.3.1] we study the rate of convergence.

Recall that, for n =0,1,..., N we have the lattice

Note that Y = {Yp}. For each fixed node (n,k) € {0,1,...,N — 1} x {0,1,...,n}, the
“up” jump ky(n, k) and the “down” jump kq(n, k) from y € Y7 are defined as

ku(n k) = min{k* : k+1<k*<n+1and y + py(yH)h <y}, (4.3.16)
ka(n, k) = max{k* : 0 < k* <k and y' + py (yp)h >y}, (4.3.17)

where py (y) = k(0 — y) and with the understanding k. (n,k) = n + 1, resp. kq(n,k) = 0,
if the set in (4.3.16]), resp. (4.3.17)), is empty. In fact, starting from the node (n,k) the
probability that the process jumps to ky(n, k) and kq(n, k) at time-step n + 1 are set as

wy (YR + 97 =yt o

n+1 n+1
Yku(nk) ~ Yka(n,k)

respectively. We will see in next Proposition that for h small enough the parts “0Vv”

and “Al” can be omitted.

keypy(n,k) =0V A1l and pg(n,k) =1—pu(n,k)

We call (Yf)n:(],l,m, ~ the Markov chain governed by the above jump probabilities. As
an application of Theorem we shall prove the following result.

Theorem 4.3.2. Let f € Céol(R+). Then, there exist h > 0 and C > 0 such that for every
h < h,
[E[f(YN)] - E[f(Y7)]| < CTh,

that is, the tree approximation (Ynh)n:() N 18 first order weak convergent.

-----
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In order to discuss the assumptions A; and Ay of Theorem [4.3.1] we need some prelimi-

nary results which pave the way to the analysis of the convergence.

Proposition 4.3.3. There exist 0,,0%,Cs,h > 0 such that for any h < h the following
properties hold.

(i) If 0.h < yi < 0*/h, then ky(n, k) =k +1, kq(n, k) = k. Moreover,

2 2
40- g
Y = Y+ Thtoyuih and Yl = v+ “h—o\fyih.

(ii) If yp < 6.h, then kq(n, k) = k. Moreover,

0 <yt o — Vi < Cih (4.3.18)

(iii) If y > 6*/h, then ky(n, k) =k + 1.

(iv) The jump probabilities are

MY(y]:;L)h +uyp — yzzz;k) yzu(n,k) — Yy — MY(yg)h
pu(n, k) = ntl _ ontl ; pa(n, k) = ntl_ ntl
Yiunk) ~ Yka(nk) Yku(nk) = Yka(nk)

(4.3.19)

The proof of Proposition [4.3.3] relies on a boring study of the properties of the lattice, so
we postpone it in Appendix This is all we need to prove that Ay holds:

Proposition 4.3.4. The CIR approzimating tree {Y#}n:o,...,N satisfies Assumption Ao.

Proof. Step 1: proof of (4.3.11)). We use a technique firstly developed in [3] for a CIR
discretization scheme based on Brownian increments. The key point is the proof of a
monotonicity property allowing one to control the moments of the tree: there exist b, C, h >
0 such that for every h < h and n =0,..., N — 1 one has

0< Y, <A +bh)Y)+Ch+o\/YPRW! (4.3.20)
where W/, is a r.v. such that
P(Wyii1 = 2pa(n, k)Y, = i) = pu(n, k) = 1 = B(Wyl ) = =2pu(n, k)Y, = yf). (4.3.21)

To this purpose, fix a node (n, k). For the sake of simplicity, we write k,, resp. kg, in place
of ky(n, k), resp. kq(n, k). We have (see (4.7.94)) that
1 o 1 o
vty < up+ Th+o [yph,  yptt <yl + <h o [yih.
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By Proposition for h < h, if 6,h < yp < 0*/h the up and down jumps are both single,
hence y"+1 = yZIll and y”'H = yk+1 On the other hand, if y; > 6*/h the up jump is single,
that is y"+1 ygill , while the down jump can be multiple but, in every case, is still true

that
2

o
yﬁjl Yt =y + Zh — oy /yrh.

Finally, if ! < 0.h, we have y"+1 yZH, while the up jump can be multiple but we can

always write

Yt < yp + Coh <y + Cuh+ o\ [ylh.

Summing up, if we set C = max (C*, T ) for every h small we can write

0<Y <Y+ Ch+o\/VEnZ!

where Z!"_, is a random variable such that P(Z!", | = +1|Y;! = y?') = p,(n, k) and P(Z}, | =
—1|yh = yy) = pa(n, k). Note that E( n+1]Yh =y2) = pu(n, k) — pa(n, k) = 2p,(n, k) — 1.
Then, the random variable

Wn+1 ZQH - E[ZQH‘Ym

has exactly the law given in (4.3.21). We also define the function P,(y;}) = pu(n, k).
Therefore,

0<Yl, <Y+ Ch+o\/YVPh(2P,(Y;") — 1)+ o\/YPRW],

h
2P, (Y;!) — 1\]1{%2%} + o4/ YR (2P, (Y, - 1)]1{Y#<%}

<YM+ Ch+oVo*
+o\/ YW,

Now, if V" > % then 1/ 22/ < Yézh , si . € 10, 1], we have |2P,(Y,")—1| < 1. Then,

0 < Vly < (L4 BV + Cht oy /YR (2Pu(Y) = )Ty o +a\/)/7hW s

where b = \/%. Let us study the quantity o/Y;*h (2P, (V") — 1)]1{Y#<%}. If .h <y <
0* /h, by using (4.3.19)) and point 1. of Proposition we can explicitly write

o\Jyih QPu) — 1) = 0\ [uph (2(; + 4“;;%7 2>h —1) = py (vf)h - th < h.

155



Chap.. 4 - Weak convergence rate of Markov chains and hybrid numerical schemes for
Jump-diffusion processes

If instead y; < 6«h, then by using 2. in Proposition [4£.3.3] we have

2py (Y h+ 2yp — gl =yt
or/yrh 2Pu(yf) — 1) = o\ Jyph — aln)  hun)

yku(n k)~ Yka(n,k)

/72,11,)/ yp)h + 2?/k /72m9h+ 20, h
+

So, by inserting, for every n < N — 1 we get
0< Y, <A+bh)Y," +Ch+o(k+0.)h+oy/YRW!

and (4.3.20)) is proved.

Now, we repeat step by step the proof of Lemma 2.6 in [3] in order to get (4.3.11]). We
use induction on p. For p = 1, by definition one has E[Y;" ;|Y,"] = V" + py (Y,)h and, by
passing to the expectation, E[Y,", ] = E[Y;"] + E[uy (Y;")h] < E[Y;"] + £6h, from which we
obtain E[Y,", ;] < Yy + x0(n + 1)h < Yy + k0T and the case p = 1 is proved. So, assume
that ( m ) holds for p — 1 and let us prove its validity for p. Using (4.3.20]), we have

|
E[(y#+1)p] < Z %( + bh)ll Lol {(Yi)l1+%hl3+%(W£+l)h} )
li+l2+Il3=p s
So, it is sufficient to control £(l1,l2,l3) = E [(Y,?)ll‘*'%hlﬁ%(W#H)l?} forli+la+1l3=p
Assume first that [; + 3 b <p_ § a case giving I3 + 3 b > 3 . Without loss of generality we

can assume Cp_1 > 1. Moreover recall that [, +1| < 2. By using the Holder’s inequality
p—1
with a = hi we get

E(ly, 1o, 13) < |E(Ih, 1, 13)| < E [(Yj)lﬁ%} dleplit? < ¢ 20p3,

Therefore
|
S (0o ORE(l 1 1) < CpoihE Y (14 Db (20)2C0
1751 1751
l1+la+i3=p hliplls! li+lo+l3=p 1111513!

l1+lg/2<p-3/2
< Cp 1h2(14b+ 20+ C)P.
The case ll—i—% > p—% gives 4 further contributions, namely (1, [2,13) = (p,0,0), (p—1,0, 1),
(p—1,1,0) and (p — 2,2,0). So, we get
E[(Y" 1)) < Cpor(1 4 b+ 20 + C)Ph2 + (1 + bh)PE[(Y;")P] + p(1 + bh)P ' ChE[(Y,*)P~1]

p(p —

1
o0+ by e P 2w+ PP by ()7,
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Consider the last two terms above. For the first, we note that
E[(Y,)P W] = BV PRI Y] = 0

and for the second, we recall that [W/, | < 2. So, we easily obtain

BI(Y/41)7] < Cpah(L+ b+ 20+ 0P [1 4+ PE V] (1 onpmi(y)

By recursion on n, we get
2 9 n )
EK&WQ]S(%qhﬂ+b+2a+CW£%;§if§:ﬂ+bmw+lﬁu+bmm“m
§=0
and [£.3.17] now follows.
Step 2: proof of (4.3.12). We can write

p _
Y,y — Y P <3P” 1’ h+0 Yiih g+1) Lo, nevnco sy + 3" Yoy = Vit Py ncg,ny

+ 3N = Y P ynsge sy = 3P (I + o + I3),

where we have used that, on the set {0.h < Y < 6*/h}, we have Y;",, = VI + & iy
oY IhZy,y, with P(Z, = 1| Y y) = Pu(Y)) and P(Z), = —1 ! Yi) = Pd(YJL)‘
Now, by using (4.3.11]), Proposition u 4.3.3, the Cauchy-Swartz and the Markov inequality,

o P i (oP\P hyp11/2\ 7,p/2 1 g /2
I gE[(Zthm/Y,{Lh) ] < or ((Z) + oPE[(Y)P) )hp < or- ((7) +o?\/C )hp
12 < thpv

9*>1/2 S 2 CQpCp hp/2

h ()P

and (4.3.12)) follows. O

Proposition 4.3.5. The CIR approximating tree {Yi}n:07_,_,N satisfies Assumption Aj.

Iy S E[(Yh — Y] 2p (v >

Proof. Straightforward computations give E[Y;" ; — Y, | Y = puy (Y,")h, so (£35) and
(4.3.8)) immediately follow. As for (4.3.6)),

E[(YV — Y02 Y = i) = B[V — Y2 1Y = vkl Lo

n n

+ B[V — Y2 | Yol = 1o, neyp<ovmy + BVt = Y2 1Y = gl ynsge iy
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We study separately the first two terms of the above r.h.s. If 4 < 6.h, Proposition .3.3]
gives ]y"“ —yp| < Cih and ]y”“ yr| < Cyh so that

B[ — Y2 Yy = vl lppcny = o1(W0)h Liyp<o.ny.,

with ¢ such that |¢;(y)| < C2. If instead 6,k < y2 < 6*/h, by using (4.3.19) we get

2 2

n n n g n o
Wit = v paln, k) = o*yih + T (n(0 = i) — - )2

n+1
( 2

Yt — i) puln, k) +
So,
E[(Y1 = Y2 1Y = vl loncyp<osny = (02uph+ 020f)h*) Lig.neyr <ot ny»
with ¢y such that |2 (y)| < %( (0+y)+ ) By inserting, (4.3.6) - ) follows with gy, satisfying
l9n (V)] < er(L+ Y h* + E((Yoy — Yo')? + ohYy | V) Liynsenys

c1 denoting a suitable constant. By Proposition and the Markov inequality, (4.3.9)
follows.
Finally, for (4.3.7)), we write

E[(Yy — Y2 1Y = i) = BV — V) 1Y = wil L <o
+E((Y = Y [ Y = i L. neyp <00 /ny + BV = Y 1Y = yi L gyns0e my-

Now, if y? < 6,k then |Y,"; — y?|> < C3h3. If instead 6.h < y < 6*/h, by (£3:19) one

obtains
Wt = ui)’pu(n k) + (Y = yi)’pa(n, k) = py (yi)h? (Jzyk + I h) (7 T h) h?.
Therefore,

(Y] < eah(1+ (V1)) + E([Ypyy = Y P + ohY | V) Lynsge jny

¢y denoting a suitable constant, and again by Proposition and the Markov inequality,

(4.3.10) follows. O

We are finally ready for the

Proof of Theorem[{.3.3 By Theorem 4.1 in [3] (or Corollary , one has that if f €
CPOI(R+) then u € C4 poL7(R+) . Since Assumption A; and Ay both hold, the statement
follows as an application of Theorem O
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4.4 Hybrid schemes for jump-diffusions and convergence rate

We now introduce a m-dimensional jump-diffusion (X¢);c[o,r) whose dynamics is given by
coefficients depending on the process (Y;)ic[o, 7] discussed in Section More precisely, we

consider the stochastic system

dXt = [LX(Y;J)dt + O'X(Y;}) dBt + 'YX(Y;f)dHt, XO S Rm,
dY; = py (Y;)dt + oy (V) AW, Yy € D,

(4.4.22)

where B is a /1-dimensional Brownian motion and H is a ¢5- dimensional compound Poisson

process with intensity A and i.i.d. jumps {Jy}, that is

K
Ho=> J (4.4.23)
k=1

K denoting a Poisson process with intensity A. We assume that the Poisson process K, the
jump amplitudes {J}, and the Brownian motions B and W are independent. Moreover,
we ask that J; has a density pj,, so that the Lévy measure associated with H has a density

as well:

v(dz) = v(z)dx = Apy, (x)dz.

Hereafter, we denote by L the infinitesimal generator associated with the diffusion pair
(X,Y), ie.

Lg(z,y) = %Tr(a(y)Di,yg(w, Y)) + 1Y) - Vayg(z,y)

(4.4.24)
+x(0) [ (gl +¢.9) = gl (o)

where u(y) = (ux(y), py (y))* and a(y) = oo*(y), where

ox(y) Omxd
o(y) = :
Odxm Oy (y)
Here, ngy and V,, are respectively the Hessian and the gradient operator w.r.t. the
space variables x and y. We assume that the coefficients of X do not depend on the time

variable just to simplify the notation, but all the proofs in this chapter are still valid in the

time-depending case under non restrictive classical assumptions.
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Let (X¢™Y, Y5") sefe.r) be the solution of (£4.22) with starting condition (X¢,Y;) = (z,y).
Hereafter, we fix T'> 0 and f : R™ x D — R. We are interested in computing the quantity

u(0, X, Yp), where, as specified from time to time, u is given by

u(t,z,y) = E[f(Xfp’z’y,Y%’y)}, (t,z,y) € [0,T] x R™ x D, (4.4.25)
or
u(t,z,y) = sup E[f(Xﬁ’x’y,Yf’y)}, (t,xz,y) € [0,T] x R™ x D, (4.4.26)
T€T:, T

where 7T; 7 denotes the set of all stopping times taking values on [t,T].

This can be, in general, a problem of interest in a large number of applications. Of course,
the immediate application in this thesis is in the financial world, where X can represent
the log-price (or a transformation of it) and Y can be interpreted as a random source such
as a stochastic volatility and/or a stochastic interest rate. In this framework, the function
defined in is the price value at time t of a European option with maturity 7" and
(discounted) payoff f, while the function u as defined in (4.4.26) is the value function of
the corresponding American option. Therefore, from now on we will refer to the European
case when w is defined as in and to the American case where u is given by .

From now on, the following assumptions (1), (2) and (3) will be in force throughout this

chapter:
(1) there exists a unique weak solution of (4.4.22)) such that P((X:,Y;) € R™ x D Vt) = 1;
(2) p and o have polynomial growth;

(3) the function u in (4.4.25)) solves the PDE

owu(t,z,y) + Lu(t,z,y) =0 (t,z,y) € [0,T) x R™ x D,

(4.4.27)
(T, 2,y) = f(z.y), in R™ x D.

4.4.1 The hybrid procedure

The European case

Let u be given in (4.4.25). We study here the computation of u(0, Xy, Yy) by a backward
hybrid algorithm which generalizes the procedure developed in [24] 25| 27] and described in

Chapter 3. Roughly speaking, one uses a Markov chain in order to approximate the process
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Y and a different numerical procedure to handle the jump-diffusion component X. Let us
briefly recall the main ideas and set up the approximation of w.

We start from the representation of u(t,z,y) at times nh, h = T/N and n = 0,..., N,
by the usual (backward) dynamic programming principle: for (z,y) € R™ x D,

u(T,z,y) = f(x,y) andasn=N—1,...,0,

ulnh, ) = E[u((n+ Db, X030 Y00 )]

(4.4.28)

So, the central issue is to have a good approximation of the expectations in .

As a first step, let (Y,ﬁ)n:07,,,7 ~ be the Markov chain discussed in Section which
approximates Y. Of course, we assume that (Y,?)n:(),m, n is independent of the Brownian
motion B and the compound Poisson process H driving X in (4.4.22)). Then, at each step
n=20,1,...,N —1, for every y € y{; we write

E|u((n+ Db XPU50 Y0 ) |~ Bu((n o+ DR XEE V)|V = ).

Recall that Y C D is the state space of Y, and that Y} = {Yy}.
As a second step, we approximate the component X on [nh,(n + 1)h] by freezing the
coefficients in (4.4.22)) at the observed position Y, = y, that is, for t € [nh, (n + 1)A],

law >
X0 R X (y) = @+ px (y) (E = nh) + ox (y) (Br — Bun) +vx (y) (Hy — Hyp)-
Therefore, by using that the Markov chain, B and H are all independent, we write

E [u((n + Dh, X0 Y(Z}f{)h)}

Q

[+ Dk, KU (), Vi)Yl =]

E

where
$(G,y) = E[u((n+ 1)h, X035, (1), Q)] (4.4.29)

From the Feynman-Kac formula, one gets ¢((; z,y) = v(nh, z;y, (), where (¢, x) — v(t, z;y, )
is the solution at time nh of the parabolic PIDE Cauchy problem

v+ LYy =0, in [nh, (n 4+ 1)h) x R™,
U((?’L + 1)ha Yy, C) = u((n + 1)h7 xz, C)v r € R™,

(4.4.30)
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where £¥) is the integro-differential operator acting on the functions g = g(z) given by
1
£9g(x) = nx(y) Vag(a)+5 T‘f(ax(y)Dig(w))ﬂx(y)'/ (9(z+¢)—g(@))v(Q)d¢. (4.4.31)

Here ax(y) = ox(y)o%(y), while V,, and D? are the m dimensional gradient vector and
the Hessian matrix with respect to the = variable respectively. Recall that here y is just a
parameter and that for each fixed y € D, £LW) has constant coefficients.

We consider now a numerical solution of the PIDE (4.4.30). Let Az = (Azy,...,Azy,)
denote a fixed spatial step and set X denote a grid on R™ given by X = {x : = =
(X0)1 +i1Az1, .., (X0)m +imAzsm), (i1, ., im) € Z™}. Fory € D, let II%  (y) be a linear
operator (acting on suitable functions on X') which gives the approximating solution to the
PIDE (4.4.30)) at time nh. Then we get the numerical approximation

Eu((n+ b X0 Y0 )| ~ B[ (n)u((n+ DA, Vi) @)V =y], e,

Therefore, by inserting in (4.4.28]), the hybrid numerical procedure works as follows: the
function = +— u(0,,Yp), © € X, is approximated by ul(x, Yy) backwardly defined as

ul(z,y) = f(z,y), (z,9) € X x Y%, andasn=N-—1,...,0:

(4.4.32)
up(@,y) = B[R, (y)un 1 (5 Vi) (@) | Y =yl (z,y) € X x Yl

The American case

Let us now consider the function u defined in (4.4.26]). Again, we want an approximation
of the quantity u(0, Xo, Yy). In practice, at times nh, the function w is approximated by

the function @” defined through the backward programming dynamic principle, that is,

il (z,y) = f(r,y) andasn=N—1,...,0

. . (4.4.33)
h(,y) = max { f(z,9), [ (X5, Y00 |

In financial terms, ng’ corresponds to approximate the original continuous time American

option price at ¢ = 0 by the price of an option which can be exercised only at the discrete
times nh, n =0,..., N (Bermudean option).
Now, at each step of (4.4.33), we can use the procedure described in Section in

order to compute the conditional expectations therein. Therefore, the hybrid numerical
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procedure becomes: for n = 0,1,...,N and (z,y) € X x V", @l (x,y) is approximated by
ul(2,7) defined as

ul(z,y) = f(z,y), andasn=N-—1,...,0:

. (4.4.34)
uh(a, y) = max { (2, 9), B, (y) e (Y000, ()]}

The general hybrid procedure

As we have done in Chapter 3, it is useful to put together in a unique formulation the
numerical procedures described respectively in Section for the European case and in
Section .4l for the American case. In both cases we have to consider at time nh the

function %! defined as

@' (z,y) = f(z,y) andasn=N—1,...,0

. , . . (4.4.35)
~ ~ nh,x, nh,
(. y) = max { g, ), E @, (X000, Yomy ) |},
where

0, in the European case;

9(z,y) =
fx,y), in the American case.
h

We stress that, in the European case, the function 4! coincides with the function v defined

n
in (4.4.25) at time nh, while, in the American case, it is the Bermudean approximation of
the (continuous monitored) American option value given in (4.4.33)).

Then, for n = 0,1,...,N and (z,y) € X X y,’;, we approximate the function &2 by the

function u! defined as
ul(z,y) = f(z,y), andasn=N—1,...,0:
onh,
ul(z,y) = max { gz, y), B [, (y)ul 1 (V70,0 ()] }

Our aim is to study the speed of convergence of the scheme (4.4.36) that is, we give a

quantitative estimate for

(4.4.36)

an(z,y) —uf(z,y)|,  (2,y) € X x V).

As regards the American case, we recognize two types of error. The first one is the error
induced by the approximation of the function u(0,-) in (#.4.26)) with the function @2(-) in
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the backward programming principle . In the standard hypotheses on the model,
that is, for sublinear and Lipschitz continuous diffusion coefficients and standard semiconvex
payoff function, this error is known to be of the first order in h (we refer, for example, to
Theorem 2 in [13]). The degenerate models such as the Heston model do not satisfy such
requests, so we might just argue a first order error in time. The second type of error is the
one related to the approximation of ﬂg with the function ug defined in . Here, we

focus on studying the latter one.

4.4.2 Convergence speed of the hybrid scheme

The idea is to follow the hybrid nature of the procedure by using numerical techniques,
that is, an analysis of the stability and of the consistency of the method. This will be
done in a sense that allows us to exploit the probabilistic properties of the Markov chain
approximating the process Y.

We introduce the following assumption on the linear operator H}ix (y) in (4.4.32)) (recall
the notation I,(X) in Section [4.2).
Assumption B(p,c,E). Letp € [1,00], c =¢(y) >0, y € D and € = E(h, Ax) > 0 such
that lim, Ay)—0 E(h, Ax) = 0. We say that the linear operator A (y) : L(X) — 1,(X),
y € D, satisfies Assumption B(p,c,E) if

A, (v)lp < 1+ c(y)h (4.4.37)
and, @l being defined in ([£.4.35), for everyn =0,..., N — 1, one has
E[IA, (V)i (. Yl (@) [ Y = y| = BLah (X0, YI00)] 4 Ri(e,y),  (44.38)

where the remainder R (x,y), (z,y) € X x Y satisfies the following property: there exist
h <1 and C > 0 such that for everyn € N, h < h, |Ax| <1 and n < N = |T/h] one has

Hezz;l c(ii%mg(.,y,{l)\pHp < Ché(h,Az),  ifpe[l,00),

o (4.4.39)
e ORI < CRE(R AT), i p = oo

Assumption B(p,c, ) is inspired by the Lax-Richtmeyer’s convergence theorem [75]. In
fact, recall that at each time step n, the hybrid scheme isolates the component y and applies

the discrete operator IT% _(y) for solving (one step in time) the PIDE
o(t,x) + LYv(t,x) =0,  (t,z) € [nh,(n+1)h) x R™.
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Here, y is just a parameter (the current position of the Markov chain), so the coefficients of
LW (see (4.4.31))) are indeed constant. That’s why the Lax-Richtmeyer technique can be

adapted, as it follows in the next result.

Theorem 4.4.1. Assume that 11X (y), y € D, satisfies Assumption B(p,c,&). Let 4l be

the function defined in(4.4.35) and ul be the approzimation through the scheme (4.4.36)).
Then, there exist h € (0,1) and C > 0 such that for every h < h and Ax < 1 one has

b (-, Yo) — ul (-, Yo)|, < CTE(h, Ax). (4.4.40)

Proof. Set ert? (-, Y") = @l (-, Y,")—ul (-, Y,"). By using the relation | max{(a,b)}—max{(a’,b')}| <
max{|a — d[,|b — V'|} we get

h,x, h,
|err n+1 7711+1xy Y:LL_A,_Z’{ h) i —E ng(Yn) n+1( Yn+1 x”Ynh
( ) y,Yh

1 [T (V0 erel o (- Yy ) (@)Y,

+ [RE(z, V1)),

in which we have used ([4.4.38)). Since err” (z;, Y]G) = 0, by iterating one gets

n—1
=0

N-1

jerrg (- Yo)| < ) E

n=0

~1
in which we use the convention H() = Id. We use now (4.4.39). For p # oo,

1=0

N-1 N-1 n—1 1/p
enf (Yol < 3 [E[( H A, () RAC YD) | < S0 [ TT maa) Rhc, v |

n=0 n=0 =

N-1 1 N-1 '

< ( [eZ?ﬂpc(Yz")hme(‘,Y#)lﬂ)” hCE(h, Ax) < TCE(h, Az).

n=0 n=0

The case p = oo follows the same lines. ]

Remark 4.4.2. In Assumption B(p, c¢,E) we have required that the constant C' and the func-

tion & in do not depend on h and n. A closer look at the proof of Theorem

shows that this assumption can be relazed. In fact, we can replace C' and £ in by

Ch,n and Ep n which depend on h and n but such thatlim, Az (0,0) Zg;ol hChnEnn(h, Az) =
0. However, in this case we do not get information about the rate of convergence of the

method.
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4.4.3 An example: finite difference schemes

We specify here some settings ensuring that the assumptions of Theorem are satisfied.
In particular, we choose the operator ng(y) in by means of two different finite
difference schemes: the first one is a generalization of the procedure described in Chapter 3
and allows us to study the convergence in the lo-norm, while the second one works l,,. For
the sake of readability, we consider the case m =d =0 =1{1 = {5 = 1.

As regards the Markov chain (Y,f)nzo,...,m in addition to Assumption A; and Ay (see
Section , we will need also the following:

Assumption A3(g) Let g=g(y) >0,y € D. (Ynh)n:o,m,N satisfies Assumption As(g) if

E {ezllilg(ylh)} < 00.

Moreover, we assume hereafter that the Lévy measure v satisfies the following property:

there exists ¢, > 0 such that for every Az < 1 one has

Z v(IAz)Ax < Ay, (4.4.41)
leZ

where A is the intensity of the Poisson process K in the definition of the coumpound Poisson

process H in (3.2.2]).

Convergence in /o-norm

We study here a hybrid procedure which generalizes the one introduced in [27] and described
in Chapter |3| for the Bates model. For y € D, H’Ax(y) gives the numerical solution on
X ={x; = Xo + iAx}cz a time nh to the PIDE , the operator £¥) therein being
given in . It is clear that the solution v of depends on y and ( as well, but
these are just parameters (and not variables of the PIDE), so for simplicity we drop here

such dependence. We split the operator £¥) = E((i?f)f + ﬁi(,i) in its differential and integral

part:
£80(e) = px()0av(a) + SoR )DR0(w), (14.42)
Ei(,ﬁ)v(:n) =vx(y) / (v(z + 2) —v(2))v(2)d=. (4.4.43)

166



Sec. 4.4 - Hybrid schemes for jump-diffusions and convergence rate

()

We now apply the trapezoidal rule in order to approximate the integral term L;;'v and we

use the central finite difference scheme to solve 5(%1). Applying an implicit-explicit method

in time, we obtain an approximating solution v" = (v;l)jez to the PIDE (|4.4.30) given by

the solution of the linear equation
AR ()" = BR, (y)o" " (4.4.44)

(recall that v"*1 is known). Here A% (y) is the linear operator given by

(

ol () — B, (y), ifi=j+1,
1+ 28%,(y), if i = j,

MRoyw)=q 7 (4.4.45)
_aAa:(y)_/BAx(y)’ 1f7’:] _]-a
0. if [i — j| > 1,

with
ho(y) = hoy) = — 52 4.4.46
an(y) = %UX(?J): 5Ax(y) = mgx(y% (4.4. )

and BR_(y) is the linear operator defined as

(Bl,)is(y) = e
1+ hAzyx (y) (V(O) . V(le)) if i = .

(4.4.47)

Then we have

Lemma 4.4.3. For every y € D, the operator A% _(y) : lo(X) — 12(X) is invertible and
[(AR )7L (y)]2 < 1. Moreover |BE ,(y)|2 < 1+ 2Xcy|yx (y)|h, where ¢, is defined in ([{4.41)).

Proof. Fix y € D and w € l3(X). Then A% _(y)v = w, for some v € l5(X), if and only if

(X, (v) = BR(W)vj—1 + (1 +28%,(W)v; — (X, (v) + B, (W)vjr1 =w;,  JEL,
(4.4.48)
o/ix and ﬁgw being given in . Let ¢ denote the Fourier transform of ¢ € lo(X'), that
is, ¢(0) = \?—2% EjeZ cpje*iije, 0 € [0,27), i denoting the imaginary unit. We define the
function ¢(0), 6 € [0,27), by

((0h () = BRw)e2 + 1+ 28K, (1) — (0, (1) + B, (1)) ) (6) = 1 0).
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Note that

(Ao () = BRo(1)e 927 + 14 281, (y) — (k. (y) + BR. (1)) 2]
> [Re[(ak,(y) — Br(m)e 27 + 1+ 28K, (y) — (A, () + B, (y))e' 2] |
= 14 26%,(y)(1 — cos(0Az)) > 1,

for every 6 € [0,27). So, v € L?([0,27),dx) and we can define v. as its inverse Fourier

1 2 L.
V= ———— 0)e' 1987 g, € Z.
= /0 () j

Straightforward computations give that v is the unique solution to (4.4.48)), hence Azx is
invertible. Moreover, from (4.4.49) we obtain [¢)(0)| < |@(0)[, so that [1(0)|r2(0,27),dz) <

transform:

|W(0)|22([0,27),dx)- We use now the Parseval identity |@|r2(jo2r),dz) = [pl2 and we get
[(AR )" Hy)w|a < |w|2, which gives [(A%,)"1(y)|2 < 1. Finally, for w € Io(X) we have

(BL, ()w); = wy + hdwyx () (3 v(dwywy — S vliAz)w;),
l l

so that

o —

BR, ()w(®) = (14 hawyx(y) 3 v(1Az) (e - 1)) i(0).
l

Then,

—

|BR ()Wl 12(j0.2r),a2) < (1 4+ 2X¢y[yx () 1)@ £2((0,21), der)

because el — 1| < 2 and Y, v(IAz)Az < Ac,. By the Parseval relation, |B% (y)w|z <

(14 2Xey|yx (y)|h)|w|2, which concludes the proof. O
In the following we will use functions v € Cg ’gl,[nh‘n 1)) (R,D) a.e. uniformly in n and

h. This means that v € Cl9/2)9([a,b),R x D) a.e. and there exist C,c > 0 independent of
n and h such that

sup  [OFOLOLu(t, - ) o awy < C(L+ [y, 26+ V| + I < q.
tenh,(n+1)h)

We can now state the convergence result.

Theorem 4.4.4. Let @ be defined in (4.4.35) and u? be given by (4.4.36) with the choice

4, (y) = (AX,) ' Bi.(»),
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A% (y) and B%_(y) being given in ([£.4.45) and (4.4.47) respectively. Moreover, for n =

0,..., N, consider the function

un(ts,y) = E |an (X050 Yol )| t € [nh, (n + 1)h). (4.4.50)

Assume that
o LV ¢ [2(R,dv);
o the Markov chain (Y#)nzo,...,N satisfies assumptions Ay, A2 and As(4 ey |vx]);

e v ¢ szl’[nh’(nﬂ)h} (R,D) a.e. and uniformly in n and h.

Then, there exist h,C > 0 such that for every h < h and Az < 1 one has
@ (-, Y0) — ug (-, Yo) 2 < CT(h + Ax?). (4.4.51)

We stress that, from , the rate of convergence is of the second order in space,
because of the choice of a second order finite difference scheme, and of first order in time,
as it is natural also for the presence of the approximating Markov chain Y (see Theorem
4.3.1)).

Theorem [4.4.4] is a direct consequence of Theorem [4.4.1] once we prove that Assumption
B(p,c, &) holds with p = 2, c(y) = 2\c,|vx|(y) and E(h, Az) = h + Ax?. To this purpose,
we first need two technical lemmas which allow us to handle the error coming from suitable

Taylor’s expansions and from the quadrature approximation. We postpone the proofs to

Appendix
Lemma 4.4.5. (i) Let g € C?(R) be such that g,g', 9" € L*(R,dx). Then

Ax? "
> g@)ae - [ g@)da| < 516" e e (4.4.52)
= R

(ii) Let g € C*(R) be such that g,g',g" € L*(R,dx). Then

Az?
Zgz(:cl)Ax < ‘9|%2(R,dx) + 6 (’9"%2@1@,@) + ‘g|L2(R,d$) X |g//|L2(R,da:))- (4.4.53)
leZ
Remark 4.4.6. In our convergence result Theorem[{.4.4] or also in the following Theorem
4.4.10, we require that %, "7” € LY (R,dv) (recall that v is a finite positive measure), and

this implies that v,v',v" € LY(R,dx). By using ({#.4.52)), (4.4.41) holds with Ac, = \ +

V| (R,dx)
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Lemma 4.4.7. Let g : [0,7] x R x D — R be such that

Jda,A>0: sup |8];g(t, Sl mae) < AQ+y*), k=0,1,2 (4.4.54)
t€[0,T)

and suppose that

NI

V”
€ L*(R, dv). (4.4.55)

For fizted h <T, Az >0 and v > 0, consider the functions defined by

Uy (t,z,y) = > v(Az)[g(t,z + 1Az, y) — g(t, z,y)] Ax, (t,2,y) € [0,T] x R x D,
l

1
Wa(tog) = [ (L= 7Vglt 4 thopdr (tag) € 0T ) xR XD,
0
1
Uyt y) = / (L= n)7g(t.x +nAa,y)dn,  (ta,y) € [0,T] x R x D,
0
1
\Ij4(taxay7 Z) = / (1 - C)Fyg(taxay + C(Z - y))dC7 (tvxaya Z) € [OaT] XRxDxD.
0

Then there exists C > 0 such that

sup [Un(t, - y)l2 <C(A+yl*), n=1,23, (4.4.56)
t€[0,T]

sup [Wy(t,-,y,2)l2 < C(1+ [y[* + |2[*). (4.4.57)
te[0,T

Moreover, set

Us(t,x,y) = /g(t,x+§,y)l/(é)df—zg(t,a:—I—le,y)u(lAaz)Ax, (t,z,y) € [0, T]xRxD.
l

If (4.4.54) holds also with k = 3,4, there exists C > 0 such that

sup | U5(t, )2 < AC(1 + [y|?) Az, (4.4.58)
te[0,7

We can now prove the following key result.

Proposition 4.4.8. Set TI% (y) = (A%,)"'BX, (v), with AR (y) and BX (y) given in

(4.4.45) and (4.4.47). For alln =0,...,N — 1, let v,]; be the function defined in (4.4.50)).

Suppose that
o o€ L?(R,dv);
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° (Yh)nzow_,N satisfies Assumptions Ay, Az and As(4 ey |vx|);

n

2,6
° U € C'pol [nh,(n+1

Then TI& (y) satisfies Assumption B(2,2Xc,|vx|, h + Az?).

i }(R,D) a.e. and uniformly in n and h.

Proof. Lemma [1.4.3] gives [T, (y)o| < [(A%,) 7 ()2l BR, ()2 < 1+ 2Xc|yx(y)|h, so

(4.4.37)) holds with c(y) = 2Aey|yx(y)|. We prove now (4.4.39) with p = 2 and £(h, Az) =
h+ Ax?. We ﬁrst recall that v(t,z,y) = E [ﬂZH(me Yy )} for t € [nh, (n + 1)h]

(n+1)h* * (n+1)h
so that (4.4.38)) equals to

E[H’gx@)vh« Dh, Vi) (@) |V = y] = ehinh,w,g) + Ri(ey),  (44.59)

which can be rewritten as

E[BX, (Yo )op((n1)h, - Vi) (@) | Y] = AR (Y)vh (nh, - V) (2)+ AR (VR (L V) ().
(4.4.60)

Step 1. Taylor expansion of the l.h.s. of (4.4.60). We set

I = BR,(Y)op((n+ D)k, i) (@) = o (n+ DA, 23, Yl )
+ hyx (Y1) ZV < (n+ Dh, 2, Vi) — ol ((n 4+ 1)h, wZ,YnH))Am (4.4.61)
!

As regard the first term in the r.h.s. above, we first apply Taylor’s expansion to t +—
vh(t xz,YT?H) around nh up to order 1 and, then, we consider the Taylor expansion of

y + v'(nh,x;,y) around Y, up to order 3 and of y — Oy (nh,z;,y) around Y;* up to
order 1. Rearranging the terms we obtain

'UZ((n + 1)h7 T, YTﬁi’l) = UZ(nhv L, Yr?)

+ Ol (nh, 2y, YV R 4 Oyvlt (nh, 2, V) (VI — Vi) + 23; ol (nh, i, Y (Y — Y2

+ 0,00l (nh, 2, V) RV, — V) + Lopu Mnh,x, YV (Y — Y2 + Ri(n, by, Y V),

n 6 Y Unp, n
where R; is given by
1
Rl(”? haqf.i? YT?’ YTilJrl) = h2/ (1 - T>81521)Z(nh + Th7 xi7YTil+1)dT
0
Yh Yh 4
(n+16n)/ (1-2¢) 34 h(nh asz,Y +<( yg))dg (4.4.62)
0

1
FR(YR - vy /0 (1= Q)OS (b, 21, Y 4 (YD, — V).

+
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For the second term in the right hand side of (4.4.61]), we stop the Taylor expansion of
t = ol ((n+ 1)h, 240, Y, ) around nh at order 0 and of y — v'(nh,z;4;,y) around V;" at

order 1, obtaining

P (V) (D2 vl@)eh((n + Db, i, Yiiy) = > vl@)vh((n+ Dhoai, Vi) ) Aa
l

l

= h’YX(Ynh) Z V(.’El) [/Ug(nh’ Li+l, Yn ) -V (nh zi, Y, n )] Az
l

—i—hfyX(Yf)(YnH Yh)zy(a:l)[ayv (nh, 241, Y1) — Oyv (nh,xi,Y,f”)]A:U
!

+ RQ(”J h7 Ti, Y ) Yn+1)
where the remaining term Rp contains the integral terms:

RQ(n7 h7 Ty, Yr?? Yrﬁkl) =

1
h2yx (Y1) Z V(a:l)A:z:/O (1-1) [8tvﬁ(nh + Th, iy, Y,{LH) — 0wl (nh + Th, z;, Y,?H)] dr
1

+hyx (Y (vh, — ZV x) Az X
l

1
X /O (1= Q) [Oyvfi(nh, wir, Yy + (Yl ) — Y1) = Oyvfi(nh, i, Yl + (Y — )] dC.
(4.4.63)

By resuming, we obtain

I = h(nh xi,Y,fL) +8tv2(nh,xi,Yé‘)h+8yvﬁ(nh,x“Yh)(Yn+l Y,f)

+285 b s, Y (Vs — Y+ 0,00 nh, 2, Y Yy — Y1)

+662 Z(’I’Lh, L, Ynh)(Yril—i—l - Yr?)S + hAx’VX (Y#) Z V(xl) [Ug(nha Litls Yr?) - U'Z(nhv Ly, Y’r?)}
!
3
+D Ri(n hoa, YY),

=1

(4.4.64)
where
R3(n7 h’ Ly, th Yn+1) h(YriL—&—l Z v nh’ JUz—i-la n ) 8 v (nhv Xy, YT?) Az.
l
(4.4.65)
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Step 2. Taylor expansion of the first addendum in the r.h.s. of (4.4.60). We set
AA:(: n(nha aYr’]>( ) (aZx(Ynh) - BZI(Y,?))UQ(TIJL, Li—1, Yr?)
+ (1 + 2BA$(Y$))vn(nh7 L, Y#) - (CK}AI(Y;?) + /BZ;E(YT?))UZ(nh’ Lit1, Ynh)
We expand with Taylor xz — vﬁ(nh, x, Ynh) around x; up to order 3 and we insert the values

of agx and rBZa; in (4.4.46). Rearranging the terms we get

Iy =v"(nh, 2, Y1) — hux (Y000 (nh, z;, Y —fh D2 (nh, x;, Y
2 =05 ( ") = hix (Vo) 0wv( ) X (V) dun( ) (4.4.66)

+ Ry(n, hyz, Y, V)

where

A 2 (yh 1
Ry(n, bz, Y VR ) = ix (Y 1)2 ox (Vo)) hAacz/ (1 —n)3atul (nh, z; — nAz, Y dn
0

_ Azpx (V) +o%
12

(¥,) 2 [ 394, h
hAx (1 —n)302l (nh, z; + nAz, Y,")dn
0

— A (VO (nh, 21, V).
(4.4.67)

Step 3. Rearranging the terms. By resuming, from (4.4.64]) and (4.4.66) we have

I — I = how! (nh, 2, Y1) + (VI — YO0l (nh, 2, V) + hux (Y00 (nh, 2, V)
[(Yn+1 Y2020l (nh, 2, Y, + hok (Y020} (nh, s, Y1)

+ hyx (V) / (Wt + ¢ Y — vt 2, Y)w(dC) + 8,000 (nh, 2, Y, h(Y,E — Y

5
=1

where
Rs(n,hyai, V') = hyx (Vo) Y [op(t @i, V') — ot s, Yo Jv(1Az) Az
! (4.4.68)
~ (V) [ [t + 2, YD) — ot VI ode),

Now, note that, by the Feynman-Kac formula, the function v"(¢, z,y) = E { (Xz:nﬁyl)h, Y(i’il)h)
solves the PIDE

ol (t,z,y) + Lo (t,z,y) =0, (t,2,9) € [nh,(n+ 1)h) x R™ x D,
vn((n+Dh,2,y) =i (2,y),  in R™ xD.
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Then, by passing to the conditional expectation and by using formulas (4.3.5)), (4.3.6]) and
(4.3.7) for the local moments of order 1, 2 and 3, we obtain

R (2, YY) =E[I — I | Y] = h(0: 0" (nh, 23, Y1) + L]0l (nh, 23, Y1)

n

+E[a Dol (nh, i, Y)Y (Y — Y$>+6as[ h(nh, i, Y (Vg = Y v

+ZIE (n, hy i, Y V) | YV

—ZE (ny by, Y V) | Y

where we have set

1
Re(n, by, Y V) = fu(Y)O, 0l (nh, 2, Y1) + 59 (Vs Mozl (nh, x;, Y,
1
L TR FO)
fn, gn and jp being defined in (4.3.5)),(4.3.6) and (4.3.7).

Step 4. Estimate of the remainder. Hereafter, C' denotes a positive constant which

(4.4.69)

may vary from a line to another and is independent of n, h, Ax.

By (4.4.60] m the remaining we have to study is R (-, Y;}) = (Agx)_l(Y#)ﬁﬁ(~,Yf). By
Lemma (AR )" Hy)le < 1, so |RE(L, Y < IRE(-,Y")|o. Now, by applying the
Cauchy—Schwarz inequality and by using Assumption As(4\c|vx|),

E[eXi 2O RA( Y1 3] < E[eXim Dox O 2g [RA (v 3] 2

6
E“RZ(,Y#)’%] s = CZEUR,‘(n,h, '7Yh7Yn+1)| ]1/2'
i=1

So, we study the above 6 terms: we prove in fact that each one is upper bounded by
C(h? + hAz?)2. The inequalities studied in Lemma NOW come On.
Consider first Ry in (4.4.62)). By applying (4.4.56)) for W and Wy, we get

|R1(7’L,h,', Y+1)|

n
< CR*(L+ (V) + [Yagr = Yol (L4 [V2]° + [V [ 4 2 Yo — Ya (14 Y]],
So, by using the increment estimates (4.3.11]), the moment estimates (4.3.12) and the
Cauchy-Schwartz inequality, we obtain

471/2

E[’Rl(nah> 7Yh Yn—i—l)’ ] < Ch‘4
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Ry in (4.4.67)) can be handled in a similar way: recalling that pux and ox have polynomial
growth, we apply now (4.4.56)) for W3 and we get

471/2

E[|Rs(n, b, Y, YV, )3] 7 < CR*Ax?.

The same approach can be used for Rg in (4.4.69): we use first (4.4.53)), then the Holder
inequality and (4.3.8), (4.3.9), (4.3.10). Thus, with simple calculations

E[|Rs(n, h,-, Y}, Y )] < oht.

In order to study Rs in (4.4.63)), let us first set

1
ot 2, Y ) = / (1= )0l (t + th, 2, Yy )dr.
0

Then, for £k =0,1,2,

1
1059(t, - Yoo gy < /0 (L= 7)*[85vn (nh +Th, -, Y ) [T andr < C(L+ Y],
so, by (4.4.56)) for ¥, we obtain

[vx (Y)Y v(lAz) [g(nh, - + 1Az, Y4) = g(nh, - Yl )] Az, < Clyx ()1 + ¥
l

CL+ [V D+ Y[,

the latter because vx has sublinear growth. And if we define

1
(t Y, Y Yn+1) /0 (1 - C)ayu(t7 Y, Y'ril + C(Yn’?—i-l - Ynh))d<7
the same reasonings give

"YX(Yr’;) Z l/(le) [g(nh’v -+ le: Y?f: Yél—s—l) - g(nh7 %y erla Ynh—i—l)] A.%"2
l

< Clyx (V)L + [V + Vel ) < CO+ [YVRDIA + [V + [Y2]0).

Therefore, by the Cauchy-Schwartz inequality, (4.3.12) and (4.3.11)), we finally obtain

1/2

E[|R2(n7ha'7yhayn+1)| ] < Ch*.

R3 in (4.4.65) can be estimated analogously, so we get

E[|Rs(n, h,-, Y;", Y ] < oht.
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Finally, for R5 in (#.4.68), (£.4.58)) gives that |R5(n, h,-, Y,")|s < Ch(1+ |Y,}|*) Az? and by
passing to the expectation, (4.3.11)) gives
]EUR5(TL, h’ ) Y’n{l)ﬁ]

V2 - on2Azt.

Putting all the above estimates together, the statement holds. O

Proof of Theorem [{.4.4). The proof is a straightforward application of Proposition [£.4.8|and
Theorem [4.4.7] O

Convergence in /,,-norm

We consider here a different finite difference scheme for equation (4.4.30)): we still approxi-

mate (explicit in time) the integral term Ei(fi)v in (4.4.43)) with a trapezoidal rule, but we use

an upwind first order scheme to approximate (implicit in time) the differential part Ec(fi’gv

in (4.4.42). As usually done in convection-diffusion problems, we distinguish the cases in
which px (y) is positive or negative in order to take into account the asymmetry given by the

convection term and we use one sided difference in the appropriate direction. Specifically,

if px(y) > 0, we approximate ﬁd?f)fu by using the scheme

n+1 n n o _ .n n o o_ n n
VT — vl — 1, vl — 200 oty

S — + ,UX(Q)T + §UX(?J) N ;

while, if px(y) < 0, we use the approximation

vt —op v —uty 1 o vy — 200 ity
o Tax (W) T 5ox(®) A2 :
The resulting scheme is
AR, (Y™ = BR,(y)o"*, (4.4.70)

where A}&E (y) is the linear operator given by

(

~BRe®) — o, WLy y<or  Hi=j+1
A= Pael) F leda ) L= (4.4.71)
—BRo (W) = ok, (D Lan (s0r  Hi=7—1,
0, if i —j| > 1,

with
h . h h . h 2
an.(y) = E;“X(y)’ Brz(y) = SAL? ox (y),

and BR_(y) is the linear operator defined in (#:4:47). Then we have:

176



Sec. 4.4 - Hybrid schemes for jump-diffusions and convergence rate

Lemma 4.4.9. For every y € D, the operator A% (y) : loo(X) — lo(X) is invertible
and |(AK )7 (y)lo < 1. Moreover, |BE (y)|oo < 1+ 2Xcy|yx(y)|. Finally, if vx = 1,
A (y) = (AR ) "B (y) is a stochastic operator, that is,

(ng)l](y) >0, 1,7€Z, Z(ng)lj(y) =1, JjeZ
JEZL

Proof. We write A% (y) = n(y)I — P(y), where n(y) = 1+ 28%_(y) + |&,(v)], I is the
identity operator and P;(y) = 0 if |i — j| # 1 and P;; = —(A% )i if [i — j| = 1. So, it is
easy to see that the operator A% (y) : loo(X) — loo(X) is invertible with inverse

R ly) = )l — Py L= LS
(Ah) ™ ) = ()T = P) = =37
="

The assertion for BX (y) immediately follows from ([#.4.47). Finally, (Azx)zgl(y) > 0 for all
i,7 because all entries of P(y) are non negative and (B%,);;(y) > 0 if ux = 1. Moreover,
4, (y)1 = 1 because, by construction, A% (y)1 =1 and B% (y)1 =1 when ux =1. O

We can now state the convergence result.

Theorem 4.4.10. Let ﬁﬁ be defined in (4.4.35)) and uz be given by (4.4.36)) with the choice

X, (y) = (AX,) "' BR.(v),

Agx(y) and ng(y) being given in (4.4.71) and (4.4.47)) respectively. Moreover, for n =

0,...,N, consider the function

ol (t,z,y) =F ﬂZJrl(Xéﬁyl)h, Y(';ﬁl)h)} , t € [nh, (n+ 1)h].
Assume that
o LV ¢ [N(R,dv);
o the Markov chain (Y,{l)nzo,wN satisfies assumptions Ay, A2 and As(4 ey |vx]);
e v ¢ Cﬁf[nh’(nﬂ)h} (R,D) a.e. and uniformly in n and h.
Then, there exist h,C > 0 such that for every h < h and Az < 1 one has
| (-, o) — ug (-, Y0) oo < CT(h + Ax?).
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Proof. By rewriting the proof of Proposition in terms of the norm in I (&X'), one
gets that TI% (y) satisfies B(co, 2Ac,|vx|, h + Az). The statement now follows by applying
Theorem We only notice that here one applies to the remaining term Rjs in
. Since this term contains just v”, one does not need more regularity for v/, that’s

n

why we do not need that v € C’g‘;f (R, D) and the class C’;‘;ﬁ‘ +(R, D) is enough. O

It is natural to look for conditions on the function f which ensure that the regularity
assumptions on the function v for n = 0,..., N, which are required In Theorem [4.4.10
are actually satisfied. Of course, these conditions depend on the regularity of the model.

In Sections and [4.6 we will study the case of the degenerate Heston or Bates model.

4.5 The European case in the Heston/Bates model

As an application in finance, in this section we apply our convergence results to to a tree-
finite difference procedure for pricing European options in the Heston ([58]) or Bates ([17])
model: the asset price process S and the volatility process Y evolve following the stochastic

differential system

ds -
S—t = (r —0)dt + p\/Yy dZ} + vdHy,
- (4.5.72)

dY; = k(0 — Y;)dt + 0+/Y, dZ2,

where Sg > 0, Yo > 0, Z = (Z', Z?) is a correlated Brownian motions with d(Z*', Z?); = pdt,
lp| < 1, H is a compound Poisson process with intensity A and i.i.d. jumps {jk}k as in
(4.4.23). Here, v = 1 (Bates model) or v = 0 (Heston model). The above quantities  and ¢
are the interest rate and the dividend interest rate respectively. We assume, as usual, that
the Poisson process K, the jump amplitudes {jk}k and the correlated Brownian motion
(Z', Z?) are independent.

With a simple transformation, we can reduce the model to our reference model

(4.4.22]). To get rid of the correlated Brownian motion, we set
p=+1-—p2 and Z?°=W, Z'=pZ®+pB,

in which (B, W) denotes a standard 2-dimensional Brownian motion. Moreover, considering

the process X; = log Sy — th, we reduce to the jump-diffusion pair (X,Y’), which evolves
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according to

dXy = px (Yy)dt + p/Ye dBy + ydHy,

(4.5.73)
dY; = k(0 — Yy)dt + o+/Y, dW,,

where

ux(y)ZT—5—%—§H(9—y),
H,; is the compound Poisson process written through the Poisson process K, with intensity
A, and the i.i.d. jumps Ji = log(1 + jk) The standard Bates model requires that J; has a
normal law. But it is clear that the convergence result holds for other laws such that the
Lévy measure v satisfies the requests in Theorem [£.4.4] or Theorem For example,
these properties hold for the mixture of exponential laws used by Kou [69].

In this section we focus on European options. Recall that, in this case, the function
@”(-) defined in is nothing but the European price value at time nh, that is u(nh, -)
where u is defined in . Moreover, we can easily see that, for any n = N —1,..., the
function v? defined in satisfies

ot z,y) = u(t,z,y),  tE[nh, (n+1)h].

We consider the approximating Markov chain for the CIR process discussed in Section

and the two possible finite difference operator discussed in Section 4.4.3| and 4.4.3] As an

application, we get the following convergence rate result of the hybrid method.

Theorem 4.5.1. Let (X,Y) be the solution to ([£.5.73) and let (Y,*),—o. . n be the Markov
chain introduced in Section for approximating the CIR process Y. Let u(t,z,y) =

E(f(X%I’y,YJE’y)) be as in ([E4.25) and (ul),—o, N be given by ([E4.32) with the choice
A, (y) = (ARs) "B, (y)-
(i) [Convergence in lo(X')] Suppose that

o AR (y) and BX (y) are defined in (A4.45) and (4.4.47) respectively;

° ”7,, ”7” € L*(R,dv) and v has finite moments of any order;
e 0Vf ¢ Cﬁfl_j(R,R+) for every j =0,...,6.

Then, there exist h,C > 0 such that for every h < h and Az < 1 one has
(0, Yo) — uli(-, Yo)la < CT(h + Ad?).
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(i7) [Convergence in loo(X)] Suppose that

o A% (y) and B% (y) are defined in (&.4.71) and ([£.4.47) respectively;

1//

o L, ”7” € LY(R,dv) and v has finite moments of any order;

o« Y1 c ngrl‘lfj(R,RJr) for every j =0,...,4.

Then, there exist h,C > 0 such that for every h < h and Az < 1 one has

"U,(O, ’Yb) - u(})b(,yb)loo < CT(h + A-r)

Proof. We apply Theorem for (i) and Theorem [4.4.10| for (#i). The validity of as-
sumptions A; and Ay is proved in Proposition and since here vx = v € {0,1},
As(4Xe,|yx|) trivially holds. So, we need only to prove that if 2 f € C’i’ﬁfj(R,RJr) as

ol
j=0,1,...,6, resp. (ﬁjf € C’gi’fl_j (R,Ry)asj=0,1,...,4, then u € szLT(R,RJF), resp.
u € C;f)’fT(R, Ry ). This is proved in next Proposition m (set p=0,a=7r—0—Lxf and

=LKr— % therein), the whole Section being devoted to. O

Remark 4.5.2. In C’hapter@ we have considered the Bates-Hull-White model [27], which
is a Bates model coupled with a stochastic interest rate. Recall that the dynamics follows
(4.5.72)) in which r is not constant but given by the Vasicek model

dry = Kp (0, — 1)dt + O'TdZE,

Z3 being a Brownian motion correlated with Z' (and possibly Z*). Here, there is no global
transformation allowing one to reduce to our reference model. Nevertheless, a similar con-
vergence result can be proved by means of the local transformation introduced in Section
acting on each time interval [nh, (n + 1)h].

4.5.1 A regularity result for the Heston PDE /Bates PIDE

We deal here with a slightly more general model: we consider the SDE

dX; = (a4 bY;) dt + /Y, dW}! + yxdHy,

(4.5.74)
dY; = k(0 — Yy)dt + o/Y; AW},

where W1, W? are correlated Brownian motions with d(W!, W?2), = pdt and H is a com-

pound Poisson process with intensity A and Lévy measure v, which is assumed hereafter to
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have finite moments of any order. Here, a,b € R and vx € {0,1} denote constant param-
eters. Note that when a = r — 0 (interest rate minus dividend rate), b = —% and vx =0
(resp. vx = 1), then (X,Y) is the standard Heston (resp. Bates) model for the log-price

and volatility. When instead p =0, a =r—J6—£2xf and b = Zx — 1 we recover the equation

29
(4.5.73)) discussed in Theorem m
Let £ denote the infinitesimal generator associated to (4.5.74]), that is,

Lu = % (02u + 2p0 9, 0yu + 028511) + (a4 by) Oyu + k(0 — y)Oyu + Liu, (4.5.75)
where, hereafter, we set

Lot g) =vx [ [t + G,y) = ult.o,)]C)de.
So, the present section is devoted to the proof of the following result.

Proposition 4.5.3. Let p € [1,00], ¢ € N and suppose that 0¥ fe Cg’gl_j(R, R4) for every
i=0,1,...,q. Set
u(t,z,y) = E[f(Xp", Yp)].

Then u € C’gﬁLT(R,RJF). Moreover, the following stochastic representation holds: for m +
2n < 2q,

Opdyultz.y) = E | T0omop fp, vyt o)

T (4.5.76)
+nE [ / [23;"+2ag—1u + ba;ﬂ“ag—lu] (5, XIb0, YS"’t"”’y)ds} ,
t

where 8;”8;‘_1u := 0 whenn =0 and (XY Y™05Y) n > 0, denotes the solution starting

from (z,y) at time t to the SDE (4.5.74) with parameters

TLO'2

pn=p, ap=a-+npo, b,=b, kK,=k, anﬁ—l—ﬁ, on = 0. (4.5.77)

In particular, if ¢ > 2 then u € CH2([0,T] x O), O = R x Ry, solves the PIDE

atu(tuxuy) +£u(tux7y) = Oa te [OaT)> (%y) € (/_)7

_ (4.5.78)
u(T,$,y) :f(mvy)a ($7y) € 0.

Remark 4.5.4. For our purposes, we need both the polynomial growth condition for (z,y)
u(t,z,y) and the LP property for x — u(t,x,y), and similarly for the derivatives. A closer
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look to the proof of Proposition [{.5.3 shows that the result holds also when one is not
interested in the latter LP condition. In this case, Proposition reads: for q € N, if

¥ f e nglj(R x Ry) for every j = 0,1,...,q then u € CSOI,T(R x R4). Moreover, the

stochastic representation (4.5.76)) holds and, if ¢ > 2, u solves PIDE (4.5.78)).

As an immediate consequence of Proposition we obtain the already known regularity

result for the CIR process which has been already proved in Proposition 4.1 of [3].

Corollary 4.5.5. Assume that f = f(y) and set u(t,y) = E[f(Y;")]. If f € Chol(R+),
then u € Cgol’T(RJr). Moreover, for n < q,

Opult,y) =B [ T00; p(v7tY))

where Y™ denotes a CIR process starting from y at time t which solves the CIR dynamics
with parameters Kk, = k, 0, = 0 + "2%{2, on = 0. In particular, if ¢ > 2 then u € Cgol(R+)
solves the PDE

oru+ Au = 0, (t7y) = [OaT) X R-i—a

where A is the CIR infinitesimal generator (see (4.3.2))).

We first need some preliminary results. First of all, recall that X and Y have uniformly

bounded moments: for every 7' > 0 and a > 1 there exist A > 0 such that for every

t €1[0,T],
sup E[| X5 < A(1+ |z|* + y*) and sup E[|YY|Y] < A(1 +y*). (4.5.79)
s€[t,T] se(t,T]

For the second property in (4.5.79), we refer, for example, to [3], whereas the first one

follows from standard techniques.

Lemma 4.5.6. Let p € [0,00], g € cPo

pol(R,Ry), € ngLT(R’ R.) and consider the

function
T
ut, z,y) = E [T Dg(Xp™, Vp¥) — / e?Ih(s, X0V, YY) ds | (4.5.80)
t

0
where p € R. Then u € C’II;OLT(R, Ry).
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Proof. We set
T

w(t,z,y) =E eQ(T—t)g(X%I’y,Y%’y)] ) ug(t,z,y) =E [/ e (s, XE™Y VIV ds
t

and we show that, for 1 = 1,2, u; € ngl,T(R’ Ry). We prove it for i = 2, the case i = 1
being similar and easier.

Fix (t,z,y) € [0,7] x R x Ry and let (tn,Zn,yn)n C [0,7] x R x Ry be such that
(tn, Tn,yn) — (t,z,y) as n — oco. One can easily prove that, for every fixed s > t, V t,
(XErtntn ytntny s (XEPY yEYY in probability. We write ug as

T
ws(t 2, y) = / Lo e?SDE [(s, X029, YI)] ds
0

Since h is continuous, for s > t, V t the sequence (h(s, Xe"*™¥" Yim¥")), converges in
probability to h(s, Xt™¥, Y$Y). By the polynomial growth of h and ([£.5.79), for p > 1 we

have

supIEHh( X tmon y imbn)|P] < sup CE[1 + | X% 4 (Y m¥) ] < oo. (4.5.81)

Thus, (h(X5"" 9" Y79")),, is uniformly integrable, so h( X9 Y9y — h(X55Y YY)
in L' and

]ls>tn]E [CQ(S_tn)h(S’ X§n7xn7yn7 Y:Stmyn)] - ]ls>tE [eg(s—t)h((g? X£7x7y> Y9t7y) )

a.e. s € [0,T]. By (4.5.81)), ua(tn, n, yn) — u2(t, z,y) thanks to the Lebesgue’s dominated
convergence and moreover, up grows polynomially. So, uz € Cpor,7(R X Ry).

Fix now p # co. We have

T
E [ / eg(s_t)h(s,X?"y,Yst’y)ds}
t

sup [[ua(t, -, y) || Lo (R,dx) = SUP
o t<T

LP(R,dx)
1/p 1/p
<Cqmpn [ e X3 ] =B [ [ Y s
T 1/p
=CsupE {/ (s, Y. HLP(R de ] < CT sup (14 E[(Y¥)Pa))/p
i<T t t<s<T

in which we have used twice the Cauchy-Schwarz inequality. Then, by using (4.5.79), we
have ug € C’g’c?l r(R,Ry). The case p = oo follows the same lines. O

To simplify the notation, from now on we set EV*¥[.] = E[-|X; = z,Y; = y] and O =
R x (0, 00)..
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Lemma 4.5.7. Let g € Cpo1(O) and h € Cpor7(O) be such that O 3 z — h(t, z) is locally
Hélder continuous uniformly on the compact sets of [0,T). Let u be defined in (4.5.80).
Then, u € C([0,T] x O)NCH2([0,T) x O) and solves the PIDE

ou+ Lu+ou=h, nl0,T)x0O,
u(T, z) = g(z), in O.

(4.5.82)

Moreover, if the Feller condition holds, that is, 2k0 > o2, then u is the unique solution to
[4.5.82)) in the class Cpor7(O).
Proof. Let S € [0,T), R =Rx(¢,00), € >0, Q = [0,5) xR and consider the PIDE problem

Oww+Lv+ov=~h, inQ,

v =u, in 9@,
00Q denoting the parabolic boundary of ). The coefficients satisfy in @ all the classical
assumptions (see e.g. [53, [78]), so a unique (bounded) solution v € C%2([0,T) x R) N

C([0,T] x R) actually exists (and have Holder continuous derivatives v;, V,v and D?v in

Q). As a consequence,
S
Zs = GQSU(Sa XS; }/S) o / egrh(r’ XT’ }/;')dr
t

is a martingale over [t, S A T7r|, where Tg denotes the exit time of (X,Y’) from R. Then,

egtv(t, x,y) = Et’x’y(Zt) = Et’x’y(ZS/\m)

SATR
= ]Et’m’y [BQS/\TRU(S /\ ’T’R, XS/\TR, YS/\TR) — / eg’f'h(r’ XT‘? Y:r')dr] .
t

Now, by the strong Markov property,

T

eQS/\TRu(S AN TR, XSarr YSare ) = E[epTg(XT, Yr) — / e’ h(r, X,,Y,)dr ‘ .7-"5/\7.4.

SATR

By replacing above, it follows that v = u in Q. Whence, the first assertion is proved.
Suppose now that 2x0 > o2 and that g has polynomial growth. Let w € C([0,7] x O)
denote a solution to with polynomial growth. We prove that w = u. Let S, < T
and let R,, denote a sequence rectangles as before such that Q,, = [0,S5,) xR, 1[0,T) x O.

Let w, the unique solution to

0wy, + Lwy, + owy, = h, in Qn,

Wy, = W, in 9yQn-
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Since w trivially solves the above PIDE problem, we get w, = w and
Sn/\TRn
egtw(t’ z, y) = EH"Y egsn/\TRn w(Sn NTR, XSn/\’T’Rn ) YSn/\TRn) o / emh(r7 Xr, n)dr :
t

Now, as n — oo, one has 7, 1 oo because, by the Feller condition, P*¥(Y; > 0Vs) = 1.
Then, we pass to the limit and since w is continuous and has polynomial growth, we easily

obtain w = wu. ]

Lemma 4.5.8. Let u be defined in (4.5.80), with g and h such that, as j = 0,1, 8§jg €

C’;;lj(@) and 97 h € Cll)glj;T((’_)). Then u € CII)()LT(@). Moreover, 02u € Cporr(O) and one

has
oM u(t, z,y) = EH"Y [eQ(T_t)(?;”g(XT,YT) — /T eg(s_t)agnh(s,Xs,K)ds} , m=1,2,
t (4.5.83)
oyu(t,z,y) = EH"Y [e(g_”)(T_t)ayg(X},Yf)}

T
+E [ / ele=r)(T =) [ayh + %a};u + bc?xu] (s, X*, YS*)ds] , (4.5.84)
t

where (X[, Y;") solves (4.5.74) with new parameters p. = p, ax = a+ po, b, = b, ke = K,

2
9*:94—(2’—,{,0*:0.

Proof. First, the stochastic flow w.r.t. z is differentiable (here, (X*)5*Y = 2 + ZLY and
Z5Y does not depend on z). Hence, by using the polynomial growth hypothesis, by (4.5.80))

one gets (4.5.83)). Let us prove (4.5.84]).
By Lemma u solves (4.5.82)). So, setting v = dyu, by derivating (4.5.82)) one has

O + Lov+ 0sv = hy, in [0,T) x O,
(T, z) = g«(2), in O.

where L, is the infinitesimal generator of (X*,Y™) and 0. = 90— K, hy = Oyh —b0u— %(ﬁu,

g« = Oyg. By using (4.5.83) and Lemma hi € Cpor7(O). Moreover, the Feller
condition 2k.6, > o2 holds, and by Lemma the unique solution with polynomial

growth in (z,y) to the above PIDE is

T
o(t,z,y) =BV |e?T g, (X5, V7)) — / e hu (s, X3, Y )ds |
t
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In order to identify v with v = 9yu we would need to know that dyu € Cpor,7(O). If the
diffusion coefficient of Y* was more regular, one could use arguments from the stochastic
flow. But this is not the case, hence we use a density argument inspired by [47].

For k > 1, let ¢}, be a C°°(R) approximation of /|y| such that ¢x(y) > 1/k, pr(y) = /1y
uniformly on the compact sets of [0,+00) and goi is Lipschitz continuous uniformly in k
(which means that ¢y}, is bounded uniformly in k). Consider the diffusion process (X*, Y*)
defined by

dX}F = (a+bY}) dt + op(YF)dB, + dH;,

(4.5.85)
dYF = k(0 — YF)dt 4 oo (YF)dW;,

whose generator is

i (y)
2

Lou = (02u + 2p00,0yu + o Oju) + (a + by) e + k(0 — y)dyu + Tu.

Set
T

uF(t,z,y) = BD" [eé'(T—“g(X%,Yq’f)— / e@“—”h(s,Xf,n’“)ds].

t

Le us first show that (9yuk € Cpolr(0). Since the diffusion coefficients associated to

(X*,Y*) are good enough, we can consider the first variation process: by calling Zf HTY

(8yX§’t’m’y, 8yYsk’t’x’y), we get
Byuk (t, , y) -E [GQ(T_t) <vz7yg(X§,t,x,y’ Yj/fﬂf,ac,y)7 Zéi’t’z’y>}
- / " es0g [<V17yh(s, xktay yhtey) qut@’yﬂ ds.
t
The functions g, h and their derivatives have polynomial growth, so
By (8, 2,)| SB[+ IXE)e 4 [yt ov)n) 25|

k77 k777
a_|_|}/S 6,y a)|ZS t,z,y

T
+ / IR [0(1 + | Xktay } ds
t

and the usual LP-estimates give

sup 9 (1, 2. )| < Cr(1+ [o]* + ™).
t<T

for suitable constants Cy, ai > 0. Moreover, from the standard theory of parabolic PIDEs,

u” is a solution to

ol + Lru® + ouF =h, in[0,T)x O,
uF (T, 2) = g(2), in O.
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By differentiating, v* = Byuk solves the problem

Ok + Eky*vk + 0. 0F = his, in[0,T)x O,
oK (T, 2) = g.(2), in 0.
where

2
L xv :ﬁka(y) (8£U + 2p00,0yv + 02850)

)

+ (a+ by + 2p00r0k(y)) dev + (K(0 — y) + o @rpl(y)) dyv + Tv

and hy . = Oyh — 6O uk — ¢k¢;€(y)8guk. By developing the same arguments as before, we
get hy . € Cpol’T((’_)). The PIDE for v* has a unique solution in Cpol,7(O) (recall that,
by construction, the second order operator is uniformly elliptic). Thus, the Feynman-Kac

formula gives
T
Oy (t,2,Y) = EWY [eﬂT-“g*(X?*,YT’“’*) - / e D hy (s, X1, va*)ds] ,
t

where (X** Y%*) is the diffusion with infinitesimal generator given by Ly «. Now, the
standard LP estimates for (X%, Y*) and (X**, Y**) hold uniformly in k (recall that ¢y, is
sublinear uniformly in k and ¢y}, is bounded uniformly in k): for every p > 1 there exist
C,a > 0 such that

supsupE"* (|XHP + [VP) +supsup B2 (IX[7P + V) < OO+ Jal 4 [yl).
i<

k t<T
This gives that
sup sup [u”(t, , )| + sup sup )ayuk(t,x,y)‘ < O+ [z]" + ly[*),
k t<T k t<T
for suitable C,a > 0 (possibly different from the ones above). Moreover, using the stability

results of [I12] one obtains
lim u®(t,z,y) = u(t,z,y) and lim dyu®(t,x,y) = v(t, z,y)
n—00 n—oo

for every (t,z,7) € [0,T) x O. And thanks to the above uniform polynomial bounds for u*
and JyuF, for every ¢ € C*°(0) with compact support we easily get

[ vtz ot dedy = [ iyt t,m,p)Ge, y)dady

—— [ (t2.9)0,0(e. y)dady =~ [ ult..9)00(z. )dady.

Therefore, v(t,z,y) = Oyu(t,z,y) in [0,T) x O. The statement now follows.
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We can now prove the result which this section is devoted to.

Proof of Proposition[{.5.3. We follow an induction on ¢. If ¢ = 0, Lemma gives the
result. Suppose the statement is true up to ¢ — 1 > 1 and let us prove it for q.

Take f such that 82 f € Cg’oql_j(]R,]RJr) for every 5 = 0,1,...,q. Then, by induction,
8%8;”8;% € Cg£17T(R7R+) when 2l +m +n < ¢ — 1. So, we just need to prove that
8%8;"8;% € Cg’gLT(R, R, ) for any I, m,n such that 2l + m +n = gq.

Assume first [ = 0. For n = 0, we use that X2"Y = z + Z5¥ and we get 9™ u(t,z,y) =
Ebv [0m f( X, Yr)]. Since 87 f € Cg’gl(R, R, ) for any m < 2¢, by Lemma we obtain
oM, € Cg’gLT(R, R, ) for every m < 2gq.

Fix now n > 0 and m > 0. Recursively applying Lemma we get formula .
Let us stress that, because of the presence of the derivatives 82”28{}_% and 8;”“8;‘_%

in (4.5.76)), the recursively application of Lemma m gives the constraint m + 2n < gq.
Then, by Lemma it follows that 9;"0yu € Cg’gLT(R, R.) for every m,n € N such that
m + 2n < 2¢q, and in particular when m +n = q.

Consider now the case [ > 0. By (4.5.76]), Lemma ensures that if m 4+ 2n < 2¢ then

Un,m = 8;”8;% solves

1 .
atum,n + Enum,n — NKUmn = _n[§um+2,n—l + bum—&—l,n—l] mn [07 T) x O,

(4.5.86)
Umm(T,:L‘, y) = aglagf(l‘»y) in Oa

where £, is the generator in (4.5.75) with the (new) parameters in (4.5.77). Therefore,
the general case concerning 8,%8218{}u with 2] +m 4+ n = ¢ follows by an iteration on [: by

(4.5.86)),
1
8,07 Ogu = =L, 0 07 Oyu+ nkdl O Opu —n [iag-la;n”ag*lu + bag—la;mag*lu] :

O]

4.6 The American case in the Heston/Bates model

In this section we focus on the American case. We first prove a simple lemma which better

specifies the behaviour of the moments in the Heston and Bates model.

Lemma 4.6.1. For every p > 2 there exists C > 0 (depending on p and on the model
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parameters) such that

sup E[|X§;jfl)h|f’] < (14 Ch)(1 + |zP + yP), (4.6.87)
te[nh,(n+1)h]
sup  E[(Y(4,),)) < (1+Ch)(1+7). (4.6.88)

t€nh,(n+1)h]

Proof. 1t can be easily proved that there exists C' > 0 such that

sup E[|X;7] < C(1+ [z’ +47),  sup E[(Y{V)"] < O(1+y7). (4.6.89)
t€[0,7) t€[0,T

We start by proving (4.6.88). Let us fix p > 1. By using It6’s Lemma, for any ¢t €
[nh, (n + 1)h] we have

(n+1)h -1
(Y(ifinh)p =y’ -I-p/ <<m — pTg?>(y$t,y)p—1 _ H(y;t,y)p> ds
t

(n+1)h L
+ po / (YEVYP=3 dW.
t

Passing to the expectation and using (4.6.89)), we can find C' > 0 (depending on p and on
the coefficients of the model) such that

sup  E[(Y%,),)7) < o7+ hC(1+ P~ +¢7) < (1+20R)(1 + ),
te[nh,(n+1)h]

from which (4.6.88)) follows. As regards (4.6.87)), again by It6’s Lemma, for ¢ € [nh, (n+1)h]

we get

izt = [ [ O 2~ o ) ()

(n+1)h . . (n+1)h .
+ /t (X2 + IN)PP — (X 25Y)PdK + /t 2pox (YIY)(X05Y)*P~1dB,,

K denoting the Poisson process driving the compound Poisson process H, whose associated
Lévy measure is v. Passing to the expectation, and using the martingale properties (which
hold thanks to (4.6.89))) we get

(n+1)h
BN = o [ Bl (V)X P p(2p — Dok (1IN ds
t

(n+1)h
[ s [Eioxm s o - (el s),
t

(4.6.87) now follows by using Hoélder inequality, the estimate (4.6.89) and the existence of

all moments under v. O
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Again, we approximate the CIR process with the Markov chain discussed in Section [4.3.7]

and we consider the two finite difference operators introduced in Section [4.4.3| and |4.4.3|

Therefore, we get the following convergence rate result.

Theorem 4.6.2. Let (X,Y) be the solution to (4.5.73)) and let (erl)nzo,m,N be the Markov
chain introduced in Section for the approzimation of the CIR process Y. Let @l be

defined in (4.4.33) and uZ be given by (4.4.34) with the choice
M, (y) = (AR,) ™' BR,(v)-

(7) [Convergence in la(X')] Suppose that

o AR (y) and BX (y) are defined in ([£.4.45) and (E447) respectively;

vy
v

o T E-€ L?(R,dv) and v has finite moments of any order;

o [ € Cho (R x D) is such that there exist C,a > 0 with
|al$/agl/f(" Ylr2wdz) < CA+y"), I',l eN.
Then, there exist h,C > 0 such that for every h < h and Az < 1 one has

[u(0, -, Y0) — ug (-, Yo)|2 < CT(h + Ax?).

(77) [Convergence in lo(X)] Suppose that

o A% (y) and B% (y) are defined in (4.4.71) and (4.4.47) respectively;

° ”7,, VT” € LY(R,dv) and v has finite moments of any order;

o [ € Cho (R x D) is such that there exist C,a > 0 with

|8lzlag§f('>y)’L°°(R,d:c) < C(l + ya)a llal € N.
Then, there exist h,C > 0 such that for every h < h and Az < 1 one has

(0, -, Y) — ul (-, Yo)|eo < CT(h + Az).

Proof. We prove (i), (ii) following in the same way. The validity of assumptions .4; and
Ay is proved in Proposition and since yx =1 or yx =0, A3(4Acy|yx|) trivially holds.
So, as in the European case, in order to apply Theorem [£.4.4]it is enough to prove that the

function v/ defined in ([#.4.50)) belongs to the space %6

ol [nh,(n-+1)h] (R, D) a.e. and uniformly

in n and h.
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Let us consider a function f € Cpg (R x D) such that for any [,I’ € N there exist
Cl’,la apy > 0 such that

|8£;8éf(-, Y2mdr) < Cra(1+y*t), yeD. (4.6.90)

We point out that in the statement of the theorem we actually require that there exist
C,a > 0 such that Cp; < C and ap; < a for any [,I’ € N. We will use this strong
assumption only at the end of the proof, when it will be clear why we need it in order to
get the assertion.

We proceed by a backward iteration. Forn = N—1 we have v% ,(t,z,y) = E [f(erF’x’y, Y%’y)] )
By the proof of Proposition [4.5.3]and by using (4.6.87) and (4.6.88)), we deduce that, if | = 0,

by using (4.6.87)-(4.6.88)) we have

sup |05l (4 ) pe ey < Crro(1+ Coh)(1+ y™'o).
te[(N—1)h,T)

On the other hand, again from the proof of Proposition we have that, for ¢ € [(N —
1)h,T),

! — — 4 la by l77 ’
ALy (tw,y) = B [T 00 0, FX, Y|
T o N (4.6.91)
+IE [/t |:26x+ ay_ UN—-1 +baz+ ay_ UN—1:| (5’)(57 w’yaYtS’ ,x,y)d5:| ’

where b = 2k — 1 and (X', Y") is the solution of the Heston/Bates model with new co-

lo?
2K

efficients r; = r + lpo, Ky = Kk, 6 = 0 +
that

o; = o. Denote by Cj the constant such

sup Et’y[(y(lnﬂ)h)p] < (1 +y") A+ Ch).
te[(N=1)h,T)

Then, if { = 1, by (4.6.91) we get

sup |oh 0,0kt y)] < Cra(1+ Crh) (1 +y™)
te[(N—-1)h,T)

1
+h (20l'+2,0(1 + C1h) (14 y®+20) +1b|C11,0(1 4+ C1A)(1 + ya”“’o)) :

Without loss of generality we can assume that %—i— |b] < C1, C; < Ci41 and that the constants

Cpr and a;p are nondecreasing in both / and I'. Then, we easily deduce that

sup |00 0y 1 (£ y) re(ran) < Craon (14 Crh)2(1+ yv+21).
te[(N—1)h,T)
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With the same arguments, if [ = 2, we get

sup 9% 2R 1 (t )2 oar) < Crgan(1+ Coh)P(1+ yor+ar),
te[N—1)h,T)

By iterating, it can be easily seen that

h,N—1 ‘N b
sup LR (- ) r2Ran) < Cl(gl ) (1 +y ) )
te[N—1)h,T)

where
h,N—1 N—1
Cz(',l )= Cppony(1+ Ch), a(/l ) = ay421,-

As regard the derivatives w.r.t. the time variable, again from the proof of Proposition [4.5.3

we have
o Lol vh_y = —£,0 7 b dl vy + 1kd) ok ol
-1 §8§_18i+28é_1v?\,_1 b0 ok
so that
"ol Al h (h,N—l) a(Nl 1)+l//
sup ’at ar 8y”N71(t7 K y)‘LQ(R,dZ‘) < CZCl/+2,l+2 I+y ) (4692)
t€nh,(n+1)h)

where c is a constant which depends on the coefficient of the model.

Therefore,
fL}]l\[_l(J,‘, y) = max{f(x, y)v ’U]}(f—l((N - 1)h7 z, y)}

is a continuous function, whose derivatives, of any order, a.e. continuously exist and for

every [, 1,

’ (N-1)
0L Ol 3 ()l 2y < Oy Y <1+yl’ ) a.e.. (4.6.93)

Note that the estimates (4.6.92) on the time derivatives of v]’{,_l are not involved in the
estimate (4.6.93]) and, as a consequence, in the iterative procedure.
At time step n = N — 2 the function v}]{,_z is defined by

Voot a,y) = B[y (XN YN_yw)]s tE€ (N =2)h, (N = 1)h].

By developing arguments already done for n = N — 1, we get

(N-2)
sup |00yt ) 2y < OV (1+yﬂ )
te[N—1)h,T)
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where
h,N— h,N— N—
C(/j 2 = Cl(/-i:2l,l 1(1 + Clh)lJrl = Cpya (1 + Clh)z(l+1), al(’,l 2 = ap 41
Moreover

/ h,N—2 V=24
sup (O OO ot 0) ey < ACh2 (1+yz )
b€, (n+1)h)

Therefore, the function
a%—?(xv y) = max{f(x, y)’ UR/—Q((N - 2)h’a xz, y)}

is a continuous function, whose derivatives, of any order, a.e. continuously exist and for

every I, 1,

’ h,N—2 “2
fal ol alk LN —2 (5 Y)|L2(R,da) < Gy (1 + y ) a.e.,

By iterating, we get that, at time step n = N — k, the function v]f{,_ ;; Satisfies

12 hN k (/IV k)+l/l
105 0L vk (5 0) | 2R ey < C( : ( +y a.e.,

where

C(h N = Gy (1+ G R, al(’],\lfik) = W2kl

Again

' h,N—k (R
sup (08" Ol k(. ) 2y < ACYD ) <1+ i :
te[nh,(n+1)h)

In order to have v! € c*0 pol,[nh,(n+1)h ](R D) a.e. and uniformly in n and h, we need
estimates of the derivatives afﬂ a; " for | +1' < 6 which are uniform in n and h. Tt is clear

that for each k < N, since h =T /N and [ < 6,

(1 +Clh)k(l+l) < ecth(l+1) < €7TCG'
Moreover, the assumption that there exist C,a > 0 such that Cl/ 1 < C and ay; < a for any
I,I' € N now comes in. Thanks to this, we can deduce that v/ € Cpol [k, (n+1)1] (R,D) a.e

and uniformly in n and h, so by Theorem [£.4.4] we get the result. O
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Remark 4.6.3. In Theorem [[.6.9 we require really strong reqularity and boundedness as-
sumptions on the test function f. On the other hand, let us stress that our algorithm is
strongly based on numerical analysis techniques. When these procedures are used, as far as
we know, literature is missing in results on the rate of convergence of numerical schemes
for obstacle problems.

Let us mention that, in some particular cases, different approaches could in principle be
followed. For example, let us consider the scheme introduced in Section [{.4.3, where the

linear operator is given by
IA.(y) = (AX,) "' BR.(v),

AR (y) and B ,(y) being defined in (£.4.71)) and ({4.47)) respectively. Here, we have proved
in Lemma that Hzm(y) s a stochastic operator. From a probabilistic point of view,
this means that the algorithm can be written through a Markov chain (see [2])]). Then,

one could apply purely probabilistic methods to prove the convergence of the procedure, for
example by developing techniques similar to the ones introduced in [13]. On the other hand,
in this case, Hzm(y) 18 a momnotone linear operator, so another possible way to proceed is
to use the theory introduced by Barles [15], which uses viscosity solutions. In order to
do this, we need a comparison principle for viscosity solutions of Heston-type degenerate
parabolic problems (note that in Section we have proved such a result in the case of weak
solutions). Howewver, both the mentioned approaches give in principle just the convergence,

that is, no information about the rate of convergence is provided.

4.7 Appendix

4.7.1 Lattice properties of the CIR approximating tree

The aim of this section is to prove Propostition [£.3.3] For later use, let us first give some
(trivial) properties of the lattice. First, by construction, kgq(n, k) < k < ky(n, k), so that

ygj(}%k) <yptt<yn < y,:f_tll < yzj(;’k). Moreover for every n and k, it is easy to see that

yr <y, oyt < <y,
2 (4.7.94)
Vi < Yp_1 +0o%h + 20\/@, y};‘“ <yp+ Zh - U\/?/Zh'

Proof of Proposition[{.5.3. 1. The statement is an immediate consequence of the following
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facts:

if Ky (n, k) > k + 2, then y < 6,h, (4.7.95)
if kg(n, k) < k—1, then y* > 6*/h, (4.7.96)

which we now prove.

First of all, note that y? + uy (y2)h = k6h + y2(1 — kh), so by choosing h = 1/k, one has
yp + py (yi)h > 0. Moreover, as a direct consequence of f and of ,
we have that, if py (y}) > 0, then kq(n, k) = k, and if py (y) <0, then ky(n,k) =k + 1.

Concerning , we obviously assume y; > 0, so that yZIll > 0. Note that, from
(AL

2
g
v+ iy WOh > Ui o1 2 Vil = v+ ht oy Juph.

Since py (yp) < K6, we get

2
KkBh > %h +oy/yph > o\/yph,
o\ 2
yp < (’i) h=0,h.
o
We prove now (4.7.96]). First of all observe that, if y < 6, then uy(y;) > 0 and so
ka(n,k) = k. Then we have y; > 6 and from (4.3.15) we can assume y,?“ > 0 up to take

h < (2v6/0)?%. Now, by (4.3.17) we get

from which

2
g
Ui+ 1y WD < Yy SURT = VR h— oy Juph,

so that
2

k(0 —yp)h < %h — o4\ /yph.
This gives kyph > oy/vih — %2 h + k0h and, for h small enough, one gets y;'h > %.
2. If yi < 6.h, (4.7.96) gives kq(n, k) = k. As regards the up jump, the case y;”j(;,k) =0
is trivial so we consider yZ:r(ln Ky > 0. In order to prove (4.3.18)), we consider two possible

cases: ky(n,k) =k + 1 and ky(n,k) > k + 2. In the first case, we have

2 2
Yo — vk = Th+oyfyph < (T +oVB)h <,
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and the statement holds. If instead ky(n, k) > k + 2, then by (4.3.16]) we have

1
Y may—1 — Y < 1y (YE)h.

We apply the third inequality in (4.7.94) (with n replaced by n + 1 and k = ky(n,k)) and

we get
+1 +1 +1 2
0= yZu(n,k) — Uk S yl?u(n,k)—l +20 yZu(n,k)—lh +oh—yy

< iy (50 + 20/ (5 + py (9 )h + 0

< (KO + 20\/0, + KO + 0®)h < C.h.

3. The statement follows from (4.7.95|).

4. Formula (4.3.19) follows from the fact that the sets K, (n, k) and K4(n, k) are nonempty.
Indeed, if y? > 0.h then k, =k + 1, so Ky,(n, k) # 0. And if y}! < 6.h,

yrtl =yl — v (y)h > Yo — 0. — k0h = Yo — (6, + £0)h > 0

for h < Yy/(0s« + k0), which gives ky(n,k) < n+ 1. Therefore K,(n, k) # 0 for every (n, k).
As regards Ky(n, k), if y < 6*/h then k4(n,k) = k by Proposition m so that
Kq(n, k) # 0. If instead y}! > 0*/h, then

* *

0 0
Yt — g~y (YR < Yo — e kOh + kygh <Yy — W + Kyph.

Recalling that h = T'/N, we note that there exists C' > 0 such that

yrh <ynh = (\/17o+ %N\/ﬁ)zh = (\/170\/?+ gT)Z <c.

Therefore
*

0
i =yt = iy () < Yo — -+ KC <0

for h < Yoiﬁ‘ So, Kq(n, k) # 0.
Now, by (4.3.17)) and (4.3.16)), since K4(n, k) # 0 and K, (n, k) # 0,

wy (YR + 9 = v e py (YR + Y = vk o wy (YR +yE =yt
— >0, — =1+ — < 1.
n+1 n+1 n+1 n+1 n+1 n+1
Yku(nk) ~ Yka(n,k) Yeunk) ~ Ykalnk) Yeunk) ~ Yka(n.k)

0
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4.7.2 Proof of Lemma [4.4.5 and Lemma [4.4.7

We first recall the Poisson summation formula. It is worldwide famous but is usually written

on the Schwartz space. We propose here the following version.

Proposition 4.7.1. If ¢ € C%(R) with ¢, ¢, ¢" € L}(R,dx) then
> p(n) = / v)dz+ Y / )e 2N g (4.7.97)
nez neZ,n#0

Proof. For x € R, let |z] = sup{k € Z : k < z} denote the integer part. For N € N,

straightforward computations give

> o = s+ e+ [ o [ (o= fe) - D)o @

In[<N -N -N

We recall that p(£N) — 0 as N — oo (because ¢, ¢’ € L'(R,dy)). Moreover, the Fourier

series representation gives

1 e—27rin3:
— = R.
volel-5= ). g T
neZn#0
So,
727rmz
Zg@(n):/ dx+/ Z 5 (z)dz.
nez n€Z,n#0

Let 3[-] denote the Fourier transform. Then, [, e 2™y (z)dx = F[¢'](27n) = 2wing[y]
(27n). We also have |F[¢'](2mn)| < \%ﬁmﬂ < M Thus, we can put the sum outside the
integral and the statement holds.

O

Proof of Lemmal[{-4-5l. (i) We apply (4.7.97) to ¢(z) = g(zo + zAz). So,

Zf Tn A.%'—/ ( )d — Z eZﬂinxo/A:L‘/g(x>e—27rinx/Axdx
R

neL n€Z,n#0
2minxo / Az
e o
—Ax? § : — g”(:c)e 27rmm/Amdx’
(2win)?  Jg
neZ,n#0

the latter inequality coming from the integration by parts formula. The statement now

2

follows by recalling that > -, # =%
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(ii) We apply (4.4.52)) to the function g2. Note that if g,¢’, ¢"” € L?*(R, dz) then g* and its
derivatives up to order 2 belong to L' (R, dz). Moreover, [, ¢*(z)dz = |g|3, and |(¢%)"|11 <

2|32 + 2|gl129" |12, and ([4.4.53) immediately follows. O

Proof of Lemma[].4.7. Hereafter, C' > 0 denotes a constant which can vary from line to

line.

As regard Wy, we recall that ¢ — v(iAz)Axz/ ), v(IAz)Az is a probability measure on
X and ), v(IAz)Az < cA. Then,

=3 (Z (102) gt w140.) — gt 21, ) Ax) Aa

< ZCAZZ (IAZ)[g2(t, zig1,y) + G2 (E, x4, y)] Az? < 26222 g3

By (7i) of Lemma [4.4.5(and (4.4.54)), we can write

A 2

03 < 262)‘2<‘9‘L2 Rde) T 7 (|8y9’L2 Rdz) T 1912 dz) ¥ ‘ayg’LQ Rda:))) < C(1 4yl

Concerning ¥q, by using again (i¢) of Lemma we have

1
0,2 < 1—7)% Gt + Th, zi,y) Az ) dr
2 0

1 5 Al’z
< [ a=m2 {late+ o) ooy + S5 (10000 7h )

+ gt + 7h, - 9) |22y X |059(t + Th, "y)‘LQ(R,dx))]dT < C(1+ Jy|")>*.

For U3 and W, the assertion follows in a similar way. Finally, again from (ii) of Lemma

1),

A
U513 < |¥s[72an T~ (151720 + 1952 @dz) X |95 L2(Roda)) - (4.7.98)
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Now, by (i) of Lemma [1.4.5]
2
9532 50 = / | / 9(t,C + 2, y)v(x)de — Zg<t,<+ 1Az, y)v(iAz) A d¢

Six: (/\02( (t,C + 2, y)v }dx) dc

-75 2

dc/ 079(t, ¢+ z,y)* + 10,9(t,

)

/ drﬂ/! 29(t, ¢+ yy)* + 10y9(t, ¢+ y,y) \2\%} +19(t, ¢+ v,y H x\)

/

(| g( ) ay)|L2 R,dx) ‘V‘+|ayg(a 7y)|L2 Rd;p)| ‘LZ R,dv) +‘g(a 7y)|L2 Rda:)| ‘L2Rdl/))
SC/\A:U( +1y[*)?,

last inequality following from (4.4.54]) and (4.4.55]). Similar calculations allow one to bound
the terms |Wi| 2(r 4z) and [W5| 12 g0 in (4.7.98). O
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