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Abstract

We study option pricing problems in stochastic volatility models. In the first part of this thesis we

focus on American options in the Heston model. We first give an analytical characterization of the

value function of an American option as the unique solution of the associated (degenerate) parabolic

obstacle problem. Our approach is based on variational inequalities in suitable weighted Sobolev

spaces and extends recent results of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop

(2015). We also investigate the properties of the American value function. In particular, we prove

that, under suitable assumptions on the payoff, the value function is nondecreasing with respect to

the volatility variable. Then, we focus on an American put option and we extend some results which

are well known in the Black and Scholes world. In particular, we prove the strict convexity of the

value function in the continuation region, some properties of the free boundary function, the Early

Exercise Price formula and a weak form of the smooth fit principle. This is done mostly by using

probabilistic techniques.

In the second part we deal with the numerical computation of European and American option

prices in jump-diffusion stochastic volatility models. We first focus on the Bates-Hull-White model,

i.e. the Bates model with a stochastic interest rate. We consider a backward hybrid algorithm which

uses a Markov chain approximation (in particular, a “multiple jumps” tree) in the direction of the

volatility and the interest rate and a (deterministic) finite-difference approach in order to handle

the underlying asset price process. Moreover, we provide a simulation scheme to be used for Monte

Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed methods.

Finally, we analyse the rate of convergence of the hybrid algorithm applied to general jump-

diffusion models. We study first order weak convergence of Markov chains to diffusions under quite

general assumptions. Then, we prove the convergence of the algorithm, by studying the stability and

the consistency of the hybrid scheme, in a sense that allows us to exploit the probabilistic features

of the Markov chain approximation.

Keywords: stochastic volatility; European options; American options; degenerate parabolic

problems; optimal stopping; tree methods; finite-difference.

III





Résumé

L’objet de cette thèse est l’étude de problèmes d’évaluation d’options dans les modèles à volatilité

stochastique. La première partie est centrée sur les options américaines dans le modèle de Hes-

ton. Nous donnons d’abord une caractérisation analytique de la fonction de valeur d’une option

américaine comme l’unique solution du problème d’obstacle parabolique dégénéré associé. Notre ap-

proche est basée sur des inéquations variationelles dans des espaces de Sobolev avec poids étendant

les résultats récents de Daskalopoulos et Feehan (2011, 2016) et Feehan et Pop (2015). On étudie

aussi les propriétés de la fonction de valeur d’une option américaine. En particulier, nous prouvons

que, sous des hypothèses convenables sur le payoff, la fonction de valeur est décroissante par rapport à

la volatilité. Ensuite nous nous concentrons sur le put amèricain et nous étendons quelques résultats

qui sont bien connus dans le monde Black-Scholes. En particulier nous prouvons la convexité stricte

de la fonction de valeur dans la région de continuation, quelques propriétés de la frontière libre,

la formule de Prime d’Exercice Anticipée et une forme faible de la propriété du smooth fit. Les

techniques utilisées sont de type probabiliste.

Dans la deuxième partie nous abordons le problème du calcul numérique du prix des options eu-

ropéenne et américaines dans des modèles à volatilité stochastique et avec sauts. Nous étudions

d’abord le modèle de Bates-Hull-White, c’est-à-dire le modèle de Bates avec un taux d’intérêt

stochastique. On considère un algorithme hybride rétrograde qui utilise une approximation par

châıne de Markov (notamment un arbre “avec sauts multiples”) dans la direction de la volatilité

et du taux d’intérêt et une approche (déterministe) par différence finie pour traiter le processus de

prix d’actif. De plus, nous fournissons une procédure de simulation pour des évaluations Monte

Carlo. Les résultats numériques montrent la fiabilité et l’efficacité de ces méthodes. Finalement,

nous analysons le taux de convergence de l’algorithme hybride appliqué à des modèles généraux de

diffusion avec sauts. Nous étudions d’abord la convergence faible au premier ordre de châınes de

Markov vers la diffusion sous des hypothèses assez générales. Ensuite nous prouvons la convergence

de l’algorithme: nous étudions la stabilité et la consistance de la méthode hybride par une technique

qui exploite les caractéristiques probabilistes de l’approximation par châıne de Markov.

Mots clés : volatilité stochastique ; options américaines ; options européennes ; problèmes

paraboliques dégénérés ; arrêt optimal ; approximation par arbres ; différences finies.
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Introduction

The seminal work by Black and Scholes ([21], 1973) was the starting point of equity dynamics

modelling and it is still widely used as a useful approximation. It owns its great success to

its high intuition, simplicity and parsimonious description of the market derivative prices.

Nevertheless, it is a well known fact that it disagrees with reality in a number of significant

ways. Even F. Black, 15 years after the publication of the original paper, wrote about

the flaws of the model [20]. Indeed, empirical studies show that in the real market the

log-return process is not normally distributed and its distribution is often affected by heavy

tail, jumps and high peaks. Moreover, the assumption of a constant volatility turns out to

be too rigid to model the real world financial market. It is enough to analyse the so-called

implied volatility (that is the value of the volatility parameter that, replaced in the Black

and Scholes formula, gives the real market price) in a set of traded call options to recognize

the well known smile/skew effect. In fact, if we plot the implied volatility against the strike

price, we can observe that the resulting shape is not a horizontal line, as it should derive

from assuming a constant volatility, but it is usually convex and can present higher values

for high and low values of the strike price (a smile) or asymmetries (from which the term

skew). Furthermore, the assumption of a constant volatility does not allow to properly

price and hedge options which strongly depend on the volatility itself, such as the options

on the realized variance or the cliquet options.

These results have called for more sophisticated models which can better reflect the

reality. Various approaches to model volatility have been introduced over time, paving the

way for a huge body of literature devoted to this subject. Let us briefly recall some of the

most famous ones.

Roughly speaking, we can recognize two different classes of models. The first class is

given by models in which the volatility is assumed to depend on the same noise source
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Introduction

as the underlying asset. Here, we can find the so-called local volatility models, where the

volatility is assumed to be a function of time and of the current underlying asset price.

Therefore, the asset price S is modeled by a diffusion process of the type

dSt = µ(t, St)Stdt+ σ(t, St)StdBt.

Under classical assumptions these models preserve the completeness of the market and all

the Black-Sholes pricing and hedging theory can be adapted (see, for example, [22, Chapter

2]). The choice of a suitable local volatility function σ = σ(t, S), is a delicate problem.

Bruno Dupire proved in [46] that it is possible to find a function σ = σ(t, S) which gives

theoretical prices matching a given configuration of vanilla options’ prices. Typically, the

local volatility function is calibrated at t = 0 on the market smile and kept frozen afterwards.

Therefore, it does not take into account the daily changes in the volatility smile observed

in the market. For this reason, local volatility models seem to be an analytically tractable

simplification of the reality rather than a representation of how volatility really evolves.

Other different models presented in the literature belong to this first class, for instance path

dependent volatility models, in which volatility depends on the whole past trajectory of the

asset price (see [51, 60]).

The second class of models consists of the so-called stochastic volatility models. Here,

the volatility is modelled by an autonomous stochastic process Y driven by some additional

random noise. Typically, a stochastic volatility model is a Markovian model of the form

dSt = µS(t, St)Stdt+ σS(Yt)StdBt,

dYt = µY (t, Yt)dt+ σY (t, Yt)dWt,

where B and W are possibly correlated Brownian motions. Moreover, often jumps are added

to the dynamics of the assets prices and/or their volatilities. The literature on stochastic

volatility models is huge. The most successful model is the one introduced by S. Heston

[58], which will be extensively studied later on in this thesis. Among the others we cite, for

example, the models by Hull and White [61], Bates [17] and Stein and Stein [90]. Moreover,

there are also examples of local-stochastic volatility models (such as the famous SABR model

[57]) in which the volatility coefficient σS(Yt) of the underlying asset price is more general

and has the form σS(St, Yt), that is it depends also on the current asset price.

These models are, in general, not complete: the derivative securities are usually not

replicable by trading in the underlying. However, this does not affect the practice since the
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Introduction

market can be completed with well known procedures of market completion (for example

by trading a finite number of vanilla options).

We point out that the research is still fervent in this area. For example, empirical studies

have questioned the smoothness of the volatility dynamics. As a consequence, new models

called rough volatility models have recently been introduced. They are non-Markovian

models in which the volatility is driven by a Fractional Brownian motion, see the reference

paper [54] and the comprehensive website [86], which gathers all the developments on this

subject.

In this thesis we consider Markovian stochastic volatility models and we collect some

results on the problem of pricing European and American options. It is divided into two

strongly correlated parts. In the first one we study some theoretical properties of the

American option prices in Heston-type models. In the second part, we deal with the problem

of the numerical computation of the prices, describing and theoretically studying hybrid

schemes for pricing European and American options in jump-diffusion stochastic volatility

models. More precisely, the thesis is organized as follows:

• Part I: American option prices in Heston-type models

– Chapter 1. Variational formulation of American option prices in Heston-type

models;

– Chapter 2. American option price properties in Heston-type models.

• Part II: Hybrid schemes for pricing options in jump-diffusion stochastic volatility

models

– Chapter 3. Hybrid Monte Carlo and tree-finite differences algorithm for pricing

options in the Bates-Hull-White model;

– Chapter 4. Weak convergence of Markov chains and numerical schemes for jump

diffusion processes.

The above chapters are extracted, sometimes verbatim, from the papers [73, 74, 26, 27]

respectively. We now give a brief outline of the main results collected in this thesis.
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Introduction

Part I: American option prices in Heston-type models

The model introduced by S. Heston in 1993 [58] is one of the most widely used stochastic

volatility models in the financial world and it was the starting point for several generaliza-

tions. In this model, the dynamics under the pricing measure of the asset price S and the

volatility process Y are governed by the stochastic differential equation systemdSt = (r − δ)Stdt+
√
YtStdBt, S0 = s > 0,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt, Y0 = y ≥ 0,

(0.0.1)

where B and W denote two correlated Brownian motions with

d〈B,W 〉t = ρdt, ρ ∈ (−1, 1).

Here r ≥ 0 and δ ≥ 0 are the risk free rate of interest and the continuous dividend rate

respectively. The dynamics of the volatility follows a square-root diffusion process, which

was originally introduced by E. Feller in 1951 [50] and then rediscovered by Cox, Ingersoll

and Ross as an interest rate model in [38]. For this reason this process is known in the

financial literature as the CIR process. The parameters κ ≥ 0 and θ > 0 are known

respectively as the mean-reversion rate and the long run state, while the parameter σ > 0

is called the vol-vol (volatility of the volatility). One can observe that the volatility (Yt)t

tends to fluctuate around the value θ and that κ indicates the velocity of this fluctuation

and determines its frequency. This is the mean reversion feature of the CIR process and

justifies the names of the constants κ and θ.

It is well known (see, for example, [5, Section 1.2.4]) that under the so called Feller

condition 2κθ ≥ σ2, the process Y with starting condition Y0 = y > 0 remains always

positive. On the other hand, if the Feller condition is not satisfied, as happens in many

cases of practical importance (see e.g. the calibration results in [30, 44]), Y reaches zero

with probability one for any Y0 = y ≥ 0.

The great success of the Heston model is due to the fact that the dynamics of the underly-

ing asset price can take into account the non-lognormal distribution of the asset returns and

the observed mean-reverting property of the volatility. Moreover, it remains analytically

tractable and provides a closed-form valuation formula for vanilla European options using

Fourier transform.
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In this framework, the price at time t ∈ [0, T ] of an American option with payoff function

ϕ and maturity T is given by P (t, St, Yt), where

P (t, s, y) = sup
τ∈Tt,T

E
[
e−r(τ−t)ϕ(St,s,yτ )

]
,

Tt,T being the set of all the stopping times with values in [t, T ] and St,s,y denoting the

solution to (0.0.1) with starting condition St = s, Yt = y.

If we consider, as usual, the log-price process Xt = logSt, the 2-dimensional diffusion

(X,Y ) has infinitesimal generator given by

L =
y

2

(
∂2

∂x2
+ 2ρσ

∂2

∂y∂x
+ σ2 ∂

2

∂y2

)
+
(
r − δ − y

2

) ∂

∂x
+ κ(θ − y)

∂

∂y

and defined on the set O = R×(0,∞). Note that the differential operator L has unbounded

coefficients and it is not uniformly elliptic: it degenerates on the boundary of O, that

is, when the volatility vanishes. This degenerate property gives rise to some technical

difficulties when dealing with the theoretical properties of the model, in particular when

the problem of pricing American options is considered. In the first part of this thesis we

address some of these issues.

Chapter 1: Variational formulation of American option prices in Heston

type models

Chapter 1 is devoted to the identification of the American option value function as the

unique solution of the associated obstacle problem. Indeed, despite the great success of the

Heston model, as far as we know, an exhaustive analysis of the analytic characterization of

the value function for American options in Heston-type models is missing in the literature,

at least for a large class of payoff functions which include the standard call and put options.

Our approach is based on variational inequalities and extends recent results of Daskalopou-

los and Feehan [42, 43] and Feehan and Pop [48] (see also [32]). More precisely, we first study

the existence and uniqueness of a weak solution of the associated degenerate parabolic obsta-

cle problem in suitable weighted Sobolev spaces introduced in [42] (Section 1.3). Moreover,

we also get a comparison principle. The proof essentially relies on the classical penaliza-

tion technique (see [19]), with some technical devices due to the degenerate nature of the

problem.
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Once we have the existence and uniqueness of an analytical weak solution, in Section 1.4

we identify it with the solution to the optimal stopping problem, that is the American option

value function. In order to do this, we use suitable estimates on the joint distribution of

the log-price process and the volatility process. Moreover, we rely on semi-group techniques

and on the affine property of the model.

Chapter 2: American option price properties in Heston type models

In Chapter 2 we study some qualitative properties of an American option value function

in the Heston model. We first prove in Section 2.3 that, if the payoff function is convex

and satisfies some regularity assumptions, then the option value function is increasing with

respect to the volatility variable. Then, in Section 2.4, we focus on the standard put option,

that is we fix the payoff function ϕ(s) = (K−s)+, and we extend to the Heston model some

results which are well known in the Black and Scholes world, mostly by using probabilistic

techniques. In particular, in Section 2.4.1 we introduce the so called exercise boundary or

critical price, that is the map

b(t, y) = inf{s > 0 | P (t, s, y) > (K − s)+}, (t, y) ∈ [0, T )× [0,∞),

and we study some features of this function such as continuity properties. Then, in Section

4.3.1 we prove that the American put value function is strictly convex with respect to the

stock price in the continuation region, and we do it by using purely probabilistic arguments.

In Section 2.4.3 we extend to the stochastic volatility Heston model the early exercise

premium formula, that is, we prove that

P (0, S0, Y0) = Pe(0, S0, Y0)−
∫ T

0
e−rsE[(δSs − rK)1{Ss≤b(s,Ys)}]ds,

where Pe(0, S0, Y0) is the price at time 0 of a European put with the same maturity T and

strike price K of the original American put with price P . Finally, in Section 2.4.4 we prove

a weak form of the smooth fit principle, a well known concept in optimal stopping theory.

Part II: Hybrid schemes for pricing options in jump-diffusion

stochastic volatility models

In the second part of this thesis we face up with the problem of the numerical computation

of European and American options prices in jump-diffusion stochastic volatility models. In
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particular, we consider the Heston model and some generalizations of it which have other

random sources such as jumps and a stochastic interest rate (see [17, 61]).

From a computational point of view, the most delicate point is the treatment of the

CIR dynamics for the volatility process in the full parameter regime - it is well known

that the standard techniques fail when the square root process is considered. Moreover,

one has to be careful in choosing the approximation method according to the European or

American option case. In fact, when dealing with European options, i.e. solutions to Partial

(Integro) Differential Equation (hereafter P(I)DE) problems, numerical approaches involve

tree methods [2, 80], Monte Carlo procedures [3, 4, 6, 8, 98], finite-difference numerical

schemes [34, 64, 92] or quantization algorithms [82]. When American options are considered,

that is, solutions to specific optimal stopping problems or P(I)DEs with obstacle, it is very

useful to consider numerical methods which are able to easily handle dynamic programming

principles, for example trees or finite-difference.

In this thesis we consider a backward “hybrid” algorithm which combines:

• finite difference schemes to handle the jump-diffusion price process;

• Markov chains (in particular, multiple jumps trees) to approximate the other random

sources, such as the stochastic volatility and the stochastic interest rate.

Chapter 3: Hybrid Monte Carlo and tree-finite differences algorithm for

pricing options in the Bates-Hull-White model

In Chapter 3 we focus on the Bates-Hull-White model, where the volatility Y is a CIR

process and the underlying asset price process S contains a further noise from a jump as

introduced by Merton [77]. Moreover, the interest rate r is stochastic and evolves according

to a generalized Ornstein-Uhlenbeck (hereafter OU) process. More precisely, under the

pricing measure, we consider the following jump-diffusion model:

dSt
St−

= (rt − δ)dt+
√
Yt dZ

S
t + dHt,

dYt = κY (θY − Yt)dt+ σY
√
Yt dZ

Y
t ,

drt = κr(θr(t)− rt)dt+ σrdZ
r
t ,

where, as usual, δ denotes the continuous dividend rate, S0, r0 > 0, Y0 ≥ 0, ZS , ZY and

Zr are correlated Brownian motions and H is a compound Poisson process with intensity
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λ and i.i.d. jumps {Jk}k, that is,

Ht =

Kt∑
k=1

Jk,

K denoting a Poisson process with intensity λ. We assume that the random sources , given

by the Poisson process K, the jump amplitudes {Jk}k and the 3-dimensional correlated

Brownian motion (ZS , ZY , Zr), are independent.

We refer to the introduction of Chapter 3 for an overview on the existing numerical

schemes for pricing options in this model.

Our pricing procedures work as follows. We first approximate both the stochastic volatil-

ity and the interest rate processes with a binomial “multiple jumps” tree approach which is

based on the techniques originally introduced in [79]. Such a multiple jumps tree approxi-

mation for the CIR process was first introduced and analysed in [10], where it is shown to

be reliable and accurate without imposing restrictions on the coefficients.

Then, we develop two different pricing procedures. In Section 3.3.3 we propose a (forward)

Monte Carlo method, based on simulations for the model following the binomial tree in the

direction of both the volatility and the interest rate, and a space-continuous approximation

for the underlying asset price process coming from a Euler-Maruyama type scheme.

In Section 3.4, we describe a hybrid backward procedure which works following the tree

method in the direction of the volatility and the interest rate and a finite-difference approach

in order to handle the underlying asset price process. We also give a first theoretical result

on this algorithm, studying some stability properties of the procedure.

Finally, Section 3.5.2 is entirely devoted to numerical results. Several experiments are

provided, both for European and American options, with different values of the parameters

of the model. In particular, we also consider cases in which the Feller condition for the

volatility process is not satisfied. All numerical results show the reliability, the accuracy

and the efficiency of both the Monte Carlo and the hybrid algorithm.

Chapter 4: Weak convergence rate of Markov chains and hybrid numerical

schemes for jump-diffusion processes

We devote Chapter 4 to the study of the theoretical convergence of a generalization of the

hybrid numerical procedure described in Chapter 3. Here we just briefly describe our main

results, referring to Section 4.1 for an overview on the existing literature on the rate of
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convergence of numerical methods for pricing options in Heston-type models.

Recall that the hybrid algorithm uses tree approximations and that, in their turn, tree

methods rely on Markov chains. So, we first consider in Section 4.3 a d-dimensional diffusion

process (Yt)t∈[0,T ] which evolves according to the SDE

dYt = µY (Yt)dt+ σY (Yt)dWt.

Fix a natural number N ≥ 1, h = T/N and assume that (Ynh)n=0,...,N is approximated by

a Markov chain (Y h
n )n=0,...,N . It is well known that the weak convergence of Markov chains

to diffusions relies on assumptions on the local moments of the approximating process up to

order 3 or 4. We prove that, stressing these assumptions, we can study the rate of the weak

convergence. This analysis is independent of the financial framework but, as an example, we

apply our results to the multiple jumps tree approximation of the CIR process introduced in

[10] and used in [24, 25, 27]. Let us mention that our general convergence result (Theorem

4.3.1) may in principle be applied to more general trees constructed through the multiple

jumps approach by Nelson and Ramaswamy [79], on which the tree in [10] is based – to

our knowledge, a theoretical study of the rate of convergence for such trees is missing in

the literature. And it could also be used in other cases, e.g. the recent tree method for the

Heston model developed in [2].

Then, in Section 4.4 we combine the Markov chain approach with other numerical tech-

niques in order to handle the different components in jump-diffusion coupled models. In par-

ticular, we link (Yt)t∈[0,T ] with a jump-diffusion process (Xt)t∈[0,T ] which evolves according

to a stochastic differential whose coefficients only depend on the process. In mathematical

terms, we consider the stochastic differential equation systemdXt = µX(Yt)dt+ σX(Yt)dBt + γX(Yt)dHt,

dYt = µY (Yt)dt+ σY (Yt)dWt,

where H is a compound Poisson process independent of the 2-dimensional Brownian mo-

tion (W,B). We generalize the hybrid procedure developed in [24, 25, 27] which works

backwardly by approximating the process Y with a Markov chain and by using a different

numerical scheme for solving a (local) PIDE allowing us to work in the direction of the

process X. We study the speed of convergence of this hybrid approach. The main difficulty

comes from the fact that, in general, the hybrid procedure cannot be directly written on a
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Markov chain, so we cannot apply the convergence results obtained in Section 4.3. There-

fore, the idea is to follow the hybrid nature of the procedure: we use classical numerical

techniques, that is an analysis of the stability and of the consistency of the method, but in

a sense that allows us to exploit the probabilistic properties of the Markov chain approxi-

mating the process Y . Again, we provide examples from the financial framework, applying

our convergence results to the tree-finite difference algorithm in the Heston or Bates model.
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Heston-type models
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Chapter 1

Variational formulation of

American option prices

1.1 Introduction

The Heston model is the most celebrated stochastic volatility model in the financial world.

As a consequence, there is an extensive literature on numerical methods to price derivatives

in Heston-type models. In this framework, besides purely probabilistic methods such as

standard Monte Carlo and tree approximations, there is a large class of algorithms which

exploit numerical analysis techniques in order to solve the standard PDE (resp. the obstacle

problem) formally associated with the European (resp. American) option price function.

However, these algorithms have, in general, little mathematical support and in particular,

as far as we know, a rigorous and complete study of the analytic characterization of the

American price function is not present in the literature.

The main difficulties in this sense come from the degenerate nature of the model. In

fact, the infinitesimal generator associated with the two dimensional diffusion given by the

log-price process and the volatility process is not uniformly elliptic: it degenerates on the

boundary of the domain, that is when the volatility variable vanishes. Moreover, it has

unbounded coefficients with linear growth. Therefore, the existence and the uniqueness

of the solution to the pricing PDE and obstacle problem do not follow from the classical

theory, at least in the case in which the boundary of the state space is reached with positive

probability, as happens in many cases of practical importance (see [7]). Moreover, the
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Chap.. 1 - Variational formulation of American option prices

probabilistic representation of the solution, that is the identification with the price function,

is far from trivial in the case of non regular payoffs.

It should be emphasized that a clear analytic characterization of the price function allows

not only to formally justify the theoretical convergence of some classical pricing algorithms

but also to investigate the regularity properties of the price function (see [66] for the case

of the Black and Scholes models).

Concerning the existing literature, E. Ekstrom and J. Tysk in [47] give a rigorous and

complete analysis of these issues in the case of European options, proving that, under some

regularity assumptions on the payoff functions, the price function is the unique classical

solution of the associated PDE with a certain boundary behaviour for vanishing values

of the volatility. However, the payoff functions they consider do not include the case of

standard put and call options.

Recently, P. Daskalopoulos and P. Feehan in [42, 43] studied the existence, the uniqueness,

and some regularity properties of the solution of this kind of degenerate PDE and obstacle

problems in the elliptic case, introducing suitable weighted Sobolev spaces which clarify the

behaviour of the solution near the degenerate boundary (see also [32]). In another paper

([48]) P. Feehan and C. Pop addressed the issue of the probabilistic representation of the

solution, but we do not know if their assumptions on the solution of the parabolic obstacle

problem are satisfied in the case of standard American options. Note that Feehan and Pop

did prove regularity results in the elliptic case, see [49]. They also announce results for the

parabolic case in [48].

The aim of this chapter is to give a precise analytical characterization of the American

option price function in the Heston model for a large class of payoffs which includes the

standard put and call options. In particular, we give a variational formulation of the Amer-

ican pricing problem using the weighted Sobolev spaces and the bilinear form introduced

in [42].

The chapter is organized as follows. In Section 2, we introduce our notations and we

state our main results. Then, in Section 3, we study the existence and uniqueness of the

solution of the associated variational inequality, extending the results obtained in [42] in the

elliptic case. The proof relies, as in [42], on the classical penalization technique introduced

by Bensoussan and Lions [19] with some technical devices due to the degenerate nature of

the problem. We also establish a Comparison Theorem. Finally, in section 4, we prove that
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Sec. 1.2 - Notations and main results

the solution of the variational inequality with obstacle function ψ is actually the American

option price function with payoff ψ, with conditions on ψ which are satisfied, for example,

by the standard call and put options. In order to do this, we use the affine property of the

underlying diffusion given by the log price process X and the volatility process Y . Thanks

to this property, we first identify the analytic semigroup associated with the bilinear form

with a correction term and the transition semigroup of the pair (X,Y ) with a killing term.

Then, we prove regularity results on the solution of the variational inequality and suitable

estimates on the joint law of the process (X,Y ) and we deduce from them the analytical

characterization of the solution of the optimal stopping problem, that is the American

option price.

1.2 Notations and main results

1.2.1 The Heston model

We recall that in the Heston model the dynamics under the pricing measure of the asset

price S and the volatility process Y are governed by the stochastic differential equation

system 
dSt
St

= (r − δ)dt+
√
YtdBt, S0 = s > 0,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt, Y0 = y ≥ 0,

where B and W denote two correlated Brownian motions with

d〈B,W 〉t = ρdt, ρ ∈ (−1, 1).

We exclude the degenerate case ρ = ±1, that is the case in which the same Brownian motion

drives the dynamics of X and Y . Actually, it can be easily seen that, in this case, St reduces

to a function of the pair
(
Yt,
∫ t

0 Ysds
)

and the resulting degenerate model cannot be treated

with the techniques we develop in this chapter. Moreover, this particular situation is not

very interesting from a financial point of view.

Moreover, we recall that r ≥ 0 and δ ≥ 0 are respectively the risk free rate of interest

and the continuous dividend rate. The dynamics of Y follows a CIR process with mean

reversion rate κ > 0, long run state θ > 0 and volatility of the volatility θ > 0. We stress

that we do not require the Feller condition 2κθ ≥ σ2: the volatility process Y can hit 0

(see, for example, [5, Section 1.2.4]).
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Chap.. 1 - Variational formulation of American option prices

We are interested in studying the price of an American option with payoff function ψ.

For technical reasons which will be clarified later on, hereafter we consider the process

Xt = logSt − c̄t, with c̄ = r − δ − ρκθ

σ
, (1.2.1)

which satisfies dXt =
(ρκθ
σ −

Yt
2

)
dt+

√
YtdBt,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt.

(1.2.2)

Note that, in this framework, we have to consider payoff functions ψ which depend

on both the time and the space variables. For example, in the case of a standard put

option (resp. a call option) with strike price K we have ψ(t, x) = (K − ex+c̄t)+ (resp.

ψ(t, x) = (ex+c̄t −K)+). So, the natural price at time t of an American option with a nice

enough payoff (ψ(t,Xt, Yt))0≤t≤T is given by P (t,Xt, Yt), with

P (t, x, y) = sup
θ∈Tt,T

E[e−r(θ−t)ψ(θ,Xt,x,y
θ , Y t,y

θ )],

where Tt,T is the set of all stopping times with values in [t, T ] and (Xt,x,y
s , Y t,y

s )t≤s≤T denotes

the solution to (1.2.2) with the starting condition (Xt, Yt) = (x, y).

Our aim is to give an analytical characterization of the price function P . In this chapter

we denote by L the infinitesimal generator of the two dimensional diffusion (X,Y ), given

by

L =
y

2

(
∂2

∂x2
+ 2ρσ

∂2

∂y∂x
+ σ2 ∂

2

∂y2

)
+

(
ρκθ

σ
− y

2

)
∂

∂x
+ κ(θ − y)

∂

∂y
,

which is defined on the open set O := R× (0,∞). Note that L has unbounded coefficients

and is not uniformly elliptic: it degenerates on the boundary ∂O = R× {0}.

1.2.2 American options and variational inequalities

Heuristics

From the optimal stopping theory, we know that the discounted price process P̃ (t,Xt, Yt) =

e−rtP (t,Xt, Yt) is a supermartingale and that its finite variation part only decreases on the

set P = ψ with respect to the time variable t. We want to have an analytical interpretation

of these features on the function P (t, x, y). So, assume that P ∈ C1,2((0, T )×O). Then, by
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Sec. 1.2 - Notations and main results

applying Itô’s formula, the finite variation part of P̃ (t,Xt, Yt) is(
∂P̃

∂t
+ LP̃

)
(t,Xt, Yt).

Since P̃ is a supermartingale, we can deduce the inequality

∂P̃

∂t
+ LP̃ ≤ 0

and, since its finite variation part decreases only on the set P (t,Xt, Yt) = ψ(t,Xt, Yt), we

can write (
∂P̃

∂t
+ LP̃

)
(ψ − P ) = 0.

This relation has to be satisfied dt− a.e. along the trajectories of (t,Xt, Yt). Moreover, we

have the two trivial conditions P (T, x, y) = ψ(T, x, y) and P ≥ ψ.

The previous discussion is only heuristic, since the price function P is not regular enough

to apply Itô’s formula. However, it suggests the following strategy:

(i) Study the obstacle problem
∂u
∂t + Lu ≤ 0, u ≥ ψ, in [0, T ]×O,(
∂u
∂t + Lu

)
(ψ − u) = 0, in [0, T ]×O,

u(T, x, y) = ψ(T, x, y).

(1.2.3)

(ii) Show that the discounted price function P̃ is equal to the solution of (1.2.3) where ψ

is replaced by ψ̃(t, x, y) = e−rtψ(t, x, y).

We will follow this program providing a variational formulation of system (1.2.3).

Weighted Sobolev spaces and bilinear form associated with the Heston operator

We consider the measure first introduced in [42]:

mγ,µ(dx, dy) = yβ−1e−γ|x|−µydxdy,

with γ > 0, µ > 0 and β := 2κθ
σ2 .

It is worth noting that in [42] the authors fix µ = 2κ
σ2 in the definition of the measure

mγ,µ. This specification will not be necessary in this chapter, but it is useful to mention it
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Chap.. 1 - Variational formulation of American option prices

in order to better understand how this measure arises. In fact, recall that the density of the

speed measure of the CIR process is given by yβ−1e−
2κ
σ2 y. Then, the term yβ−1e−

2κ
σ2 y in the

definition of mγ,µ has a clear probabilistic interpretation, while the exponential term e−γ|x|

is classically introduced just to deal with the unbounded domain in the x−component.

For u ∈ Rn we denote by |u| the standard Euclidean norm of u in Rn. Then, we recall

the weighted Sobolev spaces introduced in [42]. The choice of these particular Sobolev

spaces will allow us to formulate the obstacle problem (1.2.3) in a variational framework

with respect to the measure mγ,µ.

Definition 1.2.1. For every p ≥ 1, let Lp(O,mγ,µ) be the space of all Borel measurable

functions u : O → R for which

‖u‖pLp(O,mγ,µ) :=

∫
O
|u|pdmγ,µ <∞,

and denote H0(O,mγ,µ) := L2(O,mγ,µ).

(i) If ∇u := (ux, uy) and ux, uy are defined in the sense of distributions, we set

H1(O,mγ,µ) := {u ∈ L2(O,mγ,µ) :
√

1 + yu and
√
y|∇u| ∈ L2(O,mγ,µ)},

and

‖u‖2H1(O,mγ,µ) :=

∫
O

(
y|∇u|2 + (1 + y)u2

)
dmγ,µ.

(ii) If D2u := (uxx, uxy, uyx, uyy) and all derivatives of u are defined in the sense of

distributions, we set

H2(O,mγ,µ) := {u ∈ L2(O,mγ,µ) :
√

1 + yu, (1 + y)|∇u|, y|D2u| ∈ L2(O,mγ,µ)}

and

‖u‖2H2(O,mγ,µ) :=

∫
O

(
y2|D2u|2 + (1 + y)2|∇u|2 + (1 + y)u2

)
dmγ,µ.

For brevity and when the context is clear, we shall often denote

H := H0(O,mγ,µ), V := H1(O,mγ,µ)

and

‖u‖H := ‖u‖L2(O,mγ,µ), ‖u‖V := ‖u‖H1(O,mγ,µ).
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Sec. 1.2 - Notations and main results

Note that we have the inclusion

H2(O,mγ,µ) ⊂ H1(O,mγ,µ)

and that the spaces Hk(O,mγ,µ), for k = 0, 1, 2 are Hilbert spaces with the inner products

(u, v)H = (u, v)L2(O,mγ,µ) =

∫
O
uvdmγ,µ,

(u, v)V = (u, v)H1(O,mγ,µ) =

∫
O

(y (∇u,∇v) + (1 + y)uv) dmγ,µ

and

(u, v)H2(O,mγ,µ) :=

∫
O

(
y2
(
D2u,D2v

)
+ (1 + y)2 (∇u,∇v) + (1 + y)uv

)
dmγ,µ,

where (·, ·) denotes the standard scalar product in Rn.

Moreover, for every T > 0, p ∈ [1,+∞) and i = 0, 1, 2, we set

Lp([0, T ];H i(O,mγ,µ)) =

{
u : [0, T ]×O → R Borel measurable : u(t, ·, ·) ∈ H i(O,mγ,µ)

for a.e. t ∈ [0, T ] and

∫ T

0
‖u(t, ·.·)‖p

Hi(O,mγ,µ)
dt <∞

}
and

‖u‖p
Lp([0,T ];Hi(O,mγ,µ))

=

∫ T

0
‖u(t, ·.·)‖p

Hi(O,mγ,µ)
dt.

We also define L∞([0, T ];H i) with the usual essential sup norm.

We can now introduce the following bilinear form.

Definition 1.2.2. For any u, v ∈ H1(O,mγ,µ) we define the bilinear form

aγ,µ(u, v) =
1

2

∫
O
y
(
uxvx(x, y) + ρσuxvy(x, y) + ρσuyvx(x, y) + σ2uyvy(x, y)

)
dmγ,µ

+

∫
O
y (jγ,µ(x)ux(x, y) + kγ,µ(x)uy(x, y)) v(x, y)dmγ,µ,

where

jγ,µ(x) =
1

2
(1− γsgn(x)− µρσ) , kγ,µ(x) = κ− γρσ

2
sgn(x)− µσ2

2
. (1.2.4)
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Chap.. 1 - Variational formulation of American option prices

We will prove that aγ,µ is the bilinear form associated with the operator L, in the sense

that for every u ∈ H2(O,mγ,µ) and for every v ∈ H1(O,mγ,µ), we have

(Lu, v)H = −aγ,µ(u, v).

In order to simplify the notation, for the rest of this chapter we will write m and a(·, ·)
instead of mγ,µ and aγ,µ(·, ·) every time the dependence on γ and µ does not play a role in

the analysis and computations.

1.2.3 Variational formulation of the American price

Fix T > 0. We consider an assumption on the payoff function ψ which will be crucial in

the discussion of the penalized problem.

Assumption H1. We say that a function ψ satisfies Assumption H1 if ψ ∈ C([0, T ];H),
√

1 + yψ ∈ L2([0, T ];V ), ψ(T ) ∈ V and there exists Ψ ∈ L2([0, T ];V ) such that
∣∣∣∂ψ∂t ∣∣∣ ≤ Ψ.

We will also need a domination condition on ψ by a function Φ which satisfies the following

assumption.

Assumption H2. We say that a function Φ ∈ L2([0, T ];H2(O,m)) satisfies Assumption

H2 if (1 + y)
3
2 Φ ∈ L2([0, T ];H), ∂Φ

∂t + LΦ ≤ 0 and
√

1 + yΦ ∈ L∞([0, T ];L2(O,mγ,µ′)) for

some 0 < µ′ < µ.

The domination condition is needed to deal with the lack of coercivity of the bilinear

form associated with our problem. Similar conditions are also used in [42].

The first step in the variational formulation of the problem is to introduce the associated

variational inequality and to prove the following existence and uniqueness result.

Theorem 1.2.3. Assume that ψ satisfies Assumption H1 together with 0 ≤ ψ ≤ Φ, where Φ

satisfies Assumption H2. Then, there exists a unique function u such that u ∈ C([0, T ];H)∩
L2([0, T ];V ), ∂u∂t ∈ L

2([0, T ];H) and

−
(
∂u
∂t , v − u

)
H

+ a(u, v − u) ≥ 0, a.e. in [0, T ] v ∈ L2([0, T ];V ), v ≥ ψ,

u ≥ ψ a.e. in [0, T ]× R× (0,∞),

u(T ) = ψ(T ),

0 ≤ u ≤ Φ.

(1.2.5)
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The proof is presented in Section 3 and essentially relies on the penalization technique

introduced by Bensoussan and Lions (see also [52]) with some technical devices due to

the degenerate nature of the problem. We extend in the parabolic framework the results

obtained in [42] for the elliptic case.

The second step is to identify the unique solution of the variational inequality (1.2.5)

as the solution of the optimal stopping problem, that is the (discounted) American option

price. In order to do this, we consider the following assumption on the payoff function.

Assumption H∗. We say that a function ψ : [0, T ]×R× [0,∞)→ R satisfies Assumption

H∗ if ψ is continuous and there exist constants C > 0 and L ∈
[
0, 2κ

σ2

)
such that, for all

(t, x, y) ∈ [0, T ]× R× [0,∞),

0 ≤ ψ(t, x, y) ≤ C(ex + eLy), (1.2.6)

and ∣∣∣∣∂ψ∂t (t, x, y)

∣∣∣∣+

∣∣∣∣∂ψ∂x (t, x, y)

∣∣∣∣+

∣∣∣∣∂ψ∂y (t, x, y)

∣∣∣∣ ≤ C(ea|x|+by), (1.2.7)

for some a, b ∈ R.

Note that the payoff functions of a standard call and put option with strike price K

(that is, respectively, ψ = ψ(t, x) = (K − ex+c̄t)+ and ψ = ψ(t, x) = (ex+c̄t −K)+) satisfy

Assumption H∗. Moreover, it is easy to see that, if ψ satisfies Assumption H∗, then it is

possible to choose γ and µ in the definition of the measure mγ,µ (see (1.2.2)) such that ψ

satisfies the assumptions of Theorem 1.2.3. Then, for such γ and µ, we get the following

identification result.

Theorem 1.2.4. Assume that ψ satisfies Assumption H∗. Then, the solution u of the

variational inequality (1.2.5) associated with ψ is continuous and coincides with the function

u∗ defined by

u∗(t, x, y) = sup
τ∈Tt,T

E
[
ψ(τ,Xt,x,y

τ , Y t,x,y
τ )

]
.

1.3 Existence and uniqueness of solutions to the variational

inequality

1.3.1 Integration by parts and energy estimates

The following result justifies the definition of the bilinear form a.
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Proposition 1.3.1. If u ∈ H2(O,m) and v ∈ H1(O,m), we have

(Lu, v)H = −a(u, v). (1.3.8)

This result is proved with the same arguments of [42, Lemma 2.23] or [43, Lemma A.3]

but we prefer to repeat here the proof since it clarifies why we have considered the process

Xt = logSt − c̄t instead of the standard log-price process logSt.

Before proving Proposition 1.3.1, we show some preliminary results. The first one is

about the standard regularization of a function by convolution.

Lemma 1.3.2. Let ϕ : R×R→ R+ be a C∞ function with compact support in [−1,+1]×
[−1, 0] and such that

∫ ∫
ϕ(x, y)dxdy = 1. For j ∈ N we set ϕj(x, y) = j2ϕ(jx, jy). Then,

for every function u locally square-integrable on R × (0,∞) and for every compact set K,

we have

lim
j→∞

∫∫
K

(ϕj ∗ u− u)2(x, y)dxdy = 0.

Proof. We first observe that, by using Jensen’s inequality with respect to the measure

ϕj(ξ, ζ)dξdζ, we get∫∫
K

(ϕj ∗ u)2(x, y)dxdy ≤
∫∫

K
dxdy

∫∫
ϕj(ξ, ζ)u2(x− ξ, y − ζ)dξdζ

=

∫∫
ϕj(ξ, ζ)dξdζ

∫∫
1K(x+ ξ, y + ζ)u2(x, y)dxdy.

We deduce, for j large enough,∫∫
K

(ϕj ∗ u)2(x, y)dxdy ≤
∫∫

K̄
u2(x, y)dxdy,

where K̄ = {(x, y) ∈ O|d∞
(
(x, y),K) ≤ 1

j }. Let ε be a positive constant and v be a

continuous function such that
∫∫
K̄(u(x, y) − v(x, y))2dxdy ≤ ε. By using the well known

inequality (x1 + · · ·+ xl)
2 ≤ l(x2

1 + · · ·+ x2
l ), we have∫ ∫

K
(ϕj ∗ u− u)2(x, y)dxdy

≤ 3

∫ ∫
K

(ϕj ∗ u− ϕj ∗ v)2(x, y)dxdy + 3

∫ ∫
K

(ϕj ∗ v − v)2(x, y)dxdy

+ 3

∫ ∫
K

(v − u)2(x, y)dxdy

≤ 3

(∫ ∫
K̄

(v − u)2(x, y)dxdy +

∫ ∫
K

(ϕj ∗ v − v)2(x, y)dxdy +

∫ ∫
K̄

(v − u)2(x, y)dxdy

)
≤ 6ε+ 3

∫ ∫
K

(ϕj ∗ v − v)2(x, y)dxdy.

12



Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Since v is continuous, we have |ϕj ∗ v| ≤ supx,y∈K̄ |v(x, y)| and limj→∞ ϕj ∗ v(x, y) = v(x, y)

on K. Therefore, by Lebesgue Theorem, we can pass to the limit in the above inequality

and we get

lim sup
j→∞

∫∫
K

(ϕj ∗ u− u)2(x, y)dxdy ≤ 6ε,

which completes the proof.

Then, the following two propositions justify the integration by parts formulas with respect

to the measure m.

Proposition 1.3.3. Let us consider u, v : O → R locally square-integrable on O, with

derivatives ux and vx locally square-integrable on O as well. Moreover, assume that∫
O

(
|ux(x, y)v(x, y)|+ |u(x, y)vx(x, y)|+ |u(x, y)v(x, y)|

)
dm <∞.

Then, we have ∫
O
ux(x, y)v(x, y)dm = −

∫
O
u(x, y) (vx(x, y)− γsgn(x)v) dm. (1.3.9)

Proof. First we assume that v has compact support in R × (0,∞). For any j ∈ N we

consider the C∞ functions uj = ϕj ∗ u and vj = ϕj ∗ v, with ϕj as in Lemma 1.3.2. Note

that supp vj ⊂ supp v+ supp ϕj and so, for j large enough, supp vj ⊂ R× (0,∞). For any

ε > 0, integrating by parts, we have∫ ∞
−∞

(uj)x(x, y)vj(x, y)e−γ
√
x2+εdx = −

∫ ∞
−∞
uj

(
(vj)x(x, y)− γ x√

x2 + ε
vj(x, y)

)
e−γ
√
x2+εdx,

and, letting ε→ 0,∫ ∞
−∞

(uj)x(x, y)vj(x, y)e−γ|x|dx = −
∫ ∞
−∞

uj
(
(vj)x(x, y)− γsgn(x)vj(x, y)

)
e−γ|x|dx.

Multiplying by yβ−1e−µy and integrating in y we obtain∫
O

(uj)x(x, y)vj(x, y)dm = −
∫
O
uj(x, y)

(
(vj)x(x, y)− γsgn(x)vj(x, y)

)
dm.

Recall that, for j large enough, vj has compact support in R× (0,∞) and m is bounded on

this compact. By using Lemma 1.3.2, letting j →∞ we get∫
O
ux(x, y)v(x, y)dm = −

∫
O
u
(
vx(x, y)− γsgn(x)v(x, y

)
dm.

13



Chap.. 1 - Variational formulation of American option prices

Now let us consider the general case of a function v without compact support. We introduce

a C∞−function α with values in [0, 1], α(x, y) = 0 for all (x, y) /∈ [−2,+2] × [−2,+2],

α(x, y) = 1 for all (x, y) ∈ [−1,+1] × [−1,+1] and a C∞−function χ with values in [0, 1],

χ(y) = 0 for all y ∈ [0, 1
2 ], χ(y) = 1 for all y ∈ [+1,∞). We set

Aj(x, y) = α

(
x

j
,
y

j

)
χ(jy), j ∈ N.

For every j ∈ N, Aj has compact support in O and we have∫
O
ux(x, y)Aj(x, y)v(x, y)dm

= −
∫
O
u(x, y)

(
vx(x, y)− γsgn(x)v(x, y)

)
Aj(x, y)dm−

∫
O
u(x, y)v(x, y)(Aj)x(x, y)dm.

The function Aj is bounded by ‖α‖∞‖χ‖∞ and limj→+∞Aj(x, y) = 1 for every (x, y) ∈ O.

Moreover (Aj)x(x, y) = 1
jαx

(
x
j ,

y
j

)
χ(jy), so that

∣∣∣∣∫
O
u(x, y)v(x, y)(Aj)x(x, y)dm

∣∣∣∣ ≤ C

j

∫
O
1{|x|≥j}|u(x, y)v(x, y)|dm,

where C = ‖αx‖∞‖χ‖∞. Therefore, we obtain (1.3.9) letting j →∞.

Proposition 1.3.4. Let us consider u, v : O → R locally square-integrable on O, with

derivatives uy and vy locally square-integrable on O as well. Moreover, assume that∫
O
y
(
|uy(x, y)v(x, y)|+ |u(x, y)vxy(x, y)|

)
+ |u(x, y)v(x, y)|dm <∞.

Then, we have∫
O
yuy(x, y)v(x, y)dm = −

∫
O
yu(x, y)vy(x, y)dm−

∫
O

(β − µy)u(x, y)v(x, y)dm. (1.3.10)

Proof. If v has compact support in O, we obtain (1.3.10) as in the proof of Proposition

1.3.3. On the other hand, if v does not have compact support,∫
O
yuy(x, y)v(x, y)Aj(x, y)dm = −

∫
O
yu(x, y)vy(x, y)Aj(x, y)dm

−
∫
O

(β − µy)u(x, y)v(x, y)Aj(x, y)dm−
∫
O
yu(x, y)v(x, y)(Aj)y(x, y)dm,

14



Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

where Aj(x, y) = α(xj ,
y
j )χ(jy), as in the proof of Proposition 1.3.3 but choosing χ such

that, moreover, ‖yχ′(y)‖∞ < ∞. We have (Aj)y(x, y) = 1
jαy(

x
j ,

y
j )χ(jy) + jα(xj ,

y
j )χ′(jy).

Note that∣∣∣∣∫
O
yu(x, y)v(x, y)jα

(
x

j
,
y

j

)
χ′(jy)dm

∣∣∣∣ ≤ ∫
O
1{

y≤ 1
j

}|u(x, y)v(x, y)|‖α‖∞ sup
ζ>0
|ζχ′(ζ)|dm.

The last expression goes to 0 as j → ∞ since
∫
O |u(x, y)v(x, y)|dm < ∞. The assertion

follows by passing to the limit j →∞.

We can now prove Proposition 1.3.1.

Proof of Proposition 1.3.1. By using Lemma 1.3.3 we have∫
O
y
∂2u

∂x2
vdm = −

∫
O
y
∂u

∂x

(
∂v

∂x
− γsgn(x)v

)
dm,

∫
O
y
∂2u

∂y2
vdm = −

∫
O
y
∂u

∂y

∂v

∂y
dm +

∫
O

(µy − β)
∂u

∂y
vdm,∫

O
y
∂2u

∂x∂y
vdm = −

∫
O
y
∂u

∂y

(
∂v

∂x
− γsgn(x)v

)
dm

and ∫
O
y
∂2u

∂x∂y
vdm = −

∫
O
y
∂u

∂x

∂v

∂y
dm +

∫
O

(µy − β)
∂u

∂x
vdm.

Recalling that

L =
y

2

(
∂2

∂x2
+ 2ρσ

∂2

∂x∂y
+ σ2 ∂

2

∂y2

)
+

(
ρκθ

σ
− y

2

)
∂

∂x
+ κ(θ − y)

∂

∂y

and using the equality β = 2κθ/σ2, we get

(Lu, v)H = −
∫
O

y

2

(
∂u

∂x

∂v

∂x
+ σ2∂u

∂y

∂v

∂y
+ ρσ

∂u

∂x

∂v

∂y
+ ρσ

∂u

∂y

∂v

∂x

)
dm

+

∫
O

1

2

∂u

∂x
(yγsgn(x) + ρσ(µy − β)) vdm +

∫
O

1

2

∂u

∂y

(
µσ2y − βσ2 + ρσyγsgn(x)

)
vdm

+

∫
O

[(
ρκθ

σ
− y

2

)
∂u

∂x
+ κ(θ − y)

∂u

∂y

]
vdm = −a(u, v).

Remark 1.3.5. By a closer look at the proof of Proposition 1.3.1 it is clear that the choice

of c̄ in (1.2.1) allows to avoid terms of the type
∫

(ux + uy)vdm in the associated bilinear

form a. This trick will be crucial in order to obtain suitable energy estimates.
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Recall the well-known inequality

bc = (
√
ζb)

(
c√
ζ

)
≤ ζ

2
b2 +

1

2ζ
c2, b, c ∈ R, ζ > 0. (1.3.11)

Hereafter we will often apply (1.3.11) in the proofs even if it is not explicitly recalled each

time.

We have the following energy estimates.

Proposition 1.3.6. For every u, v ∈ V , the bilinear form a(·, ·) satisfies

|a(u, v)| ≤ C1‖u‖V ‖v‖V , (1.3.12)

a(u, u) ≥ C2‖u‖2V − C3‖(1 + y)
1
2u‖2H , (1.3.13)

where

C1 = δ0 +K1, C2 =
δ1

2
, C3 =

δ1

2
+
K2

1

2δ1
,

with

δ0 = sup
s21+t21>0, s22+t22>0

|s1s2 + ρσs1t2 + ρσs2t1 + σ2t1t2|
2
√

(s2
1 + t21)(s2

2 + t22)
, (1.3.14)

δ1 = inf
s2+t2>0

s2 + 2ρσst+ σ2t2

2(s2 + t2)
, (1.3.15)

and

K1 = sup
x∈R

√
j2
γ,µ(x) + k2

γ,µ(x). (1.3.16)

It is easy to see that the constants δ0, δ1 and K1 defined in (1.3.14) and (1.3.16) are

positive and finite (recall that the functions jγ,µ = jγ,µ(x) and kγ,µ = κγ,µ(x) defined in

(1.2.4) are bounded).

These energy estimates were already proved in [42, Lemma 2.40] with a very similar

statement. Here we repeat the proof for the sake of completeness, since we will refer to it

later on.

Proof of Proposition 1.3.6. In order to prove (1.3.13), we note that

1

2

∫
O
y
(
uxvx + ρσuxvy + ρσuyvx + σ2uyvy

)
dm ≥ δ1

∫
O
y|∇u|2dm.

16



Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Therefore

a(u, u) ≥ δ1

∫
O
y|∇u|2dm−K1

∫
O
y|∇u||u|dm

≥ δ1

∫
O
y|∇u|2dm− K1ζ

2

∫
O
y|∇u|2dm− K1

2ζ

∫
O

(1 + y)u2dm

=

(
δ1 −

K1ζ

2

)∫
O

(
y|∇u|2 + (1 + y)u2

)
dm−

(
δ1 −

K1ζ

2
+
K1

2ζ

)∫
O

(1 + y)u2dm.

The assertion then follows by choosing ζ = δ1/K1. (1.3.12) can be proved in a similar

way.

1.3.2 Proof of Theorem 1.2.3

Among the standard assumptions required in [19] for the penalization procedure, there are

the coercivity and the boundedness of the coefficients. In the Heston-type models these

assumptions are no longer satisfied and this leads to some technical difficulties. In order to

overcome them, we introduce some auxiliary operators.

From now on, we set

a(u, v) = ā(u, v) + ã(u, v),

where

ā(u, v) =

∫
O

y

2

(
∂u

∂x

∂v

∂x
+ ρσ

∂u

∂x

∂v

∂y
+ ρσ

∂u

∂y

∂v

∂x
+ σ2∂u

∂y

∂v

∂y

)
dm,

ã(u, v) =

∫
O
y
∂u

∂x
jγ,µvdm +

∫
O
y
∂u

∂y
kγ,µvdm.

Note that ā is symmetric. As in the proof of Proposition (1.3.6) we have, for every u, v ∈ V ,

|ā(u, v)| ≤ δ0

∫
O
y|∇u||∇v|dm,

ā(u, u) ≥ δ1

∫
O
y|∇u|2dm,

and

|ã(u, v)| ≤ K1

∫
O
y|∇u||v|dm,

17



Chap.. 1 - Variational formulation of American option prices

with δ0, δ1 and K1 defined in Proposition 1.3.6. Moreover, for λ ≥ 0 and M > 0 we consider

the bilinear forms

aλ(u, v) = a(u, v) + λ

∫
O

(1 + y)uvdm,

āλ(u, v) = ā(u, v) + λ

∫
O

(1 + y)uvdm,

ã(M)(u, v) =

∫
O

(y ∧M)

(
∂u

∂x
jγ,µ +

∂u

∂y
kγ,µ

)
vdm

and

a
(M)
λ (u, v) = āλ(u, v) + ã(M)(u, v).

The operator aλ was introduced in [42] to deal with the lack of coercivity of the bilinear

form a, while the introduction of the truncated operator a
(M)
λ with M > 0 will be useful in

order to overcome the technical difficulty related to the unboundedness of the coefficients.

Lemma 1.3.7. Let δ0, δ1, K1 be defined as in (1.3.14), (1.3.15) and (1.3.16) respectively.

For any fixed λ ≥ δ1
2 +

K2
1

2δ1
the bilinear forms aλ and a

(M)
λ are continuous and coercive.

More precisely, we have

|aλ(u, v)| ≤ C‖u‖V ‖v‖V , u, v ∈ V, (1.3.17)

aλ(u, u) ≥ δ1

2
‖u‖2V , u ∈ V, (1.3.18)

and

|a(M)
λ (u, v)| ≤ C‖u‖V ‖v‖V , u, v ∈ V, (1.3.19)

a
(M)
λ (u, u) ≥ δ1

2
‖u‖2V , u ∈ V. (1.3.20)

where C = δ0 +K1 + λ.

Proof. The proof for the bilinear form aλ follows as in [42, Lemma 3.2]. We give the details

for a
(M)
λ to check that the constants do not depend on M . Note that, for every u, v ∈ V ,

|ã(M)(u, v)| ≤ K1

∫
O
y|∇u||v|dm,

so that by straightforward computations we get

|a(M)
λ (u, v)| ≤ (δ0 + λ+K1)‖u‖V ‖v‖V .

18



Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

On the other hand, for every ζ > 0,

a
(M)
λ (u, u) ≥ δ1

∫
O
y|∇u|2dm + λ

∫
O

(1 + y)u2dm−K1

∫
O
y|∇u||u|dm

≥
(
δ1 −

K1ζ

2

)∫
O
y|∇u|2dm +

(
λ− K1

2ζ

)∫
O

(1 + y)u2dm.

By choosing ζ = δ1/K1, we get

a
(M)
λ (u, u) ≥ δ1

2

∫
O
y|∇u|2dm+

(
λ− K2

1

2δ1

)∫
O

(1 + y)u2dm ≥ δ1

2
‖u‖2V ,

for every λ ≥ δ1
2 +

K2
1

2δ1
.

From now on in the rest of this chapter we assume λ ≥ δ1
2 +

K2
1

2δ1
as in Lemma 1.3.7.

Moreover, we will denote by ‖b‖ = supu,v∈V,u,v 6=0
|b(u,v)|
‖u‖V ‖v‖V the norm of a bilinear form

b : V × V → R.

Remark 1.3.8. We stress that Lemma 1.3.7 gives us

sup
M>0
‖a(M)

λ ‖ ≤ C, (1.3.21)

where C = δ0 + K1 + λ. This will be crucial in the penalization technique we are going to

describe in Section 1.3.2. Roughly speaking, in order to prove the existence of a solution of

the penalized coercive problem we will introduce in Theorem 1.3.10, we proceed as follows.

First, we replace the bilinear form aλ with the operator a
(M)
λ , which has bounded coefficients,

and we solve the associated penalized truncated coercive problem (see Proposition 1.3.11).

Then, thanks to (1.3.21), we can deduce estimates on the solution which are uniform in M

(see Lemma 1.3.12) and which will allow us to pass to the limit as M goes to infinity and

to find a solution of the original penalized coercive problem.

Finally, we define

Lλ := L − λ(1 + y)

the differential operator associated with the bilinear form aλ, that is

(Lλu, v)H = −aλ(u, v), u ∈ H2(O,m), v ∈ V.
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Chap.. 1 - Variational formulation of American option prices

Penalized problem

For any fixed ε > 0 we define the penalizing operator

ζε(t, u) = −1

ε
(ψ(t)− u)+ =

1

ε
ζ(t, u), t ∈ [0, T ], u ∈ V. (1.3.22)

Since for every fixed t ∈ [0, T ] the function x 7→ −(ψ(t)−x)+ is nondecreasing, we have the

following well known monotonicity result (see [19]).

Lemma 1.3.9. For any fixed t ∈ [0, T ] the penalizing operator (1.3.22) is monotone, in the

sense that

(ζε(t, u)− ζε(t, v), u− v)H ≥ 0, u, v ∈ V.

We now introduce the intermediate penalized coercive problem with a source term g. We

consider the following assumption:

Assumption H0. We say that a function g satisfies AssumptionH0 if
√

1 + yg ∈ L2([0, T ];H).

Theorem 1.3.10. Assume that ψ satisfies Assumption H1 and g satisfies Assumption H0.

Then, for every fixed ε > 0, there exists a unique function uε,λ such that uε,λ ∈ L2([0, T ];V ),
∂uε,λ
∂t ∈ L

2([0, T ];H) and, for all v ∈ L2([0, T ];V ),−
(
∂uε,λ
∂t , v

)
H

+ aλ(uε,λ, v) + (ζε(t, uε,λ), v)H = (g, v)H , a.e. in [0, T ],

uε,λ(T ) = ψ(T ).
(1.3.23)

Moreover, the following estimates hold:

‖uε,λ‖L∞([0,T ],V ) ≤ K, (1.3.24)∥∥∥∥∂uε,λ∂t

∥∥∥∥
L2([0,T ];H)

≤ K, (1.3.25)

1√
ε

∥∥(ψ − uε,λ)+
∥∥
L∞([0,T ],H)

≤ K, (1.3.26)

where K = C
(
‖Ψ‖L2([0,T ];V ) + ‖

√
1 + yg‖L2([0,T ];H) + ‖

√
1 + yψ‖L2([0,T ];V ) + ‖ψ(T )‖2V

)
, with

C > 0 independent of ε, and Ψ is given in Assumption H1.

The proof of uniqueness of the solution of the penalized coercive problem follows a stan-

dard monotonicity argument as in [19], so we omit the proof.

The proof of existence in Theorem 1.3.10 is quite long and technical, so we split it into

two propositions. We first consider the truncated penalized problem, which requires less

stringent conditions on ψ and g.

20



Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Proposition 1.3.11. Let ψ ∈ C([0, T ];H) ∩ L2([0, T ];V ) and g ∈ L2([0, T ];H). Moreover,

assume that ψ(T ) ∈ H2(O,m), (1 +y)ψ(T ) ∈ H, ∂ψ
∂t ∈ L

2([0, T ];V ) and ∂g
∂t ∈ L

2([0, T ];H).

Then, there exists a unique function uε,λ,M such that uε,λ,M ∈ L2([0, T ];V ),
∂uε,λ,M

∂t ∈
L2([0, T ];V ) and for all v ∈ L2([0, T ];V )−

(
∂uε,λ,M

∂t , v
)
H

+ a
(M)
λ (uε,λ,M , v) + (ζε(t, uε,λ,M ), v)H = (g, v)H , a.e. in [0, T ),

uε,λ,M (T ) = ψ(T ).

(1.3.27)

Proof. (i) Finite dimensional problem We use the classical Galerkin method of ap-

proximation, which consists in introducing a nondecreasing sequence (Vj)j of sub-

spaces of V such that dimVj < ∞ and, for every v ∈ V, there exists a sequence

(vj)j∈N such that vj ∈ Vj for any j ∈ N and ‖v − vj‖V → 0 as j → ∞. Moreover,

we assume that ψ(T ) ∈ Vj , for all j ∈ N. Let Pj be the projection of V onto Vj and

ψj(t) = Pjψ(t). We have ψj(t)→ ψ(t) strongly in V and ψj(T ) = ψ(T ) for any j ∈ N.

The finite dimensional problem is, therefore, to find uj : [0, T ]→ Vj such that−
(
∂uj
∂t (t), v

)
H

+ a
(M)
λ (uj(t), v)− 1

ε ((ψj(t)− uj(t))+, v)H = (g(t), v)H , v ∈ Vj ,

uj(T ) = ψ(T ).

(1.3.28)

This problem can be interpreted as an ordinary differential equation in Vj (dim Vj <

∞), that is −
∂uj
∂t (t) +A

(M)
λ,j uj(t)−

1
εQj((ψj(t)− uj(t))+) = Qjg(t)

uj(T ) = ψ(T ),

where A
(M)
λ,j : Vj → Vj is a finite dimensional linear operator and Qj is the projection

of H onto Vj . Note that the function u → Qj((ψj(t) − u)+) is Lipschitz continuous,

since

‖Qj((ψj(t)− u)+)−Qj((ψj(t)− v)+)‖Vj
≤ Cj‖Qj((ψj(t)− u)+)−Qj((ψj(t)− v)+)‖H ≤ Cj‖u− v‖H .

On the other hand, the function (t, u)→ Qj((ψj(t)−u(t)+) is continuous with values

in Vj . In fact, we can easily prove that it is weakly continuous, that is, for v ∈ Vj , the
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Chap.. 1 - Variational formulation of American option prices

application (t, u)→ (Qj((ψj(t)− u)+), v) is continuous. In fact∣∣(Qj((ψj(t)− u)+)−Qj((ψj(s)− w)+), v
)∣∣ ≤ ∣∣(Qj((ψj(t)− u)+)−Qj((ψj(s)− u)+), v

)∣∣
+
∣∣(Qj((ψj(s)− u)+)−Qj((ψj(s)− w)+), v

)∣∣ .
(1.3.29)

The second term in the right hand side of (1.3.29) goes to 0 by using the Lipschitz

continuity proved above. On the other hand, it is easy to prove that for any u ∈
V, v ∈ H2(O,m), one has |(u, v)V | ≤ C‖u‖H‖v‖H2(O(m)). Since v ∈ Vj we can assume

without loss of generality that v ∈ H2(O,m), so that for the first term in the right

hand side of (1.3.29), we easily get∣∣(Qj((ψj(t)− u)+)−Qj((ψj(s)− u)+), v
)∣∣ ≤ ‖ψj(t)− ψj(s)‖H‖v‖H2(O,m),

which goes to 0. Finally, it is easy to see that the term Qjg belongs to L2([0, T ];Vj).

Therefore, we can use the Cauchy-Lipschitz Theorem and we deduce the existence

and the uniqueness of a solution uj of (1.3.28), continuous from [0, T ] into Vj , a.e.

differentiable and with integrable derivative.

(ii) Estimates on the finite dimensional problem First, we take v = uj(t) − ψj(t)
in (1.3.28). We get

−
(
∂uj
∂t

(t), uj(t)− ψj(t)
)
H

+ a
(M)
λ (uj(t), uj(t)− ψj(t))

− 1

ε
((ψj(t)− uj(t))+, uj(t)− ψj(t))H = (g(t), uj(t)− ψj(t))H ,

which can be rewritten as

− 1

2

d

dt
‖uj(t)− ψj(t)‖2H −

(
∂ψj
∂t

(t), uj(t)− ψj(t)
)
H

+ a
(M)
λ (uj(t)− ψj(t), uj(t)− ψj(t))H +

1

ε
((ψj(t)− uj(t))+, ψj(t)− uj(t))H

+ a
(M)
λ (ψj(t), uj(t)− ψj(t)) = (g(t), uj(t)− ψj(t))H .

We integrate between t and T and we use coercivity and uj(T ) = ψj(T ) to obtain

1

2
‖uj(t)− ψj(t)‖2H +

δ1

2

∫ T

t
‖uj(s)− ψj(s)‖2V ds+

1

ε

∫ T

t
‖(ψj(s)− uj(s))+‖2Hds

≤ 1

2ζ

∫ T

t

∥∥∥∥∂ψj(s)∂t

∥∥∥∥2

H

ds+
ζ

2

∫ T

t
‖uj(s)− ψj(s)‖2Hds+

1

2ζ

∫ T

t
‖g(s)‖2Hds

+
ζ

2

∫ T

t
‖uj(s)− ψj(s)‖2Hds+

‖a(M)
λ ‖ζ
2

∫ T

t
‖uj(s)− ψj(s)‖2V ds+

‖a(M)
λ ‖
2ζ

∫ T

t
‖ψj(s)‖2V ds,
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for any ζ > 0. Recall that ψj = Pjψ, and so ‖ψj(t)‖2V ≤ ‖ψ(t)‖2V . In the same way

‖∂ψj(t)∂t ‖
2
H ≤ ‖

∂ψj(t)
∂t ‖

2
V ≤ ‖

∂ψ(t)
∂t ‖

2
V . Choosing ζ = δ1

4+2‖a(M)
λ ‖

after simple calculations

we deduce that there exists C > 0 independent of M , ε and j such that

1
4‖uj(t)‖

2
H + δ1

8

∫ T
t ‖uj(s)‖

2
V ds+ 1

ε

∫ T
t ‖(ψj(s)− uj(s))+‖2Hds

≤ C
(∥∥∥∂ψ∂t ∥∥∥2

L2([t,T ];V )
+ ‖g‖2L2([t,T ];H) + ‖ψ‖2L2([t,T ];V ) + ‖ψ(T )‖2H

)
.

(1.3.30)

We now go back to (1.3.28) and we take v =
∂uj
∂t (t) so we get

−
∥∥∥∥∂uj∂t (t)

∥∥∥∥2

H

+ āλ

(
uj(t),

∂uj
∂t

(t)

)
+ ã(M)

(
uj(t),

∂uj
∂t

(t)

)
− 1

ε

(
(ψj(t)− uj(t))+ ,

∂uj
∂t

(t)

)
H

=

(
g(t),

∂uj
∂t

(t)

)
H

.

Note that

− 1

ε

(
(ψj(t)− uj(t))+,

∂uj
∂t

(t)

)
H

=
1

ε

(
(ψj − uj)+,

∂(ψj − uj)
∂t

(t)

)
H

− 1

ε

(
(ψj(t)− uj(t))+,

∂ψj
∂t

(t)

)
H

=
1

2ε

d

dt
‖(ψj − uj)+(t)‖2H −

1

ε

(
(ψj(t)− uj(t))+,

∂ψj
∂t

(t)

)
H

.

Therefore, using the symmetry of āλ, we have

−
∥∥∥∥∂uj∂t (t)

∥∥∥∥2

H

+
1

2

d

dt
āλ(uj(t), uj(t))+ ã(M)

(
uj(t),

∂uj
∂t

(t)

)
+

1

2ε

∂

∂t
‖(ψj(t)−uj(t))+‖2H

−1

ε

(
(ψj(t)− uj(t))+,

∂ψj
∂t

(t)

)
H

=

(
g(t),

∂uj
∂t

(t)

)
H

.

Integrating between t and T , we obtain∫ T

t

∥∥∥∥∂uj∂t (s)

∥∥∥∥2

H

ds+
1

2
āλ(uj(t), uj(t)) +

1

2ε
‖(ψj(t)− uj(t))+‖2H

=

∫ T

t
ã(M)

(
uj(s),

∂uj
∂s

(s)

)
ds+

1

2
āλ(ψj(T ), ψj(T ))

−
∫ T

t

1

ε

(
(ψj(s)− uj(s)+,

∂ψj
∂s

(s)

)
H

ds−
∫ T

t

(
g(s),

∂uj
∂s

(s)

)
H

ds.
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Recall that āλ(uj(t), uj(t)) ≥ δ1
2 ‖uj(t)‖

2
V , |ã(M)(u, v)| ≤ K1

∫
O y ∧M |∇u||v|dm and

āλ(ψj(T ), ψj(T )) = āλ(ψ(T ), ψ(T )) ≤ ‖āλ‖‖ψ(T )‖2V , so that, for every ζ > 0,∫ T

t

∥∥∥∥∂uj∂s (s)

∥∥∥∥2

H

ds+
δ1

4
‖uj(t)‖2V +

1

2ε
‖(ψj(t)− uj(t))+‖2H

≤ K1

∫ T

t
ds

∫
O
y ∧M |∇uj(s, .)|

∣∣∣∣∂uj∂t (s, .)

∣∣∣∣ dm +
‖āλ‖

2
‖ψ(T )‖2V

+
1

ε

∫ T

t
‖(ψj(s)− uj(s))+‖H

∥∥∥∥∂ψj∂s
(s)

∥∥∥∥
H

ds+

∫ T

t
‖g(s)‖H

∥∥∥∥∂uj∂s (s)

∥∥∥∥
H

ds

≤ K1

2ζ

∫ T

t
‖uj(s)‖2V ds+

K1M

2
ζ

∫ T

t

∥∥∥∥∂uj∂s (s)

∥∥∥∥2

H

ds+
‖āλ‖

2
‖ψ(T )‖2V

+
ζ

2ε

∫ T

t
‖(ψj(s)− uj(s))+‖2Hds+

1

2ζε

∫ T

t

∥∥∥∥∂ψj∂t (s)

∥∥∥∥2

H

ds+
1

2ζ

∫ T

t
‖g(s)‖2Hds

+
ζ

2

∫ T

t

∥∥∥∥∂uj∂s (s)

∥∥∥∥2

H

ds.

From (1.3.30), we already know that

∫ T

t
‖uj(s)‖2V ds+

1

ε

∫ T

t
‖(ψj(s)− uj(s))+‖2Hds

≤ C

(∥∥∥∥∂ψ∂t
∥∥∥∥2

L2([t,T ];V )

+ ‖g‖2L2([t,T ];H) + ‖ψ‖2L2([t,T ];V ) + ‖ψ(T )‖2H

)
,

then we can finally deduce∫ T

t

∥∥∥∥∂uj∂t (s)

∥∥∥∥2

H

ds+ ‖uj(t)‖2V +
1

2ε
‖(ψj(t)− uj(t))+‖2H

≤ Cε,M

(∥∥∥∥∂ψ∂t
∥∥∥∥2

L2([t,T ];V )

+ ‖g‖2L2([t,T ];H) + ‖ψ‖2L2([t,T ];V ) + ‖ψ(T )‖2V

)
,

(1.3.31)

where Cε,M is a constant which depends on ε and M but not on j.

We will also need a further estimation. If we denote ūj =
∂uj
∂t and we differentiate the

equation (1.3.28) with respect to t for a fixed v independent of t, we obtain that ūj

satisfies

−
(
∂ūj
∂t

(t), v

)
H

+a
(M)
λ (ūj(t), v)−1

ε

((
∂ψj
∂t

(t)− ūj(t)
)
1{ψj(t)≥uj(t)}, v

)
H

=

(
∂g

∂t
(t), v

)
H

,

(1.3.32)
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for any v ∈ Vj . As regards the initial condition, from (1.3.28) computed in t = T , for

every v ∈ Vj we have(
∂uj(T )

∂t
, v

)
H

= a
(M)
λ (ψ(T ), v)− (g(T ), v)H .

= − (Lψ(T ), v)H + λ ((1 + y)ψ(T ), v)H

+ ((y ∧M − y)(jγ,µux + kγ,µuy), v)H + (g(T ), v)H .

Choosing v =
∂uj(T )
∂t , we deduce that∥∥∥∥∂uj(T )

∂t

∥∥∥∥
H

≤ C (‖Lψ(T )‖H + ‖(1 + y)ψ(T )‖H + ‖(y −M)+∇ψ(T )‖H + ‖g(T )‖H)

≤ C
(
‖ψ(T )‖H2(O,m) + ‖(1 + y)ψ(T )‖H + ‖g(T )‖H

)
,

that is,
∥∥∥∂uj(T )

∂t

∥∥∥
H
≤ C

(
‖ψ(T )‖H2(O,m) + ‖(1 + y)ψ(T )‖H + ‖g(T )‖H

)
.

We can take v = ūj(t) in (1.3.32) and we obtain

−
(
∂ūj
∂t

(t), ūj(t)

)
H

+ a
(M)
λ (ūj(t), ūj(t))−

1

ε

((
∂ψj
∂t

(t)− ūj(t)
)
1{ψj(t)≥uj(t)}, ūj(t)

)
H

=

(
∂g

∂t
(t), ūj(t)

)
H

,

so that

− 1

2

d

dt
‖ūj(t)‖2H +

δ1

2
‖ūj(t)‖2V

≤ 1

ε

((
∂ψj
∂t

(t)− ūj(t)
)
1{ψj(t)≥uj}, ūj(t)

)
H

+

(
∂g

∂t
(t), ūj(t)

)
H

≤ 1

ε

(
∂ψj
∂t

(t)1{ψj(t)≥uj}, ūj(t)

)
H

+

(
∂g

∂t
(t), ūj(t)

)
H

.

Integrating between t and T , with the usual calculations, we obtain, in particular,

that

‖ūj(t)‖2H +
δ1

2

∫ T

t
‖ūj(s)‖2V ds

≤ Cε
(
‖ψ(T )‖2H2(O,m)+ ‖(1 + y)ψ(T )‖2H + ‖g(T )‖2H+

∥∥∥∥∂ψ∂t
∥∥∥∥2

L2([t,T ];H)

+

∥∥∥∥∂g∂t
∥∥∥∥2

L2([t,T ];H)

)
,

(1.3.33)

where Cε is a constant which depends on ε, but not on j.
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(iii) Passage to the limit

Let ε and M be fixed. By passing to a subsequence, from (1.3.31) we can assume that
∂uj
∂t weakly converges to a function u′ε,λ,M in L2([0, T ];H). We deduce that, for any

fixed t ∈ [0, T ], uj(t) weakly converges in H to

uε,λ,M (t) = ψ(T )−
∫ T

t
u′ε,λ,M (s)ds.

Indeed, uj(t) is bounded in V , so the convergence is weakly in V . Passing to the limit

in (1.3.33) we deduce that
∂uε,λ,M

∂t ∈ L2([0, T ];V ). Moreover, from (1.3.31), we have

that (ψj − uj(t))+ weakly converges in H to a certain function χ(t) ∈ H. Now, for

any v ∈ V we know that there exists a sequence (vj)j∈N such that vj ∈ Vj for all j ∈ N
and ‖v − vj‖V → 0. We have

−
(
∂uj
∂t

(t), vj

)
H

+ a
(M)
λ (uj(t), vj)H −

1

ε
((ψj(t)− uj(t))+, vj)H = (g(t), vj)H

so, passing to the limit as j →∞,

−
(
∂uε,λ,M
∂t

(t), v

)
H

+ aλ(uε,λ,M (t), v)H −
1

ε
(χ(t), v)H = (g(t), v)H .

We only have to note that χ(t) = (ψ(t)−uε,λ,M (t))+. In fact, ψj(t)→ ψ(t) in V and,

up to a subsequence, 1Uuj(t) → 1Uuε,λ,M (t) in L2(U ,m) for every open U relatively

compact in O. Therefore, there exists a subsequence which converges a.e. and this

allows to conclude the proof.

We now want to get rid of the truncated operator, that is to pass to the limit for M →∞.

In order to do this we need some estimates on the function uε,λ,M which are uniform in M .

Lemma 1.3.12. Assume that, in addition to the assumptions of Proposition 1.3.11,
√

1 + yψ ∈
L2([0, T ];V ),

∣∣∣∂ψ∂t ∣∣∣ ≤ Ψ with Ψ ∈ L2([0, T ];V ) and g satisfies Assumption H0. Let uε,λ,M

be the solution of (1.3.27). Then,

∫ T
t

∥∥∥∂uε,λ,M∂s (s)
∥∥∥2

H
ds+ ‖uε,λ,M (t)‖2V + 1

ε‖(ψ(t)− uε,λ,M (t))+‖2H
≤ C

(
‖Ψ‖L2([0,T ];V ) + ‖

√
1 + yg‖L2([0,T ];H) + ‖

√
1 + yψ‖2L2([0,T ];V ) + ‖ψ(T )‖2V

)
,

(1.3.34)

where C is a positive constant independent of M and ε.
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Proof. To simplify the notation we denote uε,λ,M by u and uε,λ,M − ψ = u − ψ by w. For

n ≥ 0, define ϕn(x, y) = 1 + y ∧ n. Since ϕn and its derivatives are bounded, if v ∈ V , we

have vϕn ∈ V . Choosing v = (u− ψ)ϕn = wϕn in (1.3.27), with simple passages we get

−
(
∂w

∂t
(t), w(t)ϕn

)
H

+ a
(M)
λ (w(t), w(t)ϕn) + (ζε(t, u(t)), w(t)ϕn)H

=

(
∂ψ

∂t
(t) + g(t), w(t)ϕn

)
H

− a(M)
λ (ψ(t), w(t)ϕn).

With the notation ϕ′n = ∂ϕn
∂y = 1{y≤n}, we have

a
(M)
λ (w(t), w(t)ϕn) =∫
O

y

2

[(
∂w

∂x
(t)

)2

+ 2ρσ
∂w

∂x
(t)
∂w

∂y
(t) + σ2

(
∂w

∂y
(t)

)2
]
ϕndm + λ

∫
O

(1 + y)w2(t)ϕndm

+

∫
O

y

2

(
ρσ
∂w

∂x
(t) + σ2∂w

∂y
(t)

)
w(t)ϕ′ndm +

∫
O
y ∧M

(
∂w

∂x
(t)jγ,µ +

∂w

∂y
(t)kγ,µ

)
w(t)ϕndm

≥ δ1

∫
O
y |∇w(t)|2 ϕndm + λ

∫
O

(1 + y)w2(t)ϕndm−K1

∫
O
y |∇w(t)| |w(t)|ϕndm

−K2

∫
O
y |∇w(t)| |w(t)|1{y≤n}dm,

where K2 =

√
ρ2σ2+σ4

2 . Note that, if n = 0, the last term vanishes, and that, for all n > 0,∫
O
y |∇w(t)| |w(t)|1{y≤n}dm ≤ ‖w(t)‖2V .

Therefore, for all ζ > 0,

a
(M)
λ (w(t), w(t)ϕn) ≥ δ1

∫
O
y |∇w(t)|2 ϕndm + λ

∫
O

(1 + y)w2(t)ϕndm

−K1

∫
O
y

(
ζ

2
|∇w(t)|2 +

1

2ζ
|w(t)|2

)
ϕndm−K2‖w(t)‖2V

≥
(
δ1 −

K1ζ

2

)∫
O
y |∇w(t)|2 ϕndm +

(
λ− K1

2ζ

)∫
O

(1 + y)w2(t)ϕndm−K2‖w(t)‖2V

≥ δ1

2

∫
O

(
y |∇w(t)|2 + (1 + y)w2(t)

)
ϕndm−K2‖w(t)‖2V ,

where, for the last inequality, we have chosen ζ = δ1/K1 and used the inequality λ ≥ δ1
2 +

K2
1

2δ1
.

Again, in the case n = 0 the last term on the righthand side can be omitted.
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Hence, we have, with the notation ‖v‖2V,n =
∫
O

(
y |∇v|2 + (1 + y)v2

)
ϕndm,

1

2

d

dt

∫
O
w2(t)ϕndm +

δ1

2
‖w(t)‖2V,n +

1

ε

∫
O

(−w(t))2
+ϕndm ≤(

g(t) +
∂ψ

∂t
(t), w(t)ϕn

)
H

− a(M)
λ (ψ(t), w(t)ϕn) +K2‖w(t)‖2V .

In the case n = 0, the inequality reduces to

−1

2

d

dt

∫
O
w2(t)dm+

δ1

2
‖w(t)‖2V +

1

ε

∫
O

(ψ−u)2
+dm ≤

(
g(t) +

∂ψ

∂t
(t), w(t)

)
H

−a(M)
λ (ψ(t), w(t)).

Now, integrate from t to T and use u(T ) = ψ(T ) to derive

1

2

∫
O
w(t)2ϕndm +

δ1

2

∫ T

t
ds‖w(s)‖2V,n +

1

ε

∫ T

t
ds

∫
O

(−w(s))2
+ϕndm

≤
∫ T

t

(
g(s) +

∂ψ

∂t
(s), w(s)ϕn

)
H

ds+

∣∣∣∣∫ T

t
a

(M)
λ (ψ(s), w(s)ϕn)ds

∣∣∣∣+K2

∫ T

t
‖w(s)‖2V ds,

(1.3.35)

and, in the case n = 0,

1

2
‖w(t)‖2H +

δ1

2

∫ T

t
‖w(s)‖2V ds+

1

ε

∫ T

t
ds

∫
O

(−w(s))2
+dm

≤
∫ T

t

(
g(s) +

∂ψ

∂t
(s), w(s)

)
H

‖ds+

∫ T

t

∣∣∣a(M)
λ (ψ(s), w(s))

∣∣∣ ds. (1.3.36)

We have, for all ζ1 > 0,∫ T

t

(
g(s) +

∂ψ

∂t
(s), w(s)ϕn

)
H

ds

≤ ζ1

2

∫ T

t
ds

∫
O
|w(s)|2ϕndm +

1

2ζ1

∫ T

t
ds

∫
O

∣∣∣∣g(s) +
∂ψ

∂t
(s)

∣∣∣∣2 ϕndm
≤ ζ1

2

∫ T

t
ds

∫
O
|w(s)|2ϕndm +

1

ζ1
‖
√

1 + yg‖2L2([t,T ];H) +
1

ζ1

∥∥∥∥√1 + y
∂ψ

∂t

∥∥∥∥2

L2([t,T ];H)

.

Moreover, it is easy to check that, for all v1, v2 ∈ V ,

|a(M)
λ (v1, v2ϕn)| ≤ K3‖v1‖V,n‖v2‖V,n, with K3 = δ0 +K1 +K2 + λ,

so that, for any ζ2 > 0,∫ T

t
|a(M)
λ (ψ(s), w(s)ϕn)|ds

≤ K3

∫ T

t
ds‖ψ(s)‖V,n‖w(s)‖V,n ≤

K3ζ2

2

∫ T

t
ds‖w(s)‖2V,n +

K3

2ζ2

∫ T

t
ds‖ψ(s)‖2V,n.
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Now, if we chose ζ1 = K3ζ2 = δ1/4 and we go back to (1.3.35) and (1.3.36), using
∣∣∣∂ψ∂t ∣∣∣ ≤ Ψ

we get

1

2

∫
O
w2(t)ϕndm +

δ1

4

∫ T

t
‖w(s)‖2V,nds+

1

ε

∫ T

t
ds

∫
O

(−w(s))2
+ϕndm

≤ 4

δ1

(
‖
√

1 + yg‖2L2([t,T ];H) + ‖
√

1 + yΨ‖2L2([t,T ];H)

)
+

2K2
3

δ1

∫ T

t
‖ψ(s)‖2V,nds

+K2‖w‖2L2([t,T ];H),

≤ 4

δ1

(
‖
√

1 + yg‖2L2([t,T ];H) + ‖
√

1 + yΨ‖2L2([t,T ];H)

)
+

4K2
3

δ1

∥∥∥√1 + yψ
∥∥∥2

L2([t,T ];V )

+K2‖w‖2L2([t,T ];H),

(1.3.37)

where the last inequality follows from the estimate ‖v‖2V,n ≤ 2‖
√

1 + yv‖2V , and, in the case

n = 0,

1

2
‖w(t)‖2H +

δ1

4

∫ T

t
‖w(s)‖2V ds+

1

ε

∫ T

t
ds

∫
O
(−w(s))2

+dm

≤ 4

δ1

(
‖g‖2L2([t,T ];H) + ‖Ψ‖2L2([t,T ];H)

)
+

2K2
3

δ1
‖ψ‖2L2([t,T ];V ).

(1.3.38)

From (1.3.38) recalling that w = u− ψ we deduce∫ T

t
‖u(s)‖2V ds ≤

∫ T

t
2(‖w(s)‖2V + ‖ψ(s)‖2V )ds

≤ 32

δ2
1

(
‖g‖2L2([t,T ];H) + ‖Ψ‖2L2([t,T ];H)

)
+

(
16K2

3

δ2
1

+ 2

)
‖ψ‖2L2([t,T ];V ).

(1.3.39)

Moreover, combining (1.3.37) and (1.3.38), we have

1

2

∫
O
w2(t)ϕndm +

δ1

4

∫ T

t
‖w(s)‖2V,nds+

1

ε

∫ T

t
ds

∫
O

(−w(s))2
+ϕndm

≤
(

4

δ1
+

16K2

δ2
1

)(
‖
√

1 + yg‖2L2([t,T ];H) + ‖
√

1 + yΨ‖2L2([t,T ];H)

)
+

4K2
3

δ1

(
1 +

2K2

δ1

)
‖
√

1 + yψ‖2L2([t,T ];V ).

In particular,∫ T

t
ds

∫
O
y|∇u(s)|2ϕndm ≤

∫ T

t
‖u(s)‖2V,nds ≤ 2

∫ T

t
‖w(s)‖2V,nds+ 2

∫ T

t
ds‖ψ(s)‖2V,nds

≤ 8

δ1

(
4

δ1
+

16K2

δ2
1

)(
‖
√

1 + yg‖2L2([t,T ];H) + ‖
√

1 + yΨ‖2L2([t,T ];H)

)
+

(
32K2

3

δ2
1

(
1 +

2K2

δ1

)
+ 4

)
‖
√

1 + yψ‖2L2([t,T ];V )
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and, by using the Monotone convergence theorem, we deduce∫ T

t
|y|∇u(s)|‖2Hds

≤ K4

(
‖
√

1 + yg‖2L2([t,T ];H)+ ‖
√

1 + yΨ‖2L2([t,T ];H)+ ‖
√

1 + yψ‖2L2([t,T ];V )

)
,

(1.3.40)

where K4 = 8
δ1

(
4
δ1

+ 16K2

δ2
1

)
∨
(

32K2
3

δ2
1

(
1 + 2K2

δ1

)
+ 4
)

.

We are now in a position to prove (1.3.34). Taking v = ∂u
∂t in (1.3.27), we have

−
∥∥∥∥∂u∂t

∥∥∥∥2

H

+ āλ

(
u,
∂u

∂t

)
+ ã(M)

(
u,
∂u

∂t

)
− 1

ε

(
(ψ − u)+,

∂u

∂t

)
H

=

(
g(t),

∂u

∂t
(t)

)
H

.

Note that, since āλ is symmetric, d
dt āλ (u(t), u(t)) = 2āλ

(
u(t), ∂u∂t (t)

)
. On the other hand,(

(ψ(t)− u(t))+,
∂u

∂t

)
H

= −1

2

d

dt
‖(ψ(t)− u(t))+‖2H +

(
(ψ(t)− u(t))+,

∂ψ

∂t
(t)

)
H

,

so that ∥∥∥∥∂u∂t (t)

∥∥∥∥2

H

− 1

2

d

dt
āλ (u(t), u(t))− 1

2ε

d

dt
‖(ψ(t)− u(t))+‖2H

= ã(M)

(
u(t),

∂u

∂t
(t)

)
−
(
g(t),

∂u

∂t
(t)

)
H

− 1

ε

(
(ψ(t)− u(t))+,

∂ψ

∂t
(t)

)
H

≤
∣∣∣∣ã(M)

(
u(t),

∂u

∂t
(t)

)∣∣∣∣+ ‖g(t)‖H
∥∥∥∥∂u∂t (t)

∥∥∥∥
H

+
1

ε
((ψ(t)− u(t)+,Ψ(t))H

≤ (K1 ‖y|∇u(t)|‖H + ‖g(t)‖H)

∥∥∥∥∂u∂t (t)

∥∥∥∥
H

+
1

ε
((ψ(t)− u(t))+,Ψ(t))H .

Moreover, if we take v = Ψ(t) in (1.3.27), we get

−
(
∂u

∂t
(t),Ψ(t)

)
H

+ a
(M)
λ (u(t),Ψ(t))− 1

ε
((ψ(t)− u(t))+,Ψ(t))H = (g(t),Ψ(t))H ,

so that

1

ε
((ψ(t)− u(t))+,Ψ(t))H ≤

∥∥∥∥∂u∂t (t)

∥∥∥∥
H

‖Ψ(t)‖H + ‖a(M)
λ ‖‖u(t)‖V ‖Ψ(t)‖V + ‖g(t)‖H‖Ψ(t)‖H .

(1.3.41)

Therefore,∥∥∥∥∂u∂t (t)

∥∥∥∥2

H

− 1

2

d

dt
āλ (u(t), u(t))− 1

2ε

d

dt
‖(ψ(t)− u(t))+‖2H

≤ (K1 ‖y|∇u(t)|‖H + ‖g(t)‖H + ‖Ψ(t)‖H)

∥∥∥∥∂u∂t (t)

∥∥∥∥
H

+ ‖a(M)
λ ‖‖u(t)‖V ‖Ψ(t)‖V

+ ‖g(t)‖H‖Ψ(t)‖H ,
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hence

1

2

∥∥∥∥∂u∂t (t)

∥∥∥∥2

H

− 1

2

d

dt
āλ (u(t), u(t))− 1

2ε

d

dt
‖(ψ(t)− u(t))+‖2H

≤ 1

2
(K1 ‖y|∇u(t)|‖H + ‖g(t)‖H + ‖Ψ(t)‖H)2 + ‖a(M)

λ ‖‖u(t)‖2V ‖Ψ(t)‖2V + ‖g(t)‖H‖Ψ(t)‖H .

Integrating between t and T , we get,

1

2

∥∥∥∥∂u∂s
∥∥∥∥2

L2([t,T ];H)

+
1

2
āλ (u(t), u(t)) +

1

2ε
‖(ψ(t)− u(t))+‖2H

≤ 1

2
āλ(ψ(T ), ψ(T )) + 2‖g‖2L2([t,T ];H) + 2‖Ψ‖2L2([t,T ];H) +

3K2
1

2
‖y|∇u|‖2L2([t,T ];H)

+
‖a(M)

λ ‖
2
‖u‖L2([t,T ];V ) +

‖a(M)
λ ‖
2
‖Ψ‖L2([t,T ];V ),

so, recalling that āλ(u(t), u(t) ≥ δ1

∫
O y|∇u(t)|2dm + λ

∫
O(1 + y)u2dm ≥ (δ1 ∧ λ)‖u(t)‖2V ,

1

2

∥∥∥∥∂u∂s
∥∥∥∥2

L2([t,T ];H)

+
δ1 ∧ λ

2
‖u(t)‖2V +

1

2ε
‖(ψ(t)− u(t))+‖2H

≤ ‖āλ‖
2
‖ψ(T )‖2V + 2‖g‖2L2([t,T ];H) + 2‖Ψ‖2L2([t,T ];H)

+
3K2

1

2
‖y|∇u|‖2L2([t,T ];H) +

‖a(M)
λ ‖
2
‖u‖2L2([t,T ];V ) +

‖a(M)
λ ‖
2
‖Ψ‖2L2([t,T ];V )

≤ ‖āλ‖
2
‖ψ(T )‖2V + 2‖g‖2L2([t,T ];H) + 2‖Ψ‖2L2([t,T ];H)

+
3K2

1

2
K4

(
‖
√

1 + yg‖2L2([t,T ];H) + ‖
√

1 + yΨ‖2L2([t,T ];H) + ‖
√

1 + yψ‖2L2([t,T ];V )

)
+
‖a(M)

λ ‖
2

(
32

δ2
1

(
‖g‖2L2([t,T ];H) + ‖Ψ‖2L2([t,T ];H)

)
+

(
16K2

3

δ2
1

+ 2

)
‖ψ‖2L2([t,T ];V )

)
+
‖a(M)

λ ‖
2
‖Ψ‖2L2([t,T ];V ),

where the last inequality follows from (1.3.39) and (1.3.40). Rearranging the terms, we

deduce that there exists a constant C > 0 independent of M and ε such that

1

2

∥∥∥∥∂u∂s
∥∥∥∥2

L2([t,T ];H)

+
δ1 ∧ λ

4
‖u(t)‖2V +

1

2ε
‖(ψ(t)− u(t))+‖2H

≤ C
(
‖
√

1 + yg‖2L2([t,T ];H) + ‖Ψ‖2L2([t,T ];V ) +
∥∥∥√1 + yψ

∥∥∥2

L2([t,T ];V )
+ ‖ψ(T )‖2V

)
,

which concludes the proof.
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Proof of Theorem 1.3.10: existence. Assume for a first moment that we have the further

assumptions ψ(T ) ∈ H2(O,m), (1 +y)ψ(T ) ∈ H, ∂ψ∂t ∈ L
2([0, T ];V ) and ∂g

∂t ∈ L
2([0, T ];H).

Thanks to (1.3.34) we can repeat the same arguments as in the proof of Proposition 1.3.11

in order to pass to the limit in j, but this time as M → ∞. Therefore, we deduce the

existence of a function uε,λ ∈ L2([0, T ];V ) with
∂uε,λ
∂t ∈ L

2([0, T ];H) and such that

−
(
∂uε,λ
∂t

(t), v

)
H

+ aλ(uε,λ(t), v)H −
1

ε
((ψ(t)− uε,λ(t))+, v)H = (g(t), v)H .

The estimates (1.3.24), (1.3.25) and (1.3.26) directly follow from (1.3.34) as M →∞.

We have now to weaken the assumptions on g and ψ. We can do this by a regulariza-

tion procedure. In fact, let us assume that ψ satisfies Assumption H1 (so, in particular,∣∣∣∂ψ∂t ∣∣∣ ≤ Ψ for a certain Ψ ∈ L2([0, T ];V ) and g satisfies Assumption H0. Then, by standard

regularization techniques (see for example [42, Corollary A.12]), we can find sequences of

functions (gn)n, (ψn)n and (Ψn)n of class C∞ with compact support such that, for any

n ∈ N, n ∈ N, |∂ψn∂t | ≤ Ψn and all the regularity assumptions required in the first part of the

proof are satisfied. Moreover, it is easy to see that ‖
√

1 + ygn −
√

1 + yg‖L2([0,T ];H) → 0,

‖
√

1 + yψn −
√

1 + yψ‖L2([0,T ];V ) → 0, ‖Ψn − Ψ‖L2([0,T ];V ) → 0, ‖ψn(T ) − ψ(T )‖V → 0 as

n→∞. Therefore, the solution unε,λ,M of the equation (1.3.23) with source function gn and

obstacle function ψn satisfies

∫ T
t

∥∥∥∂unε,λ,M∂s (s)
∥∥∥2

H
ds+ ‖unε,λ,M (t)‖2V + 1

ε‖(ψn(t)− unε,λ,M (t))+‖2H
≤ C

(
‖
√

1 + ygn‖L2([0,T ];H) + ‖
√

1 + yψn‖2L2([0,T ];V ) + ‖Ψn‖2L2([0,T ];V ) + ‖ψn(T )‖2V
)
.

(1.3.42)

Then, we can take the limit for n → ∞ in (1.3.42) and the assertion follows as in the first

part of the proof.

Moreover, we have the following Comparison principle for the coercive penalized problem.

Proposition 1.3.13. (i) Assume that ψi satisfies Assumption H1 for i = 1, 2 and g

satisfies Assumption H0. Let uiε,λ be the unique solution of (1.3.23) with obstacle

function ψi and source function g. If ψ1 ≤ ψ2, then u1
ε,λ ≤ u2

ε,λ.

(ii) Assume that ψ satisfies Assumption H1 and gi satisfy Assumption H0 for i = 1, 2. Let

uiε,λ be the unique solution of (1.3.23) with obstacle function ψ and source function

gi. If g1 ≤ g2, then u1
ε,λ ≤ u2

ε,λ.
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(iii) Assume that ψi satisfies Assumption H1 for i = 1, 2 and g satisfies Assumption H0.

Let uiε,λ be the unique solution of (1.3.23) with obstacle function ψi and source function

g. If ψ1 − ψ2 ∈ L∞, then u1
ε,λ − u2

ε,λ ∈ L∞ and ‖u1
ε,λ − u2

ε,λ‖∞ ≤ ‖ψ1 − ψ2‖∞.

Proposition 1.3.13 can be proved with standard techniques introduced in [19, Chapter 3]

so we omit the proof.

Coercive variational inequality

Proposition 1.3.14. Assume that ψ satisfies Assumption H1 and g satisfies Assumption

H0. Moreover, assume that 0 ≤ ψ ≤ Φ with Φ ∈ L2([0, T ];H2(O,m)) such that ∂Φ
∂t +

LΦ ≤ 0 and 0 ≤ g ≤ −∂Φ
∂t − L

λΦ. Then, there exists a unique function uλ such that

uλ ∈ L2([0, T ];V ), ∂uλ∂t ∈ L
2([0, T ];H) and



−
(
∂uλ
∂t , v − uλ

)
H

+ aλ(uλ, v − uλ) ≥ (g, v − uλ)H , a.e. in [0, T ],

v ∈ L2([0, T ];V ), v ≥ ψ,

uλ(T ) = ψ(T ),

uλ ≥ ψ a.e. in [0, T ]× R× (0,∞).

(1.3.43)

Moreover, 0 ≤ uλ ≤ Φ.

Proof. The uniqueness of the solution of (1.3.43) follows by a standard monotonicity argu-

ment introduced in [19, Chapter 3] (see [93]). As regards the existence of a solution, we

follow the lines of the proof of [19, Theorem 2.1] but we repeat here the details since we use

a compactness argument which is not present in the classical theory.

For each fixed ε > 0 we have the estimates (1.3.24) and (1.3.25), so, for every t ∈ [0, T ],

we can extract a subsequence uε,λ such that uε,λ(t) ⇀ uλ(t) in V as ε→ 0 and u′ε(t) ⇀ u′λ(t)

in H for some function uλ ∈ V .

Note that u = 0 is the unique solution of (1.3.23) when ψ = g = 0, while u = Φ is the

unique solution of (1.3.23) when ψ = Φ and g = −∂Φ
∂t − L

λΦ = −∂Φ
∂t − LΦ + λ(1 + y)Φ.

Therefore, Proposition 1.3.13 implies that 0 ≤ uε,λ ≤ Φ. Recall that uε,λ(t) → uλ(t) in

L2(U ,m) for every relatively compact open U ⊂ O. This, together with the fact that dm is

a finite measure, allows to conclude that we have strong convergence of uε,λ to uλ in H. In
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fact, if δ > 0 and Oδ := (−1
δ ,

1
δ )× (δ, 1

δ ),∫ T

0
ds

∫
O
|uε,λ(s)− uλ(s)|2dm

≤
∫ T

0
ds

∫
Oδ
|uε,λ(s)− uλ(s)|2dm +

∫ T

0
ds

∫
Ocδ
|uε,λ(s)− uλ(s)|2dm

≤
∫ T

0
ds

∫
Oδ
|uε,λ(s)− uλ(s)|2dm +

∫ T

0
ds

∫
Ocδ

4Φ2(s)dm

and it is enough to let δ goes to 0.

From (1.3.26) we also have that (ψ(t) − uε,λ(t))+ → 0 strongly in H as ε → 0 . On the

other hand (ψ(t) − uε,λ(t))+ ⇀ χ(t) weakly in H and χ = (ψ − uλ)+ since there exists a

subsequence of uε,λ(t) which converges pointwise to uλ(t). Therefore, (ψ(t)− uλ(t))+ = 0,

which means uλ(t) ≥ ψ(t).

Then we consider the penalized coercive equation in (1.3.23) replacing v by v − uε,λ(t),

with v ≥ ψ(t). Since ζε(t, v) = 0 and (ζε(t, v) − ζε(t, uε,λ(t)), v − uε,λ(t))H ≥ 0 we easily

deduce that

−
(
∂uε,λ
∂t

(t), v − uε,λ(t)

)
H

+ aλ(uε,λ(t), v − uε,λ(t)) ≥ (g(t), v − uε,λ(t))H

so that, letting ε goes to 0, we have

−
(
∂uλ
∂t

(t), v − uλ(t)

)
H

+ aλ(uλ(t), v) ≥ (g(t), v − uλ(t))H + lim inf
ε→0

aλ(uε,λ(t), uε,λ(t))

≥ (g(t), v − uλ(t))H + aλ(uλ(t), uλ(t)).

Moreover, since 0 ≤ uε,λ ≤ Φ for every ε > 0 and uλ = limε→0 uε,λ, we have 0 ≤ uλ ≤ Φ

and the assertion follows.

The following Comparison Principle is a direct consequence of Proposition 1.3.13,.

Proposition 1.3.15. (i) For i = 1, 2, assume that ψi satisfies Assumption H1, g sat-

isfies Assumption H0 and 0 ≤ ψi ≤ Φ with Φ ∈ L2([0, T ];H2(O,m)) such that
∂Φ
∂t +LΦ ≤ 0 and 0 ≤ g ≤ −∂Φ

∂t −L
λΦ. Let uiλ be the unique solution of (1.3.43) with

obstacle function ψi and source function g. If ψ1 ≤ ψ2, then u1
λ ≤ u2

λ.

(ii) For i = 1, 2, assume that ψ satisfies Assumption H1, gi satisfy Assumption H0 and

0 ≤ ψ ≤ Φ with Φ ∈ L2([0, T ];H2(O,m)) such that ∂Φ
∂t + LΦ ≤ 0 and 0 ≤ gi ≤

−∂Φ
∂t − L

λΦ. Let uiλ be the unique solution of (1.3.43) with obstacle function ψ and

source function gi. If g1 ≤ g2, then u1
λ ≤ u2

λ.
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(iii) For i = 1, 2, assume that ψi satisfies Assumption H1, g satisfies Assumption H0 and

0 ≤ ψi ≤ Φ with Φ ∈ L2([0, T ];H2(O,m)) such that ∂Φ
∂t + LΦ ≤ 0 and 0 ≤ g ≤

−∂Φ
∂t − L

λΦ. Let uiλ be the unique solution of (1.3.43) with obstacle function ψi and

source function g. If ψ1−ψ2 ∈ L∞, then u1
λ−u2

λ ∈ L∞ and ‖u1
λ−u2

λ‖∞ ≤ ‖ψ1−ψ2‖∞.

Non-coercive variational inequality

We can finally prove Theorem 1.2.3. Again, we first study the uniqueness of the solution

and then we deal with the existence.

Proof of uniqueness in Theorem 1.2.3. Suppose that there are two functions u1 and u2

which satisfy (1.2.5). As usual, we take v = u2 in the equation satisfied by u1 and v = u1

in the one satisfied by u2 and we add the resulting equations. Setting w := u2 − u1, we get

that, a.e. in [0, T ], (
∂w

∂t
(t), w(t)

)
H

− a(w(t), w(t)) ≥ 0.

From the energy estimate (1.3.13), we know that

a(u(t), u(t)) ≥ C1‖u(t)‖2V − C2‖(1 + y)
1
2u(t)‖2H ,

so that
1

2

d

dt
‖w(t)‖2H + C2‖(1 + y)

1
2w(t)‖2H ≥ 0.

By integrating from t to T , since w(T ) = 0, we have

‖w(t)‖2H ≤ C2

∫ T

t
‖(1 + y)

1
2w(s)‖2Hds

≤ C2

(∫ T

t
ds

∫
O
1{y≤λ}(1 + y)w2(s)dm +

∫ T

t
ds

∫
O
1{y>λ}(1 + y)w2(s)dm

)
≤ C

(∫ T

t
ds

∫
O

(1 + λ)w2(s)yβ−1e−γ|x|e−µydxdy

)
+ C

(
+

∫ T

t
ds

∫
O
1{y>λ}(1 + y)w2(s)yβ−1e−γ|x|e−(µ−µ′)ye−µ

′ydxdy

)
≤ C

(∫ T

t
ds

∫
O
dxdy(1 + λ)w2(s)yβ−1e−γ|x|e−µy

)
+ C

(
e−(µ−µ′)λ

∫ T

t
ds

∫
O
dxdy(1 + y)Φ2(s)yβ−1e−γ|x|e−µ

′y

)
,
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where µ′ < µ and λ > 0. Since C2 =
∫
O dxdy(1 + y)Φ2(s)yβ−1e−γ|x|e−µ

′y <∞, we have

‖w(t)‖2H ≤ C(1 + λ)

∫ T

t
‖w(s)‖2Hds+ C2(T − t)e−(µ−µ′)λ,

so, by using the Gronwall Lemma,

‖w(t)‖2H ≤ C2Te
−(µ−µ′)λ+C(T−t)(1+λ).

Sending λ → ∞, we deduce that w(t) = 0 in [T, t] for t such that T − t < µ−µ′
C . Then, we

iterate the same argument: we integrate between t′ and t with t − t′ < µ−µ′
C and we have

w(t) = 0 in [T, t′] and so on. We deduce that w(t) = 0 for all t ∈ [0, T ] so the assertion

follows.

Proof of existence in Theorem 1.2.3. Given u0 = Φ, we can construct a sequence (un)n ⊂ V
such that

un ≥ ψ a.e. in [0, T ]×O, n ≥ 1, (1.3.44)

−
(
∂un
∂t

, v − un
)
H

+ a(un, v − un) + λ((1 + y)un, v − un)H ≥ λ((1 + y)un−1, v − un)H ,

v ∈ V, v ≥ ψ, a.e. on [0, T ]×O, n ≥ 1,

(1.3.45)

un(T ) = ψ(T ), in O, (1.3.46)

Φ ≥ u1 ≥ u2 ≥ · · · ≥ un−1 ≥ un ≥ · · · ≥ 0, a.e. on [0, T ]×O. (1.3.47)

In fact, if we have 0 ≤ un−1 ≤ Φ for all n ∈ N, then the assumptions of Proposition 1.3.14

are satisfied with

gn = λ(1 + y)un−1.

Indeed, since (1+y)
3
2 Φ ∈ L2([0, T ];H), we have that gn and

√
1 + ygn belong to L2([0, T ];H)

and, moreover, 0 ≤ gn ≤ λ(1 + y)Φ ≤ −∂Φ
∂t − LλΦ. Therefore, step by step, we can deduce

the existence and the uniqueness of a solution un to (1.3.45) such that 0 ≤ un ≤ Φ. (1.3.47)

is a simple consequence of Proposition 1.3.15. In fact, proceeding by induction, at each step

we have

gn = λ(1 + y)un−1 ≤ λ(1 + y)un−2 = gn−1

so that un ≤ un−1. Now, recall that

‖un‖L∞([0,T ],V ) ≤ K,
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∥∥∥∥∂un∂t
∥∥∥∥
L2([0,T ];H)

≤ K,

whereK = C
(
‖Ψ‖L2([0,T ];V ) + ‖

√
1 + ygn‖L2([0,T ];H) + ‖

√
1 + yψ‖L2([0,T ];V ) + ‖ψ(T )‖V

)
. Note

that the constant K is independent of n since |gn| = |λ(1 + y)un−1, | ≤ λ(1 + y)Φ, for every

n ∈ N. Therefore, by passing to a subsequence, we can assume that there exists a function

u such that u ∈ L2([0, T ];V ), ∂u∂t ∈ L
2([0, T ];H) and for every t ∈ [0, T ], u′n(t) ⇀ u′(t) in H

and un(t) ⇀ u(t) in V . Indeed, again thanks to the fact that 0 ≤ un ≤ Φ, we can deduce

that un(t)→ u(t) in H. Therefore we can pass to the limit in

−
(
∂un
∂t

, un − v
)
H

+ a(un, v − un) + λ((1 + y)un, v − un)H ≥ λ((1 + y)un−1, v − un)H

and the assertion follows.

Remark 1.3.16. Keeping in mind our purpose of identifying the solution of the variational

inequality (1.2.5) with the American option price we have considered the case without source

term (g = 0) in the variational inequality (1.2.5). However, under the same assumptions of

Theorem 1.2.3, we can prove in the same way the existence and the uniqueness of a solution

of

−
(
∂u
∂t , v − u

)
H

+ a(u, v − u) ≥ (g, v − u)H , a.e. in [0, T ] v ∈ L2([0, T ];V ), v ≥ ψ,

u ≥ ψ a.e. in [0, T ]× R× (0,∞),

u(T ) = ψ(T ),

0 ≤ u ≤ Φ,

where g satisfies Assumption H0 and 0 ≤ g ≤ −∂Φ
∂t − LΦ.

We conclude stating the following Comparison Principle, whose proof is a direct conse-

quence of Proposition 1.3.15 and the proof of Proposition 1.2.3.

Proposition 1.3.17. For i = 1, 2, assume that ψi satisfies Assumption H1 and 0 ≤ ψi ≤ Φ

with Φ satisfying Assumption H2. Let uiλ be the unique solution of (1.3.43) with obstacle

function ψi. Then:

(i) If ψ1 ≤ ψ2, then u1
λ ≤ u2

λ.

(ii) If ψ1 − ψ2 ∈ L∞, then u1
λ − u2

λ ∈ L∞ and ‖u1
λ − u2

λ‖∞ ≤ ‖ψ1 − ψ2‖∞.
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1.4 Connection with the optimal stopping problem

Once we have the existence and the uniqueness of a solution u of the variational inequality

(1.2.3), our aim is to prove that it matches the solution of the optimal stopping problem,

that is

u(t, x, y) = u∗(t, x, y), on [0, T ]× Ō,

where u∗ is defined by

u∗(t, x, y) = sup
τ∈Tt,T

E
[
ψ(τ,Xt,x,y

τ , Y t,x,y
τ )

]
,

Tt,T being the set of the stopping times with values in [t, T ]. Since the function u is not

regular enough to apply Itô’s Lemma, we use another strategy in order to prove the above

identification. So, we first show, by using the affine character of the underlying diffusion,

that the semigroup associated with the bilinear form aλ coincides with the transition semi-

group of the two dimensional diffusion (X,Y ) with a killing term. Then, we prove suitable

estimates on the joint law of (X,Y ) and Lp-regularity results on the solution of the varia-

tional inequality and we deduce from them the probabilistic interpretation.

1.4.1 Semigroup associated with the bilinear form

We introduce now the semigroup associated with the coercive bilinear form aλ. With a

natural notation, we define the following spaces

L2
loc(R+;H) =

{
f : R+ → H : ∀t ≥ 0

∫ t

0
‖f(s)‖2Hds <∞

}
,

L2
loc(R+;V ) =

{
f : R+ → V : ∀t ≥ 0

∫ t

0
‖f(s)‖2V ds <∞

}
.

First of all, we state the following result:

Proposition 1.4.1. For every ψ ∈ V , f ∈ L2
loc(R+;H) with

√
yf ∈ L2

loc(R+;H), there

exists a unique function u ∈ L2
loc(R+;V ) such that ∂u

∂t ∈ L
2
loc(R+;H), u(0) = ψ and(

∂u

∂t
, v

)
H

+ aλ(u, v) = (f, v)H , v ∈ V. (1.4.48)

Moreover we have, for every t ≥ 0,

‖u(t)‖2H +
δ1

2

∫ t

0
‖u(s)‖2V ds ≤ ‖ψ‖2H +

2

δ1

∫ t

0
‖f(s)‖2Hds (1.4.49)
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and

||u(t)||2V +

∫ t

0
||ut(s)||2Hds ≤ C

(
||ψ||2V +

1

2

∫ t

0
||
√

1 + yf(s)||2Hds
)
,

with C > 0.

The proof can be found in the appendix of this chapter. Moreover, we can prove a

Comparison Principle for the equation (1.4.48) as we have done for the variational inequality.

We denote u(t) = P̄ λt ψ the solution of (1.4.48) corresponding to u(0) = ψ and f = 0.

From (1.4.49) we deduce that the operator P̄ λt is a linear contraction on H and, from

uniqueness, we have the semigroup property.

Proposition 1.4.2. Let us consider f : R+ → H such that
√

1 + yf ∈ L2
loc(R+, H). Then,

the solution of 
(
∂u
∂t , v

)
H

+ aλ(u, v) = (f, v)H , v ∈ V,

u(0) = 0,

is given by u(t) =
∫ t

0 P̄
λ
s f(t− s)ds =

∫ t
0 P̄

λ
t−sf(s)ds.

Proof. Note that V is dense in H and recall the estimate (1.4.49), so it is enough to prove

the assertion for f = 1(t1,t2]ψ, with 0 ≤ t1 < t2 and ψ ∈ V . If we set u(t) =
∫ t

0 P̄
λ
t−sf(s)ds,

we have

u(t) = 1{t≥t1}

∫ t∧t2

t1

P̄ λt−sψds =


∫ t2
t1
P̄ λt−sψds =

∫ t−t1
t−t2 P̄

λ
s ψds if t ≥ t2∫ t

t1

P̄ λt−sψds =

∫ t−t1

0
P̄ λs ψds if t ∈ [t1, t2)

.

Therefore, for every v ∈ V , we have (ut, v)H + aλ(u, v) = 0 if t ≤ t1 and, if t ≥ t1,

(
∂u

∂t
, v

)
H

+ aλ(u(t), v) =


(
P̄ λt−t1ψ − P̄

λ
t−t2ψ, v

)
H

+ aλ

(∫ t−t1
t−t2 P̄

λ
s ψds, v

)
if t ≥ t2(

P̄ λt−t1ψ, v
)
H

+ aλ

(∫ t−t1
0 P̄ λs ψds, v

)
if t ∈ [t1, t2)

.

The assertion follows from (P̄ λt ψ, v)H +
∫ t

0 aλ(P̄sψ, v)ds = (ψ, v)H .

Remark 1.4.3. It is not difficult to prove that P̄ λt : Lp(O,m)→ Lp(O,m) is a contraction

for every p ≥ 2, and it is an analytic semigroup. This is not useful to our purposes so we

omit the proof.
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1.4.2 Transition semigroup

We define Ex0,y0( ) = E( |X0 = x0, Y0 = y0). Fix λ > 0. For every measurable positive

function f defined on R× [0,+∞), we define

P λt f(x0, y0) = Ex0,y0

(
e−λ

∫ t
0 (1+Ys)dsf(Xt, Yt)

)
.

The operator P λt is the transition semigroup of the two dimensional diffusion (X,Y ) with

the killing term e−λ
∫ t
0 (1+Ys)ds.

Set Ey0( ) = E( |Y0 = y0). We first prove some useful results about the Laplace

transform of the pair (Yt,
∫ t

0 Ysds). These results rely on the affine structure of the model

and have already appeared in slightly different forms in the literature (see, for example, [5,

Section 4.2.1]). We include a proof for convenience.

Proposition 1.4.4. Let z and w be two complex numbers with nonpositive real parts. The

equation

ψ′(t) =
σ2

2
ψ2(t)− κψ(t) + w (1.4.50)

has a unique solution ψz,w defined on [0,+∞), such that ψz,w(0) = z. Moreover, for every

t ≥ 0,

Ey0

(
ezYt+w

∫ t
0 Ysds

)
= ey0ψz,w(t)+θκφz,w(t),

with φz,w(t) =
∫ t

0 ψz,w(s)ds.

Proof. Let ψ be the solution of (1.4.50). We define ψ1 (resp. w1) and ψ2 (resp. w2) the

real and the imaginary part of ψ (resp. w). We have{
ψ′1(t) = σ2

2

(
ψ2

1(t)− ψ2
2(t)

)
− κψ1(t) + w1,

ψ′2(t) = σ2ψ1(t)ψ2(t)− κψ2(t) + w2.

From the first equation we deduce that ψ′1(t) ≤ σ2

2

(
ψ1(t)− 2κ

σ2

)
ψ1(t)+w1 and, since w1 ≤ 0,

the function t 7→ ψ1(t)e−
σ2

2

∫ t
0 (ψ1(s)− 2κ

σ2 )ds is nonincreasing. Therefore ψ1(t) ≤ 0 if ψ1(0) ≤ 0.

Multiplying the first equation by ψ1(t) and the second one by ψ2(t) and adding we get

1

2

d

dt

(
|ψ(t)|2

)
=

(
σ2

2
ψ1(t)− κ

)
|ψ(t)|2 + w1ψ1(t) + w2ψ2(t)

≤
(
σ2

2
ψ1(t)− κ

)
|ψ(t)|2 + |w||ψ(t)|

≤
(
σ2

2
ψ1(t)− κ

)
|ψ(t)|2 + ε|ψ(t)|2 +

|w|2

4ε
.
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We deduce that |ψ(t)| cannot explode in finite time and, therefore, ψz,w actually exists on

[0,+∞).

Now, let us define the function Fz,w(t, y) = eyψz,w(t)+θκφz,w(t). Fz,w is C1,2 on [0,+∞)×R
and it satisfies by construction the following equation

∂Fz,w
∂t

=
σ2

2
y
∂2Fz,w
∂y2

+ κ(θ − y)
∂Fz,w
∂y

+ wyFz,w.

Therefore, for every T > 0, the process (Mt)0≤t≤T defined by

Mt = ew
∫ t
0 YsdsFz,w(T − t, Yt) (1.4.51)

is a local martingale. On the other hand, note that

|Mt| =
∣∣∣ew ∫ t0 Ysds∣∣∣ ∣∣∣eYtψz,w(T−t)+θκφz,w(T−t)

∣∣∣ ≤ 1

since w, ψz,w(t) and φz,w(t) =
∫ t

0 ψz,w(s)ds all have nonpositive real parts. Therefore the

process (Mt)t is a true martingale indeed. We deduce that Fz,w(T, y0) = Ey0

(
ew
∫ T
0 YsdsezYT

)
and the assertion follows.

We also have the following result which specifies the behaviour of the Laplace transform

of (Yt,
∫ t

0 Ysds) when evaluated in two real numbers, not necessarily nonpositive.

Proposition 1.4.5. Let λ1 and λ2 be two real numbers such that

σ2

2
λ2

1 − κλ1 + λ2 ≤ 0.

Then, the equation

ψ′(t) =
σ2

2
ψ2(t)− κψ(t) + λ2 (1.4.52)

has a unique solution ψλ1,λ2 defined on [0,+∞) such that ψλ1,λ2(0) = λ1. Moreover, for

every t ≥ 0, we have

Ey0

(
eλ1Yt+λ2

∫ t
0 Ysds

)
≤ ey0ψλ1,λ2

(t)+θκφλ1,λ2
(t),

with φλ1,λ2(t) =
∫ t

0 ψλ1,λ2(s)ds.

Proof. Let ψ be the solution of (1.4.52) with ψ(0) = λ1. We have

ψ′′(t) = (σ2ψ(t)− κ)ψ′(t).
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Therefore, the function t 7→ ψ′(t)e−
∫ t
0 (σ2ψ(s)−κ)dsis a constant, hence ψ′(t) has constant

sign. Moreover, the assumption on λ1 and λ2 ensures that ψ′(0) ≤ 0. We deduce that

ψ′(t) ≤ 0 and ψ(t) remains between the solutions of the equation

σ2

2
λ2 − κλ+ λ2 = 0.

This proves that the solution is defined on the whole interval [0,+∞). Now the assertion

follows as in the proof of Proposition 1.4.4: just note that the process (Mt)t defined as in

(1.4.51) is no more uniformly bounded, so we cannot directly deduce that it is a martingale.

However, it remains a positive local martingale, hence a supermartingale.

Remark 1.4.6. Let us now consider two real numbers λ1 and λ2 such that

σ2

2
λ2

1 − κλ1 + λ2 < 0.

From the proof of Proposition 1.4.5, by using the optional sampling theorem we have

sup
τ∈T0,T

Ey
(
eλ2

∫ τ
0 Ysdseψλ1,λ2

(T−τ)Yτ+θκφλ1,λ2
(T−τ)

)
≤ eyψλ1,λ2

(T )+θκφλ1,λ2
(T ).

Consider now ε > 0 and let λε1 = (1 + ε)λ1 and λε2 = (1 + ε)λ2. For ε small enough, we

have σ2

2 (λε1)2 − κλε1 + λε2 < 0. Therefore

sup
τ∈T0,T

Ey
(
eλ

ε
2

∫ τ
0 Ysdse

ψλε1,λ
ε
2
(T−τ)Yτ+θκφλε1,λ

ε
2
(T−τ)

)
≤ e

yψλε1,λ
ε
2
(T )+θκφλε1,λ

ε
2
(T )
.

If we have ψλε1,λε2 ≥ (1 + ε)ψλ1,λ2, we can deduce that

sup
τ∈T0,T

Ey
(
eλ2(1+ε)

∫ τ
0 Ysdse(1+ε)(ψλ1,λ2

(T−τ)Yτ+θκφλ1,λ2
(T−τ))

)
≤ e

yψλε1,λ
ε
2
(T )+θκφλε1,λ

ε
2
(T )
,

and, therefore, that the family
(
eλ2

∫ τ
0 Ysdseψλ1,λ2

(T−τ)Yτ+θκφλ1,λ2
(T−τ)

)
τ∈T0,T

is uniformly

integrable. As a consequence, the process (Mt)t is a true martingale and we have

Ey
(
eλ1Yt+λ2

∫ t
0 Ysds

)
= eyψλ1,λ2

(t)+θκφλ1,λ2
(t).

So, it remains to show that ψλε1,λε2 ≥ (1 + ε)ψλ1,λ2. In order to do this we set gε(t) =
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ψλε1,λε2(t)− (1 + ε)ψλ1,λ2(t). From the equations satisfied by ψλε1,λε2 and ψλ1,λ2 we deduce that

g′ε(t) =
σ2

2

(
ψ2
λε1,λ

ε
2
(t)− (1 + ε)ψ2

λ1,λ2
(t)
)
− κ

(
ψλε1,λε2(t)− (1 + ε)ψλ1,λ2(t)

)
=

σ2

2

(
ψ2
λε1,λ

ε
2
(t)− (1 + ε)2ψ2

λ1,λ2
(t)
)
− κgε(t) +

σ2

2

(
(1 + ε)2 − (1 + ε)

)
ψ2
λ1,λ2

(t)

=
σ2

2

(
ψλε1,λε2(t) + (1 + ε)ψλ1,λ2(t)

)
gε(t)− κgε(t) +

σ2

2
ε(1 + ε)ψ2

λ1,λ2
(t)

= fε(t)gε(t) +
σ2

2
ε(1 + ε)ψ2

λ1,λ2
(t),

where

fε(t) =
σ2

2

(
ψλε1,λε2(t) + (1 + ε)ψλ1,λ2(t)

)
− κ.

Therefore, the function gε(t)e
−
∫ t
0 fε(s)ds is nondecreasing and, since gε(0) = 0, we have

gε(t) ≥ 0.

We can now prove the following Lemma, which will be useful in Section 1.4.4 to prove

suitable estimates on the joint law of the process (X,Y ).

Lemma 1.4.7. For every q > 0 there exists C > 0 such that for all y0 ≥ 0,

Ey0

(∫ t

0
Yvdv

)−q
≤ C

t2q
. (1.4.53)

Proof. If we take λ1 = 0 and λ2 = −s with s > 0 in Proposition 1.4.5, we get

Ey0

(
e−s

∫ t
0 Yvdv

)
= ey0ψ0,−s(t)+θκφ0,−s(t).

Since ψ′0,−s(0) = −s < 0, we can deduce by the proof of Proposition 1.4.5 that ψ′0,−s(t) =

−se
∫ t
0 (σ2ψ(u)−κ)du. Therefore, since ψ0,−s = 0, we have

ψ0,−s(t) = −s
∫ t

0
e
∫ u
0 (σ2ψ(v)−κ)dvdu. (1.4.54)

Again from the proof of Proposition 1.4.5,

ψ0,−s(t) ≥
κ

σ2
−
√( κ

σ2

)2
+ 2

s

σ2
≥ −

√
2s/σ2,

so, by using (1.4.54), we deduce that

ψ0,−s(t) ≤ −s
∫ t

0
e
∫ u
0 −(σ

√
2s+κ)dvdu = −s

∫ t

0
e−λsudu = − s

λs
(1− e−tλs).
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where λs = σ
√

2s+ κ. Since φ0,−s(t) =
∫ t

0 ψ0,−s(u)du, we have

φ0,−s(t) ≤ −
s

λ2
s

(
tλs − 1 + e−tλs

)
.

Therefore, since ψ0,−s(t) ≤ 0, for any y0 ≥ 0 we get

Ey0

(
e−s

∫ t
0 Yvdv

)
≤ eκθφ0,−s(t) ≤ e−

κθs

λ2
s

(tλs−1+e−tλs )
.

Now, recall that for every q > 0 we can write

1

yq
=

1

Γ(q)

∫ ∞
0

sq−1e−syds.

Therefore

Ey0

(∫ t

0
Yvdv

)−q
= Ey0

(
1

Γ(q)

∫ ∞
0

sq−1e−s
∫ t
0 Yvdvds

)
≤ 1

Γ(q)

∫ 1

0
sq−1e

−κθs
λ2
s

(tλs−1+e−tλs )
ds+

1

Γ(q)

∫ ∞
1

sq−1e
−κθs
λ2
s

(tλs−1+e−tλs )
ds.

Recall that λs = σ
√

2s + κ, so the first terms in the right hand side is finite. Moreover,

for s > 1, we have κθs
λ2
s
≤ C. Then, by noting that the function u 7→ tu − 1 + e−tu is

nondecreasing, we have

Ey0

(∫ t

0
Yvdv

)−q
≤ C +

1

Γ(q)

∫ ∞
1

sq−1e−C(tσ
√

2s−1+e−tσ
√

2s)ds

≤ C +
1

t2qΓ(q)

∫ ∞
0

vq−1e−C(σ
√

2v−1+e−σ
√

2v)dv

≤ C

t2q
,

which concludes the proof.

Now recall that the diffusion (X,Y ) evolves according to the following stochastic differ-

ential system

dXt =
(
ρκθ
σ −

Yt
2

)
dt+

√
YtdBt,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt.

If we set X̃t = Xt − ρ
σYt, we havedX̃t =

(ρκ
σ −

1
2

)
Ytdt+

√
1− ρ2

√
YtdB̃t,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt.

(1.4.55)
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where B̃t = (1 − ρ2)−1/2 (Bt − ρWt). Note that B̃ is a standard Brownian motion with

〈B̃,W 〉t = 0.

Proposition 1.4.8. For all u, v ∈ R, for all λ ≥ 0 and for all (x0, y0) ∈ R × [0,+∞) we

have

Ex0,y0

(
eiuXt+ivYte−λ

∫ t
0 Ysds

)
= eiux0+y0(ψλ1,µ

(t)−iu ρ
σ

)+θκφλ1,µ
(t),

where λ1 = i(u ρσ + v), µ = iu
(ρκ
σ −

1
2

)
− u2

2 (1 − ρ2) − λ and the function ψλ1,µ and φλ1,µ

are defined in Proposition 1.4.4.

Proof. We have

Ex0,y0

(
eiuXt+ivYt−λ

∫ t
0 Ysds

)
= Ex0,y0

(
eiu(X̃t+

ρ
σ
Yt)+ivYt−λ

∫ t
0 Ysds

)
and

X̃t = x0 −
ρ

σ
y0 +

∫ t

0

(
ρκ

σ
− 1

2

)
Ysds+

∫ t

0

√
(1− ρ2)YsdB̃s.

Since B̃ and W are independent,

E
(
eiuX̃t |W

)
= eiu(x0− ρσ y0+

∫ t
0 ( ρκσ −

1
2)Ysds)−u

2

2
(1−ρ2)

∫ t
0 Ysds

and

Ex0,y0

(
eiuXt+ivYt−λ

∫ t
0 Ysds

)
= eiu(x0− ρσ y0)Ey0

(
e
i(u ρσ+v)Yt+

(
iu( ρκ

σ
− 1

2
)−u

2

2
(1−ρ2)−λ

) ∫ t
0 Ysds

)
.

Then the assertion follows by using Proposition 1.4.4.

1.4.3 Identification of the semigroups

We now show that the semigroup P̄ λt associated with the coercive bilinear form can be

actually identified with the transition semigroup P λt . Recall the Sobolev spaces Lp(O,mγ,µ)

introduced in Definition 1.2.1 for p ≥ 1. In order to prove the identification of the semi-

groups, we need the following property of the transition semigroup.

Theorem 1.4.9. For all p > 1, γ > 0 and µ > 0 there exists λ > 0 such that, for every

compact K ⊆ R× [0,+∞) and for every T > 0, there is Cp,K,T > 0 such that

P λt f(x0, y0) ≤
Cp,K,T

t
β
p

+ 3
2p

||f ||Lp(O,mγ,µ), (x0, y0) ∈ K.

for every measurable positive function f on R× [0,+∞) and for every t ∈ (0, T ].

45



Chap.. 1 - Variational formulation of American option prices

Theorem 1.4.9 will also play a crucial role in order to prove Theorem 1.2.4. Its proof

relies on suitable estimates on the joint law of the diffusion (X,Y ) and we postpone it to

the following section. Then, we can prove the following result.

Proposition 1.4.10. There exists λ > 0 such that, for every function f ∈ H and for every

t ≥ 0,

P̄ λt f(x, y) = P λt f(x, y), dxdy a.e.

Proof. We can easily deduce from Theorem 1.4.9 with p = 2 that, for λ large enough, if

(fn)n is a sequence of functions which converges to f in H, then the sequence (P λt fn)n

converges uniformly to P λt f on the compact sets. On the other hand, recall that P̄ λt is

a contraction semigroup on H so that the function f 7→ P̄ λt f is continuous and we have

P̄ λt fn → P̄ λt f in H.

Therefore, by density arguments, it is enough to prove the equality for f(x, y) = eiux+ivy

with u, v ∈ R. We have, by using Proposition 1.4.8,

P λt f(x, y) = Ex,y
(
e−λ

∫ t
0 (1+Ys)dseiuXt+ivYt

)
= e−λteiux+y(ψλ1,µ

(t)−iu ρ
σ )+θκφλ1,µ

(t),

with λ1 = i(u ρσ + v), µ = iu
(ρκ
σ −

1
2

)
− u2

2 (1 − ρ2) − λ. The function F (t, x, y) defined by

F (t, x, y) = e−λteiux+y(ψλ1,µ
(t)−iu ρ

σ )+θκφλ1,µ
(t) satisfies F (0, x, y) = eiux+ivy and

∂F

∂t
= (L − λ(1 + y))F.

Moreover, since the real parts of λ1 and µ are nonnegative, we can deduce from the proof

of Proposition 1.4.4 that the real part of the function t → ψ(t) is nonnegative. Then, it is

straightforward to see that, for every t ≥ 0, we have F (t, ·, ·) ∈ H2(O,m) and t 7→ F (t, ·, ·)
is continuous, so that, for every v ∈ V , (LF (t, ., .), v)H = −a(F (t, ., .), v). Therefore(

∂F

∂t
, v

)
H

+ aλ(F (t, ., .), v) = 0 v ∈ V,

and F (t, ., .) = P̄ λt f .

1.4.4 Estimates on the joint law

In this section we prove Theorem 1.4.9. We first recall some results about the density of

the process Y .
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With the notations

ν = β − 1 =
2κθ

σ2
− 1, yt = y0e

−κt, Lt =
σ2

4κ

(
1− e−κt

)
,

it is well known (see, for example, [72, Section 6.2.2]) that the transition density of the

process Y is given by

pt(y0, y) =
e
− yt

2Lt

2y
ν/2
t Lt

e
− y

2Lt yν/2Iν

(√
yyt

Lt

)
,

where Iν is the first-order modified Bessel function with index ν, defined by

Iν(y) =
(y

2

)ν ∞∑
n=0

(y/2)2n

n!Γ(n+ ν + 1)
.

It is clear that near y = 0 we have Iν(y) ∼ 1
Γ(ν+1)

(y
2

)ν
while, for y → ∞, we have the

asymptotic behaviour Iν(y) ∼ ey/
√

2πy (see [1, page 377]).

Proposition 1.4.11. There exists a constant Cβ > 0 (which depends only on β) such that,

for every t > 0,

pt(y0, y) ≤
Cβ

L
β+ 1

2
t

e
− (
√
y−√yt)

2

2Lt yβ−1
(
L

1/2
t + (yyt)

1/4
)
, (y0, y) ∈ [0,+∞)×]0,+∞).

Proof. From the asymptotic behaviour of Iν near 0 and ∞ we deduce the existence of a

constant Cν > 0 such that

Iν(x) ≤ Cν
(
xν1{x≤1} +

ex√
x
1{x>1}

)
.

Therefore

pt(y0, y) =
e
− yt+y

2Lt

2y
ν/2
t Lt

yν/2Iν

(√
yyt

Lt

)

≤ e
− yt+y

2Lt

2y
ν/2
t Lt

yν/2Cν

(yyt)
ν/2

Lνt
1{yyt≤L2

t } +
e

√
yyt
Lt

(yyt)1/4/L
1/2
t

1{yyt>L2
t }


=

Cν
2
e
− yt+y

2Lt

 yν

Lν+1
t

1{yyt≤L2
t } +

y
ν
2
− 1

4 e

√
yyt
Lt

(yt)
ν
2

+ 1
4L

1/2
t

1{yyt>L2
t }

 .
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On {yyt > L2
t }, we have y−1

t ≤ y/L2
t and, since ν + 1 > 0,

y
ν
2
− 1

4

(yt)
ν
2

+ 1
4

= y
1/4
t

y
ν
2
− 1

4

(yt)
ν
2

+ 1
2

≤ y1/4
t

yν+ 1
4

Lν+1
t

.

So

pt(y0, y) ≤ Cν
2
e
− yt+y

2Lt

 yν

Lν+1
t

1{yyt≤L2
t } +

(yyt)
1/4yνe

√
yyt
Lt

L
ν+ 3

2
t

1{yyt>L2
t }


≤ Cν

2L
ν+ 3

2
t

e
− yt+y

2Lt yνe

√
yyt
Lt

(
L

1/2
t 1{yyt≤L2

t } + (yyt)
1/41{yyt>L2

t }

)
=

Cν

2L
ν+ 3

2
t

e
− (
√
y−√yt)

2

2Lt yν
(
L

1/2
t 1{yyt≤L2

t } + (yyt)
1/41{yyt>L2

t }

)
,

and the assertion follows.

We are now ready to prove Theorem 1.4.9, which we have used in order to prove the

identification of the semigroups in Proposition 1.4.10 and which we will use again later on

in this chapter.

Proof of Theorem 1.4.9. Note that

P λt f(x0, y0) = Ex0,y0

(
e−λ

∫ t
0 (1+Ys)dsf̃(X̃t, Yt)

)
,

where

f̃(x, y) = f
(
x+

ρ

σ
y, y
)

and X̃t = Xt −
ρ

σ
Yt.

Recall that the dynamics of X̃ is given by (1.4.55) so we have

X̃t = x̃0 + κ̄

∫ t

0
Ysds+ ρ̄

∫ t

0

√
YsdB̃s,

with

x̃0 = x0 −
ρ

σ
y0, κ̄ =

ρκ

σ
− 1

2
, ρ̄ =

√
1− ρ2.

Recall that the Brownian motion B̃ is independent of the process Y . We set Σt =
√∫ t

0 Ysds

and n(x) = 1√
2π
e−x

2/2. Therefore

P λt f(x0, y0) = Ey0

(
e−λt−λΣ2

t

∫
f̃
(
x̃0 + κ̄Σ2

t + ρ̄Σtz, Yt
)
n(z)dz

)
≤ Ey0

(
e−λΣ2

t

∫
f̃
(
x̃0 + κ̄Σ2

t + ρ̄Σtz, Yt
)
n(z)dz

)
= Ey0

(
e−λΣ2

t

∫
f̃ (x̃0 + z, Yt)n

(
z − κ̄Σ2

t

ρ̄Σt

)
dz

ρ̄Σt

)
.
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Hölder’s inequality with respect to the measure e−γ|z|−µ̄YtdzdPy0 , where γ > 0 and µ̄ > 0

will be chosen later on, gives, for every p > 1

P λt f(x0, y0) ≤
[
Ey0

(∫
e−γ|z|−µ̄Yt f̃p (x̃0 + z, Yt) dz

)]1/p

Jq, (1.4.56)

with q = p/(p− 1) and

(Jq)
q = Ey0

(∫
e(q−1)γ|z|+(q−1)µ̄Yt−qλΣ2

tnq
(
z − κ̄Σ2

t

ρ̄Σt

)
dz

(ρ̄Σt)q

)
.

Using Proposition 1.4.11 we can write, for every z ∈ R,

Ey0

(
e−µ̄Yt f̃p (x̃0 + z, Yt)

)
=

∫ ∞
0

dypt(y0, y)e−µ̄yf̃p (x̃0 + z, y)

≤
Cβ

(√
σ2

4κ + y
1/4
0

)
L
β+ 1

2
t

∫ ∞
0
dye
− (
√
y−√yt)

2

2Lt
−µ̄y

yβ−1
(

1 + y1/4
)
f̃p (x̃0 + z, y) .

If we set L∞ = σ2/(4κ), for every ε ∈ (0, 1) we have

e
− (
√
y−√yt)

2

2Lt ≤ e−
(
√
y−√yt)

2

2L∞

= e−
y

2L∞ e
√
yyt
L∞
− yt

2L∞

≤ e−
y

2L∞ eε
y

2L∞ e
yt

2εL∞ e−
yt

2L∞

= e−(1−ε) y
2L∞ e

yt
2εL∞

(1−ε)

≤ e−(1−ε) y
2L∞ e

y0
2εL∞

(1−ε).

It is easy to see that e
−y
(
µ̄+ 1−ε

2L∞

)
(1 + y1/4) ≤ Cε,σ,κe

−y
(
µ̄+ 1−2ε

2L∞

)
. Therefore, we can write

Ey0

(
e−µ̄Yt f̃p (x̃0 + z, Yt)

)

≤
Cβe

y0(1−ε)
2εL∞

(√
σ2

4κ + y
1/4
0

)
L
β+ 1

2
t

∫ ∞
0
dye
−y
(
µ̄+ 1−ε

2L∞

)
yβ−1

(
1 + y1/4

)
f̃p (x̃0 + z, y)

≤
Cβ,σ,κ,εe

y0(1−ε)
εL∞

L
β+ 1

2
t

∫ ∞
0
dye
−y
(
µ̄+ 1−2ε

2L∞

)
yβ−1f̃p (x̃0 + z, y) .

As regards Jq, setting z′ =
z−κ̄Σ2

t
ρ̄Σt

, we have

(Jq)
q = Ey0

(∫
e(q−1)γ|z′ρ̄Σt+κ̄Σ2

t |+(q−1)µ̄Yt−qλΣ2
tnq

(
z′
) dz′

(ρ̄Σt)q−1

)
≤ Ey0

(∫
e(q−1)γρ̄Σt|z|+(q−1)µ̄Yt+((q−1)|κ̄|γ−qλ)Σ2

tnq (z)
dz

(ρ̄Σt)q−1

)
.
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Note that∫
e(q−1)γρ̄Σt|z|nq (z) dz =

1

(
√

2π)q

∫
e(q−1)γρ̄Σt|z|e−qz

2/2dz

≤ 2√
2π

∫
e(q−1)γρ̄Σtze−qz

2/2dz

=
2√
2π
e

(q−1)2

2q
γ2ρ̄2Σ2

t

∫
e
− 1

2

(√
qz− (q−1)γρ̄Σt√

q

)2

dz

=
2
√
q
e

(q−1)2

2q
γ2ρ̄2Σ2

t ,

so that

(Jq)
q ≤ 2

√
q
Ey0

(
e(q−1)µ̄Yt+λ̄qΣ2

t
1

(ρ̄Σt)q−1

)
,

with

λ̄q = (q − 1)|κ̄|γ +
(q − 1)2

2q
γ2ρ̄2 − qλ =

1

p− 1

(
|κ̄|γ +

1

2p
γ2ρ̄2 − pλ

)
.

Using Hölder’s inequality again we get, for every p1 > 1 and q1 = p1/(p1 − 1),

(Jq)
q ≤

√
2

q

(
Ey0

(
ep1(q−1)µ̄Yt+p1λ̄qΣ2

t

))1/p1
(
Ey0

(
1

(ρ̄Σt)q1(q−1)

))1/q1

≤ Cq,q1
tq−1

(
Ey0

(
ep1(q−1)µ̄Yt+p1λ̄qΣ2

t

))1/p1

,

where the last inequality follows from Lemma 1.4.7.

We now apply Proposition 1.4.5 with λ1 = p1(q − 1)µ̄ and λ2 = p1λ̄q. The assumption

on λ1 and λ2 becomes

σ2

2
p1(q − 1)µ̄2 − κµ̄+ |κ̄|γ +

1

2p
γ2ρ̄2 − pλ ≤ 0

or, equivalently,

λ ≥ σ2

2p(p− 1)
p1µ̄

2 − κµ̄
p

+ |κ̄|γ
p

+
1

2p2
γ2ρ̄2.

Note that the last inequality is satisfied for at least a p1 > 1 if and only if

λ >
σ2

2p(p− 1)
µ̄2 − κµ̄

p
+ |κ̄|γ

p
+

1

2p2
γ2ρ̄2. (1.4.57)
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Going back to (1.4.56) under the condition (1.4.57), we have

P λt f(x0, y0) ≤ Cp,ε

L
β
p

+ 1
2p

t t1/p
eAp,εy0

(∫
dze−γ|z|

∫ ∞
0
dye
−y
(
µ̄+ 1−2ε

2L∞

)
yβ−1f̃p (x̃0 + z, y)

)1/p

≤ Cp,εe
Ap,εy0

t
β
p

+ 3
2p

(∫
dze−γ|z|

∫ ∞
0
dye
−y
(
µ̄+ 1−2ε

2L∞

)
yβ−1fp

(
x̃0 + z +

ρ

σ
y, y
))1/p

=
Cp,εe

Ap,εy0

t
β
p

+ 3
2p

(∫
dze−γ|z−x̃0− ρσ y|

∫ ∞
0
dye
−y
(
µ̄+ 1−2ε

2L∞

)
yβ−1fp (z, y)

)1/p

≤ Cp,εe
Ap,εy0+γ|x̃0|

t
β
p

+ 3
2p

(∫
dze−γ|z|

∫ ∞
0
dye
−y
(
µ̄−γ |ρ|

σ
+ 1−2ε

2L∞

)
yβ−1fp (z, y)

)1/p

.

If we choose ε = 1/2 and µ̄ = µ+ γ |ρ|σ , the assertion follows provided λ satisfies

λ >
σ2

2p(p− 1)

(
µ+ γ

|ρ|
σ

)2

− κ
µ+ γ |ρ|σ

p
+ |κ̄|γ

p
+

1

p2
γ2ρ̄2.

1.4.5 Proof of Theorem 1.2.4

We are finally ready to prove the identification Theorem 1.2.4. We first prove the result

under further regularity assumptions on the payoff function ψ, then we deduce the general

statement by an approximation technique.

Case with a regular function ψ

The following regularity result paves the way for the identification theorem in the case of a

regular payoff function.

Proposition 1.4.12. Assume that ψ satisfies Assumption H1 and 0 ≤ ψ ≤ Φ with Φ

satisfying Assumption H2. If moreover we assume ψ ∈ L2([0, T ];H2(O,m)) and ∂ψ
∂t +

Lψ, (1 + y)Φ ∈ Lp([0, T ];Lp(O,m)) for some p ≥ 2, then there exist λ0 > 0 and F ∈
Lp([0, T ];Lp(O,m)) such that for all λ ≥ λ0 the solution u of (1.2.5) satisfies

−
(
∂u

∂t
, v

)
H

+ aλ(u, v) = (F, v)H , a.e. in [0, T ], v ∈ V. (1.4.58)

Proof. Note that, for λ large enough, u can be seen as the solution uλ of an equivalent

coercive variational inequality, that is

−
(
∂uλ
∂t

, v − uλ
)
H

+ aλ(uλ, v − uλ) ≥ (g, v − uλ)H ,
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where g = λ(1 + y)u satisfies the assumptions of Proposition 1.3.14. Therefore, there exists

a sequence (uε,λ)ε of non negative functions such that limε→0 uε,λ = uλ and

−
(
∂uε,λ
∂t

, v

)
H

+ aλ(uε,λ, v)−
(

1

ε
(ψ − uε,λ)+, v

)
H

= (g, v)H , v ∈ V.

Since both uε,λ and ψ are positive and ψ belongs to Lp([0, T ];Lp(O,m)), we have (ψ −
uε,λ)+ ∈ Lp([0, T ];Lp(O,m)). In order to simplify the notation, we set w = (ψ − uε,λ)+.

Taking v = wp−1 and assuming that ψ is bounded we observe that v ∈ L2([0, T ];V ) and we

can write

−
(
∂uε,λ
∂t

, wp−1

)
H

+ aλ(uε,λ, w
p−1)− 1

ε
‖w‖pLp(O,m) =

(
g, wp−1

)
H
,

so that

1

p

d

dt
‖w‖pLp(O,m)−aλ(ψ−uε,λ, wp−1)−1

ε
‖w‖pLp(O,m) =

(
g, wp−1

)
H
−
(
∂ψ

∂t
, wp−1

)
H

+aλ(ψ,wp−1).

Integrating from 0 to T we get

− 1

p
‖w(0)‖pLp(O,m) −

∫ T

0
aλ((ψ − uε,λ)(t), wp−1(t))dt− 1

ε

∫ T

0
‖w(t)‖pLp(O,m)dt

=

∫ T

0

(
g(t), wp−1(t)

)
H
dt−

∫ T

0

(
∂ψ

∂t
(t), wp−1

+ (t)

)
H

dt+

∫ T

0
aλ(ψ(t), wp−1(t))dt.

(1.4.59)

Now, with the usual integration by parts,

aλ(w,wp−1) =

∫
O

y

2
(p− 1)wp−2

[(
∂w

∂x

)2

+ 2ρσ
∂w

∂x

∂w

∂y
+ σ2

(
∂w

∂y

)2
]
dm

+

∫
O
y

(
jγ,µ(x)

∂w

∂x
+ kγ,µ(x)

∂w

∂y

)
wp−1dm + λ

∫
O

(1 + y)wpdm

≥ δ1(p− 1)

∫
O
ywp−2

[(
∂w

∂x

)2

+

(
∂w

∂y

)2
]
dm +

∫
O
y

(
jγ,µ(x)

∂w

∂x
+ kγ,µ(x)

∂w

∂y

)
wp−1dm

+ λ

∫
O
ywpdm

=

∫
O
ywp−2

[
δ1(p− 1)

(
∂w

∂x

)2

+ jγ,µ(x)
∂w

∂x
w +

λ

2
w2

]
dm

+

∫
O
ywp−2

[
δ1(p− 1)

(
∂w

∂y

)2

+ kγ,µ(x)
∂w

∂y
w +

λ

2
w2

]
dm ≥ 0,
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since, for λ large enough, the quadratic forms (a, b) → δ1(p − 1)a2 + jγ.µab + λ
2 b

2 and

(a, b)→ δ1(p− 1)a2 + kγ.µab+ λ
2 b

2 are both positive definite.

Recall that ψ ∈ L2([0, T ];H2(O,m)), ∂ψ∂t + Lψ ∈ Lp([0, T ], Lp(O,m)), (1 + y)ψ ≤ (1 +

y)Φ ∈ Lp([0, T ], Lp(O,m)) and g = (1 + y)u ≤ (1 + y)Φ ∈ Lp([0, T ];Lp(O,m)). Therefore,

going back to (1.4.59) and using Hölder’s inequality,

1

ε

∫ T

0
‖w(t)‖pLp(O,m)dt

≤

(∫ T

0
‖g(t)‖pLp(O,m)dt

) 1
p

+

(∫ T

0

∥∥∥∥∂ψ∂t (t) + Lλψ(t)

∥∥∥∥p
Lp(O,m)

dt

) 1
p

(∫ T

0
‖w‖pLp(O,m)dt

) p−1
p

.

Recalling that w = (ψ − uε,λ)+, we deduce that∥∥∥∥1

ε
(ψ − uε,λ)+

∥∥∥∥
Lp([0,T ];Lp(O,m))

≤ C, (1.4.60)

for a positive constant C independent of ε. Note that the estimate does not involve the

L∞-norm of ψ (which we assumed to be bounded for the payoff) so that by a standard

approximation argument, it remains valid for unbounded ψ. The assertion then follows

passing to the limit for ε→ 0 in

−
(
∂uε,λ
∂t

, v

)
H

+ aλ(uε,λ, v) =

(
1

ε
(ψ − uε,λ)+, v

)
H

+ (g, v)H , v ∈ V.

Now, note that we can easily prove the continuous dependence of the process X with

respect to the initial state.

Lemma 1.4.13. Fix (x, y) ∈ R × [0,+∞). Denote by (Xx,y
t , Y y

t )t≥0 the solution of the

system {
dXt =

(
ρκθ
σ −

Yt
2

)
dt+

√
YtdBt,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt,

with X0 = x, Y0 = y and 〈B,W 〉t = ρt. We have, for every t ≥ 0 and for every

(x, y), (x′, y′) ∈ R× [0,+∞), E
∣∣∣Y y′

t − Y
y
t

∣∣∣ ≤ |y′ − y| and

E
∣∣∣Xx′,y′

t −Xx,y
t

∣∣∣ ≤ |x′ − x|+ t

2
|y′ − y|+

√
t|y′ − y|.
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The proof of Lemma 1.4.13 is straightforward so we omit the details: the inequality

E
∣∣∣Y y′

t − Y
y
t

∣∣∣ ≤ |y′ − y| can be proved by using standard techniques introduced in [63] (see

the proof of Theorem 3.2 and its Corollary in Section IV.3) and the other inequality easily

follows.

Then, we can prove the following result.

Proposition 1.4.14. Let ψ : R× [0,∞)→ R be continuous and such that there exist C > 0

and a, b ≥ 0 with |ψ(x, y)| ≤ Cea|x|+by for every (x, y) ∈ R× [0,+∞). Then, if

λ > ab|ρ|σ +
b2σ2

2
− κb+

a2 − a
2

,

we have P λt |ψ|(x, y) <∞ for every t ≥ 0, (x, y) ∈ R× [0,+∞) and the function (t, x, y) 7→
P λt ψ(x, y) is continuous on [0,∞)× R× [0,∞).

Proof. We can prove, as in the proof of Proposition 1.4.8, that

Ex,y
(
eaXt+bYt−λ

∫ t
0 Ysds

)
= ea(x−

ρ
σ
y)Ey

(
e
(a ρσ+b)Yt+

(
a( ρκ

σ
− 1

2
)+a2

2
(1−ρ2)−λ

) ∫ t
0 Ysds

)
.

Thanks to Proposition 1.4.5, if

σ2

2

(
a
ρ

σ
+ b
)2
− κ

(
a
ρ

σ
+ b
)

+

(
a(
ρκ

σ
− 1

2
) +

a2

2
(1− ρ2)− λ

)
< 0, (1.4.61)

we have, for any T > 0 and for any compact K ⊆ R× [0,+∞[,

sup
(t,x,y)∈[0,T ]×K

Ex,y
(
eaXt+bYt−λ

∫ t
0 Ysds

)
<∞.

Note that (1.4.61) is equivalent to

λ > abρσ +
b2σ2

2
− κb+

a2 − a
2

.

Therefore, under the assumptions of the Proposition, we have, for any T > 0 and for any

compact set K ⊆ R× [0,+∞[,

sup
(t,x,y)∈[0,T ]×K

Ex,y
(
ea|Xt|+bYt−λ

∫ t
0 Ysds

)
<∞.

Moreover, for ε small enough,

sup
(t,x,y)∈[0,T ]×K

Ex,y
(
ea(1+ε)|Xt|+b(1+ε)Yt−λ(1+ε)

∫ t
0 Ysds

)
<∞. (1.4.62)
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Then, let ψ be a continuous function on R × [0,+∞[ such that |ψ(x, y)| ≤ Cea|x|+by. It is

evident that P λt |ψ|(x, y) <∞ and we have

P λt ψ(x, y) = E
(
e−λ

∫ t
0 (1+Y ys )dsψ(Xx,y

t , Y y
t )
)
.

If ((tn, xn, yn))n converges to (t, x, y), we deduce from Lemma 1.4.13 that Xxn,yn
tn → Xx,y

t ,

Y yn
tn → Y y

t and
∫ tn

0 Y yn
s ds→

∫ t
0 Y

y
s ds in probability. Therefore e−λ

∫ tn
0 (1+Ys)dsψ(Xxn,yn

tn , Y yn
tn )

converges to e−λ
∫ t
0 (1+Ys)dsψ(Xx,y

t , Y y
t ) in probability. The estimate (1.4.62) ensures the uni-

formly integrability of e−λ
∫ tn
0 (1+Ys)dsψ(Xxn,yn

tn , Y yn
tn ) so that limn→∞ P

λ
tnψ(xn, yn) = P λt ψ(x, y)

which concludes the proof.

Proposition 1.4.15. Fix p > β + 5
2 and λ as in Theorem 1.4.9. Let us consider u ∈

C([0, T ];H) ∩ L2([0, T ];V ), with ∂u
∂t ∈ L

2([0, T ];H) such that
(
∂u
∂t , v

)
H

+ aλ(u(t), v) = (f(t), v)H , v ∈ V,

u(0) = ψ,

with ψ continuous, ψ ∈ V ,
√

1 + yf ∈ L2([0, T ];H) and f ∈ Lp([0, T ];Lp(O,m)). Then, if

ψ and λ satisfy the assumptions of Proposition 1.4.14, we have

(i) For every t ∈ [0, T ], u(t) = P λt ψ +
∫ t

0 P
λ
s f(t− s)ds.

(ii) The function (t, x, y) 7→ u(t, x, y) is continuous on [0, T ]× R× [0,+∞).

(iii) If Λt = λ
∫ t

0 (1 + Ys)ds, the process (Mt)0≤t≤T , defined by

Mt = e−Λtu(T − t,Xt, Yt) +

∫ t

0
e−Λsf(T − s,Xs, Ys)ds,

with X0 = x, Y0 = y is a martingale for every (x, y) ∈ R× [0,+∞).

Proof. The first assertion follows from Proposition 1.4.2.

The continuity of (t, x, y) 7→ P λt ψ(x, y) is given by Proposition 1.4.14. The continuity of

(t, x, y) 7→
∫ t

0 P
λ
s f(t− s, .)(x, y)ds is trivial if (t, x, y) 7→ f(t, x, y) is bounded continuous. If

f ∈ Lp([0, T ];Lp(O,m)), f is the limit in Lp of a sequence of bounded continuous functions

and we have
∫ t

0 P
λ
s fn(t − s, ·)ds →

∫ t
0 P

λ
s f(t − s, ·)ds uniformly in [0, T ] × K for every

compact K of R × [0,+∞)). In fact, thanks to Theorem 1.4.9, we can write for t ∈ [0, T ]
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and (x, y) ∈ K∫ t

0
P λs |fn − f |(t− s, ·, ·)(x, y)ds ≤

∫ t

0

Cp,K,T

s
2β+3

2p

ds||(fn − f)(t− s, ·, ·)||Lp(O,m)

≤ Cp,K,T
(∫ t

0
||(fn − f)(t− s, ·, ·)||pLp(O,m)ds

)1/p
(∫ t

0

ds

s
2β+3

2(p−1)

)1− 1
p

≤ Cp,K,T
(∫ T

0
||(fn − f)(s, ·, ·)||pLp(O,m)ds

)1/p
(∫ T

0

ds

s
2β+3

2(p−1)

)1− 1
p

.

(1.4.63)

The assumption p > β + 5
2 ensures the convergence of the integral in the right hand side.

For the last assertion, note that MT = e−ΛTψ(XT , YT ) +
∫ T

0 e−Λsf(T − s,Xs, Ys)ds.

Then, we can prove that Mt is integrable with the same arguments that we used to show

the continuity of (t, x, y) 7→ u(t, x, y). Moreover, by using the Markov property,

Ex,y (MT | Ft)

= e−ΛtP λT−tψ(Xt, Yt) +

∫ t

0
e−Λsf(T − s,Xs, Ys)ds+ e−Λt

∫ T

t
P λs−tf(T − s, ., .)(Xt, Yt)ds

= e−Λt

(
P λT−tψ(Xt, Yt) +

∫ T−t

0
P λs f(T − t− s, ., .)(Xt, Yt)ds

)
+

∫ t

0
e−Λsf(T − s,Xs, Ys)ds

= e−Λtu(T − t,Xt, Yt) +

∫ t

0
e−Λsf(T − s,Xs, Ys)ds = Mt.

We are now ready to prove the following proposition.

Proposition 1.4.16. Assume that ψ satisfies Assumption H∗. Moreover, fix p > β + 5
2

and assume that ψ ∈ L2([0, T ];H2(O,m)) and ∂ψ
∂t + Lψ ∈ Lp([0, T ];Lp(O,m)). Then, the

solution u of the variational inequality (1.2.5) satisfies

u(t, x, y) = u∗(t, x, y), on [0, T ]× Ō, (1.4.64)

where u∗ is defined by

u∗(t, x, y) = sup
τ∈Tt,T

E
[
ψ(τ,Xt,x,y

τ , Y t,y
τ )
]
.

Proof. We first check that ψ satisfies the assumptions of Proposition 1.4.12. Note that,

thanks to the growth condition (1.2.6), it is possible to write 0 ≤ ψ(t, x, y) ≤ Φ(t, x, y) with
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Φ(t, x, y) = CT (ex−
ρκθ
σ
t + eLy−κθLt), where L ∈

[
0, 2κ

σ2

)
and CT is a positive constant which

depends on T . Moreover, recall the growth condition on the derivatives (1.2.7). Then, it is

easy to see that we can choose γ and µ in the definition of the measure m (see (1.2.2)) such

that ψ satisfies Assumption H1, Φ satisfies Assumption H2 (note that ∂Φ
∂t + LΦ ≤ 0) and

(1 + y)Φ, ∂ψ
∂t + Lψ ∈ Lp([0, T ];Lp(O,m)). Therefore we can apply Proposition 1.4.12 and

we get that, for λ large enough, there exists F ∈ Lp([0, T ];Lp(O,m)) such that u satisfies

−
(
∂u

∂t
, v

)
H

+ aλ(u, v) = (F, v)H , v ∈ V,

that is

−
(
∂u

∂t
, v

)
H

+ a(u, v) = (F − λ(1 + y)u, v)H , v ∈ V.

On the other hand we know that
−
(
∂u
∂t , v − u

)
H

+ a(u, v − u) ≥ 0, a.e. in [0, T ] v ∈ V, v ≥ ψ,

u(T ) = ψ(T ),

u ≥ ψ a.e. in [0, T ]× R× (0,∞).

From the previous relations we easily deduce that F −λ(1+y)u ≥ 0 a.e. and, taking v = ψ,

that (F −λ(1+y)u, ψ−u)H = 0. Moreover, note that the assumptions of Proposition 1.4.15

are satisfied, so the process (Mt)0≤t≤T defined by

Mt = e−Λtu(t,Xt, Yt) +

∫ t

0
e−ΛsF (s,Xs, Ys)ds, (1.4.65)

with X0 = x, Y0 = y is a martingale for every (x, y) ∈ R× [0,+∞). Then, we deduce that

the process

M̃t = u(t,Xt, Yt) +

∫ t

0
(F (s,Xs, Ys)− λ(1 + Ys)u(s,Xs, Ys)) ds

is a local martingale. In fact, from (1.4.65) we can write

dM̃t = d

[
eΛtMt − eΛt

∫ t

0
e−ΛsF (s,Xs, Ys)ds

]
+ F (t,Xt, Yt)dt− λ(1 + Yt)u(t,Xt, Yt)dt

= eΛtdMt +
[
λ(1 + Yt)e

ΛtMt − λ(1 + Yt)e
Λt

∫ t

0
e−ΛsF (s,Xs, Ys)ds

− eΛte−ΛtF (t,Xt, Yt) + F (t,Xt, Yt)− λ(1 + Yt)u(t,Xt, Yt)
]
dt

= eΛtdMt.
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So, for any stopping time τ there exists an increasing sequence of stopping times (τn)n

such that limn τn =∞ and

Ex,y[u(τ∧τn, Xτ∧τn , Yτ∧τn)] = u(0, x, y)−Ex,y
[∫ τ∧τn

0
(F (s,Xs, Ys)− λ(1 + Ys)u(s,Xs, Ys))ds

]
.

(1.4.66)

Since F −λ(1+y)u ≥ 0 we can pass to the limit in the right hand side of (1.4.66) thanks to

the monotone convergence theorem. Recall now that an adapted right continuous process

(Zt)t≥0 is said to be of class D if the family (Zτ )τ∈T0,∞ , where T0,∞ is the set of all stopping

times with values in [0,∞), is uniformly integrable. Moreover, recall that 0 ≤ u(t, x, y) ≤
Φ(x, y) = CT (ex−

ρκθ
σ
t + eLy−κθLt). The discounted and dividend adjusted price process

(e−(r−δ)tSt)t = (eXt−
ρκθ
σ
t)t is a martingale (we refer to [67] for an analysis of the martingale

property in general affine stochastic volatility models), so we deduce that it is of class D.

On the other hand, we can prove that the process (eLYt−κθt)t is of class D following the

same arguments used in Remark 1.4.6. Therefore, the process (Φ(t + s,Xt,x,y
s ))s∈[t,T ] is of

class D for every (t, x, y) ∈ [0, T ]×R× [0,∞). So we can pass to the limit in the left hand

side of (1.4.66) and we get that limn→∞ Ex,y[u(τ ∧ τn, Xτ∧τn , Yτ∧τn)] = Ex,y[u(τ,Xτ , Yτ )].

Therefore, passing to the limit as n→∞, we get

Ex,y[u(τ,Xτ , Yτ )] = u(0, x, y)− Ex,y
[∫ τ

0
(F (s,Xs, Ys)− λ(1 + Ys)u(s,Xs, Ys))ds

]
,

for every τ ∈ T0,T . Recall that F − λ(1 + y)u ≥ 0, so the process u(t,Xt, Yt) is actually a

supermartingale. Since u ≥ ψ, we deduce directly from the definition of Snell envelope that

u(t,Xt, Yt) ≥ u∗(t,Xt, Yt) a.e. for t ∈ [0, T ].

In order to show the opposite inequality, we consider the so called continuation region

C = {(t, x, y) ∈ [0, T )× R× [0,∞) : u(t, x, y) > ψ(t, x, y)},

its t-sections

Ct = {(x, y) ∈ R× [0,∞) : (t, x, y) ∈ C}, t ∈ [0, T ),

and the stopping time

τt = inf{s ≥ t : (s,Xs, Ys) /∈ C} = inf{s ≥ t : u(s,Xs, Ys) = ψ(s,Xs, Ys)}.

Note that u(x,Xs, Ys) > ψ(s,Xs, Ys) for t ≤ s < τt. Moreover, recall that (F−λ(1+y)u, ψ−
u) = 0 a.e., so Leb{(x, y) ∈ Ct : F−λ(1+y)u 6= 0} = 0 dt a.e.. Since the two dimensional dif-

fusion (X,Y ) has a density, we deduce that E
[
F (s,Xs, Ys)− λ(1 + Ys)u(s,Xs, Ys)1{(Xs,Ys)∈Cs}

]
= 0, and so F (s,Xs, Ys)− λ(1 + Ys)u(s,Xs, Ys) = 0 ds, dP− a.e. on {s < τt}. Therefore,

E [u(τt, Xτt , Yτt)] = E [u(t,Xt, Yt)] ,

58
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and, since u(τt, Xτt , Yτt) = ψ(τt, Xτt , Yτt) thanks to the continuity of u and ψ,

E [u(t,Xt, Yt)] = E [ψ(τt, Xτt , Yτt)] ≤ E [u∗(t,Xt, Yt)] ,

so that u(t,Xt, Yt) = u∗(t,Xt, Yt) a.e.. With the same arguments we can prove that

u(t, x, y) = u∗(t, x, y) and this concludes the proof.

Weaker assumptions on ψ

The last step is to establish the equality u = u∗ under weaker assumptions on ψ, so proving

Theorem 1.2.4.

Proof of Theorem 1.2.4. First assume that there exists a sequence (ψn)n∈N of continuous

functions on [0, T ]×R×[0,∞) which converges uniformly to ψ and such that, for each n ∈ N,

ψn satisfies the assumptions of Proposition 1.4.16. For every n ∈ N, we set un = un(t, x, y)

the unique solution of the variational inequality (1.2.3) with final condition un(T, x, y) =

ψn(T, x, y) and u∗n(t, x, y) = supτ∈Tt,T E[ψn(τ,Xt,x,y
τ , Y t,y

τ )]. Then, thanks to Proposition

1.4.16, for every n ∈ N we have

un(t, x, y) = u∗n(t, x, y) on [0, T ]× Ō.

Now, the left hand side converges to u(t, x, y) thanks to the Comparison Principle. As

regards the right hand side,

sup
τ∈Tt,T

E
[
ψn(τ,Xt,x,y

τ , Y t,x,y
τ )

]
→ sup

τ∈Tt,T
E
[
e−r(τ−t)ψ(τ,Xt,x,y

τ , Y t,x,y
τ )

]
thanks to the uniform convergence of ψn to ψ.

Therefore, it is enough to prove that, if ψ satisfies Assumption H∗, then it is the uniform

limit of a sequence of functions ψn which satisfy the assumptions of Proposition 1.4.16. This

can be done following the very same arguments of [66, Lemma 3.3] so we omit the technical

details (see [93]).

1.5 Appendix: Proof of Proposition 1.4.1

The proof of Proposition 1.4.1 can be carried out following the very same lines of the proof

of Proposition 1.3.14. For this reason, we retrace here only the main steps of the proof. So,

the first step is to solve the following truncated coercive problem.
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Proposition 1.5.1. Assume λ ≥ δ1
2 +

K2
1

2δ1
. For every ψ ∈ V , f ∈ L2

loc(R+, H) and M > 0,

there exists a unique function u(M) ∈ L2
loc(R+, V ), such that u

(M)
t ∈ L2

loc(R+, H), u(M)(0) =

ψ and

(u
(M)
t , v)H + a

(M)
λ (u(M), v) = (f, v)H , v ∈ V.

Moreover, for every t ≥ 0,

‖u(M)(t)‖2H +
δ1

2

∫ t

0
‖u(M)(s)‖2V ds ≤ ‖ψ‖2H +

2

δ1

∫ t

0
‖f(s)‖2Hds (1.5.67)

and

1

2

∫ t

0
‖u(M)

t (s)‖2Hds+
δ1

4
‖u(M)(t)‖2V

≤ 1

2
āλ(ψ,ψ) +

1

2

∫ t

0
‖f(s)‖2Hds+K1

∫ t

0
ds

∫ ∫
y ∧M |∇u(M)(s)‖u(M)

t (s)|dm.
(1.5.68)

Proof. Fix ψ ∈ V and f ∈ L2
loc(R+, H). Let (Vj)j be an increasing sequence of subspaces

of V with finite dimension such that
⋃
j Vj is dense in V and ψ ∈ V0 . For every j, denote

by uj the unique solution of the differential equation(
∂uj
∂t

, v

)
H

+ a
(M)
λ (uj , v) = (f, v)M , v ∈ Vj ,

with uj(0) = ψ.

Taking v = uj and using the inequality a
(M)
λ (u, u) ≥ δ1

2 ‖u‖V , we get(
∂uj
∂t

, uj

)
H

+ a
(M)
λ (uj , uj) = (f, uj)H

1

2

d

dt
‖uj(t)‖2H + a

(M)
λ (uj(t), uj(t)) = (f(t), uj(t))H

1

2

d

dt
‖uj(t)‖2H +

δ1

2
‖uj(t)‖2V ≤ (f(t), uj(t))H .

Integrating between 0 and t, we get

1

2
‖uj(t)‖2H +

δ1

2

∫ t

0
‖uj(s)‖2V ds ≤

1

2
‖ψ‖2H +

∫ t

0
‖f(s)‖H‖uj(s)‖Hds.

So, if f = 0,

‖uj(t)‖2H + δ1

∫ t

0
‖uj(s)‖2V ds ≤ ‖ψ‖2H ,
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and, for f 6= 0,

1

2
‖uj(t)‖2H +

δ1

2

∫ t

0
‖uj(s)‖2V ds ≤

1

2
‖ψ‖2H +

δ1

4

∫ t

0
‖uj(s)‖2Hds+

1

δ1

∫ t

0
‖f(s)‖2Hds.

Therefore,

1

2
‖uj(t)‖2H +

δ1

4

∫ t

0
‖uj(s)‖2V ds ≤

1

2
‖ψ‖2H +

1

δ1

∫ t

0
‖f(s)‖2Hds.

By taking v = ∂uj/∂t, we get, using the symmetry of āλ,∥∥∥∥∂uj∂t
∥∥∥∥2

H

+ a
(M)
λ

(
uj ,

∂uj
∂t

)
=

(
f,
∂uj
∂t

)
H∥∥∥∥∂uj∂t

∥∥∥∥2

H

+ āλ

(
uj ,

∂uj
∂t

)
+ ã(M)

(
uj ,

∂uj
∂t

)
=

(
f,
∂uj
∂t

)
H∥∥∥∥∂uj∂t

∥∥∥∥2

H

+
1

2

d

dt
āλ (uj , uj) + ã(M)

(
uj ,

∂uj
∂t

)
=

(
f,
∂uj
∂t

)
H

,

and, integreting from 0 to t,∫ t

0

∥∥∥∥∂uj∂t (s)

∥∥∥∥2

H

ds+
1

2
āλ (uj(t), uj(t)) =

1

2
āλ (ψ,ψ) +

∫ t

0

(
f(s),

∂uj
∂t

(s)

)
H

ds

−
∫ t

0
ã(M)

(
uj(s),

∂uj
∂t

(s)

)
H

ds.

Therefore,∫ t

0

∥∥∥∥∂uj∂t (s)

∥∥∥∥2

H

ds+
δ1

4
‖uj(t)‖2V

≤ 1

2
āλ (ψ,ψ) +

∫ t

0

(
f(s),

∂uj
∂t

(s)

)
H

ds+K1

∫ t

0
ds

∫
O
y ∧M |∇uj(s, .)|

∣∣∣∣∂uj∂t (s, .)

∣∣∣∣ dm
≤ 1

2
āλ (ψ,ψ) +

∫ t

0
‖f(s)‖H

∥∥∥∥∂uj∂t (s)

∥∥∥∥
H

ds

+

∫ t

0
ds

∫
O

(
K1y

2ζ
|∇uj(s, .)|2 +

K1Mζ

2

∣∣∣∣∂uj∂t (s, .)

∣∣∣∣2
)
dm

≤ 1

2
āλ (ψ,ψ) +

∫ t

0
‖f(s)‖H

∥∥∥∥∂uj∂t (s)

∥∥∥∥
H

ds+
K1

2ζ

∫ t

0
‖uj(s)‖2V ds+

K1M

2
ζ

∫ t

0

∥∥∥∥∂uj∂t (s)

∥∥∥∥2

H

ds.

Then the assertion follows by passing to the limit as j tends to infinity and by using the

estimates above.
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Then, we have the following Lemma.

Lemma 1.5.2. If, in addiction to the assumptions of Proposition 1.5.1 we also assume
√

1 + yf ∈ L2
loc(R+, H), we have

1

4

∫ t

0
‖u(M)

t (s)‖2Hds+
δ1

4
‖u(M)(t)‖2V ≤ 1

2
āλ(ψ,ψ) +

1

2

∫ t

0
‖f(s)‖2Hds

+
4K2

1K3

δ1

(
‖
√

1 + yψ‖2H +

∫ t

0
ds‖
√

1 + yf(s)‖2H
)
.

Proof. Let us denote φM (x, y) = y ∧ M . Since φM and its derivatives are bounded, if

u(M) ∈ V , u(M)φM ∈ V . Then, taking v = u(M)φM , we get(
∂u(M)

∂t
, u(M)φM

)
H

+ a
(M)
λ (u(M), u(M)φM ) =

(
f, u(M)φM

)
H
,

which, setting φ′M = ∂φM/∂y, can be rewritten as∫
O

∂u(M)

∂t
u(M)φMdm +

∫
O

y

2

(
∂u(M)

∂x

∂u(M)

∂x
+ σ2∂u

(M)

∂y

∂u(M)

∂y
+ 2ρσ

∂u(M)

∂x

∂u(M)

∂y

)
φMdm

+

∫
O

y

2

(
ρσ
∂u(M)

∂x
+ σ2∂u

(M)

∂y

)
u(M)φ′Mdm +

∫
O
y

(
∂u(M)

∂x
jγ,µ +

∂u(M)

∂y
kγ,µ

)
u(M)φMdm

+ λ

∫
O

(1 + y)(u(M))2φMdm = (f, u(M)φM )H .

Then, by using 0 ≤ φ′M ≤ 1{y≤M},
1

2

d

dt

∫
O

(u(M))2φMdm + δ1

∫
O
y
∣∣∣∇u(M)

∣∣∣2 φMdm + λ

∫
O

(1 + y)(u(M))2φMdm

≤ (f, u(M)φM )H +K1

∫
O
y
∣∣∣∇u(M)

∥∥∥u(M)|φMdm +

∫
O

y

2

∣∣∣∣∣ρσ∂u(M)

∂x
+ σ2∂u

(M)

∂y

∥∥∥∥∥u(M)|φ′Mdm

≤ (f, u(M)φM )H +K1

∫
O
y
∣∣∣∇u(M)

∥∥∥u(M)|φMdm +

√
ρ2σ2 + σ4

2

∫
O
y ∧M

∣∣∣∇u(M)
∣∣∣ |u(M)|dm

≤ (f, u(M)φM )H +
K1ζ

2

∫
O
y
∣∣∣∇u(M)

∣∣∣2 φMdm +
K1

2ζ

∫
O
y
∣∣∣u(M)

∣∣∣2 φMdm
+

√
ρ2σ2 + σ4

2

∫
O
y ∧M

∣∣∣∇u(M)
∣∣∣ |u(M)|dm.

By taking ζ = δ1/K1 and noting that
∫
O y ∧M

∣∣∇u(M)
∣∣ |u(M)|dm ≤ ‖u(M)‖2V , we get

1

2

d

dt

∫
O

(u(M))2φMdm +
δ1

2

∫
O
y
∣∣∣∇u(M)

∣∣∣2 φMdm +

(
λ− K2

1

2δ1

)∫
O

(1 + y)(u(M))2φMdm

≤ (f, u(M)φM )H +K2‖u(M)‖2V
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with K2 =

√
ρ2σ2+σ4

2 and, by using λ ≥ δ1
2 +

K2
1

2δ1
and integrating from 0 to t,

1

2

∫
O

(u(M))2(t, .)φMdm +
δ1

2

∫ t

0
ds

∫
O

(
y
∣∣∣∇u(M)(s)

∣∣∣2 + (1 + y)(u(M))2(s)

)
φMdm

≤
∫ t

0
(f(s), u(M)(s)φM )Hds+

1

2

∫
O
ψ2φMdm +K2

∫ t

0
ds‖u(M)(s)‖2V dm.

We have, for every ζ > 0,∫ t

0
(f(s), u(M)(s)φM )Hds ≤

ζ

2

∫ t

0
ds

∫
O
φM

∣∣∣u(M)(s)
∣∣∣2 dm +

1

2ζ

∫ t

0
ds

∫
O
φM |f(s)|2 dm

and, taking ζ = δ1/2,

1

2

∫
O

(u(M))2(t, .)φMdm +
δ1

4

∫ t

0
ds

∫
O

(
y
∣∣∣∇u(M)(s)

∣∣∣2 + (1 + y)(u(M))2(s)

)
φMdm

≤ 1

δ1

∫ t

0
ds

∫
O
φM |f(s)|2 dm +

1

2

∫
O
ψ2φMdm +K2

∫ t

0
‖u(M)(s)‖2V ds.

Then, by using (1.5.67),

1

2

∫
O

(u(M))2(t, .)φMdm +
δ1

4

∫ t

0
ds

∫
O

(
y
∣∣∣∇u(M)(s)

∣∣∣2 + (1 + y)(u(M))2(s)

)
φMdm

≤ 1

δ1

∫ t

0
ds

∫
O
φM |f(s)|2 dm +

1

2

∫
O
ψ2φMdm +

2K2

δ1
‖ψ‖2H +

4K2

δ2
1

∫ t

0
‖f(s)‖2Hds

≤ K3

(
‖
√

1 + yψ‖2H +

∫ t

0
ds‖
√

1 + yf(s)‖2H
)
,

where K3 = max
(

1
δ1
, 1

2 ,
2K2
δ1
, 4K2

δ2
1

)
. Note that K3 does not depend on M . We deduce from

the last inequality that∫ t

0
ds

∫
O

∣∣∣∇u(M)(s)
∣∣∣2 φ2

Mdm ≤
4K3

δ1

(
‖
√

1 + yψ‖2H +

∫ t

0
ds‖
√

1 + yf(s)‖2H
)

and, by using (1.5.68),

1

2

∫ t

0
‖u(M)

t (s)‖2Hds+
δ1

4
‖u(M)(t)‖2V

≤ 1

2
āλ(ψ,ψ) +

1

2

∫ t

0
‖f(s)‖2Hds+K1

∫ t

0
ds

∫
O
y ∧M |∇u(M)(s)‖u(M)

t (s)|dm

≤ 1

2
āλ(ψ,ψ) +

1

2

∫ t

0
‖f(s)‖2Hds+

K1ζ

2

∫ t

0
ds

∫
O
|u(M)
t (s)|2dm +

K1

2ζ

∫ t

0
ds

∫
O
φ2
M |∇u(M)(s)|2dm
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By taking ζ = 1/(2K1), we get

1

4

∫ t

0
‖u(M)

t (s)‖2Hds+
δ1

4
‖u(M)(t)‖2V

≤ 1

2
āλ(ψ,ψ) +

1

2

∫ t

0
‖f(s)‖2Hds+

4K2
1K3

δ1

(
‖
√

1 + yψ‖2H +

∫ t

0
ds‖
√

1 + yf(s)‖2H
)
.

Now, in order to prove Proposition 1.4.1, it is enough to let M go to infinity.
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Chapter 2

American option price properties

in Heston type models

2.1 Introduction

One of the strengths of the Black and Scholes type models relies in their analytical tractabil-

ity. A large number of papers have been devoted to the pricing of European and American

options and to the study of the regularity properties of the price in this framework.

Things become more complicated in the case of stochastic volatility models. Some prop-

erties of European options were studied, for example, in [81] but if we consider American

options, as far as we know, the existing literature is rather poor. One of the main reference

is a paper by Touzi [93], in which the author studies some properties of a standard American

put option in a class of stochastic volatility models under classical assumptions, such as the

uniform ellipticity of the model.

However, the assumptions in [93] are not satisfied by the well known Heston model because

of its degenerate nature and some of the analytical techniques used in [93] cannot be directly

applied.

This chapter, which is extracted from [74], is devoted to the study of some properties of

the American option price in the Heston model. Our main aim is to extend some well known

results in the Black and Scholes world to the Heston type stochastic volatility models. We

do it mostly by using probabilistic techniques.

In more details, the chapter is organized as follows. In Section 2.2 we set up our new
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Chap.. 2 - American option price properties in Heston type models

notation. In Section 2.3, we prove that, if the payoff function is convex and satisfies some

regularity assumptions, the American option value function is increasing with respect to the

volatility variable. This topic was already addressed in [11] with an elegant probabilistic

approach, under the assumption that the coefficients of the model satisfy the well known

Feller condition. Here, we prove it without imposing conditions on the coefficients.

Then, in Section 2.4 we focus on the standard American put option. We first generalise to

the Heston model the well known notion of critical price or exercise boundary and we study

some properties of this function. Then we prove that the American option price is strictly

convex in the continuation region with respect to the stock price. This result was already

proved in [93] for uniformly elliptic stochastic volatility by using PDE techniques. Here,

we extend the result to the degenerate Heston model by using a probabilistic approach.

We also give an explicit formulation of the early exercise premium, that is the difference in

price between an American option and an otherwise identical European option, and we do

it by using results first introduced in [65]. Finally, we provide a weak formulation of the

so called smooth fit property. The chapter ends with an appendix, which is devoted to the

proofs of some technical results.

2.2 Notation

Recall that in the Heston model we have
dSt
St

= (r − δ)dt+
√
YtdBt, S0 = s > 0,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt, Y0 = y ≥ 0,

(2.2.1)

where B and W denote two correlated Brownian motions with correlation coefficient ρ ∈
(−1, 1). Through this chapter we denote by L the infinitesimal generator of the pair (S, Y ),

that is the differential operator given by

L =
y

2

(
s2 ∂

2

∂s2
+ 2sρσ

∂2

∂s∂y
+ σ2 ∂

2

∂y2

)
+ (r − δ) s ∂

∂s
+ κ(θ − y)

∂

∂y
. (2.2.2)

Let (St,s,yu , Y t,y
u )u∈[t,T ] be the solution of (2.2.1) which starts at time t from the position

(s, y). When the initial time is t = 0 and there is no ambiguity, we will often write (Ss,yu , Y y
u )

or directly (Su, Yu) instead of (S0,s,y
u , Y 0,y

u ). We recall that the price of an American option
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with a nice enough payoff (ϕ(St))t∈[0,T ] and maturity T is given by Pt = P (t, St, Yt), where

P (t, s, y) = sup
τ∈Tt,T

E[e−r(τ−t)ϕ(St,s,yτ )],

Tt,T being the set of the stopping times with values in [t, T ].

It will be useful in this chapter to consider the log-price process, so we set Xt = logSt.

In this case, recall that the pair (X,Y ) evolves according todXt =
(
r − δ − 1

2Yt
)
dt+

√
YtdBt, X0 = x = log s ∈ R,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt, Y0 = y ≥ 0,

(2.2.3)

and has infinitesimal generator given by

L̃ =
y

2

(
∂2

∂x2
+ 2ρσ

∂2

∂x∂y
+ σ2 ∂

2

∂y2

)
+
(
r − δ − y

2

) ∂

∂x
+ κ(θ − y)

∂

∂y
. (2.2.4)

With this change of variables, the American option price function is given by u(t, x, y) =

P (t, ex, y), which can be rewritten as

u(t, x, y) = sup
τ∈Tt,T

E[e−r(τ−t)ψ(Xt,x,y
τ )],

where ψ(x) = ϕ(ex).

2.3 Monotonicity with respect to the volatility

In this section we prove the increasing feature of the option price with respect to the

volatility variable under the assumption that the payoff function ϕ is convex and satisfies

some regularity properties. The same topic was addressed by Touzi in [93] for uniformly

elliptic stochastic volatility models and by Assing et al. [11] for a class of models which

includes the Heston model when the Feller condition is satisfied.

For convenience we pass to the logarithm in the s−variable and we study the monotonicity

of the function u. Note that the convexity assumption on the payoff function ϕ ∈ C2(R)

corresponds to the condition ψ′′ − ψ′ ≥ 0 for the function ψ(x) = ϕ(ex).

Let us recall some standard notation. For γ > 0 we introduce the following weighted

Sobolev spaces

L2(R, e−γ|x|) =

{
u : R→ R : ‖u‖22 =

∫
u2(x)e−γ|x|dx <∞

}
,
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W 1,2(R, e−γ|x|) =

{
u ∈ L2(R, e−γ|x|) :

∂u

∂x
∈ L2(R, e−γ|x|)

}
,

W 2,2(R, e−γ|x|) =

{
u ∈ L2(R, e−γ|x|) :

∂u

∂x
,
∂2u

∂x2
∈ L2(R, e−γ|x|)

}
.

Theorem 2.3.1. Let ψ be a bounded function such that ψ ∈ W 2,2(R, e−γ|x|) ∩ C2(R) and

ψ′′ − ψ′ ≥ 0. Then the value function u is nondecreasing with respect to the volatility

variable.

In order to prove Theorem 2.3.1, let us consider a smooth approximation fn ∈ C∞(R) of

the function f(y) =
√
y+, such that fn has bounded derivatives, 1/n ≤ fn ≤ n, fn(y) is

increasing in y, f2
n is Lipschitz continuous uniformly in n and fn → f locally uniformly as

n→∞.

Then, we consider the sequence of SDEsdX
n
t =

(
r − δ − f2

n(Y nt )
2

)
dt+ fn(Y n

t )dBt, Xn
0 = x,

dY n
t = κ

(
θ − f2

n(Y n
t )
)
dt+ σfn(Y n

t )dWt, Y n
0 = y.

(2.3.5)

Note that, for every n ∈ N, the diffusion matrix an(y) = 1
2Σn(y)Σn(y)t, where

Σn(y) =

( √
1− ρ2fn(y) ρfn(y)

0 σfn(y)

)
,

is uniformly elliptic. For any fixed n ∈ N the infinitesimal generator of the diffusion (Xn, Y n)

is given by

L̃n =
f2
n(y)

2

(
∂2

∂x2
+ 2ρσ

∂2u

∂x∂y
+ σ2 ∂

2

∂y2

)
+

(
r − δ − f2

n(y)

2

)
∂

∂x
+ κ

(
θ − f2

n(y)
) ∂
∂y

and it is uniformly elliptic with bounded coefficients.

We will need the following result.

Lemma 2.3.2. For any λ > 0, we have

lim
n→∞

P

(
sup
t∈[0,T ]

|Xn
t −Xt| ≥ λ

)
= 0 (2.3.6)

and

lim
n→∞

P

(
sup
t∈[0,T ]

|Y n
t − Yt| ≥ λ

)
= 0. (2.3.7)
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The proof is inspired by the proof of uniqueness of the solution for the CIR process (see

[63, Section IV.3]). We postpone it to the Appendix.

From now on, let us set Ex,y[·] = E[·|(X0, Y0) = (x, y)]. For every n ∈ N, we consider the

American value function with payoff ψ and underlying diffusion (Xn, Y n), that is

un(t, x, y) = sup
τ∈T0,T−t

Ex,y
[
e−rτψ(Xn

τ )
]
, (t, x, y) ∈ [0, T ]× R× [0,∞).

We prove that un is actually an approximation of the function u, at least for bounded

continuous payoff functions.

Proposition 2.3.3. Let ψ be a bounded continuous function. Then,

lim
n→∞

|un(t, x, y)− u(t, x, y)| = 0, (t, x, y) ∈ [0, T ]× R× [0,∞).

Proof. For any λ > 0,∣∣∣∣ sup
τ∈T0,T−t

Ex,y
[
e−rτψ(Xn

τ )
]
− sup
τ∈T0,T−t

Ex,y
[
e−rτψ(Xτ )

] ∣∣∣∣
≤ sup

τ∈T0,T−t

∣∣∣∣Ex,y [e−rτ (ψ(Xn
τ )− ψ(Xτ ))

] ∣∣∣∣
≤ Ex,y

[
sup
t∈[0,T ]

|ψ(Xn
t )− ψ(Xt)|

]

≤ Ex,y

[
sup
t∈[0,T ]

|ψ(Xn
t )− ψ(Xt)|1{|Xn

t −Xt|≤λ}

]
+ 2‖ψ‖∞P

(
sup
t∈[0,T ]

|Xn
t −Xt| > λ

)
.

Then the assertion easily follows using (2.3.6) and the arbitrariness of λ.

We can now prove that, for every n ∈ N, the approximated price function un is nonde-

creasing with respect to the volatility variable.

Proposition 2.3.4. Assume that ψ ∈ W 2,2(R, e−γ|x|dx) ∩ C2(R) and ψ′′ − ψ′ ≥ 0. Then
∂un

∂y ≥ 0 for every n ∈ N.

Proof. Fix n ∈ N. We know from the classical theory of variational inequalities that un is the

unique solution of the associated variational inequality (see, for example, [66]). Moreover,

un is the limit of the solutions of a sequence of penalized problems. In particular, consider

a family of penalty functions ζε : R→ R such that, for each ε > 0, ζε is a C2, nondecreasing

and concave function with bounded derivatives, satisfying ζε(u) = 0, for u ≥ ε and ζε(0) = b,
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where b is such that Ãnψ ≥ b with the notation Ãn = L̃n − r (see the proof of Theorem

3 in [71]). Then, there exists a sequence (unε )ε>0 such that limε→0 u
n
ε = un in the sense of

distributions and, for every ε > 0,−
∂unε
∂t −A

nunε + ζε(u
n
ε − ψ) = 0,

unε (T ) = ψ(T ).

In order to simplify the notation, hereafter in this proof we denote by u the function unε .

Recall that, from the classical theory of parabolic semilinear equations, since ψ ∈ C2(R)

we have that u ∈ C2,4([0, T ),R × (0,∞)) (here we refer, for example, to [70]). Set now

ū = ∂u
∂y . Differentiating the equation satisfied by un, we get that ū satisfies−

∂ū
∂t − Ā

nū = fn(y)f ′n(y)
(
∂2u
∂x2 − ∂u

∂x

)
,

ū(T ) = 0,

where

Ān =
f2
n(y)

2

(
∂2

∂x2
+ 2ρσ

∂2u

∂x∂y
+ σ2 ∂

2

∂y2

)
+

(
r − δ − f2

n(y)

2
+ 2ρσfn(y)f ′n(y)

)
∂

∂x

+
(
κ
(
θ − f2

n(y)
)

+ σ2fn(y)f ′n(y)
) ∂
∂y
− 2κfn(y)f ′n(y) + ζ ′ε(u

n
ε − ψ)− (r − δ).

By using the Comparison principle, we deduce that, if fn(y)f ′n(y)
(
∂2u
∂x2 − ∂u

∂x

)
≥ 0, then

ū ≥ 0 and the assertion follows letting ε tend to 0.

Since fn is positive and nondecreasing, it is enough to prove that ∂2u
∂x2 − ∂u

∂x ≥ 0. We write

the equations satisfied by u′ = ∂u
∂x and u′′ = ∂2u

∂x2 . We have−∂u′

∂t − Ã
nu′ + ζ ′ε(u− ψ)(u′ − ψ′) = 0,

u(T ) = ψ,
(2.3.8)

and −∂u′′

∂t − Ã
nu′′ + ζ ′′ε (u− ψ)(u′ − ψ′)2 + ζ ′ε(u− ψ)(u′′ − ψ′′) = 0,

u′′(T ) = ψ′′.
(2.3.9)

Using (2.3.8) and (2.3.9), we get that u′′ − u′ satisfies−
∂(u′′−u′)

∂t −An(u′′ − u′) + ζ ′ε(u− ψ)(u′′ − u′) = ζ ′ε(u− ψ)(ψ′′ − ψ′)− ζ ′′ε (u− ψ)(u′ − ψ′)2,

u′′(T )− u′(T ) = ψ′′ − ψ′.
(2.3.10)
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Recall that ψ′′ − ψ′ ≥ 0 by assumption and that ζε is increasing and concave. Then,

ζ ′ε(u− ψ)(ψ′′ − ψ′)− ζ ′′ε (u− ψ)(u′ − ψ′)2 ≥ 0, u′′(T )− u′(T ) = ψ′′ − ψ′ ≥ 0,

hence, by using again the Comparison principle, we deduce that u′′−u′ ≥ 0 which concludes

the proof.

The proof of Theorem 2.3.1 is now almost immediate.

Proof of Theorem 2.3.1. Thanks to Proposition 2.3.4, the function un is increasing in the

y variable for all n ∈ N. Then, the assertion follows by using Proposition 2.3.3.

2.4 The American put price

From now on we focus our attention on the standard put option with strike price K and

maturity T , that is we fix ϕ(s) = (K − s)+ and we study the properties of the function

P (t, s, y) = sup
τ∈Tt,T

E[e−r(τ−t)(K − St,s,yτ )+]. (2.4.11)

The following result easily follows from (2.4.11).

Proposition 2.4.1. The price function P satisfies:

(i) (t, s, y) 7→ P (t, s, y) is continuous and positive;

(ii) t 7→ P (t, s, y) is nonincreasing;

(iii) y 7→ P (t, s, y) is nondecreasing;

(iv) s 7→ P (t, s, y) is nonincreasing and convex.

Proof. The proofs of 1. and 2. are classical and straightforward. As regards 3., we note that

ϕ is convex and the function ψ(x) = (K − ex)+ belongs to the space W 1,2(R, e−γ|x|) for

a γ > 1 but it is not regular enough to apply Proposition 2.3.1. However, we can use an

approximation procedure. Indeed, thanks to density results and [66, Lemma 3.3], we can

approximate the function ψ with a sequence of functions ψn ∈W 2,2(R, e−γ|x|)∩C2(R) such

that ψ′′n − ψ′n ≥ 0, so the assertion easily follows passing to the limit. 4. follows from the

fact that ϕ(s) = (K − s)+ is nonincreasing and convex.
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Moreover, thanks to the Lipschitz continuity of the payoff function, we have the following

result.

Proposition 2.4.2. The function x 7→ u(t, x, y) is Lipschitz continuous while the function

y 7→ u(t, x, y) is Hölder continuous. If 2κθ ≥ σ2 the function y 7→ u(t, x, y) is locally

Lipschitz continuous on (0,∞).

Proof. It is easy to prove that, for every fixed t ≥ 0 and y, y′ ≥ 0 with y ≥ y′,

E
[
Y y
t − Y

y′

t

]
≤ y − y′. (2.4.12)

Then, for (x, y), (x′, y′) ∈ R× [0,∞) we have

|u(t, x, y)− u(t, x′, y′)| =

∣∣∣∣∣ sup
θ∈Tt,T

E[e−r(θ−t)(K − eX
t,x,y
θ )+]− sup

θ∈Tt,T
E[e−r(θ−t)(K − eX

t,x′,y′
θ )+]

∣∣∣∣∣
≤ sup

θ∈Tt,T

∣∣∣∣E[e−r(θ−t)(K − eXt,x,y
θ )+ − e−r(θ−t)(K − eX

t,x′,y′
θ )+

]∣∣∣∣
≤ CE

[
sup
u∈[t,T ]

|Xt,x,y
u −Xt,x′,y′

u |

]

≤ C

(
|x− x′|+

∫ T

t
E[|Y t,y

u − Y t,y′
y |]du+ E

[
sup
s∈[t,T ]

∣∣∣∣∫ s

t
(

√
Y t,y
u −

√
Y t,y′
u )dWu

∣∣∣∣
])

≤ C

|x− x′|+ ∫ T

t
E[|Y t,y

u − Y t,y′
y |]du+

E

[
sup
s∈[t,T ]

∣∣∣∣∫ s

t
(

√
Y t,y
u −

√
Y t,y′
u )dWu

∣∣∣∣
]2
 1

2


≤ C

|x− x′|+ ∫ T

t
E[|Y t,y

u − Y t,y′
u |]du+

(
E
[∫ T

t
(Y t,y
u − Y t,y′

u )du

]) 1
2


≤ CT (|x− x′|+

√
|y − y′|).

Now, recall that, if 2κθ ≥ σ2, the volatility process Y is strictly positive so we can apply

Itô’s Lemma to the square root function and the process Yt in the open set (0,∞). We get√
Y y
t =

√
y +

∫ t

0

1

2
√
Y y
u

dY y
u −

1

2

∫ t

0

1

4(Y y
u )

3
2

σ2Y y
u du

=
√
y +

(
κθ

2
− σ2

8

)∫ t

0

1√
Y y
u

du− κ

2

∫ t

0

√
Y y
u du+

σ

2
Wt.
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Differentiating with respect to y (see also [81]) we deduce that

Ẏ y
t

2
√
Y y
t

=
1

2
√
y

+

(
κθ

2
− σ2

8

)∫ t

0
− Ẏ y

u

2(Y y
u )

3
2

du− κ

2

∫ t

0

Ẏ y
u

2
√
Y y
u

du ≤ 1

2
√
y
, a.s. (2.4.13)

since κθ ≥ σ2/2 ≥ σ2/4 and Y y
t > 0, Ẏ y

t ≥ 0 (see [85, Theorem 3.7, Chapter 9]).

Therefore, let us consider y, y′ ≥ a. Repeating the same calculations as before

|u(t, x, y)− u(t, x, y′)|

≤ C

∫ T

t
E[|Y t,y

u − Y t,y′
u |]du+

E

[
sup
s∈[t,T ]

∣∣∣∣∫ s

t
(

√
Y t,y
u −

√
Y t,y′
u )dWu

∣∣∣∣
]2
 1

2


≤ C

∫ T

t
E[|Y t,y

u − Y t,y′
u |]du+

(
E
[∫ T

t
(

√
Y t,y
u −

√
Y t,y′
u )2du

]) 1
2


= C

∫ T

t
E[|Y t,y

s − Y t,y′
s |]du+

E

∫ T

t
du

(∫ y′

y

Ẏ t,w
u

2
√
Y t,w
u

dw

)2
 1

2


≤ CT

|y − y′|+(E[∫ T

t

(
1

2
√
a
|y − y′|

)2

du

]) 1
2


≤ CT |y − y′|,

which completes the proof.

Remark 2.4.3. Studying the properties of the put price also clarifies the behaviour of the

call price since it is straightforward to extend to the Heston model the symmetry relation

between call and put prices. In fact, let us highlight the dependence of the prices with respect

to the parameters K, r, δ, ρ, that is let us write

P (t, x, y;K, r, δ, ρ) = sup
τ∈Tt,T

E[e−r(τ−t)(K − St,s,yτ )+],

for the put option price and

C(t, s, y;K, r, δ, ρ) = sup
τ∈Tt,T

E[e−r(τ−t)(St,s,yτ −K)+],

for the call option. Then, we have C(t, s, y;K, r, δ, ρ) = P (t,K, y;x, δ, r,−ρ).
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In fact, for every τ ∈ Tt,T , we have

Ee−r(τ−t)
(
se

∫ τ
t

(
r−δ−Y

t,y
s
2

)
ds+

∫ τ
t

√
Y t,ys dBs

−K
)

+

= Ee−δ(τ−t)e
∫ τ
t

√
Y t,ys dBs−

∫ τ
t
Y
t,y
s
2
ds

(
x−Ke

∫ τ
t

(
δ−r+Y

t,y
s
2

)
ds−

∫ τ
t dBs

)
+

= Ee−δ(τ−t)e
∫ T
t

√
Y t,ys dBs−

∫ T
t

Y
t,y
s
2
ds

(
x−Ke

∫ τ
t

(
δ−r+Y

t,y
s
2

)
ds−

∫ τ
t

√
Y t,ys dBs

)
+

,

where the last equality follows from the fact that (e
∫ s
t

√
Y t,ys dBs−

∫ s
t
Y
t,y
s
2
ds)s∈[t,T ] is a mar-

tingale. Then, note that the process B̂t = Bt −
√
Y t,y
t t is a Brownian motion under the

probability measure P̂ which has density dP̂/dP = e
∫ T
t

√
Y t,ys dBs−

∫ T
t

Y
t,y
s
2
ds. Therefore

Ee−r(τ−t)
(
se

∫ τ
t

(
r−δ−Y

t,y
s
2

)
ds+

∫ τ
t

√
Y t,ys dBs

−K
)

+

= Êe−δ(τ−t)
(
x−Ke

∫ τ
t

(
δ−r−Y

t,y
s
2

)
ds−

∫ τ
t

√
Y t,ys dBs

)
+

.

Under the probability P̂, the process (−B̂,W ) is a Brownian motion with correlation coeffi-

cient −ρ so that the assertion follows.

2.4.1 The exercise boundary

Let us introduce the so called continuation region

C = {(t, s, y) ∈ [0, T )× (0,∞)× [0,∞) : P (t, s, y) > ϕ(s)}

and its complement, the exercise region

E = Cc = {(t, s, y) ∈ [0, T )× (0,∞)× [0,∞) : P (t, s, y) = ϕ(s)}.

Note that, since P and ϕ are both continuous, C is an (relative) open set while E is a closed

set.

Generalizing the standard definition given in the Black and Scholes type models, we

consider the critical exercise price or free exercise boundary, defined as

b(t, y) = inf{s > 0|P (t, s, y) > (K − s)+}, (t, y) ∈ [0, T )× [0,∞).

We have P (t, s, y) = ϕ(s) for s ∈ [0, b(t, y)) and also for s = b(t, y), due to the continuity

of P and ϕ. Note also that, since P > 0, we have b(t, y) ∈ [0,K). Moreover, since P is
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convex, we can write

C = {(t, s, y) ∈ [0, T )× (0,∞)× [0,∞) : s > b(t, y)}

and

E = {(t, s, y) ∈ [0, T )× (0,∞)× [0,∞) : s ≤ b(t, y)}.

We now study some properties of the free boundary b : [0, T )× [0,∞)→ [0,K). First of

all, we have the following simple result.

Proposition 2.4.4. We have:

(i) for every fixed y ∈ [0,∞), the function t 7→ b(t, y) is nondecreasing and right contin-

uous;

(ii) for every fixed t ∈ [0, T ), the function y 7→ b(t, y) is nonincreasing and left continuous.

Proof. 1. Recalling that the map t 7→ P (t, s, y) is nonincreasing, we directly deduce that

t 7→ b(t, y) is nondecreasing. Then, fix t ∈ [0, T ) and let (tn)n≥1 be a decreasing sequence

such that limn→∞ tn = t. The sequence (b(tn, y))n is nondecreasing so that limn→∞ b(tn, y)

exists and we have limn→∞ b(tn, y) ≥ b(t, y). On the other hand, we have

P (tn, b(tn, y), y) = ϕ(b(tn, y)) n ≥ 1,

and, by the continuity of P and ϕ,

P (t, lim
n→∞

b(tn, y), y) = ϕ( lim
n→∞

b(tn, y)).

We deduce by the definition of b that limn→∞ b(tn, y) ≤ b(t, y) which concludes the proof.

2. The second assertion can be proved with the same arguments, this time recalling that

y 7→ P (t, s, y) is a nondecreasing function.

Recall that b(t, y) ∈ [0,K). Indeed, we can prove the positivity of the function.

Proposition 2.4.5. We have b(t, y) > 0 for every (t, y) ∈ [0, T )× [0,∞).

Proof. Without loss of generality we can assume that 0 < t < T , since T is arbitrary and the

put price is a function of T − t. Suppose that b(t∗, y∗) = 0 for some (t∗, y∗) ∈ (0, T )× [0,∞).

Since b(t, y) ≥ 0, t 7→ b(t, y) is nondecreasing and y 7→ b(t, y) is nonincreasing, we have

b(t, y) = 0 for (t, y) ∈ (0, t∗)× (y∗,∞), so that

P (t, s, y) > ϕ(s), (t, s, y) ∈ (0, t∗)× (0,∞)× (y∗,∞).
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To simplify the calculations, we pass to the logarithm in the space variable and we consider

the functions u(t, x, y) = P (t, ex, y) and ψ(x) = ϕ(ex). We have u(t, x, y) > ψ(x) and

(∂t + L̃ − r)u = 0 on (0, t∗)× R× (y∗,∞),

where L̃ was defined in (2.2.4). Since t 7→ u(t, x, y) is nondecreasing, we deduce that, for

t ∈ (0, t∗), (L̃−r)u = −∂tu ≥ 0 in the sense of distributions. Therefore, for any nonnegative

and C∞ test functions θ, φ and ζ which have support respectively in (0, t∗), (−∞,∞) and

(y∗,∞), we have

∫ t∗

0
θ(t)dt

∫ ∞
−∞

dx

∫ ∞
y∗

dyL̃u(t, x, y)φ(x)ζ(y) ≥ r
∫ t∗

0
θ(t)dt

∫ ∞
−∞

dx

∫ ∞
y∗

dy(K−ex)φ(x)ζ(y),

or equivalently, by the continuity of the integrands in t,∫ ∞
−∞

dx

∫ ∞
y∗

dyL̃u(t, x, y)φ(x)ζ(y) ≥ r
∫ ∞
−∞

dx

∫ ∞
y∗

dy(K − ex)φ(x)ζ(y). (2.4.14)

Let χ1 and χ2 be two nonnegative C∞ functions such that suppχ1 ⊆ [−1, 0], suppχ2 ⊆
[0, 1] and

∫
χ1(x)dx =

∫
χ2(x)dx = 1. Let us apply (2.4.14) with φ(x) = λχ1(λx) and

ζ(y) =
√
λχ2(

√
λ(y − y∗)), with λ > 0. For the right hand side of (2.4.14), we have

r

∫ ∞
−∞

dx

∫ ∞
y∗

dy(K − ex)φ(x)ζ(y) = rK − r
∫ ∞
−∞

e
x
λχ1(x)dx.

Since suppχ1 ⊂ [−1, 0], limλ→0

∫
e
x
λχ1(x)dx = 0, so that

lim
λ→0

r

∫
R
dx

∫ y∗

−∞
dy(K − ex)φ(x)ζ(y) = rK > 0. (2.4.15)

As regards the left hand side of (2.4.14), we have

∫ +∞

−∞
dx

∫ ∞
y∗
L̃u(t, x, y)φ(x)ζ(y)dy

=

∫ +∞

−∞
dx

∫ ∞
y∗

y

2

(
∂2u

∂x2
(t, x, y) + 2ρσ

∂2u

∂x∂y
(t, x, y) + σ2∂

2u

∂y2
(t, x, y)

)
λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy

+

∫ +∞

−∞
dx

∫ ∞
y∗

((
r − δ − y

2

) ∂u
∂x

(t, x, y) + κ(θ − y)
∂u

∂y
(t, x, y)

)
λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy.
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We first study the second order derivatives term. Integrating by parts two times we have∫ +∞

−∞
dx

∫ ∞
y∗

y

2

∂2

∂x2
u(t, x, y)λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy

=

∫ +∞

−∞
dx

∫ ∞
y∗

y

2
u(t, x, y)λ3χ′′1(λx)

√
λχ2(

√
λ(y − y∗))dy

= λ
3
2

∫ +∞

−∞
dx

∫ ∞
0

1

2

(
y +
√
λy∗
)
u

(
t,
x

λ
,
y√
λ

+ y∗
)
χ′′1(x)χ2(y)dy.

Since u is bounded and χ2 has support in [0, 1], the last term goes to 0 as λ tends to 0. For

the mixed derivative term, since χ2(0) = 0,∫ +∞

−∞
dx

∫ ∞
y∗

ρσy
∂2

∂x∂y
u(t, x, y)λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy

= −ρσ
∫ +∞

−∞
dx

∫ ∞
y∗

y
∂

∂y
u(t, x, y)λ2χ′1(λx)

√
λχ2(

√
λ(y − y∗))dy

= ρσ

∫ +∞

−∞
dx

∫ ∞
y∗

u(t, x, y)λ2χ′1(λx)
√
λχ2(

√
λ(y − y∗))dy

+ ρσ

∫ +∞

−∞
dx

∫ ∞
y∗

u(t, x, y)λ2χ′1(λx)λχ′2(
√
λ(y∗ − y))dy

= λρσ

∫ +∞

−∞
dx

∫ ∞
0

u

(
t,
x

λ
,
y√
λ

+ y∗
)
χ′1(x)χ2(y)dy

+ λ
3
2 ρσ

∫ +∞

−∞
dx

∫ ∞
0

u

(
t,
x

λ
,
y√
λ

+ y∗
)
χ′1(x)χ′2(y)dy,

which goes to 0 as λ tends to 0 with the same arguments as before.

Moreover, integrating by parts two times, we have∫ +∞

−∞
dx

∫ ∞
y∗

y

2
σ2 ∂

2

∂y2
u(t, x, y)λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy

= −
∫ +∞

−∞
dx

∫ ∞
y∗

σ2

2

∂

∂y
u(t, x, y)λχ1(λx)

(√
λχ2(

√
λ(y − y∗)) + yλχ′2(

√
λ(y − y∗))

)
dy

=

∫ +∞

−∞
dx

∫ ∞
y∗

σ2

2
u(t, x, y)

(
2λχ1(λx)λχ′2(

√
λ(y − y∗))

)
dy

=
√
λσ2

∫ +∞

−∞
dx

∫ ∞
0

u

(
t,
x

λ
,
y√
λ

+ y∗
)
χ1(x)

(
λχ′2(y) +

1

2
λ

3
2

(
y +
√
λy∗
)
χ′′2(y)

)
dy

which again tends to 0 as λ goes to 0. We now study the terms in (2.4.14) which contains
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the first order derivatives of u. First, note that∫ +∞

−∞
dx

∫ ∞
y∗

(
r − δ − y

2

) ∂

∂x
u(t, x, y)λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy

= −
∫ +∞

−∞
dx

∫ ∞
y∗

(
r − δ − y

2

)
u(t, x, y)λ2χ′1(λx)

√
λχ2(

√
λ(y − y∗))dy

= −
√
λ

∫ +∞

−∞
dx

∫ ∞
0

(√
λr −

√
λδ − 1

2

(
y +
√
λy∗
))

u

(
t,
x

λ
,
y√
λ

+ y∗
)
χ′1(x)χ2(y)dy.

Again, passing to the limit, the last term tends to 0. On the other hand,∫ +∞

−∞
dx

∫ ∞
y∗

κ(θ − y)
∂

∂y
u(t, x, y)λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy

=

∫ +∞

−∞
dx

∫ ∞
y∗

κθ
∂

∂y
u(t, x, y)λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy

−
∫ +∞

−∞
dx

∫ ∞
y∗

κy
∂

∂y
u(t, x, y)λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy.

Integrating by parts and doing the usual change of variables we have∫ +∞

−∞
dx

∫ ∞
y∗

κθ
∂

∂y
u(t, x, y)λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy

= −
√
λ

∫ +∞

−∞
dx

∫ ∞
0

κθu

(
t,
x

λ
,
y√
λ

+ y∗
)
χ1(x)χ′2(y)dy,

which tends to 0 as λ tends to 0, while

−
∫ +∞

−∞
dx

∫ ∞
y∗

κy
∂

∂y
u(t, x, y)λχ1(λx)

√
λχ2(

√
λ(y − y∗))dy,

which is nonpositive, since u is nondecreasing in y. We finally deduce that

lim sup
λ→0

∫ +∞

−∞
dx

∫ ∞
y∗

dyLu(t, x, y)φ(x)ζ(y) ≤ 0, (2.4.16)

which, together with (2.4.15), contradicts (2.4.14). Then, the assertion follows.

As regards the regularity of the free boundary, we can prove the following result.

Proposition 2.4.6. For any t ∈ [0, T ) there exists a countable set N ⊆ (0,∞) such that

b(t−, y) = b(t, y), y ∈ (0,∞) \ N .
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Proof. Without loss of generality we pass to the logarithm in the s−variable and we prove

the assertion for the function b̃(t, y) = ln b(t, y). Fix t ∈ [0, T ) and recall that y 7→ b̃(t, y)

is a nonincreasing function, so it has at most a countable set of discontinuity points. Let

y∗ ∈ (0,∞) be a continuity point for the maps y 7→ b̃(t, y) and y 7→ b̃(t−, y) and assume

that

b̃(t−, y∗) < b̃(t, y∗). (2.4.17)

Set ε = b̃(t,y∗)−b̃(t−,y∗)
2 . By continuity, there exist y0, y1 > 0 such that for any y ∈ (y0, y1)

we have

b̃(t, y) > b̃(t, y∗)− ε

4
, and b̃(t−, y) < b̃(t−, y∗) +

ε

4
.

Therefore, by using (2.4.17), we get, for any y ∈ (y0, y1),

b̃(t, y) > b̃(t, y∗)− ε

4
> b̃(t−, y∗) +

3

4
ε > b̃(t−, y∗) +

ε

4
> b̃(t−, y).

Now, set b− = b̃(t−, y∗)+ ε
4 and b+ = b̃(t−, y∗)+ 3

4 and let (s, x, y) ∈ (0, t)×(b−, b+)×(y0, y1).

Since t 7→ b̃(t, ·) is nondecreasing, we have x > b̃(t−, y) > b̃(s, y), so that u(s, x, y) > ψ(x).

Therefore, on the set (0, t)× (b−, b+)× (y0, y1) we have

(L̃ − r)u(s, x, y) = −∂u
∂t

(s, x, y) ≥ 0.

This means that, for any nonnegative and C∞ test functions θ, ψ and ζ which have support

respectively in (0, t), (b−, b+) and (y0, y1) we can write∫ t

0
θ(t)dt

∫ ∞
−∞

dx

∫ ∞
y∗

dy(L̃ − r)u(t, x, y)φ(x)ζ(y) ≥ 0.

By the continuity of the integrands in t, we deduce that (L̃ − r)u(t, ·, ·) ≥ 0 in the sense of

distributions on the set (b−, b+)× (y0, y1).

On the other hand, for any (s, x, y) ∈ (t, T ) × (b−, b+) × (y0, y1), we have x ≤ b̃(t, y) ≤
b̃(s, y), so that u(s, x, y) = ψ(x). Therefore, it follows from ∂u

∂t + (L̃ − r)u ≤ 0 and the

continuity of the integrands that (L̃−r)u(t·, ·) = (L̃−r)ψ(·) ≤ 0 in the sense of distributions

on the set (b−, b+)× (y0, y1).

We deduce that (L̃ − r)ψ = 0 on the set (b−, b+) × (y0, y1), but it is easy to see that

(L̃−r)ψ(x) = (L̃−r)(K−ex) = δex−rK and thus cannot be identically zero in a nonempty

open set.

Remark 2.4.7. It is worth observing that the arguments used in [95] in order to prove

the continuity of the exercise price of American options in a multidimensional Black and
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Scholes model can be easily adapted to our framework. In particular, if we consider the

t-sections of the exercise region, that is

Et = {(s, y) ∈ (0,∞)× [0,∞) : P (t, s, y) = ϕ(s)},

= {(s, y) ∈ (0,∞)× [0,∞) : s ≤ b(t, y)}, t ∈ [0, T ),
(2.4.18)

we can easily prove that

Et =
⋂
u>t

Eu, Et =
⋃
u<t

Eu. (2.4.19)

However, unlike the case of an American option on several assets, in our case (2.4.19) is

not sufficient to deduce the continuity of the function t 7→ b(t, y).

2.4.2 Strict convexity in the continuation region

We know that P is convex in the space variable (see Proposition 2.4.1). In [93] it is also

proved that, in the case of non-degenerate stochastic volatility models, P is strictly convex

in the continuation region but the proof follows an analytical approach which cannot be

applied in our degenerate model. In this section we extend this result to the Heston model

by using purely probabilistic techniques.

We will need the following Lemma, whose proof can be found in the Appendix.

Lemma 2.4.8. For every continuous function s : [0, T ] → R such that s(0) = S0 and for

every ε > 0 we have

P

(
sup
t∈[0,T ]

|St − s(t)| < ε, sup
t∈[0,T ]

|Yt − Y0| < ε

)
> 0.

Theorem 2.4.9. The function s 7→ P (t, s, y) is strictly convex in the continuation region.

Proof. Without loss of generality we can assume t = 0. We have to prove that, if (s1, y), (s2, y) ∈
(0,∞)× [0,∞) are such that (0, s1, y), (0, s2, y) ∈ C, then

P (0, θs1 + (1− θ)s2, y) < θP (0, s1, y) + (1− θ)P (0, s2, y). (2.4.20)

Let us rewrite the price process as Ss,yt = se
∫ t
0 (r−δ−Yu2 )du+

∫ t
0 σ
√
YudBu := sMy

t , where My
t =

S1,y
t and assume that, for example, s1 > s2. We claim that it is enough to prove that, for

ε > 0 small enough,

P
(

(θs1 + (1− θ)s2)My
t > b(t, Yt) ∀t ∈ [0, T ) & (θs1 + (1− θ)s2)My

T ∈ (K − ε,K + ε)
)
> 0.

(2.4.21)
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In fact, let τ∗ be the optimal stopping time for P (0, θs1+(1−θ)s2, y). If (θs1+(1−θ)s2)My
t >

b(t, Yt) for every t ∈ [0, T ), then we are in the continuation region for all t ∈ [0, T ), hence

τ∗ = T . Then, the condition (θs1 + (1− θ)s2)My
T ∈ (K − ε,K + ε) for ε > 0 small enough

ensures on one hand that s1M
y
τ∗ > K, since

s1M
y
τ∗ = (θs1 + (1− θ)s2)My

τ∗ + (1− θ)(s1 − s2)My
τ∗

> K − ε+
(1− θ)(s1 − s2)(K − ε)

θs1 + (1− θ)s2
> K,

for ε small enough. On the other hand, it also ensures that s2M
y
τ∗ < K, which can be

proved with similar arguments. Therefore, we get

P ((K − s1M
y
τ∗)+ = 0 & (K − s2M

y
τ∗)+ > 0) > 0,

which, from a closer look at the graph of the function x 7→ (K − x)+, implies that

E[e−rτ
∗
(K − (θs1 + (1− θ)s2)My

τ∗)+] < θE[e−rτ
∗
(K − s1M

y
τ∗)+] + (1− θ)E[e−rτ

∗
(K − s2M

y
τ∗)+],

and, as a consequence, (2.4.20).

So, the rest of the proof is devoted to prove that (2.4.21) is actually satisfied.

With this aim, we first consider a suitable continuous function m : [0, T ]→ R constructed

as follows. In order to simplify the notation, we set s = θs1 + (1 − θ)s2. Note that, for

ε > 0 small enough, we have s = θs1 + (1 − θ)s2 > b(0, y) + ε since (0, s1, y) and (0, s2, y)

are in the continuation region C, that is s1, s2 ∈ (b(0, y),∞). By the right continuity of

the map t 7→ b(t, y), we know that there exists t̄ ∈ (0, T ) such that s > b(t, y) + ε
2 for any

t ∈ [0, t̄]. Moreover the function y 7→ b(t̄, y) is left continuous and nonincreasing, so there

exists ηε > 0 such that s > b(t̄, z) + ε
4 for any z ≥ y − ηε. Assume now that s ≤ K + ε

2 and

set

m(t) =

1 + t
t̄

(
K+ ε

2
s − 1

)
, 0 ≤ t ≤ t̄,

K+ ε
2

s , t̄ ≤ t ≤ T.

Note that m is continuous, m(0) = 1 and, recalling that t 7→ b(t, y) is nondecreasing and

b(t, y) < K,

sm(t) =

s+ t
t̄

(
K + ε

2 − s
)
≥ s > b(t̄, y − ηε) + ε

4 , 0 ≤ t ≤ t̄,

K + ε
2 ≥ b(t, y − ηε), t̄ ≤ t ≤ T.

Moreover, by Lemma 2.4.8, we know that, for any ε > 0,

P

(
sup
t∈[0,T ]

|sMy
t − sm(t)| < ε, sup

t∈[0,T ]
|Yt − y| < ε

)
> 0.
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Therefore, by applying Lemma 2.4.8 with ε = min
{
ε
8 , ηε

}
, we have that, with positive

probability,

sMy
t > sm(t)− ε

8
≥ b(t, y − ηε) +

ε

8
≥ b(t, Yt).

and

sMy
T ≤ sm(T ) +

ε

8
≤ K + ε, sMy

T ≥ sm(T )− ε

8
≥ K − ε,

which proves (2.4.21) concluding the proof. If s > K + ε
2 , then it is enough to take m(t) as

a nonincreasing continuous function such that m(0) = 1 and sm(T ) = K + ε
2 . Then, the

assertion follows with the same reasoning.

2.4.3 Early exercise premium

We now extend to the stochastic volatility Heston model a well known result in the Black and

Scholes world, the so called early exercise premium formula. It is an explicit formulation

of the quantity P − Pe, where Pe = Pe(t, s, y) is the European put price with the same

strike price K and maturity T of the American option with price function P = P (t, s, y).

Therefore, it represents the additional price you have to pay for the possibility of exercising

before maturity.

Proposition 2.4.10. Let Pe(0, S0, Y0) be the European put price at time 0 with maturity

T and strike price K. Then, one has

P (0, S0, Y0) = Pe(0, S0, Y0)−
∫ T

0
e−rsE[(δSs − rK)1{Ss≤b(s,Ys)}]ds.

The proof of Proposition 2.4.10 relies on purely probabilistic techniques and is based on

the results first introduced in [65]. Let Ut = e−rtP (t, St, Yt) and Zt = e−rtϕ(St). Since Ut

is a supermartingale, we have the Snell decomposition

Ut = Mt −At, (2.4.22)

where M is a martingale and A is a nondecreasing predictable process with A0 = 0, con-

tinuous with probability 1 thanks to the continuity of ϕ. On the other hand,

Zt = e−rt(K − St)+ = Z0 − r
∫ t

0
e−rs(K − Ss)+ds−

∫ t

0
e−rs1{Ss≤K}dSs +

∫ t

0
e−rsdLKs (S)

= mt + at,
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where LKt (S) is the local time of S in K,

mt = Z0 −
∫ t

0
e−rs1{Ss≤K}Ss

√
YsdBs

is a local martingale, and

at = −r
∫ t

0
e−rs(K − Ss)+ds−

∫ t

0
e−rs1{Ss≤K}Ss(r − δ)ds+

∫ t

0
e−rsdLKs (S)

is a predictable process with finite variation and a0 = 0. Recall that at can be written as

the sum of an increasing and a decreasing component, that is at = a+
t + a−t . Since (LKt )t

is increasing, we deduce that the decreasing process (a−t )t is absolutely continuous with

respect to the Lebesgue measure, that is

da−t � dt.

We denote by kt = k(t, St, Yt) the density of a−t w.r.t. dt.

We now define

ζt = Ut − Zt ≥ 0.

Thanks to Tanaka’s formula,

ζt = ζ+
t = ζ0 +

∫ t

0
1{ζs>0}dζs +

1

2
L0
t (ζ),

where L0
t (ζ) is the local time of ζ in 0. Therefore,

ζt = ζ0 +

∫ t

0
1{ζs>0}d(Us − Zs) +

1

2
L0
t (ζ)

= ζ0 +

∫ t

0
1{ζs>0}dMs −

∫ t

0
1{ζs>0}dms −

∫ t

0
1{ζs>0}das +

1

2
L0
t (ζ),

where the last equality follows from the fact that the process At only increases on the set

{ζt = 0}. Then, we can write

Ut = U0 + M̄t −
∫ t

0
1{ζs>0}das +

1

2
L0
t (ζ) + at = U0 + M̄t +

∫ t

0
1{ζs=0}das +

1

2
L0
t (ζ),

where M̄t =
∫ t

0 1{ζs>0}d(Ms −ms) +mt is a local martingale. Thanks to the continuity of

Ut we have the uniqueness of the decompositions, so

−At =

∫ t

0
1{ζs=0}das +

1

2
L0
t (ζ). (2.4.23)
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This means in particular that
∫ t

0 1{ζs=0}das + 1
2L

0
t (ζ) is decreasing, but L0

t (ζ) is increasing

so −
∫ t

0 1{ζs=0}das must be an increasing process and

1

2
dL0

t (ζ)� 1{ζt=0}da
−
t � dt.

We define µt the density of 1
2L

0
t (ζ) w.r.t. dt and, by Motoo Theorem (see [41]), we can

write µt = µ(St, Yt). Moreover, let us consider the t-sections of the exercise region defined

in (2.4.18). We can easily prove the following Lemma.

Lemma 2.4.11. For any t ∈ [0, T ) we have

Et = E̊t,

and E̊t = {(s, y) ∈ (0,∞)× [0,∞) : 0 < s < b(t, y+)} 6= ∅, where b(t, y+) = limy→y+ b(t, y).

The proof is given in the Appendix for the sake of completeness. Now, let us prove the

following preliminary result.

Lemma 2.4.12. The local time L0
t (ζ) is indistinguishable from 0.

Proof. In order to simplify the notation, we set L0
t = L0

t (ζ) in this proof. We want to prove

that

L0
t =

∫ t

0
1{ζs=0}dL

0
s = 0.

Note that, for a 6= 0, we have ∫ t

0
1{ζs=0}dL

a
s = 0.

Therefore, due to the right continuity of the local time with respect to a, we have∫ t

0
1{s∈O}dL

0
s = 0,

where O is the interior of the the set {s | ζs = 0}, i.e.

O = {s ∈ (0, t) | ∃ε > 0,∀τ ∈ (s− ε, s+ ε) ζτ = 0}.

We note that

O′ ⊆ O, (2.4.24)

where O′ = {s ∈ (0, t) | Ss < j(s, Ys)}, with j(s, y) = supτ<s,ζ>y b(τ, s).
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In fact, if Ss < j(s, Ys), there exists τ < s and ζ > Ys such that Ss < j(τ, ζ). By the

continuity of the trajectories, there exists ε > 0 such that

Sθ < b(τ, ζ), θ ∈ (s− ε, s+ ε).

Therefore, for θ ∈ (s− ε, s+ ε) and θ near enough to s, we have Yθ < ζ and θ > τ , so that

b(τ, ζ) ≤ b(θ, Yθ)and so ζθ = 0. Therefore (2.4.24) is proved and we have∫ t

0
1{Ss<j(s,Ys)}dL

0
s = 0.

Now,

L0
t =

∫ t

0
1{ζs=0}dL

0
s

=

∫ t

0
1{Ss≤b(s,Ys)}dL

0
s

≤
∫ t

0
1{Ss<j(s,Ys)}dL

0
s +

∫ t

0
1{j(s,Ys)≤Ss≤b(s,Ys)}dL

0
s

=

∫ t

0
1{j(s,Ys)≤Ss≤b(s,Ys)}dL

0
s

=

∫ t

0
1{j(s,Ys)≤Ss≤b(s,Ys)}µ(Ss, Ys)ds

=

∫ t

0
ds

∫
1{j(s,y)≤x≤b(s,y)}µ(x, y)p(s, x, y)dxdy = 0,

if we can prove that j(s, y) = b(s, y) dsdy a.e.

In order to prove this, note that j(s, y) = supτ<s
(
supζ>y b(τ, ζ)

)
. For any fixed τ ≥ 0,

we set

b+(τ, y) = sup
ζ>y

b(τ, ζ) = lim
n→∞

b

(
τ, y +

1

n

)
,

since the function y 7→ b(τ, y) is nonincreasing. On the other hand, s 7→ b(s, y) is nonde-

creasing, so

j(s, y) = sup
τ<s

b+(τ, y) = lim
n→∞

b+

(
s− 1

n
, y

)
.

Therefore, for any y ≥ 0

j(s, y) = b+(s, y), ds a.e.

and, for any s > 0

b+(s, y) = b(s, y), dy a.e.
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so that

j(s, y) = b(s, y), dsdy a.e.

which concludes the proof.

We can now prove Proposition 2.4.10.

Proof of Proposition 2.4.10. Thanks to (2.4.23) and Proposition 2.4.12 we can rewrite (2.4.22)

as

Ut = Mt +

∫ t

0
1{Us=Zs}das = Mt +

∫ t

0
e−rs(L − r)ϕ(Ss)1{Ss≤b(s,Ys)}ds,

where the last equality derives from the application of the Itô formula to the discounted

payoff Z. In particular, we have

U0 = M0 = E[MT ] = E[UT ]− E
[∫ T

0
e−rs(L − r)ϕ(Ss)1{Ss≤b(s,Ys)}ds

]
= E[UT ]−

∫ T

0
e−rsE[(δSs − rK)1{Ss≤b(s,Ys)}]ds.

The assertion follows recalling that U0 = P (0, S0, Y0) and E[UT ] = E[ZT ] = E[e−rT (K −
ST )+], which corresponds to the price Pe(0, S0, Y0) of an European put with maturity T

and strike price K.

2.4.4 Smooth fit

In this section we analyse the behaviour of the derivatives of the value function with respect

to the s and y variables on the boundary of the continuation region. In other words, we

prove a weak formulation of the so called smooth fit principle.

In order to do this, we need two technical lemmas whose proofs can be found in the

appendix. The first one is a general result about the behaviour of the trajectories of the

CIR process.

Lemma 2.4.13. For all y ≥ 0 we have, with probability one,

lim sup
t↓0

Y y
t − y√

2t ln ln(1/t)
= − lim inf

t↓0

Y y
t − y√

2t ln ln(1/t)
= σ
√
y.

The second one is a result about the behaviour of the trajectories of a standard Brownian

motion.

86



Sec. 2.4 - The American put price

Lemma 2.4.14. Let (Bt)t≥0 be a standard Brownian motion and let (tn)n∈N be a deter-

ministic sequence of positive numbers with limn→∞ tn = 0. We have, with probability one,

lim inf
n→∞

Btn√
tn

= −∞ (2.4.25)

We are now in a position to prove the following smooth fit result.

Proposition 2.4.15. For any (t, y) ∈ [0, T )× [0,∞) we have ∂
∂sP (t, b(t, y), y) = ϕ′(b(t, y)).

Proof. The general idea of the proof goes back to [18] for the Brownian motion (see also

[83, Chapter 4]). Without loss of generality we can fix t = 0. Note that, for h > 0, since

b(0, y)− h ≤ b(0, y), we have

P (0, b(0, y)− h, y)− P (0, b(0, y), y)

h
=
ϕ(b(0, y)− h)− ϕ(b(0, y))

h
,

so that, since ϕ is continuously differentiable near b(0, y), ∂−

∂s P (0, b(0, y), y) = ϕ′(b(0, y)).

On the other hand, for h > 0 small enough, since P ≥ ϕ and P (0, b(0, y), y) = ϕ(b(0, y)),

we get

P (0, b(0, y) + h, y)− P (0, b(0, y), y)

h
≥ ϕ(b(0, y) + h)− ϕ(b(0, y))

h
,

so that

lim inf
h↓0

P (0, b(0, y) + h, y)− P (0, b(0, y), y)

h
≥ ϕ′(b(0, y)).

Now, for the other inequality, we consider the optimal stopping time related to P (0, b(0, y)+

h, y), i.e.

τh = inf{t ∈ [0, T ) | S0,b(0,y)+h,y
t < b(t, Y y

t )} ∧ T = inf

{
t ∈ [0, T ) |My

t ≤
b(t, Y y

t )

b(0, y) + h

}
∧ T,

where My
t = S1,y

t . Recall that P (0, b(0, y), y) ≥ E
(
e−rτhϕ(b(0, y)My

τh)
)
, so we can write

P (0, b(0, y) + h, y)− P (0, b(0, y), y)

h
=

E (e−rτhϕ((b(0, y) + h)My
τh)− P (0, b(0, y), y)

h

≤ E
(
e−rτh

ϕ ((b(0, y) + h)My
τh)− ϕ (b(0, y)My

τh)

h

)
.

Assume for the moment that

lim
h→0

τh = 0, a.s. (2.4.26)
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so we have

lim
h↓0

ϕ((b(0, y) + h)My
τh)
)
− ϕ(b(0, y)My

τh)

h
= ϕ′(b(0, y)).

Moreover, recall that My
τh ≤

b(t,Y yt )
b(0,y)+h ≤

K
b(0,y) if τh < T and My

τh = My
T if τh = T . Therefore,

by using the fact that ϕ is Lipschitz continuous and the dominated convergence, we obtain

lim sup
h↓0

P (0, b(0, y) + h, y)− P (0, b(0, y), y)

h
≤ ϕ′(b(0, y))

and the assertion is proved.

It remains to prove (2.4.26). Since t 7→ b(t, y) is nondecreasing, if My
t < b(0,y)

b(0,y)+h and

Y y
t = y, we have

My
t <

b(0, y)

b(0, y) + h
≤ b(t, Y y

t )

b(0, y) + h
,

so that

τh ≤ inf

{
t ≥ 0 |My

t <
b(0, y)

b(0, y) + h
& Y y

t = y

}
. (2.4.27)

We now show that we can find a sequence tn ↓ 0 such that Y y
tn = 0 and My

tn < 1. First,

recall that with a standard transformation we can writedSt
St

= (r − δ)dt+
√
Yt(
√

1− ρ2dW̄t + ρdWt), S0 = s > 0,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt, Y0 = y ≥ 0,

(2.4.28)

where W̄ is a standard Brownian motion independent of W . Set Λyt = lnMy
t . We deduce

from Lemma 2.4.13 that there exists a sequence tn ↓ 0 such that Y y
tn = y Py-a.s. . Therefore,

from (2.4.28) we can write
∫ tn

0

√
Y y
s dWs = −κ

σ

∫ tn
0 (θ − Y y

s )ds for all n ∈ N. So, we have

Λytn = (r − δ)tn −
∫ tn

0

Y y
s

2
ds+

√
1− ρ2

∫ tn

0

√
Y y
s dW̄s −

ρκ

σ

∫ tn

0
(θ − Y y

s )ds.

Conditioning with respect to W we have

lim inf
n→∞

Λytn = lim inf
n→∞

(r − δ)tn√∫ tn
0 Y y

s ds
−

∫ tn
0

Y ys
2 ds√∫ tn

0 Y y
s ds

+

√
1− ρ2

∫ tn
0

√
Y y
s dW̄s√∫ tn

0 Y y
s ds

−
ρκ
σ

∫ tn
0 (θ − Y y

s )ds√∫ tn
0 Y y

s ds

= lim inf
n→∞

(r − δ)tn√∫ tn
0 Y y

s ds
−

∫ tn
0

Y ys
2 ds√∫ tn

0 Y y
s ds

+

√
1− ρ2W̃∫ tn

0 Y ys ds√∫ tn
0 Y y

s ds
−

ρκ
σ

∫ tn
0 (θ − Y y

s )ds√∫ tn
0 Y y

s ds
= −∞,

where we have used the Dubins-Schwartz Theorem and we have applied Lemma 2.4.14 to

the standard Brownian motion W̃ and the sequence
√∫ tn

0 Y y
s ds which can be considered

deterministic.
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We deduce that, up to extract a subsequence of tn, we have Λytn < 0 and, as a consequence,

My
tn < 1. Therefore, for any any fixed n, there exists h small enough such that My

tn <
b(0,y)

b(0,y)+h so that, by definition, τh ≤ tn. We conclude the proof passing to the limit as n goes

to infinity.

As regards the derivative with respect to the y variable, we have the following result.

Proposition 2.4.16. If 2κθ ≥ σ2, for any (t, y) ∈ [0, T )×(0,∞) we have ∂
∂yP (t, b(t, y), y) =

0.

Proof. Again we fix t = 0 with no loss of generality. Since y → P (t, s, y) in nonde-

creasing, for any h > 0 we have P (0, b(0, y), y − h) ≤ P (0, b(0, y), y) = ϕ(b(0, y)) so that

P (0, b(0, y), y − h) = ϕ(b(0, y)). Therefore,

P (0, b(0, y), y − h)− P (0, b(0, y), y)

h
= 0,

hence ∂−

∂y P (0, b(0, y), y) = 0. On the other hand, since y 7→ P (t, x, y) is nondecreasing, for

any h > 0 we have

lim inf
h↓0

P (0, b(0, y), y + h)− P (0, b(0, y), y)

h
≥ 0,

To prove the other inequality, we consider the stopping time related to P (0, b(0, y), y + h),

that is

τh = inf
{
t ∈ [0, T ) | S0,b(0,y),y+h

t < b(t, Y y+h
t )

}
∧T = inf

{
t ∈ [0, T ) |My+h

t <
b(t, Y y+h

t )

b(0, y)

}
∧T

and we assume for the moment that

lim
h→0

τh = 0. (2.4.29)

We have

P (0, b(0, y), y + h)− P (0, b(0, y), y)

h
=

E
(
e−rτhϕ

(
b(0, y)My+h

τh

))
− P (0, b(0, y), y)

h

≤ E

e−rτh ϕ
(
b(0, y)My+h

τh

)
− ϕ(b(0, y)My

τh)

h


≤ K

E
[∣∣∣My+h

τh −My
τh

∣∣∣]
h

,

(2.4.30)
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where the last inequality follows from the fact that ϕ is Lipschitz continuous and b(0, y) ≤ K.

Now, if the Feller condition 2κθ ≥ σ2 is satisfied, we can write

My+h
t −My

t =

∫ y+h

y

∫ t

0

Ẏ ζ
s

2

√
Y ζ
s

dBs −
1

2

∫ t

0
Ẏ ζ
s ds

 e(r−δ)t−
∫ t
0
Y
ζ
s
2
ds+

∫ t
0

√
Y ζs dBsdζ.

Fix ζ and observe that the exponential process e−
∫ t
0
Y
ζ
s
2
ds+

∫ t
0

√
Y ζs dBs satisfies the assump-

tions of the Girsanov Theorem, namely it is a martingale. Therefore, we can introduce a

new probability measure P̂ under which the process Ŵt = Wt −
∫ t

0

√
Ysds is a standard

Brownian motion. If we denote by Ê the expectation under the probability P̂, substituting

in (2.4.30) and using (2.4.13) we get

P (0, b(0, y), y + h)− P (0, b(0, y), y)

h
≤ erTK

h

∫ y+h

y
dζÊ

∣∣∣∣∣∣
∫ τh

0

Ẏ ζ
s

2

√
Y ζ
s

dŴs

∣∣∣∣∣∣


≤ erTK

h

∫ y+h

y
dζ

Ê

∫ τh

0

 ˙
Y ζ
s

2

√
Y ζ
s

2

ds

1/2

≤ erTK

h

∫ y+h

y

1

2
√
ζ
Ê[
√
τh]dζ

which tends to 0 as h tends to 0.

Therefore, as in the proof of Proposition 2.4.15, it remains to prove that limh↓0 τh = 0.

In order to do this, we can proceed as follows. Again, set

Λyt = ln(My
t ) = (r − δ)t− 1

2

∫ t

0
Y y
s ds+

∫ t

0

√
Y y
s dWs,

so that

τh = inf

{
t ∈ [0, T ) | Λy+h

t ≤ ln

(
b(t, Y y+h

t )

b(0, y)

)}
∧ T.

We deduce from Lemma (2.4.13) that, almost surely, there exist two sequences (tn)n and

(t̂n)n which converge to 0 with 0 < tn < t̂n and such that

Y y
tn = y, and, for t ∈ (tn, t̂n), Yt < y.

In fact, it is enough to consider a sequence (t̂n)n such that limn→∞ t̂n = 0 and Yt̂n < y and

define tn = sup{t ∈ [0, t̂n) | Y y
t = y}.

Proceeding as in the proof of Proposition 2.4.15, up to extract a subsequence we can

assume

Λytn < 0.
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On the other hand, up to extract a subsequence of h converging to 0, we can assume that,

almost surely,

lim
h↓0

sup
t∈[0,T ]

∣∣∣Y y+h
t − Y y

t

∣∣∣ = lim
h↓0

sup
t∈[0,T ]

∣∣∣Λy+h
t − Λyt

∣∣∣ = 0.

Now, let us fix n ∈ N. For h small enough, there exists δ > 0 such that

Λy+h
t < 0, t ∈ (tn − δ, tn + δ).

Then, for any t̃n ∈ (tn − δ, tn + δ) ∩ (tn, t̂n), we have at the same time Λy+h

t̃n
< 0 and, since

Y y

t̃n
< y, Y y+h

t̃n
< y for h small enough. Recalling that t 7→ b(t, y) is nondecreasing and

y 7→ b(t, y) is nonincreasing, we deduce that

b(t̃n, Y
y+h

t̃n
) ≥ b(0, Y y+h

t̃n
) ≥ b(0, y).

Therefore

Λy+h

t̃n
≤ ln

b(t̃n, Y y+h

t̃n
)

b(0, y)


and, as a consequence, τh ≤ t̃n ≤ t̂n so (2.4.29) follows.

2.5 Appendix: some proofs

We devote the appendix to the proof of some technical results used in this chapter.

2.5.1 Proofs of Section 2.3

Proof of Lemma 2.3.2. Consider 1 > a1 > a2 > · · · > am > · · · > 0 defined by∫ 1

a1

1

u
du = 1, . . . ,

∫ am−1

am

1

u
du = m, . . . .

We have that am tends to 0 as m tends to infinity. Let (ηm)m≥1, be a family of continuous

functions such that

supp ηm ⊆ (am, am−1), 0 ≤ ηm(u) ≤ 2

um
,

∫ am−1

am

ηm(u)du = 1.

Moreover, we set

φm(x) :=

∫ |x|
0

dy

∫ y

0
ηm(u)du, x ∈ R.

91



Chap.. 2 - American option price properties in Heston type models

It is easy to see that φm ∈ C2(R), |φ′m| ≤ 1 and φm(x) ↑ |x| as m → ∞. Fix t ∈ [0, T ].

Applying Itô’s formula and passing to the expectation we have, for any m ∈ N,

E[φm(Y n
t − Yt)] = κ

∫ t

0
E
[
φ
′
m(Y n

s − Ys)(Ys − f2
n(Y n

s ))
]
ds

+
σ2

2

∫ t

0
E
[
φ
′′
m(Y n

s − Ys)(fn(Y n
s )−

√
Ys)

2
]
ds

(2.5.31)

Let us analyse the right hand term in (2.5.31). Since |φ′m| ≤ 1, we have∣∣∣∣κ∫ t

0
E
[
φ
′
m(Y n

s − Ys)(Ys − f2
n(Y n

s ))
]
ds

∣∣∣∣ ≤ κ∫ t

0
E
[
|f2
n(Y n

s )− Y n
s |
]
ds+ κ

∫ t

0
E [|Y n

s − Ys|] ds

On the other hand,∣∣∣∣σ2

2

∫ t

0
E
[
φ
′′
m(Y n

s − Ys)(fn(Y n
s )−

√
Ys)

2
]
ds

∣∣∣∣
≤ σ2

∫ t

0
E
[
|φ′′m(Y n

s − Ys)|(fn(Y n
s )−

√
Y n
s )2]ds

]
+ σ2

∫ t

0
E
[
|φ′′m(Y n

s − Ys)|(
√
Y n
s −

√
Ys)

2
]
ds

≤ σ2

∫ t

0
E
[

2

m|Y n
s − Ys|

(fn(Y n
s )−

√
Y n
s )21{am≤Y ns −Ys≤am−1}]ds

]
+ σ2

∫ t

0
E
[

2

m|Y n
s − Ys|

|Y n
s − Ys|

]
ds

≤ 2σ2

mam

∫ t

0
E
[
(fn(Y n

s )−
√
Y n
s )2]ds

]
+

2σ2t

m
.

Observe that, if |x| ≥ am−1,

φm(x) ≥
∫ |x|
am−1

dy = |x| − am−1.

Therefore, for any m large enough,

E[|Y n
t − Yt|] ≤ κ

∫ t

0
E[|Y n

s − Ys|]ds+ κ

∫ t

0
E
[
|f2
n(Y n

s )− Y n
s |
]
ds

+
2σ2

mam

∫ t

0
E
[
(fn(Y n

s )−
√
Y n
s )2]ds

]
+

2σ2t

m
+ am−1.

Recall that fn(y) → f(y) ≡ y locally uniformly and that Y n has continuous paths. More-

over, since f2
n(x) ≤ A(|x|+ 1) with A independent of n, it is easily to see that for any p > 1

there exists C > 0 independent of n such that

E

[
sup
t∈[0,T ]

|Y n
t |p
]
≤ C. (2.5.32)
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Therefore, by using Lebesgue’s Theorem and recalling that limm→∞ am = 0, we deduce that

for any δ > 0 it is possible to choose n̄ such that for every n ≥ n̄

E[|Y n
t − Yt|] < C

∫ t

0
E[|Y n

s − Ys|] + δ.

We can now apply Gronwall’s inequality and we deduce that E[|Y n
t − Yt|] < δeCt, so that

lim
n→∞

E[|Y n
t − Yt|] = 0 (2.5.33)

from the arbitrariness of δ.

Now, note that

sup
t∈[0,T ]

|Y n
t − Yt| ≤ κ

∫ T

0
|Ys − Y n

s |ds+ sup
t∈[0,T ]

∣∣∣∣∫ t

0
(
√
Ys − fn(Y n

s ))dWs

∣∣∣∣ (2.5.34)

The first term in the right hand side of (2.5.34) converges to 0 in probability thanks to

(2.5.33), so it is enough to prove that the second term converges to 0. We have

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
(
√
Ys − fn(Y n

s ))dWs

∣∣∣∣
]
≤
(∫ T

0
E[|
√
Ys − fn(Y n

s )|2]ds

) 1
2

(2.5.35)

and

E
[
|
√
Ys − fn(Y n

s )|2
]
≤ 2E

[
|
√
Ys −

√
Y n
s |2
]

+ 2E
[
|
√
Y n
s − fn(Y n

s )|2
]

≤ 2E [|Ys − Y n
s |] + 2E

[
|
√
Y n
s − fn(Y n

s )|2
]
.

Therefore, we can conclude that (2.5.35) tends to 0 as n goes to infinity by using (2.5.33)

and the Lebesgue Theorem so that (2.5.38) is proved.

As regards (2.3.6), for every n ∈ N we have

Xn
t = x+

∫ t

0

(
r − δ − f2

n(Y n
s )

2

)
ds+

∫ t

0
fn(Y n

s )dBs,

so that

sup
t∈[0,T ]

|Xn
t −Xt| ≤

1

2

∫ T

0
|f2
n(Y n

s )− Ys|ds+ sup
t∈[0,T ]

∣∣∣∣∫ t

0
(fn(Y n

s )−
√
Ys)dBs

∣∣∣∣ . (2.5.36)

It is enough to show that the two terms in the right hand side of (2.5.36) converge to 0 in

probability.
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Concerning the first term, note that, since Y has continuous paths, for every ω ∈
Ω, Y[0,T ](ω) is a compact set and K := {x|d(x, Y[0,T ]) ≤ 1} is compact as well. For n

large enough, Y n lies in K, so∫ T

0
|f2
n(Y n

s )− f2(Ys)|ds ≤
∫ T

0
|f2
n(Y n

s )− f2(Y n
s )|ds+

∫ T

0
|f2(Y n

s )− f2(Ys)|ds,

which goes to 0 as n tends to infinity, since f2
n → f2 locally uniformly and f2 is a continuous

function.

On the other hand, for the second term in the right hand side of (2.5.36), we have

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
f(Y n

s )−
√
YsdWs

∣∣∣∣
]
≤
(∫ T

0
E[(f(Y n

s )−
√
Ys)

2]ds

) 1
2

and we can prove with the usual arguments that the last term goes to 0.

2.5.2 Proofs of Section 2.4

Proofs of Lemma 2.4.8. To simplify the notation we pass to the logarithm and we prove

the assertion for the pair (X,Y ). We can get rid of the correlation between the Brownian

motions with a standard transformation, gettingdXt = (r − δ − 1
2Yt)dt+

√
Yt(
√

1− ρ2dW̄t + ρdWt), X0 ∈ R,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt, Y0 ≥ 0,

where W̄ is a standard Brownian motion independent of W . Moreover, from the SDE

satisfied by Y we deduce
∫ t

0

√
YsdWs = 1

σ

(
Yt − Y0 −

∫ t
0 κ(θ − Ys)ds

)
. Conditioning with

respect to Y , we reduce to prove that, for every continuous function m : [0, T ] → R such

that m(0) = X0 and for every ε > 0 we have

P

(
sup
t∈[0,T ]

|Xt −m(t)| < ε | Y

)
> 0, (2.5.37)

and

P

(
sup
t∈[0,T ]

|Yt − Y0| < ε

)
> 0. (2.5.38)
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As regards (2.5.37), by using the Dubins-Schwartz Theorem, there exists a Brownian motion

W̃ such that

P

(
sup
t∈[0,T ]

∣∣∣∣x+

∫ t

0

(
r − δ − Ys

2
− ρκ

σ
(θ − Ys)

)
ds+

ρ

σ
(Yt − y) +

√
1− ρ2

∫ t

0

√
YsdW̄s −m(t)

∣∣∣∣ < ε | Y

)

= P

(
sup
t∈[0,T ]

∣∣∣∣√1− ρ2

∫ t

0

√
YsdW̄s − m̃(t)

∣∣∣∣ < ε | Y

)

= P

(
sup
t∈[0,T ]

∣∣∣√1− ρ2W̃∫ t
0 Ysds

− m̃(t)
∣∣∣ < ε | Y

)
,

where m̃(t) = m(t)−x−
∫ t

0

(
r − δ − Ys

2 −
ρκ
σ (θ − Ys)

)
ds− ρ

σ (Yt−y) is a continuous function

which, conditioning w.r.t. Y , can be considered deterministic. Then, (2.5.37) follows by

the support theorem for Brownian motions.

In order to prove (2.5.38), we distinguish two cases. Assume first that Y0 = y0 > 0 and,

for a ≥ 0, define the stopping time

Ta = inf {t > 0 | Yt = a} .

Moreover, let us consider the function

η(y) =


√
y, if y > y0

2 ,√
y0

2 if y ≤ y0

2 ,

and the process (Ỹt)t∈[0,T ], solution to the uniformly elliptic SDE

dỸt = κ(θ − Ỹt)dt+ ση(Ỹt)dWt, Ỹ0 = Y0.

It is clear that Yt = Ỹt on the set
{
t ≤ T y0

2

}
so we have, if ε < y0

2 ,

P

(
sup
t∈[0,T ]

|Yt − Y0| < ε

)
= P

(
sup
t∈[0,T ]

|Ỹt − Y0| < ε

)
,

where the last inequality follows from the classical Support Theorem for uniformly elliptic

diffusions (see, for example, [88]).

On the other hand, if we assume Y0 = 0, then we can write

P

(
sup
t∈[0,T ]

Yt < ε

)
= P

(
T ε

2
≥ T

)
+ P

(
T ε

2
< T, ∀t ∈

[
T ε

2
, T
]
Yt < ε

)
.
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Now, if P
(
T ε

2
< T

)
> 0, we can deduce that the second term in the right hand side is

positive using the strong Markov property and the same argument we have used before in

the case with Y0 6= 0. Otherwise, P
(
T ε

2
≥ T

)
= 1 which concludes the proof.

Proof of Lemma 2.4.11. Let us define Ẽt = {(s, y) ∈ (0,∞) × [0,∞) : s < b(t, y+)}. Note

that Ẽt 6= ∅ since b > 0. We first show that Ẽt = Et. If (s, y) ∈ Ẽt, then s < b(t, y+) ≤ b(t, y),

since y 7→ b(t, y) is nonincreasing. Therefore, Ẽt ⊆ Et so that, since Et is closed, Ẽt ⊆ Et .

On the other hand, let (s, y) ∈ Et and consider the sequence ((sn, yn))n = ((s− 1/n, y −
1/n))n. Then, (sn, yn)→ (s, y) and we prove that (sn, yn) ∈ Ẽt, so that (s, y) ∈ Ẽt. In fact,

for each n ∈ N, we can consider the sequence ((sn,k, yn,k))k>n,=
((
s− 1

n + 1
k , y −

1
n + 1

k

))
k>n

.

We have

sn,k = s− 1

n
+

1

k
< s ≤ b(t, y) ≤ b

(
t, y − 1

n
+

1

k

)
= b (t, yn,k) .

Letting k tends to infinity, we get

sn < s ≤ b(t, y+
n ),

hence (sn, yn) ∈ Ẽt, and the assertion is proved.

Then, we show that Ẽt = E̊t. Note that Ẽt is an open set, since the function (s, y) 7→
b(t, y+) − s is lower semicontinuous. Therefore Ẽt ⊆ E̊t. Let us now consider an open set

A ⊆ Et. Fix (s, y) ∈ A, then
(
s+ 1

n , y + 1
n

)
∈ A for n large enough. Therefore,

s < s+
1

n
≤ b

(
t, y +

1

n

)
≤ b(t, y+),

hence (s, y) ∈ Ẽt.

Proof of Lemma 2.4.13. We have

Y y
t − y = κ

∫ t

0
(θ − Y y

s )ds+ σ

∫ t

0

√
Y y
s dWs

= σ
√
yWt + κ

∫ t

0
(θ − Y y

s )ds+ σ

∫ t

0

(√
Y y
s −
√
y
)
dWs,

so it is enough to prove that, if (Ht)t≥0 is a predictable process such that limt↓0Ht = 0 a.s.,

we have

lim
t↓0

∫ t
0 HsdWs√
2t ln ln(1/t)

= 0 p.s.
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This follows by using standard arguments, we include a proof for the sake of completeness.

By using Dubins-Schwartz inequality we deduce that, if f(t) =
√

2t ln ln(1/t), for t near to

0 we have ∣∣∣∣∫ t

0
HsdWs

∣∣∣∣ ≤ Cf (∫ t

0
H2
sds

)
.

Let us consider ε > 0. For t small enough, we have
∫ t

0 H
2
sds ≤ εt and, since f increases

near 0, ∣∣∣∣∫ t

0
HsdWs

∣∣∣∣ ≤ Cf (εt) .

We have

f2(εt)

f2(t)
=
εt ln ln(1/εt)

t ln ln(1/t)
= ε

ln (ln(1/t) + ln(1/ε))

ln ln(1/t)

≤ ε
ln (ln(1/t)) + ln(1/ε)

ln(1/t)

ln ln(1/t)
= ε

(
1 +

ln(1/ε)

ln(1/t) ln ln(1/t)

)
,

where we have used the inequality ln(x + h) ≤ ln(x) + h
x (for x, h > 0). Therefore

lim supt↓0
f(εt)
f(t) ≤

√
ε and the assertion follows.

Proof of Lemma 2.4.14. With standard inversion arguments, it suffices to prove that, for a

sequence tn such that limn→∞ tn =∞, we have, with probability one,

lim sup
n→∞

Btn√
tn

= +∞. (2.5.39)

The assertion is equivalent to

P
(

lim sup
n→∞

Btn√
tn
≤ c
)

= 0, c > 0,

that is

P

⋃
m≥1

⋂
n≥m

{
Btn√
tn
≤ c
} = 0, c > 0.

Therefore, it is sufficient to prove that P
(⋂

n≥m

{
Btn√
tn
≤ c
})

= 0 for every m ∈ N and

c > 0. Take, for example, m = 1 and consider the random variables
Bt1√
t1

and Btn√
tn

, for some

n > 1. Then,
Bt1√
t1
,
Btn√
tn
∼ N (0, 1),
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where N (0, 1) is the standard Gaussian law and

Cov

(
Bt1√
t1
,
Btn√
tn

)
=
t1 ∧ tn√
t1tn

<

√
t1
tn
,

which tends to 0 as n tends to infinity. We deduce that

P
(
Bt1√
t1
≤ c, Btn√

tn
≤ c
)
→ P(Z1 ≤ c, Z2 ≤ c) = P(Z1 ≤ c)2,

where Z1 and Z2 are independent with Z1, Z2 ∼ N (0, 1).

Take now mn ∈ N such that tmn > ntn. Then, we have

Bt1√
t1
,
Btn√
tn
,
Btmn√
tmn
∼ N (0, 1)

and

Cov

(
Bt1√
t1
,
Btmn√
tmn

)
, Cov

(
Btn√
tn
,
Btmn√
tmn

)
≤

√
tn
tmn

.

which again tends to 0 ad n tends to infinity. Therefore, we have

P
(
Bt1√
t1
≤ c, Btn√

tn
≤ c,

Btmn√
tmn
≤ c
)
→ P(Z1 ≤ c)3

with Z1 ∼ N (0, 1). Iterating this procedure, we can find a subsequence (tnk)k∈N such that

tnk →∞ and

P

⋂
k≥1

{
Btnk√
tnk
≤ c
} = 0

which proves that lim supn→∞
Btn√
tn

= +∞.
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Chapter 3

Hybrid Monte Carlo and tree-finite

differences algorithm for pricing

options in the Bates-Hull-White

model

3.1 Introduction

In this chapter, which is extracted from [27], we focus on the so called Bates-Hull-White

model. Following the previous work in [24, 25], we further develop and study the hybrid

tree/finite-difference approach and the hybrid Monte Carlo technique in order to numerically

evaluate option prices.

The Bates model [17] is a stochastic volatility model with price jumps: the dynamics

of the underlying asset price is driven by both a Heston stochastic volatility [58] and a

compound Poisson jump process of the type originally introduced by Merton [77]. Such a

model was introduced by Bates in the foreign exchange option market in order to tackle

the well-known phenomenon of the volatility smile behavior. Here, we assume a possibly

stochastic interest rate following the Vasicek model, and we call the full model as Bates-

Hull-White. In the case of plain vanilla European options, Fourier inversion methods [33]

lead to closed-form formulas to compute the price under the Bates model. Nevertheless,

in the American case the numerical literature is limited. Typically, numerical methods
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are based on the use of the dynamic programming principle to which one applies either

deterministic schemes from numerical analysis and/or from tree methods or Monte Carlo

techniques.

The option pricing hybrid tree/finite-difference approach we deal with, derives from ap-

plying an efficient recombining binomial tree method in the direction of the volatility and

the interest rate components, whereas the asset price component is locally treated by means

of a one-dimensional partial integro-differential equation (PIDE), to which a finite-difference

scheme is applied. Here, the numerical treatment of the nonlocal term coming from the

jumps involves implicit-explicit techniques, as well as numerical quadratures.

The existing literature on numerical schemes for the option pricing problem in this frame-

work is quite poor. Tree methods are available only for the Heston model, see [94], but they

are not really efficient when the Feller condition does not hold. Another approach is given

by the dicretization of partial differential problems. When the jumps are not considered,

namely for the Heston and the Heston-Hull-White models, available references are widely

recalled in [24, 25]. In the standard Bates model, that is, presence of jumps but no random-

ness in the interest rate, the finite-difference methods for solving the 2-dimensional PIDE

associated with the option pricing problems can be based on implicit, explicit or alternating

direction implicit schemes. The implicit scheme requires to solve a dense sparse system at

each time step. Toivanen [92] proposes a componentwise splitting method for pricing Amer-

ican options. The linear complementarity problem (LCP) linked to the American option

problem is decomposed into a sequence of five one-dimensional LCP’s problems at each time

step. The advantage is that LCP’s need the use of tridiagonal matrices. Chiarella et al.

[34] developed a method of lines algorithm for pricing and hedging American options again

under the standard Bates dynamics. More recently Itkin [64] proposes a unified approach to

handle PIDE’s associated with Lévy’s models of interest in Finance, by solving the diffusion

equation with standard finite-difference methods and by transforming the jump integral into

a pseudo-differential operator. But to our knowledge, no deterministic numerical methods

are available in the literature for the Bates-Hull-White model, that is, when the the interest

rate is assumed to be stochastic.

From the simulation point of view, the main problem consists in the treatment of the CIR

dynamics for the volatility process. It is well known that the standard Euler-Maruyama

discretization does not work in this framework. As far as we know, the most accurate
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simulation schemes for the CIR process have been introduced by Alfonsi [4]. Other methods

are available in the literature, see e.g. [7], but in this chapter the Alfonsi technique is the

one we compare with. In fact, in our numerical experiments we also apply a hybrid Monte

Carlo technique: we couple the simulation of the approximating tree for the volatility and

the interest rate components with a standard simulation of the underlying asset price,

which uses Brownian increments and a straightforward treatment of the jumps. In the

case of American option, this is associated with the Longstaff and Schwartz algorithm [76],

allowing to treat the dynamic programming principle.

As already observed in [24, 25], roughly speaking our methods consist in the application

of the most efficient method whenever this is possible: a recombining binomial tree for

the volatility and the interest rate, a standard PIDE approach or a standard simulation

technique in the direction of the asset price. The results of the numerical tests again

support the accuracy of our hybrid methods and besides, we also justify the good behavior

of the methods from the theoretical point of view (see also Chapter 4).

This chapter is devoted to present in detail the hybrid procedures introduced in [27] to

compute functionals of the Bates jump model with stochastic interest rate. In particular,

we consider a hybrid tree-finite differences procedure which uses a tree method in the

direction of the volatility and the interest rate and a finite-difference approach in order

to handle the underlying asset price process. We also propose hybrid simulations for the

model, following a binomial tree in the direction of both the volatility and the interest

rate, and a space-continuous approximation for the underlying asset price process coming

from a Euler-Maruyama type scheme. As regards the theoretical analysis of the algorithm,

we study here the stability properties of the procedure and we refer to Chapter 4 for an

analysis of the rate of convergence of a generalization of this algorithm under quite general

assumptions. We provide numerical experiments which show the reliability and the efficiency

of the algorithms.

The chapter is organized as follows. In Section 3.2, we introduce the Bates-Hull-White

model. In Section 3.3 we describe the tree procedure for the volatility and the interest rate

pair (Section 3.3.1), we illustrate our discretization of the log-price process (Section 3.3.2)

and the hybrid Monte Carlo simulations (Section 3.3.3). Section 3.4 is devoted to the hybrid

tree/finite-difference method: we first set the numerical scheme for the associated local

PIDE problem (Section 3.4.1), then we apply it to the solution of the whole pricing scheme
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(Section 3.4.2) and analyze the numerical stability of the resulting tree/finite-difference

method (Section 3.4.3). Section 3.5 refers to the practical use of our methods and numerical

results and comparisons are widely discussed.

3.2 The Bates-Hull-White model

We recall that in the Bates-Hull-White model the volatility is assumed to follow the CIR

process and the underlying asset price process contains a further noise from a jump as

introduced by Merton. Moreover, the interest rate follows a stochastic model, which we

assume to be described by a generalized Ornstein-Uhlenbeck (hereafter OU) process. More

precisely, the dynamics under the risk neutral measure of the share price S, the volatility

process Y and the interest rate r, are given by the following jump-diffusion model:

dSt
St−

= (rt − δ)dt+
√
Yt dZ

S
t + dHt,

dYt = κY (θY − Yt)dt+ σY
√
Yt dZ

Y
t ,

drt = κr(θr(t)− rt)dt+ σrdZ
r
t ,

(3.2.1)

where δ denotes the continuous dividend rate, S0, Y0, r0 > 0, ZS , ZY and Zr are correlated

Brownian motions and H is a compound Poisson process with intensity λ and i.i.d. jumps

{Jk}k, that is

Ht =

Kt∑
k=1

Jk, (3.2.2)

K denoting a Poisson process with intensity λ. We assume that the Poisson process K, the

jump amplitudes {Jk}k and the 3-dimensional correlated Brownian motion (ZS , ZY , Zr)

are independent. As suggested by Grzelak and Oosterlee in [55], the significant correlations

are between the noises governing the pairs (S, Y ) and (S, r). So, as done in [25], we assume

that the couple (ZY , Zr) is a standard Brownian motion in R2 and ZS is a Brownian motion

in R which is correlated both with ZY and Zr:

d〈ZS , ZY 〉t = ρ1dt and d〈ZS , Zr〉t = ρ2dt.

We recall that the volatility process Y follows a CIR dynamics with mean reversion rate κY ,

long run variance θY and σY denotes the vol-vol (volatility of the volatility). We assume

that θY , κY , σY > 0 and we stress that we never require in this chapter that the CIR process
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satisfies the Feller condition 2κY θY ≥ σ2
Y , ensuring that the process Y never hits 0. So,

we allow the volatility Y to reach 0. The interest rate rt is described by a generalized OU

process, in particular θr is time-dependent but deterministic and fits the zero-coupon bond

market values, for details see [30]. We write the process r as follows:

rt = σrRt + ϕt (3.2.3)

where

Rt = −κr
∫ t

0
Rs ds+ Zrt and ϕt = r0e

−κrt + κr

∫ t

0
θr(s)e

−κr(t−s)ds. (3.2.4)

From now on we set

ZY = W 1, Zr = W 2, ZS = ρ1W
1 + ρ2W

2 + ρ3W
3,

where W = (W 1,W 2,W 3) is a standard Brownian motion in R3 and the correlation pa-

rameter ρ3 is given by

ρ3 =
√

1− ρ2
1 − ρ2

2, ρ2
1 + ρ2

2 ≤ 1.

By passing to the logarithm X = lnS in the first component, by taking into account the

above mentioned correlations and by considering the process R as in (3.2.3)-(3.2.4), we

reduce to the triple (X,Y,R) given by

dXt = µX(Yt, Rt, t)dt+
√
Yt
(
ρ1dW

1
t + ρ2dW

2
t + ρ3dW

3
t

)
+ dNt, X0 = lnS0 ∈ R,

dYt = µY (Yt)dt+ σY
√
Yt dW

1
t , Y0 > 0,

dRt = µR(Rt)dt+ dW 2
t , R0 = 0,

(3.2.5)

where

µX(y, r, t) = σrr + ϕt − δ −
1

2
y, (3.2.6)

µY (y) = κY (θY − y), (3.2.7)

µR(r) = −κrr, (3.2.8)

and Nt is the compound Poisson process with intensity λ and the i.i.d. jumps {log(1+Jk)}k,
that is

Nt =

Kt∑
k=1

log(1 + Jk),
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K being a Poisson process with intensity λ. Recall that K, the jump amplitudes {log(1 +

Jk)}k and the 3-dimensional standard Brownian motion (W 1,W 2,W 3) are all independent.

We also recall that the Lévy measure associated with N is given by

ν(dx) = λP(log(1 + J1) ∈ dx),

and whenever log(1 + J1) is absolutely continuous then ν has a density as well:

ν(dx) = ν(x)dx = λplog(1+J1)(x)dx, (3.2.9)

plog(1+J1) denoting the probability density function of log(1 + J1). For example, in the

Merton model [77] it is assumed that log(1 + J1) has a normal distribution, that is

log(1 + J1) ∼ N(µ, η2).

This is the choice we will do in our numerical experiments, as done in Chiarella et al. [34].

But other jump-amplitude measures can be selected. For instance, in the Kou model [69]

the law of log(1 + J1) is a mixture of exponential laws:

plog(1+J1)(x) = pλ+e
−λ+x 1{x>0} + (1− p)λ−eλ−x 1{x<0},

1A denoting the indicator function of A. Here, the parameters λ± > 0 control the decrease

of the distribution tails of negative and positive jumps respectively, and p is the probability

of a positive jump.

Given this framework, our aim is to numerically compute the price of options with ma-

turity T and payoff given by a function of the underlying asset price process S. By passing

to the transformation X = lnS, we assume that the payoff is a function of the log-price

process:

European payoff: Ψ(XT ),

American payoff: (Ψ(Xt))t∈[0,T ],

where Ψ ≥ 0. The option price function P (t, x, y, r) is then given by

European price: P (t, x, y, r) = E
(
e−
∫ T
t (σrR

t,r
s +ϕs)dsΨ(Xt,x,y,r

T )
)
,

American price: P (t, x, y, r) = sup
τ∈Tt,T

E
(
e−
∫ τ
t (σrR

t,r
s +ϕs)dsΨ(Xt,x,y,r

τ )
)
,

(3.2.10)

where Tt,T denotes the set of all stopping times taking values on [t, T ]. Note that we have

used the relation between the interest rate (rt)t and the process (Rt)t, see (3.2.3) and

(3.2.4). Hereafter, (Xt,x,y,r, Y t,y, Rt,r) denotes the solution of the jump-diffusion dynamic

(3.2.5) starting at time t in the point (x, y, r).
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3.3 The dicretized process

We first set up the discretization of the triple (X,Y,R) we will take into account.

3.3.1 The 2-dimensional tree for (Y,R)

We consider an approximation for the pair (Y,R) on the time-interval [0, T ] by means

of a 2-dimensional computationally simple tree. This means that we construct a Markov

chain running over a 2-dimensional recombining bivariate lattice and, at each time-step,

both components of the Markov chain can jump only upwards or downwards. We consider

the “multiple-jumps” approach by Nelson and Ramaswamy [79]. A detailed description

of this procedure and of the benefits of its use, can be found in [10, 24, 25]. Here, we

limit the reasoning to the essential ideas and to the main steps in order to set-up the

whole algorithm. We start by considering a discretization of the time-interval [0, T ] in N

subintervals [nh, (n+ 1)h], n = 0, 1, . . . , N , with h = T/N .

For the CIR volatility process Y , we consider the binomial tree procedure firstly intro-

duced in [10]. For n = 0, 1, . . . , N , consider the lattice

Yn = {ynk}k=0,1,...,n with ynk =
(√

Y0 +
σY
2

(2k−n)
√
h
)2
1{
√
Y0+

σY
2

(2k−n)
√
h>0}. (3.3.11)

Note that y0
0 = Y0, so that Yh0 = {Y0}. Moreover, the lattice is binomial recombining and,

for n large, the “small” points degenerate at 0. Let us briefly recall how this lattice arises

(see [10] for all the details). The idea is to reduce to a process with a constant diffusion

coefficient. So, let us consider the process Ŷt =
√
Yt. If we (heuristically) apply Itô formula,

we get that the dynamics of Ŷt is given by

dŶt = µŶ (Ŷt)dt+
σ

2
dZYt ,

for a suitable drift coefficient µŶ = µŶ (y). The term σ
2dBt gives the foremost contribution

to the local movement of Ŷt. The standard binomial recombining tree for the Brownian

motion lives on the lattice

σ

2
(2k − n)

√
h, 0 ≤ k ≤ n ≤ N.

Coming back to Y , we get the lattice in (3.3.11). Note that the term 1{
√
Y0+

σY
2

(2k−n)
√
h>0}

is inserted in order to deal with invertible functions.

107



Chap.. 3 - Hybrid Monte Carlo and tree-finite differences algorithm for pricing options in
the Bates-Hull-White model

We now define the multiple “up” and “down” jumps: the discretized process can jump

just on two nodes which in turn are not necessarily the closest ones to the starting node.

In particular, for each fixed ynk ∈ Yn, we define the “up” and “down” jump by yn+1
ku(n,k) and

yn+1
kd(n,k), ku(n, k) and kd(n, k) being respectively defined as

ku(n, k) = min{k∗ : k + 1 ≤ k∗ ≤ n+ 1 and ynk + µY (ynk )h ≤ yn+1
k∗ }, (3.3.12)

kd(n, k) = max{k∗ : 0 ≤ k∗ ≤ k and ynk + µY (ynk )h ≥ yn+1
k∗ } (3.3.13)

where µY is the drift of Y , defined in (3.2.6), and with the understanding ku(n, k) =

n + 1, respectively kd(n, k) = 0, if the set in the r.h.s. of (3.3.12), respectively (3.3.13), is

empty. The transition probabilities are defined as follows: starting from the node (n, k) the

probability that the process jumps to ku(n, k) and kd(n, k) at time-step n+ 1 are set as

pYu (n, k) = 0 ∨
µY (ynk )h+ ynk − y

n+1
kd(n,k)

yn+1
ku(n,k) − y

n+1
kd(n,k)

∧ 1 and pYd (n, k) = 1− pYu (n, k) (3.3.14)

respectively. We recall that the multiple jumps and the transition probabilities are set in

order to best fit the local first moment of the diffusion Y . We will see in Chapter 4 that

this property will be crucial in order to study the theoretical convergence of the procedure.

We follow the same approach for the binomial tree for the process R. For n = 0, 1, . . . , N

consider the lattice

Rn = {rnj }j=0,1,...,n with rnj = (2j − n)
√
h. (3.3.15)

Notice that r0,0 = 0 = R0. For each fixed rnj ∈ Rn, we define the “up” and “down” jump

by means of ju(n, j) and jd(n, j) defined by

ju(n, j) = min{j∗ : j + 1 ≤ j∗ ≤ n+ 1 and rnj + µR(rnj )h ≤ rn+1
j∗ }, (3.3.16)

jd(n, j) = max{j∗ : 0 ≤ j∗ ≤ j and rnj + µR(rnj )h ≥ rn+1
j∗ }, (3.3.17)

µR being the drift of the process R, see (3.2.8). As before, ju(n, j) = n + 1, respectively

jd(n, j) = 0, if the set in the r.h.s. of (3.3.16), respectively (3.3.17), is empty and the

transition probabilities are as follows: starting from the node (n, j), the probability that

the process jumps to ju(n, j) and jd(n, j) at time-step n+ 1 are set as

pRu (n, j) = 0 ∨
µR(rnj )h+ rnj − r

n+1
jd(n,j)

rn+1
ju(n,j) − r

n+1
jd(n,j)

∧ 1 and pRd (n, j) = 1− pRu (n, j) (3.3.18)
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respectively.

Figure 3.1 shows a picture of the lattices Yn (left) and Rn (right), together with possible

instances of the up and down jumps.

Figure 3.1: The tree for the process Y (left) and for R (right), showing as the trees may be

visited.

The whole tree procedure for the pair (Y,R) is obtained by joining the trees built for Y

and for R. Namely, for n = 0, 1, . . . , N , consider the lattice

Yn ×Rn = {(ynk , rnj )}k,j=0,1,...,n. (3.3.19)

Starting from the node (n, k, j), which corresponds to the position (ynk , r
n
j ) ∈ Yn ×Rn, we

define the four possible jumps by means of the following four nodes at time n+ 1:

(n+ 1, ku(n, k), ju(n, j)) with probability puu(n, k, j) = pYu (n, k)pRu (n, j),

(n+ 1, ku(n, k), jd(n, j)) with probability pud(n, k, j) = pYu (n, k)pRd (n, j),

(n+ 1, kd(n, k), ju(n, j)) with probability pdu(n, k, j) = pYd (n, k)pRu (n, j),

(n+ 1, kd(n, k), jd(n, j)) with probability pdd(n, k, j) = pYd (n, k)pRd (n, j),

(3.3.20)

where the above nodes ku(n, k), kd(n, k), ju(n, j), jd(n, j) and the above probabilities

pYu (n, k), pYd (n, k), pRu (n, j), pRd (n, j) are defined in (3.3.12)-(3.3.13), (3.3.16)-(3.3.17), (3.3.14)

and (3.3.18). The factorization of the jump probabilities in (3.3.20) follows from the or-

thogonality property of the noises driving the two processes. This procedure gives rise to

a Markov chain (Ŷ h
n , R̂

h
n)n=0,...,N that weakly converges, as h → 0, to the diffusion process
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(Yt, Rt)t∈[0,T ] solution to

dYt = µY (Yt)dt+ σY
√
Yt dW

1
t , Y0 > 0,

dRt = µR(Rt) dt+ dW 2
t , R0 = 0.

This can be seen by using standard results (see e.g. the techniques in [79]) and the con-

vergence of the chain approximating the volatility process proved in [10]. And this holds

independently of the validity of the Feller condition 2κY θY ≥ σ2
Y .

Details and remarks on the extension of this procedure to more general cases can be found

in [25]. In particular, if the correlation between the Brownian motions driving (Y,R) was

not null, one could define the jump probabilities by matching the local cross-moment (see

Remark 3.1 in [25]).

3.3.2 The approximation on the X-component

We describe here how we manage the X-component in (3.2.5) by taking into account the

tree procedure given for the pair (Y,R). We go back to (3.2.5): by isolating
√
YtdW

1
t in the

second line and dW 2
t in the third one, we obtain

dXt = µ(Yt, Rt, t)dt+ ρ3

√
Yt dW

3
t +

ρ1

σY
dYt + ρ2

√
YtdRt + dNt (3.3.21)

with

µ(y, r, t) = µX(y, r, t)− ρ1

σY
µY (y)− ρ2

√
y µR(r)

= σrr + ϕt − δ − 1
2 y −

ρ1

σY
κY (θY − y) + ρ2κrr

√
y

(3.3.22)

(µX , µY and µR are defined in (3.2.6), (3.2.7) and (3.2.8) respectively). To numerically solve

(3.3.21), we mainly use the fact that the noises W 3 and N are independent of the processes

Y and R. So, we first take the approximating tree (Ŷ h
n , R̂n)n=0,1,...,N−1 discussed in Section

3.3.1 and we set (Ȳ h
t , R̄

h
t )t∈[0,T ] = (Ŷ h

bt/hc+1, R̂hbt/hc+1)t∈[0,T ] the associated time-continuous

càdlàg approximating process for (Y,R). Then, we insert the discretization (Ȳ h, R̄h) for

(Y,R) in the coefficients of (3.3.21). Therefore, the final process X̄h approximating X is

set as follows: X̄h
0 = X0 and for t ∈ (nh, (n+ 1)h] with n = 0, 1, . . . , N − 1

X̄h
t = X̄h

nh + µ(Ȳ h
nh, R̄

h
nh, nh)(t− nh) + ρ3

√
Ȳ h
t (W 3

t −W 3
nh)

+
ρ1

σY
(Ȳ h
t − Ȳ h

nh) + ρ2

√
Ȳ h
t (R̄ht − R̄hnh) + (Nt −Nnh).

(3.3.23)
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3.3.3 The Monte Carlo approach

Let us show how one can simulate a single path by using the tree approximation (3.3.19)

for the couple (Y,R) and the Euler scheme (3.3.23) for the X-component.

Let (X̂n)n=0,1,...,N be the sequence approximating X at times nh, n = 0, 1, . . . , N , by

means of the scheme in (3.3.23): X̂h
0 = X0 and for t ∈ [nh, (n+1)h] with n = 0, 1, . . . , N−1

then

X̂h
n+1 = X̂h

n + µ(Ŷ h
n , R̂

h
n, nh)h+ ρ3

√
hŶ h

n ∆n+1

+
ρ1

σY
(Ŷ h
n+1 − Ŷ h

n ) + ρ2

√
Ŷ h
n (R̂hn+1 − R̂hn) + (N(n+1)h −Nnh),

where µ is defined in (3.3.22) and ∆1, . . . ,∆N denote i.i.d. standard normal r.v.’s, indepen-

dent of the noise driving the chain (Ŷ , R̂). The simulation of N(n+1)h −Nnh is straightfor-

ward: one first generates a Poisson r.v. Kn+1
h of parameter λh and if Kn+1

h > 0 then also the

log-amplitudes log(1 + Jn+1
k ) for k = 1, . . . ,Kn+1

h are simulated. Then, the observed jump

of the compound Poisson process is written as the sum of the simulated log-amplitudes, so

that

X̂h
n+1 = X̂h

n + µ(Ŷ h
n , R̂

h
n, nh)h+ ρ3

√
hŶ h

n ∆n+1

+
ρ1

σY
(Ŷ h
n+1 − Ŷ h

n ) + ρ2

√
Ŷ h
n (R̂hn+1 − R̂hn) +

Kn+1
h∑
k=1

log(1 + Jn+1
k ),

(3.3.24)

in which the last sum is set equal to 0 if Kn+1
h = 0.

The above simulation scheme is plain: at each time step n ≥ 1, one lets the pair (Y,R)

evolve on the tree and simulate the process X by using (3.3.24). We will refer to this

procedure as hybrid Monte Carlo algorithm, the word “hybrid” being related to the fact

that two different noise sources are considered: we simulate a continuous process in space

(the component X) starting from a discrete process in space (the tree for (Y,R)).

The simulations just described will be used in Section 3.5 in order to set-up a Monte

Carlo procedure for the computation of the option price function (3.2.10). In the case of

American options, the simulations are coupled with the Monte Carlo algorithm by Longstaff

and Schwartz in [76].
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3.4 The hybrid tree/finite difference approach

The price-function P (t, x, y, r) in (3.2.10) is typically computed by means of the standard

backward dynamic programming algorithm. So, consider a discretization of the time interval

[0, T ] into N subintervals of length h = T/N . Then the price P (0, X0, Y0, R0) is numerically

approximated through the quantity Ph(0, X0, Y0, R0) backwardly given byPh(T, x, y, r) = Ψ(x) and as n = N − 1, . . . , 0,

Ph(nh, x, y, r) = max
{

Ψ̂(x), e−(σrr+ϕnh)hE
(
Ph
(
(n+ 1)h,Xnh,x,y,r

(n+1)h , Y
nh,y

(n+1)h, R
nh,r
(n+1)h

))}
,

(3.4.25)

for (x, y, r) ∈ R× R+ × R, in which

Ψ̂(x) =

 0 in the European case,

Ψ(x) in the American case.

So, what is needed is a good approximation of the expectations appearing in the above

dynamic programming principle. This is what we first deal with, starting from the dicretized

process (Ȳ h, Ȳ h, R̄h) introduced in Section 3.3.

3.4.1 The local 1-dimensional partial integro-differential equation

Let X̄h denote the process in (3.3.23). If we set

Z̄ht = X̄h
t −

ρ1

σY
(Ȳ h
t − Ȳ h

nh)− ρ2

√
Ȳ h
nh(R̄ht − R̄nh), t ∈ [nh, (n+ 1)h] (3.4.26)

then we have

dZ̄ht = µ(Ȳ h
nh, R̄

h
nh, nh)dt+ ρ3

√
Ȳ h
nh dW

3
t ,+dNt t ∈ (nh, (n+ 1)h],

Z̄hnh = X̄h
nh,

(3.4.27)

that is, Z̄h solves a jump-diffusion stochastic equation with constant coefficients and at time

nh it starts from Ȳ h
nh. Take now a function f : we are interested in computing

E(f(X(n+1)h) | Xnh = x, Ynh = y,Rnh = r).

We actually need a function f of all variables (x, y, r) but at the present moment the

variable x is the most important one, we will see later on that the introduction of (y, r) is

112



Sec. 3.4 - The hybrid tree/finite difference approach

straightforward. So, we numerically compute the above expectation by means of the one

done on the approximating processes, that is,

E
(
f(X̄h

(n+1)h) | X̄h
nh = x, Ȳ h

nh = y, R̄hnh = r
)

= E
(
f(Z̄h(n+1)h +

ρ1

σY
(Ȳ h

(n+1)h − Ȳ
h
nh) + ρ2

√
Ȳ h
nh(R̄h(n+1)h − R̄

h
nh)) | Z̄hnh = x, Ȳ h

nh = y, R̄hnh = r
)
,

in which we have used the process Z̄h in (3.4.26). Since (Ȳ h, R̄h) is independent of the

Brownian noise W 3 and on the compound Poisson process N driving Z̄h in (3.4.27), we

have the following: we set

Ψf (ζ;x, y, r) = E(f(Z̄h(n+1)h + ζ) | Z̄hnh = x, Ȳ h
nh = y, R̄hnh = r) (3.4.28)

and we can write

E(f(X̄h
(n+1)h) | X̄h

nh = x, Ȳ h
nh = y, R̄hnh = r)

= E
(

Ψf

(
ρ1

σY
(Ȳ h

(n+1)h − Ȳ
h
nh) + ρ2

√
y(R̄h(n+1)h − R̄

h
nh);x, y, r

) ∣∣∣ Ȳ h
nh = y, R̄hnh = r

)
.

(3.4.29)

Now, in order to compute the quantity Ψf (ζ) in (3.4.28), we consider a generic function g

and set

u(t, x; y, r) = E(g(Z̄h(n+1)h) | Z̄ht = x, Ȳ h
t = y, R̄ht = r), t ∈ [nh, (n+ 1)h].

By (3.4.27) and the Feynman-Kac representation formula we can state that, for every fixed

r ∈ R and y ≥ 0, the function (t, x) 7→ u(t, x; y, r) is the solution to ∂tu(t, x; y, r) + L(y,r)u(t, x; y, r) = 0 y ∈ R, t ∈ [nh, (n+ 1)h),

u((n+ 1)h, x; y, r) = g(y) x ∈ R,
(3.4.30)

where L(y,r) is the integro-differential operator

L(y,r)u(t, x; y, r) = µ(y, r)∂xu(t, x; y, r) + 1
2ρ

2
3y∂

2
xxu(t, x; y, r)

+

∫ +∞

−∞
[u(t, x+ ξ; y, r)− u(t, x; y, r)] ν(ξ)dξ,

(3.4.31)

where µ is given in (3.3.22) and ν is the Lévy measure associated with the compound

Poisson process N , see (3.2.9). We are assuming here that the Lévy measure is absolutely

continuous (in practice, we use a Gaussian density), but it is clear that the procedure we

are going to describe can be straightforwardly extended to other cases.
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Finite-difference and numerical quadrature

In order to numerically compute the solution to the PIDE (3.4.30) at time nh, we generalize

the approach already developed in [24, 25]: we apply a one-step finite-difference algorithm

to the differential part of the problem coupled now with a quadrature rule to approximate

the integral term.

We start by fixing an infinite grid on the x-axis X = {xi = X0 + i∆x}i∈Z, with ∆x =

xi − xi−1, i ∈ Z. For fixed n and given r ∈ R and y ≥ 0, we set uni = u(nh, xi; y, r) the

discrete solution of (3.4.30) at time nh on the point xi of the grid X – for simplicity of

notations, in the sequel we do not stress in uni the dependence on (y, r).

First of all, to numerically compute the integral term in (3.4.31) we need to truncate the

infinite integral domain to a bounded interval I, to be taken large enough in order that∫
I
ν(ξ)dξ ≈ λ. (3.4.32)

In terms of the process, this corresponds to truncate the large jumps. We assume that

the tails of ν rapidly decrease – this is not really restrictive since applied models typically

require that the tails of ν decrease exponentially. Hence, we take L ∈ N large enough, set

I = [−L∆y,+L∆y] and apply to (3.4.32) the trapezoidal rule on the grid X with the same

step ∆x previously defined. Then, for ξl = l∆x, l = −L, . . . , L, we have∫ +L∆y

−L∆y
[u(t, x+ ξ)− u(t, x)] ν(ξ)dξ ≈ ∆x

L∑
l=−L

(u(t, x+ ξl)− u(t, x)) ν(ξl). (3.4.33)

We notice that xi + ξl = X0 + (i + l)∆x ∈ X , so the values u(t, xi + ξl) are well defined

on the numerical grid X for any i, l. These are technical settings and can be modified and

calibrated for different Lévy measures ν.

But in practice one cannot solve the PIDE problem over the whole real line. So, we

have to choose artificial bounds and impose numerical boundary conditions. We take a

positive integer M > 0 and we define a finite grid XM = {xi = X0 + i∆x}i∈JM , with

JM = {−M, . . . ,M}, and we assume that M > L. Notice that for x = xi ∈ XM then

the integral term in (3.4.33) splits into two parts: one part concerning nodes falling into

the numerical domain XM and another part concerning nodes falling out of XM . As an

example, at time t = nh we have

L∑
l=−L

u(nh, xi+ξl)ν(ξl) ≈
L∑

l=−L
uni+lν(ξl) =

∑
l : |l|≤L,|i+l|≤M

uni+l ν(ξl)+
∑

l : |l|≤L,|i+l|>M

ũni+l ν(ξl),
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where ũn· stands for (unknown) values that fall out of the finite numerical domain XM . This

implies that we must choose some suitable artificial boundary conditions. In a financial

context, in [39] it has been shown that a good choice for the boundary conditions is the

payoff function. Although this is the choice we will do in our numerical experiments, for

the sake of generality we assume here the boundary values outside XM to be settled as

ũni = b(nh, xi), where b = b(t, x) is a fixed function defined in [0, T ]× R.

Going back to the numerical scheme to solve the differential part of the equation (3.4.30),

as already done in [25], we apply an implicit in time approximation. However, to avoid to

solve at each time step a linear system with a dense matrix, the non-local integral term needs

anyway an explicit in time approximation. We then obtain an implicit-explicit (hereafter

IMER) scheme as proposed in [39] and [28]. Notice that more sophisticated IMER methods

may be applied, see for instance [29, 87]. Let us stress that these techniques could be used

in our framework, being more accurate but expensive.

As done in [25], to achieve greater precision we use the centered approximation for both

first and second order derivatives in space. The discrete solution un at time nh is then

computed in terms of the known value un+1 at time (n + 1)h by solving the following

discrete problem: for all i ∈ JM ,

un+1
i − uni

h
+µ̃X(y, r)

uni+1 − uni−1

2∆x
+

1

2
ρ2

3 y
uni+1 − 2uni + uni−1

∆x2
+∆x

R∑
l=−R

(
un+1
i+l − u

n+1
i

)
ν(ξl) = 0.

(3.4.34)

We then get the solution un = (un−M , . . . , u
n
M )T by solving the following linear system

Aun = Bun+1 + d, (3.4.35)

where A = A(y, r) and B are (2M+1)× (2M+1) matrices and d is a (2M+1)-dimensional

boundary vector defined as follows.

I The matrix A. From (3.4.34), we set A as the tridiagonal real matrix given by

A =



1 + 2β −α− β
α− β 1 + 2β −α− β

. . .
. . .

. . .

α− β 1 + 2β −α− β
α− β 1 + 2β


, (3.4.36)
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with

α =
h

2∆x
µ(nh, y, r) and β =

h

2∆x2
ρ2

3y, (3.4.37)

µ being defined in (3.3.22). We emphasize that at each time step n, the quantities v and x

are constant and known values (defined by the tree procedure for (Y,R)) and then α and β

are constant parameters.

I The matrix B. Again from (3.4.34), B is the (2M + 1)× (2M + 1) real matrix given by

B = I + h∆x


ν(0)− Λ ν(∆x) . . . ν(L∆x) 0

ν(−∆x) ν(0)− Λ ν(∆x) . . . ν(L∆x)
. . .

. . .
. . .

0 ν(−L∆x) . . . ν(−∆x) ν(0)− Λ

 , (3.4.38)

where I is the identity matrix and

Λ =
L∑

l=−L
ν(ξl).

I The boundary vector d. The vector d ∈ R2M+1 contains the numerical boundary

values:

d = anb + an+1
b , (3.4.39)

with

anb = ((β − α)bn−M−1, 0, . . . , 0, (β + α)bnM+1)T ∈ R2M+1

and an+1
b ∈ R2M+1 is such that

(an+1
b )i =



h∆x

−M−i−1∑
l=−L

ν(xl) b
n+1
i+l , for i = −M, . . . ,−M + L− 1,

0 for i = −M + L, . . . ,M − L,

h∆x
L∑

l=M−i+1

ν(xl) b
n+1
i+l , for i = M − L+ 1, . . . ,M − 1,

where we have used the standard notation bni = b(nh, xi), i ∈ JM .

In practice, we numerically solve the linear system (3.4.35) with an efficient algorithm

(see next Remark 3.5.1). We notice here that a solution to (3.4.35) really exists because
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for β 6= |α|, the matrix A = A(y, r) is invertible (see e.g. Theorem 2.1 in [31]). Then, at

time nh, for each fixed y ≥ 0 and r ∈ R, we approximate the solution x 7→ u(nh, x; y, r)

of (3.4.30) on the points xi’s of the grid in terms of the discrete solution un = {uni }i∈JM ,

which in turn is written in terms of the value un+1 = {un+1
i }i∈JM at time (n+1)h. In other

words, we set

u(nh, xi; y, r) ≈ uni , i ∈ JM , where un = (uni )i∈JM solves (3.4.35) (3.4.40)

The final local finite-difference approximation

We are now ready to tackle our original problem: the computation of the function Ψf (ζ;x, y, r)

in (3.4.28) allowing one to numerically compute the expectation in (3.4.29). So, at time

step n, the pair (y, r) is chosen on the lattice Yn×Rn: y = ynk , r = rnj for 0 ≤ k, j ≤ n. We

call Ank,j the matrix A in (3.4.36) when evaluated in (ynk , r
n
j ) and dn the boundary vector in

(3.4.39) at time-step n. Then, (3.4.40) gives

Ψf (ζ;xi, y
n
k , r

n
j ) ' uni,k,j , where un·,k,j = (uni,k,j)i∈JM solves the linear system

Ank,ju
n
·,k,j = Bf(x· + ζ) + dn.

Therefore, by taking the expectation w.r.t. the tree-jumps, the expectation in (3.4.29) is

finally computed on XM × Yn ×Rn by means of the above approximation:

E(f(X̄h
(n+1)h) | X̄h

nh = xi, Ȳ
h
nh = ynk , R̄

h
nh = rnj ) ' uni,k,j ,

where un·,k,j = (uni,k,j)i∈JM solves the linear system

Ank,ju
n
·,k,j =

∑
a,b∈{u,d}

pab(n, k, j)Bf
(
x· +

ρ1

σY
(yn+1
ka(n,k) − y

n
k ) + ρ2

√
y(rn+1

jb(n,j)
− rnj )

)
+ dn.

Finally, if f is a function on the whole triple (x, y, r), by using standard properties of the

conditional expectation one gets

E(f(X̄h
(n+1)h, Ȳ

h
(n+1)h, R̄

h
(n+1)h) | X̄h

nh = xi, Ȳ
h
nh = ynk , R̄

h
nh = rnj ) ' uni,k,j ,

where un·,k,j = (uni,k,j)i∈JM solves the linear system

Ank,ju
n
·,k,j

=
∑

a,b∈{u,d}

pab(n, k, j)Bf
(
x· +

ρ1

σY
(yn+1
ka(n,k) − y

n
k ) + ρ2

√
y(rn+1

jb(n,j)
− rnj ), yn+1

ka(n,k), r
n+1
jb(n,j)

)
+ dn.

(3.4.41)
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3.4.2 Pricing European and American options

We are now ready to approximate the function Ph solution to the dynamic programming

principle (3.4.25). We consider the discretization scheme (X̄h, Ȳ h, R̄h) discussed in Section

3.4.1 and we use the approximation (3.4.41) for the conditional expectations that have to

be computed at each time step n. So, for every point (xi, y
n
k , r

n
j ) ∈ XM × Yn × Rn, by

(3.4.41) we have

E
(
Ph
(
(n+ 1)h,X

nh,xi,y
n
k ,r

n
j

(n+1)h , Y
nh,ynk

(n+1)h, R
nh,rnj
(n+1)h

))
' uni,k,j

where un·,k,j = (uni,k,j)i∈JM solves the linear system

Ank,ju
n
·,k,j = B

∑
a,b∈{u,d}

pab(n, k, j)×

×Ph
(

(n+ 1)h, y· +
ρ1

σY
(yn+1
ka(n,k) − y

n
k ) + ρ2

√
y(rn+1

jb(n,j)
− rnj , ynk , rnj ), yn+1

ka(n,k), r
n+1
jb(n,j)

)
+ dn.

(3.4.42)

We then define the approximated price P̃h(nh, x, y, r) for (x, y, r) ∈ XM × Yn × Rn and

n = 0, 1, . . . , N asP̃h(T, xi, y
N
k , r

N
j ) = Ψ(xi) and as n = N − 1, . . . , 0:

P̃h(nh, xi, y
n
k , r

n
j ) = max

{
Ψ̂(xi), e

−(σrrnj +ϕnh)hũni,k,j

} (3.4.43)

in which ũn·,k,j = (ũni,k,j)i∈JM is the solution to the system in (3.4.42) with Ph replaced by

P̃h.

Note that the system in (3.4.42) requires the knowledge of the function y 7→ P̃h((n +

1)h, x, y, r) in points x’s that do not necessarily belong to the grid XM . Therefore, in

practice we compute such a function by means of linear interpolations, working as follows.

For fixed n, k, j, a, b, we set In,k,j,a,b(i), i ∈ JM , as the index such that

xi +
ρ1

σY
(yn+1
ka(n,k) − y

n
k ) + ρ2

√
y(rn+1

jb(n,j)
− rnj ) ∈ [xIn,k,j,a,b(i), xIn,k,j,a,b(i)+1),

with In,k,j,a,b(i) = −M if xi+
ρ1

σY
(yn+1
ka(n,k)−y

n
k )+ρ2

√
y(rn+1

jb(n,j)
−rnj ) < −M and In,k,j,a,b(i)+

1 = M if xi + ρ1

σY
(yn+1
ka(n,k) − y

n
k ) + ρ2

√
y(rn+1

jb(n,j)
− rnj ) > M . We set

qn,k,j,a,b(i) =
xi + ρ1

σY
(yn+1
ka(n,k) − y

n
k ) + ρ2

√
y(rn+1

jb(n,j)
− rnj )− xIn,k,j,a,b(i)

∆x
.
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Note that qn,k,j,a,b(i) ∈ [0, 1). We define

(Ia,bP̃h)((n+ 1)h, xi, y
n+1
ka(n,k), r

n+1
jb(n,j)

) = P̃h((n+ 1)h, xIn,k,j,a,b(i), y
n+1
ka(n,k), r

n+1
jb(n,j)

) (1− qn,k,j,a,b(i))

+ P̃h((n+ 1)h, xIn,k,j,a,b(i)+1, y
n+1
ka(n,k), r

n+1
jb(n,j)

) qn,k,j,a,b(i)

and we set

P̃h

(
(n+ 1)h, xi +

ρ1

σY
(yn+1
ka(n,k) − y

n
k ) + ρ2

√
y(rn+1

jb(n,j)
− rnj ), yn+1

ka(n,k), r
n+1
jb(n,j)

)
= (Ia,bP̃h)((n+ 1)h, xi, y

n+1
ka(n,k), r

n+1
jb(n,j)

).

Therefore, starting from (3.4.42), in practice the function ũn·,k,j = (ũni,k,j)i∈JM in (3.4.43) is

taken as the solution to the linear system

Ank,j ũ
n
·,k,j = B

∑
a,b∈{u,d}

pab(n, k, j)(Ia,bP̃h)((n+ 1)h, x·, y
n+1
ka(n,k), r

n+1
jb(n,j)

) + dn. (3.4.44)

We can then state our final numerical procedure:P̃h(T, xi, y
N
k , r

N
j ) = Ψ(xi) and as n = N − 1, . . . , 0:

P̃h(nh, xi, y
n
k , r

n
j ) = max

{
Ψ̂(xi), e

−(σrrnj +ϕnh)hũni,k,j

} (3.4.45)

ũn·,k,j = (ũni,k,j)i∈JM being the solution to the system (3.4.44).

Remark 3.4.1. In the case of an infinite grid, that is M = +∞, i 7→ In,k,j,a,b(i) is a

translation: In,k,j,a,b(i) = In,k,j,a,b(0) + i. So, xi 7→ (Ia,bP̃h)((n+ 1)h, xi, y
n+1
ka(n,k), r

n+1
jb(n,j)

) is

just a linear convex combination of translations of xi 7→ P̃h((n+ 1)h, xi, y
n+1
ka(n,k), r

n+1
jb(n,j)

).

3.4.3 Stability analysis of the hybrid tree/finite-difference method

We analyze here the stability of the resulting tree/finite-difference scheme. To this purpose,

we consider a norm, defined on functions of the variables (x, y, r), which is the uniform norm

with respect to the volatility and the interest rate components (y, r) and coincides with the

standard l2 norm with respect to the direction x (see next (3.4.51)). The choice of the l2

norm allows one to perform a von Neumann analysis in the component x on the infinite grid

X = {xi = X0 + i∆x}i∈Z, that is, without truncating the domain and without imposing

boundary conditions. Therefore, our stability analysis does not take into account boundary

effects. This approach is extensively used in the literature, see e.g. [45], and yields good

criteria on the robustness of the algorithm independently of the boundary conditions.
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Let us first write down explicitly the scheme (3.4.45) on the infinite grid X = {xi}i∈Z.

For a fixed function f = f(t, x, y, r), we set g = f (in the case of American options) or

g = 0 (in the case of European options) and we consider the numerical scheme given byFh(T, xi, y
N
k , r

N
j ) = f(T, xi, y

N
k , r

N
j ) and as n = N − 1, . . . , 0:

Fh(nh, xi, y
n
k , r

n
j ) = max

{
g(nh, xi, y

n
k , r

n
j ), e−(σrrnj +ϕnh)huni,k,j

} (3.4.46)

where un·,k,j = (uni,k,j)i∈Z is the solution to

(αn,k,j − βn,k)uni−1,k,j + (1 + 2βn,k)u
n
i,k,j − (αn,k,j + βn,k)u

n
i+1,k,j

=
∑

a,b∈{d,u}

pab(n, k, j)×
[
(Ia,bFh)((n+ 1)h, xi, y

n+1
ka(n,k), r

n+1
jb(n,j)

)+

+h∆x
∑
l

ν(ξl)
(
(Ia,bFh)((n+ 1)h, xi+l, y

n+1
ka(n,k), r

n+1
jb(n,j)

)

−(Ia,bFh)((n+ 1)h, xi, y
n+1
ka(n,k), r

n+1
jb(n,j)

)
)]
,

(3.4.47)

in which αn,k,j and βn,k,j are the coefficients α and β defined in (3.4.37) when evaluated

in the pair (ynk , r
n
j ). Note that (3.4.47) is simply the linear system (3.4.44) on the infinite

grid, with dn ≡ 0 (no boundary conditions are needed). Let us stress that in next Remark

3.4.3 we will see that, since βn,k ≥ 0, a solution to (3.4.47) does exist, at least for “nice”

functions f . It is clear that the case g = f is linked to the American algorithm whereas the

case g = 0 is connected to the European one: (3.4.46) gives our numerical approximation

of the function

F (t, x, y, r) =


E
(
e−(σr

∫ T
t Rt,rs ds+

∫ T
t ϕsds)f(T,Xt,x,y,r

T , Y t,y
T , Rt,rT )

)
if g = 0,

sup
τ∈Tt,T

E
(
e−(σr

∫ τ
t R

t,r
s ds+

∫ τ
t ϕsds)f(τ,Xt,x,y,r

τ , Y t,y
τ , Rt,rτ )

)
if g = f,

(3.4.48)

at times nh and in the points of the grid X × Yn ×Rn.

The “discount truncated scheme” and its stability

In our stability analysis, we consider a numerical scheme which is a slight modification of

(3.4.46): we fix a (possibly large) threshold ϑ > 0 and we consider the schemeF
ϑ
h (T, xi, y

N
k , r

N
j ) = f(T, xi, y

N
k , r

N
j ) and as n = N − 1, . . . , 0:

F ϑh (nh, xi, y
n
k , r

n
j ) = max

{
g(nh, xi, y

n
k , r

n
j ), e

−(σrrnj 1{rnj >−ϑ}+ϕnh)h
uni,k,j

} (3.4.49)
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with g = f or g = 0, where un·,k,j = (uni,k,j)i∈Z is the solution to (3.4.47), with (Ia,bFh)

replaced by (Ia,bF
ϑ
h ). Let us stress that the above scheme (3.4.46) really differs from (3.4.49)

only when σr > 0 (stochastic interest rate). And in this case, in the discounting factor of

(3.4.49) we do not allow rnj to run everywhere on its grid: in the original scheme (3.4.46), the

exponential contains the term rnj whereas in the present scheme (3.4.49) we put rnj 1{rnj >−ϑ},

so we kill the points of the grid Rn below the threshold −ϑ. And in fact, (3.4.49) aims to

numerically compute the function

F ϑ(t, x, y, r) =


E
(
e
−(σr

∫ T
t Rt,rs 1

{Rt,rs >−ϑ}
ds+

∫ T
t ϕsds)

f(T,Xt,x,y,r
T , Y t,y

T , Rt,rT )
)

if g = 0,

sup
τ∈Tt,T

E
(
e
−(σr

∫ τ
t R

t,r
s 1

{Rt,rs >−ϑ}
ds+

∫ τ
t ϕsds)f(τ,Xt,x,y,r

τ , Y t,y
τ , Rt,rτ )

)
if g = f,

(3.4.50)

at times nh and in the points of the grid X ×Yn×Rn. Recall that in practice h is small but

fixed, so that the implemented scheme incorporates a threshold (see for instance the tree

given in Figure 3.1). And actually, in our numerical experiments we observe a real stability.

However, we will discuss later on how much one can lose with respect to the solution of

(3.4.46).

For n = N, . . . , 0, the scheme (3.4.49) returns a function in the variables (x, y, r) ∈
X × Yn ×Rn. Note that Yn ×Rn ⊂ IYn × IRn , where

IYn = [yn0 , y
n
n] and IRn = [rn0 , r

n
n],

that is, the intervals between the smallest and the biggest node at time-step n:

yn0 =
(√

Y0 −
σY
2
n
√
h
)2
1{
√
Y0−

σY
2
n
√
h>0}, ynn =

(√
Y0 +

σY
2
n
√
h
)2
,

rn0 = −n
√
h, rnn = n

√
h.

As n decreases to 0, the intervals IYn and IRn are becoming smaller and smaller and at time 0

they collapse to the single point y0
0 = Y0 and r0

0 = R0 = 0 respectively. So, the norm we are

going to define takes into account these facts: at time nh we consider for φ = φ(t, x, y, r)

the norm

‖φ(nh, ·)‖n = sup
(y,r)∈IYn ×IRn

‖φ(nh, ·, y, r)‖l2(X ) = sup
(y,r)∈IYn ×IRn

(∑
i∈Z
|φ(nh, xi, y, r)|2∆y

) 1
2
.

(3.4.51)
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In particular,

‖φ(0, ·)‖0 = ‖φ(0, ·, Y0, R0)‖l2(X ) =
(∑
i∈Z
|φ(xi, Y0, R0)|2∆y

)1/2
and

‖φ(T, ·)‖N ≤ sup
(y,r)∈R+×R

‖φ(xi, y, r)‖l2(X ) = sup
(y,r)∈R+×R

(∑
i∈Z
|φ(xi, y, r)|2∆y

)1/2
.

We are now ready to give our stability result.

Theorem 3.4.2. Let f ≥ 0 and, in the case g = f , suppose that

sup
t∈[0,T ]

|f(t, x, y, r)| ≤ γT |f(T, x, y, r)|,

for some γT > 0. Then, for every ϑ > 0 the numerical scheme (3.4.49) is stable with respect

to the norm (3.4.51):

‖F ϑh (0, ·)‖0 ≤ CN,ϑT ‖F ϑh (T, ·)‖N = CN,ϑT ‖f(T, ·)‖N , ∀h,∆y,

where

CN,ϑT =

 e2λcT+σrϑT−
∑N
n=1 ϕnhh

N→∞−→ CϑT = e2λcT+σrϑT−
∫ T
0 ϕtdt if g = 0,

max
{
γT , e

2λcT+σrϑT−
∑N
n=1 ϕnhh

}
N→∞−→ CϑT = max

{
γT , e

2λcT+σrϑT−
∫ T
0 ϕtdt

}
if g = f,

in which c > 0 is such that
∑

l ν(ξl)∆x ≤ λc. In the standard Bates model, that is σr = 0

and deterministic interest rate rt = ϕt, the discount truncated scheme (3.4.49) coincides

with the standard scheme (3.4.45) and the stability follows for (3.4.45).

Proof. In order to simplify the notation, we set gni,k,j = g(nh, xi, y
n
k , r

n
j ) and, similarly,

Fni,k,j = F ϑh (nh, xi, y
n
k , r

n
j ), (Ia,bF

n+1
h )i,ka,jb = (Ia,bF

ϑ
h )((n+1)h, xi, y

n+1
ka(n,k), r

n+1
jb(n,j)

) (we have

also dropped the dependence on ϑ). The scheme (3.4.49) says that, at each time step n < N

and for each fixed 0 ≤ k, j ≤ n,

Fni,k,j = max
{
gni,k,j , e

−(σrrnj 1{rnj >−ϑ}+ϕnh)h
uni,k,j

}
, (3.4.52)

where, according to (3.4.47), uni,k,j solves

(αn,k,j − βn,k)uni−1,k,j + (1 + 2βn,k)u
n
i,k,j − (αn,k,j + βn,k)u

n
i+1,k,j

=
∑

a,b∈{d,u}

pab(n, k, j)
(

(Ia,bF
n+1)i,ka,jb + h∆x

∑
l

ν(ξl)
[
(Ia,bF

n+1)i+l,ka,jb − (Ia,bF
n+1)i,ka,jb

])
.

(3.4.53)
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Let Fϕ denote the Fourier transform of ϕ ∈ l2(X ), that is,

Fϕ(θ) =
∆x√

2π

∑
s∈Z

ϕse
−i s∆yθ, θ ∈ R,

i denoting the imaginary unit. We get from (3.4.53)(
(αn,k,j − βn,k)e−i θ∆x + 1 + 2βn,k − (αn,k,j + βn,k)e

i θ∆x
)
Funk,j(θ)

=
(

1 + h∆x
∑

l ν(ξl)(e
i lθ∆x − 1)

)∑
a,b∈{d,u} pab(n, k, j)F(Ia,bF

n+1)ka,jb(θ).
(3.4.54)

Note that

|(αn,k,j − βn,k)e−i θ∆x + 1 + 2βn,k − (αn,k,j + βn,k)e
i θ∆x|

≥
∣∣Re
[
(αn,k,j − βn,k)e−i θ∆x + 1 + 2βn,k − (αn,k,j + βn,k)e

i θ∆x
]∣∣

= 1 + 2βn,k(1− cos(θ∆x)) ≥ 1,

for every θ ∈ [0, 2π) (recall that βn,k ≥ 0). And since
∑

l ν(ξl)∆x ≤ λc, we obtain

|Funk,j(θ)| ≤
(

1 + h∆x
∑
l∈Z
|ei lθ∆x − 1|ν(ξl)

) ∑
a,b∈{d,u}

pab(n, k, j)|F(Ia,bF
n+1)ka,jb(θ)|

≤ (1 + 2λch)
∑

a,b∈{d,u}

pab(n, k, j)|F(Ia,bF
n+1)ka,jb(θ)|.

Therefore,

‖Funk,j‖L2([0,2π),Leb) ≤ (1 + 2λch)
∑

a,b∈{d,u}

pab(n, k, j)‖F(Ia,bF
n+1)ka,jb‖L2([0,2π),Leb).

We use now the Parseval identity ‖Fϕ‖L2([0,2π),Leb) = ‖ϕ‖l2(X ) and we get

‖un·,k,j‖l2(X ) ≤ (1 + 2λch)
∑

a,b∈{d,u}

pab(n, k, j)‖(Ia,bFn+1)·,ka,jb‖l2(X )

= (1 + 2λch)
∑

a,b∈{d,u}

pab(n, k, j)‖Fn+1
·,ka,jb‖l2(X ),

the first equality following from the fact that i 7→ (Ia,bF
n+1)i,ka,jb is a linear convex combi-

nation of translations of i 7→ Fn+1
i,ka,jb

(see Remark 3.4.1). This gives

sup
0≤k,j≤n

‖e−(σrrnj 1{rnj >−ϑ}+ϕnh)h
un·,k,j‖l2(X ) ≤ (1 + 2λch)eσrϑh−ϕnhh sup

0≤k,j≤n+1
‖Fn+1
·,k,j ‖l2(X )
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and from (3.4.52), we obtain

sup
0≤k,j≤n

‖Fn·,k,j‖l2(X ) ≤ max
(

sup
0≤k,j≤n

‖gn·,k,j‖l2(X ), (1 + 2λch)eσrϑh−ϕnhh sup
0≤k,j≤n+1

‖Fn+1
·,k,j ‖l2(X )

)
.

We now continue assuming that g = f , the case g = 0 following in a similar way. So,

sup
0≤k,j≤n

‖Fn·,k,j‖l2(X ) ≤ max
(
γT ‖f(T, ·)‖N , (1 + 2λch)eσrϑh−ϕnhh sup

0≤k,j≤n+1
‖Fn+1
·,k,j ‖l2(X )

)
.

For n = N − 1 we then obtain

sup
0≤k,j≤n

‖FN−1
·,k,j ‖l2(X ) ≤ max

(
γT ‖f(T, ·)‖N , (1 + 2λch)eσrϑh−ϕ(N−1)hh‖f(T, ·)‖N

)
and by iterating the above inequalities, we finally get

‖F 0‖0 = ‖F 0
·,0,0‖l2(X ) ≤ max

(
γT ‖f(T, ·)‖N , (1 + 2λch)NeNσrLh−

∑N
n=1 ϕnhh‖f(T, ·)‖N

)
.

�

Remark 3.4.3. We have incidentally proved that, as n varies, the solution un·,k,j to the

infinite linear system (3.4.47) actually exists and is unique if ‖f(T, ·)‖N < ∞. In fact,

starting from equality (3.4.54), we define the function ψk,j(θ), θ ∈ [0, 2π), by(
(αn,k,j − βn,k)e−i θ∆x + 1 + 2βn,k − (αn,k,j + βn,k)e

i θ∆x
)
ψk,j(θ)

=
(

1 + h∆x
∑

l ν(ξl)(e
i lθ∆x − 1)

)∑
a,b∈{d,u} pab(n, k, j)F(Ia,bF

n+1)ka,jb(θ).

As noticed in the proof of Proposition 3.4.2, the factor multiplying ψk,j(θ) is different

from zero because βn,k ≥ 0. So, the definition of ψk,j is well posed and moreover, ψk,j ∈
L2([0, 2π, ),Leb). We now set un·,k,j as the inverse Fourier transform of ψk,j, that is,

unl,k,j =
1

∆y
√

2π

∫ 2π

0
ψk,j(θ)e

i lθ∆ydθ, l ∈ Z.

Straightforward computations give that un·,k,j fulfils the equation system (3.4.47).

Of course, Theorem 3.4.2 gives a stability property for the scheme introduced in [25] for

the Heston-Hull-White model: just take λ = 0 (no jumps are considered).
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Back to the original scheme (3.4.46)

Let us now discuss what may happen when one introduces the threshold ϑ. We recall that

the original scheme (3.4.46) gives the numerical approximation of the function F in (3.4.48)

whereas the discount truncated scheme (3.4.49) aims to numerically compute the function

F ϑ in (3.4.50). Proposition 3.4.4 below shows that, under standard hypotheses, F ϑ tends

to F as ϑ → ∞ very fast. This means that, in practice, we lose very few in using (3.4.49)

in place of (3.4.46).

Proposition 3.4.4. Suppose that f = f(t, x, y, r) has a polynomial growth in the variables

(x, y, r), uniformly in t ∈ [0, T ]. Let F and F ϑ, with ϑ > 0, be defined in (3.4.48) and

(3.4.50) respectively. Then there exist positive constants cT and CT (x, y, r) (depending on

(x, y) in a polynomial way and on r in an exponential way) such that for every ϑ > 0

|F (t, x, y, r)− F ϑ(t, x, y, r)| ≤ σrCT (x, y, r)e−cT |ϑ+xe−κr(T−t)|2 ,

for every t ∈ [0, T ] and (x, y, r) ∈ R× R+ × R.

Proof. In the following, C denotes a positive constant, possibly changing from line to line,

which depends on (x, y, r) polynomially in (x, y) and exponentially in r. We have

|F (t, x, y, r)− F ϑ(t, x, y, r)|

≤ CE

(
sup
t≤u≤T

|f(u,Xt,x,y,r
u , Y t,y

u , Rt,ru )| × e−σr
∫ u
t R

t,r
s 1{Rt,rs >−ϑ}

ds ×
(
e
−σr

∫ u
t R

t,r
s 1{Rt,rs <−ϑ}

ds − 1

))
.

(3.4.55)

Set now

τ t,r−ϑ = inf{s ≥ t : Rt,rs ≤ −ϑ}.

Notice that {Rs < −θ} ⊆ {τ−θ < s} ⊆ {τ−θ < T}. Therefore, one has 1{Rt,rs <−ϑ} ≤
1{τ t,r−ϑ<T}

and

−σr
∫ u

t
Rt,rs 1{Rt,rs <−ϑ}ds =

∫ u

t
|σrRt,rs |1{Rt,rs <−ϑ}ds ≤ σr1{τ t,r−ϑ<T}

∫ u

t
|Rt,rs |ds.

So we can write

0 ≤ e−σr
∫ u
t R

t,r
s 1{Rt,rs <−ϑ}

ds − 1 ≤ e
σr1{τt,r−ϑ<T}

∫ u
t |R

t,r
s |ds

− 1 =
(
eσr

∫ u
t |R

t,r
s |ds − 1

)
1{τ t,r−ϑ<T}
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Substituting in (3.4.55) and applying Hölder inequality, we get

|F (t, x, y, r)− F ϑ(t, x, y, r)|

≤ CE

(
sup
t≤u≤T

|f(u,Xt,x,y,r
u , Y t,y

u , Rt,ru )|e−σr
∫ u
t R

t,r
s 1{Rt,rs >−ϑ}

ds
(
eσr

∫ u
t |R

t,r
s |ds − 1

)
1{τ t,r−ϑ<T}

)

≤ CE

(
sup
t≤u≤T

|f(u,Xt,x,y,r
u , Y t,y

u , Rt,ru )|2e2σr
∫ u
t |R

t,r
s |ds

(
eσr

∫ u
t |R

t,r
s |ds − 1

)2
)1/2

×

P
(
1{τ t,r−ϑ<T}

)1/2

≤ CE

(
sup
t≤u≤T

|f(u,Xt,x,y,r
u , Y t,y

u , Rt,ru )|2 × e4σr
∫ T
t |R

t,r
s |ds

)1/2

× P
(
1{τ t,r−ϑ<T}

)1/2

≤ CE

(
sup
t≤u≤T

|f(u,Xt,x,y,r
u , Y t,y

u , Rt,ru )|4
)1/4

× E
(
e8σr

∫ T
t |R

t,r
s |ds

)1/4
× P

(
1{τ t,r−ϑ<T}

)1/2
.

(3.4.56)

The first term in the left hand side of (3.4.56) is finite since f has polynomial growth in

the space variables, uniformly in the time variable, and by using standard estimates. Also

the second term in (3.4.56) is finite. This is because, for every c > 0,

E
(
ec supt≤s≤T |R

t,r
s |
)
<∞. (3.4.57)

In fact, recalling that that Rt,rs = re−κr(s−t) +
∫ s
t e
−κr(s−u)dW 2

u , (3.4.57) follows from the

fact that, for a Brownian motion W , sup0≤s≤T |Ws| has finite exponential moments of any

order, for every T > 0. This is true since sup0≤s≤T |Ws| ≤ sup0≤s≤T Ws + sup0≤s≤T (−Ws)

and E(ep sup0≤s≤T Ws) <∞ for every p > 0. As regards the third term in (3.4.56), note that

P(τ t,r−ϑ ≤ T ) = P( inf
s∈[t,T ]

Rt,rs < −ϑ) = P
(

inf
s∈[t,T ]

(
re−κr(s−t) +

∫ s

t
e−κr(s−u)dW 2

u

)
< −ϑ

)
≤ P

(
sup
s∈[t,T ]

∣∣∣ ∫ s

t
eκrudW 2

u

∣∣∣ > ϑ+ re−κr(T−t)
)
≤ 2 exp

(
− |ϑ+ re−κr(T−t)|2

2
∫ T
t e2κrudu

)
.

By inserting the above estimates in (3.4.56), we get the result.

Further remarks

As already stressed, the introduction of the threshold −ϑ allows one to handle the discount

term. In order to get rid of the discount, a possible approach consists in the use of a
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transformed function, as developed by several authors (see e.g. Haentjens and in’t Hout

[56] and references therein). This is a nice fact for European options (PIDE problem), being

on the contrary a non definitive tool when dealing with American options (obstacle PIDE

problem). Let us see why.

First of all, let us come back to the model for the triple (X,Y,R), see (3.2.5). The

infinitesimal generator is

Ltu =
(
σrr + ϕt − δ −

1

2
y
)
∂xu+ κY (θY − y)∂yu− κrr∂ru

+
1

2

(
y∂2

xxu+ σ2
Y y∂

2
yyu+ ∂2

rru+ 2ρ1σY y∂
2
xyu+ 2ρ2

√
y ∂2

xru
)

+

∫ +∞

−∞
[u(t, x+ ξ; y, r)− u(t, x; y, r)] ν(ξ)dξ.

(3.4.58)

We set

G(t, r) = E
(
e−σr

∫ T
t Rt,rs ds

)
and we recall several known facts: one has (see e.g. [72])

G(t, r) = e
−rσrΛ(t,T )− σ2

r
2κ2
r

(Λ(t,T )−T+t)− σ2
r

4κr
Λ2(t,T )

, Λ(t, T ) =
1− e−κr(T−t)

κr
(3.4.59)

and moreover, G solves the PDE

∂tG− κrx∂xG+
1

2
∂2
rrG− σrrG = 0, t ∈ [0, T ), r ∈ R,

G(T, r) = 1.
(3.4.60)

Lemma 3.4.5. Let Lt denote the infinitesimal generator in (3.4.58). Set u = u ·G−1. Then

∂tu+ Ltu− ru = G
(
∂tu+ Ltu

)
,

where

Lt = Lt − σr
1− e−κr(T−t)

κr

[
ρ2
√
y∂xu+ ∂ru

]
.

Proof. Since G depends on t and r only, straightforward computations give

∂tu+ Ltu− xu =G
[
∂tu+ Ltu

]
+ ∂rG(t, r)

[
ρ2
√
y∂xu+ ∂ru

]
+ u
[
∂tG− κrr∂rG+

1

2
∂2
rrG− σrrG

]
.

By (3.4.60), the last term is null. The statement now follows by observing that ∂r lnG(t, r) =

−σr 1−e−κr(T−t)

κr
. �
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We notice that the operator Lt in Lemma 3.4.5 is the infinitesimal generator of the jump-

diffusion process (X,Y ,R) which solves the stochastic differential equation as in (3.2.5),

with the same diffusion coefficients and jump-terms but with the new drift coefficients

µX(t, y, r) = µX(y, r)− σr
1− e−κr(T−t)

κr
ρ2
√
y, µY (y) ≡ µY (y),

µR(r) = µR(t, r)− σr
1− e−κr(T−t)

κr
.

Let us first discuss the scheme (3.4.46) with g = 0 (European options), which gives the

numerical approximation for the function F in (3.4.48). By passing to the associated PIDE,

Lemma 3.4.5 says that

F (t, x, y, r) = G(t, r)F (t, x, y, r),

where

F (t, x, y, r) = E(e−
∫ T
t ϕsdsf(T,X

t,x,y,r
T , Y

t,y
T , R

t,r
T )).

Therefore, in practice one has to numerically evaluate the function F . By using our hybrid

tree/finite-difference approach, this means to consider the scheme in (3.4.49), with the new

coefficient αn,k,j (written starting from the new drift coefficients) but with a discount de-

pending on the (deterministic) function ϕ only, that is, with e
−(σrrnj 1{rnj >−L}+ϕnh)h

replaced

by e−ϕnhh. And the proof of the Proposition 3.4.2 shows that one gets

‖F h(0, ·)‖0 ≤ max
(
γT , e

2λcT−
∑N
n=0 ϕnhh

)
‖f(T, ·)‖N .

In other words, by using a suitable transformation, the European scheme is always stable

and no thresholds are needed.

Let us discuss now the American case, that is, the scheme (3.4.46) with g = f , giving an

approximation of the function F in (3.4.48). One could think to use the above transforma-

tion in order to get rid of the exponential depending on the process R. Set again

F (t, x, y, r) = G(t, r)−1F (t, x, y, r).

By using the associated obstacle PIDE problem, Lemma 3.4.5 suggests that

F (t, x, y, r) = sup
τ∈Tt,T

E(e−
∫ τ
t ϕsdsf(τ,X

t,x,y,r
τ , Y

t,y
τ , R

t,r
τ )),
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with f(t, x, y, r) = G−1(t, r)f(t, x, y, r). So, in order to numerically compute F , one needs to

set up the scheme (3.4.49) with the new coefficient αn,k,j , with f replaced by f , g = f and

with the discounting factor e
−(σrrnj 1{rnj >−L}+ϕnh)h

replaced by e−ϕnhh. So, again one is able

to cancel the unbounded part of the discount. Nevertheless, the unpleasant point is that

even if ‖f(T, ·)‖N has a bound which is uniform in N then ‖f(T, ·)‖N may not have because

G−1(t, r) has an exponential containing r, see (3.4.59). In other words, the unboundedness

problem appears now in the obstacle.

3.5 The hybrid Monte Carlo and tree/finite-difference ap-

proach algorithms in practice

The present section is devoted to our numerical experiments. We first summarise the main

steps of our algorithms and then we present several numerical tests.

3.5.1 A schematic sketch of the main computational steps in our algo-

rithms

In short, we outline here the main computational steps of the two proposed algorithms.

First, the procedures need the following preprocessing steps, concerning the construction

of the bivariate tree:

(T1) define a discretization of the time-interval [0, T ] in N subintervals [nh, (n + 1)h],

n = 0, . . . , N − 1, with h = T/N ;

(T2) for the process Y , set the binomial tree ynk , 0 ≤ k ≤ n ≤ N , by using (3.3.15), then

compute the jump nodes ka(n, k) and the jump probabilities pYa (n, k), a ∈ {u, d}, by

using (3.3.12)-(3.3.13) and (3.3.14);

(T3) for the process R, set the binomial tree rnj , 0 ≤ j ≤ N , by using (3.3.15), then

compute the jump nodes jb(n, j) and the jump probabilities pRb (n, j), b ∈ {u, d}, by

using (3.3.16)-(3.3.17) and (3.3.18);

(T4) for the 2-dimensional process (Y,R), merge the binomial trees in the bivariate tree

(ynk , r
n
j ), 0 ≤ k, j ≤ n ≤ N , by using (3.3.19), then compute the jump-nodes (ka(n, k), jb(n, j))

and the transitions probabilities pab(n, k, j), (a, b) ∈ {d, u}, by using (3.3.20).
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The bivariate tree for (Y,R) is now settled. Our hybrid tree/finite-difference algorithm can

be resumed as follows:

(FD1) set a mesh grid xi for the solution of all the PIDE’s;

(FD2) for each node (yNk , r
N
j ), 0 ≤ k, j ≤ N , compute the option prices at maturity for each

xi, i ∈ XM , by using the payoff function;

(FD3) for n = N − 1, . . . 0: for each (ynk , r
n
j ), 0 ≤ k, j ≤ n, compute the option prices for

each xi ∈ XM , by solving the linear system (3.4.44).

Notice that, at each time step n, we need only the one-step PIDE solution in the time

interval [nh, (n+1)h]. Moreover, both the (constant) PIDE coefficients and the Cauchy final

condition change according to the position of the volatility and the interest rate components

on the bivariate tree at time step n.

Remark 3.5.1. We observe that in order to compute the option price by the hybrid tree/finite-

difference procedure, in step (FD3) we need to solve many times the tridiagonal system

(3.4.44). This is typically solved by the LU-decomposition method in O(M) operations (re-

call that the total number of the grid values xi ∈ XM is 2M + 1). However, due to the

approximation of the integral term (3.4.33), at each time step n < N we have to compute

the sum ∑
ũn+1
i+l ν(ξl), (3.5.61)

which is the most computationally expensive step of this part of the algorithm: when applied

directly, it requires O(M2) operations. Following the Premia software implementation [84],

in our numerical tests we use the Fast Fourier Transform to compute the term (3.5.61) and

the computational costs of this step reduce to O(M logM).

We conclude by briefly recalling the main steps of the hybrid Monte Carlo method:

(MC1) let the chain (Ŷ h
n , R̂

h
n) evolve for n = 1, . . . , N , following the probability structure in

(T4);

(MC2) generate ∆1, . . . ,∆N i.i.d. standard normal r.v.’s independent of the noise driving the

chain (Ŷ h, R̂h);
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(MC3) generate K1
h, . . . ,K

N
h i.i.d. positive Poisson r.v.’s of parameter λh, independent of

both the chain (Ŷ h, R̂h) and the Gaussian r.v.’s ∆1, . . . ,∆N , and for every n =

1, . . . , N , if Kn
h > 0 simulate the corresponding amplitudes log(1 + Jn1 ), . . . , log(1 +

JnKn
h

);

(MC4) starting from X̂h
0 = X0, compute the approximate values X̂h

n , 1 ≤ n ≤ N , by using

(3.3.24);

(MC5) following the desired Monte Carlo method (European or Longstaff-Schwartz algorithm

[76] in the case of American options), repeat the above simulation scheme and compute

the option price.

Remark 3.5.2. In Section 3.5.2 we develop numerical experiments in order to study the

behavior of our hybrid methods. Our tests involve also the standard Bates model, that is

without any randomness in the interest rate. Recall that in the standard Bates model the

dynamic reduces to
dSt
St−

= (r − δ)dt+
√
Yt dZ

S
t + dHt,

dYt = κY (θY − Yt)dt+ σY
√
Yt dZ

Y
t ,

(3.5.62)

with S0 > 0, Y0 > 0 and r ≥ 0 constant parameters. We assume a correlation between the

two Brownian noises:

d〈ZS , ZY 〉t = ρdt, |ρ| < 1.

Finally, Ht is the compound Poisson process already introduced in Section 3.2, see (3.2.2).

We can apply our hybrid approach to this case as well: it just suffices to follow the com-

putational steps listed above except for the construction of the binomial tree for the process

R. Consequently, we do not need the bivariate tree for (Y,R), specifically we omit steps

(T3)-(T4) and we replace step (MC1) with

(MC1’) let the chain Ŷ h
n evolve for n = 1, . . . , N , following the probability structure in (T2).

And of course, in all computations we set equal to 0 the parameters involved in the dynamics

for r, except for the starting value r0. In particular, we have σr = 0 and ϕt = r0 for every

t.

3.5.2 Numerical results

We develop several numerical results in order to assess the efficiency and the robustness of

the hybrid tree/finite-difference method and the hybrid Monte Carlo method in the case of
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plain vanilla options. The Monte Carlo results derive from our hybrid simulations and, for

American options, the use of the Monte Carlo algorithm by Longstaff and Schwartz in [76].

We first provide results for the standard Bates model (see Remark 3.5.2) and secondly,

for the case in which the interest rate process is assumed to be stochastic, see (3.2.1).

Following Chiarella et al. [34], in our numerical tests we assume that the jumps for the

log-returns are normal, that is,

log(1 + J1) ∼ N
(
γ − 1

2
η2, η2

)
, (3.5.63)

N denoting the Gaussian law (we also notice that the results in [34] correspond to the choice

γ = 0). In Section 3.5.2, we first compare our results with the ones provided in Chiarella et

al. [34]. Then in Section 3.5.2 we study options with large maturities and when the Feller

condition is not fulfilled. Finally, Section 3.5.2 is devoted to test experiments for European

and American options in the Bates model with stochastic interest rate. The codes have

been written by using the C++ language and the computations have all been performed in

double precision on a PC 2,9 GHz Intel Core I5 with 8 Gb of RAM.

The standard Bates model

We refer here to the standard Bates model as in (3.5.62). In the European and American

option contracts we are dealing with, we consider the following set of parameters, already

used in the numerical results provided in Chiarella et al. [34]:

• initial price S0 = 80, 90, 100, 110, 120, strike price K = 100, maturity T = 0.5;

• (constant) interest rate r = 0.03, dividend rate δ = 0.05;

• initial volatility Y0 = 0.04, long-mean θY = 0.04, speed of mean-reversion κY = 2,

vol-vol σY = 0.4, correlation ρ = −0.5, 0.5;

• intensity λ = 5, jump parameters γ = 0 and η = 0.1 (recall (3.5.63)).

It is known that the case ρ > 0 may lead to moment explosion, see. e.g. [9]. Nevetheless,

we report here results for this case as well, for the sake of comparisons with the study in

Chiarella et al. [34].

In order to numerically solve the PIDE using the finite difference scheme, we first localize

the variables and the integral term to bounded domains. We use for this purpose the
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estimates for the localization domain and the truncation of large jumps given by Yoltchkova

and Tankov [96]. For example, for the previous model parameters the PIDE problem is

solved in the finite interval [lnS0 − 1.59, lnS0 + 1.93].

The numerical study of the hybrid tree/finite-difference method HTFD is split into two

cases:

- HTFDa: time steps Nt = 50 and varying mesh grid ∆x = 0.01, 0.005, 0.0025,

0.00125;

- HTFDb: time steps Nt = 100 and varying mesh grid ∆x = 0.01, 0.005, 0.0025,

0.00125.

Concerning the Monte Carlo method, we compare the results by using the hybrid sim-

ulation scheme in Section 3.3.3, that we call HMC. We compare our hybrid simulation

scheme with the accurate third-order Alfonsi [4] discretization scheme for the CIR stochas-

tic volatility process and by using an exact scheme for the interest rate. In addition, we

simulate the jump component in the standard way. The resulting Monte Carlo scheme is

here called AMC. In both Monte Carlo methods, we consider varying number of Monte

Carlo iterations NMC and two cases for the number of time discretization steps iterations:

- HMCa and AMCa: Nt = 50 and NMC = 10000, 50000, 100000, 200000;

- HMCb and AMCb: Nt = 100 and NMC = 10000, 50000, 100000, 200000.

All Monte Carlo results include the associated 95% confidence interval.

Table 3.1 reports European call option prices. Comparisons are given with a benchmark

value obtained using the Carr-Madan pricing formula CF in [33] that applies Fast Fourier

Transform methods (see the Premia software implementation [84]).

In Table 3.2 we provide results for American call option prices. In this case we compare

with the values obtained by using the method of lines in [35], called MOL, with mesh

parameters 200 time-steps, 250 volatility lines, 2995 asset grid points, and the PSOR

method with mesh parameters 1000, 3000, 6000 that Chiarella et al. [34] used as the true

solution. Moreover, we consider the Longstaff-Schwartz [76] Monte Carlo algorithm both

for AMC and HMC. In particular

- HMCLSa and AMCLSa: 10 exercise dates, Nt = 50 andNMC = 10000, 50000, 100000,

200000;
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- HMCLSb and AMCLSb: 20 exercise dates, Nt = 100 andNMC = 10000, 50000, 100000,

200000.

Tables 3.3 and 3.4 refer to the computational time cost (in seconds) of the various algo-

rithms for ρ = −0.5 in the European and American case respectively.

In order to make some heuristic considerations about the speed of convergence of our

approach HTFD, we consider the convergence ratio proposed in [40], defined as

ratio =
PN

2
− PN

4

PN − PN
2

, (3.5.64)

where PN denotes here the approximated price obtained with N = Nt number of time steps.

Recall that PN = O(N−α) means that ratio = 2α. Table 3.5 suggests that the convergence

ratio for HTDFb is approximatively linear. The analysis of the convergence in Chapter 4

will confirm this heuristic deduction.

We notice that the above argument does not formally allow to state the speed of conver-

gence of a method knowing its ratio. We will come back on this topic in the next chapter

of this thesis. However, we anticipate here that our theoretical analysis of the convergence

confirms the first order in time rate of convergence of the procedure.

The numerical results in Table 3.1-3.4 show that HTFD is accurate, reliable and efficient

for pricing European and American options in the Bates model. Moreover, our hybrid

Monte Carlo algorithm HMC appears to be competitive with AMC, that is the one from

the accurate simulations by Alfonsi [4]: the numerical results are similar in term of precision

and variance but HMC is definitely better from the computational times point of view.

Additionally, because of its simplicity, HMC represents a real and interesting alternative

to AMC.

As a further evidence of the accuracy of our hybrid methods, in Figure 3.2 and 3.3 we

study the shapes of implied volatility smiles across moneyness K
S0

and maturities T using

HTFDa with Nt = 50 and ∆y = 0.005, HMCa with Nt = 50 and NMC = 50000 and we

compare the graphs with the results from the benchmark values CF.
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(a)

ρ = −0.5 ∆x HTFDa HTFDb CF NMC HMCa HMCb AMCa AMCb

0.01 1.1302 1.1302 10000 1.08±0.09 1.11±0.09 1.00±0.09 1.08±0.09

0.005 1.1293 1.1294 50000 1.12±0.04 1.17±0.04 1.07±0.04 1.10±0.04

S0 = 80 0.0025 1.1291 1.1292 1.1293 100000 1.14±0.03 1.14±0.03 1.13±0.03 1.13±0.03

0.00125 1.1291 1.1292 200000 1.13±0.02 1.14±0.02 1.11±0.02 1.12±0.02

0.01 3.3331 3.3312 10000 3.27±0.17 3.27±0.17 3.19±0.16 3.22±0.16

0.005 3.3315 3.3301 50000 3.32±0.08 3.40±0.08 3.24±0.07 3.26±0.0

S0 = 90 0.0025 3.3311 3.3298 3.3284 100000 3.34±0.05 3.34±0.05 3.32±0.05 3.33±0.05

0.00125 3.3310 3.3297 200000 3.32±0.04 3.35±0.04 3.28±0.04 3.31±0.04

0.01 7.5245 7.5239 10000 7.46±0.25 7.46±0.25 7.37±0.24 7.36±0.25

0.005 7.5236 7.5224 50000 7.53±0.11 7.62±0.11 7.40±0.11 7.43±0.11

S0 = 100 0.0025 7.5231 7.5221 7.5210 100000 7.54±0.08 7.52±0.08 7.53±0.08 7.52±0.08

0.00125 7.5230 7.5220 200000 7.50±0.06 7.54±0.06 7.46±0.06 7.50±0.06

0.01 13.6943 13.6940 10000 13.69±0.34 13.69±0.34 13.52±0.33 13.48±0.33

0.005 13.6923 13.6924 50000 13.71±0.15 13.81±0.15 13.55±0.15 13.58±0.15

S0 = 110 0.0025 13.6918 13.6921 13.6923 100000 13.72±0.11 13.69±0.11 13.67±0.11 13.70±0.11

0.00125 13.6917 13.6920 200000 13.64±0.08 13.71±0.08 13.63±0.07 13.69±0.08

0.01 21.3173 21.3185 10000 21.40±0.41 21.40±0.41 21.08±0.40 21.03±0.41

0.005 21.3156 21.3168 50000 21.35±0.18 21.46±0.19 21.17±0.18 21.21±0.18

S0 = 120 0.0025 21.3152 21.3164 21.3174 100000 21.36±0.13 21.32±0.13 21.29±0.13 21.33±0.13

0.00125 21.3152 21.3163 200000 21.25±0.09 21.33±0.09 21.26±0.09 21.33±0.09

(b)

ρ = 0.5 ∆x HTFDa HTFDb CF NMC HMCa HMCb AMCa AMCb

0.01 1.4732 1.4751 10000 1.42±0.12 1.40±0.12 1.37±0.12 1.35±0.12

0.005 1.4724 1.4744 50000 1.49±0.06 1.47±0.05 1.40±0.05 1.42±0.05

S0 = 80 0.0025 1.4723 1.4742 1.4760 100000 1.48±0.04 1.46±0.04 1.46±0.04 1.49±0.04

0.00125 1.4722 1.4741 200000 1.47±0.03 1.48±0.03 1.48±0.03 1.48±0.03

0.01 3.6849 3.6859 10000 3.63±0.19 3.63±0.19 3.48±0.19 3.49±0.19

0.005 3.6836 3.6849 50000 3.70±0.09 3.70±0.09 3.57±0.09 3.60±0.09

S0 = 90 0.0025 3.6832 3.6847 3.6862 100000 3.67±0.06 3.67±0.06 3.66±0.06 3.71±0.06

0.00125 3.6832 3.6847 200000 3.66±0.04 3.70±0.04 3.69±0.04 3.68±0.04

0.01 7.6247 7.6245 10000 7.58±0.28 7.58±0.28 7.35±0.28 7.36±0.27

0.005 7.6238 7.6232 50000 7.66±0.13 7.65±0.13 7.47±0.12 7.52±0.12

S0 = 100 0.0025 7.6234 7.6229 7.6223 100000 7.61±0.09 7.59±0.09 7.58±0.09 7.66±0.09

0.00125 7.6233 7.6228 200000 7.58±0.06 7.64±0.06 7.62±0.06 7.61±0.06

0.01 13.4863 13.4835 10000 13.48±0.36 13.48±0.36 13.21±0.36 13.19±0.36

0.005 13.4842 13.4818 50000 13.55±0.17 13.49±0.16 13.27±0.16 13.35±0.16

S0 = 110 0.0025 13.4837 13.4814 13.4791 100000 13.47±0.12 13.41±0.12 13.44±0.12 13.54±0.12

0.00125 13.4836 13.4813 200000 13.42±0.08 13.49±0.08 13.47±0.08 13.48±0.08

0.01 20.9678 20.9661 10000 21.04±0.44 21.04±0.44 20.67±0.44 20.64±0.43

0.005 20.9659 20.9642 50000 21.05±0.20 20.98±0.20 20.71±0.20 20.81±0.20

S0 = 120 0.0025 20.9655 20.9636 20.9616 100000 20.96±0.14 20.87±0.14 20.92±0.14 21.04±0.14

0.00125 20.9654 20.9635 200000 20.88±0.10 20.96±0.10 20.97±0.10 20.98±0.10

Table 3.1: Standard Bates model. Prices of European call options. Test parameters: K = 100,

T = 0.5, r = 0.03, δ = 0.05, Y0 = 0.04, θY = 0.04, κY = 2, σY = 0.4, λ = 5, γ = 0, η = 0.1,

ρ = −0.5, 0.5.
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(a)

ρ = −0.5 ∆x HTFDa HTFDb PSOR MOL NMC HMCLSa HMCLSb AMCLSa AMCLSb

0.01 1.1365 1.1365 10000 1.03±0.08 1.14±0.09 1.06±0.09 1.03±0.09

0.005 1.1356 1.1358 50000 1.19±0.04 1.14±0.04 1.18±0.04 1.12±0.04

S0 = 80 0.0025 1.1354 1.1356 1.1359 1.1363 100000 1.15±0.03 1.13±0.03 1.13±0.03 1.13±0.03

0.00125 1.1353 1.1355 200000 1.14±0.02 1.14±0.02 1.14±0.02 1.14±0.02

0.01 3.3579 3.3563 10000 3.39±0.15 3.44±0.16 3.38±0.15 3.48±0.16

0.005 3.3564 3.3551 50000 3.46±0.07 3.33±0.07 3.46±0.07 3.32±0.07

S0 = 90 0.0025 3.3560 3.3548 3.3532 3.3530 100000 3.35±0.05 3.35±0.05 3.33±0.05 3.36±0.05

0.00125 3.3559 3.3547 200000 3.35±0.03 3.33±0.03 3.35±0.03 3.34±0.03

0.01 7.6010 7.6006 10000 7.68±0.23 7.88±0.24 7.63±0.23 7.80±0.24

0.005 7.6001 7.5992 50000 7.75±0.11 7.59±0.10 7.76±0.10 7.53±0.10

S0 = 100 0.0025 7.5997 7.5989 7.5970 7.5959 100000 7.56±0.07 7.61±0.07 7.56±0.07 7.61±0.07

0.00125 7.5996 7.5989 200000 7.58±0.05 7.55±0.05 7.58±0.05 7.57±0.05

0.01 13.8853 13.8854 10000 13.90±0.29 14.28±0.30 13.84±0.29 14.10±0.29

0.005 13.8836 13.8842 50000 14.05±0.13 13.89±0.12 14.07±0.13 13.86±0.12

S0 = 110 0.0025 13.8832 13.8839 13.8830 13.8827 100000 13.80±0.09 13.91±0.09 13.84±0.09 13.89±0.09

0.00125 13.8831 13.8838 200000 13.86±0.06 13.84±0.06 13.87±0.06 13.83±0.06

0.01 21.7180 21.7199 10000 21.83±0.34 22.07±0.33 21.71±0.30 22.04±0.34

0.005 21.7168 21.7187 50000 21.91±0.15 21.76±0.13 21.90±0.15 21.72±0.13

S0 = 120 0.0025 21.7166 21.7184 21.7186 21.7191 100000 21.59±0.10 21.78±0.10 21.64±0.10 21.72±0.10

0.00125 21.7165 21.7183 200000 21.68±0.07 21.65±0.07 21.68±0.07 21.67±0.07

(b)

ρ = 0.5 ∆x HTFDa HTFDb PSOR MOL NMC HMCLSa HMCLSb AMCLSa AMCLSb

0.01 1.4817 1.4837 10000 1.32±0.11 1.03±0.09 1.51±0.13 0.66±0.08

0.005 1.4809 1.4830 50000 1.51±0.05 1.31±0.05 1.54±0.05 1.47±0.05

S0 = 80 0.0025 1.4807 1.4828 1.4843 1.4848 100000 1.50±0.04 1.50±0.04 1.51±0.04 1.48±0.04

0.00125 1.4807 1.4828 200000 1.50±0.03 1.49±0.02 1.49±0.03 1.47±0.02

0.01 3.7134 3.7148 10000 3.83±0.19 3.79±0.17 3.89±0.19 3.95±0.19

0.005 3.7121 3.7139 50000 3.81±0.08 3.70±0.08 3.84±0.08 3.69±0.08

S0 = 90 0.0025 3.7118 3.7137 3.7145 3.7146 100000 3.69±0.06 3.75±0.06 3.72±0.06 3.70±0.06

0.00125 3.7118 3.7137 200000 3.70±0.04 3.71±0.04 3.72±0.04 3.70±0.04

0.01 7.7044 7.7051 10000 7.74±0.26 7.85±0.25 7.96±0.26 7.99±0.26

0.005 7.7036 7.7039 50000 7.85±0.12 7.68±0.11 7.87±0.12 7.68±0.11

S0 = 100 0.0025 7.7033 7.7036 7.7027 7.7018 100000 7.66±0.08 7.75±0.08 7.65±0.08 7.73±0.08

0.00125 7.7032 7.7036 200000 7.69±0.06 7.67±0.05 7.68±0.06 7.69±0.05

0.01 13.6770 13.6756 10000 13.57±0.32 13.98±0.31 13.88±0.32 14.12±0.33

0.005 13.6752 13.6742 50000 13.83±0.14 13.67±0.13 13.89±0.14 13.64±0.13

S0 = 110 0.0025 13.6747 13.6739 13.6722 13.6715 100000 13.56±0.09 13.74±0.10 13.58±0.10 13.71±0.10

0.00125 13.6747 13.6738 200000 13.65±0.07 13.65±0.07 13.64±0.07 13.64±0.07

0.01 21.3668 21.3671 10000 21.45±0.32 21.60±0.35 21.39±0.33 21.84±0.34

0.005 21.3655 21.3658 50000 21.54±0.15 21.40±0.14 21.61±0.16 21.40±0.13

S0 = 120 0.0025 21.3653 21.3655 21.3653 21.3657 100000 21.26±0.10 21.43±0.10 21.27±0.10 21.38±0.10

0.00125 21.3652 21.3653 200000 21.31±0.07 21.33±0.07 21.31±0.07 21.31±0.07

Table 3.2: Standard Bates model. Prices of American call options. Test parameters: K = 100,

T = 0.5, r = 0.03, δ = 0.05, Y0 = 0.04, θY = 0.04, κY = 2, σY = 0.4, λ = 5, γ = 0, η = 0.1,

ρ = −0.5, 0.5.

∆x HTFDa HTDFb NMC HMCa HMCb AMCa AMCb CF

0.01 0.09 0.34 10000 0.007 0.16 0.16 0.30

0.005 0.18 0.72 50000 0.36 0.72 0.79 1.51

0.0025 0.46 1.62 100000 0.71 1.44 1.57 3.12 0.001

0.00125 0.84 3.53 200000 1.45 2.95 3.14 6.17

Table 3.3: Standard Bates model. Computational times (in seconds) for European call options in

Table 3.1 for S0 = 100, ρ = −0.5.
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∆x HTFDa HTDFb NMC HMCLSa HMCLSb AMCLSa AMCLSb

0.01 0.10 0.37 10000 0.09 0.23 0.20 0.45

0.005 0.19 0.77 50000 0.47 1.11 1.01 2.25

0.0025 0.48 1.77 100000 1.07 2.25 2.01 4.57

0.00125 0.95 3.61 200000 1.94 4.55 4.05 8.98

Table 3.4: Standard Bates model. Computational times (in seconds) for American call options in

Table 3.2 for S0 = 100, ρ = −0.5.

N S0 = 80 S0 = 90 S0 = 100 S0 = 110 S0 = 120

200 1.919250 1.961063 1.894156 2.299666 2.109026

400 2.172836 2.209762 2.556021 1.673541 1.996332

800 1.544849 1.851932 1.463712 2.935697 2.106880

Table 3.5: Standard Bates model. HTFDb-ratio (3.5.64) for the price of American call options as

the starting point S0 varies with fixed space step ∆x = 0.0025. Test parameters: T = 0.5, r = 0.03,

δ = 0.05, Y0 = 0.04, θ = 0.04, κ = 2, σ = 0.4, λ = 5, γ = 0, η = 0.1, ρ = −0.5.
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Figure 3.2: Standard Bates model. Moneyness vs implied volatility for European call options. Test

parameters: T = 0.5, r = 0.03, δ = 0.05, Y0 = 0.04, θY = 0.04, κY = 2, σY = 0.4, λ = 5, γ = 0,

η = 0.1, ρ = −0.5.

Figure 3.3: Standard Bates model. Maturity vs implied volatility for European call options. Test

parameters: S0 = 100, K = 100, r = 0.03, δ = 0.05, Y0 = 0.04, θY = 0.04, κY = 2, σY = 0.4,

λ = 5, γ = 0, η = 0.1, ρ = −0.5.
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Options with large maturity in the standard Bates model

In order to verify the robustness of the proposed algorithms we consider experiments when

the Feller condition 2κY θY ≥ σ2
Y is not fulfilled for the CIR volatility process. We addi-

tionally stress our tests by considering large maturities. For this purpose we consider the

parameters from Chiarella et al. [34] already used in Section 3.5.2 with ρ = −0.5, except

for the maturity and the vol-vol, which are modified as follows: T = 5 and σY = 0.7

respectively.

Table 3.6 reports European call option prices, which are compared with the true values

(CF). In Table 3.7 we provide results for American call option prices. The settings for the

experiments HTFDa-b, HMCa-b and AMCa-b are the same as described at the begin-

ning of Section 3.5.2. The settings for the experiments in the American case HMCLSa-b

and AMCLSa-b are changed

- HMCLSa and AMCLSa: 20 exercise dates, Nt = 100 andNMC = 10000, 50000, 100000,

200000;

- HMCLSb and AMCLSb: 40 exercise dates, Nt = 200 andNMC = 10000, 50000, 100000,

200000.

In the American case the benchmark values B-AMC are obtained by the Longstaff-Schwartz

[76] Monte Carlo algorithm with 300 exercise dates, combined with the accurate third-order

Alfonsi method with 3000 discretization time steps and 1 million iterations.

The numerical results suggest that large maturities bring to a slight loss of accuracy for

HTFD and HMC, even if both methods provide a satisfactory approximation of the true

option prices, being in turn mostly compatible with the results from the Alfonsi Monte Carlo

method. It is worth noticing that for long maturity T = 5 we have developed experiments

with the same number of steps both in time (Nt) and space step (∆x) as for T = 0.5. So,

the numerical experiments are not slower, and it is clear that one could achieve a better

accuracy for larger values of Nt.
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ρ = −0.5 ∆x HTFDa HTFDb CF NMC HMCa HMCb AMCa AMCb

0.01 9.0085 8.9457 10000 9.21±0.55 9.09±0.55 8.69±0.53 8.56±0.51

0.0050 9.0032 8.9405 50000 9.13±0.25 8.92±0.24 8.81±0.24 9.04±0.24

S0 = 80 0.0025 9.0020 8.9392 8.9262 100000 9.01±0.17 8.81±0.17 8.92±0.17 8.88±0.17

0.00125 9.0016 8.9389 200000 8.99±0.12 8.92±0.12 8.95±0.12 8.90±0.12

0.01 12.7405 12.6520 10000 12.95±0.67 12.95±0.67 12.29±0.65 12.15±0.6

0.0050 12.7342 12.6458 50000 12.87±0.30 12.64±0.29 12.49±0.29 12.76±0.3

S0 = 90 0.0025 12.7327 12.6442 12.6257 100000 12.72±0.21 12.50±0.21 12.63±0.21 12.58±0.21

0.00125 12.7323 12.6438 200000 12.71±0.15 12.61±0.15 12.66±0.15 12.61±0.15

0.01 17.0324 16.9176 10000 17.24±0.80 17.24±0.80 16.43±0.77 16.29±0.75

0.0050 17.0254 16.9106 50000 17.18±0.36 16.91±0.35 16.73±0.35 17.03±0.35

S0 = 100 0.0025 17.0237 16.9089 16.8855 100000 17.00±0.25 16.74±0.25 16.91±0.25 16.84±0.25

0.00125 17.0232 16.9084 200000 16.99±0.18 16.86±0.18 16.94±0.18 16.88±0.18

0.01 21.8149 21.6741 10000 22.04±0.93 22.04±0.93 21.06±0.93 20.91±0.88

0.0050 21.8067 21.6659 50000 21.96±0.42 21.67±0.41 21.43±0.41 21.82±0.41

S0 = 110 0.0025 21.8047 21.6639 21.6364 100000 21.76±0.29 21.47±0.29 21.69±0.29 21.59±0.29

0.00125 21.8042 21.6634 200000 21.76±0.21 21.59±0.20 21.70±0.20 21.63±0.20

0.01 27.0196 26.8539 10000 27.26±1.05 27.26±1.05 26.12±1.03 25.94±1.01

0.0050 27.0108 26.8452 50000 27.17±0.47 26.86±0.46 26.56±0.46 27.02±0.47

S0 = 120 0.0025 27.0086 26.8430 26.8121 100000 26.94±0.33 26.63±0.33 26.89±0.33 26.78±0.33

0.00125 27.0081 26.8425 200000 26.95±0.23 26.75±0.23 26.89±0.23 26.81±0.23

Table 3.6: Standard Bates model. Prices of European call options. Test parameters: K = 100,

T = 5, r = 0.03, δ = 0.05, Y0 = 0.04, θY = 0.04, κY = 2, σY = 0.7, λ = 5, γ = 0, η = 0.1,

ρ = −0.5. Case 2κY θY < σ2
Y .

ρ = −0.5 ∆y HTFDa HTFDb B-AMC NMC HMCLSa HMCLSb AMCLSa AMCLSb

0.01 9.8335 9.7978 10000 10.15±0.46 10.20±0.46 10.47±0.47 9.80±0.42

0.0050 9.8283 9.7927 50000 9.93±0.20 9.86±0.20 9.89±0.19 9.78±0.19

S0 = 80 0.0025 9.8271 9.7914 9.7907± 0.04 100000 9.76±0.14 9.69±0.13 9.74±0.14 9.76±0.13

0.00125 9.8267 9.7911 200000 9.79±0.10 9.70±0.09 9.73±0.10 9.72±0.09

0.01 14.0801 14.0318 10000 14.58±0.56 14.46±0.55 14.94±0.58 14.08±0.51

0.0050 14.0741 14.0258 50000 14.13±0.24 14.14±0.24 14.19±0.23 14.12±0.23

S0 = 90 0.0025 14.0726 14.0244 14.0030± 0.05 100000 13.98±0.16 13.87±0.16 13.94±0.16 13.89±0.16

0.00125 14.0722 14.0240 200000 13.93±0.12 13.91±0.11 13.94±0.12 13.96±0.11

0.01 19.0658 19.0075 10000 19.59±0.66 19.44±0.63 19.88±0.66 19.13±0.59

0.0050 19.0594 19.0011 50000 19.10±0.27 19.06±0.27 19.26±0.26 19.01±0.26

S0 = 100 0.0025 19.0578 18.9995 18.9632± 0.05 100000 18.92±0.19 18.88±0.18 18.85±0.19 18.90±0.18

0.00125 19.0574 18.9991 200000 18.80±0.13 18.84±0.13 18.85±0.13 18.92±0.13

0.01 24.7434 24.6788 10000 25.02±0.74 24.84±0.72 25.32±0.72 24.78±0.67

0.0050 24.7364 24.6719 50000 24.79±0.30 24.57±0.29 24.94±0.29 24.72±0.29

S0 = 110 0.0025 24.7347 24.6701 24.6289± 0.06 100000 24.53±0.21 24.47±0.20 24.50±0.21 24.51±0.20

0.00125 24.7343 24.6697 200000 24.42±0.14 24.45±0.14 24.50±0.15 24.53±0.14

0.01 31.0646 30.9983 10000 30.88±0.74 31.15±0.75 31.18±0.74 31.04±0.71

0.0050 31.0577 30.9914 50000 31.10±0.32 30.94±0.31 31.32±0.32 30.98±0.32

S0 = 120 0.0025 31.0559 30.9896 30.9052±0.07 100000 30.89±0.23 30.72±0.22 30.70±0.22 30.72±0.22

0.00125 31.0555 30.9892 200000 30.72±0.16 30.73±0.16 30.77±0.16 30.89±0.15

Table 3.7: Standard Bates model. Prices of American call options. Test parameters: K = 100,

T = 5, r = 0.03, δ = 0.05, Y0 = 0.04, θY = 0.04, κY = 2, σY = 0.7, λ = 5, γ = 0, δ = 0.1,

ρ = −0.5. Case 2κY θY < σ2
Y .
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Bates model with stochastic interest rate

We consider now the case of Bates model associated with the Vasiceck model for the stochas-

tic interest rate. For the Bates model we consider the parameters from Chiarella et al. [34]

already used in Section 3.5.2. Moreover, for the interest rate parameter we fix the following

parameters:

• initial interest rate r0 = 0.03, speed of mean-reversion κr = 1, interest rate volatility

σr = 0.2;

• time-varying long-term mean θr(t) fitting the theoretical bond prices to the yield curve

observed on the market, here set as Pr(0, T ) = e−0.03T .

We study the cases

ρ1 = ρSY = −0.5 and ρ2 = ρSr = −0.5, 0.5.

No correlation is assumed to exist between r and Y . We consider the mesh grid ∆y =

0.02, 0.01, 0.005, 0.0025, the case ∆y = 0.00125 being removed because it requires huge

computational times. The numerical results are labeled HTFDa-b, HMCa-b, AMCa-b,

HMCLSa-b, AMCLSa-b, their settings being given at the beginning of Section 3.5.2.

When the interest rate is assumed to be stochastic, no references are available in the lit-

erature. Therefore, we propose benchmark values obtained by using a Monte Carlo method

in which the CIR paths are simulated through the accurate third-order Alfonsi [4] dis-

cretization scheme and the interest rate paths are generated by an exact scheme. For these

benchmark values, called B-AMC, the number of Monte Carlo iterations and of the dis-

cretization time steps are set as NMC = 106 and Nt = 300 respectively. In the American

case, B-AMC is evaluated through the Longstaff-Schwartz [76] algorithm with 20 exercise

dates. All Monte Carlo results report the 95% confidence intervals.

European and American call option prices are given in tables 3.8 and 3.9 respectively.

Tables 3.10 and 3.11 refer to the computational time cost (in seconds) of the different

algorithms in the European Call case and American Call case respectively. The numerical

results confirm the good numerical behavior of HTFD and HMC in the Bates-Hull-White

model as well.
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(a)

ρSr = −0.5 ∆x HTFDa HTFDb B-AMC NMC HMCa HMCb AMCa AMCb

0.02 1.0169 1.0079 10000 1.00±0.09 0.96±0.09 1.00±0.09 1.06±0.10

0.01 1.0201 1.0188 50000 1.02±0.04 0.97±0.04 0.98±0.04 1.01±0.04

S0 = 80 0.0050 1.0199 1.0194 1.0153±0.01 100000 1.00±0.03 1.00±0.03 1.01±0.03 1.03±0.03

0.0025 1.0197 1.0193 200000 1.01±0.02 1.01±0.02 1.02±0.02 1.00±0.02

0.01 3.1172 3.1032 10000 3.05±0.16 3.05±0.16 3.07±0.16 3.14±0.17

0.01 3.1186 3.1137 50000 3.10±0.07 3.03±0.07 3.02±0.07 3.09±0.07

S0 = 90 0.0050 3.1174 3.1135 3.1008±0.02 100000 3.07±0.05 3.08±0.05 3.09±0.05 3.14±0.05

0.0025 3.1174 3.1136 200000 3.09±0.04 3.10±0.04 3.11±0.04 3.08±0.04

0.02 7.2528 7.2472 10000 7.17±0.24 7.17±0.24 7.20±0.24 7.24±0.25

0.01 7.2528 7.2479 50000 7.21±0.11 7.18±0.11 7.12±0.11 7.21±0.11

S0 = 100 0.0050 7.2528 7.2480 7.2315±0.02 100000 7.18±0.08 7.24±0.08 7.20±0.08 7.27±0.08

0.0025 7.2528 7.2480 200000 7.22±0.05 7.25±0.05 7.24±0.05 7.20±0.05

0.02 13.4553 13.4565 10000 13.30±0.32 13.30±0.32 13.41±0.33 13.39±0.33

0.01 13.4465 13.4440 50000 13.37±0.15 13.40±0.15 13.27±0.15 13.38±0.15

S0 = 110 0.0050 13.4435 13.4407 13.4256±0.03 100000 13.35±0.10 13.46±0.10 13.38±0.10 13.48±0.10

0.0025 13.4432 13.4404 200000 13.40±0.07 13.47±0.07 13.43±0.07 13.39±0.07

0.02 21.1320 21.1356 10000 20.89±0.40 20.89±0.40 21.08±0.40 20.99±0.41

0.01 21.1243 21.1239 50000 21.03±0.18 21.09±0.18 20.92±0.18 21.03±0.18

S0 = 120 0.0050 21.1222 21.1214 21.1070±0.04 100000 21.01±0.13 21.17±0.13 21.04±0.13 21.17±0.13

0.0025 21.1215 21.1207 200000 21.06±0.09 21.16±0.09 21.12±0.09 21.06±0.09

(b)

ρSr = 0.5 ∆x HTFDa HTFDb B-AMC NMC HMCa HMCb AMCa AMCb

0.02 1.3459 1.3379 10000 1.29±0.11 1.28±0.11 1.32±0.10 1.41±0.11

0.01 1.3482 1.3471 50000 1.34±0.05 1.30±0.05 1.32±0.05 1.35±0.05

S0 = 80 0.0050 1.3479 1.3475 1.3446±0.01 100000 1.32±0.03 1.31±0.03 1.34±0.03 1.34±0.03

0.0025 1.3477 1.3473 200000 1.33±0.02 1.34±0.02 1.35±0.02 1.32±0.02

0.01 3.7320 3.7233 10000 3.62±0.18 3.62±0.18 3.64±0.18 3.76±0.19

0.01 3.7323 3.7304 50000 3.69±0.08 3.65±0.08 3.64±0.18 3.76±0.19

S0 = 90 0.0050 3.7311 3.7298 3.7263±0.02 100000 3.66±0.06 3.68±0.06 3.71±0.06 3.73±0.06

0.0025 3.7311 3.7299 200000 3.69±0.04 3.72±0.04 3.73±0.04 3.68±0.04

0.02 8.0100 8.0073 10000 7.83±0.26 7.83±0.26 7.82±0.26 8.00±0.27

0.01 8.0112 8.0102 50000 7.92±0.12 7.93±0.12 7.93±0.12 7.97±0.12

S0 = 100 0.0050 8.0114 8.0107 8.0069±0.03 100000 7.91±0.08 7.97±0.08 7.99±0.08 8.02±0.08

0.0025 8.0114 8.0107 200000 7.95±0.06 8.02±0.06 8.00±0.06 7.95±0.06

0.02 14.1482 14.1505 10000 13.89±0.35 13.89±0.35 13.88±0.35 14.07±0.36

0.01 14.1413 14.1414 50000 14.01±0.16 14.05±0.16 14.03±0.16 14.09±0.16

S0 = 110 0.0050 14.1388 14.1388 14.1323±0.03 100000 14.01±0.11 14.10±0.11 14.12±0.11 14.14±0.11

0.0025 14.1386 14.1386 200000 14.06±0.08 14.17±0.08 14.13±0.08 14.07±0.08

0.02 21.6737 21.6772 10000 21.37±0.42 21.37±0.42 21.35±0.42 21.51±0.43

0.01 21.6670 21.6674 50000 21.50±0.19 21.55±0.19 21.52±0.19 21.60±0.19

S0 = 120 0.0050 21.6651 21.6653 21.6501±0.04 100000 21.52±0.13 21.63±0.13 21.64±0.13 21.68±0.14

0.0025 21.6645 21.6646 200000 21.57±0.10 21.71±0.10 21.65±0.10 21.58±0.09

Table 3.8: Bates-Hull-White model. Prices of European call options. Test parameters: K = 100,

T = 0.5, δ = 0.05, , r0 = 0.03, κr = 1, σr = 0.2, Y0 = 0.04, θY = 0.04, κY = 2, σY = 0.4, λ = 5,

γ = 0, η = 0.1, ρSY = −0.5,ρSr = −0.5, 0.5.
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(a)

ρSr = −0.5 ∆x HTFDa HTFDb B-AMC NMC HMCLSa HMCLSb AMCLSa AMCLSb

0.02 1.0561 1.0470 10000 0.76±0.07 0.56±0.06 0.95±0.08 0.82±0.08

0.01 1.0598 1.0588 50000 1.08±0.04 0.91±0.04 1.01±0.04 0.96±0.04

S0 = 80 0.0050 1.0597 1.0596 1.0544±0.01 100000 1.07±0.03 1.03±0.03 1.07±0.03 1.04±0.03

0.0025 1.0596 1.0595 200000 1.05±0.02 1.04±0.02 1.07±0.02 1.05±0.02

0.01 3.2511 3.2364 10000 3.28±0.15 3.39±0.16 3.35±0.16 3.07±0.15

0.01 3.2537 3.2493 50000 3.33±0.07 3.21±0.07 3.25±0.07 3.30±0.07

S0 = 90 0.0050 3.2528 3.2494 3.2273±0.01 100000 3.23±0.05 3.24±0.05 3.27±0.05 3.25±0.05

0.0025 3.2528 3.2495 200000 3.22±0.03 3.23±0.03 3.25±0.03 3.24±0.03

0.02 7.6012 7.5952 10000 7.64±0.22 7.99±0.23 7.80±0.23 7.68±0.22

0.01 7.6020 7.5976 50000 7.72±0.10 7.58±0.09 7.61±0.10 7.65±0.10

S0 = 100 0.0050 7.6022 7.5980 7.5589±0.02 100000 7.54±0.07 7.62±0.07 7.61±0.07 7.54±0.07

0.0025 7.6022 7.5980 200000 7.54±0.05 7.54±0.05 7.56±0.05 7.60±0.05

0.02 14.1510 14.1524 10000 14.22±0.28 14.61±0.29 14.35±0.29 14.07±0.28

0.01 14.1443 14.1425 50000 14.25±0.13 14.11±0.12 14.16±0.12 14.17±0.13

S0 = 110 0.0050 14.1420 14.1401 14.0909±0.03 100000 14.03±0.09 14.18±0.09 14.10±0.09 14.06±0.09

0.0025 14.1419 14.1399 200000 14.05±0.06 14.04±0.06 14.07±0.06 14.13±0.06

0.02 22.2466 22.2505 10000 22.38±0.32 22.84±0.33 22.46±0.32 22.15±0.32

0.01 22.2412 22.2419 50000 22.35±0.15 22.27±0.14 22.24±0.14 22.28±0.14

S0 = 120 0.0050 22.2398 22.2402 22.1736±0.03 100000 22.12±0.10 22.27±0.10 22.19±0.10 22.17±0.10

0.0025 22.2394 22.2397 100000 22.12±0.10 22.27±0.10 22.19±0.10 22.17±0.10

(b)

ρSr = 0.5 ∆x HTFDa HTFDb B-AMC NMC HMCLSa HMCLSb AMCLSa AMCLSb

0.02 1.3551 1.3470 10000 1.18±0.09 1.29±0.10 1.12±0.09 0.80±0.08

0.01 1.3576 1.3566 50000 1.35±0.05 1.17±0.04 1.33±0.05 1.25±0.05

S0 = 80 0.0050 1.3573 1.3570 1.3559±0.01 100000 1.33±0.03 1.30±0.03 1.33±0.03 1.27±0.03

0.0025 1.3571 1.3569 200000 1.35±0.02 1.31±0.02 1.38±0.02 1.34±0.02

0.01 3.7696 3.7606 10000 3.72±0.17 3.78±0.17 3.82±0.18 3.72±0.17

0.01 3.7705 3.7688 50000 3.86±0.08 3.71±0.08 3.80±0.08 3.81±0.08

S0 = 90 0.0050 3.7694 3.7685 3.7633±0.02 100000 3.75±0.06 3.74±0.05 3.76±0.05 3.74±0.05

0.0025 3.7694 3.7686 200000 3.75±0.04 3.74±0.04 3.80±0.04 3.79±0.04

0.02 8.1285 8.1249 10000 8.12±0.24 8.52±0.26 8.25±0.26 8.15±0.25

0.01 8.1308 8.1301 50000 8.25±0.11 8.08±0.11 8.15±0.11 8.18±0.11

S0 = 100 0.0050 8.1311 8.1308 8.1122±0.03 100000 8.07±0.08 8.16±0.08 8.11±0.08 8.10±0.08

0.0025 8.1312 8.1309 200000 8.08±0.06 8.07±0.06 8.14±0.06 8.16±0.06

0.02 14.4455 14.4468 10000 14.48±0.32 14.84±0.33 14.43±0.32 14.51±0.32

0.01 14.4409 14.4414 50000 14.60±0.15 14.40±0.14 14.45±0.14 14.47±0.14

S0 = 110 0.0050 14.4389 14.4395 14.3884±0.03 100000 14.34±0.10 14.47±0.10 14.39±0.10 14.38±0.10

0.0025 14.4388 14.4394 200000 14.35±0.07 14.37±0.07 14.38±0.07 14.48±0.07

0.02 22.2859 22.2893 10000 22.23±0.36 22.87±0.39 22.45±0.36 22.29±0.35

0.01 22.2815 22.2827 50000 22.50±0.17 22.29±0.16 22.27±0.16 22.28±0.16

S0 = 120 0.0050 22.2802 22.2813 22.2039±0.04 100000 22.17±0.12 22.31±0.12 22.24±0.12 22.22±0.12

0.0025 22.2798 22.2808 200000 22.17±0.08 22.17±0.08 22.17±0.08 22.32±0.08

Table 3.9: Bates-Hull-White model. Prices of American call options. Test parameters: K = 100,

T = 0.5, δ = 0.05, r0 = 0.03, κr = 1, σr = 0.2, Y0 = 0.04, θY = 0.04, κY = 2, σY = 0.4, λ = 5,

γ = 0, η = 0.1, ρSY = −0.5,ρSr = −0.5, 0.5.
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∆x HTFDa HTDFb NMC HMCa HMCb AMCa AMCb

0.02 2.77 22.95 10000 0.13 0.25 0.36 0.48

0.01 6.15 48.17 50000 0.66 1.35 1.11 2.48

0.005 12.12 99.19 100000 1.37 2.56 1.82 4.99

0.0025 27.61 204.88 200000 2.56 5.08 3.70 9.96

Table 3.10: Bates-Hull-White model. Computational times (in seconds) for European call options

in Table 3.8 for S0 = 100, ρSr = −0.5.

∆x HTFDa HTDFb NMC HMCLSa HMCLSb AMCLSa AMCLSb

0.02 2.77 23.10 10000 0.28 0.43 0.40 0.62

0.01 6.39 48.65 50000 0.80 1.79 1.30 2.72

0.005 12.50 99.85 100000 1.91 3.89 3.02 6.15

0.0025 27.92 205.60 200000 4.03 8.11 5.20 10.75

Table 3.11: Bates-Hull-White model. Computational times (in seconds) for American call options

in Table 3.9 for S0 = 100, ρSr = −0.5.
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Chapter 4

Weak convergence rate of Markov

chains and hybrid numerical

schemes for jump-diffusion

processes

4.1 Introduction

This chapter is devoted to the study of the weak convergence rate of numerical schemes

allowing one to handle specific jump-diffusion processes which include the Heston and Bates

models in the full parameters regime. We generalize the hybrid tree- finite difference method

described in Chapter 3 for the computation of European and American options in the

stochastic volatility context and we study the rate of convergence. Let us mention that,

under these models, the literature is rich in numerical methods but, as far as we know, poor

in results on the rate of convergence, with the exception of the papers [4, 6, 23, 98], all of

them either dealing with schemes written on Brownian increments or requiring restrictions

on the Heston diffusion parameters. So, we first study the convergence rate of tree methods

and then we tackle the hybrid procedure.

Tree methods rely heavily on Markov chains. So, in the first part (Section 4.3) we study

the rate at which a sequence of Markov chains weakly converges to a diffusion process
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(Yt)t∈[0,T ] solution to

dYt = µY (Yt)dt+ σY (Yt)dWt.

In this framework, the weak convergence is well known to be governed by the behaviour

of the local moments up to order 3 or 4 (see e.g. [89]). In order to get the speed of con-

vergence, we need to stress such requests, making further but quite general assumptions

on the behaviour of the moments, and in Theorem 4.3.1 we prove a first order weak con-

vergence result. As an application, we give an example from the financial framework: we

theoretically study the convergence rate of the tree approximation proposed in [10] for the

CIR process (and described in Section 3.3.1). Several trees are considered in the literature,

see e.g. [36, 59, 91], but all of them work poorly from the numerical point of view when

the Feller condition fails. Our result for the tree in [10] (Theorem 4.3.2) works in any

parameter regime. Recall that in equity markets, one often requires large values for the

vol-vol σ whereas in interest rates context, σ is markedly lower (see e.g. the calibration

results in [44] and in [30] p. 115, respectively). So, a result in the full parameter regime is

actually essential. We stress that our convergence Theorem 4.3.1 is completely general and

may in principle be applied to more general trees constructed through the multiple jumps

approach by Nelson and Ramaswamy [79] or also to other cases, e.g. the recent tree method

developed in [2].

In the second part (Section 4.4), we link to (Yt)t∈[0,T ] a jump-diffusion process (Xt)t∈[0,T ]

which evolves according to a stochastic differential equation whose coefficients only depend

on the process (Yt)t∈[0,T ]:

dXt = µX(Yt)dt+ σX(Yt)dBt + γX(Yt)dHt,

where H is a compound Poisson process independent of the 2-dimensional Brownian motion

(B,W ). So, the pair (Xt, Yt)t∈[0,T ] evolves following a Stochastic Differential Equation

(hereafter SDE) with jumps. Given a function f , we consider the numerical computation

of E[f(XT , YT )] or supτ∈T0,T E[f(Xτ , Yτ )] through a method (Section 4.4.1), which works

backwardly by approximating the process Y with a Markov chain and by using a different

numerical scheme for solving a (local) PIDE allowing us to work in the direction of the

process X. Then (Section 4.4.2), in Theorem 4.4.1 we give a general result on the rate of

convergence of the hybrid approach. We stress that the approximating algorithm is not

directly written on a Markov approximation, so one cannot extend the convergence result
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provided in the first part of the chapter. We then study the stability and the consistency

of the hybrid method, but in a sense that allows us to exploit the probabilistic properties

of the Markov chain approximating the process Y .

It is worth mentioning that the test functions on which we study the rate of convergence

are smooth. In fact, there is a strict connection between such hybrid schemes and the

use of a discrete noise in the approximation procedure. This means that we cannot use

regularizing arguments à la Malliavin in order to relax the smoothness requests, as it can

be done when the approximation algorithm is based on the Brownian noise (see the seminal

paper [16] or the recent [6] for the Heston model) or on a noise having at least a “good

piece of absolutely continuous part” (Doeblin’s condition, see [14]).

We then consider two possible finite-difference schemes (Section 4.4.3) to handle the

(local) PIDE related to the component X: an implicit in time/centered in space scheme

(Section 4.4.3) and an implicit in time/upwind in space scheme (Section 4.4.3). In both

cases, the numerical treatment of the nonlocal term coming from the jumps involves implicit-

explicit techniques, as well as numerical quadratures. We apply the convergence Theorem

4.4.1 and we obtain that the hybrid algorithm has a rate of convergence of the first order in

time and of a order in space according to the chosen numerical scheme. As an application,

we give the weak convergence rate of the hybrid procedure written on the Heston and on

the Bates model for pricing European options (Section 4.5). Finally, in Section 4.6 we give

a theoretical result on the convergence rate in the case of American options.

4.2 Notation

In this section we establish the notation which will be used in this chapter. Let d ∈ N∗ =

N \ {0}.

• For a multi-index l = (l1, . . . , ld) ∈ Nd we define |l| =
∑d

j=1 lj and for y ∈ Rd, we define

∂ly = ∂l1y1
· · · ∂ldyd and yl = yl11 · · · y

ld
d . Moreover, we denote by |y| the standard Euclidean

norm in Rd and for any linear operator A : Rd → Rd, we denote by |A| = sup|y|=1 |Ay| the

induced norm.

• Lp(Rd, dm) denotes the standard Lp-space w.r.t. the measure m on (Rd,Bd), Bd denoting

the Borel σ-algebra on Rd, and we set | · |Lp(Rd,dm) the associated norm. The Lebesgue

measure is denoted through dx.
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• Let D ⊆ Rd be a domain (possibly closed) and q ∈ N. Cq(D) is the set of all functions

on D which are q-times continuously differentiable. We set Cqpol(D) the set of functions

g ∈ Cq(D) such that there exist C, a > 0 for which

|∂lyg(y)| ≤ C(1 + |y|a), y ∈ D, |l| ≤ q.

For [a, b] ⊆ R+, we set Cqpol,[a,b](D) the set of functions v = v(t, y) such that v ∈ Cbq/2c,q([a, b)×
D) and there exist C, c > 0 for which

sup
t∈[a,b)

|∂kt ∂lyv(t, y)| ≤ C(1 + |y|c), y ∈ D, 2k + |l| ≤ q.

For brevity, we set C(D) = C0(D), Cpol(D) = C0
pol(D) and Cpol,[a,b](D) = C0

pol,[a,b](D). We

also need another functional space, that we call Cp,qpol(R
m,D), p ∈ [1,∞], q ∈ N, m ∈ N∗:

g = g(x, y) ∈ Cp,qpol(R
m,D) if g ∈ Cqpol(R

m ×D) and there exist C, c > 0 such that

|∂l′x∂lyg(·, y)|Lp(Rm,dx) ≤ C(1 + |y|c), |l′|+ |l| ≤ q.

Similarly as above, we set Cp,qpol,[a,b](R
m,D) the set of the function v ∈ Cqpol,[a,b](R

m × D)

such that

sup
t∈[a,b)

|∂kt ∂l
′
x∂

l
yv(t, ·, y)|Lp(Rm,dx) ≤ C(1 + |y|c), 2k + |l′|+ |l| ≤ q.

If [a, b] = [0, T ], to simplify the notation, we set Cqpol,[0,T ](D) = Cqpol,T (D) and Cp,qpol,[0,T ](D) =

Cp,qpol,T (D).

• For fixed X0 = (X01, . . . , X0d) ∈ Rd and ∆x = (∆x1, . . . ,∆xd) ∈ (0,+∞)d (spatial

step), X = {x = (X01 + i1∆x1, . . . , X0d + id∆xd)}i∈Zd denotes a discrete grid in Rd. For

p ∈ [1,∞], we set lp(X ) the discrete lp-space of the functions ϕ : X → R with the norm

|ϕ|p = (
∑

x∈X |ϕ(x)|p∆x1 · · ·∆xd)1/p if p ∈ [1,∞) and |ϕ|∞ = supx∈X |ϕ(x)| if p = ∞.

Moreover, for a linear operator Γ : lp(X )→ lp(X ), the induced norm is denoted by |Γ|p =

sup|ϕ|p≤1 |Γϕ|p. And for a function g : Rd → R, we set |g|p the lp(X ) norm of the restriction

of g on X . When d = 1, we identify (ϕ(x))x∈X with (ϕi)i∈Z through ϕi = ϕ(X0 + i∆x),

i ∈ Z.

• Lp(Ω) is the short notation for the standard Lp-space on the probability space (Ω,F ,P),

on which the expectation is denoted by E. We set ‖ · ‖p the norm in Lp(Ω).

148



Sec. 4.3 - First order weak convergence of Markov chains to diffusions

4.3 First order weak convergence of Markov chains to diffu-

sions

Let d ∈ N∗ and D ⊆ Rd be a convex domain or a closure of it. On a probability space

(Ω,F ,P), we consider a d-dimensional diffusion process driven by

dYt = µY (Yt)dt+ σY (Yt)dWt, Y0 ∈ D, (4.3.1)

where W is a `-dimensional standard Brownian motion. From now on, we set aY = σY σ
?
Y ,

the notation ? denoting transpose. We recall that the associated infinitesimal generator is

given by

A =
1

2
Tr(aYD

2
y) + µY · ∇y, (4.3.2)

where Tr denotes the matrix trace, D2
y and∇y are, respectively, the Hessian and the gradient

operator w.r.t. the space variable y and the notation “·” stands for the scalar product.

Hereafter, we fix T > 0, f : D → R and we define

u(t, y) = E[f(Y t,y
T )], (t, y) ∈ [0, T ]×D, (4.3.3)

where Y t,y denotes the solution to the SDE in (4.3.1) that starts at t in the position y. We

do not enter in specific requests for the diffusion coefficients or for f , we just ask that the

following properties are met:

(a) µY has polynomial growth;

(b) for every (t, y) ∈ [0, T ]×D there exists a unique weak solution (Y t,y
s )s∈[t,T ] of (4.3.1)

such that P(∀s ∈ [t, T ], Y t,y
s ∈ D) = 1;

(c) the function u in (4.3.3) solves the PDE
∂u
∂t +Au = 0, in [0, T )×D,

u(T, y) = f(y), in D.
(4.3.4)

The above proverties (a), (b) and (c) will be assumed to hold throughout this section.

We are interested in the numerical evaluation of u(0, Y0) = E(f(YT )). A widely used and

computationally convenient method is by computing the above expectation on an approx-

imation of the process Y . Here, we consider an approximation through a Markov chain
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that weakly converges to the diffusion process Y , see e.g. the classical references [89]. We

will see in Section 4.3.1 an application to tree methods, that is, when the process Y is

approximated by means of a computationally simple Markov chain. Here, our aim is to

study, under suitable but quite general assumptions, the order of weak convergence.

So, let N ∈ N∗ and set h = T/N . The parameters N and h are fixed once for all. Let

(Y h
n )n=0,...,N denote a Markov chain, whose state space, at time-step n, is given by Yhn ⊂ D.

In our mind, (Y h
n )n=0,...,N is a Markov process which is a discrete weak approximation in

time (and possibly in space) of the d-dimensional diffusion Y , namely, Y h
n approximates Y

at times nh, for every n = 0, . . . , N . Of course, we assume that Y h
0 = Y0, that is, Yh0 = {Y0}.

Without loss of generality, we may assume that (Y h
n )n=0,...,N is defined in (Ω,F ,P).

In order to study the rate of the weak convergence of (Y h
n )n=0,...,N to Y , we need to stress

the requests that are usually done in order to merely prove the convergence (see e.g. [89]).

In particular, we need the following assumption.

Assumption A1. There exists h̄ > 0 such that, for every h < h̄, the first three local

moments satisfy

E[Y h
n+1 − Y h

n | Y h
n ] = µY (Y h

n )h+ fh(Y h
n ), (4.3.5)

E[(Y h
n+1 − Y h

n )(Y h
n+1 − Y h

n )? | Y h
n ] = aY (Y h

n )h+ gh(Y h
n ), (4.3.6)

E[(Y h
n+1 − Y h

n )l | Y h
n ] = jh,l(Y

h
n ), l ∈ Nd, |l| = 3, (4.3.7)

where fh : D → Rd, gh : D → Rd×d and jh,l : D → R satisfy the following properties: there

exist p > 1 and C > 0 such that

sup
h≤h̄

sup
n=0,...,N

‖fh(Y h
n )‖p ≤ Ch2, (4.3.8)

sup
h≤h̄

sup
n=0,...,N

‖gh(Y h
n )‖p ≤ Ch2, (4.3.9)

sup
h≤h̄

sup
n=0,...,N

‖jh,l(Y h
n )‖p ≤ Ch2, |l| = 3. (4.3.10)

We also need the following behavior of the moments.

Assumption A2. There exists h̄ > 0 such that for every p > 1 there exists Cp > 0 for
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which

sup
h<h̄

sup
0≤n≤N

‖Y h
n ‖p ≤ Cp, (4.3.11)

sup
h<h̄

sup
0≤n≤N

1√
h
‖Y h

n+1 − Y h
n ‖p ≤ Cp. (4.3.12)

We can now state the following first order weak convergence result.

Theorem 4.3.1. Let assumptions A1 and A2 hold and assume that u ∈ C4
pol,T (D), u being

defined in (4.3.3). Then there exist h̄ > 0 and C > 0 such that for every h < h̄ one has

|E[f(Y h
N )]− E[f(YT )]| ≤ CTh.

Proof. The proof is quite standard. Since E[f(Y h
N )] = E[u(T, Y h

T )] and E[f(YT )] = u(0, Y0),

we have

E[f(Y h
T )]− E[f(YT )] = E[u(T, Y h

T )− u(0, Y0)] =
N−1∑
n=0

E[u((n+ 1)h, Y h
n+1)− u(nh, Y h

n )].

Since u ∈ C4
pol,T (D), we can apply Taylor’s formula to t 7→ u(t, y) around nh up to order

1 and to the functions y 7→ u(t, y) and y 7→ ∂tu(t, y) around Y h
n up to order 3 and 1

respectively. We obtain

u((n+1)h, Y h
n+1) =

∑
0≤|l|+2l′≤3

∂ly∂
l′
t u(nh, Y h

n )
hl
′
(Y h
n+1 − Y h

n )l

|l|!l′!
+R1(n, h, Y h

n , Y
h
n+1), (4.3.13)

where the remaining term R1 is given by

R1(n, h, Y h
n , Y

h
n+1) = h2

∫ 1

0
(1− τ)∂2

t u(t+ τh, Y h
n+1)dτ

+ h
∑
|k|=2

(Y h
n+1 − Y h

n )k
∫ 1

0
(1− ξ)∂ky∂tu(nh, Y h

n + ξ(Y h
n+1 − Y h

n ))dξ

+
∑
|k|=4

(Y h
n+1 − Y h

n )k

3!

∫ 1

0
(1− ξ)3∂kyu(nh, Y h

n + ξ(Y h
n+1 − Y h

n ))dξ.

We now pass to the conditional expectation w.r.t. Y h
n in (4.3.13) and use (4.3.5) and (4.3.6).

By rearranging the terms we obtain

E[u((n+ 1)h, Y h
n+1)− u(nh, Y h

n )]

= hE
[
∂tu(nh, Y h

n ) + µY (Y h
n ) · ∇yu(nh, Y h

n ) +
1

2
Tr(aYD

2
yu(nh, Y h

n ))

]
+

5∑
i=1

Rin(h),

(4.3.14)
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in which

R1
n(h) = E[R1(n, h, V h

n , V
h
n+1)], R2

n(h) = hE[(µY (Y h
n )h+ fh(Y h

n )) · ∇y∂tu(nh, Y h
n )],

R3
n(h) = E[fh(Y h

n ) · ∇yu(nh, Y h
n )], R4

n(h) =
1

2
E[Tr(gh(Y h

n )D2
yu(nh, Y h

n ))],

R5
n(h) =

1

6

∑
|k|=3

E[∂kyu(nh, Y h
n )jh,k(Y

h
n )].

Thanks to (4.3.4), the first term in (4.3.14) is null, so

|E[u((n+ 1)h, Y h
n+1)− u(nh, Y h

n )]| ≤
5∑
i=1

|Rin(h)|.

We now prove that |Rin(h)| ≤ Ch2, for every i = 1, . . . 5. Let h̄ > 0 such that both

assumptions A1 and A2 hold and let h < h̄. Since the derivatives of u have polynomial

growth, one has

|R1(n, h, Y h
n , Y

h
n+1)| ≤ C

(
1 + |Y h

n |+ |Y h
n+1|

)a[
h2 + h|Y h

n+1 − Y h
n |2 + |Y h

n+1 − Y h
n |4
]
,

where C, a > 0 denote constants that are independent of h and, from now on, may change

from a line to another. Then, by using the Cauchy-Schwarz inequality, (4.3.11) and (4.3.12),

we get

|R1
n(h)| ≤ C

∥∥(1 + |Y h
n+1|+ |Y h

n |)a
∥∥

2

∥∥h2 + h(Y h
n+1 − Y h

n )2 + (Y h
n+1 − Y h

n )4
∥∥

2
≤ Ch2.

As regards R2
n(h), we use the polynomial growth of ∇y∂tu, the Cauchy-Schwarz inequality

and the Hölder inequality, so that

|R2
n(h)| ≤ CE[

(
1 + |Y h

n |a
)
|µY (Y h

n )|]h2 + CE[
(
1 + |Y h

n |a
)
|fh(Y h

n )|]

≤ C
∥∥1 + |Y h

n |a
∥∥

2

∥∥µY (Y h
n )
∥∥

2
h2 + C

∥∥1 + |Y h
n |a
∥∥
q

∥∥fh(Y h
n )
∥∥
p
,

where p is given in (4.3.8) and q is its conjugate exponent. Since µY has polynomial growth,

by (4.3.8) and (4.3.11) we get

|R2
n(h)| ≤ Ch2.

The remaining terms R3
n(h), R4

n(h) and R5
n(h) can be handled similarly, so the statement

follows.
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4.3.1 An example: a first order weak convergent binomial tree for the

CIR process

We now fix d = 1 and D = R+ = [0,∞). We consider the CIR process (Yt)t∈[0,T ] solution

to the SDE

dYt = κ(θ − Yt)dt+ σ
√
Yt dWt, Y0 ≥ 0.

We assume that θ, κ, σ > 0 and we do not require the Feller condition. Therefore, the

process Y can reach 0.

We consider here the “multiple jumps” tree approximation for the CIR process described

in Section 3.3.1. We first briefly recall how the tree works and then, as an application of

Theorem 4.3.1, we study the rate of convergence.

Recall that, for n = 0, 1, . . . , N we have the lattice

Yhn = {ynk}k=0,1,...,n with ynk =
(√

Y0 +
σ

2
(2k − n)

√
h
)2
1{
√
Y0+σ

2
(2k−n)

√
h>0}. (4.3.15)

Note that Yh0 = {Y0}. For each fixed node (n, k) ∈ {0, 1, . . . , N − 1} × {0, 1, . . . , n}, the

“up” jump ku(n, k) and the “down” jump kd(n, k) from ynk ∈ Yhn are defined as

ku(n, k) = min{k∗ : k + 1 ≤ k∗ ≤ n+ 1 and ynk + µY (ynk )h ≤ yn+1
k∗ }, (4.3.16)

kd(n, k) = max{k∗ : 0 ≤ k∗ ≤ k and ynk + µY (ynk )h ≥ yn+1
k∗ }, (4.3.17)

where µY (y) = κ(θ − y) and with the understanding ku(n, k) = n + 1, resp. kd(n, k) = 0,

if the set in (4.3.16), resp. (4.3.17), is empty. In fact, starting from the node (n, k) the

probability that the process jumps to ku(n, k) and kd(n, k) at time-step n+ 1 are set as

keypu(n, k) = 0 ∨
µY (ynk )h+ ynk − y

n+1
kd(n,k)

yn+1
ku(n,k) − y

n+1
kd(n,k)

∧ 1 and pd(n, k) = 1− pu(n, k)

respectively. We will see in next Proposition 4.3.3 that for h small enough the parts “0∨”

and “∧1” can be omitted.

We call (Y h
n )n=0,1,...,N the Markov chain governed by the above jump probabilities. As

an application of Theorem 4.3.1, we shall prove the following result.

Theorem 4.3.2. Let f ∈ C4
pol(R+). Then, there exist h̄ > 0 and C > 0 such that for every

h < h̄,

|E[f(Y h
N )]− E[f(YT )]| ≤ CTh,

that is, the tree approximation (Y h
n )n=0,...,N is first order weak convergent.
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In order to discuss the assumptions A1 and A2 of Theorem 4.3.1, we need some prelimi-

nary results which pave the way to the analysis of the convergence.

Proposition 4.3.3. There exist θ∗, θ
∗, C∗, h̄ > 0 such that for any h < h̄ the following

properties hold.

(i) If θ∗h ≤ ynk ≤ θ∗/h, then ku(n, k) = k + 1, kd(n, k) = k. Moreover,

yn+1
ku(n,k) = ynk +

σ2

4
h+ σ

√
ynkh and yn+1

kd(n,k) = ynk +
σ2

4
h− σ

√
ynkh.

(ii) If ynk < θ∗h, then kd(n, k) = k. Moreover,

0 ≤ yn+1
ku(n,k) − y

n
k ≤ C∗h. (4.3.18)

(iii) If ynk > θ∗/h, then ku(n, k) = k + 1.

(iv) The jump probabilities are

pu(n, k) =
µY (ynk )h+ ynk − y

n+1
kd(n,k)

yn+1
ku(n,k) − y

n+1
kd(n,k)

, pd(n, k) =
ynku(n,k) − y

n
k − µY (ynk )h

yn+1
ku(n,k) − y

n+1
kd(n,k)

.

(4.3.19)

The proof of Proposition 4.3.3 relies on a boring study of the properties of the lattice, so

we postpone it in Appendix 4.7.1. This is all we need to prove that A2 holds:

Proposition 4.3.4. The CIR approximating tree {Y h
n }n=0,...,N satisfies Assumption A2.

Proof. Step 1: proof of (4.3.11). We use a technique firstly developed in [3] for a CIR

discretization scheme based on Brownian increments. The key point is the proof of a

monotonicity property allowing one to control the moments of the tree: there exist b, C, h̄ >

0 such that for every h < h̄ and n = 0, . . . , N − 1 one has

0 ≤ Y h
n+1 ≤ (1 + bh)Y h

n + Ch+ σ
√
Y h
n hW

h
n+1, (4.3.20)

where W h
n+1 is a r.v. such that

P(W h
n+1 = 2pd(n, k)|Y h

n = ynk ) = pu(n, k) = 1− P(W h
n+1 = −2pu(n, k)|Y h

n = ynk ). (4.3.21)

To this purpose, fix a node (n, k). For the sake of simplicity, we write ku, resp. kd, in place

of ku(n, k), resp. kd(n, k). We have (see (4.7.94)) that

yn+1
k+1 ≤ y

n
k +

σ2

4
h+ σ

√
ynkh, yn+1

k ≤ ynk +
σ2

4
h− σ

√
ynkh.
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By Proposition 4.3.3, for h < h̄, if θ∗h < ynk < θ∗/h the up and down jumps are both single,

hence yn+1
ku

= yn+1
k+1 and yn+1

kd
= yn+1

k On the other hand, if ynk ≥ θ∗/h the up jump is single,

that is yn+1
ku

= yn+1
k+1 , while the down jump can be multiple but, in every case, is still true

that

yn+1
kd
≤ yn+1

k = ynk +
σ2

4
h− σ

√
ynkh.

Finally, if ynk ≤ θ∗h, we have yn+1
kd

= yn+1
k , while the up jump can be multiple but we can

always write

yn+1
ku
≤ ynk + C∗h ≤ ynk + C∗h+ σ

√
ynkh.

Summing up, if we set C̄ = max
(
C∗,

σ2

4

)
, for every h small we can write

0 ≤ Y h
n+1 ≤ Y h

n + C̄h+ σ
√
Y h
n hZ

h
n+1,

where Zhn+1 is a random variable such that P(Zhn+1 = +1|Y h
n = ynk ) = pu(n, k) and P(Zhn+1 =

−1|Y h
n = ynk ) = pd(n, k). Note that E(Zhn+1|Y h

n = ynk ) = pu(n, k)− pd(n, k) = 2pu(n, k)− 1.

Then, the random variable

W h
n+1 = Zhn+1 − E[Zhn+1|Y h

n ]

has exactly the law given in (4.3.21). We also define the function Pu(ynk ) = pu(n, k).

Therefore,

0 ≤Y h
n+1 ≤ Y h

n + C̄h+ σ
√
Y h
n h (2Pu(Y h

n )− 1) + σ
√
Y h
n hW

h
n+1

≤Y h
n + C̄h+ σ

√
θ∗

√
Y h
n h

θ∗
∣∣2Pu(Y h

n )− 1
∣∣1{Y hn ≥ θ∗h } + σ

√
Y h
n h
(
2Pu(Y h

n )− 1
)
1{Y hn < θ∗

h
}

+ σ
√
Y h
n hW

h
n+1.

Now, if Y h
n ≥ θ∗

h then

√
Y hn h
θ∗ ≤

Y hn h
θ∗ and, since Pu ∈ [0, 1], we have |2Pu(Y h

n )−1| ≤ 1. Then,

0 ≤ Y h
n+1 ≤ (1 + bh)Y h

n + C̄h+ σ
√
Y h
n h
(
2Pu(Y h

n )− 1
)
1{Y hn < θ∗

h
} + σ

√
Y h
n hW

h
n+1,

where b = σ√
θ∗

. Let us study the quantity σ
√
Y h
n h (2Pu(Y h

n ) − 1)1{Y hn < θ∗
h
}. If θ∗h < ynk <

θ∗/h, by using (4.3.19) and point 1. of Proposition 4.3.3, we can explicitly write

σ
√
ynkh (2Pu(ynk )− 1) = σ

√
ynkh

(
2
(1

2
+

4µY (vnk )− σ2

8σ
√
ynkh

)
h− 1

)
= µY (vnk )h− σ2

4
h ≤ κθh.
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If instead ynk ≤ θ∗h, then by using 2. in Proposition 4.3.3 we have

σ
√
ynkh (2Pu(ynk )− 1) = σ

√
ynkh

2µY (ynk )h+ 2ynk − y
n+1
kd(n,k) − y

n+1
ku(n,k)

yn+1
ku(n,k) − y

n+1
kd(n,k)

≤ σ
√
ynkh

2µY (ynk )h+ 2ynk
yn+1
k+1 − y

n+1
k

≤ σ
√
ynkh

2κθh+ 2θ∗h

2σ
√
ynkh

= (κθ + θ∗)h.

So, by inserting, for every n ≤ N − 1 we get

0 ≤ Y h
n+1 ≤ (1 + bh)Y h

n + C̄h+ σ(κθ + θ∗)h+ σ
√
Y h
n hW

h
n+1

and (4.3.20) is proved.

Now, we repeat step by step the proof of Lemma 2.6 in [3] in order to get (4.3.11). We

use induction on p. For p = 1, by definition one has E[Y h
n+1|Y h

n ] = Y h
n + µY (Y h

n )h and, by

passing to the expectation, E[Y h
n+1] = E[Y h

n ] + E[µY (Y h
n )h] ≤ E[Y h

n ] + κθh, from which we

obtain E[Y h
n+1] ≤ Y0 + κθ(n + 1)h ≤ Y0 + κθT and the case p = 1 is proved. So, assume

that (4.3.11) holds for p− 1 and let us prove its validity for p. Using (4.3.20), we have

E[(Y h
n+1)p] ≤

∑
l1+l2+l3=p

p!

l1!l2!l3!
(1 + bh)l1σl2C l3E

[
(Y h
n )l1+

l2
2 hl3+

l2
2 (W h

n+1)l2
]
.

So, it is sufficient to control E(l1, l2, l3) = E
[
(Y h
n )l1+

l2
2 hl3+

l2
2 (W h

n+1)l2
]

for l1 + l2 + l3 = p.

Assume first that l1 + l2
2 ≤ p−

3
2 , a case giving l3 + l2

2 ≥
3
2 . Without loss of generality we

can assume Cp−1 ≥ 1. Moreover, recall that |W h
n+1| ≤ 2. By using the Hölder’s inequality

with α = p−1

l1+
l2
2

, we get

E(l1, l2, l3) ≤ |E(l1, l2, l3)| ≤ E
[
(Y h
n )l1+

l2
2

]
2l2hl3+

l2
2 ≤ Cp−12l2h

3
2 .

Therefore∑
l1+l2+l3=p

l1+l2/2≤p−3/2

p!

l1!l2!l3!
(1 + bh)l1σl2C l3E(l1, l2, l3) ≤ Cp−1h

3
2

∑
l1+l2+l3=p

p!

l1!l2!l3!
(1 + bh)l1(2σ)l2C l3

≤ Cp−1h
3
2 (1 + b+ 2σ + C)p.

The case l1+ l2
2 > p− 3

2 gives 4 further contributions, namely (l1, l2, l3) = (p, 0, 0), (p−1, 0, 1),

(p− 1, 1, 0) and (p− 2, 2, 0). So, we get

E[(Y h
n+1)p] ≤ Cp−1(1 + b+ 2σ + C)ph

3
2 + (1 + bh)pE[(Y h

n )p] + p(1 + bh)p−1ChE[(Y h
n )p−1]

+ p(1 + bh)p−1σCh1/2E[(Y h
n )p−1/2W h

n+1] +
p(p− 1)

2
(1 + bh)p−2σ2hE[(Y h

n )p−1(W h
n+1)2].
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Consider the last two terms above. For the first, we note that

E[(Y h
n )p−1/2W h

n+1] = E[(Y h
n )p−1/2E[W h

n+1|hYn]] = 0

and for the second, we recall that |W h
n+1| ≤ 2. So, we easily obtain

E[(Y h
n+1)p] ≤ Cp−1h(1 + b+ 2σ + C)p

[
1 + p+

p(p− 1)

2

]
+ (1 + bh)pE[(Y h

n )p].

By recursion on n, we get

E[(Y h
n+1)p] ≤ Cp−1h(1 + b+ 2σ + C)p

p2 + p+ 2

2

n∑
j=0

(1 + bh)jp + Y p
0 (1 + bh)(n+1)p

and 4.3.11 now follows.

Step 2: proof of (4.3.12). We can write

|Y h
n+1 − Y h

n |p ≤3p−1
∣∣∣σ2

4
h+ σ

√
Y h
n hZ

h
n+1

∣∣∣p1{θ∗h<Y hn <θ∗/h} + 3p−1|Y h
n+1 − Y h

n |p1{Y hn ≤θ∗h}

+ 3p−1|Y h
n+1 − Y h

n |p1{Y hn ≥θ∗/h} =: 3p−1(I1 + I2 + I3),

where we have used that, on the set {θ∗h < Y h
n < θ∗/h}, we have Y h

n+1 = Y h
n + σ2

4 h +

σ
√
Y h
n hZ

h
n+1, with P(Zhn+1 = 1 | Y h

n+1) = Pu(Y h
n ) and P(Zhn+1 = −1 | Y h

n+1) = Pd(Y
h
n ).

Now, by using (4.3.11), Proposition 4.3.3, the Cauchy-Swartz and the Markov inequality,

I1 ≤ E
[(σ2

4
h+ σ

√
Y h
n h
)p]
≤ 2p−1

((σ2

4

)p
+ σpE[(Y h

n )p]1/2
)
hp/2 ≤ 2p−1

((σ2

4

)p
+ σp

√
Cp

)
hp/2,

I2 ≤ Cp∗hp,

I3 ≤ E[(Y h
n+1 − Y h

n )2p]1/2P
(
Y h
n >

θ∗

h

)1/2
≤ 2p

√
C2pCp
(θ∗)p

hp/2,

and (4.3.12) follows.

Proposition 4.3.5. The CIR approximating tree {Y h
n }n=0,...,N satisfies Assumption A1.

Proof. Straightforward computations give E[Y h
n+1 − Y h

n | Y h
n ] = µY (Y h

n )h, so (4.3.5) and

(4.3.8) immediately follow. As for (4.3.6),

E[(Y h
n+1 − Y h

n )2 | Y h
n = ynk ] = E[(Y h

n+1 − Y h
n )2 | Y h

n = ynk ]1{ynk≤θ∗h}

+ E[(Y h
n+1 − Y h

n )2 | Y h
n = ynk ]1{θ∗h≤ynk≤θ∗/h} + E[(Y h

n+1 − Y h
n )2 | Y h

n = ynk ]1{ynk>θ∗/h}.
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We study separately the first two terms of the above r.h.s. If ynk < θ∗h, Proposition 4.3.3

gives |yn+1
ku
− ynk | ≤ C∗h and |yn+1

kd
− ynk | ≤ C∗h so that

E[(Y h
n+1 − Y h

n )2 | Y h
n = ynk ]1{ynk≤θ∗h} = ϕ1(ynk )h21{ynk≤θ∗h},

with ϕ1 such that |ϕ1(y)| ≤ C2
∗ . If instead θ∗h ≤ ynk ≤ θ∗/h, by using (4.3.19) we get

(yn+1
ku
− ynk )2pu(n, k) + (yn+1

kd
− ynk )2pd(n, k) = σ2ynkh+

σ2

2

(
κ(θ − ynk )− σ2

8

)
h2.

So,

E[(Y h
n+1 − Y h

n )2 | Y h
n = ynk ]1{θ∗h≤ynk≤θ∗/h} =

(
σ2ynkh+ ϕ2(ynk )h2

)
1{θ∗h≤ynk≤θ∗/h},

with ϕ2 such that |ϕ2(y)| ≤ σ2

2

(
κ(θ+y)+ σ2

8

)
. By inserting, (4.3.6) follows with gh satisfying

|gh(Y h
n )| ≤ c1(1 + Y h

n )h2 + E((Y h
n+1 − Y h

n )2 + σhY h
n | Y h

n )1{Y hn ≥θ∗/h},

c1 denoting a suitable constant. By Proposition 4.3.4 and the Markov inequality, (4.3.9)

follows.

Finally, for (4.3.7), we write

E[(Y h
n+1 − Y h

n )3 | Y h
n = ynk ] = E[(Y h

n+1 − Y h
n )3 | Y h

n = ynk ]1{ynk≤θ∗h}

+ E[(Y h
n+1 − Y h

n )3 | Y h
n = ynk ]1{θ∗h<ynk<θ∗/h} + E[(Y h

n+1 − Y h
n )3 | Y h

n = ynk ]1{ynk≥θ∗/h}.

Now, if ynk ≤ θ∗h then |Y h
n+1 − ynk |3 ≤ C3

∗h
3. If instead θ∗h < ynk < θ∗/h, by (4.3.19) one

obtains

(yn+1
ku
− ynk )3pu(n, k) + (yn+1

kd
− ynk )3pd(n, k) = µY (ynk )h2

(
σ2ynk +

3σ4

16
h
)

+
(σ4

2
ynk +

σ4

16
h
)
h2.

Therefore,

|jh(Y h
n )| ≤ c2h

2(1 + (Y h
n )2) + E(|Y h

n+1 − Y h
n |3 + σhY h

n | Y h
n )1{Y hn ≥θ∗/h},

c2 denoting a suitable constant, and again by Proposition 4.3.4 and the Markov inequality,

(4.3.10) follows.

We are finally ready for the

Proof of Theorem 4.3.2. By Theorem 4.1 in [3] (or Corollary 4.5.5), one has that if f ∈
C4
pol(R+) then u ∈ C4

pol,T (R+) . Since Assumption A1 and A2 both hold, the statement

follows as an application of Theorem 4.3.1.
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4.4 Hybrid schemes for jump-diffusions and convergence rate

We now introduce a m-dimensional jump-diffusion (Xt)t∈[0,T ] whose dynamics is given by

coefficients depending on the process (Yt)t∈[0,T ] discussed in Section 4.3. More precisely, we

consider the stochastic systemdXt = µX(Yt)dt+ σX(Yt) dBt + γX(Yt)dHt, X0 ∈ Rm,

dYt = µY (Yt)dt+ σY (Yt) dWt, Y0 ∈ D,
(4.4.22)

where B is a `1-dimensional Brownian motion and H is a `2- dimensional compound Poisson

process with intensity λ and i.i.d. jumps {Jk}k, that is

Ht =

Kt∑
k=1

Jk, (4.4.23)

K denoting a Poisson process with intensity λ. We assume that the Poisson process K, the

jump amplitudes {Jk}k and the Brownian motions B and W are independent. Moreover,

we ask that J1 has a density pJ1 , so that the Lévy measure associated with H has a density

as well:

ν(dx) = ν(x)dx = λpJ1(x)dx.

Hereafter, we denote by L the infinitesimal generator associated with the diffusion pair

(X,Y ), i.e.

Lg(x, y) =
1

2
Tr(a(y)D2

x,yg(x, y)) + µ(y) · ∇x,yg(x, y)

+γX(y)

∫
(g(x+ ζ, y)− g(x, y))ν(dζ),

(4.4.24)

where µ(y) = (µX(y), µY (y))? and a(y) = σσ?(y), where

σ(y) =

(
σX(y) 0m×d

0d×m σY (y)

)
.

Here, D2
x,y and ∇x,y are respectively the Hessian and the gradient operator w.r.t. the

space variables x and y. We assume that the coefficients of X do not depend on the time

variable just to simplify the notation, but all the proofs in this chapter are still valid in the

time-depending case under non restrictive classical assumptions.
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Let (Xt,x,y
s , Y t,x

s )s∈[t,T ] be the solution of (4.4.22) with starting condition (Xt, Yt) = (x, y).

Hereafter, we fix T > 0 and f : Rm ×D → R. We are interested in computing the quantity

u(0, X0, Y0), where, as specified from time to time, u is given by

u(t, x, y) = E
[
f(Xt,x,y

T , Y t,y
T )
]
, (t, x, y) ∈ [0, T ]× Rm ×D, (4.4.25)

or

u(t, x, y) = sup
τ∈Tt,T

E
[
f(Xt,x,y

τ , Y t,y
τ )
]
, (t, x, y) ∈ [0, T ]× Rm ×D, (4.4.26)

where Tt,T denotes the set of all stopping times taking values on [t, T ].

This can be, in general, a problem of interest in a large number of applications. Of course,

the immediate application in this thesis is in the financial world, where X can represent

the log-price (or a transformation of it) and Y can be interpreted as a random source such

as a stochastic volatility and/or a stochastic interest rate. In this framework, the function

defined in (4.4.25) is the price value at time t of a European option with maturity T and

(discounted) payoff f , while the function u as defined in (4.4.26) is the value function of

the corresponding American option. Therefore, from now on we will refer to the European

case when u is defined as in (4.4.25) and to the American case where u is given by (4.4.26).

From now on, the following assumptions (1), (2) and (3) will be in force throughout this

chapter:

(1) there exists a unique weak solution of (4.4.22) such that P((Xt, Yt) ∈ Rm×D ∀t) = 1;

(2) µ and σ have polynomial growth;

(3) the function u in (4.4.25) solves the PDE ∂tu(t, x, y) + Lu(t, x, y) = 0 (t, x, y) ∈ [0, T )× Rm ×D,

u(T, x, y) = f(x, y), in Rm ×D.
(4.4.27)

4.4.1 The hybrid procedure

The European case

Let u be given in (4.4.25). We study here the computation of u(0, X0, Y0) by a backward

hybrid algorithm which generalizes the procedure developed in [24, 25, 27] and described in

Chapter 3. Roughly speaking, one uses a Markov chain in order to approximate the process
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Y and a different numerical procedure to handle the jump-diffusion component X. Let us

briefly recall the main ideas and set up the approximation of u.

We start from the representation of u(t, x, y) at times nh, h = T/N and n = 0, . . . , N ,

by the usual (backward) dynamic programming principle: for (x, y) ∈ Rm ×D,u(T, x, y) = f(x, y) and as n = N − 1, . . . , 0,

u(nh, x, y) = E
[
u
(
(n+ 1)h,Xnh,x,y

(n+1)h, Y
nh,y

(n+1)h

)]
.

(4.4.28)

So, the central issue is to have a good approximation of the expectations in (4.4.28).

As a first step, let (Y h
n )n=0,...,N be the Markov chain discussed in Section 4.4.2 which

approximates Y . Of course, we assume that (Y h
n )n=0,...,N is independent of the Brownian

motion B and the compound Poisson process H driving X in (4.4.22). Then, at each step

n = 0, 1, . . . , N − 1, for every y ∈ Yhn we write

E
[
u
(
(n+ 1)h,Xnh,x,y

(n+1)h, Y
nh,y

(n+1)h

)]
≈ E

[
u
(
(n+ 1)h,Xnh,x,y

(n+1)h, Y
h
n+1

)∣∣Y h
n = y

]
.

Recall that Yhn ⊆ D is the state space of Y h
n and that Yh0 = {Y0}.

As a second step, we approximate the component X on [nh, (n + 1)h] by freezing the

coefficients in (4.4.22) at the observed position Y h
n = y, that is, for t ∈ [nh, (n+ 1)h],

Xnh,x,y
t

law
≈ X̂nh,x

t (y) = x+ µX(y)(t− nh) + σX(y) (Bt −Bnh) + γX(y)(Ht −Hnh).

Therefore, by using that the Markov chain, B and H are all independent, we write

E
[
u
(
(n+ 1)h,Xnh,x,y

(n+1)h, Y
nh,y

(n+1)h

)]
≈ E

[
u
(
(n+ 1)h, X̂nh,x

(n+1)h(y), Y h
n+1

)∣∣Y h
n = y

]
= E

[
φ(Y h

n+1;x, y)
∣∣Y h
n = y

]
,

where

φ(ζ;x, y) = E
[
u((n+ 1)h, X̂nh,x

(n+1)h(y), ζ)
]
. (4.4.29)

From the Feynman-Kac formula, one gets φ(ζ;x, y) = v(nh, x; y, ζ), where (t, x) 7→ v(t, x; y, ζ)

is the solution at time nh of the parabolic PIDE Cauchy problem

∂tv + L(y)v = 0, in [nh, (n+ 1)h)× Rm,

v((n+ 1)h, x; y, ζ) = u((n+ 1)h, x, ζ), x ∈ Rm,
(4.4.30)
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where L(y) is the integro-differential operator acting on the functions g = g(x) given by

L(y)g(x) = µX(y)·∇xg(x)+
1

2
Tr(aX(y)D2

xg(x))+γX(y)·
∫ (

g(x+ζ)−g(x)
)
ν(ζ)dζ. (4.4.31)

Here aX(y) = σX(y)σ?X(y), while ∇x and D2
x are the m dimensional gradient vector and

the Hessian matrix with respect to the x variable respectively. Recall that here y is just a

parameter and that for each fixed y ∈ D, L(y) has constant coefficients.

We consider now a numerical solution of the PIDE (4.4.30). Let ∆x = (∆x1, . . . ,∆xm)

denote a fixed spatial step and set X denote a grid on Rm given by X = {x : x =

((X0)1 + i1∆x1, . . . , (X0)m+ im∆xm), (i1, . . . , im) ∈ Zm}. For y ∈ D, let Πh
∆x(y) be a linear

operator (acting on suitable functions on X ) which gives the approximating solution to the

PIDE (4.4.30) at time nh. Then we get the numerical approximation

E
[
u
(
(n+ 1)h,Xnh,x,y

(n+1)h, Y
nh,y

(n+1)h

)]
≈ E

[
Πh

∆x(y)u
(
(n+ 1)h, ·, Y h

n+1

)
(x)
∣∣Y h
n = y

]
, x ∈ X .

Therefore, by inserting in (4.4.28), the hybrid numerical procedure works as follows: the

function x 7→ u(0, x, Y0), x ∈ X , is approximated by uh0(x, Y0) backwardly defined asuhN (x, y) = f(x, y), (x, y) ∈ X × YhN , and as n = N − 1, . . . , 0:

uhn(x, y) = E[Πh
∆x(y)uhn+1(·, Y h

n+1)(x) | Y h
n = y], (x, y) ∈ X × Yhn .

(4.4.32)

The American case

Let us now consider the function u defined in (4.4.26). Again, we want an approximation

of the quantity u(0, X0, Y0). In practice, at times nh, the function u is approximated by

the function ũhn defined through the backward programming dynamic principle, that is,ũ
h
N (x, y) = f(x, y) and as n = N − 1, . . . , 0

ũhn(x, y) = max
{
f(x, y),E

[
ũhn+1

(
Xnh,x,y

(n+1)h, Y
nh,y

(n+1)h

)]}
.

(4.4.33)

In financial terms, ũh0 corresponds to approximate the original continuous time American

option price at t = 0 by the price of an option which can be exercised only at the discrete

times nh, n = 0, . . . , N (Bermudean option).

Now, at each step of (4.4.33), we can use the procedure described in Section 4.4.1 in

order to compute the conditional expectations therein. Therefore, the hybrid numerical
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procedure becomes: for n = 0, 1, . . . , N and (x, y) ∈ X × Yhn , ũhn(x, y) is approximated by

uhn(x, y) defined asu
h
N (x, y) = f(x, y), and as n = N − 1, . . . , 0:

uhn(x, y) = max
{
f(x, y),E[Πh

∆x(y)uhn+1(·, Ȳ nh,y
(n+1)h)(x)]

}
.

(4.4.34)

The general hybrid procedure

As we have done in Chapter 3, it is useful to put together in a unique formulation the

numerical procedures described respectively in Section 4.4.1 for the European case and in

Section 4.4.1 for the American case. In both cases we have to consider at time nh the

function ũhn defined asũ
h
N (x, y) = f(x, y) and as n = N − 1, . . . , 0

ũhn(x, y) = max
{
g(x, y),E

[
ũhn+1

(
Xnh,x,y

(n+1)h, Y
nh,y

(n+1)h

)]}
,

(4.4.35)

where

g(x, y) =

0, in the European case;

f(x, y), in the American case.

We stress that, in the European case, the function ũhn coincides with the function u defined

in (4.4.25) at time nh, while, in the American case, it is the Bermudean approximation of

the (continuous monitored) American option value given in (4.4.33).

Then, for n = 0, 1, . . . , N and (x, y) ∈ X × Yhn , we approximate the function ũhn by the

function uhn defined asu
h
N (x, y) = f(x, y), and as n = N − 1, . . . , 0:

uhn(x, y) = max
{
g(x, y),E

[
Πh

∆x(y)uhn+1(·, Ȳ nh,y
(n+1)h)(x)

]}
.

(4.4.36)

Our aim is to study the speed of convergence of the scheme (4.4.36) that is, we give a

quantitative estimate for

|ũh0(x, y)− uh0(x, y)|, (x, y) ∈ X × Yh0 .

As regards the American case, we recognize two types of error. The first one is the error

induced by the approximation of the function u(0, ·) in (4.4.26) with the function ũh0(·) in
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the backward programming principle (4.4.33). In the standard hypotheses on the model,

that is, for sublinear and Lipschitz continuous diffusion coefficients and standard semiconvex

payoff function, this error is known to be of the first order in h (we refer, for example, to

Theorem 2 in [13]). The degenerate models such as the Heston model do not satisfy such

requests, so we might just argue a first order error in time. The second type of error is the

one related to the approximation of ũh0 with the function uh0 defined in (4.4.34). Here, we

focus on studying the latter one.

4.4.2 Convergence speed of the hybrid scheme

The idea is to follow the hybrid nature of the procedure by using numerical techniques,

that is, an analysis of the stability and of the consistency of the method. This will be

done in a sense that allows us to exploit the probabilistic properties of the Markov chain

approximating the process Y .

We introduce the following assumption on the linear operator Πh
∆x(y) in (4.4.32) (recall

the notation lp(X ) in Section 4.2).

Assumption B(p, c, E). Let p ∈ [1,∞], c = c(y) ≥ 0, y ∈ D and E = E(h,∆x) ≥ 0 such

that lim(h,∆x)→0 E(h,∆x) = 0. We say that the linear operator Πh
∆x(y) : lp(X ) → lp(X ),

y ∈ D, satisfies Assumption B(p, c, E) if

|Πh
∆x(y)|p ≤ 1 + c(y)h (4.4.37)

and, ũhn being defined in (4.4.35), for every n = 0, . . . , N − 1, one has

E
[
Πh

∆x(Y h
n )ũn+1

h (·, Y h
n+1)(x)

∣∣Y h
n = y

]
= E[ũhn(Xnh,x,y, Y nh,y

n )] +Rhn(x, y), (4.4.38)

where the remainder Rhn(x, y), (x, y) ∈ X × Yhn satisfies the following property: there exist

h̄ < 1 and C > 0 such that for every n ∈ N, h < h̄, |∆x| < 1 and n ≤ N = bT/hc one has∥∥∥e∑n
l=1 c(Y

h
l )h|Rhn(·, Y h

n )|p
∥∥∥
p
≤ ChE(h,∆x), if p ∈ [1,∞),∥∥∥e∑n

l=1 c(Y
h
l )h|Rhn(·, Y h

n )|∞
∥∥∥

1
≤ ChE(h,∆x), if p =∞.

(4.4.39)

Assumption B(p, c, E) is inspired by the Lax-Richtmeyer’s convergence theorem [75]. In

fact, recall that at each time step n, the hybrid scheme isolates the component y and applies

the discrete operator Πh
∆x(y) for solving (one step in time) the PIDE

∂tv(t, x) + L(y)v(t, x) = 0, (t, x) ∈ [nh, (n+ 1)h)× Rm.
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Here, y is just a parameter (the current position of the Markov chain), so the coefficients of

L(y) (see (4.4.31)) are indeed constant. That’s why the Lax-Richtmeyer technique can be

adapted, as it follows in the next result.

Theorem 4.4.1. Assume that Πh
∆x(y), y ∈ D, satisfies Assumption B(p, c, E). Let ũhn be

the function defined in(4.4.35) and uhn be the approximation through the scheme (4.4.36).

Then, there exist h̄ ∈ (0, 1) and C > 0 such that for every h < h̄ and ∆x < 1 one has

|ũh0(·, Y0)− uh0(·, Y0)|p ≤ CTE(h,∆x). (4.4.40)

Proof. Set errhn(·, Y h
n ) = ũhn(·, Y h

n )−uhn(·, Y h
n ). By using the relation |max{(a, b)}−max{(a′, b′)}| ≤

max{|a− a′|, |b− b′|} we get

|errhn(x, Y h
n )| ≤

∣∣∣∣E [ũhn+1(Xnh,x,y
n+1 , Y nh,y

(n+1)h)
] ∣∣∣
y=Y hn

− E
[
Πh

∆x(Y h
n )uhn+1(·, Y h

n+1)(x)
∣∣Y h
n

]∣∣∣∣
≤
∣∣∣E[Πh

∆x(Y h
n )errhn+1(·, Y h

n+1)(x)|Y h
n ]
∣∣∣+ |Rhn(x, Y h

n )|,

in which we have used (4.4.38). Since errhn(xi, Y
h
N ) = 0, by iterating one gets

|errh0(·, Y0)| ≤
N−1∑
n=0

E

[∣∣∣∣∣
(
n−1∏
l=0

Πh
∆x(Y h

l )

)
Rhn(·, Y h

n )

∣∣∣∣∣
]
,

in which we use the convention

−1∏
l=0

(·) = Id. We use now (4.4.39). For p 6=∞,

|err0
h(·, Y0)|p ≤

N−1∑
n=0

∣∣∣E[( n−1∏
l=0

Πh
∆x(Y h

l )
)
Rhn(·, Y h

n )
]∣∣∣
p
≤

N−1∑
n=0

E
[∣∣∣( n−1∏

l=0

Πh
∆x(Y h

l )
)
Rhn(·, Y h

n )
∣∣∣p
p

]1/p

≤
N−1∑
n=0

(
E
[
e
∑n
l=1 pc(Y

h
l )h|Rhn(·, Y h

n )|pp
]) 1

p ≤
N−1∑
n=0

hCE(h,∆x) ≤ TCE(h,∆x).

The case p =∞ follows the same lines.

Remark 4.4.2. In Assumption B(p, c, E) we have required that the constant C and the func-

tion E in (4.4.39) do not depend on h and n. A closer look at the proof of Theorem 4.4.1

shows that this assumption can be relaxed. In fact, we can replace C and E in (4.4.39) by

Ch,n and Eh,n which depend on h and n but such that lim(h,∆x)→(0,0)

∑N−1
n=0 hCh,nEh,n(h,∆x) =

0. However, in this case we do not get information about the rate of convergence of the

method.
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4.4.3 An example: finite difference schemes

We specify here some settings ensuring that the assumptions of Theorem 4.4.1 are satisfied.

In particular, we choose the operator Πh
∆x(y) in (4.4.32) by means of two different finite

difference schemes: the first one is a generalization of the procedure described in Chapter 3

and allows us to study the convergence in the l2-norm, while the second one works l∞. For

the sake of readability, we consider the case m = d = ` = `1 = `2 = 1.

As regards the Markov chain (Y h
n )n=0,...,N , in addition to Assumption A1 and A2 (see

Section 4.3), we will need also the following:

Assumption A3(g) Let g = g(y) ≥ 0, y ∈ D. (Y h
n )n=0,...,N satisfies Assumption A3(g) if

E
[
e
∑N
l=1 g(Y

h
l )
]
<∞.

Moreover, we assume hereafter that the Lévy measure ν satisfies the following property:

there exists cν > 0 such that for every ∆x < 1 one has∑
l∈Z

ν(l∆x)∆x ≤ λcν , (4.4.41)

where λ is the intensity of the Poisson process K in the definition of the coumpound Poisson

process H in (3.2.2).

Convergence in l2-norm

We study here a hybrid procedure which generalizes the one introduced in [27] and described

in Chapter 3 for the Bates model. For y ∈ D, Πh
∆x(y) gives the numerical solution on

X = {xi = X0 + i∆x}i∈Z a time nh to the PIDE (4.4.30), the operator L(y) therein being

given in (4.4.31). It is clear that the solution v of (4.4.30) depends on y and ζ as well, but

these are just parameters (and not variables of the PIDE), so for simplicity we drop here

such dependence. We split the operator L(y) = L(y)
diff + L(y)

int in its differential and integral

part:

L(y)
diffv(x) = µX(y)∂xv(x) +

1

2
σ2
X(y)∂2

xv(x), (4.4.42)

L(y)
int v(x) = γX(y)

∫ (
v(x+ z)− v(x)

)
ν(z)dz. (4.4.43)
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We now apply the trapezoidal rule in order to approximate the integral term L(y)
int v and we

use the central finite difference scheme to solve L(y)
diffv. Applying an implicit-explicit method

in time, we obtain an approximating solution vn = (vnj )j∈Z to the PIDE (4.4.30) given by

the solution of the linear equation

Ah∆x(y)vn = Bh
∆x(y)vn+1 (4.4.44)

(recall that vn+1 is known). Here Ah∆x(y) is the linear operator given by

(Ah∆x)ij(y) =



αh∆x(y)− βh∆x(y), if i = j + 1,

1 + 2βh∆x(y), if i = j,

−αh∆x(y)− βh∆x(y), if i = j − 1,

0, if |i− j| > 1,

(4.4.45)

with

αh∆x(y) =
h

2∆x
µX(y), βh∆x(y) =

h

2∆x2
σ2
X(y), (4.4.46)

and Bh
∆x(y) is the linear operator defined as

(Bh
∆x)ij(y) =

γX(y)h∆xν((j − i)∆x), if j 6= i,

1 + h∆xγX(y)
(
ν(0)−

∑
l∈Z∗ ν(l∆x)

)
if i = j.

(4.4.47)

Then we have

Lemma 4.4.3. For every y ∈ D, the operator Ah∆x(y) : l2(X )→ l2(X ) is invertible and

|(Ah∆x)−1(y)|2 ≤ 1. Moreover |Bh
∆x(y)|2 ≤ 1+2λcν |γX(y)|h, where cν is defined in (4.4.41).

Proof. Fix y ∈ D and w ∈ l2(X ). Then Ah∆x(y)v = w, for some v ∈ l2(X ), if and only if

(αh∆x(y)− βh∆x(y))vj−1 + (1 + 2βh∆x(y))vj − (αh∆x(y) + βh∆x(y))vj+1 = wj , j ∈ Z,
(4.4.48)

αh∆x and βh∆x being given in (4.4.46). Let ϕ̂ denote the Fourier transform of ϕ ∈ l2(X ), that

is, ϕ̂(θ) = ∆x√
2π

∑
j∈Z ϕje

−ij∆xθ, θ ∈ [0, 2π), i denoting the imaginary unit. We define the

function ψ(θ), θ ∈ [0, 2π), by(
(αh∆x(y)− βh∆x(y))e−iθ∆x + 1 + 2βh∆x(y)− (αh∆x(y) + βh∆x(y))eiθ∆x

)
ψ(θ) = ŵ(θ).

(4.4.49)
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Note that

|(αh∆x(y)− βh∆x(y))e−i θ∆x + 1 + 2βh∆x(y)− (αh∆x(y) + βh∆x(y))ei θ∆x|

≥
∣∣Re
[
(αh∆x(y)− βh∆x(y))e−i θ∆x + 1 + 2βh∆x(y)− (αh∆x(y) + βh∆x(y))ei θ∆x

]∣∣
= 1 + 2βh∆x(y)(1− cos(θ∆x)) ≥ 1,

for every θ ∈ [0, 2π). So, ψ ∈ L2([0, 2π), dx) and we can define v· as its inverse Fourier

transform:

vj =
1

∆x
√

2π

∫ 2π

0
ψ(θ)eijθ∆xdθ, j ∈ Z.

Straightforward computations give that v is the unique solution to (4.4.48), hence Ah∆x is

invertible. Moreover, from (4.4.49) we obtain |ψ(θ)| ≤ |ŵ(θ)|, so that |ψ(θ)|L2([0,2π),dx) ≤
|ŵ(θ)|L2([0,2π),dx). We use now the Parseval identity |ϕ̂|L2([0,2π),dx) = |ϕ|2 and we get

|(Ah∆x)−1(y)w|2 ≤ |w|2, which gives |(Ah∆x)−1(y)|2 ≤ 1. Finally, for w ∈ l2(X ) we have

(Bh
∆x(y)w)j = wj + h∆xγX(y)

(∑
l

ν(l∆x)wj+l −
∑
l

ν(l∆x)wj

)
,

so that
̂Bh
∆x(y)w(θ) =

(
1 + h∆xγX(y)

∑
l

ν(l∆x)(eilθ − 1)
)
ŵ(θ).

Then,

| ̂Bh
∆x(y)w|L2([0,2π),dx) ≤ (1 + 2λcν |γX(y)|h)|ŵ|L2([0,2π),dx),

because |eilθ − 1| ≤ 2 and
∑

l ν(l∆x)∆x ≤ λcν . By the Parseval relation, |Bh
∆x(y)w|2 ≤

(1 + 2λcν |γX(y)|h)|w|2, which concludes the proof.

In the following we will use functions v ∈ Cp,qpol,[nh,(n+1)h](R,D) a.e. uniformly in n and

h. This means that v ∈ Cbq/2c,q([a, b),R× D) a.e. and there exist C, c > 0 independent of

n and h such that

sup
t∈[nh,(n+1)h)

|∂kt ∂l
′
x∂

l
yv(t, ·, y)|Lp(Rm,dx) ≤ C(1 + |y|c), 2k + |l′|+ |l| ≤ q.

We can now state the convergence result.

Theorem 4.4.4. Let ũhn be defined in (4.4.35) and uhn be given by (4.4.36) with the choice

Πh
∆x(y) = (Ah∆x)−1Bh

∆x(y),
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Ah∆x(y) and Bh
∆x(y) being given in (4.4.45) and (4.4.47) respectively. Moreover, for n =

0, . . . , N, consider the function

vhn(t, x, y) = E
[
ũhn+1(Xt,x,y

(n+1)h, Y
t,y

(n+1)h)
]
, t ∈ [nh, (n+ 1)h]. (4.4.50)

Assume that

• ν′

ν ,
ν′′

ν ∈ L
2(R, dν);

• the Markov chain (Y h
n )n=0,...,N satisfies assumptions A1, A2 and A3(4λcν |γX |);

• vhn ∈ C
2,6
pol,[nh,(n+1)h](R,D) a.e. and uniformly in n and h.

Then, there exist h̄, C > 0 such that for every h < h̄ and ∆x < 1 one has

|ũh0(·, Y0)− uh0(·, Y0)|2 ≤ CT (h+ ∆x2). (4.4.51)

We stress that, from (4.4.51), the rate of convergence is of the second order in space,

because of the choice of a second order finite difference scheme, and of first order in time,

as it is natural also for the presence of the approximating Markov chain Y h (see Theorem

4.3.1).

Theorem 4.4.4 is a direct consequence of Theorem 4.4.1 once we prove that Assumption

B(p, c, E) holds with p = 2, c(y) = 2λcν |γX |(y) and E(h,∆x) = h + ∆x2. To this purpose,

we first need two technical lemmas which allow us to handle the error coming from suitable

Taylor’s expansions and from the quadrature approximation. We postpone the proofs to

Appendix 4.7.2.

Lemma 4.4.5. (i) Let g ∈ C2(R) be such that g, g′, g′′ ∈ L1(R, dx). Then∣∣∣∑
l∈Z

g(xl)∆x−
∫
R
g(x)dx

∣∣∣ ≤ ∆x2

12
|g′′|L1(R,dx). (4.4.52)

(ii) Let g ∈ C2(R) be such that g, g′, g′′ ∈ L2(R, dx). Then∑
l∈Z

g2(xl)∆x ≤ |g|2L2(R,dx) +
∆x2

6

(
|g′|2L2(R,dx) + |g|L2(R,dx) × |g′′|L2(R,dx)

)
. (4.4.53)

Remark 4.4.6. In our convergence result Theorem 4.4.4 or also in the following Theorem

4.4.10, we require that ν′

ν ,
ν′′

ν ∈ L
1(R, dν) (recall that ν is a finite positive measure), and

this implies that ν, ν ′, ν ′′ ∈ L1(R, dx). By using (4.4.52), (4.4.41) holds with λcν = λ +

|ν ′′|L1(R,dx).
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Lemma 4.4.7. Let g : [0, T ]× R×D → R be such that

∃ a,A > 0 : sup
t∈[0,T )

|∂kxg(t, ·, y)|L2(R,dx) ≤ A(1 + |y|a), k = 0, 1, 2 (4.4.54)

and suppose that
ν ′

ν
,
ν ′′

ν
∈ L2(R, dν). (4.4.55)

For fixed h < T , ∆x > 0 and γ ≥ 0, consider the functions defined by

Ψ1(t, x, y) =
∑
l

ν(l∆x)
[
g(t, x+ l∆x, y)− g(t, x, y)

]
∆x, (t, x, y) ∈ [0, T ]× R×D,

Ψ2(t, x, y) =

∫ 1

0
(1− τ)γg(t+ τh, , y)dτ, (t, x, y) ∈ [0, T − h]× R×D,

Ψ3(t, x, y) =

∫ 1

0
(1− η)γg(t, x+ η∆x, y)dη, (t, x, y) ∈ [0, T ]× R×D,

Ψ4(t, x, y, z) =

∫ 1

0
(1− ζ)γg(t, x, y + ζ(z − y))dζ, (t, x, y, z) ∈ [0, T ]× R×D ×D.

Then there exists C > 0 such that

sup
t∈[0,T ]

|Ψn(t, ·, y)|2 ≤ C(1 + |y|a), n = 1, 2, 3, (4.4.56)

sup
t∈[0,T ]

|Ψ4(t, ·, y, z)|2 ≤ C(1 + |y|a + |z|a). (4.4.57)

Moreover, set

Ψ5(t, x, y) =

∫
g(t, x+ξ, y)ν(ξ)dξ−

∑
l

g(t, x+l∆x, y)ν(l∆x)∆x, (t, x, y) ∈ [0, T ]×R×D.

If (4.4.54) holds also with k = 3, 4, there exists C > 0 such that

sup
t∈[0,T ]

|Ψ5(t, ·, y)|2 ≤ λC(1 + |y|a) ∆x2. (4.4.58)

We can now prove the following key result.

Proposition 4.4.8. Set Πh
∆x(y) = (Ah∆x)−1Bh

∆x(y), with Ah∆x(y) and Bh
∆x(y) given in

(4.4.45) and (4.4.47). For all n = 0, . . . , N − 1, let vhn be the function defined in (4.4.50).

Suppose that

• ν′

ν ,
ν′′

ν ∈ L
2(R, dν);
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• (Y h
n )n=0,...,N satisfies Assumptions A1, A2 and A3(4λcν |γX |);

• vhn ∈ C
2,6
pol,[nh,(n+1)h](R,D) a.e. and uniformly in n and h.

Then Πh
∆x(y) satisfies Assumption B(2, 2λcν |γX |, h+ ∆x2).

Proof. Lemma 4.4.3 gives |Πh
∆x(y)|2| ≤ |(Ah∆x)−1(y)|2|Bh

∆x(y)|2 ≤ 1 + 2λcν |γX(y)|h, so

(4.4.37) holds with c(y) = 2λcν |γX(y)|. We prove now (4.4.39) with p = 2 and E(h,∆x) =

h+ ∆x2. We first recall that vhn(t, x, y) = E
[
ũhn+1(Xt,x,y

(n+1)h, Y
t,y

(n+1)h)
]

for t ∈ [nh, (n+ 1)h]

so that (4.4.38) equals to

E
[
Πh

∆x(y)vnh((n+ 1)h, ·, Y h
n+1)(x)

∣∣Y h
n = y

]
= vhn(nh, x, y) +Rhn(x, y), (4.4.59)

which can be rewritten as

E
[
Bh

∆x(Y h
n )vhn((n+1)h, ·, Y h

n+1)(x) | Y h
n

]
= Ah∆x(Y h

n )vhn(nh, ·, Y h
n )(x)+Ah∆x(Y h

n )Rhn(·, Y h
n )(x).

(4.4.60)

Step 1. Taylor expansion of the l.h.s. of (4.4.60). We set

I1 = Bh
∆x(Y h

n )vhn((n+ 1)h, ·, Y h
n+1)(xi) = vhn((n+ 1)h, xi, Y

h
n+1)

+ hγX(Y h
n )
∑
l

ν(xl)
(
vhn((n+ 1)h, xi+l, Y

h
n+1)− vhn((n+ 1)h, xi, Y

h
n+1)

)
∆x. (4.4.61)

As regard the first term in the r.h.s. above, we first apply Taylor’s expansion to t 7→
vhn(t, xi, Y

h
n+1) around nh up to order 1 and, then, we consider the Taylor expansion of

y 7→ vhn(nh, xi, y) around Y h
n up to order 3 and of y 7→ ∂tv

h
n(nh, xi, y) around Y h

n up to

order 1. Rearranging the terms we obtain

vhn((n+ 1)h, xi, Y
h
n+1) = vhn(nh, xi, Y

h
n )

+ ∂tv
h
n(nh, xi, Y

h
n )h+ ∂yv

h
n(nh, xiY

h
n )(Y h

n+1 − Y h
n ) +

1

2
∂2
yv
h
n(nh, xi, Y

h
n )(Y h

n+1 − Y h
n )2

+ ∂y∂tv
h
n(nh, xi, Y

h
n )h(Y h

n+1 − Y h
n ) +

1

6
∂3
yv
h
n(nh, xi, Y

h
n )(Y h

n+1 − Y h
n )3 +R1(n, h, xi, Y

h
n , Y

h
n+1),

where R1 is given by

R1(n, h, xi, Y
h
n , Y

h
n+1) = h2

∫ 1

0
(1− τ)∂2

t v
h
n(nh+ τh, xi, Y

h
n+1)dτ

+
(Y h
n+1 − Y h

n )4

6

∫ 1

0
(1− ζ)3∂4

yv
h
n(nh, xi, Y

h
n + ζ(Y h

n+1 − Y h
n ))dζ

+h(Y h
n+1 − Y h

n )2

∫ 1

0
(1− ζ)∂t∂

2
yv
h
n(nh, xi, Y

h
n + ζ(Y h

n+1 − Y h
n ))dζ.

(4.4.62)
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For the second term in the right hand side of (4.4.61), we stop the Taylor expansion of

t 7→ vhn((n+ 1)h, xi+l, Y
h
n+1) around nh at order 0 and of y 7→ vhn(nh, xi+l, y) around Y n

h at

order 1, obtaining

hγX(Y h
n )
(∑

l

ν(xl)v
h
n((n+ 1)h, xi+l, Y

h
n+1)−

∑
l

ν(xl)v
h
n((n+ 1)h, xi, Y

h
n+1)

)
∆x

= hγX(Y h
n )
∑
l

ν(xl)
[
vhn(nh, xi+l, Y

h
n )− vhn(nh, xi, Y

h
n )
]
∆x

+ hγX(Y h
n )(Y h

n+1 − Y h
n )
∑
l

ν(xl)
[
∂yv

h
n(nh, xi+l, Y

h
n )− ∂yvhn(nh, xi, Y

h
n )
]
∆x

+R2(n, h, xi, Y
h
n , Y

h
n+1),

where the remaining term R2 contains the integral terms:

R2(n, h, xi, Y
h
n , Y

h
n+1) =

h2γX(Y h
n )
∑
l

ν(xl)∆x

∫ 1

0
(1− τ)

[
∂tv

h
n(nh+ τh, xi+l, Y

h
n+1)− ∂tvhn(nh+ τh, xi, Y

h
n+1)

]
dτ

+hγX(Y h
n )(Y h

n+1 − Y h
n )2

∑
l

ν(xl)∆x×

×
∫ 1

0
(1− ζ)

[
∂yv

h
n(nh, xi+l, Y

h
n + ζ(Y h

n+1 − Y h
n ))− ∂yvhn(nh, xi, Y

h
n + ζ(Y h

n+1 − Y h
n ))
]
dζ.

(4.4.63)

By resuming, we obtain

I1 = vhn(nh, xi, Y
h
n ) + ∂tv

h
n(nh, xi, Y

h
n )h+ ∂yv

h
n(nh, xi, Y

h
n )(Y h

n+1 − Y h
n )

+
1

2
∂2
yv
h
n(nh, xi, Y

h
n )(Y h

n+1 − Y h
n )2 + ∂y∂tv

h
n(nh, xi, Y

h
n )h(Y h

n+1 − Y h
n )

+
1

6
∂3
yv
h
n(nh, xi, Y

h
n )(Y h

n+1 − Y h
n )3 + h∆xγX(Y h

n )
∑
l

ν(xl)
[
vhn(nh, xi+l, Y

h
n )− vhn(nh, xi, Y

h
n )
]

+
3∑
i=1

Ri(n, h, xi, Y
h
n , Y

h
n+1),

(4.4.64)

where

R3(n, h, xi, Y
h
n , Y

h
n+1) = h(Y h

n+1−Y h
n )γX(Y h

n )
∑
l

ν(xl)
[
∂yv

h
n(nh, xi+l, Y

h
n )−∂yvhn(nh, xi, Y

h
n )
]
∆x.

(4.4.65)
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Step 2. Taylor expansion of the first addendum in the r.h.s. of (4.4.60). We set

I2 = Ah∆xv
h
n(nh, ·, Y h

n )(xi) = (αh∆x(Y h
n )− βh∆x(Y h

n ))vhn(nh, xi−1, Y
h
n )

+ (1 + 2βh∆x(Y h
n ))vhn(nh, xi, Y

h
n )− (αh∆x(Y h

n ) + βh∆x(Y h
n ))vhn(nh, xi+1, Y

h
n ).

We expand with Taylor x 7→ vhn(nh, x, Y h
n ) around xi up to order 3 and we insert the values

of αh∆x and βh∆x in (4.4.46). Rearranging the terms we get

I2 =vhn(nh, xi, Y
h
n )− hµX(Y h

n )∂xv
h
n(nh, xi, Y

h
n )− 1

2
hσ2

X(Y h
n )∂2

xv
h
n(nh, xi, Y

h
n )

+R4(n, h, xi, Y
h
n , Y

h
n+1)

(4.4.66)

where

R4(n, h, xi, Y
h
n , Y

h
n+1) =

∆xµX(Y h
n )− σ2

X(Y h
n )

12
h∆x2

∫ 1

0
(1− η)3∂4

xv
h
n(nh, xi − η∆x, Y h

n )dη

−
∆xµX(Y h

n ) + σ2
X(Y h

n )

12
h∆x2

∫ 1

0
(1− η)3∂4

xv
h
n(nh, xi + η∆x, Y h

n )dη

− 1

6
h∆x2µX(Y h

n )∂3
xv
h
n(nh, xi, Y

h
n ).

(4.4.67)

Step 3. Rearranging the terms. By resuming, from (4.4.64) and (4.4.66) we have

I1 − I2 = h∂tv
h
n(nh, xi, Y

h
n ) + (Y h

n+1 − Y h
n )∂yv

h
n(nh, xi, Y

h
n ) + hµX(Y h

n )∂xv
h
n(nh, xi, Y

h
n )

+
1

2

[
(Y h
n+1 − Y h

n )2∂2
yv
h
n(nh, xi, Y

h
n ) + hσ2

X(Y h
n )∂2

xv
h
n(nh, xi, Y

h
n )
]

+ hγX(Y h
n )

∫
(vhn(t, x+ ζ, Y h

n )− vhn(t, x, Y h
n ))ν(dζ) + ∂y∂tv

h
n(nh, xi, Y

h
n )h(Y h

n+1 − Y h
n )

+
1

6
∂3
yv
h
n(nh, xi, Y

h
n )(Y h

n+1 − Y h
n )3 +

5∑
i=1

Ri(n, h, xi, Y
h
n , Y

h
n+1)

where

R5(n, h, xi, Y
h
n ) = hγX(Y h

n )
∑
l

[
vhn(t, xi+l, Y

h
n )− vhn(t, xi, Y

h
n )
]
ν(l∆x)∆x

− hγX(Y h
n )

∫ [
vhn(t, xi + z, Y h

n )− vhn(t, xi, Y
h
n )
]
ν(dz).

(4.4.68)

Now, note that, by the Feynman-Kac formula, the function vhn(t, x, y) = E
[
ũhn+1(Xt,x,y

(n+1)h, Y
t,y

(n+1)h)
]

solves the PIDE{
∂tv

h
n(t, x, y) + Lvhn(t, x, y) = 0, (t, x, y) ∈ [nh, (n+ 1)h)× Rm ×D,

vhn((n+ 1)h, x, y) = ũhn+1(x, y), in Rm ×D.
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Then, by passing to the conditional expectation and by using formulas (4.3.5), (4.3.6) and

(4.3.7) for the local moments of order 1, 2 and 3, we obtain

R̃hn(xi, Y
h
n ) :=E[I1 − I2 | Y h

n ] = h(∂t[v
h
n(nh, xi, Y

h
n ) + L[vhn(nh, xi, Y

h
n ))

+ E
[
∂y∂t[v

h
n(nh, xi, Y

h
n )h(Y h

n+1 − Y h
n ) +

1

6
∂3
y [vhn(nh, xi, Y

h
n )(Y h

n+1 − Y h
n )3 | Y h

n

]
+

5∑
i=1

E[Ri(n, h, xi, Y
h
n , Y

h
n+1) | Y h

n ]

=

6∑
i=1

E[Ri(n, h, xi, Y
h
n , Y

h
n+1) | Y h

n ]

where we have set

R6(n, h, xi, Y
h
n , Y

h
n+1) = fh(Y h

n )∂yv
h
n(nh, xi, Y

h
n ) +

1

2
gh(Y h

n )∂2
yv
h
n(nh, xi, Y

h
n )

+
1

6
jh(Y h

n )∂3
yv
h
n(nh, xi, Y

h
n ),

(4.4.69)

fh, gh and jh being defined in (4.3.5),(4.3.6) and (4.3.7).

Step 4. Estimate of the remainder. Hereafter, C denotes a positive constant which

may vary from a line to another and is independent of n, h,∆x.

By (4.4.60), the remaining we have to study is Rhn(·, Y h
n ) = (Ah∆x)−1(Y h

n )R̃hn(·, Y h
n ). By

Lemma 4.4.3, |(Ah∆x)−1(y)|2 ≤ 1, so |Rhn(·, Y h
n )|2 ≤ |R̃hn(·, Y h

n )|2. Now, by applying the

Cauchy-Schwarz inequality and by using Assumption A3(4λc|γX |),

E
[
e
∑n
l=1 2λcγX(Y hl )h|Rhn(·, Y h

n )|22
]
≤ E

[
e
∑n
l=1 4λcγX(Y hl )h

]1/2E[|Rhn(·, Y h
n )|42

]1/2
≤ E

[
|R̃hn(·, Y h

n )|42
]1/2 ≤ C 6∑

i=1

E
[
|Ri(n, h, ·, Y h

n , Y
h
n+1)|42

]1/2
.

So, we study the above 6 terms: we prove in fact that each one is upper bounded by

C(h2 + h∆x2)2. The inequalities studied in Lemma 4.4.7 now come on.

Consider first R1 in (4.4.62). By applying (4.4.56) for Ψ2 and Ψ4, we get

|R1(n, h, ·, Y h
n , Y

h
n+1)|42

≤ C
[
h8(1 + (Y h

n )a)4 + |Yn+1 − Yn|16(1 + |Y h
n |a + |Y h

n+1|a)4 + h4|Yn+1 − Yn|8(1 + |Y h
n |a)4

]
.

So, by using the increment estimates (4.3.11), the moment estimates (4.3.12) and the

Cauchy-Schwartz inequality, we obtain

E
[
|R1(n, h, ·, Y h

n , Y
h
n+1)|42

]1/2 ≤ Ch4.
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R4 in (4.4.67) can be handled in a similar way: recalling that µX and σX have polynomial

growth, we apply now (4.4.56) for Ψ3 and we get

E
[
|R4(n, h, ·, Y h

n , Y
h
n+1)|42

]1/2 ≤ Ch2∆x4.

The same approach can be used for R6 in (4.4.69): we use first (4.4.53), then the Hölder

inequality and (4.3.8), (4.3.9), (4.3.10). Thus, with simple calculations

E
[
|R6(n, h, ·, Y h

n , Y
h
n+1)|42

]1/2 ≤ Ch4.

In order to study R2 in (4.4.63), let us first set

g(t, x, Y h
n+1) =

∫ 1

0
(1− τ)∂tv

h
n(t+ τh, x, Y h

n+1)dτ.

Then, for k = 0, 1, 2,

|∂kyg(t, ·, Y h
n+1)|2L2(R,dx) ≤

∫ 1

0
(1− τ)2|∂kyvhn(nh+ τh, ·, Y h

n+1)|2L2(R,dx)dτ ≤ C(1 + |Y h
n+1|a)2,

so, by (4.4.56) for Ψ1, we obtain∣∣γX(Y h
n )
∑
l

ν(l∆x)
[
g(nh, ·+ l∆x, Y h

n+1)− g(nh, ·, Y h
n+1)

]
∆x
∣∣
2
≤ C|γX(Y h

n )|(1 + |Y h
n+1|a)

≤ C(1 + |Y h
n |)(1 + |Y h

n+1|a),

the latter because γX has sublinear growth. And if we define

g(t, y, Y h
n , Y

h
n+1) =

∫ 1

0
(1− ζ)∂yu(t, y, Y h

n + ζ(Y h
n+1 − Y h

n ))dζ,

the same reasonings give∣∣γX(Y h
n )
∑
l

ν(l∆x)
[
g(nh, ·+ l∆x, Y h

n , Y
h
n+1)− g(nh, ·, Y h

n , Y
h
n+1)

]
∆x
∣∣
2

≤ C|γX(Y h
n )|(1 + |Y h

n |a + |Y h
n+1|a) ≤ C(1 + |Y h

n |)|(1 + |Y h
n |a + |Y h

n+1|a).

Therefore, by the Cauchy-Schwartz inequality, (4.3.12) and (4.3.11), we finally obtain

E
[
|R2(n, h, ·, Y h

n , Y
h
n+1)|42

]1/2 ≤ Ch4.

R3 in (4.4.65) can be estimated analogously, so we get

E
[
|R3(n, h, ·, Y h

n , Y
h
n+1)|42

]1/2 ≤ Ch4.
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Finally, for R5 in (4.4.68), (4.4.58) gives that |R5(n, h, ·, Y h
n )|2 ≤ Ch(1 + |Y h

n |a) ∆x2 and by

passing to the expectation, (4.3.11) gives

E
[
|R5(n, h, ·, Y h

n )|42
]1/2 ≤ Ch2∆x4.

Putting all the above estimates together, the statement holds.

Proof of Theorem 4.4.4. The proof is a straightforward application of Proposition 4.4.8 and

Theorem 4.4.1.

Convergence in l∞-norm

We consider here a different finite difference scheme for equation (4.4.30): we still approxi-

mate (explicit in time) the integral term L(y)
int v in (4.4.43) with a trapezoidal rule, but we use

an upwind first order scheme to approximate (implicit in time) the differential part L(y)
diffv

in (4.4.42). As usually done in convection-diffusion problems, we distinguish the cases in

which µX(y) is positive or negative in order to take into account the asymmetry given by the

convection term and we use one sided difference in the appropriate direction. Specifically,

if µX(y) ≥ 0, we approximate L(y)
diffu by using the scheme

vn+1
i − vni

h
+ µX(y)

vni+1 − vni
∆x

+
1

2
σ2
X(y)

vni+1 − 2vni + vni−1

∆x2
,

while, if µX(y) ≤ 0, we use the approximation

vn+1
i − vni

h
+ µX(y)

vni − vni−1

∆x
+

1

2
σ2
X(y)

vni+1 − 2vni + vni−1

∆x2
.

The resulting scheme is

Ah∆x(y)vn = Bh
∆x(y)vn+1, (4.4.70)

where Ah∆x(y) is the linear operator given by

(Ah∆x)ij(y) =



−βh∆x(y)− |αh∆x(y)|1αh∆x(y)<0, if i = j + 1,

1 + 2βh∆x(y) + |αh∆x(y)|, if i = j,

−βh∆x(y)− |αh∆x(y)|1αh∆x(y)>0, if i = j − 1,

0, if |i− j| > 1,

(4.4.71)

with

αh∆x(y) =
h

∆x
µX(y), βh∆x(y) =

h

2∆x2
σ2
X(y),

and Bh
∆x(y) is the linear operator defined in (4.4.47). Then we have:
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Lemma 4.4.9. For every y ∈ D, the operator Ah∆x(y) : l∞(X ) → l∞(X ) is invertible

and |(Ah∆x)−1(y)|∞ ≤ 1. Moreover, |Bh
∆x(y)|∞ ≤ 1 + 2λcν |γX(y)|. Finally, if γX ≡ 1,

Πh
∆x(y) = (Ah∆x)−1Bh

∆x(y) is a stochastic operator, that is,

(Πh
∆x)ij(y) ≥ 0, i, j ∈ Z,

∑
j∈Z

(Πh
∆x)ij(y) = 1, j ∈ Z.

Proof. We write Ah∆x(y) = η(y)I − P (y), where η(y) = 1 + 2βh∆x(y) + |αh∆x(y)|, I is the

identity operator and Pij(y) = 0 if |i − j| 6= 1 and Pij = −(Ah∆x)ij if |i − j| = 1. So, it is

easy to see that the operator Ah∆x(y) : l∞(X )→ l∞(X ) is invertible with inverse

(Ah∆x)−1(y) = (η(y)I − P )−1 =
1

η

∞∑
k=0

P k

ηk
.

The assertion for Bh
∆x(y) immediately follows from (4.4.47). Finally, (Ah∆x)−1

ij (y) ≥ 0 for all

i, j because all entries of P (y) are non negative and (Bh
∆x)ij(y) ≥ 0 if µX ≡ 1. Moreover,

Πh
∆x(y)1 = 1 because, by construction, Ah∆x(y)1 = 1 and Bh

∆x(y)1 = 1 when µX ≡ 1.

We can now state the convergence result.

Theorem 4.4.10. Let ũhn be defined in (4.4.35) and uhn be given by (4.4.36) with the choice

Πh
∆x(y) = (Ah∆x)−1Bh

∆x(y),

Ah∆x(y) and Bh
∆x(y) being given in (4.4.71) and (4.4.47) respectively. Moreover, for n =

0, . . . , N, consider the function

vhn(t, x, y) = E
[
ũhn+1(Xt,x,y

(n+1)h, Y
t,y

(n+1)h)
]
, t ∈ [nh, (n+ 1)h].

Assume that

• ν′

ν ,
ν′′

ν ∈ L
1(R, dν);

• the Markov chain (Y h
n )n=0,...,N satisfies assumptions A1, A2 and A3(4λcν |γX |);

• vhn ∈ C
∞,4
pol,[nh,(n+1)h](R,D) a.e. and uniformly in n and h.

Then, there exist h̄, C > 0 such that for every h < h̄ and ∆x < 1 one has

|ũh0(·, Y0)− uh0(·, Y0)|∞ ≤ CT (h+ ∆x2).
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Proof. By rewriting the proof of Proposition 4.4.8 in terms of the norm in l∞(X ), one

gets that Πh
∆x(y) satisfies B(∞, 2λcν |γX |, h+ ∆x). The statement now follows by applying

Theorem 4.4.1. We only notice that here one applies (4.4.52) to the remaining term R5 in

(4.4.68). Since this term contains just vhn, one does not need more regularity for vhn, that’s

why we do not need that vhn ∈ C
∞,6
pol,T (R,D) and the class C∞,4pol,T (R,D) is enough.

It is natural to look for conditions on the function f which ensure that the regularity

assumptions on the function vhn for n = 0, . . . , N , which are required In Theorem 4.4.10,

are actually satisfied. Of course, these conditions depend on the regularity of the model.

In Sections 4.5 and 4.6 we will study the case of the degenerate Heston or Bates model.

4.5 The European case in the Heston/Bates model

As an application in finance, in this section we apply our convergence results to to a tree-

finite difference procedure for pricing European options in the Heston ([58]) or Bates ([17])

model: the asset price process S and the volatility process Y evolve following the stochastic

differential system

dSt
St−

= (r − δ)dt+ µ
√
Yt dZ

1
t + γdH̃t,

dYt = κ(θ − Yt)dt+ σ
√
Yt dZ

2
t ,

(4.5.72)

where S0 > 0, Y0 ≥ 0, Z = (Z1, Z2) is a correlated Brownian motions with d〈Z1, Z2〉t = ρdt,

|ρ| < 1, H̃ is a compound Poisson process with intensity λ and i.i.d. jumps {J̃k}k as in

(4.4.23). Here, γ = 1 (Bates model) or γ = 0 (Heston model). The above quantities r and δ

are the interest rate and the dividend interest rate respectively. We assume, as usual, that

the Poisson process K, the jump amplitudes {J̃k}k and the correlated Brownian motion

(Z1, Z2) are independent.

With a simple transformation, we can reduce the model (4.5.72) to our reference model

(4.4.22). To get rid of the correlated Brownian motion, we set

ρ̄ =
√

1− ρ2 and Z2 = W, Z1 = ρZ2 + ρ̄B,

in which (B,W ) denotes a standard 2-dimensional Brownian motion. Moreover, considering

the process Xt = logSt − ρ
σYt, we reduce to the jump-diffusion pair (X,Y ), which evolves
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according to

dXt = µX(Yt)dt+ ρ̄
√
Yt dBt + γdHt,

dYt = κ(θ − Yt)dt+ σ
√
Yt dWt,

(4.5.73)

where

µX(y) = r − δ − y

2
− ρ

σ
κ(θ − y),

Ht is the compound Poisson process written through the Poisson process K, with intensity

λ, and the i.i.d. jumps Jk = log(1 + J̃k). The standard Bates model requires that J1 has a

normal law. But it is clear that the convergence result holds for other laws such that the

Lévy measure ν satisfies the requests in Theorem 4.4.4 or Theorem 4.4.10. For example,

these properties hold for the mixture of exponential laws used by Kou [69].

In this section we focus on European options. Recall that, in this case, the function

ũhn(·) defined in (4.4.35) is nothing but the European price value at time nh, that is u(nh, ·)
where u is defined in (4.4.25). Moreover, we can easily see that, for any n = N − 1, . . . , the

function vhn defined in (4.4.50) satisfies

vhn(t, x, y) = u(t, x, y), t ∈ [nh, (n+ 1)h].

We consider the approximating Markov chain for the CIR process discussed in Section 4.3.1

and the two possible finite difference operator discussed in Section 4.4.3 and 4.4.3. As an

application, we get the following convergence rate result of the hybrid method.

Theorem 4.5.1. Let (X,Y ) be the solution to (4.5.73) and let (Y h
n )n=0,...,N be the Markov

chain introduced in Section 4.3.1 for approximating the CIR process Y . Let u(t, x, y) =

E(f(Xt,x,y
T , Y t,y

T )) be as in (4.4.25) and (uhn)n=0,...,N be given by (4.4.32) with the choice

Πh
∆x(y) = (Ah∆x)−1Bh

∆x(y).

(i) [Convergence in l2(X )] Suppose that

• Ah∆x(y) and Bh
∆x(y) are defined in (4.4.45) and (4.4.47) respectively;

• ν′

ν ,
ν′′

ν ∈ L
2(R, dν) and ν has finite moments of any order;

• ∂2j
x f ∈ C2,6−j

pol (R,R+) for every j = 0, . . . , 6.

Then, there exist h̄, C > 0 such that for every h < h̄ and ∆x < 1 one has

|u(0, ·, Y0)− uh0(·, Y0)|2 ≤ CT (h+ ∆x2).
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(ii) [Convergence in l∞(X )] Suppose that

• Ah∆x(y) and Bh
∆x(y) are defined in (4.4.71) and (4.4.47) respectively;

• ν′

ν ,
ν′′

ν ∈ L
1(R, dν) and ν has finite moments of any order;

• ∂2j
x f ∈ C∞,4−jpol (R,R+) for every j = 0, . . . , 4.

Then, there exist h̄, C > 0 such that for every h < h̄ and ∆x < 1 one has

|u(0, ·, Y0)− uh0(·, Y0)|∞ ≤ CT (h+ ∆x).

Proof. We apply Theorem 4.4.4 for (i) and Theorem 4.4.10 for (ii). The validity of as-

sumptions A1 and A2 is proved in Proposition 4.3.4 and since here γX = γ ∈ {0, 1},
A3(4λcν |γX |) trivially holds. So, we need only to prove that if ∂2j

x f ∈ C2,6−j
pol (R,R+) as

j = 0, 1, . . . , 6, resp. ∂2j
x f ∈ C∞,4−jpol (R,R+) as j = 0, 1, . . . , 4, then u ∈ C2,6

pol,T (R,R+), resp.

u ∈ C∞,4pol,T (R,R+). This is proved in next Proposition 4.5.3 (set ρ = 0, a = r− δ− ρ
σκθ and

b = ρ
σκ−

1
2 therein), the whole Section 4.5.1 being devoted to.

Remark 4.5.2. In Chapter 3 we have considered the Bates-Hull-White model [27], which

is a Bates model coupled with a stochastic interest rate. Recall that the dynamics follows

(4.5.72) in which r is not constant but given by the Vasicek model

drt = κr(θr − rt)dt+ σrdZ
3
t ,

Z3 being a Brownian motion correlated with Z1 (and possibly Z2). Here, there is no global

transformation allowing one to reduce to our reference model. Nevertheless, a similar con-

vergence result can be proved by means of the local transformation introduced in Section

3.4.1, acting on each time interval [nh, (n+ 1)h].

4.5.1 A regularity result for the Heston PDE/Bates PIDE

We deal here with a slightly more general model: we consider the SDE

dXt = (a + bYt) dt+
√
Yt dW

1
t + γXdHt,

dYt = κ(θ − Yt)dt+ σ
√
Yt dW

2
t ,

(4.5.74)

where W 1,W 2 are correlated Brownian motions with d〈W 1,W 2〉t = ρdt and H is a com-

pound Poisson process with intensity λ and Lévy measure ν, which is assumed hereafter to
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have finite moments of any order. Here, a, b ∈ R and γX ∈ {0, 1} denote constant param-

eters. Note that when a = r − δ (interest rate minus dividend rate), b = −1
2 and γX = 0

(resp. γX = 1), then (X,Y ) is the standard Heston (resp. Bates) model for the log-price

and volatility. When instead ρ = 0, a = r−δ− ρ
σκθ and b = ρ

σκ−
1
2 , we recover the equation

(4.5.73) discussed in Theorem 4.5.1.

Let L denote the infinitesimal generator associated to (4.5.74), that is,

Lu =
y

2

(
∂2
xu+ 2ρσ∂x∂yu+ σ2∂2

yu
)

+ (a + by) ∂xu+ κ(θ − y)∂yu+ Lintu, (4.5.75)

where, hereafter, we set

Lintu(t, x, y) = γX

∫ [
u(t, x+ ζ, y)− u(t, x, y)

]
ν(ζ)dζ.

So, the present section is devoted to the proof of the following result.

Proposition 4.5.3. Let p ∈ [1,∞], q ∈ N and suppose that ∂2j
x f ∈ Cp,q−jpol (R,R+) for every

j = 0, 1, . . . , q. Set

u(t, x, y) = E
[
f(Xt,x,y

T , Y t,y
T )
]
.

Then u ∈ Cp,qpol,T (R,R+). Moreover, the following stochastic representation holds: for m +

2n ≤ 2q,

∂mx ∂
n
y u(t, x, y) = E

[
e−nκ(T−t)∂mx ∂

n
y f(Xn,t,x,y

T , Y n,t,x,y
T )

]
+ nE

[∫ T

t

[
1

2
∂m+2
x ∂n−1

y u+ b∂m+1
x ∂n−1

y u

]
(s,Xn,t,x,y

s , Y n,t,x,y
s )ds

]
,

(4.5.76)

where ∂mx ∂
n−1
y u := 0 when n = 0 and (Xn,t,x,y, Y n,t,x,y), n ≥ 0, denotes the solution starting

from (x, y) at time t to the SDE (4.5.74) with parameters

ρn = ρ, an = a + nρσ, bn = b, κn = κ, θn = θ +
nσ2

2κ
, σn = σ. (4.5.77)

In particular, if q ≥ 2 then u ∈ C1,2([0, T ]× Ō), Ō = R× R+, solves the PIDE∂tu(t, x, y) + Lu(t, x, y) = 0, t ∈ [0, T ), (x, y) ∈ Ō,

u(T, x, y) = f(x, y), (x, y) ∈ Ō.
(4.5.78)

Remark 4.5.4. For our purposes, we need both the polynomial growth condition for (x, y) 7→
u(t, x, y) and the Lp property for x 7→ u(t, x, y), and similarly for the derivatives. A closer
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look to the proof of Proposition 4.5.3 shows that the result holds also when one is not

interested in the latter Lp condition. In this case, Proposition 4.5.3 reads: for q ∈ N, if

∂2j
x f ∈ Cq−jpol (R × R+) for every j = 0, 1, . . . , q then u ∈ Cqpol,T (R × R+). Moreover, the

stochastic representation (4.5.76) holds and, if q ≥ 2, u solves PIDE (4.5.78).

As an immediate consequence of Proposition 4.5.3, we obtain the already known regularity

result for the CIR process which has been already proved in Proposition 4.1 of [3].

Corollary 4.5.5. Assume that f = f(y) and set u(t, y) = E
[
f(Y t,y

T )
]
. If f ∈ Cqpol(R+),

then u ∈ Cqpol,T (R+). Moreover, for n ≤ q,

∂ny u(t, y) = E
[
e−nκ(T−t)∂ny f(Y n,t,y

T )
]
,

where Y n,t,y denotes a CIR process starting from y at time t which solves the CIR dynamics

with parameters κn = κ, θn = θ + nσ2

2κ , σn = σ. In particular, if q ≥ 2 then u ∈ C2
pol(R+)

solves the PDE ∂tu+Au = 0, (t, y) ∈ [0, T )× R+,

un(T, y) = ∂ny f(y), y ∈ R+,

where A is the CIR infinitesimal generator (see (4.3.2)).

We first need some preliminary results. First of all, recall that X and Y have uniformly

bounded moments: for every T > 0 and a ≥ 1 there exist A > 0 such that for every

t ∈ [0, T ],

sup
s∈[t,T ]

E[|Xt,x,y
s |a] ≤ A(1 + |x|a + ya) and sup

s∈[t,T ]
E[|Y t,y

s |a] ≤ A(1 + ya). (4.5.79)

For the second property in (4.5.79), we refer, for example, to [3], whereas the first one

follows from standard techniques.

Lemma 4.5.6. Let p ∈ [0,∞], g ∈ Cp,0pol(R,R+), h ∈ Cp,0pol,T (R,R+) and consider the

function

u(t, x, y) = E
[
e%(T−t)g(Xt,x,y

T , Y t,y
T )−

∫ T

t
e%(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
, (4.5.80)

where % ∈ R. Then u ∈ Cp,0pol,T (R,R+).
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Proof. We set

u1(t, x, y) = E
[
e%(T−t)g(Xt,x,y

T , Y t,y
T )
]
, u2(t, x, y) = E

[∫ T

t
e%(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
and we show that, for i = 1, 2, ui ∈ Cp,0pol,T (R,R+). We prove it for i = 2, the case i = 1

being similar and easier.

Fix (t, x, y) ∈ [0, T ] × R × R+ and let (tn, xn, yn)n ⊂ [0, T ] × R × R+ be such that

(tn, xn, yn) → (t, x, y) as n → ∞. One can easily prove that, for every fixed s ≥ tn ∨ t,
(Xtn,xn,yn

s , Y tn,yn
s )→ (Xt,x,y

s , Y t,y
s ) in probability. We write u2 as

u2(t, x, y) =

∫ T

0
1s>te

%(s−t)E
[
h(s,Xt,x,y

s , Y t,y
s )
]
ds

Since h is continuous, for s > tn ∨ t the sequence (h(s,Xtn,xn,yn
s , Y tn,yn

s ))n converges in

probability to h(s,Xt,x,y
s , Y t,y

s ). By the polynomial growth of h and (4.5.79), for p > 1 we

have

sup
n

E[|h(Xtn,xn,yn
T , Y tn,yn

T )|p] ≤ sup
n
CE[1 + |Xtn,yn

T |ap + (Y tn,yn
T )ap] <∞. (4.5.81)

Thus, (h(Xtn,xn,yn
T , Y tn,yn

T ))n is uniformly integrable, so h(Xtn,xn,yn
T , Y tn,yn

T )→ h(Xt,x,y
T , Y t,y

T )

in L1 and

1s>tnE
[
e%(s−tn)h(s,Xtn,xn,yn

s , Y tn,yn
s )

]
→ 1s>tE

[
e%(s−t)h(s,Xt,x,y

s , Y t,y
s )
]
,

a.e. s ∈ [0, T ]. By (4.5.81), u2(tn, xn, yn)→ u2(t, x, y) thanks to the Lebesgue’s dominated

convergence and moreover, u2 grows polynomially. So, u2 ∈ Cpol,T (R× R+).

Fix now p 6=∞. We have

sup
t≤T
‖u2(t, ·, y)‖Lp(R,dx) = sup

t≤T

∥∥∥∥E [∫ T

t
e%(s−t)h(s,Xt,·,y

s , Y t,y
s )ds

]∥∥∥∥
Lp(R,dx)

≤ C sup
t≤T

E
[∫ T

t

∥∥h(s,Xt,·,y
s , Y t,y

s )
∥∥p
Lp(R,dx)

]1/p

= C sup
t≤T

E
[∫ T

t

∥∥h(s, ·+Ht,y
s , Y t,y

s )
∥∥p
Lp(R,dx)

]1/p

= C sup
t≤T

E
[∫ T

t

∥∥h(s, ·, Y t,y
s )
∥∥p
Lp(R,dx)

]1/p

≤ CT sup
t≤s≤T

(1 + E[(Y t,y
s )pa])1/p

in which we have used twice the Cauchy-Schwarz inequality. Then, by using (4.5.79), we

have u2 ∈ Cp,0pol,T (R,R+). The case p =∞ follows the same lines.

To simplify the notation, from now on we set Et,x,y[·] = E[·|Xt = x, Yt = y] and O =

R× (0,∞)..
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Lemma 4.5.7. Let g ∈ Cpol(Ō) and h ∈ Cpol,T (Ō) be such that O 3 z 7→ h(t, z) is locally

Hölder continuous uniformly on the compact sets of [0, T ). Let u be defined in (4.5.80).

Then, u ∈ C([0, T ]× Ō) ∩ C1,2([0, T )×O) and solves the PIDE∂tu+ Lu+ %u = h, in [0, T )×O,

u(T, z) = g(z), in O.
(4.5.82)

Moreover, if the Feller condition holds, that is, 2κθ ≥ σ2, then u is the unique solution to

(4.5.82) in the class Cpol,T (Ō).

Proof. Let S ∈ [0, T ), R = R×(ε,∞), ε > 0, Q = [0, S)×R and consider the PIDE problem∂tv + Lv + %v = h, in Q,

v = u, in ∂0Q,

∂0Q denoting the parabolic boundary of Q. The coefficients satisfy in Q all the classical

assumptions (see e.g. [53, 78]), so a unique (bounded) solution v ∈ C1,2([0, T ) × R) ∩
C([0, T ] × R̄) actually exists (and have Hölder continuous derivatives vt, ∇zv and D2

zv in

Q̄). As a consequence,

Zs := e%sv(s,Xs, Ys)−
∫ s

t
e%rh(r,Xr, Yr)dr

is a martingale over [t, S ∧ τR], where τR denotes the exit time of (X,Y ) from R. Then,

e%tv(t, x, y) = Et,x,y(Zt) = Et,x,y(ZS∧τR)

= Et,x,y
[
e%S∧τRu(S ∧ τR, XS∧τR , YS∧τR)−

∫ S∧τR

t
e%rh(r,Xr, Yr)dr

]
.

Now, by the strong Markov property,

e%S∧τRu(S ∧ τR, XS∧τR , YS∧τR) = E
[
eρT g(XT , YT )−

∫ T

S∧τR
e%rh(r,Xr, Yr)dr

∣∣∣FS∧τR].
By replacing above, it follows that v ≡ u in Q. Whence, the first assertion is proved.

Suppose now that 2κθ ≥ σ2 and that g has polynomial growth. Let w ∈ C([0, T ] × Ō)

denote a solution to (4.5.82) with polynomial growth. We prove that w = u. Let Sn < T

and let Rn denote a sequence rectangles as before such that Qn = [0, Sn)×Rn ↑ [0, T )×O.

Let wn the unique solution to∂twn + Lwn + %wn = h, in Qn,

wn = w, in ∂0Qn.
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Since w trivially solves the above PIDE problem, we get wn = w and

e%tw(t, x, y) = Et,x,y
[
e%Sn∧τRnw(Sn ∧ τRn , XSn∧τRn , YSn∧τRn )−

∫ Sn∧τRn

t
e%rh(r,Xr, Yr)dr

]
.

Now, as n → ∞, one has τRn ↑ ∞ because, by the Feller condition, Pt,y(Ys > 0 ∀s) = 1.

Then, we pass to the limit and since w is continuous and has polynomial growth, we easily

obtain w ≡ u.

Lemma 4.5.8. Let u be defined in (4.5.80), with g and h such that, as j = 0, 1, ∂2j
x g ∈

C1−j
pol (Ō) and ∂2j

x h ∈ C1−j
pol,T (Ō). Then u ∈ C1

pol,T (Ō). Moreover, ∂2
xu ∈ Cpol,T (Ō) and one

has

∂mx u(t, x, y) = Et,x,y
[
e%(T−t)∂mx g(XT , YT )−

∫ T

t
e%(s−t)∂mx h(s,Xs, Ys)ds

]
, m = 1, 2,

(4.5.83)

∂yu(t, x, y) = Et,x,y
[
e(%−κ)(T−t)∂yg(X∗T , Y

∗
T )
]

+ E
[∫ T

t
e(%−κ)(T−s)

[
∂yh+

1

2
∂2
xu+ b∂xu

]
(s,X∗s , Y

∗
s )ds

]
, (4.5.84)

where (X∗t , Y
∗
t ) solves (4.5.74) with new parameters ρ∗ = ρ, a∗ = a + ρσ, b∗ = b, κ∗ = κ,

θ∗ = θ + σ2

2κ , σ∗ = σ.

Proof. First, the stochastic flow w.r.t. x is differentiable (here, (X∗)t,x,ys = x + Zt,ys and

Zt,ys does not depend on x). Hence, by using the polynomial growth hypothesis, by (4.5.80)

one gets (4.5.83). Let us prove (4.5.84).

By Lemma 4.5.7 u solves (4.5.82). So, setting v = ∂yu, by derivating (4.5.82) one has∂tv + L∗v + %∗v = h∗, in [0, T )×O,

v(T, z) = g∗(z), in O.

where L∗ is the infinitesimal generator of (X∗, Y ∗) and %∗ = %−κ, h∗ = ∂yh−b∂xu− 1
2∂

2
xu,

g∗ = ∂yg. By using (4.5.83) and Lemma 4.5.6, h∗ ∈ Cpol,T (Ō). Moreover, the Feller

condition 2κ∗θ∗ ≥ σ2
∗ holds, and by Lemma 4.5.7 the unique solution with polynomial

growth in (x, y) to the above PIDE is

v̄(t, x, y) = Et,x,y
[
e%(T−t)g∗(X

∗
T , Y

∗
T )−

∫ T

t
e%(s−t)h∗(s,X

∗
s , Y

∗
s )ds

]
.
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In order to identify v̄ with v = ∂yu we would need to know that ∂yu ∈ Cpol,T (O). If the

diffusion coefficient of Y ∗ was more regular, one could use arguments from the stochastic

flow. But this is not the case, hence we use a density argument inspired by [47].

For k ≥ 1, let ϕk be a C∞(R) approximation of
√
|y| such that ϕk(y) ≥ 1/k, ϕk(y)→

√
|y|

uniformly on the compact sets of [0,+∞) and ϕ2
k is Lipschitz continuous uniformly in k

(which means that ϕkϕ
′
k is bounded uniformly in k). Consider the diffusion process (Xk, Y k)

defined by dXk
t =

(
a + bY k

t

)
dt+ ϕk(Y

k
t )dBt + dHt,

dY k
t = κ(θ − Y k

t )dt+ σϕk(Y
k
t )dWt,

(4.5.85)

whose generator is

Lku =
ϕ2
k(y)

2

(
∂2
xu+ 2ρσ∂x∂yu+ σ2∂2

yu
)

+ (a + by) ∂xu+ κ(θ − y)∂yu+ Iu.

Set

uk(t, x, y) = Et,x,y
[
e%(T−t)g(Xk

T , Y
k
T )−

∫ T

t
e%(s−t)h(s,Xk

s , Y
k
s )ds

]
.

Le us first show that ∂yu
k ∈ Cpol,T (O). Since the diffusion coefficients associated to

(Xk, Y k) are good enough, we can consider the first variation process: by calling Zk,t,x,ys =

(∂yX
k,t,x,y
s , ∂yY

k,t,x,y
s ), we get

∂yu
k(t, x, y) =E

[
e%(T−t)

〈
∇x,yg(Xk,t,x,y

T , Y k,t,x,y
T ), Zk,t,x,yT

〉]
−
∫ T

t
e%(s−t)E

[〈
∇x,yh(s,Xk,t,x,y

s , Y k,t,x,y
s ), Zk,t,x,ys

〉]
ds.

The functions g, h and their derivatives have polynomial growth, so∣∣∣∂yuk(t, x, y)
∣∣∣ ≤E [C(1 + |Xk,t,x,y

T |a + |Y k,t,x,y
T |a)|Zk,t,x,yT |

]
+

∫ T

t
e%(s−t)E

[
C(1 + |Xk,t,x,y

s |a + |Y k,t,x,y
s |a)|Zk,t,x,ys |

]
ds

and the usual Lp-estimates give

sup
t<T

∣∣∣∂yuk(t, x, y)
∣∣∣ ≤ Ck(1 + |x|ak + yak),

for suitable constants Ck, ak > 0. Moreover, from the standard theory of parabolic PIDEs,

uk is a solution to ∂tuk + Lkuk + %uk = h, in [0, T )×O,

uk(T, z) = g(z), in O.
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By differentiating, vk = ∂yu
k solves the problem∂tvk + Lk,∗vk + %∗v

k = hk,∗, in [0, T )×O,

vk(T, z) = g∗(z), in O.

where

Lk,∗v =
ϕ2
k(y)

2

(
∂2
xv + 2ρσ∂x∂yv + σ2∂2

yv
)

+
(
a + by + 2ρσϕkϕ

′
k(y)

)
∂xv +

(
κ(θ − y) + σ2ϕkϕ

′
k(y)

)
∂yv + Iv

and hk,∗ = ∂yh − b∂xu
k − ϕkϕ′k(y)∂2

xu
k. By developing the same arguments as before, we

get hk,∗ ∈ Cpol,T (Ō). The PIDE for vk has a unique solution in Cpol,T (O) (recall that,

by construction, the second order operator is uniformly elliptic). Thus, the Feynman-Kac

formula gives

∂yu
k(t, x, Y ) = Et,x,y

[
e%(T−t)g∗(X

k,∗
T , Y k,∗

T )−
∫ T

t
e%(s−t)hk,∗(s,X

k,∗
s , Y k,∗

s )ds

]
,

where (Xk,∗, Y k,∗) is the diffusion with infinitesimal generator given by Lk,∗. Now, the

standard Lp estimates for (Xk, Y k) and (Xk,∗, Y k,∗) hold uniformly in k (recall that ϕk is

sublinear uniformly in k and ϕkϕ
′
k is bounded uniformly in k): for every p ≥ 1 there exist

C, a > 0 such that

sup
k

sup
t≤T

Et,x,y
(
|Xk

t |p + |Y k
t |p
)

+ sup
k

sup
t≤T

Et,x,y
(
|Xk,∗

t |p + |Y k,∗
t |p

)
≤ C(1 + |x|a + |y|a).

This gives that

sup
k

sup
t<T
|uk(t, x, y)|+ sup

k
sup
t<T

∣∣∣∂yuk(t, x, y)
∣∣∣ ≤ C(1 + |x|a + |y|a),

for suitable C, a > 0 (possibly different from the ones above). Moreover, using the stability

results of [12] one obtains

lim
n→∞

uk(t, x, y) = u(t, x, y) and lim
n→∞

∂yu
k(t, x, y) = v(t, x, y)

for every (t, x, y) ∈ [0, T )×O. And thanks to the above uniform polynomial bounds for uk

and ∂yu
k, for every φ ∈ C∞(O) with compact support we easily get∫

v(t, x, y)φ(x, y)dxdy =

∫
lim
k
∂yu

k(t, x, y)φ(x, y)dxdy

= −
∫

lim
k
uk(t, x, y)∂yφ(x, y)dxdy = −

∫
u(t, x, y)∂φ(x, y)dxdy.

Therefore, v(t, x, y) = ∂yu(t, x, y) in [0, T )×O. The statement now follows.
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We can now prove the result which this section is devoted to.

Proof of Proposition 4.5.3. We follow an induction on q. If q = 0, Lemma 4.5.6 gives the

result. Suppose the statement is true up to q − 1 ≥ 1 and let us prove it for q.

Take f such that ∂2j
x f ∈ Cp,q−jpol (R,R+) for every j = 0, 1, . . . , q. Then, by induction,

∂lt∂
m
x ∂

n
y u ∈ Cp,0pol,T (R,R+) when 2l + m + n ≤ q − 1. So, we just need to prove that

∂lt∂
m
x ∂

n
y u ∈ C

p,0
pol,T (R,R+) for any l,m, n such that 2l +m+ n = q.

Assume first l = 0. For n = 0, we use that Xt,x,y
T = x + Zt,yT and we get ∂mx u(t, x, y) =

Et,x,y
[
∂mx f(XT , YT )

]
. Since ∂mx f ∈ C

p,0
pol(R,R+) for any m ≤ 2q, by Lemma 4.5.6 we obtain

∂mx u ∈ C
p,0
pol,T (R,R+) for every m ≤ 2q.

Fix now n > 0 and m ≥ 0. Recursively applying Lemma 4.5.8, we get formula (4.5.76).

Let us stress that, because of the presence of the derivatives ∂m+2
x ∂n−1

y u and ∂m+1
x ∂n−1

y u

in (4.5.76), the recursively application of Lemma 4.5.8 gives the constraint m + 2n ≤ q.

Then, by Lemma 4.5.6, it follows that ∂mx ∂
n
y u ∈ C

p,0
pol,T (R,R+) for every m,n ∈ N such that

m+ 2n ≤ 2q, and in particular when m+ n = q.

Consider now the case l > 0. By (4.5.76), Lemma 4.5.7 ensures that if m+ 2n ≤ 2q then

un,m = ∂mx ∂
n
y u solves∂tum,n + Lnum,n − nκum,n = −n

[
1
2um+2,n−1 + bum+1,n−1

]
in [0, T )×O,

um,n(T, x, y) = ∂mx ∂
n
y f(x, y) in O,

(4.5.86)

where Ln is the generator in (4.5.75) with the (new) parameters in (4.5.77). Therefore,

the general case concerning ∂lt∂
m
x ∂

n
y u with 2l + m + n = q follows by an iteration on l: by

(4.5.86),

∂lt∂
m
x ∂

n
y u = −Ln∂l−1

t ∂mx ∂
n
y u+ nκ∂l−1

t ∂mx ∂
n
y u− n

[1

2
∂l−1
t ∂m+2

x ∂n−1
y u+ b∂l−1

t ∂m+1
x ∂n−1

y u
]
.

4.6 The American case in the Heston/Bates model

In this section we focus on the American case. We first prove a simple lemma which better

specifies the behaviour of the moments in the Heston and Bates model.

Lemma 4.6.1. For every p ≥ 2 there exists C > 0 (depending on p and on the model
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parameters) such that

sup
t∈[nh,(n+1)h]

E[|Xt,x,y
(n+1)h|

p] ≤ (1 + Ch)(1 + |x|p + yp), (4.6.87)

sup
t∈[nh,(n+1)h]

E[(Y t,y
(n+1)h)p] ≤ (1 + Ch)(1 + yp). (4.6.88)

Proof. It can be easily proved that there exists C > 0 such that

sup
t∈[0,T ]

E[|Xt|p] ≤ C(1 + |x|p + yp), sup
t∈[0,T ]

E[(Y t,y
t )p] ≤ C(1 + yp). (4.6.89)

We start by proving (4.6.88). Let us fix p ≥ 1. By using Itô’s Lemma, for any t ∈
[nh, (n+ 1)h] we have

(Y t,y
(n+1)h)p = yp + p

∫ (n+1)h

t

((
κθ − p− 1

2
σ2
)

(Y t,y
s )p−1 − κ(Y t,y

s )p
)
ds

+ pσ

∫ (n+1)h

t
(Y t,y
s )p−

1
2dWs.

Passing to the expectation and using (4.6.89), we can find C > 0 (depending on p and on

the coefficients of the model) such that

sup
t∈[nh,(n+1)h]

E[(Y t,y
(n+1)h)p] ≤ yp + hC(1 + yp−1 + yp) ≤ (1 + 2Ch)(1 + yp),

from which (4.6.88) follows. As regards (4.6.87), again by Itô’s Lemma, for t ∈ [nh, (n+1)h]

we get

|Xt,x,y
(n+1)h|

2p = xp +

∫ (n+1)h

t

[
2pµX(Y t,y

s )(Xt,x,y
s− )2p−1 + p(2p− 1)σ2

X(Y t,y
s )(Xt,x,y

s− )2p−2
]
ds

+

∫ (n+1)h

t
(Xt,x,y

s− + JNs)
2p − (Xt,x,y

s− )2pdKs +

∫ (n+1)h

t
2pσX(Y t,y

s )(Xt,x,y
s− )2p−1dBs,

K denoting the Poisson process driving the compound Poisson process H, whose associated

Lévy measure is ν. Passing to the expectation, and using the martingale properties (which

hold thanks to (4.6.89)) we get

E[|Xt,x,y
(n+1)h|

2p] = x2p+

∫ (n+1)h

t

[
E[2pµX(Y t,y

s )(Xt,x,y
s )2p−1+ p(2p− 1)σ2

X(Y t,y
s )(Xt,x,y

s )2p−2]
]
ds

+

∫ (n+1)h

t
ds

∫
E[(Xt,x,y

s + z)2p − (Xt,x,y
s )2p]ν(dz).

(4.6.87) now follows by using Hölder inequality, the estimate (4.6.89) and the existence of

all moments under ν.
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Again, we approximate the CIR process with the Markov chain discussed in Section 4.3.1

and we consider the two finite difference operators introduced in Section 4.4.3 and 4.4.3.

Therefore, we get the following convergence rate result.

Theorem 4.6.2. Let (X,Y ) be the solution to (4.5.73) and let (Y h
n )n=0,...,N be the Markov

chain introduced in Section 4.3.1 for the approximation of the CIR process Y . Let ũhn be

defined in (4.4.33) and uhh be given by (4.4.34) with the choice

Πh
∆x(y) = (Ah∆x)−1Bh

∆x(y).

(i) [Convergence in l2(X )] Suppose that

• Ah∆x(y) and Bh
∆x(y) are defined in (4.4.45) and (4.4.47) respectively;

• ν′

ν ,
ν′′

ν ∈ L
2(R, dν) and ν has finite moments of any order;

• f ∈ C∞pol(R×D) is such that there exist C, a > 0 with

|∂l′x∂lyf(·, y)|L2(R,dx) ≤ C(1 + ya), l′, l ∈ N.

Then, there exist h̄, C > 0 such that for every h < h̄ and ∆x < 1 one has

|u(0, ·, Y0)− uh0(·, Y0)|2 ≤ CT (h+ ∆x2).

(ii) [Convergence in l∞(X )] Suppose that

• Ah∆x(y) and Bh
∆x(y) are defined in (4.4.71) and (4.4.47) respectively;

• ν′

ν ,
ν′′

ν ∈ L
1(R, dν) and ν has finite moments of any order;

• f ∈ C∞pol(R×D) is such that there exist C, a > 0 with

|∂l′x∂lyf(·, y)|L∞(R,dx) ≤ C(1 + ya), l′, l ∈ N.

Then, there exist h̄, C > 0 such that for every h < h̄ and ∆x < 1 one has

|u(0, ·, Y0)− uh0(·, Y0)|∞ ≤ CT (h+ ∆x).

Proof. We prove (i), (ii) following in the same way. The validity of assumptions A1 and

A2 is proved in Proposition 4.3.4 and since γX ≡ 1 or γX ≡ 0, A3(4λcν |γX |) trivially holds.

So, as in the European case, in order to apply Theorem 4.4.4 it is enough to prove that the

function vhn defined in (4.4.50) belongs to the space C2,6
pol,[nh,(n+1)h](R,D) a.e. and uniformly

in n and h.

190



Sec. 4.6 - The American case in the Heston/Bates model

Let us consider a function f ∈ C∞pol(R × D) such that for any l, l′ ∈ N there exist

Cl′,l, al,l′ > 0 such that

|∂l′x∂lyf(·, y)|L2(R,dx) ≤ Cl′,l(1 + yal,l′ ), y ∈ D. (4.6.90)

We point out that in the statement of the theorem we actually require that there exist

C, a > 0 such that Cl′,l ≤ C and al′,l ≤ a for any l, l′ ∈ N. We will use this strong

assumption only at the end of the proof, when it will be clear why we need it in order to

get the assertion.

We proceed by a backward iteration. For n = N−1 we have vhN−1(t, x, y) = E
[
f(Xt,x,y

T , Y t,y
T )
]
.

By the proof of Proposition 4.5.3 and by using (4.6.87) and (4.6.88), we deduce that, if l = 0,

by using (4.6.87)-(4.6.88) we have

sup
t∈[(N−1)h,T )

|∂l′x vhN−1(t, ·, y)|L2(R,dx) ≤ Cl′,0(1 + C0h)(1 + yal′,0).

On the other hand, again from the proof of Proposition 4.5.3, we have that, for t ∈ [(N −
1)h, T ),

∂l
′
x∂

l
yv
h
N−1(t, x, y) = E

[
e−lκ(T−t)∂l

′
x∂

l
yf(X l,t,x,y

T , Y l,t,x,y
T )

]
+ lE

[∫ T

t

[
1

2
∂l
′+2
x ∂l−1

y vhN−1 + b∂l
′+1
x ∂l−1

y vhN−1

]
(s,X l,t,x,y

s , Y l,t,x,y
s )ds

]
,

(4.6.91)

where b = ρ
σκ −

1
2 and (X l, Y l) is the solution of the Heston/Bates model with new co-

efficients rl = r + lρσ, κl = κ, θl = θ + lσ2

2κ , σl = σ. Denote by Cl the constant such

that

sup
t∈[(N−1)h,T )

Et,y[(Y l
(n+1)h)p] ≤ (1 + yp)(1 + Clh).

Then, if l = 1, by (4.6.91) we get

sup
t∈[(N−1)h,T )

|∂l′x∂yvhN−1(t, ·, y)| ≤ Cl′,1(1 + C1h)(1 + yal′,1)

+ h

(
1

2
Cl′+2,0(1 + C1h)(1 + yal′+2,0) + |b|Cl′+1,0(1 + C1h)(1 + yal′+1,0)

)
.

Without loss of generality we can assume that 1
2 +|b| ≤ C1, Ci ≤ Ci+1 and that the constants

Cl,l′ and al,l′ are nondecreasing in both l and l′. Then, we easily deduce that

sup
t∈[(N−1)h,T )

|∂l′x∂yvhN−1(t, ·, y)|L2(R,dx) ≤ Cl′+2,1(1 + C1h)2(1 + yal′+2,1).
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With the same arguments, if l = 2, we get

sup
t∈[N−1)h,T )

|∂l′x∂2
yv
h
N−1(t, ·, y)|L2(R,dx) ≤ Cl′+4,1(1 + C2h)3(1 + yal′+4,1).

By iterating, it can be easily seen that

sup
t∈[N−1)h,T )

|∂l′x∂lyvhN−1(t, ·, y)|L2(R,dx) ≤ C
(h,N−1)
l′,l

(
1 + y

a
(N−1)

l′,l

)
,

where

C
(h,N−1)
l′,l = Cl′+2l,l(1 + Clh)l+1, a

(N−1)
l′,l = al′+2l,l.

As regard the derivatives w.r.t. the time variable, again from the proof of Proposition 4.5.3,

we have

∂l
′′
t ∂

l′
x∂

l
yv
h
N−1 = −Ll∂l−1

t ∂l
′
x∂

l
yv
h
N−1 + lκ∂l

′′−1
t ∂l

′
x∂

l
yv
h
N−1

− l
[1

2
∂l−1
t ∂l

′+2
x ∂l−1

y vhN−1 + b∂l
′′−1
t ∂l

′+1
x ∂l−1

y vhN−1

]
,

so that

sup
t∈[nh,(n+1)h)

|∂l′′t ∂l
′
x∂

l
yv
h
N−1(t, ·, y)|L2(R,dx) ≤ clC

(h,N−1)
l′+2,l+2

(
1 + y

a
(N−1)

l′,l +l′′
)
, (4.6.92)

where c is a constant which depends on the coefficient of the model.

Therefore,

ũhN−1(x, y) = max{f(x, y), vhN−1((N − 1)h, x, y)}

is a continuous function, whose derivatives, of any order, a.e. continuously exist and for

every l′, l,

|∂l′x∂lyũhN−1(·, y)|L2(R,dx) ≤ C
(h,N−1)
l′,l

(
1 + y

a
(N−1)

l′,l

)
a.e.. (4.6.93)

Note that the estimates (4.6.92) on the time derivatives of vhN−1 are not involved in the

estimate (4.6.93) and, as a consequence, in the iterative procedure.

At time step n = N − 2 the function vhN−2 is defined by

vhN−2(t, x, y) = E
[
ũhN−1(Xt,x,y

(N−1)h, Y
t,y

(N−1)h)
]
, t ∈ [(N − 2)h, (N − 1)h].

By developing arguments already done for n = N − 1, we get

sup
t∈[N−1)h,T )

|∂l′x∂yvhN−2(t, ·, y)|L2(R,dx) ≤ C
(h,N−2)
l′,l

(
1 + y

a
(N−2)

l′,l

)
,
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where

C
(h,N−2)
l′,l = C

(h,N−1
l′+2l,l (1 + Clh)l+1 = Cl′+4l,l(1 + Clh)2(l+1), a

(N−2)
l′,l = al′+4l,l.

Moreover

sup
t∈[nh,(n+1)h)

|∂l′′t ∂l
′
x∂

l
yv
h
N−2(t, ·, y)|L2(R,dx) ≤ clC

h,N−2
l′+,l+2

(
1 + y

aN−2
l′,l +l′′

)
.

Therefore, the function

ũhN−2(x, y) = max{f(x, y), vhN−2((N − 2)h, x, y)}

is a continuous function, whose derivatives, of any order, a.e. continuously exist and for

every l′, l,

|∂l′x∂lyũhN−2(·, y)|L2(R,dx) ≤ C
h,N−2
l′,l

(
1 + y

aN−2
l′,l +l′′

)
a.e.,

By iterating, we get that, at time step n = N − k, the function vhN−k satisfies

|∂l′x∂lyvhN−k(·, y)|L2(R,dx) ≤ C
(h,N−k)
l′,l

(
1 + y

a
(N−k)

l′,l +l′′
)

a.e.,

where

C
(h,N−k)
l′,l = Cl′+2kl,l(1 + Clh)k(l+1), a

(N−k)
l′,l = al′+2kl,l.

Again

sup
t∈[nh,(n+1)h)

|∂l′′t ∂l
′
x∂

l
yv
h
N−k(t, ·, y)|L2(R,dx) ≤ clC

(h,N−k)
l′+2,l+2

(
1 + y

a
(N−k)

l′,l +l′′
)
.

In order to have vhn ∈ C2,6
pol,[nh,(n+1)h](R,D) a.e. and uniformly in n and h, we need

estimates of the derivatives ∂l
′
x∂

l
yv
h
n for l + l′ ≤ 6 which are uniform in n and h. It is clear

that for each k ≤ N , since h = T/N and l ≤ 6,

(1 + Clh)k(l+1) ≤ eClhN(l+1) ≤ e7TC6 .

Moreover, the assumption that there exist C, a > 0 such that Cl′,l ≤ C and al′,l ≤ a for any

l, l′ ∈ N now comes in. Thanks to this, we can deduce that vhn ∈ C
2,6
pol,[nh,(n+1)h](R,D) a.e.

and uniformly in n and h, so by Theorem 4.4.4 we get the result.
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Remark 4.6.3. In Theorem 4.6.2 we require really strong regularity and boundedness as-

sumptions on the test function f . On the other hand, let us stress that our algorithm is

strongly based on numerical analysis techniques. When these procedures are used, as far as

we know, literature is missing in results on the rate of convergence of numerical schemes

for obstacle problems.

Let us mention that, in some particular cases, different approaches could in principle be

followed. For example, let us consider the scheme introduced in Section 4.4.3, where the

linear operator is given by

Πh
∆x(y) = (Ah∆x)−1Bh

∆x(y),

Ah∆x(y) and Bh
∆x(y) being defined in (4.4.71) and (4.4.47) respectively. Here, we have proved

in Lemma 4.4.9 that Πh
∆x(y) is a stochastic operator. From a probabilistic point of view,

this means that the algorithm can be written through a Markov chain (see [24]). Then,

one could apply purely probabilistic methods to prove the convergence of the procedure, for

example by developing techniques similar to the ones introduced in [13]. On the other hand,

in this case, Πh
∆x(y) is a monotone linear operator, so another possible way to proceed is

to use the theory introduced by Barles [15], which uses viscosity solutions. In order to

do this, we need a comparison principle for viscosity solutions of Heston-type degenerate

parabolic problems (note that in Section 1.3 we have proved such a result in the case of weak

solutions). However, both the mentioned approaches give in principle just the convergence,

that is, no information about the rate of convergence is provided.

4.7 Appendix

4.7.1 Lattice properties of the CIR approximating tree

The aim of this section is to prove Propostition 4.3.3. For later use, let us first give some

(trivial) properties of the lattice. First, by construction, kd(n, k) ≤ k < ku(n, k), so that

yn+1
kd(n,k) ≤ y

n+1
k ≤ ynk ≤ y

n+1
k+1 ≤ y

n+1
ku(n,k). Moreover for every n and k, it is easy to see that

ynk ≤ ynk+1, yn+1
k ≤ ynk ≤ y

n+1
k+1 ,

ynk ≤ ynk−1 + σ2h+ 2σ
√
vnk−1h, yn+1

k ≤ ynk +
σ2

4
h− σ

√
ynkh.

(4.7.94)

Proof of Proposition 4.3.3. 1. The statement is an immediate consequence of the following
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facts:

if ku(n, k) ≥ k + 2, then ynk < θ∗h, (4.7.95)

if kd(n, k) ≤ k − 1, then ynk > θ∗/h, (4.7.96)

which we now prove.

First of all, note that ynk +µY (ynk )h = κθh+ ynk (1− κh), so by choosing h̄ = 1/κ, one has

ynk + µY (ynk )h > 0. Moreover, as a direct consequence of (4.3.16)–(4.3.17) and of (4.7.94),

we have that, if µY (ynk ) > 0, then kd(n, k) = k, and if µY (ynk ) < 0, then ku(n, k) = k + 1.

Concerning (4.7.95), we obviously assume ynk > 0, so that yn+1
k+1 > 0. Note that, from

(4.3.16),

ynk + µY (ynk )h > yn+1
ku(n,k)−1 ≥ y

n+1
k+1 = ynk +

σ2

4
h+ σ

√
ynkh.

Since µY (ynk ) ≤ κθ, we get

κθh >
σ2

4
h+ σ

√
ynkh > σ

√
ynkh,

from which

ynk <
(κθ
σ

)2
h = θ∗h.

We prove now (4.7.96). First of all observe that, if ynk ≤ θ, then µY (ynk ) > 0 and so

kd(n, k) = k. Then we have ynk > θ and from (4.3.15) we can assume yn+1
k > 0 up to take

h < (2
√
θ/σ)2. Now, by (4.3.17) we get

ynk + µY (ynk )h < yn+1
kd(n,k)+1 ≤ y

n+1
k = ynk +

σ2

4
h− σ

√
ynkh,

so that

κ(θ − ynk )h <
σ2

4
h− σ

√
ynkh.

This gives κynkh > σ
√
vnkh−

σ2

4 h+ κθh and, for h small enough, one gets ynkh >
σ2

4κ2 .

2. If ynk ≤ θ∗h, (4.7.96) gives kd(n, k) = k. As regards the up jump, the case yn+1
ku(n,k) = 0

is trivial so we consider yn+1
ku(n,k) > 0. In order to prove (4.3.18), we consider two possible

cases: ku(n, k) = k + 1 and ku(n, k) ≥ k + 2. In the first case, we have

yn+1
ku(n,k) − y

n
k =

σ2

4
h+ σ

√
ynkh ≤

(σ2

4
+ σ

√
θ∗

)
h ≤ C∗h,
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and the statement holds. If instead ku(n, k) ≥ k + 2, then by (4.3.16) we have

yn+1
ku(n,k)−1 − y

n
k < µY (ynk )h.

We apply the third inequality in (4.7.94) (with n replaced by n + 1 and k = ku(n, k)) and

we get

0 ≤ yn+1
ku(n,k) − y

n
k ≤ yn+1

ku(n,k)−1 + 2σ
√
yn+1
ku(n,k)−1h+ σ2h− ynk

≤ µY (ynk )h+ 2σ
√

(ynk + µY (ynk )h)h+ σ2h

≤ (κθ + 2σ
√
θ∗ + κθ + σ2)h ≤ C∗h.

3. The statement follows from (4.7.95).

4. Formula (4.3.19) follows from the fact that the setsKu(n, k) andKd(n, k) are nonempty.

Indeed, if ynk > θ∗h then ku = k + 1, so Ku(n, k) 6= ∅. And if ynk < θ∗h,

yn+1
n+1 − y

n
k − µY (ynk )h ≥ Y0 − θ∗h− κθh = Y0 − (θ∗ + κθ)h > 0

for h < Y0/(θ∗ + κθ), which gives ku(n, k) < n+ 1. Therefore Ku(n, k) 6= ∅ for every (n, k).

As regards Kd(n, k), if ynk < θ∗/h then kd(n, k) = k by Proposition 4.3.3, so that

Kd(n, k) 6= ∅. If instead ynk ≥ θ∗/h, then

yn+1
0 − ynk − µY (ynk )h ≤ Y0 −

θ∗

h
− κθh+ κynkh ≤ Y0 −

θ∗

h
+ κynkh.

Recalling that h = T/N , we note that there exists C > 0 such that

ynkh ≤ yNNh =
(√

Y0 +
σ

2
N
√
h
)2
h =

(√
Y0

√
T

N
+
σ

2
T
)2
≤ C.

Therefore

yn+1
0 − ynk − µY (ynk )h ≤ Y0 −

θ∗

h
+ κC < 0

for h < θ∗

Y0+κC . So, Kd(n, k) 6= ∅.
Now, by (4.3.17) and (4.3.16), since Kd(n, k) 6= ∅ and Ku(n, k) 6= ∅,

µY (ynk )h+ ynk − y
n+1
kd(n,k)

yn+1
ku(n,k) − y

n+1
kd(n,k)

≥ 0,
µY (ynk )h+ ynk − y

n+1
kd(n,k)

yn+1
ku(n,k) − y

n+1
kd(n,k)

= 1 +
µY (ynk )h+ ynk − y

n+1
ku(n,k)

yn+1
ku(n,k) − y

n+1
kd(n,k)

≤ 1.

�
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4.7.2 Proof of Lemma 4.4.5 and Lemma 4.4.7

We first recall the Poisson summation formula. It is worldwide famous but is usually written

on the Schwartz space. We propose here the following version.

Proposition 4.7.1. If ϕ ∈ C2(R) with ϕ,ϕ′, ϕ′′ ∈ L1(R, dx) then∑
n∈Z

ϕ(n) =

∫
R
ϕ(x)dx+

∑
n∈Z,n6=0

∫
R
ϕ(x)e−2πinxdx. (4.7.97)

Proof. For x ∈ R, let bxc = sup{k ∈ Z : k ≤ x} denote the integer part. For N ∈ N,

straightforward computations give∑
|n|≤N

ϕ(n) =
1

2
(ϕ(N) + ϕ(−N)) +

∫ N

−N
ϕ(x)dx+

∫ N

−N

(
x− bxc − 1

2

)
g′(x)dx.

We recall that ϕ(±N) → 0 as N → ∞ (because ϕ,ϕ′ ∈ L1(R, dy)). Moreover, the Fourier

series representation gives

x− bxc − 1

2
=

∑
n∈Z,n 6=0

e−2πinx

2πin
, x ∈ R.

So, ∑
n∈Z

ϕ(n) =

∫
R
ϕ(x)dx+

∫
R

∑
n∈Z,n6=0

e−2πinx

2πin
ϕ′(x)dx.

Let F[·] denote the Fourier transform. Then,
∫
R e
−2πinxϕ′(x)dx = F[ϕ′](2πn) = 2πinF[ϕ]

(2πn). We also have |F[ϕ′](2πn)| ≤ |F[ϕ′′](2πn)
2πn | ≤ M

n . Thus, we can put the sum outside the

integral and the statement holds.

Proof of Lemma 4.4.5l. (i) We apply (4.7.97) to ϕ(x) = g(x0 + x∆x). So,∑
n∈Z

f(xn)∆x−
∫
R
g(x)dx =

∑
n∈Z,n 6=0

e2πinx0/∆x

∫
R
g(x)e−2πinx/∆xdx

=∆x2
∑

n∈Z,n 6=0

e2πinx0/∆x

(2πin)2

∫
R
g′′(x)e−2πinx/∆xdx,

the latter inequality coming from the integration by parts formula. The statement now

follows by recalling that
∑

n≥1
1
n2 = π2

6 .
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(ii) We apply (4.4.52) to the function g2. Note that if g, g′, g′′ ∈ L2(R, dx) then g2 and its

derivatives up to order 2 belong to L1(R, dx). Moreover,
∫
R g

2(x)dx = |g|2L2 and |(g2)′′|L1 ≤
2|g′|2L2 + 2|g|L2 |g′′|L2 , and (4.4.53) immediately follows.

Proof of Lemma 4.4.7. Hereafter, C > 0 denotes a constant which can vary from line to

line.

As regard Ψ1, we recall that i 7→ ν(i∆x)∆x/
∑

l ν(l∆x)∆x is a probability measure on

X and
∑

l ν(l∆x)∆x ≤ cλ. Then,

|Ψ1|22 =
∑
i

(∑
l

ν(l∆x)[g(t, xi+l, y)− g(t, xi, y)]∆x
)2

∆x

≤ 2cλ
∑
i

∑
l

ν(l∆x)[g2(t, xi+l, y) + g2(t, xi, y)]∆x2 ≤ 2c2λ2|g|22.

By (ii) of Lemma 4.4.5 and (4.4.54), we can write

|Ψ1|22 ≤ 2c2λ2
(
|g|2L2(R,dx) +

∆x2

6

(
|∂yg|2L2(R,dx) + |g|L2(R,dx) × |∂2

yg|L2(R,dx)

))
≤ C(1 + |y|a)2.

Concerning Ψ2, by using again (ii) of Lemma 4.4.5 we have

|Ψ2|22 ≤
∫ 1

0
(1− τ)2γ

(∑
i

g2(t+ τh, xi, y)∆x
)
dτ

≤
∫ 1

0
(1− τ)2γ

[
|g(t+ τh, ·, y)|2L2(R,dx) +

∆x2

6

(
|∂yg(t+ τh, ·, y)|2L2(R,dx)

+ |g(t+ τh, ·, y)|2L2(R) × |∂
2
yg(t+ τh, ·, y)|2L2(R,dx)

)]
dτ ≤ C(1 + |y|a)2.

For Ψ3 and Ψ4 the assertion follows in a similar way. Finally, again from (ii) of Lemma

(4.4.5),

|Ψ5|22 ≤ |Ψ5|2L2(R,dx) +
∆x2

6

(
|Ψ′5|2L2(R,dx) + |Ψ5|L2(R,dx) × |Ψ′′5|L2(R,dx)

)
. (4.7.98)
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Now, by (i) of Lemma 4.4.5,

|Ψ5|2L2(R,dx) =

∫ ∣∣∣ ∫ g(t, ζ + x, y)ν(x)dx−
∑
l

g(t, ζ + l∆x, y)ν(l∆x)∆x
∣∣∣2dζ

≤ ∆x4

144

∫ (∫ ∣∣∂2
y(g(t, ζ + x, y)ν(x))

∣∣dx)2
dζ

≤ ∆x4

36

∫
dζ

∫ (
|∂2
yg(t, ζ + x, y)|2 + |∂yg(t, ζ + x, y)|2

∣∣ν ′(x)

ν(x)

∣∣2 + |g(t, ζ + x, y)|2
∣∣ν ′′(x)

ν(x)

∣∣2)ν(x)dx

=
∆x4

36

∫
ν(x)dx

∫ (
|∂2
yg(t, ζ + y, y)|2 + |∂yg(t, ζ + y, y)|2

∣∣ν ′(x)

ν(x)

∣∣2 + |g(t, ζ + y, y)|2
∣∣ν ′′(x)

ν(x)

∣∣2)dζ
=

∆x4

36

(
|∂2
yg(t, ·, y)|2L2(R,dx)|ν|+ |∂yg(t, ·, y)|2L2(R,dx)

∣∣ν ′
ν

∣∣2
L2(R,dν)

+ |g(t, ·, y)|2L2(R,dx)

∣∣ν ′′
ν

∣∣2
L2(R,dν)

)
≤ Cλ∆x4(1 + |y|a)2,

last inequality following from (4.4.54) and (4.4.55). Similar calculations allow one to bound

the terms |Ψ′5|L2(R,dx) and |Ψ′′5|L2(R,dx) in (4.7.98).
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L’ultimo e più grande ringraziamento va a tutta la mia famiglia, in particolare ai miei

genitori e ai miei fratelli Marco e Simone. Siete e sarete sempre il mio punto di riferimento

più grande.

202



Bibliography

[1] M. Abramowitz, I.A. Stegun (1992): Handbook of mathematical functions with formulas,

graphs and mathematical tables. Dover publications, Inc., New York.

[2] E. Akyildirim, Y. Dolinsky, H.M. Soner (2014): Approximating stochastic volatility by

recombinant trees. Ann. Appl. Probab. 24, 2176–2205.

[3] A. Alfonsi (2005): On the discretization schemes for the CIR (and Bessel squared) processes.

Monte Carlo Methods Appl. 11, 355–467.

[4] A. Alfonsi (2010): High order discretization schemes for the CIR process: Application to

affine term structure and Heston models. Math. Comp. 79, 209–237.

[5] A. Alfonsi (2015): Affine diffusions and related processes: simulation, theory and appli-

cations, volume 6 of Bocconi & Springer Series. Springer, Cham; Bocconi University Press,

Milan.

[6] M. Altmayer, A. Neuenkirch (2017): Discretising the Heston model: an analysis of the

weak convergence rate. IMA J. Numer. Anal. 37, 1930–1960.

[7] L. Andersen (2006): Efficient Simulation of the Heston Stochastic Yolatility Model. Preprint

available at http://www.ressources-actuarielles.net/.

[8] L. Andersen (2008): Simple and efficient simulation of the Heston stochastic volatility model.

J. Comput. Finance 11, 1-42.

[9] L.B.G. Andersen, Y.Y. Piterbarg (2007): Moment explosions in stochastic volatility

models. Finance Stoch., 11, 29-50.

[10] E. Appolloni, L. Caramellino, A. Zanette (2015): A robust tree method for pricing

American options with CIR stochastic interest rate. IMA J. Manag. Math., 26, 345-375.

[11] S. Assing, S.D. Jacka, A. Ocejo (2014): Monotonicity of the value function for a two-

dimensional optimal stopping problem. Ann. Appl. Probab. 24(4), 1554-1584.

[12] K. Bahlali, B. Mezerdi, Y. Ouknine (1686): Pathwise uniqueness and approximation of

solutions of stochastic differential equations. Séminaire de Probabilités, XXXII, Lecture Notes
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