
HAL Id: tel-01960393
https://hal.science/tel-01960393

Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the calculation of molecular properties of heavy
element systems with ab initio approaches: from

gas-phase to complex systems
André Severo Pereira Gomes

To cite this version:
André Severo Pereira Gomes. On the calculation of molecular properties of heavy element systems
with ab initio approaches: from gas-phase to complex systems. Theoretical and/or physical chemistry.
Universite de Lille, 2016. �tel-01960393�

https://hal.science/tel-01960393
https://hal.archives-ouvertes.fr
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Chapter 1

Abstract

This work discusses theoretical approaches to model the electronic structure of species containing
heavy elements – that is, those from the fifth row onwards on the periodic table – with a special
emphasis on lanthanides and actinides, due to their importance in a number of technological issues
and applications in fields as diverse as consumer electronics and nuclear energy.

The three key ingredients which should be addressed in modeling of such systems are: (i)
relativistic effects, arising from the speeds close to that of the light to which inner electrons are
accelerated for heavy nuclei; (ii) electron correlation effects, due to the instantaneous interactions
between the electrons as well as due to quasi-degeneracies in the electronic states in heavy element
species that often possess unpaired d or f electrons; and (iii) environment effects arising from the
interaction of the heavy element species with surrounding molecules, since these are often found in
the condensed phase.

We begin by briefly reviewing the approaches used to describe electron correlation and relativis-
tic effects before turning our attention to the four-component intermediate Hamiltonian Fock-space
coupled cluster (4c-IHFSCC) method in order to first establish its accuracy with respect to available
experimental results and later show how served as a reference method to which more approximate
ones were assessed. From this assessment it is then possible to pick the most suitable approaches to,
for instance, treat treat large molecular systems which are beyond the reach of very accurate (and
therefore computationally very costly) approaches.

Next we briefly review the frozen density embedding (FDE) method, a formally exact approach
that myself and others use as a framework to devise computationally efficient schemes to account
for environment effects on the aforementioned electronic structure approaches. Application of these
approximate schemes to heavy element systems are discussed in order to show that FDE can be
quite accurate describe environment effects (notably in the absence of strong interactions such as
covalent bonds between subsystems), thus allowing one to use approaches such as 4c-IHFSCC to
obtain electronic spectra or ionization energies.
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Chapter 2

Sommaire

Cet ouvrage présente des approches théoriques applicables à la modélisation de la structure électronique
d’espèces contenant des éléments lourds – c’est à dire, ceux qui se situent au-delà de la cinquième
période de la classification périodique – avec un intérêt particulier porté aux lanthanides et actinides
à cause de leur importance dans des domaines si variés que les appareils électroniques ou l’énergie
nucléaire.

La modélisation de la structure électronique pour tels systèmes requiert la prise en compte de
trois ingrédients : (i) des effets relativistes dû aux vitesses très élevées des électrons du cœur, causées
par la forte attraction des noyaux lourds ; (ii) des effets de corrélation électronique issus non seulement
de l’interaction instantanée entre électrons mais aussi de la quasi-dégénérescences souvent présentes
dans des éléments lourds possédant des couches électroniques d et f partiellement remplies ; et (iii) des
effets de l’environnement sur les propriétés des molécules contenant les éléments lourds, car celles-ci
se trouvent en général en phase condensée.

Nous commençons par une brève révision des approches utilisées pour décrire la corrélation
électronique et les effets relativistes avant de nous pencher sur la méthode intermediate Hamiltonian
Fock-space coupled cluster à quatre composantes (4c-IHFSCC), de façon à établir sa précision par
rapport à des résultats expérimentaux et ensuite montrer comment celle-ci peut être utilisée comme
méthode de référence pour l’évaluation d’approches plus approximées. Ces comparaisons nous ont
permis ensuite de choisir les approches les plus adéquates pour le traitement de systèmes moléculaires
plus étendus, qui seraient impossibles à traiter avec des méthodes plus précises (et par conséquent
plus coûteuses).

Ensuite nous présentons la méthode frozen density embedding (FDE), une approche formelle-
ment exacte que moi-même et d’autres utilisons comme point de départ pour concevoir des méthodes
efficaces du point de vue computationnel afin de décrire les effets de l’environnement dans le cadre
des calculs de structure électronique. Nous discutons aussi de l’application de ces méthodes com-
putationnelles à des systèmes contenant des éléments lourds pour montrer qu’elles sont capables de
très bien décrire les effets de l’environnement (notamment dans l’absence de interactions fortes telles
que des liaisons chimiques entre sous-systèmes), permettant ainsi l’utilisation d’approches telles que
4c-IHFSCC pour obtenir des spectres électroniques ou des énergies d’ionisation.
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Chapter 3

Preface

This manuscript describes my scientific activities on the calculation of molecular properties for systems
containing heavy elements such as actinides, lanthanides and transition metals, carried out during my
time as Postdoctoral researcher at the Free University (VU) Amsterdam under the supervision of Lucas
Visscher (2005-2006, 2007-2009), at the Université de Strasbourg (2006-2007) under the supervision
of Trond Saue, and at the Université de Lille 1 (2009), and following my appointment at CNRS as
researcher (chargé de recherche) in 2009.

The main focus of my first year as postdoc in Amsterdam was on exploring how to execute
computational chemistry codes in grid environments, but I profited from this period to start exploring
with Ivan Infante the use of accurate, wavefunction-based (WFT) electronic structure methods such
as Fock-space coupled cluster (FSCC) to obtain the electronic states of actinyl ions. This represented
an almost complete break from my graduate training, in which I mostly worked on the development
and benchmarking of basis sets for relativistic and non-relativistic electronic structure calculations,
though at the time I did manage to put that experience to good use when starting a collaboration
with Ken Dyall on developing energy-optimized basis sets for 5d and 4f elements.

In my year in Strasbourg I focused on calculating the energy differences between enantiomers of
relatively large complexes caused by parity non conserving interactions employing density functional
theory (DFT), which was at the time the only approach based on four-component wavefunctions that
are sufficiently accurate and computationally feasible for such systems. There, I also managed to get
a bit more involved in the development of the electronic structure code Dirac, something that proved
useful in the following years.

Upon returning for Amsterdam in 2007, I started working together with Christoph Jacob on a
simple implementation in Dirac of frozen density embedding (FDE), which we applied to construct a
computationally efficient model to incorporate environment effects on the f -f spectrum of neptunyl,
obtained with FSCC. At the same time, I got involved in different projects, again using FSCC as well
as other more approximate methods to study the I−3 species, the uranyl (VI) ion and some species
isoelectronic to it.

These two facets of my postdoctoral activities, the development of embedding methods and the
evaluation of electronic structure approaches, were continued and intensified with my arrival in Lille.

As far as methodological developments are concerned, over the past few years I focused on for-
mulating and implementing DFT-in-DFT and WFT-in-DFT embedding approaches based on response
theory in the Dirac and Dalton codes, and contributing to the development of the PyADF scripting
framework and other tools that simplify embedding calculations for complex systems.

While for the most part these efforts have focused on the response to electrical perturbations,
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6 3. Preface

in these past few years I have worked on extending our response formulations to account for prop-
erties arising from magnetic perturbations such as magnetizabilities, NMR shieldings and spin-spin
coupling constants, which have so far remained largely unexplored with DFT-in-DFT or WFT-in-DFT
embedding approaches.

Furthermore, more recently I’ve been paying particular attention to the development and im-
plementation of coupled cluster approaches in the four-component framework, notably the equation
of motion approach (EOM-CC), not only due to the need to improve the capabilities of Dirac for
obtaining accurate excited states and other molecular properties, but also in order to provide me with
a platform for pursuing my work on the development of WFT-in-DFT embedding approaches.

From an applications perspective, alongside with Florent Réal and Valérie Vallet, I continued
to explore the reliability of Fock-space coupled cluster, to gauge the reliability of more approximated
methods such as Time-dependent DFT (TDDFT) and in combination with embedding methods, to
try constructing models which can describe heavy species in condensed matter with a sufficient degree
of realism.



Chapter 4

Background and Motivation

Though most may not necessarily realize it, heavy elements – that is, those at the bottom of the
periodic table such as lanthanides, actinides, and heavy (4d or 5d) transition metals, (5p or 6p) main
block or alkali and alkali earth (5s, 6s) elements – occupy a central position in modern societies:
lanthanides, main-block and alkali (earth) elements, for instance, are intensively used as component
in objects present in our daily lives such as telephones and other consumer electronics [1, 2], or as
part of materials and devices that make up our communication infrastructure [3], but they also play
an important role in our health care systems, via medical imaging (as the strong magnets in imaging
devices or as contrast agents [4]) or nuclear medicine [5, 6].

Heavy metals are also the backbone of heavy industry: transition metals in particular are
key components of homogeneous or heterogeneous catalysts [7, 8] in the chemical industry, while
lanthanides and actinides are at the heart of energy production: the first for renewables as components
of wind turbines [1], while the second for nuclear energy, first as fuels and later as waste [9–11].

Many of these applications hinge on the presence of partially-filled d or f shells, as that makes
the species exhibit strong magnetism, either as single molecules or extended systems. Furthermore,
different elements show different degrees to which these partially-filled orbitals are available for bond-
ing, or affected by the environment: for instance, while they are largely unperturbed for lanthanides,
making them very interesting for photonics properties exploitable in consumer (TVs, lighting) or in-
dustrial (optical fibers) applications, in the actinides these orbitals are often more available, and give
attractive possibilities in catalysis that only recently have been recognized.

4.1 Heavy elements from the perspective of “goal-driven” research

Among the challenges faced by society due to the use of heavy elements in industry, a particularly
serious one is assuring the operational safety of nuclear power plants and of operations connected to
the long-term storage or reprocessing of spent nuclear fuels, as well as the readiness in case of major
accidents, by continuously assessing risks and mitigating them.

Risk reduction and mitigation can take many forms, and be helped or driven by a combination
of fundamental and applied research: in the case of reprocessing, by improving the processes whereby
minor actinides and other fission products with shorter half-life are separated via researching more
efficient complexating agents [12] and trough a better understanding of the aqueous [13] and non-
aqueous chemistries [14, 15] of actinide and lanthanide species. More efficient separation processes
have a direct consequence of decreasing the volume of radioactive waste that must go in long-term
storage, but by reducing the amount of solvent used, they greatly reduce the risk of fires that could
cause the dissemination of volatile compounds (already present or creating during such an accident)

7



8 4. Background and Motivation

Figure 4.1: Schematic depiction of a breached waste canister and the possible pathways for the
transport and retention of radionuclides in the geological environment (from [16]).

of radionuclides.

In the case of long-term storage, it means to be able to assess the risk of environmental dispersion
should cannisters holding radioactive waste be breached and their contents escape to the geological
environment [16]. The complexities of such a situation can be better grasped by inspecting the
schematic representation in figure 4.1. From it we see that a number of concurrent processes may take
place where radionuclides may react at the geological interfaces and be trapped, in solution with other
radionuclides and form aggregates, or be taken up by colloidal particles and be transported away and
be dispersed in the environment. Such an assessment will require, therefore, a deep knowledge of the
solubility and the aqueous chemistry of the actinides [17], their interactions and reactivity at mineral
surfaces [18], and their interaction with carriers such as colloids [19] with geological repository.

A similar picture can be painted for the case of a nuclear accident such as Tchernobyl or
Fukushima, where a number of concurrent phenomena will take place whereby radionuclides may
react and be retained at the site or be released to the environment. The difference here is that these
processes will take place not in the condensed phase proper but in the gas-phase and over the surface
of aerosols. Aerosol particles, shown schematically in figure 4.2, may therefore act as the colloidal
particles of figure 4.1, and the radionuclides can also react with other particles adsorbed at the aerosol
particle’s surface. As simulations of accidents performed for instance with the ASTEC [20] code by the
French radioprotection agency, will require reliable thermochemical data in order to establish which
species may form non-volatile compounds (and remain on-site) and which form volatile compounds
and may be dispersed in the environment.

The data that serves to guide the development of new processes or to perform the simulations,
and the knowledge on the electronic structure and of the radionuclide species in different conditions
may come from experimental or theoretical studies. Theoretical modeling has gained importance
in recent years, as the tools of computational chemistry and physics are able to treat increasingly
complex systems (a fact recognized by the 2013 Nobel prize in Chemistry) and effectively provide a
virtual laboratory with which one may explore systems in ways not possible experimentally – which
is frequently the case for transuranium elements, for example – thus complementing (and sometimes
replacing) the latter.

It is difficulty, however, to theoretically model lanthanide and actinide species with sufficiently
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Figure 4.2: (a) Electron microscopy of sulfate particles (image A) to which carbon black particules
(image B) are attached (indicated by arrows). Carbon black particles are often associated with fly ash
(image B) ; (b) Schematic depiction of the processes that may take place on the surface of an aerosol
particle.

high accuracy that makes them proper predictive tools. The first difficulty has to do with the near-
degeneracy of the partially-filled f shells in many actinide or lanthanide species, which not only requires
a very fine treatment of the instantaneous interaction between electrons (dynamic electron correlation),
but also the need to employ electronic structure methods that can describe the quasi-degenerate states
(static electron correlation), such as those of wavefunction-based (WFT) approaches.

The second difficulty is that the few approaches that are suitable for dealing with near-degeneracies
as above are computationally very costly and cannot in practice treat systems larger than 10-20 atoms,
often not enough to construct models with a minimum degree of realism in comparison to the exper-
imental systems - taking into account, for instance, finite temperature effects due to changes in the
local structure of the solvent around the species of interest, as well as long-range interactions that may
significantly affect molecular properties or spectra. To that end so-called embedding approaches [21–
25], in which accurate WFT approaches are combined to more approximate (and cost-effective) ones
such as density functional theory (DFT) or force-field based approaches (MM) - complemented by
statistical sampling of geometrical configurations for the whole system through the use of molecular
dynamics (MD) approaches - are a way to include the interaction between the species containing the
heavy element(s) and its environment.

An emblematic case which helps to underscore the difficulties faced by theoretical approaches
can be found in the plutonium atom (Pu), one of the key species in reprocessing and environmental
issues: in its neutral form in the gas phase, Pu has a over a thousand of experimentally identified
electronic states arising from (7s25f6, 7s5f6d) configurations, of which about 200 are found within a
window of 24000 cm−1 from the ground state, corresponding to the IR/visible range. When performing
correlated calculations (in LS coupling) for the same species one finds about 3000 states arising solely
for the 7s25f6 configuration, of which 250 are found within the same interval as above (24000 cm−1).
In solution the element is found either, in the +3 and +4 oxidation states, as atomic or, in the +5
and +6 oxidation states, as dioxo (PuOn+

2 ) ions1 forming aquo complexes with a varying number of
water molecules (≈8-9 for atomic Pu and ≈5-6 for PuOn+

2 ). The arrangement of the aquo ligands

1the picture of bonding for these and other actinyl species, which is of great importance to understand the interaction
of these species with their environment and with perturbing electromagnetic fields in spectroscopical studies, is nicely
summarized in a review by Denning [26]
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Figure 4.3: (a) Different oxidation states of Pu in perchlorate solution; (b) Pu(IV) complexes in the
presence of different ligands (from [27]).

Figure 4.4: (a) UV-vis-NIR spectra for neptunyl species in aqueous solutions; (b) NIR spectra for
plutonyl species in NaCl solutions (from [28]).

depends on the temperature and other experimental conditions and with the presence of other ligands
such as counter-ions for a total of up to 12 bonds, and species in different oxidation states may occur
simultaneously. This great sensitivity of the electronic structure to both oxidation state and the
immediate environment of Pu aquo species can be seen, respectively, in figures 4.3 and 4.4. From
these it is evident that simple models (gas-phase, static structures), if yielding results in agreement
to experiments, will do so by chance rather than by properly capturing the physical processes taking
place.
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4.2 Heavy elements from the perspective of “curiosity-driven”
research

Technological or environmental problems involving heavy elements are clear reasons for working toward
understanding their properties in the gas phase or in complex environments, though it is clear that
along the way experimentalists and theoreticians will focus on problems of a more fundamental nature
driven more by curiosity than for a specific application goal in mind: this would be the case for instance
in investigations on the interactions between actinide-containing building blocks and the formation of
hybrid materials [29] or large clusters [30], and the mechanisms through which these are formed.

Heavy elements are also fascinating in their own right, not only because of the very subtle effects
due to electron correlation of the near-degenerate electronic states arising from the partially-filled f
shells or of their interaction with the environment, but also due to their electronic structure being
fundamentally altered, in comparison to lighter elements, by the increasingly strong manifestation of
relativistic effects [31].

Relativistic effect arise due to the strong attraction exerted by the highly charged heavy nuclei
on the innermost (s, p) electrons, thereby accelerating them to speeds close to that of the light, with
a resulting increase of the mass of the electron: in atomic units, the velocity of a 1s electron is
roughly equal to the atomic number Z of the atom in question, so that for an atom such as Hg, the
electron would have its mass increased by about 20%. Since the mean value of its position is inversely
proportional to its mass, the end result is an orbital contraction of the same amount, followed by a
contraction of all other s orbitals as a consequence of their orthogonality. The same process occurs for
electrons in p orbitals, while for electrons in d and f one will see an expansion as they will screened
from the nuclei due to the contraction of s and p orbitals.

Another manifestation of relativity in atoms and molecules is the coupling of spin and angular
momentum, referred to as spin-orbit coupling (SOC). Spin-orbit coupling arises from the interaction
of the electron spin with the magnetic field induced by the relative movement of other charges, such
as the nuclei or other electrons [32], in the framework put forward by Dirac in his attempt to reconcile
quantum mechanics and special relativity [33, 34]. A brief introduction to the Dirac equation and its
use in molecular calculations will be given in section 5.2. While this manuscript deals with methods
and results exclusively within this framework, the reader should be aware that other more sophisticated
treatments based on quantum electrodynamics (QED) and for which the Dirac equation is the starting
point [35] are an active area of research.

Important consequences of the loss of spin symmetry though SOC are, first, the relaxation of
certain selection rules with the practical consequence that processes such as the f − f transitions
shown in figures 4.3 and 4.4 are no longer strictly forbidden. Also, as discussed in section 5.3 and
in some of the papers in appendices C or D, one will have the loss of degeneracies among certain
(non-relativistic) orbitals and by extension the splitting of otherwise degenerate electronic states.

The changes in the electronic structure due to relativity can be seen in the radial density of the
astatide ion (At−), whose dynamics in solution have recently been studied by our group and compared
to that of lighter ions such as iodide [36]. As other species in the 6p block, for this closed-shell species
the effects described above (the contraction of p and the loss of degeneracies) can be seen figure 4.5(b),
for plots of the density of valence p orbitals along the z axis for iodide and astatide.

We see for the former that the maxima of the 5p1/2 and 5p3/2 spinors are very close to each other

(2.06 Å and 2.11 Å respectively) and to that of the maximum for the 5pz orbital (2.09 Å), whereas
for astatide spatial separation between the 6p1/2 (rmax = 2.00 Å) and 6p3/2 (rmax = 2.32 Å) maxima

is much more important (0.32 Å), with the maximum of the outermost (6p3/2) spinor 0.12 Å further
from the origin than that of the 6pz orbital.

Relativity may also have important consequences for catalysis [37] and reactivity, as discussed
recently by Demissie et al. [38] who showed in their investigation of mercury methylation by cobalt
corrinoids that taking relativistic effects into account when modeling such an enzymatic reaction is



12 4. Background and Motivation

Figure 4.5: Radial densities of the valence p orbital from spin-free calculations and for the
p(1/2,1/2), p(3/2,3/2) spinors of (a) iodide ; (b) astatide.

absolutely essential for getting the mechanism right. There, relativity lowers the energy of the 6p
spinors in such a way that they can participate in bonding. And the changes in electronic structure
due to the relativity have recently been shown to drive the workings of acid-lead batteries [39].

4.3 This manuscript

This manuscript is organized as follows: chapter 5 outlines the basic characteristics of the electronic
structure approaches used to model the electronic structure heavy elements I used in my research,
followed by their application in the study of species containing actinides (Th, U, Np and Pu) and
heavy elements from the main group such as halides (iodine, astatine). In chapter 6 the frozen
density embedding approach is discussed, as well as its performance on the calculation of electronic
spectra of species containing actinides (U, Np) and second-order magnetic properties for model systems
containing main-block elements (Se, Te, Po). And finally, the future directions I intend to take in my
research are presented in chapter 7.



Chapter 5

Electronic Structure Methods

In this chapter I review the approaches used in my activities to determine the many-electron wave-
functions for both ground and excited states, and provide an overview of the performance of these
in treating the electronic states of heavy element systems based on my research, based on the papers
presented in full in appendices C and D.

Since I, for the most part, have focused on the determination of electronic spectra, the discussion
that follows will reflect that and properties such as structures, vibrational spectra etc. will therefore
not be explicitly addressed. That said, molecular properties can be formulated as derivatives of the
total energy of the system and determined through the application of analytic derivative theory or
response theory [40] to the approaches described below.

5.1 Electronic structure methods for excited states

This section partially reproduces the content of section 2 of ASP Gomes, CR Jacob, Annu. Rep. Prog.

Chem., Sect. C: Phys. Chem., 2012, 108, 222–277

For predicting excitation energies, quantum-chemical methods that can treat both the ground-
state and excited states are necessary. Here, we will provide an overview of the most important
theoretical approaches. These can be divided into two groups that tackle the problem from two
formally equivalent, but conceptually very different directions.

First, time-independent approaches take the stationary Schrödinger equation,

Ĥ|Ψk〉 = Ek|Ψk〉, (5.1)

where Ĥ is the molecular Hamiltonian and |Ψk〉 is the many-electron wavefunction, as their starting
point. The energy eigenvalues Ek and their corresponding eigenfunctions |Ψk〉 are the energies and
wavefunctions of the different electronic states. Thus, in a time-independent picture excitation energies
can be calculated by solving the stationary Schrödinger equation (Eqn. (5.1)) for the ground state and
the excited states of interest. This requires an explicit construction of the excited-state wavefunctions
|Ψk〉.

On the other hand, time-dependent approaches start from a stationary ground-state wavefunction
|Ψ0〉 and consider the time evolution of this initial state after switching on a time-dependent external
perturbation. Here, we will only consider an oscillating electric dipole perturbation with frequency ω,
i.e.,

V̂ω(t) = (eiωt + e−iωt)
∑
β

εβ(ω)µ̂β, (5.2)

13
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where µ̂β is the β-component (β = x, y, z) of the time-independent electric dipole operator and εβ(ω)
denotes the associated perturbation strength. The time evolution of the wavefunction could be ob-
tained by solving the time-dependent Schrödinger equation

ih̄
d

dt
|Ψ(t)〉 =

[
Ĥ + V̂ω(t)

]
|Ψ(t)〉. (5.3)

With the time-dependent wavefunction |Ψ(t)〉, one can obtain molecular properties by investigating
the time evolution of the expectation value of, for instance, a component of the dipole moment µ̂β,
expressed as a series expansion,

〈µ̂α〉(t) = 〈µ̂α〉+ (eiωt + e−iωt)
∑
β

εβ(ω) 〈〈µ̂α; µ̂β〉〉ω + . . . (5.4)

Here, 〈µ̂α〉 is the time-independent expectation value and 〈〈µ̂α; µ̂β〉〉ω is the linear electric dipole–
electric dipole response function describing the oscillations of the α-component of the dipole moment
in response to an oscillating electric dipole field in β-direction. To first order, only oscillations with
frequency ω appear in this expansion. Terms involving higher-order response functions have been
omitted here, and we refer the reader to the thorough derivations of higher-order response theory
available in the literature [41].

Within an exact treatment based on time-dependent perturbation theory (see, e.g., ref. [42]) the
linear response function is given by the sum-over-states expression

〈〈µ̂α; µ̂β〉〉ω =
∑
n6=0

[〈0|µ̂α|n〉〈n|µ̂β|0〉
ωk − ωn

+
〈0|µ̂β|n〉〈n|µ̂α|0〉

ωn − ωk

]
(5.5)

where ωn = En − E0 represents the excitation energy from the ground state to n-th excited state. It
then becomes evident that the excitation energies occur at frequencies that correspond to the poles
of the linear response function. Furthermore, the transition moments for these excitations can be
obtained as the corresponding residues of the linear response function.

The sum-over-states expression for the linear response function would require the solution of
the time-independent Schrödinger equation for all excited states. However, when combined with
approximate parameterizations of the many-electron wave-function it becomes possible to determine
the linear response function directly by solving a linear system of equations, thus avoiding the explicit
calculation of excited state wavefunctions [41, 43]. Such a response theory can, for instance, be
obtained by using the quasi-energy formalism, which will be outlined in section 5.1. Subsequently,
excitation energies can be determined by identifying the poles of the linear response function.

While for an exact treatment, time-independent approaches (which construct a wavefunction for
each excited state explicitly) and time-dependent approaches based on response theory (which avoid
the calculation of excited state wavefunctions) are equivalent, this is usually not the case anymore
for approximate quantum-chemical methods. Both time-independent and time-dependent approaches
are widely used for the quantum chemical calculation of excitation energies, and some of the most
important methods will be highlighted in the following.

Time-independent approaches

Density-functional theory (DFT).

Instead of solving the stationary Schrödinger equation to determine a many-electron wavefunction
|Ψk〉, DFT aims at calculating the corresponding electron density ρk(r) directly. For the ground-
state, the formal justification for replacing the wavefunction |Ψ0〉 by the ground-state electron denisty
ρ0(r) is given by the Hohenberg–Kohn theorem [44], which establishes the existence of a density
functional E[ρ] for calculating the total electronic energy,

E[ρ] = FHK[ρ] +

∫
ρ(r) vnuc(r) d3r, (5.6)
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where FHK[ρ] is a system-independent functional (the so-called universal Hohenberg–Kohn functional)
and where vnuc(r) =

∑
A

QA
|r−RA| is the Coulomb potential of the nuclei at positions RA and with

the charges QA. Furthermore, the Hohenberg–Kohn theorem provides a variational principle for
calculating the ground-state energy E0 and the corresponding ground-state electron density ρ0 by
minimizing this energy functional, i.e., E0 = minρE[ρ].

In Kohn–Sham (KS) DFT [45], the energy functional is decomposed as,

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +

∫
ρ(r) vnuc(r) d3r, (5.7)

where Ts[ρ] is the kinetic-energy of a reference system of noninteracting electrons with density ρ,

J [ρ] = 1
2

∫∫ ρ(r)ρ(r′)
|r−r′| d3r d3r′ is the classical Coulomb interaction of the electron density with itself,

and the exchange–correlation functional Exc[ρ] collects all the remaining energy terms. This energy
functional is then minimized by introducing a wavefunction for the reference system of noninteracting
electrons, which is given by a single Slater determinant |Φs〉 built from the orbitals {φi}. These
Kohn–Sham orbitals can then be determined by solving the KS equations,[

−∆

2
+ vnuc(r) + vCoul[ρ](r) + vxc[ρ](r)

]
φi(r) = εi φi(r), (5.8)

where vCoul[ρ](r) =
∫ ρ(r′)
|r−r′| d

3r is the classical Coulomb potential of the electrons and vxc[ρ](r) =
δExc[ρ]
δρ(r) is the exchange–correlation potential. Since these potentials both depend on the electron

density, the KS equations have to be solved in self-consistent field (SCF) iterations. Even though KS-
DFT provides a formally exact theory for calculating the ground-state density, the exact exchange–
correlation functional is not know and approximate functionals have to be introduced. For overviews
of the currently available approximate functionals, see, e.g., refs. [46–48], and for a discussion of their
limitations, see, e.g., ref. [49, 50].

Even though the Hohenberg–Kohn theorem was initially formulated only for the ground-state,
it can easily be extended to the lowest state in each spin or spacial symmetry [51, 52]. However,
in this case the Hohenberg–Kohn functional FHK[ρ] is no longer universal, but becomes symmetry-
specific. In practice, this symmetry-specific functional is unknown, and one usually resorts to impose
the symmetry constraints on the noninteracting reference system, i.e., the Slater determinant formed
from the KS orbitals. Note, however, that in the exact theory neither the spin nor the spatial symmetry
of the wavefunction of this reference system correspond to the one of the true wavefunction [53].

Despite the lack of a formal justification [54], excited states have been targeted in variational KS-
DFT calculations by employing excited-state wavefunctions for the noninteracting reference system.
In the simplest case, this corresponds to replacing an occupied KS orbital by an unoccupied one (i.e.,
a non-aufbau solution), but it might also be necessary to form linear combinations of different Slater
determinants for specific states [55]. In particular, this ∆DFT approach has been applied to study
multiplet energies in transition metal complexes with DFT [56]. This approach can be extended to
a ∆SCF-DFT scheme, in which the orbitals of the excited Slater determinants constructed for the
noninteracting reference system are re-optimized [57]. In this case, it has to be ensured that the SCF
procedure does not collapse to the ground-state [58].

For the calculation of excitation energies with DFT, the application of such ∆SCF-DFT calcula-
tions has been rather limited. Usually, time-dependent DFT (discussed in section 5.1) provides more
accurate results and avoids the rather cumbersome optimization of the KS orbitals of excited Slater
determinants. There is a revived interest in the use ∆SCF-DFT and related methods for overcom-
ing some of the limitations of TDDFT, such as for the description of Rydberg states [59] or of large
conjugated organic molecules [60]. An interesting related approach is the constricted variational DFT
method by Ziegler and coworkers [61, 62], that is based on the determination of stationary points of
the energy functional, subject to the condition that the density difference corresponds to an electronic
excitation. Both ∆SCF-DFT and TDDFT emerge from this formulation.
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Configuration Interaction-based methods.

The starting point for most wavefunction based quantum chemical methods is the Hartree–Fock (HF)
approximation, in which a single Slater determinant |ΦHF〉 is used as ansatz for the ground-state
wavefunction. Minimization of the energy expectation value then leads to the HF equations[

−∆

2
+ vnuc(r) + vCoul[ρ](r) + K̂

]
φi(r) = εi φi(r), (5.9)

for determining the orbitals in this determinant. These equations are very similar to the KS equations
introduced above, but instead of the exchange–correlation potential the nonlocal exchange operator
K̂ =

∑
j k̂[φj ] with

k̂[φj ]φi(r) =

∫
φi(r

′)φj(r
′)

|r − r′| d3r′ φj(r) (5.10)

appears. One way of expressing the HF determinant, that will be particularly convenient later on, is
an exponential parametrization [63],

|ΦHF〉 = exp(κ̂)|Φ〉, κ̂ =
∑
p>q

[κpq â
†
pâq − κ∗pq â†qâp], (5.11)

where |Φ〉 is a trial state (usually a single Slater determinant), and â†p and âq are the operators creating
or annihilating an electron in orbital p or q, respectively. The advantage of this parametrization is
that it introduces only non-redundant parameters by ensuring the orthogonality of the HF orbitals.
Therefore, the parameters κpq can be determined from an unconstrained optimization of the HF energy.

Electron correlation can then be included by employing a more general ansatz for the wavefunc-
tion that also includes excited Slater determinants, i.e., determinants in which one or more of the
occupied HF orbitals are replaced by virtual ones. In configuration interaction (CI) methods [64],
the many-electron wavefunction |Ψk〉 for a given electron state k is expanded in a basis of Slater
determinants as

|Ψk〉 = (1 + Ĉk)|Φ0〉, |Φ0〉 ≡ |ΦHF〉 (5.12)

where the reference state |Φ0〉 is usually chosen as the HF determinant. The operator Ĉk is in turn
expressed as

Ĉk = Ĉ
(k)
1 + Ĉ

(k)
2 + . . . =

∑
µ1

C(k)
µ1 τ̂µ1 +

∑
µ2

C(k)
µ2 τ̂µ2 + . . . , (5.13)

that is, in terms of the product between coefficients C
(k)
µ and excitations operators τ̂µ of different

ranks. Here, µ1 and µ2 represent single and double excitations from occupied to virtual orbitals, and
the corresponding excitation operators are τ̂µ1 = â†aâi and τ̂µ2 = â†aâiâ

†
bâj , where indices i, j, k, . . .

refer to occupied orbitals whereas indices a, b, c, . . . label virtual orbitals. Note that the coefficients

C
(k)
µ are different for each electronic state k.

The coefficients Cµ can then be determined using the variational principle, i.e., by minimizing
the energy with respect to these coefficients. This leads to the Hamiltonian matrix in the basis of the
HF and excited determinants,

Hij = 〈Ψi|Ĥ|Ψj〉 (5.14)

from which the coefficients and energies for the ground and excited states can be obtained as eigenvec-
tors and eigenvalues, respectively. When considering expansions up to the highest possible excitation
rank one arrives at the full CI solution, which is exact within a given basis set. However, the size
of the corresponding Hamiltonian matrix makes its use impractical for all but the smallest molecular
systems. Therefore, one is often constraint to include not more than single and double excitations
(CISD). A further truncation already after single excitations results in the CIS method. While it
is far from accurate because it lacks a proper inclusion of electron correlation, it nevertheless re-
mains one of the few wavefunction methods that can be used to investigate the spectra of relatively
large systems [65–67]. This accuracy can be improved [68, 69] by introducing double excitations in a
perturbative fashion, resulting in the CIS(D) model [70].
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While in single-reference CI methods the HF determinant is used as reference state |Φ0〉, this is
a poor choice in situations where there are other close-lying excited states. This is often the case in
open-shell systems such as transition metal complexes. One is then better served by multi-reference
configuration interaction (MR-CI) methods, which use a reference based on a multi-configurational
(MC) wavefunction,

|Φ0〉 ≡ |ΦMC({C′})〉 =
∑
ν

(1 + Ĉ
′
ν)|ΦHF〉, (5.15)

which is a small CI expansion where excitations are allowed only from within a set of orbitals, the
so-called active space. This is comprised of a relatively small number of occupied and virtual orbitals,
which is indicated above by the use of use of Ĉ

′
ν instead of Ĉν . There are different approaches for

generating the determinants in Eqn. (5.15), the most widely used is the complete active space (CAS),
where a full CI is performed within the active space.

A further improvement consists in taking the orbital coefficients κpq as additional variational
parameters,

|Φ0〉 ≡ |ΦMCSCF({C, κ})〉 =
∑
ν

(1 + Ĉ
′
ν)|Φν(κν)〉, (5.16)

giving rise to the CASSCF [71] wavefunction. However, the number of configurations and thus the
computational effort increases factorially with the size of the active space [63]. Thus, systems that
would require large active spaces present a challenge in this respect. This is particularly the case for
systems with severe quasi-degeneracies, such as (polynuclear) transition metal complexes or for early
actinide compounds [72]. For alternative approaches that scale polynomially with the size of the active
space and thus allow for the use of significantly larger active spaces, see refs. [73, 74].

Finally, it is also worth mentioning that — unlike full CI — all truncated CI methods (with
the exception of CIS) are not size-extensive. Thus, upon extending the size of the system a spurious
decrease in the correlation energy occurs. As a result, excitation energies are not size-intensive, i.e.,
they can spuriously change as the size of the system is increased (e.g., when studying the effect of the
solvation shell on the spectrum of a solute molecule), which may even change the results qualitatively.
This can be approximately corrected by using suitable correction schemes [75], but a more rigorous
way for achieving size-extensivity of the correlation energy and size-intensivity of excitation energies
is provided by coupled-cluster methods, that will be discussed in the following section.

Single-reference coupled cluster methods.

In the coupled cluster approach [63, 76], the ground-state many-electron wavefunction is obtained by
the so-called exponential parameterization, acting upon the HF determinant

|Ψ0〉 = exp(T̂ )|ΦHF〉 (5.17)

where the operator T̂ is of the same form as the excitation operator Ĉk in CI methods, but different
labels are now used for the expansion coefficients to distinguish these different methods,

T̂ = T̂1 + T̂2 + . . . =
∑
µ1

tµ1 τ̂µ1 +
∑
µ2

tµ2 τ̂µ2 + . . . . (5.18)

As with CI methods, this expansion is usually truncated, for instance after double excitations (re-
sulting in the CCSD approximation). However, the exponential parametrization now generates higher
excitation levels even when T̂ is truncated, because terms such as T̂ 2

1 , T̂1T̂2, and T̂ 2
2 now occur, which

correspond to certain double, triple, and quadruple excitations, respectively. By construction, the ex-
ponential parametrization of the wavefunction ensures that the resulting energies will be size-extensive.

Since a variational determination of the coupled cluster amplitudes tµ is not feasible, projection
techniques are used instead. To this end, the Schrödinger equation is left-multiplied by 〈µi| exp(−T̂ ),
resulting in the ground-state energy

E0 = 〈ΨHF|Ĥ exp(T̂ )|ΨHF〉 (5.19)
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and the amplitudes equations

Ωµi = 〈µi| exp(−T̂ )Ĥ exp(T̂ )|ΨHF〉 = 0 (5.20)

where 〈µi| = 〈ΦHF|τ̂ †µi , with µi running over all possible excited determinants of excitation rank i.
The amplitudes will have the general form

tµ1 =
〈µ1|Â|ΦHF〉

∆εµ1
=
〈ai |Â|ΦHF〉
εi − εa

(5.21)

tµ2 =
〈µ2|B̂|ΦHF〉

∆εµ2
=

〈abij |B̂|ΦHF〉
εi + εj − εa − εb

(5.22)

where Â and B̂ are operators involving the product of Ĥ and T̂ operators. As the expressions for the
former depend on the truncation level, we refer to the literature for concrete examples [63, 76].

Because of the projective nature of the coupled cluster method, it is not possible to invoke a
variational principle in order to obtain excited states. Therefore, to construct excited state wavefunc-
tions one would need to employ different reference states. This could, for instance, be an open-shell
determinant corresponding to a single excitation with respect to |ΦHF〉. This approach has several
disadvantages. First, the above coupled cluster equations would have to be solved for each excited
state, which can become computationally rather demanding. Second, different electronic states will no
longer be orthogonal, which complicates the calculation of transition moments. Finally, excited states
that are not dominated by a single determinant cannot be easily described, as they would require a
multi-reference coupled cluster method.

An alternative that remedies part of these difficulties is the equation-of-motion coupled cluster
method [77] for excitation energies (EOM-EE), where one introduces the parametrization

|Ψk〉 = Ĉk exp(T̂ )|ΦHF〉 (5.23)

〈Ψ̄l| = 〈ΦHF|(1 + ˆ̄Cl exp(−T̂ )). (5.24)

Thus, instead of the HF determinant the coupled cluster wavefunction is used as reference state of a
CI-like expansion. In this EOM-EE parametrization, the bra and ket states |Ψk〉 and 〈Ψ̄l| are neither
Hermitian conjugate nor orthogonal among themselves, but rather biorthogonal, i.e., 〈Ψ̄l|Ψk〉 = δkl.
This parametrization allows for a Hamiltonian matrix

Hij = 〈Ψ̄i|Ĥ|Ψj〉 = C̄T
i HCj (5.25)

to be formed, which can then be diagonalized to obtain the excitation energies. From the definitions
of |Ψk〉 and 〈Ψ̄l| the matrix H is obtained as

H =

(
E0 ηT

0 A + E0I

)
, (5.26)

where E0 is the ground-state coupled cluster energy, ην is the vector

ην = 〈ΦHF|[Ĥ, τ̂ν ] exp(T̂ )|ΦHF〉, (5.27)

and A is the so-called coupled cluster Jacobian with the elements

Aµν = 〈µ| exp(−T̂ )[Ĥ, τ̂ν ] exp(T̂ )|ΦHF〉. (5.28)

By rewriting the above equations in terms of the energy difference with respect to the coupled-cluster
ground-state energy [63, 76], one can identify the eigenvalues of the matrix A in Eqn. (5.26) with the
excitation energies for the system.

These excitation energies are size-intensive [78], thus presenting a significant advantage over CI
approaches. The CI-like parametrization for the excited-states makes the calculation of transition
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moments and other expectation values for both ground and excited states rather simple, though both
left and right eigenvectors need to be calculated because A is not Hermitian. However, these transition
moments are not size-intensive [79] and therefore in general not reliable if one wishes to study a series
of systems with increased size.

Apart from electronically excited states, in the EOM formalism one can also define in a straight-
forward manner states which correspond to electron attachment (EOM-EA) and detachment (EOM-
IP) states, while still keeping the closed-shell coupled cluster reference for the ground state [77, 80].
This is done by modifying the ĈT

k and Ĉk operators used to parametrize the excited states so that
instead of single and double replacements, one has a particle annihilation (creation) and single re-
placement plus particle annihilation (creation) for EOM-IP (EOM-EA),

ĈEOM-IP
k = 1 +

∑
i

ck;i{ai}+
∑
a,m>i

cak;im{a†aamai}+ . . . (5.29)

ĈEOM-EA
k = 1 +

∑
a

cak{a†a}+
∑
a>b,i

cabk;i{a†aa†bai}+ . . . (5.30)

and so on, and by the same way it is possible to define double electron attachment (EOM-DEA)
and detachment (EOM-DIP) [81, 82], or higher-ionization variants [83]. An appealing feature of
these approaches is that, starting from a closed-shell reference, one can easily obtain spin-adapted
eigenfunctions for open-shell states.

A related approach which aims at exploit the EOM framework but go beyond the linear parametriza-
tion for the excited states is the similarity-transformed EOM (STEOM) approach [76, 84–86], where
a second similarity transformation is applied to the (T-similarity transformed) H,

G = {exp(Ŝ)}−1H{exp(Ŝ)} (5.31)

where Ŝ = Ŝ1 + Ŝ2 is expressed in terms of linear expansions of single and double replacement
operators. With this second transformation, by diagonalizing G one gets closer to the Fock-space
approach described below with the advantage of avoiding the solution of nonlinear equations, at the
cost of requiring prior EOM-IP or EOM-EA, depending on the case. The method has also been
extended to the determination of excited state gradients [87] and time-dependent properties [88].

Multi-reference coupled cluster methods.

The coupled cluster-based methods discussed present significant improvements over CI-based meth-
ods, in particular because excitation energies are size-intensive. However, they are based on a single
determinant reference for the ground state. As such, they might not be applicable in more compli-
cated cases where already the ground state requires a multi-reference treatment. This limitation can
be remedied by employing multi-reference coupled-cluster approaches [89] such as the Hilbert-space
(HSCC) and Fock-space (FSCC) coupled cluster or other, more approximate multi-reference meth-
ods [90]. In the following we shall focus on the Fock-space approach. because it provides a direct
route to excited states and has been applied in a number of molecules containing heavy elements by
other authors [91–95] as well as myself (see papers C.1–C.7, D.1, D.4 and D.6).

All multi-reference methods define a reference (or model) space P , consisting of a set of determi-
nants {|ϕi〉}. Usually, this is achieved by defining an active space, and all determinants contributing
to a full CI expansion within this active space are considered. In MRCI methods this is usually the
active space obtained from a CASSCF calculation, whereas in multi-reference coupled-cluster methods
the HF orbitals are used directly without reoptimization. Of course, it is important that this model
space contains all relevant configurations for the states that are of interest [76]. All other possible
contributions to the exact wavefunctions that are not contained in the model space P are within its
orthogonal complement Q.

This model space then serves as the starting point for obtaining a set {|Ψk〉} of exact solutions of
the Schrödinger equation with the same dimension as P . The correspondence between wavefunctions
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in the model space {|ϕk〉} and the exact wavefunctions {|Ψk〉} is then established through a projection
operator P̂ =

∑
i |ϕi〉〈ϕi| so that

|ϕk〉 = P̂ |Ψk〉. (5.32)

In addition, one defines the wave operator Ω̂ that establishes the reverse mapping and generate the
exact wavefunction from one belonging to the model space,

|Ψk〉 = Ω̂|ϕk〉. (5.33)

Using these definitions, one can now change from the problem of solving the exact Schrödinger
equation, Ĥ|Ψm〉 = Em|Ψm〉, to that of solving a Schrödinger equation for the model space

Ĥeff|ϕm〉 = Ω̂−1ĤΩ̂|ϕm〉 = Em|ϕm〉, (5.34)

where the exact Hamiltonian Ĥ is now replaced by an effective Hamiltonian Ĥeff which has the same
eigenvalues. The wave operator Ω̂ and, consequently, the effective Hamiltonian Ĥeff can be defined
via the solution of the so-called Bloch equation. For details, we refer to ref. [96].

Once Ω̂ is obtained, Ĥeff in Eq. 5.34 can be constructed and its matrix representation can
be diagonalized to obtain the energies {Em}. In multi-reference coupled cluster, an exponential
parametrization is used as ansatz for the wave operator Ω̂,

Ω̂ = exp(Ŝ) (5.35)

where the operator Ŝ contains operators exciting electrons from the P to the Q spaces, multiplied
with the corresponding amplitudes. The form of Ŝ will depend on the details of the approach. In the
case of FSCC, it is constructed by considering operators defined for different sectors of Fock-space,
where each sector comprises a model space which differs from the reference situation by the addition
or removal of electrons, starting from the original closed-shell determinant |Φ0〉. Each of these sectors
is identified by the tuple (n,m), where n represents the number of holes and m the number of electrons
created on |Φ0〉. Thus, Ŝ is expressed as

Ŝ = Ŝ(0,0) + Ŝ(1,0) + Ŝ(0,1) + Ŝ(1,1) + . . . (5.36)

and similar decompositions are used for the projection operators P̂ and Q̂. Using this decomposition,
the amplitudes can be determined in a hierarchical fashion for the different sectors. For instance, in
order to obtain the contributions from the (a, b) sector to Ŝ, one must first solve all (m,n) sectors for
which m < a, n < b [96, 97]. For a given sector, one obtains amplitude equations of the form

〈χ(m,n)
j |ĤΩ̂− Ω̂Ĥ

(m,n)
eff |ϕ(m,n)

i 〉 = 0 (5.37)

where {χ(m,n)
j } are the determinants belonging to the complement space for the (m,n) sector. For the

(0,0) sector this is equivalent to single-reference amplitude equations in Eqn. (5.20).

However, in their original formulation FSCC methods are plagued by the so-called intruder state
problem [98]. This occurs during the iterative solution of Eqn. (5.37). When certain low-lying states
belonging to Q(m,n) turn out to have energies close to (or even lower than) the higher-lying states from
P (m,n) in some amplitudes equations (which are similar to those in Eqns. (5.21) and (5.22)) might
have very small energy denominators and prevent the solution of the linear system. The larger the
P (m,n) space, the more serious this problem becomes, as accidental degeneracies with Q states become
increasingly likely. To alleviate this difficulty, approaches based on an intermediate Hamiltonian
formulation (IHFSCC) have been introduced [99–103]. These divide the P space as P = Pm +Pi and
Pm now serves as the basis for projecting the lower exact solutions, whereas for Pi this requirement is
relaxed. This provides enough flexibility so that when Q states interact strongly with the higher-lying
Pi states, the corresponding amplitude equations can be approximated as to assure convergence.

It should be noted that the equations for the (0, 1) and (1, 0) sectors are formally equivalent to
the EOM-EA and EOM-IP approaches [76], though for the latter one avoids their iterative solution
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by diagonalizing (T-)similarity transformed Hamiltonian in the space of (0, 1) + (1, 2) or (1, 0) +
(2, 1) determinants whereas for Fock-space the diagonalization is only over the determinant space
corresponding to each of the sectors, which is evidently much smaller. For the (1, 1) sector and
beyond, however, the methods are not equivalent anymore, as it can be seen by starting from the
definitions in Eqn. (5.35). There, we can write the wavefunction for state k as

|Ψk(FS)〉 = Ω̂FS|Φ0〉 = exp(Ŝ)|Φ0〉 = exp(Ŝ − T̂ ) exp(T̂ )|Φ0〉. (5.38)

Comparing Eqn. (5.38) and Eqn. (5.24), one sees that unlike EOM-EE, Fock-space coupled cluster
departs from the linear parametrization for the excited states. The exponential parametrization en-
sures that only connected terms are taken into account, making the excited state energies different
in both cases. As mentioned above, the STEOM approach was introduced to recover most of the
characteristics of employing a true exponential parametrization for the excited states, though there is
still no implementation of STEOM-CC that would allow us to assess its performance with respect to
IHFSCC for heavy elements.

Multireference Perturbation Theory-based methods.

Given that coupled cluster methods can be computationally expensive, in particular for higher excita-
tion levels such as CCSDT, other approaches have been devised that attempt to combine a reasonable
accuracy in the description of electron correlation and flexibility to obtain excited states even when the
reference wavefunction present a significant multi-configurational character. The perhaps most popu-
lar of such approaches is the CASPT2 method of Roos and coworkers [104, 105] where one combines
a CASSCF wavefunction with second-order perturbation theory.

Being based on perturbation theory, one now starts from a partitioning of the Hamiltonian into
a zeroth-order contribution Ĥ0 and a perturbing part V̂ ,

Ĥ = Ĥ0 + V̂ (5.39)

where Ĥ0 is a Fock-like operator that has the CASSCF wavefunctions |ϕm〉 as eigenvectors, i.e.,

Ĥ0|ϕm〉 = E0,m|ϕm〉. (5.40)

As in the multi-reference coupled cluster methods above, in the multistate CASPT2 method [105] one
partitions Hilbert space into different subspaces. First, the model space P0 contains a subset {|ϕi〉}
of the CASSCF wavefunctions as reference states. Second, the subspace P ′ orthogonal to P0 contains
the remaining {|ϕj〉} CASSCF wavefunctions. Finally, the orthogonal complement Q is made up of all
other determinants not contained within the CASSCF active space. Furthermore, one defines a wave
operator Ω̂PT2 that provide the mapping between the model space and the exact solutions. Instead
of the exponential parametrization in coupled cluster methods, Ω̂PT2 is now expressed as a linear
expansion in the orders of perturbation, and only the terms up to first order are retained,

Ω̂PT2 = 1 + Ω̂(1). (5.41)

In multistate CASPT2 [106], Ω̂PT2 can be expressed as a linear combination of state-specific [106, 107]
wave operators,

Ω̂(1) =
∑
i

Ω̂
(1)
i |ϕi〉〈ϕi|, (5.42)

where the index runs over all the functions in the model space P0.

Using such a formalism, one arrives at the equations for the individual states

Ω̂(1)|ϕi〉 = R̂iV̂ |ϕi〉 =
∑
k

|k〉〈k|V̂ |ϕi〉
(Ei0 − F k)

, (5.43)

where k runs over the states belonging to the Q subspace and where the actual form of the denominator
involves orbital energy differences, whereas F k is a generalized Fock operator.
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The main weakness of CASPT2 is its susceptibility to intruder states, that is, states that belong
to Q and are thus outside of active spaces, but that have energies close to Ei0. These will makes the
expression for R̂i go to infinity causing the perturbation expansion to diverge. Instead of adopting the
intermediate Hamiltonian technique as done in the coupled cluster case, Roos and coworkers [108–110]
as well as others [111] devised practical solutions based on the modification of such denominators by
the application of a global level shift parameter that modifies the Hamiltonian in such a way that any
effects due to the quasidegeneracy of Ei0 and F k can be avoided. This approach has been found to work
very well in practice for the so-called “weak” intruder states that do not interact too strongly with the
reference. For more strongly interacting states other solutions must be sought (e.g., including them
into the active space), otherwise one should employ alternative formulations such as the NEVPT2
approach [112] that avoid intruder states by construction.

In spite of that, CASPT2 remains one of the few methods (along with MRCI approaches dis-
cussed earlier) that can accurately describe both static and dynamic correlation effects for large molec-
ular complexes containing centers with a number of half-filled d or f shells such as those containing
(bi)metallic centers [113–115]. It is also routinely employed to study the spectra and photochemistry
of other complexes of transition metals and heavy elements [93, 116–120].

Time-dependent approaches based on response theory

Instead of explicitly calculating the wavefunctions of the different excited states, approaches based
on response theory set out to calculate the linear response function 〈〈µ̂α; µ̂β〉〉ω (see Eqn. (5.5)). A
common theoretical framework for achieving this with different methods of quantum chemistry is
provided by the quasienergy formalism pioneered by Christiansen and coworkers [41, 121]. It defines
a quasi-energy as the time-dependent generalization of the energy,

Q(t) =

〈
Ψ̃0(t)

∣∣∣∣Ĥ + V̂ω(t)− i d
dt

∣∣∣∣ Ψ̃0(t)

〉
(5.44)

with
|Ψ̃0(t)〉 = e−iE0t|Ψ0(t)〉, (5.45)

as well as its time average over one period of the perturbation T = 2π/ω

{Q(t)}T =
1

T

∫ T/2

−T/2
Q(t) dt. (5.46)

With these definitions, the (time-dependent) wavefunction |Ψ̃0(t)〉 can be determined by making
the quasi-energy stationary with respect to variations in the wavefunction,

δ{Q(t)}T = 0. (5.47)

Response functions can then be determined as derivatives of the time-averaged quasi-energy with
respect to the perturbation strengths. In particular, the electric dipole–electric dipole linear response
function is given by the second derivative of the time-averaged quasi-energy as

〈〈µ̂α; µ̂β〉〉ω =
d2{Q(t)}T
dεα(ω)dεβ(ω)

. (5.48)

Note that this is analogous to the time-independent case, where the wavefunction is determined by
making the expectation value of the energy stationary, and where the corresponding static properties
(e.g., the polarizability) can be determined as derivatives of the energy. The quasi-energy formalism
allows one to employ the same techniques also for frequency-dependent problems.

In any quantum chemical method, a parametrization of the wavefunction is introduced, i.e., the
wavefunction depends on a set of parameters λ. In so-called variational methods these parameters are
in the time-independent case determined by minimizing the energy expectation value. In the time-
dependent case, the corresponding parameters can be determined by minimizing the time-averaged
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quasi-energy {Q(t,λ)}T . However, a number of important quantum-chemical methods, such as coupled
cluster theory, are not variational, i.e., the wavefunction parameters λ are determined from other
conditions. In this case, one can replace Q(t,λ) by the Lagrangian

L(t,λ, λ̄) = Q(t,λ) + λ̄ g(λ). (5.49)

The new set of parameters λ̄ are the Lagrange multipliers and g(λ) = 0 is a set of auxiliary time-
dependent equations. Both the parameters λ and the Lagrange multipliers λ̄ can then be treated as
variational parameters.

The parameters and possibly also the multipliers can then be determined using variational
perturbation theory by expanding the quasi-energy Lagrangian in orders of the perturbation strengths
and taking the time average,

{L(t,λ, λ̄)}T = L(0) +
∑
α

εα(ω)L(1)
α (ω, ) +

∑
αβ

εα(ω)εβ(ω)L
(2)
αβ(ω) + . . . , (5.50)

where the linear response function can be identified as

〈〈µ̂α; µ̂β〉〉ω =
d2{L(t,λ, λ̄)}T
dεα(ω)dεβ(ω)

= L
(2)
αβ(ω). (5.51)

Similarly, the wavefunction parameters λ and multipliers λ̄ can be expanded as

λ(t) = λ(0) + (eiωt + e−iωt)
∑
α

εα(ω)λ(1)
α (ω) + . . . (5.52)

λ̄(t) = λ̄
(0)

+ (eiωt + e−iωt)
∑
α

εα(ω) λ̄
(1)
α (ω) + . . . , (5.53)

where we will use λ(1)(ω) and λ̄
(1)

(ω) to refer to the first-order terms in these expansions. These can
then be determined from the variational conditions

d{L(t,λ, λ̄)}T
dλ

=
d{L(t,λ, λ̄)}T

dλ̄
= 0 (5.54)

at each perturbation order.

Taking the second derivative of {L(t,λ, λ̄)}T with respect to the perturbation strengths εα(ω)
and εβ(ω) while taking the implicit dependence of λ and λ̄ on the perturbation strengths into account
via the chain rule leads to [41]

〈〈µ̂α; µ̂β〉〉ω = L
(2)
αβ(ω) =

(
λα
λ̄α

)T (
F A

AT J

)(
λβ
λ̄β

)
+

(
ηα
ξα

)T (
λβ
λ̄β

)
+

(
λα
λ̄α

)T (
ηβ
ξβ

)
(5.55)

where we introduced λα/β = λ
(1)
α/β and λ̄α/β = λ̄

(1)
α/β to simplify the notation and define the abbrevia-

tions for the partial derivatives with respect to the parameters and multipliers

F =
∂2{L(2)}T

∂λ(1)(ω)∂λ(1)(ω)
A =

∂2{L(2)}T
∂λ(1)(ω)∂λ̄

(1)
(ω)

J =
∂2{L(2)}T

∂λ̄
(1)

(ω)∂λ̄
(1)

(ω)
(5.56)

and for the mixed partial derivatives with respect to parameters or multipliers and perturbation
strength

ηα/β =
∂{L(2)}T

∂λ(1)(ω)∂εα/β(ω)
ξα/β =

∂{L(2)}T
∂λ̄

(1)
(ω)∂εα/β(ω)

. (5.57)

Note that all these partial derivatives depend on the perturbation frequency ω.
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The first-order parameters λα/β and multipliers λ̄α/β can be determined from the variational

conditions of Eqn. (5.54). They only appear in the second-order term L
(2)
αβ(ω) and setting the derivative

of Eqn. (5.55) with respect to λα and λ̄α to zero leads to the linear equations(
λβ
λ̄β

)
= −

(
F A

AT J

)−1(
ηβ
ξβ

)
. (5.58)

Substituting this back into Eqn. (5.55) yields the linear response function

〈〈µ̂α; µ̂β〉〉ω = −
(
ηβ
ξβ

)T (
F A

AT J

)−1(
ηα
ξα

)
, (5.59)

which has poles for frequencies that lead to zero eigenvalues of the matrix whose inverse appears in
the above equation. This provides a route to the calculation of excitation energies within response
theory, whereas the corresponding oscillator strengths can be calculated as the residues corresponding
to these poles of the linear response function.

Time-dependent DFT (TDDFT).

The theoretical foundation for the time-dependent generalization of DFT was introduced by Runge
and Gross [122], and the subsequently introduced TDDFT response theory [123] forms the basis
for its application for the calculation of excited states. In TDDFT, the time-dependent density is
obtained from the KS wavefunction of a reference system of noninteracting electrons, i.e., a single
Slater determinant |Φ̃s(t)〉, where the KS orbitals φ̃(r, t) now become time-dependent. This gives rise
to the time-dependent density ρ(r, t) =

∑
i |φ̃(r, t)|2. Within the adiabatic approximation any explicit

time or history dependence of the exchange-correlation contribution is neglected, and one arrives at
the time-averaged quasi-energy functional [124, 125]

{Q[ρ](t)}T = {E[ρ](t)}T + {〈Φ̃s|V̂ (t)|Φ̃s〉}T − {〈Φ̃s|i ∂∂t |Φ̃s〉}T , (5.60)

where E[ρ] is the energy functional of Eqn. (5.7) evaluated for the time-dependent density ρ(r, t), the
second term accounts for the time-dependent perturbation (Eqn. (5.2)), and the last term arises from
the time derivative in the definition of the quasi-energy (Eqn. (5.44)).

In order to obtain expressions for the response equations and the linear response function one
introduces a parametrization of the time-dependent KS determinant |Φ̃s〉. This can be achieved by
using an exponential parametrization acting upon the ground-state Kohn-Sham determinant |Φs〉 (cf.
Eqn. (5.11)

|Φ̃s〉 = exp(κ̂(t)) |Φs〉, κ̂(t) =
∑
p>q

[κpq(t)â
†
pâq − κ∗pq(t)â†qâp], (5.61)

i.e., the time dependence is contained in the operator κ̂(t). This parametrization automatically ensures
the orthogonality of the time-dependent KS orbitals without introducing additional Lagrange multi-
pliers. Using this parametrization, the linear response function can be determined by differentiating
the time-averaged quasi-energy with respect to the parameters κpq(t).

Because these parameters can be determined variationally, no additional Lagrange multipliers
are needed and the linear response function is given by

〈〈µ̂α; µ̂β〉〉ω = −ηβF(ω)−1ηα (5.62)

where for the F matrix one obtains

F(ω) =
∂2{Q(2)}T
∂κ(1)∂κ(1)

= E[2] − ωS[2] (5.63)

where S[2] is a diagonal matrix arising from the last term in Eqn. (5.60) and E[2] is the electronic
Hessian which has the form

E[2] =

(
A B
B∗ A∗

)
. (5.64)
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The subblocks of this matrix are given by

Aia,jb = δijδab(εa − εi) + 2(ia|bj) + (ia|fxc|bj), (5.65)

Bia,jb = 2(ia|jb) + (ia|fxc|jb), (5.66)

where εp are the KS orbital energies, (pq|rs) are two-electron integrals in the Mulliken (charge cloud)
notation and

(ia|fxc|jb) =

∫∫
φi(r)φa(r)

[
δ2Exc[ρ]

δρ(r)δρ(r′)

]
φj(r

′)φb(r
′) d3r d3r′ (5.67)

are the integrals over the exchange-correlation kernel. Thus, excitation energies can be calculated by
determining the eigenvalues of E[2]. Since the size of this matrix is generally rather large, iterative
diagonalization procedures which only require the calculation of matrix–vector products are usually
employed (see e.g. the discussion in ref. [126]).

Furthermore, there are a number of approximations to Eqn. (5.64) to reduce the overall compu-
tational cost, in addition to approximations for the calculation of the two-electron integrals or those
over the exchange-correlation kernel described before (density fitting etc). The first is the so-called
Tamm-Dancoff approximation, in which the B subblock of E[2] is disregarded. This has as effect the
reduction of the eigenvalue problem to

(A− ωI)X = 0 (5.68)

One can go further and invoke the “single-pole approximation” (SPA), where the off-diagonal elements
of A are disregarded. This is in principle a much more severe approximation since the flexibility to
describe the excited states in a CI-like expansion is lost and one moves towards the ∆SCF-DFT
picture, albeit with the advantage with respect to the latter in that all states are orthogonal. In
practice, however, one notes that SPA can still yield a semiquantitatively correct picture, since one
often sees (for certain molecules) states that are dominated by one singly excited determinant.

The expressions above apply to the case of pure exchange–correlation functionals (i.e., not
containing Hartree–Fock exchange). With hybrid functionals, the subblocks of E[2] become

Aia,jb = δijδab(ε
KS
a − εKS

i ) + [ia||bj]γ + (1− γ)(ia|fxc|bj) , (5.69)

Bia,jb = [ia||jb]γ + (1− γ)(ia|fxc|jb) . (5.70)

where

[pq||rs]γ = 2(pq|rs)− γ(ps|rq) , (5.71)

and where γ is the fraction of Hartree-Fock exchange.

TDDFT has been widely used for studying excited states in medium to large molecules [127–129].
Its main advantage is its excellent cost–accuracy ratio. For a broad range of chemical applications,
TDDFT is capable of providing results which are qualitatively correct, and often come close to the
accuracy of more sophisticated wavefunction-based methods such as CASPT2. This has been demon-
strated in a number of recent benchmarking studies on light [130–136] and heavy-element containing
[137] molecules. However, the accuracy often depends on the proper choice of the exchange–correlation
functional and kernel, and choosing these appropriately for a particular application is based on expe-
rience and often requires careful comparison with more accurate wavefunction based calculations.

However, with the currently available approximations, TDDFT also has some severe shortcom-
ings [138]. First, with standard non-hybrid exchange–correlation functionals, it does not provide a
correct description of Rydberg states. This is caused by the wrong asymptotic form of the exchange–
correlation potential [139]. This problem can be addressed by constructing approximations for the
exchange–correlation potential that enforce the correct asymptotic behavior, for instance by using
orbital-dependent model potentials [140]. Alternatively, range-separated hybrid functionals can be
used that also result in asymptotically correct exchange–correlation potentials [50]. Second, charge-
transfer excitations are not described correctly. For detailed discussions of this problem a possible
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solutions, we refer to refs. [141–143]. Finally, within the adiabatic approximation TDDFT does not
include double excitations. This could in principle be addressed by using a frequency-dependent
exchange–correlation kernel [144, 145], but such approximations are not suitable for general applica-
tions yet.

Linear-response coupled cluster.

While conventional coupled-cluster theory does not provide a direct route to excited states, it can still
be used as starting point for a response theory. Starting from the exponential parametrization of the
(time-dependent) wavefunction,

|Ψ̃〉 = exp(T̂ (t))|ΦHF〉, (5.72)

and performing a projection of the time-dependent Schrödinger equation onto the the ground-state
reference 〈Φ0| as well as onto the set of excited determinants 〈µi| one arrives at the time-dependent
analogs of Eqn. (5.19) and (5.20),

Q(t; t) = 〈ΦHF|
(
Ĥ + V̂ω(t)

)
exp(T̂ (t))|ΦHF〉 (5.73)

0 = Ωµi(t; t) = 〈µi| exp(−T̂ (t))
(
Ĥ + V̂ω(t)− i ∂

∂t

)
exp(T̂ (t))|ΦHF〉 (5.74)

for the coupled cluster quasi-energy and time-dependent amplitude equations, respectively. One should
note that, unlike methods such as time-dependent MP2, orbital relaxation is generally not included
explicitly in the parametrization of Eqn. (5.72), as such effects can be incorporated via the T1 ampli-
tudes (hence the denomination “orbital-unrelaxed”). In what follows the “orbital-unrelaxed” approach
is assumed.

As in the time-independent case, the coupled-cluster wavefunction is not determined variation-
ally. Therefore, the coupled-cluster Lagrangian [41, 121]

LCC(t, t̄; t) = Q(t; t) +
∑
µ

t̄µΩµ(t; t), (5.75)

is used as starting point for a response theory, where the multipliers t̄ have been introduced and the
amplitude equations Ωµi(t; t) serve as constraints. The linear response function can then be determined
by taking the derivative of the time-averaged Lagrangian {LCC(t, t̄; t)}T , yielding the linear response
function (cf. Eqn. (5.59))

〈〈µ̂α; µ̂β〉〉ω = −
(
ηβ
ξβ

)T (
F A

AT 0

)−1(
ηα
ξα

)
, (5.76)

where the matrix J is zero because the multipliers λ̄ only appear linearly in the Lagrangian. This
response function can be rewritten as

〈〈µ̂α; µ̂β〉〉ω = −
(
ηβ
ξβ

)T (
0 −(AT )−1

−A−1 A−1F (AT )−1

)(
ηα
ξα

)
, (5.77)

which reveals that the poles of the response function correspond to zero eigenvalues of the matrix A,
which is given by

Aµν =
∂2{L(2)

CC(t, t̄)}T
∂t̄

(1)
µ ∂t

(1)
ν

= Aµν − ω δµν (5.78)

where Aµν are the elements of the Jacobian introduced in Eqn. (5.28). Therefore, excitation energies
can be obtained as eigenvalues of this matrix. We note that the Jacobian can also be expressed
as the derivative of the amplitude equations Ωµ, with respect to tν , because Ωµ = (∂LCC/∂t̄µ) and
Aµν = (∂2LCC/∂t̄µ∂tν). For details and for the the form of the matrix elements for the other quantities
(F, ξY , . . .), appearing in coupled-cluster response theory we refer to the original literature [41, 121].
The approach outlined above is applicable to the different levels of the coupled cluster hierarchy [146],
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starting with CCS (equivalent to CIS for excitation energies) and proceeding to CCSD, CCSDT and
so on.

While feasible for small molecules, the relatively large computational cost of calculating and
diagonalizing the CCSD Jacobian have motivated the development of more approximate coupled
cluster methods based on perturbative approaches that yield energies correct to second order or higher.
The first of these is the CC2 method [147], where the main idea is to retain the singles equation Ωµ1

as in CCSD but to approximate the doubles equation Ωµ2 . This results in a Jacobian in which
the doubles–doubles block is diagonal, thus resulting in significant computational gains. To make
these linear response coupled-cluster methods, in particular CC2, applicable to truly large molecular
systems, there has been significant work in recent years to combine it with efficient computational
techniques [148, 149].

5.2 The molecular Hamiltonian in the relativistic framework

In the discussion above it was convenient to represent the molecular Hamiltonian in the Born-
Oppenheimer approximation in its most general form,

Ĥ =
∑
i

ĥi +
1

2

∑
i 6=j

ĝij + VNN , (5.79)

with VNN denoting a classical repulsion potential of clamped nuclei, since the structure of electronic
structure approaches, in particularly WFT-based ones, remains essentially the same in a relativistic
or non-relativistic frameworks[33, 34, 76]. In what follows we shall go a bit more in detail over the
forms of the one and two-electron operators ĥi and ĝij , since these will determine whether we work
in a non-relativistic or relativistic framework – and for the latter whether it corresponds to a two-
or four-component approach[32, 35]. But before discussing many-electron wavefunctions we introduce
the basic features of the Dirac equation for a free particle and simple atomic systems.

The Dirac equation for free particles and hydrogen-like atoms

In order to treat time and momentum p = −ih̄(∇x,∇y,∇z) on the same footing and arrive at an
equation that was invariant to Lorentz transformations, Dirac started out by proposing

Ĥ = cα · p + βmc2 (5.80)

as the Hamiltonian for the time evolution of a free particle,

ĤΨ = i
∂

∂t
Ψ (5.81)

where α and β are the 4× 4 matrices

α =

(
0 σ
σ 0

)
, β =

(
I 0
0 −I

)
(5.82)

and σ a vector composed of the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5.83)

The form of the Hamiltonian implies a system of four coupled differential equations, instead of a
single one in the case of the Schrödinger equation, and in the time-independent case one can verify
that the Dirac equation possesses two branches of solutions separated by a large (2mc2) energy gap:
−∞ < E < −mc2 and mc2 < E < +∞, which are also referred to as negative and positive energy
solutions, respectively. From the solutions

Ψ =


ψ1

ψ2

ψ3

ψ4

 (5.84)
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one can also identify the charge (ρ) and current densities (j) – which obey the continuity equation –
as

ρ = Ψ†Ψ (5.85)

j = Ψ†cαΨ (5.86)

after identifying cα with the velocity operator[33, 150].

External electric of magnetic fields can be introduced in Eq. 5.81 via the minimal coupling
relation

E → E + eφ (5.87)

π → p + eA (5.88)

for the electron (charge −e), scalar potential φ and vector potential A respectively. Considering now
the case of an electron in the presence of a static nucleus (so that eφ ≡ V = −Z/r and, in the reference
frame of the nucleus, A = 0) we can write the time-independent four-component Dirac equation –
after rescaling β

′ → β − I4×4 in order to align the relativistic and non-relativistic energy scales – as(
V − E c(σ·p)
c(σ·p) V − E − 2mc2

)(
ψL

ψS

)
= 0 (5.89)

where now we divided the four-component solution into the so-called large (ψL) and small (ψS)
components, where “large” and “small” refer to the fact that solutions belonging to the positive
energy solutions have the largest amplitudes for the large component and negative solutions have the
largest amplitudes for the small component. In order to solve Eq. 5.89 the two-components ψL and
φS are expanded in terms of products of radial functions and two-component angular functions χ

j,mj
l

which are expressed in a basis of products of a spherical harmonic (Y ml
l (ρ, θ)) and a Pauli spinor

(ξ(ms)),

ψL = RL(r)χj,mj (ρ, θ) = RL(r)
∑
ml,ms

〈lmlsms|jmj〉Y ml
l (ρ, θ)ξ(ms) (5.90)

with 〈lmlsms|jmj〉 a Clebsch-Gordan coefficient.

Due to the fact that σ·p and consequently the Hamiltonian does not commute individually with
the angular momentum (l̂) or spin (ŝ) but does with the total angular momentum operator

ĵ = l̂ + ŝ, (5.91)

only the latter will be a proper constant of motion in the relativistic framework. Another constant of
motion here is the Dirac quantum number κ,

κ =

{
−(l + 1) if j = l + 1/2

l if j = l − 1/2
(5.92)

of the angular functions χ
j,mj
l for the angular momentum operator K̂ = (σ · l̂ + 1). Equation 5.91 is

the manifestation of spin-orbit coupling that can be understood[32, 150] by considering the reference
frame of the moving electron, which will now be subjected not only the Coulomb but also to the vector
potential due to the (in the new reference frame, moving) nucleus.

Equation 5.89 turns out to have, apart from the two branches previously discussed, a number
of discrete solutions in the [−2mc2, 0] interval with energies

E(n, κ, Z) ' − Z
2

2n2

[
1 +

1

n

(
Z2

c2

)(
1

|κ| −
3

4n

)]
(5.93)

where n is the non-relativistic principal quantum number. From this expression we see that due to
their dependence on j through κ, the energy levels with l 6= 0 will no longer be strictly degenerate
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Table 5.1: Quantum number for relativistic atomic orbitals

Labels
s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2

l 0 1 1 2 2 3 3
j 1

2
1
2

3
2

3
2

5
2

5
2

7
2

|mj | 1
2

1
2

1
2 ,

3
2

1
2 ,

3
2

1
2 ,

3
2 ,

5
2

1
2 ,

3
2 ,

5
2

1
2 ,

3
2 ,

5
2 ,

7
2

κ -1 +1 -2 +2 -3 +3 -4

and the spinors will have significantly different spatial extents with increased Z as can be seen in
figure 4.5. Furthermore, spinors with same j (see table 5.1) will show the same angular dependence
(s1/2 and p1/2 are both spherical, p3/2 and d3/2 look like non-relativistic p orbitals and so on) and will
be nodeless for all but the highest mj values.

Equation 5.89 can be expressed in terms of ψL only, by isolating ψS in the second equation and
substituting it back on the first, yielding the two-component expression[

(V − E) +
c2(σ·p)(σ·p)

E + 2mc2 − V

]
ψL = 0 (5.94)

that can be refactored as[
(T + V − E) +

(
(V − E)

E + 2mc2 − V T
)

+

(
c2

(E + 2mc2 − V )2
× {(pV ) · p + iσ · (pV )× p}

)]
ψL = 0

(5.95)
so that one can identify the Schrödinger equation (first term), plus scalar (second term) and spin-orbit
(third term) corrections to it, and see than in the non-relativistic limit (c → ∞) it reduces to the
Schrödinger equation. Here T = (σ·p)(σ·p)/(2m) is the non-relativistic kinetic energy operator.

The Dirac equation for many-electron systems

The extension of the formalism above for the many-electron case is relatively straightforward for the
one-electron terms ĥi, defined as

ĥi ≡ ĥD(i) = cα · p(i) + β′mc2 + vnuc (5.96)

where vnuc = vnucI4×4 corresponds to the usual nuclear potential from an atom or the molecular
framework.

A fully Lorentz invariant description of the electron-electron interaction, on the other hand, is
not a simple task as one would have to take into account the fact that the interaction between electrons
is not instantaneous but rather shows a retardation as it propagates at the speed of light. This can be
done in the QED framework, via perturbation theory on the basis of the exchange of virtual photons
(for a more detailed discussion see [33] and references therein), where one arrives at the expression

ĝij =
1

rij
− αi ·αj

rij
− (αi ·∇i)(αj ·∇j) cos(ωrij − 1)

ω2rij
+ . . . (5.97)

for the exchange of a virtual photon of frequency ω = |εi−εj |/c (εi, εj the energies for spinors i and j).
In the case of molecular or atomic systems, since for the most part the differences in spinor energies
will not be very large (within the valence), or if they are large (between valence and core) the electrons
will be close to each other, retardation effects will not be very large and one can therefore use the
following expression for the two-electron interaction

ĝij =

[
I4×4

rij

]
−
[
αi ·αj

2rij

]
−
[

(αi · rij)(αj · rij)
r2
ij

]
= ĝCoulomb

ij + ĝGaunt
ij + ĝgauge

ij = ĝCoulomb
ij + ĝBreit

ij (5.98)
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where ĝCoulomb
ij and ĝBreit

ij = ĝGaunt
ij + ĝgauge

ij represent the electrostatic and magnetic interactions
between electrons, respectively. One can understand the latter by recalling the identification of cα
with the velocity operator, so that the two-electron integral over ĝGaunt

ij can be viewed as representing
current-current interactions, which will then shown a gauge dependence. As it may be cumbersome
to implement the ĝgauge

ij term, in practice electronic structure calculations will use either

ĝij = ĝCoulomb
ij (5.99)

defining the Dirac-Coulomb (DC) Hamiltonian, or

ĝij = ĝCoulomb
ij + ĝGaunt

ij (5.100)

defining the Dirac-Coulomb-Gaunt (DCG) Hamiltonian.

Once defined the one and two-electron parts of the Hamiltonian, one can proceed with the
formulation and implementation of electronic structure approaches. Their point of departure, as in
non-relativistic approaches, is the construction of a Slater determinant on the basis of molecular
spinors (MS) described in terms of atom-centered basis sets, with its subsequent use evaluating the
matrix elements of the Hamiltonian,

E = 〈Ψ|Ĥ|Ψ〉 =
n∑
i=1

(φi|ĥD|φi) +
1

2

n∑
i,j=1

[(φiφi|φjφj)− (φiφj |φjφi)]. (5.101)

Due to the presence of negative energy solutions, in determining the ground-state wavefunction one
does not proceed via a simple minimization of Eq. 5.101 but rather by a minimization with respect to
positive energy solutions and maximization with respect to negative solutions [151].

Another significant difference is that, by virtue of the one-electron operators, the spinors and
therefore the wavefunction will be complex quantities, something that along with the loss of spin sym-
metry will have consequences such as loss of permutational symmetry of two-electron integrals, and the
size of the matrices representing the operators is therefore much larger than their non-relativistic coun-
terparts, though one can, in the absence of vector fields, redefine the one and two-electron operators
in such a way as to exploit time-reversal symmetry[33].

An elegant framework which can exploit time-reversal symmetry while at the same time reduce
the size of matrix representations was proposed by Saue et al. [151], and involved recasting the SCF
problem in terms of quaternion algebra. The exploitation of time-reversal symmetry together with the
exploitation of point group symmetry[152] effectively allows, in the case of point groups such as C2,
C2v and D2h, the use of real diagonalization. Another appealing feature that it allows for expanding
the molecular spinors in terms of scalar basis functions such as those commonly used in non-relativistic
codes and therefore adapt and continue to use non-relativistic molecular integral codes. This way, a
spinor can be written in terms of a large (ϕLi (r)) and a small (ϕSj (r)) component basis sets

φk =

(
ΦL
k

ΦS
k

)
=


φLαk
φLβk
φSαk
φSβk

 =


∑ML

i CLαik ϕ
L
i (r)∑ML

i CLβik ϕ
L
i (r)∑MS

j CSαjk ϕ
S
j (r)∑MS

j CSβjk ϕ
S
j (r)

 (5.102)

as opposed to expanding the spinors in terms of two-component functions[153, 154]. A drawback
of using scalar basis sets, on the other hand, is that one must ensure that the kinetic balance
condition[155, 156]

φSk =

[
c(σ·p)

E + 2mc2 − V

]
φL ' 1

2mc
(σ·p)φL (5.103)

is respected in the matrix representation. In the absence of vector fields, this means that the large
and small component basis respect the relationship

{ϕSj (r)} ⊇ {(σ·p)ϕLj (r)} (5.104)
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Because of kinetic balance, the total basis set size in a four-component calculation will be rather
large and contain higher angular momentum functions than the original large-component set as the
operation of (σ·p) on the latter yields

∂

∂x
xne−γr

2
= (nxn−1 − 2γxn+1)e−γr

2
, (5.105)

Substituting Eq. 5.102 in the expression of the two-electron integrals in Eq. 5.101 yields different
classes of integrals corresponding to electrostatic interaction between charge densities for the large
and small components ((LL|LL), (LL|SS), (SS|SS)) and those corresponding to the Gaunt interaction
((LS|LS)), whenever used. Among these, the (SS|SS) ones are the most numerous but, at the same
time, are extremely localized around the atoms since it is there the small component amplitudes will
be largest. The recognition of this locality has led to an approximation[157] where calculating the
(SS|SS) integrals is completely avoided and their contribution to the energy obtained as a classical
repulsion between atomic charges.

The treatment of electron correlation and of molecular properties

Thorough surveys of correlated approaches in the relativistic domain can be found in [158, 159]. We
note here (a non-exhaustive list of) papers discussing the implementation of coupled cluster [101–
103, 160, 161], CI[162–169], and ADC[170–172] in connection to Dirac.

The most important point concerning the formulation of wavefunction-based methods for elec-
tron correlation is that these are virtually always based on the so-called “no-pair” approximations[35],
where the two-electron part of the Hamiltonian is projected onto the positively energy solutions in or-
der to allow the creation of excited determinants only involving electrons. In this case, the approaches
outlined above for the calculation of excitation energies and properties due to electric perturbations
are by and large transposable to the relativistic domain, especially when formulated in a spin-orbital
formalism. That said, one should carefully account for the fact that relativistic wavefunctions are
complex – see for instance the thorough discussion by Shee on this matter for the implementation of
CCSD first-order properties [173] – as well as to the contribution of negative-energy solutions to or-
bital relaxation effects (with respect to the SCF wavefunction), as is the case of MCSCF wavefunction
optimizations [174] and the determination of properties for non-variational wavefunctions [175].

Concerning the calculation of molecular properties by response theory, in Dirac both lin-
ear [125, 176–178] and quadratic response [179–181] properties can be calculated for mean-field wave-
functions such as Hartree-Fock and DFT, and taking advantage of the efficiency of the quaternion-
based framework, as do the four-index transformation [182] and coupled-perturbed Hartree-Fock code
used to obtain MP2 first-order properties [175]. In the case of DFT, however, one should note that
as a practical realization of a fully relativistic formulation of DFT [183] requires the availability of
suitable density functionals and these are not generally available. In Dirac and in other codes one
therefore resorts to using non-relativistic functionals [184] as well as to working within the spin-density
functional theory (SDFT) [178] for response theory.

For magnetic properties, on the other hand, the linearity of the Dirac Hamiltonian with respect
to the inclusion of vector fields is a feature that sets it apart from the non-relativistic world, as it
greatly simplifies their formulation [33, 185]. Here, both the paramagnetic and diamagnetic terms
from nonrelativistic formalisms are obtained from a single operator in the relativistic domain [186],
the diamagnetic terms having been shown to arise from the contributions of negative energy states to
the response of the wavefunction to the perturbations.

With respect to the discussion above, the presence of a vector field means the restricted ki-
netic balance relation must be modified accordingly, yielding the so-called restricted magnetic balance
(RMB) condition [186–190], which has been fully realized in practice for the first time in [191]. If one
considers the Zeeman (ĥB) and hyperfine (ĥmK ) operators central to describing NMR spectra,

ĥB =
1

2
(~rG × c~α), ĥmK =

1

c2

~rK × c~α
r3
K

, (5.106)
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where ~rX = ~r − ~RX with an arbitrary gauge origin ~RG and the center of nucleus K in ~RK , we have
for RMB the expression the expression

{ϕS;[mK,B]
j (r)} ⊇ {

(
σ·p +

1

c
σ· ĥB +

1

c
σ· ĥmK

)
ϕLj (r)} (5.107)

for the small component while the large component basis remains unchanged. These are subsequently
used as a basis for the response treatment whereby the effect on perturbed wavefunctions are obtained,

φLk (B;mK) = CLk (B;mK)ϕLj (r) (5.108)

φSk (B;mK) = CSk (B;mK)ϕ
S;[mK,B]
j (r) (5.109)

In Dirac a simpler approach was taken in the use of the unrestricted kinetic balance (UKB) [151, 192–
194].

In the presence of external magnetic fields a gauge dependence on results of the corresponding
magnetic properties is introduced, which is only removed in the limit of complete basis sets. Thus, it is
common practice in such cases to use perturbation-dependent basis sets such as the so-called London
orbitals (LAOs)

ωKµ (~r) = exp

{
− i

2
~B × (~RK − ~RG) · ~r

}
ϕKµ (~r), (5.110)

which guarantee the gauge-origin invariance of results in finite basis approximation. LAOs are also
appealing when used in combination with RMB as they make the magnetic balance atomic and easy
to handle by the simple scheme (sMB).[194]

Approximate Hamiltonians

Whatever the computational efficiency of four-component implementations, it remains the case that
they are computationally expensive approaches, and if one wishes to apply relativistic approaches to
large systems it is preferable to devise approximations that can reproduce the four-component results
as faithfully as possible. One way of doing so is to proceed in a similar vein to what was done in
Eqs. 5.94 and 5.95, and obtain a transformed equation which is only defined for the positive energy
branch but that still reproduces the spectrum of the original Hamiltonian.

This can be achieved by applying a unitary block diagonalization to the (usually the one-electron)
Hamiltonian [195]

U †
[
hD;LL hD;LS

hD;SL hD;SS

]
U =

[
h++ 0
0 h−−

]
(5.111)

where U is defined via the so-called decoupling operators R unique to each approximate method,

U =

[
1 −R†

R 1

] [
(1 + R†R)−1/2 0

0 (1 + RR†)1/2

]
(5.112)

and we have that an exact decoupling operator is

R =
c(σ·p)

E + 2mc2 − vnuc
(5.113)

Examples for approximate approaches can be found in [195]. In the discussion that follows the
ZORA [196, 197] and the exact two-component (X2C) [198–201] Hamiltonians are used, as well as
the X2C approach based on molecular mean-field (X2Cmmf) solutions [202]. The X2C approach has
gained popularity in recent years since it is defined in a purely matrix form, not requiring extensive
derivations such as the Douglas-Kroll-Hess scheme [203].

A difference between the X2Cmmf [202] scheme and the others is that in it one solves the Dirac
equation for the molecular system, using either the DC or DCG Hamiltonians (thus including spin-
same orbit (SSO) and spin-other orbit (SOO, for DCG) interactions exactly) and at the end of the SCF
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performs the transformation above, instead of starting from a free particle Hamiltonian and adding
spin-orbit interactions in an approximate manner, with atomic mean-field integrals for instance [204].
The X2Cmmf makes no sense if one wants to accelerate mean-field calculations (Hartree-Fock, DFT),
but is particularly interesting for correlated calculations as it will retain the accuracy the original
calculations (as discussed in paper C.5) while greatly reducing the computational cost of the four-
index transformation step.

Another important point related to the transformation above is that not only the Hamiltonian
but also properties have to be transformed, otherwise so-called “picture-change” errors [195, 205] will
be introduced and produce unreliable results.

The reader is referred to a recent review[206] for a discussion of approaches available to obtain
molecular properties with emphasis on approximate Hamiltonians such as X2C.

5.3 A comparison of IHFSCC to experiment for heavy elements

In this section I summarize my main results in the application of IHFSCC in a two- or four-component
framework, focusing on systems for which experimental data is readily available, and refer the reader
to the manuscripts in appendices C and D to a more complete discussion and the background for each
study.

Before discussing any results, it is useful to briefly discuss the strategies used in the calculations.
As mentioned above in (IH)FSCC one starts by defining a reference Slater determinant, on which the
wave operator will act in order to create the target electronic states for a given sector of Fock space.
The constraint of starting from a single determinant means that, depending on the states we wish to
treat, we might not be able to start from the species we are actually interested and need, instead, to
start from an auxilary species (hereafter referred to as M) and add or remove electrons from it until
we arrive at the species and states we want, as shown in figure 5.1.

(a) M(0, 0)→ M+(1, 0)→ M−(0, 1)→ M(∗)(1, 1)

(b) M2+(0, 0)→ M+(0, 1)→ M(∗)(0, 2)

(c) M2−(0, 0)→ M−(1, 0)→ M(∗)(2, 0)

Figure 5.1: Schematic representation of the possible ways obtaining electronic states for a target species
M(∗) starting from auxiliary species (M, M2+ or M2−) well-described by a single Slater determinant.
It should be noted that M might itself be a neutral, anionic or cationic species

A first example of this process can be found in the study of the f−f spectrum of the bare actinyl
species NpO+

2 , NpO2+
2 , PuO2+

2 (paper C.1) where we studied the f1 and f2 configurations of these
species, as well as for the NpO2Cl2−4 where we were interested in the f1 electronic states (paper D.1).
Since in these cases the ground states correspond to open-shell configurations, we had to start with
auxiliary systems with one (for NpO2+

2 and NpO2Cl2−4 ) and two (for NpO+
2 and PuO2+

2 ) less electrons
and proceed to add electrons to the auxilary species NpO3+

2 , NpO2Cl−4 and PuO4+
2 via the single and

double electron attachement sector (case b in figure 5.1).

The results from these calculations are found in table 5.2. Due to the constraints in the com-
putational resources at the time, all these calculations were performed with double-zeta basis and,
while for the bare actinyls the DC Hamiltonian was use, for neptunyl chloride we used the X2C
Hamiltonian[207] with two-electron spin same-orbit (SSO) and spin-other orbit (SOO) contributions
were included via atomic mean-field integrals obtained with the AMFI[208, 209] code. In spite of
these limitations, we observe that the IHFSCC results show a very good agreement with experimental
ones – even though one should keep in mind that these have been measured not in gas phase but
in solution – and tend to perform much better than more approximate methods such as MRCI and
CASPT2 with a perturbative treatment of spin-orbit coupling, either in a rather approximate manner
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as in the restricted active space state interaction (RASSI) approach [210] as used in the Molcas [211]
codes, or via a more sophisticated spin-orbit CI approach as implemented in the EPCISO code [212].

An appealing feature of IHFSCC was that, not only the energies for the different states were in
better agreement with experiment, but also their symmetry classification followed the experimental
assignments, whereas for the CI and CASPT2 states there were some changes in ordering. At the time
paper C.1 was published, we were not sure of the extent to which these differences between methods
were mostly due to the difference in the correlation treatment or also had to do with the perturbative
treatment of spin-orbit coupling. Here it is important to have in mind that in the two-step approach it
is essential to calculate a sufficiently large number of spin-free states of different symmetries, otherwise
the description of spin-orbit coupling will be deficient and can contribute to a uneven quality in the
final electronic states (irrespective of a good quality in the description of the spin-free states).

In this sense, calculations which treat spin-orbit coupling variationally and construct the many-
electron wavefunctions in terms of molecular spinors end up requiring a bit less effort in the multi-
reference description. That said, the drawback of the Dirac implementation which only allows the
use of the Fock space sectors presented in figure 5.1 is that we are effectively restricted to studying
the spin-orbit coupled states arising from at most triplet configurations.

As this was, to the best of my knowledge, the first application of IHFSCC approach to such
systems, a particularly time-consuming part in this first study was to properly set-up the model (Pm)
and intermediate (Pi) spaces for the calculations: in the minimal configuration tested, the P space
contained 25 spinors, of which the six lowest-lying unoccupied 5f spinors were placed in Pm (for both
Pu and Np) and the remaining spinors, consisting of roughly the 7p and the next f shell were were
placed in Pi. In spite of using such extended model spaces, we observed a rather slow convergence of
the CC iterations but managed to properly converge the calculations.

Table 5.2: Low-lying f -f excited state energies (in cm−1) for NpO2+
2 and NpO2Cl2−4 , using (a) the

gas-phase geometry from ref.‘[213], rNpO = 1.675 Å; (from the calculations of Ref. [213] (b) the X-ray
structure from ref. [214], rNpO = 1.775 and rNpCl = 2.653 Å respectively; (c) 170.1 pm (d) 176.6 pm
For comparison the experimental values due to Denning and coworkers[215] are shown.

Excited Electronic States
Species I II III IV V VI VII VIII

NpO2+
2 ∆3/2u ∆5/2u Φ7/2u Π1/2u Π3/2u

IHFSCC(a) 3221 8565 7225 30877 34947
IHFSCC(b) 4297 9661 7229 29021 32379
SO-RASPT2(c) [216] 3575 7798 6108 – –

NpO2Cl2−4 ∆3/2u + Φ5/2u ∆5/2u Φ7/2u Π1/2u Π3/2u

IHFSCC 886 7679 9262 20018 22445
SO-RASPT2 [216] 1055 5767 6658 – –
Exp.[215] 900-1050 6880 7890 17241 20081

NpO+
2 Σ0g Π1g

3H5g
3Π0g

3Σ1g 3Π0g
3H6g

3Π2g

IHFSCC 2527 4102 5379 8628 8929 9378 9690 10056
SO-CI [217] 3366 4938 4721 9537 9076 9708 8867 11187
Exp. [218] – – 6173 8953 9146 9780 – 10208

PuO2+
2 Σ0g Π1g

3H5g
3Π0g

3Σ1g 3Π0g
3H6g

3Π2g

IHFSCC 2530 4870 6700 10334 10983 11225 11651 –
SO-CI [219] 4295 7044 6593 7393 12874 9415 7848 14169
SO-CASPT2 [220] 4190 6065 8034 12874 12906 14606 13326 14910
Exp. [218] – – – 10185 10500 10700 – 12037
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As was the case for the bare actinyls, in spite of the modest basis sets the results for neptunyl
chloride also compare very favourably to experiment, with rather good agreement for the three lowest-
lying excited states (discrepancies in the order of 10-15%) but less so for the two higher-lying Π states.
It is interesting to note that more recent SO-RASPT2 calculations [216] haven’t improved on the
accuracy of IHFSCC.

Paper C.2 presents a second example of the usage of IHFSCC, in the study of the potential
energy surfaces for the ground and optically active excited states of I−3 . In this case we use case (a)
in figure 5.1, since we are looking for singly excited states. In table 5.3 the results for IHFSCC, SO-
CASPT2 (using Molcas) and (four-component) MRCI calculations is presented for the two optically
active excited states, and from that we clearly see that the IHFSCC results are very close to the
experimental values for both transitions, whereas CASPT2 overestimates both by about 2400 cm−1

and MRCI is in good agreement with experiment for the first but overestimate the second state by
nearly the same amount as CASPT2.

The difference between the (a) and (b) IHFSCC (or MRCI) results is the extent to which
we truncate the basis set and correlation space and, therefore, approximate the electron correlation
treatment: in (a) we use an augmented triple zeta basis and correlate spinors between -1 and 4 hartree
(including the occupied orbital space the σ, π bonding system and three other σ-type orbitals arising
from the 5s5p orbitals of iodine), whereas in (b) augmented core-valence triple zeta basis are used,
and spinors between -3 and 12 hartree are correlated (adding the occupied 4d electrons of iodine and
many more virtuals). In both cases the Pm space contained 8 occupied (one σg, one πg, two πu and
one σu and 11 virtual spinors (two σg, one πg, three σu and two πu orbitals), with a full P space
containing 11 occupied (5 of g and 6 of u parity) and 22 virtual (12 of g and 10 of u parity) spinors.

The truncation of the correlation space (Q) is a strategy that had widespread use in the Dirac
user and developer community for pragmatic reasons as it greatly decreases the cost of the step of
integral transformation step. But one must be careful in using to avoid introducing artifacts in the
calculations by, for instance, removing part of the high angular momentum functions that are essential
to the treatment of electron correlation: one should view the basis sets as an equally important
component in the treatment of electron correlation as the many body methods themselves, since no
reliable results can come from the use of a very sophisticated correlation method and a basis set poorly
designed for correlation. I discuss this point further in reference [221], which outlines the development
of basis sets for correlated calculations on lanthanides.

Table 5.3: Vertical (Tv) excitation energies (in cm−1) calculated with the MRCI (a), CASPT2 and
IHFSCC(a and b) methods for I−3 calculated at the optimum bond length for each method for the
optically active 0+

u states

State MRCI(a) CASPT2 IHFSCC(a) IHFSCC(b) Experimental

0+
u a 27986 30002 27744 27098 27421

0+
u b 37180 37664 33631 34438 34680

The results in paper C.2 also show that the difference between IHFSCC and SO-CASPT2 or
MRCI for the excited state energies is not constant but varies greatly from state to state, as can be
seen in figure 5.2. Unfortunately, it was not possible for us to avoid problems with intruder states in
the IHFSCC calculations as the I-I bonds were stretched beyond 3.58 Å, as it can be seen in figure 2 of
paper C.2, in spite of the relatively large model space. This same figure shows that the SO-CASPT2
method, on the other hand, was perfectly capable of dissociating whem employing a similar CASSCF
active space (consisting of 16 electrons in the 9 orbitals arising from the 5p orbitals of the three iodine
atoms) but we nevertheless observe spikes in the potential curves at about 3.5 Åand beyond, signaling
a weak intruder state problem in the (spin-free) CASPT2 treatment that could not be remedied in
spite of us applying real [108] and imaginary [109] level shifts up to 0.20 Eh.

Because of the need to go through the (1, 0) sector of Fock-space, the study of I−3 also yielded,
at no additional cost, a number of electronic states for the I3 radical shown in table 5.4 as well as its
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Figure 5.2: Comparison of methods at r=2.93. IHFSCC(a) is the reference

electron affinities. From these results, we see that the electron affinities obtained with IHFSCC are
within the experimental error bounds. Furthermore, we see that the first two Ω = 1/2 excited states
are in very good agreement with experiment. The agreement with experiment for the third Ω = 3/2
state, on the other hand, is particularly poor if one compares the vertical (Tv) transition energy but
improves somewhat for the adiabatic (Te) value. While there were no experimental bond lengths
available for comparison at the time, we see that the ground-state IHFSCC harmonic vibrational
frequency is significantly higher than the experimentally derived on. As we shall see, this appears to
be a systematic problem for IHFSCC calculations.

Table 5.4: IHFSCC (b) excitation energies Tv (in cm−1) and electron affinities (in eV) for the I3 radical

Experimental IHFSCC (b)
State (Ω) ωe Te EA1 Re ωe Tv Te EA2

X (3/2u) 115±5 0 4.15±0.12 2.828 132 0 0 4.29
A (1/2g) 2258 2.884 113 2016 1855

B (1/2u) 5000 2.837 129 5424 5242
C (3/2g) 5484 2.951 115 7097 6291
1 Ref.[222]; vertical detachment energy of I−3 : 4.25 eV (ref.[223])
2 Value for the adiabatic EA. Vertical processes: IP(I−3 ) = 4.39 eV, EA(I3) = 4.20 eV.

Another radical species whose electronic states have been studies (in paper C.6) with IHFSCC
is IO, a species of interest to atmospheric sciences whose spectroscopic constants, excitation energies,
ionization potentials and electron affinities (presented in table 5.5) were, much like the I3 radical, a
by-product of our interest in studying the IO+ and AtO+ species, due to the interest of the latter in
the field of nuclear medicine[5, 224–227].

Since at the outset we were not sure that the IO+ and AtO+ species could be investigated with
single-reference approaches as their low-lying states originate from the p–p manifold, our strategy was
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to start from the IO− (and AtO−) species and remove electrons following case (c) in figure 5.1. In
these calculations we used the DC Hamiltonian and augmented triple zeta basis and correlated all
electrons between -10.0 and 100.0 au, corresponding to 32 correlated electrons and 248 virtual spinors
for the systems containing iodine (and 46 correlated electrons and 340 virtual spinors for the systems
containing astatine).

For both species, the model (Pm) space used contained the valence σ1/2, π3/2, π1/2, π
∗
3/2, π

∗
1/2

spinors with the exception of the σ∗1/2, which is unoccupied in the anion reference, and means that
electronic states with important contributions from Slater determinants in which σ∗1/2 is occupied will
not be properly described. Also, since we proceed via the ionization sectors, the spinors lower in
energy that are not part of the correlation space belong to Pi.

We see from our results that IHFSCC again tend to overestimate the harmonic frequencies in
a systematic manner, but bond lengths and excitation energies show an extremely good agreement
with experiment. If one compares these results to the single-reference CCSD(T) calculations of Pe-
terson [228], one observes an equally good agreement for bond lengths and an improvement on the
vibrational frequencies that indicates that the missing ingredient in the IHFSCC calculations is a
proper treatment of triples (and higher) excitations in the correlated treatment.

For ionization potentials IHFSCC is again in very good agreement with both experimental
values available, but underestimates the electron affinities. This may be an effect of both less than
ideal starting orbitals, since those from IO− are used, but may also be due to a lack of triples in the
correlation treatment.

Table 5.5: Bond lengths (Re in Å), harmonic frequencies (ωe, in cm−1), vertical (Tv, in cm−1) and
adiabatic (Te, in cm−1) excitation energies, ionization potentials (IP, in eV) and electron affinitues
(EA, in eV) calculated with the DC-IHFSCC method for IO.

Method Ω Re (Å) ωe (cm−1) Te (eV) Tv (eV) EA IP

IHFSCC X 3/2 1.875 722 0.00 0.00 2.23 (2.28) 9.78 (9.72)
a 1/2 1.887 702 2258 2258
a 3/2 2.095 492 22259 25969

CCSD(T) [228] X 3/2 1.872 684 0.00
a 1/2 1.889 651 1855

Exp. [229] X 3/2 1.8677 681.6 0.00
a 1/2 1.887 658 2091

Exp. [230] X 3/2 1.86762 681.7 0.00
a 1/2 1.88468 645.3 2091
a 3/2 2.072 514.5 21557

Exp. [229, 231] X 3/2 2.378 ± 0.005
Exp. [232] X 3/2 9.66 ± 0.10
Exp. [233] X 3/2 9.735 ± 0.017

Following up on halide oxide radical systems, in table 5.6 one can find results for the calculated
splitting in the doublet ground state of these species due to spin-orbit coupling from our recent EOM-IP
implementation in the four-component framework in Dirac 1, along with IHFSCC numbers and those
obtained by Epifanovsky et al [234] for EOM-IP including spin-orbit coupling with the Breit-Pauli
Hamiltonian. Here, instead of using the DC Hamiltonian as done for IO, the molecular mean-field
X2C (X2Cmmf) Hamiltonian [202], as Our assessment of it in paper C.5 has shown it to yield results
nearly indistinguishable from those obtained with the DC Hamiltonian.

1at the time of writing, the code can solve for the right eigenvectors of the (T-)similarity transformed Hamiltonian
and provide excitation energies for EOM-IP/EE/EA models. We are finalizing the parts necessary to obtain the left
eigenvectors for the same models and, with those, calculation transition moments and expectation values for excited
states
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In table 5.6 we see that the SO splitting greatly increases along the series, arriving at a staggering
value of 12000 cm−1 for TsO. The importance of the Gaunt interaction decreases along the series, and is
very important for the lightest of the molecules (ClO and BrO) in order to provide a good agreement
with experiment. As expected, the EOM-IP and IHFSCC yield nearly the same values, and the
more marked differences for TsO arise from the fact that we were not able to have as large a model
space as for the other molecules without suffering from difficulties with convergence for IHFSCC (the
σ spinor had to be moved to Pi). This observation underscores the appeal of the EOM approaches.
Furthermore, we observe that even for light systems we seem to outperform the approximate SO-EOM-
IP of [234], due to the use of a more suitable Hamiltonian as well as the basis set limit calculations of
Peterson et al [228] using single-reference CCSD(T) calculations.

Table 5.6: EOM-IP and IHFSCC Spin-Orbit splitting for the ground state (in cm−1) for XO Radicals
at their equilibrium geometry. Quadruple zeta basis set weres used for all the calculations. X2Cmmf
results from the DCG Hamiltonian are shown in parenthesis.

EOM-IP IHFSCC 2-step EOM-IP [234] CCSD(T) [228] Expt.
Species X2Cmmf X2Cmmf Breit-Pauli Scalar+SO

ClO 336 (315) 336 (315) 306 313 322
BrO 1061 (1034) 1061 (1034) 904 856 975

IO 2430 (2430) 2395 (2396) 1775 2091
AtO 6392 (6352) 6396 (6356)
TsO 11921 (11893) 12112 (12091)

In the cases discussed above we have mostly employed a single basis set, usually of triple zeta
quality. As it is commonly known in the literature, using such sets (or even quadruple zeta quality
ones) means we are still far from having converged our calculations on the one-electron basis dimension.
If the properties we are interested in, such as the energies of electronic states, are relatively well
separated, these shortcomings usually have no serious consequences. In situations where there are
quasi degeneracies, on the other hand, any missing electron correlation can dramatically change our
results and with that our interpretation.

One situation where I encoutered this in the study of the electronic structure of ThF+ (see
paper C.7), a species that is gaining considerable attention in recent times by being a possible candidate
for attempted measurements of the electric dipole moment of the electron [235]. In such experiments
polar, charged, diatomic systems are appealing since they offer a much larger enhancement of the
expected energy shifts than atomic systems. Furthermore, the species considered so far have in
common is an energetically low-lying 3∆ electronic ground state (in Λ-S coupling picture). In the
fluorides and oxides this state is deeply bound which is an experimental advantage. The magnetic
moment in the Ω = 1 component of this term is approximately zero which helps reduce the vulnerability
of the experiment to decoherence and systematic errors [236].

Our calculations follow scheme (c) in figure 5.1 and are discussed in detail in paper C.7. There, we
have explored a number of active space definitions and found that there was a very marked stabilisation
of the Ω = 0+ state with respect to the Ω = 1 state whenever the 5d spinors of thorium were included
in the correlation space (Q) while the other states were largely unaffected. We also found that the
inclusion of 6d, 5f, 7s spinors in Pm was necessary to ensure a good balance between two limiting
bonding situations in this species: one of mostly ionic bonding, where states coming from the 6d5f
Th2+ configurations would be important, and another for a mostly covalent bonding, where the 6d27s
manifold of atomic Th+ would be important for the molecular electronic state. On top of that, we
went as far as having the 7p7d8s8p6f spinors in Pi, in order to try to achieve the accuracy while
avoiding intruder states in the calculations.

An important factor for the accuracy in IHFSCC calculations is linked to both the dimension of
the model space P (it has been argued [103] that large P spaces may alleviate the need of considering
triple or higher excitations in the dynamical correlation treatment due to the inclusion of corresponding
excited determinants in the effective Hamiltonian) as well as of the intermediate space Pm (states
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with their largest components in Pm are described more accurately than those for which the largest
components are in Pi [237]).

We present our results with the most sophisticated model space in table 5.7, along with prior
theoretical results from Barker et al. [238] and Heaven et al. [239]. An important point from our
calculations is the importance of using a suitable basis set, as discussed above, in order to capture
as much as possible of subtle electron correlation effects: from our results we see that employing a
modified quadruple zeta basis set, from which higher angular momentum primitives were removed,
results in a complete reversal in the relative order of the Ω = 0+ and Ω = 1 states. In addition to that,
we see that the triple zeta basis set has a hard time capturing these subtle effects and because of that
we opted to perform an extrapolation to the basis set limit in order to compare it to experiment, and
after such a procedure our best theoretical estimate is in extremely good agreement with the most
recent experiment [240] in placing the 1Σ+

0 as the ground state and the 3∆1 as the first excited state.
We note this is in qualitative agreement with CCSD(T) and CCSDT single-reference calculations
but at odds with supposedly more accurate CCSDT(Q) single-reference calculations and the prior
experimental results [238] which had (incorrectly) assigned the 3∆1 as the ground state.

Table 5.7: Electronic spectra of ThF+ obtained with IHFSCC for model space III (Q: 4f5s5p5d6s6p ;
Pm: 5f6d7s: Pi: 7p7d8s8p6f) at R = 1.981 [Å], obtained with the X2Cmmf Hamiltonian and including
SOO interactions. Energies are given in cm−1, and E(∞) denotes results extrapolated to the basis set
limit via a two-point extrapolation formula[241]

.

Electronic state energy
Method 1Σ+

0+
3∆1

3∆2
3∆3

3Π0−

IHFSCC† 15.25 0.00 1062.22 3149.47 4510.50
IHFSCC‡ 190.85 0.00 1048.27 3156.71 4123.14
IHFSCC§ 0.00 108.26 1157.05 3235.93 4415.96
IHFSCC(∞) 318.99 0.00 1038.94 3161.99 3841.17
CCSD(T)+SO [238] 500.7 0.0 889.5 2156.8
CCSDT+SO [238] 143.3 0.0 889.7 2157.1
CCSDT(Q)+SO [238] 0.0 65.5 955.3 2222.9
MRCI+Q/SO [239] 0.0 202 1047 2163
Exp. [238] 0.00 315.0(5) 1052.5(5) 3150(15) 3395(15)
Exp. [240] 314.0(2) 0.00 1052.5(1,0) 3149(30)

† TZ basis set for Th, [33s29p20d15f5g1h]
‡ QZ basis set, [37s34p26d23f9g5h1i].

§ QZ basis set for Th ([37s34p26d23f5g1h]).

5.4 Benchmaking approximate methods for small systems

The comparison to experiment above underscores the role of reference method IHFSCC has played over
the years in my research. Besides that, and as briefly discussed when presenting the correlated WFT
methodologies, the question of how IHFSCC would compare to the single-reference based treatments
such as LRCC/EOM-EE is of great importance since the latter are more straightforward to use by
avoiding possible convergence issues due to intruder states and do not require the definition of model
spaces.

Such a comparison is presented in paper C.3, but since at the time we did not possess a four-
component implementation of LRCC/EOM-EE, we used instead [242] a LRCC implementation in-
cluding scalar relativistic effects, using the spin-free states as a basis for the SO–CI calculation to
obtain spin-orbit coupled states. In table 5.8 we summarize our IHFSCC results including spin-orbit,
the SO-LRCC of [242] and the SO-CASPT2 results of van Besien [243], corresponding to table 4 in
paper C.3.
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We note that in our IHFSCC calculations we explored different model and correlation spaces,
but in the minimal configuration consisted, respectively, of at least 12 electrons in 24 spinors for Pm
(6 occupied, comprising the valance σ, π system and 12 virtuals, including the fφ, fδ, σ

∗, π∗ spinors),
and a Q with a total of 24 electrons correlated (freezing the 5d).

What we observe in this comparison is that the two coupled cluster approaches are, in effect
qualitatively very similar: not only the equilibrium bond lenghts for the electronic states are quite
close, but the electronic states below 28000 cm−1 are of the same symmetry and show very similar
spacings between excited state (∆Te) – though the origin of the transitions by nearly 4000 cm−1, with
LRCC excitations being shifted upwards with respect to the IHFSCC ones. This difference is not
really due to the SO–CI treatment of spin-orbit coupling in this case, since as one can see in table 2 of
paper C.3, the same behavior is seen for spin-free calculations. Rather, we attributed these differences
to the difference in the parametrization of the excited states, since in the (1, 1) sector IHFSCC contain
terms such as S(0,1)S(1,0)[76, 97], which cancel out the disconnected terms which arise from the linear
parametrization in LRCC to third order or higher.[76, 97, 244, 245].

In a comparison to the coupled cluster methods, the SO-CASPT2 shows significant differences
in both bond lengths and in the relative position of the excited states, though its origin is closer to
that of IHFSCC. Since CASPT2 is also size-extensive, the greater similarity of its spectra’s origin and
that of IHFSCC goes to some length at supporting the attribution of the differences for LRCC and
IHFSCC as coming from disconnected terms from LRCC’s linear parametrization.

Table 5.8: Equilibrium geometries (Re, in Å) and adiabatic (∆T 0
e , in cm−1) spectrum of the lowest

fine structure excited states of UO2+
2 , computed at the SO-IHFSCC, SO-LR-CCSD[242] and SO-

CASPT2.[243] Here ∆T 1
e (in cm−1) denote vertical and adiabatic excitations where the origin of the

spectrum is taken to be the first excited state. The minima of the SO-IHFSCC calculations were
obtained by interpolating the symmetrical stretching mode by second-order polynomials. Changes in
the ordering of the states are marked in italics.

SO-IHFSCC SO-LR-CCSD SO-CASPT2
Ω Re ∆T 0

e ∆T 1
e Re ∆T 0

e ∆T 1
e Re ∆T 0

e ∆T 1
e

0+
g 1.683 0 -17557 1.679 0 -21338 1.708 0 -18888

1g 1.724 17557 0 1.732 21338 0 1.765 18888 0
2g 1.719 17834 277 1.743 21826 488 1.782 17227 -1661
3g 1.725 18627 1070 1.743 22361 1023 1.783 18293 -595
2g 1.722 20082 2525 1.736 24027 2689 1.769 20911 2023
3g 1.720 23073 5516 1.735 26723 5385 1.769 24026 5138
4g 1.727 23857 6300 1.743 27923 6585 1.784 24190 5302
3g 1.730 26679 9122 1.750 30833 9495 1.796 26446 7558
2g 1.731 28757 11200 1.749 32912 11574 1.848 26500 7612
4g 1.772 29991 12434 1.798 32113 10775 1.848 26259 7371
1g 1.778 30680 13123 1.795 32815 11477 1.833 27923 9035

The differences between IHFSCC and LRCC presented in 5.8 appear to be in line with the
differences between FSCC and EOM-EE that Musial and coworkers[246–248] find when comparing
them for light systems: a non-negligible difference in excitation energies, with EOM-EE being higher,
but with rather similar spacings between states. Now with the availability of our EOM-EE code, we
will be able to revisit this point in a more controlled manner, using the same bases and Hamiltonians.

The performance of CASPT2 relative to methods such as LRCC/EOM-EE or IHFSCC has been
evaluated in a number of instances other than those already presented here[92, 94, 249, 250], and
these results point to the same overall trends as those discussed here, with CASPT2 yields excitation
energies rather close to those obtained with methods that are formally more accurate at a fraction of the
computational cost. However, their relative position and the corresponding symmetry classification
are often less reliable, which can be attributed to the relatively low accuracy in which dynamical
correlation is taken into account.



5.4. Benchmaking approximate methods for small systems 41

Another interesting comparison of IHFSCC is with DFT-based approaches employing different
density functional approximations (DFAs) for excited states, as done in paper C.4 in the spin-free
case and in paper C.5 including spin-orbit for the UO2+

2 , NUO+ and NUN molecules, which are all
isoelectronic. For a detailed discussion of the differences in electronic structure of NUO+ and NUN
with respect to UO2

2 the reader should consult section 3.1 of paper C.4.

Before discussing excited states though, it is instructive to look at how the methods describe
the system’s orbitals. For the occupied a straightforward way to do so is by comparing how the
ionization potentials taken simply as the negative of the orbital energies for the DFAs compare to
the corresponding IHFSCC results[251]. We note that, while this comparison is strictly valid only for
HOMO,[252] our results (selected results from paper C.4 is shown here in table 5.9) indicate that this
is a good approximation as found by others[253]. Our results, if quite insensitive to the Hamiltonian
used (thus attesting the suitability of the ZORA Hamiltonian for valence states), show significant
differences for the different functionals: the best agreement with IHFSCC is found for the SAOP[254]
model potential, followed by CAM-B3LYP, B3LYP, BLYP and LDA functionals, with discrepancies
on the order of 0.5, 1, 3 and 4 eV, respectively. This behavior can be explained by the ability (or
lack thereof) of each of these DFAs to properly mimic the discontinuities in the energy and exchange-
correlation (xc) potential that the exact potential should exhibit with the change in particle number,
and it is not suprising then that SAOP, constructed to present the correct asymptotic (long-range)
behavior, indeed provides the best agreement with the IHFSCC values.

Doing the same for the virtuals, on the other hand, is not as straightfoward due to the very dif-
ferent meaning of the virtual orbital energies[255, 256] when pure (e.g. LDA or (meta)GGAs) or hybrid
functionals are employed: for pure functionals the virtual orbital energies are good approximations
to the ionization potentials of excited states, whereas in Hartree-Fock they represent approximations
to electron affinities. For hybrids they are thus somewhere in between these two values making it
difficult to compare these values with the IHFSCC values (that strictly represent electron affinities).
A consequence of the difference between Hartree-Fock and pure DFT is that one finds, for the GGA
functionals employed here, the low-lying virtuals to be uranium-centered fφ and fδ orbitals (to which
we will observe the transitions from the occupied σ, π orbitals discussed above), whereas for the hybrids
these are often found higher in energy than other orbitals such as the σ and π antibonding orbitals.

Table 5.9: Comparison of DFT and IHFSCC for the first three ionization potentials (IPs) for UO2+
2 ,

NUO+ and NUN (in eV). As these ionized states in the IHFSCC are dominated by contributions
from a single orbital and the DFT values are approximated by the negative of the orbital energies, we
identify the IPs with the respective orbitals (which range from HOMO-2 to HOMO for DFT). ZORA
and DC are Zero Order Regular Approximated and Dirac-Coulomb Hamiltonians, respectively.

NUN NUO+ UO2+
2

πu σg σu σ(U-O) π σ(U-N) πu σg σu
LDA ZORA 6.58 6.08 5.50 14.57 13.78 12.59 23.45 22.95 22.22

DC 6.53 6.05 5.46 14.51 13.63 12.47 23.39 22.87 22.16
BLYP ZORA 6.18 5.76 5.15 14.22 13.36 12.24 23.02 22.59 21.84

DC 6.16 5.77 5.17 14.18 13.22 12.16 22.95 22.52 21.81
B3LYP ZORA 7.26 6.85 6.50 15.63 14.45 13.59 24.36 24.03 23.39

DC 7.24 6.83 6.50 15.61 14.40 13.50 24.32 23.98 23.38
CAM-B3LYP DC 9.02 8.48 8.44 17.49 16.22 15.37 26.23 25.78 25.40
SAOP ZORA 10.16 9.92 9.28 18.73 17.69 16.69 27.82 27.64 26.72

DC 10.08 9.83 9.10 18.62 17.52 16.49 27.76 27.55 26.57
IHFSCC DC 10.15 9.45 9.43 18.66 17.76 16.74 27.76 27.15 27.08

By this discussion, and the analysis of the relative errors on the excitation energies for the
different DFAs considered in our papers and shown in figure 5.3, we indeed observe that accurately
describing the asymptotic behavior of the occupied orbitals is not sufficient to assure a superior quality
for excitation energies: our analysis shows that the CAM-B3LYP turns out to be the most reliable
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of the functionals considered (small standard deviation and mean close to zero) followed closely by
PBE0 and B3LYP, while all GGAs strongly underestimate the excitation energies. The SAOP model
potential shows mixed results, with a mean error close to zero but rather large standard deviation
on the errors. Though when assessing the effect of spin-orbit coupling we did not consider the same
dataset, our results do point to the same conclusions.

Figure 5.3: Errors with respect to IHFSCC for all excitations and all molecules for spin-free (top) and
spin-orbit (bottom) calculations. The gray boxes enclose a range of one sample standard deviation
above and below the average error. Dots show individual errors for each excitation energy. The two
highest (DFT) states for NUO+ has been left out of the analysis. (A) Evaluated using the ALDA
approximation.
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Another interesting molecule that is isoelectronic to uranyl is CUO, which was investigated in
paper D.4 in order try to better understand its interaction with noble gas matrices, and whether these
could induce a change in the ground state from 1Σ+ to 3Φ observed from changes in the vibrational
spectra [257] as prior CASPT2 investigations [258] had suggested.

Because of the relatively good performance of hybrid functionals such as PBE0 in TDDFT
calculations on the other species isoelectronics to uranyl discussed above, we attempted to use it in
order to provide a simple orbital picture of this species and of its intereaction with the noble gas
atoms, starting in a spin-free framework, as a complement to IHFSCC calculations. To our surprise
these TDDFT results, shown in table 5.10, suffer from triplet instabilities that places the 1Φ excited
state below the 3Σ+ state, the latter being the more stabilized the larger the fraction of Hartree-Fock
exchange, a result clearly at odds with all correlated WFT calculations.

For the WFT methods, however, we need to make a distinction between CASPT2[258] and cou-
pled cluster approaches (both single reference[259] and IHFSCC), since the former places the spin-free
3Φ much closer to the 1Σ+ than the latter. If we arrange these by the degree of expected combined ac-
curacy for describing dynamical and nondynamical correlation, in the order CASPT2–SRCC–IHFSCC,
we would in effect observe a trend of larger 1Σ+–3Φ separation with increased accuracy.

These TDDFT and WFT results underscore yet again the difficulties in finding a proper de-
scription of the balance between exchange and correlation (in a DFT picture) and static and dynamic
correlation (in a WFT picture) for actinides, as the both need to provide an equally good description of
the strong angular correlation found in the radially localized φ-orbitals as well as for the qualitatively
different correlation in the σ bonding orbital.

Table 5.10: Spin–free vertical excited-states of the CUO molecule with respect to the 1Σ+ ground-state
(in eV): a comparison of different methods.

Symmetry TD-DFT(PBE) TD-HF CASPT2a CCSDb CCSD(T) IHFSCC
HF=0% HF=0.1% HF=25% Ref. b Ref. c

3Σ+ 6452 6452 8307 13549 - - - - 7097
3Φ - -1048 -1613 -4436 726 6210 6694 5484 10807
3∆ 3307 3307 3710 18953 4355 - - - 10968

1Σ+ 11856 11936 14275 22985 - - - - 12098
1∆ 5726 5726 7904 22824 5807 - - - 12339
1Φ 807 807 4033 11372 4758 - - - 13469

a) Ref. [258]; b) Ref. [259]; c) Ref. [260]

The inclusion of spin-orbit coupling brings about a stabilization of about 3000 cm−1 for the
Ω = 2 component of the 3Φ spin-free state with respect to the 3Σ+ state for all methods. In the case
of coupled cluster approaches, electron correlation has placed the 3Φ state sufficiently higher than the
3Σ+ so that no change in the ground state can occur. On the other hand, for CASPT2 which places
the 3Φ higher than the 3Σ+ by less than a 1000 cm−1, the inclusion of spin-orbit coupling does make
the change in ground state possible. That said, taking into consideration the assesments of different
methods for systems with reliable experimental date in the gas-phase, it is hard to be confident that
CASPT2 got the relative energies of these two states right and the coupled cluster approaches wrong.

A comparison of IHFSCC, second-order multiconfigurational approaches and TDDFT in the
study of IO+ and AtO+, shown in paper C.6, also uncovered the presence of triplet instabilities for
not only DFAs including fractions of Hartree-Fock exchange but also for the SAOP model potential
and the M06-L metaGGA. These species, which in a spin-free framework would have a 3Σ+ ground
state (with two unpaired electrons in the antibonding π orbitals, hae been found in the presence of
spin-orbit coupling to have the Ω = 0 component of the triplet sufficiently stabilized over the Ω = ±1
components so that both can be considered to be relativistically closed shell species as can be seen
from the IHFSCC results in table 5.11. SO-NEVPT2 calculations confirm this finding, while at the
same time underscoring the importance of including relaxation effects on the SO–CI treatment AtO+:
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the approach that includes such effects (uc–SOCI) shows a very good agreement with the IHFSCC
results with the exception of the b 0− state which exhibits some contribution from the first 3Π state
that is absent from the IHFSCCSD calculation. The c–SOCI approach, on the other hand, shows and
increased deterioration for the states above 10000 cm−1.

The TDDFT calculations, however, show strongly stabilized Ω = ±1 components with respect to
the 3Σ+ state, with a splitting between these states which ranges from 4000 cm−1 for SAOP and M06-L
(no Hartree-Fock exchange) to over 6000 cm−1 for M06-2X (which contains over 50% of Hartree-Fock
exchange), and show an even more catastrophic failure for the latter if the other excited states are
considered. The pragmatic approach of invoking the Tamm-Dancoff approximation greatly improves
the situation for SAOP and M06-L, and we recover results which are quite in line with the correlated
calculations’ results for IO+ and AtO+ – with the exception of the Ω = ±1 states of IO+ which are
still found to be lower than the Ω = 0 state and signal a persistent problem in the description of
unpaired spins for these DFAs. For hybrid functionals, on the other hand, agreement with correlated
calculations is still poor. The same trends were found for a complex AtO+-water, but I have not
pursued the matter further.

All in all, this study has served as a warning for those who interested in employing (TD)DFT to
investigate astatine in solution [224–227], by underscoring the importance of a proper benchmark of
approximate methods and the identification of pathological behavior for the DFAs before using them
in calculations for complex systems.

5.5 Towards large systems with TDDFT

In 2015 I became involved in a collaboration with Valérie Vallet and Richard Wilson, an experimen-
talist from Argonne National Laboratories, aiming at understanding the electronic structure of the
UO2Cl2(phen)2 complex. The UO2Cl2(phen)2 complex is an interesting one since it is one of the few
molecular systems containing the uranyl moiety presenting a bent structure, and the questions our
investigation aimed at addressing were, first, what was the nature of the low-lying excited states and,
second, to what extend the bending of the O-U-O was due steric effects from the bulky phenantroline
ligands (structure shown in figure 5.4).

Due to its size, it is clear that a wavefunction treatment of the complex is not (yet) feasible,
and we resorted to DFT calculations. Here, the benchmarks above were quite useful in weeding out
DFAs that were not sufficiently reliable for describing excited states of species containing actinyls,
and we selected the PBE0 functional, which provides an accuracy close to that of CAM-B3LYP but
at a smaller computational cost, for the SO-ZORA TDDFT calculations with the ADF [261] code.
Given the difficulties with triplet instabilities encountered for other systems we opted here to invoke
the TDA approximation.

We started out by an investigation of the ground state, and found that the UO2Cl2 subunit takes
up a bent structure even in the absence of the phenantroline ligands, in line with the findings of Su et
al [262] for UO2Cl2 in an argon matrix. For the excited states, on the other hand, there is a marked
effect due to the phenantroline ligands since the virtual spinors located on one of the phenantroline
ligands can now mix in with the spinors related to the φ and δ in the idealized (linear) uranyl subunit
– which, since the O-U-O bond is bent, can themselves mix with the chlorine spinors.

In table 5.12, we present the calculated excitation energies. We observe the low-lying transitions
for UO2Cl2(phen)2 are mostly between the HOMO and LUMO+2 and LUMO+3 spinors shown in
figure 5.4, and they show a marked shift upwards with respect to the spectrum of the UO2Cl2 subunit,
which is essentially made up of transitions from the occupied spinor that greatly resembles the HOMO
of figure 5.4 to the spinors related to the φ and δ ones. Both in the case of UO2Cl2 and UO2Cl2(phen)2,
we see that the first and second excited states are made up of transitions with strong Φ character.
However, we also see that these states are much too close for us to be able to inequivocally affirm
which is the lowest, given the limits in accuract of (TD)DFT calculations.
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Table 5.11: Electronic excitation energies (in cm−1) for different correlation and SOC treatments for
IO+ and AtO+ calculated at R(IO+) = 1.806 Å and R(AtO+) = 1.903 Å respectively. Here (u)c–
SOCI denote (un)contracted SOCI, and the TDDFT calculations both with and without (results in
parenthesis) employing the Tamm-Dancoff approximation (TDA).

QD-NEVPT2 TDDFT
Species Ω IHFSCC c–SOCI uc–SOCI SAOP M06-L M06 M06-2X

IO+ X 0+ 0 0 0 0 0 0 0
a 1 1049 726 726 -1532 -1694 -2662 -3629

(-4839) (-4920) (-5807) (-6936)
a 2 5807 5485 5565 4759 4597 4113 3871

(4194) (4113) (-6291) (-8308)
a 0+ 11211 10808 10888 304071 318591 296011 306491

(301651) (316981) (290361) (294391)
b 0− 19519 20486 20325 21777 23309 15647 10163

(21051) (22664) (8791) (-17825)
a 3 20003 21132 20728 21858 23390 15566 9921

(21212) (22745) (8308) (-18712)

AtO+ X 0+ 0 0 0 0 0 0 0
a 1 5162 4355 3952 3791 3307 2339 2016

(-4436) (-3871) (-6130) (-8388)
a 2 8469 7985 7501 9033 8791 8146 8227

(8630) (8469) (3710) (-5565)
a 0+ 16373 17905 15970 304881 314561 285521 298421

(301651) (312141) (280681) (273421)
a 3 16696 19922 16131 19438 20486 13389 7098

(18793) (19841) (5162) (-19035)
b 0− 22342 18712 19761 19357 20406 13389 7259

(18712) (19761) (5162) (-18712)

1. States with singly excited character, whereas WFT methods indicate doubly excited character.

Table 5.12: SO-TDDFT/TDA vertical transition energies (∆E, in cm−1) for the UO2Cl2, and
UO2Cl2(phen)2 computed at the crystal geometries. Here σu, πu, φ, δ represent spinors related to
those of linear uranyl Cl the valence spinors of the chloride ligands that combine with those of uranyl,
and π∗(L) the pi system on the phenantroline ligand roughly on the same plane as the O-U-O bond.

Species ∆E nature of transition

UO2Cl2 14842 σu(19%) + Cl(72%)→ φ
14993 σu(19%) + Cl(74%)→ φ
15492 σu(15%) + Cl(78%)→ φ
15533 σu(16%) + Cl(73%)→ φ
16463 σu(20%) + Cl(63%)→ δ
16530 σu(28%) + Cl(63%)→ δ

UO2Cl2phen2 18349 σu + Cl→ (φ, π∗(L))
18448 σu + Cl→ (φ, π∗(L))
19026 σu + Cl→ (δ + π∗(L))(27%) + (φ+ π∗(L))(30%)
19180 σu + Cl→ (δ + π∗(L))(42%) + (φ+ π∗(L))(14%)
19443 σu + Cl→ (φ+ π∗(L))(45%) + (δ + π∗(L))(15%)
19475 σu + Cl→ (φ+ π∗(L))(59%) + (δ + π∗(L))(7%)
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Figure 5.4: UO2Cl2(phen)2 Molecular spinors: (a) HOMO; (b) LUMO; (c) LUMO+1; (d) LUMO+2;
(e) LUMO+3; (f) LUMO+4; (g) LUMO+5



Chapter 6

Frozen Density Embedding Methods

Having discussed the essentials of electronic structure methods in chapter 5 in this chapter we discuss
the formal and practical aspects of the frozen density embedding approach, some of my contributions
to its development and its application to heavy elements, based on the papers presented in full in
appendix D.

6.1 Basic Ideas and Exact Theory

This section partially reproduces the contents of section 3 of ASP Gomes, CR Jacob, Annu. Rep. Prog.

Chem., Sect. C: Phys. Chem., 2012, 108, 222–277

All quantum-chemical methods for excited states discussed in the previous section show a rather
steep increase of the computational effort with the size of the system. This is particularly the case
for wavefunction based methods where there are well-defined hierarchies that allow for a systematic
improvement of the calculation. Thus, their applicability is limited to comparably small molecules
and a treatment of electronic excitations in complex chemical systems remains a challenge. However,
if only local excitations are of interest, additional simplifications can be introduced.

The simplest possibility for exploiting this locality is the truncation of the full system to a smaller
model. Such a model contains only the part of the system where the local excitations of interest take
place and of its environment. For the case of a chromophore molecule in solution the definition of such
cluster model is rather straightforward. In the simplest case, one starts from an isolated chromophore,
which is then progressively surrounded by solvent molecules up to some limit e.g. to include a complete
solvation shell. Similar constructions can be used for chromophores in protein environments by only
including specific amino acid residues that are close to the chromophore. Also for treating impurities
in solids truncated cluster models can be set up by including only atoms within a certain distance from
the impurity. Even though such a truncation of the full system may be a rather crude approximation,
the results obtained with such cluster models will eventually converge towards a full calculation if the
size of the model system is systematically enlarged. However, this convergence can be rather slow
and, therefore, cluster models that provide sufficiently accurate results will often be rather large and
contain hundreds or thousands of atoms. Thus, a full quantum-chemical treatment of sufficiently large
truncated models is rarely possible with accurate quantum-chemical methods.

Embedding methods follow an intermediate strategy between a full quantum-chemical treatment
and the use of small truncated model systems. They still restrict the accurate treatment to a small
subsystem of interest, but instead of neglecting the environment of this model system, it is included
in a more approximate manner. As with truncated model systems, the results obtained with such
embedding schemes will eventually converge towards those of a full treatment when enlarging the

47
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size of the explicitly treated subsystem. However, since the environment is always included, this
convergence should be much faster, which makes it possible to restrict the size of the active subsystem
considerably if only local excitations or other local spectroscopic properties are of interest.

Formally, such embedding approaches can be formulated as an exact theory as outlined in
the following subsection. From this exact embedding theory one always obtains the same results
as with a full quantum-chemical treatment, independent of the chosen size of the active subsystem.
However, such a treatment is not suitable for practical applications since its computational cost would
be comparable to (or even larger than) the one of a full quantum-chemical treatment. Therefore,
approximations have to be applied for the description of the environment. The quality of these
approximations determines how fast the results of embedding calculations converge with the size of
the explicitly treated subsystem. More accurate embedding methodologies will allow for the use of
a smaller active subsystem, which in turn makes it possible to apply more sophisticated and more
accurate quantum-chemical methods for the description of the local excitations of interest. It should
also be noted that embedding approaches also simplify the interpretation of the computational results
significantly, since information from the parts of the system not treated explicitly will, in effect, be
filtered away by construction.

Frozen-Density Embedding Theory

Embedding approaches start from a partitioning of the total system into a subsystem of interest
(subsystem I in the following) and its environment (subsystem II). The frozen-density embedding
(FDE) theory formulated by Wesolowski and Warshel[263] — following earlier work of Senatore and
Subbaswamy[264, 265] and of Cortona[266] — provides a formally exact theoretical framework for
introducing such a partitioning. It is based on the formally exact DFT (i.e., considering exact density
functionals) and uses the electron density of the total system ρtot(r) as its starting point. This total
density is partitioned into the electron densities of the active subsystem, ρI(r), and of the environment,
ρII(r), i.e.,

ρtot(r) = ρI(r) + ρII(r). (6.1)

These subsystem densities are allowed to overlap. In the following, we will always assume that the
subsystem densities ρI(r) and ρII(r) integrate to an integer number of electrons. However, the theory
can be generalized to subsystems with fractional electron numbers.[267] In addition to the electron
density, the nuclear charges are also partitioned. These divisions of the density and the nuclei define
the two subsystems I and II. The environment density ρII could be further partitioned into an arbitrary
number of subsystems[266, 268, 269] as

ρII(r) =
∑
n

ρ
(n)
II . (6.2)

This is particularly useful for formulating subsystem approaches, in which a large system is partitioned
into many smaller subsystems, that are then treated on an equal footing. For a recent review of such
fragment-based methods in quantum chemistry, see ref. [270]. As our focus here will be on methods
that single out a specific subsystem of interest, the discussion in the following will be restricted to
two subsystems, i.e., the densities of all but one subsystem will be collected into a single environment
density ρII.

Interaction energy.

Using this partitioning into subsystems, the DFT total energy can be expressed as a functional of the
two subsystem densities ρI and ρII,

Etot = E[ρI, ρII]

=

∫ (
ρI(r) + ρII(r)

)(
vnuc

I (r) + vnuc
II (r)

)
d3r +

1

2

∫ (
ρI(r) + ρII(r)

)(
ρI(r

′) + ρII(r
′)
)

|r − r′| d3r d3r′

+ Exc[ρI] + Exc[ρII] + Enadd
xc [ρI, ρII] + Ts[ρI] + Ts[ρII] + T nadd

s [ρI, ρII] + ENN, (6.3)
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where ENN is the nuclear repulsion energy, vnuc
I and vnuc

II are the electrostatic potentials of the nuclei
in subsystems I and II, respectively, Exc[ρ] is the exchange–correlation energy functional, and Ts[ρ] is
the kinetic energy of a reference system of noninteracting electrons with density ρ. The nonadditive
exchange–correlation and kinetic energies are defined as

Enadd
xc [ρI, ρII] = Exc[ρI + ρII]− Exc[ρI]− Exc[ρII] (6.4)

and
T nadd
s [ρI, ρII] = Ts[ρI + ρII]− Ts[ρI]− Ts[ρII], (6.5)

respectively.

The total energy given in Eqn. (6.3) can be partitioned as,

Etot = EI + EII + Eint, (6.6)

into the energies of the two individual subsystems (n = I, II)

En = E[ρn] = E
(n)
NN +

∫
ρn(r) v(n)

nuc(r) d3r +
1

2

∫
ρn(r)ρn(r′)

|r − r′| d3r d3r′

+ Exc[ρn] + Ts[ρn], (6.7)

and the interaction energy

Eint = Eint[ρI, ρII] = E
(int)
NN +

∫
ρI(r)vII

nuc(r) d3r +

∫
ρII(r)vI

nuc(r) d3r

+

∫
ρI(r)ρII(r

′)

|r − r′| d3r d3r′ + Enadd
xc [ρI, ρII] + T nadd

s [ρI, ρII], (6.8)

where the nuclear repulsion energy is partitioned into the repulsion among nuclei in the same subsystem

E
(n)
NN and between those in different subsystems E

(int)
NN .

Eqn. (6.8) provides an exact expression for the interaction energy between two subsystems with
fixed electron densities ρI and ρII. The first four terms add up to the classical electrostatic interaction
energy between the nuclei and electron densities of the two subsystems. In addition, the nonadditive
exchange–correlation energy Enadd

xc [ρI, ρII] and the nonadditive kinetic energy T nadd
s [ρI, ρII] account for

the non-classical contributions to the interaction energy. While the classical terms can be calculated
directly for any two subsystems once the nuclear charges and positions as well as the subsystem
electron densities are known, the evaluation of the non-classical contributions requires the knowledge
of the exchange–correlation and kinetic-energy functionals, Exc[ρ] and Ts[ρ]. Even though these are
not know, Eqn. (6.8) provides a useful starting point for the development of embedding methods. We
note that its applicability is not limited to DFT calculations since an electron density can always be
defined within any theoretical framework and then used to evaluate an interaction energy within FDE
theory.

Embedding potential.

So far, the electron densities of the two subsystems were kept fixed. However, the total electron density
of two interacting subsystems will not be equal to the sum of the densities of the isolated subsystems.
Therefore, the subsystem electron densities change when the two subsystems interact and the presence
of an environment, ρII(r), modifies the electron density of the active subsystem, ρI(r). To account for
this, the environment has to be included in the quantum-chemical description of the active subsystem.
This is possible both for a description of the active subsystem with KS-DFT and for a wavefunction
based treatment.

For the case of a KS-DFT description, the density of the active subsystem I can be obtained
from the KS orbitals {φI

i} as ρI(r) =
∑

i |φI
i(r)|2. Note that in this case the noninteracting kinetic

energy Ts[ρI] can also be calculated directly from the KS orbitals. For a given frozen electron density
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ρII(r) in subsystem II, the KS orbitals (and the electron density) of the active subsystem I can then
be determined by minimizing the total energy given in Eqn. (6.3) with respect to ρI, while keeping
ρII frozen. Performing this minimization under the constraint that the number of electrons NI in
subsystem I is conserved leads to a set of equations for the KS orbitals of subsystem I,[

−∇
2

2
+ vKS[ρI](r) + vI

emb[ρI, ρII](r)

]
φI
i(r) = εI

iφ
I
i(r), (6.9)

where vKS[ρI](r) is the KS effective potential of the isolated subsystem I containing the usual terms of
the nuclear potential, the Coulomb potential of the electrons, and the exchange–correlation potential,

vKS[ρI](r) =
δE[ρI]

δρI(r)
= vI

nuc(r) +

∫
ρI(r

′)

|r − r′|d
3r′ +

δExc[ρI]

δρI(r)
, (6.10)

and the effective embedding potential vI
emb[ρI, ρII](r) describes the interaction of subsystem I with the

frozen density and nuclei of subsystem II,

vI
emb[ρI, ρII](r) =

δEint[ρI, ρII]

δρI(r)
= vII

nuc(r) +

∫
ρII(r

′)

|r − r′|d
3r′

+
δExc[ρ]

δρ(r)

∣∣∣∣
ρtot

− δExc[ρ]

δρ(r)

∣∣∣∣
ρI

+
δTs[ρ]

δρ(r)

∣∣∣∣
ρtot

− δTs[ρ]

δρ(r)

∣∣∣∣
ρI

. (6.11)

This embedding potential accounts for the presence of the frozen environment when determining the
electron density of the active subsystem with KS-DFT. Note that the embedding potential is a local
potential that depends only on the electron densities of the two subsystems.

The first two terms of the embedding potential of Eqn. (6.11) describe the classical electrostatic
potential of the nuclei and of the electrons in the frozen environment. In addition, the embedding
potential also contains an exchange–correlation component and a kinetic-energy component. These
account for the non-classical contributions, such as the Pauli (exchange) repulsion of the electrons
in the frozen subsystem and chemical bonding (i.e., orbital interactions) between the subsystems.
While the electrostatic part of the embedding potential can be evaluated directly for given subsystem
densities, this is not possible for the exchange–correlation and kinetic energy parts, as these require
the knowledge of the corresponding exact functionals.

The same embedding potential can also be derived for the case that a wavefunction based
description is used for the active subsystem.[271, 272] In this case a wavefunction ΨI(r1, s1, r2, s2, . . . )
is used to represent the electron density ρI(r) of subsystem I. By using that

EI = E[ρI] = E
(I)
NN + 〈ΨI|T̂ + V̂ I

nuc + V̂ee|ΨI〉, (6.12)

where T̂ , V̂ I
nuc, and V̂ee are the operators of the kinetic energy, the electron–nuclear attraction energy,

and of the electron–electron interaction, respectively, the total energy of Eqn. (6.3) and (6.6) can be
rewritten as

Etot = E[ΨI, ρII] = E
(I)
NN + 〈ΨI|T̂ + V̂ I

nuc + V̂ee|ΨI〉+ Eint[ρI, ρII] + EII, (6.13)

where Eint[ρI, ρII] and EII = E[ρII] are the interaction energy and the energy of subsystem II as defined
in Eqns. (6.8) and (6.7), respectively.

The wavefunction describing subsystem I in the presence of the frozen density ρII(r) can then be
obtained by minimizing this total energy functional with respect to ΨI while keeping the electron den-
sity ρII of the environment frozen, under the constraint that the number of electron NI in subsystem I
is conserved. This leads to the condition,

0 =
(
T̂ + V̂ I

nuc + V̂ee

)
ΨI +

∫
δEint[ρI, ρII]

δρI(r′)

δρI(r
′)

δΨI
d3r′ − λΨI

=
[
T̂ + V̂ I

nuc + V̂ee + V̂ I
emb[ρI, ρII]

]
ΨI − λΨI, (6.14)
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with the embedding operator

V̂ I
emb[ρI, ρII] =

∑
i

vI
emb[ρI, ρII](ri), (6.15)

that is, the wavefunction of subsystem I in the presence of the frozen density ρII(r) can be determined
by solving an eigenvalue equation, in which the embedding potential of Eqn. (6.11) enters as an
additional one-electron operator. However, the eigenvalue λ in this embedded Schrödinger equation
does not correspond to an energy. Instead, the energy has to be evaluated using Eqn. (6.13) once the
embedded wavefunction ΨI has been determined.

For solving this embedded Schrödinger equation, the common approximations of wavefunction
based quantum chemistry can be applied. Note that the derivation given here differs from the one in
ref. [272], where an approximate wavefunction of subsystem I was introduced before performing the
energy minimization. In this case, the embedding potential contains an additional term correcting
for the difference between the approximate and the exact wavefunctions. However, it can be argued
that a correction for deficiencies of an employed wavefunction approximation should not be contained
in the embedding potential.[273, 274] Therefore, the derivation given here avoids this correction by
introducing an approximate wavefunction only at a later stage.

Polarization of the environment.

In an exact embedding calculation using a frozen environment density ρII the electron density ρI of the
active subsystem should be determined such that the total electron density ρtot = ρI + ρII is identical
to the one obtained from a calculation of the full system. This can be achieved by minimizing the
total energy with respect to the density (or wavefunction) of the active subsystem, and leads to the
local embedding potential derived above.

However, such an agreement with the results of a full calculation is only possible if the frozen
density fulfills certain conditions.[275, 276] In particular, the frozen density ρII has to be smaller than
or equal to the correct total density ρtot at every point in space, i.e., ρII(r) ≤ ρtot(r). Otherwise,
the complementary density of the active system would have to be negative, which is not possible.
In addition, this complementary density ρtot − ρII has to be noninteracting vs-representable in the
case of a KS-DFT description for the active system or interacting v-representable in the case of a
wavefunction based treatment.

In particular the first condition is usually not fulfilled for most approximate frozen densities.
Usually, these will be too small in some regions and too large in others. Consequently, the application
of the embedding potential of Eqn. (6.11) does not lead to the exact total density with such choices for
ρII. This problem can be alleviated by switching from an embedding method to a subsystem approach
in which both the densities of subsystem I and II are determined. That is, the densities of both
subsystems are determined separately, but in each case the (frozen) density of the other subsystem is
taken into account. When using KS-DFT, this can be formulated as a set of coupled equations for the
KS orbitals of the two subsystems,[

−∇
2

2
+ vKS[ρI](r) + vI

emb[ρI, ρII](r)

]
φI
i(r) = εI

iφ
I
i(r) (6.16)[

−∇
2

2
+ vKS[ρII](r) + vII

emb[ρI, ρII](r)

]
φII
i (r) = εII

i φ
II
i (r) (6.17)

Note that because of the different roles of the active and frozen densities in Eqn. (6.11), the embedding
potentials in these two equations differ.

The simplest strategy for solving these coupled equations for the two subsystems is through
so-called freeze-and-thaw iterations [277]. First the density of subsystem I is determined in the pres-
ence of an approximate frozen density for subsystem II. Subsequently, the roles of the two subsys-
tems are interchanged and the density calculated for subsystem I in the previous step is now frozen,
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whereas an updated density is determined for subsystem II. This is repeated iteratively until con-
vergence is reached. Alternatively, the two sets of equations (Eqns. (6.16) and (6.17)) can be solved
simultaneously.[268] Note that the resulting partitioning into subsystems is not unique, because den-
sity can be moved between the two subsystems without changing the total electron density. However,
a unique partitioning can be obtained when requiring that both subsystems share the same embedding
potential, i.e., that vI

emb[ρI, ρII] = vII
emb[ρI, ρII]. [267, 278]

When focussing on one subsystem of interest, such an iterative subsystem scheme can be con-
sidered as an embedding scheme that not only accounts for the effect of the environment on the active
subsystem but also includes the polarization of the environment caused by the active subsystem.
Thus, such a polarizable embedding goes beyond a scheme in which a fixed frozen density is employed
for the environment. Consequently, it will always converge to the same density as a full treatment,
irrespective of the initial choice of ρII if no further approximations are introduced.

Excitation energies and response properties.

When treating excited states within FDE theory, one has to distinguish between the two available
theoretical approaches: time-independent (state-specific) methods and response theory. The concep-
tually simpler theory is obtained in the case of time-independent methods in which a wavefunction
is calculated explicitly for each excited state of interest. In this case, the embedding theory outlined
above can be applied directly, with the only difference that the wavefunction and electron density of
the active subsystem are different for each excited state. Thus, the embedding potential is different for
each excited state, and for each excited state the environment density has to be determined iteratively
(e.g., in freeze-and-thaw iterations). The theoretical justification for such a state-specific treatment
of excited states is given in ref. [279].

In a formalism based on response theory [280–283] (see also paper D.3), the (time-dependent)
electron densities ρI(r, t) and ρII(r, t) of the two subsystems are in a KS-DFT framework represented
by two separate Slater determinants |Φ̃I〉 and |Φ̃II〉, respectively. Consequently, the total time-averaged
quasi-energy can be expressed as

{Q(t)}T = {Q[ρI](t)}T + {Q[ρII](t)}T + {Eint[ρI, ρII](t)}T , (6.18)

where the first two terms are the time-averaged quasi-energies of the two subsystems according to
Eqn. (5.60), and the third term is the time-average of the interaction energy given in Eqn. (6.8).
Subsequently, an exponential parametrization with the parameters κI and κII can be introduced for
both subsystems (cf. Eqn. (5.61)), i.e., the total time-dependent density is expressed as

ρ(r, t) = ρI(r,κI) + ρII(r,κII). (6.19)

With this parametrization, the matrix F determing the poles of the response function assumes a block
structure,

F =
∂2{Q(2)}T
∂κ(1)∂κ(1)

=

(
F I,I F II,I

F I,II F II,II

)
with F n,m =

∂2{Q(2)}T
∂κ

(1)
n ∂κ

(1)
m

. (6.20)

By separating the contributions arising from the different terms in Eqn. (6.18), this matrix can be
decomposed into

F =

(
F I,I F II,I

F I,II F II,II

)
=

(
F I 0
0 F II

)
+

(
F I

int F II,I
int

F I,II
int F II

int

)
, (6.21)

where F I and F II arise from the differentiation of the quasi-energies of the isolated subsystems (as
in Eqn. (5.63)) while the second contribution originates from the differentiation of the interaction
energy. This interaction contribution contains blocks F I

int and F II
int, which modify the diagonal of F

and therefore be regarded as modifying the isolated subsystem F I and F II matrices,

F
(n)
int =

∂2{E(2)
int [ρI, ρII]}T

∂κ
(1)
n ∂κ

(1)
n

=

∫∫
wnnemb(r, r′)

∂ρ
(1)
n (r)

∂κ
(1)
n

∂ρ
(1)
n (r′)

∂κ
(1)
n

d3r d3r′ +

∫
vnemb(r)

∂2ρ
(2)
n (r)

∂κ
(1)
n ∂κ

(1)
n

d3r

(6.22)
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with the embedding kernel

wnnemb(r, r′) =
δ2Eint[ρI, ρII]

δρn(r)δρn(r′)
=

δ2Exc[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρtot

− δ2Exc[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρn

+
δ2Ts[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρtot

− δ2Ts[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρn

.

(6.23)
These lead to additional embedding contributions to the subsystemA andB matrices (cf. Eqns. (5.65)-
(5.66))

Annia,jb = δijδab(ε
n
a − εni ) + 2(ia|bj) + (ia|fxc|bj) + (ia|wnnemb|bj), (6.24)

Bnn
ia,jb = 2(ia|jb) + (ia|fxc|jb) + (ia|wnnemb|jb), (6.25)

where all orbital indices refer to the considered subsystem and the contributions arising from the
second term in Eqn. (6.22) have been included in the orbital energies (i.e., it is assumed that the
orbitals are obtained from Eqn. (6.9)).

Second, the off-diagonal blocks introduce a coupling between the subsystems, which is given by

F I,II
int =

∂2{E(2)
int [ρI, ρII]}T

∂κ
(1)
I ∂κ

(1)
II

=

∫∫
wI,II

emb(r, r′)
∂ρ

(1)
I (r)

∂κ
(1)
I

∂ρ
(1)
II (r′)

∂κ
(1)
II

d3r d3r′ (6.26)

with the embedding kernel

wI,II
emb(r, r′) =

δ2Exc[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρtot

+
δ2Ts[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρtot

+
1

|r − r′| . (6.27)

These give rise to A and B matrices corresponding to coupling between subsystems, with elements

AI,II
iIaI,jIIbII

= (iIaI|wI,II
emb|bIIjII), (6.28)

BI,II
iIaI,jIIbII

= (iIaI|wI,II
emb|jIIbII), (6.29)

where the subscripts indicate that orbital indices refer to the different subsystems.

In should be noted that the subsystem response theory discussed above in the framework of
TDDFT can also be generalized to a wavefunction based description of the active subsystem. In this
case, the DFT quasi-energy of subsystem I in Eqn. (6.18) is replaced by the quasi-energy Lagrangian
of a wavefunction based method, i.e.,

{L(t)}T = {L[ρI](t)}T + {Q[ρII](t)}T + {Eint[ρI, ρII](t)}T , (6.30)

and an appropriate parametrization of the wavefunction of subsystem I is introduced. This then
translates to a parametrization of the total time-dependent density

ρ(r, t) = ρI(r,λI, λ̄I) + ρII(r,κII) (6.31)

in which the density of subsystem I depends on the parameters λI and possibly the multipliers λ̄I.
Embedding contributions to the isolated subsystem matrices F I, AI, and J I as appearing in the
response function (Eqn. (5.59)) can then be derived by differentiating the interaction energy with
respect to the parameters and multipliers. As in the TDDFT case, these will introduce both embedding
contributions entering into the subsystem response and embedding contributions that couple the two
subsystems. In general, linear-response function in Eqn. (5.59) will now involve the matrixF I,I AI,I AII,I

AT
I,I J I,I F II,I

F I,II AI,II F II,II

 =

F I AI 0

AT
I J I 0

0 0 F II

+

F I
int (AI

int)
T F II,I

int

AI
int J I

int AII,I
int

F I,II
int AI,II

int F II
int

 , (6.32)

due to the presence of additional coupling blocks. Note that because of the non-linear dependence of
the interaction energy on the multipliers (via the density ρI) the matrix J I,I will in general not be
zero anymore, even if the isolated subsystem contribution J I is. For further discussion and explicit
equations, we refer to paper D.3. We note that this formalism is general enough to also allow for the
definition of WFT-in-WFT approaches [284, 285].
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6.2 Approximate Embedding Methods

This section partially reproduces the contents of section 4 of ASP Gomes, CR Jacob, Annu. Rep. Prog.

Chem., Sect. C: Phys. Chem., 2012, 108, 222–277

While the FDE theory presented in the previous section provides an exact theoretical framework
for embedding methods in quantum chemistry, it is not directly suitable for numerical applications.
In particular, it requires the knowledge of the exact nonadditive kinetic-energy functional, which are
not easily available in practice. Therefore, numerous approximate embedding schemes have been
developed instead. For discussing these in the following section, it is useful to establish a classification
scheme for such methods.

One scheme for classifying approximate embedding methods has been proposed by Bakowies
and Thiel (BT)[286] and follows the steps taken above for presenting the FDE theory.

• Mechanical coupling: The simplest way to setup an embedding scheme is to treat each
subsystem individually and introduce the coupling only through the total energy. To this end,
an interaction energy between the subsystems is calculated according to Eqn. (6.8) or some
approximation to it. With such a simple scheme only the geometrical structure of the active
subsystem is altered. All electronic properties, in particular the electron density, are identical
to those obtained when treating the subsystem of interest in isolation.

• Electronic coupling: Embedding schemes that include the effect of the environment in the
quantum-chemical treatment of the active subsystem in some way form the next category. This
can be achieved by including the embedding potential of Eqn. (6.11) both in a KS-DFT or in a
wavefunction based treatment of the subsystem of interest. In practice, this embedding potential
is usually approximated. With such a coupling through an embedding potential, the electronic
properties of the subsystem of interest can be affected by its environment.

• Polarizable embedding: In the simplest case of embedding schemes with electronic coupling,
the (approximate) embedding potential is determined solely by the geometric structure of the
environment. For instance, the frozen electron density calculated for the isolated environment
(i.e., in the absence of the subsystem of interest) can be used in Eqn. (6.11). More advanced
schemes can be set up by including the polarization of the environment due to the presence of the
active subsystem. This leads to schemes where the embedding potential has to be determined
iteratively.

• Embedding including environment response: When treating electronic excitation energies
or other response properties, a fourth category — not contained in the original BT classifica-
tion — can be introduced. In this case one can distinguish whether or not the response of the
environment to the electronic excitation is included. With state-specific methods, this can be
achieved by iteratively updating the environment density for each excited state instead of em-
ploying one common frozen environment density for all excited states. Within response theory,
the response of the environment can be included through the additional subsystem and coupling
contributions to the response matrices discussed in the previous section. Several different strate-
gies can be introduced to approximate these contributions. First, the coupling contributions
can be neglected and only those modifying the subsystem response are retained. Second, the
coupling contributions can be included in an approximate fashion. Finally, it is also possible to
fold the contributions of the environment as well as the coupling in an approximate fashion into
the response matrices of the active subsystem. While this will not account for coupling between
individual excitation energies, it does allow for an efficient inclusion of the polarization of the
environment density.

Among those groups, different methods can be classified according to the approximations that
are introduced for calculating the interaction energy and the embedding potential. First, in continuum
solvation models the discrete molecular structure of the environment is neglected and replaced by a
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Figure 6.1: Overview of some of the available approximate embedding scheme. On the horizontal axis
are the categories of the extended Bakowies–Thiel classification, while the vertical axis sorts different
approaches according to the models employed for the environment.

dielectric continuum. Next, a large variety of embedding methods uses a discrete description for the
environment and models the electrostatic part of the environment using point charges or localized
multipole moments. Such a purely electrostatic description can be augmented with additional terms
accounting for non-classical interactions. As a further step, there are embedding methods that retain a
full electron density for the environment using the embedding potential of Eqn. (6.11), but employing
an approximate electron density for the environment and introduce approximations for the nonadditive
kinetic-energy functional. Finally, embedding methods that do not introduce such approximations
have also been proposed for embedding accurate wavefunction theory calculations into an environment
treated with DFT.

In the following, we will focus exclusively in the approximations to the FDE ex-
act theory, but refer the reader to [25], where an extensive discussion of the different
approximations is presented.

We note, however, that a classification in terms of sophistication does not imply an equivalence
in terms of accuracy. Often, seemingly simple schemes have been parametrized so that they provide
rather accurate results. At all levels of approximations, embedding methods can operate in the different
categories in the BT classification scheme. This is sketched in the two-dimensional overview in Fig. 6.1.
In all cases further distinctions can be made according to the methods used for describing the active
subsystems. However, in most cases this does not affect the embedding methodology significantly, so
we will only make this distinction in a few cases.

Frozen-density embedding with approximate kinetic-energy functionals

The frozen-density embedding (FDE) scheme aims at providing a full description of environment effects
by approximating the exact embedding potential of Eqn. (6.11). However, for the exchange–correlation
functional Exc[ρ] and for the nonadditive kinetic-energy functional T nadd

s [ρI, ρII] (Eqn. (6.5)) and its
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functional derivative

vT [ρI, ρII](r) =
δT nadd

s [ρI, ρII]

δρI(r)
=
δTs[ρ]

δρ(r)

∣∣∣∣
ρtot

− δTs[ρ]

δρ(r)

∣∣∣∣
ρI

(6.33)

one now has to introduce approximations. Thus, in the interaction energy given in Eqn. (6.8) and in the
embedding potential the contributions of the kinetic energy and of the exchange–correlation energy are
approximated. The idea to use an approximate kinetic-energy functional to evaluate the interaction
energy between two fixed electron densities dates back to the work of Kim and Gordon.[287, 288]
Later, it was extended to electron densities determined using the above embedding potential, both in
subsystem approaches[264–266] and in embedding schemes.[263]

If both the active subsystem and its environment are described with DFT using an approx-
imate exchange–correlation functional that depends only locally on the electron density (i.e., LDA
or GGA functionals), the exchange–correlation contribution can be treated consistently. With hy-
brid functionals or with orbital-dependent exchange–correlation potentials, a local functional has
to be used for the nonadditive exchange–correlation contributions, which constitutes an additional
approximation.[289, 290]

Approximation to Tnadd
s [ρI, ρII] and vT [ρI, ρII].

With a local exchange–correlation functional, differences between a full DFT calculation and an em-
bedding treatment in which the densities of both subsystems are optimized are due to the approxima-
tions applied for the kinetic energy, provided that the full supermolecular basis set expansion is used
for both subsystems.[277, 291] Thus, comparing the electron densities from such calculations offers
a way for assessing the quality of approximations for vT [ρI, ρII], whereas a comparison of the total
energies also probes the quality of T nadd

s [ρI, ρII]. These strategies have been used to develop and tests
approximations both for the kinetic-energy component of the embedding potentials and to the nonad-
ditive kinetic energy. Here, we will only give a brief overview of the most widely used approximations
and highlight some more recent developments. Dedicated reviews on kinetic-energy functionals in
general[292, 293] and in the context of the FDE scheme[275] are available in the literature (for more
recent overviews, see, e.g., the introductions of refs. [276, 294–296]).

The simplest class of approximations applies an approximate kinetic energy functional in Eqn. (6.5)
as well as for the functional derivative in Eqn. (6.33). These are referred to as decomposable approxima-
tions. Early studies employed the well-known Thomas–Fermi functional, but following a series of tests
for hydrogen-bonded systems,[297, 298] Wesolowski proposed the use of generalized-gradient approxi-
mation (GGA) kinetic-energy functionals within the FDE scheme. In particular, he recommended[298]
the use of the PW91k functional of Lembarki and Chermette,[299] which has been used almost exclu-
sively in applications of the FDE scheme in the past decades. More recently, new GGA kinetic-energy
functionals have also been proposed for the use in decomposable approximations to the kinetic-energy
component of the FDE interaction energy and embedding potential.[296]

Several studies have assessed the quality of the available decomposable approximations. Gener-
ally, these provide a good accuracy of the electron densities and molecular properties as long as the
interaction between the subsystems is dominated by weak, non-covalent interactions such as hydrogen
bonding. This has, for instance, been demonstrated by comparing the electron densities obtained in
FDE calculations to those of a full treatment.[300, 301] For interaction energies, the PW91k approxi-
mation provides a typical accuracy of ca. 1–2 kcal/mol in hydrogen bonded complexes.[295]

Even though successful for weak interactions between the subsystems, several shortcomings of
the available decomposable approximations based on GGA functionals have been pointed out. In the
limit of infinitely separated subsystems the potential shows a wrong form at the frozen subsystem,
which affect the resulting orbital energies and can lead to spuriously low excitation energies.[302]
This shortcoming can partly be addressed with so-called non-decomposable approximations,[294, 302]
in which the non-additive kinetic energy or the potential vT [ρI, ρII] are approximated directly. Even
more severe is the failure of all presently available approximations for subsystems connected by covalent
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bonds,[301] even if these covalent bonds are very weak.[303] These problems have so far not been ad-
dressed satisfactorily, but recent work provides some possible directions for future improvements.[276]
Alternatively, the insufficiencies of the currently available approximations can be circumvented by
using a more general partitioning that introduces capping groups.[304]

DFT-in-DFT embedding.

Initial applications of the FDE embedding potential in combination with approximate kinetic-energy
functionals focussed on ionic crystals.[265, 266] This initial work aimed at a subsystem formulation of
DFT, and treats all subsystems—in this case the individual ions—on the same footing, i.e., the density
of all subsystems are optimized iteratively in freeze-and-thaw iterations. In the scheme of Cortona,
only spherical ions are considered and the embedding potential is spherically averaged.[305–307] Mehl
and coworkers extended this scheme to general, non-spherical fragments.[308–310] Wesolowski and
Warshel pioneered the use of the approximate FDE embedding potential in applications that focus on
a specific subsystem of interest, while its environment is kept frozen.[263] Their initial applications
concerned the solvation of lithium ions in water as well as the solvation free energies of water and
methane. In these applications, an additional approximations was introduced: Instead of obtaining
the electron density ρII of the environment from a full DFT calculation (or from a fully self-consitent
subsystem DFT calculation), it was approximated as the sum of the densities of isolated solvent
molecules. Such approximate ways of constructing the environment density are key to efficient DFT-
in-DFT FDE calculations.

The applications discussed so far focussed on ground-state properties. Excited states can be
treated in such DFT-in-DFT embedding calculations either with a state-specific approach or within
response theory. A state-specific approach is realized if excited states of the active subsystem are
described using a ∆DFT or ∆SCF-DFT approach (see section 5.1). This was applied by Wesolowski
and coworkers to study crystal field splittings for impurities in ionic crystals[311–313], using the
ground-state embedding potential also for the excited states.

As outlined in section 6.1, the FDE theory can also be extended to a description of excited
states within response theory, in particular with TDDFT. In applications of such an approach, one
usually—in addition to the use of approximations to the kinetic-energy contribution to the embedding
kernel—introduces approximations for the treatment of the embedding contributions to the response
equations (Eqn. (6.21)). The simplest approximation is to neglect the off-diagonal coupling blocks F I,II

int

and F II,I
int arising from the embedding contribution.[314] This leads to a decoupling of the response

equations of the two subsystems, and the energies of local excitations of the active subsystem can
be determined by considering only the matrix F I,I = F I + F I,I

int, where the additional embedding
contribution is determined by the embedding kernel given in Eqn. (6.23). Such an approximation
corresponds to a neglect of the response of the environment.

Such a scheme can be employed for the calculation of solvent effects on local excitation ener-
gies by combining it with approximate construction of the solvent electron density.[315] Because the
TDDFT response calculation is limited to the active subsystem describing the solute molecule this
results in an efficient treatment and allows for the inclusion of large frozen solvent shells as well as an
averaging over a sufficient number of solvent structures. The simplest approximation for the solvent
density is to use the sum of the densities of isolated water molecules. Such a description can be
further refined by updating the density of a few solvent molecules close to the active subsystem in
freeze-and-thaw iterations.[269, 316] Similar schemes can be used to treat local excitations in protein
environments.[317, 318]

With a fixed frozen density, such FDE calculations correspond to electronic embedding in the
BT classification. Accounting for the ground-state polarization of the environment leads to a polariz-
able embedding scheme, but within the approximation discussed so far the polarized response of the
environment density is not included. A discussion of these different contributions and a comparison
to a polarizable QM/MM description can be found in ref. [319].

A computational strategy for an efficient treatment of the full embedding contributions to the
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response matrices has been devised by Neugebauer.[281, 282] In his subsystem TDDFT scheme, off-
diagonal coupling contributions to the response matrices are not neglected. Instead, the excitation
energies of the individual subsystems are determined first, and in a second step the coupling contribu-
tions are included only for those excitations that are of interest. This allows for an efficient treatment
of both the polarization of the environment[282, 320] and of couplings between local excitations.[281]
Neugebauer and coworkers have employed their scheme in several studies of photosynthetic systems, in
particular light harvesting complexes.[317, 321] At about the same time of paper D.3, Pavanello looked
at the question of coupled excitations from the perspective of Dyson equations[283], and in the years
that followed Wasserman and coworkers have investigated the time-dependent formulation of partition
DFT[322–324]. Pavanello and coworkers have also reported a real-time TDDFT implementation[325],
based on a periodic implementation of FDE[326, 327], as well as different FDE-based approaches to
treat charge-transfer processes[328, 329]. Recent reviews on the calculation of excitation energies with
subsystem TDDFT and on the related applications are available[24, 330–332].

WFT-in-DFT and WFT-in-WFT embedding.

The application of the FDE embedding potential in combination with approximations for the kinetic-
energy functional for embedding a wavefunction based description of the active subsystem in an envi-
ronment described by DFT (WFT-in-DFT embedding) was pioneered by Carter and coworkers.[271,
333] Their work focussed on the description of molecules absorbed on metallic surfaces. Their pilot
application concerned the description of ground-state properties of CO on a Cu(111) surface and used
a scheme in which the density of the active subsystem is obtained with CI or CASSCF and is updated
iteratively, while the total density is obtained from a periodic DFT calculation and is kept fixed.
Subsequently, this scheme was extended to the treatment of excited states within these state-specific
methods for the active subsystem to describe the local excitations of CO on a Pt(111) surface.[334, 335]

The limitations of these scheme where addressed in later work, in which the constraint that
the total density is kept fixed was relaxed.[336, 337] Instead, the environment density is chosen as
ρII = ρtot− ρbare

I , where the total density is obtained from a periodic DFT calculation and ρbare
I is the

density of the isolated subsystem I. This environment density is then kept frozen, i.e., the polarization
of the environment is only included through the periodic DFT description, but not updated according
to the wavefunction based calculation. This scheme has been applied in a number of studies of
ground state properties[338–341] and of local excited states.[342] For a review of these WFT-in-DFT
embedding approaches and their applications, see ref. [21–23].

For the calculation of excitation energies, wavefunction based methods are often required be-
cause of the well-known limitations of TDDFT, but nevertheless a DFT calculation provides an ad-
equate ground-state density. Therefore, a simplified WFT-in-DFT embedding scheme, in which the
embedding potential is obtained from a DFT-in-DFT embedding calculation (either using a fixed ap-
proximate environment density or an environment density polarized in freeze-and-thaw iterations) has
been proposed in paper D.1. This simplified scheme has been applied to study electronic excitations
of heavy element species in ionic crystals (papers D.1 and D.6) or surrounded by noble gas species
(paper D.4) using IHFSCC and DFT methods. The performance of this approach is discussed below.

In applications of WFT-in-DFT embedding, the response of the environment via the intra-
subsystem kernel contributions has been accounted for in papers D.3 and D.5, with a first application
for WFT-in-WFT embedding for local excitation by Höfener and Visscher[284], who later extended
this work to describe coupled excitations[285] in an approximate (RI-CC2) formalism[343].

With the time-independent wavefunction based methods that were mainly employed (i.e., CASSCF,
CI, and IHFSCC), the incorporation of the response of the environment is possible by using state-
specific embedding potentials.[279, 344] While the state-specific approach can be computationally ad-
vantageous as it avoids the calculation of a large number of excited states on both subsystems, it has the
disadvantage of making it more difficult to calculate transition moments since the different electronic
states of the active subsystem will no longer be orthogonal. In connection to state-specific approaches,
the question of whether external orthogonality would be required between the subsystems[345] has



6.2. Approximate Embedding Methods 59

been posed, but recent works show that for linearly independent basis FDE would not require it.[346]

Frozen-density embedding with optimized effective potentials

For calculating local excitations and other local molecular properties, FDE calculations employing
approximate kinetic-energy functional can provide an accurate description of environment effects in
certain cases. In particular, the available approximations are applicable if the interaction between
the subsystem of interest and its environment is weak or dominated by electrostatic interactions.
However, even in these cases the available approximations to the kinetic-energy component vT [ρI, ρII]
of the embedding potential have deficiencies. These inevitably introduce small, but sometimes not
negligible errors into the calculated excitation energies. These can be reduced by increasing the size
of the active subsystem, but especially in WFT-in-DFT embedding calculations this is not desirable
and often not feasible. On the other hand, a description of covalent bonds between subsystems is not
possible with the currently available approximations.

Therefore, variants of the FDE scheme that avoid such approximations for the kinetic-energy
functional or its functional derivative have been developed in recent years by several groups. The
evaluation of the kinetic-energy component vT [ρI, ρII] of the embedding potential requires the evalua-
tion of the functional derivative of the noninteracting kinetic-energy functional Ts[ρ] for two different
densities, the total density ρtot = ρI + ρII and the density of the active subsystem ρI. By using the
Euler-Lagrange equation for the KS system of noninteracting electron with a given, fixed density ρ(r)
this functional derivative can be related to the local potential vs[ρ](r) that has this density ρ(r) as its
ground state,[347]

δTs[ρ]

δρ(r)
= −vs[ρ](r) + µ, (6.34)

where µ is a constant shift that is related to the chemical potential. Thus, the kinetic-energy compo-
nent of the embedding potential can be evaluated from[302]

vT [ρI, ρII](r) = vs[ρI](r)− vs[ρtot](r) + ∆µ (6.35)

as the difference between the local potentials yielding the density of the active system and the total
density, respectively. These local potentials yielding a certain density can be evaluated numerically.
Different algorithms for such a potential reconstruction (often also referred to as optimization of
effective potentials or OEP methods) have been developed. In the context of embedding calculations,
the algorithms of van Leeuwen and Baerends [139] and of Zhao, Morrison, and Parr (ZMP) [348] as
well as schemes based on the direct optimization algorithm of Wu and Yang (WY) [349] have been
employed. While the van Leeuwen–Baerends and the ZMP schemes employ a numerical representation
of the potential on a grid, the algorithm of Wu and Yang expands the potential in a suitable basis
set. Even though the details differ, all embedding schemes avoiding approximations for vT [ρI, ρII] are
based on such an optimization of an effective potential.

Within DFT-in-DFT embedding schemes, approaches calculating an approximate embedding
potential are usually computationally not advantageous, especially if one is only interested at ground-
state properties. For determining the embedding potential, one or more calculations on the full
system are required, which embedding schemes usually aim to avoid. Nevertheless, such calculations
can be employed to demonstrate that schemes based on the embedding potential of Eqn. (6.11) do
indeed reproduce the electron density of a full calculation. Moreover, the reconstruction of accurate
embedding potentials can further guide the development of new approximations to the kinetic-energy
component of the embedding potential vT [ρI, ρII]. The latter was the aim of the study of Fux et al.[276],
and a similar study performed by Goodpaster et al.[350] However, such schemes are not suitable for
practical calculations. Therefore, Goodpaster et al. extended their scheme[351] by introducing a
pairwise approximation that relies on a further partitioning of the frozen environment density (see
Eqn. (6.2). Instead of calculating the kinetic-energy component of the embedding potential as in
Eqn. (6.35), it is approximated as

ṽ
(pair)
T [ρI, ρ

(n)
II ] ≈

∑
n

vs[ρI]− vs[ρI + ρ
(n)
II ] (6.36)
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This approximation turns out to be very accurate for small water clusters, and might provide a
way to the efficient simulation of condensed-phase systems. More recently, Artiukhin et al. [352]
have performed calculations of local excitations with reconstructed potentials. While their approach
required KS-DFT calculations on the total system and the use of a localization procedure in order
to divide the system into subsystems, the TD-DFT calculations – which can amount to a substantial
part of the calculation – were performed only for the active subsystems. Their results underscore the
important gain in accuracy afforded by replacing the kinetic energy density functionals.

As a DFT calculation on the full system might be less expensive than the correlated WFT
calculation on the small subsystem, the use of accurate embedding potentials becomes a much more
feasible proposition for WFT-in-DFT embedding schemes. This was realized by Roncero et al., who
were the first to propose the use of OEP methods in the context of WFT-in-DFT embedding.[353] Their
scheme starts with a DFT or HF calculation on the full system, from which the total electron density
ρtot(r) is obtained. This density is then partitioned into an active subsystem and its environment, and
an accurate embedding potential for the active subsystem is determined with the ZMP algorithm by
requiring that the chosen density of the active subsystem is reproduced in a DFT or HF calculation.
This potential is then included in the wavefunction based treatment of the active subsystem. Note
that, even though no approximate kinetic-energy functional is used, such a scheme still introduces
several approximations. First, the total electron density is calculated with approximate DFT or HF.
Second, neither the total density nor the embedding potential are refined to account for the difference
between the DFT or HF electron density and the one obtained from a correlated wavefunction based
treatment (i.e, an accurate DFT-in-DFT embedding potential is used as approximation to the WFT-
in-DFT embedding potential). Finally, when constructing a suitable partitioning of the total density,
it is difficult to ensure that the subsystem densities are vs-representable. In particular when localized
orbitals are employed, these densities usually contain nodes, which makes them difficult to reproduce
with a local potential expanded in a finite basis set (see also the discussion in refs. [276, 354, 355]). To
address the latter problem, Roncero et al. extended their scheme to allow for an iterative refinement
of the density partitioning.[356]

However, as for the DFT-in-DFT studies in refs. [276] and [350] discussed above, the resulting
density partitioning — and thus also the embedding potential — are not unique. This shortcoming
was addressed by Carter and co-workers, who defined a unique partitioning by using the idea of
partition density-functional theory (P-DFT) of Wasserman and co-workers[267, 357] to require that
the active subsystem and its environment share a common embedding potential.[278] Subsequently,
they presented a reformulation of the embedding theory in terms of an optimization of the embedding
potential, that allows for a conceptually simple implementation of WFT-in-DFT embedding schemes
that do not rely on approximate kinetic-energy functionals.[358, 359] Even though results were only
presented for DFT-in-DFT embedding calculations, this scheme can be easily extended to obtain
accurate WFT-in-DFT embedding potentials, provided a correlated WFT method that allows for an
efficient calculation of the electron density is used.

In such a complete WFT-in-DFT scheme (i.e., one in which the density calculated with WFT
is used to construct an accurate embedding potential), the only remaining approximations are those
inherent to the (approximate) WFT treatment of the subsystem of interest and the (approximate)
DFT treatment of the environment as well as the use of an approximate functional for the exchange–
correlation component of the embedding potential. However, all these approximations are justified and
controllable. The largest remaining obstacle for such complete WFT-in-DFT schemes is the need for
OEP methods. In combination with a finite orbital basis set the reconstruction of the local potential
corresponding to a given density is an ill-posed problem.[360, 361] Therefore, the embedding potentials
obtained with finite-basis set OEP methods are in general not unique. This will affect the energy and
density from a correlated WFT calculation on the active subsystem as well as molecular properties.
Thus, numerically stable OEP methods that provide unambiguous embedding potentials are required
[362–364] and a new approach addressing these issues has been developed recently.[365]

The existing complete WFT-in-DFT methods using accurate embedding potentials[278, 358]
can also be applied directly to a state-specific WFT approaches for calculating excited states. This
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can either be done in an approximate fashion using a common frozen environment density or in a full
treatment that determines a state-specific embedding potential. However, the extension to response
theory is still an open issue, because this will also require the calculation of an accurate kinetic-energy
contribution to the embedding kernel, unless a hybrid approach – where embedding potentials are
obtained with OEP and the kernel and any other higher-order contributions with approximate kinetic
energy density functionals – is put in place.

6.3 Actinyls in Cs2UO2Cl4

Having discussed in section 5.3 the electronic spectra calculations for actinyl species in the gas-phase, I
now turn my attention to the electronic spectra in the Cs2UO2Cl4 crystal for uranyl (pure crystal) and
neptunyl (which is taken as a impurity) using FDE. The full studies can be found in appendices D.1
for neptunyl and D.6 for uranyl, respectively. For neptunyl we have relied exclusively on IHFSCCSD
calculations with a two-component Hamiltonian and double-zeta basis sets, whereas for uranyl we
were able to perform four-component calculations with triple-zeta basis sets and both IHFSCCSD and
CAM-B3LYP. In all cases, embedding potentials were constructed with the ADF code with triple-
zeta basis sets, the spinfree ZORA Hamiltonian and the PW91k kinetic energy density functional, and
exported to be used in Dirac with the help of the PyADF scripting framework (see paper D.2 for a
detailed description of PyADF).

The Cs2UO2Cl4 crystal [214] is composed by a network of actinyl tetrachloride dianions sur-
rounded by cesium cations. In it, the actinyl tetrachloride species shows a C2h site symmetry, slightly
deviating from the D4h structure due to the plane containing the chloride being slightly tilted. This
species is particularly well-suited as a benchmark system for theoretical approaches as its electronic
spectra as been experimentally investigated in great detail (one-photon [366] and two-photon [367]
absorption measurements for the valence excited states, for excited states [368] and for core excita-
tions [369]).

Before discussing any results, it is important to address the question of how to partition the
system into active and environment subsystems. Here the goal is to try using the smallest possible
active subsystem that can still capture the essential physical processes behind the property we want
to model. Since we are interested in the electronic spectra of actinyl chorides (AnO2Cl2−4 , An = U,
Np), we have the choice of considering an actinyl chloride species as the active subsystem and the
rest of the crystal as the environment, or attempt a partition where the chlorides ligands are part
of the environment as well. This second approach, if suitable, is interesting from the perspective of
computations (it reduces the size of the system on which we will compute excitation energies) as well
as of analyses (it makes it easier to relate the results to the bare uranyl results).

Once the partition into subsystems is chosen, a second point to be addressed is how the different
components of the total system are to be treated. In figure 6.2 one finds the models for the active
subsystems and environments explored for uranyl chloride: first, there are four models for which
interactions with the host crystal are not take into account: apart from the bare uranyl (model a),
which has been discussed in section 5.3, there is a rather crude model (model b) which consists of
considering the equatorial ligands as point charges, and another (model c) in which the chlorides are
represented by an embedding potential from FDE; and finally (model d) we consider the complete
uranyl chloride. In model (c) one would have the choice of performing subsystem DFT calculations
(e.g. optimizing both the uranyl and the chlorides’ densities via freeze-thaw cycles) or via FDE (where
the chlorides’ densities would be determined from a calculation on the isolated subsystem and used
to construct the embedding potential). In all of these we have maintained the idealized D4h structure
(though calculations are performed in D2h symmetry).

In models (e) and (f) the host crystal is represented by a two-layer model: the first layer consists
of an ensemble of 20 uranyl chloride units and about 90 cesium ions surrounding the active subsystem,
treated via FDE, whereas the second layer (not shown) is composed of a large array of point charges
obtained in such a way as to represente the long-range electrostatic potential in the solid. As can
be seen in figure 6.2, models (e) and (f) differ in the subsystems which are allowed to have their
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densities related: in (e) only the equatorial chlorides are relaxed, and in (f) the freeze-thaw procedure
is extended to the cesium ions nearest to the active uranyl unit. Since in these models we employ
the X-ray structure, we retain in the calculations the C2h symmetry. In the case of four-component
calculations, this has as consequence the use of complex algebra and a memory usage that is twice as
large as the calculations in D2h symmetry.

Figure 6.2: Models for the description of environment effect on actinyl chloride species. Models
without the crystal environment: (a) the bare actinyl; (b) actinyl with point-charge embedding; (c)
actinyl with FDE embedding; (d) actinyl chloride. Models including the crystal environment (shown
to the right), including the relaxation of the environment densities of: (e) only the neareast chlorides;
(f) the nearest chlorides and 12 cesium ions. (uranium: black; oxygen: red; cesium: purple; chlorine:
green)

In table 6.1 selected results from papers D.6 and D.1 are shown. It should be noted that in the
latter models (e) and (f) were not explored, and the two-layered model was used together with the
neptunyl chloride as the active subsystem. Starting with the neptunyl results, we see that the simple
point-charge embedding (model b) is far from being a quantitatively correct model but it does get the
correct ordering of states with respect to neptunyl chloride (model d) and experiment and is off by
about 1000 cm−1 for the three lowest excited states but shows significantly larger discrepancies for the
Π states. We see that model (c) represents a major improvement over model (b), yielding results that
are quite close to model (d) and to experiment, even though in both cases the energy of state V is still
strongly overestimated with respect to experiment. Here it is important to note that if the equatorial
ligands are not relaxed, as is the case in model (c)†, results are no better than those for model (b).
Because of this finding, in paper D.6 we have only performed calculations where the chlorides’ density
was relaxed.

The addition of the crystal environment (model (e)‡) hardly affects states II and III but does
shift states I, IV upward by about 200 and 800 cm−1 with respect to model (d), and state V by
about 4000 cm−1. We did not attempt to explore the reasons for such discrepancies, and it would be
interesting to verify whether this is due to the deficiencies in the model space, the orbital basis, or
some other factor. In comparison to the prior work of Matsika and Pitzer [370], we see that our WFT-
in-DFT calculations are closer to experiment for the first three states, but show poorer agreement for
the Π states.

Considering now the case of uranyl chloride, we again see that model (c) is a rather good
approximation to model (d), yielding excitation energies that are roughly 1000 cm−1 lower than
those from model (d) for all states considered. While we believe this is a rather good accuracy for
such a simple model it may be that the agreement to model (d) may still be improved if the kernel
contributions to the excitation energies are included. These were not taken into account in paper D.6
in order to better compare to the IHFSCC results, for which kernel contributions are not yet defined.



6.3. Actinyls in Cs2UO2Cl4 63

Table 6.1: f -f excited state energies (in cm−1) for AnO2+
2 and AnO2Cl2−4 (An = U, Np), obtained with

the inclusion of environment effects via point-charge, DFT-in-DFT and WFT-in-DFT Embedding.
All calculations were performed using the X-ray structures [214] (rNpO = 1.775 Å, rNpCl = 2.653 Å,
rUO = 1.774 Å, rNpCl = 2.675 Å). Results taken from papers D.1 and D.6.

Excited Electronic States
Ac Method/Model I II III IV V VI VII VIII

∆3/2u + Φ5/2u ∆5/2u Φ7/2u Π1/2u Π3/2u

Np IHFSCC/Q (b) 2093 8032 7828 23326 26321
(c)† 2243 8150 7677 23323 26433
(c) 690 7108 8176 18870 21776
(d) 886 7679 9262 20018 22445
(e)‡ 1156 7738 9137 20857 26305
SO-CI (AIMP) [370] 1663 5775 8463 18367 20575
Exp. [215] 900-1050 6880 7890 17241 20081

B2g B3g B1g Ag B2g B3g Ag B1g

U CAMB3LYP (b) 17265 17265 16341 16239 17681 17681 19394 19660
(c) 18115 18115 18321 17981 19565 19565 20539 20829
(d) 19018 19018 19934 19288 20970 20970 21745 21592
(c’) 18114 18112 17975 18317 19568 19552 20536 20825
(e) 18134 18136 17938 18263 19520 19501 20514 20826
(f) 18119 18120 17913 18236 19494 19475 20494 20085

IHFSCC/Q112(c) 17998 17998 18705 19409 20689 20689 21797 21855
(c’) 18151 18154 18874 19522 20860 20843 21944 22025
(f) 18128 18124 18816 19492 20760 20768 21848 21905
Exp. [371] 20095.7 20097.3 20406.5 21316 22026.1 22076 22406 22750

† FDE calculation without freeze-thaw procedure.
‡ Active subsystem is NpO2Cl2−4 , instead of NpO2+

2 as in figure 6.2

Model (d) shows very good agreement overal with experiment, usually underestimating the transition
energies with respect to the latter by about 1000 cm−1. One slightly unfortunate feature of CAM-
B3LYP in this case is that the ordering of the lowest states does not conform to the experimental
assignment (the first Ag should not be lower than the first B1g, for instance). This comparison so far
can only be made on the basis of CAM-B3LYP calculations, as we were unable to perform IHFSCCSD
calculations on uranyl chloride due to convergence difficulties. That said, the IHFSCCSD/Q112 results
we have for models (c) show no such change in the ordering of states. Unlike the case of neptunyl,
adding the crystal environment (models e and f) has a rather limited effect on the excitation energies,
both for DFT-in-DFT and WFT-in-DFT results, with shifts of the order of 100 cm−1. A closer
inspection shows that this is due to the fact that the crystal environment lowers the energies of the
occupied and virtual spinors by roughly the same amount so that the effect largely cancels out for
excitation energies.

In addition to the electronic spectrum, we have investigated the effect of the environment on
the ionization potential for uranyl chloride in the gas-phase and in the Cs2UO2Cl4 crystal. From
our results for the first ionization potential, summarized in Table 6.2, we see that WFT-in-DFT
calculations yield results which are in very good agreement with experiment for the gas-phase (model
c) and far superior than the results from the simple point-charge embedding (model b). As we used the
same static embedding potential obtained from DFT-in-DFT calculations in both DFT-in-DFT and
WFT-in-DFT calculations, the underestimation seen for CAM-B3LYP arises form the use of spinor
energies as an approximation to the ionization potential. The difference of about 1 eV with respect
to the IHFSCCSD results is furthermore in line with what has been observed for uranyl, NUN and
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NUO+.

For the IHFSCCSD calculations, we see that the effect of employing a reduced virtual space
(IHFSCCSD/Q1) brings about a slight decrease (0.3 eV) of the ionization energies and by chance
brings it closer to experimental the experimental result of Dau and coworkers [372]. One should recall
that in all of our models we use the X-ray structures and therefore have not investigated whether
using the complex’s geometry in the gas-phase would lower the calculated ionization energies and
bring them closer to the experimental values. Other source of errors in our calculations that could
bring the ionization energies down are the lack of higher-order correlation corrections such as triples
that could help to capture further relaxation effects (these are not available for IHFSCC), as well as
the use of an embedding potential obtained for the non-ionized species – after ionization, we expect
a non-negligible change in the environment due to a polarization induced by the now even more
positively charge uranyl subsystem, that could help lower the energy required to ionize the species.

For the calculations in the Cs2UO2Cl4 crystal, we have the same difference of about 1 eV between
WFT and DFT results. However, a result that is surprising at first glance is the better agreement of
CAM-B3LYP with experiment (about 0.1 eV difference) than IHFSCCSD (1 eV difference). While we
have not yet performed and further explorations on this matter, we note that in the ionization from
a solid the final state will be stabilized due to the polarization of the species’ closest environment,
which is something our calculations have not taken into account, and in other halide crystals such a
relaxation has been estimated to be of about 1eV [371]. Assuming this to hold in our case, our values
would have to be decreased by the same amount and we would be in a similar situation as for the gas-
phase, with IHFSCC being quite close to the experimental results and CAM-B3LYP underestimating
the ionization energies.

Table 6.2: CAM-B3LYP and IHFSCCSD absolute ionization energies (in eV), corresponding to ion-
ization from the highest e1u occupied spinor, for different models for embedded uranyl.

phase Method/Model IP

gas-phase CAM-B3LYP(b) 6.16
IHFSCCSD/Q2 (b) 7.78
CAM-B3LYP(c) 4.24
IHFSCCSD/Q2 (c) 5.81
IHFSCCSD/Q1 (c) 5.51
Exp. [372] '5

Cs2UO2Cl4 CAM-B3LYP(f) 9.32
IHFSCCSD/Q1(f) 10.61
Exp. [371] '9.4

From these results we see DFT-in-DFT and WFT-in-DFT embedding allow us to define relatively
compact models for the actinyl species in environment such as ionic crystals, where only the actinyl
species is taken as the active subsystem and equatorial ligands and other species in the vicinity
are treated as an effective potential. This model has introduced errors of the order of hundreds of
wavenumbers for neptunyl, and of about a thousand wavenumbers for uranyl, but we cannot tell at
this point whether this will remain the case for other species such as plutonyl, or for different ligands.
Furthermore, we have been able to show that the crystal environment does not greatly affect excitation
energies – thus justifying the approach taken in most investigations to ignore long-range interactions
– but its proper description is absolutely vital for other properties such as ionization potentials.
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6.4 The shortcomings of the kinetic energy density functionals:
CUO-Ng complexes

The promising results obtained for actinyl species discussed above motivated us to, in paper D.4, use
WFT-in-DFT and DFT-in-DFT to try to shed some light on the question of what is the ground-
state for the CUO molecule in neon and argon noble gas matrices. Our expectation was that since
the interaction between CUO and the noble gases is weak, approximate density functionals such as
PW91k would not have difficulty in describing the non-additive kinetic energy contributions to the
embedding potential. Here one should recall that the non-additive kinetic energy contributions to
the embedding potential act to offset the strong attraction between the electron density of the active
subsystem and the nuclear framework in the frozen subsystems, and if this balance between repulsion
and attraction is not achieved, the electron density will tend to spuriously localize on, or around, the
frozen subsystem [302, 373, 374].

Much to our surprise we observed that, while this held true to a good extent for neon, as the
noble gas became heavier there was a marked deterioration of results. This can be seen, first, by
comparing the energies of the valence orbitals for conventional DFT calculations on the CUO-Ng4

complexes and those for the CUO in subsystem calculations using the PW91k functional, shown in
figure 6.3: there, we see that the unoccupied fσ orbital that in conventional DFT calculations should
be destabilized along the series until it becomes close in energy to the highest δ component, whereas
the φ and the other low-lying δ orbitals should be stabilized and become very close in energy for Ng
= Xe. For the embedding calculations, however, the trends are nearly opposite to that: while there is
a destabilization of the fσ orbital for Ng = Ne, this orbital gets strongly stabilized along the series,
and both the φ and the other low-lying δ orbitals become destabilized.

Figure 6.3: Lowest-lying valence orbital energies of the CUO (1Σ+) and the CUONg4(1A1) com-
plexes from the supermolecular and DFT-in-DFT/PBE0 calculations using the PW91k kinetic energy
functional. Orbital energies are given relative to the energy of HOMO for all the compounds.

Other measures of the difficulties of the approximate kinetic energy density functionals are the
integrated errors in the electron density [375], as well as the errors in the dipole moments, between
the supermolecular and subsystem calculations shown in table 6.3. From the table we see that if the
∆rms and, particuarly, |∆µ| are reasonable for FDE calculations for Ng = Ne, already for Ng = Ar
they increase significantly and remain large for Ng = Kr, Xe. This indicates spurious localization of
charge in these species.

In order to better understand what is causing such behavior, it is instructive to look at figures 6.4
to 6.7, where plots of the embedding potentials and the different contributions to it are plotted along
the Ng-U-Ng bond for an idealized structure in which the noble gas species are on the same plane
as the uranium atom. Even though in paper D.4 we investigated the Thomas-Fermi kinetic energy
functional as well as a scheme to enforce exact conditions a posteriori [302], in these figures only results
for the PW91k (the one yielding the smallest absolute errors in the electron density for most systems)
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and NDSD [294] (constructed with the goal of correcting for spurious charge localization by enforcing
exact conditions at the nuclei of the frozen subsystems) functionals are shown.

Table 6.3: Integrated errors in the electron density: ∆abs (absolute) and ∆rms(root mean square),
magnitude of the error in the dipole moment |∆µ| for the sum of fragments and the DFT-in-DFT/PBE0
calculations with a different approximate non-additive kinetic energy functionals. The most accurate
values are marked in boldface.

System ∆abs × 10−3 ∆rms × 10−3 |∆µ|(D)
1CUONe4 Sum of fragments 1.35 0.99 0.183

FDE (NDSD) 4.84 0.03 0.033
FDE (PW91K) 2.32 0.02 0.010

1CUOAr4 Sum of fragments 2.76 1.39 0.354
FDE (NDSD) 1.40 0.06 0.139
FDE (PW91K) 1.39 0.07 0.261

1CUOKr4 Sum of fragments 2.71 1.23 0.225
FDE (NDSD) 1.10 0.06 0.115
FDE (PW91K) 1.03 0.06 0.188

1CUOXe4 Sum of fragments 2.27 0.11 0.205
FDE (NDSD) 1.41 0.07 0.222
FDE (PW91K) 1.40 0.08 0.302

The figures show an important difference between the Ng = Ne and the other cases, in that
the embedding potentials (red curves) pass from having a small repulsive wall (at about 3 Å from
the uranium atom) to showing a well at roughly the same position, that can contribute to artificially
localizing charge in the region between the uranium and noble gas atoms. In the idealized structures
this would have no effect on the dipole moment, but in the actual CUO-noble gas complexes where
the uranium is slighlty above the plane defined by the ligands, such a charge accumulation will lead to
a modified dipole moment. The change from a repulsive to an attractive interaction in the region of
the noble gases also goes towards explaining, for instance, why the fσ orbital which is mostly located
at the region between the noble gas ligands and the CUO molecule as shown in figure 2 of paper D.4,
is not shifted upward along the series for the embedding calculations and is instead stabilized. Our
calculations also underscore the difficulty of improving functionals such as Thomas-Fermi or PW91k
by enforcing when the nuclear charge is very large as done for NDSD – though it must be said that
these aproaches have mostly been developed and validated with relatively light elements in mind. We
observe that while qualitatively both PW91k and NDSD yield the same results (though PW91k does
perform slightly better overall), PW91k potentials are in general much smoother than NDSD ones in
the vicinity of the atoms in the environment.

Table 6.4: Low-lying SOC vertical excitation energies of the CUO and CUONg4 complexes from
IHFSCCSD-in-DFT. via sector (0h, 2p), embedding potential from DFT-in-DFT calculations using
the PW91k kinetic energy functional.

State CUO CUONe4 CUOAr4 CUOKr4 CUOXe4
3Σ+

0,1† 0.81 1.02 0.85 0.76 0.65
3Φ2 0.94 0.84 0.89 0.93 0.97
3Φ3 1.01 0.94 0.98 1.02 1.06

† Difference between 3Σ+
0 and 3Σ+

1 is less than 0.01 eV

In spite of these shortcomings, it is nevertheless instructive to see how these perform in WFT-in-
DFT calculation, and to what extend we can obtain qualitative trends that would point to a possible
change in ground state. IHFSCCSD-in-DFT results with embedding potentials obtained with the
PW91k functional are presented in table 6.4 for some of the low-lying states. We have not explored
the use of NDSD potentials for the calculation of excited states, but given their less smooth behavior
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one may wonder how suitable they would really be for such calculations. From these calculations we
observe that environment effects are probably not sufficient to change the nature of the ground-state,
but do seem enough to place the 3Φ2 state below – or at least very close to – the 3Σ+

0,1 states and
therefore may well change the ordering of the excited states. But without performing calculations
with more accurate potentials (possibly such as those obtained with OEP approaches) one cannot rule
out such changes.

Tecmer and coworkers have recently tried to address the question with DMRG calculations on
the neon and argon complexes [376], and have concluded on the basis of spin-free calculations that
such a change is possible. However, considering the importance of dynamical correlation effects for the
CUO system discussed in section 5.4 these DMRG results (which are not guaranteed to account for
most of the dynamical correlation effects) must be viewed with caution, and I consider this question
is still not fully resolved.

Figure 6.4: Embedding potentials for the CUO-Ne4 complex employing the PW91k and NDSD kinetic
energy functionals

Figure 6.5: Embedding potentials for the CUO-Ar4 complex employing the PW91k and NDSD kinetic
energy functionals

6.5 FDE Second-order magnetic properties: formalism and first
applications

In what follows I outline the development of FDE for the calculation of second-order magnetic prop-
erties for a four-component relativistic Hamiltonian, discussed in detail in paper D.7 along with the
study of H2X–H2O (X = Se, Te, Po) model systems of selected properties. It should be noted, in
contrast to the great activity in determining excited state properties with FDE, there has been next to
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Figure 6.6: Embedding potentials for the CUO-Kr4 complex employing the PW91k and NDSD kinetic
energy functionals

Figure 6.7: Embedding potentials for the CUO-Xe4 complex employing the PW91k and NDSD kinetic
energy functionals

no activity on the calculation of magnetic properties, even though Jacob and Visscher [377] have out-
lined the theory in 2006 (and shown how promising the method is in a first application [378]) bar the
implementation of indirect spin-spin constants [379]. These works mostly focused on non-relativistic
Hamiltonians, though they can be used with the approximate ZORA Hamiltonian as well. This makes
ours the first effort in a four-component framework.

Before outlining the theory for FDE, we recall that for closed-shell systems, a static magnetic
field induces only even-order changes in the total energy: [380]

E(ε) = E0 +
1

2

d2E

dε1dε2
ε1ε2 +

1

4!

d4E

dε1 . . . dε4
ε1 . . . ε4 + . . . (6.37)

where E0 denotes the energy at zero field and {εn} the field strengths of applied perturbations collected
in vector ε. The coefficients of this expansion, taken in the zero-field limit, define molecular properties
in the Born–Oppenheimer approximation. The focus here is on three second-order magnetic properties
arising from a perturbation of an external field ~B or the field of nuclear magnetic dipole moments,
{~mA}: the NMR shielding tensor of a nucleus K,

σKαβ =
d2E

dBαdmK;β

∣∣∣∣
~B,{~mA}=0

, (6.38)

the reduced spin-spin coupling tensor of nuclei K and L,

KKL
αβ =

d2E

dmK;αdmL;β

∣∣∣∣
{~mA}=0

, (6.39)
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related to the indirect spin-spin coupling constants observed in NMR experiment,

JKL = (h̄/2π)γKγLK
KL
αβ , (6.40)

with γM denoting the gyromagnetic ratio of a given isotope of M , and the molecular magnetizability
tensor,

ξαβ = − d2E

dBαdBβ

∣∣∣∣
~B=0

. (6.41)

Subsystem time-independent linear response (LR) theory

Considering now the case of time-independent perturbations with strengths ε1 and ε2, the second-order
molecular property can be written as:

d2E

dε1dε2

∣∣∣∣
ε=0

=
∂2E

∂κpq∂ε2

∂κpq
∂ε1

∣∣∣∣
ε=0

+
∂2E

∂ε1∂ε2

∣∣∣∣
ε=0

, (6.42)

assuming that the energy is optimized with respect to variational parameters at all field strengths,
∂E/∂κpq = 0. The first contribution is determined perturbatively, with the first-order orbital rotation
amplitudes, ∂κpq/∂ε1, obtained from the LR equations:

0 =
d

dε1

(
∂E

∂κpq

)∣∣∣∣
ε=0

=

(
∂2E

∂κpq∂ε1
+

∂2E

∂κpq∂κrs

∂κrs
∂ε1

)∣∣∣∣
ε=0

, (6.43)

which can be recast in a matrix form as: [176]

0 = E[1]
ε1 + E

[2]
0 Xε1 . (6.44)

Here, E
[2]
0 is the electronic Hessian, E

[1]
ε1 the property gradient and Xε1 the solution vector yielding

{κε1rs}. While the Hessian is independent on a perturbation, the property gradient is calculated as the
first-order derivative of the KS matrix with respect to field strength of applied perturbation,

E[1]
ε1 =

[
gε1

g∗ε1

]
, gε1ai =

∂Eε1
∂κ∗ai

∣∣∣∣
0

= 〈0|[−â†i âa, ĥε1 ]|0〉 = −F̃ ε1ai . (6.45)

In particular, if ε1 = ~B, the property gradient is calculated in OMO basis and requires additional con-
tributions involving derivatives of LAOs and of matrices T [192, 194]. Once Xε1 has been determined,
one can construct the static linear response function:

〈〈ε1; ε2〉〉0 = E[1]†
ε1 Xε2 = −E[1]†

ε1

(
E

[2]
0

)−1
E[1]
ε2 (6.46)

which constitutes the response contribution to the molecular property expressed by the first term
of Eq. 6.42. The second term of Eq. 6.42 can be thought of as an expectation value, which due
to the linearity of the DC Hamiltonian in applied perturbations (see Eq. 5.106) is non-zero only in
perturbation-dependent basis sets. This brings about to the final form of the properties mentioned
above:

KKL
αβ = 〈〈mK;α;mL;β〉〉0 (6.47)

σKαβ = 〈〈mK;α;Bβ〉〉0 (6.48)

ξαβ = −
(
〈〈Bα;Bβ〉〉0 +

∂2E

∂Bα∂Bβ

∣∣∣∣
0

)
(6.49)

with the LAO basis used for the last two.

The properties in question being static (=time/frequency-independent), we can consider the
zero-frequency limit of the embedding response formalism discussed above and arrive, as shown in
detail in Paper D.7, at equations analogous to Eqs. 6.42 and 6.43, where the electronic Hessian and
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property gradient are subdivided into isolated subsystem and interaction contributions, leading to a
(coupled) system of LR equations

(E
[2];M,M
0 + E

[2];M,M
0;int )XM

ε1 + E
[2];M,N
0;int XN

ε1 = −(E[1];M
ε1 + E

[1];M
ε1;int), (6.50)

E
[2];N,M
0;int XM

ε1 + (E
[2];N,N
0 + E

[2];N,N
0;int )XN

ε1 = −(E[1];N
ε1 + E

[1];N
ε1;int), (6.51)

where the response vector has also been split into blocks pertaining to each subsystem, Xε1 =
[XM

ε1 ; XN
ε1 ]†. The matrix elements of each subblock have the form

E
[2];M,M
0 =

∂2EM
∂κMpq∂κ

M
rs

; E
[2];M,N
0;int =

∂2Eint
∂κMpq∂κ

N
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(6.52)

for the Hessian and

E[1];M
ε1 =

∂2EM

∂κMai ∂ε1
; E

[1];M
ε1;int =

∂2Eint

∂κMai ∂ε1
(6.53)

for the property gradient. The Hessian terms will have the same general form as in the case of electric
perturbations, but will contain additional terms due to the spin-density contributions in the (S)DFT
framework. The embedding contributions to the property gradient and expectation values, which have
respectively the general form
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∂2Eint
∂ε1∂ε2

∣∣∣∣
0

=
∑

M=I,II

∫
δEint

δρMk

∂2ρMk
∂ε1∂ε2

∣∣∣∣
0

+
∑

M,N=I,II

∫∫
δ2Eint

δρMk δρ
N
k′

∂ρMk
∂ε1

∣∣∣∣
0

∂ρNk′

∂ε2

∣∣∣∣
0

. (6.55)

are identically zero unless the (generalized) density components carry a dependence on the pertur-
bation. This is the case for electric properties (and because of that we have not explicitly carried
over these terms) and for the indirect spin-spin couplings, but in the case of NMR shieldings and
magnetizabilities the use of London atomic orbitals introduces such a dependency and therefore these
terms should be considered.

By evaluating the partial derivatives we have the expressions for the property gradient for the
determination of NMR shieldings and magnetizabilities in (M 6= N),

∂

∂Bα

∂Eint

∂κMai
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0

= −
∫
vMemb;k(~r)Ω̆

Bα;M
ia;k d~r (6.56)

−
∫∫

wM,M
emb;k,k′(~r1, ~r2)ΩM

ia;k(~r1)Ω̆Bα;M
jj;k′ (~r2)d~r1d~r2 (6.57)

−
∫∫

wM,N
emb;k,k′(~r1, ~r2)ΩM

ia;k(~r1)Ω̆Bα;N
jj;k′ (~r2)d~r1d~r2. (6.58)

containing embedding potential and embedding kernel contributions, the latter being further subdi-
vided into intra-subsystem and coupling contributions as was the case for the Hessian. The expectation
value embedding contributions to the magnetizabilities can also be subdivided into intra-subsystem

∂2EMint
∂Bα∂Bβ
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0

=

∫
vMemb;k(~r)Ω̆

BαBβ ;M
ii;k d~r (6.59)

+

∫∫
wM,M
emb;k,k′(~r1, ~r2)Ω̆Bα;M

ii;k (~r1)Ω̆
Bβ ;M
jj;k′ (~r2)d~r1d~r2, (6.60)

and coupling contributions

∂2EMN
int
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∣∣∣∣
0

=

∫∫
wM,N
emb;k,k′(~r1, ~r2)Ω̆Bα;M

ii;k (~r1)Ω̆
Bβ ;N
jj;k′ (~r2)d~r1d~r2, (6.61)

both containing embedding kernel terms.
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Tensor Expressions for the molecular properties and their representation in terms
of magnetically induced currents

The theory discussed above is sufficient to determine the properties of interest in the subsystem ap-
proach. However, these properties can also be presented in a different mathematical form using the
linearity of the 4c DC Hamiltonian in applied perturbations, complemented by the formulation involv-
ing magnetically induced current densities, which more directly conveys the physical characteristics
of each property. In what follows, we use the definitions of Mason [381] for the isotropic and the
anisotropic parts of a tensor.

NMR shielding and indirect spin-spin coupling tensors

The NMR shielding or the NMR indirect spin-spin coupling tensors in Eqs. 6.47 and 6.48 can be recast
in a computationally advantageous form [192] in terms of expectation values involving the hyperfine
operator for a nuclei L, the unperturbed spinors |ψi〉 and the first-order perturbed spinors [192, 194]
|ψ̃εii 〉, yielding the general expression

M ε;L
αβ =

∑
i

{
〈ψ̃εαi |ĥmL;β

|ψi〉+ 〈ψi|ĥmL;β
|ψ̃εαi 〉

}
. (6.62)

The expression for the shielding tensor σLαβ is therefore obtained from Eq. 6.62 employing the spinors

perturbed by the external magnetic field (ε = B), |ψ̃Bαi 〉, and by the same token the spin-spin coupling
tensor KKL

αβ is obtained by employing the spinors perturbed by the nuclear magnetic dipole (ε = ~mK),

|ψmK;α

i 〉.
In the FDE case, as each subsystem is described by its own set of externally-orthogonal orbitals,

we can rewrite the expression in Eq. 6.62 as

M ε;L
αβ =

∑
i∈I

{
〈ψ̃εαi |ĥmL;β

|ψi〉+ 〈ψi|ĥmL;β
|ψ̃εαi 〉

}
+
∑
j∈II

{
〈ψ̃εαj |ĥmL;β

|ψj〉+ 〈ψj |ĥmL;β
|ψ̃εαj 〉

}
(6.63)

The FDE expression for σLαβ or KKL
αβ can be further approximated by neglecting the terms arising

from subsystem II. In the case of NMR shieldings, assuming nucleus L belongs to subsystem I,
this approximation should be good, especially if the overlap between two subsystems is small, but
whatever the case we can estimate this missing contribution by the magnetically-induced current
density formulation outlined in section 6.5. For the spin-spin tensor this approximation should also
be good due to the local nature of the hyperfine operator, if both K and L belong to subsystem I (a
restriction in our current implementation).

Magnetizability tensor

Contrary to NMR properties, the magnetizability tensor is not a local property as the Zeeman operator
(Eq. 5.106) affects the whole system. It can be expressed in terms of the sum of (interacting) intra-
subsystem and inter-subsystem contributions

ξαβ = ξ
I,(II)
αβ + ξ

II,(I)
αβ (6.64)

where
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. (6.65)

Tensors in terms of induced currents

The first-order derivatives of the relativistic current density vector with respect to perturbations [382],

~j ε1(~r) = −e
∑
i

{
ψ̃ε1†i c~αψi + ψ†i c~αψ̃

ε1
i

}
(6.66)
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allow to construct property densities [383], which may be visualized on a grid and integrated – giving
the value of the corresponding property. Thus, the properties discussed here can be written as:

σKαβ = − 1

c2

∫
1

r3
K

(
~rK ×~j Bα

)
β
d~r, (6.67)

KKL
αβ = − 1
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∫
1
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(
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)
β
d~r. (6.68)

ξαβ = −1

2

∫ (
~rG ×~j Bα

)
β
d~r. (6.69)

where the first-order current density perturbed by an external magnetic field is calculated with
LAOs [384].

NMR shieldings

The DC calculations of isotropic and anisotropic parts of NMR shielding tensor are summarized in
Table 6.5. We present only the results for nuclei of the active subsystem (H2X): the heavy center
(X) and the hydrogen involved in the hydrogen bond (Hb). In the table we shall present the results
in terms of the difference (∆) between the refence calculations on the dimers and the subsystem
treatment, be it with FDE our without the inclusion of electronic contributions to embedding – we
note that, since the structures have been optimized for the dimer (see paper D.7 for further details), the
structures resemble in fact what would be closer to the outcome of a mechanical embedding calculation
than of calculations on truly isolated subsystems. Furthermore, in the case of FDE calculations, we
introduce additional notation in order to discern FDE-LAO contributions to the property gradient
(NMR shielding and magnetizability) and to the expectation value (magnetizability), which can be
either neglected (FDE[0]), limited to the embedding potential (FDE[v]) or to the embedding potential
and the uncoupled kernel (FDE[v+wu]) or also incorporating the coupling kernel (wc) terms (FDE[v+
wall]).

We see from our results for isotropic shieldings that FDE calculations generally outperform the
calculations on the isolated subsystems. A striking trend for the shielding on the heavy elements
is that the discrepancy between the dimer and FDE results decreases as the element becomes heav-
ier, whereas the difference between the reference calculations and those for the isolated subsystems
grows. Interestingly, the same is not seen for Hb, for which the agreement of both FDE and isolated
calculations with the reference ones improves with increased atomic number of the heavy center.

For the anisotropy, on the other hand, if FDE still outperforms the calculations on isolated
subsystems, its agreement with the reference is not very good and actually deteriorates as the systems
become heavier. From the more detailed analysis of our results in paper D.7, we believe the key to
further improve these results is in ameliorating the leading FDE-LAO contribution which arises from
the inclusion of the embedding potential to the property gradient (v), and a possible way to do so is
via the use of accurate approximations to the non-additive kinetic energy contributions, as recently
done by Artiukhin for TDDFT [352].

These tendencies can be better seen in the plots of the differential isotropic shielding density in
figures 6.8 for the heavy centers and 6.9 Hb, respectively. These figures exhibit positive (pink) and
negative (blue) isosurfaces, which, respectively, depict more shielded and more deshielded areas in a
dimer than in the embedded subsystems, and which upon integration give the corresponding values
of ∆σisoliso .

We observe from figure 6.8 that the plots are rather similar for Se and Te nuclei, exhibiting
small negative isosurfaces centered on a heavy nucleus, surrounded by much larger positive isosurface
elongated on X-Hb bond. In case of Po the differential shielding density is represented by much
more complex isosurfaces around heavy center, as the negative isosurface centered on Po is larger
than observed for Se and Te and surrounded by many well-separated positive lobes. This indicates
that even though the property shift ∆isol

iso (Po) turns out to be relatively modest compared to the
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Table 6.5: Absolute Dirac-Coulomb isotropic and anisotropic shielding values (σsuperiso and σsuperaniso , in
ppm) of nuclei in H2X (X = Se, Te, Po) subsystems in H2X-H2O, and absolute shifts (∆σ, in ppm)
for the isolated (“isol”) and embedded (“FDE”) H2X molecules in the presence of H2O. For FDE the
values for different approximations in the FDE-LAO treatment (c : [v +wu], d : [v +wall]) are shown.

Atom σsuperiso ∆σFDEiso[c] ∆σFDEiso[d] ∆σisoliso σsuperaniso ∆σFDEaniso[c] ∆σFDEaniso[d] ∆σisolaniso

Se 2378.03 -12.55 -12.33 38.25 609.27 -0.43 -0.19 0.17
Hb 30.88 -0.67 -0.62 -2.09 22.19 5.76 5.70 7.29

Te 4667.85 -9.16 -8.88 67.48 1189.67 -1.22 -1.21 3.60
Hb 35.62 -0.44 -0.42 -1.70 14.59 0.24 0.28 -1.31

Po 13985.80 -3.52 -3.13 137.84 5556.67 -18.36 -18.61 -463.51
Hb 40.80 -0.09 -0.09 -0.57 105.25 -1.67 -1.67 -6.01

Figure 6.8: Differential isotropic shielding density isosurfaces (isovalues at +0.53 ppm (red) and -
0.53 ppm (blue))for XH2 - H2O systems for X = Se, Te, Po, calculated as a difference between
dimer shielding densities and the sum of subsystem shielding densities approximated as: (a) isolated
fragments (b) FDE[0](c) FDE[v] (d) FDE[v+wu] (e) FDE[v+wall]. Color of atoms: X (blue), O(red),
H(grey).

value of the absolute shielding, it is a result of shielded and deshielded areas cancelling out upon
integration, reflecting the intricate interplay between environmental and relativistic effects, which are
quite different for Te and Se.

Towards the heavier neighbouring center, hydrogen nuclei experience larger HALA effects [385],
as reflected by increasing absolute values of σsuperiso (Hb) contributing to the shielding of Hb nuclei in
figure 6.9 and competing with the deshielding effect caused by the interaction with water molecule.
We also observe the difference in the non hydrogen bonded hydrogen shielding between PoH2 and the
other species, which could also be a consequence of the HALA effect.
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Figure 6.9: Differential isotropic shielding density isosurfaces (isovalues at +0.53 ppm (red) and -0.53
ppm (blue))for Hb in the XH2 - H2O systems, calculated as a difference between dimer shielding
densities and the sum of subsystem shielding densities approximated as: (a) isolated fragments (b)
FDE[0](c) FDE[v] (d) FDE[v+wu] (e) FDE[v+wall]. Color of atoms: X (blue), O(red), H(grey).

Magnetizabilities

The magnetizability tensors calculated with the DC Hamiltonian are summarized in Table 6.6, where
we present the isotropic (ξiso) and first anisotropy (ξaniso1) values. Due to it being an extensive
property, in the case of subsystem calculations the total tensors are obtained as the sum of tensors for
each subsystem.

An interesting aspect of magnetizabilities is that its value in a molecule can be very well approx-
imated by a sum of contributing atomic susceptibilities [386–388], with only few exceptions [386, 389]
The approximate additivity of magnetizability tensor, known as the Pascal’s rule [390, 391], has been
attributed to the local diamagnetic nature of atoms in molecules [392, 393] and the breakdown of this
rule to the ”long-range circulation of electrons” not accounted for in the atomic picture [392]. Recent
studies have shown that Pascal’s rule is particularly useful when analysed in terms of the magnetically
induced current density, as the interaction of induced currents in neighbouring molecules and the
increase of paramagnetic component of magnetizability tensor can be connected to the breakdown of
the additivity rule.

As can be seen in Table 6.6, the ∆ξisoliso values are small along the series, so that one could
consider that Pascal’s rule holds rather well here, whereas for anisotropies we see an increase in
∆ξisolaniso1 with increased atomic number of the heavy center. Moreover, the latter change sign along
the series, indicating a complex interplay between relativistic and environmental effects. FDE-LAO
contributions are also present in the property gradient for magnetizabilities, and for them we have
found that the inclusion of FDE-LAO kernel contributions are even more important than for NMR
shieldings in bringing about a good agreement with the reference calculations. We observe that for Se
FDE is outperformed by the isolated calculations, but for Te and in particular for Po, FDE is much
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Table 6.6: Dirac-Coulomb isotropic and first anisotropic magnetizabilities (ξiso and ξaniso1, in SI
units) and absolute shifts (∆σ, in SI) for the H2X-H2O (X = Se, Te, Po) systems as well as for the
H2X and H2O subsystems, the latter as isolated species (”isol”) or via FDE calculations. In the case of
subsystem calculations the total ξiso and ξaniso1 were obtained as the sum of the subsystem values. For
FDE the values for the different approximations in the FDE-LAO treatment (c : [v+wu], d : [v+wall])
are shown.

System ξsuperiso ∆ξFDEiso[c] ∆ξFDEiso[d] ∆ξisoliso ξsuperaniso1 ∆ξFDEaniso1[c] ∆ξFDEaniso1[d] ∆ξisolaniso1

SeH2-H2O -836.26 4.06 4.04 0.05 -57.94 -6.31 -6.28 -5.47
TeH2-H2O -1080.67 1.74 1.66 -4.28 -81.63 4.19 4.39 4.73
PoH2-H2O -1184.04 -0.13 -1.15 -9.92 -89.81 8.22 9.21 8.71

Figure 6.10: Streamline plots (xy plane, z = 0) of magnetically induced current densities for (a)
reference calculations on the dimer; (b) subsystem calculations with FDE; and (c) calculations on
isolated subsystems. The coordinates of Po and O are approximately (-5,0) and (5,0), respectively.

closer to the reference, even though the inclusion coupling kernel term for Po makes the agreement
worse.

The good agreement between reference and subsystem magnetizabilities can be perhaps better
understood by comparing the streamline plots for the total magnetically induced currents (shown in
figure 6.10 for the Po system, on the plane containing the H-bond) since, from Eq. 6.69, the magne-
tizability is proportional to the induced current. There, we have a hard time to visually distinguish
the difference in current between the reference calculations, the FDE-LAO and the isolated subsystem
ones. If, on the other hand, we plot the difference in current between the reference and each of the
subsystems, we see that in the vicinity of the molecules, the plot corresponding to “reference - FDE”
shows a larger area where there are no currents (and therefore the FDE and reference one are nearly
the same), whereas the plot of “reference - isolated” such a cancellation is less marked. That said,
there is still a significant portion of the plots where there appears to be significant differences between
the reference and subsystem calculations.

This preliminary analysis makes it clear, in my view, that in order to gain a better understanding
of the behavior of subsystem calculations of magnetic properties, it is crucial to analyze the induced
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currents and property densities as done here. In the case of the former, we should follow in the
footsteps of Kiewisch [300] and perform a topological analysis of the induced current, as preconized
by Bader [388] and Lazzeretti [394, 395].



Chapter 7

Perspectives

The previous chapters have underscored the successes of relativistic multireference and single-reference
correlation approaches to determine electronic spectra and properties for heavy element systems in
the gas-phase and, with the aid of FDE, in condensed phases as well. In the discussion some of the
challenges faced by these approaches have also become clear. It is my intention to outline the actions
I intend to take, over the course of the next years, to address these challenges.

7.1 The treatment of electron correlation for open-shell ground
and excited states

The (IH)FSCCSD approach has been shown to yield very accurate results for vertical and adiabatic
excitation energies, electron affinities, ionization potentials and equilibrium bond lengths – though
vibrational frequencies tend to be overestimated – provided suitable model spaces can be selected.

A first important shortcoming of this approach has to do with convergence difficulties arising
from the presence of intruder states that often manifest themselves despite the use of the intermediate
Hamiltonian formulation. This makes (IH)FSCC a cumbersome method to use in exploring potential
energy curves/surfaces (as attested in the case of the I−3 , and of actinyl species) or for investigating
states arising from excitations of subvalence or innermost electrons (as discussed for TsO or the species
isoelectronic to the bare uranyl).

A second shortcoming has to do with the current (IH)FSCC implementation in Dirac, which
can treat states that differ from the closed-shell reference by the addition/removal of up to two
quasiparticles. This has two undesirable consequences: it renders a great deal of lanthanide, actinide
and transition metal species exhibiting three or more unpaired electrons out of reach (PuO3 being
the latest example I encountered), but also does not allow for relaxation of configurations that belong
to different Fock-space sectors as it would be necessary to describe f6 or f8 species, which can be
considered relativistic closed shells (such as the Eu(III) ion or the Pu atom).

Third, employing a true multireference approach such as (IH)FSCCSD to investigate molecules
whose ground-state is well-represented by a closed-shell (such as uranyl (VI) species) has turned out in
practice to be rather costly in terms of computer resources (memory and disk usage) and human inter-
vention (setting up model spaces, controlling convergence). In these circumstances, approaches such as
EOM-CC offer the possibility of doing away with these difficulties with only a modest (if any) decrease
in accuracy. The same can be said of some radical species (such as the XO and I3 species), whose
ground and excited states can be reached by electron attachment or electron detachment calculations
from a closed-shell reference.

In view of these, I believe it is time to pursue a more flexible strategy in Dirac to address coupled

77



78 7. Perspectives

cluster calculations for excited states of both open and closed-shell species. In my future research I
therefore plan to follow two directions: first, to pursue the development of EOM-CC approaches
covering the sectors of Fock space currently covered by the (IH)FSCC implementation. Second, to
focus on expanding the current (IH)FSCC implementation so that higher and mixed sectors [237, 396]
of Fock space (for example, (2, 1), (2, 2) or (3, 1)) can be reached.

My main focus in the short term will be to continue working on EOM-CC approaches, to
capitalize on our recent implementation of EOMCC-EE/EA/IP excitation energies and first-order
properties. The discussion in chapter 5 shows that we can treat ionized states with the same accuracy
as (IH)FSCC, and the results of our study on UO2+

2 indicate EOM-CC should provide a very good
approximation to the (1, 1) sector. One interesting extension to the EOM code would be the implemen-
tation of EA/IP approaches to treat ionized states corresponding to the (0, 2) and (2, 0) (or higher)
sectors. These approaches have been implemented for non-relativistic Hamiltonians and appear to
be sufficiently accurate[81–83, 397] and it would be quite interesting to see how these compare to
(IH)FSCC. Even if they are only reliable enough to obtain semi-quantitative results, I’d still consider
their availability to be of great value by eliminating the need of setting up model spaces and investi-
gating convergence issues due to intruder states. Another development that may be potentially useful
to improve the accuracy for singly excited energies is the implementation of the similarity-transformed
EOM-CC (STEOM-CC) approach, which aims to bring EOM-CC closer to FSCC by carrying out a
second similarity transformation on the Hamiltonian. I believe these efforts on the EOM-CC imple-
mentation will be useful in setting up the infrastructure for attacking the implementation of higher
and mixed sectors of Fock space.

Prior to that, however, I am interested in addressing a very important aspect currently lacking
for excited states in Dirac: the inclusion of triples (and higher) corrections. For higher sectors of Fock
Space previous studies on atomic systems have shown these are essential to retain the accuracy [398]
found for lower sectors with the CCSD approach. Furthermore, their absence for the lower sectors
prevent us from estimating the relative importance of higher-order correlation effects on our results
(for the energies), and may well be the missing ingredient to obtaining vibrational frequencies in good
agreement with experiment. The inclusion of triple excitations is a rather challenging aspect, due to
their steep computational cost, scaling as N7 for non-iterative approaches and N8 for iterative ones.

For EOM-CC I plan to start exploring noniterative schemes such as the Λ-(EOM-)CCSD(T)
approaches introduced by Bartlett and coworkers [77] which is closely related to the usual CCSD(T)
method and is applicable both to the single-reference CC and EOM-CC cases (and seems to correct
for the wrong dissociation behavior of CCSD(T) for a closed-shell reference), and other approaches
(see [399] and references therein) for correcting EOM-IP states. In the long run, however, it will
be important to have an implementation of iterative triples, since these would be necessary for the
Fock-space implementation of higher sectors and, as we shall discuss below, for the determination of
molecular properties.

Finally, while I believe coupled cluster approaches will remain the methods of choice for ac-
curately determining the electronic structure of species containing one or two heavy centers with
partially filled f, d shells, this will likely not be the case for systems containing several such centers,
as it is the case polyoxo and other species currently receiving a fair amount of interest in the research
on magnetic materials or otherwise. Thus, it will be important in the coming years to closely follow
the development of approaches such as DMRG in the relativistic domain [400] which can also include
dynamical electron correlation in an efficient manner. I intend to closely follow these developments
in the near future through the thesis of Sophie Kervazo, which I co-supervise with Valérie Vallet and
Florent Réal.
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7.2 The calculation of molecular properties with coupled cluster
approaches

A second major shortcoming in coupled cluster implementations in the Dirac code that requires
attention is the currently limited capability of determining molecular properties other than energies.
On a practical level that has prevented us, for instance, from calculating oscillator strengths for the
studies carried out with (IH)FSCCSD. But that also means that one misses a unique opportunity to
investigate properties for complex multireference ground states.

With the current EOM-CC implementation we are taking the first steps towards bridging this
gap since, as discussed before, once we obtain the left eigenvectors of the similarity transformed
Hamiltonian we have, in effect, the zeroth-order Lagrange multipliers required to define first-order
properties for the different excited states. While this is an interesting by itself, it also open interesting
perspectives in the context of FDE as it will be discussed below.

Our next goal within the EOM-CC framework (EOM-IP/EA/EE) is to lay out the framework to
calculate second-order properties arising from electric perturbations, such as electric polarizabilities,
which require at the very least the determination of first-order perturbed cluster amplitudes via
the solution of linear response equations. If one does not take into account orbital relaxation, via
the solution of CPHF equations, such an implementation requires relatively small additions to the
infrastructure put in place to obtain excitation energies, and I expect to be able to achieve it in a
relatively short time. Such a development will also contribute to other activities within the group, as
accurate polarizability values are of great importance to the development of polarizable force-fields
for heavy elements [36, 401].

For electric properties, the neglect of orbital relaxation has shown to be of relatively minor
importance, since the T1 amplitudes introduce a good deal of orbital relaxation. However, for prop-
erties arising from magnetic perturbation this is not a good approximation and the solution of CPHF
equations must be considered, especially if London orbitals are used. In the case of second-order
magnetic properties, which are currently of great interest to me in the context of FDE developments
and applications (as it will be discussed below), an additional complication in relativistic calculations
is that the diamagnetic contributions arise from rotations between electronic and positronic solutions,
and therefore such a relaxation must also be taken into account.

The proper solution to the question of orbital relaxation in general and specifically for the
case of magnetic properties will require significant efforts in terms of developing the formalism and,
more importantly, putting in place an efficient implementation. Such an effort is being discussed in a
collective manner within the community of Dirac developers to the coupled cluster model. I intend
to contribute to these efforts.

Apart from the activities mentioned above, which by and large focus on the EOM approach,
I believe it is important to construct a framework with which we can also implement properties for
(IH)FSCC wavefunctions, in the mid- to long-term, but keeping in mind the strategy outlined above
and focus on using Fock-space whenever one stands to have a significant advantage over the EOM
implementation(s).

7.3 Generalizing molecular properties for DFT-in-DFT and
CC-in-DFT embedding

FDE is an essential ingredient in my efforts to provide tools for the accurate modeling of molecular
properties of heavy element species in the condensed phase FDE, given its fully quantum-mechanical
nature and the seamless way with which it lets us combine DFT and coupled cluster approaches.

With the recent implementation of second-order magnetic properties at DFT-in-DFT level in
paper D.7, one clear short-term goal to me is to apply this implementation to systems of experimental
interest, even if intermediate benchmark studies will still be important due to the relative little ex-
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perience the community has in calculating magnetic properties with FDE. A particularly important
aspect in this exploratory phase will be to further develop the tools to visualize and analyze magneti-
cally induced currents, characterize how they differ between FDE and conventional DFT calculations,
and how such information could be used to devise better subspace partitioning schemes or, eventually
improve kinetic energy density functionals.

Looking beyond that, one can see that so far developments of FDE within the framework of
response have mostly focused on the linear regime, be it in the time-dependent or time-independent
cases, given the importance of second-order properties. This focus, however, has left something of a
blind spot in most if not all implementations, which are not sufficiently flexible to explore other, equally
interesting properties that can formally be associated with lighter orders in the response treatment –
a notable example is the two-photon absorption (TPA) cross-sections, which can be extracted from
quadratic response calculations – or even with second-order properties arising from mixing electric
and magnetic perturbations.

Dirac offers us a unique opportunity in that the response code is sufficiently general, and should
currently allow us mix magnetic and electric perturbations for second-order properties (though so far
no such calculations have been attempted) as well as to perform up to quadratic response calculations.
As such, I am very interested in attempting to formulate and implement FDE quadratic response in
order to obtain TPA cross-sections, as well as excited state properties such as dipole moments, first
at a purely DFT level (DFT-in-DFT) so that we can gain experience both in implementation and in
applications.

In order to tackle a quadratic response DFT-in-DFT implementation in Dirac, or even venture
in calculations involving mixed perturbations one must, however, first remedy the current limitation in
the FDE response implementation, as it does not allow us to calculate the coupling of the subsystems’
response to the perturbation (the off-diagonal blocks of the electronic Hessian in Eq. 6.26). Removing
this limitation will already be quite interesting, as we shall be able to calculate electric polarizabilities
or other second-order extensive properties in a subsystem manner, and will eliminate any handicaps
in future developments.

If these DFT-in-DFT developments are quite important in themselves, one should not loose from
sight that our ultimate goal is to develop CC-in-DFT approaches. As has been the case for DFT,
I see tremendous potential for applications of CC-in-DFT for the calculation of magnetic properties
such as NMR shieldings or indirect spin-spin couplings, provided the FDE description is sufficiently
accurate to justify the additional cost of performing coupled cluster calculations, as opposed to simply
performing standard DFT calculations on an extended system.

The implementation of CC-in-DFT in Dirac is in a much less advanced stage than for DFT-
in-DFT, so here I shall focus first on lifting the constraint of only performing calculations with the
so-called “static” potential approach outline in section 6.2 and paper D.1 by implementing the second-
order (kernel) contributions arising from the response of the embedding potential, since now with the
EOM-CC implementation we have the CC Jacobian at our disposal. The ability of describing the
coupling of the subsystems’ response to the perturbation will be of great importance for any further
extensions, so I shall focus on that after the intra-subsystem kernel contributions are implemented.

The extension of the FDE CC-in-DFT response implementation to magnetic properties, though
not strictly requiring the description of the coupling contributions, hinges nevertheless on the progress
of the standard implementation of coupled cluster NMR properties, and cannot be envisaged for the
immediate future.

7.4 Improving the accuracy of embedding approaches for strongly
interacting systems

Most FDE calculations are performed with approximate kinetic energy functionals since these are very
efficient from a computational standpoint and are often sufficiently accurate to describe relatively weak
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interactions such as hydrogen bonds – though as the example of our CUO(Ng)4 study attests D.4, it
can fail even in such weak interaction cases.

However, if FDE is to become a generally applicable approach, one must be able to have more
freedom in fragmenting the total system, including by cutting through covalent bonds, without a
significant worsening of accuracy. While it would be ideal, from the computational point of view, to
continue to rely on density functionals for obtaining the non-additive kinetic energy contributions to
the interaction energy, their relatively slow pace of development means that the alternative of approx-
imating the derivative of the non-additive kinetic energy contributions directly with OEP schemes is
likely the most efficient route to improve accuracy.

I am currently working with Christoph Jacob and Claudia Filippi on a practical realization of
such a potential reconstruction approach, and its application to WFT-in-DFT calculations. While our
results are promising, we have so far only investigated light systems and much can be improved in
terms of efficiency and modularity for its implementation. One aspect we wish to explore in the near
future is the construction of unique embedding potentials, in the spirit of [267, 402] since these would
greatly facilitate calculations with accurate potentials for several subsystems since they’d all share the
same reconstructed potential A second aspect is the scheme’s performance for heavy systems, and I
believe it would be important to revisit the CUO(Ng)4 case to see whether such approach would also
perform well for systems containing heavy elements.

On a practical level, one thing I intend to do is to work towards having a stand-alone version of
the code currently in use (which is strongly connected to the ADF suite) so that it can serve as a plat-
form for future developments as well as to be used by anyone that does not have access to ADF. From
there, a next step would be to verify the performance of such potentials in the calculation of molecular
properties, both at WFT-in-DFT and DFT-in-DFT. There, I would be particularly interested to see
whether such approaches can improve in any way our results for second-order magnetic properties for
lighter atoms, where we observed for instance a relatively poor performance for FDE in comparison to
heavy elements for NMR shieldings, as was the case for TDDFT excitation energies [352]. If results are
again promising, a next step would be to also reconstruct the derivative of the reconstructed potential
in order to see whether second-order (kernel) contributions to molecular properties, and consequently
the subsystem response coupling, would also be improved.

7.5 Combining a molecular description of properties with a
periodic description of the environment

All of the approaches I’ve developed and so far discussed in this manuscript have in common the fact
that they have been formulated and implemented for discrete molecular species, and when applied to
systems in the condensed phase, such as the Cs2UO2Cl4 crystal D.6 or for species in solution, we have
introduced approximations to the description of the environment beyond a certain distance from the
subsystem of interest.

These approximations include adding point charges surrounding the QM region treated with
FDE in order to properly represent the long-range electrostatic interactions with the bulk, or even
disregarding any long-range effects in property calculations and considering only structures determined
in the presence of such interactions as it is often the case of FDE calculations of solvent using snapshots
from molecular dynamics results.

While such embedded cluster approaches yield good results for localized electronic excitations,
one may wonder whether they would be equally effective in the case of molecules interacting with
extended, non-ionic materials – not to mention the fact that, from a practical perspective, the de-
termination of point charges for embedded clusters is somewhat cumbersome if one wishes to explore
different geometries for the molecule and interacting surfaces, or study the electronic relaxation of the
surroundings upon processes such as ionization.

I believe a more satisfying approach would be to make use of FDE to connect solid-state[326, 327]
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and molecular codes, as I’m currently pursuing in collaboration with the group of Prof. Pavanello at
Rutgers University Newark. We so far have only carried out preliminary assessments on light systems,
but are currently revisiting the ionization potential of uranyl chloride in the Cs2UO2Cl4 system, in
order to compare to our embedded cluster results.

My goal with this approach is to attempt to devise a computational protocol based on the
combination of periodic FDE calculations to obtain structures and molecular FDE calculations to
obtain molecular properties, and to apply it to the investigation of NMR spectra of heavy centers
for molecules adsorbed on surfaces. In this project corresponds as well to the PhD thesis of Yassine
Bouchafra, which started in October 2016.

Once such a protocol is validated, I intend to explore its use in other challenging cases, such as
in determining the magnetic properties and electronic spectra of polymetallic Mo6X2−

4 (X = halides)
species in solution [403]. These species, important as building blocks of different materials, still pose a
challenge to theory due to the size of the systems in the molecular dynamics and property calculation
steps, and I believe these difficulties can be surmounted with subsystem approaches.
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O. Vahtras, T. Helgaker and H. Ågren. J. Chem. Phys. 117, 9630–9645 (2002).

[125] Linear response at the 4-component relativistic density-functional level: application to the
frequency-dependent dipole polarizability of Hg, AuH and PtH2. P. Sa lek, T. Helgaker and
T. Saue. Chem. Phys. 311, 187–201 (2005).

[126] State-selective optimization of local excited electronic states in extended systems. A. Kovyrshin
and J. Neugebauer. J. Chem. Phys. 133, 174114 (2010).



90 Bibliography

[127] Double Pertubation Theory: a powerful tool in computational coordination chemistry.
J. Autschbach and T. Ziegler. Coord. Chem. Rev. 238/239, 83–126 (2003).

[128] F. Furche and D. Rappoprt, Density functional methods for excited states: equilibrium structure
and electronic spectra, in Computational Photochemistry, ed.M. Olivucci, vol. 16 of Computa-
tional and Theoretical Chemistry (Elsevier, Amsterdam, 2005).

[129] Prediction of molecular properties and molecular spectroscopy with density functional theory:
From fundamental theory to exchange-coupling. F. Neese. Coord. Chem. Rev. 253, 526–563
(2009).

[130] Assessment of Functionals for TD-DFT Calculations of Singlet-Triplet Transitions.
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M. Iliaš and T. Saue. J. Chem. Phys. 126, 064102 (2007).

[208] A mean-field spin-orbit method applicable to correlated wavefunctions. B. A. Hess, C. M. Marian,
U. Wahlgren, C. Teichteil, H. Fagerli and O. Gropen. Chem. Phys. Lett. 251, 365 (1996).

[209] On the combination of ECP-based CI calculations with all-electron spin-orbit mean-field inte-
grals. B. Schimmelpfennig, L. Maron, U. Wahlgren, C. Teichteil, H. Fagerli and O. Gropen.
Chem. Phys. Lett. 286, 267 (1998).

[210] The restricted active space (RAS) state interaction approach with spin-orbit coupling. P.-A.
Malmqvist, B. O. Roos and B. Schimmelpfennig. Chem. Phys. Lett. 357, 230 (2002).

[211] MOLCAS: a program package for computational chemistry. G. Karlström, R. Lindh, P.-A.
Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfen-
nig, P. Neogrady and L. Seijo. Comput. Mater. Sci. 28, 222 (2003).

[212] A two-step uncontracted determinantal effective Hamiltonian-based SO-CI method. V. Vallet,
L. Maron, C. Teichteil and J.-P. Flament. J. Chem. Phys. 113, 1391–1402 (2000).



Bibliography 95

[213] On the performance of the Intermediate Hamiltonian Fock-space coupled-cluster method on
linear triatomic molecules: The electronic spectra of NpO+

2 , NpO2+
2 and PuO2+

2 . I. Infante,
A. S. P. Gomes and L. Visscher. J. Chem. Phys. 125, 074301 (2006).

[214] Structure of Dicaesium Tetrachlorodioxouranium. D. J. Watkin, R. G. Denning and K. Prout.
Acta Cryst. C47, 2517–2519 (1991).

[215] The electronic structure of actinyl ions V. f−f transitions in [NpO2Cl4
–2] and [NpO2(NO3)3

– ].
R. G. Denning, J. O. W. Norris and D. Brown. Mol. Phys. 46, 287–323 (1982).

[216] Electronic Spectra and Excited States of Neptunyl and Its [NpO2Cl4]2– Complex. J. Su, W. H. E.
Schwarz and J. Li. Inorg. Chem. 51, 3231–3238 (2012).

[217] Actinyl ions in Cs2UO2Cl4. S. Matsika and R. M. Pitzer. J. Phys. Chem. A 105, 637–645 (2001).

[218] Interpretation of the solution absorption spectra of the (PuO2)2+ and (NpO2)+ ions. Eisenstein,
J C and Pryce, M H L. journal of research of the national bureau of standards - A. physical
chemistry 70A, 165–173 (1966).

[219] Investigation of the low-lying excited states of PuO2
2+. L. Maron, B. Schimmelpfennig, J.-L.

Heully, V. Vallet, U. Wahlgren and O. Gropen. Chemical Physics 244, 1–7 (1999).

[220] Can density functional methods be used for open-shell actinide molecules? Comparison with
multiconfigurational spin-orbit studies. C. Clavaguéra-Sarrio, V. Vallet, D. Maynau and C. J.
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Informatiques, Université de Lille 1, France
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“Thermodynamique, Fragmentation et Agrégation de systèmes moléculaires com-
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Appendix C

Calculations on Gas-phase species

This chapter presents the papers dealing with the application of electronic structure methods such
as IHFSCC, CASPT2 or MRCI in order to understand their accuracy with respect to experimental
results and their relative accuracy, on the basis of alculations on relatively small species in the gas-
phase. In C.1 we disciss the use of IHFSCC to calculate the f − f spectra of plutonyl and neptunyl
with the DC Hamiltonian for the first time in the literature.

The same approach is used to look at the other actinyl species in C.3 and investigate the
differences of IHFSCC and LRCC, or in C.2 to compare IHFSCC, CASPT2 and MRCI the I−3 .

The performance of different density functional approximations for excitation energies and ion-
ization potentials for uranyl and two of its isoelectronic species (NUN and NUO+)is discussed in C.4
with the spin-free DC Hamiltonian and, later, with the advent of accurate 2-component approaches,
this question is revisited in C.5. The performance of DFT and correlated wavefunctions is again
discussed in C.6 for halide oxides species IO and AtO and the respective cations.

Finally, the question of accurately establishing the nature of the ground-state for the ThF+

molecule, a prospective system for the experimental determinantion of the electron electric dipole
moment, is addressed in C.7.
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On the performance of the intermediate Hamiltonian Fock-space
coupled-cluster method on linear triatomic molecules: The electronic
spectra of NpO2

+, NpO2
2+, and PuO2
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In this paper we explore the use of the novel relativistic intermediate Hamiltonian Fock-space
coupled-cluster method in the calculation of the electronic spectrum for small actinyl ions �NpO2

+,
NpO2

2+, and PuO2
2+�. It is established that the method, in combination with uncontracted double-zeta

quality basis sets, yields excitation energies in good agreement with experimental values, and better
than those obtained previously with other theoretical methods. We propose the reassignment of
some of the peaks that were observed experimentally, and confirm other assignments. © 2006
American Institute of Physics. �DOI: 10.1063/1.2244564�

I. INTRODUCTION

Considerable attention has been paid to actinide chemis-
try in recent years, due to the need to find new techniques for
storage and reprocessing of spent nuclear fuel.1–3 One of the
most important steps of the plutonium uranium extraction
�PUREX� process remains the separation of uranium�VI�,
plutonium�IV�, and neptunium�VI� from fission products
with aid of the tributylphosphate �TBP� extractant. In this
process Pu4+ is complexed with two nitrate ions and two
TBP ligands, while the other two elements are extracted in
the form of the triatomic actinyls UO2

2+ and NpO2
2+.4

The small size of these actinyls makes calculations fea-
sible, and their energetical and structural parameters are rea-
sonably well characterized.5,6 Studies regarding the spectro-
scopic properties of actinyls focused mainly on the uranyl
ion, but some studies have also been performed on neptunyl
and plutonyl.7–9 All three actinyl molecules have rather dense
spectra due to the low-lying 5f and 6d orbitals localized on
the metal. This characteristic poses a challenge to the cur-
rently available theoretical models, as they should describe
the manifestation of relativistic effects as well as the multi-
reference character of many of the states that significantly
mix under the influence of spin-orbit coupling �SOC�.

Among the theoretical methods that have already been
used to investigate the spectra of small actinide compounds,
single-reference coupled-cluster �CC� theory, both in its non-
relativistic and relativistic formulations, is arguably the most
accurate method to calculate dynamic correlation energy. Its
applicability is, however, severely limited due to its inability
to handle states which have a considerable multireference
character.10 This has up to now left the spin-orbit complete-
active-space second-order perturbation theory �SO-CASPT2�
or spin-orbit configuration-interaction �SO-CI� methods as
the only choices for qualitative or quantitative determination
of spectra of neptunyl and plutonyl.

These methods, however, are not without important
drawbacks, namely, �a� SO-CI methods are reasonably good
for qualitative studies, but have difficulties in attaining quan-
titative agreement with experiment due to the lack of size
extensivity in the electron correlation treatment and to re-
strictions on the number of configurations that can be in-
cluded; and �b� SO-CASPT2, at present found to be the most
accurate method employed for these systems, due to its abil-
ity to handle the use of larger basis sets, has a steep compu-
tational scaling with active space size. This limits the flex-
ibility in choosing a suitable reference space and negatively
affects the quality of the calculated spectra.

It is therefore of interest to assess new methods which
could describe the electronic spectra of small actinyl ions
accurately while still possessing a reasonably low scaling
behavior. In this paper we explore the use of the intermediate
Hamiltonian Fock-space coupled-cluster �IHFSCC�
method11–14 as an alternative to SO-CASPT2 and SO-CI.
This method, while well established and routinely applied in
high accuracy calculations of atomic transition energies, has
scarcely been applied to molecular systems.15

The outline of the paper is as follows: in the Methodol-
ogy section we outline the characteristics of the IHFSCC
method and the computational procedure followed; in Re-
sults and Discussion, we first present a short analysis of the
f1 configurations, before moving on to our primary interest,
the study of the electronic spectrum of the f2 systems. The
computed bond lengths and symmetric stretch frequencies
for these gas phase model systems are also discussed, and we
conclude by comparing the results of the IHFSCC method to
other type of theoretical methods and experiments and dis-
cuss the merits and drawbacks of this method.

II. METHODOLOGY

Fock-space coupled-cluster �FSCC� methods16 have
been quite successful in computing the excitation energies of
atoms and molecules with very high accuracy.17 The methodsa�Electronic mail: visscher@chem.vu.nl
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scale like standard CC calculation �e.g., O�N6� for CCSD�,
but produce an effective Hamiltonian that, upon diagonaliza-
tion, yields the energy of several states at once. In this family
of methods, the IHFSCC approach18 represents a break-
through, as it greatly reduces the likelihood of intruder states
and associated convergence problems in the solution of the
CC equations.

The IHFSCC implementation used is that of the molecu-
lar four-component code DIRAC,19,20 in which the T1 and T2

excitation operators are included, giving an IHFSCCSD ap-
proach that allows for creation of at most two holes and/or
electrons outside the reference closed-shell system. While
DIRAC can work with various relativistic Hamiltonians, in
this application we have used the standard Dirac-Coulomb
Hamiltonian, which is capable of describing the strong rela-
tivistic and SOC effects in actinyls. As has become common
practice in the usage of DIRAC, we neglect contributions from
the �SS �SS�-type integrals, replacing them by a simple
correction,21 and employ a Gaussian finite nucleus model22

with this Hamiltonian. As with all FSCC methods, for the
IHFSCC approach the reference state must be a single deter-
minant. This means, in the case of PuO2

2+ and NpO2
+, that we

start, respectively, from the PuO2
4+ and NpO2

3+ species and
add the missing two open-shell electrons in the IHFSCC
step. This amounts to the addition of two particles in the P
space, following the sequence

�NpO2
3+

PuO2
4+ ��0h,0p� →�NpO2

2+

PuO2
3+ ��0h,1p� →�NpO2

+

PuO2
2+��0h,2p� ,

�1�

which is equivalent to calculating the first and second elec-
tron affinities for these highly charged systems. The restric-
tion to two creation operators means that quintet states, im-
portant at higher energies, are not included. Such states
belong to the �1h ,3p� sector of Fock space not yet available
in the currently CCSD-based implementation.

The equilibrium geometries and harmonic frequencies
for the ground and some of the excited states were deter-
mined by fitting tenth-order polynomials on discrete repre-
sentations of the potential energy surfaces. As these mol-
ecules are known to be linear in their ground state, we have
only considered the displacements along the symmetric
stretch of the An–O bonds �An=Pu,Np�. Under these cir-
cumstances, it is possible to exploit linear symmetry �D�h�
with the DIRAC program. Due to limitations in the computa-
tional resources, we did not explore displacements along the
other vibrational modes, as the lowering of symmetry
brought about by displacements along the asymmetric �C�v�
and bending modes �C2v� would have increased the compu-
tational costs significantly.

Since the starting point in the self-consistent-field �SCF�
calculations were ions with a +2 charge higher than the ac-
tual species, it was necessary to ensure that the ordering of
the spinors, particularly in the highest occupied molecular
orbital-lowest unoccupied molecular orbital �HOMO-
LUMO� region, was consistent and adequate for the subse-
quent correlation treatment. This made us reorder the spinors

in some cases, particularly for bond lengths larger than the
equilibrium distance, in such a manner that the 5f shells in
the starting species were always left empty.

The number of electrons correlated, apart from the two
electrons that are included during the IHFSCC treatment, is
24; 10 in spinors of g symmetry and 14 electron in spinors of
u symmetry. The virtual space was truncated by excluding
spinors with energies larger than 6 a.u. This cutoff is consis-
tent with our more extensive work on UO2 that will be re-
ported separately.23

For the IHFSCC calculations, a partitioning of the P ,Q
spaces, hereby named “IH-u,” was employed for all systems
considered. In this partitioning 25 spinors of u symmetry
were included in the P space. The P space was further par-
titioned as follows: the six lowest-lying unoccupied 5f
spinors from the Pu and Np atoms were included in the Pm

space, and the remaining 7p and 5f� spinors placed in the Pi

space. In the orthogonal Q space all virtual spinors of g
symmetry, and the spinors of u symmetry not included in the
P= Pm+ Pi, were included. To check convergence with active
space size, for PuO2

2+ and NpO2
+ a second partitioning,

hereby named “IH-u�g,” was also explored. This consisted
of the same Pm space as in IH-u, but with 20 spinors of g
symmetry added to the Pi space, in order to have a more
balanced description of the P space. The calculations with
the latter are substantially more demanding and turned out to
give negligible differences in excitation energies for states up
to 30 000 cm−1 relative to the IH-u space.

The basis set employed for the actinides was that of
double-zeta quality developed by Dyall.24 These sets were
used in their uncontracted form and are of size
26s23p17d10f1g1h. For oxygen the valence correlation-
consistent triple-zeta �cc-pVTZ� set of Dunning25 was used,
also in uncontracted form. It should be noted that the TZ set
was used here instead of the DZ set due to the need to add
additional tight functions in a relativistic calculation that
uses a nonrelativistic basis set. We also performed explor-
atory runs using a TZ quality basis set on the actinide
element �33s29p20d12f3g2h� on the equilibrium bond
distances. As there was little variation upon enlargement
�the excited states are shifted at most by about 200 cm−1 for
each of the excited states� and the computational cost for
each point on the potential energy surface scan was greatly
increased, we have opted to employ the uncontracted DZ set
on the heavy element.

III. RESULTS AND DISCUSSION

A. Electronic structure of the ground state of NpO2
3+

and PuO2
4+

As previously noted, to study the electronic spectrum of
NpO2

+ and PuO2
2+ using the IHFSCC approach one has to

start from a closed-shell model molecule, and then proceed
by computing the first and second electron affinities succes-
sively. Before discussing the results for NpO2

+ and PuO2
2+, we

first analyze the relative ordering of the virtual orbitals of
NpO2

3+ and PuO2
4+, as these give a first indication of the

expected low-lying states of the f2 ions. The ordering of the
5f orbitals is presented in Table I. It should be noted that the
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energies, given in relative energies for ease of comparison
with experimental results, are obtained not from the energies
of the virtual Hartree-Fock orbitals of the closed-shell sys-
tems, but rather from the excitation energies, calculated with
the IHFSCC method for the f1 molecules. These energies are
thus relative to the 2�u ground state that results from occu-
pying the 5f5/2

� orbital. For comparison we also show the first
electron affinities for the UO2

2+ molecule, which is isoelec-
tronic with NpO2

3+ and PuO2
4+.

A qualitative model for the electronic structure of actinyl
ions has been given by Matsika and co-workers.7,26 The low-
est two unoccupied orbitals are the nonbonding 5f� and 5f�

orbitals, which are fully localized on the metal ion. The
higher unoccupied orbitals are the antibonding combinations
of the oxygen 2p and metal 5f� and 5f� orbitals that are also
mainly localized on the metal. The nonbonding 6d� orbital
lies relatively high in neptunyl and plutonyl and only plays a
role in explaining the observed spectral intensities.26 In Fig.
1 we show the f1 affinities �in absolute values� computed
with the IHFSCC method. The increasing nuclear charge,
going from U to Pu, leads to a stronger binding of the elec-
trons in these isoelectronic systems. The lowering of the 5f
level is the most pronounced and results in bringing the less
shifted 6d and, in particular, the 7s and 7p levels, at too high
energies to be of relevance in Np�V� and Pu�VI�. All low-
lying excited states are thus well described in terms of the
5f2 configuration only. In UO2 the situation is different, since
for U�IV� the 6d, 7s, and 7p orbitals all lie at similar ener-
gies as the 5f’s, yielding a denser and more complicated
spectrum more easily perturbed by intermolecular interac-
tions. The UO2 molecule has attracted much attention lately
since matrix spectroscopy studies indicate that the ground
state in a neon matrix could differ from that in an argon

matrix.23,27–30 An investigation of UO2 employing the
IHFSCC method and including all relevant configurations
�5f17s1, 5f2, 5f16d1, and 5f17p1� will be reported
separately.23

In Table I, the available experimental values for f1

NpO2
2+ are also included. It should be noted that these ab-

sorption spectra were measured in water,31 but studies in
other polar solvents and crystals indicate that the transition
energies are not much affected by the environment.32–34 This

TABLE I. Correlated electron affinities of the 5f , 7s, and 6d orbitals for the UO2
2+, NpO2

3+, and PuO2
4+

molecules computed from sector �0,1� of the IHFSCC calculations. The correlation space was �24e /6 a.u.�, with
a �17g ,20u� P model space. All calculations were performed at the equilibrium bond distance of 1.770 Å for
UO2

+, 1.701 Å for NpO2
2+, and 1.645 Å for PuO2

3+. The assignment of the experimental transitions �Ref. 37� in
parentheses is uncertain. The excitation energies are given in cm−1.

Spin UO2
+ NpO2

2+ PuO2
3+

NpO2
2+

SO-CIa

Experiment on NpO2
2+

H2Ob Cs2UO2Cl4
c CsUO2�NO3�3

d

5f5/2u
� 0 0 0 0 0 0 0

5f5/2u
� 2 376 3 544 5 746 447 ¯ 1000 ¯

5f7/2u
� 5 736 7 227 8 990 5515 6 760 6880 6459

5f5/2u
� 6 843 8 929 11 907 6565 81 80 7990 9420

6d3/2g
� 16 820 42 524 68 400 ¯ ¯ ¯ ¯

7s1/2g
� 18 479 51 276 84 179 ¯ ¯ ¯ ¯

6d5/2g
� 20 642 47 443 74 493 ¯ ¯ ¯ ¯

5f1/2u
� 20 764 29 441 41 312 ¯ �17 990� ¯ ¯

5f3/2u
� 24 535 33 856 45 747 ¯ �21 010� ¯ ¯

7p1/2u
� 59 179 103 844 146 927 ¯ ¯ ¯ ¯

7p3/2u
� 62 170 107 330 152 277 ¯ ¯ ¯ ¯

5f1/2u
� 69 317 85 553 107 476 ¯ ¯ ¯ ¯

7p1/2u
� 74 148 119 663 164 003 ¯ ¯ ¯ ¯

aReference 7.
bReference 37.
cReference 34.
dReference 33.

FIG. 1. Orbital energy diagrams including the 5f , 7s, 6d, and 7p orbitals for
the UO2

2+, NpO2
3+, and PuO2

4+ molecules. The correlated values from sector
�0,1� of the IHFSCC calculations using the “IH-u” model space are shown.
The bond distances are 1.770, 1.701, and 1.645 Å, respectively.
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suggests that the gas phase excitation energies should be a
good approximation for the excited states occurring in solu-
tion. From our calculations, the energies of the third and
fourth levels are in very good agreement with the excitation
energies measured in water. The first excited state lies too
low to be seen experimentally. The maximum error for these
first two transition energies is 749 cm−1. Comparing these
values to those of Matsika and Pitzer,7 obtained from SO-CI
calculations, our results appear to be more accurate, as
Matsika and Pitzer’s show larger �about 1200–1500 cm−1�
discrepancies with respect to the experimental values.

Eisenstein and Pryce35–37 interpreted the transitions at
17 990 and 21 010 cm−1 as belonging to f-f type excitations,
occupying the 5f� orbital. As our computed 5f� energy is
much higher, we believe that these transitions are more likely
to be due to charge transfer states in which one of the �u

electrons in NpO2
2+ is excited to a higher level. These transi-

tions were not accessible in our calculations, as the current
implementation of the method only considers Fock-space
sectors that differ by two creation or annihilation operations
from the reference space. Matsika and Pitzer7 have computed
energies of such charge transfer states and found them to lie
within this experimental range.

B. Electronic spectrum of NpO2
2+ and PuO2

2+

In NpO2
2+ and PuO2

2+ both open-shell electrons occupy
the 5f3/2u

� and the 5f5/2u
� orbitals, resulting in a 4g ground

state. Since all lower excited states also belong to the 5f2

configuration, transitions between the ground and these ex-
cited states are electric dipole forbidden. The experimental
spectra37,38 are consistent with this picture, since most of the
measured peaks have low intensity.26,36,37,39–42 There is one
intense peak at 10 204 cm−1 for NpO2

+ and at 12 037 cm−1

for PuO2
2+. The assignment of the spectrum is relatively

easier for PuO2
2+ than for NpO2

2+, due to the larger splitting of
the 5f orbitals in the former. Above 20 000 cm−1 the assign-
ment becomes less certain for both NpO2

2+ and PuO2
2+, as

quintet charge transfer states also appear in this region.7

In Table II we present all the excitations up to
26 000 cm−1 for NpO2

+ and, in Table III, the excitations up to
34 000 cm−1 for PuO2

2+. The experimental spectra were origi-
nally interpreted by Eisenstein and Pryce37 on the basis of
semiempirical ligand field calculations. These assignments
were later reconsidered on the basis of more accurate
calculations.7,9 However, even in these recent results, there
were typical errors of a few thousand wave numbers, making
some of the assignments still uncertain. Our new calculations

TABLE II. Vertical excitation energies �E, in cm−1� for NpO2
+, calculated with the IHFSCC method using the

“IH-u” model space. The computed energies are evaluated at 1.701 Å �equilibrium bond length�. Previous
assignment based on SO-CI results from Matsika and Pitzer and the experimental data are also given �Refs. 8
and 37�. The assignment of the experimental transitions in parentheses is uncertain.

SO-CI
Matsika and Pitzera

re=1.720 Å

IHFSCC
This work

re=1.701 Å Expt.b Expt.c

State E �cm−1� State E �cm−1� State E �cm−1� State E �cm−1�

4g 0 4g 0 3H4 0 0
0g 3 366 0g 2 527 �0 ¯ �0g

5g 4 721 1g 4 102 	1 ¯ 	1g ¯

1g 4 938 5g 5 379 3H5 6 173 3H5g ¯

6g 8 867 0g 8 628 3	0 8 953 3	0g 8 953
1g 9 076 1g 8 929 3�1 9 146 3�1g 9 116
0g 9 537 0g 9 378 3	0 9 780 3	0g 9 777
0g 9 708 6g 9 690 3H6 ¯

3H6g ¯

2g 11 187 2g 10 056 3	2 10 208 3	2g 10 202
vib. 11 160 vib. 10 952

0g 14 415 0g 14 105 3
3 13 020 3�2g 12 995
4g 15 249 4g 14 422 �0 13 824 ¯ ¯

1g 16 156 1g 15 031 1
4 14 577 1	1g 14 558
0g 19 647 0g 16 551 3�1 16 220 3�2g 16 221
1g 21 672 1g 18 992 3�2 16 100 ¯ ¯

5g 22 031 3g 19 735 �2 16 906 ¯ ¯

1g 23 079 5g 19 761 �0 ¯ ¯ ¯

6g 23 327 6g 20 035 3�1 18 116 ¯ ¯

2g 23 649 2g 23 1877 	1 �19 360� ¯ ¯

3g 24 834 2g 23 322 2I6 21 008 ¯ 21 004
4g 26 592 4g 25 119 3�3 �21 700� ¯ ¯

¯ ¯ 1g 25 436 3	0 22 600 ¯ ¯

aReference 7.
bReference 37.
cReference 8.
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improve upon the excitation energies computed previously
since we include all relativistic effects from the start and
could also correlate more electrons, but a shortcoming is that
we are not yet able to calculate oscillator strengths with the
current IHFSCC implementation. We therefore resorted to
estimating the shape and intensities of the expected peaks on
the basis of the composition of the excited states, shown in
Table IV. Eisenstein and Pryce36 have previously argued that
transitions between states that differ only on the sign of the z
component of the angular momentum, Lz, of one of the two
unpaired electrons have to be narrow. This occurs because
the charge distribution remains basically unchanged when
going from the ground to the excited state. For excitations
that involve a change of the absolute value of Lz, the peaks
are broader due to vibrational excitations. This type of rea-
soning, combined with the fact transitions to doubly excited
states should have a low intensity, gives sufficient informa-
tion to assign the spectra of NpO2

+ and PuO2
2+ on the basis of

our data.
From Table IV one can furthermore see the high degree

of similarity of the two isoelectronic actinyl ions. There are
in general only slight differences in the values of the contri-
butions from different configurations �for instance, the

ground state of PuO2
2+ is more mixed than the NpO2

+ ion,
with more contribution of the higher-lying 5f3/2u

� orbital�, so
the two spectra can be discussed together. To better structure
the discussion about the assignments, we have divided the
spectra into three regions, each possessing some features that
are used for the interpretation of the experiment.

1. Region I: from 0 to 7000 cm−1

These three excited states differ by a single excitation
from the ground state. In all cases there is a dominant deter-
minant in which one electron is found in either the 5f3/2u

� or
5f5/2u

� orbital, both of which are occupied in the ground state.
This region is not well sampled experimentally and therefore
a clear comparison with our calculated data cannot be given.
We confirm the original assignment of the peak at 6173 cm−1

for the NpO2
+ ion as a 5g state37 with a slightly lower com-

puted energy of 5379 cm−1 for this 4g→5g transition.

2. Region II: from 7000 to 13 000 cm−1

In this region we find an excellent agreement with the
experimental transition energies for both the neptunyl and
plutonyl ions, with errors of about few hundred wave num-

TABLE III. Vertical excitation energies �E, in cm−1� for PuO2
2+, calculated with IHFSCC method using the

“IH-u” model space. The computed energies are evaluated at 1.645 Å �equilibrium bond length�. For compari-
son the results of Maron et al. �Ref. 43� and Clavaguera-Sarrio et al. �Ref. 9� are shown, along with the
experimental data �Reference 38�.

SDCI+Q+SO
Maron et al.a

re=1.699 Å

CASPT2+SO
Clavaguera-Sarrio et al.b

re=1.677 Å

IHFSCC
This work

re=1.645 Å Expt.c

State E �cm−1� State E �cm−1� State E �cm−1� State E �cm−1�

4g 0 4g 0 4g 0 3H4 0
0g 4 295 0g 4 190 0g 2 530 �0 ¯

5g 6 593 1g 6 065 1g 4 870 	1 ¯

1g 7 044 5g 8 034 5g 6 700 3H5 ¯

0g 7 393 0g 12 874 0g 10 334 3	0 10 185
6g 7 848 1g 12 906 1g 10 983 �1 10 500
0g 9 4115 6g 14 326 0g 11 225 3	0 10 700
1g 12 874 0g 14 606 6g 11 651 3H6 ¯

2g 14 169 2g 14 910 0g 12 326 3	2 12 037
vib. 12 660

5g 16 984 ¯ ¯ 0g 16 713 1
4 15 420
4g 23 091 ¯ ¯ 1g 17 737 �0 16 075
1g 27 005 ¯ ¯ 4g 18 565 �1 17 800
6g 30 254 ¯ ¯ 0g 20 029 3
3 19 100
3g 33 164 ¯ ¯ 1g 22 703 �0 19 810

0g 33 314 ¯ ¯ 6g 22 889 3�2 22 200
4g 33 318 ¯ ¯ 5g 23 022 1H5 21 840
3g 33 366 ¯ ¯ 3g 29 710 	1 ¯

2g 33 388 ¯ ¯ 2g 32 198 �2 ¯

1g 34 520 ¯ ¯ 0g 32 759 3
4 ¯

0g 35 210 ¯ ¯ 1g 34 080 1I6 ¯

2g 35 670 ¯ ¯ 4g 34 702 1I6 ¯

1g 36 703 ¯ ¯ 2g 34 982 3�1 ¯

aReference 43.
bReference 9.
cReference 38.
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bers. The characteristic feature in both spectra is the intense
peak that appears 10 204 cm−1 for NpO2

+ and at 12 037 cm−1

for PuO2
2+. A mechanism that can explain the intensity of this

dipole-forbidden transition is described in detail by Matsika
et al.,26 who considered systems with one, three, and five
chloride ions in the equatorial plane. Their calculations show
that the ligand field from the latter arrangement gives suffi-
cient mixing of the 5f� and 6d� to cause an intense 3H4g
→ 3	2g transition.

From the decomposition given in Table IV it is clear that
this 2g state for NpO2

+ is dominated by a single determinant,
accounting for 93% of the total wave function. With respect
to the ground state configuration, this state corresponds to
the excitation of an electron from the 5f5/2u

� to the 5f−7/2u
�

orbital. This is also the case for PuO2
2+, for which the weight

of the relevant determinant in the 2g state is slightly smaller
�at 83% of the total wave function�, corroborating the assign-
ment of Matsika et al..

The 6g state is found close to the 2g state, but it is un-
clear whether transitions to this state have enough intensity
to be detected. Eisenstein and Pryce37 suggested that the
peak at 11 160 cm−1 is either due to this state or to vibra-
tional progression of the 2g transition. Our analysis shows a
6g wave function dominated by two determinants, where one
with the highest weight corresponds to a double excitation
from the ground state. Combined with the fact that a transi-
tion energy below 10 000 cm−1 was obtained, we conclude
that the assignment of the 11 160 cm−1 peak to 6g is unlikely,
and that the interpretation as a vibrational band is probably
correct.

Regarding the assignment of the remaining peaks in re-
gion II, there are three other excited states, namely, 0g, 1g,
and 0g, that could be contributing. They all arise from orbit-
als that have the same � and � characters as the ground state,
but with different signs of the Lz component �see Tables II
and III�. All the peaks should be narrow but differ in inten-
sities. The calculations by Matsika et al. show that the tran-
sition to the 1g state is more intense than the ones to the 0g

states. This leads to the conclusion that the peaks �at
9146 cm−1 for NpO2

+ and at 10 500 cm−1 for PuO2
2+� should

be assigned to the 1g state. While this interpretation had al-
ready been put forward with a good deal of certainty in pre-
vious works,26,37 the IHFSCC results serve as a litmus test
for this assignment as we can compare the spacing of the
computed and observed peaks.

TABLE IV. Composition �in %� of the ground and some of the lowest
excited states for NpO2

+ and PuO2
+2, together with the spinors occupied in the

different IHFSCC sectors with respect to the closed shell species NpO2
3+ and

PuO2
4+. All values are obtained at the calculated equilibrium geometries

�re=1.701 and 1.645 Å, respectively� for the “IH-u” model space.

State

IHFSCC configuration Weight �%�

�0h ,2p� �0h ,1p� NpO2
+2 PuO2

+2

4g 5f3/2u
� 5f5/2u

� 94 81
5f3/2u

� 5f5/2u
� 4 16

0g 5f5/2u
� 5f−5/2u

� 59 70
5f3/2u

� 5f−3/2u
� 32 18

1g 5f−3/2u
� 5f5/2u

� 80 71
5f−5/2u

� 5f7/2u
� 11 12

5f−3/2u
� 5f5/2u

� 4 13

5g 5f5/2u
� 5f5/2u

� 55 56
5f3/2u

� 5f7/2u
� 43 36

0g 5f5/2u
� 5f−5/2u

� 49 49
5f5/2u

� 5f−5/2u
� 49 49

1g 5f−3/2u
� 5f5/2u

� 55 41
5f−5/2u

� 5f7/2u
� 28 37

5f−3/2u
� 5f5/2u

� 12 10

0g 5f5/2u
� 5f−5/2u

� 29 27
5f5/2u

� 5f−5/2u
� 29 27

5f3/2u
� 5f−3/2u

� 24 18
5f5/2u

� 5f−5/2u
� 6 6

6g 5f5/2u
� 5f7/2u

� 67 57
5f5/2u

� 5f7/2u
� 33 43

2g 5f−3/2u
� 5f7/2u

� 93 82
5f−3/2u

	 5f7/2u
� 4 16

0g 5f5/2u
� 5f−5/2u

� 31 20
5f5/2u

� 5f−5/2u
� 25 23

5f5/2u
� 5f−5/2u

� 14 16
5f5/2u

� 5f−5/2u
� 14 16

5f3/2u
� 5f−3/2u

� 11 15

4g 5f3/2u
� 5f5/2u

� 83 72
5f3/2u

� 5f5/2u
� 5 18

1g 5f5/2u
� 5f−7/2u

� 43 43
5f5/2u

� 5f−7/2u
� 38 28

5f3/2u
� 5f−5/2u

� 11 19

0g 5f7/2u
� 5f−7/2u

� 35 47
5f5/2u

� 5f−5/2u
� 27 33

5f3/2u
� 5f−3/2u

� 21 12

1g 5f5/2u
� 5f−7/2u

� 56 65
5f5/2u

� 5f−7/2u
� 23 14

5f3/2u
� 5f−5/2u

� 20 19

3g 5f5/2u
� 5f1/2u

� 96 97

5g 5f3/2u
� 5f7/2u

� 55 50
5f5/2u

� 5f5/2u
� 44 43

6g 5f5/2u
� 5f7/2u

� 67 56
5f5/2u

� 5f7/2u
� 33 43

2g 5f5/2u
� 5f−1/2u

� 91 96

TABLE IV. �Continued.�

State

IHFSCC configuration Weight �%�

�0h ,2p� �0h ,1p� NpO2
+2 PuO2

+2

2g 5f3/2u
� 5f1/2u

� 93 80
5f3/2u

� 5f1/2u
� 2 19

4g 5f5/2u
� 5f3/2u

� 58 62
5f7/2u

� 5f1/2u
� 37 20

1g 5f5/2u
� 5f−3/2u

� 89 73
5f5/2u

� 5f−3/2u
� 2 21
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In the experimental spectrum of NpO2
+ �Fig. 1 of Ref.

26� three narrow peaks are visible to the right �higher wave
length� of the strong 2g transition. The lowest energy transi-
tions are separated by only 163 cm−1, while the higher en-
ergy transitions appear as a well resolved shoulder on the 2g

transition at 9780 cm−1. Of the three peaks, the middle one is
clearly the most intense. The relative energies of the 0g, 1g,
and 0g states are indeed consistent with this spectrum, with
the 1g appearing in the middle separated by 301 cm−1 from
the lower 0g state and by 449 cm−1 from the higher 0g state.
The deviations from the experimental peak positions are thus
maximally 400 cm−1, which should be considered very good
agreement for a gas phase model. In the less resolved PuO2

2+

spectrum,37 the 0g, 1g, and 0g states lie practically in the
same band, with the 1g peak at 10 500 cm−1. This peak has
one left shoulder, almost completely resolved at
10 185 cm−1, and one right shoulder, hidden in the 1g at
10 700 cm−1. In our calculations a similar trend is found,
with the lower 0g and 1g states again separated by a some-
what larger value �649 cm−1� than the spacing that is experi-
mentally observed �315 cm−1�. The calculated upper 0g state
is only 240 cm−1 higher than the 1g, which is in very good
agreement with the fit of the experimental data �where a
distance of about 200 cm−1 is given�.

3. Region III: above 13 000 cm−1

For the higher excited state agreement with experiment
cannot be expected to be as good, as there are larger effects
due to the surroundings, and the possible presence of charge
transfer states. Looking at the experimental spectra,37,38 in
the region we find for both neptunyl and plutonyl peaks with
qualitatively similar shapes, with the most intense transition
at about 16 000 cm−1 surrounded by satellite shoulders. For
NpO2

+ these shoulders are resolved and narrow, while for
PuO2

2+ they are quite broad.
In our calculations we find five excited states �0g, 4g, 1g,

0g, and 1g,� in this region, mainly made up by determinants
containing � and � electrons in open shells. Based on the
arguments put forth at the beginning of this section, this
means that the associated peaks should be narrow. The oscil-
lator strengths calculated by Matsika et al.26 indicate that the
most intense of these peaks should be the 1g state. Our cal-
culations place this state at 15 031 cm−1 for NpO2

+ and at
17 737 cm−1 for PuO2

2+, whereas the experimental positions
are almost the same for both ions �16 220 and 16 075 cm−1,
respectively�.

Matsika et al., however, suggested that this peak results
from a transition to a 3�2g state arising from occupation of
the 5f� orbital. As already discussed in the previous section
on NpO2

2+, the 5f� orbital is at a rather high energy relative
to the 5f� and 5f�. Consequently, all states with significant
5f� character are found too high in energy �around
20 000 cm−1 for NpO2

+ and 30 000 cm−1 for PuO2
2+� to be

associated with transitions at 16 000 cm−1. While this may be
an artifact of our gas phase model, it could also be that the
the observed transition is to the 1g state, rather than the 2g

state. This is particularly the case for PuO2
2+, where it does

not seem probable that the the surrounding water molecules

lower this metal-to-metal transition to half the gas phase
value. We therefore propose to reassign this transition to the
1g state.

Another reassignment may be necessary for the experi-
mental peak at 13 020 cm−1 for NpO2

+. This peak was previ-
ously assigned to a 3g state by Eisenstein and Pryce,37 and
later to a 2g state by Matsika et al.26 In both cases, the com-
position of this excited state included a 5f� orbital that we
anticipate to get occupied only at much higher energies. It is
difficult to assign these peaks with certainty, because the
differences in energies involved are rather small. We notice,
however, that the calculated 4g state lies at lower energies
than the more intense 1g for NpO2

+, while appearing at higher
energies for PuO2

2+. This agrees with the experimental spec-
tra, where one small peak at lower energies than the state we
assigned as the 1g is found in the plutonyl spectrum, whereas
two peaks are found for neptunyl.

Given the uncertainties related to the position of charge
transfer peaks �found slightly above 20 000 cm−1 in the cal-
culations of Matsika and Pitzer7�, we do not attempt to match
our computed excitation energies at higher energies with the
experimental data.

4. Comparison with previous calculations

Comparing our computed excitation energies for NpO2
+

with those of Matsika and Pitzer,7 we see that a more rigor-
ous treatment of electron correlation and relativistic effects
indeed results in smaller deviations from experiment. This is
so for the lower excited states �below 10 000 cm−1�, but also
for most of the higher states, especially the important 2g

state, which differs from experiment by less than 200 cm−1,
compared to over 1500 cm−1 for previous calculations.

More theoretical calculations are available for the pluto-
nyl ion, so the relative accuracy of our results and the streng-
hts and weaknesses of the IHFSCC method can better be
assessed. The calculations of Maron et al. 43 and of
Clavaguéra-Sarrio et al.9 give rise to a rather similar assign-
ment of the lower excited states, but report excitation ener-
gies quite different from ours and from experiment. For in-
stance, the results of Maron et al.43 underestimate the low-
lying transitions �region I� and strongly overestimate the
upper states �region III�, with discrepancies with respect to
the experimental transitions of more than 10 000 cm−1. Our
calculations show errors on the 1000–2000 cm−1 range for
these states. The later calculations of Clavaguéra-Sarrio et al.
are better than those of Maron et al.43 for region II states, but
their errors are still quite large �more than 2000 cm−1� when
compared to what can be achieved with the IHFSCC method
that shows deviations of about 500 cm−1.

C. Potential energy curves

As the IHFSCC method allows the determination of
multiple states available in a single calculation, it was quite
easy to determine the equilibrium bond distances and vibra-
tional symmetric stretch frequencies for a number of differ-
ent states. These quantities are shown in Table V. An impor-
tant difference between these results and those of previous
calculations is the difference of the bond lengths for the
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ground state of both molecules. For neptunyl, the bond
length is about 0.02 Å shorter than the value given by
Matsika and Pitzer,7 whereas for plutonyl the bond length is
about 0.05 Å shorter than that reported by Clavaguéra-Sarrio
et al.9 and 0.03 Å shorter than that given by Maron et al..43

These differences could be due to the inclusion of 6p orbitals
in the correlated active space in our calculations, allowing
the oxo ligands to move closer to the actinide, but we have
not investigated this in detail.

The differences in the calculated excited energies shown
here and those of previous works decrease to some extent if
IHFSCC calculations are performed at the corresponding
equilibrium geometries, thus indicating that part of these dis-
crepancies are due to geometrical effects. We observed, how-
ever, that also in these situations the IHFSCC calculations
generally show a better agreement with experiment.

The harmonic frequencies of the ground state of neptu-
nyl and plutonyl differ by about 69 cm−1 �1073 and
1144 cm−1�, which is of course mainly due to the difference
in charge. It is interesting that the frequencies for the low-
lying excited states of neptunyl are very similar to that of the
ground state whereas for plutonyl variations of up to
200–300 cm−1 are seen. Comparison to experimental data is
difficult as it is well known that solvation and complexation
lower the vibrational frequencies of actinyls considerably.44

Madic et al.45 gave Raman data for these ions in aqueous
solution. The difference in values for the symmetric stretch
of NpO2

+ and PuO2
2+ �767 and 833 cm−1, respectively� of

66 cm−1 is remarkably similar to our computed gas phase
difference of 71 cm−1.

IV. CONCLUSIONS

In this work we have investigated the ground and excited
states of the actinyl ions NpO2

+ and PuO2
2+. While the spectra

of these ions had been studied before, there was still a good
deal of uncertainty with respect to the ordering and spacing
of different electronic states. In this work we were able to

improve upon previous calculations on both aspects. First,
we have established with greater certainty that the experi-
mentally most intense peak found for both the actinyl ions
has a 2g symmetry. Second, the average errors we obtain
compared to previous calculations are much smaller so that
more definite assignments of these spectra could be made.
This is particularly important for the higher excited states,
where results from previous calculations varied considerably.

The use of the IHFSCC method allowed for the eco-
nomical determination of several electronic states at once,
while accurately describing both static and dynamic correla-
tion energies. The IHFSCC method in its current form, how-
ever, is not without drawbacks. What is important is the limi-
tation on the Fock-space sectors that are implemented. For
instance, by using only sector �0h ,2p� only triplet f2 states
can be described, making charge transfer states of the neptu-
nyl ion unaccessible. For quintet states, a mixed sector
�1h ,3p� must be employed, but it is yet to be implemented in
the DIRAC code. Another drawback is related to issues of
convergence, which still demand experimentation with the P,
Q partitioning, and prevent the method to be used in a
“black-box” manner that is desired when using the method
for larger and more complex systems.
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The triiodide ion I3
− exhibits a complex photodissociation behavior, the dynamics of which are not

yet fully understood. As a first step toward determining the full potential energy surfaces of this
species for subsequent simulations of its dissociation processes, we investigate the performance of
different electronic structure methods �time-dependent density functional theory, complete active
space perturbation theory to second order �CASPT2�, Fock-space coupled cluster and multireference
configuration interaction� in describing the ground and excited states of the triiodide ion along the
symmetrical dissociation path. All methods apart from CASPT2 include scalar relativity and
spin-orbit coupling in the orbital optimization, providing useful benchmark data for the more
common two-step approaches in which spin-orbit coupling is introduced in the configuration
interaction. Time-dependent density functional theory with the statistical averaging of model orbital
potential functional is off the mark for this system. Another choice of functional may improve
performance with respect to vertical excitation energies and spectroscopic constants, but all
functionals are likely to face instability problems away from the equilibrium region. The Fock-space
coupled cluster method was shown to perform clearly best in regions not too far from equilibrium
but is plagued by convergence problems toward the dissociation limit due to intruder states.
CASPT2 shows good performance at significantly lower computational cost, but is quite sensitive
to symmetry breaking. We furthermore observe spikes in the CASPT2 potential curves away from
equilibrium, signaling intruder state problems that we were unable to curb through the use of level
shifts. Multireference configuration interaction is, in principle, a viable option, but its computational
cost in the present case prohibits use other than for benchmarking purposes. © 2010 American
Institute of Physics. �doi:10.1063/1.3474571�

I. INTRODUCTION

Recent years have seen extraordinary advances in ex-
perimental techniques to probe chemical processes such as
reaction dynamics in very short time frames. A wide range of
techniques based on pump-probe schemes,1 where the spe-
cies under consideration are set in a nonstationary state by
one light source �pump� and monitored by another �probe�,
providing information regarding the dynamical behavior of
the system. A particularly interesting field, where such fast
techniques are very helpful, is the study of the dynamics of
stable negative ions.2 By means of photodetachment or pho-
todissociation these ions can be used to provide access to
unstable neutral species that are difficult to study directly.

Some ionic species, however, are important in their own

right, apart from being used as precursors to other systems. A
very well-known example is the triiodide ion �I3

−�. From a
chemist’s point of view,3–6 this relatively simple system is
very interesting as it is �a� a structural analog of a transition
state in SN2 reactions and �b� an example of hyperconjuga-
tion, with a three-center four-electron bond. The widely ac-
cepted bonding picture of I3

− is that of a �� ,�� system arising
from the combinations of 5p orbitals on the three iodine
atoms. In �S-coupling the ground state configuration is ac-
cordingly �u

2�u
4�g

4�u
�4�g

2, where the LUMO is the antibond-
ing �u

�. This bonding picture is modified by spin-orbit cou-
pling �SOC� �cf. Fig. 1�, in particular for the MOs of gerade
symmetry that are nonbonding and retain the atomic
SO-mixing. In ungerade symmetry spin-orbit coupling is
quenched due to bond formation and the orbitals are there-
fore essentially spin-pure. We have chosen to retain the �S
notation of all orbitals for easier reference to other work, but
note that the MOs denoted �1/2g and �1/2g in Fig. 1 corre-

a�Author to whom correspondence should be addressed. Electronic mail:
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spond to linear combinations of p1/2 and p3/2 on the terminal
atoms, respectively.

While early experimental information on the electronic
structure of I3

− was obtained from UV spectroscopy,7 more
detailed information has been gained from photodissociation
studies in more recent works. These studies have originally
been performed in solution.8–13 Questions arose as to
whether it would be possible for the system to display a bent
configuration at equilibrium, instead of the linear one pro-
posed initially �the latter being the most accepted configura-
tion�. By contrast, experiments on the system in the gas-
phase by Neumark and co-workers14–16 and by Nagata and
co-workers17,18 strongly suggest that the ground state for this
species is linear and centrosymmetric. Photofragment yield
�PFY� spectra15,17 reveal two photoabsorption bands peaking
at 3.43–3.45 and 4.25–4.28 eV. They correspond to the C and
D bands observed in solution,7 and the peak values can be
assigned as the vertical excitation energies from the ground
to the excited 3�u�0u

+� and 1�u�0u
+� states. Time of flight pho-

tofragment mass spectrometry by Nakanishi et al.18 reveal a
40:60 ratio between three- and two-body dissociations both
in the C and D bands. The three-body dissociation is domi-
nated by charge-asymmetric dissociation that is with the
negative charge on one of the terminal iodine atoms. The
two-body dissociation in the C and D bands is dominated by
the �I−+I2� and �I+I2

−� channels, respectively. Although the
same dissociation channels appear in the fast beam photo-
fragment translation spectroscopy of Neumark and
co-workers,16 there are some discrepancies, notably in the
calculated branching fractions for the two- and three-body
dissociations as well as the �I−+I2� / �I+I2

−� ratio, which call
for further investigation.

Compared to the wealth of experimental data on the tri-
iodide species, relatively few theoretical studies have been
performed. Kosloff and co-workers,19 at about the time of the
gas-phase experiments by Neumark,14,15 presented an exten-
sive study of the potential energy curves of the I3

−, I2, and I2
−

species, which are thought to be involved in the photodisso-
ciation dynamics of I3

−. Their results, obtained with a combi-

nation of multireference configuration interaction �MRCI�
calculations and a diatomics-in-molecule �DIM� treatment
where SOC effects were included, were the most accurate
published at the time. However, the authors themselves con-
sidered the basis set used in the DIM treatment relatively
small allowing for quantitative improvements on this early
study. More recently, as a complement to their experimental
work, Nakanishi et al.18 performed comprehensive spin-orbit
configuration interaction �SOCI� calculations which explored
potential surfaces not only along the symmetric stretch of I3

−

but also along the asymmetric stretch as well. Given the
limited treatment of electron correlation and the still rather
modest basis set size, also this theoretical investigation still
leaves room for improvement.

Accordingly, the theoretical studies performed so far, al-
though very helpful in understanding some aspects of the
experimental data �such as the kind of states involved in the
two experimentally observed absorption bands�, are probably
not sufficiently accurate for a direct comparison with experi-
ment in terms of quantities associated with the dynamical
behavior of the system, such as branching ratios. To enable
this kind of analysis, it should be possible to calculate the
whole of the potential energy surfaces accurately. This has
motivated us to investigate the use of different methodolo-
gies for describing the electronic structure of the triiodide
species to find the best candidate for calculation of a faithful
representation of the potential energy surfaces that can be
used in studies of the dynamics of the system.

Even though I3
− itself is a closed-shell species and can

undergo two-body dissociation into two closed-shell species
as well, it is important to account for SOC to achieve an
accurate description of the full potential energy surfaces.
Other possible channels involve dissociation into radicals,
and furthermore SOC can have a significant impact on tran-
sition probabilities and intersystem crossings in the
excitation/de-excitation processes. Apart from including
SOC, theoretical methods should be able to describe the full
potential energy surface �PES� and account for dynamical
electron correlation at a reasonable cost, given the amount of
calculations involved in determining a full PES.

As not all methods will fit this description we have cho-
sen to compare expensive but accurate multireference
coupled cluster �CC� and configuration interactions �CI� at
selected points along the symmetric stretch of the molecule
to methods that will allow full coverage of the ground and
excited state potential energy surfaces. The wave function-
based methods employed were �a� the intermediate Hamil-
tonian Fock-space coupled cluster method of Eliav and
co-workers,20–22 �b� the relativistic multireference CI method
of Fleig and co-workers,23,24 and �c� the spin-orbit complete
active space �CAS� perturbation theory to second order
�PT2� method �SO-CASPT2� of Roos and co-workers.25,26

Apart from these, we decided to also explore the very eco-
nomical time-dependent DFT �TDDFT� method27 to provide
a simple orbital picture for the excitation processes. These
TDDFT calculations are of course not expected to yield bet-
ter results than any of the methods above due to the well-
known shortcomings of the current-day functionals �as, for

FIG. 1. Diagram of valence molecular orbitals of the triiodide ion, arising
predominantly from the 5p manifold of the three iodine atoms: �a� spin-orbit
free case and �b� spin-orbit case with the model Pm space employed in the
IHFSCC calculations indicated.
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instance, in describing charge-transfer excitations28,29 or that,
within the adiabatic approximation, TDDFT can only de-
scribe single excitations30–32�.

The paper is organized as follows: In Sec. II we present
the details of the calculations performed with the different
methodologies; in Sec. III we compare the performance of
the different methods in calculating excitation energies of I3

−,
both at selected bond lengths and at the equilibrium geom-
etries for the symmetric configuration. We also take the op-
portunity to discuss results for the triiodide radical �I3�, a
species that was experimentally observed in photoionization
studies involving I3

− in the gas-phase,33,34 and that was also
investigated theoretically by Kosloff and co-workers. Finally,
in Sec. IV we assess the relative strengths and weaknesses of
each method and provide concluding remarks.

II. COMPUTATIONAL DETAILS

All calculations described were performed along the
symmetric stretch coordinate, with I–I bond lengths rI–I in
the range of �2.60:6.00� Å. In order to compare the different
methodologies we have chosen two geometries in which to
calculate the vertical excitation energies, apart from those
obtained at the equilibrium structures for the different meth-
ods. These geometries are r=2.84 and 2.93 Å, corresponding
to bond lengths in the vicinity of the equilibrium geometries
for I3 �from the MRCI calculations of Kosloff and
co-workers19� and I3

− �equilibrium geometry reported from
solid state studies35�, respectively.

A. Intermediate Hamiltonian Fock-space coupled
cluster

Intermediate Hamiltonian Fock-space coupled
cluster20–22 �IHFSCC� calculations were performed with a
development version of the DIRAC �Ref. 36� program. For
describing the spectrum of I3

− with the IHFSCC method we
have taken the anion as a starting point, and proceeded from
the ground state through the �1h ,0p� and �0h ,1p� sectors in
order to arrive at the �1h ,1p� sector and, therefore, at the
excitation energies,

I3
−�0h,0p� → �I3

. �1h,0p�,I3
2−�0h,1p�� → I3

−����1h,1p� .

�2.1�

For reasons of computational efficiency, the exact two-
component Hamiltonian �X2C� scheme of Iliaš and Saue37

was used. Two-electron spin same-orbit �SSO� and spin-
other orbit �SOO� contributions were included via atomic
mean-field integrals obtained with the AMFI38,39 code.

The triple zeta basis sets of Dyall40,41 were employed in
all calculations. The starting large component 28s21p15d
SCF set was kept uncontracted and augmented by 1s1p1d1f
diffuse functions. It thus contains the 2s2p2d primitives rec-
ommended for polarization and valence correlation as well
as the 2s2p2d primitives recommended for core-valence cor-
relation. By further augmentation two different sets were de-
fined: a valence correlation set �“aVTZ”�, where one corre-
lating f-type function was added to the augmented SCF set,

yielding a �29s22p16d2f� basis set, and a core-valence cor-
relating set �“aCVTZ”�, which is a superset of aVTZ with
additional 2f1g set of functions added.

In combination with these two sets different correlation
spaces were employed: the first �Q1� is used together with
basis set aVTZ and includes the orbitals with orbital energies
��� between �1 and 4 hartree. This means that in the occu-
pied orbital space the � ,� bonding system and three other
�-type orbitals arising from the 5s5p orbitals of iodine are
present. The second correlation space �Q2� is used together
with basis set aCVTZ and includes the orbitals with orbital
energies between �3 and 12 hartree. This corresponds to
enlarging Q1 by including the occupied 4d electrons of io-
dine apart from more virtual orbitals. The combinations
aVTZ /Q1 and aCVTZ /Q2 will be referred to as IHFSCC�a�
and IHFSCC�b�, respectively.

A crucial ingredient of IHFSCC calculations to prevent
convergence problems due to intruder states is the definition
of the model �Pm� and intermediate �PI� spaces that comprise
the active space P= Pm+ PI.

21,22 After testing different spaces
at the fixed geometries mentioned above, we found that con-
vergence problems were generally avoided when the Pm

space contained 8 occupied �1�g, 1�g, 2�u, and 1�u orbitals�
and 11 virtual orbitals �2�g, 1�g, 3�u, and 2�u orbitals� with
a full P space containing 11 occupied �5 of g and 6 of u
parities� and 22 virtual �12 of g and 10 of u parities� orbitals
�cf. Fig. 1�. For bond lengths larger than 3.58 Å, however, it
was not possible to obtain convergence for the �1h ,1p� sec-
tor for this partition.

B. MRCI

MRCI calculations have been carried out with the rela-
tivistic double group CI program LUCIAREL,23,24 which re-
cently has been extended42,43 for parallel computer applica-
tions and to allow for the computation of molecular
properties.44 In all of the calculations reported here the
aCVTZ basis set and the X2C Hamiltonian including two-
electron SSO and SOO corrections provided by the AMFI

38,39

code have been employed.
The molecular spinors for the CI calculations have been

obtained by an average-of-configuration Hartree–Fock calcu-
lation, where the open shells were defined as the 8 occupied
Kramers pairs as in the CC application above, and in addi-
tion the antibonding �u orbital, corresponding to an active
subspace with 16 electrons in 9 Kramers pairs. This type of
Hartree–Fock wave function comprises a good starting point
for relativistic MRCI studies since it provides a balanced
description of ground and electronically excited states. The
concept of general active spaces has been employed for con-
structing the CI expansion. In the present case, all Slater
determinants with zero, one, and two particles in the external
space �truncated at 3 hartrees� were included and all possible
active space distributions were allowed for the remaining
electrons. These active space distributions were defined by a
CAS space corresponding to the above space used in the
average-of-configuration Hartree–Fock calculation �16 elec-
trons in 9 Kramers pairs, or 15 electrons in 9 Kramers pairs
in the case of neutral I3, “MRCI�a�”�, and an additional space
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including the iodine 5s orbitals where a restriction of up to
two holes was imposed �“MRCI�b�”�. The resulting relativ-
istic CI wave function describes the correlation of 16 �15 in
the case of neutral I3� or 22 electrons and consists of roughly
77	106 Slater determinants in the latter case.

C. CASPT2

Calculations with the CASPT2 method were carried out
with the MOLCAS code45 �version 7.0�, within the CASSCF/
CASPT2/SO-RASSI approach. In this approach, scalar
relativistic effects are included in the CASSCF
�Ref. 25� and CASPT2 �Ref. 26� calculations via the
Douglas–Kroll–Hess46 Hamiltonian, and in a subsequent cal-
culation the CASPT2 spin-free states are used by the RASSI
program to set up a spin-orbit coupling Hamiltonian.47 In this
Hamiltonian the one- and two-electron spin-orbit integrals
are calculated in a mean-field fashion via the AMFI

38,39 code.
The basis set used in these calculations was the ANO-RCC
�Ref. 48� set of TZP quality �7s6p4d2f1g�. All calculations
were carried out in C2h symmetry.

The CASSCF active space used consisted of 16 electrons
in the nine orbitals arising from the 5p orbitals of the three
iodine atoms. We have kept the core orbitals �i.e., up to and
including the 3d orbitals� frozen in the CASSCF �and subse-
quent CASPT2� calculations. The CASSCF states that en-
tered the multistate CASPT2 calculations have been obtained
from state-averaged calculations over nine roots for 1�, six
roots for 1�, eight roots for 3�, and six roots for 3�, respec-
tively. In the CASPT2 calculations an IPEA shift of 0.25 a.u.
was used.49

D. TDDFT

TDDFT calculations27 were carried out with the ADF

�Ref. 50� code. Scalar relativistic and spin-orbit effects were
included via the zeroth-order regular approximation.51 In the
TDDFT calculations noncollinear spin magnetization was
used. We are also within the adiabatic local density approxi-
mation �LDA� approximation to TDDFT, therefore disre-
garding any time-dependence of the exchange-correlation
kernel, while using only the derivatives of the LDA func-
tional for computing the exchange-correlation contributions
to the excitation energies.

We used the statistical averaging of model orbital poten-
tials �SAOPs�,52 in combination with the TZ2P basis set.53 It
should be noted that in the ADF implementation SAOP is
used to construct the Kohn–Sham potential during the SCF
cycle, whereas the ground state energy is calculated with the
PW91 �Ref. 54� energy expression. This makes the ground
state properties close to those obtained with PW91, the dif-
ferences arising from the modification of the potential. More
details can be found in the ADF documentation �for instance,
Ref. 55�. Given the dependence of TDDFT on the functional
used, we shall use the label TDDFT/SAOP.

III. RESULTS AND DISCUSSION

In this section we discuss the results for the triiodide ion
species obtained with the different methods. We begin by
investigating the performance of the different methods in de-

termining ground state spectroscopic constants, before ad-
dressing the electronic spectrum. Given the exploratory na-
ture of this paper, we will restrict ourselves to selected
structures along the symmetric stretch coordinate.

When comparing methodologies, it should be kept in
mind that each method, with the exception of TDDFT/SAOP,
can be tuned through the selection of active electrons and
orbitals. As reference we take IHFSCC�b�, which we con-
sider the most accurate methodology employed in this work.

We will focus mainly on vertical excitations calculated
at selected geometries, but will also address “adiabatic” ex-
citations for this particular cut of the surface, as a way to
gain insight on how the different methods represent the over-
all shape of the surfaces. Finally, we will take a more de-
tailed look the 0u states, in particular, the absorbing 0u

+ states,
comparing the energetics and the excitation picture, in terms
of the respective molecular orbitals for the different methods,
before discussing the triiodide radical.

A. Ground state spectroscopic constants for I3
−

The ground state spectroscopic constants of I3
− obtained

here are shown in Table I. We take the experimental bond
length35 in the solid state �re=2.93 Å� as a measure since to
the best of our knowledge, there are no experimental bond
length determinations for the triiodide ion in gas-phase.

With respect to this reference value CASPT2 shows a
slight �about 0.04 Å� underestimation, whereas IHFSCC�a�
shows a similar overestimation. Better agreement, with a de-
viation of less than 0.02 Å, is obtained with IHFSCC�b�,
where the 4d shell is included in the occupied space and the
virtual space is truncated at a higher energy. The effect of
electron correlation can be studied in a more systematic man-
ner at the CASPT2 level. Our default scheme is a CAS con-
sisting of the 5p manifold and in addition correlating
4s4p4d5s at the PT2 level, giving a bond length of 2.888 Å.
Freezing 4s4p, which corresponds to the default CASPT2
correlation scheme in MOLCAS 7.2, increases the bond length
to 2.914 Å. Freezing 4d gives an even more significant bond
length extension to 2.966 Å, whereas in addition freezing 5s
shortens the bond slightly to 2.958 Å. These results suggest
that the inclusion of the 4s4p shells in the occupied space of
the IHFSCC calculations will bring the bond length in even
closer agreement with experiment and thus implies that en-
vironmental effects on the bond length are small. We were
unable to optimize the I3

− bond distance at the MRCI�b� level

TABLE I. Ground state spectroscopic constants �re in Å and 
e in cm−1� of
I3

− calculated with the DFT, MRCI�a�, CASPT2, and IHFSCC�a,b� methods.

Method re 
e

DFT 3.007 102
MRCI�a� 2.982 108
CASPT2 2.888 119
IHFSCC�a� 2.971 112
IHFSCC�b� 2.946 114
MRCI �Ref. 19, spin-free� 2.930 114
DIM+SO �Ref. 19� 2.966 95
Expt. �Ref. 35� 2.93 112�1
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due to computational constraints. Based on the trends ob-
served with CASPT2, one would expect that MRCI�b�,
which correlates the 5s5p, would overestimate the bond
length further compared to MRCI�a�. This is surprising since
Vala et al.19 with the same active space and basis set quality
reproduced the experimental bond length in their spin-orbit
free MRCI calculations. One possible source of error in the
present MRCI calculations is the truncation of the virtual
space, but from previous experience we deem it unlikely that
this truncation affects the bond length by 0.05 Å. We instead
believe that the results of Vala et al.19 are fortuitous since our
studies clearly show that correlation of the 4s4p4d manifold
has a significant effect on the spectroscopic constants. In-
deed, if we subtract the 0.07 Å gained by correlating
4s4p4d5s at the CASPT2 level from our MRCI�a� result we
come quite close to the experimental value.

It is interesting to note that DFT, where in principle all
orbitals are correlated, overestimates re by about 0.07 Å.
Clearly, the SAOP potential was not derived with the aim of
providing accurate ground state structures. On the other
hand, other generalized gradient approximation �GGA� func-
tionals do not perform better, e.g., PW91 �2.996 Å�, PBE
�Ref. 56� �2.996 Å�, M06-L �Ref. 57� �3.065 Å�, and BP86
�3.007 Å�. The latter value contrasts significantly with the
bond length of 3.14 Å reported by Landrum et al.,5 but they
employed a TZP basis, thus not including the diffuse func-
tions of the TZ2P basis as we do. Hybrid functionals do
perform better, e.g., PBE0 �Ref. 58� �2.946 Å� and M06–2X
�Ref. 59� �2.925 Å�, whereas LDA overbinds, giving
�2.913 Å�. We note in passing that the effect of spin-orbit

coupling on the bond lengths is on the order of 0.02 Å for
the cited functionals, again an indication that the good agree-
ment of the spin-orbit free MRCI calculation of Vala
et al.19 with the experimental bond length is likely to be
fortuitous.

A similar picture is seen for the harmonic frequencies.
Discrepancies between MRCI, CASPT2, IHFSCC, and both
experiment60 and the spin-free MRCI calculations of Kosloff
are of the order of a few cm−1, whereas DFT underestimates
the frequency by 10 cm−1. The spin-orbit numbers of
Kosloff, on the other hand, show rather large discrepancies
�17 cm−1�, which may be due to artifacts arising from their
diatomics-in-molecule treatment.

B. Benchmark calculations of the electronic spectra
of I3

−

In the comparison of calculated spectra, we consider all
methods both at the experimental bond length �r=2.93 Å�
and at their own optimal ground state equilibrium geometries
�shown in Table I�. The corresponding spectra can be found
in Tables II and III, respectively.

As already mentioned, we discuss the performance of
the other methods relative to IHFSCC�b�. This method is
accurate for the first 18 excited states, which go up to about
4.5–5.0 eV, but becomes less trustworthy for higher energies
due to the increasing importance of double excitations in
these states. Double excitations are readily captured by
MRCI and CASPT2 but neither by TDDFT/SAOP nor by the
IHFSCC calculations on the �1h ,1p� sector of Fock-space.

TABLE II. Comparison of vertical excitation energies Tv �in eV� obtained with the different methods �TDDFT/SAOP, MRCI�a,b�, CASPT2, and IHFSC-
C�a,b�� for I3

− at r1=r2=2.93 Å. States of the same symmetry as those for the optically active excited states are shown in boldface. Statistical measures of the
error compared to IHFSCC�b� are also shown �see text for discussion�.

State

TDDFT/SAOP MRCI�a� MRCI�b� CASPT2 IHFSCC�a� IHFSCC�b�

� Tv � Tv � Tv � Tv � Tv � Tv

1 2g 1.92 2g 2.32 2g 2.30 2g 2.24 2g 2.10 2g 2.05
2 1g 2.04 1g 2.44 0u

− 2.40 1g 2.32 1g 2.23 1g 2.18
3 0u

− 2.42 0u
− 2.47 1u 2.41 0u

− 2.47 0u
− 2.26 0u

− 2.20
4 1u 2.43 1u 2.48 1g 2.41 1u 2.47 1u 2.27 1u 2.20
5 0g

− 2.50 0g
− 2.94 0g

− 2.91 0g
− 2.76 0g

− 2.68 0g
− 2.64

6 0g
+ 2.56 0g

+ 2.98 0g
+ 2.95 0g

+ 2.82 0g
+ 2.73 0g

+ 2.69
7 1g 2.70 1g 3.13 1g 3.08 1g 2.85 1g 2.90 1g 2.86
8 2u 2.61 2u 3.25 2u 3.21 2u 3.10 2u 3.22 2u 3.17
9 1u 2.72 1u 3.30 1u 3.25 1u 3.11 1u 3.30 1u 3.24
10 0u

+ 3.14 0u
+ 3.71 0u

+ 3.66 0u
+ 3.52 0u

+ 3.52 0u
+ 3.51

11 2g 3.50 0u
− 4.04 0u

− 3.98 0u
− 3.79 0u

− 3.95 2g 3.88
12 0u

− 3.42 1u 4.09 1u 4.02 1u 3.80 2g 3.96 0u
− 3.91

13 1g 3.63 2g 4.19 2g 4.16 2g 3.98 1u 4.03 1g 4.00
14 1u 3.56 1g 4.29 1g 4.25 1g 4.06 1g 4.07 1u 4.00
15 0g

− 4.10 0g
− 4.81 0u

+ 4.75 0u
+ 4.51 0u

+ 4.33 0u
+ 4.33

16 0g
+ 4.11 0g

+ 4.82 0g
− 4.77 0g

− 4.51 0g
− 4.54 0g

− 4.48
17 1g 4.34 0u

+ 4.83 0g
+ 4.78 0g

+ 4.53 0g
+ 4.54 0g

+ 4.48
18 0u

+ 4.46 1g 4.96 1g 4.91 1g 4.60 2u 4.7 1g 4.68


̄ �0.24 0.25 0.20 0.05 0.05

std 0.24 0.11 0.11 0.15 0.02


̄abs 0.31 0.25 0.21 0.12 0.05

max 0.56 0.50 0.41 0.27 0.08
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In the statistical analysis of the errors for each method we
therefore include only the first 18 states that are dominated
by single excitations. In this analysis that is found at the

bottom of Tables II and III, we report the mean error 
̄ and
its standard deviation 
std, as well as the mean absolute error


̄abs and the maximum absolute error 
max relative to the
IHFSCC�b� results.

1. Vertical excitations

Inspecting Table II we immediately see some general
trends: CASPT2 and MRCI tend to overestimate the IHF-
SCC excitation energies, whereas TDDFT/SAOP shows the
lowest excitation energies among all methods considered.
One can also see that the degree of electron correlation in-
troduced by the different methods affects distinct regions of
the spectrum differently. For the lowest ten excited states, the
ordering of states is consistent with most methods whereas
for higher states, where the density of states is higher, small
variations in the correlation treatment result in significant
reorderings. The IHFSCC�a� scheme yields only small devia-
tions relative to the larger IHFSCC�b� calculation. This is
quantified by the small mean errors �signed and absolute�
and a small standard deviation �0.02 eV�, suggesting that
core-valence correlation does not play a prominent role in
describing the transitions to low-lying excited states. Such
effects can be studied with more ease at the CASPT2 level.
We find that freezing the 4s4p shells at the PT2 level has no
effect on the vertical excitation energies, whereas freezing
the 4d shell brings about an upward shift of about 0.12 eV,
somewhat larger than what is observed at the IHFSCC level.

Freezing in addition the 5s shell leads to a mean upward shift
of around 0.21 eV compared to our default CASPT2 scheme.
With these observations in mind one can readily understand
why CASPT2 reproduces better the IHFSCC�b� reference
than the MRCI calculations since the latter have much more
limited active spaces. TDDFT/SAOP underestimates

�
̄=0.24 eV� the excitation energies, but perhaps more wor-
risome is that 
std is rather large �0.24 eV�, indicating large
nonsystematic errors.

While it is beyond the scope of this paper to present a
detailed analysis of the difference between IHFSCC and
other methods, it is nevertheless instructive to consider com-
parisons of excitation energies calculated by IHFSCC and
the linear response coupled cluster �LRCC� method done by
various authors.61–65 From those studies it becomes clear that
LRCC and IHFSCC may yield significantly different excita-
tion energies. Some evidence from recent studies for differ-
ent molecular systems performed by some of us66 as well as
by other authors67–70 seems to point to a systematic upward
shift in LRCC excitation energies compared to IHFSCC
ones, similar to what is observed here when comparing
MRCI and IHFSCC. This could be consistent with the dif-
ferent parametrization used in describing the excitations
from the ground to the excited states �linear in MRCI and
LRCC, and exponential for IHFSCC�. It is less straightfor-
ward to rationalize the discrepancies between CASPT2 and
IHFSCC as these methods describe the ground state with a
rather different wave function. Based on previous
experience66,71–73 we expect CASPT2 results for low-lying

TABLE III. Vertical �Tv� excitation energies �in eV� calculated with the TDDFT/SAOP, MRCI�a�, CASPT2, and IHFSCC�a,b� methods for I3
− calculated at the

optimum bond length for each method. States of the same symmetry as those for the optically active excited states are shown in boldface. Statistical measures
of the error compared to IHFSCC�b� are also shown �see text for discussion�.

State

TDDFT/SAOP MRCI�a� CASPT2 IHFSCC�a� IHFSCC�b�

� Tv � Tv � Tv � Tv � Tv

1 2g 1.67 2g 2.15 2g 2.38 2g 1.98 2g 2.00
2 1g 1.78 1g 2.27 1g 2.45 1g 2.10 1g 2.13
3 0u

− 2.13 0u
− 2.28 1u 2.63 0u

− 2.11 0u
− 2.13

4 1u 2.14 1u 2.28 0u
− 2.63 1u 2.12 1u 2.14

5 0g
− 2.24 0g

− 2.77 0g
− 2.90 0g

− 2.55 0g
− 2.58

6 2u 2.26 0g
+ 2.81 0g

+ 2.95 0g
+ 2.60 0g

+ 2.64
7 0g

+ 2.31 1g 2.94 1g 3.00 1g 2.77 1g 2.81
8 1u 2.38 2u 3.00 2u 3.31 2u 3.04 2u 3.10
9 1g 2.44 1u 3.05 1u 3.32 1u 3.11 1u 3.17
10 0u

+ 2.82 0u
+ 3.47 0u

+ 3.72 0u
+ 3.44 0u

+ 3.36
11 2g 3.07 0u

− 3.79 0u
− 3.99 2g 3.73 2g 3.79

12 0u
− 3.09 1u 3.84 1u 4.00 0u

− 3.77 0u
− 3.84

13 1g 3.20 2g 3.89 2g 4.23 1g 3.84 1g 3.90
14 1u 3.22 1g 3.98 1g 4.31 1u 3.85 1u 3.93
15 0g

− 3.66 0g
− 4.52 0u

+ 4.67 0u
+ 4.17 0u

+ 4.27
16 0g

+ 3.68 0g
+ 4.52 0g

− 4.75 0g
− 4.31 0g

− 4.38
17 1g 3.91 0u

+ 4.61 0g
+ 4.78 0g

+ 4.32 0g
+ 4.39

18 0u
+ 4.29 1g 4.65 1g 4.85 1g 4.50 1g 4.59


̄ �0.49 0.09 0.32 �0.05

std 0.29 0.12 0.12 0.04


̄abs 0.49 0.13 0.32 0.06

max 0.84 0.34 0.50 0.10
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excited states to deviate up to a few tenths of an eV from
IHFSCC, but is more difficult to predict either an increase or
a decrease of the excitation energies.

In Table III we present vertical excitation energies at the
ground state equilibrium geometry optimized for each
method. With a spread of 0.12 Å between the optimized
bond lengths, the discrepancies with respect to the reference
IHFSCC�b� data increase. The effect is accentuated by the
fact that the vertical excitation energies probe the repulsive
wall of the excited states, as will become clear in Sec.
III B 2. We first note that the vertical excitation energies ob-
tained with the IHFSCC�b� scheme to the optically active
states—3.36 and 4.27 eV—are close to the experimentally
observed peaks in the PFY spectra �3.43 and 4.25 eV
�Ref. 18��. The agreement is also quite acceptable with the
IHFSCC�a� scheme, which again indicates that core-valence
correlation �correlating deeper than the 5s shell� can possibly
be disregarded when constructing the full potential energy
surfaces. The corresponding CASPT2 results—3.72 and 4.67
eV—are close to the SOCI values reported by Nakanishi
et al.18 �3.79 and 4.70 eV�. MRCI�a� is reasonably close to
the lower excitation energy, but severely overestimates the
second one, thus providing a peak separation energy of 1.14
eV which is far from the experimentally observed 0.82 eV. In
fact, it is only the IHFSCC method that is able to reproduce
the experimental peak positions and separation; all other
methods explored in this paper overestimate the splitting sig-
nificantly with TDDFT/SAOP being simply off the mark for
these excitations.

The statistical analysis at these selected geometries indi-
cates that both MRCI and CASPT2 are able to provide a
balanced treatment of the ground and excited state surfaces.
A problem with MRCI�a�, currently the only feasible CI ap-
proach to cover the whole surface, is the fact that the opti-
cally active states �indicated in boldface in both Tables II and
III� that are well described with IHFSCC�b� exhibit rela-
tively large errors when treated with MRCI�a�. An important
remark concerning CASPT2 is that our conclusions are
based on calculations carried out in C2h symmetry with the
rotation axis aligned with the molecular axis. Since we are
presently only exploring the symmetric stretch one would
rather be inclined to use the highest possible point group
symmetry available for a centrosymmetric configuration,
which is D2h with the MOLCAS code. However, the introduc-
tion of a vertical mirror plane places �x and �y orbitals in
different irreducible representations and introduces a symme-
try breaking to which CASPT2 is extremely sensitive. Verti-
cal excitation energies at bond length 2.93 Å calculated in
D2h and C2v symmetries give upper and lower bounds, re-
spectively, for the corresponding C2h values within a span
approaching 0.1 eV. The choice of symmetry can therefore
seriously affect conclusions regarding the performance of the
method. On the other hand, restricting symmetry to C2h

means that the important distinction between 0+ and 0− states
is lost. The use of supersymmetry is hardly an option in the
scan of the potential surfaces, so we have in the present work
rather relied on scripts that analyze the CASSCF orbitals to
extract this symmetry information. Having to work at re-

duced symmetry also implies that orbitals are optimized and
thus averaged for a larger number of states.

We also note that the two other experimentally observed7

bands—the A band �at 2.19 eV in CH2Cl2 and 2.16 eV in
Et4NI3 crystal�, assigned to a 3�u, and the B band �at 2.82
eV in CH2Cl2 and 2.71 eV in Et4NI3 crystal�, assigned to a
3�u

+ state—can indeed be correlated with the first and second
1u states calculated for the vertical excitations with
IHFSCC�b� �2.13 and 3.17 eV�, IHFSCC�a� �2.11 and 3.11
eV�, MRCI�a� �2.28 eV and 3.05 eV�, and TDDFT/SAOP
�2.14 and 2.38 eV�, while agreement with SO-CASPT2 is
less good �2.63 and 3.32 eV�. While the agreement for the
maxima of band A is rather good, for band B it is much less
so. This could be due to the fact that this band is rather weak
and only visible as a shoulder on the C band in the spectra
reported by Gabes and Stufkens,7 making the exact position
dependent on the fitting procedure employed to establish the
band maximum.

2. Explorations of the dissociative region

The discussion so far has dealt with geometries at and
close to the ground state equilibrium structures. However, in
order to be useful in modeling the dissociation process of I3

−

the potential surfaces of the excited states far from the equi-
librium region have to be properly described as well. In order
to probe the relative accuracy of the methods, we have cho-
sen to investigate displacements along the symmetric stretch
coordinate, along which photodissociation via the C and D
bands generally initiates. This represents a one-dimensional
cut through the full three-dimensional surface enabling us to
define local minima �and harmonic frequencies� for the dif-
ferent excited states in this restricted geometry. One should
thereby keep in mind, however, that such extrema do not
necessarily correspond to the true spectroscopic constants for
the corresponding states as we did not investigate the curva-
ture of the surface in directions orthogonal to the symmetric
stretch coordinate.

A further restriction in the current study is the presence
of intruder states that made it impossible to converge the
IHFSCC calculations at internuclear distances larger than 3.6
Å. This means that we can only compare with the IHF-
SCC�b� reference at relatively short distances. Similarly, we
could not obtain TDDFT/SAOP results beyond about 3.9 Å
due to triplet instabilities. In the CASPT2 calculations we
observe downward spikes in the potential curves, visible in
Fig. 2, appear around 3.5 Å, signaling a weak intruder state
problem. These features appear already in the spin-orbit free
CASPT2 calculations, whereas the CASSCF calculations
produce smooth potential curves. We were unable to curb
these features, applying real74 and imaginary75 level shifts of
up to 0.20 Eh. On the other hand, outside the spikes the
potential curves appear smooth and so a pragmatic approach
to fitting the potential surfaces would be to remove points for
which the weight of the reference CASSCF state drops be-
low a selected value since this characterizes the appearance
of the spikes. A more satisfying solution would be to increase
the active space, but this easily brings the computational cost
out of practical reach.
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Potential curves along the symmetric stretch for the
lower two 0g

+ and three 0u
+ states, calculated at the CASPT2

and IHFSCC�b� level, are given in Fig. 2. The crossing of the
first excited 0g

+ and 0u
+ states around 3.7 Å translate into a

conical intersection in a 2-dimensional �2D� plot involving
also the antisymmetric stretch and plays an important role in
the photodissociation via the C band, as discussed by Nakan-
ishi et al.18 These authors indicate a number of avoided
crossings and conical intersections appearing in their SOCI
calculations, such as an avoided crossing between the second
and third 0u

+ state, clearly visible around 3.7 Å in Fig. 2,
which renders the second 0u

+ state, associated with the D
band, dissociative. Due to these features in the potential
curves we have restricted the calculation of spectroscopic
constants and adiabatic excitation energies to the ten lowest
excited states of I3

−, presented in Table IV.
The lower excited states are dominated by single excita-

tions to the antibonding �1/2u
� LUMO and bond lengths are

therefore systematically considerably longer than observed
for the ground state. This also implies, as already mentioned,
that vertical excitations probe the repulsive wall of the ex-
cited states. We note, for instance, that the vertical and adia-
batic excitation energies to the first excited 0u

+, calculated at
the IHFSCC�b� level, are 3.36 and 2.61 eV, respectively, a
difference of 0.75 eV, meaning that the photodissociation
process starts off with a significant acceleration of the vibra-
tional wave packet.

With respect to the spectroscopic constants given in
Table IV, we observe excellent agreement between IHF-
SCC�a� and IHFSCC�b�, again suggesting that correlation of
the 4d shell is not crucial for a good description of the ex-
cited states potential surfaces. CASPT2 tends to consistently
underestimate the bond lengths compared to IHFSCC�b� by
about 0.07 Å, in line with the difference of 0.058 Å for the

FIG. 2. Potential energy curves along the symmetric
stretch coordinate for the ground state �GS, 0g

+� and first
excited 0g

+ state, and lower 0u
+ states �the first two cor-

responding to the optically active states� from CASPT2
and IHFSCC�b� calculations. All potentials were scaled
so that the ground state minimum corresponds to the
origin; the CASPT2 excited states were further shifted
�a� downward by 0.31 eV and �b� toward larger inter-
nuclear distances by 0.05 Å, to compensate the system-
atic errors compared to IHFSCC�b�.

TABLE IV. Spectroscopic constants �re in Å and 
e in cm−1� and adiabatic �Te� excitation energies �in eV� for the ten lowest excited states of I3
−, calculated

with the TDDFT/SAOP, MRCI�a�, CASPT2, IHFSCC�a�, and IHFSCC�b� methods. The lowest, optically active 0u
+ state is shown in boldface. Statistical

measures of the error compared to IHFSCC�b� are also shown �see text for discussion�. Values in parenthesis have reduced accuracy due to triplet instabilities
�TDDFT� or lack of convergence �IHFSCC� and have not been included in the statistical analysis.

State

TDDFT/SAOP MRCI�a� CASPT2 IHFSCC�a� IHFSCC�b�

� re 
e Te � re 
e Te � re 
e Te � re 
e Te � re 
e Te

1 2g 3.443 55 1.19 0u
− 3.501 56 1.53 2g 3.188 80 1.97 0u

− 3.439 60 1.45 0u
− 3.417 60 1.45

2 1g 3.462 52 1.29 1u 3.503 56 1.53 1u 3.318 71 1.98 1u 3.436 61 1.46 1u 3.414 61 1.46
3 0u

− �3.719� �22� �1.38� 2g 3.383 61 1.64 0u
− 3.315 72 1.99 2g 3.270 81 1.59 2g 3.245 83 1.59

4 1u �3.696� �29� �1.38� 1g 3.421 56 1.71 1g 3.208 76 2.02 1g 3.282 78 1.70 1g 3.255 80 1.71
5 2u 3.616 46 1.41 2u 3.644 47 1.89 1u 3.427 59 2.33 0g

− 3.383 52 2.05 0g
− 3.358 53 2.07

6 1u 3.669 39 1.52 1u 3.657 47 1.89 2u 3.417 60 2.35 1g ¯ ¯ ¯ 1g �3.514� �29� �2.20�
7 0g

+ 3.388 63 1.68 0g
− 3.478 48 2.16 0g

− 3.222 73 2.44 2u 3.475 63 2.18 2u 3.446 64 2.22
8 1g �3.877� �54� �1.81� 1g 3.562 43 2.22 1g 3.260 68 2.47 0g

+ 3.264 82 2.22 0g
+ 3.240 84 2.24

9 0g
− 3.554 38 1.88 0g

+ 3.388 62 2.28 0g
+ 3.198 78 2.53 1u 3.492 62 2.21 1u 3.462 63 2.26

10 0u
+ 3.513 57 2.10 0u

+ 3.731 34 2.36 0u
+ 3.445 53 2.78 0u

+
¯ ¯ ¯ 0u

+ 3.498 50 2.61


̄ 0.163 �18 �0.52 0.152 �15 �0.07 �0.066 3 0.31 0.025 �1 �0.02

std 0.106 20 0.18 0.051 8 0.19 0.036 9 0.16 0.003 1 0.02


̄abs 0.163 23 0.52 0.152 15 0.14 0.066 7 0.31 0.025 1 0.02

max 0.314 �46 �0.81 0.233 �24 �0.37 �0.136 20 0.54 0.030 �2 �0.05
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ground state. On the other hand, MRCI�a� significantly over-
estimates the excited state bond lengths, approaching the er-

rors of TDDFT/SAOP �
̄�0.16 Å�, although with lower
standard deviation. The same tendency is observed for har-
monic frequencies, where CASPT2 on the other hand shows
rather good performance.

It is interesting then to note that MRCI�a� outperforms
CASPT2 for adiabatic excitation energies, whereas TDDFT/
SAOP severely underestimates them. CASPT2 has, on the
other hand, a reasonably small and consistent standard devia-
tion of around 0.16 eV in excitation energies. This systematic
nature of the errors can therefore perhaps be exploited to
further bring the results close to IHFSCC�b� by applying
global shifts to the CASPT2 potential energy surfaces. Such
an approximation is demonstrated in Fig. 2, where we show,
for the optically active 0u

+ states, the IHFSCC�b� cuts of the
potential energy surface along corresponding cuts of the
CASPT2 potential, after the CASPT2 bond lengths were uni-
formly shifted by 0.035 Å and a shift of 0.15 eV was applied
to the excited states. After these two corrections, we observe
a very good agreement between the two methods, with rather
small discrepancies for the second 0u

+ state. Agreement for
the first 0u

+ state, however, seems to be somewhat poorer than
for the second.

3. A closer look at the 0u
+ states

The two strong, allowed transitions for I3
− occur from the

�=0g
+ ground state to two states with �=0u

+. Table V dis-
plays the dominant contributions to these transitions. If avail-
able we also show oscillator strengths for the corresponding
transitions. Since the CASPT2 calculations were done in a
two-step fashion we can also analyze the composition of
these excited states in terms of spin-orbit free states. To a
first approximation one can view these states as 3�u and 1�u

+,
the former borrowing intensity from the latter through the
spin-orbit coupling. This picture correlates very well with the
DIM-SO results of Kosloff and co-workers.19 In an orbital

picture all methods give the same description, with different
mixings of the two transitions from the occupied �g and �g

orbitals to the �u LUMO. In the IHFSCC�b� calculations two
additional excitations appear that can be interpreted as pro-
viding orbital relaxation of the LUMO. Since the DFT cal-
culations also include spin-orbit coupling at the SCF stage
we see a similar picture as for IHFSCC and MRCI, except
that relaxation effects do not play an important role �since
the virtual orbitals see the same potential as the occupied
ones�.

Nakanishi et al.18 reported calculated squared transition
moments ��2� 7.31 and 13.51 a0

2 for the two lower 0u
+ states,

respectively, which translates into oscillator strengths of 0.68
and 1.56, thus giving somewhat more relative weight to the
lower state than what we observe at the CASPT2 and IHF-
SCC�b� level and shown in Table V. Gabes and Stufkens7

reported an intensity ratio of around 1.6:1.0 between the up-
per and lower 0u

+ states. Since CASPT2, MRCI, and TDDFT/
SAOP all overestimate the peak separation between these
states and thus underestimate the spin-orbit coupling be-
tween the underlying 3�u and 1�u

+ �S states, these methods
are also unable to reproduce the experimental intensity ratio.
IHFSCC does get the peak separation right, but unfortunately
we do not have access to oscillator strengths for this meth-
odology.

C. Benchmark calculations on I3: Electronic spectra
and electron affinities

Given that the IHFSCC results for the �1h ,0p� sector are
generated as by-products of the excitation energies determi-
nation for I3

−, we can also present spectroscopic constants and
vertical and adiabatic excitation energies for this species, cal-
culated with IHFSCC�b�. We furthermore provide a compari-
son of this radical with IHFSCC, CASPT2, and MRCI at r
=2.84 Å, which is the geometry employed by Kosloff and
co-workers19 for the same system. These results are also
shown in Table VI.

TABLE V. Character of 0u
+ states of I3

− for TDDFT/SAOP, IHFSCC�b�, CASPT2, and MRCI�a� at the respective ground state equilibrium geometries. These
are given in terms of contributions from one-electron �for TDDFT, IHFSCC, and MRCI, where spin-orbit coupling is included at the SCF level� or
many-electron states �for CASPT2�. The oscillator strengths f associated to the transition from the ground state to these excited states are also shown �where
available� along with the vertical excitation energy. The experimental absorption maxima are found at �a� 3.43 and 4.25 eV from gas-phase photofragment
yield spectra �Ref. 18�, �b� 3.41 and 4.22 eV in CH2Cl2 �solution� �Ref. 7�, and �c� 3.38 and 4.28 eV in Et4NI3 �solid state� �Ref. 7�.

Method State Excited state composition
Tv

�eV� f

TDDFT/SAOP 0u
+ 51%�1/2g→�1/2u

� +49%�1/2g→�1/2u
� 2.82 0.09

0u
+ 45%�1/2g→�1/2u

� +50%�1/2g→�1/2u
� 4.29 1.54

MRCI 0u
+ 46%1/2g→�1/2u

� +30%�1/2g→�1/2u
� +7%��1/2g

1 �1/2u
1 →�1/2u

�2 � 3.47 0.37
0u

+ 29%�1/2g→�1/2u
� +47%�1/2g→�1/2u

� +6%��1/2g
1 �1/2u

1 →�1/2u
�2 � 4.61 1.83

IHFSCC 0u
+

40%�1/2g→�1/2u
� �LUMO�+19%�1/2g→�1/2u

� �LUMO�
+22%�1/2g→�1/2u

� +15%�1/2g→�1/2u
� 3.36 n/aa

0u
+

26%�1/2g→�1/2u
� �LUMO�+36%�1/2g→�1/2u

� �LUMO�+8%�1/2g

→�1/2u
� +24%�1/2g→�1/2u

� 4.27 n/aa

CASPT2 0u
+ 14% 1�u

+�98%�g→�u
��+85% 3�u�91%�g→�u

�� 3.72 0.45
0u

+ 84% 1�u
+�98%�g→�u

��+15% 3�u�91%�g→�u
�� 4.67 2.37

aNot available.
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The excitation energies calculated at r=2.84 Å are in
good agreement with those of Kosloff et al., and, for the first
two excited states, also with the experimental data. The �
=3 /2g third excited state has a much longer bond length than
the ground state which may explain the 0.1–0.2 eV overesti-
mation found relative to the experimental value when calcu-
lated as vertical excitation. The adiabatic results for IHF-
SCC�b� indeed show a decrease of 0.10 eV from the vertical
to the adiabatic excitation energy.

In line with the discussion above, we see that the results
obtained with the different methods are fairly consistent. We
find a ground state with �=3 /2u, followed by states of �
=1 /2g , 1 /2u, 3 /2g, and 1 /2g, respectively, in agreement
with the experimental assignment.33,34

The CASPT2 excitation energies are lower than those of
IHFSCC�b� by about 0.1–0.2 eV with the exception of the
first excited state, which is higher for CASPT2. In this case,
however, MRCI and IHFSCC are much more alike than for
I3

−, with discrepancies generally smaller than 0.1 eV. This
strong similarity could be due to the fact that for the �1h ,0p�
sector used here the exponential parametrization of IHFSCC
for the excited states is truncated at the linear term and there-
fore is essentially the same as in MRCI.62–65

From the IHFSCC�b� calculations we furthermore obtain
an adiabatic �vertical� electron affinity �EA� of 4.29 eV �4.20
eV� which compares well with the adiabatic EA of
4.15�0.12 eV, including zero-point vibrational corrections,
obtained experimentally from a thermodynamic cycle,76 as
well as the vertical detachment energy of I3

− of 4.25 eV re-
ported by Choi et al.34

IV. CONCLUSIONS

We have performed correlated electronic structure calcu-
lations including spin-orbit effects at high levels of theory on
the triiodide ion �I3

−� and the radical �I3�. The agreement
between the different wave function-based methodologies
employed is reasonable, as is their agreement with experi-
mental results. Exploratory TDDFT calculations with the
SAOP functional provide a qualitatively correct picture not
too far from the equilibrium distance, but show unsystematic
errors that prohibit use in quantitative description. The
SAOP functional was chosen on the one hand because it has
been constructed to correct the wrong asymptotic behavior of

pure exchange-correlation potentials, and on the other hand
because it has shown good performance for excitation ener-
gies of molecules containing heavy elements.77–79 We believe
that the principal reason for the relatively poor performance
of TDDFT/SAOP is self-interaction errors.80 This is indi-
cated by the severe overestimation of the equilibrium bond
lengths and the observation that the introduction of exact
Hartree–Fock exchange through hybrid functionals gives
spectroscopic constants in much better agreement with ex-
periment. We have not undertaken a systematic study of the
performance of other DFT functionals. Whereas there is a
good reason to believe that some functionals will provide
better vertical excitation energies at the equilibrium distance,
we suspect that they will all encounter stability problems
along the dissociation channels.

With respect to I3
−, of the different methodologies evalu-

ated, the intermediate Hamiltonian Fock-space coupled clus-
ter is clearly the method that most accurately and consis-
tently provides a picture which is both qualitatively and
quantitatively correct for the excitation processes taking
place in the initial steps in the photodissociation of the triio-
dide ion and the triiodide radical. Due to convergence prob-
lems this method is unfortunately not applicable to the com-
plete potential energy surface, but we have been able to show
that other wave function-based methods can reproduce the
benchmark IHFSCC results rather well.

While it can be argued that for the triiodide species
MRCI is slightly more accurate than SO-CASPT2, the latter
has two interesting advantages: For one thing, it is computa-
tionally much more efficient than MRCI, and for another its
errors seem to be very systematic for all electronic states
considered. This systematic nature of errors is observed, in
particular, for energies, allowing for global correction to be
applied to the potential energy surfaces in order to bring
them in agreement with IHFSCC. All is not well, however,
with CASPT2. We observe a strong sensitivity of the method
to symmetry breaking. A simulation of the photodissociation
of I3

− will require as a minimum the generation of the 2D
potential surfaces of linear I3

−. However, in order to avoid
symmetry breaking such a scan can at best be carried out in
C2 symmetry, for which the distinction between 0+ and 0−

states is lost and needs to be recovered by the use of scripts
when analyzing the individual states. CASPT2 is further-
more susceptible to intruder states, and we have been unable

TABLE VI. Comparison of excitation energies Tv �in eV� for different methods �CASPT2, IHFSCC�a,b��, and MRCI�a� for neutral I3 at r1=r2=2.84 Å�.
Vertical �Tv� and adiabatic �Te� excitation energies, as well as EAs are shown for IHFSCC�b�.

State ���

MRCIa MRCI�a� CASPT2 IHFSCC�a� Expt. IHFSCC�b�

Tv�r1=r2=2.84 Å� 
e Te EAb Re 
e Tv
c Tv Te EAd

X �3 /2u� 0.00 0.00 0.00 0.00 115�5 0.00 4.15�0.12 2.828 132 0.00 0.00 0.00 4.29
A �1 /2g� 0.28 0.33 0.42 0.27 0.28 2.884 113 0.24 0.25 0.23
B �1 /2u� 0.61 0.65 0.55 0.64 0.62 2.837 129 0.65 0.65 0.65
C �3 /2g� 0.78 0.78 0.77 0.88 0.68 2.951 115 0.86 0.88 0.78
D �1 /2g� 1.62 1.63 1.55 1.68 2.933 118 1.68 1.70 1.62

aResults from Ref. 19 at r1=r2=2.836 Å.
bReference 76; vertical detachment energy of I3

−: 4.25 eV �Ref. 34�.
cCalculated at r1=r2=2.84 Å.
dValue for the adiabatic EA. Vertical processes: IP�I3

−�=4.39 eV and EA�I3�=4.20 eV.
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to remove the spikes observed in the potential curves toward
dissociation by the use of level shifting techniques. One al-
ternative is to explore a possibly more robust multireference
perturbation theory such as n-electron valence second-order
perturbation theory.81

MRCI clearly is another option, but presently too expen-
sive to be able to generate a full set of potential energy
surfaces for studies of the dynamics of the photodissociation
process. The challenge of applying such methods to heavy-
element systems is not only the mandatory treatment of spin-
orbit coupling, but also the fact that heavy atoms are increas-
ingly polarizable such that subvalence has to be correlated.
In the present case we observe that the correlation of 4d is
crucial for obtaining correct spectroscopic constants, less so
for vertical excitation energies. Subvalence correlation can
possibly be avoided by employing relativistic effective core
potentials combined with core-polarization potentials.82,83 Fi-
nally, we would like to suggest that a successful combination
of MCSCF and DFT �Ref. 84� could be the ideal tool for
generating potential surfaces for dynamics.
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In a recent investigation by some of us on the spectrum of the uranyl (UO2
2+) ion [Réal, F.; Vallet, V.;

Marian, C.; Wahlgren, U. J. Chem. Phys. 2007, 126, 214302], a sizable difference between CASPT2 and
linear response coupled cluster (LRCC) was observed both with and without the perturbative inclusion of
spin-orbit coupling. This poses a serious question as to which of the two would be more reliable for
investigating molecules containing actinides. In this paper we address this question by comparing CASPT2
and LRCC to a method known to accurately describe the spectra of actinide-containing molecules: the four-
component intermediate Hamiltonian Fock-space coupled cluster (IHFSCC) method, where electron correlation
and spin-orbit coupling are treated on an equal footing. Our results indicate that for UO2

2+ there is little
difference between treatments of spin-orbit coupling, making electron correlation the main cause of
discrepancies. We have found IHFSCC and LRCC to be the most alike in the overall description of excited
states, even though individual LRCC energies are blue-shifted in comparison to IHFSCC due to the difference
in the parametrization of the excited states’ wave functions. CASPT2, on the other hand, shows good agreement
with IHFSCC for individual frequencies but significantly less so for the spectrum as a whole, due to the
difference in the degree of correlation recovered in both cases.

1. Introduction

The chemistry of actinide-containing molecules is a rich and
fascinating subject, in particular because of their spectroscopic
and luminescence properties. The luminescence of uranyl(VI)
UO2

2+ has been extensively studied experimentally both in
aqueous solution and in crystals. However, the assignment of
the energy levels responsible for the strong absorption in the
UV range and the long-lived luminescent state that emits light
in the visible (20 000-26 000 cm-1) range is not trivial.1-3

There have been several theoretical studies in the past decade
on the electronic spectrum of uranyl(VI), either as a bare ion4-7

or coordinated5,6,8,9 to other species, with the 2-fold aim of
comparing theoretical methods and reproducing the experimental
data available in the condensed phase. Theoretical approaches
face several challenges due to the large number of electrons,
which should be treated explicitly, and to the accurate descrip-
tion of the strong interactions of the uranyl with its surroundings
(ligands, host crystals, or solvent molecules). Due to these
interactions, unambiguous comparison between theoretical and
experimental data is often difficult, and it is of interest to obtain
benchmark theoretical data for the bare uranyl ion for which
no experimental data is available.

In order to reach benchmark accuracy different hierarchies
of methods could be applied: one can start from a relativistic
framework, either via four-component10,11 or two-component12,13

treatments, in which spin-orbit is included a priori, and use
multireference coupled-cluster14-17 or configuration interaction
(CI) methods18-21 to treat electron correlation effects. An
alternative is to use a two-step approach. In the first step, the
correlation effect on the states of interest is treated at the spin-
free (SF) level with CI-based methods such as multireference
MRCI22 or complete active space with second-order perturbation
theory CASPT223-25 approaches, or by applying coupled cluster
theory in the framework of response theory.26-29 In the second
step of the calculation, spin-orbit interaction between the
various spin-free states is accounted for by performing spin-orbit
configuration interaction (SOCI) calculations.25,30 The effect of
electron correlation computed in the first step is taken into
account by means of an effective Bloch Hamiltonian.31 The
diagonalization of the total Hamiltonian yields energies and
eigenvectors which take into account both correlation and
spin-orbit effects. All of these methods are rather demanding
and are often replaced by methods that reduce the work in either
the treatment of electron correlation, such as time-dependent
density functional theory (TDDFT), or in the treatment of
relativity, e.g., using pseudopotentials, or both. Most ap-
proximate correlation schemes lack however, the possibility of
systematically improving the description by going to the next
level in a well-defined hierarchy.

In recent theoretical studies on the uranyl(VI) spectrum7,9,32

several theoretical methods have been compared. Within the
TD-DFT scheme, most density functionals do not yield accurate
excitation energies; however, geometries and relaxation energies
of the excited states are in most cases reasonably well described.
Réal and co-workers7 also demonstrated that different wave
function-based methods generally provide qualitatively similar

† Part of the “Russell M. Pitzer Festschrift”.
* To whom correspondence should be addressed. E-mail: valerie.vallet@
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‡ CNRS UMR 8523.
§ Vrije Universiteit Amsterdam.
| Tel Aviv University.

J. Phys. Chem. A 2009, 113, 12504–1251112504

10.1021/jp903758c CCC: $40.75  2009 American Chemical Society
Published on Web 07/16/2009

142



results. However, in quantitative terms significant differences
appear between the two methods expected to yield the most
accurate results: CASPT2 and linear response coupled cluster
(LRCC). The LRCC spectrum was blue-shifted in comparison
with that of CASPT2 by about 3000 cm-1 and quite similar to
spectra obtained from multireference CI (MRCI) or averaged-
quadratic coupled-cluster (AQCC) calculations. The only ex-
perimental spectra available are for crystals such as Cs2UO2Cl4

3

or in solution.33 Matsika and Pitzer5 and Pierloot et al.6,9 have
shown that the environment (the equatorial ligands and the rest
of the crystal) may modify the character of the excited states,
apart from changing significantly the transition energies. This
greatly reduces the usefulness of comparing calculated energy
levels for the bare uranyl to experimental values.

The need for understanding the origin of the discrepancies
among wave function based methods in the computed uranyl
energy levels has motivated us to employ the intermediate
Hamiltonian Fock space coupled cluster (IHFSCC) method, a
true multireference coupled cluster method that, in its relativistic
formulation,14-16 allows us to consider spin-orbit coupling and
electron correlation on the same footing. The accuracy of the
relativistic IHFSCC approach has been demonstrated in several
investigations on actinyl species.34-37 Moreover, Fock-space
coupled cluster provides an ideal measure for the relative
accuracy and reliability of both LRCC and CASPT2 because it
is fully size-extensive for both ground and excited states (as
opposed to LRCC, which is formally so only for the ground
state) and includes electron correlation to infinite order (as
opposed to CASPT2, which does so to second order). By
providing a comparison of LRCC and CASPT2 to the accurate
IHFSCC, we complement the picture obtained from previous
studies, since the former have been compared extensively to
more approximate wave function-based methods (e.g., MRCI
and AQCC) and TD-DFT.7,9,32

2. Computational Details

2.1. Fock-Space Coupled Cluster. The calculations of the
excitation spectrum of UO2

2+ were performed with a develop-
ment version of the Dirac08 program,38 using three different
approaches to treat relativity. In the spin-free Dirac-Coulomb
(SFDC)11,39 calculations, we eliminate all spin-orbit coupling
terms to allow for straightforward comparison with earlier
works. This approach is an approximation to the regular
4-component Dirac-Coulomb (DC) calculation, in which only
the usual approximation of (SS|SS) integrals by an a posteriori
correction40 is applied. The third approach concerns the eXact
2-Component (X2C) approach recently introduced by Iliaš and
Saue13 in which spin-orbit coupling is included from the start
via atomic mean-field integrals calculated with the AMFI
code.41,42

In most of the calculations the valence double (DZ) or triple-
� (TZ) basis sets by Dyall43 were used for the uranium atom,
but we also considered the Fægri set,44 that corresponds to triple-
� (TZ) quality in the valence s functions, and quadruple- � (QZ)
or higher quality for the higher angular momenta. For oxygen
we employed the (aug)-cc-VDZ and aug-cc-pVTZ basis sets of
Dunning and co-workers.45 All of these basis sets were kept
uncontracted in all calculations.

The potential energy curves for the symmetric stretch were
sampled at 14 different uranium-oxygen bond lengths (rUO)
within the range rUO ∈ [1.58;1.92] (Å). This ground-state
potential energy curve was described by the Dirac-Coulomb
coupled cluster single and double without (CCSD) and with
perturbative treatment of triples (CCSD(T)) method,46-49 while

the curves for the excited states were obtained within the
IHFSCCSD scheme using the “one particle, one hole” sector
(1h,1p) of Fock space. In the calculations, several active spaces
were tested; only orbitals with orbital energies (in au) ε ∈
[-6.00; 20.00] (34 electrons), [-3.00; 20.00] (24 electrons;
uranium 5d frozen), and [-3.00; 40.00] (24 electrons; testing
the effect of higher lying virtual orbitals) are included in the
correlation treatment. These different active spaces will be
referred to as AS1, AS2, and AS3, respectively.

In Fock-space coupled cluster calculations one should sub-
divide the space spanned by the active orbitals in two subspaces:
the model or P space, containing the active valence orbitals
which are directly involved in the electronic excitations and
the complementary Q space that includes the remaining “cor-
relation-active” orbitals from AS1, AS2 or AS3. In the present
case this translates into including the highest occupied orbitals
(σ1/2u, σ1/2g, π1/2u, π3/2u, π1/2u and π3/2g) and the ten lowest
unoccupied (the nonbonding uranium f 3/2u

δ , f 5/2u
δ and f 5/2u

φ , f 7/2u
φ ,

as well as the antibonding σ1/2u* , σ1/2g* , π 1/2u* , π 3/2u* , π 1/2u* and
π3/2g* ) orbitals in the (P) model space. This space can be extended
by considering in addition the deeper lying occupied orbitals
(6s, 6p, and 5d on uranium and 2s on the oxygens) and/or higher
virtual orbitals (see Figure 1 in ref 3 for a schematic spin-free
picture on the composition of these orbitals).

The intermediate Hamiltonian facilitates such extensions of
the active space by allowing for a further subdivision of the
resulting model space into 2 subspaces, the main model (Pm)
space and an intermediate model (Pi) space that is not dressed
and serves as a buffer between the Pm and Q spaces, thus
alleviating “intruder” state problems. The main model space
Pm (consisting here of 14 electrons and 34 spinors for AS1,
and of 12 electrons and 24 spinors for AS2 and AS3,
respectively) is built solely from excitations within the subset
of main active valence orbitals, whereas every configuration
from the Pi subspace involves at least one intermediate active
valence orbital.

One should realize that accurate solutions are only obtained
for states dominated by Pm components. The undressed Pi space
merely serves as a buffer to eliminate intruder state problems
that make convergence in traditional Fock space approaches
difficult. The scheme employed here is known in literature as
IH2,50,51 but for simplicity we refer to it simply as IHFSCC.
This method forces the Pif Q transition amplitudes of the wave

Figure 1. Potential curves of the uranyl (VI) bare ion along the
symmetric stretching mode computed with the SO-IHFSCC method.
The 1g states are drawn in black, the 2g in red, the 3g in blue, and the
4g in magenta.
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function operator to be zero, which makes the scheme easy and
efficient to use.34,35

2.2. Linear Response CCSD. Calculations with the linear
response CCSD method26-29 were made with the implementation
available in the Dalton 2.0 package.52 These were carried out
to check the influence of uncontracting the basis sets in such
calculations, in order to make the comparison of our current
results and the previous spin-free LR-CCSD work (in which a
contracted atomic natural orbital basis set was used) more
straightforward. The Fægri basis set mentioned above was
thereby used for uranium, along with the cc-pVTZ basis for
oxygen. In this case molecular orbitals were obtained from a
scalar relativistic Hartree-Fock calculation using the Douglas-
Kroll-Hess Hamiltonian.53,54 In the spin-free LR-CCSD cal-
culation, the uranium atomic orbitals below the 6s were kept
frozen as well as the 1s oxygen atomic orbitals, thus correlating
24 electrons. The highest virtual orbitals with energies ε g 40
au were discarded from the orbital correlation space.

2.3. Computational Requirements. Given this range of
different methods employed in the current work it may be of
interest to list some representative computational requirements
for the calculations performed: the one-component correlated
calculations can be performed on a typical Linux cluster with
one processor and about 1 Gb memory, while the requirements
of the four-component DC-IHFSCC go up to 4Gb memory (in
solving the amplitude equations for the different sectors of the
Fock space) and about 80 Gb of disk space (in the transformation
from AO to MO basis, prior to the coupled cluster calculation)
per processor, which are more easily met on a supercomputer.

3. Results and Discussion

3.1. Ground-State Spectroscopic Constants. The spectro-
scopic constants of the ground state of UO2

2+ already provide
information on possible differences between the combinations
of basis sets and Hamiltonians that we wish to compare. The
bond lengths and vibrational frequencies computed with the
(4C-)MP2, (4C-)CCSD and (4C-)CCSD(T) methods are
reported in Table 1 and may be compared to those available in
the literature.6,7,55,56

Our calculations yield U-Oyl bond lengths of 1.724, 1.685,
and 1.703 Å for 4C-MP2, 4C-CCSD, and 4C-CCSD(T),
respectively (from fitting 7 points near the respective minima
with a 4th degree polynomial). It is clear that the inclusion of
triple excitations in the coupled cluster allows for relaxation of
the U-Oyl bonding orbitals, resulting in a slight bond lengthen-
ing (0.02 Å), while the bond distance is overestimated by 4C-
MP2. These results are quite similar to those obtained by de
Jong et al.55 in previous four-component calculations with the
differences of 0.012 Å between the two sets of results likely
arising from the different basis sets used in both studies - those
used here are more flexible than those used by de Jong et al.55

The 4C-MP2 results are also quite similar to those obtained by

Straka et al.56 with a scalar relativistic MP2 calculation, as was
expected since spin-orbit effects are known to be of little
importance for the properties of the uranyl closed-shell ground
state.57,58

The SO-CASPT2 bond lengths6 are shorter by about 0.02 Å
than the 4C-MP2 ones, while they differ by less than 0.005 Å
from the 4C-CCSD(T) values. This is surprising at first glance
as one might expect MP2 and CASPT2 to yield similar results
for the uranyl ground state for which the wave function is
dominated by a single closed-shell determinant.59 Even so, the
ground-state CAS wave function (with an active space including
the six bonding, six antibonding orbitals and four nonbonding
orbitals) computed in the one component framework includes
a significant contribution (about 13%) from double excited
determinants. This leads to higher order excitations in CASPT2,
relative to the MP2 and a better description of electron
correlation, thus bringing the result closer to CCSD(T) accuracy.

Vibrational frequencies for the ground state, computed in the
harmonic approximation, are also given in Table 1. As was the
case for the bond lengths, we see in general good agreement
with the results of de Jong et al.,55 with discrepancies of about
40 cm-1 for 4C-CCSD and 4C-CCSD(T) numbers, but only
13 cm-1 for the 4C-MP2 ones. The frequency values vary in
accordance with the trend observed for the equilibrium bond
distances: the larger the bond length, the smaller the frequency.
The SO-LR-CCSD results of Réal et al.7 differ by 65 cm-1 from
the 4C-CCSD ones. Although the bond lengths computed by
Straka et al.56 agreed with the 4C-values within 0.001 Å, the
stretching frequencies show discrepancies of about 100 cm-1.
Similarly, for SO-CASPT2 the equilibrium bond distance9 are
nearly identical to the 4C-CCSD(T) value, while the symmetric
stretching frequency is larger by about 90 cm-1. This could
indicate that the methods differ somewhat in the description of
the electron correlation along the internal coordinates, but we
are uncertain as to what extent these differences are intrinsic to
the methods or whether inaccuracies in the determination of
the frequencies play a role. Our experience obtaining frequencies
from polynomial fits near the minima for this system indicates
that these are rather sensitive to the fitting procedure, and lack
of information as to how these have been obtained in the
previous works restricts our ability to test this dependence on
the fit.

3.2. Comparison of Vertical Transitions Computed in
Scalar Relativistic Calculations. We start our discussion of
the excited state calculations by comparing results obtained
without inclusion of spin-orbit coupling, to focus on the
influence of the electron correlation treatment. Results from spin-
free calculations are reported in Table 2. We first note that
differences due to choice of basis set are small: the two sets of
LR-CCSD transition energies differ by at most 1000 cm-1. The
differences due to the choice of correlation method are very
significant, with LR-CCSD transition energies of both the u and

TABLE 1: Calculated U-Oyl Distances Re (Å) and Harmonic Frequencies ωe (cm-1) Computed for Various Correlation
Methods Including All Relativistic Effects

4C 1C

method this work de Jong et al.a Straka et al.b Réal et al.c Pierloot et al.d

ref. Re ωe Re ωe Re ωe Re ωe Re ωe

MP2 1.724 957 1.739 944 1.728 1053
CCSD 1.685 1103 1.697 1041 1.679 1038
CCSD(T) 1.703 1016 1.715 974 1.702 1111
CASPT2 1.708 1103

a Reference 55a. b Spin-free values; ref 56. c Reference 7. d Reference 6.

12506 J. Phys. Chem. A, Vol. 113, No. 45, 2009 Réal et al.

144



g states being about 3000-3500 cm-1 higher than the corre-
sponding IHFSCC numbers (calculated in the same basis and
at the same distance). Since the ground state of the UO2

2+ ion
can be described by a single determinant, the correlation in the
coupled cluster method is in principle equivalent in the spin-
free 4C and 1C frameworks. Thus, the discrepancy must come
from differences in the correlation treatment for the excited
states; more precisely due to the differences between IHFSCC
and LRCC. These differences, which arise from the parametri-
zation of the excited states wave functions, have been addressed
extensively by other authors in previous publications,60-64 but
usually for rather light molecules with relatively few valence
electrons.

LRCC is based upon a linear parametrization in terms of the
ground-state coupled-cluster wave function, corresponding to
a wave operator ΩLRCC ) (1 + Ck) that, upon application to
the ground-state coupled cluster reference wave function, yields
the excited state wave functions

The (IH)FSCC parametrization is based upon the exponential
of the cluster operator S, with a wave operator that is written
as

where S has been subdivided into ground-state amplitudes T
and separate cluster operators for each sector of the Fock space
(S′ ) S(1,0) + S(0,1) + S(1,1)) under consideration. For
ionization potentials and electron affinities, IHFSCC and LRCC
methods are formally equivalent since the expansion of exp (S′)
truncates on the linear term.62,63

For higher sectors such as the (1h,1p) used in this work, both
methods yield different results, since Fock-space methods
contain terms such as S(0,1)S(1,0),62,63 which cancel out the
disconnected terms arising from the linear parametrization in
ΩLRCC to third order or higher.60-63

This feature makes Fock-space methods size-extensive for
both ground and excited states,63,64 and should be the main
reason for the systematic difference of about 3000-3500 cm-1

in excitation energies between the two methods (compare the
first and second column of Table 2). Recent numerical com-
parisons between Fock-space and LRCC approaches by Musial
and Bartlett,65-67 are in qualitative agreement with our results,
with LRCC yielding higher excitation energies than IHFSCC.
In general the differences observed in the molecules considered
then (N2, H2O, CO) are smaller than the ones computed here,
which could be due to the larger number of electrons contribut-
ing to the correlation energy differences in UO2

2+.
Comparison between the coupled cluster methods and the

CASPT2 approach is less straightforward, as both methods
already differ in the parametrization of the ground-state wave
function. This is evident from the results discussed in the
previous section and poses the question how best to compare
vertical excitation energies. We have thereby chosen to present
energies computed at a near-optimal bond length for each
method.

Comparing the first and last column of Table 2, we see that
the CASPT2 energies in most cases overestimate the excitation
energies relative to IHFSCC, but in contrast to the systematic
shift found with LR-CCSD, we also find some transitions
computed up to a few thousand cm-1 lower than with IHFSCC.

The individual CASPT2 energies, particularly for the lower
excited states (up to about 38 000 cm-1), are in rather good
agreement with IHFSCC ones, but this agreement deteriorates
as higher states are considered. In the IHFSCC calculations the
excited states below 41 000 cm-1 are dominated (>95%) by
determinants within the Pm space and excitation energies should
therefore be reliable. Above 41 000 cm-1, contributions from
determinants in the Pi space start to be more significant in
particular for some Π states (such as the a 1Πu at 46126 cm-1),
making the accuracy less certain and suggesting that discrep-
ancies with CASPT2 could also arise from the inclusion of
inaccurate “undressed” states in the IHFSCC calculation, even
though our model space is larger than the largest CAS (12
electrons in 16 orbitals).

Apart from comparing the excitation energies directly, it is
interesting here to analyze the energy differences between

TABLE 2: Spin-Free Vertical Transitions Energies ∆E0 (in cm-1) of UO2
2+ Computed at the IHFSCCSD, LR-CCSD, and

CASPT2 levelsa

IHFSCCSDb LR-CCSDb LR-CCSDc CASPT2d

state character ∆E0 ∆E1 ∆E0 ∆E1 ∆E0 ∆E1 ∆E0 ∆E1

a3∆g σufδ 20972 24378 24441 22477
a3Φg σufφ 23050 (2078) 26461 (2083) 26154 (1713) 23689 (1212)
a1Φg σufφ 27545 (6573) 30975 (6598) 30936 (6495) 27966 (5489)
a1∆g σufδ 30177 (9205) 33911 (9534) 33927 (9486) 31437 (8960)
a1∆u σgfδ 37876 (16904) 41555 (17178) 42100 (17659) 36644 (14167)
a3∆u σgfδ 38339 (17367) 41664 (17287) 42234 (17793) 37283 (14806)
a1Πg πufδ 38776 (17804) 42137 (17759) 43098 (18657) 37733 (15256)
a3Πg πufδ 39029 (18057) 41278 (16900) 42188 (17747) 37181 (14704)
a3Γg πufφ 39611 (18639) 42168 (17790) 42981 (18540) 37563 (15086)
a3Φu σgfφ 40059 (19087) 43368 (18991) 43728 (19287) 38016 (15539)
a1Φu σgfφ 40632 (19660) 44137 (19759) 44487 (20046) 38248 (15771)
a1Γg πufφ 41435 (20463) 43909 (19532) 44686 (20245) 39172 (16695)
a1Πu πgfδ 46126 (25154) 50479 (26101) 51417 (26976) 43192 (20715)
a3Πu πgfδ 46134 (25162) 48491 (24113) 49426 (24985) 42602 (20125)
b1Γu πgfφ 48442 (27470) 51293 (26915) 52022 (27581) 44314 (21837)
b3Γu πgfφ 49144 (28172) 51127 (26749) 52222 (27781) 44784 (22307)

a The energy differences ∆E1 with respect to the first excited state are reported in parentheses. Changes in the ordering of the states are
marked in italics. b Uranium Fægri and oxygen cc-pVTZ basis sets; R(U-Oyl) ) 1.683 Å. c Reference 7; uranium ANO-RCC-QZP and oxygen
ANO-RCC-TZP basis sets; R(U-Oyl) ) 1.683 Å. d Reference 6; uranium DK3 and oxygen ANO-L basis sets; R(U-Oyl) ) 1.708 Å.

|Ψk
LR〉 ) ΩLR|CC〉 ) (1 + Ck) exp(T)|Φ0〉 (1)

|Ψk
FS〉 ) ΩFS|Φ0〉 ) exp(S)|Φ0〉 ) exp(S′) exp(T)|Φ0〉

(2)
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excited states by taking the first excited state (3∆g) as the
reference level, as shown under ∆E1 in Table 2. From those
numbers, it is clear that the IHFSCC and LR-CCSD results are
very much alike, both in terms of energies as in the states
ordering with respect to symmetry. The difference between the
methods appears to mainly arise from a stronger bias for the
ground state in the LR-CCSD framework that leads to a
systematic overestimation of the transition energies. Less
systematic errors are found in comparison with CASPT2, which
yields larger discrepancies in the spacing of the different excited
states (reaching a few thousand wave numbers for higher states).

3.3. Vertical Transition Energies Including Spin-Orbit
Coupling. While instructive for a comparison with other
theoretical work, SF results cannot be compared directly to
experiment. In order to do so we will now switch on spin-orbit
interactions. In this section we will first discuss the tests done
to choose the most suitable “active space” in the SO-IHFSCC
calculations. These tests are all presented in Table 3, noting
that we shall restrict ourselves to excited states lower than
38 000 cm-1 which lie well within the accurate Pm model space.
Apart from the inherently more difficult theoretical description
of higher excited states, we also note that these states form a
very dense part of the spectrum, corresponding to the strong
absorption broadband that is difficult to resolve experimentally.
Thus, the effort in describing them accurately is of limited use
for comparison with experimental work.

3.3.1. Influence of Model Pm and Intermediate Pi Spaces.
The effect of adding the 5d shell to either the occupied Q or
the Pi spaces was explored with the X2C Hamiltonian and turned
out to be relatively unimportant (columns 3 to 5 in Table 3).
Extending the Q virtual space by including all orbitals with
energies ε e 40.00 au did also not bring any significant changes
to the results relative to the default choice (orbitals up to 20
au). This limits the correlation-active space used in subsequent
comparisons to the orbitals with energies between -3 au and
20 au (AS2).

The quality of SO-IHFSCC calculations depends on the
partitioning of the correlation space into the main Pm and
intermediate Pi spaces. With respect to the creation of valence
holes in the occupied orbitals it is possible to extend the minimal
Pm space by including the deeper of the two valence occupied
σ1/2u (see Figure 1 in ref 3) in Pm. Placing this σ1/2u in Pm instead
of in Pi, shifts the six lowest transition energies up by 1700
cm-1 while leaving the other transitions basically unchanged.
This significant change favors the inclusion of the deeper σ1/2u

in the construction of the Pm space. Increasing the P space in
the particle space by including all orbitals with energies up to
0.35 au (as opposed to the base value of 0.08 au) has very little
effect on the excitation energies but was kept as this extension
did not increase calculation times much. The final Pm space is
constructed from orbitals with energies between -1.50 and
-0.30 au, while the buffering Pi space adds determinants build
from holes in the energy ranges [-3.0; -1.50 au] and/or
particles in the energy range [-0.30; 0.35 au].

3.3.2. Influence of Hamiltonian and Basis Set Quality. Our
results indicate that the X2C method complemented with the
atomic mean-field approximation for spin-orbit coupling indeed
provides a very good approximation to the DC Hamiltonian,
with differences below 200 cm-1 upon changing Hamiltonian.
This is important in terms of extending the applicability of
relativistic methods, as this two-component scheme can yield
significant savings in computational time both at the SCF and
the 4-index transformation step prior to the correlated calcula-
tions. In our calculations, however, computational time was
mostly spent in the coupled cluster stage of the calculation,
making the choice for the DC approach appropriate. We thus
continue at this level and next consider the influence of the basis
set choice.

Changing the description of the oxygen atoms from double-�
quality to triple-� hardly affects the eight lowest excitation
energies but does have a significant effect on the energies above
31 000 cm-1, with maximal changes of 4000 cm-1. As a

TABLE 3: SO-IHFSCC Vertical Excitation Energies (in cm-1) of UO2
2+ with Different Active Spaces, Hamiltonians and Basis

Sets. The Energy Range of the Selected Orbitals in the CCSD Part Is between -3 au and 20 au, Except when the 5d Shell Is
Correlated then the Lower Value Is about -7 au. Changes in the Ordering of the States Are Marked in Italics

basis U Dyall DZ Dyall DZ Dyall TZ Fægri TZ

basis O aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVTZ cc-pVTZ

5d frozen in Q in Pi frozen frozen frozen

state Ω X2C Ω X2C 4C-DC 4C-DC Ω 4C-DC composition (wrt. h–p determinants)

1 2g 18777 18536 18571 1g 18789 18984 18506 1g 18610 81% σ1/2uf 3/2u
δ + 15% π1/2uf 3/2u

δ

2 1g 18949 18555 18591 2g 18871 19065 18529 2g 18633 69% σ1/2uf 5/2u
φ + 13% σ1/2uf 3/2u

δ + 11% π1/2uf 5/2u
φ

3 3g 20128 19726 19760 3g 20042 20233 19662 3g 19765 75% σ1/2uf 5/2u
φ + 13% π1/2uf 5/2u

φ

4 2g 21411 21093 21127 2g 21348 21536 20987 2g 21080 45% σ1/2uf 3/2u
δ + 22% σ1/2uf 5/2u

δ + 16% σ1/2uf 5/2u
φ

5 3g 24368 24202 24233 3g 24310 24496 23914 3g 23996 73% σ1/2uf 5/2u
δ + 12% π1/2uf 5/2u

δ + 7% σ1/2uf 7/2u
φ

6 4g 25668 25388 25417 4g 25509 25688 25049 4g 25117 83% σ1/2uf 7/2u
φ + 15% π1/2uf 7/2u

φ

7 3g 28784 28531 28557 3g 28629 28795 28066 3g 28132 73% σ1/2uf 7/2u
φ + 10% π1/2uf 7/2u

φ + 8% σ1/2uf 5/2u
φ

8 2g 30594 30425 28557 2g 30694 30861 30177 2g 30230 56% σ1/2uf 5/2u
δ + 24% σ1/2uf 3/2u

δ + 10% π1/2uf 5/2u
δ

9 0g
- 32121 32132 32124 1g 35216 35423 34544 1g 34556 95% π3/2uf 5/2u

φ

10 0g
+ 32384 32391 32382 4g 36214 36417 35495 4g 35528 97% π3/2uf 5/2u

φ

11 1g 33222 33221 33211 0g
- 36415 36602 35909 0g

- 35840 92% π3/2uf 3/2u
δ

12 1g 34665 34505 34555 3g 36552 36744 35903 3g 35930 97% π3/2uf 3/2u
δ

13 4g 35654 35515 35564 2u 36784 36995 36024 2u 36074 70% σ1/2 gf 3/2u
δ + 25% σ1/2 gf 5/2u

φ

14 3g 35916 35939 35988 0g
+ 36693 36883 36141 0g

+ 36115 92% π3/2uf 3/2u
δ

15 2g 36153 36155 36147 1u 37140 37344 36393 1u 36434 93% σ1/2 gf 3/2u
δ

16 0g
- 36160 36163 36210 2u 37302 37525 36472 2u 36528 69% σ1/2 gf 5/2u

φ + 28% σ1/2gf 3/2u
δ

17 0g
+ 36409 36437 36483 3u 37461 37686 36603 3u 36669 97% σ1/2gf 5/2u

φ
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consequence the ordering of states in this energy region changes.
Increasing the basis set quality on uranium from double to
triple-� (Dyall or Faegri types) is again relatively unimportant
for the lowest excited states (about 300-500 cm-1), but yield
effects of about 1000 cm-1 for the higher states. These tests
indicate that the triple-� basis set size (as used in the spin-free
calculations) is indeed a minimal requirement in order to obtain
accurate spectroscopic data.

3.3.3. Composition of the Excited States. Having defined a
satisfactory computational model (AS2/uranium with a Faegri
TZ basis set/oxygen with a cc-VTZ basis set) we may now
analyze the influence of spin-orbit coupling on the computed
spectrum. The decomposition of the electronic states obtained
in the SO-IHFSCC calculations is given in Table 2 in terms of
the most significant excited determinants with respect to the
ground state. From those numbers it appears that the higher
excited states can be described in terms of one main excitation
while the eight lowest states have some multireference character.
Another interpretation is a difference in spin-orbit induced
mixing in these excited states which increases the π-character
of the σ1/2u orbital relative to the ground state.

The first excited state is sometimes called the luminescent
state due to its long lifetime in the 20 000-26 000 cm-1 energy
range observed in various environments, e.g. in the Cs2UO2Cl4

crystal.68 We calculate this state to be the 1g state, corresponding
to an excitation from the highest σ1/2u orbital to the nonbonding
f 3/2u

δ . This is in agreement with spin-orbit configuration
interaction results.4,69 Pierloot et al.7 and Réal et al.,7 however,
found the 2g state being the lowest. In all calculations the energy
differences between the lowest excited states, and in particular
the 1g and 2g states, are small (less than 1500 cm-1) and
obviously influenced by the quality of the basis sets and electron
correlation treatment. All the excitation from the σ1/2u to the
nonbonding manifolds are located below 31000 cm-1. Above
this threshold, the spectrum is dense and almost continuous.
The states corresponding to an excitation from the bonding
π1/2u, π3/2u orbitals to the nonbonding f 3/2u

δ , f 5/2u
δ and f 5/2u

φ , f 7/2u
φ

orbitals are close to the strongly absorbing states, arising from
the σ1/2g to f 3/2u

δ , f 5/2u
δ and f 5/2u

φ , f 7/2u
φ excitations.

3.4. Excited-State Structures and Comparison between
Methods. The potential energy curves along the symmetric
stretching vibrational mode relative to the ground-state geometry
calculated with the SO-IHFSCC method were investigated and
reported in the Table 4. They are displayed in Figure 1. For
larger bond distances (>1.75 Å), convergence problems appear

in the SO-IHFSCC for the (1h,0p) sector (which corresponds
to calculating the wave functions for ground and excited states
of UO2

3+), that could not be remedied by further extending the
Pi space. For the two states with an equilibrium bond length
above this distance we therefore had to rely on an extrapolation
of the curve using a low order polynomial.

The minima of the excited states are reported in the Table 4.
All of these U-Oyl distances are slightly longer than the ground
state distance. States arising from excitations from the bonding
σ1/2u orbital to the nonbonding f 3/2u

δ , f 5/2u
δ and f 5/2u

φ , f 7/2u
φ have their

optimum bond length at about 1.73 Å, while excitations from
the π1/2u, π3/2u bonding orbitals (last two states reported in Table
4) yield distances of about 1.78 Å, almost 0.1 Å longer than in
the ground state. In general, the SO-IHFSCC bond lengths come
close to the SO-LR-CCSD values,7 about 0.02 Å shorter. This
is significantly shorter than the SO-CASPT2 bond lengths, which
differ up to 0.06 Å from the SO-IHFSCC values.

Table 4 also contains vertical and adiabatic excitation energies
for the three methods in question. Starting with the vertical
excitations, for which the comparison between the methods
should be more reliable than for the adiabatic energies (again
due to the limited precision in the SO-IHFSCC equilibrium
geometries), we observe that the SO-IHFSCC transition energies
are consistently lower by about 4000 cm-1 than the ones
computed with SO-LR-CCSD. Like in the scalar relativistic
comparison, they come closer to the SO-CASPT2 absolute
values, with a difference about 500 cm-1 for the 2g state and
up to 2000 cm-1 for higher excited states.

The adiabatic transitions computed with the various methods
are in line with this picture, but yielding typically one to two
thousand wave numbers smaller values for the lower excited
states and up to five to six thousand wave numbers for the higher
states. It should be noted that the largest differences between
vertical and adiabatic energies occur for states with significant
Π character (π1/2u, π3/2u f f 5/2u

φ ), namely the second 4g and 1g

states, for which one would indeed expect more significant
variations upon geometry changes.

The trends observed here regarding the similarities in the
calculated spectra for the three methods are also seen for our
spin-free results. This provides a strong indication that the
inclusion of spin-orbit coupling a posteriori, as done for LR-
CCSD and CASPT2 within one-component frameworks, is quite
accurate in this case. As a result, the bulk of the deviations is
due to the differences in the correlation treatment, with some
smaller contributions from differences in Hamiltonian and/or

TABLE 4: Equilibrium Geometries (Re, in Å), Vertical (∆E0, in cm-1), and Adiabatic (∆Te
0, in cm-1) Spectrum of the Lowest

Fine Structure Excited States of UO2
2+, Computed at the SO-IHFSCC, SO-LR-CCSD,7 and SO-CASPT26 a

SO-IHFSCCb SO-LR-CCSDc SO-CASPT2d

Ω Re ∆E0 ∆E1 ∆Te
0 ∆Te

1 Re ∆E0 ∆E1 ∆Te
0 ∆Te

1 Re ∆E0 ∆E1 ∆Te
0 ∆Te

1

0g
+ 1.683 0 -18610 0 -17557 1.679 0 -22967 0 -21338 1.708 0 -20104 0 -18888

1g 1.724 18610 0 17557 0 1.732 22967 0 21338 0 1.765 20104 0 18888 0
2g 1.719 18633 23 17834 277 1.743 22789 -178 21826 488 1.782 19195 -909 17227 -1661
3g 1.725 19765 1155 18627 1070 1.743 23897 930 22361 1023 1.783 20265 161 18293 -595
2g 1.722 21080 2470 20082 2525 1.736 25237 2270 24027 2689 1.769 22320 2216 20911 2023
3g 1.720 23996 5386 23073 5516 1.735 27808 4841 26723 5385 1.769 25435 5331 24026 5138
4g 1.727 25117 6507 23857 6300 1.743 29054 6087 27923 6585 1.784 26312 6208 24190 5302
3g 1.730 28132 9522 26679 9122 1.750 32382 9415 30833 9495 1.796 29085 8981 26446 7558
2g 1.731 30230 11620 28757 11200 1.749 34706 11739 32912 11574 1.848 31314 11210 26500 7612
4g 1.772 35528 16918 29991 12434 1.798 39845 16878 32113 10775 1.848 33262 13158 26259 7371
1g 1.778 34556 15946 30680 13123 1.795 39059 16092 32815 11477 1.833 32921 12817 27923 9035

a Here ∆E1 and ∆Te
1 (in cm-1) denote vertical and adiabatic excitations where the origin of the spectrum is taken to be the first excited state.

The minima of the SO-IHFSCC calculations (this work) were obtained by extrapolating the symmetrical stretching mode by second-order
polynomials. Changes in the ordering of the states are marked in italics. b Uranium Fægri and oxygen cc-pVTZ basis sets. c Reference 7;
uranium ANO-RCC-QZP and oxygen ANO-RCC-TZP basis sets. d Reference 6; uranium DK3 and oxygen ANO-L basis sets.
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basis sets. This is further supported upon inspecting the values
of ∆E1 in Tables 2 and 4, since these clearly show very similar
results for SO-IHFSCC (SO a priori) and SO-LR-CCSD (SO a
posteriori), and between the spin-free and spin-orbit calculations.

4. Conclusion

In this work we have investigated the performance of three
wave function based correlation treatments in the calculation
of excitation energies for the uranyl cation. Differences between
the two approaches (perturbation theory and coupled cluster),
and between different coupled cluster approaches (in particular
the linear response and intermediate Hamiltonian Fock-space
coupled cluster) are subtle, with comparisons showing similar
results from a qualitative perspective but with clear quantitative
differences.

The most remarkable quantitative difference between LRCC
and IHFSCC is the systematic upward shift of excitation
energies in the former, compared to the latter. This shift probably
stems from the different parametrization (linear and exponential,
respectively) of the wave functions for the excited states in the
two coupled cluster methods leading to a larger bias for the
ground state in the LRCC calculation. We expect that these
discrepancies between LRCC and (IH)FSCC calculations will
become smaller with the inclusion of higher excitations within
the coupled cluster framework similar to the observations made
in work on lighter molecules.

The often-used CASPT2 approach gives a satisfactory agree-
ment with the lowest IHFSCC excitation energies. For higher
excitations and relative spacings between excited states the
agreement between the two methods larger differences are
observed.

The still significant discrepancies between theoretical methods
reinforces the call for experimental gas-phase spectroscopic data
on the bare uranyl ion to provide a rigorous testing ground for
theoretical methods. Direct comparison with experimental data
obtained for uranyl crystals or solvated uranyl complexes
requires to consider larger chemical models. Work is currently
in progress to compute the spectrum of Cs2UO2Cl4 using
embedding methods, as recently done for the spectrum of
NpO2

2+ in the Cs2UO2Cl4 crystal.36
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The performance of the time-dependent density functional theory (TDDFT) approach has been

evaluated for the electronic spectrum of the UO2
2+, NUO+ and NUN molecules. Different

exchange–correlation functionals (LDA, PBE, BLYP, B3LYP, PBE0, M06, M06-L, M06-2X,

CAM-B3LYP) and the SAOP model potential have been investigated, as has the relative

importance of the adiabatic local density approximation (ALDA) to the exchange-correlation

kernel. The vertical excitation energies have been compared with reference data obtained using

accurate wave-function theory (WFT) methods.

1. Introduction

The importance of theoretical modeling in furthering the

understanding of the chemistry of actinide-containing systems,

compared to other branches of chemistry, is by now well

established. This prominent role has to do with the experi-

mental difficulties involved in actinide research: besides the

acute radiotoxicity of most species, which places severe

restrictions on laboratory manipulations, the wide range of

oxidation states possible for early actinides (U–Am), together

with a relative ease of changing their oxidation states often

makes it difficult to isolate and characterize species.

One of the most active areas of chemical research on

actinides is related to the reprocessing of nuclear waste, whose

objective is to separate uranium and plutonium from the other

(minor) actinides. Such separation has implications both to the

recycling of irradiated nuclear fuels (by allowing the retrieval

of important quantities of U and Pu from spent fuel and

their subsequent reconversion back to usable fuel) and to

the disposal of nuclear waste (as it decreases the volume of

material to be stored). While separation methods based upon

liquid–liquid extraction ion-exchange, such as the plutonium

uranium extraction (PUREX)1,2 or transuranic extraction

(TRUEX)3 processes are rather well established, the details

of the interaction of the extraction ligand with the actinide

species (such as the simple atomic ions Acn+ or the frequently

found actinyl (AcO2
n+) species) are still far from fully

understood.

Bridging this gap in understanding would be particularly

helpful in designing more efficient and selective complexing

agents. Modeling this process is challenging, because it requires

an accurate description of the actinide and the complexing

species, as well as their interactions with the solvent environment.

This is currently only possible with Density-Functional

Theory (DFT), as its relatively modest computational cost

makes the study of structure and energetics of relatively large

model complexes possible, even in the condensed phase.4–12

Notwithstanding this progress, the success of DFT still

depends on careful parametrization and benchmarking studies

that establish the reliability of exchange-correlation functionals

for a particular application. This is particularly serious for

molecules containing heavy elements since such systems were

usually not accounted for in the parametrization and validation

stage of the currently available density functionals. One

particular reason for concern is the strong (static and

dynamic) electron correlation effects in actinides. The 5f, 7s,

6p and 6d orbitals should all be considered valence orbitals

that can contribute to the chemical bonding. While energetically

close, these orbitals have a rather different spatial character

making the description of the exchange–correlation interaction

by a density functional more difficult than for lighter elements.

These difficulties have been investigated for uranium oxides,13

showing that DFT, using proper functionals, is typically

suitable for geometry optimization and thermochemistry of

the electronic ground state for these systems. Based on a series

of studies of solvated uranium fluorides and oxofluorides

Schreckenbach and Shamov14 conclude that GGA functionals

yield accurate geometries and frequencies while hybrid density

functional theory (DFT) functionals are found to be superior

for the thermochemistry.

The question of suitability of DFT for studying actinide-

containing molecules carries over to its time-dependent

generalization (TDDFT), which is is used to calculate properties
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depending upon the response of the density to an external

perturbation. These calculations allow one to predict and

analyze electronic spectra, polarizabilities or magnetizabilities,

and vibrational Raman spectra, all of which are useful tools in

studying the interactions of the actinide system with the

complexing agents, or of that complex with the environment.

While TDDFT has been shown to work rather well for some

transition metal excited states,15–17 currently there are still

only relatively few studies18–20 assessing the reliability of

TDDFT for actinide-containing molecules.

The aim of this paper is, therefore, to explore different

flavors of TDDFT for the calculation of electronic spectra

for such systems—that is, evaluating (meta-)GGAs and

(meta-)hybrid functionals within the adiabatic approximation.

We will also study the further approximation of replacing the

derivatives of the functionals in the exchange-correlation (XC)

kernel by the simpler LDA approach (ALDA) that is often

used to simplify the implementation of TDDFT.

Our initial focus will be on small molecules, namely UO2
2+,

NUO+ and NUN, since: (a) they are closed-shell systems in

their ground-states, thus avoiding problems with the validity

of the reference state for TDDFT; (b) they are all isoelectronic,

making it instructive to see how changes in, for instance,

electronegativity of the ligands affect the spectra; (c) the

–NQUQN– and OQUQN– groups appear in larger organo-

metallic systems, so they can serve as stepping stones for

description of their oxo (MO), imido (MNR) and phoshorane

iminato (MNPR3)
21–24 analogs, which are very important in

nuclear waste separation, and (d) in contrast to UO2
2+, which

has received extensive attention from theoreticians,18,20,25–30

the electronic spectra of the isoelectronic species (NUO+ and

NUN)31–33 have not yet been investigated in detail.

The lack of experimental data requires that our assessment

be done by comparison with accurate wavefunction-based

(WFT) calculations, namely the complete active space second-

order perturbation theory (CASPT2)34,35 and intermediate

Hamiltonian Fock-space coupled cluster (IHFSCC)36–38 methods.

Our aim in using both in tandem is to provide a cross-

validation of WFT results, and to get access to the rich set

of analysis tools available for CASPT2 (in our case population

analysis of the excited states).

CASPT2 and IHFSCC are examples of multi-reference

approaches to the electron correlation problem, and are

known to perform well for actinide and other heavy element-

containing molecules since such systems often present (nearly-)-

degenerate electronic states19,39–41 (e.g. half-filled f shells, etc.).

Unsurprisingly, they also show a very good performance in

cases where the reference wavefunction is still dominated by a

single determinant.27,42

The IHFSCC method is particularly interesting here

because of its ability to yield a number of electronic states

of the molecule (and those due to electron attachment or

detachment) in a single calculation. Furthermore, as all states

have a common Fermi vaccum, it has as advantage the

elimination of a potential bias towards a given reference state.

The Intermediate Hamiltonian ansatz thereby circumvents a

well-known drawback of the Fock Space (FS) (and other

multireference coupled cluster) approaches by largely eliminating

the intruder states that could otherwise obstruct the

convergence of the FSCC algorithm. As it is beyond the scope

of this work to discuss in depth IHFSCC and other coupled-

cluster approaches for the calculation of electronic spectra, we

refer the reader to recent reviews.43–45

We note that spin–obit (SO) effects are small in the

ground states of these molecules, with scalar relativistic and

4-component relativistic methods agreeing to within 1 pm on

the bond distance of UO2
2+.27 The effects on the electronic

spectra are more important but do not affect the comparison

between different correlation methods that is the subject of the

current paper. We will therefore focus exclusively on spin-free

calculations to simplify the discussions, and refer to a previous

paper by two of us for a more detailed discussion of the

SO-CASP2 and SO-IHFSCC results for UO2
2+.27 We shall

address spin–orbit effects on the spectra of NUN and NUO+

in a subsequent publication.

2. Computational details

All calculations were performed with spin-free relativistic

methods using ADF2008 (and ADF200946–48 for the (meta-)-

hybrid functionals), as well as with a development version of

the DIRAC0849 program. To facilitate comparisons with the

TDDFT calculations of van Besien and Pierloot18 we used

for UO2
2+ ions the same geometry (a U–O bond distance of

1.708 Å). The geometries of NUN and NUO+ were optimized

with the PBE exchange-correlation functional, the ADF TZ2P

basis set and the all-electron scalar relativistic ZORA (Zero

Order Regular Approximation)50 Hamiltonian. The U–N

distance in the NUN molecule was determined to be 1.739 Å,

whereas for NUO+ it was found to be 1.698 Å. The U–O

distance in NUO+ is calculated to be 1.761 Å.

2.1 TDDFT

In the TDDFT calculations we applied the adiabatic

approximation, where the frequency-dependent exchange-

correlation kernel has been replaced by the local (in time)

functional derivatives of the frequency-independent functional.

In ADF the ALDA approximation is used for all XC

functionals, whereas for DIRAC
20 we used the full derivatives

of the functionals (obtained via the XCFun DFT library)51 in

the XC kernel in addition to the ALDA approach. We note

that, in the case of hybrid functionals, in both ADF and DIRAC

the fractional Hartree–Fock exchange is always included in the

TDDFT kernel.

For both ADF and DIRAC, we have evaluated the following

functionals: LDA,52 PBE,53 BLYP,54–56 B3LYP,57 PBE058 as

well as the SAOP model potential.59,60 Additionally, the

functionals M06, M06-L, M06-2X61,62 were evaluated in the

ALDA approximation using ADF, whereas CAM-B3LYP63

was evaluated in DIRAC for both the ALDA and full

(non-ALDA) TDDFT kernels.

In all calculations with ADF TZ2P basis sets

(U:15s13p9d5f; N,O:5s3p1d1f)64 were used, whereas for DIRAC

we used the triple zeta basis set of Dyall65 for the uranium

atom (33s29p20d13f5g2h), and the uncontracted aug-cc-pVTZ

basis sets for oxygen and nitrogen (11s6p3d2f).66,67 We have

used the scalar ZORA50 Hamiltonian in ADF, and the spin-

free Dirac-Coulomb68 (DC) Hamiltonian in DIRAC. In the DC
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case the (SS|SS) integrals have been approximated by a point

charge model.69

Our work focused on five low-lying vertical excitations

determined by DFT calculations. For UO2
2+ we studied

transitions mainly consisting of excitations 3su - 1fu, 3su -

1du, 2pu - 1fu, 3sg - 1fu and 3sg - 1du. For NUO+

molecule the following dominant excitations were studied:

6s - 1f, 6s - 1d, 3p - 1f, 3p - 1d and 5s - 1f, while
for NUN the dominant excitations are 3su - 1fu, 3su - 1du,
3sg - 1fu, 2pu - 1fu and 3su - 4sg.

2.2 CASPT2

CASPT2 calculations were carried out with the MOLCAS

7.470 program. For all CASPT2(MS-CASPT2)34,35,71 calculations

we utilized the scalar second-order Douglas–Kroll–Hess

(DKH2) Hamiltonian,72,73 together with the (contracted)

ANO-RCC basis sets, optimized specifically for this Hamiltonian:

(26s23p17d13f5g3h) - [10s9p7d5f3g2h] for uranium,

(14s9p4d3f2g) - [5s4p3d2f] for oxygen and (14s9p4d3f2g) -

[4s3p2d1f] for nitrogen.74

The most important point in the CASSCF calculation is the

proper choice of active space. In the molecules investigated,

the U–O and U–N bonds are formed out of the 6p, 7s, 5f, 6d

orbitals of the uranium atom and the 2s and 2p orbitals of the

oxygen and nitrogen atoms. While it would be ideal to take

into account all molecular orbitals that are formed out of these

atomic uranium, oxygen and nitrogen orbitals and correlate

them in the CASPT2(MS-CASPT2) level, such an active space

becomes too large to handle and we are forced to truncate the

active space. It was possible to enlarge the active space for the

UO2
2+ compound in comparison to the previous work by

Réal et al.,27 and we took into active space 12 electrons and 16

orbitals—CAS(12,16): 3sg, 1pg, 2pu, 3su, 1du, 1fu, 3pu, 4sg,

4su and 2pg. For NUO+ and NUN molecules we also

correlated 12 electrons and 16 orbitals—CAS(12,16), that is

5s, 2p, 3p, 6s, 1d, 1f, 7s, 2d, 4p and 8s in the case of NUO+

and 3sg, 1pg, 2pu, 3su, 1du, 1fu, 4sg, 3pu, 1dg and 4su in the

case of NUN. Due to technical problems encountered with

MOLCAS 7.4 it was not possible to obtain the CAS(12,16)

results for some of the higher-lying states of NUO+, in order

to obtain these energies we also employed a CAS(12,15) space

in which the 7s orbital was not taken in the active space.

In order to eliminate weakly intruding states in the second-

order perturbation theory, we used the imaginary shift method75

with a shift parameter of 0.25 Hartree when exploratory

calculations indicated problems with intruder states.

2.3 IHFSCC

Intermediate Hamiltonian Fock space coupled cluster

(IHFSCC)36–38 calculations were performed with a development

version of DIRAC08.49 In those, the spin-free68 DC Hamiltonian

was used with the same uncontracted basis sets as described

above for the TDDFT Dirac calculations.

In order to be consistent with our previous calculations on

UO2
2+, and due to the fact that in their ground state these

molecules are well described by a single determinant, we have

essentially followed the procedure outlined in ref. 27 (with the

difference that we used 1.708 Å as the U–O bond length); that

is, we have utilized the ‘‘one particle, one hole’’ sector (1h,1p)

of Fock space to obtain the excitation energies, and have

included in the correlated calculations orbitals with energies

(in a.u.) e A [�3.00;20.00], which correspond to 12 occupied

and 253 (252) virtual orbitals for NUN (NUO+).

In Fock space calculations it is necessary to subdivide the

space spanned by the active orbitals in two subspaces: the

model or P space, containing the active valence orbitals which

are directly involved in the electronic excitations and the

complementary Q space that includes the remaining ‘‘correlation-

active’’ orbitals. As we are employing a formulation based on

an intermediate Hamiltonian,76 the P space is further divided

into a main model (Pm) space and an intermediate model (Pi)

space that is not dressed and serves as a buffer between the Pm

and Q spaces, in order to alleviate problems with the so-called

intruder states (further details can be found in ref. 27 and

references therein). One must keep in mind, however, that

accurate solutions are only obtained for states dominated by

Pm components.

Thus, in the definition of the Fock space used here,

P contains all the occupied plus the 63 lowest-lying virtuals

(for NUN, 29 virtuals are contained in gerade irreducible

representations, and 34 in ungerade ones), whereas the

remaining virtuals have been assigned to the Q space. As for

the partition into Pm and Pi orbital spaces we have, for the

occupied orbitals, the five innermost orbitals in Pi—which

correspond to {1sg,1su,1pu,2sg} for NUN and {1s,2s,1p,3s}
for NUO+—and the remaining seven orbitals in Pm—namely

{3sg,2su,3su,1pg,2pu} for NUN and {4s,5s,6s,2p,3p} for

NUO+.

For the virtuals the Pm active spaces correspond to 31 (22)

orbitals for NUN (NUO+), assuring that the resulting

lowest-lying excited states are dominated by Pm components.

These orbitals correspond roughly to about two to three

lowest-lying f(=fu) and d(=du,dg) orbitals of uranium, apart

from the same number of p and twice as many s orbitals. The

difference between these sets is due to the difference in charge

for both systems and the nature of the Hartree–Fock virtuals;

contrary of what is obtained with DFT, the f,d orbitals of

uranium are not the lowest-lying ones—a number of p,s
orbitals lie below and in between the former and had to be

included in the model space as well.

3. Wavefunction benchmark calculations

As the main goal of this work is assessing the performance of

TDDFT by comparison to benchmark WFT values we will

begin with a brief discussion of the two WFT methods

employed here, before having a closer look at the actual

DFT and TDDFT results.

3.1 Electronic structure from IHFSCC

We refer the reader to the paper of Réal and coworkers27 for a

detailed discussion of the UO2
2+ IHFSCC calculations. These

calculations were done at a different bond length, leading to

slightly different numbers in Table 1, compared to those

previously reported (see Table 2 of the aforementioned paper),

but analysis of the wavefunctions at both geometries yields

essentially the same picture. For UO2
2+ the lowest Fg and Dg
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states are dominated by excitations of the su - fu and

su - du kind, respectively, while the Gg states arises from

predominantly pu - fu excitation. The Fu and Du states

correspond to exciations from sg - fu and sg - du,
respectively.

For NUN, the Fg and Fu states in Table 3 differ essentially

in the occupied s orbital (su for the first and sg for the

second). These two s orbitals, in turn, differ only in the degree

of contributions from the orbitals centered on N and U, with

su having more U character and the sg having more N

character. And, since the fu orbital is essentially a pure f from

U, we can argue that the two transitions have different

degrees of charge-transfer character. The other higher-lying

excitations are dominated by pu - fu (for Gg, where pu has

Table 2 Comparison of different XC functionals for NUO+ (in eV). S–T indicates singlet–triplet splitting, MUE the mean absolute error and
Max the maximum absolute error, respectively

XC/Hamiltonian 13F 11F S–T 13D 11D S–T 13G 11G S–T 13P 11P S–T 23F 21F S–T MUE Max

ZORA/LDA 0.77 1.09 0.32 1.34 1.73 0.39 2.00 2.14 0.14 2.61 2.98 0.37 2.61 2.65 0.04 0.80 1.31
DC/LDA 0.86 1.20 0.34 1.40 1.88 0.48 2.08 2.29 0.21 2.67 3.13 0.46 2.64 2.84 0.20 0.69 1.23
ZORA/PBE(ALDA) 0.85 1.17 0.32 1.45 1.86 0.41 2.13 2.27 0.14 2.79 3.16 0.37 2.79 2.82 0.03 0.66 1.18
DC/PBE(ALDA) 0.84 1.20 0.36 1.41 1.92 0.51 2.07 2.29 0.22 2.71 3.10 0.39 2.71 2.88 0.17 0.68 1.24
DC/PBE 0.52 1.15 0.63 1.11 1.87 0.76 1.91 2.24 0.33 2.59 3.07 0.48 2.54 2.82 0.28 0.81 1.40
ZORA/BLYP(ALDA) 0.87 1.19 0.32 1.50 1.90 0.40 2.06 2.21 0.15 2.75 3.12 0.37 2.75 2.78 0.03 0.68 1.25
DC/BLYP(ALDA) 0.87 1.23 0.36 1.47 1.96 0.49 2.01 2.23 0.22 2.66 3.05 0.39 2.66 2.84 0.18 0.69 1.30
DC/BLYP 0.67 1.17 0.50 1.28 1.88 0.60 1.89 2.15 0.26 2.59 3.01 0.42 2.54 2.74 0.20 0.80 1.42
ZORA/M06-L(ALDA) 1.13 1.48 0.35 1.68 2.15 0.47 2.55 2.70 0.15 3.18 3.54 0.36 3.18 3.21 0.03 0.34 0.76
ZORA/B3LYP(XALDA) 1.25 1.68 0.43 1.67 2.29 0.62 2.66 2.82 0.16 3.17 3.54 0.37 3.17 3.22 0.05 0.28 0.65
DC/B3LYP(XALDA) 1.29 1.75 0.46 1.68 2.40 0.72 2.62 2.85 0.23 3.11 3.51 0.40 3.12 3.29 0.17 0.26 0.69
DC/B3LYP 1.13 1.68 0.55 1.52 2.33 0.81 2.56 2.80 0.24 3.07 3.48 0.41 3.03 3.23 0.20 0.31 0.75
ZORA/PBE0(XALDA) 1.31 1.76 0.45 1.65 2.34 0.69 2.87 3.05 0.18 3.32 3.70 0.38 3.32 3.37 0.05 0.18 0.44
DC/PBE0(XALDA) 1.34 1.83 0.49 1.67 2.46 0.79 2.84 3.08 0.24 3.28 3.68 0.40 3.28 3.46 0.18 0.19 0.47
DC/PBE0 1.06 1.78 0.68 1.35 2.41 1.06 2.70 3.05 0.35 3.18 3.66 0.48 3.14 3.42 0.28 0.27 0.61
ZORA/M06(XALDA) 1.33 1.79 0.46 1.64 2.36 0.72 2.92 3.09 0.17 3.35 3.72 0.37 3.35 3.40 0.05 0.16 0.39
ZORA/M06-2X(XALDA) 1.32 1.86 0.54 1.34 2.28 0.94 3.39 3.60 0.21 3.54 3.91 0.37 3.57 3.63 0.06 0.21 0.41
ZORA/SAOP(ALDA) 1.93 2.26 0.33 2.34 2.78 0.44 3.02 3.16 0.14 3.50 3.84 0.34 3.50 3.54 0.04 0.31 0.78
DC/SAOP(ALDA) 1.84 2.21 0.37 2.28 2.82 0.54 2.96 3.16 0.20 3.47 3.83 0.36 3.47 3.63 0.16 0.30 0.72
DC/CAM-B3LYP(XALDA) 1.50 1.99 0.49 1.83 2.63 0.80 2.91 3.16 0.25 3.35 3.76 0.41 3.35 3.53 0.18 0.18 0.40
DC/CAM-B3LYP 1.37 1.94 0.57 1.69 2.56 0.87 2.85 3.12 0.27 3.31 3.73 0.42 3.28 3.48 0.20 0.19 0.46
ZORA/TDHF 2.05 2.79 0.74 4.73 5.15 0.42 5.51 5.76 0.25 6.09 6.33 0.24 5.93 6.15 0.22 2.26 3.17
CASPT2 1.88 2.23 0.35 1.84 2.42 0.58 3.19 3.35 0.06 0.29
CASPT2(12,15) 1.89 2.32 0.43 1.90 2.55 0.65 3.18 3.26 0.08 3.20 3.39 0.19 0.06 0.34
IHFSCC 1.59 2.06 0.47 1.56 2.37 0.81 3.31 3.45 0.14 3.34 3.50 0.16 3.36 3.38 0.02

Table 1 Comparison of different XC functionals for UO2
2+ (in eV). S–T indicates singlet–triplet splitting, MUE the mean absolute error and

Max the maximum absolute error, respectively

XC/Hamiltonian 13Fg 11Fg S-T 13Dg 11Dg S-T 13Gg 11Gg S-T 13Fu 11Fu S-T 13Du 11Du S-T MUE Max

ZORA/LDA 2.02 2.46 0.44 2.36 3.07 0.71 3.37 3.57 0.20 2.99 3.07 0.08 3.47 3.48 0.01 1.04 1.70
DC/LDA 2.04 2.54 0.50 2.37 3.22 0.85 3.38 3.66 0.28 3.00 3.08 0.08 3.47 3.50 0.03 1.00 1.69
ZORA/PBE(ALDA) 2.01 2.45 0.44 2.40 3.10 0.70 3.38 3.58 0.20 3.04 3.12 0.08 3.57 3.59 0.02 1.00 1.65
DC/PBE(ALDA) 2.03 2.53 0.50 2.41 3.25 0.84 3.38 3.65 0.27 3.04 3.12 0.08 3.55 3.58 0.03 0.97 1.65
DC/PBE 1.73 2.46 0.73 2.05 3.16 1.11 3.20 3.59 0.39 2.99 3.11 0.12 3.51 3.57 0.06 1.09 1.70
ZORA/BLYP(ALDA) 2.01 2.46 0.45 2.43 3.11 0.66 3.31 3.52 0.21 3.00 3.08 0.08 3.55 3.56 0.01 1.02 1.69
DC/BLYP(ALDA) 2.05 2.55 0.50 2.45 3.26 0.81 3.31 3.58 0.27 3.00 3.09 0.09 3.53 3.56 0.03 0.99 1.69
DC/BLYP 1.84 2.45 0.61 2.22 3.13 0.91 3.19 3.50 0.31 2.98 3.08 0.10 3.50 3.55 0.05 1.08 1.71
ZORA/M06-L(ALDA) 2.38 2.84 0.46 2.71 3.46 0.75 3.77 3.97 0.20 3.60 3.68 0.08 4.08 4.08 0.00 0.61 1.09
ZORA/B3LYP(XALDA) 2.30 2.80 0.51 2.51 3.39 0.88 4.01 4.23 0.22 4.22 4.31 0.09 4.57 4.58 0.01 0.34 0.56
DC/B3LYP(XALDA) 2.37 2.92 0.55 2.58 3.59 1.01 4.04 4.31 0.27 4.23 4.33 0.10 4.56 4.61 0.05 0.29 0.53
DC/B3LYP 2.21 2.84 0.63 2.40 3.49 1.08 3.95 4.26 0.31 4.20 4.32 0.12 4.53 4.59 0.06 0.35 0.62
ZORA/PBE0(XALDA) 2.35 2.88 0.53 2.50 3.43 0.94 4.25 4.48 0.23 4.56 4.66 0.10 4.84 4.85 0.01 0.19 0.36
DC/PBE0(XALDA) 2.42 2.99 0.57 2.58 3.63 1.05 4.29 4.57 0.28 4.57 4.68 0.11 4.84 4.89 0.05 0.16 0.28
DC/PBE0 2.15 2.94 0.79 2.24 3.57 1.33 4.15 4.54 0.39 4.53 4.67 0.14 4.79 4.88 0.09 0.22 0.55
ZORA/M06(XALDA) 2.42 2.97 0.54 2.52 3.50 0.98 4.26 4.49 0.23 4.60 4.70 0.10 4.84 4.85 0.01 0.16 0.31
ZORA/M06-2X(XALDA) 2.34 2.94 0.60 2.23 3.35 1.12 4.94 5.21 0.27 5.63 5.74 0.11 5.57 5.62 0.05 0.56 1.00
ZORA/SAOP(ALDA) 3.07 3.51 0.44 3.27 4.00 0.73 4.29 4.48 0.19 4.21 4.29 0.08 4.55 4.56 0.01 0.37 0.79
DC/SAOP(ALDA) 3.01 3.50 0.49 3.24 4.10 0.86 4.33 4.57 0.24 4.22 4.31 0.09 4.59 4.63 0.04 0.35 0.76
DC/CAM-B3LYP(XALDA) 2.56 3.13 0.57 2.71 3.77 1.06 4.41 4.69 0.26 4.70 4.81 0.11 4.93 5.00 0.07 0.15 0.29
DC/CAM-B3LYP 2.43 3.07 0.64 2.56 3.69 1.13 4.36 4.65 0.29 4.69 4.81 0.12 4.91 4.99 0.08 0.15 0.28
ZORA/TDHF 3.01 3.78 0.77 2.40 4.00 1.60 7.12 7.17 0.05 8.82 9.00 0.18 8.15 8.54 0.39 2.19 4.26
CASPT2 2.91 3.40 0.49 2.77 3.88 1.11 4.61 4.83 0.22 4.82 4.85 0.03 4.72 4.64 �0.08 0.16 0.31
CASPT2a 2.94 3.47 0.57 2.79 3.90 1.11 4.66 4.86 0.20 4.71 4.74 0.03 4.63 4.55 �0.08 0.16 0.33
IHFSCC 2.70 3.24 0.54 2.48 3.57 1.09 4.57 4.78 0.21 4.69 4.74 0.05 4.76 4.71 �0.05
a Ref. 25.
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dominant contributions from N, but still some U character),

and su - sg (for Su, where both ss have N and U character).

For NUO+, shown in Table 2, the picture is similar, but

having as significant differences that the lowest F and D states

are made up of excitations to the uranium f,d from s orbitals

with either N–U character or U–O character, whereas the G
and F arise from excitations to the same uranium f,d from a p
orbital with N–U character.

The Hartree–Fock virtual orbitals correspond to a system

with one electron added relative to the reference determinant.

While this is optimal for calculating electron affinities, it is not

so for excitation energies calculated within the (1h,1p) sector

of Fock space. In order to compare to the TDDFT results, the

model spaces (P and Pm) should include the du,fu orbitals.

These are the lowest virtuals for UO2
2+, both for Hartree–

Fock and DFT, but the decreasing charge on the metal in

NUO+ and particularly in NUN places other orbitals at lower

energy. For instance, for NUO+, three s and two p virtual

orbitals have lower energies than the relevant d,f orbitals,

while for NUN several (e.g. two su, three pu, three sg and one pg)
orbitals are in between the HOMO and the du,fu. These

differences illustrate the need for increased model spaces in

this work, compared to UO2
2+, for which the du and fu are the

lowest-lying virtuals.

A related difference to the UO2
2+ case is the extent to which

the participation of a second set of d,f virtuals is important

for NUO+ and NUN. This is due to the energy separation of

the first and second d and f virtuals, which for UO2
2+ is of

about 8 eV, but decreases to within 1.5–2 eV for NUO+ and

NUN, making these virtuals more important for orbital

relaxation in the latter case.

Lastly, we note that in all three cases the T1 diagnostic
77 for

the (0h,0p) sector (which here is equivalent to a conventional

CCSD calculation), namely 0.045 for UO2
2+, 0.048 for

NUO+ and 0.049 for NUN, is rather similar and a bit higher

than what is usually considered an indicator (o0.02) of

single-reference character in light systems. This is typical for

heavy elements, and should not be taken as an indication of

multi-reference character.

3.2 CASPT2 electronic structure

The CASSCF wavefunction analysis points to ground-states

of essentially single reference character, with weights for the

HF determinant of about 0.86, 0.92 and 0.91 for UO2
2+,

NUO+ and NUN, respectively. Also of importance is the fact

that the determinants which contribute to the remaining

0.10 are made up of double excitations, and therefore do not

point to important orbital relaxation effects.78

CASPT2 provides in a fairly straightforward manner

information about the bond orders in the ground state

(2.935(U–O) for UO2
2+, 2.952(U–N) for NUN, and

1.957(U–O) and 2.977 (U–N) for NUO+). Changes in the

electron density upon excitation can be studied by means of an

analysis of the Mulliken charges for each excited state. From

these charges, summarized in Table 4, we can see that there is a

general trend of displacing a small amount of density towards

the uranium atom in comparison to the ground state. This

effect is more systematic (in the sense of all states showing a

transfer of charge from the ligands to the uranium) in the case

of UO2
2+ than for NUN, for which only the Su states have a

rather pronounced ligand to uranium charge transfer relative

to the ground state. For NUO+ the most important effect

is the migration of charge from one end of the molecule

(the O atom) to the other (the N atom) rather than a net

movement of charge towards the central atom.

3.3 Comparison of WFT excitation energies

In a previous investigation of the performance of IHFSCC

and CASPT2 in calculating the electronic spectrum of

Table 3 Comparison of different XC functionals for NUN (in eV). S–T indicates singlet–triplet splitting, MUE the mean absolute error and Max
the maximum absolute error, respectively

XC/Hamiltonian 13Fg 11Fg S–T 13Dg 11Dg S–T 13Fu 11Fu S–T 13Gg 11Gg S–T 13Su 11Su S–T MUE Max

ZORA/LDA 1.07 1.51 0.44 1.64 2.24 0.58 1.88 1.97 0.09 2.26 2.47 0.21 2.34 2.60 0.26 0.78 1.55
DC/LDA 1.13 1.63 0.50 1.67 2.41 0.74 1.95 2.06 0.11 2.32 2.60 0.28 2.21 2.48 0.27 0.74 1.46
ZORA/PBE(ALDA) 1.05 1.49 0.44 1.68 2.26 0.58 1.90 2.00 0.10 2.28 2.49 0.21 2.35 2.60 0.25 0.77 1.52
DC/PBE(ALDA) 1.12 1.62 0.50 1.70 2.43 0.73 1.96 2.07 0.11 2.32 2.60 0.28 2.23 2.49 0.26 0.74 1.45
DC/PBE 0.72 1.54 0.82 1.31 2.34 1.03 1.89 2.05 0.16 2.13 2.54 0.41 2.14 2.47 0.33 0.83 1.49
ZORA/BLYP(ALDA) 1.07 1.51 0.44 1.73 2.28 0.65 1.92 2.01 0.09 2.22 2.43 0.21 2.24 2.51 0.27 0.80 1.51
DC/BLYP(ALDA) 1.16 1.66 0.50 1.76 2.44 0.68 1.98 2.09 0.11 2.27 2.54 0.27 2.14 2.41 0.27 0.76 1.43
DC/BLYP 0.90 1.55 0.65 1.53 2.32 0.79 1.94 2.08 0.14 2.13 2.46 0.33 2.10 2.40 0.30 0.82 1.44
ZORA/M06-L(ALDA) 1.32 1.77 0.45 1.91 2.55 0.64 2.20 2.30 0.10 2.63 2.83 0.20 3.13 3.31 0.18 0.52 1.22
ZORA/B3LYP(XALDA) 1.29 1.79 0.50 1.74 2.53 0.79 2.92 3.04 0.12 2.77 3.00 0.23 2.62 2.93 0.31 0.34 0.60
DC/B3LYP(XALDA) 1.40 1.95 0.55 1.81 2.74 0.93 2.98 3.11 0.13 2.84 3.13 0.29 2.56 2.87 0.31 0.31 0.53
DC/B3LYP 1.21 1.87 0.66 1.62 2.64 1.02 2.95 3.10 0.15 2.74 3.07 0.33 2.53 2.86 0.33 0.33 0.63
ZORA/PBE0(XALDA) 1.32 1.84 0.52 1.69 2.55 0.86 3.18 3.30 0.12 2.97 3.21 0.24 2.87 3.17 0.30 0.19 0.40
DC/PBE0(XALDA) 1.42 1.99 0.57 1.77 2.76 0.99 3.23 3.37 0.14 3.05 3.35 0.30 2.79 3.08 0.29 0.16 0.32
DC/PBE0 1.09 1.94 0.85 1.38 2.70 1.32 3.16 3.36 0.20 2.92 3.31 0.39 2.69 3.06 0.37 0.21 0.45
ZORA/M06(XALDA) 1.34 1.88 0.54 1.70 2.59 0.89 3.16 3.29 0.13 2.98 3.21 0.23 2.97 3.26 0.29 0.20 0.39
ZORA/M06-2X(XALDA) 1.26 1.86 0.60 1.30 2.40 1.10 3.97 4.12 0.15 3.49 3.76 0.27 2.87 3.32 0.45 0.26 0.60
ZORA/SAOP(ALDA) 2.03 2.47 0.44 2.50 3.06 0.56 2.89 2.99 0.10 3.04 3.23 0.19 2.61 2.86 0.25 0.47 1.02
DC/SAOP(ALDA) 1.98 2.47 0.49 2.46 3.18 0.72 2.93 3.04 0.11 3.09 3.35 0.26 2.45 2.71 0.26 0.48 0.98
DC/CAM-B3LYP(XALDA) 1.75 2.14 0.39 1.91 2.91 1.00 3.43 3.57 0.14 3.21 3.48 0.27 2.82 3.16 0.34 0.19 0.43
DC/CAM-B3LYP 1.65 2.08 0.43 1.75 2.83 1.08 3.41 3.57 0.16 3.09 3.42 0.33 2.83 3.18 0.35 0.13 0.28
ZORA/TDHF 1.88 2.66 0.78 1.37 2.98 1.61 6.79 6.98 0.19 5.53 5.84 0.31 3.87 4.54 0.67 1.52 3.46
CASPT2 1.80 2.30 0.50 1.77 2.66 0.89 3.23 3.29 0.06 3.04 3.51 0.47 2.62 2.85 0.23 0.22 0.33
IHFSCC 1.51 2.06 0.55 1.48 2.56 0.88 3.38 3.52 0.14 3.37 3.58 0.21 2.87 3.14 0.27
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UO2
2+,27 two of us observed that CASPT2 typically shows

discrepancies with respect to IHFSCC for individual excitation

energies within a range of 0.1–0.4 eV. Furthermore, for

the lowest Fg and Dg, both singlet and triplet, CASPT2

overestimated the excitation energies, whereas for higher-lying

states the opposite is true. The singlet–triplet splittings,

however, were quite similar for both methods. The same

general trends are seen here for NUO+ and NUN in

Tables 2 and 3, respectively. The differences between individual

excitation energies for both methods are typically in the

0.1–0.3 eV range. We may conclude that the two WFT

methods give the same semi-quantitative result and will take

IHFSCC as the reference method, given its more systematic

treatment of the excited states and inclusion of dynamic

correlation effects beyond second-order perturbation theory.

4. The performance of DFT and TDDFT

Our TDDFT tests were focused on a subset of XC functionals,

covering the following basic classes: LDA, GGAs (PBE, BLYP)

and meta-GGAs (M06-L), hybrids (B3LYP and PBE0, with

20 and 25% of HF exchange, respectively) and meta-hybrids

(M06 and M06-2X, with 27 and 54% of HF exchange,

respectively), model potentials (SAOP) and range-separated

hybrids (CAM-B3LYP).

We have chosen to represent all systems by restricted

(closed-shell) Kohn–Sham calculations, given the evidence

both from our wavefunction calculations and from previous

studies (e.g. that of Kaltsoyannis,10 Pierloot and coworkers,18,25

those of Réal and coworkers26 and that of Fromager78 and

coworkers) that this yields a proper description for their

ground states. The suitability of this approach for uranyl

was further demonstrated in the recent Kramers-restricted

TDDFT calculations by Bast et al.20

4.1 Ground-state electronic structure

Before discussing the performance of (TD)DFT for the

different electronically excited states, it is instructive to discuss

the molecular orbitals (MOs) and the chemical bonding. The

essentials of bonding in the actinyls are nicely summarized in a

review by Denning;79 in particular, for UO2
2+ the currently

accepted picture, in terms of the highest-lying occupied MOs,

is that of a system of s,p orbitals arising from the combination

of oxygen 2p orbitals and the 5f,6p orbitals of uranium,

ordered as pg > pu > sg > su. In UO2
2+ the contribution

from the uranium 6p shows up in the relatively large gap

between the s orbitals, due to the repulsion between su and

6p,80 a so-called ‘‘pushing from below’’ interaction.

To our knowledge only the aforementioned work of

Kaltsoyannis has paid attention to the valence MO picture

of NUN and NUO+. Using a GGA functional (PB86), he

found: (a) the same orbital ordering for NUN and UO2
2+, but

with a smaller (larger) energy gap between the s (p) orbitals;
and (b) an ordering of type p > s > p > s for NUO+, with

the (energetically) lower p,s pair mostly centered over the

U–O bond, whereas the HOMO and HOMO-1 are mostly

centered over the U–N bond. This picture is qualitatively

consistent already with the Hartree–Fock results, but in order

to obtain reliable information about the orbital ordering

electron correlation should also be included. To remain within

an orbital picture, we shall do so by comparing the vertical

ionization potentials (IPs) obtained from the (1h,0p) sector in

the IHFSCC calculations to those obtained from DFT.

The DFT IPs are here taken as approximations to the

negative of the respective orbital energies, and while this is

strictly valid only for the HOMO,81 our results (shown in

Table 5) indicate that this is a good approximation, in line

with the findings of Chong and coworkers.82

4.1.1 Describing the occupied space. From the numbers in

Table 5, we can confirm that the orbital scheme outlined above

is maintained for all three molecules, with one exception for

M06-2X (which for NUN places the su orbital below the sg).

On the other hand, we observe significant quantitative

differences as far as the differences in energy between orbitals

(for a given molecule) are concerned. These are very much

dependent on the type of functional in use (LDA/GGA,

hybrids, metaGGAs/hybrids, etc.); for instance, the energy

difference between the HOMO and HOMO-1 for NUN or

UO2
2+ can be halved just by going from GGAs to hybrids.

Also striking is the fact that there is very little difference (of the

order of 0.1 eV) in energy between sg and su for IHFSCC in

the case of UO2
2+, whereas the DFT calculations yield

differences between 0.3 and 1 eV.

These numbers are rather insensitive to the Hamiltonian; in

general, we observe discrepancies no larger than 0.1 eV

(but generally lower than 0.05 eV) between the ZORA and

DC Hamiltonians (keeping in mind that one also might

have effects due to the different basis sets used by ADF and

DIRAC). This is in line with experience that approximate

Table 4 CASPT2 Mulliken charges for the ground and excited states of UO2
2+, NUO+ and NUN

State
UO2

2+

O
NUO+

U N O
NUN

U NU State State

X1Sg
+ 2.41 �0.21 X1S 1.72 �0.39 �0.33 X1Sg

+ 0.77 �0.39
1Fg 2.36 �0.18 1F 1.70 �0.57 �0.12 1Fg 0.78 �0.39
3Fg 2.36 �0.18 3F 1.71 �0.57 �0.14 3Fg 0.76 �0.38
1Dg 2.35 �0.17 1D 1.73 �0.55 �0.19 1Dg 0.76 �0.38
3Dg 2.37 �0.18 3D 1.70 �0.57 �0.13 3Dg 0.79 �0.39
1Gg 2.25 �0.13 1G 1.70 �0.57 �0.12 1Fu 0.74 �0.37
3Gg 2.26 �0.13 3G — — — 3Fu 0.72 �0.36
1Fu 2.25 �0.13 1P 1.74 �0.57 �0.17 1Gg 0.78 �0.39
3Fu 2.26 �0.13 3P — — — 3Gg 0.79 �0.40
1Du 2.26 �0.13 21F — — — 1Su 0.64 �0.33
3Du 2.26 �0.13 23F — — — 3Su 0.64 �0.32
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(but computationally efficient) two-component relativistic

schemes such as ZORA yield accurate valence energies.

Looking at the performance of the various DFT approaches,

we find the best agreement with IHFSCC for the SAOP

potential. Comparing the DC values it shows errors in the

range between �0.5 and 0.4 eV. It is followed by CAM-B3LYP

and M06-2X, which systematically underestimate the IPs by

about 1 eV and 1–1.5 eV, respectively. Next come two blocks,

one grouping the remaining (meta)hybrids, and another

encompassing LDA and the (meta)GGAs, which underestimate

the IPs by about 3 and 4 eV, respectively.

While other factors, like the correlation part of the functionals,

also play a role these trends may be rationalized by considering

the degree to which self-interaction errors (SIE) are eliminated

from each functional. The reader is referred to ref. 83–86 for

discussion of the self-interaction problem. Important to note

in the present context is the inability of approximate functionals

to, in a one-electron picture (1-SIE), correctly cancel out the

Coulomb interaction of the electron with itself through the

exchange interaction (which in Hartree–Fock theory is exactly

cancelled out) or, in a many-electron case (N-SIE), to properly

describe the discontinuity of the derivative of the total energy

with respect to (fractional) changes in particle number (the

so-called integer discontinuity). The inability of GGAs to

properly represent such discontinuities in the energy and

exchange-correlation (xc) potential (the latter denoted here

by Dxc) have been shown to be behind the failures of TDDFT

in describing charge-transfer excitations,87 or to reproduce the

correct asymptotic behavior of the exchange-correlation

potential.88,89 The latter defect is remedied by model potentials

with the correct asymptotic (long-range) behavior, like LB9460

and SAOP.59

Based on the analysis of Teale and coworkers,90 valid for

the case of pure functionals, we can estimate the value of Dxc

from the relation

Dxc = 2(I0 + eHOMO) (1)

where I0 is a reference ionization potential (taken to be the

IHFSCC value here) and eHOMO is the Kohn–Sham orbital

energy for the HOMO of the molecules (with the factor two

arising from the assumption that, instead of a discontinuity,

(meta)GGAs will exhibit an averaged potential over such

discontinuity). From the differences between the LDA or

GGAs and IHFSCC in Table 5 one sees that Dxc may have

values of up to 8 eV, an indication that the effect of the integer

discontinuity on the spectra of these systems is potentially

large. We furthermore note that the asymptotically correct

SAOP potential indeed provides a good agreement with the

IHFSCC values.

An alternative to imposing the proper asymptotic behavior

with a model potential is to introduce non-locality and reduce

SIE via the inclusion of Hartree–Fock exchange (as in hybrid

functionals), via an explicit dependence of the functional on

the kinetic energy (metaGGAs) or a combination of both

(metahybrids). This is also done in range-separated hybrids

such as CAM-B3LYP or others91,92 that offer a more detailed

control over the incorporation of exact exchange than is

possible in conventional hybrids.84,93,94 While the analysis of

Teale is not applicable to (meta)hybrids, their better performance

(in particular when compared to the analogous GGA, as one

can then suppose similar errors due to electron correlation or

other factors) does indeed suggest improvements relative to

the non-hybrid functionals.

4.1.2 Remarks on the virtual space. A detailed discussion

concerning the representation of the virtual orbital space will

not be made here. The main reason for that lies at the very

different meaning of the virtual orbital energies95 when pure

(e.g. LDA or (meta)GGAs) or hybrid functionals are

employed. It is well-known that for pure functionals the virtual

orbital energies are good approximations to the ionization

potentials of excited states, whereas in Hartree–Fock they

represent approximations to electron affinities. For hybrids

they are thus somewhere in between these two values making it

Table 5 Comparison of DFT and IHFSCC for the first three ionization potentials (IPs) for UO2
2+, NUO+ and NUN (in eV). As these ionized

states in the IHFSCC are dominated by contributions from a single orbital and the DFT values are approximated by the negative of the orbital
energies, we identify the IPs with the respective orbitals (which range fromHOMO-2 to HOMO for DFT). ZORA and DC are Zero Order Regular
Approximated and Dirac-Coulomb Hamiltonians, respectively

NUN NUO+ UO2
2+

pu sg su s(U–O) p s(U–N) pu sg su

LDA ZORA 6.58 6.08 5.50 14.57 13.78 12.59 23.45 22.95 22.22
DC 6.53 6.05 5.46 14.51 13.63 12.47 23.39 22.87 22.16

PBE ZORA 6.32 5.84 5.22 14.33 13.52 12.32 23.19 22.74 21.94
DC 6.29 5.82 5.21 14.28 13.38 12.23 23.12 22.66 21.90

BLYP ZORA 6.18 5.76 5.15 14.22 13.36 12.24 23.02 22.59 21.84
DC 6.16 5.77 5.17 14.18 13.22 12.16 22.95 22.52 21.81

M06-L ZORA 6.25 5.72 5.07 14.40 13.53 12.12 23.19 22.91 21.93
B3LYP ZORA 7.26 6.85 6.50 15.63 14.45 13.59 24.36 24.03 23.39

DC 7.24 6.83 6.50 15.61 14.40 13.50 24.32 23.98 23.38
PBE0 ZORA 7.57 6.85 6.50 16.01 14.90 13.92 24.76 24.45 23.78

DC 7.54 7.08 6.79 15.98 14.76 13.82 24.72 24.39 23.76
M06 ZORA 7.56 7.10 6.97 16.07 14.92 13.99 24.73 24.46 23.97
M06-2X ZORA 8.86 8.30 8.58 17.66 16.24 15.45 26.27 25.90 25.64
SAOP ZORA 10.16 9.92 9.28 18.73 17.69 16.69 27.82 27.64 26.72

DC 10.08 9.83 9.10 18.62 17.52 16.49 27.76 27.55 26.57
CAM-B3LYP DC 9.02 8.48 8.44 17.49 16.22 15.37 26.23 25.78 25.40
IHFSCC DC 10.15 9.45 9.43 18.66 17.76 16.74 27.76 27.15 27.08
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difficult to compare these values with the IHFSCC values

(that strictly represent electron affinities).

A consequence of the difference between Hartree–Fock and

pure DFT is that one finds, for the GGA functionals employed

here, the low-lying virtuals to be uranium-centered ff and fd
orbitals (to which we will observe the transitions from the

occupied s,p orbitals discussed above), whereas for the hybrids

these are often found higher in energy than other orbitals such

as the s and p antibonding orbitals.

4.2 The performance of different functionals for the excited

states

All investigated XC functionals were subsequently compared

to the wave function methods in Table 1 (UO2
2+), Table 2

(NUO+) and Table 3 (NUN), which are known to perform

very well for molecules containing heavy elements.19,27,39,41,42

Since previous works indicate that IHFSCC energies are

generally in better agreement with experiment than those from

CASPT2, we chose to employ the former as our reference.

The tables contain, apart from the individual excitation

energies and singlet–triplet splittings, the mean unsigned

(MUE) and largest absolute (Max) errors with respect to

IHFSCC for each molecule. We also provide a global picture

in Fig. 1, where the (signed) errors are depicted for each

individual excitation.

4.2.1 General trends. The statistical measures help to

identify trends and we start discussing the MUE. For that,

LDA and the GGAs considered show essentially the same

results for all molecules, namely large underestimations

with GGAs showing no clear improvement over LDA. The

meta-GGA M06-L on the other hand does show improvement

over both LDA and GGAs, almost halving the error. For the

(meta)hybrids the errors are smaller still, about four times

smaller than those of GGAs or LDA. We thereby note that

whereas for NUN and UO2
2+ the excitation energies are

generally underestimated, for NUO+ some functionals also

show slight overestimations.

The B3LYP functional shows somewhat larger MUEs than

PBE0 or M06(XALDA). The latter two show nearly identical

results which is not so surprising as M06 bears a number of

similarities to PBE0 (about the same amount of Hartree–Fock

exchange, and exchange and correlation functionals based on

those of PBE). It is nevertheless unfortunate that the higher

flexibility in the functional form available for M06 does not

translate into better accuracy than observed for PBE0. This

may be due to the ALDA approximation employed in the

current ADF implementation of this functional, however.

The M06-2X(XALDA) functional, in spite of having the

same functional form as M06 (except for the amount of

Hartree–Fock exchange), shows a worse performance than

B3LYP, again indicating the important role played by the

exchange energy. The model potential (SAOP) performs

comparably to M06-2X(XALDA), while the range-separated

(CAM-B3LYP) functional tends to show yet an improvement

over PBE0 or M06. Furthermore, CAM-B3LYP generally

matches the performance of CASPT2, even slightly out-

performing it for NUN and UO2
2+.

Nearly the same ranking of functional performance is seen

for the largest absolute errors (Max), which are generally two

to three times larger than the corresponding MUEs. The

superior performance of (meta)hybrids and CAM-B3LYP

compared to LDA or GGAs is evident for all three molecules,

and it is interesting to see that, while the (meta)hybrids show a

sightly better agreement with IHFSCC for NUN and UO2
2+

in comparison to NUO+, for (meta)GGAs the opposite

is true.

We believe that, as stated above for the ionization

potentials, the large errors seen for LDA and GGAs have to

do with a poor description of exchange energies, that are quite

different for the ground and excited states. The xc kernel plays

a significant role in determining the accuracy here, and in it,

the amount of HF exchange is important as the differences

between M06(XALDA) and M06-2X(XALDA), and the

similarities between PBE0(XALDA) and M06(XALDA) can

attest. However, it remains to be seen whether or not the

same will hold for other actinide compounds, especially in

connection to typical charge-transfer or Rydberg-type

excitations (and where one would expect CAM-B3LYP to

clearly outperform the other hybrids).

Providing an understanding of the differences in standard

deviation between the different groups of functionals, on the

other hand, seems to be a much more difficult task. We can at

this time only speculate that, at least to some extent, N-SIE

effects that affect the various exited states differently will be

important. In that case, one could expect that calculations

with functionals that show large N-SIE, as is the case with

GGAs84,93,94 would then exhibit larger standard deviations. In

this respect, the SAOP potential is perhaps an interesting

example. We have already discussed that SAOP reduces

the SIE by correcting the long-range part of the potential.

However, since SAOP was conceptualized to be used with the

ALDA approximation, the errors inherent to the LDA functional

find themselves back into the response calculation (as indicated

by the large standard deviations for the excitation energies).

Fig. 1 Errors with respect to IHFSCC for all excitations and all

molecules. The gray boxes enclose a range of one sample standard

deviation above and below the average error. Dots show individual

errors for each excitation energy. The two highest (DFT) states for

NUO+ have been left out of the analysis. (ALDA)—evaluated using

the ALDA approximation.
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These errors are incidentally of about the same order of any

other calculations with (meta)GGAs and, more generally, of

calculations with the ALDA kernel.

Also worth noting here is that, in spite of its better

performance on the mean error compared to the investigated

(local) GGA functionals, M06-L(ALDA) ultimately remains

more in line with them than with the (meta)hybrids. At this

point we cannot exclude that improvements could be seen if we

departed from the ALDA kernel given which, as discussed

below, can have significant effects on individual excitations.

4.2.2 ALDA or Exact derivatives in the kernel?. In order to

judge whether the ALDA approximation changes significantly

the electronic spectrum of investigated molecules we consider

calculations with the PBE, PBE0, BLYP, B3LYP and

CAM-B3LYP xc functionals with and without ALDA. The

effect of the ALDA approximation is depicted in Fig. 2 for the

lowest two excitations of each of the molecules considered.

From Fig. 2 and the values in Tables 1 through 3 we

conclude that for the singlet states the effect of ALDA is

small, but a surprisingly large discrepancy occurs for the

triplet states, especially in the lowest electronic transitions

(differences up to 0.4 eV). For the higher transitions the effect

is smaller (difference up to 0.04) in all investigated molecules

and functionals. PBE0 and B3LYP suffer somewhat less than

PBE and BLYP from the ALDA approximation for the triplet

energies, due to the fractional Hartree–Fock exchange still

present in the kernel. We may thus expect that the ALDA

approximation also has a large effect on triplet energies for the

M06-L functional (for which an implementation of the full

kernel is not yet available) but less so for M06 and in

particular M06-2X which contain a large portion of Hartree–

Fock exchange. Finally we note that by its construction as a

model potential, it is difficult to remove the ALDA ansatz for

SAOP, and here the large errors (see Fig. 1) in the triplet

energies cannot be easily remedied.

4.2.3 Comparison to previous calculations and benchmarks.

The results discussed above are in line with those from recent

benchmark calculations on different molecular databases that

do not include molecules containing heavy centers.96–102 In

particular, the recent comparison of the M06 family to other

functionals by Jacquemin and coworkers99 points to the same

general trends seen here: M06 does show the best overall

performance in the family and is close to PBE0, while M06-2X

shows a slightly worse performance. They also show that M06-L

outperform different GGAs, but still cannot match the

accuracy of conventional hybrids functionals such as B3LYP.

It is difficult to directly compare our MUE values and those

of Jacquemin and coworkers,99 or those of Silva-Junior and

coworkers,101,102 due to the different methodologies used to

obtain the reference values (and the extent to which basis set

effects can influence the WFT102 or TDDFT103 results). We

can nevertheless observe, for hybrids and metahybrids such as

B3LYP and M06, a rather good agreement between our MUE

and those of the literature (and similarly for the unsigned

errors shown in Fig. 1). For GGAs, on the other hand, the

values in the literature seem to be much smaller than ours. We

are not able at this time to say whether this is definitely a

degradation of performance for the GGAs for actinides or

whether this is an artifact due to the limited size of our

benchmark set.

Considering now calculations on molecules with heavy

elements we confirm, for the uranyl spectrum, the observations

of Bast et al.20 who included spin–orbit coupling and

compared the performance of functionals relative to the

LR-CCSD results of Réal and coworkers.26 While the latter

have not considered the M06 family of functionals, they also

reported a lowest MUE for CAM-B3LYP with LDA and

GGAs severely underestimating the excitation energies.

Comparing our results to the benchmark calculations of

Zhao and Truhlar (Table 17 in ref. 62) where a broad range of

excitation energies calculated with different functionals are

compared to reference values, we do not see the same drastic

improvement going from hybrid functionals (B3LYP, PBE0)

to metahybrids (M06, M06-2X). In our application, M06-2X

brings the excitation energies too close to the Hartree–Fock

values and introduces significant errors. Most likely this

discrepancy between our particular molecules and excitations

and the data presented by Zhao and Truhlar is due to the fact

that we do not include Rydberg or extreme charge transfer

states in our benchmark. In these cases it is crucial to use

functionals with a correct treatment of the nonlocality of the

change in the electron density. Based on our results we cannot

recommend M06-2X for the systems and excitations studied in

this work, despite its good performance in other benchmarks.

5. Conclusions

We investigated the performance of different classes of

approximate exchange–correlation functionals in describing

ten low-lying valence excitations for the uranyl ion (UO2
2+)

and two isoelectronic analogs, NUO+ and NUN, by comparing

them to wavefunction calculations (CASPT2 and Fock-space

coupled cluster). A marked characteristic of such systems, all

of which are closed-shell species in the ground state, is that

the low-lying excited states under consideration correspond

to excitation from the s,p bonding orbitals to unoccupied

orbitals which are essentially uranium f orbitals.

Fig. 2 Errors for the first singlet and triplet F states due to the

ALDA approximation for the PBE, PBE0, BLYP, B3LYP and

CAM-B3LYP functionals.
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We can identify the following trends regarding the functional’s

performance: (a) LDA and (meta)GGAs show somewhat

larger mean errors than (meta)hybrids or model potential such

as SAOP; however, the standard deviation for those is

significantly larger than for the (meta)hybrids; (b) one hardly

observes an improvement for metaGGAs or meta hybrids in

comparison to GGAs or hybrids, with perhaps the exception

of the improvement of the mean error for M06-L over the

GGAs considered; and (c) the performance of M06, PBE0 and

CAM-B3LYP approaches that of CASPT2, both in terms of

relatively small MAEs and standard deviations for the

excitations. Of course, with only three molecules studied,

one cannot rule out that the present agreement is fortuitous,

but based on this benchmark M06, PBE0 and especially

CAM-B3LYP appear appropriate for quantitative studies of

actinide spectroscopy. Other hybrid functionals such as

M06-2X and B3LYP are suited for (semi)quantitative or

qualitative work, but we would strongly argue against employing

non-hybrid (meta)GGAs even for qualitative investigations of

excited states of actinyls.

In view of those trends, we believe that, while the correlation

functional does play an important role in the accuracy of

results—as seen in the differences between different functionals

of same kind (GGAs, hybrids, etc.), what appears to be a

critical factor governing the accuracy of the functionals

tested is the degree of non-locality introduced through

inclusion of HF exchange in hybrids or meta-hybrids. We

could thereby rationalize why: (i) hybrids outperform

their pure GGA counterparts; (ii) M06-L(ALDA) shows

some improvement over the GGAs regarding the mean

error but not in the standard deviation; (iii) the SAOP model

yields excellent ionization potentials and mean errors for

the excitation energies but has standard deviations similar

to GGAs.

It is also clear that one must go beyond the ALDA

approximation, given the rather large differences observed

between the low-lying triplet states. Equally (or perhaps more)

important, however, is that non-local effects should also be

incorporated to the exchange-correlation kernel, as done for

all (meta)hybrids and CAM-B3LYP, if one wishes to approach

the accuracy of methods such as CASPT2.

It is, finally, interesting to note that for excitation energies

the choice of relativistic (spin-free) Hamiltonian is almost

irrelevant, so one can safely investigate the spectra of

actinide-containing molecules with the more approximate

two-component methods (such as ZORA), instead of using

four-component approaches.
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We present a study of the electronic structure of the [UO2]+, [UO2]2 +, [UO2]3 +, NUO, [NUO]+,
[NUO]2 +, [NUN]−, NUN, and [NUN]+ molecules with the intermediate Hamiltonian Fock-space
coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component
Hamiltonian to incorporate spin–orbit coupling and Gaunt interactions are compared to results ob-
tained with the Dirac–Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations
employing approximate density functionals in describing electronic spectra and quantities useful
in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891801]

Research on uranium chemistry focuses on the interac-
tion between the atom and its nearest ligands as understand-
ing this interaction is crucial in technological challenges such
as assessing the feasibility of separating, storing, and dispos-
ing nuclear waste and in its use in catalysis.1, 2 Key properties
are ionization potentials (IPs) and electron affinities (EAs),
hardness and electronegativity of small building blocks of
uranium species, because these can serve as indicators of
chemical reactivity of larger uranium complexes. Particularly
useful are accurate optical spectroscopy studies of prototyp-
ical uranium compounds, as this constitutes a very sensitive
probe of the uranium environment.3 Because the interpre-
tation of experimental spectra for actinde complexes is of-
ten not straightforward,3 theoretical investigations provide a
means to gain further insight. This is, however, not an easy
task due to the required balanced treatment of both electron
correlation and relativistic effects.4–7 Several publications8–11

underlined the need of highly sophisticated (and computa-
tionally expensive) wave function approaches to obtain re-
liable results.12, 13 Among these, the relativistic intermediate
Hamiltonian Fock-space coupled cluster singles and doubles
(IH-FSCCSD) method stood out as the most reliable theoret-
ical model.14–18, 20, 21

It is a well-established fact that spin–orbit interactions are
essential to reach spectroscopic accuracy.4–6 Unfortunately,
an accurate four-component Dirac–Coulomb (DC) Hamilto-
nian has the downside of increased computational expense,
notably for the AO–MO transformation step for correlated
calculations. This high computational cost is a limiting fac-
tor to investigate larger molecular systems with accurate cor-
relation methods. An alternative is found in two-component
approaches, in which the large and small components will

a)Present address: Department of Chemistry and Chemical Biology,
McMaster University, Hamilton, 1280 Main Street West L8S 4M1, Canada.
Electronic mail: tecmer@mcmaster.ca

be decoupled and solutions can be expressed in terms of
the large-component functions only.4 A particularly interest-
ing two-component method is based on the so-called “eXact
2-Component”22 (X2C) which can provide an exact de-
coupling for the matrix representation of the Hamiltonian.
However, in order to construct the decoupling, one needs
solutions for a coupled system. This drawback has moti-
vated the development of two main computational schemes:
one based on the decoupling in an atomic mean-field23

(AMF) fashion,24–26 and another in which the decoupling
is based on the molecular four-component solutions,27 with
two-electron interactions being approximated in a molecu-
lar mean-field (MMF) fashion. The AMF approach is com-
putationally more advantageous than the MMF, since only
two-electron integrals over large component basis functions
are required at the Self-Consistent Field (SCF) step, but
at the cost of discarding multi-center contributions to the
spin–orbit interactions. While the AMF approach has seen
a wider range of applications than the MMF one, not much
is known of their accuracy in general and for actinides in
particular.

Another relativistic effect worth considering for actinides
is the Gaunt (G) interaction,28 which describes the magnetic
interaction between the spin current of one electron and the
orbital current of another one.4

In this communication, we highlight the importance of
both spin–orbit coupling and the (approximate) Gaunt inter-
actions on the electronic structure of the [UO2]2 +, [NUO]+,
and NUN isoelectronic series (and their electron-attached and
ionized counterparts).

Vertical excitation energies. The spin–orbit coupling
electronic spectra obtained from the IH-FSCCSD approach
using different relativistic Hamiltonians (and the ground-state
geometries from Ref. 18) are compiled in Table I (UO2+

2 ),
Table II (NUO+), and Table III (NUN). (We refer the reader to
the supplementary material19 for computational details). For

0021-9606/2014/141(4)/041107/5/$30.00 © 2014 AIP Publishing LLC141, 041107-1
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TABLE I. Fifteen lowest-lying IH-FSCCSD vertical excitation energies of the UO2+
2 molecule (rU-O = 1.708 Å). Excitation energies are given in eV.

� Character (from DC) DC DC(G) X2C/AMF X2C/MMF X2C(G)/MMF

2g 65% σ1/2u
φ5/2u

+ 17% π1/2u
φ5/2u

1.764 1.727 1.741 1.765 1.728

1g 70% σ1/2u
δ3/2u

+ 20% π1/2u
δ3/2u

1.843 1.801 1.819 1.843 1.801

3g 66% σ1/2u
φ5/2u

+ 18% π1/2u
φ5/2u

1.919 1.880 1.896 1.919 1.881

2g 47% σ1/2u
δ3/2u

+ 20% σ1/2u
δ5/2u

2.131 2.085 2.108 2.131 2.085

3g 65% σ1/2u
δ5/2u

+ 22% π1/2u
δ5/2u

2.514 2.453 2.491 2.513 2.452

4g 72% σ1/2u
φ7/2u

+ 20% π1/2u
φ7/2u

2.592 2.532 2.571 2.592 2.532

3g 65% σ1/2u
φ7/2u

2.992 2.938 2.972 2.992 2.938

2g 50% σ1/2u
δ5/2u

+ 22% σ1/2u
δ3/2u

3.394 3.346 3.374 3.394 3.346

1g 96% π3/2u
φ5/2u

3.853 3.817 3.829 3.853 3.817

4g 97% π3/2u
φ5/2u

3.968 3.932 3.945 3.968 3.933

3g 97% π3/2u
δ3/2u

4.079 4.042 4.056 4.079 4.042

2u 81% σ1/2g
φ5/2u

+ 16% σ1/2g
δ3/2u

4.084 4.038 4.057 4.084 4.039

0−
g 96% π3/2u

δ3/2u
4.086 4.049 4.064 4.087 4.049

0+
g 96% π3/2u

δ3/2u
4.122 4.082 4.098 4.122 4.082

3u 98% σ1/2g
φ5/2u

4.125 4.079 4.099 4.125 4.080

each excited state, the main character of molecular spinors
involved in the electronic transition is provided next to the
� quantum number. The low-lying electronic excitations in
the uranyl cation (UO2+

2 ) are dominated by transitions from
the occupied σ

(O)
1/2u- and π

(O)
1/2u-spinors to the nonbonding

φ
(U)
5/2u-, φ

(U)
7/2u-, δ

(U)
3/2u-, and δ

(U)
5/2u-spinors (cf. Table I). In the

upper part of the spectrum, electrons are excited from the
lower occupied σ

(O)
1/2g- and π

(O)
3/2u-spinors. This picture is in

line with previous four-component studies on this molecule,29

numerical differences being due to the elongated U–O dis-
tance (1.683 vs. 1.708 Å) and larger active space utilized
in this work, which led to some quantitative changes in the
upper part of the spectrum. The new active spaces, cor-
responding to a significant enlargement of the number of
active virtual spinors and the incorporation of the U 5d-
shell in the Q-space,29 were motivated by the observation
that for NUO+ and NUN including the 5d spinors greatly

improved the IH-FSCCSD convergence of sector (0h, 1p),
and that determinants in which higher virtuals are occupied
become increasingly important for the Pm space in sector
(1h, 1p).

Similar to UO2+
2 , in the NUO+ molecule low-lying ex-

citations occur mostly from the light element (the nitrogen
atom) to the uranium atom (see Table II). Both electronic
spectra are well described by electronic transitions from the
occupied σ

(N)
1/2 - and σ ′(N)

1/2-spinors in the lower part, and π
(N)
3/2-

and π
(N)
1/2-spinors in the upper part to the nonbonding φ

(U)
5/2-,

φ
(U)
7/2-, δ

(U)
3/2-, and δ

(U)
5/2-spinors (compare Tables I and II). A

significant difference is, however, that the low-lying excited
states in the NUO+ molecule lie much lower in energy than
in UO2+

2 (ca. 0.7 eV).
The electronic states for NUN are quite distinct from

those for UO2+
2 and NUO+, in that they possess very pro-

nounced multi-reference character (cf. Table III) and show a

TABLE II. Fifteen lowest-lying IH-FSCCSD vertical excitation energies of the NUO+ molecule (rU-O = 1.761 Å, rU-N = 1.698 Å). Excitation energies are
given in eV.

� Character (from DC) DC DC(G) X2C/AMF X2C/MMF X2C(G)/MMF

2 71% σ1/2φ5/2 + 15% σ ′
1/2φ5/2 1.018 0.987 1.001 1.020 0.992

3 69% σ1/2φ5/2 1.147 1.114 1.130 1.149 1.120

1 68% σ1/2δ3/2 + 15% σ ′
1/2δ3/2 1.215 1.179 1.197 1.216 1.183

2 54% σ1/2δ3/2 1.440 1.401 1.423 1.441 1.405

4 72% σ1/2φ7/2 + 15% σ ′
1/2φ7/2 1.778 1.725 1.762 1.779 1.728

3 69% σ1/2δ5/2 1.811 1.758 1.794 1.811 1.760

3 62% σ1/2φ7/2 2.101 2.052 2.086 2.102 2.056

2 57% σ1/2δ5/2 2.361 2.316 2.345 2.362 2.319

1 96% π3/2φ5/2 2.656 2.621 2.640 2.662 2.630

4 97% π3/2φ5/2 2.743 2.708 2.726 2.748 2.716

3 83% π1/2φ5/2 2.932 2.894 2.918 2.937 2.903

0− 93% π3/2δ3/2 2.947 2.911 2.932 2.953 2.919

3 88% π3/2δ3/2 2.987 2.950 2.971 2.992 2.958

0+ 93% π3/2δ3/2 2.988 2.949 2.973 2.993 2.957

2 82% π1/2φ5/2 3.016 2.966 2.991 3.010 2.974
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TABLE III. Fifteen lowest-lying IH-FSCCSD vertical excitation energies of the NUN molecule (rU-N = 1.739 Å). Excitation energies are given in eV.

� Character (from DC) DC DC(G) X2C/AMF X2C/MMF X2C(G)/MMF

2g 52% σ1/2u
φ5/2u

+ 26% π1/2u
φ5/2u

0.956 0.923 0.936 0.957 0.927

3g 50% σ1/2u
φ5/2u

+ 24% π1/2u
φ5/2u

1.103 1.068 1.083 1.103 1.072

1g 45% σ1/2u
δ3/2u

+ 20% π1/2u
δ3/2u

1.134 1.094 1.106 1.134 1.098

2g 30% σ1/2u
δ3/2u

+ 15% π1/2u
δ3/2u

1.398 1.355 1.374 1.398 1.358

4g 49% σ1/2u
φ7/2u

+ 23% π1/2u
φ7/2u

+ 16% σ1/2u
φ′

7/2u 1.699 1.645 1.680 1.698 1.646

3g 43% σ1/2u
δ5/2u

+ 20% π1/2u
δ5/2u

1.757 1.704 1.739 1.757 1.705

3g 38% σ1/2u
φ7/2u

+ 22% π1/2u
φ7/2u

2.076 2.028 2.059 2.076 2.029

2g 33% σ1/2u
δ5/2u

+ 17% π1/2u
δ5/2u

2.519 2.476 2.502 2.519 2.478

1u 40% σ1/2u
δ3/2g

+ 24% π1/2u
δ3/2g

2.669 2.696 2.680 2.669 2.696

0+
u 41% σ1/2u

σ1/2g
+ 30% π1/2u

σ1/2g
2.709 2.757 2.740 2.709 2.755

1u 41% π3/2u
σ ′

1/2g + 29% π ′
3/2uσ ′′

1/2g 2.711 2.759 2.743 2.711 2.757

1g 80% π3/2u
φ5/2u

2.711 2.675 2.690 2.711 2.679

2u 34% σ1/2u
δ3/2g

+ 24% π1/2u
δ3/2g

2.749 2.767 2.758 2.749 2.768

4g 84% π3/2u
φ5/2u

2.844 2.808 2.823 2.844 2.811

2u 73% σ1/2g
φ5/2u

2.895 2.857 2.875 2.895 2.860

relatively low-lying state (0+
u at 2.7 eV) in which electrons in

NUN can be transferred to spinors centered solely on the ni-
trogen atom. That said, for all species the eight lowest-lying
electronic transitions involve the same unoccupied uranium
spinors, with transition energies being rather similar (compare
Tables II and III) and showing the same ordering with respect
to � for NUN and NUO+, but lower than the corresponding
ones in UO2+

2 by about 0.7–0.8 eV.
The distinctive features of the NUN electronic struc-

ture with respect to NUO+ or UO2+
2 originate from differ-

ences both in the occupied spinors (which are delocalized
over the uranium and nitrogen atoms) and the lowest unoc-
cupied spinors. The importance of the latter can be better un-
derstood by comparing the electronic structures of the Ura-
nium (V) species: while the UO+

2 and NUO molecules bear
the same ground state electronic configuration (σ 2

1/2uφ
1
5/2u

and σ 2
1/2φ

1
5/2, respectively) and in both cases low-lying elec-

tronic excitations occur to the unoccupied uranium φ- and
δ-spinors as in the Uranium (VI) species, the NUN− moi-
ety exhibits a totally different ground state electronic con-
figuration (σ 2

1/2uσ
1
1/2g) and other type of spinors are involved

in low-lying excitations (see Tables S4– S6 of the supple-
mentary material19). It is worth to note that the lowest-lying
excited state in NUN− is much higher in energy than in
the UO+

2 and NUO molecules (0.95 eV vs. 0.25 eV). Con-
versely, the IH-FSCCSD excitation energies obtained for
NUN+ are quite comparable to those of UO3+

2 in terms of
energy and character; both of them are, however, again dif-
ferent from NUO2 + (see Tables S7– S9 of the supplementary
material19).

Excitation energies calculated from the DC Hamiltonian
and those from the approximate X2C/AMF and X2C/MMF
Hamiltonians are similar for all molecules investigated in this
work. The overall agreement of the X2C/MMF data with
the DC data is very good for all molecules and discrepan-
cies are usually smaller than 0.005 eV (cf. Tables I–III and
Tables S4– S9 of the supplementary material19). Yet, the ad-
vantage of X2C/MMF over DC is reduced CPU time required

for the four-index transformation, a bottleneck of correlated
calculations (see Figure S1 of the supplementary material19).
The errors originating from the X2C/AMF approximation
amount up to 0.03 eV which may be acceptable since this
approach provides further computational savings. The pres-
ence of Gaunt interactions in the DC Hamiltonian (see DC(G)
columns in Tables I–III and Tables S4– S9 of the supple-
mentary material19) causes changes in the excitation energies
on the order of 0.03–0.07 eV for all molecules. Notably, the
X2C(G)/MMF results are almost indistinguishable from the
reference DC(G) results.

The performance of TD-DFT for the electronic spectra
of the UO2+

2 , NUO+, and NUN molecules is summarized
in Figure 1. The overall accuracy of the PBE0, M06, and
CAM-B3LYP exchange–correlation functionals for the spin–
orbit electronic spectra is acceptable. The deviations are no
larger than 0.5 eV. In particular, the TD-DFT excitation ener-
gies calculated with the CAM-B3LYP exchange–correlation
functional slightly overestimate, and with the PBE0 and M06
exchange–correlation functionals underestimate the reference
data for UO2+

2 and NUN. Interestingly, all functionals tend
to shift the origin of the electronic spectra of the NUO+

molecule towards lower energies (more negative errors) than
for UO2+

2 and NUN where the errors are in effect similar. The
CAM-B3LYP exchange–correlation functional remains clos-
est to IH-FSCCSD as it was observed for the spin–free elec-
tronic spectra (cf. Ref. 18). We believe that this is due to re-
duced self-interaction errors.30, 31 Furthermore, the inclusion
of Gaunt interaction does not change the overall performance
of CAM-B3LYP and its contribution to the electronic spec-
tra is considerably smaller than the accuracy of TD-DFT (see
Tables S10– S12 of the supplementary material19).

IPs, EAs and related properties. Table IV lists the first
IPs and EAs calculated with the IH-FSCCSD approach. The
largest IP (ca. 27 eV) and EA (ca. 14 eV) are obtained for
the uranyl cation. These values are reduced approximately by
factor of two in the NUO+ molecule, and further scaled down
in the NUN moiety. Thus, the overall trends in IPs and EAs
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FIG. 1. Errors with respect to IH-FSCCSD for all excitations and all molecules. The gray boxes enclose a range of one sample standard deviation above and
below the average error. Dots show individual errors for each excitation energy and are color-coded: red, violet, and blue correspond to UO2+

2 , NUO+, and
NUN, respectively. (Quantitative measure of the error can be found in Tables S10– S12 of the supplementary material.19)

in the isoelectronic series of Uranium (VI) follow the charge
decrease from +2 to 0.

The spin–free IH-FSCCSD EAs are significantly influ-
enced by the presence of spin–orbit coupling. The effect is
considerably larger for UO2+

2 (ca. 0.5 eV) and NUO+ (ca.
0.35 eV) than for NUN (ca. 0.06 eV). In the former two
species, the electron is attached to the φ5/2 spinor in con-
trast to the σ1/2-spinor in NUN for which spin–orbit coupling
is less important4 (cf. Tables S4– S6 of the supplementary
material19 for more details). Conversely, the effect of spin–
orbit coupling on the first IPs of Uranium (VI) species is, in

TABLE IV. IPs, EAs, electronegativity (χ ), hardness (η) and electrophilic-
ity (ω) obtained form the DC Hamiltonian (in eV).

Approach IP1 EA1 χ η ω

UO2+
2 IH-FSCCSD

spin–free 27.09 14.42 20.76 6.34 34.00
spin–orbit 26.99 14.91 20.95 6.04 36.33

Spin–orbit DFT
PBE0 23.74 17.89 20.82 2.93 74.06
M06 23.64 18.09 20.87 2.78 78.44
CAM-B3LYP 25.27 16.72 21.00 4.28 51.55

NUO+ IH-FSCCSD
spin–free 16.74 6.25 11.50 5.25 12.60
spin–orbit 16.71 6.59 11.65 5.06 13.41

Spin–orbit DFT
PBE0 13.83 9.39 11.61 2.22 30.36
M06 13.78 9.58 11.68 2.10 32.48
CAM-B3LYP 15.33 8.21 11.77 3.56 19.46

NUN IH-FSCCSD
spin–free 9.43 0.63 5.03 4.40 2.88
spin–orbit 9.37 0.69 5.03 4.34 2.91

Spin–orbit DFT
PBE0 6.81 2.12 4.47 2.35 4.25
M06 6.69 2.11 4.40 2.29 4.23
CAM-B3LYP 8.31 1.41 4.86 3.45 3.42

general, small and comparable for all molecules. This is easy
to understand since an electron is removed from essentially
the same σ1/2-spinor in each system (cf. Tables S7– S9 of the
supplementary material19 for more details).

From EAs and IPs, one can calculate quantities such
as electronegativity, chemical electrophilicity, or hardness,
which are often used to rationalize the species’ reactivity.32, 33

While it is beyond the scope of this communication to dis-
cuss the reactivity of larger uranium compounds with these
descriptors, we nonetheless elaborate on the relative impor-
tance of spin–orbit coupling and the reliability of DFT to de-
scribe them.

Comparing first spin–free and spin–orbit IH-FSCCSD
results listed in Table IV, we observe moderate changes in
electronegativity (χ ), hardness (η), and electrophilicity (ω)
driven by the changes in EA in the spin–orbit case; this would
suggest that a spin–free description could be sufficient, but
due to the different nature of virtual spinors in the spin–free
and spin–orbit description of UO2+

2 and NUO+, this requires
further investigation. As one could expect due to the differ-
ent molecular charges in the Uranium (VI) species, both χ

and ω decrease when going from UO2+
2 to NUO+ to NUN;

however, we find that η-values are rather similar for either
molecule. Thus, knowing that molecules with small positive
η are most reactive,32 we can speculate that the NUN and
NUO+ molecules are only slightly more reactive than UO2+

2 .
Comparing IH-FSCCSD and DFT, we conclude that,

while CAM-B3LYP yields results close to IH-FSCCSD for
all quantities, the other hybrid exchange–correlation function-
als tend to significantly underestimate η and overestimate ω,
which calls into question the validity of conclusions drawn
from DFT calculations for these species.

To conclude, our work pointed out to some similarities
in the electronic structures of UO2+

2 , NUO+, and NUN which
could be used to rationalize their electronic spectra. The oc-
cupied spinors in NUN and virtual spinors in NUO+ closely
resemble the electronic structure of the UO2+

2 moiety.
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Electronic structure investigation of the
evanescent AtO+ ion†

André Severo Pereira Gomes,*a Florent Réal,a Nicolas Galland,b Celestino Angeli,c

Renzo Cimiragliac and Valérie Valleta

The electronic structure of the XO and XO+ (X = I, At) species, as well that of a AtO+–H2O complex have

been investigated using relativistic wave-function theory and density functional theory (DFT)-based

approximations (DFAs). The n-electron valence state perturbation method with the perturbative inclusion

of spin–orbit coupling including spin–orbit polarization effects (SO-NEVPT2) was shown to yield transition

energies within 0.1 eV of the reference four-component intermediate Fock-space coupled cluster

(DC-IHFSCCSD) method at a significantly lower computational cost and can therefore be used as a

benchmark to more approximate approaches in the case of larger molecular systems. These wavefunction

calculations indicate that the ground state for the AtO+ and AtO+–H2O systems is the O = 0+ component

of the 3S! LS state, which is quite well separated (by C0.5 eV) from the O = 1 components of the same

state and from the O = 2 state related to the 1D LS state (by C1 eV). Time-dependent DFT calculations, on

the other hand, place the O = 1 below the O = 0+ component with the spurious stabilization of the former

increasing as one increases the amount of Hartree–Fock exchange in the DFAs, while those employing

the Tamm–Dancoff approximation and DFAs not including Hartree–Fock exchange yield transition

energies in good agreement with SO-NEVPT2 or DC-IHFSCCSD for the lower-lying states. These results

indicate the ingredients necessary for devising a DFA-based computational protocol applicable to the

study of the properties of large AtO+ clusters so that it may (at least) qualitatively reproduce reliable

reference (SO-NEVPT2) calculations.

1 Introduction
Astatine (At), the heaviest naturally occurring halogen in the
periodic table, is a rare radioelement due to all of its isotopes
being short-lived. Among the isotopes the 100% alpha-particle
emitter 211At is of considerable interest as a radiotherapeutic
agent for targeted alpha therapy in nuclear medicine, due to its
half-life of 7.2 h. This characteristic, together with its low
availability (production at cyclotrons with maximum yields
of 10!8 grams), make it extremely challenging for experi-
mentalists to explore the basic chemical nature of this element,
something that is recognized to be crucial for the development
of targeted radiotherapy agents.1 In that respect, theoretical
investigations may be particularly valuable for determining the

nature of At-containing species as well as their interactions
with the environment (solution).

Unlike other halogens, astatine is thought to exist in different
cationic forms in aqueous solutions as recently shown by
experimental studies, either measuring distribution coefficients
or high-performance ion-exchange chromatography, to deter-
mine the charge of the species.2,3 Under acidic and oxidizing
conditions, astatine exists as the AtO+ cation. However, to assess
the presence of a given species, it is important to predict its
thermodynamic stability, as for instance the hydrolysis constant,
a quantity which suffers from large experimental uncertainties
as pointed out by Champion et al.3 Quantum chemical calcula-
tions can therefore be used to investigate the existence of AtO+

and to attempt to explain the unexpected reactivity with organic
and inorganic ligands – which may seem odd given that a
qualitative MO diagram constructed from the At+ (p4) and O (p4)
fragments would suggest a triplet ground state that, in analogy
to the O2 molecule, would not react readily with closed-shell
species.

Ayed et al.,4,5 based on an extensive set of scalar relativistic
density functional theory (DFT)-based calculations employing
the M06-2X exchange–correlation (XC) functional, have recently
put forth the suggestion that the driving force behind the
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observed reactivity of AtO+ would be a change in the nature of
the ground state, from a triplet in the gas phase to a singlet
electronic state in solution, and have identified the point at
which the singlet state becomes stabilized as occurring in the
presence of four water molecules. Furthermore, they found that
the inclusion of spin–orbit coupling (SOC) interactions does
not alter the trends found at the scalar relativistic level. One may
wonder, however, whether these calculations are sufficiently
accurate to establish such changes in the electronic structure
of the species, in the absence of more refined calculations or of
direct experimental evidence such as electronic spectra, ioniza-
tion potential (IP) or electron affinity (EA) measurements.

One cause for concern, apart from the multireference nature
of singlet states in diradicals, is the well-known tendency of
most density functional approximations (DFAs) to spuriously
delocalize charge,6–8 as well as of DFAs including the Hartree–
Fock (HF) exchange (such as M06-2X) to favor high-spin states
over those of lower multiplicity.9,10 Another is the importance
of spin–orbit coupling (SOC) interactions on the electronic
structure of species containing heavy elements;11–13 in particular,
for astatine, SOC has been found to be quite important for
structures and spectroscopic constants even for closed-shell
species such as HAt14 causing an increase in the bond length of
about 0.03 Å, which is enough to offset the bond length
contraction of about 0.02 Å found if only scalar relativistic
effects are taken into account.

Thus, in this work our main goal is to study the electronic
structure of the AtO+ species with wavefunction theory (WFT)-
based correlated electronic structure approaches such as multi-
reference CI (with Davidson correction, MRCI + DC) and
n-electron valence state perturbation (NEVPT2)15–19 methods,
capable of correctly accounting for the multireference character
of the ground and excited-state wavefunctions, and to which SOC
effects can be included via spin–orbit CI (SOCI) approaches.20,21

Here we have chosen to investigate the performance of NEVPT2,
for what we believe is the first time for heavy elements, instead of
CASPT2 since by construction of its zeroth-order Hamiltonian
(defined using Dyall’s model Hamiltonian22) it does not suffer
from the intruder state problem that plagues CASPT2.15–19

These will be compared to calculations with selected DFAs
including SOC at the self-consistent field (SCF) level, and from
that we expect to establish the most suitable approach, in terms
of computational cost and accuracy, for subsequent studies of
AtO+ or other astatine complexes in solution. However, as there
are no experimental measurements on the electronic spectra,
IPs or EAs, we shall take an indirect route and perform bench-
mark calculations on the iodine homologue IO+ as well as on
the IO radical, for which experimental data and other theore-
tical studies are available. The approach serving as the refer-
ence was chosen to be the intermediate Hamiltonian Fock-
space coupled-cluster method, employing the Dirac–Coulomb
(DC) Hamiltonian (DC-IHFSCCSD), in light of its accuracy in
prior studies on species containing heavy elements.12,13,23–30

This work is organized as follows: after outlining the com-
putational details pertaining to each calculation, we begin the
discussion by an assessment of the performance of IHFSCCSD

for the XO+ and XO (X = I, At) species, followed by the
assessment of the more approximate approaches. We conclude
by extending such a comparison to an AtO+–water complex.

2 Computational methods
2.1 XO+, XO! and XO systems

2.1.1 Four-component coupled cluster. All four-component
(4C) calculations were carried out with a development version
of the Dirac electronic structure code31 (revision ab65b36),
employing Dyall’s basis sets32,33 of triple-zeta quality for astatine
and iodine, and Dunning’s aug-cc-pVTZ sets34 for oxygen, all of
which are left uncontracted. The Dirac–Coulomb (DC) Hamiltonian
along with the usual approximation of the (SS|SS)-type two-electron
integrals by a point-charge model were used throughout.35

The electron correlation method employed was the DC-
IHFSCCSD,36–38 which allows for a proper description of a possible
multiconfigurational nature of the ground and/or excited states.
Whenever possible, single-reference coupled cluster calculations
including the dynamical correlation with singles and doubles
(DC-CCSD) with the inclusion of perturbative triples substitu-
tion (DC-CCSD(T))38,39 were also performed.

In all calculations for the isolated species the CNv symmetry
was used, and the correlation space (Q) consists of molecular
spinors (MSs) with energies between !10.0 and 100.0 au. This
corresponds to 32 correlated electrons and 248 virtual spinors
for the systems containing iodine, and 46 correlated electrons
and 340 virtual spinors for the systems containing astatine,
respectively.

In the IHFSCCSD calculations the ground and excited states
for the XO+ were obtained with the (2h,0p) sector of Fock-space,
starting from the closed-shell species XO! (sector (0h,0p)). In
this process one also calculates the (1h,0p) sector of Fock-space,
thus yielding the ground and excited states, electron affinities
(EAs) and ionization potentials (IPs) for the XO radical as well.

The model (Pm) space used for the two isolated systems
contains valence spinors arising form the p–p manifold (s1/2,
p3/2, p1/2, p3/2*, p1/2*, see Fig. 1) with the exception of s1/2*,
which is unoccupied in the XO! reference. This implies that
electronic states with important contributions from Slater
determinants in which s1/2* is occupied will not be properly
described (see discussion for more details). The remaining
inner occupied spinors included in the correlation space (e.g.
ns1/2,(n ! 1)d3/2,(n ! 1)d5/2 etc. on the heavy centers) are part of
the intermediate space (Pi). The resulting P(=Pm + Pi) space
is therefore analogous to those employed by Rota et al.13

(‘‘scheme (b)’’) in the study of chalcogen diatomics.
Equilibrium geometries for the different electronic states

were obtained by a polynomial fit to energies calculated for X–O
internuclear distances ranging from 1.70 Å to 2.10 Å for IO!/IO/
IO+ and from 1.80 Å to 2.20 Å for AtO!/AtO/AtO+, with incre-
ments of 0.01 Å between 1.75 Å and 1.95 Å, and between 1.85 Å
and 2.05 Å, for IO!/IO/IO+ and AtO!/AtO/AtO+ respectively.

In addition to those, at selected geometries we have performed
IHFSCCSD calculations with the spin-free Dirac–Coulomb (SFDC)
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Hamiltonian40,41 (SFDC-IHFSCCSD) calculations, employing
the same P and Q spaces as above, and in C2v symmetry.

2.1.2 Relativistic correlated calculations with SOC a posteriori.
An alternative to the 4C approaches above is to start from a scalar
relativistic (SR) correlated approach and to add spin–orbit coupling
(SOC) a posteriori (also referred to as perturbatively, in contrast
to the variational treatment at the self-consistent field (SCF)
level afforded by the use of the DC Hamiltonian above). In these
calculations relativity was introduced via Relativistic Effective-
Core-Pseudopotentials (RECPs) which replace, for both halides,
either 28 (ECP28MDF)42 or 60 core electrons (ECP60MDF).43

The corresponding augmented quadruple-zeta basis sets by
Peterson et al.42,43 have been used for the halides, while the
augmented quadruple-zeta basis set of Kendall et al.34 was used
for the oxygen atom.

Using C2v symmetry, the molecular orbitals (MOs) of XO+

were optimized using a state-averaged complete active space
self-consistent field calculations (CASSCF)44–47 including 13
singlet states and 11 triplet states. The molecular active space
encompasses the s, s*, p and p* relativistic molecular orbitals,
as illustrated in Fig. 1.

Dynamical correlation effects beyond the CASSCF treatment are
taken into account using either a variational method, namely the
size-extensive corrected multireference configuration interaction
method48,49 with Davidson correction (DC)50 (MRCI + DC), or
using the partially contracted n-electron valence state perturba-
tion (PC-NEVPT2) approach,15–19 by computing the second-
order correction to the energy of the various electronic states
with the quasi-degenerate (QD-NEVPT2) formalism.18 In all
post-CASSCF treatments, the oxygen 1s core orbital and the
sub-valence (n ! 1)s, (n ! 1)p and (n ! 1)d halide orbitals were
kept frozen.

The spin–orbit coupled states are then computed in two
ways. A first approach, hereafter referred to as ‘‘contracted
spin–orbit configuration interaction’’ (c-SOCI), couples by the
spin–orbit interaction (using the spin–orbit counterparts of the
scalar RECPs) all the 24 spin–orbit free correlated states within
the contracted state-interacting method implemented in the
molpro201251 quantum chemistry suite of programs. The diagonal
elements of the spin–orbit coupling matrices are either MRCI + DC

or QD-NEVPT2 energies. The second approach, hereafter referred
to as the ‘‘uncontracted SOCI’’ (uc-SOCI), diagonalizes the total
relativistic Hamiltonian over a configurational space corresponding
to the CAS plus all single-excitations (directly coupled by the one-
electron spin–orbit ECP to the CAS configurations), projecting the
effect of dynamic correlation (QD-NEVPT2) onto that SOCI model
space by an effective spin–orbit Hamiltonian.21,52

All scalar relativistic correlated calculations and c-SOCI
calculations were performed using the molpro201251 quantum
chemistry suite of programs, while the uc-SOCI calculations
were performed with the EPCISO21 code, interfaced to the
molcas7853 quantum chemistry package. For the MRCI + DC
calculations, the same geometries as in the four-component
coupled cluster approach were employed (see above), whereas
uc-SOCI/QD-NEVPT2 calculations were performed at R(IO+) =
1.806 Å and R(AtO+) = 1.903 Å.

2.1.3 DFT-based approximations. We have employed the
ADF program54–56 for all DFT-based calculations. We con-
sidered the spin–orbit Zeroth-Order Regular Approximation
(ZORA) Hamiltonian,57–59 and employed basis sets of triple-zeta
plus polarization (TZ2P) quality for all atoms without freezing
core orbitals.

Excitation energies were obtained from time-dependent DFT
(TDDFT) calculations, both in the full form and in the Tamm–
Dancoff approximation (TDA), and employing the adiabatic
LDA (ALDA) approximation.

The density functionals considered were the Minnesota
family60 (the meta-GGA M06-L and the meta-Hybrids, M06 and
M06-2X), as well as the statistical average of orbital potentials
(SAOP)61–63 model potential.

2.2 AtO+–water complex

The structure for the AtO+–water complex was obtained with the
ADF program, employing TZ2P basis sets, the SO-ZORA Hamil-
tonian and the M06-2X functional, using the same reference as
discussed above. The geometry optimization was carried out in
C2v symmetry. Coordinates for the optimized structure can be
found in the ESI.†

The electronic spectra calculations were performed at
the optimized geometry. Both the WFT-based and DFT-based

Fig. 1 Molecular orbital scheme for AtO+ molecule in the spin–orbit (right) and spin–orbit-free (left) frameworks.

PCCP Paper

Pu
bl

is
he

d 
on

 2
0 

Fe
br

ua
ry

 2
01

4.
 D

ow
nl

oa
de

d 
on

 0
7/

05
/2

01
4 

19
:5

9:
23

. 

View Article Online

171



This journal is© the Owner Societies 2014 Phys. Chem. Chem. Phys., 2014, 16, 9238--9248 | 9241

calculations were performed roughly as above; for the WFT-
based calculations, apart from obvious adjustments (e.g. due to
the additional water molecular orbitals/spinors), we only used
the uncontracted SOCI/QD-NEVPT2 method where the number
of spin–orbit free states correlated were identical to that of AtO+

calculations, noting that here we also freeze the 1s water oxygen
orbital in the NEVPT2 correlation step. To quantify the effect
of the water molecule on the AtO+ spectrum, the u-SOCI
wave-functions of AtO+–water are projected on the AtO+ wave-
functions using the TRANSO program.64

3 Results and discussion
3.1 Benchmark calculations on XO and XO+

As mentioned above, we will employ the DC-IHFSCCSD method
as a reference to which we compare our results of more
approximate approaches for astatine, due to the absence of
experimental spectroscopic data. We now proceed to its evalua-
tion for the IO radical, as its spectra, electron affinity and
ionization potentials are well characterized experimentally using
different approaches such as photoelectron spectroscopy,66 high-
resolution rotational spectroscopy,67 as well as fluorescence
spectroscopy.69

3.1.1 Iodine oxide radical. The DC-IHFSCCSD spectra and
spectroscopic constants for IO are summarized in Table 1,
whereas the states’ composition in terms of the determinants
of the model space P is shown in Table S1 of the ESI.†

The calculated equilibrium distance for the ground-state
compares rather well with both experimental values,66,67 showing
a slight (C0.007 Å) elongation with respect to the latter. It also
compares well with the CCSD(T)/augmented quintuple-zeta basis

calculations of Peterson et al.,42 as they differ only by 0.0027 Å.
Peterson et al. found out two important contributions to the
equilibrium distance arising from extrapolation to the basis set
limit and higher excitations in the coupled cluster treatment,
but they have opposite signs and similar magnitudes so that
they cancel each other. Our results are, on the other hand,
clearly superior to the SO-MRCI results carried out by Roszak
et al.65 with relatively small basis sets, which show differences
with respect to the experimental data of roughly one order of
magnitude (C0.05 Å) larger.

The calculated harmonic frequency for the ground-state, on
the other hand, is not in very good agreement with experiment
or the CCSD(T) calculations of Peterson et al.42 Where the latter
shows discrepancies of about 2 cm!1 with respect to experi-
ment, in our case these are of roughly an order of magnitude
larger, at about 40 cm!1 which, in absolute terms, is close to the
discrepancy between the SO-MRCI results of Roszak et al.65 and
experiment. We can attribute the difference between DC-IHFSCC
and experiment partially to basis set incompleteness, but also to
the lack of triple excitations which, for IO+, decrease the harmonic
frequency by 60 cm!1 (see Section 3.1.3).

The same applies to the bond length and harmonic fre-
quency of the first excited state (O = 1/2), which arises from the
spin–orbit splitting of the spin–orbit free 2P state. A more
interesting difference, however, is that the DC-IHFSCCSD
excitation energy compares better to the experimental one
(overestimating it by about 0.02 eV) than both the CCSD(T)
and SO-MRCI calculations (which underestimate it by 0.03 and
0.05 eV, respectively).

If we set the limit of acceptable accuracy to about 0.1 eV,
these differences appear to be small. They might arise from the
way spin–orbit coupling has been introduced in these calculations.

Table 1 Bond lengths (Re in Å), harmonic frequencies (oe, in cm!1), vertical (Tv, in eV) and adiabatic (Te, in eV) excitation energies calculated with the DC-
IHFSCCSD method for XO (X = I, At). Additionally, we present the CBS/CCSD(T) results of Peterson et al.42 the SOCI/MRCI results of Roszak,65 as well as
the available experimental data for IO

O

IO AtO

Re (Å) oe (cm!1) Te (eV) Tv (eV) Re (Å) oe (cm!1) Te (eV) Tv (eV)

DC-IHFSCCSD X 3/2 1.875 722 0.00 0.00 1.973 644 0.00 0.00
a 1/2 1.887 702 0.28 0.28 2.018 585 0.70 0.72
a 3/2 2.095 492 2.76 3.22 2.209 435 2.34 2.78
b 1/2 2.077 497 3.09 3.48 2.166 445 2.78 3.07
c 1/2 2.022 514 4.02 4.22 2.108 493 4.97 5.12

CCSD(T)42 X 3/2 1.872 684 0.00
a 1/2 1.889 651 0.23

SO-MRCI65 X 3/2 1.922 650 0.00
a 1/2 1.939 626 0.21
b 1/2 2.249 288 1.69
a 3/2 2.250 287 1.69
b 3/2 2.115 514 2.82

Exp. X 3/2 1.8677a,c 681.6a,c 0.00
1.86762b 681.7b 0.00

a 1/2 1.887a 658a 0.2593a

1.88468b 645.3b 0.2593b

a 3/2 2.072d 514.5d 2.6729d

a Ref. 66. b Ref. 67. c Ref. 68. d Ref. 71.
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Peterson et al.42 estimated spin–orbit effects with an uncontracted
SO-MRCI calculations including spin–orbit coupling in a full-
valence active space, omitting important contributions from
single excitations.21 In the SO-MRCI calculations of Roszak et al.65

the RECPs differs from the one used by Peterson et al.42 and us,
and has been found by Roszak et al.65 to underestimate by about
0.037 eV the spin–orbit splitting for the iodine 2P atomic ground
state. The Gaunt interaction has previously been found to change
the energy of this state by only about 0.004 eV,11 so disregarding
it here does not affect our conclusions on the accuracy of the
DC-IHFSCCSD method.

Beyond the first two electronic states we obtained three
additional states, with vertical excitation energies over 3 eV.
These have significantly longer equilibrium distances than the
former, and lower harmonic frequencies, reflecting their experi-
mentally known predissociative character.67,69 Of these, only
the 2P3/2 has been measured experimentally,68–71 notably by
fluorescence studies (Te = 2.67 eV). This means that the apt
comparison is between them and the DC-IHFSCCSD adiabatic
value (Te = 2.82 eV; which, as for the vertical excitations, does
not take into account any vibrational corrections). Doing so we
obtain a discrepancy of 0.09 eV which is, as for the first excited
state, about 0.06 eV smaller than the one obtained by Roszak
et al. (Te = 2.82 eV).65 Interestingly, here Roszak’s harmonic
frequencies show somewhat better agreement to experiment
than ours, and discrepancies on bond lengths are now of the
same order of magnitude (0.02 Å for DC-IHFSCCSD and 0.04 Å
for SO-MRCI, respectively).

One should note in Roszak’s calculations65 that one finds
some additional dissociative O = 1/2 electronic states, corre-
sponding to configurations where the s1/2* spinor is also
occupied by one electron coming from the p* spinor manifold.
These states are, unfortunately, inaccessible with the present
DC-IHFSCCSD calculations, since s1/2* could not be included
in the model spaces considered here. However, as in Roszak
et al. calculations they seem to be fairly well-separated from the
other O = 1/2 state, we may speculate they do not significantly
affect our results.

Finally, with respect to the ionization potential (IP) and
electron affinity (EA) for IO, we observe very good agreement
between DC-IHFSCCSD and experiment, shown in Table 2.
However, while the calculated values for IP are in excellent
agreement with the adiabatic ionization energy measured by
Zhang et al.74 from the recording of the photoionization
efficiency spectra of IO, for EA the calculations are still 0.1 eV
too low. The reason for this is likely due to an imbalance in the
description of the IO! with respect to IO and IO+, in particular,
concerning the need of more flexible basis sets for the anion,
as well as the lack of high-order excitations (triple, quadruple)
in the coupled-cluster treatment. This is underscored by the
EA value of 2.374 eV computed by Peterson et al.,42 which is
within the experimental error bars and by the fact that their
estimate of SOC contributions (0.15 eV) is similar to the
difference between our DC-IHFSCCSD and SFDC-IHFSCCSD
results, the latter calculated at the ground-state bond length
in Table 1.

3.1.2 Astatine oxide radical. In Table 1 we present the
spectroscopic constants and excitation energies obtained for
AtO with the DC-IHFSCCSD. The composition of these states is
roughly the same for both radicals, with O = 3/2 states being
dominated by single determinants whereas O = 1/2 states
exhibit some multideterminantal character (see Table S1 of
the ESI†).

However, due to the larger magnitude of spin–orbit splitting
for astatine than for iodine we see that the energy difference
between ground and first excited state for AtO is more than
twice that of IO, and almost as large as what would be expected
from an estimation based on the atomic splitting (a factor of
three).43

The increased spin–orbit splitting, which translates into a
larger difference between the hri values for the p3/2 over the p1/2

spinors, is also responsible for the roughly 0.1 Å increases in
bond lengths of all electronic states; this is half of what would
be expected purely by the change in radii between the atomic 5p
and 6p shells.75 This elongation is accompanied by an overall
decrease in harmonic frequencies, indicating a weakening of
the bond for AtO.

The importance of SOC for AtO is also clearly seen when
comparing the EA and IP for DC and SFDC calculations, shown
in Table 2. Whereas for the IO EA and IP one had, respectively,
SOC contributions of 0.15 eV and 0.01 eV, for AtO these are
both of the order of 0.45 eV, three times as large as in the
lighter radical.

3.1.3 The halide oxide cations. The electronic spectra and
spectroscopic constants for ground and excited states of IO+

and AtO+ are summarized in Table 3. Both molecules have been
found to have a O = 0+ ground state, corresponding to one of the
components of a 3S! state in LS coupling and whose configu-
ration is predominantly one in which the p3/2* is now empty
(see Table S2 in the ESI†). Due to the smaller occupation of the

Table 2 Vertical and adiabatic ionization potentials (IP, in eV) and electron
affinities (EA, in eV) for IO and AtO, calculated using the SFDC-IHFSCCSD
and DC-IHFSCCSD methods, along with experimental values for IO. Here
‘‘Vertical’’ values are calculated at the DC-IHFSCCSD ground-state equili-
brium structures

Hamiltonian

EA

Vertical Adiabatic

IO SFDC 2.38
DC 2.23 2.28
Exp.66,72 2.378 " 0.005

AtO SFDC 2.33
DC 1.88 1.94

Hamiltonian

IP

Vertical Adiabatic

IO SFDC 9.79
DC 9.78 9.72
Exp.73 9.66 " 0.10
Exp.74 9.735 " 0.017

AtO SFDC 9.46
DC 9.02 8.98
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p* manifold for the ground-state, in comparison to IO and AtO,
one can expect a strengthening of the X–O bond which is
confirmed by shorter bond lengths (by about 0.05 Å for both
species) and higher harmonic frequencies (by roughly 90 cm!1

for IO+ and 60 cm!1 for AtO+).
It is also interesting to note, from Table S2 in the ESI,† that

while the ground states of both cations are dominated by a
single configuration where the p3/2* is unoccupied for IO+ there
is also an important (about 20%) contribution from a determi-
nant in which p1/2* is unoccupied, whereas for AtO+ no such
thing occurs, and instead one has contributions from configu-
rations where the p3/2 and p3/2* are singly occupied. In any case,
as noted by Rota et al.,13 the dominant configuration is closed-
shell with the p1/2* spinor Kramers pair doubly occupied,
making both cations relativistic closed-shell systems.

The (relativistic) single-reference character of the ground
state, due to the variational inclusion of SOC, also has the
advantage that standard approaches such as CCSD or CCSD(T)
can be readily employed, something that may be interesting for
subsequent studies of complexes of these cations. The values
for the T1 diagnostic in the DC-CCSD calculations, around the
equilibrium geometry, are 0.018 for AtO+ and 0.020 for IO+, and
these rise to 0.03 and 0.08 at R = 2.00 Å, respectively. We thus
present spectroscopic constants for both approaches in Table 3.
We observe that the inclusion of triples markedly lowers the
harmonic frequencies (by about 50–60 cm!1 !1 in both cases),
in line with the discussion for the radicals, and here increase
the bond lengths by about 0.02 Å. Interestingly, we see that the
DC-IHFSCCSD results lie roughly in between the DC-CCSD and
DC-CCSD(T) results, something that indicates that the multi-
reference character of the first acts in a way which partially
mimics the effect of the perturbative triples.

Focusing now on the excited states, we see that the first
(O = 1) correspond to the other components of the LS 3S! state.
Due to changes in the magnitude of SOC in both species, we see
that it goes from roughly 0.13 eV for IO+ to 0.63 eV for AtO+.
Unlike the ground-state, its wavefunction for IO+ has signifi-
cantly more single-reference character than for AtO+. The second
(O = 2) state, which correlates with the 1D state in LS coupling,
has somewhat less single-reference character than the previous
states and, more importantly, is nearly 1 eV higher than the

ground state for AtO+. This is nearly twice as much as one
would obtain in a spin-free calculation (see Table S3 in the
ESI†) for the 3S!–1D splitting, and might be of importance in
the light of the mechanism proposed by Ayed et al.,4,5 involving
a change in ordering of these two states in solution.

The (O = 3) excited state is the only purely single-reference
state for both species. It is close to two other O = 0 (0+, 0!) states
that, at the respective equilibrium geometries, change order for
AtO+ and IO+. Among these, it is important to note that the
wavefunction for the O = 0+ state is dominated by a doubly
excited determinant with respect to the ground-state (see Table S2
of the ESI†).

3.2 Comparison to approximate methods

The DC-IHFSCCSD results discussed above give us confidence
that the method can be used to benchmark the more approxi-
mate wavefunction (WFT)-based methods (MRCI, NEVPT2), as
well as the DFT-based ones.

3.2.1 WFT approaches. As discussed before, the approxi-
mate WFT-based approaches considered here consist of two
steps: in the first one obtains spin-free states, and in the second
these are coupled by spin–orbit interactions. Therefore, before
discussing the final outcome it is also of interest to briefly
discuss the performance of NEVPT2 and MRCI + DC with
respect to reference SFDC-IHFSCCSD results.

The results of these calculations, performed at the respective
MRCI + DC equilibrium geometries for IO+ (Re = 1.806 Å) and
AtO+ (Re = 1.903 Å), are summarized in Table S3 in the ESI.†
There, we can see that all three methodologies yield spectra in
very good agreement with each other, with discrepancies
between methods usually being on the order of 0.1 eV, but
often smaller for the lowest states. That makes the NEVPT2
approach particularly interesting in this context, as it is com-
putationally much less costly than MRCI, by at least a factor
of two.

It should be noted that some higher-lying P states (3P, 1P)
found using the approximate methods are absent from the
SFDC-IHFSCCSD calculation. This is due to the fact that these
states correspond to configurations for which the reference
determinants have the s* orbital occupied; orbital, which is not
included in the SFDC-IHFSCCSD model space.

Table 3 Bond lengths (Re in Å), harmonic frequencies (oe, in cm!1), vertical (Tv, in eV) and adiabatic (Te, in eV) excitation energies calculated using the
DC-IHFSCCSD method for XO+ (X = I, At), along with single-reference coupled cluster (DC-CCSD, DC-CCSD(T)) results for the ground state

O

IO+ AtO+

Re (Å) oe (cm!1) Te (eV) Tv (eV) Re (Å) oe (cm!1) Te (eV) Tv (eV)

DC-IHFSCCSD X 0+ 1.812 818 0.00 0.00 1.916 707 0.00 0.00
a 1 1.812 821 0.13 0.13 1.939 646 0.63 0.63
a 2 1.835 750 0.71 0.72 1.986 562 0.97 1.02
a 0+ 1.854 (761)a 1.35 1.38 2.132 523 1.44 1.94
a 3 2.030 575 1.84 2.45 2.133 519 1.48 1.98
b 0! 2.013 (787)a 1.77 2.39 1.944 672 2.74 2.75

DC-CCSD X 0+ 1.809 825 1.903 730
DC-CCSD(T) X 0+ 1.829 763 1.930 676

a Parentheses for states with an avoided crossing at 2.07 Å.
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Having shown that electron correlation can be properly
captured by the NEVPT2 and MRCI approaches, we investigate
the effect of including SOC by comparing the SOCI/MRCI + DC and
SOCI/QD-NEVPT2 to DC-IHFSCCSD. The corresponding spectra,
calculated at the equilibrium spin-free MRCI + DC geometries, are
shown in Table 4. For NEVPT2 we also present vertical energies
computed with a contracted SOCI approach with different diagonal
elements of the spin–orbit coupling matrices.

In general, when spin–orbit coupling is treated a posteriori,
it is recommended to use uncontracted SOCI methods to
account for the spatial and energetic splitting of the open-
shell spinors.21,28,76,77 Our results show that these spin–orbit
polarization effects are not important for IO+, given that con-
tracted and uncontracted SOCI/QD-NEVPT2 results are nearly
identical. However, they are crucial in the case of AtO+; we get

smaller deviations with respect to the IHFSCCSD numbers with
the uncontracted SOCI/QD-NEVPT2, than with the contracted
SOCI/QD-NEVPT2. The largest deviation of 0.30 eV appears for
the b 0! state, a state which, according to the analysis of the
SOCI/QD-NEVPT2 wave-function exhibits some contribution
from the first 3P state that is absent from the IHFSCCSD
calculation.

The conclusions drawn for these particular geometries are
by and large valid along a wide range of internuclear distances,
as one can see from the comparison of the SOCI/MRCI + DC and
DC-IHFSCCSD potential energy curves in Fig. 2 (the SOCI/MRCI +
DCs spectroscopic constants can be found in Table S4 in the
ESI†). We see that for lower-lying states there is quantitative
agreement between the two approaches, whereas for higher-
lying states there are more significant differences not only in

Table 4 Electronic excitation energies (in eV) for different correlation and SOC treatments for IO+ and AtO+ calculated at R(IO+) = 1.806 Å and R(AtO+) =
1.903 Å respectively. Here (u)c-SOCI denote (un)contracted SOCI, and the TDDDFT calculations employ the Tamm–Dancoff approximation (TDA)

O IHFSCCSD
MRCI + DC

QD-NEVPT2 TDDFT/TDA

c-SOCI c-SOCI uc-SOCI SAOP M06-L M06 M06-2X

IO+ X 0+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a 1 0.13 0.10 0.09 0.09 !0.19 !0.21 !0.33 !0.45
a 2 0.72 0.69 0.68 0.69 0.59 0.57 0.51 0.48
a 0+ 1.39 1.26 1.34 1.35 [3.77]a [3.95]a [3.67]a [3.80]a

b 0! 2.42 2.44 2.54 2.52 2.70 2.89 1.94 1.26
a 3 2.48 2.51 2.62 2.57 2.71 2.90 1.93 1.23

AtO+ X 0+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a 1 0.64 0.53 0.54 0.49 0.47 0.41 0.29 0.25
a 2 1.05 0.97 0.99 0.93 1.12 1.09 1.01 1.02
a 0+ 2.03 2.12 2.22 1.98 [3.78]a [3.90]a [3.54]a [3.70]a

a 3 2.07 2.37 2.47 2.00 2.41 2.54 1.66 0.88
b 0! 2.77 2.29 2.32 2.45 2.40 2.53 1.66 0.90

a States with singly excited character, whereas WFT methods indicate doubly excited character.

Fig. 2 Potential energy curves of the low-lying states of IO+ (top) and AtO+ (bottom) calculated using the IHFSCCSD (left) and SOCI/MRCI + DC
(right) methods.

PCCP Paper

Pu
bl

is
he

d 
on

 2
0 

Fe
br

ua
ry

 2
01

4.
 D

ow
nl

oa
de

d 
on

 0
7/

05
/2

01
4 

19
:5

9:
23

. 

View Article Online

175



This journal is© the Owner Societies 2014 Phys. Chem. Chem. Phys., 2014, 16, 9238--9248 | 9245

terms of energies but also for certain features such as avoided
crossings, which are located at different places.

One important feature of the curves is that the energy
differences between the O = 0+, 1, 2, which relate to the 3S!

ground-state and first 1D excited state, and the higher-lying
O = 0+ state, remain more or less constant over a wide range of
internuclear distances, and the first three only approach each
other towards the dissociation limit. The higher-lying O = 0!,
3 states, on the other hand, are very much destabilized com-
pared to the first three for shorted bond lengths, but approach
the others towards the dissociation limit.

It is also interesting to note that the O = 3, 0! excited states
are reversed in IO+ and AtO+, and that is captured by both
approaches.

3.2.2 Density functional approximations. The calculated
spectra with different DFAs are also shown in Table 4. There,
one may note that only TDDFT results employing the Tamm–
Dancoff approximation (TDDFT/TDA) are shown. The reason
for doing so is that, in the course of our TDDFT calculations
(whose results are shown in Table S5 in the ESI†), we have
detected the presence of triplet instabilities78–83 for all DFAs
considered and for both molecules.

It can be clearly seen from the results in Table S5 that such
instabilities manifest themselves here by strongly stabilizing
the first O = 1 excited state with respect to the O = 0 ground-
state, and that such stabilization becomes stronger as the
fraction of Hartree–Fock exchange employed is increased, as
one goes from M06-L (0%) to M06 (27%) and M06-2X (54%).
Additionally, for the latter a dramatic change occurs in which
almost all of the low-lying states considered become stabilized
with respect to the ground-state, a situation clearly at odds with
the reference WFT results. While TDDFT is clearly unreliable
for these particular systems, a number of recent studies suggest
the use of TDDFT/TDA as a pragmatic way to circumvent these
instabilities while improving excitation energies.84–87

The results in Table 4 indicate that this is indeed the case
here. We observe, for AtO+, that both the SAOP model potential
and the M06-L functional yield results which are usually within
0.1 eV of the WFT results for the O = 1, 2 excited states, while
showing slightly larger discrepancies for the O = 3, 0! states.
The O = 0+ excited state, on the other hand, is quite far from the
WFT results, but this is due to the fact that the two sets of
calculations do not represent the same state; in the WFT ones,
this corresponds to a doubly-excited state whereas TDDFT,
irrespective of the use of the Tamm–Dancoff approximation,
can only represent singly excited states in the ALDA approxi-
mation. The performance of SAOP and M06-L for IO+ is similar
to that of AtO+. There, however, the DFAs are not able to
properly capture the small splitting between the ground-state
and the O = 1 excited-state, effectively placing the latter below
the former.

As was the case for plain TDDFT calculations, the TDDFT/
TDA results for DFAs containing Hartree–Fock exchange show a
tendency to spuriously stabilize most the excited states; for
instance, the splitting between the ground-state and the O = 1
excited-state for AtO+ is nearly halved when passing from SAOP

or M06-L to M06-2X, as are the energies for the O = 3, 0! states.
Interestingly, the O = 2 state, which relates to the 1D state in LS
coupling, does not show a similar reduction, and remains
roughly 1 eV (0.5 eV) higher than the O = 0 ground-state of
AtO+ (IO+).

3.3 The AtO+–water complex

While the results for the isolated molecules indicate a clear
hierarchy of methods with respect to the reliability of the calcula-
tions, and put into question the ability of DFAs in general to
properly describe the electronic structure of AtO+, one can argue
that interest ultimately lies in describing the species in solution.

As a step towards that, we investigate here the electronic
structure of a complex between AtO+ and a single water
molecule. We note, however, that an extensive evaluation along
the lines of that of Ayed et al.4,5 is beyond the scope of our
work, due to constraints on computational resources currently
available to us.

The optimized structure for this complex (in C2v symmetry)
can be found in Table S6 in the ESI.† The distance between
astatine and the oxygen in the water molecule (2.655 Å) is
somewhat longer (by 0.08 Å) than that found by Ayed et al.4,5 for
their spin-free triplet electronic ground-state and much longer
(by 0.289 Å) than the structure for the singlet state. The At–O
distance (1.900 Å), on the other hand, is nearly the same as the
optimized geometry for the isolated molecule with the M06-2X
functional (1.885 Å, compared to 1.866 Å for a spin-free unrestricted
calculation with two unpaired electrons), indicating that the
perturbation to the bonding due to the presence of one single
water is not very significant. This distance is nevertheless
smaller (by 0.054 Å) than that found Ayed et al.4,5 for the triplet
electronic ground-state, but nearly identical to that found for
the singlet structure (1.901 Å). This difference is probably due
to use of different basis sets and PPs vs. frozen-core AE.

That the water does not strongly perturb the electronic
structure of AtO+ can also be seen from the electronic spectra
for the complex, calculated using different approaches and
whose results are found in Table 5, in comparison to the results
for the isolated molecule in Table 4 (at a slightly different
internuclear distance). We observe that the uncontracted-SOCI/
QD-NEVPT2 places the low-lying electronic states at roughly
the same transition energies, even if one can observe a small

Table 5 Electronic excitation energies (in eV) for the AtO+–water complex.
All TDDFT calculations employ the Tamm–Dancoff approximation

O(CNv) C2v NEVPT2 SAOP M06-L M06 M06-2X

X 0+ X A1 0.00 0.00 0.00 0.00 0.00
a 1 a B1 0.36 0.43 0.37 0.24 0.15

a B2 0.36 0.43 0.37 0.24 0.15
a 2 a A2 0.83 1.08 1.05 0.96 0.93

a A1 0.84 1.08 1.05 0.96 0.93
a 0+ b A1 1.97 [2.85]a [2.73]a [2.67]a [2.26]a

a 3 b B2 2.02 2.38 2.34 1.65 0.86
b B1 2.04 2.38 2.34 1.65 0.86

b 0! b A2 2.14 2.37 2.35 1.65 0.88

a States with singly excited character, whereas WFT methods indicate
doubly excited character.
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downwards shift in the AtO+–water complex, of about
0.13 eV for the lowest states correlated with the X 0+, a 1,
a 2 states.

The TDDFT/TDA calculations also present trends which are
much in line with those already discussed for the isolated
molecule: first, a good agreement between the SAOP model
potential and the M06-L functional, and those two with
wavefunction-based results, whereas for the higher states there
is a larger discrepancy between the isolated molecule and the
complex for M06-L than for SAOP.

For DFAs including Hartree–Fock exchange (M06, M06-2X),
on the other hand, we observe that apart from the state related
to the O = 2 state in the isolated species, there is a more
pronounced decrease of the excitation energies of the lowest-
lying excited states, as the amount of Hartree–Fock exchange is
increased, for the AtO+–water complex. The states corresponding
to the O = 3, 0!, however, appear to change very little between
the isolated AtO+ and AtO+–water complex.

That certain states are affected very differently for the
isolated and AtO+–water complexes depending on the amount
of Hartree–Fock exchange in the calculation, and do so in
disagreement with correlated wavefunction-based approaches,
does not bode well for the application of such functionals to
solvation studies on AtO+, and poses questions as to the
accuracy of the conclusions of Ayed et al.4,5

4 Conclusion
In this work we have studied the electronic structure of the XO
and XO+ (X = I, At) species, as well as the complex between AtO+

and a water molecule, with wavefunction-based correlated
methods as well as density functional theory-based approaches,
both with and without the inclusion of spin–orbit coupling
(SOC) interactions, with the aim of establishing which electronic
structure approach is the most suitable one for the study of AtO+

in the gas phase and in solution.
Since little experimental data is available for At-containing

species, we have first benchmarked the DC-IHFSCCSD against
experimental results and prior calculations for iodine-containing
species, and found that the method can reproduce with a reason-
able accuracy the experimental bond lengths (to C0.01 Å), excita-
tion energies (to C0.05 eV), electron affinities and ionization
potentials (to C0.1 eV) while overestimating harmonic frequencies
(by about C40 cm!1). With that, we believe it is reasonable to
employ the DC-IHFSCCSD results to assess the accuracy of other
methods for AtO+.

Furthermore, these reference calculations on the isolated
cationic species indicate that due to SOC the stabilization of
p1/2* spinors with respect to p3/2* is such that electrons will
preferentially occupy the latter and one is justified, for IO+,
AtO+ and the AtO+–water complex, to consider the ground-state
as a (relativistic) closed-shell reference. This allows the use of
standard single-reference approaches such as CCSD and
CCSD(T), or approaches based on a linear response formalism
for excited states. The strong SOC effects for AtO+ also means

that it makes little physical sense to discuss the electronic
structure of these systems in a spin-free formalism.

The approximate wavefunction approaches, which took SOC
into account perturbatively, yielded results which were generally
very close to the reference calculations (e.g. usually within 0.1 eV),
with NEVPT2 showing an overall identical performance than MRCI,
but at a significantly lower computational cost. This makes NEVPT2
the method of choice, among those considered, for the study of
larger systems. It is fundamental, on the other hand, to include
spin–orbit polarization effects in the SOCI step in order to better
match the DC-IHFSCCSD results for AtO+.

The performance of DFAs, which included SOC at the ZORA
level for AtO+ and IO+ is, on the other hand, rather disappointing
for approaches including Hartree–Fock exchange, as one finds
that the higher the fraction of Hartree–Fock exchange used the
more severely the low-lying excited states are underestimated,
both for the isolated species and in the case of a AtO+–water
complex.

In particular, our findings suggest that the M06-2X functional,
employed in prior studies on the solvation of AtO+, is the least
suitable of the DFAs investigated here since for it such spurious
stabilization of the excited states is largest. The SAOP model
potential and the M06-L functional, on the other hand, yielded
excitation energies in good agreement with the wavefunction-
based approaches, but like all other DFAs considered, suffer from
a triplet instability problem that places the O = 1 excited state
below the O = 0 ground-state in TDDFT calculations, effectively
calling for the use of the Tamm–Dancoff approximation in order
to obtain reliable results. We believe, therefore, that in situations
where the SOCI/NEVPT2 approach would be too costly, a protocol
based on TDA calculations with either of these functionals might
provide results that are likely to be (at least) qualitatively correct.
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4 T. Ayed, M. Seydou, F. Réal, G. Montavon and N. Galland,
J. Phys. Chem. B, 2013, 117, 5206.
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Abstract
The low-lying electronic states of ThF+, a possible candidate in the search for - and  -violation,
have been studied using high-level correlated relativistic ab initiomulti-reference coupled-cluster and
configuration interaction approaches. For the Δ3 state componentwithΩ=1 (electron electric dipole

moment ‘science state’) we obtain an effective electric field of =E 35.2eff
−GV cm 1, a - and  -odd

electron–nucleon interaction constant of =W 48.4P T, kHz, amagnetic hyperfine interaction constant
of =∥A 1833MHz for 229Th ( =I 5 2), and a very largemolecular dipolemoment of 4.03D. The
Ω=1 state is found to bemore than 300 cm−1 lower in energy than Ω = +0 ( Σ+1 ), challenging the
state assignment from an earlier theoretical study on this species (Barker et al 2012 J. Chem. Phys. 136
104305).

1. Introduction

The enormous surplus ofmatter over antimatter in ourUniverse is a fact that remains unexplained by the
standardmodel (SM) of elementary particles [1]. Amicroscopic violation of the combined symmetries charge
() conjugation and spatial parity () has been identified as one of several conditions [2] which can give rise to
an appreciable baryon number and explain this asymmetry. It is expected that flavor-diagonal  violation,
absent in the SM,must be sought for [3] and that electric dipolemoments (EDMs) [4] constitute a sensitive
probe of such new physics beyond the SM.Given the validity of the  theorem [5], themeasurement of an
EDMwould be the first direct signature of the violation of time-reversal ( ) invariance [6].

The electron’s EDMhas, despite a vigorous search for over half a century, still not been detected. Themost
constraining upper bounds on the electron EDMhave for some time been obtained from experimental and
theoretical investigations on atoms [7, 8], and such upper bounds are useful guiding constraints on beyond SM
theories [9].However, polar diatomicmolecules have become themajor players in this quest, since they offer an
orders ofmagnitude larger enhancement [7, 10] of the ensuing energy shift thanwhat could be achievedwith an
atom [11, 12]. Thismeans that, for a givenmeasurement on amolecular system, the possiblemagnitude of the
electron EDM is constrained to a smaller value, or conversely, that the effect of a smaller electron EDMcan be
detected through themeasurement. The corresponding enhancement factor is not accessible by experimental
means and has to be determined—preferrably—via amolecular relativisticmany-body calculation.

According to themost recent findings using the polarmolecule ThO [13–16] the upper bound on the
electron EDM is ∣ ∣ < × −d e9.6 10e

29 cm. This value ismore than 16 times smaller than themost constraining
upper bound from an atomic study [12]. Chargedmolecules offer an experimental advantage over neutral
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systems in that ion traps can be usedwhich allow for long interrogation times.High-resolution spectroscopy
employing rotating electric fields has been presented recently as a viable technique for symmetry violation
searches in chargedmolecular ions [17, 18]. The ionic systems used in these experiments areHfF+ and, as a
perspectivemolecular ion, ThF+.

What the afore-mentionedmolecules, and several others such asHfH+, PtH+ [19] andWC [20, 21], have in
common is an energetically low-lying Δ3 electronic state (inΛ–S coupling picture). In the fluorides and oxides
this state is deeply boundwhich is an experimental advantage. Themagneticmoment in theΩ=1 component of
this term is approximately zerowhich helps reduce the vulnerability of the experiment to decoherence and
systematic errors [17].

HfF+ andThF+ exhibit a considerably large EDMeffective electricfield in the relevant ‘science’ state [22–24]
and, at the same time, a smallΛ (orΩ) doublet splitting. This latter property is an asset for efficientmixing of
rotational parity eigenstates through the external electric laboratoryfield.WhileHfF+ has been characterized in
detail [22, 23, 25–28] considerably less is known for ThF+ [24, 29, 30]. The joint experimental and theoretical
work of Barker et al [29] left some uncertainty as towhether theΩ=1 state is the ground-state or thefirst excited
state, as there is an Ω = +0 state ( Σ +1

0 ) separated from it by only 315 cm−1. The experimental resolutionwas not
sufficient to unequivocally assign those states and, unlikeHfF+, theΩ=1 and +0 states of ThF+ possess similar
vibrational frequencies at around 658 cm−1. Accompanying theoretical calculations were also inconclusive, but
from the best estimate the Ω = +0 state was proposed as ground state with theΩ=1 state higher by 65 cm−1 in
[29] and 202 cm−1 in [31], respectively.

Turning to the EDMeffective electric field inΩ=1 of ThF+, thework ofMeyer et al [24] suggests an
extremely large value of = −E 90 GV cmeff

1. Recent andmore rigorous relativisticmany-body calculations on
the isoelectronic ThOmolecule have shown [14, 15] that themodel calculation ofMeyer et al yields a signifcantly
overestimated Eeff for the case of ThO (bymore than 35%). It can therefore be expected that for this kind of
molecules and electronic states themodel ofMeyer et al contains a systematic error that is also present in the
above prediction for Eeff in ThF

+.
We pursue twomajor goals in this work. Using spinor-basedmany-bodymethodswhich treat dynamic

electron correlations and electronic spin–orbit interactions on the same footing, a rigorous determination of the
electronic ground state of ThF+ and some of its low-lying electronically excited states is carried out. Second, with
the same uncompromising techniques we determinewith high accuracy properties of the Δ3

1 (Ω=1) state which
are of direct relevance for proposedmeasurements of the electron EDM. In particular, we present the first
rigorous calculation of the eEDM  , -odd interaction constant and of themolecular static electric dipole
moment. Furthermore, themagnetic hyperfine interaction constant is calculated forΩ=1 alongwith the scalar–
pseudoscalar  , -odd interaction constant, both of which play an important role in the interpretation of
corresponding and ongoing experimentalmeasurements [18, 32].We also calculated staticmolecular EDMs
and electric transitionmoments, the latter of which are of interest regarding state preparation in an EDM
experiment.Molecular dipolemoments are directly related to the EDMeffective electric field, since they are a
measure of themixing of parity eigenstates.

Themanuscript is structured as follows: section 2 summarizes underlying theory and gives a concise account
of the employed electronic-structuremethods. In section 3we present results and their discussion, preceded by a
brief summary of relevant technical details for the calculations that have been carried out. In the final section 4
we summarize themajor findings and draw conclusions for future work.

2. Theory andmethods

2.1. Theory
The potential energy due to the electron EDM interaction in themolecule is determined as an expectation value

over the effective one-bodyHamiltonian Ĥedm
eff

in accordwith stratagem II of Lindroth et al [33]

 ∑ γ γ=
ψ

ψ=
H

ıcd

e
pˆ 2

, (1)e

j

n

j j jedm
eff

1

0 5 2

where n is the number of electrons, γ are the standardDiracmatrices, de is the electron electric dipolemoment,
and p j themomentumoperator for electron j.

The parallelmagnetic hyperfine interaction constant ∥A is defined as the zprojection of the expectation
value of the corresponding perturbativeHamiltonian inDirac theory
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where I is the nuclear spin quantumnumber, αk is aHamiltonian-formDiracmatrix for particle k, and n is the
number of electrons. Details on the implementation of the two afore-mentioned operators can be found in
references [14, 23].

The  , -odd interaction constantWP T, arising from the electron–nucleon scalar–pseudoscalar (S–PS)
interaction is determined as the expectation value over the  , -oddHamiltonian

Ω
= ψW

k
H

1
, (3)P T

s
s,

where ks is the electron–nucleus S–PS coupling constant. The interactionHamiltonianHs is defined [34] as

∑ γ γ ρ=
=

H ı
G

Zk r
2

( ), (4)s s

j

n

j j N j
F

1

0 5

where ρ r( )N j is the nuclear charge density at position rjnormalized to unity,GF is the Fermi constant and ks is a
dimensionless S–PS interaction constant. The latter is defined as = +Zk Zk Nk( )s s p s n, , , where ks p, and ks n, are
electron–proton and electron–neutron coupling constants, respectively. Equations (2) and (3) are evaluated as
expectation values over theCIwavefunction for the ψΩ=1 state.

2.2.Methods
All approaches employed in the present work are spinor-basedmolecularmany-bodymethods in the
framework of the four-component no-virtual-pair approximation (see [35] and references therein). For the
treatment of dynamic interelectronic correlations linear and nonlinear (exponential) expansions of the
molecular wavefunctions have been employed. As to the latter, we applied the coupled cluster approach [36] in a
modern implementation, the intermediateHamiltonian Fock-space coupled cluster including single and double
excitations (IHFSCC) [37–41]. The linear expansions have been carried out with the general-active-space
configuration interaction (GASCI)method [42, 43], implemented as theKR-CImodule [44] in theDIRAC12
[45] relativistic electronic-structure programpackage.

3. Application to ThF+

3.1. Technical details
Calculations of spectroscopic properties were performedwith theDIRAC12 program [45], except for vertical
excitation energies of theΩ=1 state using refined active spinor spaces, whichwere carried outwith amodified
local version of theDIRAC11 programpackage [46]. This latter program versionwas also used for determining
all  , -odd andmagnetic hyperfine expectation values.

We employed uncontracted atomicGaussian basis sets for the description of both atoms’ electronic shells.
For thorium,Dyall’s [47, 48] double-ζ (DZ, dyall.cv2z, [26s23p17d13f1g]) triple-ζ (TZ, dyall.cv3z,
[33s29p20d15f5g1h]for IHFSCC andCImodels  and  andTZ’, [33s29p20d14f4g1h]for all other CI

models), and quadruple-ζ (QZ, dyall.cv4z, [37s34p26d23f9g5h1i]for IHFSCC andCImodels  and 
andQZ’, [37s34p24d19f7g4h]for all other CImodels) basis sets were used. For the latter basis set, QZ’, all
5d, 6d, 7s correlating functions, except for the i function, have been added. For the fluorine atom, aug-cc-pVnZ
(n=T,Q) and cc-pVnZ (n=D,T,Q) [49] basis sets have been used.

For all wavefunctionmodels of type  ,  and  (see next paragraph formodel definitions) we used
the exact two-componentHamiltonian scheme of Iliaš and Saue [50]where two-electron spin-same-orbit
(SSO) and spin-other-orbit (SOO) correctionswere either obtained bymeans of atomicmean-field integrals
[51, 52] (amf) or in amolecularmean-field approach [53] (mmf), based on theX2C transformation of the
converged four-component Fock operator. For themodels  and  molecular spinors were optimized
through all-electron four-componentDirac–CoulombHartree–Fock calculations.We based the open-shell
calculations on an average-of-configuration Fock operator for two electrons in the three Kramers pairs of Th(7s,
6dδ), the other 96 electrons are restricted to closed shells.

The IHFSCC calculations onThF+were performed via the (0h, 2p) sector of Fock-space, by taking as closed-
shell reference the ThF3+ cation and following the route:

→ →+ + +ThF (0h, 0p) ThF (0h, 1p) ThF (0h, 2p).3 2

Table 1 summarizes the three differentmodel ( = +P P Pm i) and correlating (Q) spaces whichwe explored in
the IHFSCC singles and doubles calculations. Themainmodel (Pm) space always comprised the virtual ThF3+

3
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spinors with Th 5f, 6d, 7s character while the Th 7p spinors were included in the intermediate spacePi. Spinors
with Th 7d, 8s, 8p and 6f character were added to the Pi and all remaining virtuals were kept in theQ space. A
total number of 462 (818) virtual spinors were considered in the correlation treatment using the TZ (QZ) basis
set combinations which corresponds in each case to an energy cutoff in the virtual space of ≈95 EH.We have
explored three different occupiedQ spaces, all of which comprised the spinorswith F 2s, 2p character. Thefirst
Q space contains in addition the spinorswith Th 6s, 6p character, and corresponds to correlating 16 electrons
(denoted in the following as CC); the second (CC) and third one (CC) includes the spinors with Th 6s,
6p, 5d andTh 6s, 6p, 5d, 4f, 5s, 5p character, respectively, correlating in total 26 (48) electrons.

Thefirstmotivation for choosing these active spaces is the attempt to obtain the highest possible accuracy
while avoiding intruder states in the calculations. Accuracy in IHFSCC calculations is linked to both the
dimension of themodel spaceP (it has been argued [54] that largeP spacesmay alleviate the need of considering
triple or higher excitations in the dynamical correlation treatment due to the inclusion of corresponding excited
determinants in the effectiveHamiltonian) as well as of the intermediate spacePm (states with their largest
components inPm are describedmore accurately than those forwhich the largest components are inPi [41]).
Secondly, considering a purely ionicmodel (Th2+F−), onemay expect from the electronic structure of the Th2+

ion in particular states to arise from the 6d5fmanifold [55], whereas in the covalent (Th1+F) case electronic
states arising from the 6d 7s2 manifold of atomic Th+will play an important role.

TheMRCI expansions for the spectroscopic studies, summarized in the lower part of table 1, are based on an
average-of-configuration Fock operator for two electrons in 12 spinors (Th 7s6d) restricting all other electrons
to closed shells.We considered two active space choices, CI and CI, respectively, which differ by the
maximumallowed excitation level of singles (S) and singles–doubles (SD) from the Th 5d6s6p+ F 2s2p space
into themodel space Pm comprising the Th 5f, 6d, 7s spinors. Due to limited resources, the virtual space was
restricted to spinors below an energy of 20EH.

We definedmodels of varying quality to performGASCI calculations of the effective electric field Eeff , the
parallelmagnetic hyperfine interaction constant ∥A , the scalar–pseudoscalar electron–nucleon interaction
constantWP T, in theΩ=1 state and the vertical excitation energyTv of theΩ=0 state.

We used two principal CImodels, denoted as CI and CI, the former of which has been further refined
to accomodate for varying size of the valence spinor space and for the inclusion of determinants withmore than
two particles in the virtual spinor space. This elaborate choice ofmodels ismotivated by earlier findings on the
ThO system [14]. Themodels are defined in full detail in table 2, using the nomenclature from table 1, for
coherence.

For the calculation of the nuclearmagnetic hyperfine coupling constant we use the thorium isotope Th229

for which the nuclearmagneticmoment has been determined to be μ μ= 0.45 N [56]. Its nuclear spin quantum
number is =I 5 2. In all calculations the speed of light was set to 137.0359998 a.u.

3.2. Results and discussion
3.2.1. Spectroscopic properties
In order to settle the question aboutwhich state is the ground state we have carefully investigated convergence of
the results with respect to inclusion of electron correlation effects andwith respect to basis set extent. Theoretical
excitation energies obtained from IHFSCC and a subset of GASCI calculations are compiled in table 3 alongwith
theoretical and experimental results fromBarker et al [29]. All data was calculated atR=1.981 Å which
corresponds to the calculatedCCSDT(Q) equilibrium geometry [29] of the Σ +1

0 state. Startingwith theGASCI
results a clear trend emerges which—nearly independent of the choice of active space composition and/or
choice ofHamiltonian—places theΩ=1 state below the Ω = +0 state by about 600–850 cm−1. Thisfinding
seems to be in contradiction to the experimental data by Barker et al [29]whereas for the remainingΩ=2, 3
components, which primarily derive from the Δ3 state by first-order spin–orbit coupling (SOC), a good

Table 1.Active (Pm,Pi) and correlation spaces (Q) in terms of thorium spinors (the F 2s, 2p
spinors are always included in the occupiedQ space). In case ofMRCI themaximumexcitation
level for a given space is denoted as singles (S) and singles–doubles (SD), respectively.

Th spinor distribution on spaces

Model 4f5s5p 5d 6s6p 5f6d7s 7p7d8s8p6f

IHFSCC  frozen frozen Q Pm Pi
 frozen Q Q Pm Pi

 Q Q Q Pm Pi
MRCI  frozen −Q S −Q S Pm −Q SD

 frozen −Q SD −Q SD Pm −Q SD

4
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agreement is obtained.We also note that accounting in theGASCI expansion for correlation () rather than
mere polarization effects () from the 5d shell of Th decreases the gap between Ω = +0 andΩ=1 states by
approximately 30%.

Turning to the IHFSCC results, the smallest active space calculation () yields the same picture aswas
obtained from theMRCI data: theΩ=1 state is predicted to be the ground state, although the energy gap to the
Ω = +0 state now reduces to only 285 cm−1. In accordwith the observed qualitative trend in theGASCI results,
the inclusion of the Th 5d spinors in the correlation space (model ) leads to a strong stabilization of the
Ω = +0 state by ≈260 cm−1 with respect to theΩ=1 state. Interestingly, differential correlation effects of the Th
5d shell hardly affect the relative energy separation between the remaining spin–orbit split statesΩ= 2, 3 of the
Δ3 termwhile the vertical excitation energy from the ground state to the Ω = −0 component of the Π3 state is
lowered by ≈10%. Next, changing the treatment of the two-electron SSO and SOOcorrections to amolecular
mean-field approach enlarges the energetic gap between theΩ= 1 and the Ω = +0 states to 42 cm−1, a small but
perhaps non-negligible effect given the close proximity of the two states. Therefore, all further IHFSCCdata
have been obtained from2c-calculations based on themmf approach.

Using an extendedQ correlation space (model CC,†) underlines the above-encountered stabilization of
the Ω = +0 state compared to theΩ=1 ground state with respect to the inclusion of core-valence correlations.
The additional 4f5s5p correlation brings both states closer by about 30 cm−1 which amounts to roughly 10%of

Table 2.CIwavefunctionmodels using refined active spinor spaces; the size of thePm active space is given, in the name of the
models, by an upper indexX, which is the number of Kramers pairs in the active space. Themodel ,3 thus comprises the
minimal active space to describe theΩ=0 et Ω=1 states corresponding to Σ1

0 and Δ3
1 in theΛ–S coupling picture.Models

,3 and + T ,3 differ by the highest excitation rank allowed from the hole spaces to the particle space. In the latter, triple
excitations are included.

Model Th 6s,6p Th 7s,6dδ Th 6dπ Th 6dσ Th 7pπ Th 7pσ,8s Below 10 a.u.

F 2s,2p

,3 −Q SD Pm −Q SD −Q SD −Q SD −Q SD −Q SD
+ T ,3 −Q SD Pm −Q SDT −Q SDT −Q SDT −Q SDT −Q SDT

,5 −Q SD Pm Pm −Q SD −Q SD −Q SD −Q SD

,6 −Q SD Pm Pm Pm −Q SD −Q SD −Q SD

,8 −Q SD Pm Pm Pm Pm −Q SD −Q SD

,10 −Q SD Pm Pm Pm Pm Pm −Q SD

 frozen Pm Pm Pm Pm Pm −Q SD

Table 3.Electronic spectra obtainedwith IHFSCC andMRCI for differentmodel spaces atR=1.981 Å.Unless otherwise noted,
results are for TZ basis sets and include the spin-same orbit (SSO) and spin-other orbit interaction (SOO) in an atomicmean-
field fashion. Subscripts on the electronic state labels indicate the value ofΩ. All energies are given in cm−1. Our best estimate is
displayed in boldface.

Electronic state energy

Method Modela,f Hamiltonian Σ ++1
0 Δ3

1 Δ3
2 Δ3

3 Π −3
0

IHFSCC  2c 285.29 0.00 1063.29 3096.14 5228.76

 2c 27.89 0.00 1070.40 3166.36 4690.68

,d 2c 42.16 0.00 1062.01 3146.00 4499.13

,d 2c 15.25 0.00 1062.22 3149.47 4510.50

,e 2c 190.85 0.00 1048.27 3156.71 4123.14

,a 2c 0.00 108.26 1157.05 3235.93 4415.96

,f 2c 318.99 0.00 1038.94 3161.99 3841.17

MRCI  2c 854.32 0.00 1154.40 3188.81 3387.74

 2c 630.04 0.00 1166.86 2986.27 -

CCSD(T)+SOb 500.7 0.0 889.5 2156.8

CCSDT+SOb 143.3 0.0 889.7 2157.1

CCSDT(Q)+SOb 0.0 65.5 955.3 2222.9

MRCI+Q/SOc 0.0 202 1047 2163

Experimentb 0.00 315.0(5) 1052.5(5) 3150(15) 3395(15)

a 2c-mmf approach andmodifiedQZbasis set for Th ((37s34p26d23f5g1h)).
b Reference [29].
c Reference [31].
d 2c-mmf approach.
e 2c-mmf approach (QZbasis set, (37s34p26d23f9g5h1i)).
f 2c-mmf approach and extrapolation to the basis set limit.

5
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the effect of solely correlating the 5d shell. All remainingΩ states under consideration essentially retain their
relative energetic separation. Going from aTZ to aQZbasis set description largely counteracts the correlation
trends found above, as the Ω = +0 state is now ≈190 cm−1 above theΩ=1 state. To emphasize that this change
is primarily a result of the quality of the correlating basis can be seen from table 3 by comparing the originalQZ
results (CC,‡) to those for themodifiedQZbasis (CC,§). In the latter case we employ the sameQZ spdf
function set whereas the higher angularmomentum correlation functions resemble the extent of the TZ
composition (5g1h). Using this combination places the Ω = +0 state below theΩ=1 state by ≈100 cm−1. It
becomes apparent that basis set and electron correlation effects strongly influence the relative energetic
separation between the Σ1 and the Δ3 terms, but hardly affect the splitting of theΩ components of the Δ3 term.
This is due to differential correlation effects arising from the presence of a Fermi hole in a triplet term and the
absence of a Fermi hole in a singlet term,making the lattermore sensitive to the description of interelectronic
correlations than the former. These, in turn, depend on the quality of the one-particle basis set.

Due to the apparent sensitivity of the system’s electronic excitation energies to the quality of the basis set, we
performed an extrapolation to the complete basis set limit (model  *, in table 3) based on the ,† and
,‡ data, respectively, according to the expression [57]

= −
−Ω

Ω Ω∞E
E E

[(0h, 2p)]
3 [(0h, 2p)] 4 [(0h, 2p)]

3 4
, (5)

3 TZ 3 QZ

3 3

where ΩE[(0h, 2p)]X (X=TZ,QZ) denotes the absolute energy in the sector (0h, 2p)of each of the states under
consideration. The extrapolated relative term energies are roughlywithin 10 cm−1 of the experimental ones for
the Σ +1

0 and the components of the Δ3 state, if one assumes an inversion of the experimental assignment for the
two lowest electronic states. For the Π −3

0 state the discrepancywith experiment is considerably larger (about
440 cm−1).

The results of Barker et al [29]—based on spin-free open-shell coupled-cluster (CC) up to perturbative
quadruples (CCSDT(Q)) combined a posteriori with SOCparameters obtained from a spin–orbit
multireference configuration interaction (MRCI) calculation—show that cluster excitation ranks higher than
Doubles play an important role in determining the relative energies of Σ +1

0 and Δ3 1, which is not surprising as
this is a showcase for differential correlation effects (for the above-mentioned reasons). The IHFSCCmodels do
not contain Triples andQuadruples excitations in the projectionmanifold, and so a downward correction on
the Σ +1

0 energy frommodel  *CC, is to be expected. On the other hand, allmodels of Barker et al, including

theMRCI+Q/SO result from [31], yield a Δ13 – Δ3
2 separation of roughly 900 cm

−1, whereas the experimental

splitting is 740 cm−1(or 1050 cm−1 assuming an inverted assignment). Even poorer is the Δ3
2– Δ3

3 splitting for
themodel CCSDT(Q)+SOof 1270 cm−1 comparedwith the experimental splitting of about 2100 cm−1. Such a
large error suggests that the perturbative treatment of spin–orbit interaction in a framework ofΛ–S-coupled
states is questionable for the respective statemanifold of ThF+. For instance, a larger splitting of the Δ3

components would shift the Δ3
1 state to an energy lower than that of Σ +1

0 in the perturbative CC calculations of
Barker et al.

In contrast to this, the Δ3
2– Δ3

3 splitting from the rigorous non-perturbative CCmodel  *, of
2120 cm−1is in excellent agreement with the experimental value of 2100 cm−1. The rigorous non-perturbative
CImodels yield similar results. Therefore, the remaining uncertainty in the calculations of Barker et al seem to be
greater than those in the present calculations. Although their electron correlation treatment is of higher order
than ours, it is obvious that our non-perturbative treatment of SOC is essential in obtaining the correct ground
state.

In order to shed further light on the relative energies of the Σ +1
0 and Δ3

1 states and to verify whether these
statesmay cross in the vicinity of their respectiveminimawe calculated spectroscopic constants for both states
from a quartic polynomialfit (programtwofit provided byDIRAC) for a series offive equally-spaced
(±0.025 Å and ±0.050 Å) data points around 1.981 Åusing the computationalmodel  *, . The resulting
minimum internuclear distances (Re), harmonic frequencies (ωe) and anharmonicity constants (ω xe e) are
compiled in table 4 togetherwith the data of Barker et al [29].

Considering the equilibrium internuclear distanceRe our IHFSCC aswell as the other theoretical results are
close enough to be consistent with the average value of =R 1.98(2)0 Å determined from themeasurements of
the rotational constantsB0 [29].We further note that our calculated harmonic vibrational frequencies are
similar to theCCSD(T)+SO results, in particular for the Ω = +0 state, but overestimate both the experimental
values and the theoretical benchmarkCCSDT(Q)+SOof Barker et al by about 10–14 cm−1. Although not very
large, the discrepancy is not unexpected, since this property is in general sensitive to the extent towhich dynamic
electron correlations are accounted for.

Assuming a correct experimental assignment, wefind rather large discrepancies for the anharmonicity
constants, deviating by about 0.3 cm−1 for the Σ +1

0 and−1 cm−1 for the Δ3
1 state. Reversing the experimental

assignmentwould improve the picture and reduce the discrepancies to−0.2 cm−1 and−0.6 cm−1 for the two

6
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states, respectively. However, this average discrepancy is still about as large as the difference between the
experimental anharmonicity constants for the two states in question.We, therefore, regard thisfinding as an
indication but not as conclusive.

Based on the calculated spectroscopic constants, the potentialminima of the discussedΩ states spread over a
range of only 0.01 Å and are also very close to the reference value used for the calculations presented in table 3.
This in turnmeans that the corresponding vertical excitation energies have to be close to the adiabatic ones.
Based on the FSCC energies extrapolated to the basis-set limit, we estimate an adiabatic separation of 313.6 cm−1

between theΩ=1 and Ω = +0 states, or 317 cm−1 for the 0–0 transition between the vibrational ground states.

3.2.2.  , -odd andmagnetic hyperfine interaction constants
Wenow turn to the discussion of our results of direct relevance to the search for  , -odd effects in ThF+.We
have used a series of one-particle basis sets andCImodels, all of which are defined in subsection 3.1 and table 2.

In order tominimize error bars we test the influence of several criteria, the first of which is the quality of the
basis set. The results in table 5 demonstrate that the effective electric field and the parallelmagnetic hyperfine
interaction constant (for 229Th ( =I 5 2)) are rather insensitive to the size of the basis set employed. Increasing
the basis set cardinal number changes the value of the hyperfine interaction constant ∥A by less than 0.6% in
magnitude. Likewise, the correction yielded by the TZ’ basis set for the effective electric field Eeff is smaller than
2%and the use of theQZ’ basis set leads to a further change of less than 0.1%. The latter very small correction is
also found for the electron–nucleon interaction constant. The vertical excitation energy forΩ= 0 (Tv)
undergoes a slightly larger change. Replacing theDZby the TZ’ basis set doubles the value ofTv, an increase of
409 cm−1 on the absolute. Using the set ofQZ’ quality yields a correction of 11% inmagnitude, less than
90 cm−1. The sensitivity of this excitation energy to basis set extent was already observed in the results in table 3.
However, based on the results in table 5we conclude that the values of Eeff , ∥A andWP T, forΩ=1 are sufficiently
convergedwith the TZ’ basis set, allowing us to use this basis set for further analysis.

The results in table 6 show that wavefunctions accounting only for correlation effects among the two
outermost valence electrons () are too approximate for determining Eeff , ∥A andWP T, forΩ=1, although
they do yield a correct qualitative description of the low-lying electronic valence states of themolecule and, in
some cases, benefit from favorable error cancellations. It has been shown in [14] on the isoelectronic ThO
molecule that these properties are essentially unaffected by accounting for electron correlations arising fromTh
core shells, and the reason for this has been explained via orbital (more precisely, spinor) perturbation theory.

Table 4. Spectroscopic constants for the lowest two electronic states of ThF+

in comparisonwith other theoretical and experimental work by Barker
et al [29].

State ωe/cm
−1 ω xe e/cm

−1 Re (Å)

Δ3
1 CCSDT(Q)+ SOa 651.1 1.993

CCSD(T)+ SOa 654.1 1.992

IHFSCC  *, 667.3 1.268 1.984

Experimenta 658.3(10) 2.3(5)

Σ ++1
0

CCSDT(Q)+ SOa 659.8 1.981

CCSD(T)+ SOa 672.3 1.975

CCSD(T)b 675.7 1.973

IHFSCC  *, 670.8 2.088 1.974

Experimenta 656.8(10) 1.85(25)

a Reference [29].
b Reference [59]; calculations on the Σ ++1

0
state are assumed.

Table 5.Vertical excitation energy for Ω = +0 , electron EDMeffective electric
field,magnetic hyperfine interaction constant, and scalar–pseudoscalar elec-
tron–nucleon interaction constant forΩ=1 at an internuclear distance of
R=3.779 a0 using basis sets with increasing cardinal number and thewave-
functionmodel ,5.

Basis set Tv(cm
−1) −E (GV cm )eff

1 ∥A (MHz)

WP T,

(kHz)

DZ 378 37.8 1824 51.90

TZ’ 787 36.9 1836 50.73

QZ’ 877 36.9 1830 50.77
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Wehave therefore carried out a study of the influence of the active spinor space,models of type  X, , and
restricting the electron correlation treatment to the outermost electronic shells (Th 6s, 6p, 7s, 6d, F 2s, 2p).

Our findings are very similar to those obtained for ThO in [14]. Increasing the size of the active space leads to
significant corrections to the vertical excitation energy. The greatest change occurs when adding the
energetically following π-type spinors to theminimal active space (step fromX= 3 toX=5). A similar drop of
the values of the effective electric field and the hyperfine interaction constant is here observed. Including the
energetically following spinors entails further decrease of all studied properties, but significantly less
pronounced than the previous ones.

In view of the significant changes of the results when increasing the active spinor space, one could ponder the
necessity to include excitation ranks higher thanDoubles into the set of virtual spinors.We investigated this
using theDZbasis (due to computational cost), and the results can be found in table 7. The hyperfine interaction
constant ∥A is insensitive to these higher excitations, allowing triple excitations to the virtual space changes the
value by only 0.2%.However, the effective electric field aswell as the S–PS interaction constant exhibit a strong
dependence on higher excitations. The inclusion of triple excitations yields a drop of 25% inmagnitude,
respectively. Interestingly, this dramatic decrease is also observedwhen excluding triple excitations and
augmenting the active spinor space by seven additional σ- and π-typeKramers pairs. Such an augmentation
introduces a subset of triple and a subset of quadruple excitations but avoids termswith three ormore particles
in the external spinor space, therefore leading to amuch shorter CI expansion. The additional excitation classes
can bewritten symbolically as (core)h, (active)p, (external)q, where ‘active’ denotes the additional active-space
spinors, h denotes the number of holes and p and q the number of particles in the respective spinor space. In case
of the triples, the additional sets of configurations then read as (h=1, p=3, q=0), (h=1, p= 2, q= 1) and (h=2,
p=1, q=2). For the quadruples one obtains only (h=2, p=2, q=2). Evidently, the augmentation of the active
space largely covers the set of Triple excitations that are required for obtaining accurate values of Eeff , ∥A , and
WP T, . In case of the excitation energies we observe that the additional Quadruple excitations, which are not

present in themodel + T ,3, have a significant effect of stabilizing theΣ state relative to theΔ state, in accord
with the discussion in the previous section.

In order to gain insight into the character of the excitations leading to important corrections, we carried out a
detailed analysis of thewavefunction expansions referred to as ,3 and ,5. They turn out to be very
similar, the expansion coefficients remaining almost unchangedwith the exception of a determinant that is the
next-to-leading contributor with a coefficient ≈c 0.046 in the expansion of ,5 whereas its coefficient is
much smaller in the ,3 expansion ( <c 0.01). This respective determinant can bewritten as a δ πσ( )6d

1 1

occupationwhich corresponds to a single excitationwith respect to the leading determinant σ δ7s
1

6d
1 for thisΩ=1

state. Since δ πσ( )6d
1 1 is already contained in the ,3 expansion, it is necessarily the additional higher

excitations included in the ,5 expansionwhich lend amplitude to the δ πσ( )6d
1 1determinant.

We carried out aMulliken population analysis of the spinors occupied in this decisive determinant. πσ
denotes a spinor of π-character with significant admixture of σ-character (see the fourth spinor in table 8). In

Table 6.Vertical excitation energy for Ω = +0 , electron EDMeffective electric field,mag-
netic hyperfine interaction constant, and scalar–pseudoscalar electron–nucleon interaction
constant forΩ=1 at an internuclear distance ofR=3.779 a0 using the TZ’ basis set, varying
number of correlated electrons and varying active spinor spaces.

CImodel (TZ basis) Tv(cm
−1) −E (GV cm )eff

1 ∥A (MHz) WP T, (kHz)

 274 35.4 1749 49.44

,3 1029 47.5 1842 65.78

,5 787 36.9 1836 50.73

,6 709 36.2 1836 49.90

,8 598 35.6 1834 49.04

,10 538 35.2 1833 48.35

Table 7.Vertical excitation energy for Ω = +0 , electron EDMeffective electric field,magnetic hyperfine
interaction constant, and scalar–pseudoscalar electron–nucleon interaction constant forΩ=1 at an inter-
nuclear distance ofR=3.779 a0 using theDZbasis set and varyingmaximumexcitation rank.

CImodel (DZbasis) Tv (cm
−1) −E (GV cm )eff

1 ∥A (MHz) WP T, (kHz)

,3 654 47.0 1830 64.92

,10 88 37.1 1832 51.06
+ T ,3 247 35.4 1834 48.64
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this case, the spinor is of Th(p) character with a 45%contribution of Th(d).Hence, the drop of the values of
E ,eff ∥A andWP T, is related to a shift of electron density fromTh(7s) to Th(p) andTh(d), the two latter of which
have an approximate angular node at the nucleus. It is, therefore, physically plausible that thementioned higher
excitations which lead to a shift of electron (spin) density fromTh(s) to higher angularmomentum entail a
reduction of the EDMeffective electric field and of themagnetic hyperfine interaction constant.

3.2.3. EDMs and transition dipolemoments
The electron EDMeffective field stands in direct relationshipwith the staticmolecular electric dipolemoment.
We calculated this latter quantity as an expectation value over relativistic CIwavefunctions, and in addition,
electric dipole transitionmoments between different electronic states in an energywindow of up to roughly
8000 cm−1. The results are compiled in tables 9 and 10. Concerning the notation for electronic states we have
here added information on dominant andminor contributors inΛ–S coupling to a givenwell-definedΩ state.

The absolutemolecular dipolemoment is very large for ThF+, especially for the low-lying electronic states,
and reaches into the range of the largest dipolemoments for diatomicmolecules. Concerning transition dipole
momentswe observe a generally good agreementwith expected selection rules for transitions between different

ΛΩ
+S2 1 states. For example, the largestmatrix element, Φ Π Δ∣∣〈 ∣ ⃗ ∣ 〉∣∣ =D( )

ˆ
1.343

2
3

2
3

1 [D], is spin-allowed
(Δ =S 0) and also orbital angularmomentum allowed (here ΔΛ = ± 1). In addition, ΔΩ = ±1 is also satisfied.
On the other hand, very small transitionmoments are typically found for spin-forbidden transitions. Our study
of transitionmoments covers a fewmore states than those reported in a recent study on actinide bonding by
Heaven et al [31], and the results agree quite well with the values obtained in that reference.

The comparison of tables 9 and 10 shows that our larger set of results obtainedwith the smaller two-electron
CI expansion agrees quite well with the results from themore elaborate CImodel, .We therefore consider
the values in table 9 as a good approximation to the accurate values.

4. Conclusion

In the earlier work of Barker et al [29, 31] Ω = +0 had been proposed as the electronic ground state of ThF+,
supported by themeasured intensities of the lowest band compared to those of other bands in a pulsed field
ionization— zero kinetic energy experiment. Accompanyingmany-body electronic structure calculations were
judged to be inconclusive in this regard. Fromour detailed discussion of relativisticmany-body calculations,
including those from [29] for excitation energies, we conclude that the assignment of the ground electronic state
of ThF+ remains an open issue. Themodels of Barker et al suffer from the incomplete account of spin–orbit
interaction and its intertwiningwith dynamic electron correlations, which becomesmanifest in the poor
description of the energetic splitting of the Δ3 state into itsΩ components. Our present study takes these effects
into account rigorously which leads to a Δ3

1 ground state. Ourmodels lack excitation rankswith three ormore
external particles in thewave operator, the inclusion of whichmay have the effect of inverting the energetic order
of Δ3

1 and Σ +1
0 due to considerable differential correlation effects. On the other hand, themodel spaceswe have

used in the IHFSCC calculations do give rise to a subset of excitation ranks higher than doubles in the projection
manifold, which shouldmitigate the uncertainty in our best present calculation (boldface in table 3). Giving
preference to assigning the ground state as Σ +1

0 is, therefore, no longer tenable from a theoretical point of view,

Table 8.Characterization of active-space Kramers pairs in the TZ’ basis. Orbi-
tal angularmomentumprojection, spinor energy and principal atomic shell
character.

Spinor(λ) 〈 〉φl̂ z i εφ E[ ]Hi atomic character

σ −0.001 −0.43 85%Th(s)

δ 1.966 −0.42 98%Th(d)

δ −2.000 −0.41 99%Th(d)

πσ
−0.720 −0.14 50%Th(p), 45%Th(d)

π 1.025 −0.13 60%Th(d), 36%Th(p)

σπ
−0.290 −0.12 47%Th(d), 43%Th(p)

π −0.980 −0.10 55%Th(p), 36%Th(d)

π 1.011 −0.09 64%Th(p), 29%Th(d)

σ −0.005 −0.07 59%Th(p), 19%Th(f), 15%Th(d)

σ −0.014 −0.06 90%Th(s)

πσ
−0.894 −0.03 89%Th(p)

π 1.006 −0.03 94%Th(p)

σ −0.097 −0.02 65%Th(p), 29%Th(f)
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Table 9.Molecular static electric dipolemoments Λ Λ〈 ∣ ∣ 〉Ω ΩD̂ ,M
z

M , transition dipolemoments Λ Λ∣∣〈 ′ ∣ ⃗ ∣ 〉∣∣Ω ΩD
ˆM M , with D⃗

ˆ
the electric dipolemoment operator (both in [D] units), and vertical transition energies for low-lying electronic

states using the TZ’ basis set and theCImodel  . The origin is at the center ofmass, and the internuclear distance isR=3.779 a0. ΛΩ( )M denotes a term contributing at least 10% to the state. 1,3 denotes cases whereΛ–S coupling breaks
down significantly according to the analysis of our spinor-basedω–ω coupledwavefunctions.

ΛΩ
M state Tv (cm

−1) Σ +1
0 Δ3

1 Δ3
2 Δ3

3 Σ1
0 ( Π3

0) Π3
0 Π1,3

1 ( Σ3
1) Π3

0 ( Σ1
0) Δ1,3

2 ( Π3
2) Σ3

1 Π1,3
1 Φ3

2 ( Π3
2)

Σ +1
0 274 −4.004

Δ3
1 0 0.012 −4.075

Δ3
2 724 0.000 0.070 −4.022

Δ3
3 2198 0.000 0.000 0.052 −4.075

Σ1
0 ( Π3

0) 6344 0.439 0.455 0.000 0.000 −3.752

Π3
0 6528 0.000 0.571 0.000 0.000 0.000 −2.116

Π1,3
1 ( Σ3

1) 6639 0.868 0.142 0.218 0.000 0.197 0.000 −2.375

Π3
0 ( Σ1

0) 6747 0.003 0.391 0.000 0.000 0.929 0.000 0.094 −2.717

Δ1,3
2 ( Π3

2) 7008 0.000 0.473 0.334 0.298 0.000 0.000 0.529 0.000 −2.734

Σ3
1 7490 0.226 0.069 0.221 0.000 0.136 0.197 0.451 0.145 0.087 −4.463

Π1,3
1 7918 0.667 0.052 0.801 0.000 0.011 0.064 0.107 0.043 0.444 0.209 −2.708

Φ3
2 ( Π3

2) 8245 0.000 1.338 0.234 0.272 0.000 0.000 0.134 0.000 0.384 0.018 0.099 −2.271
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based on our presentfindings. In any case, it is beyond reasonable doubt that the two respective states are the
lowest-lying electronic states and that they are so close in energy that an eEDMexperiment could be carried out
irrespective of their ordering [32].

We conclude that our bestmodel for the determination of  , -odd andmagnetic hyperfine interaction

constants is ,10 in the TZ’ basis set (boldface in table 6), which displays property values nearly converged
with respect to the different degrees of freedom in themodels we have tested. Our best prediction for the
hyperfine constant in theΩ=1 ‘science state’ is 1833MHz,which awaits confirmation from an experimental
measurement. The obtained effective electric field of =E 35.2eff

−GV cm 1 in this same state ismore than 60%

smaller than the value of =E 90eff
−GV cm 1obtained earlier byMeyer et al [24]. The large deviation is very

likely to be due to the limited set of electronic configurations and furthermodel-inherent approximations used
in the approach ofMeyer et al. The smaller value of Eeff is a setback for potential electron EDMsearches with this

molecular ion, but given the body of other favorable properties (low-lying Δ3
1 state, largemolecular dipole

moment) of ThF+ still large enough to retain the system as a promising candidate in search of  , violation. In
table 11we provide a summary of Eeff values in the respective science states of some diatomicmolecules of
current interest in this search.Our Eeff presently determined for ThF+ is still larger than Eeff in the science state
of the YbFmolecule, inwhich a newupper bound to the electron EDMhad been determined in 2011 [58]. The
static electric transition dipolemoments we have determined for a set of states below 9000 cm−1 in ThF+may
also be helpful in devising a route for state preparation for an EDMmeasurement in this promising
molecular ion.

Table 10.Molecular static electric dipolemoments

Λ Λ∣ ∣Ω ΩD̂M
z

M , with D⃗
ˆ
the electric dipolemoment

operator, using the TZ basis set and the CImodel  .
The origin is at the center ofmass, and the internuclear
distance isR=3.779 a0 (F nucleus at ⃗zez with <z 0).

ΛM is an approximate notation and refers to the term
derived from the leading Slater determinants and the
information in table 8.

ΛΩ
M State Tv (cm

−1) Λ Λ∣ ∣Ω ΩD̂M
z

M (D)

Σ +1
0 630 3.941

Δ3
1 0 4.029

Δ3
2 1167 3.970

Δ3
3 2986 4.034

Table 11.Effective electricfield for the science states
of selected diatomic candidatemolecules in search of
parity- and time-reversal violation.

Molecule Electronic state −E (GV cm )eff
1

ThO Δ3
1 75.2a, 81.5b

YbF Σ +2
1 2 26c, 25d, 24e

PbO Σ +3
1 25f

ThF+ Δ3
1 35.2g, 90h

WC Δ3
1 −36i

a Reference [14].
b Reference [60].
c Reference [61].
d Reference [62].
e Reference [63].
f Reference [64].
g This work.
h Reference [24].
i Reference [20].
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Appendix D

Development of FDE and Applications to
Heavy Elements

This chapter presents the papers concerning the development of FDE, which are by nature applicable
to both light and heavy elements, and their application to systems containing heavy elements. Here,
the use of the “static” embedding potential is assessed for uranyl and neptunyl chloride is discussed in
D.1 and D.6, whereas the shortcomings of approximate kinetic energy density functionals for complexes
of CUO and noble gases is presented in D.4.

The work on the PyADF scripting framework, which was developed in order to facilitate the
use of one or more electronic structure codes in computational chemistry workflows, is presented in
D.2. While of a more technical nature, work of this kind is of immense value to the case of embedding
calculations such as those carried out in the aforementioned works, as it serves to automate the
execution and data exchange, e.g. the construction of embedding potentials with ADF and its use
with Dirac.

Also, though not specifically discussing heavy elements, I present in D.3 the general formalism
through which it is possible to define WFT-in-DFT for both variational and non-variational wavefunc-
tions for the ground state, and for excited states and general molecular properities via time-dependent
response theory. This formalism has been applied to define the CC-in-DFT approach presented in D.5.

This response-based formalism has also served as a basis for the work in D.7 which outlines
the definition of magnetic properties for FDE in a four-component framework at the DFT-in-DFT
level. The ease with which we can change electronic structure approach and Hamiltonia serves to
underscore the power of the framework defined in D.3, and the fact that expanding it while focusing
on relativistic approaches automatically opens us perspectives for exploring non-relativistic approaches
and vice-versa. The focus on magnetic properties in a four-component framework of this last paper
also represents a new research direction in for me, which as discussed above I plan to consolidate in
the coming years.
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We present a simple and efficient embedding scheme for the wave-function based calculation of

the energies of local excitations in large systems. By introducing an embedding potential obtained

from density-functional theory (DFT) it is possible to describe the effect of an environment on

local excitations of an embedded system in wave-function theory (WFT) calculations of the

excitation energies. We outline the implementation of such a WFT-in-DFT embedding procedure

employing the ADF, Dalton and DIRAC codes, where the embedded subsystem is treated with

coupled cluster methods. We then evaluate this procedure in the calculation of the solvatochromic

shift of acetone in water and of the f–f spectrum of NpO2
2+ embedded in a Cs2UO2Cl4 crystal

and find that our scheme does effectively incorporate the environment effect in both cases. A

particularly interesting finding is that with our embedding scheme we can model the equatorial

Cl� ligands in NpO2Cl4
2� quite accurately, compared to a fully wavefunction-based calculation,

and this opens up the possibility of modeling the interaction of different ligands to actinyl species

with relatively high accuracy but at a much reduced computational cost.

I. Introduction

Electronic excitations play an important role in several biolo-

gical processes, such as photosynthesis and vision, as well as in

technological applications like lighting materials. The infor-

mation that computational chemistry is able to provide on

such phenomena is helpful in the interpretation of complex

experimental data (for reviews see, e.g., ref. 1 and 2) and can

be used in the development of new materials (see, e.g., ref. 3).

To be of practical use, calculations should yield an accurate,

preferably quantitatively correct, picture, but also be compu-

tationally efficient so that real-life systems can be tackled.

Given its good balance between accuracy and computational

efficiency, time-dependent density-functional theory

(TDDFT)1,4,5 has become the standard ab initio approach

for treating excited states of large-scale systems. Even though

there are efforts towards having efficient wave-function based

methods to calculate excitation energies,6–8 these remain com-

putationally very expensive compared to TDDFT.

Full TDDFT calculations are, however, also limited to

systems with up to a few hundred atoms, bringing calculations

for still larger systems out of reach for routine application.

This leaves the domain of large (biological) systems to sub-

system methods that assume localization of the electronic

excitations. The most employed approaches are hybrid quan-

tum mechanics/molecular mechanics (QM/MM) methods,9–11

that treat a central part in which the excitations of interest take

place using a quantum mechanical method such as TDDFT,

while its environment is described using molecular mechanics

(for examples see, e.g., ref. 12–16). However, in order to obtain

accurate results, the force field used in the MM part has to be

parametrized carefully, which is particularly difficult for heavy

elements that display a variety of bonding interactions due to

the many chemically accessible valence orbitals.

This weakness of the MM description can be overcome by

considering a subsystem method with a QM description of the

environment, the so-called QM/QM embedding schemes.17–20

Among these schemes, the ONIOM methods by Morokuma

and co-workers17,18 are very popular. However, for the calcu-

lation of molecular properties these do not include the effect of

the environment on the electronic structure of the embedded

system, and are, therefore, only applicable as long as the

property of interest can be adequately described by the lower-

level method. Another example of such QM/QM schemes, that

is particularly suited for studying localized excitations in solids

is the ab initio model potential (AIMP) method.21–23 In this

method, the effect of atoms or ions (or in a recent extension

also larger fragments24) in the environment of a subsystem of

interest is included in the calculation of this active subsystem

by means of nonlocal model potential obtained from Har-

tree–Fock theory. These model potentials contain, in addition

to the electrostatic potential of the environment, projection

operators to ensure the orthogonality between the wave func-

tions of the active subsystem and the fragments in the environ-

ment.

A different QM/QM approach is taken in the frozen-density

embedding (FDE) scheme by Wesolowski and Warshel,25 in

which both the system of interest and its environment are

described using DFT (DFT-in-DFT). By basing the
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formulation on DFT, it is possible to define a local embedding

potential that only depends on the electron densities in the

active subsystem and in the environment and does not contain

any nonlocal projection operators. The FDE scheme has been

shown to be both accurate and efficient for the calculation of

solvent effects on electronic excitation energies26–28 as well as

for the description of induced circular dichroism in guest–host

complexes29 and the electronic spectra of transition metal- and

lanthanide-containing solids.30,31 Recently, it has been gener-

alized to include the description of couplings between excita-

tions in different subsystems,32 and it has been shown that this

can be used to calculate excitation energy transfer couplings in

natural light-harvesting systems.33

Notwithstanding the success of the applications mentioned,

the use of TDDFT in a pure DFT-in-DFT embedding scheme

will encounter the limitations of TDDFT itself. Most impor-

tant is the well-known problem in describing charge-transfer

(CT) excitations,34–38 that are of particular importance in

many biological systems and other systems exhibiting inter-

esting photophysical properties.39–43 The DFT-in-DFT frozen

density embedding scheme is able to remove spurious sol-

vent–solute CT excitations but cannot solve the problem in

cases where an intramolecular charge-transfer occurs. A sec-

ond problem of a general nature is that, within the adiabatic

approximation, TDDFT can only describe single excita-

tions.44,45 Another problematic area for the application of

TDDFT concerns excitations for heavy open-shell systems

where inclusion of spin–orbit (SO) coupling is necessary

already for a qualitative description of the system. Given the

increasing interest in the organometallic and inorganic chem-

istry of molecules containing lanthanides, actinides and heavy

transition elements,46,47 it is desirable to have alternative

methods available that can handle such difficult cases.

An attractive way forward would be to combine the flexi-

bility and accuracy of wave function theory (WFT) based

methods with the efficiency of DFT. With subsystem methods

one could then tackle the problems mentioned above, pro-

vided that the subsystem of interest can be chosen small

enough to employ an accurate (relativistic) WFT approach.

In this case, the FDE scheme offers a very distinct advantage

over other schemes, since it employs the electron density, an

observable quantity, and thereby avoids complicated problems

like the definition of projection operators in calculations where

the environment is to be treated by one-component DFT while

the active system is described by a 4-component relativistic

WFT method. Such a WFT-in-DFT embedding scheme based

on the DFT-in-DFT frozen-density embedding scheme has

first been proposed by Carter and coworkers,48–50 where DFT

and variational methods such as Hartree–Fock, CASSCF or

(multireference)-CI were combined. This approach was mainly

used to describe localized properties in solids or surfaces, e.g.

for the calculation of excitation energies of CO adsorbed on a

platinum surface.51,52

In this paper, we aim to introduce a simplified and compu-

tationally less involved version of this WFT-in-DFT embed-

ding scheme for the calculation of local excitations in large

systems. In particular, we apply coupled cluster methods for

the treatment of an embedded system and describe the envir-

onment by DFT. We test this approach for two different

systems. First, as a benchmark application, we revisit the

calculation of the solvatochromic shift of acetone in water

that was previously performed by Neugebauer et al.26 Second,

as an example for a system where the WFT-in-DFT treatment

of the excitations is essential, we investigate the f–f spectrum of

neptunyl (NpO2
2+) embedded in the Cs2UO2Cl4 crystal,

following our previous study of the isolated neptunyl ion with

relativistic coupled cluster methods.53

The outline of the paper is as follows. In section II we

present the essential theoretical aspects of WFT-in-DFT em-

bedding methods and outline the proposed scheme. In section

III, we then describe our implementation, as well as other

computational details. This is followed by the two sample

applications of the proposed scheme. In section IVA, the

results obtained for acetone solvated in water are presented,

and in section IVB, the spectrum of neptunyl embedded in a

Cs2UO2Cl4 crystal is discussed. Finally, concluding remarks

are given in section V.

II. Theory

In the formulation of the WFT-in-DFT frozen density embed-

ding scheme proposed by Carter and coworkers,48–51 the total

system is partitioned into an embedded subsystem I and its

environment, so that the total energy for the system can be

expressed as

E[CWFT
I , rDFT

II ] = EI[C
WFT
I ] + EII[r

DFT
II ]

+ Eint[r
WFT
I , rDFT

II ], (2.1)

where EI is the energy of the embedded subsystem I, described

using a wavefunction-based method and characterized by its

wave function CWFT
I , while EII is the energy of the environ-

ment (subsystem II), described using DFT and characterized

by its electron density rDFT
II . The interaction energy Eint is

defined within DFT as

Eint½rI; rII� ¼ ENN þ
Z

rIðrÞvnucII ðrÞdrþ
Z

rIIðrÞvnucI ðrÞ dr

þ 1

2

Z
rIðrÞrIIðr0Þ
jr� r0j drdr0

þ Enadd
xc ½rI; rII� þ Tnadd

s ½rI; rII�
ð2:2Þ

where the density of subsystem I (rI � rWFT
I ) is the density

obtained from the wave function treatment, while the envir-

onment density (rII � rDFT
II ) is to be obtained from a DFT

calculation. In this expression for the interaction energy, ENN

is the nuclear–nuclear repulsion energy, vnucI and vnucII are the

electrostatic potentials of the nuclei in subsystems I and II,

respectively, Enadd
xc [rI, rII] = Exc[rI + rII] � Exc[rI] � Exc[rII]

is the nonadditive part of the exchange–correlation energy,

and Tnadd
s [rI, rII] = Ts[rI + rII] � Ts[rI] � Ts[rII] is the

nonadditive kinetic energy, where Ts is the kinetic energy of

the Kohn–Sham noninteracting reference system.

To include the effect of the environment in the WFT

calculation of subsystem I, Carter and coworkers proposed48

to include an embedding potential given, in analogy to the

DFT-in-DFT frozen-density embedding scheme of

5354 | Phys. Chem. Chem. Phys., 2008, 10, 5353–5362 This journal is �c the Owner Societies 2008
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Wesolowski and Warshel,25 by the functional derivative of

EDFT
int with respect to rI,

vemb
eff ½rI; rII�ðrÞ ¼ vnucII ðrÞ þ

Z
rIIðrÞ
jr� r0j dr

0

þ dEnadd
xc ½rI; rII�

drI
þ dTnadd

s ½rI; rII�
drI

:

ð2:3Þ

This embedding potential includes the electrostatic potentials

of the nuclei and the electron density in the environment, as

well as contributions arising from the nonadditive part of the

exchange–correlation energy and from the nonadditive kinetic

energy. Since this embedding potential depends on the density

of subsystem I it has to be updated iteratively during the WFT

calculation.

While the theoretical justification of the use of such an

embedding potential derived fromDFT in wave function based

calculations was previously debated,54,55 Wesolowski recently

showed56 that for exact density functionals and a full CI

expansion of the wave function, the above approach will

indeed lead to the exact total electron density rI + rII. If a
truncated expansion of the wave function is employed, an

additional term that corrects for the deficiency of the WFT

description, could be included in the embedding potential to

keep the theory formally exact. Since such a term will be the

less important the closer the WFT description is to full CI and,

moreover, since it is neither possible nor desirable to correct the

error introduced by a poorWFT description by means of DFT,

we consider it well justified to neglect this term and simply

employ the uncorrected embedding potential given above.

In the practical application of the WFT-in-DFT embedding

scheme described above, several additional approximations

will be introduced. First, neither the DFT treatment nor the

WFT treatment can be exact. In the DFT case, this is due to the

well-known deficiencies in the currently available exchange–

correlation functionals, in the WFT case due to the infeasibility

to employ a full CI expansion in a large basis for anything but

the smallest model systems. Second, the nonadditive kinetic

energy component of the embedding potential is evaluated

using an approximate kinetic energy functional. Several appli-

cations of the DFT-in-DFT frozen-density embedding scheme

show that the available kinetic energy functionals provide a

reliable description, in the case of weakly bonded com-

plexes57–59 and solute–solvent interactions26–28,60,61 or in simple

solid-state systems.30,31,62–66 For strongly bound covalent sys-

tems one needs to resort to other solutions, e.g., employ a 3-

partitioning scheme introducing capping groups with a con-

strained electron density that has recently been developed by

two of us.67

For efficiency reasons it is furthermore common to employ

approximations in the construction of the electron density of

the environment rII. In the simplest case, the electron density

is obtained as a sum of fragment densities that is kept

completely frozen in the following calculations. This choice

is still in principle exact as long as the density of the environ-

ment is everywhere smaller than the exact total density of the

full system. In case of strong polarization, the simple sum-

of-fragments approximation for the environment density may

easily violate the latter condition. In such cases it is necessary

to consider the relaxation of the environment under the

influence of the embedded subsystem. As for DFT-in-DFT

embedding, this is possible by employing so-called freeze-and-

thaw cycles,68 i.e., by interchanging the roles of the two

subsystems and updating the density of the environment in a

DFT calculation that includes the effect of subsystem I via the

embedding potential vemb
eff [rII, rI]. This can be repeated itera-

tively until convergence is reached.

For the application of WFT-in-DFT embedding to atoms

and molecules absorbed on surfaces, Carter and coworkers

proposed different simplified schemes for performing the

freeze-and-thaw cycles and obtaining a self-consistent embed-

ding potential. In their initial work,49,51,52 the total density rtot
= rI + rII was obtained from a DFT calculation with

periodic boundary conditions. This total density was then

kept fixed, while rI and rII were updated subsequently, based

on the density rWFT
I of the WFT calculation of the absorbed

molecule. In later work,50 they modified this scheme such that

the density rII = rtot � rbareI is kept frozen, where rtot is again
obtained from a DFT calculation, while rbareI is taken from a

WFT calculation on the isolated subsystem I.

However, for the calculation of excitation energies using

WFT-in-DFT embedding, it may be that a simpler approach

can be employed. In many cases where TDDFT is known to

fail, such as for charge-transfer excitations or for open-shell

systems with close-lying excited states, it is still possible to

obtain an accurate description of the ground-state density

from a DFT treatment. When the ground state is well de-

scribed by DFT, it should be possible to first calculate an

approximation of both rI and rII using DFT-in-DFT embed-

ding (possibly employing freeze-and-thaw cycles) and to sub-

sequently use the embedding potential constructed using these

densities in the WFT calculation of the excitation energies of

the embedded system. This is quite different from the cases

studied by Carter and coworkers, who investigated excitation

energies of molecules absorbed on surfaces,51,52 where already

the description of the ground-state in DFT is problematic.49

This means that in eqn (2.3), instead of the density

rWFT
I obtained from the WFT calculation, the DFT density

for subsystem I, rDFT
I , obtained from a DFT-in-DFT embed-

ding calculation, is used. If such a simplified treatment is

justified, it offers several advantages over the self-consistent

WFT-in-DFT schemes described above. First, only one com-

putationally expensive WFT calculation is required, compared

to the multiple calculations required to converge a freeze-and-

thaw procedure. Second, it is not necessary to generate the

density rWFT
I , thereby avoiding a non-trivial and computa-

tionally expensive step in non-variational WFT approaches

that employ intermediate normalization. Finally, also the

embedding potential has to be calculated only once, instead

of updating it during the iterative solution of the Hartree–

Fock and CC equations. This latter simplification is similar to

the linearization of the embedding potential recently proposed

in DFT-in-DFT frozen-density embedding.69

The calculation of excitation energies in particular (or of

response properties in general) can be carried out with a

generalization of the theory outlined above. We again make

the assumption that the WFT method will be able to yield a

This journal is �c the Owner Societies 2008 Phys. Chem. Chem. Phys., 2008, 10, 5353–5362 | 5355
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close enough approximation to the exact density response of

the subsystems. While in the case of static embedding theory

this is in principle true for a full CI calculation in a saturated

basis, we now have the additional limitation that we can only

account for the response of the active system.

This limitation is usually also present in implementations of

DFT-in-DFT, although Neugebauer32 has recently presented

a sophistication of the theory by Casida and Wesolowski70

that makes it possible to treat also the case of coupled

excitations in extended systems. For our initial application

we consider the latter scheme and even make a further

approximation in neglecting any variations on the embedding

potential due to the response of the active subsystem to the

external perturbations, which for TDDFT excitation energies

are incorporated by including the derivative of the embedding

potential in the kernel.70 This means that in effect we always

consider a fixed embedding potential based on the ground-

state density.

This additional approximation is valid as long as the non-

additive kinetic and exchange–correlation potentials of the

initial and final states are not too different, which will be

the case if the excitation is truly localized in the interior of

the embedded subsystem, as is known to be the case in the

applications considered in this work.

III. Implementation and computational details

In our implementation, we use a combination of different

quantum chemical program packages. In the first step,

ADF
71,72 and the implementation of the DFT-in-DFT frozen-

density embedding scheme in this package27,73 are employed

for obtaining an approximation to the density of subsystem I,

rDFT
I , and to calculate the embedding potential vemb

eff [rDFT
I , rII].

The values of this embedding potential on the points of the

integration grid generated by ADF are stored in a file for later

use in the WFT calculation.

In the present work, we will always start by approximating

the density of the environment as a sum of the densities of

molecular or atomic fragments that were calculated for the

isolated fragments. As fragments we either used the distinct

water molecules in the solvent environment of acetone in

water, or the UO2Cl4
2�, Cs+, and Cl� units that constitute

the Cs2UO2Cl4 crystal environment. Details on the construc-

tion of the environment density will be given below. In the case

of acetone solvated in water, the simplest approximation of the

solvent environment as a sum of fragments was previously

shown to be a sufficiently accurate description.26 For the

crystal environment, a detailed study of the different possibi-

lities for constructing the environment density is outside the

scope of this work, and will be addressed in another publica-

tion that deals with excitations in the pure Cs2UO2Cl4 crys-

tal.74 We first consider the sum of fragments approach

described above and improve on this simple approximation,

by employing the freeze-and-thaw procedure only for the

nearest-neighbor Cl� ions.

In the calculation of the fragments used for the construction

of the frozen density, we used for the solvent water environ-

ment the local-density approximation (LDA)75 for the

exchange–correlation potential and a DZP basis set from the

ADF basis set library.71,76 For the fragments used to model the

Cs2UO2Cl4 crystal environment, we used the statistical aver-

aging of model orbital potentials (SAOP),77 in combination

with a TZ2P basis set. In this case, scalar relativistic effects

were included via the zeroth-order regular approximation

(ZORA).78 In all cases, we employed a spin-restricted closed-

shell description of the frozen environment density.

To model the density of the active system in the DFT-in-

DFT frozen-density embedding calculations for acetone and

neptunyl we employed the SAOP functional and the TZ2P

basis set. The nonadditive kinetic-energy component of the

embedding potential was modeled by the PW91k functional,79

while the exchange–correlation component was treated using

the Becke–Perdew–Wang (BPW91) exchange–correlation

functional.80,81 For the neptunyl calculations, spin-unrest-

ricted DFT calculations were performed, and scalar relativistic

effects were included via the zeroth-order regular approxima-

tion (ZORA).78

After generating the embedding potential, we used a locally

modified version of DALTON
82 for nonrelativistic WFT calcu-

lations and a development version of DIRAC
83 for relativistic

WFT calculations. In the nonrelativistic case, matrix elements

of vemb
eff (r) are constructed as

vij ¼ hfijvemb
eff jfji �

X
k

wkv
emb
eff ðrkÞjiðrkÞjjðrkÞ; ð3:4Þ

where ji(rk) is the value of orbital ji evaluated at grid point rk
and wk is the integration weight associated with this grid point.

It should be noted that we employ the accurate numerical

integration grid used by ADF, which is also able to integrate

the electrostatic terms appearing in the embedding potential

accurately.27,84 In a relativistic framework the embedding

potential, being a scalar potential, enters the one-electron

Hamiltonian as a diagonal operator expressed (in 2-compo-

nent form) as

vemb
eff ðrÞ ¼

vemb
eff ðrÞ 0

0 vemb
eff ðrÞ

� �
: ð3:5Þ

Therefore, the matrix elements of the embedding potential

with respect to spinors fi(r) and fj(r) are given by

vij ¼ hfijvemb
eff jfji

�
X
k

wkv
emb
eff ðrkÞ½jL

i ðrkÞjL
j ðrkÞ þ jS

i ðrkÞjS
j ðrkÞ� ð3:6Þ

where jL
i,j(k) and jS

i,j(k) are scalar functions for the large and

small components, respectively. Once the embedding potential

matrix is set up, it is added to the one-electron Fock matrix in

the WFT calculation, like any other one-electron operator.

For the calculation of the excitation energies of acetone

solvated in water, we employed the CC2 method85–87 as

implemented in DALTON.82 The aug-cc-pVDZ basis set was

used for acetone,88 as it has previously been shown89 that

CCSD excitation energies are essentially converged with this

basis sets, and the same behavior is expected for CC2. In the

CC2 calculations the 1s orbitals of all atoms are kept frozen.

The calculations of the excitation spectrum of neptunyl were

performed with DIRAC
83 using the exact two-component

(X2C) approach recently outlined by Iliaš and Saue,90 with

spin–orbit coupling being included in the latter via mean-field
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integrals, calculated with the AMFI code.91,92 A valence

double zeta basis by Dyall93 was used for Np whereas the

aug-cc-pVTZ basis88 was used for O (and for Cl where

applicable). In the correlated calculations the intermediate

Hamiltonian Fock-space coupled-cluster (IHFSCC)

method94–96 was used. In the IHFSCC calculations we start

from a closed shell (NpO2
3+ or NpO2Cl4

�) species and obtain

the excitation spectrum of the target system (NpO2
2+ or

NpO2Cl4
2�) from the (0h,1p) sector. We have used a slightly

smaller active space than employed previously for NpO2
2+,53

consisting of about the same number of virtual spinors (75 and

76, respectively) for both species in the correlated calculations.

Of these, 6 are kept in the Pm space and 19 in the PI space. The

number of occupied spinors included for NpO2
2+ and

NpO2Cl4
2� are 12 and 28, respectively. We note that due to

the presence of the frozen environment, the symmetry in the

wavefunction calculations is reduced to C1, and the IHFSCC

calculations are, therefore, significantly more expensive than

the original NpO2
2+ calculations that could exploit the DNh

symmetry.

In order to automate both the initial DFT-in-DFT calcula-

tions and the interoperation of the different quantum chemical

packages, we made use of the recently developed PYADF

scripting framework.97

IV. Results and discussion

A Solvatochromic shifts of acetone in water

The determination of solvatochromic shifts of acetone in water

is an ideal benchmark for our method because it has been

extensively studied with a range of WFT methodologies,

taking into account solvent effects in different ways (see ref. 89

and references therein). Furthermore, Neugebauer et al. have

previously performed a systematic study26 on this system using

DFT-in-DFT frozen-density embedding.

We have employed the set of geometries obtained in ref. 26

from Car–Parrinello molecular dynamics (CP-MD) simula-

tions of both the gas-phase and the solution. From these

simulations, 300 and 220 snapshots were retained for the

calculations in the gas-phase and in solution, respectively

(Fig. 1). The excitation energies of the n - p transition are

then calculated as a weighted average over these snapshots,

using the oscillator strengths as weight factors.

We note that our reference DFT-in-DFT calculations differ

slightly from the values obtained by Neugebauer and co-

workers as we could apply a larger basis set than was feasible

with the previous implementation of DFT-in-DFT that was

used in ref. 26. Irrespective of these small differences, one of

the findings of Neugebauer et al. that is very relevant for this

work has to do with the construction of the density for the

frozen subsystem: they observed nearly identical solvent shifts

(differences of about 0.01 eV or less) when the embedding

potential was constructed from an approximate density, made

up by the superposition of densities obtained for isolated water

molecules, compared to when densities from calculations

including all waters at once were used to obtain the embedding

potential. For this system, different functionals used to

produce the density of these unperturbed solvent molecules

were proven to yield similar results, which is why we chose the

simple LDA functional for this purpose.

The calculated excitation energies are summarized in

Table 1. Inspecting first the CC2 results, one observes a very

good agreement with experiment for the solvent shift. This

indicates that the embedding potential generated in the under-

lying DFT-in-DFT calculations does indeed provide a realistic

representation for the solute–solvent interaction. Moreover, it

also indirectly validates our initial assumptions, that is, that

the ground state density of the active subsystem calculated

with DFT is nearly identical to the corresponding wavefunc-

tion-based density and that the direct contribution of the

environment to the response is negligible. To verify the latter

assumption we also carried out additional DFT-in-DFT cal-

culations in which the embedding contributions to the kernel

were switched off.28 These calculations indicate that this

contribution amounts to 1 meV for the lowest n - p excita-

tion energy that we consider in this work. Other excitations

show somewhat larger shifts, but these are generally at least

one order of magnitude smaller than the corresponding solva-

tochromic shift. The state for which the neglect of the response

contribution has the largest effect (about 0.03 eV) is the fifth

singlet excited state, located at about 8 eV.

The quality of the TDDFT results with the DZP/TZ2P

combination appears to be not as good as for the CC2

calculations with as most significant difference an underesti-

mation of the solvent shift. Furthermore, one sees significant

basis set effects on the TDDFT results if a crude description

for the solvent (DZ) is used, as done previously,26 with a

fortuitous cancellation of errors in the shift for the DZ

calculation. One should thereby note, however, that for CC2

both the gas-phase and solution excitation energies are under-

estimated in comparison to the corresponding experimental

values, putting the TDDFT results closer to experiment. Since

roughly identical discrepancies are found for results in the

Fig. 1 CP-MD snapshot for the simulation of acetone in water.
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gas-phase and solution, this cannot be attributed to inaccura-

cies in the embedding procedure.

A possible explanation for the underestimated CC2 excita-

tion energies is the sensitivity to the chosen structures of the

acetone molecule. The results of Aidas and coworkers89 show

a significant dependence of the excitation energies on the

CQO bond distance, where larger distances lower the excita-

tion energies. To test this, we performed a series of test

calculations at the equilibrium structures that were obtained

using DFT-BLYP (the functional that was used in the CP-MD

simulations), DFT-B3LYP, and CCSD. The equilibrium

structures and corresponding CC2 excitation energies are

summarized in Table 2. The results show that DFT-BLYP

overestimates the CQO bond distance, which leads to an

underestimation of the CC2 excitation energy. Since the CP-

MD structures that we used were based on a simulation

performed with the BLYP functional this explains part of

the error in the comparison to the experimental data. Since the

error is due to a bond length that is found consistently too

long in both the gas-phase and in solution structures, only the

absolute values but not the solvatochromic shift are affected.

B f–f spectrum of Cs2U(Np)O2Cl4

As a second, more challenging application, we apply WFT-in-

DFT embedding to the calculation of the f–f spectrum of the

neptunyl cation (NpO2
2+). The spectrum of the isolated

neptunyl cation was investigated previously in our group.53

The available experimental neptunyl spectra were taken from

impurities in host crystals such as Cs2UO2Cl4 or CsUO2

(NO3)3.
98,99 To be able to compare directly to these data one

thus needs to model the host crystal as well. There has been

one such attempt before by Matsika and Pitzer,100 who

performed a calculation on Cs2U(Np)O2Cl4 using a cluster

model. In their treatment, a central NpO2Cl4
2� unit is treated

using SO-CI, with the six nearest-neighbor caesium atoms

described by all-electron model potentials and all other species

up to 25 Å away from the central actinyl unit as point charges.

To include the effect of the crystal environment in our

relativistic IHFSCC calculations,53 we employ a similar partition-

ing as used in recent applications of DFT-in-DFT frozen-density

embedding for transition metal- and lanthanide-containing

solids.30,31 In our case we devise a cluster model, where the active

subsystem is treated with relativistic IHFSCC theory and DFT is

used to model the nearby ions that may overlap with the impurity

(Fig. 2). The Madelung potential arising from the rest of the

crystal was evaluated using formal charges placed at the positions

given by the X-ray structure of the pure crystal.101 We thereby

utilized102 the program ENV
103,104 to determine the extent of the

intermediate region encapsulating the central active subsystem as

well as an array of surrounding point charges that describe the

Madelung potential for the crystal. This intermediate region

always comprises 20 UO2Cl4
2� and 90 Cs+ ions. In the central

unit we have replaced the uranium by neptunium, and adjusted

the Np–O and Np–Cl bond lengths to those from the X-ray

structure for NpO2Cl4
2�.105 We explored two different possibi-

lities for the central unit: (a) one where it was split into NpO2
2+

and Cl4
4�, and only NpO2

2+ was treated using IHFSCC, while

the ligands were taken into account with different degrees of

sophistication (from simple point charges to densities fully

relaxed in freeze-and-thaw cycles); and (b) one where the entire

NpO2Cl4
2� is calculated with IHFSCC.

Our results are summarized in Table 3, which displays the

symmetry classification and excitation energies for the differ-

ent f–f states following the ordering found in the experimental

Table 1 TD-DFT and CC2 n - p excitation energies (hoii, in eV) for acetone in gas-phase and solution, calculated as oscillator strength-
weighted averages over the CP-MD snapshots, together with the corresponding solvatochromic shifts. For comparison, the CCSD results of Aidas
and coworkers89 as well as experimental results are also shown

Basis sets hoii

Method Acetone Water Gas phase Solution Shift

TD-DFT TZP DZ 4.464 4.667 0.203
TZ2P DZP 4.471 4.636 0.165

CC2 TZ2P/aug-cc-pVDZ DZP 4.350 4.546 0.196
CCSD (ref. 89) 4.491 4.686 0.195
Exp. (ref. 106–108) 4.48–4.49 4.68–4.69 0.19–0.21

Table 2 CC2 n - p excitation energies (on-p, in eV) for acetone in
the gas-phase at equilibrium geometries obtained with different meth-
ods. All calculations have been performed using the aug-cc-pVDZ
basis set

Geometry rCO/Å on-p/eV

BLYP 1.2302 4.442
B3LYP 1.2175 4.535
CCSD 1.2217 4.505

Fig. 2 Steps in the WFT-in-DFT embedding calculation on the f–f

spectrum of Cs2U(Np)O2Cl4. From left to right, (a) the initial NpO2
2+

ion (b) is surrounded by four chlorides (top: chlorides considered

explicitly in theWFT calculations; bottom: ligand group Cl4
4� is taken

as part of the environment and included via the embedding potential)

to make up the central unit in the cluster model; and (c) this unit is

embedded into a larger environment. The larger model is then

embedded in an array of point charges (not shown).
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assignment of these transitions. Considering first the case

where only the bare NpO2
2+ (with the Np–O bond length

from the X-ray geometry105) unit is chosen as central unit, we

see that these gas-phase results tend to strongly overestimate

the excitation energies in comparison to experiment (about

3000 cm�1 for states I and II and about 12 000 cm�1 for states

IV and V) with the exception of state III, for which gas-phase

results underestimate the excitation energy by only 650 cm�1.

Compared to the energies at the optimized equilibrium geo-

metry for the gas-phase (where rNp–O = 1.675 Å), the values at

the X-ray geometry are about 1000 cm�1 higher for I and II,

and lower for IV and V by roughly the same amount. The

excitation energy for state III is, however, almost not affected

by the change in distance. This is easily explained by the fact

that this is the pure F7/2u state, that is fully localized on the Np

atom and forms the higher spin–orbit component of the F5/2u

ground state. The other states have some covalent character

that makes them more susceptible to changes in the distance to

the oxo-groups.

Before considering the full cluster model, we first consider

the equatorial ligands that will have the strongest effect on the

excitation energies. The ligand field breaks the linear symme-

try of the actinyl and induces mixing between the lowest

spin–orbit components of the D and F states, while charge-

transfer from the formally negative chloride ions to the

neptunium center of the dication weakens the axial bonds

of the neptunyl. In order to assess the relative importance

of these effects, we present in Table 3 calculations with

varying degrees of sophistication in the treatment of this

ligand group.

In the simplest case the NpO2
2+ species is surrounded by

four point charges at the position of the chlorides, each with a

negative unit charge. This has a very strong effect on four of the

levels, with downward shifts of 2204 cm�1 for state I, 1629 cm�1

for II, 5695 cm�1 for IV and 8626 cm�1 for V, respectively.

State III is shifted upwards by 599 cm�1 by the presence of the

point charges. From the composition of these states in the

FSCC wave function, we see that there is a considerable mixing

between the D3/2u and F5/2u states in the ground and first excited

states, while the others remain pure states. Compared to the

experimental results, all excitation energies are improved sig-

nificantly by this simple electrostatic model. We see that apart

from III the calculated excitation energies are too high by about

1000 cm�1 for I and II and about 5000 cm�1 for IV and V. State

III is very close to the experimental value, being only 62 cm�1

lower.

More sophisticated models for the ligands where these are

represented by an embedding potential, are considered next.

The first approach is to have a frozen density constructed as a

superposition of atomic densities for the chloride ions. From

our results it can be seen that this simplest FDE model hardly

changes the point charge picture—in fact, there is even a

slightly worse agreement with experiment for all states but

IV, by about 100–150 cm�1. The problem comes from the fact

that the charge density for the Cl� ligands is by construction

spherical so that the significant deformation and charge

transfer towards the actinyl ion should be accounted for in

the calculation of the active system. This is not possible as one

can in FDE describe only the flow of charge towards the

frozen system and not that from the frozen system. To remedy

this problem we have performed 10 freeze-and-thaw cycles to

allow for such relaxation. After this procedure a completely

different picture emerges. Excitation energies for states with D
and/or F character agree within 100–450 cm�1 with the

experimental data, whereas the error for the P states is

reduced to about 3200 cm�1. This leads to a much better

overall agreement with experiment, with now a correct order-

ing of the states II and III. The only exception is the III state

that is moved to somewhat higher energies by the relaxation of

the density.

Table 3 f–f excited state energies (in cm�1) for NpO2
2+and NpO2Cl4

2�, obtained with and without the inclusion of environment effects viaWFT-
in-DFT embedding. All calculations were performed using the X-ray structure reported in ref. 101 (where rNpO = 1.775 and rNpCl = 2.653 Å,
respectively) unless otherwise noted. For comparison, the results of Matsika and Pitzer100 for the their embedded cluster calculations are shown,
together with the experimental values due to Denning and coworkers98

Central unit Surrounding

Excited electronic states

I II III IV V

NpO2
2+ — D3/2u D5/2u F7/2u P1/2u P3/2u

IHFSCCa — 3221 8565 7225 30 877 34 947
IHFSCC — 4297 9661 7229 29 021 32 379
NpO2

2+ L4
�4 D3/2u + F5/2u D5/2u F7/2u P1/2u P3/2u

IHFSCC point charges — 2093 8032 7828 23 326 26 321
IHFSCC DFT (frozen)b — 2243 8150 7677 23 323 26 433
IHFSCC DFT (relaxed)c — 1034 7307 8029 20 390 23 303
NpO2Cl4

2� D3/2u + F5/2u D5/2u F7/2u P1/2u P3/2u

IHFSCC — 886 7679 9262 20 018 22 445
IHFSCC DFTd 1156 7738 9137 20 857 26 305
NpO2Cl4

2� (ref. 100) F + D D + F F P P
SO-CI AIMPe 1663 5775 8463 18 367 20 575
Exp. (ref. 98) D3/2u + F5/2u D5/2u F7/2u P1/2u P3/2u

900–1050 6880 7890 17 241 20 081

a Using the gas-phase geometry with rNpO = 1.675 Å (from the calculations of ref. 53). b Frozen density for the ligand group (L4
�4) constructed as

superposition of the densities of four Cl� ions. c Frozen density for the ligand group (L4
�4) obtained for Cl4

�4 after 10 freeze-and-thaw

cycles. d [Cs90(UO2Cl4)20]
+50 in the presence of point charges that counterbalance its and the active subsystem’s charge. e Model potential

obtained for the six-nearest caesium atoms plus a point charge array.
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To make a precise assessment of the quality of the embed-

ding it is, however, better to not compare it directly to the

experimental data but compare the subsystem treatment of the

ligands in the IHFSCC calculation to a supermolecular calcu-

lation of NpO2Cl4
2�. This case can be seen as an exact

reference for the above embedding calculations, since in both

cases no outer environment was included. Moving from the

embedding calculation where the Cl� densities are relaxed, to a

supermolecular calculation has the overall result of a slight

increase of the excitation energies of all states: state I is shifted

by about 150 cm�1, while shifts of about 370 cm�1 are seen for

II and IV. For III and V the shifts lie in the 860–1200 cm�1

range. This indicates that in this case, where the actinide–

chloride bond is known to have significant ionic character, the

WFT-in-DFT embedding scheme reproduces the main fea-

tures of the fully wavefunction-based description.

With the results of the calculations including the ligands, we

can summarize the general aspects of modeling the actinyl–

ligand interaction: adding point charges on the equatorial

plane introduces mixing of the F5/2u and D3/2u states, but

underestimates the relative destabilization of the ff orbitals

relative to the fd or fp ones. Placing spherical finite volume Cl�

ions in place of the point charges does not change this picture.

Allowing the charge density of the ligands to polarize gives the

correct picture with the FDE freeze-and-thaw description

underestimating slightly the relative destabilization of the ff

orbitals. This is probably due to incomplete description of the

orbital interactions between the chloride ligands and the metal

orbitals in the density-only embedding description.

The inclusion of the rest of the crystal environment as an

embedding potential to the calculation on NpO2Cl4
2�, brings

only modest changes to the excitation energies, usually by no

more than 100–200 cm�1 for the states with D and F character,

a strong evidence that the bulk of the environment effects

come from the equatorial ligands rather than from electro-

static interaction with the structural units further away. It is

interesting to note that the environment seems to stabilize the

states with dominant F character and destabilize states with

dominant D character. This may be the effect of the 12 Cs+

ions adjacent to the central unit that will polarize the equator-

ial ligands, thereby drawing charge away from the ff orbitals.

The P states experience differential environmental effects

(about 800 cm�1 for IV but about 4000 cm�1 for V).

We conclude this section by noting that the calculated

vertical excitation energies in this proof-of-principle applica-

tion should of course not be blindly compared to the adiabatic

excitation energies that are measured in experiment. The

deviation between the two will be largest for states that are

structurally different from the ground-state, in particular theP
states, where the excitation moves the electron from a non-

bonding to a partially antibonding orbital. In these cases

(states IV and V) the adiabatic excitation energies are likely

to be significantly lower. In comparison to the results of

Matsika and Pitzer, who did consider adiabatic effects in their

calculations, our embedded cluster calculations are able to

better approach the experimental results for the lowest excited

states (I and II) but agree less well from III onwards as should

be expected. Finally, another possible source of errors relative

to the experimental data comes from the coupled cluster

treatment for which the active space was chosen to be some-

what smaller than previously used in our benchmark gas phase

calculations. The latter calculations indicate that the effect of

increasing electron correlation in the calculations, could also

improve the agreement between the WFT-in-DFT embedding

calculations and the experimental results as correlation appears

to decrease the excitation energies for most states.

V. Conclusions

We have presented here a simple scheme to incorporate the

effect of a frozen environment treated using DFT in the

wavefunction-based calculation of excitation energies. In con-

trast to previously described WFT-in-DFT schemes,50,52 we do

not use the electron density of the active subsystem to update

the embedding potential. Instead, we assume that the ground

state density obtained with DFT is identical to the density that

will arise from a correlated ab initio treatment. In cases were

TDDFT cannot be applied, such as charge-transfer excitations

or open-shell systems with close-lying excited states, this

assumption is often justified.

We have applied this WFT-in-DFT embedding scheme in

two proof-of-concept applications, the calculation of the

solvatochromic shift of acetone in water and the spectrum of

NpO2
2+ embedded in a Cs2UO2Cl4 crystal. For acetone in

water, we show that the embedding potential is able to

correctly describe the effect of the environment on the n -

p excitation energies both in TDDFT and in CC2 calculations.

The efficiency of the WFT-in-DFT embedding scheme makes

it possible to perform CC2 calculations for acetone sur-

rounded by a solvent shell of water for 220 different snapshots

obtained from an MD simulation, thus making it possible to

accurately include the effects of the dynamics on the solvato-

chromic shift.

For NpO2
2+ embedded in a Cs2UO2Cl4 crystal, we find that

our WFT-in-DFT embedding scheme is able to incorporate

the effect of the crystal environment in IHFSCC calculations

of the electronically excited states. In particular, the embed-

ding scheme is able to closely reproduce the spectrum of

NpO2Cl4
2� calculated within a fully wavefunction-based treat-

ment, provided we allow the density of the chloride ligands to

be polarized. While such an agreement depends on the loca-

lized nature of the transitions under consideration, it intro-

duces an economical yet highly accurate way to compute the

f–f spectra of actinyl ions in complex environments because

they can be treated in a 3-atom wave function model.

In both applications, which consider two very different

environments, we see that the WFT-in-DFT FDE method is

capable of accurately representing the environment. The re-

maining discrepancies mainly originate from intrinsic errors in

the description of the subsystems (such as incomplete basis

sets, the degree of electron correlation recovered by the

wavefunction-based methods) while deficiencies of the embed-

ding procedure itself are small. This indicates that our initial

assumption that the ground-state density of the embedded

system is described accurately by DFT is indeed valid for the

investigated systems. This makes the WFT-in-DFT approach

an interesting and cost-effective solution for applications

where DFT is known to yield accurate densities but TDDFT
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fails (such as charge-transfer excitations or open-shell

systems).

Further work is necessary in situations where DFT is not

able to accurately describe the ground state density of the

active part, or in cases in which the excitation studied does

significantly change the density overlap between the embedded

system and its surrounding environment. We are currently

working on a generalization of the implementation that allows

proper treatment of such cases as well.

Note added in proof

Very recently, an inconsistency in the ADF implementation of

the PW91k functional for the spin-restricted case was reported

in ref. 109. Although the effect on our results turned out to be

insignificant, all data in this paper were corrected accordingly.
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Abstract: Applications of quantum chemistry have evolved from single or a few calculations to more complicated
workflows, in which a series of interrelated computational tasks is performed. In particular multiscale simulations, which
combine different levels of accuracy, typically require a large number of individual calculations that depend on each
other. Consequently, there is a need to automate such workflows. For this purpose we have developed PyAdf, a scripting
framework for quantum chemistry. PyAdf handles all steps necessary in a typical workflow in quantum chemistry and is
easily extensible due to its object-oriented implementation in the Python programming language. We give an overview
of the capabilities of PyAdf and illustrate its usefulness in quantum-chemical multiscale simulations with a number of
examples taken from recent applications.

© 2011 Wiley Periodicals, Inc. J Comput Chem 32: 2328–2338, 2011
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Introduction

In modern applications of quantum-chemical program packages,
one usually needs to perform series of calculations. For instance,
for the same molecule a single calculation is in general not suffi-
cient, but calculations using different theoretical methods, different
basis sets, different technical settings, and in many cases also using
different program packages are necessary. Furthermore, such series
of calculations are mostly needed not only for a single molecular
structure, but for many different ones.1, 2

In addition, these calculations are commonly part of a collec-
tion of tasks that are interrelated, i.e., the results of one calculation
serve as input for a subsequent one.3, 4 A basic example of such a
workflow would be performing geometry optimizations for a series
of molecules using density-functional theory (DFT) with a smaller
basis set, followed by single-point energy calculations using a more
accurate wave-function theory (WFT) method and/or a calculation
of molecular properties. Finally, the appropriate results have to be
extracted from the output files and have to be processed to obtain
the sought-after quantities (e.g., total energy differences).

Clearly, there is a need to automate these workflows. Many
computational chemists have developed their own solutions for this
purpose, mostly shell scripts or small programs (see, e.g., ref. 5).
However, these usually address only certain steps, such as generating
input files or extracting results from output files. Some quantum-
chemical program packages take a further step by providing a
scripting interface. For instance, NWChem6 offers a Python inter-
face7 for executing simple workflows, Molpro8 provides scripting
facilities in its input files and produces XML output for an eas-
ier post-processing of results, Adf9, 10 comes with tools for the
automatic generation of input files and for easily extracting the
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results of calculations,11 and the MoleControl12 add-on to Tur-
bomole13, 14 allows for the execution of series of calculations and
simple workflows.

However, as workflows become more and more involved, ad hoc
shell-scripting solutions reach their limitations. Furthermore, the
existing scripting interfaces are usually specific to one quantum-
chemical program package and can often only handle parts of the
required workflows. Therefore, more flexible and general solutions
will be useful.

In the area of chemo- and bio-informatics, where very large
datasets are generated and processed, general-purpose workflow
engines that allow the user to organize and schedule different tasks
(usually using a graphical user interface) are very common.15, 16

Such workflow engines have also been adapted to handle com-
putational chemistry problems, in particular in the context of grid
computing.17–20 However, these solutions are mostly either tailored
to executing a single program package (see, e.g., ref. 21), or very
general and thereby present significant obstacles for their initial use
and for the extension to tasks from quantum chemistry.

In the past years, work in our groups has focussed on “quantum-
chemical multiscale simulations,” which combine different levels
of quantum-chemical descriptions. These are based on the frozen-
density embedding (FDE) scheme initially proposed by Wesolowski
and Warshel22 (following earlier work by Senatore and Sub-
baswamy23 and by Cortona24) and its extension to WFT-in-DFT
embedding, first proposed by Carter and coworkers.25–28

Particularly for such quantum-chemical multiscale simulations
one encounters very complex workflows that are beyond the capabil-
ities of standard tools. Typically, they involve hundreds of individual
calculations, and the results of a subset of these calculations are
needed as input for following steps. For instance, applications of
the FDE scheme to calculate solvent effects on molecular proper-
ties29–31 require the construction of an approximate solvent electron
density, followed by an FDE calculation of the molecular property
of interest for the embedded solute molecule. This needs to be done
for a large number of snapshots taken from a molecular dynam-
ics simulation. Similarly, a subsystem-DFT treatment of proteins32

requires calculations for all subsystems (e.g., the individual amino
acids), each embedded in an environment constructed from all other
subsystems. For WFT-in-DFT embedding calculations (see, e.g.,
ref. 33), it is necessary to combine different quantum-chemical pro-
gram packages and to pass the embedding potential and/or the frozen
environment electron density between these programs.

To automate these rather complicated workflows, we have devel-
oped PyAdf, a scripting framework for quantum chemistry. It
handles all the steps required in typical workflows of quantum
chemistry: generation of input files, execution of the different pro-
grams, error handling, as well as extraction and post-processing of
the results and offers a very flexible and extensible framework for
combining these different steps. PyAdf is written in the Python
programming language34 (for an introduction to Python from the
perspective of computational sciences, see, e.g., refs. 35 and 36).

Even though the functionality available in PyAdf currently
focusses on quantum-chemical multiscale simulations, it is in no
way limited to this type of calculations. Instead, it provides a general
framework for processing workflows in quantum chemistry, which
can easily be extended to additional computational tasks. Despite
its name — which indicates its historical origin as an extension to

the Adf package — PyAdf is not specific to a single program, but
works with a number of different quantum chemistry codes. In this
article, we give an overview of the PyAdf scripting framework, and
illustrate its usefulness by discussing a number of examples.

This work is organized as follows. First, we outline the design
of PyAdf and give an overview of its most important features.
This is followed by a demonstration of the capabilities of PyAdf
for automating workflows commonly encountered in quantum
chemistry and an overview of various applications of PyAdf in
quantum-chemical multiscale simulations. Finally, we summarize
and give an outlook on planned and ongoing developments.

PyAdf — Design and Overview

The driving idea behind PyAdf is the definition of a framework
that will provide mechanisms for both controlling the execution of
different computational tasks and for managing the communication
between these tasks. This should be achieved in such a way that users
are provided simple, yet powerful ways to define their computational
workflows.

To this end, PyAdf makes use of object-oriented programming
techniques in the high-level programming language Python. The
central paradigm of object-oriented programming is the definition of
classes, i.e., objects that contain both data (also know as “attributes”)
and actions (the so-called “methods”). The definition of different
classes allows us to group together the different aspects involved
in one step of the workflow into a single entity. This way, as many
details as possible are hidden from the user, who only needs to
know how to use these classes on a higher level. Such an object-
oriented design has further advantages. It is possible to establish
a hierarchical relation between classes (known as “inheritance”),
so that one can utilize existing classes to construct new ones. The
classes provided by PyAdf can then easily be extended by the user.
This makes it, for instance, rather straightforward to incorporate
scientific codes from third parties.

The input files to PyAdf are, in effect, simply Python scripts,
so the full power of the language and its numerous extensions is
immediately available to the user. To illustrate how we utilize the
classes provided by PyAdf to arrive at a very simple, high-level
definition of a basic workflow, a sample input file is given in Figure 1.

This input defines an elementary workflow: The molecular coor-
dinates are read from a file, a single point calculation is performed
with Adf, and finally the magnitude of the dipole moment is
extracted from the resulting output and printed.

In the first line, a molecule object (i.e., an instance of the
molecule class) is created. In the simplest form, which is used
here, it is initialized by reading the molecular coordinates from

Figure 1. A minimal PyAdf input file.
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an xyz-file. Internally, PyAdf uses the Openbabel library37–39

for storing the molecular coordinates so that any file format sup-
ported by Openbabel can be understood. The molecule class
of PyAdf has a number of methods for manipulating molecular
coordinates (e.g., joining different molecules, splitting a large sys-
tem into its molecular fragments, adding hydrogen atoms to protein
structures, and aligning molecules). Most of these methods also rely
on functionality provided by Openbabel.

In the second line, a job object is initialized. PyAdf provides a
number of different job classes for different types of calculations.
Here, the class adfsinglepointjob, which represents a single
point DFT calculation with theAdf program, is used. There are other
job classes for other types of calculations (e.g.,adfgeometryjob
for geometry optimizations, adfnmrjob for the calculation of
NMR chemical shifts, and adfcpljob for calculating spin–spin
coupling constants with Adf, or daltonsinglepointjob and
diracsinglepointjob for single point calculations with the
Dalton40 and Dirac41 programs, respectively). These job classes
are part of a class hierarchy, i.e., they are related by inheritance.
A complete list of the types of calculations currently available in
PyAdf can be found in the PyAdf documentation (available at
http://www.pyadf.org).

Creating a job object only defines the type of calculation and
allows one to specify the technical settings (such as basis set and
exchange–correlation functional) that should be used in this calcu-
lation. It does not execute the calculation itself. This is achieved by
calling the job’s runmethod, as shown in the third line of the script
considered here. This method will generate the necessary input files,
call the appropriate executable(s), and save the output file(s) pro-
duced by the program (both standard output and binary restart files,
depending on the program).

The job’srunmethod returns a results object. This results object
is an instance of a results class corresponding to the type of the job.
Using it, the results of the calculation can be accessed. For instance,
on the fourth line of the considered input file, the magnitude of the
dipole moment is extracted with the get_dipole_magnitude
method. There is a hierarchy of such results classes that is analo-
gous to the job class hierarchy. Each of them provides methods for
accessing the different quantities that have been calculated. Which
quantities are available obviously depends on the type of the cal-
culation. A full list of predefined computational tasks and of the
associated classes can be found in the PyAdf documentation.

Internally, PyAdf implements a file manager, which stores the
files produced by each of the calculations. The results objects then
use this file manager to access these files. If a certain quantity is
requested, the corresponding method of the results object knows
how to extract the quantity from these files — either by using a
regular expression to extract it from the output file or by reading it
from binary restart files. For the convenience of the user, the output
of PyADF clearly identifies the related files for each job, so that
these files can easily be inspected in case of a problem.

PyAdf also provides extensive restart facilities. Because Python
is an interpreted language, errors in the PyAdf input file will be
detected only at runtime. Furthermore, it is of course possible that
one of the programs called by PyAdf encounters an error condi-
tion during its execution. As a consequence, it can happen that a
PyAdf run is aborted after a large number of calculations have been

performed. In this case, PyAdf generates an archive of its results that
can be imported when re-running with a corrected input file. In such
a restarted run, the calculations that have already been completed
earlier will not be executed again. This is achieved by generating
a checksum of the input file(s) for each calculation. Before a cal-
culation is actually executed, PyAdf checks whether a calculation
with the same checksum has already been performed. If so, a results
object for this previous calculation is returned, using the files from
the previous run.

Automating Common Workflows in Quantum
Chemistry with PyAdf

A Simple Example: Calculation of NMR Shieldings

To demonstrate how the building blocks of PyAdf described in the
previous section (i.e., the molecule class as well as job and result
classes) can be used to construct quantum-chemical workflows, we
first consider a simple example: a geometry optimization followed
by a calculation of NMR shieldings. A flowchart of this workflow
is shown in Figure 2a, which also indicates which information has
to be exchanged between the different tasks.

First, the molecular coordinates are read from a file. Starting
from this initial structure, a geometry optimization is then performed
using a small basis set. This is followed by a single point calculation
for the optimized geometry, employing a larger basis set. Subse-
quently, a calculation of the NMR shieldings is performed. This
NMR calculation requires the results (most importantly, the MO
coefficients) of the previous single point calculation. Finally, the
calculated NMR shieldings are printed.

The input file in Figure 2b shows how such a workflow can
be realized with PyAdf. First, a molecule object is initialized
by reading the molecular coordinates from an xyz-file and a list
with the numbers of the nuclei for which the NMR shieldings
should be calculated is created (lines 1–5). After that, the settings
for the subsequent Adf calculations are initialized, specifying the
exchange–correlation functional and the numerical integration accu-
racy (lines 7–10). Then, an adfgeometryjob instance is created
and the job is run (lines 12–14). The run method returns a results
object, from which the optimized molecular coordinates (in form of
another molecule object) are obtained with the get_molecule
method (line 17). This new molecule object is then used to initialize
and run an adfsinglepointjob, for which a higher integra-
tion accuracy and a larger basis set are used (lines 19–22). The new
results object is then used to initialize and run anadfnmrjob (lines
24–26). Finally, theget_all_shieldingsmethod of the NMR
job’s results object is used to extract the calculated shieldings, which
can then be printed (lines 28–31).

Since all the features of the Python language are available in
PyAdf input files, it is easy to extend the simple workflow outlined
above. Among the many possibilities is the application of this work-
flow to a large number of molecules. This can be achieved by a loop
over all xyz-files in a given directory, allowing the calculations to
be performed for each of these molecules. If needed, the numbers of
the nuclei for which the NMR shieldings have to be calculated could
be determined for each of these molecules individually. To this end,
one can, for instance, use the functionality provided by Openba-
bel to identify the nuclei of interest using a SMARTS pattern.42
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Figure 2. (a) Flowchart of a simple quantum-chemical workflow. The steps in gray boxes stand for the
calculations performed with an external program. The large arrows indicate results that are passed between
the different tasks. (b) A PyAdf input file for realizing this workflow.

Furthermore, a calculation of the NMR shieldings for a reference
compound could be added, so that the calculated shieldings can be
converted to chemical shifts inside PyAdf before they are printed.

Running Calculations for Large Test Sets of Molecules

In recent years, work in our groups has focussed on quantum-
chemical multiscale simulations, and in particular on the frozen-
density embedding (FDE) scheme.22 In this DFT-based scheme,
the total electron density ρtot(r) is divided into the densities of N
subsystems ρ(n)(r) (n = 1, . . . , N), with

ρtot(r) =
N∑

n=1

ρ(n)(r). (1)

Given an (approximate) density for all other subsystems, the density
in one active subsystem can be determined from a set of KS-like
equations, in which the effect of the frozen environment density
enters through an effective embedding potential (see, e.g., refs. 22,43
and 44 for details). By iteratively updating each of the subsys-
tem densities in so-called freeze-and-thaw cycles,45 one obtains a
subsystem-DFT scheme24 that can be used as an efficient alternative
to conventional Kohn–Sham (KS) DFT calculations.

However, even though the frozen-density embedding potential
is in principle exact (in the sense that it should lead to the same total
electron density as a KS-DFT calculation on the full system), addi-
tional approximations are required for the kinetic-energy component
of the embedding potentials. Likewise, when calculating energies,
approximations have to be introduced for the nonadditive kinetic
energy, i.e., an approximate kinetic-energy density functional has
to be used. This naturally raises the question how accurate these

approximations are. To assess the quality of the available approxima-
tions (for an overview, see, e.g., ref. 46) one possibility is to compare
the interaction energies between two fragments obtained from a
subsystem-DFT calculation to those obtained from a supermolecular
KS-DFT calculation.

Using this strategy, three of us have recently presented a com-
parison of various kinetic-energy density functionals within such
subsystem-DFT calculations for a large test set of intermolecu-
lar complexes and transition metal coordination compounds.47 The
workflow applied in this study is illustrated in Figure 3. It consists
of a loop over all systems in the test set. For each of these (usu-
ally bimolecular) systems, the coordinates of the two subsystems
are read and calculations for the supermolecule as well as for the
isolated fragments are performed. This is followed by a subsystem-
DFT calculation (i.e., the densities of both subsystems are updated
iteratively), which uses the densities of the isolated fragments as
initial guess. Finally, the reference value for the interaction energy
is calculated as E(ref)

int = Esupermol −E1 −E2 and the subsystem-DFT

interaction energy is calculated as E(FDE)

int = EFDE − E1 − E2 (with
corrections for the basis set superposition error where appropriate).
After the loop over the test set is complete, a statistical analysis of the
errors in the interaction energies can be performed (e.g., calculation
of the root-mean square deviation).

Such a workflow can be easily realized in PyAdf: Using the
functionality of the Python language, a loop over the test set can
be performed. For each complex, single point calculations for both
the supermolecule and the individual fragments can be executed
with the help of the adfsinglepointjob class. Frozen-density
embedding and subsystem-DFT jobs are handled by the class
adffragmentsjob. Such jobs require a list of fragments (i.e.,
molecule objects and possibly the results objects of previous cal-
culations) and for each of these fragments, it can then be chosen
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Figure 3. Workflow encountered for testing the accuracy of kinetic-
energy functionals within subsystem DFT. The steps in gray boxes
stand for the calculations performed with an external program. The
large arrows indicate results that are passed between the different tasks.

whether it is active, frozen, or a frozen fragment that is iteratively
updated in freeze-and-thaw cycles (see also the description of the
flexible FDE implementation in theAdf package44). In the case con-
sidered here, two fragments (one active and one that is updated in
freeze-and-thaw cycles) are used. Ultimately, the required energies
can be extracted from the corresponding results objects, and their
further processing can be done using the functionality of Python.

Since workflows similar to the one described here are quite
common (another example would be the assessment of different
exchange–correlation functionals for test sets of molecules), PyAdf
provides a convenience class datasetjob for such applications.

Postprocessing of Results and Plotting

Besides comparing energies, the quality of any quantum-chemical
calculation can also be assessed by comparing the computed elec-
tron density with that of a reference calculation. PyAdf provides
the general functionalities for such a comparison. As an exam-
ple, we will again consider subsystem-DFT calculations. With
the exact kinetic-energy functional, a subsystem-DFT calculation
would yield the same electron density as a supermolecular KS-
DFT calculation on the full system.43, 45 Therefore, the difference
between the density from the supermolecular KS-DFT calcula-
tion and the subsystem-DFT density obtained with an approximate

kinetic-energy functional can be used to judge the quality of these
approximations.

Performing the subsystem-DFT calculation for a test set of inter-
molecular complexes can be performed using PyAdf as described
in the previous section. However, in contrast to an assessment of
the energy (a single real number), comparisons of the electron den-
sity (a function of three variables) require additional functionality
for the postprocessing of the results. It is necessary to obtain the
values of the different densities on a grid and compare them to
each other, either by plotting the difference density or by quantify-
ing the deviation by integrating the absolute value of the difference
density.48

An excerpt from an input file showing how these postprocess-
ing steps can be performed using PyAdf is depicted in Figure 4.
The results objects of both the supermolecular KS-DFT calcula-
tion and the subsystem-DFT calculation have a get_density
method, which returns a “density object” (lines 6 and 9, respec-
tively). This density can, for instance, be written in a cube file with
the get_cubfile method (lines 7 and 10), which can in turn be
used to prepare an isosurface plot. Example isosurface plots of the
densities from a supermolecular KS-DFT calculation and from a
subsystem-DFT calculation are shown in Figure 4 for the example
of the coordination complex formed from BH3 and NH3. Despite
the fact that this is a case for which the available GGA-type kinetic-
energy functionals50 have been shown to fail,51, 52 the two isosurface
plots can hardly be distinguished. Therefore, it is more instructive
to look at the difference density. In PyAdf, the difference density
can be obtained by simply subtracting the two density objects (line
12), resulting in a new density object that again can be written in a
cube file (line 13).

Theget_densitymethod allows one to choose on which grid
the density is needed. For plotting, one typically needs an evenly
spaced grid, as it is selected on line 4. Such a grid is, however, not
suitable for performing an accurate numerical integration. For this
purpose, the more precise numerical integration grid employed by
Adf can also be chosen (line 17), to calculate the difference density
on this grid in a completely analogous way (lines 19–22). In this
representation, it is then possible to calculate the numerical integral
over the absolute value of the difference density accurately (line 24).

In a similar way, molecular orbitals, localized orbitals, as well
as the Kohn–Sham potential and its individual components can be
handled. For instance, the recent work on accurate frozen-density
embedding potentials presented in ref. 52 used PyAdf extensively
for manipulating and plotting the different components of the
potentials.

Multiscale Simulations with PyAdf

Solvent Effects on Molecular Properties

An important multiscale application of the FDE scheme is the
calculation of solvent effects on molecular properties (e.g., elec-
tronic excitation energies,29, 30 ESR hyperfine coupling constants,53

or NMR shieldings31). Such calculations employ the sequential
molecular dynamics followed by quantum-mechanics calculations
(S-MD/QM) strategy.54 This strategy is illustrated for the calcu-
lation of the NMR shielding of acetonitrile in water in Figure 5,
together with a simplifed version of the PyAdf input file used for
such calculations in ref. 31.
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Figure 4. A PyAdf input file for analyzing the densities from FDE calculations along with isosurface plots
of the (difference) densities for BH3NH3. Isosurface plots have been prepared with Vmd.49

Figure 5. (a) Flowchart of the workflow used for calculating the solvent effect on the NMR shieldings
using FDE. The steps in gray boxes stand for the calculations performed with an external program. (b) A
PyAdf input file for realizing this workflow.
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First, using periodic boundary conditions, a classical molecu-
lar dynamics simulation of an acetonitrile molecule in water is
performed. From this simulation, a sufficiently large number of
snapshots are extracted. For each of these snapshots, a calculation
of the NMR shielding is then performed for the solute molecule
surrounded by the 500 nearest solvent molecules. Since a super-
molecular calculation of molecular properties would not be feasible
for such large systems, the FDE scheme is used in this step. The cal-
culation is performed for the solute molecule as the active subsystem
embedded in a frozen environment. For this solvent environment,
an approximate electron density obtained by adding the densities
calculated for isolated water molecules is used. Finally, the NMR
shieldings calculated for each snapshot are averaged.

In the loop over all snapshots, all xyz-files from the current direc-
tory are used (line 5–7, see Fig. 5b). These xyz-files of the snapshots
have to be generated using the molecular dynamics program. For
each snapshot, the separate method of the molecule class is
used to divide the snapshot into individual molecules, which are
returned as a list mols (line 13). In this example, the first molecule
in the list is the acetonitrile molecule (line 16), but if this is not
the case it would be easy to add code for identifying it in this list.
The remaining water molecules are then sorted by their distance
to the acetonitrile molecule (line 19) and the 500 closest ones are
chosen (line 20). In lines 25–27, the list of fragments for the FDE
calculation is set up: The acetonitrile is the active fragment, and
the list of the 500 water solvent molecules is used to create frozen
fragments, each with the density of an isolated water molecule. In
the present case, the classical molecular dynamics simulation used
a water model with a fixed geometry. Therefore, a single frozen
density calculated for one isolated water molecule (line 23) can be
used for all 500 solvent molecules. If the geometries of the water
molecules differ, it is possible to introduce a loop over all frozen
solvent molecules, in which a specific frozen density is calculated
for each of them. Similarly, it would also be possible to update the
densities of some of the solvent molecules in freeze-and-thaw itera-
tions by choosing the appropriate options for these fragments. In the
remainder of the input, the FDE calculation and the NMR shielding
calculation are performed, and after the loop over all snapshots is
finished the calculated shieldings are averaged.

Subsystem-DFT for Proteins

The currently available kinetic-energy functionals are not suitable
to apply the FDE scheme to subsystems connected by covalent
bonds.51, 52 However, this problem can be circumvented by using a
more general partitioning, as it was initially proposed in the molec-
ular fractionation with conjugate caps (MFCC) method.55–57 This
partitioning is shown in Figure 6a. Instead of partitioning a covalent
bond directly, caps are introduced to terminate the dangling bonds
between the fragments. The auxiliary molecule obtained by join-
ing the caps is then subtracted again. Recently, two of us showed
how such a partitioning can be applied within the FDE scheme and
demonstrated that this 3-partition FDE (3-FDE) scheme presents an
efficient method for a subsystem treatment of proteins.32

In ref. 32 the 3-FDE scheme was applied to the protein ubiq-
uitin, containing 76 amino acids, which was chosen because it is
small enough for a supermolecular calculation on the full protein
to be possible for comparison. However, already for such a small

protein a scripting framework such as PyAdf is invaluable. First,
PyAdf’s molecule class provides methods for partitioning the pro-
tein, introducing the caps, and generating the corresponding cap
fragments. For ubiquitin, the protein is partitioned into its 76 amino
acids, each terminated by caps, resulting in the creation of 75 cap
fragments (see Fig. 6). This partitioning can be performed automat-
ically by PyAdf. Besides cutting the protein at the peptide bonds, as
was required for ubiquitin, an extension that allows for partitioning
by cutting through disulfide bridges58 is also available. In addition,
more general partitionings using larger fragments (e.g., around an
active center) are being developed.59

Once a partitioning is established, calculations on each of the
isolated fragments have to be performed to obtain an initial density.
This corresponds to the MFCC scheme and is handled in PyAdf
by the class adfmfccjob. The initial guess is then improved by
3-FDE calculations on each of the subsystems. These calculations
are repeated iteratively until the freeze-and-thaw cycles are con-
verged. All these individual calculations are automatically executed
by PyAdf’s adf3fdejob. Finally, PyAdf is indispensable for
post-processing of the final results, e.g., for adding (and subtracting)
the densities of all the individual subsystems.

WFT-in-DFT Embedding

The multiscale simulations discussed so far are solely based on DFT
(DFT-in-DFT embedding). However, in many cases DFT with the
currently available exchange–correlation functionals is not accurate
enough. One prominent example is the failure of (adiabatic) time-
dependent (TD) DFT for charge-transfer excitations.60–64 Therefore,
there is considerable interest in schemes for embedding a wave-
function based ab initio description in an environment treated with
DFT (WFT-in-DFT embedding). This allows one to systematically
improve the accuracy by employing a hierarchy of accurate WFT
treatments for the subsystem of interest.

The FDE scheme can be extended to WFT-in-DFT embedding
by using the FDE embedding potential (which has been derived in
a DFT context) as an additional local one-electron potential in the
WFT calculation.25–28 It can be shown that using such an embedding
potentials is formally exact (i.e., it is exact if the exact exchange–
correlation and kinetic-energy functionals are used and the limit of
an exact WFT description is reached).65, 66

In ref. 33, three of us proposed a simplified scheme for the cal-
culation of local excitation energies with WFT-in-DFT embedding.
In many cases in which TD-DFT fails (such as in the case of charge-
transfer excitations), the density obtained for the ground-state is still
rather accurate. Therefore, it is reasonable to determine the embed-
ding potential in a DFT-in-DFT embedding calculation — possibly
using freeze-and-thaw cycles for (parts of) the environment — and to
import the resulting DFT-in-DFT embedding potential in the WFT
calculations. Such a scheme was applied in ref. 33 to investigate
local excitations of a neptunyl ion (NpO2+

2 ) embedded as a defect
in a Cs2UO2Cl4 crystal.

The workflow corresponding to this simplified scheme is shown
in Figure 7a. After an initial frozen density is determined (typi-
cally requiring several calculations on the fragments constituting the
environment), a DFT-in-DFT embedding calculation is performed.
The environment density (or part of it) is then updated iteratively in
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Figure 6. (a) Partitioning employed in subsystem-DFT calculations for proteins illustrated for dialanine.
(b) For the calculations on ubiquitin in ref. 32, the protein is partitioned into its 76 amino acids and 75 cap
fragments.

freeze-and-thaw cycles. After these freeze-and-thaw cycles are con-
verged, the values of the embedding potential at the points of the
numerical integration grid are read from Adf’s binary results files
and exported to a text file. This embedding potential as well as the
coordinates and weights of the numerical integration grid itself are
then imported in the WFT code. As soon as a WFT job is requested
and is passed the results object of a DFT-in-DFT embedding calcu-
lation, PyAdf internally takes care of creating the necessary files
(input files, imported potential, etc.) and of passing them to the
WFT code. Currently, Dirac10 as well as locally modified versions
of Dalton and NWChem support such an import of an embedding
potential.

The drawback of the simplified scheme of ref. 33 is that the DFT
ground-state density is used to determine the embedding potential,
not the possibly more accurate ground-state density from the WFT
calculation. In those cases where DFT fails to provide an acceptable
ground-state density, a more complete WFT-in-DFT embedding
scheme is needed. The workflow of such a scheme is presented
in Figure 7b.

After a first DFT-in-DFT embedding calculation on the sub-
system of interest is performed, the embedding potential is again
exported and used in the WFT calculation. The values of the density,

its gradient and Laplacian, and of the Coulomb potential generated
by the density are then exported on the numerical integration grid.
Such an export is currently supported by a development version of
Dirac for HF, DFT, and MP2 calculations. PyAdf then takes care of
converting the XML files written by Dirac to the binary format that
can be imported by Adf. Then, the environment density is updated
inAdf, using the WFT density for the active subsystem and with this
new environment density, a new embedding potential is exported.
This is repeated iteratively, until these freeze-and-thaw iterations are
converged. For such WFT-in-DFT calculations, PyAdf provides the
class wftindftjob, that implements all the steps in the workflow
of Figure 7b.

Conclusions and Outlook

PyAdf is a scripting framework for quantum chemistry that can be
used for automating quantum-chemical workflows. This is achieved
by providing job classes, which can be used to set up and execute
different types of quantum-chemical calculations, and results classes
that are returned when running a job and which can be used to extract
the results of the calculations. In addition, PyAdf offers powerful
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Figure 7. The workflow in WFT-in-DFT embedding calculations. The steps in gray boxes stand for the
calculations performed with an external program. The large arrows indicate results that are passed between
the different tasks. (a) The simplified scheme of ref. 33, in which the embedding potential from a DFT-
in-DFT embedding calculation is imported in the WFT calculation. (b) A freeze-and-thaw WFT-in-DFT
embedding setup, in which the embedding potential is updated iteratively, using the density from the WFT
calculation.

features for reading and manipulating molecular coordinates and
for the post-processing of the results (e.g., for handling orbitals,
densities, and potentials available on a numerical grid). Since the
full power of the Python language is available in PyAdf input files,
these building blocks can be combined into complicated workflows.

These features are particularly useful in multiscale simulations.
We have illustrated this using examples of applications of PyAdf
from the recent research in our groups, such as the assessment of
kinetic-energy functionals in the FDE scheme, the explicit treat-
ment of solvent effects on molecular properties, subsystem-DFT
calculations for proteins, and WFT-in-DFT embedding calculations.
Other recent and ongoing work in our groups also relies on PyAdf.
For instance, the code for performing adaptive QM/MM molecular
dynamics simulations developed by Bulo et al.67, 68 uses PyAdf for
executing the QM calculations.

PyAdf is under active development. Currently, it supports Adf,
Dalton, Dirac, and NWChem calculations, even though the types
of calculations available for each program package differ. We are
working on extending these existing interfaces to support addi-
tional types of calculations. In this context, we also plan to add
a unified interface to similar types of calculations performed with
different program packages by providing an additional layer of
job classes (e.g., singlepointjob, which will then execute
either adfsinglepointjob, daltonsinglepointjob, or
diracsinglepointjob). Furthermore, interfaces to additional
programs, most importantly Turbomole (using the MoleControl
environment), are being developed.

Another important topic we are considering is parallelization.
Currently, PyAdf executes all external tasks sequentially, even

though each task can use multiple processors if the program pack-
ages support parallelization. A parallel version of PyAdf to allow
for coarse-grain parallelization of potentially concurrent tasks in
a workflow is currently being developed. To achieve this, exter-
nal tasks will not be executed immediately when a job’s run
method is called, but instead be gathered into a “job queue.” Only
when the results of one job are requested, the accumulated tasks
will be executed in parallel. This way, an “automatic paralleliza-
tion” can be achieved, in which PyAdf input files are still written
in a sequential way, and the problem of determining the depen-
dencies between the different jobs and of executing the external
tasks in parallel is handled behind the scenes by the scripting
framework.

PyAdf version 1.0 is available free of charge at http://www.
pyadf.org under the GNU General Public License (GPL). On
the website, one can also find an extensive documentation and
examples of input files, including those for the examples discussed
here.
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In this article, we present a consistent derivation of a density functional theory (DFT) based embed-
ding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based
subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem.
Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged
quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-
variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-
independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-
DFT embedding via a local potential. We furthermore provide working equations for the special case
in which coupled cluster theory is used to obtain the density and excitation energies of the active
subsystem. A sample application is given to demonstrate the method. © 2012 American Institute of
Physics. [doi:10.1063/1.3675845]

I. INTRODUCTION

Non-empirical electronic structure methods, and their
implementations in sophisticated computer programs, have
become viable tools to study the molecular basis of natural
phenomena. By carrying out calculations on quantum chemi-
cal models of varying size and complexity, one may, e.g., in-
vestigate in detail how interactions between the constituents
of a biochemical system determine its function. An attractive
feature of this modelling is that one is not restricted to repro-
duce experimental observations but may also carry out numer-
ical experiments to make predictions about the effect of mod-
ifications in a system. These experiments may then be used
to aid in tuning the behaviour of artificial or biochemically
modified natural systems.

In order to be useful, a given method should be able to
provide reliable numerical data with a reasonable computa-
tional effort. Methods that have proven to work well in appli-
cations on small, isolated, molecules may be difficult to scale
up for models of condensed phase systems. This is due to
the steep computational scaling with the number of atoms in
the system that most methods exhibit. Methods are typically
based on density functional theory (DFT) or on post-Hartree-
Fock (HF) wave-function (WFT) approaches that have cubic
or worse scaling of computational costs with system size. For
conventional algorithms, this leads to a limitation in system
size of �tens of atoms (or �hundreds of atoms in the case
of HF or DFT) that is only slowly increased by advances in
computer technology.

a)Electronic mail: s.hoefener@vu.nl.
b)Electronic mail: andre.gomes@univ-lille1.fr.
c)Author to whom correspondence should be addressed. Electronic mail:

l.visscher@vu.nl.

One way to push the limit of applicability of these meth-
ods forward is to utilize techniques in which long-range in-
teractions are treated in a simplified and, therefore, more ef-
ficient manner. This is facilitated by the density fitting or
resolution-of-identity approach and allows for accurate cal-
culations of medium-sized molecules by coupled cluster (CC)
techniques.1–3 While such linear scaling implementations are
essential for benchmark and highly accurate studies, they are
still too demanding for standard applications. Another com-
plication of such global descriptions is the interpretation of
results in terms of qualitative models. This typically requires
an additional analysis step in which the wave-function and
molecular properties are decomposed into local contributions.

An alternative is to employ a subsystem approach, in
which the total system is a priori divided into small, chem-
ically meaningful, units that are considered separately. One
may thereby easily approximate less important parts of the
system by a computationally efficient approximate method
such as molecular mechanics (MM). The most popular real-
ization of such a scheme is the two-level QM/MM method,4–7

but more general methods in which an arbitrary number of
computational methods are combined are also in use.8, 9 The
flexibility to combine the most suitable methods (including,
e.g., specialized implementations) for the different tasks has
lead to a multitude of implementations of multilevel ap-
proaches. One may thereby distinguish between the so-called
embedding approaches, in which the accurate description is
intended only for one part of the system, and the true sub-
system approaches that build a global property of the system
from local properties. In the embedding schemes, one may
furthermore distinguish between methods that treat the
environment as an unstructured continuum and methods
that allow for atomistic detail and include specific interac-
tions with environment. Techniques to calculate molecular

0021-9606/2012/136(4)/044104/16/$30.00 © 2012 American Institute of Physics136, 044104-1
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properties by DFT, HF, and CC methods have been success-
fully combined with both specific (polarizable force-field) and
non-specific (dielectric continua) models of the environment
by Christiansen, Mikkelsen, Kongsted, and co-workers.10–14

While these approaches are very attractive in terms of
computational efficiency, they do rely on the chosen parame-
terization of the environment—which is a drawback, if there
is only a limited amount of experimental data available to pa-
rameterize the force fields or the continuum description, or
when simple parametrizations are difficult due to the nature
of the interactions. An alternative is then to resort to ab initio
methods in which also the environment is modelled as con-
sisting of a collection of interacting units that are each calcu-
lated using an appropriate quantum-mechanical method. Such
discrete quantum-mechanical (QM/QM) methods are, how-
ever, considerably more expensive than QM/MM approaches
and require efficient approximations in the less interesting
“environmental” region of the system. A promising method
is the so-called frozen-density embedding (FDE) scheme by
Wesolowski and Warshel,15 following an approach originally
proposed by Senatore and Subbaswamy16 and later Cortona17

for solid-state calculations. In FDE all subsystems and their
interactions are described by DFT, with computational sav-
ings resulting from the fact that typically only one system of
interest is fully optimized. The other subsystems are described
using a suitably chosen frozen electron density. The method is
formally exact if a number of boundary conditions on the ini-
tial subsystem densities are fulfilled.18, 19 In practice, the qual-
ity of results depends on the employed non-additive parts of
the kinetic and exchange-correlation energy functionals and
derivatives thereof20–22 to describe the interaction between
the chosen subsystems. With the currently available function-
als, one may describe primarily electrostatic and hydrogen
bonded interactions rather well,23–25 whereas coordination or
covalent bond still present a major problem.26, 27 While the
FDE ansatz has been mostly applied in the embedding regime
(one small active system surrounded by a large frozen envi-
ronment), one may also formulate this model as a special case
of a more general subsystem DFT approach.28, 29 One then
writes the total density as a sum of subsystem densities

ρtot =
∑

i

ρi, (1)

that are each optimized separately with the density of the
other fragments fixed.

The formulation of response theory within the FDE
framework was first proposed by Casida and Wesolowski,30

but only reached its full potential when Neugebauer31, 32 ex-
tended the formalism to a general subsystem DFT response
approach and provided an efficient implementation in the ADF

program package.33 His formulation does not only recover
important environment contributions34 on polarizabilities and
excitation energies in dimers, but also allows for the coupling
of local excitations in a complete model.35 A growing number
of applications shows the promise of subsystem DFT in both
the (frozen-density) embedding mode36–40 as well as in the
(fully self-consistent) subsystem mode41 to describe molecu-
lar properties.

Notwithstanding the success of the applications men-
tioned, DFT-in-DFT embedding approaches will always be
constrained by the limitations of the DFT itself. One may en-
counter cases in which present-day functionals fail to provide
a quantitatively correct description of one or more of the sub-
systems. In such cases, we would like to employ WFT ap-
proaches, and progress through one of its well-defined hierar-
chy of methods42 to improve and check the reliability of the
calculated results.

A very useful feature of the FDE is the fact that the em-
bedding potential that is used to obtain the density of the em-
bedded system is local. This absence of nonlocal projection
operators facilitates the integration of DFT- and WFT-based
methods in one overall model. In order to include WFT in
FDE, we need to consider a subsystem j for which the energy
is obtained by optimizing the parameters of a many-electron
wave function � j. This system should then interact with the
other subsystems only via its density

�∗
j �j → ρj , (2)

as in the DFT-in-DFT case. Such a WFT-in-DFT embed-
ding scheme has been pursued by Carter and co-workers,43–47

who combined DFT and variational methods such as Hartree-
Fock, complete active space self-consistent field (CASSCF),
or (multireference) CI. Their approach has so far mainly been
used to describe localized excitations in solids or surfaces,
e.g., for the calculation of excitation energies of CO adsorbed
on a platinum surface.48, 49 Some of us50 implemented further-
more an approximate scheme to employ non-variational WFT
methods (based on coupled cluster theory) for the calculation
of the low-lying spectra of solvated acetone and the f–f spectra
of the Neptunyl ion embedded in a Cs2UO2Cl4 crystal.

None of these approaches has so far gone beyond the use
of an embedding potential constructed for the ground state
in the determination of the excited state energies or response
properties such as polarizabilities. For such applications,
one needs to consider the change in interaction energy caused
by changes in the active system as well as by responses of the
environment. A straightforward way of taking those changes
into account is to choose a state-specific determination of
the embedding potential, as recently proposed by Khait and
co-workers.51 This has a drawback, however, that multiple
calculations are required if one is interested in more than
one excited states. Problematic is also the inclusion of non-
variational methods such as (multireference) coupled cluster
in which the wave function and the corresponding density are
not explicitly calculated. For such methods, it is convenient
to formulate the environment contribution to molecular prop-
erties and electronic excitations in terms of response theory,
as this provides a natural connection to the techniques used in
non-variational WFT methods.

Our goal in this paper is to work out a novel and rigorous
FDE response theory framework with which it is possible
to calculate molecular properties within a general subsys-
tem formulation—capable of handling both DFT-in-DFT
and WFT-in-DFT embedding. We will make use of the
time-averaged quasi-energy formalism52, 53 which provides a
natural way to treat variational and non-variational electronic
structure methods in the same fashion. After providing the
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necessary background on the FDE energy expressions, we
will start by discussing response theory in a subsystem
formulation and show how this reduces to the standard
formulation in the case of non-interacting subsystems. Next,
we will recast the DFT-in-DFT formalism of Neugebauer31, 32

into the time-averaged quasi-energy formalism and define
key quantities for the WFT-in-DFT approach. This case is
first considered for Hartree-Fock, and then for the case of
non-variational coupled cluster methods. We will briefly
discuss possible approximations, related to the extent one
wishes to consider the coupling of the different subsystems
in the time-dependent treatment. With the working equa-
tions available, we finish by addressing the similarities and
differences between the formalism discussed here and the
QM/MM response theory schemes proposed by Christiansen,
Mikkelsen, Kongsted, and co-workers.10–14

II. SUBSYSTEM DFT

For the optimization of a particular density ρI, it is con-
venient to sum the other densities to a frozen environment
density ρII and rewrite the density partitioning of Eq. (1) as

ρtot = ρI +
∑

i �=I

ρi = ρI + ρII. (3)

The total energy of the system, Etot[ρtot], can then be written
as

Etot[ρI + ρII] = EI[ρI] + EII[ρII] + Eint[ρI, ρII], (4)

with the internal energy of each of the subsystems i given as

Ei[ρi] =
∫

ρi(r)vi
nuc(r)dr + 1

2

∫∫
ρi(r)ρi(r′)
|r − r′| dr dr′

+Exc[ρi] + Ts[ρi] + Ei
nuc, (5)

with vi
nuc the nuclear potential due to the set of atoms associ-

ated with subsystem i and Ei
nuc the nuclear repulsion energy.

The interaction energy is similarly given by the expression

Eint[ρI, ρII] =
∫

ρI(r)vII
nuc(r)dr +

∫
ρII(r)vI

nuc(r)dr + EI,II
nuc

+
∫∫

ρI(r)ρII(r′)
|r − r′| dr dr′

+Enadd
xc [ρI, ρII] + T nadd

s [ρI, ρII], (6)

where non-additive contributions are defined as (see, e.g.,
Ref. 29)

Xnadd[ρI, ρII] = X[ρI + ρII] − X[ρI] − X[ρII]. (7)

All interaction energies are defined solely in terms of the sub-
system densities that are either determined by a Kohn-Sham
(KS) approach or by optimization of the wave function for an
interacting system (WFT approach).50, 54 We note that orbitals
of different subsystems always belong to independent subsets
that are therefore, in general, non-orthogonal.

Equation (4) is the starting point for the response formu-
lation in which we will first consider different parameteriza-
tions of the subsystem densities. We note that the internal en-
ergy of the environment does not depend on the active density

ρI so that minimizing the total energy of the system with re-
spect to ρI yields the Euler-Lagrange equation

δEI[ρI]

δρI
+ δEint[ρI, ρII]

δρI
= μ, (8)

with the Lagrange multiplier μ introduced to keep the num-
ber of electrons in system I constant. While this constraint
can be avoided in the context of DFT-in-DFT embedding as
shown recently by Elliot et al.,55, 56 in WFT-in-DFT embed-
ding it can only be relaxed in the DFT subsystems,57 because
wave-function-based methods can only provide accurate den-
sities for systems with an integer number of electrons. In our
general formulation, the fixed electron number approxima-
tion is applied to all subsystems, offering also the possibil-
ity of treating all subsystems with WFT. The derivative of
the interaction energy functional that carries the inter-system
dependence is the embedding potential, that can be decom-
posed into the Coulomb interactions with the environment
(nuclei and frozen electron density) plus derivatives of the
non-additive parts of the exchange-correlation and kinetic en-
ergy

vI
emb(r) = δEint[ρ]

δρI(r)
= vII

nuc(r) +
∫

ρII(r′)
|r − r′|dr′

+ vnadd
xc [ρI, ρII] + δT nadd

s [ρ]

δρ(r)

∣∣∣∣
ρI

. (9)

Regardless of the chosen density parameterization, and
methods for evaluating the subsystem energy, Enadd

xc and T nadd
s

are always calculated using a density functional. In this ar-
ticle, we will not discuss details of these density function-
als (and their derivatives); benchmarks of various kinetic en-
ergy functionals for use in FDE are well available.23–25, 58 We
note that improved functionals can nowadays be easily imple-
mented via automatic differentiation techniques.59

The conventional way to obtain the density of a subsys-
tem i is to construct a non-interacting reference system and
employ the Kohn-Sham equation for a constrained electron
density (KSCED).15 In this equation,

F KSφpi
(r) =

[
−1

2
� + vi

nuc(r) +
∫

ρi(r′)
|r − r′|dr′

+ vxc[ρi](r) + vi
emb(r)

]
φpi

(r)

= εKS
pi

φpi
(r), (10)

the local embedding potential of Eq. (9) is seen to represent
the environment. The subsystem energy is then calculated ac-
cording to Eq. (5) if desired.

The alternative way to obtain the density is to employ
WFT and consider a constrained minimization of the total en-
ergy of the system as a function of the free parameters in the
wave function used to model the electrons contained in system
i. In this minimization, the contribution from the derivative of
the interaction energy is identical to the DFT expression given
above in Eq. (9), but the terms coming from the subsystem en-
ergy itself depend on the chosen wave-function model and pa-
rameterization thereof. If we take the simplest wave-function
model, the single-determinant (SD) Hartree-Fock wave
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function, we find the Hartree-Fock analog of the KSCED
equation,

F HFφpi
(r) =

[
−1

2
� + vi

nuc(r) +
∫

ρi(r′)
|r − r′|dr′ + vi

emb(r)

]

×φpi
(r) −

∫
γi(r′, r)φpi

(r′)
|r − r′| dr′

= εHF
pi

φpi
(r). (11)

The resulting orbitals may be used to evaluate the subsystem
Hartree-Fock energy. Note that this energy should not contain
the interaction energy contribution, even though for both
Hartree-Fock and Kohn-Sham, the definition of canonical
orbitals includes the embedding potential,

FpIqI → FpIqI + 〈pI|vI
emb|qI〉 = δpIqIεpI . (12)

The density-only expression of Eq. (6) is applicable
for all methods and the total energy is given according to
Eq. (4), independent of the precise method used to determine
Ei and ρ i. Since one cannot straightforwardly calculate the
interaction energy contribution as an expectation value of
the embedding potential (due to the partially nonlinear de-
pendence of the energy on the density53, 60, 61), the subsystem
DFT scheme differs from most other embedding approaches
(see Sec. VI). Another point that should be mentioned at this
stage is that we always assume that the wave-function method
is capable of providing the exact subsystem density and en-
ergy. This is only rigorously true for a full configuration
interaction method in a complete basis, but compensating for
missing electron correlation contributions in WFT by adding
a correlation functional62, 63 is a notoriously difficult problem
that we will not attempt to solve in this work.

III. QUASI-ENERGY RESPONSE THEORY

In our derivation of subsystem response theory, we fol-
low the work on frequency-dependent response functions of
Christiansen et al.52 which is restricted in its time-averaged
formulation to time-periodic perturbations. For the sake of
completeness and to introduce the notation, we repeat the
most important definitions and equations. For a general dis-
cussion concerning the applicability of the quasi-energy for-
malism and DFT, see, e.g., Ref. 53. Let Ĥ t be a general, time-
dependent Hamiltonian,

Ĥ t = Ĥ + V̂ t , (13)

where V̂ t is the time-dependent perturbation operator which
is given as

V̂ t =
N∑

k=−N

exp(−iωkt)
∑

x

εx(ωk)X̂ (14)

with εx(ωk) parameters that denote the strength of the perturb-
ing fields. The linear response function is defined via the time
evolution of the expectation value of an operator X̂,

〈X〉(t) = 〈X〉0

+
∑

k1

exp(−iωk1 t)
∑

y

〈〈X; Y 〉〉ωk1
εy(ωk1 ) + · · · .

(15)

The quasi-energy Q(t) and its time-average {Q(t)}T are de-
fined as

Q(t) = 〈Õ|
(

Ĥ t − i
∂

∂t

)
|Õ〉, (16)

{Q(t)}T = 1

T

∫ T/2

−T/2
Q(t) dt, (17)

respectively, where T is the period of the perturbation in
Eq. (14) and the tilde denotes the phase-isolated form of the
wave function. For variational methods, such as Hartree-Fock
or DFT, the calculation of the linear response function pro-
ceeds directly from the quasi-energy itself. In this treatment,
the linear response function is obtained as the second deriva-
tive of the time-averaged quasi-energy. For non-variational
wave functions, first a Lagrangian,

L(λ, λ̇, λ̄) = Q(λ, λ̇) + λ̄ e(λ, λ̇), (18)

with appropriate constraints e(λ, λ̇) and Lagrange multipliers
λ̄ needs to be introduced before proceeding to derive the re-
sponse functions.

Lagrangian-based formulations can be extended to incor-
porate environment effects,64 and will be central to our devel-
opment. For the subsystem treatment, we define a total quasi-
energy Lagrangian consisting of the quasi-energy expressions
of the subsystems as well as their interaction,

Ltot(t) =
∑

i

Li(t) + Qint(t). (19)

While Eq. (19) allows an arbitrary number of subsystems, it
is more convenient to again restrict the derivation to the case
of two subsystems. Thus, in the following, subsystem I repre-
sents the “active” subsystem of interest, whereas subsystem II
consists of the sum of all other subsystems and represents the
“environment.” The total quasi-energy expression in Eq. (19)
then reduces to

Ltot(λ, λ̇, λ̄; λII, λ̇II, λ̄II) = [Q(λ, λ̇) + λ̄e(λ, λ̇)]

+Qint(λ, λ̇, λ̄; λII, λ̇II, λ̄II)

+ [QII(λII, λ̇II) + λ̄IIeII(λII, λ̇II)],

(20)

where we make the dependence of Ltot(t) on the wave-
function parameters and constraints explicit. Note that all
inter-system dependencies are contained in the interaction en-
ergy. In the following, we will assume that the environment is
optimized with DFT, which is variational, so that we can omit
the multipliers λ̄II.

The time-dependent Lagrangian can then be expanded in
orders of the perturbation,

L(t) = L(0) + L(1)(t) + L(2)(t) + · · · , (21)
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TABLE I. Vectors and matrices for general response functions (see Ref. 52).

Quantity Derivative expr. Quantity Derivative expr. Quantity Derivative expr.

ηY
∂2{L(2)}T

∂λ(1)(ωX)∂εY (ωY )
IIηY

∂2{L(2)}T
∂λ

(1)
II (ωX)∂εY (ωY )

ξY ∂2{L(2)}T
∂λ̄(1)(ωX)∂εY (ωY )

J(ωY )
∂2{L(2)}T

∂λ̄(1)(ωX)∂λ̄(1)(ωY )

A(ωY )
∂2{L(2)}T

∂λ(1)(ωX)∂λ̄(1)(ωY )
I,IIA(ωY )

∂2{L(2)}T
∂λ̄(1)(ωX)∂λ

(1)
II (ωY )

F(ωY )
∂2{L(2)}T

∂λ(1)(ωX)∂λ(1)(ωY )
I,IIF(ωY )

∂2{L(2)}T
∂λ(1)(ωX)∂λ

(1)
II (ωY )

II,IIF(ωY )
∂2{L(2)}T

∂λ
(1)
II (ωX)∂λ

(1)
II (ωY )

η
∂{Q(0)}T

∂λ(0)
IIη

∂{Q(0)
II }T

∂λ(0)

and Fourier transformed to the frequency domain. We may
similarly expand the parameters in terms of the perturbation
strength, obtaining, e.g., the first-order expression,

λ(1)(ωk1 ) =
∑

x

εx(ωk1 ) λX(ωk1 ). (22)

Response functions are obtained as derivatives of the time-
averaged quasi-energy Lagrangian of nth order {L(n)}T with
respect to the field-strength variables, e.g., for second order,

〈〈X; Y 〉〉ωk1
= d2{L(2)}T

dεx(ω0)dεy(ωk1 )
, where ωk1 = −ω0.

(23)

Using the abbreviations given in Table I and the fact that the
contributions from second-order parameters, such as λ(2)(t),
λ̄(2)(t), and λ

(2)
II (t), are zero due to the 2n + 1 rule, the second

derivative becomes

d2
{
L

(2)
tot

}
T

dεx(ω0)dεy(ωk1 )
= d2

{
L

(2)
I

}
T

dεx(ω0)dεy(ωk1 )
+ d2

{
Q

(2)
II

}
T

dεx(ω0)dεy(ωk1 )

+ d2
{
Q

(2)
int

}
T

dεx(ω0)dεy(ωk1 )
, (24)

where the first two terms are obtained similar to Eq. (3.28) of
Ref. 52,

d2
{
L

(2)
I

}
T

dεx(ω0)dεy(ωk1 )
= P (X(ω0), Y (ωk1 ))

×
{[

ηX + 1

2
F λX(ω0)

]
λY

(
ωk1

)

+λ̄
X

(ω0)

[
1

2
J λ̄

Y (
ωk1

) + ξY

+A λY (ωk1 )

]}
, (25)

d2
{
Q

(2)
II

}
T

dεx(ω0)dεy(ωk1 )
= P

(
X(ω0), Y (ωk1 )

)

×
{[

IIηX + 1

2
II,IIF λX

II (ω0)

]
λY

II

(
ωk1

)}
,

(26)

while the interaction term reads

d2
{
Q

(2)
int

}
T

dεx(ω0)dεy

(
ωk1

) =P
(
X(ω0), Y

(
ωk1

))

×
{
λ̄

X
(ω0) Aint λY (ωk1 )

+ 1

2

[
Fint λX(ω0)λY (ωk1 )

+ Jint λ̄
X

(ω0)λ̄
Y (

ωk1

)
]

+ I,IIFint λX(ω0)λY
II

(
ωk1

)

+ λ̄
X

(ω0) I,IIAint λY
II

(
ωk1

)}
. (27)

P (X(ω0), Y (ωk1 )) ensures symmetry with respect to the inter-
change of X and Y and associated frequencies ω0 and ωk1 .
Throughout the paper, we use supermatrix notation where
vectors and matrices are multiplied in order—a notation use-
ful especially for higher order response properties.

For the present purpose, we need only the first-order per-
turbed quantities. These are obtained by requiring stationarity
of the Lagrangian with respect to variations in first-order mul-
tipliers λ̄

X
, first-order amplitudes λX, and first-order param-

eters of the environment λX
II , yielding a set of coupled linear

response equations for frequency ωy,

⎛

⎝
0
0
0

⎞

⎠ =

⎛

⎜⎝
ξY

ηY

IIηY

⎞

⎟⎠ +

⎛

⎜⎜⎝

A(ωy) J I,IIA

F A(−ωy) I,IIF
I,IIF I,IIA II,IIF(ωy)

⎞

⎟⎟⎠

×

⎛

⎜⎜⎝

λY (ωy)

λ̄
Y

(ωy)

λY
II(ωy)

⎞

⎟⎟⎠ . (28)

It is convenient to separate contributions from the subsystems
Lagrangian and their interaction explicitly by decomposing
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the matrix above as
⎛

⎜⎜⎝

A(ωy) 0 0

F A(−ωy) 0

0 0 II,IIF(ωy)

⎞

⎟⎟⎠

+

⎛

⎜⎜⎝

Aint Jint
I,IIAint

Fint Aint
I,IIFint

I,IIFint
I,IIAint

II,IIFint

⎞

⎟⎟⎠ . (29)

The J-term drops out when the 2n + 2 rule based on decou-
pled response equations for λX and λ̄

X
can be applied10, 52 but

contains a non-zero contribution due to the interaction. The
response equations (Eq. (28)) allow to write the expression
for the total response function as

〈〈X; Y 〉〉ωy
= 1

2
C±ω P (X(ωx), Y (ωy))×

{
1

2
J λ̄

X
(ωx)λ̄

Y
(ωy)

+
⎡

⎣
(

ηX

IIηX

)T

+ 1

2

(
λX(ωx)

λX
II (ωx)

)T

×
(

F(ωy) I,IIF(ωy)

I,IIF(ωy) II,IIF(ωy)

)](
λY (ωy)

λY
II(ωy)

)}
.

(30)

The operator C±ω enforces symmetrization with respect to si-
multaneous complex conjugation and inversion of the sign of
the frequencies.52 Alternatively, we can rewrite Eq. (30) in
terms of the individual (“uncoupled”) subsystems as well as
the coupling contribution,

〈〈X; Y 〉〉ωy
= 〈〈X; Y 〉〉unc,I

ωy
+ 〈〈X; Y 〉〉unc,II

ωy
+ 〈〈X; Y 〉〉I,II

ωy
.

(31)

The individual subsystem contributions can be extracted from
Eq. (30) and are given as52, 53, 65

〈〈X; Y 〉〉unc,I
ωy

= 1

2
C±ωP (X(ωx), Y (ωy))

×
{

1

2
J λ̄

X
(ωx)λ̄

Y
(ωy)

+
[
ηX + 1

2
F λX(ωx)

]
λY (ωy)

}
, (32)

〈〈X; Y 〉〉unc,II
ωy

= 1

2
C±ωP (X(ωx), Y (ωy))

×
[

IIηX + 1

2
II,IIF λX

II (ωx)

]
λY

II(ωy). (33)

If only these are included, the result will be denoted
“uncoupled”—implying that the response of the interaction
energy is included in the “intra-subsystem” blocks in Eq. (28)
but that the “inter-subsystem” blocks are neglected. The full,
i.e., coupled, result includes also the inter-subsystem response

function

〈〈X; Y 〉〉I,II
ωy

= C±ωP (X(ωx), Y (ωy)){I,IIFintλ
X(ωx)λY

II(ωy)}.
(34)

In the limit of non-interacting subsystems, all interaction con-
tributions vanish and the total response function reduces to the
sum of the isolated subsystems.

For variational wave functions, we can remove contri-
butions of Lagrangian multipliers and the environment in
Eq. (28), and the linear response function then takes the
form52

〈〈X; Y 〉〉ωy
= −ηX (F(ωy))−1 ηY . (35)

The excitation energies are finally calculated from the poles of
Eq. (35), whereas properties are obtained from the evaluation
of the linear response function at a given frequency ωy. Due
to the computational cost, however, instead of calculating the
inverse in Eq. (35), typically the linear set of equations,

F(ωy) λY (ωy) = −ηY , (36)

is solved,53, 66 from which the linear response function and
thus properties such as, frequency-dependent dipole-dipole
polarizabilities, are calculated as

〈〈X; Y 〉〉ωy
= ηX · λY (ωy). (37)

With separate coupling contributions, it is possible to
devise computational strategies adapted to the properties of
interest.35 For instance, in cases where the coupling is im-
portant, such as excitation energies or polarizabilities, these
can be approximated, and in the cases where these are less
important, such as local excitations or NMR chemical shifts,
these can be dropped. Furthermore, it offers the possibility to
operate mostly with the quantities for the isolated subsystems,
thus avoiding the formation and handling of matrices and vec-
tors with the dimension of the supermolecular basis.31, 32 In
Secs. IV and V, we will derive explicit working expressions
for the components of the quasi-energy Lagrangian, as well
as the different matrices and vectors needed.

IV. REVISITING DFT-IN-DFT RESPONSE THEORY

In this section, we discuss the DFT-in-DFT FDE response
theory using the quasi-energy formalism. In order to reformu-
late the subsystem Kohn-Sham theory in the formalism of sec-
ond quantization, we follow closely the notation used by Saue
and Helgaker.67 We start by introducing the parameterization
of a closed-shell Kohn-Sham determinant of one subsystem
in terms of an unitary exponential orbital-rotation operator,

|0i〉 = exp(κ̂i)|0̃i〉 with κ̂i =
∑

pi>qi

(κpiqi
Epiqi

− κ∗
piqi

Eqipi
).

(38)

In the framework of FDE, the subsystem orbitals are to be
considered as two independent sets of auxiliary quantities that
serve to provide the exact density and its responses. This im-
plies that admixture of orbitals from a subsystem i into the
orbitals of a different subsystem j is to be excluded, and the
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orbital rotations fulfil the condition

κpiqj
= δij κpiqi

. (39)

The density of a given subsystem can be written as

ρi(r, κ i) = 〈0i | exp(−κ̂I)ρ̂i(r) exp(κ̂I)|0i〉
=

∑

piqi

ρpiqi
(r)Dpiqi

(κ i), (40)

where ρ̂(r) is the density operator, given in second quantiza-
tion as

ρ̂i(r) =
∑

piqi

ρpiqi
(r) Epiqi

, (41)

ρpiqi
(r) = φ∗

pi
(r)φqi

(r). (42)

In order to calculate the density response, the density ma-
trix D(κ i) is expanded in orders of orbital rotation parameters
using the Baker-Campell-Hausdorff (BCH) formula,

Dpiqi
(κ i) = 〈0i |Epiqi

|0i〉 + 〈0i |[κ̂i , Epiqi
]|0i〉

+ 1

2!
〈0i |[κ̂i , [κ̂i , Epiqi

]]|0i〉 + O
(
κ3

i

)
. (43)

For convenience, we also introduce the (response) density ma-
trices � for a single-determinant exponential parameteriza-
tion,

�SD
xiyi ;piqi

=
(

∂DSD (1)
xiyi

∂κ
(1)
piqi

)
= 〈0i |[Epiqi

, Exiyi
]|0i〉, (44)

�SD
xiyi ;piqi ,ri si

=
(

∂2DSD (2)
xiyi

∂κ
(1)
piqi

∂κ
(1)
ri si

)
= 1

2
〈0i |[Epiqi

, [Erisi
, Exiyi

]]|0i〉.

(45)

Note that the number of indices indicates the order of the
derivatives.

A. DFT response theory for isolated subsystems

We first consider the DFT response theory using the
quasi-energy formalism and second quantization53, 65 for a
single isolated subsystem. Starting point is the DFT quasi-
energy expression,

Q[ρ](t, ε) = Ts[ρ] + V t [ρ] + Vnuc[ρ] + J [ρ]

+Exc[ρ(r, t)] −
{
〈0̃|i ∂

∂t
|0̃〉

}

T

, (46)

where J[ρ] denotes the Coulomb contribution. The energy ex-
pression is obtained as the (time-independent) zeroth-order
quasi-energy,

Q(0)[ρ(0)] = Ts[ρ
(0)] + Vnuc[ρ(0)] + J [ρ(0)] + Exc[ρ(0)].

(47)

In order to calculate the linear response, we adopt the adia-
batic approximation, assuming that the time dependence of
the exchange-correlation potential may be fully described

through the time evolution of the density. For a single sub-
system, only expressions for F and ηY in terms of the single-
determinant Kohn-Sham ansatz are needed,52, 53, 68

Fpq,rs(ωy) = ∂2{Q(2)}T
∂κ

(1)
pq (ωx)∂κ

(1)
rs (ωy)

= E
[2]
DFT;pq,rs − ωyS

[2]
pq,rs ,

(48)

ηY
pq = ∂2{Q(2)}T

∂κ
(1)
pq (ωx)∂εY (ωy)

= 〈0|[Ŷ , Epq]|0〉, (49)

and the Hessian E[2]
DFT for the closed-shell case reads

E[2]
DFT =

(
A B
B∗ A∗

)
, (50)

Aia,jb = δij δab

(
εKS
a − εKS

i

) + 2(ia|bj ) + (ia|wxc|bj ), (51)

Bia,jb = 2(ia|jb) + (ia|wxc|jb). (52)

Throughout the article, round brackets denote charge-cloud
notation for two-electron integrals.

B. DFT-in-DFT response theory

To the contributions from the isolated subsystems con-
sidered above, we may next add the contributions from the
interaction term Qint. Starting point is the expansion

Qint = E
[0]
int + E[1]

int;Iκ I + E[1]
int;IIκ II

+ 1

2!

(
E[2]

int;I,I κ I κ I + E[2]
int;II,II κ II κ II + E[2]

int;II,I κ II κ I

+ E[2]
int;I,II κ I κ II

) + O(κ3). (53)

In order to evaluate the derivatives of a functional E[ρ(κ)],
the functional chain rule,60

(
∂E[ρ(r, κ)]

∂κpq

)
=

∫ (
δE[ρ]

δρ(r′)

)(
∂ρ(r′, κ)

∂κpq

)
dr′, (54)

is employed. We furthermore use the short-hand notation
for the first [Eq. (9)] and second functional derivative,
respectively,

vi
emb(r′) = δEint[ρ]

δρi(r′)
, w

ij

emb(r′, r′′) = δ2Eint[ρ]

δρi(r′)δρj (r′′)
.

(55)

As this interaction between system I and the sum of the other
systems can be considered an embedding of system I, we will
denote the potential and the kernel arising from the interac-
tion term as the “embedding potential” and “embedding ker-
nel,” respectively. The first-order contribution of the interac-
tion term can be formulated as

∑

ri si

E
[1]
int;ri si

κri si
=

∑

ri si

∑

xiyi

�SD
xiyi ;ri si

〈xi |vi
emb|yi〉κrisi

. (56)

Utilizing the definition of the density matrix in Eq. (44), the
non-zero elements for subsystem I are simply

E
[1]
int;iIaI

= 〈iI|vI
emb|aI〉. (57)
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For the diagonal (i = j) second-order term

E
[2]
int;piqi ,ri si

=
∫∫ (

δ2Eint

δρ(r′)ρ(r′′)

) (
∂ρ(1)(r′)

∂κ
(1)
piqi

)

×
(

∂ρ(1)(r′′)

∂κ
(1)
ri si

)
dr′dr′′

+
∫ (

δEint

δρ(r′)

)(
∂2ρ(2)(r′)

∂κ
(1)
piqi

∂κ
(1)
ri si

)
dr′, (58)

the second derivative needs to be evaluated, which yields

E
[2]
int;piqi ,ri si

=
∑

xiyi ,tiui

�SD
xiyi ;piqi

�SD
tiui ;ri si

(xiyi |wii
emb|tiui)

+
∑

xiyi

�SD
xiyi ;piqi ,ri si

〈xi |vi
emb|yi〉. (59)

After evaluation of the density matrices, this gives the non-
vanishing elements for subsystem I,

E
[2]
int;iIaI,bIjI

= (iIaI|wI,I
emb|bIjI) + δiIjI〈aI|vI

emb|bI〉
− δaIbI〈iI|vI

emb|jI〉, (60)

E
[2]
int;iIaI,jIbI

= (iIaI|wI,I
emb|jIbI). (61)

The mixed second derivative leads to a coupling between
the sub-blocks of the Hessian for which only the kernel con-
tributions (wemb) survive,

E
[2]
int;piqi ,rj sj

=
∫∫

w
ij

emb(r′, r′′)

(
∂ρ

(1)
i (r′)

∂κ
(1)
piqi

)(
∂ρ

(1)
j (r′′)

∂κ
(1)
rj sj

)
dr′dr′′

=
∑

xiyi ,tj uj

�SD
xiyi ;piqi

�SD
tj uj ;rj sj

(xiyi |wij

emb|tj uj ).

(62)

The full embedding kernel contribution can be expressed as

w
ij

emb(r′, r′′) = wxck(r′, r′′) − δij

[
δ2Ts[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρi

+ δ2Exc[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρi

]
+ (1 − δij )

1

|r′ − r′′| , (63)

with the delta function indicating that the Coulomb term is
only evaluated for the inter-subsystem interaction (i �= j). For
convenience, we introduce auxiliary kernel contributions to
specify the kinetic energy and exchange-correlation terms in
the embedding kernel,

wxck(r′, r′′) = δ2Exc[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρtot

+ δ2Ts[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρtot

, (64)

wi
xck(r′, r′′) = wxck(r′, r′′) −

[
δ2Ts[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρi

+ δ2Exc

δρ(r′)δρ(r′′)

∣∣∣∣
ρi

]
. (65)

1. Linear response function

The general response equations in Eq. (28) reduce in the
DFT-in-DFT case to

(
λY (ωy)

λY
II(ωy)

)
= −

(
F(ωy) I,IIF
I,IIF II,IIF(ωy)

)−1 (
ηY

IIηY

)
. (66)

Substituting this result into Eq. (30), we obtain

〈〈X; Y 〉〉ωy
= −

(
ηX

IIηX

)T (
F(ωy) I,IIF
I,IIF II,IIF(ωy)

)−1 (
ηY

IIηY

)
.

(67)

The full matrix F collects the different sub-matrices
(

F(ωy) II,IF
I,IIF II,IIF(ωy)

)
=

(
I,IE[2] II,IE[2]

I,IIE[2] II,IIE[2]

)

−ωy

(
I,Im 0

0 II,IIm

)
, (68)

where m stands for the metric containing 1 and −1 on the
diagonal. With the expressions above, we obtain the Hessian
contributions to the matrices i,j Fint as

E[2]
int;piqi ,rj sj

=
(

i,j Aint i,j Bint

i,j Bint∗ i,j Aint∗

)
, (69)

where the diagonal kernel contributions to the elements of
Eq. (69) are given (for real orbitals) by

(iIaI|wI,I
emb,I|jIbI) → I,IAint

iIaI,jIbI
, I,IB int

iIaI,jIbI
. (70)

Adding this contribution to those from Eqs. (48) and (50), we
obtain the complete expressions for the supermatrix F for
each of the subsystems, e.g., for subsystem I,

I,IAiIaI,jIbI = δiIjIδaIbI

(
εKS
aI

− εKS
iI

) + 2(iIaI|bIjI)

+ (iIaI|wxc|bIjI) + (iIaI|wI
xck|bIjI), (71)

I,IBiIaI,jIbI = 2(iIaI|jIbI) + (iIaI|wxc|jIbI) + (iIaI|wI
xck|jIbI).

(72)

These diagonal blocks are coupled by the pure interaction
block

I,IIAint
iIaI,jIIbII

= I,IIB int
iIaI,jIIbII

= 2(iIaI|jIIbII)int

+ (iIaI|wxck|jIIbII). (73)

Note that we use the subscript “int” on the right-hand side to
emphasize that this Coulomb term arises due to the interaction
energy expression in Eq. (63) which goes back to Eq. (6).

Note also that the orbital energies include both the ef-
fective and the embedding potential of the subsystem. For
DFT-in-DFT, it is therefore convenient to add the non-additive
exchange-correlation contribution (contained in the embed-
ding potential) to the subsystem exchange-correlation con-
tribution (which then becomes exchange-correlation potential
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for the total density). This gives as final equation the simple
expression,

I,IAiIaI,jIbI = δiIjIδaIbI

(
εKS
aI

− εKS
iI

) + 2(iIaI|bIjI)

+ (iIaI|w̌I
xck|bIjI), (74)

I,IBiIaI,jIbI = 2(iIaI|jIbI) + (iIaI|w̌I
xck|jIbI), (75)

where the contribution w̌I
xck is defined as

w̌I
xck(r′, r′′) = wxck(r′, r′′) − δ2Ts[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρI

. (76)

Up to this point, the subsystem approach enabled the ex-
traction of explicit interaction contributions, but the dimen-
sionality of the problem remains the same compared to a su-
permolecular treatment. Only in case of uncoupled excitations
it is evident that both the response equations and the linear re-
sponse function become decoupled, leading to smaller dimen-
sions and, thus, significantly reduced computational costs.

As shown by Neugebauer, it is possible to avoid matrices
and vectors with supermolecular dimensions in the coupled
treatment.31, 32 In a first step, the lowest excitation energies for
the different subsystems are calculated. Subsequently, a trun-
cated eigenvalue equation is set up with reduced dimensions
for which a reduced number of coupling elements are cal-
culated. Therewith, the frozen-density approach significantly
speeds up the calculation of molecular properties, while re-
taining the accuracy close to a supermolecular calculation.

V. WFT-IN-DFT RESPONSE THEORY

As discussed in the Introduction, wave-function-based
methods present another valid way to obtain the electron den-
sity. Following the typical hierarchy in the wave-function
ansatz, we start with the variational, single-determinant,
Hartree-Fock method. Hartree-Fock should thereby be con-
sidered as an approximation and the first step towards
coupled-cluster theory.

A. HF-in-DFT

1. Density parameterization

Analogously to the DFT-in-DFT embedding, we intro-
duce an independent exponential parameterization for each
subsystem,

exp(−κ̂I)|0HF〉, (−κ̂II)|0DFT〉, (77)

so that the total electron density remains the sum of both sub-
systems,

ρtot(r, t)
FDE= ρWFT(r, κ I, t) + ρDFT(r, κ II, t). (78)

With all variational parameters expressed in terms of orbital
rotations, the full quasi-energy expression reads

Q(t) = 〈0| exp[−κ̂(t)]

(
Ĥ + V̂ t − i

∂

∂t

)
exp[κ̂(t)]|0〉

+Qint[ρHF(t), ρDFT(t)] + Q[ρDFT(t)]. (79)

2. Linear response

The working equations of linear response theory in the
HF-in-DFT case are very similar to the DFT-in-DFT case,
with differences due to the exact exchange (see, e.g., Ref. 69)
appearing only in the diagonal subsystem blocks. Because the
treatment of the interaction energy remains identical to DFT,
the matrix Fint can again be partitioned into A and B sub-
blocks with the expressions for the matrix elements of those
sub-blocks being the same as those in Eqs. (70) and (73) (with
of course the Hartree-Fock density replacing the DFT density
in subsystem I).

The HF-in-DFT derivation thus yields the following one-
electron and two-electron contributions for the matrix AHF,

AHF
iIaI,jIbI

= δiIjIF
HF,I
aIbI

− δaIbIF
HF,I
iIjI

+ [iIaI||bIjI]

+ δiIjI〈aI|vI
emb|bI〉 − δaIbI〈iI|vI

emb|jI〉
+ (iIaI|wI,I

emb|bIjI), (80)

where square brackets are defined as anti-symmetrized
spin-free two-electron integrals,

[pq||rs] = 2(pq|rs) − (ps|rq). (81)

Collecting all contributions that belong to the Fock matrix,
the expressions simplify to

AHF
iIaI,jIbI

= δiIjIδaIbI

(
εHF
aI

− εHF
iI

) + [iIaI||bIjI]

+ (iIaI|wI
xck|bIjI), (82)

BHF
iIaI,jIbI

= [iIaI||jIbI] + (iIaI|wI
xck|jIbI), (83)

where we have used the diagonal form of the Fock matrix
(including the embedding potential) and the short-hand
notation adapted from Eq. (65). Note that w̌i

xck used in
Eq. (74) and wi

xck used in Eq. (82) differ by the presence of
the second term in Eq. (65), which is based on the fact that the
Hartree-Fock part has no exchange-correlation contribution it
could cancel with.

A simple approximation in this WFT-in-DFT approach
would be to remove the matrix B from the environment
and coupling blocks. Introducing the 3-component acronym
subsystemI-coupling-subsystemII to specify a particular ap-
proximation in the coupling block, the TDHF-TDA-TDA
model results in the following form of the supermatrix F:

(
F(ωy) II,IF

I,IIF II,IIF(ωy)

)
=

⎛

⎜⎜⎜⎜⎝

I,IAHF I,IBHF II,IA 0
I,IBHF I,IAHF 0 II,IA

I,IIA 0 II,IIAKS 0

0 I,IIA 0 II,IIAKS

⎞

⎟⎟⎟⎟⎠

−ωy

(
I,Im 0

0 II,IIm

)
, (84)

where we have used superscripts HF and KS to denote the way
in which the density is generated. Neglecting also the I,IBHF

blocks takes us to a CIS-TDA-TDA model. Such simplifica-
tions may be interesting when large environments are to be
considered.
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B. Coupled-cluster quasi-energy response theory
for an isolated system

We now derive the equations for CC-in-DFT frozen-
density embedding, as an example, in which we need
Lagrangian multipliers to treat a nonvariational wave
function. We start by briefly summarizing conventional
coupled-cluster response theory to introduce the Lagrangian
technique. For a more detailed discussion, see, e.g.,
Refs. 52, 65, and 70. In the conventional formalism, orbital
rotations are not treated explicitly but enter implicitly via the
single-excitation amplitudes.52, 70, 71

We note that t denotes the time, whereas t denote the
coupled-cluster amplitudes, which are included in the cluster
operator T̂ , and t̄ Lagrangian multipliers. Since the coupled-
cluster energy is not variationally optimized, the time-
dependent coupled cluster quasi-energy,

Q(t; t) = 〈HF|Ĥ t exp(T̂ (t))|HF〉, (85)

is combined with the time-dependent cluster amplitude
equations

0 = 〈ν| exp(−T̂ (t))

(
Ĥ t − i

∂

∂t

)
exp(T̂ (t))|HF〉 = �ν(t; t)

(86)

to give a quasi-energy Lagrangian,

LCC(t, t̄; t) = Q(t; t) +
∑

ν

t̄ν�ν(t; t). (87)

In the following, the projection manifold is often not specified
to keep the derivation general.

In the presence of a (quasi-) periodic perturbation, the
time evolution of the system is completely determined by
the condition that the time average of the quasi-energy La-
grangian is stationary with respect to variations of the cluster
amplitudes and the Lagrangian multipliers. Requiring station-
arity of the Lagrangian with respect to the coupled-cluster
amplitudes, equations for the zeroth-order Lagrangian mul-
tipliers t̄(0) are obtained (see also Ref. 12). Including both
singles and doubles excitations in the cluster operator yields
the CCSD model. Computationally cheaper is the approxi-
mated coupled-cluster singles and doubles model, denoted as
CC2.42, 72 The CC2 energy and amplitude equations read in
the similarity-transformed formulation using the specific pro-
jection manifold,73

E�CC =
∑

ia,jb

(
tai tbj + tab

ij

)
[ia||jb], (88)

�ai = F̃ai +
∑

kc

(
2tac

ik − tac
ki

)
F̃kc +

∑

cdk

(
2t cdik − t cdki

)
(kd|ãc)

−
∑

dkl

(
2tad

kl − tad
lk

)
(ld|kĩ), (89)

�ai,jb =
∑

c

(
t cbij Fac + tac

ij Fbc

)

−
∑

k

(
tab
kj Fik + tab

ik Fkj

) + (ĩã|j̃ b̃). (90)

The tilde indicates quantities calculated from T1-transformed
molecular orbitals. The CC2 equations are useful to provide
an example of CC-in-DFT embedding and can be further ap-
proximated to provide a CCS treatment. Note that in order
to do this, we do not assume canonical orbitals, because we
will in the following consider cases in which the embedding
potential is updated relative to the one used in the Hartree-
Fock stage of the calculation (in order to be consistent with
the coupled cluster density rather than with an input HF or
DFT density).

1. Linear response

As for the DFT, we refer to the original references for
the details of the unembedded CC2 derivation.52 Adapting
Eq. (32) to the coupled-cluster case and applying the 2n
+ 2 rule, the linear response function becomes

〈〈X; Y 〉〉CC
ωy

= 1

2
C±ωP (X(ωx), Y (ωy))

×
[
ηX + 1

2
F tX(ωx)

]
tY (ωy), (91)

and the solution of the linear response equations yields

tY (ωy) = −t t̄A(ωy)−1ξY , (92)

t̄Y (ωy) = −t t̄A(−ωy)−1(ηY − t tF tY (ωy)). (93)

Moreover, since tX(ωx) = tX(−ωy) = −t t̄A(−ωy)−1ξX, it
can be seen that the response function has poles at frequen-
cies corresponding to the eigenvalues of the coupled cluster
Jacobian t t̄A (see Table II),

t t̄A Rf = ωf Rf . (94)

C. CC-in-DFT

In order to derive working equations for the CC-in-DFT,
the expansion of the interaction term has to be carried out in
orders of both the coupled-cluster amplitudes and Lagrangian
multipliers,

Qint = E
[0]
int [ρCC(t, t̄), ρDFT(κ II)] + E[1]

int;t t

+ E[1]
int;t̄ t̄ + E[1]

int;κII
κ II + · · · . (95)

Similar to the SD cases, the amplitudes and multipliers
have not yet been expanded in the different orders of the
perturbation.

1. The coupled-cluster electron density

The coupled-cluster electron density ρCC(t, t̄) is now
needed, which can be calculated as an expectation value. One
then uses

〈�(t)| = 〈HF| +
∑

ν

t̄ν(t)〈ν| exp(−T̂ (t)) (96)

as the bra state and the normal coupled-cluster wave function
as the ket state, so that the norm of such a bra-ket is conserved
during time evolution,74

1 = 〈�(t)|CC(t)〉. (97)
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TABLE II. Coupled-cluster response quantities.

Quantity Vacuum contr. Uncoup. emb. contr.a cf. Ref.

t(0) 0
!= ∂{L(0)}T

∂ t̄(0)
ν

0 = �ν +E
[1]
int,WFT;t̄ ;ν 11, 12

t̄(0) 0
!= ∂{L(0)}T

∂t(0)
μ

0 = ∑
ν t̄

(0)
ν

∂�ν

∂t
(0)
μ

+ t ημ +E
[1]
int,WFT;t ;μ 11, 12

tη
∂ECC

∂t
(0)
μ

〈HF| exp(−T̂ (0)) [Ĥ , τμ] exp(T̂ (0))|HF〉 52

ηY
μ

∂2{L(2)}T
∂εY (ωy )∂t

(1)
μ (ωy )

〈�|[Ŷ , τμ]|CC〉 11, 13, 52

tY (ωy ) 0
!= ∂{L(0)}T

∂ t̄(1)
ν

0 = (t t̄ A − ωy1)tY (ωy ) + 〈ν|Ŷ |CC〉 +t̄ E[2]
int,WFT;t̄ t̄ 11, 13b

t̄Y (ωy ) 0 = t̄Y (ωy )(t t̄ A + ωy1) + ηY + t t F tY (ωy ) 11, 13b

ttFμν

∂2{L(2)}T
∂t

(1)
μ (ωx )∂t

(1)
ν (ωy )

〈�|[[Ĥ , τμ], τν ]|CC〉 +E
[2]
int,WFT;t t ;μν 11, 13

t t̄Aμν (ωy )
∂2{L(2)}T

∂t
(1)
μ (ωx )∂t̄

(1)
ν (ωy )

〈ν|[Ĥ , τμ]|CC〉 +E
[2]
int,WFT;t t̄ ;μν

11, 13

t̄ t̄ Jμν

∂2{L(2)}T
∂t̄

(1)
μ (ωx )∂t̄

(1)
ν (ωy )

E
[2]
int,WFT;t̄ t̄ ;μν

11, 13

aEmbedding contribution without coupling.
bNote the embedding contribution in t t̄ A and t t F.

The (time-dependent) coupled-cluster electron density can
thus be calculated as the expectation value of the electron den-
sity operator,

ρ(r; t) = 〈�(t)|ρ̂(r)|CC(t)〉 =
∑

pq

φp(r)φq(r)D�
pq(t), (98)

where D� is the one-electron coupled-cluster density
matrix.75 The expansion of ρ(r; t) in orders of perturba-
tion is then carried out by expressing D�

pq(t) in orders of
perturbation,

D�(0)
pq (0) = 〈�|Epq |CC〉, (99)

D�(1)
pq (t) = 〈�|[Epq, T̂

(1)(t)]|CC〉
+

∑

ν

t̄ (1)
ν (t)〈ν| exp(−T̂ (0))Epq |CC〉, (100)

D�(2)
pq (t) = 〈�|[Epq, T̂

(2)(t)] + 1

2
[[Epq, T̂

(1)(t)], T̂ (1)(t)]|CC〉

+
∑

ν

[
t̄ (1)
ν (t)〈ν| exp(−T̂ (0))[Epq, T̂

(1)(t)]|CC〉

+ t̄ (2)
ν (t)〈ν| exp(−T̂ (0))Epq |CC〉] , (101)

and so on. Explicit expressions for D�(0) can be found in
Ref. 73, for example.

2. Energy expression

As an example, we list the CC2-in-DFT ground state con-
tributions. The total energy of the CC-in-DFT approach is cal-
culated from the zeroth-order Lagrangian,

L(0) = L
(0)
CC + Q

(0)
int + Q

(0)
DFT, (102)

which reads explicitly

L(0) = 〈0HF|ĤI|0HF〉 + E
[0]
�CC + E

[0]
int + E

[0]
DFT. (103)

Similar to HF-in-DFT, the Hartree-Fock energy contribution
denotes the expectation value of the Hartree-Fock wave func-
tion over the Hamiltonian of subsystem I without any explicit
embedding contributions, but with orbitals obtained using the
embedding potential in the Hartree-Fock equations. The con-
tributions to the amplitude equations are obtained as deriva-
tives of the Lagrangian with respect to the multipliers,

0 = ∂L(0)

∂t̄
(0)
ν

= �ν + ∂Q
(0)
int

∂t̄
(0)
ν

= �ν + E
[1]
int;t̄ ;ν, (104)

compare also Table II. This yields additional embedding con-
tributions to the normal quantities (see also the discussion in
Ref. 76),

�ia ← 〈ã|vI
emb|ĩ〉 +

∑

kc

(
2tac

ik − tac
ki

)〈k|vI
emb|c〉, (105)

�ia,jb ←
∑

c

(
t cbij 〈a|vI

emb|c〉 + tac
ij 〈b|vI

emb|c〉
)

−
∑

k

(
tab
kj 〈i|vI

emb|k〉 + tab
ik 〈k|vI

emb|j 〉 ) . (106)

Note that vI
emb itself is not calculated from T̂1-transformed

orbitals and there is no tilde on the second contribution to
the singles amplitude equations. This is in agreement with
the conventional coupled cluster in which effectively only the
two-electron contribution of the latter term is T̂1-transformed.
Equations (103)–(106) correspond to the treatment in Ref. 50
in which the embedding potential was included in the Fock
matrix elements and no update of the density and the embed-
ding potential was carried out.
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There are different strategies possible to achieve full self-
consistency for amplitudes and multipliers in case of CC-in-
DFT. The simplest is to start from a converged DFT guess
for both subsystem densities,50 and correct for differences be-
tween the calculated CC density and the DFT density (note
that this difference only arises in approximate theory, in exact
theory both densities would be identical) by carrying out the
following procedure:

1. Determine the HF and CC parameters and the Lagrange
multipliers for the WFT subsystem with a fixed embed-
ding potential.

2. Calculate the coupled-cluster density and correct the em-
bedding potential for difference between the actual and
input active density.

3. If not converged, go back to step 1 and update all param-
eters using the updated potential.

Due to the high computational costs, such a fully converged
procedure is probably not worthwhile to pursue, but it may
be desirable to correct in case large differences are found be-
tween the input (DFT) density and the calculated WFT den-
sity. This may both be due to differences in the formalism as
well as differences in the basis set that is applied in both calcu-
lations (in case the DFT density is obtained using a different
program).

3. Linear response

In order to calculate the response contributions arising
from the interaction energy, Qint in Eq. (95), we need to ex-
pand and sort with respect to orders of the perturbation. Rele-
vant for determining {2n+1Q

(2)
int }T is, e.g., the second derivative

with respect to amplitudes and multipliers,

E
[2]
int;t t̄ ;μ,ν

=
∫∫

w
I,I
emb(r′, r′′)

(
∂ρ(1)(r′)

∂t
(1)
μ

)(
∂ρ(1)(r′′)

∂t̄
(1)
ν

)
dr′dr′′

+
∫

vI
emb(r′)

(
∂2ρ(2)(r′)

∂t
(1)
μ ∂t̄

(1)
ν

)
dr′ (107)

=
∑

xIyI,sIuI

t�CC
xIyI;μ

t̄�CC
sIuI;ν(xIyI|wI,I

emb|sIuI)

+
∑

xIyI

t t̄�CC
xIyI;μν〈xI|vI

emb|yI〉. (108)

Using the expansion of the electron density, expressions for
the intermediate densities are obtained,

t�CC
xIyI;μ =

(
∂D� (1)

xIyI

∂t
(1)
μ

)
= 〈�|[ExIyI , τμ]|CC〉, (109)

t̄ �CC
xIyI;ν =

(
∂D� (1)

xIyI

∂t̄
(1)
ν

)
= 〈ν| exp(−T )ExIyI |CC〉, (110)

t t̄�CC
xIyI;μν =

(
∂2D� (2)

xIyI

∂t
(1)
μ ∂t̄

(1)
ν

)
= 〈ν| exp(−T )[ExIyI , τμ]|CC〉,

(111)

where the expressions for D� (n)
xIyI

arise from Eqs. (98)–(101).
Furthermore, the following densities are needed:

t t�CC
xIyI;μν =

(
∂2D� (2)

xIyI

∂t
(1)
μ ∂t

(1)
ν

)
= 〈�|[[ExIyI , τμ], τν]|CC〉, (112)

t̄ t̄ �CC
xIyI;μν =

(
∂2D� (2)

xIyI

∂t̄
(1)
μ ∂t̄

(1)
ν

)
= 0, (113)

to express

t t̄Aint
μ,ν =

∑

xIyI,sIuI

t�CC
xIyI;μ

t̄�CC
sIuI;ν(xIyI|wI,I

emb|sIuI)

+
∑

xIyI

t t̄�CC
xIyI;μν〈xI|vI

emb|yI〉, (114)

t tF int
μ,ν =

∑

xIyI,sIuI

t�CC
xIyI;μ

t�CC
sIuI;ν(xIyI|wI,I

emb|sIuI)

+
∑

xIyI

t t�CC
xIyI;μν〈xI|vI

emb|yI〉, (115)

t̄ t̄ J int
μ,ν =

∑

xIyI,sIuI

t̄ �CC
xIyI;μ

t̄�CC
sIuI;ν(xIyI|wI,I

emb|sIuI). (116)

In order to calculate the contributions to the total linear
response function, the interaction energy has to be expanded
not only in orders of the amplitudes and multipliers, but also
in orders of the orbital rotation parameters of the subsystem
II. Therefore, for the elements of the coupling matrix, expres-
sions analogous to Eq. (62) are obtained, but now with the
appropriate auxiliary coupled-cluster densities �CC replacing
�SD for subsystem I,

I,IIAμ,rIIsII =
∑

xIyI,tIIuII

t̄ �CC
xIyI;μI

�KS
tIIuII;rIIsII

(xIyI|wI,II
emb|tIIuII), (117)

I,IIFμ,rIIsII =
∑

xIyI,tIIuII

t�CC
xIyI;μI

�KS
tIIuII;rIIsII

(xIyI|wI,II
emb|tIIuII). (118)

The superscripts of the embedding kernel indicate that the
Coulomb contribution is present for the inter-subsystem con-
tributions.

The approximate uncoupled linear response function is
obtained from Eqs. (28) and (30),

〈〈X; Y 〉〉ωy
= 1

2
C±ω P (X(ωx), Y (ωy))

×
⎧
⎨

⎩
1

2
t̄ t̄J t̄X(ωx) t̄Y (ωy) +

⎡

⎣
(

ηX

IIηX

)T

+1

2

(
tX(ωx)

κX
II (ωx)

)T (
t tF 0

0 II,IIF(ωy)

)⎤

⎦

×
(

tY (ωy)

κY
II(ωy)

)}
, (119)
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and the perturbed parameters are calculated from the decou-
pled set of linear response equations (cf. Sec. VI),

⎛

⎝
0
0
0

⎞

⎠ =

⎛

⎜⎜⎝

ξY

ηY

IIηY

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

t t̄A − ωy1 t̄ t̄J 0

t tF t t̄A + ωy1 0

0 0 II,IIF(ωy)

⎞

⎟⎟⎠

·

⎛

⎜⎜⎝

tY (ωy)

t̄Y (ωy)

κY
II(ωy)

⎞

⎟⎟⎠ . (120)

Therefore, the linear response function can trivially be ex-
pressed as the sum of the two subsystem contributions.

For coupled response properties, the full response func-
tion in Eq. (31) becomes

〈〈X; Y 〉〉ωy
= 〈〈X; Y 〉〉CC

ωy
+ I,IIF tX(ωx)κY

II(ωy) + 〈〈X; Y 〉〉DFT
ωy

(121)

and can be calculated after solving for the perturbed ampli-
tudes and multipliers according to Eq. (28),

⎛

⎝
0
0
0

⎞

⎠ =

⎛

⎜⎜⎝

ξY

ηY

IIηY

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

t t̄A − ωy1 t̄ t̄J I,IIA
t tF t t̄A + ωy1 I,IIF

I,IIF I,IIA II,IIF(ωy)

⎞

⎟⎟⎠

·

⎛

⎜⎜⎝

tY (ωy)

t̄Y (ωy)

κY
II(ωy)

⎞

⎟⎟⎠ . (122)

In this case, all three parameter responses (tX, t̄X, and κX)
are coupled. Again, as already discussed for DFT-in-DFT, the
computational cost becomes a key issue. Since the coupled-
cluster Jacobian is typically already very large, a further in-
crease of the dimension should be avoided. Here, one may
first transform to a smaller basis of solutions before consid-
ering the coupling between the systems, similar to the strat-
egy employed for the DFT-in-DFT.31 Additional savings can
be obtained by considering approximations in the coupling
blocks, e.g., using the interactions’ locality.

4. Exemplary working equations

The expressions above are valid for a general truncation
level, and it is instructive to consider a few cases for which
the actual expressions for the densities �CC are rather simple.
For CCS, a fair amount of simplifications apply to Eqs. (114)–
(118). The ground-state density that is to be used to evaluate
the kernel integrals becomes then exactly that of the Hartree-
Fock. The auxiliaries are, however, different,

t�CCS
xIyI;iIaI

=
(

∂D� (1)
xIyI

∂t
aI
iI

(1)

)
= 〈�|[ExIyI , EaIiI ]|CC〉 = δiIxIδaIyI ,

(123)

t̄ �CCS
xIyI;jIbI

=
(

∂D� (1)
xIyI

∂t̄
bI (1)
jI

)

= 〈
bI
jI

∣∣ exp(−T )ExIyI |CC〉 = δjIxIδbIyI , (124)

t t̄�CCS
xIyI;iIaI,jIbI

=
(

∂2D� (2)
xIyI

∂t
aI (1)
iI

∂t̄
bI (1)
jI

)

= 〈
bI
jI

∣∣ exp(−T )[ExIyI , EaIiI ]|CC〉
= δiIjIδxIaIδyIbI − δaIbIδxIiIδyIjI . (125)

This leads to the potential and kernel contribution to the
coupled-cluster Jacobian,

t t̄A
CCS, int
iIaI,jIbI

=
∑

xIyI,sIuI

t�CCS
xIyI;jIbI

t̄ �CCS
sIuI;iIaI

(xIyI|wI,I
emb|sIuI)

+
∑

xIyI

t t̄�CCS
xIyI;iIaI,jIbI

〈xI|vI
emb|yI〉

= δiIjI〈aI|vI
emb|bI〉−δab〈iI|vI

emb|jI〉+(iIaI|wI
xck|bIjI)

(126)

that are equivalent to the elements of the Hessian in the case
of CIS-in-DFT, compare Eq. (82) and, if neglecting the I,IBHF

blocks, Eq. (84). Coupling elements are obtained similarly,

I,IIAiIaI,jIIbII =
∑

xIyI,tIIuII

t̄ �CC
xIyI;iIaI

�KS
tIIuII;jIIbII

(xIyI|wI,II
emb|tIIuII)

(127)

= 2(iIaI|bIIjII)int + (iIaI|wxck|bIIjII). (128)

This example is of course only presented to illustrate the
general theory, typically WFT descriptions will be aimed at
improving upon a DFT description by using a method of at
least CC2 quality.

VI. RELATION TO QM/MM METHODS

The discussion above has mostly been concerned with the
formalism and the connection to prior work within the con-
text of DFT-in-DFT or WFT-in-DFT frozen-density embed-
ding. Nevertheless, for the “embedding” mode of the formal-
ism it is illustrative also to make a connection to other related
approaches such as the SD/molecular mechanics (SD/MM)
(Ref. 77) and coupled-cluster/molecular mechanics (CC/MM)
(Refs. 10–13) methods, and the more recent polarizable em-
bedding (PE) approaches, PE-SD (Ref. 78) and PE-CC,14 pro-
posed by Christiansen, Mikkelsen, Kongsted, and co-workers.

Conceptually similar is the treatment of Coulombic
interactions. The major difference lies in the continuous
electron density in case of FDE, whereas MM and PE use
a discrete multipole expansion. In both cases, the quadratic
density dependence in the energy transfers to a linear depen-
dence in the embedding potential. The differences come from
the exchange-correlation and kinetic energy contributions
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that provide the Pauli repulsion that is lacking in the classical
approaches. These also lead to a nonlinear dependency on
changes in the (partitioned) density due to the perturbing field.

Despite these differences in the physical content in the
FDE and CC/MM approaches, the working equations exhibit
a number of similarities. An important example is, for in-
stance, the matrix J which is absent for the vacuum case.
For both FDE and CC/MM or PE-CC, J is responsible for
coupling the response equations determining the perturbed
coupled-cluster amplitudes and Lagrangian multipliers.11, 14

In our formalism, J describes changes in the response of the
coupled-cluster system due to the environment that are caused
by changes in the (intra-subsystem) non-additive exchange-
correlation and kinetic energy contributions, while explicit
“inter-subsystem” coupling effects are accounted for by the
off-diagonal blocks of the matrices A and F. In the CC/MM or
PE-CC, the “inter-subsystem” contributions are also present
in J, since the interactions with the environment (including
its response) are expressed as “effective” contributions to the
QM part.

There is also a relation with respect to pole and residue
analysis of the response function that is discussed in the con-
text of classical embedding.10–12 The specific coupling of the
amplitudes and multipliers leads to poles of higher order com-
pared to exact theory in vacuum. For CC/MM, it has been pro-
posed to ignore the coupling of the t and t̄ responses so that
the same formal expressions for transition properties are ob-
tained compared to the vacuum case, with the difference that
they include the embedding contributions. A similar approach
could be followed here.

VII. NUMERICAL EXAMPLE

Although the present article is mainly concerned with the
theoretical aspects of FDE response formalism, a pilot appli-
cation is presented to assess the importance of the various en-
vironment contributions. The model system is a solvated wa-
ter molecule as investigated by Jacob et al. in the context of
evaluating the performance of FDE for ground-state and re-
sponse properties vs. the discrete reaction field method.34

The formalism presented is implemented in a library cur-
rently interfaced to a development version of the DIRAC pro-
gram package,79 following up on previous work,50 and re-
stricting the discussion to HF-in-DFT response. The details of
the implementation and its use in connection to electron cor-
relation methodologies will be addressed in subsequent pub-
lications. In our calculations we employ the PyADF scripting
framework80 in order to perform FDE calculations with the
ADF code33, 81 (using the PBE functional for Exc and Enadd

xc ,
and PW91k for T nadd

s , and a TZ2P basis set augmented with
diffuse functions). Following one of the strategies discussed
in Ref. 34, the frozen density is constructed as a superposi-
tion of fragment densities obtained for an isolated molecule.
The DIRAC calculations are performed employing the aug-
cc-pVTZ basis in combination with the Levy-Leblond (non-
relativistic) Hamiltonian.

Our results for the three lowest singlet excitation ener-
gies are shown in Table III. We observe that our calculations
and those reported in Ref. 34 yield similar trends, although

TABLE III. TDHF excitation energies (in eV) for the first three singlet
states of a water molecule, isolated (Eiso) and solvated (Esol) by 127 wa-
ter molecules employing FDE. The FDE corrections are further subdivided
into “diagonal”’ and “response,” i.e., arising from the potential and the ker-
nel contributions, see Eqs. (80) and (83), denoted by � Ediag

env and � Eresp
env ,

respectively.

Eiso Esol � Ediag
env � Eresp

env

State (eV) (eV) (eV) (eV)

1 8.65 9.24 0.53 0.06
2 10.33 10.85 0.47 0.05
3 10.94 11.47 0.47 0.06

quantitative differences occur. For instance, in both cases the
shifts in the energies due to solvation are positive and show
little variation, but the HF-in-DFT values are roughly two-
thirds of those obtained by Jacob et al. As for the response
(kernel) contributions, we can see that for the lowest singlet
state both calculations yield similar results, namely, 0.06 eV
for HF-in-DFT and 0.07 eV for DFT-in-DFT.

Similar behavior is seen for the dipole moments. Using
HF-in-DFT, we obtain a shift of +0.57 D from the value for
the isolated molecule (1.98 D), whereas the DFT calculations
in Ref. 34 show a shift of +0.65 D from the value of the iso-
lated molecule (1.80 D).

VIII. CONCLUSIONS

We have presented a formalism suitable for calculating
the time-dependent molecular properties within a subsystem
embedding framework, the key aspects of which are: First,
the definition of a time-dependent Lagrangian expression that
connects the energies of the isolated subsystems and their in-
teraction energy. Second, the use of the time-averaged quasi-
energy formalism in order to identify the molecular proper-
ties with the (time-averaged) derivatives of the Lagrangian
with respect to the perturbing fields’ strengths.52 As usual,
the time-independent properties are also accessible, as a spe-
cial (zero-frequency) case.

The crucial ansatz in our formalism is the expression of
the interaction contribution to the Lagrangian in a purely DFT
fashion, that is, as a functional of the (time-dependent) elec-
tron density for the total system. In addition, we consider the
number of particles in each subsystem as fixed, although for
subsystems treated by DFT it may be possible to relax this
constraint, see, e.g., Refs. 47, 55, and 56. However, these fea-
tures provide several advantages: there is no double count-
ing of electron correlation; the total density can be expressed
as the sum of overlapping subsystem densities, and varia-
tional and non-variational WFT methods can be treated on
the same footing. Furthermore, it offers the pathway to an
efficient description with a large number of subsystems.82 The
calculation of the interaction contributions is straightforward,
being limited primarily by the accuracy of the approximate
exchange-correlation and kinetic energy functionals used to
calculate the non-additive kinetic and exchange-correlation
contributions.
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While we have restricted the discussion to coupled-
cluster as an example of non-variational wave functions and
to Hartree-Fock as a simple example of variational meth-
ods, we note that the methodology presented can be applied
to other non-variational methods such as MP2 as well as to
variational methods such as MCSCF. Since the interaction
contribution to the quasi-energy Lagrangian is a functional
of the (total) electron density, we only require a formula-
tion of the time-dependent electron density using the method
of choice. We believe that for time-independent properties,
the simplest WFT-in-DFT model in practice should be MP2-
in-DFT as simpler models will not improve upon the DFT
description. For time-dependent properties, we propose the
CC2-in-DFT—although the pole structure is more compli-
cated to the vacuum case, approximations offer the possibility
to correct this deficiency, whereas MP2 itself exhibits inher-
ently a wrong pole structure.

In the preceding discussion, we have hinted at some
strategies to take advantage of the subsystem formulation in
the calculation of the response parameters and (coupled) ex-
citation energies. In the future work, we plan to investigate
this further and implement efficient approximate embedding
treatments.
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The electronic spectrum of the CUO molecule was investigated with the IHFSCC-SD (intermediate
Hamiltonian Fock-space coupled cluster with singles and doubles) method and with TD-DFT (time-
dependent density functional theory) employing the PBE and PBE0 exchange–correlation function-
als. The importance of both spin–orbit coupling and correlation effects on the low-lying excited-
states of this molecule are analyzed and discussed. Noble gas matrix effects on the energy ordering
and vibrational frequencies of the lowest electronic states of the CUO molecule were investigated
with density functional theory (DFT) and TD-DFT in a supermolecular as well as a frozen density
embedding (FDE) subsystem approach. This data is used to test the suitability of the FDE approach
to model the influence of different matrices on the vertical electronic transitions of this molecule.
The most suitable potential was chosen to perform relativistic wave function theory in density func-
tional theory calculations to study the vertical electronic spectra of the CUO and CUONg4 with the
IHFSCC-SD method. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742765]

I. INTRODUCTION

The chemistry of uranium remains fascinating and chal-
lenging, with implications that go beyond the use of fission-
able 235U in nuclear energy, with e.g., a growing interest in
possible applications in catalysis.1, 2 This is due to uranium’s
wide range of oxidation states (+6, +5, +4 and +3) and co-
ordination geometries.3–6 These features arise from the avail-
ability of the spatially rather different 5f-, 6d-, 7s-, and 7p-
orbitals that are energetically close and do participate in the
chemical bonding.

Many uranium complexes contain the uranyl (UO2+
2 )

species, perhaps the best studied of its molecular oxides due
to its predominance in the aqueous chemistry of uranium. For
this ion (but also for non-oxide isoelectronic species such as
NUN) the uranium metal center forms strong triple bonds
with the axial ligands.3, 7–14 The high stability and linear struc-
ture of these U(VI) species are well explained by the “pushing
from below” model proposed by Tatsumi and Hoffmann.15 In
the linear structure the strong interaction between the semi-
core uranium 6p-orbitals and the oxygen 2p-orbitals brings
the energy of the σ u HOMO (highest occupied molecular or-
bital) close to that of the 5f-orbitals of the uranium leading to
a significant 5f participation in this orbital.16 The accompa-
nying lowering of the energy leaves a large HOMO-LUMO
gap for the cation, making uranyl an archetypical closed-shell
species. For other isoelectronic species such as NUO+ or
CUO the picture is slightly different since the bonds are not
equal, even though both can still be regarded as triple bonds.
To the diminishing electronegativity of N and C with respect
to O there corresponds a decreasing HOMO-LUMO gap, as
seen in various theoretical studies13, 17 as a marked decrease
of ionization potentials and the lowest electronic excitation

energies on going from UO2+
2 to NUN, NUO+, and up to

CUO.18, 19

For CUO in particular, the HOMO has a predominantly
U–C bonding character with the U–O bond lying at signif-
icantly lower energy.17 Moreover, a point is reached where
low-lying triplet excited states are so close to the ground-
state that some theoretical approaches predict them to be the
electronic ground-state.12, 17 This suggests that even weakly
bound equatorial ligands can play an important role in estab-
lishing the precise ordering of states in the lower part of the
spectrum. This agrees with the findings in the extensive ex-
perimental studies of CUO trapped in noble gas matrices that
spurred the interest of theoreticians in this molecule. Tague
et al.20 excited uranium atoms in excess of CO by laser abla-
tion and found that uranium can insert in the triple CO bond
and form the CUO molecule. The experimentally measured
U–C and U–O stretching vibrations are 853 cm−1 and
804 cm−1 in an argon matrix, but when the same experi-
ment was carried out by Zhou et al.21 in a solid neon matrix,
they found the U–C and U–O frequencies at 1047 cm−1 and
872 cm−1. Later on, a similar experiment was carried out for
krypton and xenon matrices as well. Again, a large red shift
(≈70 and ≈200 cm−1 for the U–O and U–C stretching modes,
respectively) was observed, relative to the data obtained in the
neon matrix.22–24 This large red shift in the vibrational spec-
tra suggest that the ground-state of CUO depends on the no-
ble gas environment, with the weakly interacting neon atoms
the system favors a singlet ground-state while the stronger in-
teraction in the heavier noble gas matrices, i.e., argon, kryp-
ton, or xenon,23, 25, 26 produces a triplet ground-state in which
also a nonbonding uranium 5fφ or 5fδ is occupied (or a mix-
ture thereof if spin–orbit coupling is accounted for17). Direct

0021-9606/2012/137(8)/084308/12/$30.00 © 2012 American Institute of Physics137, 084308-1
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validation for this hypothesis could come from electronic
spectroscopy on CUO in these matrices. Such data are avail-
able for other uranium compounds27, 28 in noble gas matrices,
but to the best of our knowledge CUO has not yet been stud-
ied in this manner. One thus has to rely on theoretical pre-
dictions for the electronic spectra. In the theoretical treatment
one needs to accurately describe not only electron correlation
but also, because of the heavy atoms involved (U, Xe), both
scalar and spin–orbit relativistic effects.

These requirements pose significant challenges29 to cal-
culations, especially because the electronic states may have
a marked multi-reference character. Suitable methodologies
are, for instance, the relativistic formulations30–32 of the
Fock-space coupled cluster singles and doubles (FSCC-
SD (Refs. 33–35)) method, or the spin–orbit complete ac-
tive space second-order perturbation theory (SO-CASPT2
(Refs. 36 and 37)). The recent work of Infante et al.,38 who
employed the spin–orbit coupling restricted active space sec-
ond order perturbation (SOC-RASPT2 (Ref. 39)) method to
investigate the UO2Ar4 species, can be considered to be at the
limit of what is currently feasible employing wave function
based approaches. Since the CUO species has less symme-
try, an all-atom treatment is still out of reach. The Fock-space
based approaches are less affected by active space limitations,
but are computationally more expensive than the PT2 ones
and at present are also not able to tackle a full seven atom
model (both experimental and theoretical studies suggest co-
ordination of four noble gas atoms in the equatorial plane per-
pendicular to the CUO unit23, 25, 26).

This leaves as alternative the use of so-called embedding
approaches in which interactions from the environment are
modeled in a simplified manner.40 Since both the molecule
of interest and the environment consist of neutral molecules,
and because the dipole moments of the two states of interest
of CUO do not differ much (3.5 D in the singlet state and
2.4 D in the excited triplet state24), the most important factor
is probably a combination of Pauli repulsion and weak coordi-
nation from the equatorial ligands. Most embedding methods
are not able to capture such subtle effects as they are usu-
ally designed to describe primarily electrostatic interactions.
A method that should in principle be able to capture both Pauli
repulsion and (to lesser extent) weak coordination bonds is
the so-called WFT-in-DFT (wave function theory in density
functional theory) embedding, first proposed by Carter and
co-workers,41–43 for studying the electronic spectra of impu-
rities on solids and surfaces.44, 45 In this method, one divides
the system of interest in an active part (for which the spec-
tra are to be calculated with a given wave function method)
and an environment that is described by DFT. This type of
approach has been applied successfully in describing the ef-
fect of chloride-actinyl interactions on the f-f spectra of the
NpO2+

2 cation.46 The WFT-in-DFT frozen density embedding
(FDE) scheme is theoretically well-defined and suitable for
extension to coupled subsystems47 and can provide an enor-
mous reduction of both computational cost and the complex-
ity of the data that is to be analyzed. We therefore think it is
of interest to use the CUO noble gas interaction as another
test case for the feasibility of the approach in describing ura-
nium coordination chemistry. As we will use the method in

its uncoupled formulation, we need to ascertain that there is
no coupling between the electronic excitations on CUO with
those of the environment,48 something that can be explored
at DFT level. In addition, we will use a monomer expansion
of the wave function which will also limit the possibilities to
describe donation from the noble gas orbitals into the CUO
orbitals. This system therefore constitutes a stringent test for
the applicability of this simplest form of WFT-in-DFT em-
bedding, but one in which there is a fair chance of success
given the fact that DFT-in-DFT typically works well for such
weak interactions.49–54

In this work our initial goal was to investigate the use of
WFT-in-DFT embedding for determining the electronic struc-
ture of the model CUONg4 (Ng=Ne, Ar, Kr, and Xe) systems,
with particular emphasis on the still debated issue of whether
or not there is a change in the nature of the ground-state (be-
tween singlet and triplet) for the different noble gas ligands.
While carrying out the TD-DFT calculations that were used to
validate the embedding procedure, we obtained new insights
in the effect of including exact exchange in the TD-DFT de-
scription of this molecule that are worthwhile to report as
well. These will be discussed in Sec. III A.

II. COMPUTATIONAL DETAILS

Our investigations required three types of calculations:
geometry optimization and calculation of vibrational frequen-
cies for the two possible ground-states of the CUO molecule,
TD-DFT calculations of the isolated, embedded, and super-
molecular species, and IHFSCC-SD calculation of the iso-
lated and embedded species. For the latter two we also need
to discuss the generation of the embedding potential that was
used. We will partition the section on computational details
accordingly.

A. Geometry optimization and harmonic frequencies

We performed spin–free DFT geometry optimization and
analytical frequency calculations with the TURBOMOLE 5.10
package55–57 employing the PBE0 exchange–correlation (xc)
functional58, 59 in conjunction with the def-TZVP (triple-ζ
valence polarization) basis sets.60 For the heavy elements
(uranium and xenon) small-core effective potentials were
utilized.61, 62

Geometries and structures were obtained for the 1�+,3�
states of CUO and the 1A1 (1�+) and 3E (3�) states for the
CUONg4 (Ng=Ne, Ar, Kr, Xe) models. All the DFT calcula-
tions were performed in C2v point group symmetry with the
multiple grid option m5, that is, a coarser grid during SCF it-
erations and a more precise grid at the final SCF iteration and
the gradient evaluation, as implemented in the TURBOMOLE

5.10 program package.

B. Time-dependent density functional theory and
time-dependent Hartree–Fock

All–electron spin–free TD-DFT (Refs. 63 and 64) calcu-
lations were carried out with the ADF2010 package65–67 in
C2v point group symmetry with the PBE (Ref. 68) and PBE0
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(Refs. 58 and 59) xc functional and the TZ2P (triple–ζ double
polarization) basis sets from the ADF repository.69 Scalar rel-
ativistic effects were incorporated through the ZORA (zeroth-
order regular approximation) Hamiltonian.70 The spin–free
TD-DFT vertical excitation energies were obtained at the op-
timized geometries within the adiabatic local density approx-
imation (ALDA), in which the local (in time and space) func-
tional derivative of the LDA functional is used in the TD-DFT
kernel. The exact (not fitted) density was used to evaluate all
xc contributions, with the numerical integration accuracy op-
tion set to a value of 10.

For every molecule we determined the 30 lowest-lying
(singlet and triplet) states, which was sufficient to charac-
terize the 22 transitions corresponding to excitations from
the 25a1 ( fσ {U} + pσ {C}) and 12b1/b2( fπ{U}) orbitals
to the 26a1( fσ {U} + sσ {C} + pσ {C}), 13b1/b2( fφ{U}),
27a1/5a2( fδ{U}) and 28a1/6a2( fδ{U}) orbitals of the CUO
molecule and the same kind of orbitals for the CUONg4

model systems. In addition we carried out time-dependent
Hartree–Fock (TD-HF) calculations with the same basis set
and setup as for the TD-DFT runs.

C. Frozen density embedding

DFT-in-DFT (Refs. 71–75) calculations were performed
with the ADF2010 (Refs. 65–67) package, using a develop-
ment version of the PYADF (Ref. 76) scripting framework.
The same settings as specified above for the supermolecular
Kohn–Sham (KS) runs were employed for the DFT part.

In the FDE setup the total electronic density of the CUO
complexes (CUONg4, Ng=Ne, Ar, Kr, Xe) was partitioned
into the density of CUO and a Ng4 environment and sub-
sequently updated in nine freeze-and-thaw cycles75 to allow
for polarization of both the environment and the active sys-
tem. We utilized the monomolecular basis set expansion, in
which only basis functions belonging to the currently ac-
tive system are used. This expansion introduces an additional
approximation with respect to the supermolecular calcula-
tions which is typically small for the cases with limited over-
lap between the embedded subsystem and the environment.77

Since the PBE0 xc functional is orbital-dependent it can-
not be used to provide an xc contribution to the embedding
potential. We chose to use the PBE (Ref. 68) xc for this
contribution, following earlier work on orbital–dependent
functionals.46, 78–80 For the kinetic energy component of the
embedding potential we tested out a number of different
functionals: the Thomas–Fermi81–83 functional, the NDSD
functional of Wesołowski and co-workers84 (which contains
a TF component but was developed especially for FDE),
the PW91K (Ref. 85) functional, and PW91K with the
long-distance correction proposed by Jacob and Visscher78

(PW91K-CJCORR). This procedure yielded converged em-
bedding potentials that were subsequently used in WFT-in-
DFT calculations as well as DFT-in-DFT calculations to allow
for comparison with supermolecular results.

These FDE TD-DFT calculations were carried out in the
uncoupled approach86 in which the response of the environ-
ment to the electronic excitation is neglected and in which

charge-transfer excitations are not taken into account. The
validity of the first approximation was investigated by per-
forming exploratory calculations with the coupled excitation
framework of Neugebauer87 from which we found that these
couplings are indeed negligibly small.

D. Wave function theory

The WFT-in-DFT calculations were done using the FDE–
implementation46 in the DIRAC10 (Ref. 88) relativistic quan-
tum chemical package.

The IHFSCC-SD (intermediate Hamiltonian Fock-space
coupled cluster with singles and doubles30–32) method with
a Dirac–Coulomb (DC) Hamiltonian, where (SS|SS) integrals
have been approximated by a point charge model,89 was used.
The valence double–ζ basis set of Dyall90 (dyall.v2z) for the
uranium atom and the augmented correlation consistent po-
larized valence double–ζ basis sets of Dunning91 (aug-cc-
pVDZ) for oxygen and carbon atoms were employed.

In the Fock-space coupled cluster34, 40, 92, 93 method a di-
agonalization of an effective Hamiltonian yields amplitudes
and eigenvalues of the set of states that is related to a closed-
shell reference system (sector (0h, 0p)) by electron annihila-
tion (h), creation (p), or both.94–98

For CUO, the conventional approach would be to obtain
the excitation energies that we are interested in by selecting
the appropriate active space for a sector (1h, 1p) (“one hole,
one particle”) calculation of the Fock-space. This procedure
does, however, lead to convergence problems while determin-
ing the “one particle” (electron affinity or sector (0h, 1p) of
Fock-space) amplitudes that are required as input for the sec-
tor (1h, 1p) calculation. These problems could be traced back
to the presence of a number of low-lying Rydberg orbitals,
that appear at lower energies than the local orbitals of interest
(i.e., those that are involved in the lowest electronic transi-
tions) in the CUO molecule. These problems with Rydberg
orbitals were not encountered in the earlier work of Infante
and Visscher17 due to lack of very diffuse functions in their
basis. Since we are now interested in the interaction with the
environment, augmented basis sets are clearly preferable, so
we need to find a way around this problem. This can be done
by calculating the electronic spectrum via sector (0h, 2p) of
Fock-space, i.e., starting from the CUO2 + as a reference sys-
tem and calculating excitation energies as differences between
the second electron affinities that are obtained in this sector.
With this choice of reference system, the local orbitals are all
below the diffuse orbitals and fully converged results can be
obtained.

For the systems we investigated, all spinors with ener-
gies ε ∈ [–3.00; 80.00] a.u. were correlated, which correspond
to 11 occupied (22 electrons) and about 350 virtual spinors.
This corresponds to slightly larger active spaces with respect
to those employed in our earlier work on the UO2+

2 , NUN,
and NUO+ molecules,18, 99 and significantly enlarged the va-
lence active space in comparison with the previous work of
Infante and Visscher.17 A detailed description of the active
spaces for each particular molecule is given in the supplemen-
tary material.110
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III. RESULTS AND DISCUSSION

We start with a brief discussion of the electronic structure
of the CUO molecule, for which we obtained TD-DFT results
with functionals that were not yet applied to this molecule. In
order to focus on the essential physical aspects at play, in the
discussion that follows we will employ a spin–free model in
which the question of ordering of the lowest electronic states
reduces to the discussion of a gap between a closed-shell sin-
glet and an open-shell triplet state. We may thereby take over
some of the knowledge gained in non relativistic calculations
on light molecules to the current species.

A. Electronic structure of the CUO molecule

The relative energies of the singlet σ 2 and triplet σ 1φ1

states of the CUO compound have been intensively debated
for a number of years as the different electronic structure
methods that have been used did not give a consistent pic-
ture. While disagreeing on the precise energy difference, all
methods give qualitatively the same picture with respect to
the bond length and vibrational frequency difference between
these two states. The σ 1φ1 (3�) state has longer U–O and in
particular U–C bond lengths than the σ 2 (1�+) state. This is
easily explained by the transfer of an electron from a bond-
ing U–C orbital to the non-bonding 5fφ-orbital of the uranium
atom. Inclusion of spin–orbit coupling (SOC) gives the same
qualitative picture with some admixture of the 3
2 state into
the lower 3�2 state that lowers this state relative to the 1�+

0
state which is in first order not affected by SOC.

Roos et al.12 performed CASPT2 calculations with a
posteriori included SOC and predicted the 3�2 to be the
ground-state of CUO. Later on, Infante and Visscher17 ap-
plied a relativistic coupled cluster with singles doubles and
perturbative triples—CCSD(T) method—as well as the Fock-
space coupled cluster with singles and doubles—FSCC-SD—
method. They found a strong stabilization of the 1�+

0 state
by the dynamic correlation effects and concluded that this
state should be the ground-state for an isolated molecule.
This supports the explanation that was put forward to ex-
plain the experimental findings. Recently Yang et al.13 pub-
lished SOC configuration interaction with singles and doubles
(CISD (Ref. 100)) calculations that are in qualitative agree-
ment with these coupled cluster results. They determined the
1�+

0 state to be the lowest state in both 1�+
0 and �2 optimized

geometries. Noticeable is the large discrepancy (amounting to
about 1 eV) between the different electronic structure meth-
ods employed so far. From the results of Infante and Visscher
it appears that adding dynamical correlation, by correlating
more electrons or improving the basis set, favors the more
compact 1�+

0 state, thus yielding a larger gap. It is therefore
of interest to see what a DFT treatment of electron correlation
gives.

Taking the 1�+
0 as the reference state we chose the DFT-

optimized structure of this state, with U–O and U–C bonds of
1.779 and 1.733 Å, respectively, for spin–free vertical exci-
tation calculations. In the following discussion we will focus
on excitations from the σ (HOMO) orbital to the virtual σ ,
δ, and φ molecular orbitals. These transitions give rise to the
1,3�, 1,3
, and 1,3� excited-states. While the δ- and φ-orbitals
also play an important role in some molecules isoelectronic to
the UO2+

2 such as NUN and NUO+, CUO is special in having
also a relatively low–lying σ virtual orbital. In most studies
this orbital has been ignored, but we will see that it can play a
role in some of the calculations.

In agreement with 
SCF calculations with the same
functionals that place the 3� below the reference 1�+ state,
TD-DFT calculations with the PBE (Ref. 68) and PBE0
(Refs. 58 and 59) xc functionals indicate a negative excita-
tion energy for this triplet state. As states with negative exci-
tation energies are not calculated by the standard TD-DFT
algorithm,64 we added a very small admixture of Hartree–
Fock (HF = 0.1%) exchange to the PBE xc functional to
force the program to use the algorithm for hybrid functionals.
As shown in Table I this admixture does not affect the ener-
gies of remaining states, but indicates a singlet-triplet gap of
−0.13 eV. As found elsewhere (see e.g.,101 for a recent discus-
sion), such artificially low triplet states are more likely to oc-
cur when the fraction of exact exchange is larger. With 25% of
exact exchange (the PBE0 xc functional) the 3� state lies
0.20 eV below the 1�+ state and the separation increases
to 0.55 eV for the 100% of exact exchange in the TD-HF
method. At the same time the exchange splitting between the
3� and 1� increases dramatically from 0.23 eV (PBE) to
1.96 eV (TD-HF). Concerning the trend noted previously in
the WFT calculations, in which an improvement of the de-
scription of dynamical correlation lowered the 1� relative to
the 3� state, we find qualitative agreement by defining TD-
HF as the most uncorrelated method and TD-DFT with PBE
as the most correlated method.

TABLE I. Spin–free vertical excited-states of the CUO molecule with respect to the 1�+ ground-state (in eV): a comparison of different methods.

TD-DFT(PBE) CCSD(T)

Symmetry HF=0% HF=0.1% HF=25% TD-HF CASPT2a CCSDb Ref. 17 Ref. 108 IHFSCC-SD

3�+ 0.80 0.80 1.03 1.68 . . . . . . . . . . . . 0.88
3� . . . −0.13 −0.20 −0.55 0.09 0.77 0.83 0.68 1.34
3
 0.41 0.41 0.46 2.35 0.54 . . . . . . . . . 1.36
1�+ 1.47 1.48 1.77 2.85 . . . . . . . . . . . . 1.50
1
 0.71 0.71 0.98 2.83 0.72 . . . . . . . . . 1.53
1� 0.10 0.10 0.50 1.41 0.59 . . . . . . . . . 1.67

aRef. 12.
bRef. 17.
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TABLE II. Spin–orbit vertical excited-states of the CUO molecule with re-
spect to the 1�+

0 ground-state (in eV): a comparison of different methods.

Statea IHFSCC-SD(22e) CCSD(T)(34e)b CASPT2(12e)c SO-CISD(24e)d

3�+
1 0.81 . . . . . . . . .

3�2 0.94 0.60 –0.36 0.30
3�3 1.01 . . . –0.15 0.57
3
1 1.22 . . . 0.19 0.58
3
2 1.28 . . . 0.31 . . .

aSubscripts denote �-values and upperscripts spin multiplicity.
bRef. 17.
cRef. 12.
dRef. 13.

For the WFT-based methods we note that the spin–free
CASPT2 calculations of Roos et al.12 predict the 3� state
slightly above the singlet state by 0.09 eV, but this is not
enough for this state to remain the lowest when SOC is ac-
counted for. Since dynamical correlation is only included up
to the second-order in perturbation theory, one can again fit
these results in a trend leading from HF (predicting the 3�

state to be the ground-state by 0.5 eV) to the coupled cluster
methods that predict a 1�+

0 ground-state. This trend is even
stronger when including our new IHFSCC-SD (Refs. 30–32)
data that were obtained using a larger basis set and active
space than was feasible earlier.17 From these calculations we
obtain the 3� state at even more than 1.3 eV above the closed-
shell 1�+ state, with an open-shell 3�+ state being the first
excited-state at 0.88 eV.

We believe that the new DFT and CC results are interest-
ing because they clearly illustrate the difficulties in finding a
proper description of the balance between exchange and cor-
relation (in a DFT picture) and static and dynamic correlation
(in a WFT picture) for actinides. The model xc hole used in
the DFT approach will have to provide an equally good de-
scription of the strong angular correlation found in the radi-
ally localized φ-orbitals as well as for the qualitatively dif-

ferent correlation in the σ bonding orbital. This is difficult to
achieve on basis of information from only the electron density
and its gradient, while adding exchange in a hybrid approach
has a limited value as this brings along the large error in the
HF description. For the WFT methods the challenge is equally
large as an electron in the φ-orbital will have a stronger inter-
action with the semicore electrons than an electron in a more
extended σ -orbital, requiring a well-balanced basis set and a
substantial number of electrons to be correlated. We plan to
study these aspects in more detail in another publication.

Coming back to the main topic of this paper, we also an-
alyzed the influence of the spin–orbit coupling on the transi-
tions. The results are listed in Table II in which we kept the
major LS-designation but added the � values, which is the
only proper quantum number after inclusion of SOC. Besides
the relativistic splitting of all the triplet states, there is no qual-
itative difference with the spin–free transition energies.

B. The CUONg4 models

In this section we investigate how the interaction with the
environment affects the lowest electronic states. We focus on
the 1�+ and 3� states, but also consider the fate of the 3�+

state when the system is confined in a matrix.

1. Geometries and vibrational frequencies

Table III lists all the geometries and vibrational frequen-
cies obtained in this work. We observe a slight increase of
the U–C and U–O bond distances due to the environment
that becomes stronger when we attach heavier, more polariz-
able, noble gas (Ng) atoms. The four attached noble gas atoms
move slightly out of the equatorial plane with a C–U–Ng an-
gle slightly larger than 90◦ in the singlet states and slightly
smaller than 90◦ in the triplet states of the CUOXe4 complex.

TABLE III. Optimized structures and vibrational spectra calculated using DFT with PBE0 xc functional in the C2v point group symmetry. Bond distances are
given in Å, angles in degrees, and frequencies in cm−1. Reference theoretical studies are presented in round brackets and experimental data in square brackets.

System d(U–C) d(U–O) d(U–Ng) � CUNg νUC νUO

CUO(1�+) 1.733 (1.714a, 1.770b,
1.757c, 1.738d)

1.779 (1.759a, 1.795b,
1.798c, 1.785d)

1175 (1269a, 1089c,
1183f, 1182d)

927 (960a, 870d,
917e, 922f)

CUONe4(1�+) 1.734 (1.769c) 1.782 (1.805c) 3.315 99.7 1170 (983c) [1047c] 923 (847c) [872c]
CUOAr4(1�+) 1.738 (1.774c) 1.788 (1.811c) 3.416 95.8 1156 (963c) 913 (840c)
CUOKr4(1�+) 1.741 (1.775c) 1.790 (1.812c) 3.455 94.5 1145 (947c) 908 (839c)
CUOXe4(1�+) 1.747 (1.782c) 1.793 (1.813c) 3.554 92.4 1127 (942c) 901 (839c)

CUO(3�) 1.836 (1.814a,
1.871b, 1.857c)

1.808 (1.789a,
1.818b, 1.825c)

948 (893c) 879 (828c)

CUONe4(3�) 1.840 (1.862c) 1.811 (1.828c) 3.147 91.7 942 (884c) 872 (819c)
CUOAr4(3�) 1.845 (1.868f, 1.871c) 1.815 (1.843f, 1.833c) 3.309 90.4 932 (881f, 869c) [835f, 853c] 868 (824f, 814c) [793f, 804c]
CUOKr4(3�) 1.848 (1.873f, 1.874c) 1.817 (1.839f, 1.835c) 3.374 89.9 926 (876f, 864c) [832f, 842c] 864 (822f, 810c) [790f, 797c]
CUOXe4(3�) 1.853 (1.875f, 1.879c) 1.818 (1.833f, 1.836c) 3.514 88.6 917 (870f, 860c) [830f] 860 (819f, 808c) [789f]

aMRSOCISD (Ref. 13).
bSO-CASPT2 (Ref. 12).
cDFT/PW91 (Ref. 23).
dDFT/PW91 (Ref. 26).
eDFT/PBE0 (Ref. 109).
fDFT/PBE0 (Ref. 102).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.49.225.190 On: Wed, 05 Oct

2016 15:42:41

241



084308-6 Tecmer et al. J. Chem. Phys. 137, 084308 (2012)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0

 0.1

CUO CUONe4 CUOAr4 CUOKr4 CUOXe4

E
ne

rg
y 

[e
V

]

1Σ+ state
3Φ state

FIG. 1. Total bonding energies of the CUONg4 complexes with respect to
to the 1�+ (solid line) and 3� (dashed line) states of the CUO system (DFT
calculations in ADF).

The weakening of the U–C and (to less extent) U–O bond
in the triplet state is most clearly visible in the U–C and
U–O stretch vibrations. For the bare molecule the U–C stretch
is lower by 227 cm−1 in the triplet state than in the singlet

FIG. 2. CUONe4 orbitals involved in the lowest-lying electronic transitions
visualized with an isosurface value of 0.03 in the ADFGUI.107

state. Compared to this difference the matrix effects are much
weaker with a shift of 31 (48) cm−1 of the U–C stretch for
the singlet (triplet) state in the model for the xenon matrix.
The experimentally observed shift of 238 cm−1 of the U–C
stretch upon going from neon to argon does therefore best
match with the 195 cm−1 difference between the vibration of
the singlet state in the neon model and the triplet state in the
argon model. This is already discussed in detail by Andrews
et al.23 who obtained slightly different values but a qualita-
tively similar trend with the PW91K functional. The new data
with hybrid functionals provides further support for their in-
terpretation. Note that only trends can be reliably compared,
for a more complete comparison with the experimental val-
ues it might be necessary to include more than just four no-
ble gases around the CUO to model the matrix. Moreover, it
might be necessary to consider also anharmonic effects.102

2. Ground-state DFT study

To simplify the comparison between the CUO and
CUONg4 complexes, we will use (idealized) C4v point group
symbols, with in parenthesis the C∞v designations to indicate
the parentage of the states or orbitals. We define the zero of
our energy scale as the 1A1(1�+) state of CUO with a cage of
four Ng atoms at infinite distance and plot in Figure 1 the vari-
ation of the binding energy of the 1A1 (1�+) and the 3E(3�)
states as a function of Ng type. This interaction with the cage
is indeed slightly more pronounced in the triplet state with the
largest difference occurring when moving from neon to argon,
but the difference is only 0.04 eV. This can only change the
order of two states if they are already very nearly degener-
ate. As discussed already in the section of TD-DFT, the PBE0
functional places the triplet slightly below the singlet already
for the bare CUO molecule and considering optimized struc-
tures for the triplet state reinforces that conclusion.

3. Excitation energies from TD-DFT

To understand the trends in excitation energies, it is in-
structive to look at the changes in the valence orbital ener-
gies of CUO induced by the attachment of the Ng atoms. We
consider the closed-shell singlet calculation in which we have
as HOMO a bonding U–C σ -orbital, as LUMO a nonbond-
ing σ -orbital, and at higher energy a φ- and two δ-orbitals.
These orbitals are depicted in Figure 2. When adding the Ng
atoms the two δ-orbitals are split by the ligand field into 27a1

and 5a2, and the 28a1- and 6a2-orbitals, respectively. In Fig-
ure 3(a) we plot the energy difference of all relevant virtual
orbitals relative to the HOMO to get a first indication of the
effect of the environment on excitation energies. The diffuse
non-bonding σ -orbital, which is the LUMO in bare CUO and
CUONe4, is pushed up by the repulsive interaction with the
closed-shell ligands and rises in the argon system above the
φ-orbitals, and in krypton and xenon also above the lower δ-
orbital 27a1. This indicates that this orbital is indeed of less
interest in explaining the electronic structure of the molecule
in the matrix.

Spin–free excitation energies are listed in Table IV, with
the negative transition energies indicating a triplet ground-
state. In agreement with the 
SCF calculations, we find small
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FIG. 3. Lowest-lying valence orbital energies of the CUO (1�+) and the CUONg4(1A1) complexes from the supermolecular and DFT-in-DFT/PBE0 calcula-
tions using different kinetic energy functionals in ADF. Orbital energies are given relative to the energy of HOMO for all the compounds.

effects on the transition energies, except for the large effect
on the b 3A1 (3�+) and d 1A1 (1�+) states that correspond
to excitation to the diffuse σ -orbital. These transitions rapidly
shift to higher energies when adding the noble gas cage. Other
changes in the electronic spectrum introduced by the noble
gas environment are relatively small for the lowest-lying exci-
tations (difference less than 0.1 eV). Those results are shown
in supermolecular case, where the differences in the electronic
transitions between the bare CUO and the CUONg4 com-
plexes are plotted. We note a relatively large difference be-
tween the Ne and Ar cage, but as already seen in the orbital
energy differences, an overall surprisingly small effect of the
matrix given the experimental findings.

C. DFT-in-DFT electronic structure of the CUONg4
compounds

1. The quality of embedding potential

We now investigate whether the subtle effect on the envi-
ronment can be represented by an FDE embedding potential.

Two criteria may be used to quantify the quality of the
FDE-approach: (1) the reproduction of the ground-state den-
sity of the complex and (2) the error in the calculated transi-
tion energies. These errors can be evaluated exactly in DFT
and are supposed to carry over to the WFT description.

To assess the first error we compare the electron density
calculated within the DFT-in-DFT framework to the super-
molecular density. This criterium tests the accuracy of the ap-
proximation used for the non-additive parts of the kinetic en-
ergy and xc functionals. For the latter we restrict ourselves to
the PBE functional to remain as close as possible to the PBE0
hybrid functional used in the supermolecular calculation. For
the repulsive kinetic energy contribution to the embedding po-
tential that models the Pauli repulsion of the Ng cage, we used
the simplest local Thomas–Fermi (TF) (Refs. 81–83) and the
often more robust77 gradient-corrected functional PW91K.85

Since underestimation of the Pauli repulsion may give rise
to unphysical transfer of electron density from the active
center to the environment subsystem—the so called “elec-
tron leak” problem,52, 78, 103 we also considered the NDSD
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TABLE IV. Spin-free vertical excitation energies of the CUO(1�+) and
CUONg4(1A1) from the KS/TD-DFT/PBE0 approach (in eV).

Symmetrya CUO CUONe4 CUOAr4 CUOKr4 CUOXe4

a3E (3�) −0.204 −0.222 −0.233 −0.253 −0.231
a3A1 (3
) 0.464 0.431 0.384 0.211 0.368
a3A2 (3
) 0.464 0.440 0.399 0.259 0.385
a1E (1�) 0.504 0.472 0.434 0.333 0.411
a1A1 (1
) 0.983 0.951 0.915 0.839 0.891
a1A2 (1
) 0.983 0.978 0.960 0.892 0.949
b3A1 (3�+) 1.029 1.245 1.598 1.930 1.826
c3A1 (3
) 1.317 1.289 1.274 1.234 1.281
b3A2 (3
) 1.317 1.289 1.275 1.236 1.284
d3A1 (3
) 1.324 1.296 1.281 1.245 1.289
c3A2 (3
) 1.324 1.296 1.281 1.243 1.289
b1A1 (1
) 1.484 1.455 1.438 1.405 1.441
b1A2 (1
) 1.484 1.455 1.438 1.404 1.440
c1A1 (1
) 1.726 1.693 1.666 1.653 1.620
c1A2 (1
) 1.726 1.710 1.698 1.671 1.692
b3E (3�) 1.773 1.748 1.736 1.698 1.745
c3E (3�) 1.775 1.765 1.761 1.737 1.773
d1A1 (1�+) 1.771 1.938 2.156 2.323 2.248

aWe use the C4v point group symmetry notation with C∞v irreps indicated in
parenthesis.

(Ref. 84) functional and the zero-overlap correction of Jacob
and Visscher78 that eliminate such problems. We used the er-
ror measures defined by Bernard et al.:104 integrated absolute
errors in the electron density, the integrated root mean square
errors in the electron density, and the magnitude of the errors
in the dipole moment. While the former two strictly depend
on the absolute size of the error in the electron density, the
latter also provides information on its spatial redistribution.
The size of the errors is taken relative to the sum of fragment
density obtained by simply superimposing the density of the
cage and the density of the bare CUO molecule.

The simple TF potential provides a reasonable descrip-
tion and has even the smallest errors measures for the complex
with xenon (see Table V). For the neon cage PW91K provides
the best description, while for the other two cases, argon and
krypton, no unambiguously best functional can be selected. In
correcting for charge-leak artifacts, the Jacob and Visscher78

correction reduces the embedding potential too much, un-
derestimating the interaction between CUO and the cage.
This can have an adverse effect on the dipole moment, when
compared to its parent functional, PW91K. For the NDSD
(Ref. 84) kinetic energy functional that is based on the TF
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FIG. 4. Contributions to the total embedding potential from the electrostatic, non-additive xc and non-additive kinetic energy—TF to the left and NDSD to the
right—components along the Ng–U–Ng axis in the CUONg4(1A1) complexes (in hartree).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.49.225.190 On: Wed, 05 Oct

2016 15:42:41

244



084308-9 Tecmer et al. J. Chem. Phys. 137, 084308 (2012)

−15

−10

−5

 0

 5

 10

 15

−4 −3 −2 −1  0  1  2  3  4

P
ot

en
tia

l [
a.

u.
]

Distance [Ang.]

Components of the embedding potential across the Ne−U−Ne bonds (PW91K)

Ne NeU

electrostatic
nonadditive kinetic

nonadditive xc
embedding

−15

−10

−5

 0

 5

 10

 15

−4 −3 −2 −1  0  1  2  3  4

P
ot

en
tia

l [
a.

u.
]

Distance [Ang.]

Components of the embedding potential across the Ne−U−Ne bonds (PW91K−CJCORR)

Ne NeU

electrostatic
nonadditive kinetic

nonadditive xc
embedding

−15

−10

−5

 0

 5

 10

 15

−4 −3 −2 −1  0  1  2  3  4

P
ot

en
tia

l [
a.

u.
]

Distance [Ang.]

Components of the embedding potential across the Ar−U−Ar bonds (PW91K)

Ar ArU

electrostatic
nonadditive kinetic

nonadditive xc
embedding

−15

−10

−5

 0

 5

 10

 15

−4 −3 −2 −1  0  1  2  3  4

P
ot

en
tia

l [
a.

u.
]

Distance [Ang.]

Components of the embedding potential across the Ar−U−Ar bonds (PW91K−CJCORR)

Ar ArU

electrostatic
nonadditive kinetic

nonadditive xc
embedding

FIG. 5. Contributions to the total embedding potential from the electrostatic, non-additive xc and non-additive kinetic energy—PW91K to the left and PW91K-
CJCORR to the right—components along the Ng–U–Ng axis in the CUONg4(1A1) complexes (in hartree).

functional we see an improvement relative to TF for the Ar
and Kr complexes but a slightly worse performance for the
Ne and Xe complexes.

The best overall performance for the two cases that are of
most interest, neon and argon, is therefore obtained with the
PW91K kinetic energy functional. More interesting than these
errors in the density is, however, the effect on the valence or-
bital energies of the DFT-in-DFT CUONg4 complexes. These
results are indicative of the errors that can be expected in the
supermolecular spectra. This data are given in Figures 3(b)–
3(d). From the figures we observe that the effect of the cage
is generally underestimated by the FDE approach: while in
KS/DFT the 26a1-orbital is the LUMO only for the CUO
and CUONe4 molecules, with FDE it is, e.g., always found
as LUMO for CUOXe4. Even more troublesome is the fact
that the order of the 26a1- and 13b1/b2-orbitals is reversed
(crossing of the blue dashed lines between Ar and Kr) for the
heavier noble gas cages. To check whether these artifacts are
due to the freeze-and-thaw procedure we also did some test
calculations in which the density of unperturbed Ng atoms
was used to represent the density of the cage, but this gave the
same picture.

More insight can be obtained by analyzing the three sep-
arate components of the potential: the electrostatic (Coulomb
and nuclear), and the non-additive xc and kinetic energy com-
ponents. In Figures 4 and 5 these are plotted along the Ne–
U–Ne and Ar–U–Ar lines in an idealized geometry (with the
Ng all exactly in the equatorial plane). In all pictures we see
that it is the balance between the large attractive electrostatic
and the repulsive kinetic energy components that determines
the potential. This balance is more difficult to obtain when the
electrostatic terms become larger, as is the case for the heav-
ier Ng atoms. The exact potential should furthermore reflect
the shell structure of the atoms that also becomes more pro-
nounced for the heavier atoms. For the uncorrected TF and
PW91K potentials the shell structure mainly arises from the
compensation of the monotonously negative Coulomb poten-
tial by the monotonously positive kinetic energy component,
while for the NDSD approach the switching function that is
used to interpolate between two functional forms also intro-
duces oscillations in the kinetic energy component for the
heavier Ng atoms. The Jacob and Visscher correction78 op-
erates on the full potential and reduces this in the vicinity of
the nuclei to obey an exact limit for non-overlapping systems.
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TABLE V. Integrated errors in the electron density: 
abs (absolute) and

rms (root mean square), magnitude of the error in the dipole moment |
μ|
for the sum of fragments, and the DFT-in-DFT/PBE0 calculations with a dif-
ferent approximate non-additive kinetic energy functionals. The most accu-
rate values are marked in boldface.

System 
abs × 10−3 
rms × 10−3 |
μ|(D)

1CUONe4 Sum of fragments 1.35 0.99 0.183
FDE (Thomas–Fermi) 4.57 0.03 0.029
FDE (NDSD) 4.84 0.03 0.033
FDE (PW91K) 2.32 0.02 0.010
FDE (PW91K-CJCORR) 6.23 0.04 0.171

1CUOAr4 Sum of fragments 2.76 1.39 0.354
FDE (Thomas–Fermi) 1.42 1.39 0.146
FDE (NDSD) 1.40 0.06 0.139
FDE (PW91K) 1.39 0.07 0.261
FDE (PW91K-CJCORR) 1.66 0.09 0.370

1CUOKr4 Sum of fragments 2.71 1.23 0.225
FDE (Thomas–Fermi) 1.08 0.06 0.089
FDE (NDSD) 1.10 0.06 0.115
FDE (PW91K) 1.03 0.06 0.188
FDE (PW91K-CJCORR) 1.33 0.85 0.348

1CUOXe4 Sum of fragments 2.27 0.11 0.205
FDE (Thomas–Fermi) 1.36 0.07 0.178
FDE (NDSD) 1.41 0.07 0.222
FDE (PW91K) 1.40 0.08 0.302
FDE (PW91K-CJCORR) 1.40 0.08 0.307

For the current system this leads to an almost complete re-
duction of the potential which explains the too small orbital
energy shifts for this approach.

2. Excitation energies from embedded TD-DFT

As the goal of the embedding approach is to reproduce
the supermolecular approach, that is the data in Table IV,
we directly compare the DFT-in-DFT to the reference super-
molecular excitation energies in Figure 6. As was expected
from the errors seen in the orbital energies, none of the ki-
netic energy approximations is able to reproduce the KS/TD-
DFT/PBE0 results for the heavier Ng matrices. Errors are
largest in absolute magnitude for the 1, 3A1 and 1, 3A2 excited-
states in heavier noble gases. All embedding potentials do
shift the 3E state above the 1A1 ground-state. For all excita-
tions the effect of the environment is small and the PW91K
functional provides the relatively best performance, in agree-
ment with the density error analysis discussed above.

D. WFT-in-DFT electronic structure of the CUONg4
compounds

Considering all the information discussed above we find
that the PW91K kinetic energy functional can give a qualita-
tive description of the neon and to a less extent argon envi-
ronments, although quantitative agreement and correct trends
are not reached. We decided to select this embedding poten-
tial to perform WFT-in-DFT calculations and check whether
the same environment effects are found.

The SOC WFT-in-DFT excitation energies are listed in
Table VI. The effect of noble gas environment on the transi-
tions is clearly much too small to cause a ground-state change
in the WFT calculations, but just sufficient, in the case of
neon, to place the �2 excited-state below the two 3�+ states.
For argon this trend is reversed, in contrast to the supermolec-
ular DFT calculations, which is due to the larger error in
the embedding potential for this system. This error is larger
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TABLE VI. SOC vertical excitation energies of the CUO and CUONg4

complexes from the WFT-in-DFT: IHFSCC-SD via sector (0h, 2p) for the
bare CUO subsystem and embedded in the Ng4 DFT-in-DFT/PBE0/PW91K
potential.

Statea CUO CUONe4 CUOAr4 CUOKr4 CUOXe4

3�0, 1
b 0.81 1.02 0.85 0.76 0.65

3�2 0.94 0.84 0.89 0.93 0.97
3�3 1.01 0.94 0.98 1.02 1.06
3
1 1.23 1.07 1.27 1.30 1.33
3
2 1.28 1.17 1.31 1.34 1.37
1�0 1.37 1.51 1.36 1.31 1.21
3�4 1.60 1.53 1.57 1.61 1.64
3
3 1.69 1.58 1.58 1.67 1.64
1
2 1.72 1.68 1.75 1.78 1.76
1�3 1.79 1.73 1.76 1.79 1.80

aSubscripts denote �-values and upperscripts spin multiplicity.
bThe differences between 3�+

0 and 3�+
1 electronic states are less than 0.01 eV.

still when utilizing an embedding with heavier Ng atoms, and
leads to meaningless results as expected on basis of the DFT-
in-DFT results.

IV. CONCLUSIONS AND OUTLOOK

We have optimized geometries and calculated vibrational
frequencies of the CUO and CUONg4 complexes in the 1�+

and 3� states using the PBE0 hybrid xc functional. The sig-
nificant difference in characteristic U–O and U–C vibrational
frequencies that was observed in experiments, is in agreement
with previous work, explained by a difference of electronic
ground-state (1�+ to 3�) in the neon and argon matrix, re-
spectively. The direct effect of environment is smaller than
50 cm−1 for the U–O and U–C stretching frequencies.

Since analysis of the vibrational spectra provides only an
indirect measure for the energetic ordering of the electronic
states, we also investigated this ordering directly for CUO and
the CUONg4 model compounds. The spin–free and spin–orbit
IHFSCC-SD excitation energies of the CUO molecule, indi-
cate that this molecule has a singlet ground-state, which is in
line with earlier Fock-space coupled cluster studies by one of
us17 and the CISD calculations of Yang et al.13 These cou-
pled cluster energies were used to assess the accuracy of hy-
brid TD-DFT/PBE0 excitation energies. It turns out that both
components of PBE0 xc functional—DFT and HF part—are
insufficiently accurate. This issue can be related to the well–
known “triplet instability” problem,101, 105, 106 caused by the
large exchange splitting in the 5f-shell, that is strongly over-
estimated in Hartree–Fock theory.

Compared to the large energy splittings predicted by
the WFT approaches, the low-lying excited-states show only
minor perturbations due to the noble gas environment. An
exception are the 3, 1� excited-states that originate from elec-
tron transfer to the diffuse virtual fσ -orbital. This diffuse or-
bital, and the corresponding transitions, are shifted to a much
higher energy by the equatorial ligands.

Since the perturbations are small, we expected that these
could be captured by the FDE approach, but it turns out
that none of the currently available kinetic energy function-

als is able to yield results with the desired accuracy of less
than 0.1 eV. For the CUONe4 model the PW91K kinetic en-
ergy functional provides a reasonable agreement with a super-
molecular approach, but for the complexes with heavier noble
gases all kinetic energy functional produce too small ligand
field splittings and a qualitatively incorrect result. WFT-in-
DFT calculations on the CUONg4 systems should, however,
be feasible as soon as embedding potentials improve because
the analysis of the densities shows that a density partition-
ing into a CUO and an environment density is indeed well
possible.

As a side result of our work we note the importance
of further development of xc functionals that can provide
qualitatively correct xc splittings for actinides. While for
the UO2+

2 , NUN, and NUO+ molecules good agreement be-
tween the TD-DFT and IHFSCC-SD electronic excitations
can be reached, this is currently not the case for the CUO
molecule.
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Building on the framework recently reported for determining general response properties for frozen-
density embedding [S. Höfener, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 136, 044104
(2012)], in this work we report a first implementation of an embedded coupled-cluster in density-
functional theory (CC-in-DFT) scheme for electronic excitations, where only the response of the
active subsystem is taken into account. The formalism is applied to the calculation of coupled-cluster
excitation energies of water and uracil in aqueous solution. We find that the CC-in-DFT results are in
good agreement with reference calculations and experimental results. The accuracy of calculations
is mainly sensitive to factors influencing the correlation treatment (basis set quality, truncation of the
cluster operator) and to the embedding treatment of the ground-state (choice of density functionals).
This allows for efficient approximations at the excited state calculation step without compromising
the accuracy. This approximate scheme makes it possible to use a first principles approach to in-
vestigate environment effects with specific interactions at coupled-cluster level of theory at a cost
comparable to that of calculations of the individual subsystems in vacuum. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4820488]

I. INTRODUCTION

Electronic excitations of valence electrons play a central
role in photochemical and photophysical processes. To un-
derstand the properties of species in a condensed phase, one
may consider two extremes: one in which there is little inter-
action between the constituents and the spectra are close to
those in vacuum; and the other where interactions between
the species and its environment are strong enough to produce
qualitatively different spectra.

The most direct way to model spectra in the latter case
is to employ a supermolecular approach and create a model
including the species of interest as well as the closest neigh-
bor molecules in the environment. This model is then treated
with one of the standard electronic structure methods, such
as the generalizations to the time-dependent case of density-
functional theory (TD-DFT), see, e.g., Ref. 1 and references
therein, or wave function theory (WFT)-based methods as in
the linear response (LR) coupled-cluster (CC) approach.2

While coupled-cluster methods are often preferable to
TD-DFT due to better accuracy and reliability, their rather
high computational costs limit their applicability. For in-
stance, TD-DFT exhibits a formal computational scaling of
up to N4, where N is a measure of the system size, but in
practice it is as low as N2,3 so that single-point calculations
on systems of up to 400 atoms4 can be carried out routinely.
By contrast, coupled-cluster with singles and doubles excita-
tions (CCSD) exhibits a formal computational scaling of N6,
so that molecules up to some tens of atoms are feasible.5 Cer-
tain approximate methods can show more favorable scalings,
e.g., N4 in case of a scaled opposite spin (SOS)-Laplace CC2

of Winter and Hättig,6 but even in these “best-case” scenarios
systems only up to about 150 atoms can be routinely treated,
in particular if excited-state properties are sought. Effectively,
this prevents their use in models in which a large number of
solvent molecules (e.g., a few hundred or more) must be taken
into account in order to describe long-range effects.

An alternative to the supermolecule approach is found in
embedding approaches, where instead of treating the whole
system as a single entity, it is partitioned into a number of
interacting subsystems. While from a formal perspective one
can formulate embedding approaches equivalent to the super-
molecular case, for instance by considering the case of (TD-)
DFT with exact functionals,7 their real strength lies in the pos-
sibility of introducing systematic approximations allowing for
reducing the overall computational cost while maintaining a
desired degree of accuracy.

Among the embedding approaches for calculating elec-
tronic spectra, those in the QM/MM (quantum mechan-
ics/molecular mechanics) family are perhaps the most widely
used in connection to model electronic spectra in solution
so far. In QM/MM, the system is partitioned into an active
center to be calculated with QM methods, and its environ-
ment represented by a classical force field, so that the interac-
tion between the two is obtained as an interaction between a
QM density and a representation in terms of multipole expan-
sions. Combined with electronic structure methods based on
response theory,8–11 polarizable force fields have been shown
to incorporate effects such as the polarization of the envi-
ronment as well as its back-polarization effect on the ground
and excited states of the solute rather accurately,12, 13 provided

0021-9606/2013/139(10)/104106/13/$30.00 © 2013 AIP Publishing LLC139, 104106-1
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that reliable parameters can be generated for the system to be
studied.

A dependence on force fields can be circumvented by em-
ploying purely quantum-mechanical embedding approaches7

(denoted QM/QM) such as frozen-density embedding
(FDE). Originally formulated within a ground-state DFT
framework14–16 and later extended to the time-dependent
domain,17–21, 28 FDE is based on the partitioning of the total
electron density into that of subsystems, and allows to de-
scribe the electronic structure of one subsystem with the oth-
ers represented by a so-called embedding potential.

In the FDE framework it is also possible to combine
WFT and DFT, obtaining a methodology that can be accu-
rate and relatively inexpensive as the WFT-based method can
be used to describe only a subsystem of interest, while the
others and the interaction between subsystems are treated at
DFT level. This approach was followed in the WFT-in-DFT
method pioneered by Carter and co-workers,22 who employed
variational approaches such as multireference (MR) configu-
ration interaction (CI), obtaining the embedding potential in
an iterative manner. Recently, a less costly computational ap-
proach was presented, in which an embedding potential ob-
tained from purely DFT calculations is used as a fixed one-
electron potential in the WFT calculation, allowing for the
use of electronic structure methods for which electron densi-
ties are not easily available such as non-variational methods.23

These WFT-in-DFT approaches typically account for envi-
ronment effects, including the polarization of the environ-
ment, for the ground-state but do not include polarization ef-
fects due to electronic excitations that can become important,
depending on the property of interest and on the nature of the
system.18, 20, 24, 25

In this article, we therefore aim to provide a first step
towards the incorporation of excited-state polarizations in
WFT-in-DFT calculations, akin to what is currently possible
with purely DFT approaches, by providing a first implemen-
tation and applications of a CC-in-DFT approach based on
the generalization26 of the FDE subsystem response formal-
ism. In this paper, we restrict the discussion to the response
of the active subsystem treated at the CC level, whereas the
response of the environment treated with DFT is disregarded.
This means that excited-state polarization within the active
subsystem will be taken into account for the first time in a
CC-in-DFT calculation. In future work we shall address the
coupling between subsystems in the excited states.

This article is organized as follows: it starts by summa-
rizing the essential aspects of FDE-DFT and CC-in-DFT, fol-
lowed by a discussion of the calculation of the individual
contributions to, e.g., the coupled-cluster Jacobian. After that
numerical results for the influence of different levels of ap-
proximations on excitation energies are discussed, followed
by conclusions and outlook.

II. THEORY

In this section the essentials of DFT-in-DFT and CC-in-
DFT embedding are outlined, and the reader is referred to re-
cent publications7, 27, 28 for further details.

A. FDE and subsystem DFT

The starting point of DFT FDE is the representation of
the ground-state electron density for the total system, ρtot, as
a sum of the densities of a number of subsystems:

ρtot = ρI +
∑

i �=I

ρi = ρI + ρII, (1)

where ρI denotes the density for the so-called “active” subsys-
tem of interest, and ρII the density of its surrounding, denoted
the “frozen” subsystem. With such a partitioning, the total en-
ergy of the system, Etot[ρtot], can then be written as a sum of
subsystem energies and one interaction energy,

Etot[ρI + ρII] = EI[ρI] + EII[ρII] + Eint[ρI, ρII]. (2)

The subsystem energy expression for each of the subsystems
is given as

Ei[ρi] =
∫

ρi(r)vi
nuc(r)dr + 1

2

∫ ∫
ρi(r)ρi(r′)
|r − r′| dr dr′

+Exc[ρi] + Ts[ρi] + Ei
nuc, (3)

where vi
nuc is the nuclear potential and Ei

nuc the nuclear repul-
sion energy. The interaction energy is given by the expression

Eint[ρI, ρII] =
∫

ρI(r)vII
nuc(r)dr +

∫
ρII(r)vI

nuc(r)dr + EI,II
nuc

+
∫ ∫

ρI(r)ρII(r′)
|r − r′| drdr′ + Enadd

xck [ρI, ρII], (4)

where the non-additive contributions are defined as

Enadd
xck [ρI, ρII] = Exck[ρI + ρII] − Exck[ρII] − Exck[ρII] . (5)

Here, Exck[ρ] denotes the sum of exchange-correlation and
kinetic-energy contributions, which are calculated using den-
sity functionals. The explicit dependence on the density gradi-
ents of the different densities in Eq. (5) is omitted for clarity
and is taken into account for, e.g., generalized gradient ap-
proximation (GGA) functionals.

Minimizing the total energy of the system with respect to
ρI yields the Euler-Lagrange equation,

δEI[ρI]

δρI
+ δEint[ρI, ρII]

δρI
= μI, (6)

with the Lagrange multiplier μI introduced to keep the num-
ber of electrons in system I constant. The derivative of the
interaction energy functional that carries the intersystem de-
pendence is the embedding potential

vI
int(r) = δEint[ρ]

δρI(r)
= vII

nuc(r) +
∫

ρII(r′)
|r − r′|dr′

+
[
δExck

δρ

∣∣∣
ρtot

− δExck

δρ

∣∣∣
ρI

]
. (7)

It can be decomposed into the electrostatic interactions with
the environment due to the nuclei and electron density of
the frozen subsystem, as well as derivatives of the non-
additive exchange-correlation and kinetic energy contribu-
tions. The density of subsystem I is obtained by constructing
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a non-interacting reference system and employing the Kohn-
Sham equation for a constrained electron density (KSCED),16

yielding

F KS;IφI
p(r) =

[
− 1

2
� + vI

nuc(r) +
∫

ρI(r′)
|r − r′|dr′

+vxc[ρI ](r) + vI
int(r)

]
φI

p(r)

= εKS;I
p φI

p(r). (8)

In order for the subsystem densities to satisfy Eq. (1), the
frozen density ρII must be smaller than ρtot everywhere and v-
representable.29 As these conditions often cannot be fulfilled
in practice if ρII remains fixed, a solution is to minimize the
total energy with respect to ρI as well as ρII.

This implies that instead of a single Euler-Lagrange
equation, one is dealing with a system of equations coupled
through the interaction term. The most widely used procedure
to solve such a system is the so-called freeze-thaw scheme, an
iterative procedure where one solves for one of the subsystem
densities at a time, considering the others frozen and subse-
quently exchanging roles until self-consistency. The freeze-
thaw procedure can be therefore be thought of as a way to
polarize the environment at the ground-state.

FDE and DFT-in-DFT have been shown to be very ef-
ficient in the calculation of excitation energies in the pres-
ence of rather large environments, and FDE in particular can
be easily deployed in combination with molecular dynam-
ics (MD).30–32 Central to this efficiency is the use of disjoint
sets of molecular orbitals (MOs) for the different subsystems,
which greatly reduces the computational effort in calculating
two-electron integrals, and the use of pure density functional
approximations to the exact kinetic energy functional con-
tributing to the interaction energy and its derivatives.

These two key aspects are at the same time major sources
of numerical differences to the supermolecule treatment. The
use of disjoint sets of orbitals, and the usual restriction that
the subsystems do not exchange particles, may prevent a
proper description of electronic excitations for which there
are significant contributions form the environment, unless
one also couples the subsystems in the excited states.18–20, 28

The currently available kinetic density functionals, in their
turn, are only sufficiently accurate to describe relatively weak
interactions29, 33, 34 and impose limitations on the possible par-
titioning into subsystems, e.g., preventing partitions that sep-
arate atoms making covalent bonds, unless special care is
taken.35 Such shortcomings have motivated the development
of approaches circumventing the use of kinetic energy func-
tionals in the construction of the embedding potential,29, 36–39

but these schemes are not yet mature enough to be used in the
calculation of excited states.

B. The coupled-cluster ansatz

The discussion of the theoretical aspects in the present
work is restricted to the orbital-unrelaxed singles and doubles
ansatz (CCSD), where the cluster operator T is truncated af-
ter two-particle excitations, and approximations to it.40 The

starting point is the definition of the CCSD Lagrangian L as
the energy contribution obtained from the projection of the
Schrödinger equation to different excited determinants:

L = 〈HF| exp(−T2)Ĥ exp(T2)|HF〉 +
∑

μi

t̄μi
�μi

, (9)

�μi
= 〈μi | exp(−T2)Ĥ exp(T2)|HF〉. (10)

Here, T2 denotes the double-excitation cluster operator and
μi the excited-determinant excitation parameterization. In this
article, hats label T1-similarity transformed quantities, e.g., in
case of the Hamilton operator:

Ĥ = exp(−T1)H exp(T1). (11)

As an approximate method, the CC2 model is considered in
the present work, for which the amplitude equations for the
single excitations (�μ1 ) remain as in CCSD, but those defin-
ing the doubles excitations (�μ2 ) are simplified in such a way
that the fluctuation potential is only transformed with the T1

cluster operator:

�CC2
μ2

= 〈μ2|[F, T2] + �̂|HF〉, (12)

where H has been decomposed into the Fock operator F and
the fluctuation potential �:

H = F + �. (13)

C. The CC-in-DFT response ansatz

In the CC-in-DFT response ansatz,26 instead of the ex-
pression for the total energy in Eq. (2), a Lagrangian L for the
total system is defined, constructed from the Lagrangian of
subsystem I (LI), as well as that for subsystem II (LII) and the
interaction contribution (Qint):

L = LI + Qint + LII. (14)

Qint has the same form of as Eint in Eq. (4), but now both
ρI and ρII can be time-dependent. The electron density for
subsystem I is given as

ρI = ρCC = 〈	|ρI|CC〉 , (15)

with the bra state defined as

〈	| = 〈HF| +
∑

ν

t̄ν〈ν| exp(−T ). (16)

If the frozen-core approximation is applied in this context,
the density of the corresponding core orbitals is taken from
the Hartree-Fock level of theory for the construction of the
embedding potential.

D. Ground-state amplitudes and multipliers
in CC-in-DFT

The coupled-cluster ground-state amplitudes and La-
grange multipliers are obtained from the condition that the
zeroth-order quasienergy Lagrangian is stationary with re-
spect to them.40 However, embedding coupled-cluster ap-
proaches differ from a conventional treatment in the fact that
these parameters cannot be determined independently.12, 26, 41
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TABLE I. Ground-state quantities for CC-in-DFT. Superscripts in parenthesis denote the order of perturbation,
{μ, ν} refer to singly or doubly excited determinants, T̂ (0) cluster operator built with ground-state amplitudes,
Epq is a spin-free excitation operator, and {p, q} run over orbital indices. Integrals over vint and wint are defined
in Eqs. (18) and (27), respectively. See Ref. 26 and references therein for further details.

Contributions

Quantity determined from Vacuum Embedding

t(0) 0
!= ∂{L(0)}T

∂ t̄(0)
ν

�ν

∑
pq 〈p|vint|q〉t̄ �pq;ν

t̄(0) 0
!= ∂{L(0)}T

∂t(0)
μ

∑
ν t̄

(0)
ν

∂�ν

∂t
(0)
μ

+ t ημ

∑
pq 〈p|vint|q〉t �pq;μ

≡ ∑
ν t̄

(0)
ν Avac

μν + ηvac
μ

∑
ν t̄

(0)
ν Aint

μν + ηint
μ

Aμν 〈ν|e−T̂ (0)
[Ĥ , τμ]|CC〉 ∑

pq 〈p|vint|q〉〈ν|e−T̂ (0)
[Epq, τμ]|CC〉

ημ 〈HF|e−T̂ (0)
[Ĥ , τμ] eT̂ (0) |HF〉 ∑

pq 〈p|vint|q〉×
〈HF|e−T̂ (0)

[Epq, τμ] eT̂ (0) |HF〉
t�pq; μ

∂ρ
(0)
CC

∂t
(0)
μ

〈	|[Epq, τμ]|CC〉

t̄ �pq;μ
∂ρ

(0)
CC

∂t̄
(0)
μ

〈μ|e−T̂ (0)
Epq |CC〉

1. Amplitude equations

The coupled-cluster amplitudes are obtained from the
derivative of the Lagrangian with respect to the Lagrange
multipliers. In the following, the short-hand notation of
Ref. 26 will be used, yielding

0 = ∂L

∂t̄μi

= �μi
+

∑

pq

〈p|vint|q〉t̄ �pq;μi
, (17)

where

〈p|vint|q〉 =
∫

φ†
p(r)vI

int(r)φq(r)dr, (18)

and t̄ �pq;μi
is a density matrix, obtained by expanding the CC

density to different orders and collecting the contributions of
same order. Hence, in this case one obtains

t̄ �pq;μi
= 〈μi | exp(−T )Epq |CC〉. (19)

The elements of t̄ �pq;μi
can be easily obtained, since they ex-

hibit the same structure as the conventional amplitude equa-
tions. At the level of working equations, similar contributions
are obtained.

2. Lagrangian multipliers

The Lagrangian multipliers are obtained from the deriva-
tive of the Lagrangian with respect to the amplitudes:

0 = ∂L

∂tμi

= 〈	|[H, τμi
]|CC〉 +

∑

pq

〈p|vint|q〉t�pq;μi
,

(20)

where the density matrix elements t�pq;μi
are given as

t�pq;μi
= 〈	|[Epq, τμi

]|CC〉. (21)

It is possible to rearrange Eq. (20) so that it can be expressed
in matrix form as

−(ηvac + ηint) = t̄
(
Avac + tA

)
. (22)

Expressions for A and η can be found in Table I.

3. Computational protocol

In the FDE approach, the electron densities for the sub-
systems are the central quantities, as they fully determine
the embedding potential vint. Thus, for CC-in-DFT it is the
ground-state coupled-cluster density ρCC that takes this cen-
tral role, and, since ρCC has a non-linear dependence on the
set of ground-state CC amplitudes and multipliers, one has to
employ an iterative procedure akin to the self-consistent field
procedure for its determination.

The focus in the present work is on the polarization of
the coupled-cluster density due to a frozen environment, and
the options available for this step are illustrated in the com-
putational protocol in Fig. 1. Thus, one starts by obtaining
(step (a) in Fig. 1) the electrostatic potential and electron
density ρII for the environment, where the latter can be de-
termined either from a calculation in the original DFT FDE
formulation,16 or from calculations in which it is allowed to
be polarized via a freeze-thaw procedure.22, 23 Following that,
one can follow two approaches. The first one consists of per-
forming a calculation of subsystem I without any environ-
ment (in vacuum, step (b)), in order to obtain a trial ρCC (step
(c)) used to construct a trial embedding potential (step (d)).
The ρCC and vint are subsequently updated in a self-consistent
manner (steps (c)–(e)) but only at the coupled cluster level,
without modifying the (vacuum) MOs. This approach empha-
sizes the fact that in WFT-in-DFT, it is the correlated electron
density that interacts with the DFT density and regards the
Hartree-Fock orbitals only as auxiliary quantities.

In the second approach, the embedding potential is in-
cluded in the Hartree-Fock step (b) at every iteration of the
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FIG. 1. Computational protocol for ground-state CC-in-DFT with an active system in the presence of a frozen environment. In the first iteration, calculations
in vacuum are carried out, whereas in subsequent calculations the embedding potential is included for subsystem I.

self-consistent procedure to determine vint (steps (b)–(e)),
using, for instance, the vint from a prior embedding calcu-
lation in step (a) as an initial guess. In this way, the MOs
are modified at each iteration by the interaction with the en-
vironment, and therefore can be though of as being relaxed
with respect to (or perturbed by) the environment. The mo-
tivation for this approach comes from the observation that
in CC/MM12 calculations introducing the interaction poten-
tial at the self-consistent field (SCF) stage can sensibly im-
prove the calculated excitation energies by providing some
additional orbital relaxation, thus avoiding the need to intro-
duce it at the linear response level. This enables the method
to retain a pole structure close to exact theory. In addition
to a possibly better description of orbital relaxation, the use
of the same embedding potential in the SCF and coupled-
cluster treatment for the second procedure allows for further
simplifications in the working equations. Important for the
computational efficiency is that this scheme makes it possible
to employ a T2-direct algorithm without further approxima-
tions for CC2 – something that would not be justified if
the embedding contributions were split into SCF and CC
contributions.

With respect to their computational costs, the two ap-
proaches have similar formal computational scalings. Let NI

and NII be a measure for the size of the active and envi-
ronment subsystem, respectively. For step (a), the cost of
DFT FDE or subsystem DFT calculations will grow at most
as O(nI[N4

I + N4
II]), where ni denotes the number of freeze-

thaw iterations (and are equal to one for DFT FDE). In turn,
for steps (b)–(e), the CC-in-DFT calculations will scale as
O(mIN

6
I + δ) for CCSD or O(mIN

5
I + δ) for CC2, where mI

is the number of steps required to achieve self-consistency for
ρCC and vint and δ indicates the overhead, e.g., due to the cal-
culation of the embedding potentials. It is nevertheless diffi-
cult to estimate which of the two approaches is faster in prac-
tice, as the convergence behavior of the self-consistent proce-
dure is not necessarily the same for the two and therefore the
number of iterations mI might differ.

It is clear, however, that CC-in-DFT scales much more
favorably than coupled cluster supermolecular calculations,

whose cost grows as O([NI + NII]6) for CCSD or O([NI

+ NII]5) for CC2, and will be computationally advanta-
geous whenever the environment consists of more than a few
molecules. For relatively small systems, on the other hand,
it may be that the overhead associated with the embedding
calculation offsets the computational advantage of treating
smaller subsystems, and supermolecular calculations remain
competitive.

E. CC-in-DFT excitation energies

As discussed in Ref. 26, excitation energies in the subsys-
tem formulation correspond to the poles of the linear response
function,

〈〈X; Y 〉〉ω = d2{2n+1L(2)
I }T

dεX(ω)dεY (−ω)
+ d2{2n+1Q

(2)
int }T

dεX(ω)dεY (−ω)

+ d2{2n+1L(2)
II }T

dεX(ω)dεY (−ω)
. (23)

The contributions from {2n+1L(2)
II }T , representing the response

of the environment, will not be taken into account here. In
this case, the (orbital-unrelaxed) CC-in-DFT linear response
function becomes (compare Table II)

〈〈X; Y 〉〉ω = 1

2
C±ωP (X(ω), Y (−ω))

{
1

2
J t̄X(ω)t̄Y (−ω)

+
[
ηX + 1

2
F tX(ω)

]
tY (−ω)

}
. (24)

with C±ω a symmetrization operator40 and t̄X,Y (±ω),
tX,Y (±ω) the first-order Lagrange multipliers and CC am-
plitudes, respectively, obtained by solving the response
equations,26, 40 and F and J are matrices defined on the basis
of subsystem I (see Table II).

For the vacuum case,40 the matrix t̄ t̄J is identically zero
and it is straightforward to show that the poles of the CC re-
sponse function are found to occur at the same frequencies
as the eigenvalues of the CC Jacobian matrix t̄ tA. For CC-
in-DFT as well as CC/MM, on the other hand, J may be
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TABLE II. Linear response quantities for CC-in-DFT. Superscripts in parenthesis denote the order of perturba-
tion, {μ, ν} refer to singly or doubly excited determinants, T̂ (0) cluster operator built with ground-state ampli-
tudes, Epq is a spin-free excitation operator, and {p, q} run over orbital indices. Integrals over vint and wint are
defined in Eqs. (18) and (27), respectively. See Ref. 26 and references therein for further details.

Contributions

Quantity determined from Vacuum Embedding

ηX
μ

∂2{L(2)}T
∂εX(ω)∂t

(1)
μ (−ω)

〈	|[X̂, τμ]|CC〉

ttFμν

∂2{L(2)}T
∂t

(1)
μ (ω)∂t

(1)
ν (−ω)

〈	|[[Ĥ , τμ], τν ]|CC〉 ∑
pq 〈p|vint|q〉t t �pq;μν

+ 1
2

∑
pqrs (pq|wint|rs)t �pq;μ

t�rs;ν

t t̄Aμν (ω)
∂2{L(2)}T

∂t
(1)
μ (ω)∂t̄

(1)
ν (−ω)

〈ν|e−T̂ (0)
[Ĥ , τμ]|CC〉 ∑

pq 〈p|vint|q〉t t̄ �pq;μν

+ 1
2

∑
pqrs (pq|wint|rs)t �pq;μ

t̄�rs;ν

t̄ t̄ Jμν

∂2{L(2)}T
∂t̄

(1)
μ (ω)∂t̄

(1)
ν (−ω)

0 1
2

∑
pqrs (pq|wint|rs)t̄ �pq;μ

t̄�rs;ν

tt�pq; μν

∂2ρ
(2)
CC

∂t
(1)
μ (ω)∂t

(1)
ν (−ω)

〈	|[[Epq, τμ], τν ]|CC〉

t t̄ �pq;μν

∂2ρ
(2)
CC

∂t
(1)
μ (ω)∂t̄

(1)
ν (−ω)

〈ν|e−T̂ (0)
[Epq, τμ]|CC〉

t�pq; μ

∂ρ
(1)
CC

∂t
(1)
μ (ω)

〈	|[Epq, τμ]|CC〉

t̄ �pq;μ
∂ρ

(1)
CC

∂t̄
(1)
μ (ω)

〈μ|e−T̂ (0)
Epq |CC〉

non-zero due to contributions arising from {Q(2)
int }T . This

makes the expressions for the poles of the response function
somewhat more complicated than the simple relation between
excitation energies and the eigenvalues of A found for the vac-
uum case. However, one can recover such a relation by fol-
lowing the computational strategy employed in the CC/MM
schemes42 and neglect the contributions from F and J when
calculating excitations.

Thus, from the definition of the CC-in-DFT Jacobian,

t̄ tAμi,νj
(ωY ) = ∂2{2n+1L(2)}T

∂t̄
(1)
μi

(ω)∂t
(1)
νj

(−ω)
, (25)

one identifies the FDE contributions as

t̄ tAμi,νj
←

∑

pq

〈p|vint|q〉t t̄�pq;μiνj

+1

2

∑

pqrs

(pq|wint|rs)t�pq;μi

t̄�rs;νj

=
∑

pq

〈p|vint|q〉〈μi | exp(−T )[Epq, τνj
]|CC〉

+1

2

∑

pq,rs

(pq|wint|rs) 〈μi | exp(−T )Epq |CC〉

〈	|[Ers, τνj
]|CC〉, (26)

where T here denotes the ground-state CC amplitudes and the
superscripts on the density matrices defined in Table II are
omitted for brevity. In Eq. (26) apart from a term including
the potential seen also in Eq. (20), a new contribution arises
which is denoted kernel contribution, because it is the ana-

logue of the exchange-correlation (XC) kernel in DFT-based
response theory:

(pq|wint|rs)

=
∫ ∫

φ†
p(r′)φq(r′)

[
δ2Exck

δρ(r′)δρ(r)

∣∣∣∣
ρtot

− δ2Exck

δρ(r′)δρ(r)

∣∣∣∣
ρI

]

×φ†
r (r)φs(r)drdr′. (27)

Furthermore, given that, in general, the coupled-cluster eigen-
value problem is not solved exactly but with approximate
schemes for the lowest-lying solutions, in which a matrix A is
contracted with a reduced-space trial vector �R:43

A �R = ��, (28)

this leads to the following contributions to the singles part:
1�emb

ia ←
∑

b

vabR
b
i −

∑

j

vjiR
a
i

+1

2

∑

jb

∑

pq,rs

(pq|wint|rs)t̄�pq;ia
t�rs;jbR

b
j , (29)

2�emb
ia ←

∑

ck

(
2Rac

ik − Rac
ki

)
vkc

+1

2

∑

jkbc

∑

pq,rs

(pq|wint|rs)t̄ �pq;ia
t�rs;jbkcR

bc
jk, (30)

while doubles part is augmented with the following contribu-
tions:

1�emb
ia,jb ← 1

2

∑

kc

∑

pq,rs

(pq|wint|rs)t̄ �pq;iajb
t�rs;kcR

c
k, (31)
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2�emb
ia,jb ←

∑

c

(
Rac

ij ĥbc + Rbc
ij ĥac

) −
∑

k

(
Rab

ik ĥkj + Rab
jk ĥki

)

+1

2

∑

jkbc

∑

pq,rs

(pq|wint|rs)t̄ �pq;iajb
t�rs;jbkcR

bc
jk.

(32)

Apart from the choice of density functional (local density ap-
proximation (LDA), GGA) for the calculation of the kernel
contributions, different additional approximations are possi-
ble. The first and most severe is to drop the contributions
completely,23 whereas a second is the use of approximate den-
sities for evaluating the functional derivatives. Coupled clus-
ter singles (CCS) densities are then the simplest choice, since
the 2�emb

ia , 1�emb
ia,jb, and 2�emb

ia,jb contributions are zero and only
one term remains:

1�emb
ia ←

∑

jb

(ia|wint|jb)Rb
j . (33)

One could also consider the use of other approximations, such
as using CCS-like densities as recently proposed by Schwabe
et al., where the T1 amplitudes and multipliers from CC2 are
used.44

III. COMPUTATIONAL DETAILS

A. FDE calculations

This work is concerned with the treatment of an active
system whose density is allowed to be polarized in the pres-
ence of an environment whose density is kept frozen. Thus, all
preparatory FDE DFT or DFT-in-DFT calculations, necessary
to obtain the environment density and “fixed” embedding po-
tentials, were performed using the ADF program package45, 46

via the PyADF scripting framework.47

All coupled-cluster calculations were performed with a
locally modified version of the Dalton 2011 code.48 Further-
more, all time-dependent Hartree-Fock calculations have been
performed with the Dirac program,49 using the Levy-Leblond
(non-relativistic) Hamiltonian.50

In discussing the FDE calculations below, the abbrevi-
ation “LDA” refers to an embedding potential created with
Slater exchange and Thomas-Fermi kinetic energy, whereas
“GGA” refers to an embedding potential created with the
PBE51 exchange-correlation functional in combination with
the PW9152 kinetic energy functional (PW91k).

Given the different possibilities to determine the ground-
state parameters as well as other computational approxima-
tions, one may employ combinations of the following:� Perturbed/Unperturbed HF orbitals:

Orbitals obtained via pathways 2 and 1, respectively,
see Sec. II D 3.� Recalculated/Fixed embedding potential:
Embedding potential is/is not updated using the
coupled-cluster density for subsystem I.� No/ALDA/GGA kernel contributions in the CC Jaco-
bian:
If a kernel is used, the approximate CCS densities are
employed in the present work.

For instance, the abbreviation CCSD-emb{p,r,GGA}
denotes CCSD level of theory with perturbed HF orbitals and
a recalculated (using the corresponding CC density) embed-
ding potential, where the excitation energies were calculated
with kernel contributions with a GGA kernel (evaluated with
a CCS density). If no kernel contributions are present, a dash
is used, e.g., emb{p,r,-}.

B. Water in water

The geometry for the solvated water system was taken
from Ref. 24 which corresponds to one snapshot from a MD
simulation, where one water is surrounded by an environ-
ment consisting of 127 other water molecules. For this test
case, the aug-cc-pCVTZ basis set53 was employed, and no
orbitals were frozen in the coupled-cluster calculations. The
density for the environment is constructed from the superpo-
sition of densities for the individual molecules, employing the
AUG/ATZ2P basis.

C. Uracil in water

For the uracil-water system, two different structural mod-
els were explored: a “static” one, along the lines of the mi-
crosolvated uracil described in Ref. 54, where the geometries
used for uracil and six surrounding water molecules corre-
spond to those optimized for the cluster; and a “dynamic”
one, where 120 snapshots from a MD simulation55, 56 are
used. In this simulation, the uracil geometry was kept fixed
and the number of water molecules taken into account for
each snapshot (about 240) corresponds to retaining all solvent
molecules within a 12 Å radius from the uracil, and has been
verified to yield excitation energies converged with respect to
the number of waters.56 The environment densities were ob-
tained by ADF FDE calculations employing a TZP basis.

The basis sets used in the coupled-cluster calculations
for the “static” and “dynamic” models are, respectively, cc-
pVDZ57 and aug-cc-pVDZ basis.58 The smaller basis used for
the former is due to the fact that it turned out that calculations
on the uracil-water cluster were not feasible in a large basis.

IV. RESULTS

A. Water in water

The results for the lowest singlet excited state for pure
water case can be found in Table III, along with the results
of Ref. 24 for the model potential for the statistical average
of orbital potentials (SAOP),59–61 specifically designed to get
the correct asymptotic behavior of the exchange-correlation
potential, used in combination with FDE and the QM/MM
discrete reaction field (DRF)62 method, where the classical
solvent molecules are represented using distributed atomic
charges and polarizabilities, and the experimental values.63

Before analyzing the effects of the parameters in the FDE
calculations (such as orbitals, embedding potential, and ker-
nel contributions) in more detail, first some general trends are
discussed.

The different electronic structure methods show a
typical behavior, with the uncorrelated methods (CCS,
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TABLE III. Water in water: Influence of different FDE parameters on the calculated solvated excitation energies
(Solv.) and shifts (in eV). Here, emb{a,b,c} denotes embedding contributions using a: orbitals determined (p)
in the presence of vint(r) or (u) in vacuum; b: embedding potential (s) determined in DFT FDE calculations or
(r) recalculated from ρCC and ρII; and c: with or without (-) kernel contributions to the excitations.

Method Potential Vacuum Solv. Shift �

HF GGA emb{p,f,-} 8.66 9.31 +0.65 . . .
LDA emb{p,r,-} 9.21 +0.55 . . .
GGA emb{p,r,-} 9.29 +0.63 . . .
GGA emb{p,r,ALDA} 9.34 +0.68 0.04a

GGA emb{p,r,GGA} 9.35 +0.69 0.02b

CCS GGA emb{p,f,-} 8.70 9.34 +0.64 . . .
LDA emb{p,r,-} 9.58 +0.88 . . .
GGA emb{p,r,-} 9.27 +0.57 . . .
GGA emb{p,r,ALDA} 9.32 +0.62 0.05a

CC2 GGA emb{p,f,-} 7.28 7.79 +0.51 . . .
LDA emb{u,r,-} 8.17 +0.89 . . .
LDA emb{p,r,-} 8.14 +0.86 . . .
GGA emb{u,r,-} 7.80 +0.52 . . .
GGA emb{p,r,-} 7.78 +0.50 . . .
GGA emb{p,r,ALDA} 7.81 +0.53 0.03a

CCSD GGA emb{p,f,-} 7.64 8.23 +0.59 . . .
LDA emb{u,r,-} 8.55 +0.91 . . .
LDA emb{p,r,-} 8.52 +0.88 . . .
GGA emb{u,r,-} 8.23 +0.59 . . .
GGA emb{p,r,-} 8.20 +0.56 . . .
GGA emb{p,r,ALDA} 8.24 +0.60 0.04a

SAOP GGA(PBE) emb{p,r,ALDA} 7.75 8.48 +0.73 0.06a

SAOP24 GGA(PW91) emb{p,r,ALDA} 7.76 8.71 +0.95 ×c

Expt.63 7.4 8.2 +0.8

aDifference to no kernel (-).
bDifference to ALDA.
cNot given.

time-dependent Hartree-Fock (TDHF)) showing excitation
energies that are significantly larger than for correlated meth-
ods (CC2 and CCSD) in vacuum as well as in solution. Be-
tween CC2 and CCSD, it can be seen that the former tends to
be about 0.5 eV lower than the latter, in line with trends from
other studies (see for instance Ref. 12).

Even though only one structure for the solvated water is
considered and therefore one cannot draw definitive conclu-
sions on the method’s ability to reproduce experimental re-
sults, it can in any case be noted that the SAOP, CC2, and
CCSD excitation energies and solvatochromic shifts are quite
compatible to the experimental one, with the exception of the
SAOP/FDE values of Ref. 24, for which the solvation effect is
much larger than for the others. We believe that this is largely
due to the description of the frozen waters, for which the den-
sity was obtained with the LDA functional and the DZP ba-
sis, as the SAOP calculation, employing the PBE functional
to calculate the non-additive exchange-correlation contribu-
tions, and the larger basis set to represent the frozen waters
leads to a shift of 0.73 eV, roughly 0.2 eV lower than in
Ref. 24.

1. Effect of the embedding potential and kernel

Like in DFT, where the kernel contributes 0.06 eV
to the shift, kernel contributions are generally small

for this excitation irrespective of the electronic structure
method used. A comparison between the GGA and adia-
batic LDA (ALDA) kernels shows the latter already de-
scribes the bulk of the effect (in this case, about 75%
of the final value) and should be sufficient for most
purposes. The influence of the (perturbed) density used
to evaluate the kernel contributions is also rather small,
for the wave function-based methods a variation between
0.03 eV and 0.05 eV is observed. The SAOP value falls out-
side this range, but note that this value was calculated with
ADF and a Slater type basis set which will also have an
effect.

Relatively small values for the kernel contributions in
cases such as this are expected from a physical standpoint,
since the interactions are rather weak and the kernel contri-
butions represent a second-order effect. The embedding po-
tential appears in first order, and more important differences
are observed when comparing potentials obtained with LDA
and GGA functionals. For the coupled cluster methods GGA
potentials give excitation energy shifts that are about 0.3 eV
smaller than the corresponding LDA shifts. In the Hartree-
Fock calculation the GGA embedding potential does, on the
other hand, give a slightly larger shift than the LDA one. This
demonstrates that solvation and correlation shifts are in gen-
eral non-additive because the two types of wave functions
probe the embedding potential in a different way.
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FIG. 2. Convergence of aug-cc-pCVTZ/CC2-in-DFT emb{p,f,-} excitation energies with respect to the number of solvent molecules. For up to about 20
water molecules, strong charge-transfer character is observed and the FDE approximation thus exhibits larger error bars with respect to supermolecular results.

For the embedded excitation energies, the results ex-
hibit fortunate error compensation for the CC2 with LDA
excitation energy. This value is close to those of the most
sophisticated (CCSD with GGA) method as well as experi-
mental results. By comparing the contributions one may eas-
ily see, however, that this is due to an overestimation of the
shift by the LDA potential which is compensated by an un-
derestimation of the excitation energy by the CC2 method.

2. Choice of orbitals

Considering the choice of orbitals in the computational
scheme 1, one can observe that in this case the differences
between emb{u,r,-} and emb{p,r,-} excitation ener-
gies are rather small and usually of the order of 0.03 eV, ir-
respective of whether a LDA or GGA embedding potential is
used. This is in line with findings in the literature56, 65 for this
system, and is an indication that the approximate orbital re-
laxation brought about by the T1 amplitudes in CC-in-DFT
calculations was nearly sufficient, in the emb{u,r,-} case,
to compensate for the use of its vacuum starting orbitals. As
such small differences can hardly be used to favor one ap-
proach over the other, the discussion returns to this point in
Sec. IV B, where these are more pronounced.

Apart from the two approaches discussed above, it re-
mains to compare them to the “fixed potential” approach,23

represented here as emb{p,f,-}. As expected, since the
DFT-in-DFT potential is a GGA one, one sees that, the
emb{p,f,-} results are close to the GGA emb{p,r,-} or
emb{u,r,-}. Surprising is, however, that adding the kernel
contributions in the emb{p,r,GGA} or emb{p,r,ALDA}
approach gives an even closer agreement with roughly
0.02 eV discrepancies to emb{p,f,-} for the different elec-
tronic structure methods. While this must be due to error can-

cellation, the simple “fixed potential” approach should be a
good choice for exploratory work, or for cases in which the
iterated calculation of (orbitals and) coupled-cluster densities
is not feasible.

3. Convergence of the excitation energies
with number of solvent molecules

Apart from the effect of the different parameters dis-
cussed above, it is also interesting to see what are the ef-
fects on the excitation energies of the size the environment
in the structural models. In order to illustrate this in the water
case, in Fig. 2, the evolution of the CC2-in-DFT excitation en-
ergy is collected, with embedding contributions calculated at
the GGA emb{p,f,-} level, as the number of frozen water
molecules is increased from one (the nearest neighbor to the
active water) to the full microsolvation model for the selected
MD snapshot. From the figure it can be observed that the FDE
excitation energies tend to increase as the size of the environ-
ment is increased, with relatively large variations for small
models with up to eight solvent molecules. For larger micro-
solvation models the converge with system size is smoother
and for at about twenty solvent molecules there are no signif-
icant variations in comparison to the result obtained for the
complete set.

While at this point one could also think of comparing
FDE and supermolecular results for smaller clusters in or-
der to see how the differences between the two varies with
environment size, we believe that this is difficult for this
system. This is due to the delocalized nature of the lowest-
lying excited states for this system found in supermolecular
CCSD calculations.64 Such a delocalisation can not be de-
scribed with the uncoupled FDE approach. It is interesting
to note, however, that these CCSD results suggest a lowering
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TABLE IV. Microsolvated model for uracil in water, CC2 excitation energies (Esolv) and shifts (calculated using as vacuum structure for uracil: the super-
molecular one, �ES; or optimized in vacuum, �EO) in eV for different methods and basis sets. Geometries are taken from Ref. 54. Here, emb{a,b,c}
denotes embedding contributions using a: orbitals determined (p) in the presence of vint(r) or (u) in vacuum; b: embedding potential (s) determined in DFT
FDE calculations or (r) recalculated from ρCC and ρII; c: with or without (-) kernel contributions to the excitations.

n → π* π → π*

Esolv �ES �EO Esolv �ES �EO

cc-pVDZ emb{u,f,-} 5.57 +0.92 +0.52 5.47 −0.01 −0.22
aug-cc-pVDZ emb{u,f,-} 5.50 +0.95 +0.57 5.22 +0.02 −0.18

cc-pVDZ emb{p,f,-} 5.42 +0.77 +0.37 5.46 −0.02 −0.23
aug-cc-pVDZ emb{p,f,-} 5.37 +0.82 +0.44 5.19 −0.01 −0.21

cc-pVDZ emb{u,r,-} 5.57 +0.92 +0.52 5.47 −0.02 −0.22
aug-cc-pVDZ emb{u,r,-} 5.50 +0.95 +0.57 5.22 +0.02 −0.18

cc-pVDZ emb{p,r,-} 5.42 +0.77 +0.37 5.46 −0.02 −0.23
aug-cc-pVDZ emb{p,r,-} 5.37 +0.82 +0.44 5.19 −0.01 −0.21

cc-pVDZ emb{p,r,ALDA} 5.42 +0.77 +0.37 5.46 −0.02 −0.23
aug-cc-pVDZ emb{p,r,ALDA} 5.37 +0.82 +0.44 5.20 −0.00 −0.20

cc-pVDZ supermolecule 5.31 +0.66 +0.26 5.36 −0.12 −0.33
aug-cc-pVDZ supermolecule 5.19 +0.64 +0.26 5.12 −0.08 −0.28

En→π∗
S : 4.65 eV (VDZ), 4.55 eV (aVDZ).

En→π∗
O : 5.05 eV (VDZ), 4.93 eV (aVDZ).

Eπ→π∗
S : 5.48 eV (VDZ), 5.20 eV (aVDZ).

Eπ→π∗
O : 5.69 eV (VDZ), 5.40 eV (aVDZ).

of the excitation energies as the number of waters increases,
which is at odds with what is measured experimentally and
calculated with CC2-in-DFT. A more thorough investigation
of these trends using ensemble-averaged coupled cluster cal-
culations would be desirable but is beyond the scope of the
present work.

B. Uracil in water

The calculation of solvatochromic shifts for the low-
est two excitations of uracil is a well-studied benchmark
test case, to which various theoretical approaches have
been applied, ranging from continuum to explicit solvation
methods.54, 56, 65, 66 One important aspect is that for these two
excitations two quite different shifts are obtained upon solva-
tion: The n → π* transition, the lowest excitation in vacuum,
experiences a strong blue shift of about +0.5 eV while a clear
red shift of about −0.2 eV is found for the π → π* tran-
sition, the second-lowest excitation, eventually leading to an
inverted order for the two connected excited states due to the
fact that they are only separated by about 0.4 eV in vacuum.
For uracil it is thus in particular necessary to obtain also the
correct order of these two states, which can be used to assess
the accuracy of a method.

1. Microsolvation model

In Table IV vertical CC2 excitation energies are shown
for microsolvated uracil at its optimized geometry,54 along
with two solvatochromic shifts: the first, denoted by �ES,
is the difference between excitations calculated with solvent
(Esolve) and in vacuum (but employing the uracil structure in
the supermolecular cluster, ES), whereas in the second, de-
noted by �EO, the excitations of uracil in vacuum are ob-
tained for a structure optimized without the solvent (EO).

While only �EO can be compared to experimentally deter-
mined solvatochromic shifts, a separated analysis of the two
serves to better understand the effect of structural relaxation
of uracil upon solvation.

For this section, only the CC2 method was applied, as
this level of theory is estimated to be sufficient to reveal and
investigate the two main differences between FDE and super-
molecule calculations. First, an intrinsic limitation originating
from the fact that in FDE calculations excitations are strongly
localized on a fragment, whereas in the supermolecule calcu-
lations the delocalization over the nearby solvent molecules
includes more of environment response. Second, the accuracy
is limited by the available kinetic energy functionals which
can make the supermolecular and embedded ground state den-
sities differ significantly.

The calculations reveal a slightly increased differ-
ence between unperturbed (emb{u,r,-}) and perturbed
(emb{p,r,-}) orbitals compared to the water-in-water
case. For the n → π* this amounts to 0.06 eV, whereas the
difference is 0.1 eV in the π → π* excitation, which in-
dicates that the approach including the embedding potential
at the Hartree-Fock step is indeed advantageous. The table
also shows that the difference of a fixed (emb{p,f,-})
and a recalculated (emb{p,r,-}) embedding potential does
not lead to large differences, which confirms and strength-
ens the use of “fixed” embedding potentials in large-scale
applications.23

From Table IV we can see that �ES and �EO differ by
a factor of 2 for the two electronic states, with the latter be-
ing lower than the former by about 0.40 eV for n → π* and
0.20 eV for π → π* excitations, respectively. This structural
effect is essentially the same for the different embedding ap-
proaches and the supermolecular case, for which we have val-
ues of �ES of +0.66 eV and −0.12 eV for the n → π* and
π → π* excitations, respectively. Furthermore, for both �ES
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and �EO one has that the methodologically most sophisti-
cated FDE calculation, emb{p,r,ALDA}, is blue-shifted by
about 0.10 eV for both excitations relative to the supermolec-
ular calculations. This remaining difference is mainly due to
the missing delocalization of the excitation67 in the FDE case.

One can include some of this delocalization effect by ex-
tending the basis set with functions on the frozen systems,
but this easily leads to problems with the approximate ki-
netic energy function which tends to give too attractive em-
bedding potentials.68 A more robust, but also more expensive,
approach is to calculate the lowest excited states of the sur-
rounding waters explicitly and then couple the most important
excitations explicitly.69

Recently, DeFusco et al., employing the effective frag-
ment potential (EFP) method,66 obtained solvatochromic
shifts relative to the relaxed monomer of about −0.26 eV for
π → π* and about +0.43 eV for n → π*, which are well
in line with CCSD FDE results, but slightly higher than CC2
FDE values, and somewhat higher than the COSMO CC2 val-
ues of Ref. 54. However, in agreement with Ref. 54, in the
present work using FDE, the main effects can be captured
with a small number of explicit solvation molecules, inde-
pendent of the treatment in a supermolecular calculation or
represented on a grid in FDE. Putting errors of the basis set,
approximate functionals and truncation of the wave function
aside, the missing effects compared to experimental results
should arise from outer solvation shells and statistical averag-
ing, which will be discussed in Sec. IV B 2.

2. Uracil in solution

In Sec. IV B 1, it was outlined that the microsolva-
tion model is able to obtain excitation energies in reasonably
good agreement with other theoretical results54, 56, 65, 66 and
the experimental results for the π → π* excitation.70, 71 The
n → π* excitation is too weakly absorbing to be readily de-
tected, so that the discussion of this excitation needs to be
done by comparing the theoretical results.

It remains to be done to investigate the importance of the
outer solvation shells as well as temperature effects for both
excitations via the statistical averaging over the configuration
space spanned by the MD snapshots. In order to investigate
averaging and outer solvation shells separately, the 120 snap-
shots have been used to construct two models: (a) where only
the 6 closest water molecules were included in the FDE calcu-
lations, and (b) where all 240 water molecules were included
in the FDE calculation. Supermolecule calculations which ex-
plicitly include such a larger explicit solvation model were not
feasible and no comparison for case (b) could be made.

The averaged results of both are collected in Table V,
while a detailed plot for model (b) of both excitations for
each snapshot can be found in Fig. 3. Because the solute-
solvent conformations were obtained with force field meth-
ods, shifts are only compared to the �EO values from
Table IV. It can be seen that model (a) performs rather poorly,
as the obtained shifts are much smaller than experimental or
previously calculated ones. That appears to be linked to the
fact that the uracil geometry used in the MD simulation is

TABLE V. CC2/aug-cc-pVDZ excitation energies (Esolv) and shifts (rela-
tive to the geometry optimized in vacuum, �EO) in eV, for two models based
on the structures from the 120 MD snapshots by Kongsted and co-workers:55

(a) only the six nearest waters to uracil are included in the FDE (GGA po-
tential, using orbitals determined (p) in the presence of vint(r), embedding
potential (f) determined in DFT FDE calculations and without kernel contri-
butions to the excitations, emb{p,f,-}) treatment; (b) all water molecules
are included in the FDE treatment. Eav denotes the averaged values, while
Emin and Emax denote the lowest and highest excitations from the set of snap-
shots, respectively. The experimental excitation energy (shift) for π → π* is
measured to be 4.78 ± 0.01 eV (−0.29 ± 0.01 eV).70, 71

Model (a) Model (b)

Excitation Esolv �EO Esolv �EO

n → π* Eav 4.93 0.00 5.25 +0.33
Emax 5.40 +0.47 5.54 +0.61
Emin 4.60 − 0.33 4.87 −0.06

π → π* Eav 5.35 − 0.05 5.30 −0.10
Emax 5.50 +0.10 5.44 +0.03
Emin 5.12 − 0.28 5.14 −0.26

close to the vacuum and the waters are in general further away
from the uracil compared to the optimized minimum geome-
try in Sec. IV B 1—a combination which obviously leads to a
reduced embedding contribution.

Comparing models (a) and (b), it can be seen that the in-
clusion of outer solvation shells is very important, in particu-
lar for the n → π* state, as it induces a systematic increase on
the shifts of about +0.3 eV for model (b). The π → π* is also
affected, with a shift of opposite sign and less pronounced of
about −0.05 eV. These differences in the states’ sensitivity to
conformational changes upon solvation are in line with what
is observed in other calculations.54, 56 The present results nev-
ertheless show absolute deviations of about 0.1 eV with re-
spect to the CC2/MM results of Olsen et al.56 While these
are in line with the current findings concerning the difference
between FDE and supermolecular calculations, in Fig. 3 it be-
comes clear that even for model (b) it remains that most con-
figurations still exhibit too small solvatochromic shifts, while
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TABLE VI. CC2/cc-pVDZ excitation energies in eV for the microsolvated
uracil model with a varying number of molecules represented by FDE (GGA
potential, using orbitals determined (p) in the presence of vint(r), embedding
potential (f) determined in DFT FDE calculations and without kernel contri-
butions to the excitations, emb{p,f,-}). The first and last lines correspond
to the supermolecular and FDE results in Table IV, respectively.

# H2O Excitation energies

Explicit FDE n → π* π → π*

6 0 5.31 5.36
5 1 5.37 5.39
4 2 5.36 5.42
3 3 5.37 5.42
2 4 5.41 5.46
1 5 5.42 5.47
0 6 5.42 5.46

only some show results consistent with the results of the mi-
crosolvated cluster. It could be therefore interesting to inves-
tigate whether similar observations are made with structures
originating from different MD approaches, such as ab initio
MD (AIMD). With this, it would also be more straightforward
to take into account the relaxation of the uracil geometry with
respect to the surrounding water molecules, which has been
kept frozen in the MD simulation by Olsen et al.56

3. Convergence of the excitation energies
with number of solvent molecules

Unlike the solvated water case, for uracil the low-lying
electronic excitations remain essentially localized on the
uracil, and a comparison between supermolecule CC2 and
CC2-in-DFT calculations is more instructive. Here we have
opted to investigate, for the microsolvated model, the effect
on the n → π* and π → π* states of progressively shift-
ing an outermost solvent molecule from the supermolecular
description to the embedded one.

The results, found in Table VI, show first that
supermolecule-FDE discrepancies are roughly equivalent for
both excitations within each of the different models. Fur-
thermore, one can observe three distinct groups, with re-
spect to the magnitude of the supermolecule-FDE discrep-
ancies: a first one for one FDE water, a second for two or
three FDE waters for which FDE overestimates the super-
molecule excitations by about 0.05 eV, and a third with four
to six waters, where such overestimation reaches roughly
0.09 eV. These results are in line with a prior discussion of
the relatively important contributions from the nearest sol-
vent molecules to the excitations, absent by construction in
the CC-in-DFT approach. They also indicate that one can ob-
tain a non-negligible decrease (50% in this case) in the devia-
tion from the reference by a relatively modest enlargement of
the active subsystem.

V. CONCLUSION

In this work, we have presented the first implementation
of WFT-in-DFT embedding within the response theory frame-

work recently introduced,26 which allows for the calculation
of general ground- and excited-state properties employing CC
wave functions to describe the “wave-function” subsystem.

In contrast to Ref. 23, with the current implementation it
is possible to calculate the embedding potential from coupled-
cluster densities for the ground state, as well as to take into ac-
count the time-dependence of the density in the excited states
via the calculation of the kernel contributions to the CC Jaco-
bian matrix. This can be done either rigorously by calculating
the electron density with the same level of theory as other
parts of the calculation, or in a more approximate fashion us-
ing a computationally simple model such as CCS to obtain the
densities.

The presented results for the solvatochromic shifts of two
rather different model systems in water indicate, first, that
WFT-in-DFT can capture quantitatively the changes in elec-
tronic spectra induced by the solvent molecules. The discrep-
ancies with respect to supermolecular calculations of about
0.1 eV are smaller than errors due to basis set incompleteness
or to the truncation of the excitation operator in the coupled-
cluster treatment. Furthermore, one observes that the impor-
tance of embedding kernel contributions is for the systems
considered relatively small (about 10% of the total shift value)
compared to that of the embedding potential, and a major con-
tribution of the effect can be captured via the adiabatic LDA
approximation, while the embedding potential is preferably
calculated with GGA functionals.

These findings not only validate the approximate scheme
used in Ref. 23 but show that in cases where certain approxi-
mations are not valid, the methodological hierarchy allows for
systematic steps towards the full model. An exception remains
the limited accuracy of currently available orbital-free kinetic
energy functionals common to all embedding approaches re-
lying upon them.

In the present work, the polarization of the (active)
coupled-cluster density with respect to a frozen environment
is explicitly taken into account. The next extension consists of
allowing the mutual polarization of the subsystems in a CC-
in-DFT freeze-thaw procedure.

ACKNOWLEDGMENTS

The authors are grateful to Erik D. Hedegård and Ja-
cob Kongsted for kindly providing the snapshots of the uracil
molecular dynamics simulation.

This study was supported by the EC-supported
ACTINET-i3 Integrated Infrastructure Initiative (JRP-
C3-10, JRP-C5-08). A.S.P.G. acknowledges support from
PhLAM (Laboratoire de Physique des Lasers, Atomes et
Molécules, Unité Mixte de Recherche de l’Université de Lille
1 et du CNRS). S.H. has been supported by the European
Commission under a Marie-Curie Intra-European Fellowship
(Contract No. PIEF-GA-2010-274224). L.V. has been sup-
ported by a VICI grant by the Netherlands Organisation for
Scientific Research (NWO).

1C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and
Applications (Oxford University Press, 2012).

2R. J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 (2007).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.49.225.190 On: Wed, 05 Oct

2016 15:40:52

261



104106-13 Höfener, Gomes, and Visscher J. Chem. Phys. 139, 104106 (2013)

3D. Foester, Phys. Rev. B 72, 073106 (2005).
4C. Adamo and D. Jacquemin, Chem. Soc. Rev. 42, 845 (2013).
5P. Tecmer, K. Kowalski, W. A. de Jong, and L. Visscher, J. Chem. Phys.
139, 034301 (2013).

6N. O. Winter and C. Hättig, J. Chem. Phys. 134, 184101 (2011).
7A. S. P. Gomes and C. R. Jacob, Annu. Rep. Prog. Chem., Sect. C: Phys.
Chem. 108, 222 (2012).

8J. Kongsted, A. Osted, K. V. Mikkelsen, and O. Christiansen, Mol. Phys.
100, 1813 (2002).

9J. Kongsted, A. Osted, K. V. Mikkelsen, and O. Christiansen, J. Phys.
Chem. A 107, 2578 (2003).

10J. Kongsted, A. Osted, K. V. Mikkelsen, and O. Christiansen, J. Chem.
Phys. 118, 1620 (2003).

11C. B. Nielsen, O. Christiansen, K. V. Mikkelsen, and J. Kongsted, J. Chem.
Phys. 126, 154112 (2007).

12K. Sneskov, T. Schwabe, J. Kongsted, and O. Christiansen, J. Chem. Phys.
134, 104108 (2011).

13K. Sneskov, T. Schwabe, O. Christiansen, and J. Kongsted, Phys. Chem.
Chem. Phys. 13, 18551 (2011).

14P. Cortona, Phys. Rev. B 44, 8454 (1991).
15P. Cortona, Phys. Rev. B 46, 2008 (1992).
16T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993).
17M. E. Casida and T. A. Wesolowski, Int. J. Quantum Chem. 96, 577 (2004).
18J. Neugebauer, J. Chem. Phys. 126, 134116 (2007).
19J. Neugebauer, J. Phys. Chem. B 112, 2207 (2008).
20J. Neugebauer, J. Chem. Phys. 131, 084104 (2009).
21C. König, N. Schlüter, and J. Neugebauer, J. Chem. Phys. 138, 034104

(2013).
22P. Huang and E. A. Carter, J. Chem. Phys. 125, 084102 (2006).
23A. S. P. Gomes, C. R. Jacob, and L. Visscher, Phys. Chem. Chem. Phys.

10, 5353 (2008).
24C. R. Jacob, J. Neugebauer, L. Jensen, and L. Visscher, Phys. Chem. Chem.

Phys. 8, 2349 (2006).
25C. Daday, C. König, O. Valsson, J. Neugebauer, and C. Filippi, J. Chem.

Theory Comput. 9, 2355 (2013).
26S. Höfener, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 136, 044104

(2012).
27J. Neugebauer, Phys. Rep. 489, 1 (2010).
28C. König and J. Neugebauer, ChemPhysChem 13, 386 (2012).
29S. Fux, K. Kiewisch, C. R. Jacob, J. Neugebauer, and M. Reiher, Chem.

Phys. Lett. 461, 353 (2008).
30J. Neugebauer, M. J. Louwerse, E. J. Baerends, and T. A. Wesolowski, J.

Chem. Phys. 122, 094115 (2005).
31J. Neugebauer, C. R. Jacob, T. A. Wesolowski, and E. J. Baerends, J. Phys.

Chem. A 109, 7805 (2005).
32J. Neugebauer and E. J. Baerends, J. Phys. Chem. A 110, 8786 (2006).
33A. W. Götz, S. M. Beyhan, and L. Visscher, J. Chem. Theory Comput. 5,

3161 (2009).
34S. Laricchia, E. Fabiano, L. A. Constantin, and F. Della Sala, J. Chem.

Theory Comput. 7, 2439 (2011).
35C. R. Jacob and L. Visscher, J. Chem. Phys. 128, 155102 (2008).
36O. Roncero, A. Zanchet, P. Villarreal, and A. Aguado, J. Chem. Phys. 131,

234110 (2009).
37P. de Silva and T. A. Wesolowski, J. Chem. Phys. 137, 094110 (2012).
38F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller, J. Chem. Theory

Comput. 8, 2564 (2012).
39C. Huang, M. Pavone, and E. A. Carter, J. Chem. Phys. 134, 154110 (2011).
40O. Christiansen, P. Jørgensen, and C. Hättig, Int. J. Quantum Chem. 68, 1

(1998).

41O. Christiansen, Theor. Chem. Acc. 116, 106 (2006).
42O. Christiansen and K. V. Mikkelsen, J. Chem. Phys. 110, 8348 (1999).
43O. Christiansen, H. Koch, A. Halkier, P. Jørgensen, T. Helgaker, and A. S.

de Merás, J. Chem. Phys. 105, 6921 (1996).
44T. Schwabe, K. Sneskov, J. M. Haugaard Olsen, J. Kongsted, O.

Christiansen, and C. Hättig, J. Chem. Theory Comput. 8, 3274 (2012).
45ADF, Amsterdam density functional program, Theoretical Chemistry, Vrije

Universiteit Amsterdam, see http://www.scm.com, 2007.
46G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A.

van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931
(2001).

47C. R. Jacob, S. M. Beyhan, R. E. Bulo, A. S. P. Gomes, A. W. Götz, K.
Kiewisch, J. Sikkema, and L. Visscher, J. Comput. Chem. 32, 2328 (2011).

48DALTON2011, a molecular electronic structure program (2011), see
http://www.daltonprogram.org.

49DIRAC, a relativistic ab initio electronic structure program, Release
DIRAC04.0 (2004), written by H. J. Aa. Jensen, T. Saue, and L. Visscher
with contributions from V. Bakken, E. Eliav, T. Enevoldsen, T. Fleig, O.
Fossgaard, T. Helgaker, J. Laerdahl, C. V. Larsen, P. Norman, J. Olsen, M.
Pernpointner, J. K. Pedersen, K. Ruud, P. Salek, J. N. P. van Stralen, J.
Thyssen, O. Visser, and T. Winther; see http://dirac.chem.sdu.dk), 2004.

50M. Levy, Phys. Rev. A 26, 1200 (1982).
51J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
52A. Lembarki and H. Chermette, Phys. Rev. A 50, 5328 (1994).
53D. E. Woon and T. H. Dunning, Jr., J. Phys. Chem. 103, 4572 (1995).
54M. Etinski and C. M. Marian, Phys. Chem. Chem. Phys. 12, 4915 (2010).
55E. D. Hedegård and J. Kongsted, private communication (2012).
56J. M. Olsen, K. Aidas, K. V. Mikkelsen, and J. Kongsted, J. Chem. Theory

Comput. 6, 249 (2010).
57T. H. Dunning, Jr., J. Phys. Chem. 90, 1007 (1989).
58R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Phys. Chem. 96,

6796 (1992).
59P. R. T. Schipper, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J.

Baerends, J. Chem. Phys. 112, 1344 (2000).
60O. V. Gritsenko, P. R. T. Schipper, and E. J. Baerends, Chem. Phys. Lett.

302, 199 (1999).
61O. V. Gritsenko, P. R. T. Schipper, and E. J. Baerends, Int. J. Quantum

Chem. 76, 407 (2000).
62P. T. Van Duijnen, M. Swart, and L. Jensen, “The discrete reaction field

approach for calculating solvent effects,” in Solvation Effects on Molecules
and Biomolecules, edited by S. Canuto (Springer, 2008).

63J. J. M. Heller, R. N. Hamm, R. D. Birkhoff, and L. R. Painter, J. Chem.
Phys. 60, 3483 (1974).

64O. Christiansen, T. M. Nymand, and K. V. Mikkelsen, J. Chem. Phys. 113,
8101 (2000).

65C. Zazza, J. M. Olsen, and J. Kongsted, Computational and Theoretical
Chemistry 974, 109 (2011).

66A. DeFusco, J. Ivanic, M. W. Schmidt, and M. S. Gordon, J. Phys. Chem.
A 115, 4574 (2011).

67V. Ludwig, K. Coutinho, and S. Canuto, Phys. Chem. Chem. Phys. 9, 4907
(2007).

68C. R. Jacob, S. M. Beyhan, and L. Visscher, J. Chem. Phys. 126, 234116
(2007).

69J. Neugebauer, C. Curutchet, A. Muñoz-Losa, and B. Mennucci, J. Chem.
Theory Comput. 6, 1843 (2010).

70L. B. Clark, G. G. Peschel, and I. Tinoco, J. Phys. Chem. 69, 3615 (1965).
71T. Gustavsson, A. Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani,

M. J. Frisch, V. Barone, and R. Improta, J. Am. Chem. Soc. 128, 607
(2006).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.49.225.190 On: Wed, 05 Oct

2016 15:40:52

262



D.6. Paper XIII 263

D.6 Paper XIII



This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 15153--15162 15153

Cite this: Phys. Chem.Chem.Phys.,2013,
15, 15153

Towards systematically improvable models for
actinides in condensed phase: the electronic
spectrum of uranyl in Cs2UO2Cl4 as a test case†

André Severo Pereira Gomes,*a Christoph R. Jacob,*b Florent Réal,a Lucas Visscherc

and Valérie Valleta

In this work we explore the use of frozen density embedding [Gomes et al., Phys. Chem. Chem. Phys.,

2008, 10, 5353] as a way to construct models of increasing sophistication for describing the low-lying

electronic absorption spectra of UO2
2+ in the Cs2UO2Cl4 crystal. We find that a relatively simple

embedding model, in which all but the UO2
2+ unit are represented by an embedding potential, can

already describe the main spectral features and the main environment effects can be attributed to the

four chloride ions situated at the UO2
2+ equatorial plane. Contributions from species further away,

albeit small, are found to be important for reaching a close agreement with experimentally observed

quantities such as the excited states’ relative positions. These findings suggest that such an embedding

approach is a viable alternative to supermolecular calculations employing larger models of actinyl

species in condensed phase. Nevertheless, we observe a slight red shift of the excitation energies

calculated with our models compared to experimental results, and attribute this discrepancy to

inaccuracies in the underlying structural parameters.

1 Introduction

Optical spectroscopy is a powerful probe of the interactions
between the constituents of molecular complexes containing
actinide species, as well as the interaction of such complexes
and their surroundings. However, actinide species are often
difficult to manipulate due to their radiotoxicity and may
present rather complicated spectra. Therefore, the interpreta-
tion of experimental results is greatly helped by the use of
theoretical models that provide detailed information on the
electronic structure. This may, for instance, aid in deconvoluting
the measured spectra in solution into the contributions of
different species that may coexist in equilibrium.1,2

Theoretical (semi)empirical approaches based upon crystal
or ligand-field theory3–5 provide a simple physical picture based

on effective Hamiltonians. This makes such methods the first
choice for the interpretation of experimental results. However,
as their accuracy depends on the validity of the simple model
and the quality of the experimental data used in the para-
metrization, their predictive power is limited.

The computationally much more demanding ab initio elec-
tronic structure approach6–8 based on wavefunction theory
(WFT) or density functional theory (DFT) can, for small models,
provide accurate non-empirical data for small model systems.
This was demonstrated by a number of studies over the past
two decades.9–30 However, such studies also demonstrate that
the accurate prediction of the energies of electronically excited
states is a very demanding task. Often, one passes from a
relatively simple, closed-shell ground state to excited states
which have contributions from several close-lying open-shell
configurations. This makes the balanced treatment of ground
and excited states difficult and may give rise to substantial
errors in the calculated transition energies. Fortunately, one
often finds that differential correlation effects for excited states
of similar character are smaller, so that their relative energies
can be described with less effort than absolute ones.

These difficulties are illustrated in the case of the actinyl(VI)
and (V) ions (AnO2

2+/+, An = U, Np, Pu, Am), which are very stable
species that are found both in the gas and in the condensed
phases (in particular in solution).31 For those systems, it is
well-established31 that the low-lying excited states arise from
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excitations to unoccupied non-bonding (5fd, 5ff) actinide orbitals
from the (i) actinyl bonding orbitals (for An = U(VI)), in internal
uranyl ligand-to-metal charge-transfer (LMCT) excitations; and
from the (ii) partially filled f (for An = U(V), Np, Pu, Am), in the
so-called f–f transitions. Somewhat higher in energy one also
finds (iii) LMCT transitions from ligands bound in the equatorial
plane. The latter, even when not significantly contributing to
excitations of types (i) and (ii), can affect their energies and
oscillator strengths.32,33 This makes the description of these
nearest ligands essential in investigations on condensed phases,
while also second-nearest neighbors such as outer solvation
shells can still differentially affect electronic states (via, e.g.,
hydrogen bonding or by aggregation34).

For the investigation of excitations of types (i)–(iii) with WFT
methods employing many-electron model spaces (e.g., CAS or
RAS)16,24 consideration of just the equatorial ligands directly
bound to the actinyls is already at the limit of what is compu-
tationally feasible. A more approximate treatment of the excita-
tions from the ligands16,19,35 is therefore often attempted to
reduce the computational cost. In addition, idealized geometries
are used to make as much use of symmetry as possible. Time-
dependent DFT (TD-DFT) approaches offer a computationally
less demanding alternative, but are often considered as too
inaccurate for actinyl systems due to the known tendency of
most available exchange–correlation functionals to spuriously
stabilize delocalized charges.36–39 Recent studies17,18 using the
CAM-B3LYP40 functional indicated that range-separated hybrid
functionals may yield quantitatively correct spectra for uranyl
complexes. Nevertheless, (TD-)DFT remains inapplicable to f–f
spectra (i.e., excitations of type (ii)) because of the multireference
character of the ground states.

A way to overcome the size restriction for WFT approaches is
to resort to embedding techniques41 such as the frozen density
embedding (FDE) method.42,43 With FDE, a large system is
partitioned into smaller subsystems interacting through a
so-called embedding potential. This embedding potential is
determined from the densities of the individual subsystems.
The subsystems can then be treated exclusively with DFT (DFT-
in-DFT),44–49 or one (or a few) subsystems can be treated with
WFT (WFT-in-DFT),50–55 depending on the balance between
computational cost and accuracy one wishes to achieve. An
interesting aspect of FDE is that, by retaining a fully quantum
mechanical description for all subsystems, both ground and
excited state properties for the whole system remain in principle
accessible.56–59 This has led to the development of efficient, DFT-
based protocols to investigate the coupling of localized electronic
excitations in large systems.60–62

Some of us have previously employed WFT-in-DFT embedding
to study the f–f spectrum [i.e., excited states of type (ii)] of NpO2

2+

as an impurity in a Cs2UO2Cl4 crystal,53 using FDE to construct a
(frozen) model for the crystal environment surrounding a central
neptunyl (NpO2

2+) or neptunyl tetrachloride (NpO2Cl4
2�) unit.

Subsequently, some of us have applied DFT-in-DFT and WFT-
in-DFT embedding to investigate the low-lying excited states of
the CUO molecule, which is isoelectronic to UO2

2+, surrounded
by noble gas atoms in its equatorial plane.63 These excited

states are of type (i), i.e., internal LMCT-type excitations. While
for these LMCT-type excitations in CUO it turned out that the
limited accuracy of the (orbital-free) kinetic energy functionals
prevented an accurate description of the noble-gas actinide
species already for the ground state, we have found for the f–f
spectrum of NpO2

2+ that a simple embedding model where the
chlorides are represented by an FDE embedding potential did
yield accurate results. This is due to the intrinsically localized
nature of f–f transitions where ground and low-lying excited
states are dominated by molecular spinors with strong contri-
butions from Np-centered 5f spinors. These previous findings
raise the question to what extent actinyl spectra can be modeled
with WFT-in-DFT embedding approaches, and what accuracy
can be reached using the minimal model discussed above for
excitations other than f–f excitations.

Thus, our aim in this paper is to further evaluate the
performance of FDE-based embedding schemes by investi-
gating the spectra of uranyl tetrachloride (UO2Cl4

2�). This
species is known to play a key role in pyroreprocessing techniques
of the spent nuclear fuels due to the use of high-temperature
chloride melts.64 There is a wealth of accurate experimental
spectra available both for the Cs2UO2Cl4 crystal65–68 and for
UO2Cl4

2� in non-aqueous solvents69,70 and in the gas phase.71

We believe that calculating the spectra of UO2
2+ in Cs2UO2Cl4

represents an interesting test for subsystem models since the
low-lying transitions are again of type (i), with potentially
important contributions from the ligand to the occupied orbitals
involved. Moreover, it presents an opportunity to further inves-
tigate the performance of different electronic structure methods
in conditions that closely mimic those of experiments. Of all
previous ab initio studies,10,18–20,71,72 only the one by Matsika
and Pitzer10 calculated the spectrum with the inclusion of a
model for the crystal environment.

2 Computational methods

All electronic spectra calculations were performed at the experi-
mental X-ray structure73 (see Section 3.1 for details) with a
development version of the DIRAC electronic structure code74

(revision ab65b36), employing Dyall’s basis sets75 of triple-zeta
quality for uranium, and Dunning’s aug-cc-pVTZ sets76 for
oxygen and chlorine, all of which are left uncontracted.

The Dirac–Coulomb (DC) Hamiltonian was used throughout,
along with the usual approximation of the (SS|SS)-type integrals
by a point charge model.77 In (TD-)DFT calculations the CAM-
B3LYP40 functional was used, whereas the WFT approach
employed here is the intermediate Hamiltonian Fock-space
coupled cluster method (IHFSCCSD),78–81 which allows for a
proper description of a possible multiconfigurational nature of
excited states.

In the IHFSCCSD calculations the excitation energies were
obtained with the (1h,1p) sector of Fock-space, meaning that in
the process electron attachment and ionization energies were
also calculated via the (0h,1p) and (1h,0p) sectors of Fock-
space, respectively. For cases in which we have not been able to
obtain solutions for the (1h,1p) sector due to the presence of

Paper PCCP

Pu
bl

is
he

d 
on

 1
2 

Ju
ly

 2
01

3.
 D

ow
nl

oa
de

d 
by

 U
ni

v 
L

ill
e 

1 
on

 0
5/

10
/2

01
6 

16
:3

4:
05

. 

View Article Online

265



This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 15153--15162 15155

intruder states, we have resorted to an approximate treatment
of the CC amplitudes in this sector, which are determined in a
manner akin to that of MP2 – in practice by performing a single
CC iteration for the (1h,1p) sector after having converged the
preceding sectors. We shall here denote this approach by the
IHFSCC-112 acronym.

Due to computational constraints we are forced to truncate
the virtual space in the WFT calculations. In order to verify the
effect of this truncation, we have explored three different
correlating (Q) spaces by considering all uranyl spinors with
energies between (1) �6.0 and 5.0 a.u.; (2) �6.0 and 12.0 a.u.;
and (3) �6.0 and 100.0 a.u. This way, the occupied 5d spinors
are always correlated (yielding a total of 34 correlated electrons),
with up to 446 virtual spinors. The IHFS model (P) spaces were
the same for all correlation spaces. These are slightly modified
compared to those employed in prior work,17,27 and contain at
least the 6d and 5f spinors. More details on the definition of
the P and Q spaces can be found in Table 1. Information on
the computational cost of these calculations can be found in
Table S1 in the ESI.†

We note that we were not able to obtain a Fock-space
reference spectrum for uranyl tetrachloride, due to difficulties
in performing calculations with the large active spaces required
to take into account the ligand (occupied and virtual) spinors
that have energies in between the occupied and virtual spinors
involved in the excitations.

DFT-in-DFT embedding calculations42,44,47 were performed
with the ADF82 code via the PyADF scripting environment.83

In the calculations, the spin-free (SF) ZORA84,85 Hamiltonian
was used along with the corresponding TZ2P basis sets86 for
uranium, oxygen, and chlorine. We have employed the SAOP87–89

model potential for the active subsystems, whose densities were

allowed to relax through the freeze–thaw procedure until conver-
gence (reached within 20 iterations). The non-additive exchange–
correlation and kinetic-energy contributions to the embedding
potential were calculated with the PW9190 exchange–correlation
and PW91k91 kinetic energy functionals, respectively. The inte-
gration accuracy parameter in ADF was set to 10. The DFT-in-
DFT embedding potentials obtained with ADF and PyADF were
subsequently used in Dirac calculations as effective one-electron
operators according to the ‘‘static’’ embedding scheme outlined
in ref. 53.

3 Results and discussion
3.1 Models for uranyl in Cs2UO2Cl4

Our main goal in this work is to explore the construction of
models of increasing complexity that can describe the absorp-
tion spectra of Cs2UO2Cl4. In this crystal, whose structure has
been accurately determined from X-ray diffraction studies,73

the uranyl cation is surrounded by four chlorine atoms. These
are oriented along the equatorial plane, but show a C2h site
symmetry, as the O–U–O axis intersects the plane defined by
the four chlorides with a slight deviation from 901. The U–O
and U–Cl distances are 1.774 Å and 2.671 Å, respectively.
Further away from the uranium one finds a shell of cesium
atoms at C4.6 Å from the central uranium, and the nearest
uranium atom at C5.8 Å. Therefore, the crystal is made up
of well-separated uranyl tetrachloride (UO2Cl4

2�) units inter-
spersed with cesium ions.

The simplest models are (a) the bare UO2
2+ ion and (d) the

UO2Cl4
2� unit, as shown in Fig. 1. In addition, one can consider

intermediate models in which only the uranyl species is treated
explicitly while the equatorial ligands are included in an
approximate fashion. This could be achieved either (b) by a
simple point-charge embedding41 or (c) by using an FDE-based
embedding potential.53 For all four models, we use an idealized
structure with D4h symmetry instead of the C2h point group
corresponding to the crystal’s site symmetry. This will simplify
our analysis and allow for a direct comparison to calculations
in the literature. In the calculations, only the Abelian point
group D2h can be used (instead of D4h) and, therefore, the
irreducible representations of D2h are used to label the excited
states in our tables.

More sophisticated models, shown in Fig. 2, extend those
above and include effects arising from the long-range inter-
actions with the crystal lattice. The structure of the crystal

Table 1 IHFSCCSD main model (Pm), intermediate model space (Pi) and correlation
(Q) spaces employed for the different models for the environment surrounding the
UO2

2+ species, given in terms of number of spinor pairs of gerade (ungerade)
symmetry in each subspace. The ‘‘h’’ and ‘‘p’’ superscripts denote ‘‘holes’’ and
‘‘particles’’, respectively

Model Environment Ph
i Ph

m Pp
m Pp

i Qh Qp

(a) None Q2 2 (4) 3 (3) 5 (10) 6 (7) 5 (0) 101 (93)
(b) Cl4

4� p.c. Q2 2 (4) 3 (3) 7 (13) 9 (10) 5 (0) 101 (93)
(c) Cl4

4� FDE Q1 2 (4) 3 (3) 7 (13) 9 (10) 5 (0) 72 (58)
Q2 101 (93)
Q3 122 (128)

(e), (f) Cs2UO2Cl4 Q1 2 (4) 3 (3) 7 (13) 9 (10) 5 (0) 72 (58)

Fig. 1 Models without the crystal environment: (a) the bare uranyl species; (b) uranyl with point-charge embedding; (c) uranyl with FDE embedding; and (d) the
uranyl chloride species (uranium: black; oxygen: red; chlorine: green; point charges: grey).
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suggests a natural subdivision of Cs2UO2Cl4 into three distinct
regions – an inner one containing the core model(s) above, an
intermediate one containing at least the shell of the nearest
cesium atoms, and finally the remainder of the crystal. Our first
model (e) is built using the same strategy as in ref. 53. The basic
representation of the crystal environment is the combination of
the intermediate region (comprising 20 UO2Cl4

2� and 90 Cs+

ions) around the central unit and an array of point charges is
defined to represent the Madelung potential due to the rest of
the crystal.92 The electron density of the intermediate region,
which is necessary to determine the corresponding FDE embedding
potential, is obtained as the sum of the densities from DFT
calculations (SAOP/TZP) on the isolated (UO2Cl4

2� and Cs+)
species. In a more refined model (f) the density for the 12 cesium
ions nearest to the uranyl species was allowed to relax through a
DFT-in-DFT freeze-and-thaw procedure. Both models (e) and (f)
are derived from the experimental crystal structure, in which the
central uranyl unit only has C2h symmetry.

3.2 Assessing the models without a crystal environment

First, we consider the models without the crystal environment.
To assess the accuracy that can be achieved with these models,
we will compare the electronic spectrum of uranyl tetrachloride
(model d) to those obtained with the approximate models (a),
(b) and (c) (see Fig. 1).

3.2.1 The electronic structure of UO2Cl4
2�. Before discuss-

ing the approximate models, we recall some key findings from
calculations on uranyl tetrachloride.10,16,18–20,71 First, theo-
retical and experimental31,65 works assign the spectrum below
C30 000 cm�1 to excitations local to the uranyl species [i.e.,
excitations of type (i) in the classification introduced above].
These involve the highest occupied ungerade orbital and part
of the virtual uranium f manifold. LMCT from the chloride
ligands [i.e., excitations of type (iii)] occurs at somewhat higher
energy and concerns excitations from essentially pure chloride
ligand orbitals.31,71 This reflects the fact that the U–Cl bonds,
on the basis of experimental results and Mulliken population
analyses from correlated wavefunctions,19 are considered to be
largely ionic and have only weak covalent character. Recent AIM

studies93,94 corroborate this picture, although the experimentally
determined densities used in ref. 93 seem to indicate somewhat
stronger covalency. One should keep in mind, however, that this
is not an intrinsic characteristic of U–Cl bonds; for instance, in
compounds not containing the actinyl group such as metallo-
cene dichlorides, there is evidence that U–Cl covalency can be
substantial.95

Rather good agreement is found18 between WFT and DFT
calculations with the CAM-B3LYP exchange–correlation func-
tional, with a few notable exceptions: CAM-B3LYP reorders some
states (in D4h notation) with respect to CASPT216,19 as well as to
the experimental assignment. In particular, the first B1g and B2g

states (both of s1/2u - ff character) and the second B1g and B2g

states (both of s1/2u - fd character) are each interchanged. Apart
from these discrepancies, there is also a crossing between the
first Eg (of s1/2u - fd character) and B1g (for CAM-B3LYP)/B2g

(CASPT2) states found at a U–O distance of C1.83 Å for the
former and of C1.86 Å for the latter.

3.2.2 Approximate models, DFT. Proceeding now with an
analysis of the simplest models (a–c), we take the CAM-B3LYP
results for model (d), i.e., the full uranyl tetrachloride, as the
reference. All values are given in Table 2, where we order the
electronic states according to the experimental classification.31,65

We note that the experimental excitation energies for the twelve

Fig. 2 Uranyl FDE embedding models including the crystal environment (shown on the right), where one relaxes (e) only the nearest chlorides; (f) the nearest
chlorides and 12 cesium ions (uranium: black; oxygen: red; cesium: purple; chlorine: green).

Table 2 CAM-B3LYP excitation energies (columns ‘‘abs.’’) in wavenumbers for
different uranyl models (a–c) and uranyl chloride (model d), without the presence
of the crystal environment (rU–O = 1.774 Å). The energies relative to the first
excited state are also shown (columns ‘‘rel.’’)

State
Label
(D2h)

Model (a) Model (b) Model (c) Model (d)

abs. rel. abs. rel. abs. rel. abs. rel.

I, II B2g, B3g 13 215 17 265 18 115 19 018
III B1g 11 805 �1410 16 341 �924 18 321 206 19 934 917
IV Ag 11 805 �1410 16 239 �1026 17 981 �134 19 288 270
V, VI B2g, B3g 15 135 1920 17 681 416 19 565 1451 20 970 1952
VII Ag 17 084 3869 19 394 2129 20 539 2424 21 745 2728
VIII B1g 17 084 3869 19 660 2395 20 829 2714 21 592 2574
IX, X B2g, B3g 20 461 7246 23 424 6159 24 747 6633 25 531 6513
XI B1g 18 896 5681 23 875 6610 26 137 8022 27 058 8040
XII Ag 18 896 5681 23 876 6611 26 140 8025 27 112 8094
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lowest excited states discussed in this paper can be found
in Table 5.

Model (a), the isolated uranyl unit, is obviously the least
suitable model and places states III and IV below the doubly
degenerate (I–II) first excited state of uranyl tetrachloride. In
addition, the relative order of the highest states (IX, X vs. XI
and XII) is different relative to the reference model (d). The
strong red shift (C7000 cm�1) of all states with respect to
model (d) can be easily understood: the isolated uranyl cation has
a much shorter bond length so that at rU–O = 1.774 Å the ground
and excited states—which have longer bond lengths—are calcu-
lated to have a very small energy gap. The great sensitivity of the
vertical excitation energies to the bond length for this system is
also evident if our results for model (d) are compared to those of
Tecmer et al.18 With the shorter bond length of rU–O = 1.764 Å
used in this study, the excitation energies are 1000–3000 cm�1

higher than the one found here.
These flaws of the simplest model are considerably reduced in

the point-charge embedding model (b). The lowest four states still
resemble the spectrum for the isolated species. In particular, the
ordering of the states is at odds with that for uranyl tetrachloride
and almost no splitting between the lowest non-degenerate
(III–IV) states is found. On the other hand, the highest four
states (IX–XII) now follow the ordering of the reference calcula-
tion for model (d), even though they remain too close to each
other. The relative positioning of the intermediate (V–VIII)
states among themselves also very much resembles that of
the reference. We note that states VII and VIII now come in
the same order as in WFT calculations and in experiments. By
including the point charges the overall red shift of the spectrum
is now about C3500 cm�1, i.e., only half of that for uranyl.

Model (c), FDE embedding, represents a significant improve-
ment over the point charge approach. The energies of most
states approach those of the reference calculation. The most
important remaining discrepancy is the position of state IV,
which still appears as the lowest excited state. The overall red
shift is reduced to about 1000 cm�1 and we believe this
remaining discrepancies can be attributed to the still too short
U–O ground state bond length predicted by this model. If we
compare excitation energies relative to the first excited state
(columns ‘‘rel’’ in Table 2) we find much better agreement with
the reference calculation than for models (a) and (b).

3.2.3 Approximate models, WFT. The above comparison
with supermolecular DFT results is useful to assess errors in the
embedding approach. However, also with the relatively well-
performing CAM-B3LYP functional, TD-DFT cannot capture the
subtle correlation effects determining the details of the spectrum,
such as the relative order of states VII and VIII. This order is
fortuitously corrected in our approximate models whereas the
reference model (d) has them in the wrong order compared to the
experimental assignment. We will now consider a more advanced
treatment of electron correlation. To this end, we begin by
addressing the different choices of correlation spaces for the
IHFSCCSD method.

We present the electronic spectrum of the FDE embedding
model (c) for different Q spaces in Table 3, along with IHFSCC-112

results for the smallest Q space. It is clear that as Q becomes
larger, absolute IHFSCCSD excitation energies as well as the
spacing between adjacent electronic states become smaller, while
there are no significant changes in the composition of the states
(for further details see Table S7 in the ESI†). Because the smaller
Q2 active space yields results close to the largest space, Q3, for both
absolute energies and spacings, one can consider the former as
sufficiently accurate for evaluating different structural models.
Reducing Q2 further to Q1 gives errors of about 1200–1400 cm�1

for absolute energies and up to 300 cm�1 for the spacings of
higher-lying states. The sensitivity of the outcome to the amount of
electron correlation that is included is also visible in the differences
between IHFSCCSD/Q1 and IHFSCC-112/Q1, where the spacings
between levels and the composition of the states are rather similar
but the absolute energies differ by about 1000 cm�1.

Next, we turn to the results of IHFSCCSD/Q2 calculations
on the different approximate models, which can be found in
Table 4. As we do not have IHFSCCSD results available for
uranyl chloride [model (d)], we also list the vertical SO-CASPT2
excitation energies of ref. 19 in Table 4 in order to provide a

Table 3 IHFSCCSD excitation energies (columns ‘‘abs.’’) in wavenumbers for the
FDE embedding uranyl model (c) without the presence of the crystal environment
(rU–O = 1.774 Å), employing different Q spaces (see Table 1). The energies relative
to the first excited state are also shown (columns ‘‘rel.’’)

State
Label
(D2h)

IHFSCCSD-
112/Q1

IHFSCCSD/
Q1

IHFSCCSD/
Q2

IHFSCCSD/
Q3

abs. rel. abs. rel. abs. rel. abs. rel.

I, II B2g, B3g 17 998 0 16 896 0 15 746 0 15 680 0
III B1g 18 705 707 17 624 728 16 432 686 16 365 685
IV Ag 19 409 1411 18 400 1504 17 116 1370 17 043 1363
V, VI B2g, B3g 20 689 2691 19 696 2800 18 389 2643 18 318 2637
VII Ag 21 797 3800 20 834 3938 19 400 3654 19 323 3643
VIII B1g 21 855 3858 20 915 4019 19 448 3702 19 370 3690
IX, X B2g, B3g 25 131 7134 24 108 7212 22 805 7059 22 746 7065
XI B1g 27 602 9604 26 626 9730 25 218 9472 25 155 9475
XII Ag 27 603 9606 26 628 9732 25 220 9474 25 157 9477

Table 4 IHFSCCSD/Q2 excitation energies (columns ‘‘abs.’’) in wavenumbers for
different uranyl models (a–c) without the presence of the crystal environment
(rU–O = 1.774 Å). The energies relative to the first excited state are also shown
(columns ‘‘rel.’’). As there are no IHFSCCSD results for uranyl chloride (model d),
we include here the vertical SO-CASPT2 excitation energies of Pierloot and van
Besien19 for comparison

State
Label
(D2h)

Model (a) Model (b) Model (c)
Model (d),
aref. 19

abs. rel. abs. rel. abs. rel. abs. rel.

I, II B2g, B3g 12 296 14 757 15 746 21 024
III B1g 11 105 �1191 15 132 375 16 432 686 21 273 249
IV Ag 11 105 �1191 15 421 664 17 116 1370 22 125 1101
V, VI B2g, B3g 12 303 7 16 620 1863 18 389 2643 22 859 1835
VII Ag 14 426 2130 17 600 2843 19 400 3654 24 056 3032
VIII B1g 14 426 2130 17 687 2930 19 448 3702 24 339 3315
IX, X B2g, B3g 17 593 5297 21 061 6304 22 805 7059 27 494 6470
XI B1g 17 659 5363 22 829 8072 25 218 9472 29 842 8818
XII Ag 17 659 5363 22 829 8073 25 220 9474 29 849 8825

a Vertical SO-CASPT2 results19 calculated for rU–O = 1.783 Å and
rU–Cl = 2.712 Å.
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comparison to a supermolecular WFT calculation. One should,
however, focus more on comparing trends for the spectra rather
than absolute values for two reasons. First, the SO-CASPT2
calculations were performed for a slightly different geometry
(rU–O = 1.783 Å and rU–Cl = 2.712 Å). From the discussion above
as well as from previous studies of uranyl21,27 it is apparent that
small changes in geometry may correspond to large changes in
the vertical excitation energies. Second, there is evidence in
the literature17,21,27 that CASPT2 consistently places equivalent
excitations at higher energies than IHFSCCSD for a given
geometry, while spacings between excited levels are often in
good agreement between the two methods.

As was the case for TD-DFT, we see a steady improvement in
the agreement on the absolute excitation energies between the
approximate models (a–c) and the reference (d). We observe
differences (C3000–4000 cm�1) similar to those found for
CAM-B3LYP between the bare (a) and point-charge embedded
(b) models, and slightly smaller (C1000–2000 cm�1) ones
between the latter and the FDE model (c). The isolated uranyl
model (a) yields once more rather low values for the excitation
energies. As for the TD-DFT calculations discussed above, we
attributed these differences to the bond length employed here,
which is nearly 0.1 Å larger than the CCSD equilibrium value27

of 1.685 Å. We observe a qualitative agreement between the
IHFSCCSD and CAM-B3LYP excitation energies, for instance
with the first Eg state higher than the B1g or Ag states, but note
that these are typically C1000 cm�1 lower for IHFSCCSD than for
the corresponding CAM-B3LYP ones. This agrees with earlier
observations.17 For both the point-charge and FDE embedded
models, excitation energies are still red-shifted compared to
experiments. Nevertheless, in contrast to CAM-B3LYP, IHFSCCSD
provides the correct order of the low-lying states.

Furthermore, the spacings between levels are generally larger
than those for CAM-B3LYP and are in rather good agreement with
the SO-CASPT2 results with the exception of states VII and VIII,
which are much closer together for IHFSCCSD than for CASPT2.
Another interesting difference with respect to CAM-B3LYP is that
here models (b) and (c) exhibit differences of similar magnitude
relative to the CASPT2 Erel values [DErel

(b) C �315 cm�1 and

DErel
(c) C 552 cm�1, respectively], but with a standard deviation

for Erel
(c) of about half of that for Erel

(b) [srel
(b) C 306 cm�1 and srel

(c) C
163 cm�1, respectively]. For this reason, we think model (c)
indeed yields an improvement over (b). That said, the overall
agreement with respect to spacings between models (b–d) can
be related to a similar composition of the excited states’
wavefunctions. To that end, it is instructive to compare the
composition of the states (see Tables S6 and S7 in the ESI†) to
their analogues in ref. 19. From this comparison, we observe
rather similar ratios between the contributions of s1d1 and s1f1

character to the different states for CASPT2 and IHFSCCSD.
However, for some excitations (e.g. IV, V–VI, IX–X) IHFSCCSD
gives higher weights to the latter, as well as to p1d1 and p1f1

configurations.

3.3 Inclusion of the crystal environment

From the discussion above we believe we can consider the FDE
embedded uranyl model (c) as a sufficiently accurate represen-
tation of the uranyl tetrachloride species (d), and, given the
significant differences in computational costs between the two
(see Table S1 in the ESI†) as well as the need to use a lower (C2h)
symmetry when considering the crystal environment, from now
on we only consider FDE embedded UO2

2+ models. Our results
are presented in Table 5.

We observe that, when passing from an idealized geometry
(model c) to the experimental one (model c0), there is little
change in the excited states’ energies. The only difference is the
splitting of the doubly degenerate states in the former (I–II,
V–VI and IX–X respectively). In the case of CAM-B3LYP calcula-
tions, already at this stage the magnitude of the splitting for
the lowest two states matches quite well the experimentally
observed one, while for higher states there is an underestima-
tion. Adding the crystal environment brings about a nearly
homogeneous stabilization of occupied and virtual orbitals
with respect to the isolated uranyl chloride species. Therefore,
one sees only relatively small changes in the electronic spectrum
for the crystal models.

Model (e), in which the nearest cesium atoms are not relaxed,
changes the excitation energies relative to those of model (c0) by

Table 5 CAM-B3LYP and IHFSCC-112/Q1 excitation energies (columns ‘‘abs.’’), in wavenumbers, at the experimental geometry (C2h) for models (c0), (e) and (f). The
energies relative to the first excited state are also shown (columns ‘‘rel.’’) for each case

State
Label
(D2h)

CAM-B3LYP IHFSCC-112/Q1

Ref. 10 Exp. ref. 31 and 65Model (c0) Model (e) Model (f) Model (c0) Model (f)

abs. rel. abs. rel. abs. rel. abs. rel. abs. rel. abs. rel. abs. rel.

I B2g 18 114 18 134 18 119 18 151 18 128 20 364 20095.7
II B3g 18 112 �2 18 136 2 18 120 1 18 154 3 18 124 �4 20 363 �1 20097.3 1.6
III B1g 17 975 �139 17 938 �196 17 913 �206 18 874 723 18 816 688 21 013 649 20406.5 310.8
IV Ag 18 317 203 18 263 129 18 236 117 19 552 1401 19 492 1364 21 838 1474 21316 1220.3
V B2g 19 568 1454 19 520 1386 19 494 1375 20 836 2685 20 760 2632 22 808 2444 22026.1 1930.4
VI B3g 19 552 1438 19 501 1367 19 475 1356 20 843 2692 20 768 2640 22 830 2466 22076 1980.3
VII Ag 20 536 2422 20 514 2380 20 494 2375 21 944 3793 21 848 3720 24 618 4254 22406 2310.3
VIII B1g 20 825 2711 20 826 2692 20 808 2689 22 005 3854 21 905 3777 24 780 4416 22750 2654.3
IX B2g 24 749 6635 24 733 6599 24 711 6592 25 297 7146 25 185 7057 26 763 6399 26197.3 6101.6
X B3g 24 738 6624 24 719 6585 24 698 6579 25 307 7156 25 201 7073 26 871 6507 26247.3 6151.6
XI B1g 26 131 8017 26 045 7911 26 014 7895 27 779 9628 27 634 9506 29 169 8805 27719.6 7623.9
XII Ag 26 134 8020 26 048 7914 26 017 7898 27 781 9630 27 637 9509 29 145 8781 27757 7661.3
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no more than C90 cm�1. Generally, it decreases the excitation
energies and the largest (in magnitude) changes are observed
for the highest states considered. Relaxing the nearest cesiums
(model f) accentuates this tendency by an additional lowering
of about C23 cm�1. Therefore, we conclude that, as expected,
crystal contributions are an order of magnitude smaller than
those of the equatorial ligands. The small differential effect from
the crystal implies that CAM-B3LYP continues to underestimate
the experimental excitation energies by about 1800–2000 cm�1,
as it was the case for model (d) discussed above. For the relative
spacings between states these small effects captured by the
models for the crystal are more significant.

Similar trends are found in the WFT-in-DFT results. We
should note, however, that in these calculations it was difficult
to converge the coupled cluster amplitudes for the (1h,1p)
sector, so that we had to employ exclusively the IHFSCC-112
approximation discussed previously. Due to the increase in
computational costs caused by the lower symmetry of the central
uranyl unit, we could only employ the Q1 space. Consequently,
the absolute excitation energies in Table 5 are probably over-
estimating the calculation of IHFSCCSD/Q2 quality by about
2000 cm�1 for excitations and 100 cm�1 for spacings.

The IHFSCC-112 excited states’ composition for the uranyl
embedded in the chlorides (shown in Table S8 of the ESI†) is
essentially the same as that in the idealized structure discussed
above. In the presence of the crystal environment, we observe
that the lowest four states show more equivalent contributions
from {s1d1,p1d1} and {s1f1,p1f1} configurations than the iso-
lated models, whereas for higher states the same picture is
found for all models.

The only other study which considers the effect of the crystal
environment in detail is due to Matsika and Pitzer.10 They
combined a SO-MRCI description of the central uranyl tetra-
chloride with an embedded cluster model in which pseudo-
potentials are used to represent the six nearest-neighbor
cesium ions, while the Madelung potential arising from the
rest of the crystal was represented by an array of point charges.
Compared to these results, the CAM-B3LYP calculations better
describe the excited state spacings for all but the third and
fourth excited states. On the other hand, the results obtained
with Fock-space are generally of similar quality to the SO-MRCI
ones, with better agreement with the experimental results for
some of the lower states, but with a strong underestimation of
the energy difference between states VII and VIII.

As we can establish from our models that interactions between
the central uranyl chloride unit and further species are relatively
small, the main source of errors in our calculations is then likely
to be due to the treatment of electron correlation. There, we
observe that neither CAM-B3LYP nor any of the ab initio
approaches employed so far to investigate Cs2UO2Cl4 or the
bare uranyl chloride species are able to achieve ‘‘spectroscopic’’
accuracy for the absolute excitation energies of Cs2UO2Cl4, by
which we mean discrepancies between theory and experiment
of C50–100 cm�1 for the low-lying transitions (due to the
extremely good resolution of the experimental data). This
underscores both the difficulty of determining such spectra

from first principles and the need to investigate the perfor-
mance of higher accuracy methods (e.g. those including triple
or higher excitations explicitly) which, albeit too costly to be
employed in routine calculations, might nevertheless provide
insight into the factors controlling the accuracy of more widely
applicable approaches (e.g. DFT, CASPT2 or IHFSCCSD) and
help devise more efficient and accurate approximations.

3.4 A closer look at the occupied spinors

Apart from the analysis of the optical spectra above, it is also
instructive to compare orbital energies between the models to
gauge the accuracy of the embedding. Furthermore, the occupied
orbital energies can be compared with experimental studies of
ionization energies.

3.4.1 Uranyl (chloride) in the gas phase. We start with
CAM-B3LYP, for which we show in Table 6 the orbital energies
(e, in eV) for the valence region (�eo 6 eV) for models (c) and (d).
Here we note that for the FDE-embedded model (c), we have
orbital energies for both the UO2

2+ and Cl4
4� subsystems because

of the employed freeze-and-thaw procedure. We see a very good
agreement for the outer orbitals between the two models. In
particular, the HOMO energy for model (d) agrees closely with the
one of the Cl4

4� fragment in model (c). This is understandable,
since calculations on uranyl tetrachloride identify the HOMO
essentially as a ligand orbital. Therefore, both models can yield
approximations of similar quality to the molecule’s first ioniza-
tion potential,96 with 1.78 eV and 1.72 eV for models (c) and (d)
respectively. These are significantly smaller than the recent gas-
phase experimental vertical electron detachment (ED) energy of
2.62 eV,71 and reflect the fact that DFT calculations can strongly
underestimate this quantity.17

Discrepancies between the calculations for the two models
become larger for the region between �2.5 and 5.0 eV. In this
region, one starts to see spinors with both chloride and uranyl
contributions in model (d), whereas such direct mixing is

Table 6 CAM-B3LYP orbital energies (e, in eV) for the valence region for
models (c) and (d) in the idealized (D4h) structure and the difference between
the two (De)

Label

Model (c) Model (d)

�e Fragment �e De

e1g 1.78 Cl4
4� 1.72 0.06

e1u 2.09 Cl4
4� 1.90 0.19

e1g 2.26 Cl4
4� 1.97 0.29

e1g 2.27 Cl4
4� 1.97 0.30

e1u 2.13 Cl4
4� 2.10 0.03

e1u 2.16 Cl4
4� 2.24 �0.08

e1u 2.45 Cl4
4� 2.32 0.13

e1u 3.39 Cl4
4� 2.35 1.04

e1u 3.44 Cl4
4� 2.61 0.83

e1g 2.55 Cl4
4� 3.07 �0.52

e1g 2.81 Cl4
4� 3.26 �0.45

e1g 4.78 Cl4
4� 3.52 1.26

e1u 4.24 UO2
2+ 3.70 0.54

e1u 4.93 UO2
2+ 4.23 0.70

e1u 5.33 UO2
2+ 4.49 0.84

e1g 5.38 UO2
2+ 4.90 0.48

e1g 5.38 UO2
2+ 5.01 0.37

e1g 5.49 UO2
2+ 5.09 0.40
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absent by construction in model (c). Nevertheless, we observe a
good agreement between the supermolecule (3.7 eV) or FDE
results (4.2 eV) for the highest uranyl-dominated orbital. More-
over, this is close to the attributed vertical ED energy for the
experimental uranyl-dominated spinors71 at about 5 eV. In
contrast, the corresponding uranyl ionization energy derived
with the point-charge embedding of 6.2 eV, shown in Table 7, is
significantly higher.

The IHFSCCSD results for the uranyl ionization energies in
the FDE and point-charge models (b) and (c), also shown in
Table 7, follow a similar trend. There is a strong overestimation
in the point-charge model (7.78 eV) compared to FDE (5.81 eV),
which gives values in good agreement with experiments.
The many-electron ED states are essentially dominated by
single determinants so that one can associate those to the
ionizations of the individual Hartree–Fock spinor stabilized by
correlation effects of the order of 1 eV. The effect of the com-
pleteness of the Q space is again not negligible and amounts to
about 0.3 eV.

3.4.2 Uranyl in Cs2UO2Cl4. Our results for the crystal
model in which we allow the nearest Cs+ ions to be polarized
(model f) are also included in Table 7. Due to the effect of the
Madelung potential, we observe a marked increase (about 5 eV)
in the ionization energies for the uranyl electrons, compared to
the corresponding isolated uranyl chloride models. Further-
more, we now have the three eg levels in the valence more stable
than the eu ones for both CAM-B3LYP and IHFSCCSD.

The results for the first ionization energy are in good agree-
ment with an experimental estimate65 which places the binding
energy of the valence uranyl electrons at about 9.4 eV. Compared
to that value, CAM-B3LYP shows only a slight underestimation,
while IHFSCCSD would appear to overestimate it by about 1 eV.
However, in our calculations the polarization of the surroundings
that would occur after the removal of an electron – which would
provide a net stabilization of the final state – is not taken into
account. Therefore, one can expect that once these are included,
CAM-B3LYP would yield too low ionization potentials, in line with
its known tendency to underestimate the ionization energies,17

whereas IHFSCCSD would approach the experimental values.

4 Conclusions

We have investigated the electronic structure and spectra in the
UV-Visible range of the uranyl cation (UO2

2+) in Cs2UO2Cl4,

employing subsystem embedding approaches (DFT-in-DFT
and WFT-in-DFT), in order to construct models of increasing
sophistication for the crystal environment.

We have found that with the FDE formalism one can construct
models in which the equatorial ligands to the uranyl species are
represented in an approximate fashion as an embedding
potential. The electronic spectra of such approximate models
are able to capture, without significant loss of accuracy, the
spectral features (spacing between states, symmetry classifica-
tion) of the uranyl tetrachloride molecule for states that do not
exhibit LMCT character, as well as its first ionization potential.

These models were further applied in calculations taking into
account the crystal environment beyond the chloride ligands. As
found in our prior investigation of NpO2

2+ as an impurity in
Cs2UO2Cl4, at the experimental geometry we see rather small
contributions due to the frozen crystal environment, which are
larger for higher-lying states than for lower-lying ones. The
relaxation of the electron density for atoms in the immediate
vicinity of the central uranyl tetrachloride species accentuates
this tendency, and turns out to be significant for describing the
states’ relative positions with respect to experiments. As the most
significant environment effects are due to the presence of the
equatorial ligands, the common practice in the literature, which
consists of considering the isolated uranyl tetrachloride species,
is indeed justified and a very good model for the spectrum in
condensed phase.

The overall good performance of our embedded uranyl
model makes us confident in applying such models to investi-
gate the spectrum of uranyl in other condensed media and in
the presence of different ligands. Nevertheless, these approxi-
mate models yield spectra which are on the whole red shifted.
From our results and those available in the literature, we have
concluded that these shifts can be attributed to a tendency of
the approximate models to yield U–O equilibrium bond lengths
which are shorter than the experimental ones. Thus, our
calculations would in fact be sampling a region of the potential
energy curves where the ground and excited states are starting
to coalesce. We plan to investigate this issue further. We also
plan to investigate the extent to which one can employ sub-
system approaches to define minimalistic models for other
classes of actinide-containing molecules (e.g. not containing
the actinyl species, and where ligand–actinide interactions are
more covalent than those investigated here) which can still
yield accurate electronic spectra in the optical range.

In addition to an assessment of physical models, our results
also provide further evidence for the applicability of the
CAM-B3LYP functional to describe the electronic structure of
actinyl-containing species, while at the same time underscoring
the difficulty of all ab initio approaches employed so far to
obtain very accurate energies for the low-lying electronic states
of Cs2UO2Cl4.
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27 F. Réal, A. S. P. Gomes, L. Visscher, V. Vallet and E. Eliav,
J. Phys. Chem. A, 2009, 113, 12504.

28 I. Infante, A. Kovacs, G. L. Macchia, A. R. M. Shahi,
J. K. Gibson and L. Gagliardi, J. Phys. Chem. A, 2010,
114, 6007.

29 G. L. Macchia, I. Infante, J. Raab, J. K. Gibson and
L. Gagliardi, Phys. Chem. Chem. Phys., 2008, 48, 7278.

30 R. Bast, H. J. A. Jensen and T. Saue, Int. J. Quantum Chem.,
2009, 109, 2091.

31 R. G. Denning, J. Phys. Chem. A, 2007, 111, 4125–4143.
32 G. Geipel, Coord. Chem. Rev., 2006, 250, 844–854.
33 L. S. Natrajan, Coord. Chem. Rev., 2012, 256, 1583–1603.
34 K. E. Knope and L. Soderholm, Chem. Rev., 2012, 113,

944–994.
35 C. Danilo, V. Vallet, J.-P. Flament and U. Wahlgren,

Phys. Chem. Chem. Phys., 2010, 12, 1116–1130.
36 D. J. Tozer, J. Chem. Phys., 2003, 119, 12697.
37 O. Gritsenko and E. J. Baerends, J. Chem. Phys., 2004,

121, 655.
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On the calculation of second-order magnetic
properties using subsystem approaches in a
relativistic framework†

Małgorzata Olejniczak,a Radovan Bastb and André Severo Pereira Gomes*a

We report an implementation of nuclear magnetic resonance (NMR) shielding (s), isotope-independent

indirect spin–spin coupling (K) and the magnetizability (x) tensors in a frozen density embedding scheme

using the four-component (4c) relativistic Dirac–Coulomb (DC) Hamiltonian and non-collinear spin

density functional theory. The formalism takes into account the magnetic balance between the large

and the small components of molecular spinors and assures the gauge-origin independence of the NMR

shielding and magnetizability results. This implementation has been applied to hydrogen-bonded

HXH� � �OH2 complexes (X = Se, Te, Po) and compared with supermolecular calculations and with an

approach based on the integration of the magnetically induced current density vector. A comparison

with the approximate zeroth-order regular approximation (ZORA) Hamiltonian indicates non-negligible

differences in s and K in the HPoH� � �OH2 complex, and calls for a thorough comparison of ZORA and

DC Hamiltonians in the description of environment effects on NMR parameters for molecular systems

with heavy elements.

1 Introduction

The response to magnetic fields can be of great help in
investigating molecular systems in complex environments. This
is perhaps best illustrated by the widespread use of experimental
techniques such as NMR spectroscopy to characterize compounds
in a condensed phase, including disordered and amorphous
solids. The great sensitivity of this technique to any changes in
the electronic structure in the vicinity of a probed nucleus,
triggered for instance by specific inter- and intramolecular
interactions (e.g. hydrogen bonds) found in complex biological
systems (e.g. proteins, peptides, amino acids),1,2 catalysts,3 para-
magnetic systems4,5 and radioactive compounds containing actinide
atoms6,7 is often unrivaled by other experimental techniques.

Due to the complexity of such systems, theoretical tools can
be of extreme importance to aid experimentalists in interpreting
their results. Most theoretical approaches hinge on the recognition
that, in the weak magnetic field regime under which most
experiments are carried out, the magnetic field can be treated as

a perturbation, the energy of a molecule can be Taylor-expanded
in terms of perturbation strengths and the effect of a perturbation
on a given system can be evaluated via response theory.8

For closed-shell systems, a static magnetic field induces only
even-order changes in the total energy:9

EðeÞ ¼ E0 þ
1

2

d2E

de1de2
e1e2 þ

1

4!

d4E

de1 . . . de4
e1 . . . e4 þ � � � ; (1)

where E0 denotes the energy at zero field and {en} are the field
strengths of the applied perturbations collected in vector e. The
coefficients of this expansion, taken in the zero-field limit, define
molecular properties in the Born–Oppenheimer approximation.
In this paper, we focus on three second-order magnetic properties
arising from a perturbation of an external field

-

B or the field of
nuclear magnetic dipole moments, {-

mA}: the NMR shielding tensor
of a nucleus K,

sKab ¼
d2E

dBadmK ;b

����
~B; ~mAf g¼0

; (2)

the reduced spin–spin coupling tensor of nuclei K and L,

KKL
ab ¼

d2E

dmK ;admL;b

����
~mAf g¼0

; (3)

related to the indirect spin–spin coupling constants observed in
the NMR experiment, JKL = (�h/2p)gKgLKKL

ab, with gM denoting the
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gyromagnetic ratio of a given isotope of M, and the molecular
magnetizability tensor,

xab ¼ �
d2E

dBadBb

����
~B¼0

; (4)

which, unlike the first two, is not a local but rather an extensive
property as it does not depend on the magnetic moment of a
given nucleus – though it may play an important role in NMR
spectroscopy by inducing changes in the local magnetic fields
which, in turn, will affect chemical shifts.10–12

NMR properties can nowadays be routinely calculated using
density functional theory (DFT) for relatively large closed-shell
systems and using methods based on wave function theory (WFT)
for much smaller systems.9,13,14 Calculating the magnetizability
tensor is computationally more demanding due to the slow
convergence with the basis set size. This can be partly alleviated
by the use of London atomic orbitals (LAOs),9,15 which also remedy
the gauge-origin dependence problem for properties arising from
an external magnetic field perturbation (x, sK), at the cost of more
complex derivations and more involved implementation.

Furthermore, it is now recognized that relativistic effects16,17

can be appreciable for magnetizabilities18,19 and are essential
for a proper description of NMR properties, including for the light
elements neighbouring the heavy one(s) due to the so-called
‘‘heavy-atom on the light atom’’ (HALA) effect.20 NMR properties
obtained using approximate Hamiltonians such as the quasir-
elativistic two-component (2c) ZORA Hamiltonian can differ
significantly from those obtained with a more rigorous treatment
afforded by four-component approaches as in the Dirac–Coulomb
Hamiltonian, even for relatively light elements such as those in the
fourth row of the periodic table. The conventional wisdom has
been that approximate 2c approaches, which are computationally
much cheaper than the 4c ones, can be nevertheless reliable for
relative quantities such as chemical shifts, due to error cancellation.
Recent studies21,22 paint a more nuanced picture, and seem to
indicate that there may be significant differences between
Hamiltonians for relative quantities as well, notably for heavier
elements.

One must also take into account the effect of the surroundings on
the molecular properties, something preferably done by embedding
approaches due to the steep increase in computation cost for the
explicit inclusion of e.g. solvent molecules. As methods representing
the environment in an implicit manner such as PCM23 or
COSMO24–26 have difficulty describing specific interactions such
as hydrogen bonds, one is better served by approaches such as
frozen-density embedding (FDE),27–29 in which the total system
is partitioned into subsystems whose interaction is calculated
with DFT, while the subsystems themselves can be treated with
DFT (DFT-in-DFT embedding) or WFT (WFT-in-DFT embedding).
FDE has been applied to the calculation of molecular properties
arising from electric perturbations,30–34 and in particular employing
4c Hamiltonians,35,36 though there have been only a few studies of
magnetic properties: NMR shieldings37,38 and indirect spin–spin
couplings,39 the latter using the ZORA Hamiltonian.

The aim of this paper is therefore to bridge this gap and
propose an FDE implementation that is capable of treating

general second-order magnetic properties with the 4c Dirac–
Coulomb (DC) Hamiltonian, by extending the general frame-
work for response properties32 in line with the 4c DFT simple
magnetic balance (sMB) framework.40 We also investigate the
real-space determination of NMR shielding via the integration
of magnetically induced currents and its use for understanding
the effect of approximations introduced in practical DFT-in-
DFT calculations. This will allow for investigating the suitability
of approximate 2c approaches for the calculation of chemical
shifts and provide a way to incorporate environment effects in
the determination of shielding scales and the nuclear magnetic
dipole moments,41 a field which has received renewed interest
in recent years.42–45

The paper is organized as follows: in the next section we
present an overview of the theoretical formulation, followed
by the presentation of proof-of-principle calculations on the
H2X–H2O (X = Se, Te, Po) family of compounds, where we also
compare the description of environment effects with 2c and
4c Hamiltonians for NMR shieldings and indirect spin–spin
couplings. Such a comparison of magnetizabilities is currently
not possible as ours is, to the best of our knowledge, the first
FDE implementation.

2 Theory

We begin by briefly summarizing the theory for NMR
shieldings,40,46,47 magnetizability48 and NMR spin–spin
couplings46,49,50 in closed-shell molecules using the 4c relativistic
DC Hamiltonian and mean-field methods and its implementation
in the DIRAC51 software, followed by the general FDE framework
for molecular properties32 and its extension to magnetic properties
in the relativistic framework.

Throughout the text, i, j,. . . denote occupied molecular
orbitals, a, b,. . . virtual orbitals and p, q,. . . orbitals in general.
Greek indices are used for the three Cartesian components and
Latin indices are used for the components of the four-component
vector. The summation over repeated indices is assumed. The
SI-based atomic units are employed (�h = me = e = 1/(4pe0) = 1).52 As
we restrict ourselves to closed-shell systems represented by a single
Slater determinant, we employ the following parametrization in
the second quantization for the unperturbed wavefunctions:

j~0i ¼ exp �k̂ð Þj0i; k̂ ¼ kaiây î � k�ai î
yâ; (5)

where k̂ is an anti-Hermitian operator represented by a matrix of
orbital rotation amplitudes, which serve as variational parameters
in the optimization of the ground state and its response to an
external perturbation.

2.1 Molecules in magnetic fields in a 4c framework

Molecular Hamiltonian. Starting with the generic form of
the Hamiltonian in the Born–Oppenheimer approximation,

Ĥ ¼
X
i

ĥi þ
X
io j

ĝij þ VNN; (6)

with VNN denoting a classical repulsion potential of clamped
nuclei, it is the choice of one- and two-electron operators – ĥi
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and ĝij, that determines whether and which relativistic effects
are included.53 The one-electron part corresponds to the Dirac
operator, which in the presence of a uniform external magnetic
field (

-

B) and the magnetic dipole moments of nuclei ({-
mK}) reads:

ĥ ¼ ĥ0 þ ~B � ĥB þ
X
K

~mK � ĥmK
;

ĥ0 ¼ b0mc2 þ c ~a �~pð Þ þ vnuc;
(7)

where a and b0 = b � 14�4 are 4 � 4 Dirac matrices in their
standard representation, and c is the speed of light.54 The
Zeeman operator, ĥB, and the hyperfine operators, ĥmK

, are
defined as:

ĥB ¼
1

2
~rG � c~að Þ; ĥmK

¼ 1

c2
~rK � c~a

rK3
; (8)

where -
rX = -

r � -

RX with an arbitrary gauge origin
-

RG and the center
of nucleus K in

-

RK. The two-electron part of the 4c DC Hamiltonian
is restricted to the Coulomb potential, which in the relativistic
regime also includes spin-same-orbit interaction.53

One-electron basis. The 4c molecular spinors, eigenfunctions
of the DC Hamiltonian, are expanded in scalar finite basis
sets.54 The small component basis functions (wS) are generated
from the large component functions (wL) by the restricted kinetic
balance (RKB) or the restricted magnetic balance (RMB) prescription,
which properly describes the relation between large and small
components in the presence of external magnetic fields. The
question of magnetic balance in 4c calculations was initially
addressed by Aucar and coworkers46 and Kutzelnigg,55,56 though
later investigations have shown that these yielded mixed results.57

Later, Komorovsky and coworkers,58–60 followed by Cheng61 and
Reynolds,62 revisited the question formally – and computationally –
establishing RMB.

For properties explicitly dependent on an external magnetic
field (s, x), the basis functions are replaced by London atomic
orbitals,

oK
m ð~rÞ ¼ exp � i

2
~B� ~RK � ~RG

� �
�~r

� �
wKm ð~rÞ; (9)

which guarantee the gauge-origin invariance of results in a
finite basis approximation. LAOs are also appealing when used
in combination with RMB as they make the magnetic balance
atomic and easy to handle by the simple scheme (sMB).40 The
orthogonality of molecular orbitals at all field strengths is ensured
by connection matrices, T,63 which couple the unmodified

molecular orbitals (UMOs) to the orthonormalized set (OMOs, f�cg),

cUMO
q ð~BÞ ¼ omð~BÞcmqð0Þ; �cpð~BÞ ¼ cUMO

q ð~BÞTqpð~BÞ; (10)

yet for the price of more complex equations, as the wave function

is now dependent on a perturbation through om(
-

B) and T(
-

B) in

addition to kpq(
-

B).
Spin density functional theory. The choice of spin-density

functional theory (SDFT)64–66 is a compromise between a
desirable67–69 yet so far unattainable70–73 DFT formalism for
molecules in magnetic fields involving current density, and the
conventional charge-density-only approaches whose density
functional approximations (DFAs) are developed to reproduce

energy in the absence of magnetic perturbations.74,75 Also, due
to the complexity of the relativistic generalization of the DFT
method,65,76,77 non-relativistic functionals are used with relativistic
densities.

In this work, the non-collinear SDFT is employed, with the
spin density (calculated as a norm of the spin magnetization
vector) and the charge density as basic variables, expressed
together as a general density component:40,58,78

rkð~r; ~BÞ ¼ �Opq;kð~r; ~BÞ ~DpqðkÞ k 2 f0; x; y; zg; (11)

with the elements of the density matrix, D̃pq = h0̃|p†q|0̃i and the

generalized overlap distribution, �O, expressed in the OMO basis
whenever LAOs are used:

�Opq;k ¼ �cypSk
�cq; S0 ¼ I4�4; Sm ¼

sm 02�2

02�2 sm

" #
: (12)

The ground state energy and the optimal rk are obtained by
minimization of the energy functional, E[rk], which can be
written in a Kohn–Sham (KS) manner as a sum of five terms:

E rk½ � ¼ Ts rk½ � þ Exc rk½ � þ VNN

þ
ð

r0vnuc þ
X

m¼x;y;z
rm � Bm

 !
d~rþ 1

2

ðð
r0 ~r1ð Þr0 ~r2ð Þ
~r1 �~r2j j d~r1d~r2;

(13)

where Ts is the kinetic energy of non-interacting electrons, Exc is
the exchange–correlation (xc) contribution and the two last
terms describe the interaction of electrons with an electromagnetic
potential and with other electrons, respectively. The minimization
of eqn (13) with respect to rk (in the zero magnetic-field limit)
yields the 4c KS equations for the DC Hamiltonian:

(b0mc2 + c(~a�-p) + vKS[rk])c = ec (14)

with the effective KS potential:

vKS rk½ � ¼ � vnuc þ
ð
r0ð~r 0Þ
~r�~r 0j jd~r

0 þ dExc

drk

� �
: (15)

Linear response (LR) at the 4c SDFT level. Considering now
the case of time-independent perturbations with strengths e1

and e2, the second-order molecular property can be written as:

d2E

de1de2

����
e¼0
¼ @2E

@kpq@e2

@kpq
@e1

����
e¼0
þ @2E

@e1@e2

����
e¼0
; (16)

assuming that the energy is optimized with respect to variational
parameters at all field strengths, qE/qk = 0. The first contribution
is determined perturbatively, with the first-order orbital rotation
amplitudes, qk/qe, obtained from the LR equations:

0 ¼ d

de1

@E

@kpq

� �����
e¼0
¼ @2E

@kpq@e1
þ @2E

@kpq@krs

@krs
@e1

� �����
e¼0
; (17)

which can be recast in a matrix form as:79

0 ¼ E½1�e1 þ E
½2�
0 Xe1 : (18)
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Here, E[2]
0 is the electronic Hessian, E½1�e1 the property gradient and

Xe1
the solution vector yielding ke1rs

	 

. While the Hessian is

independent of a perturbation, the property gradient is calculated
as the first-order derivative of the KS matrix with respect to the
field strength of the applied perturbation,

E½1�e1 ¼
ge1

g�e1

" #
; g

e1
ai ¼

@Ee1

@kai�

����
0

¼ 0 �âyi âa; ĥe1
h i��� ���0D E

¼ � ~F e1
ai :

(19)

In particular, if e1 =
-

B, the property gradient is calculated in the
OMO basis and requires additional contributions involving
derivatives of LAOs and of matrices T.40,47 Once Xe1

has been
determined, one can construct the static linear response function:

e1; e2h ih i0 ¼ E½1�ye1
Xe2 ¼ �E½1�ye1

E
½2�
0

� ��1
E½1�e2 ; (20)

which constitutes the response contribution to the molecular
property expressed by the first term of eqn (16). The second term
of eqn (16) can be thought of as an expectation value, which due to
the linearity of the DC Hamiltonian in the applied perturbations
(eqn (7)) is non-zero only in perturbation-dependent basis sets.

This brings about the final form of the properties of interest
in this paper:

KKL
ab = hhmK;a;mL;bii0 (21)

sK
ab = hhmK;a;Bbii0 (22)

xab ¼ � Ba;Bb
� �� �

0
þ @2E

@Ba@Bb

����
0

� �
(23)

with the LAO basis used for the last two.

2.2 Frozen density embedding

In FDE, the total system is partitioned into interacting sub-
systems (for simplicity here we shall consider only two, the one
of interest (I) and the other (II) representing the environment)
implying a partition of the total density and energy.27 We can
further consider the case of spin-density FDE80,81 and partition
the generalized density component and the energy,

rtot
k (-r ) = rI

k(-r ) + rII
k (-r ) (24)

Etot[r
tot
k ] = EI[r

I
k] + EII[r

II
k ] + Eint[r

I
k, rII

k ], (25)

where EM[rM
k ] is the energy of an isolated subsystem (M = I, II)

calculated from eqn (13) and Eint is the interaction energy
dependent on the densities of both subsystems,

Eint rIk; r
II
k


 �
¼ Etot rtotk


 �
� EI rIk


 �
� EII rIIk


 �

¼
ð
rI0ð~rÞvIInucð~rÞ þ rII0 ð~rÞvInucð~rÞ

 �

d~rþ EI ;II
nuc

þ
ðð

rI0 ~r1ð ÞrII0 ~r2ð Þ
~r1 �~r2j j d~r1d~r2 þ Enadd

xc þ Tnadd
s :

(26)

where EI,II
nuc is the nuclear repulsion energy between subsystems,

and Enadd
xc and Tnadd

s are the non-additive contributions defined
as:32

Xnadd � Xnadd[rI
k,rII

k ] = X[rtot
k ] � X[rI

k] � X[rII
k ]. (27)

In order to determine rI
k in the presence of other subsystem(s)

with a given generalized density rII
k one solves the 4c KS equations

for a constrained electron density (KSCED)82 which, in the limit
of zero magnetic field have the form

(b0mc2 + c(~a�-p) + vKS[rI
k] + vI

emb[rI
k,rII

k ])cI(-r ) = eIcI(-r ),
(28)

where an effective KS potential of eqn (15) is augmented by the
embedding potential,

vIemb;kð~r Þ ¼
dEint

drIkð~rÞ
¼ dEnadd

xc

drIk
þ dTnadd

s

drIk
þ vIInucð~rÞ þ

ð
rII0 ~r 0ð Þ
~r�~r 0j jd~r

0;

(29)

representing the interaction of subsystem I with other
subsystem(s). One can also relax the constraints on rII

k by
interchanging it with rI

k and solving the analogous KSCED
equations in an iterative manner in the so-called freeze–thaw83

procedure.
FDE is formally exact in the limit of exact functionals

describing the non-additive exchange–correlation and kinetic
energies, but for computational efficiency both are generally
obtained using approximate density functionals and grouped
into a single term,

E nadd
xck [rI

k, rII
k ] = E nadd

xc [rI
k, rII

k ] + T nadd
s [rI

k, rII
k ]. (30)

It should be noted that the currently available kinetic energy
functionals have a limited accuracy,27,28 and while sufficient for
relatively weak interactions (e.g. hydrogen bonds),84 practical
difficulties may emerge for stronger ones requiring the kinetic
energy density functionals to be replaced by other approaches.85,86

2.2.1 FDE molecular properties. In what follows we shall
discuss the contributions to second-order molecular properties
presented in eqn (16) in a subsystem manner. We use separate
sets of externally orthogonal orbitals for subsystems I and
II,32,87 implying separate sets of orbital rotation coefficients,
kpMqN

= dMNkpMqM
for M, N A {I, II}, and the parametrization of

the total density (eqn (24)):

rtot
k (-r, kI, kII ) = rI

k(-r, kI ) + rII
k (-r, kII ), (31)

with kM = {kpMqM
} for M A {I, II}.

2.2.1.1 Linear response functions. The electronic Hessian and
property gradient are now subdivided into isolated subsystem
and interaction contributions32

E
½2�
0 ¼

E
½2�;M;M
0 0

0 E
½2�;N;N
0

2
4

3
5þ E

½2�;M;M
0;int E

½2�;M;N
0;int

E
½2�;N;M
0;int E

½2�;N;N
0;int

2
64

3
75; (32)

E½1�e1 ¼ E½1�;Me1
E½1�;Ne1

h iy
þ E

½1�;M
e1;int E

½1�;N
e1;int

h iy
; (33)
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with M a N, which leads to a system of LR equations

E
½2�;M;M
0 þ E

½2�;M;M
0;int

� �
XM

e1
þ E

½2�;M;N
0;int XN

e1
¼ � E½1�;Me1

þ E
½1�;M
e1;int

� �
;

(34)

E
½2�;N;M
0;int XM

e1
þ E

½2�;N;N
0 þ E

½2�;N;N
0;int

� �
XN

e1
¼ � E½1�;Ne1

þ E
½1�;N
e1;int

� �
;

(35)

where the response vector has also been split into blocks

pertaining to each subsystem, Xe1 ¼ XM
e1
XN

e1

h iy
. The matrix

elements of each sub-block have the form

E
½2�;M;M
0 ¼ @2EM

@kMpq@kMrs
; E

½2�;M;N
0;int ¼ @2Eint

@kMpq@kNrs
(36)

for the Hessian and

E½1�;Me1
¼ @2EM

@kMai @e1
; E

½1�;M
e1;int ¼

@2Eint

@kMai @e1
(37)

for the property gradient.
While the subsystem contributions to the electronic Hessian

and property gradient are the same as in (S)DFT, the interaction
contributions are calculated from the chain rule, employing the
parametrization of eqn (31), which allows for a straightforward
separation of the contributions from perturbed densities of
both subsystems (M, N A {I, II}):

@2Eint

@kMpq@kNrs

�����
0

¼ dMN

ð
dEint

drMk

@2rMk
@kMpq@kNrs

�����
0

þ
ðð

d2Eint

drMk drNk0

@rMk
@kMpq

�����
0

@rNk0
@kNrs

����
0

(38)

@2Eint

@kMpq@e1

�����
0

¼
ð
dEint

drMk

@2rMk
@kMpq@e1

�����
0

þ
ðð

d2Eint

drMk drNk0

@rMk
@kMpq

�����
0

@rNk0
@e1

����
0

(39)

The functional derivatives of the interaction energy with respect
to the general density components are the embedding potential
vM

emb;k of eqn (29) and the embedding kernel (M, N A {I, II}):

wM;N
emb;k;k0 ~r1;~r2ð Þ ¼ d2Eint

drMk ~r1ð ÞdrNk0 ~r2ð Þ
¼ 1� dMNð Þ 1

~r1 �~r2j j

þ d2Exck

drtotk ~r1ð Þdrtotk0 ~r2ð Þ
� dMN

d2Exck

drMk ~r1ð ÞdrMk0 ~r2ð Þ
(40)

We recall that in both cases the functional derivatives are
calculated with the ground-state densities.

Electronic Hessian. The interaction energy contributions to the
electronic Hessian (eqn (38)) can be further rewritten as (M a N):

@2Eint

@kMpq@kNrs

�����
0

¼ dMN

ð
vMemb;k

@2rMk
@kMpq@kNrs

�����
0

þ
ðð

wM;M
emb;k;k0

@rMk
@kMpq

�����
0

@rMk0
@kMrs

����
0

(41)

þ
ðð

wM;N
emb;k;k0

@rMk
@kMpq

�����
0

@rNk0
@kNrs

����
0

; (42)

discerning the embedding potential as well as the uncoupled
and coupled embedding kernel terms. In the current DIRAC
implementation32 only the terms from eqn (41) are included, so
that the coupling contributions of eqn (42) are neglected. As it is
usually the case, the Hessian is not explicitly constructed but
rather its eigenvectors and eigenvalues are obtained by iterative
approaches.79

Property gradient. When there is no dependence of rk on
the perturbation, eqn (39) is identically zero and the property
gradient contains only contributions from the isolated sub-
systems. As the terms of eqn (39) are non-zero when LAOs are used,
from now on they will be referred to as FDE-LAO contributions to
the property gradient. Eqn (39) can be rewritten in a more
explicit form (M a N),

@

@Ba

@Eint

@kMai

����
0

¼ �
ð
vMemb;kð~rÞ�O

Ba ;M
ia;k d~r (43)

�
ðð

wM;M
emb;k;k0 ~r1;~r2ð ÞOM

ia;k ~r1ð Þ�O
Ba;M
jj;k0 ~r2ð Þd~r1d~r2 (44)

�
ðð

wM;N
emb;k;k0 ~r1;~r2ð ÞOM

ia;k ~r1ð Þ�O
Ba;N
jj;k0 ~r2ð Þd~r1d~r2: (45)

employing the notation for the embedding potential (eqn (29)),
the embedding kernel (eqn (40)) and the derivatives of orbital
overlap distributions (summarized in Table 6). Detailed working
expressions used for the practical implementation of eqn (43)–(45)
are presented in the Appendix (eqn (71)).

Terms dependent on one subsystem, eqn (43) and (44), are
in effect analogous to the XC contributions to the property gradient
in the OMO basis,40 only with derivatives of the interaction energy
replacing derivatives of the XC energy. In the LR algorithm79 the
property gradient is calculated once and is not updated in the
iterative procedure, therefore the computational cost of including
FDE-LAO terms does not significantly increase the overall cost of the
calculations, unless the coupling terms (eqn (45)) are considered,
which will be briefly discussed in the following section.

Coupling kernel contributions to the linear response function.
As terms dependent on the embedding kernel (eqn (40)) may
involve perturbed densities of two different subsystems (M a N),
they will introduce a coupling between these subsystems through
Coulomb and non-additive terms.

The coupling kernel contributions to the electronic Hessian
(eqn (42)) have been discussed at length in the context of
excitation energies30,32,86,88,89 or electric polarizabilities,31 and
are shown to be important for extensive properties or when
excitations cannot be considered (to good accuracy) as dominated
by local components, but can often be neglected otherwise.35–38,90–92

The coupling kernel contributions to the property gradient
have received less attention so far. As all FDE-LAO contributions
to the property gradient result from using LAOs, which shift the
gauge origin from an arbitrary point to the center of nuclei, this
coupling term can be regarded as a small correction due to the
shift of the origin – e.g. in the center of mass of subsystem I – to
the centers of nuclei in subsystem II. While we still lack the
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coupling contributions to the Hessian, in the following section
we shall nevertheless investigate the relative importance of this
term in the property gradient.

The presence of coupling terms increases the complexity
and cost of calculations. As LR equations are solved for one
subsystem at a time, the necessary derivatives of the density of
subsystem II have to be calculated and stored before the
response equations for subsystem I are invoked. Eqn (45)
involves the non-additive Exck term (calculated analogously as
the uncoupled Exck part), as well as the Coulomb contribution,ð

wI ;II ;Coulomb
emb;0

�OBa;II
jj;0 ~r1ð ÞOI

ia;0ð~r Þd~r1; (46)

which in our implementation is calculated via numerical
integration of the expression

ð X
mn

cmi
�cna

ðwI ;ym ~r1ð ÞS0wIn ~r1ð Þ
~r�~r1j j d~r1

" #
�OBa;II
jj;0 ð~rsÞd~r: (47)

2.2.1.2 Expectation values. In a manner similar to the total
energy in eqn (25), the expectation value term (second term in
eqn (16)) can be subdivided into subsystem and interaction parts:

@2E

@e1@e2

����
0

¼ @2EI

@e1@e2

����
0

þ @2EII

@e1@e2

����
0

þ @2Eint

@e1@e2

����
0

: (48)

The subsystem contributions will have the same form as discussed
elsewhere, whereas the interaction term is

@2Eint

@e1@e2

����
0

¼
X

M¼I ;II

ð
dEint

drMk

@2rMk
@e1@e2

����
0

(49)

þ
X

M;N¼I ;II

ðð
d2Eint

drMk drNk0

@rMk
@e1

����
0

@rNk0
@e2

����
0

: (50)

From this expression one can, as in the linear response case,
distinguish interaction contributions to each of the subsystems,

@2EM
int

@e1@e2

����
0

¼
ð
dEint

drMk

@2rMk
@e1@e2

����
0

þ
ðð

d2Eint

drMk drMk0

@rMk
@e1

����
0

@rMk0
@e2

����
0

¼
ð
vMemb;kð~rÞ�O

BaBb ;M

ii;k d~r

(51)

þ
ðð

wM;M
emb;k;k0 ~r1;~r2ð Þ�OBa ;M

ii;k ~r1ð Þ�O
Bb ;M

jj;k0 ~r2ð Þd~r1d~r2; (52)

containing embedding potential and kernel contributions, and
those which depend on both subsystems (M a N)

@2EMN
int

@e1@e2

����
0

¼
ðð

d2Eint

drMk drNk0

@rMk
@e1

����
0

@rNk0
@e2

����
0

¼
ðð

wM;N
emb;k;k0 ~r1;~r2ð Þ�OBa;M

ii;k ~r1ð Þ�O
Bb ;N

jj;k0 ~r2ð Þd~r1d~r2;
(53)

made-up exclusively of a coupling kernel term. Working equations
are presented in the Appendix (eqn (72)).

Coupling kernel contributions to the expectation value. As in
the case of the property gradient, all terms in eqn (49) and (50)
would be zero in perturbation-independent basis sets, thus
from now on they will be referred to as FDE-LAO contributions to
the expectation value. Although eqn (53) depends on the coupling
kernel, it does not involve the relaxation of the subsystem densities
as in the electronic Hessian but rather the static correction to
the choice of response parameters. Here, we note that the first-
quantization and second-quantization formulations of second-
order magnetic properties in the LAO basis define expectation
value contributions differently.47

2.3 Tensor expressions for the molecular properties and their
representation in terms of magnetically induced currents

The theory discussed above is sufficient to determine the properties
of interest in the subsystem approach. However, these properties
can also be presented in a different mathematical form using the
linearity of the 4c DC Hamiltonian in the applied perturbations,
complemented by the formulation involving magnetically induced
current densities, which more directly conveys the physical
characteristics of each property.

2.3.1 NMR shielding and indirect spin–spin coupling tensors.
The NMR shielding or the NMR indirect spin–spin coupling
tensors in eqn (21) and (22) can be recast in a computationally
advantageous form47 in terms of expectation values involving the
hyperfine operator for a nucleus L, the unperturbed spinors |cii
and the first-order perturbed spinors40,47 ~cei

i

�� E
, yielding the

general expression

Me;L
ab ¼

X
i

~cea
i ĥmL;b

��� ���ci

D E
þ ci ĥmL;b

��� ���~cea
i

D En o
: (54)

The expression for the shielding tensor sL
ab is therefore

obtained from eqn (54) by employing the spinors perturbed

by the external magnetic field (e =
-

B), ~cBa
i

�� E
, and by the same

token the spin–spin coupling tensor KKL
ab is obtained by employing

the spinors perturbed by the nuclear magnetic dipole (e = -
mK),

cmK;a
i

�� �
.

In the FDE case, as each subsystem is described by its
own set of externally-orthogonal orbitals, we can rewrite the
expression in eqn (54) as

Me;L
ab ¼

X
i2I

~cea
i ĥmL;b

��� ���ci

D E
þ ci ĥmL;b

��� ���~cea
i

D En o
(55)

þ
X
j2II

~cea
j ĥmL;b

��� ���cj

D E
þ cj ĥmL;b

��� ���~cea
j

D En o
: (56)

The FDE expression for sL
ab or KKL

ab can be further approximated
by neglecting the terms arising from eqn (56). In the case of
NMR shieldings, assuming that nucleus L belongs to subsystem
I, this approximation should be sufficient, especially if the
overlap between the two subsystems is small, but whatever
the case we can estimate this missing contribution using the
magnetically-induced current density formulation outlined in
Section 2.3.3. For the spin–spin tensor, this approximation
should also be good due to the local nature of the hyperfine

Paper PCCP

Pu
bl

is
he

d 
on

 1
7 

Fe
br

ua
ry

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

v 
L

ill
e 

1 
on

 1
0/

03
/2

01
7 

15
:5

6:
12

. 

View Article Online

280



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys.

operator, if both K and L belong to subsystem I (a restriction in
our current implementation).

2.3.2 Magnetizability tensor. Contrary to NMR properties,
the magnetizability tensor is not a local property as the Zeeman
operator (eqn (8)) affects the whole system. It can be expressed
in terms of the sum of (interacting) intra-subsystem and inter-
subsystem contributions

xab = xI,(II)
ab + xII,(I)

ab , (57)

where

xI ;ðIIÞab ¼ @2EI

@Ba@Bb

����
0

þ @
2EM¼I

int

@Ba@Bb

����
0

� �
(58)

þ @2EI

@kIpq@Bb
þ @2Eint

@kIpq@Bb

" #
@kIpq
@Ba

: (59)

The terms in eqn (59) are calculated by solving the linear
response equations for subsystem I with FDE-LAO contributions
to the property gradient (eqn (43)–(45)). The term involving
EM=I

int in eqn (58) will contain intra-subsystem contributions of
eqn (51) and (52) with the summation restricted to subsystem I
and the inter-subsystem contribution from eqn (53), where the
summation is constrained to have M = I. The second term in
eqn (59), xII,(I)

ab , is obtained by permutation of indices I and II.
2.3.3 Tensors in terms of induced currents. The relativistic

current density vector and its first-order derivatives with respect
to perturbations,93

~jð~r Þ ¼ �e
X
i

cyi c~aci (60)

~j e1ð~r Þ ¼ �e
X
i

~ce1;y
i c~aci þ cyi c~a~ce1

i

n o
; (61)

allow property densities to be constructed,94 which may be
visualized on a grid and integrated – giving the value of the
corresponding property. Thus, the properties studied in this
paper can be written as:

sKab ¼ �
1

c2

ð
1

rK3
~rK �~j Ba
� �

bd~r; (62)

KKL
ab ¼ �

1

c2

ð
1

rK3
~rK �~j mL;a
� �

b
d~r: (63)

xab ¼ �
1

2

ð
~rG �~j Ba
� �

bd~r: (64)

where the first-order current density perturbed by an external
magnetic field is calculated with LAOs.95

An advantage of using the induced current density is that
while evaluated for one subsystem, it can be contracted with the
position vector pointing to the other subsystem allowing
the evaluation of contributions, for example from eqn (56),
for the NMR shielding tensor as:

sK ;II
ab ¼ � 1

c2

ð
1

~rIIi � ~RI
K

� �3 ~r IIi � ~RI
K

� �
�~j Ba ;II

� �
b
d~r; (65)

where the superscripts I and II denoting the subsystems are
written explicitly for each vector. Eqn (65) is analogous to
nucleus independent chemical shift (NICS) calculations out-
lined for FDE by Jacob and Visscher.37

3 Computational details

We have investigated three hydrogen-bonded HXH–OH2 complexes,
where X = Se, Te, or Po. Their structures were optimized in ADF
software,96 using the scalar version of the zeroth-order regular
approximation (ZORA)97,98 Hamiltonian, the B3LYP99 functional
and basis sets of the triple-zeta quality (TZ2P).100 The optimized
structures are included in the ESI.† The structures for the
subsystems are taken from supermolecules without any further
reoptimization, so that calculation on isolated fragments can be
thought of as equivalent to QM/MM embedding where only
mechanical (‘‘ME’’) coupling between the subsystems is taken
into account.27

The wave function optimization and magnetic property calcula-
tions performed in a development version of the DIRAC code51

employed the DC Hamiltonian and the PBE101,102 functional. In the
FDE calculations, the non-additive exchange–correlation and kinetic
energy contributions were calculated using the PBE and PW91k103

functionals, respectively. In response calculations, we have used the
full derivatives of the PBE and PW91k functionals provided by the
XCFun library.104 The basis sets were of augmented triple-zeta
quality: aug-cc-pVTZ105 for H and O and dyall.acv3z106,107 for X.

The calculations of NMR properties with the spin–orbit
ZORA Hamiltonian (ZORA-SO) were performed in ADF using
the TZ2P basis set and the PBE functional. For FDE calculations
in ADF, we have also employed the PBE and PW91k functionals
for the non-additive contributions.

In both DIRAC and ADF, the Gaussian model of nuclear
charge distribution108 was used and in the case of DIRAC, the
(SS|SS) class of two-electron integrals was replaced by a standard
correction.109 Also, in both cases we performed two sets of FDE
calculations, one using densities obtained for the isolated sub-
systems as frozen densities (hereafter referred to as ‘‘FDE(0)’’)
and another where we optimized both subsystem densities by
exchanging their role as frozen/active densities in the ‘‘freeze–
thaw’’ procedure, which was stopped after 4 iterations with both
densities fully optimized (hereafter referred to as ‘‘FDE(4)’’). In
tables in this paper, we present only the latter results, while full
tables are available in the ESI.†

We note that the choice of PBE was motivated by minimizing
the differences in the computational setup between supermolecular
and FDE calculations, so the only additional approximation in the
FDE case comes from the kinetic energy functional. Since our aim is
to compare the supermolecular and FDE results, a thorough study
of the performance of different functionals (exchange–correlation
and/or kinetic) is beyond the scope of this paper.

We use the definitions of Mason110 for the isotropic and the
anisotropic parts of a tensor O in the principal axis system,
where O33 Z O22 Z O11,

Oiso = 1/3(O11 + O22 + O33) (66)
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Oaniso = O33 � 1/2(O11 + O22). (67)

We have also calculated and plotted NMR shielding densities
and their differences. In this paper, we present the differential
NMR shielding densities calculated by subtracting the shielding
density of nucleus X and Hb in Fig. 1 arising from the induced
current in both subsystems (employing the NICS method for the
frozen subsystem) from the corresponding shielding density in
a supermolecule. The shielding density is plotted on a 80� 80�
80 grid of points generated for supermolecules. The plots were
made using Mayavi – a library for interactive scientific data
visualization and 3D plotting in Python.111 More plots and
relevant data can be found in the ESI.†

4 Results and discussion

In what follows we shall present all embedding results relative
to the supermolecular ones. Thus, for a given molecular property
P we define absolute (DP f) and relative (dP f) property shifts in a
general manner as

DP f = P super � (P I; f + PII; f ) (68)

dP f = DP f/P super, (69)

where Psuper corresponds to the supermolecular value of property
P and P i; f denotes the contribution to the property from the
subsystem i. The latter is obtained for the isolated subsystem
( f = ME) or using FDE ( f = FDE(n), with n = 0, 4). In the case of
NMR shieldings and indirect spin–spin couplings, which are
essentially local to one of the subsystems, DP f is well approxi-
mated by neglecting PII; f in eqn (68). In the case of FDE
calculations, we introduce an additional notation in order to
discern FDE-LAO contributions to the property gradient (NMR
shielding and magnetizability) and to the expectation value
(magnetizability), which can be either neglected (FDE(n)[0]),
limited to the embedding potential (FDE(n)[v], eqn (43) and
(51)) or to the embedding potential and the uncoupled kernel
(FDE(n)[v + wu], eqn (44) and (52)) or also incorporated with the
coupling kernel (wc) terms (FDE(n)[v + wall], eqn (45) and 53).

4.1 NMR shielding tensor

The DC calculations of isotropic and anisotropic parts of the
NMR shielding tensor are summarized in Table 1. We present
only the results for nuclei of the active subsystem (H2X) and we
distinguish between the hydrogen involved in the hydrogen
bond (Hb) and the other pointing away from the water molecule.

4.1.1 Isolated subsystems. From the isolated (‘‘ME’’) calcu-
lation, we observe that the hydrogen-bonded water strongly
affects the isotropic and anisotropic parts of the NMR shielding
tensors of nuclei of the active subsystems, leading to the shielding
of the heavy centers and the deshielding of Hb, in agreement with
established observations on hydrogen-bonded systems.112

The values of DsME
iso become progressively larger with the

increase of the atomic number of X for all nuclei of an active
subsystem: for the X nuclei they range from 38 ppm for SeH2 to
138 ppm for PoH2, for the non H-bonded hydrogen nuclei – from
0.4 ppm for SeH2 to 0.9 ppm for PoH2 and for Hb nuclei – from
�2 ppm for SeH2 to �0.6 ppm for PoH2, which for hydrogen
nuclei are significant since 1H NMR shielding is between
10 ppm and 30 ppm in most applications.14

While these Ds values are relatively small in comparison to
the absolute shieldings, they can nevertheless be significant in
NMR experiments – for instance, both 77Se and 125Te nuclei are
known to be very sensitive to the environment (e.g. solvent, its
concentration and temperature113) and even though they span
wide chemical shift ranges (6000 ppm for 77Se114,115 and
7000 ppm113 for 125Te), shifts of around 30 ppm (Se) or 60 ppm
(Te) are fingerprints of a specific solvent.113,116–118

For the anisotropies, the isolated (‘‘ME’’) results are usually
very different from the supermolecular ones for Hb, with DsME

aniso

of 7 ppm for SeH2, �1 ppm for TeH2 and �6 ppm for PoH2,
which represent deviations of 33%, 9% and 6%, respectively.
This is not unexpected, since in order to properly capture the
directionality of the hydrogen bond, electronic effects must be
taken into account. Interestingly, these discrepancies are also
seen for the Po nucleus in PoH2, whose shielding anisotropy
differs from the supermolecular value by 464 ppm (or 8% difference

Fig. 1 Differential isotropic shielding density isosurfaces119 (isovalues at
+0.53 ppm (red) and �0.53 ppm (blue)) for XH2–H2O systems with X = Se,
Te, Po (top) and Hb (bottom), calculated as a difference between super-
molecule shielding densities and the sum of subsystem shielding densities
approximated as: (a) ME, (b) FDE(4)[0], (c) FDE(4)[v], (d) FDE(4)[v + wu] and
(e) FDE(4)[v + wall]. Color of atoms: X (blue), O (red), H (grey).
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from the supermolecular value), whereas no significant deviations
are seen for Se or Te.

These tendencies can be better seen in the plots of the
differential isotropic shielding density in Fig. 1(a) for the heavy
centers and Hb. This figure exhibits positive (pink) and negative
(blue) isosurfaces, which, respectively, depict more shielded
and more deshielded areas in a supermolecule than in the
embedded subsystems, and which upon integration give the
corresponding values of DsME

iso .
We observe from Fig. 1(a) that the plots are rather similar for

Se and Te nuclei, exhibiting small negative isosurfaces centered
on a heavy nucleus, surrounded by a much larger positive
isosurface elongated on the X–Hb bond. In the case of Po the
differential shielding density is represented by much more
complex isosurfaces around the heavy center, as the negative
isosurface centered on Po is larger than that observed for Se
and Te and surrounded by many well-separated positive lobes.
This indicates that even though the property shift DsME

iso (Po)
turns out to be relatively modest compared to the value of the
absolute shielding, it is a result of shielded and deshielded
areas cancelling out upon integration, reflecting the intricate
interplay between environmental and relativistic effects, which
are quite different for Te and Se.

Towards the heavier neighbouring center, hydrogen nuclei
experience larger HALA effects120 (reflected by increasing absolute
values of ssuper

iso (Hb)) contributing to the shielding of Hb nuclei, and
competing with the deshielding effect caused by the interaction
with water molecules. We also observe the difference in the

non-hydrogen bonded hydrogen shielding between PoH2 and
the other species, which could also be a consequence of the
HALA effect.

4.1.2 Frozen density embedding. In what follows we discuss
the relative importance of the FDE-LAO contributions (v, wu, wc),
both in terms of the values of isotropic and anisotropic DsFDE(4)

indices as well as from the plots of the differential isotropic
shielding density in Fig. 1(b)–(e). We also calculated contributions to
the shieldings of X and Hb from the frozen subsystem using the
induced current density formulation from eqn (65), but since for all
approximations these were found to be smaller than the assumed
accuracy (0.01 ppm), they are not shown separately.

Starting with the calculation where no FDE-LAO terms are
added to the property gradient, the results of isotropic shieldings
are much worse than the ‘‘ME’’ values for all nuclei considered.
The same conclusion is drawn for the anisotropic shieldings
of Se and Te nuclei, but not for the Po nucleus, for which the
DsFDE(4)

aniso value remains smaller than the one incorporating only
the mechanical coupling.

The inclusion of FDE-LAO[v] contributions yields a significant
improvement over the ME values. For the heavy elements,
DsFDE(4)

iso increases from the very negative values obtained with-
out FDE-LAO terms to still significant negative values for Se
(�13 ppm), less negative for Te (�4 ppm) and positive for Po
(18 ppm). For Hb, the inclusion of the potential acts in the
opposite direction and we observe a relatively small decrease of
DsFDE(4)

iso values, whereas for the other hydrogen there is little change.
Uncoupled kernel contributions (v + wu) further improve the

results as they partially offset the v contribution and reduce the
DsFDE(4)

iso to rather small values. The wu correction is much more
significant for Po than for Te, and for Se only little improvement
is seen. The reason for this difference among elements is that
the kernel terms introduce contributions from the response
of the spin-density which becomes more significant as the
elements become heavier. This is also the reason why wu

contributions affect the shielding of Hb atoms (spin–orbit
mechanism of HALA effect). The uncoupled kernel also accentuates
the trend seen for DsFDE(4)

aniso (X), making it more negative and
therefore overestimating the shielding anisotropy of X. This
overestimation is also observed for the sFDE(4)

aniso (Hb) except in SeH2.
The coupling terms (wc), on the other hand, act in general to

offset the uncoupled kernel terms but their magnitude is, as
expected from the local nature of the NMR shielding, much
smaller than the latter for all atoms so it plays no significant role
in either the isotropic shielding value or the shielding anisotropy.

All of the above let us conclude that, while FDE isotropic
shieldings are rather good and relatively much better as the
systems become heavier, there are still significant shortcomings in
the description of the anisotropies in these systems. The key to
further improving the results is in ameliorating the leading FDE-LAO
contribution (v), and a possible way to do so is via the use of accurate
approximations to the non-additive kinetic energy contributions.85,86

4.2 Magnetizability

The magnetizability tensors calculated using the DC Hamiltonian
are summarized in Table 2, where we present the isotropic (xiso)

Table 1 Absolute DC isotropic and anisotropic shielding values (ssuper
iso and

ssuper
aniso , in ppm) of nuclei in the H2X subsystems (X = Se, Te, Po) in H2X–H2O,

and absolute shifts (Ds, in ppm) for the isolated (‘‘ME’’) and embedded
(‘‘FDE(4)’’) H2X molecules in the presence of H2O. For FDE, the values for
different approximations in the FDE-LAO treatment (a: [0], b: [v], c: [v + wu],
d: [v + wall]) are shown

Atom ssuper
iso DsFDE(4)

iso[a] DsFDE(4)
iso[b] DsFDE(4)

iso[c] DsFDE(4)
iso[d] DsME

iso

Se 2378.03 �100.75 �12.54 �12.55 �12.33 38.25
Hb 30.88 �0.39 �0.83 �0.67 �0.62 �2.09
H 33.42 0.24 0.02 0.03 0.03 0.43

Te 4667.85 �142.39 �4.62 �9.16 �8.88 67.48
Hb 35.62 �0.29 �0.68 �0.44 �0.42 �1.70
H 37.85 �0.02 0.01 0.02 0.02 0.54

Po 13985.80 �224.54 18.28 �3.52 �3.13 137.84
Hb 40.80 0.50 0.07 �0.09 �0.09 �0.57
H 42.29 �0.22 �0.03 0.00 0.00 0.89

Atom ssuper
aniso DsFDE(4)

aniso[a] DsFDE(4)
aniso[b] DsFDE(4)

aniso[c] DsFDE(4)
aniso[d] DsME

aniso

Se 609.27 21.80 �0.13 �0.43 �0.19 0.17
Hb 22.19 5.05 6.00 5.76 5.70 7.29
H 15.13 �1.17 �0.22 �0.22 �0.21 0.09

Te 1189.67 29.78 0.56 �1.22 �1.21 3.60
Hb 14.59 0.50 0.02 0.24 0.28 �1.31
H 15.24 0.54 0.09 0.08 0.08 �0.64

Po 5556.67 61.88 �15.12 �18.36 �18.61 �463.51
Hb 105.25 0.98 �1.28 �1.67 �1.67 �6.01
H 107.80 1.93 0.16 0.08 0.09 �4.03
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and first anisotropy (xaniso1) values. The results for the second
anisotropy, xaniso2, can be found in the ESI.†

The magnetizability is an extensive property and therefore in
order to compare to the supermolecular values one should
obtain the tensors for both subsystems. Another of its features,
demonstrated by numerous studies, is that its value in a molecule
can be very well approximated by the sum of contributing atomic
susceptibilities,121–123 with only few exceptions, e.g. aromatic
hydrocarbons,121 small molecules containing fluorine124 or metal
clusters.19 This curious additivity of the magnetizability tensor –
known as Pascal’s rule125,126 – has been attributed to the local
diamagnetic nature of atoms in molecules124,127 and the break-
down of this rule to the ‘‘long-range circulation of electrons’’ not
accounted for in the atomic picture.127

While Pascal’s rule has been defined in terms of atomic
susceptibilities, one could consider the additivity of magnetiz-
ability of molecular assemblies in terms of its constituent
molecules. Recent studies128 have shown that Pascal’s rule is
particularly useful when analysed in terms of the magnetically
induced current density, as the interaction of induced currents
in neighbouring molecules and the increase of paramagnetic
component of magnetizability tensor can be connected to the
breakdown of the additivity rule.

4.2.1 Isolated subsystems. As can be seen in Table 2, the
DxME

iso values are rather small in absolute (o0.1 for Se, �4.3 for
Te and �9.9 for Po, in SI units) as well as in relative terms.
From these results, one would be justified in considering that
Pascal’s rule holds rather well for these systems.

The property shifts are larger for xaniso1, with DxME
aniso1 that

tend to increase with an increase of the atomic number of X
(�5.5 for Se, 4.7 for Te and 8.7 for Po, in SI units) and an inverse
trend for DxME

aniso2. It is more interesting, however, that these values
amount overall to much larger relative differences (9.4%, �5.8%,
�9.7% for Se, Te and Po for DxME

aniso1, respectively), and the change of
sign along the series again indicates a complex interplay between
relativistic and environmental effects in this sort of embedding.

4.2.2 Frozen density embedding. For magnetizability,
FDE-LAO contributions are also present in the property gradient
and in the expectation value part, thus it is again useful to
consider the relative importance of each of them. We shall here
once again focus on the FDE(4) results, noting that the FDE(0)
results follow these closely but show a slightly worse agreement
with supermolecular values than FDE(4). The DxFDE(4)

iso values
calculated with no FDE-LAO terms are much larger in magnitude
than those for the ME calculations. Unlike for s, even the
inclusion of FDE-LAO[v] terms yields DxFDE(4)

iso values which are
significantly larger in magnitude (6.5 for Se, 12 for Te and 80.3 for
Po, in SI units) than those for the isolated (‘‘ME’’) calculations.

The uncoupled kernel contribution (v + wu) brings about
little changes in DxFDE(4)

iso for Se but a significant improvement
for Te and, especially, for Po. As for the NMR shielding, the
coupling kernel (v + wall) term has a small effect, further leading
to a decrease in the DxFDE(4)

iso values.
These results indicate that the additivity of xiso resulting from

FDE calculations with all second-order terms (v + wall) is significantly
better than from the isolated (‘‘ME’’) calculations as the subsystem
becomes heavier, and may suggest an inflexion point between Se
and Te where electronic effects would become important enough
for the results to start deviating from Pascal’s rule.

A similar trend is found for the DxFDE(4)
aniso1 values, with FDE-LAO[v]

calculations underperforming the isolated (‘‘ME’’) ones and the
kernel contributions being important for yielding a good agree-
ment with reference values. As for the NMR shielding anisotropies,
significant discrepancies with respect to the supermolecular results
remain. The performance of FDE for the second anisotropy is
slightly better but follows the same trends.

4.3 NMR spin–spin coupling tensor

The indirect reduced spin–spin coupling tensor calculated
using the DC Hamiltonian for the H–Hb, X–H and X–Hb pairs
of nuclei corresponding to the XH2 species are found in Table 3.

4.3.1 Isolated subsystems. The absolute values of isotropic
one-bond spin–spin coupling constants (SSCCs) involving the
heavy nuclei increase significantly and, due to relativity,129 for
PoH2 are around 30 times larger than those in SeH2. In relative
terms, however, X–H SSCCs hardly change for the isolated (‘‘ME’’)
subsystems in relation to supermolecular values, with a slight
increase as the systems become heavier (from about 2 for Se or Te

Table 2 DC isotropic and first anisotropic magnetizabilities (xiso and
xaniso1, in SI units) for the H2X–H2O systems (X = Se, Te, Po) as well as
for the H2X and H2O subsystems, with the latter as isolated (‘‘ME’’) and
embedded (‘‘FDE(4)’’) calculations. In the case of subsystem calculations,
the total xtot

iso and xtot
aniso1 are given as the sum of the subsystem values. For

FDE, the values for the different approximations in the FDE-LAO treatment
(a: [0], b: [v], c: [v + wu], d: [v + wall]) are shown

System xsuper
iso xFDE(4)

iso[a] xFDE(4)
iso[b] xFDE(4)

iso[c] xFDE(4)
iso[d] xME

iso

SeH2 — �183.07 �608.99 �606.54 �606.54 �602.19
H2O — 781.33 �233.79 �233.78 �233.76 �234.19
xtot �836.26 598.26 �842.77 �840.32 �840.30 �836.31
Dx 0.0 �1434.52 6.51 4.06 4.04 0.05

TeH2 — �630.07 �858.94 �848.68 �848.74 �842.57
H2O — 235.10 �233.74 �233.74 �233.60 �233.83
xtot �1080.67 �394.97 �1092.69 �1082.42 �1082.33 �1076.39
Dx 0.0 �685.71 12.01 1.74 1.66 �4.28

PoH2 — �895.55 �1030.19 �949.80 �949.71 �940.09
H2O — �169.52 �234.11 �234.10 �233.18 �234.02
xtot �1184.04 �1065.08 �1264.30 �1183.91 �1182.89 �1174.11
Dx 0.0 �118.96 80.26 �0.13 �1.15 �9.92

System xsuper
aniso1 xFDE(4)

aniso1[a] xFDE(4)
aniso1[b] xFDE(4)

aniso1[c] xFDE(4)
aniso1[d] xME

aniso1

SeH2 — �358.80 �47.12 �45.88 �45.88 �45.97
H2O — �1396.29 �5.76 �5.76 �5.78 �6.51
xtot �57.94 �1755.08 �52.88 �51.64 �51.66 �52.48
Dx 0.0 1697.14 �5.07 �6.31 �6.28 �5.47

TeH2 — �227.24 �86.32 �80.29 �80.32 �80.30
H2O — �650.52 �5.53 �5.53 �5.70 �6.06
xtot �81.63 �877.77 �91.85 �85.82 �86.02 �86.36
Dx 0.0 796.14 10.23 4.19 4.39 4.73

PoH2 — �290.25 �261.88 �91.58 �91.56 �91.79
H2O — �93.62 �6.45 �6.45 �7.47 �6.73
xtot �89.81 �383.87 �268.34 �98.03 �99.02 �98.52
Dx 0.0 294.06 178.53 8.22 9.21 8.71
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to 5 for Po, SI units), whereas for X–Hb SSCCs an opposite trend is
found (from 7–9 for Se/Te to �1 for Po, SI units).

The observation that environment effects are more important
in the case of Se–Hb and Te–Hb than Se–H and Te–H, respectively,
is intuitive considering that most of the studied one-bond spin–
spin couplings are governed by Fermi contact interactions,17

which probe the spin density at the coupled nuclei – expected
to be perturbed more on Hb than on the other H nucleus upon
the formation of the hydrogen bond. That said, the DKME

iso (Po–Hb)
value is interesting in being the only one which is negative and
smaller than the DKME

iso (Po–H) value, something that may indicate
that the spin–spin coupling mechanism in the PoH2 molecule is
more complex and may be dominated by other interactions,
for instance spin–orbit-induced as in heavier interhalogen
diatomics,130 which may further be differently affected by
environmental effects. Two-bond SSCCs (H–Hb) are in general
very small for all systems, though there is a small increase in
absolute terms as the systems become heavier.

For anisotropies, the values of DKME
aniso strongly increase for

X–Hb as X becomes heavier, though they remain very small for
X–H, and for H–Hb the isolated (‘‘ME’’) results are largely the
same as the supermolecular ones.

4.3.2 Frozen density embedding. Unlike the other two
properties discussed above, FDE contributions to the response
only enter here in the electronic Hessian, which greatly simplifies
the implementation. Here, we shall discuss the SSCC FDE(4) results
which are, like for magnetizabilities, better than the FDE(0) results.
We observe that FDE performs better than mechanical embedding,
with DKFDE(4)

iso values being consistently around 1–2 (SI units) for
X–Hb and smaller than 1 (SI units) for X–H or H–Hb.

Trends similar to those for DKFDE(4)
iso are seen for DKFDE(4)

aniso ,
with the latter being generally small and slightly negative for all
but DKFDE(4)

aniso (Po–Hb), which is of about 3 (SI units).

4.4 A Comparison of DC and ZORA Hamiltonians

Although SO-ZORA is known to yield rather different results from
the DC ones, it is often sufficient in the determination of chemical
shifts due to cancellation of errors.21,44 Nevertheless when environ-
mental effects are calculated as differences in absolute shieldings,
the cancellation of errors is not always guaranteed.

In recent years, the differences in performance between the
two Hamiltonians has gained attention, with a number of studies
reporting significant discrepancies between SO-ZORA and DC
values of NMR shielding tensors of heavy nuclei,21,22,44,131 which
were explained by a poor description of core orbitals of heavy
elements by the ZORA Hamiltonian.21

It is therefore interesting to see how FDE and ME perform
for the two Hamiltonians. The results of our calculations of
NMR shieldings and SSCCs using the SO-ZORA Hamiltonian
are shown in Tables 4 and 5, respectively.

A comparison of our SO-ZORA and DC results indicates that
such error cancellation occurs for SeH2, since the results and
trends of shieldings and SSCCs are essentially the same for
both Hamiltonians, for FDE and ME calculations. For TeH2,
both Hamiltonians yield largely similar results, but some
quantitative differences start to appear in Dsaniso and rather
small differences in DsME

iso . For PoH2, on the other hand, the
differences are numerous: DsME

iso (Po) for SO-ZORA already
differs from the DC value by 38 ppm, such a difference in
DsFDE(4)

iso is about �16 ppm (DC using the (v + wall) FDE-LAO
terms), whereas for DsME

iso (Hb) and DsFDE
iso (Hb) these discrepancies

are of the order of a ppm. The differences between Hamiltonians
are also quite marked for anisotropies, where they amount to
about 160 ppm for DsME

aniso(Po) and 30 ppm for DsFDE
aniso(Po).

Large discrepancies between Hamiltonians are also seen for
PoH2 SSCCs, but much more marked for anisotropies than for
isotropic values (about 1 SI unit for FDE or ME calculations).

While our dataset is rather small for drawing more general
conclusions, it strengthens the case for a more thorough assessment
of approximate Hamiltonians such as ZORA for calculating the
NMR parameters of 6p molecules.

Here, one may also wonder the extent to which the quality of
the basis sets used in the ZORA calculation may affect the
results. While for valence properties one would expect the ZORA
basis to be roughly comparable to the triple-zeta Gaussian basis
used in the DC calculations, by construction the latter includes
rather tight s and p functions, and that may make them more
accurate for properties depending on the core region.

To that end, we have performed the same calculations as
above using the TZP and QZ4P basis sets, with results presented
in the ESI.† From these, we see that for the absolute SSCCs values

Table 3 DC isotropic and anisotropic reduced indirect spin–spin cou-
plings (Ksuper

iso and Ksuper
aniso , in SI units) for the H2X subsystems in H2X–H2O,

and absolute shifts (DK, in SI units) for the isolated (‘‘ME’’) and embedded
(‘‘FDE(4)’’) H2X molecules in the presence of H2O

Nuclei K super
iso DK FDE(4)

iso DK ME
iso K super

aniso DK FDE(4)
aniso DK ME

aniso

Hb Se �11.22 1.52 7.25 113.79 �1.23 1.25
H Se �16.04 0.07 1.51 110.68 �0.33 �1.01
Hb H �0.77 0.00 �0.02 0.89 0.00 �0.01

Hb Te �53.11 1.69 9.08 208.54 �0.42 8.07
H Te �59.98 0.16 2.18 198.09 �0.44 �2.37
Hb H �0.75 0.00 �0.03 0.42 0.00 0.00

Hb Po �442.55 1.37 �1.25 429.17 3.10 41.96
H Po �437.24 0.45 5.04 388.29 �0.18 2.24
Hb H �0.61 0.00 �0.04 0.69 0.00 1.32

Table 4 Absolute SO-ZORA isotropic and anisotropic shielding values
(ssuper

iso and ssuper
aniso , in ppm) of nuclei in the H2X subsystems (X = Se, Te, Po) in

H2X–H2O, and absolute shifts (Ds, in ppm) for the isolated (‘‘ME’’) and
embedded (‘‘FDE(4)’’) H2X molecules in the presence of H2O

Atom ssuper
iso DsFDE(4)

iso DsME
iso ssuper

aniso DsFDE(4)
aniso DsME

aniso

Se 2261.59 �11.30 34.89 628.15 4.43 4.89
Hb 30.10 �0.77 �2.07 23.95 5.83 7.22
H 32.55 �0.03 0.35 16.97 �0.24 0.11

Te 4251.23 �9.61 64.66 1219.57 0.55 0.80
Hb 33.43 �0.46 �1.59 18.09 3.87 4.90
H 35.47 0.00 0.45 13.09 �0.33 �0.09

Po 11168.82 �20.93 101.35 3138.04 �45.36 �304.56
Hb 37.46 �0.21 �0.82 62.41 �1.32 �4.11
H 38.99 0.00 0.67 64.80 0.25 �2.05
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the change in basis set from triple to quadruple zeta does not
alter significantly the results for Se and Te and, even though there
are more pronounced changes in isotropic and anisotropic
constants involving Po, we observe the same trends and roughly
the same values for DKFDE and DKME as discussed above.

For shieldings a similar situation is found, with small
variations in absolute (isotropic and anisotropic) shieldings
between both triple-zeta and the QZ4P basis sets for Se and Te
systems and significant changes for the Po ones. The consequence
of these changes is that, whereas for Se and Te DsFDE(4) and DsME

change little, for Po the QZ4P set changes DsFDE(4)
iso and DsFDE(4)

aniso by
10 and 30 ppm, respectively, and DsME

iso and DsME
aniso by 30 and

60 ppm, respectively.
At this point, we cannot establish whether these strong variations

in the shieldings only arise from deficiencies in the triple zeta sets
or due to other factors. Doing so would require a thorough
investigation that, we believe, is beyond the scope of this paper.

5 Conclusions and outlook

In this paper, we have described the implementation of frozen
density embedding contributions in a response theory framework,
in combination with the four-component DC Hamiltonian,
to NMR indirect spin–spin couplings, NMR shieldings, and
magnetizabilities for mean-field approaches (DFT-in-DFT or
HF-in-DFT).

Due to the use of LAOs, which introduce the dependence of
the electron- and spin-density on the external magnetic field in
the case of NMR shieldings and magnetizabilities, additional
embedding contributions to the property gradient (both properties)
and expectation value (magnetizability only) arise, both for
the individual subsystems as well as introducing a coupling
between these.

By performing DFT calculations on H2X–H2O (X = Se, Te, Po)
model systems, we have been able to show the relative importance
of these additional contributions to the properties in question,
while at the same time confirming the findings of other studies
that frozen density embedding is well suited to the calculation of
NMR indirect spin–spin couplings and NMR shieldings.

We have observed that the inclusion of the embedding potential
in the FDE-LAO property gradient contributions accounts for the
bulk of the environment effects, and that the heavier the center the
more intra-subsystem FDE-LAO kernel contributions are important
for both NMR shieldings and magnetizabilities, due to the increasing
importance of spin-density contributions. Coupling kernel LAO
contributions, by contrast, are in general rather small.

We have exploited the use of magnetically induced currents
to obtain the NMR shielding tensor via a real-space approach as
well as to analyse, for the first time, the differences between
supermolecular and embedded calculations in complement to
the analysis of the electron density employed so far. We consider
that the property density plots provide a much clearer picture of
where in space the deficiencies in the FDE treatment manifest
themselves compared to the scalar values of property shifts or
unperturbed electron density plots as done prior to this work.

We present for the first time the FDE contributions to
magnetizabilities. Unlike the case of the electric polarizability
and in line with Pascal’s rule, it appears that one can reconstruct
with rather good accuracy the tensor for the supermolecular
system from the tensors of the individual subsystems, obtained
without the FDE coupling terms in the response equations. This
may potentially make FDE a more reliable route to obtaining
molecular magnetizabilities than other embedding approaches,
since the whole system is treated quantum-mechanically.

We have also compared our results to those obtained using
the spin–orbit ZORA Hamiltonian. Although the latter performs
well, for the PoH2–H2O system we have observed significantly
different results between the Hamiltonians in the description
of environment effects on the NMR shieldings and spin–spin
coupling constants. Though part of these differences appear to
be due to basis set effects, they nevertheless contrast with the
common expectation that relative shieldings are largely insensitive
to changes in Hamiltonians and therefore it would be worthwhile
to verify whether that is indeed the case for other systems
containing the heaviest elements.

Appendix: working expressions for
FDE-LAO contributions

In the DIRAC software, the quaternion algebra132 is employed.
Thus, Opq;0 and iOpq,m are calculated from the real and imaginary
parts, respectively, of the generally quaternion overlap distribution
matrix (eqn (12)), which makes it easy to discern the charge- and
spin-density contributions to the KS matrix and its derivatives.

Here, we present the working formulas for FDE-LAO con-
tributions to the property gradient (eqn (43)–(45)) and to the
expectation value part of the magnetizability tensor (eqn (49)
and (50)) derived for a closed-shell reference. They were
obtained by first separating the number-density (n: r0 = �en)
and spin-density (s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffirm � rm

p , m A {x, y, z}) contributions,

then by applying the local ansatz, in which XC and kinetic energies
are approximated by functions of local density variables:78

Exck ¼
ð
exck QI [QII
� �

d~r; (70)

Table 5 SO-ZORA isotropic and anisotropic reduced indirect spin–spin
couplings (Ksuper

iso and Ksuper
aniso, in SI units) for the H2X subsystems in H2X–H2O,

and absolute shifts (DK, in SI units) for the isolated (‘‘ME’’) and embedded
(‘‘FDE(4)’’) H2X molecules in the presence of H2O

Nuclei K super
iso DK FDE(4)

iso DK ME
iso K super

aniso DK FDE(4)
aniso DK ME

aniso

Hb Se �12.63 1.08 6.58 130.61 �2.01 1.15
H Se �16.41 0.87 1.88 127.57 �0.24 �1.03
Hb H �1.11 �0.03 �0.07 0.51 0.01 �0.01

Hb Te �55.69 1.84 9.82 226.45 �1.00 8.95
H Te �64.05 �0.02 1.44 214.87 �0.53 �2.61
Hb H �0.94 �0.02 �0.06 0.20 0.00 0.00

Hb Po �439.33 1.02 �0.87 343.72 1.40 34.68
H Po �435.41 0.40 4.12 308.77 �0.49 0.87
Hb H �0.80 �0.02 �0.07 0.78 0.00 0.08
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with QM = {nM, sM, (rn�rn)M, (rn�rs)M, (rs�rs)M} for M A {I, II}.
This allows us to express the FDE-LAO contributions to the property
gradient of subsystem I (the expression for subsystem II can be
obtained by exchanging the labels I and II) and to the expectation
value part of the magnetizability tensor in terms of scalar and vector
pre-factors (a0,

-

b0, cM,N
0 , cM,N

m ,
-

dM,N
0 ,

-

dM,N
m for M, N A {I, II}), summar-

ized in Tables 7 and 8, while various perturbed densities are outlined
in Table 6 and discussed at length in the literature.40,78,133

@

@Ba

@Eint

@kIai

����
0

¼ �
ð
aI0

�OBa ;I
ia;0 þ ~bI0 � r�OBa ;I

ia;0

h i
d~r

�
ðð"

cI ;I0 OI
ia;0 þ ~d

I ;I
0 � rOI

ia;0 þ cI ;Im OI
ia;m:

þ
X

m¼x;y;z

~dI ;I
m � rOI

ia;m

#
d~r1d~r2

�
ðð"

cI ;II0 OI
ia;0 þ ~d

I ;II
0 � rOI

ia;0:

þ cI ;IIm OI
ia;m þ

X
m¼x;y;z

~dI ;II
m � rOI

ia;m

#
d~r1d~r2

(71)

@2Eint

@Ba@Bb

����
0

¼
X

M¼I ;II

ð
aM0

�O
BaBb ;M

ii;0 þ ~bM0 � r�O
BaBb ;M

ii;0

h i�
d~r

þ
ðð"

cM;M
0

�O
Bb ;M

ii;0 þ ~dM;M
0 � r�O

Bb ;M

ii;0 þ cM;M
m

�O
Bb ;M
ii;m :

þ
X

m¼x;y;z

~dM;M
m � r�O

Bb;M
ii;m

#
d~r1d~r2

)

þ
X

M;N¼I ;II
MaN

ðð"
cM;N
0

�O
Bb;M

ii;0 þ ~dM;N
0 � r�O

Bb ;M

ii;0 :

þ cM;N
m

�O
Bb;M
ii;m þ

X
m¼x;y;z

~dM;N
m � r�O

Bb ;M
ii;m

#
d~r1d~r2:

(72)
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� �
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@ðrn �rnÞ

����
tot

rntot� @exck
@ðrn �rnÞ
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Table 8 Vector prefactors derived for a closed-shell reference
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84 D. Schlüns, K. Klahr, C. Mück-Lichtenfeld, L. Visscher and

J. Neugebauer, Phys. Chem. Chem. Phys., 2015, 17, 14323.
85 S. Fux, C. R. Jacob, J. Neugebauer, L. Visscher and

M. Reiher, J. Chem. Phys., 2010, 132, 164101.
86 D. G. Artiukhin, C. R. Jacob and J. Neugebauer, J. Chem.

Phys., 2015, 142, 234101.
87 J. P. Unsleber, J. Neugebauer and C. R. Jacob, Phys. Chem.

Chem. Phys., 2016, 18, 21001.
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93 R. Bast, J. Jusélius and T. Saue, Chem. Phys., 2009, 356, 187–194.
94 C. J. Jameson and A. D. Buckingham, J. Chem. Phys., 1980,

73, 5684.
95 D. Sulzer, M. Olejniczak, R. Bast and T. Saue, Phys. Chem.

Chem. Phys., 2011, 13, 20682.
96 ADF2014, SCM, Theoretical Chemistry, Vrije Universiteit,

Amsterdam, The Netherlands, http://www.scm.com.
97 E. V. Lenthe, E. J. Baerends and J. G. Snijders, J. Chem.

Phys., 1993, 99, 4597.
98 E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem.

Phys., 1994, 101, 9783.
99 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

100 E. Van Lenthe and E. J. Baerends, J. Comput. Chem., 2003,
24, 1142.

101 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1996, 77, 3865.

102 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1997, 78, 1396.

103 A. Lembarki and H. Chermette, Phys. Rev. A: At., Mol., Opt.
Phys., 1994, 50, 5328.

104 U. Ekström, L. Visscher, R. Bast, A. J. Thorvaldsen and
K. Ruud, J. Chem. Theory Comput., 2010, 6, 1971.

105 T. H. Dunning, J. Chem. Phys., 1989, 90, 1007.
106 G. K. Dyall, Theor. Chem. Acc., 2002, 108, 335.
107 K. G. Dyall, Theor. Chem. Acc., 2006, 115, 441.
108 L. Visscher and K. G. Dyall, At. Data Nucl. Data Tables,

1997, 67, 207.

PCCP Paper

Pu
bl

is
he

d 
on

 1
7 

Fe
br

ua
ry

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

v 
L

ill
e 

1 
on

 1
0/

03
/2

01
7 

15
:5

6:
12

. 

View Article Online

289



Phys. Chem. Chem. Phys. This journal is© the Owner Societies 2017

109 L. Visscher, Theor. Chem. Acc., 1997, 98, 68.
110 J. Mason, Solid State Nucl. Magn. Reson., 1993, 2, 285.
111 P. Ramachandran and G. Varoquaux, Comput. Sci. Eng.,

2011, 13, 40.
112 E. Arunan, G. Desiraju, R. Klein, J. Sadlej, S. Scheiner,

I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg,
P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci and
D. J. Nesbitt, Pure Appl. Chem., 2011, 83, 1637.

113 N. P. Luthra and J. D. Odom, Nuclear magnetic resonance
and electron spin resonance studies of organic selenium and
tellurium compounds, John Wiley & Sons, Inc., 2010, p. 189.

114 T. Kemp, A. Wong, M. Smith, P. Bishop and N. Carthey,
Solid State Nucl. Magn. Reson., 2008, 34, 224.

115 H. Duddeck, 77Se NMR Spectroscopy and Its Applications
in Chemistry, Annu. Rep. NMR Spectrosc., Academic Press,
2004, vol. 52, p. 105.

116 Y. Y. Rusakov, I. L. Rusakova and L. B. Krivdin, Magn. Reson.
Chem., 2015, 53, 485.

117 Y. Y. Rusakov and L. B. Krivdin, J. Comput. Chem., 2015,
36, 1756.

118 S. Hayashi, K. Matsuiwa and W. Nakanishi, RSC Adv., 2014,
4, 44795.

119 http://dx.doi.org/10.5281/zenodo.179667, figures available
under a CC-BY 4.0 license.

120 J. Autschbach, in High Resolution NMR Spectroscopy. Under-
standing Molecules and their Electronic Structures, ed.
R. H. Contreras, Elsevier, 2013, vol. 3, p. 69.

121 K. Ruud, H. Skaane, T. Helgaker, K. L. Bak and P. Jørgensen,
J. Am. Chem. Soc., 1994, 116, 10135.

122 P.-O. Astrand and K. V. Mikkelsen, Magn. Reson. Chem.,
1998, 36, 92.

123 R. F. W. Bader and T. A. Keith, J. Chem. Phys., 1993, 99, 3683.
124 K. Ruud, P.-O. Astrand and P. R. Taylor, J. Phys. Chem. A,

2001, 105, 9926.
125 P. Pascal, Ann. Chim. Phys., 1910, 19, 5.
126 P. Pascal, Rev. Sci. Instrum., 1948, 86, 38.
127 W. H. Flygare, Chem. Rev., 1974, 74, 653.
128 K. Ruud, private communication.
129 J. Autschbach and S. Zheng, in Annu. Rep. NMR Spectrosc.,

ed. G. A. Webb, Academic Press, 2009, vol. 67, p. 1.
130 D. L. Bryce, R. E. Wasylishen, J. Autschbach and T. Ziegler,

J. Am. Chem. Soc., 2002, 124, 4894.
131 W. Makulski, THEOCHEM, 2012, 1017, 45.
132 T. Saue and H. J. A. Jensen, J. Chem. Phys., 1999, 111,

6211.
133 P. Sałek, T. Helgaker and T. Saue, Chem. Phys., 2005,

311, 187.
134 T. Helgaker and P. Jørgensen, J. Chem. Phys., 1991, 95, 2595.

Paper PCCP

Pu
bl

is
he

d 
on

 1
7 

Fe
br

ua
ry

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

v 
L

ill
e 

1 
on

 1
0/

03
/2

01
7 

15
:5

6:
12

. 

View Article Online

290



List of Figures

4.1 Schematic depiction of a breached waste canister and the possible pathways for the trans-
port and retention of radionuclides in the geological environment (from [16]). . . . . . . . 8

4.2 (a) Electron microscopy of sulfate particles (image A) to which carbon black particules
(image B) are attached (indicated by arrows). Carbon black particles are often associated
with fly ash (image B) ; (b) Schematic depiction of the processes that may take place on
the surface of an aerosol particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 (a) Different oxidation states of Pu in perchlorate solution; (b) Pu(IV) complexes in the
presence of different ligands (from [27]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4 (a) UV-vis-NIR spectra for neptunyl species in aqueous solutions; (b) NIR spectra for
plutonyl species in NaCl solutions (from [28]). . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.5 Radial densities of the valence p orbital from spin-free calculations and for the p(1/2,1/2), p(3/2,3/2)

spinors of (a) iodide ; (b) astatide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Schematic representation of the possible ways obtaining electronic states for a target species
M(∗) starting from auxiliary species (M, M2+ or M2−) well-described by a single Slater
determinant. It should be noted that M might itself be a neutral, anionic or cationic species 33

5.2 Comparison of methods at r=2.93. IHFSCC(a) is the reference . . . . . . . . . . . . . . . 36

5.3 Errors with respect to IHFSCC for all excitations and all molecules for spin-free (top) and
spin-orbit (bottom) calculations. The gray boxes enclose a range of one sample standard
deviation above and below the average error. Dots show individual errors for each excitation
energy. The two highest (DFT) states for NUO+ has been left out of the analysis. (A)
Evaluated using the ALDA approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 UO2Cl2(phen)2 Molecular spinors: (a) HOMO; (b) LUMO; (c) LUMO+1; (d) LUMO+2;
(e) LUMO+3; (f) LUMO+4; (g) LUMO+5 . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Overview of some of the available approximate embedding scheme. On the horizontal axis
are the categories of the extended Bakowies–Thiel classification, while the vertical axis
sorts different approaches according to the models employed for the environment. . . . . . 55

6.2 Models for the description of environment effect on actinyl chloride species. Models with-
out the crystal environment: (a) the bare actinyl; (b) actinyl with point-charge embedding;
(c) actinyl with FDE embedding; (d) actinyl chloride. Models including the crystal envi-
ronment (shown to the right), including the relaxation of the environment densities of: (e)
only the neareast chlorides; (f) the nearest chlorides and 12 cesium ions. (uranium: black;
oxygen: red; cesium: purple; chlorine: green) . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Lowest-lying valence orbital energies of the CUO (1Σ+) and the CUONg4(1A1) complexes
from the supermolecular and DFT-in-DFT/PBE0 calculations using the PW91k kinetic
energy functional. Orbital energies are given relative to the energy of HOMO for all the
compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Embedding potentials for the CUO-Ne4 complex employing the PW91k and NDSD kinetic
energy functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Embedding potentials for the CUO-Ar4 complex employing the PW91k and NDSD kinetic
energy functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

291



6.6 Embedding potentials for the CUO-Kr4 complex employing the PW91k and NDSD kinetic
energy functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.7 Embedding potentials for the CUO-Xe4 complex employing the PW91k and NDSD kinetic
energy functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.8 Differential isotropic shielding density isosurfaces (isovalues at +0.53 ppm (red) and -0.53
ppm (blue))for XH2 - H2O systems for X = Se, Te, Po, calculated as a difference between
dimer shielding densities and the sum of subsystem shielding densities approximated as:
(a) isolated fragments (b) FDE[0](c) FDE[v] (d) FDE[v+wu] (e) FDE[v+wall]. Color of
atoms: X (blue), O(red), H(grey). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.9 Differential isotropic shielding density isosurfaces (isovalues at +0.53 ppm (red) and -0.53
ppm (blue))for Hb in the XH2 - H2O systems, calculated as a difference between dimer
shielding densities and the sum of subsystem shielding densities approximated as: (a)
isolated fragments (b) FDE[0](c) FDE[v] (d) FDE[v+wu] (e) FDE[v+wall]. Color of atoms:
X (blue), O(red), H(grey). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.10 Streamline plots (xy plane, z = 0) of magnetically induced current densities for (a) reference
calculations on the dimer; (b) subsystem calculations with FDE; and (c) calculations on
isolated subsystems. The coordinates of Po and O are approximately (-5,0) and (5,0),
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

List of Tables

5.1 Quantum number for relativistic atomic orbitals . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Low-lying f -f excited state energies (in cm−1) for NpO2+
2 and NpO2Cl2−4 , using (a) the

gas-phase geometry from ref.‘[213], rNpO = 1.675 Å; (from the calculations of Ref. [213]
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