
HAL Id: tel-01959797
https://hal.science/tel-01959797

Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GNSS Propagation Channel Modeling in Constrained
Environments: Contribution to the Improvement of the

Geolocation Service Quality/
Ni Zhu

To cite this version:
Ni Zhu. GNSS Propagation Channel Modeling in Constrained Environments: Contribution to the
Improvement of the Geolocation Service Quality/. Engineering Sciences [physics]. Université de Lille,
2018. English. �NNT : �. �tel-01959797�

https://hal.science/tel-01959797
https://hal.archives-ouvertes.fr


No d’ordre: * * *

Institut Français des Sciences et Technologies des Transports, de

l’Aménagement et des Réseaux

Université de Lille

THÈSE de Doctorat
en

Sciences de l’Information et de la Communication
par

Ni ZHU
Doctorat délivré par l’Université de Lille

GNSS Propagation Channel Modeling in Constrained
Environments: Contribution to the Improvement of the

Geolocation Service Quality

Modélisation du Canal de Propagation GNSS en Milieu Contraint:
Contribution à l’Amélioration de la Qualité de Service de Géolocalisation

Soutenue le 2 Octobre 2018 devant le jury d’examen :

Rapporteurs

Pr. Heidi Kuusniemi Finnish Geospatial Research Institute (FGI), NLS, Finland
Director, Digital Economy, University of Vaasa, Finland

Pr. Alessandro Neri Engineering Department of the University Roma Tre, Italy
Examinateurs
Pr. Jean-Yves Tourneret INP-ENSEEIHT, Toulouse, France
Pr. Maan El Badaoui El Najjar Université de Lille
Directeurs de thèse
Dr. Marion Berbineau Directrice de Recherche, COSYS/LEOST, IFSTTAR
Dr. David Bétaille Directeur de Recherche, COSYS/SII, IFSTTAR
Encadrante de thèse
Dr. Juliette Marais Chargée de Recherche, COSYS/LEOST, IFSTTAR
Invités
Mme. Sarab Tay Guyot Ingénieure de Recherche, AKKA Technologie, France
Mr. Bernard Bonhoure Expert Navigation GNSS, CNES, Toulouse, France

École Doctorale Sciences pour l’ingénieur ED 072 - PRES Université Lille Nord de France





GNSS Propagation Channel Modeling in constrained environments:
Contribution to the improvement of the geolocation service quality

Abstract : From user guidance applications to trains or road vehicles fleet management, Global
Navigation Satellite System (GNSS)-based positioning systems are more and more spread and used
in urban environments. However, urban environments present great challenges for GNSS positioning
since numbers of obstacles result in signal attenuations and blockages, which can cause large errors.
Yet, for new GNSS land applications, knowing the certainty of one’s localization is of great importance
especially for the liability/safety critical applications such as automated driving, electronic road
tolling or railway signaling. The concept of GNSS integrity, which is defined as a measure of trust to
be placed in the correctness of the information supplied by the total system, can help to meet this
requirement.
Although GNSS integrity has been firstly developed and formalized in the aviation field, the algo-
rithms developed for the aerospace domain cannot be introduced directly to the GNSS land applica-
tions. This is because a high data redundancy exists in the aviation domain and a basic hypothesis
that only one failure occurs at a time is made for aviation schemes, which are not the case for the
urban users. It is a great challenge to extend the integrity monitoring algorithms to GNSS urban
applications.
The main objective of this PhD research work is to improve the performance of GNSS positioning
in urban environment, especially the performance of accuracy and integrity. Under this framework,
two research directions were investigated:

- The first direction of this PhD research mainly consists of GNSS measurement error char-
acterization in order to improve the positioning accuracy in stringent environments. Several
error models existed in the literature are investigated and evaluated, for instance the signal
carrier-power-to-noise-density ratio (C/N0) dependent variance model, the satellite elevation
dependent variance model as well as the Dirichlet Process Mixture (DPM) model. A new
hybrid model is proposed while involving the contribution of the digital map to distinguish the
signal reception state LOS/NLOS.

- The second direction contributes to the Fault Detection and Exclusion (FDE) techniques so as
to improve the GNSS integrity performance in urban environments. Different FDE methods,
which can be potentially applied on the land GNSS-based applications, are investigated and
compared with real GPS data collected in urban canyon. Two classes of FDE strategies are
involved: the snapshot Least-Square-Residual (LSR)-based one and the sequential Extended-
Kalman-Filter (EKF) innovation-based one. A new method of HPL computation by taking
into consideration of the potential prior fault is proposed.

Then, these two research directions are combined together and the computation of Horizontal Pro-
tection Level (HPL) is added at the next step so that a complete integrity monitoring scheme is
constructed.
The results with real GPS data collected in urban canyon show that the accuracy and integrity
performance of positioning can be improved with the proposed scheme compared to the traditional
approaches. The proposed integrity monitoring scheme is promising to be implemented in the low-
cost GNSS commercial receivers for urban transport applications.

Keywords : GNSS, Integrity monitoring, Fault Detection and Exclusion (FDE), Urban environ-
ments.



Modélisation du canal de propagation GNSS en milieu contraint:
Contribution à l’amélioration de la qualité de service de géolocalisation

Résumé : Au cours des dernières décennies, de plus en plus d’applications de transport urbain
basées sur les systèmes de positionnement par satellites (GNSS) ont vu le jour. Des applications
exigent une fiabilité critique comme le télépéage basé sur l’utilisation du GNSS, pour lesquelles des
erreurs de positionnement peuvent entraîner de graves conséquences. Pourtant, les environnements
urbains présentent de grands défis pour le positionnement GNSS en raison de l’existence des trajets
multiples et des signaux NLOS (None-Line-of-Sight). Le concept d’intégrité GNSS, qui est défini
comme une mesure de confiance qui peut être placée dans l’exactitude des informations fournies par
le système de navigation, peut aider à répondre à cette exigence.
Bien que l’intégrité GNSS ait d’abord été développée et formalisée dans le domaine de l’aviation,
les algorithmes développés pour l’aérospatial ne peuvent pas être introduits directement dans les
applications terrestres. Parce qu’il existe une forte redondance des données en ciel dégagé et que
l’hypothèse d’une seule défaillance à la fois est faite pour les applications aéronautiques. C’est un
grand défi d’étendre les algorithmes de surveillance de l’intégrité GNSS aux applications terrestres
et notamment urbaines.
L’objectif principal de cette recherche est d’améliorer la performance du positionnement GNSS en mi-
lieu urbain, en particulier les performances de précision et d’intégrité. Dans ce cadre, deux directions
de travail ont été prises:

- La première direction consiste principalement en la caractérisation d’erreurs de mesure GNSS
afin d’améliorer la précision de positionnement dans les environnements contraints. Plusieurs
modèles d’erreur existant dans la littérature sont étudiés et évalués. Un nouveau modèle
hybride est proposé qui implique la contribution de la carte numérique pour distinguer l’état
de réception du signal LOS/NLOS ainsi que les corrections des erreurs de pseudorange.

- La seconde direction contribue aux techniques de détection et d’exclusion des défauts (FDE)
afin d’améliorer les performances de l’intégrité GNSS dans les environnements urbains. Dif-
férentes méthodes FDE, qui peuvent être potentiellement appliquées en navigation GNSS
terrestre, sont étudiées et comparées avec des données GPS collectées dans des canyons ur-
bains. Deux classes de stratégies FDE sont examinés: l’une fondée sur l’instantané LSR
(Least-Squares-Residual) et l’autre basée sur l’innovation séquentielle Extended-Kalman-Filter
(EKF). Et le calcul du niveau de protection horizontal (HPL) est ajouté à la prochaine étape.
Une nouvelle méthode de calcul HPL prenant en compte un potentiel défaut immédiatement
antérieur est proposée.

Ensuite, ces deux directions de travail sont combinées de sorte qu’un système complet de surveil-
lance de l’intégrité est construit. Les résultats avec les données réelles montrent que la précision
et l’intégrité du positionnement peuvent être améliorées avec le système proposé par rapport aux
approches traditionnelles. Le système de surveillance de l’intégrité proposé est prometteur dans les
récepteurs commerciaux GNSS à faible coût pour les applications de transport urbain.

Mots clés : GNSS, la surveillance de l’intégrité, la détection et l’exclusion des défauts (FDE),
l’environnement urbain
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2 Chapter 1. Introduction

1.1 General Context

Global Navigation Satellite Systems (GNSS) refers to the total constellations of satellites pro-
viding signals from space that transmit positioning and timing data to GNSS receivers. GNSS
receivers are able to estimate their own positions with the help of its ranging measurements.
Several GNSS constellations exist. Two of them are currently fully functional at a global level:
the Global Positioning Systems (GPS) which is maintained by the United States Government,
and the GLObal Navigation Satellite Systems (GLONASS) which is operated by the Russian
Aerospace Defense Forces. Two additional systems are being planned and completed: the
Galileo positioning system by the European Union (EU) and the European Space Agency
(ESA), and the Chinese BEIDOU/Compass navigation system. They shall be fully functional
by 2020 at the earliest.

In the past decades, GNSS have continually evolved and the domains of GNSS-based applica-
tions have much extended. These GNSS applications cover a variety of market segments [1]:

- Aviation: This segment continues to increasingly rely on GNSS, including the newly
emerging Unmanned Aerial Vehicles (UAVs);

- Road: More and more GNSS-based road transport applications appear recently, espe-
cially the liability critical applications (such as the autonomous vehicles, the Electronic
Toll Collection (ETC), etc.). New challenges arise for GNSS since not only accuracy
but also integrity are required by these applications;

- Rail: Railways have already introduced satellite-based localization systems for non-
safety related applications. Driven by economic reasons, the use of these systems for new
services and, in particular, their introduction in signaling system is seriously investigated
today and tested all around the world (such as the European Rail Traffic Management
System (ERTMS)). [2]

- Location-Based Service (LBS): This segment covers lots of GNSS applications in daily
life, such as the typical software applications for smartphones which require knowledge
about where the user is located. According the user’s positions, the LBS could provide
the user with the nearest sites of interest (restaurants, banks, post offices etc.);

- Others: GNSS-based applications are not limited to the segments above. A wide range
of GNSS-based applications exist such as maritime navigation, agriculture management,
timing and synchronization for different sectors, etc.

Among all the GNSS-based applications mentioned above, there is a high coverage of urban
applications. The demand for cost-effective but highly capable GNSS navigation devices
for urban utility is clearly growing at an exponential rate. GNSS-based urban applications
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present challenging tasks for GNSS navigation since GNSS signals are distorted by multipath
and attenuated by fading effects due to numerous obstacles in urban environments.

For certain newly emerged urban GNSS-based applications, such as ETC or the ERTMS
mentioned above, not only the positioning accuracy but also its reliability is required. And
the latter has recently attracted more and more attention from urban GNSS users. If we
reclassify all the GNSS-based applications based on the level of reliability, they can be divided
into the following three categories:

- Safety-critical: This refers to the applications, in which the occurrence of a positioning
error can lead to death or physical injuries. We can also call them Safety-of-Life (SoL)
services. A typical example of this category is the GNSS-based Air Traffic Management
(ATM);

- Liability-critical: For liability-critical applications, the computed Position, Velocity
and/or Time (PVT) are used as the basis for legal decisions or economic transactions.
Large positioning errors can lead to wrong legal decisions or wrong charge computations
such as for ETC.

- No liability: This category include all the other GNSS-based applications which don’t fit
the two categories mentioned above. For instance, the LBS applications are no liability.

In fact, the reliability defined here corresponds to one of the Required Navigation Perfor-
mance (RNP) parameters for aviation navigation (Fig.1.1): integrity. Integrity is defined as
a measure of trust which can be placed in the correctness of the information supplied by the
total system [3]. Traditionally, integrity monitoring has focused on the safety-critical appli-
cations such as approach or landing phases of airplanes. The integrity monitoring algorithms
for aviation utility are well designed (such as the Receiver Autonomous Integrity Monitoring
(RAIM)) and the corresponding specifications are set in detail in [4]. And this research is still
being progressing towards the use of Multi-Constellation Multi-Frequency (MCMF) GNSS,
such as the Advanced Receiver Autonomous Integrity Monitoring (ARAIM). Meanwhile, sev-
eral GNSS augmentation systems (such as the American Wide Area Augmentation System
(WAAS) and the European Geostationary Navigation Overlay Service (EGNOS)) transmit
integrity information, which can help guarantee the positioning integrity for civil aviation
users.

Nevertheless, the existing aviation integrity monitoring algorithms, their specifications as well
as the integrity information provided by augmentation systems are not appropriate to be used
directly for applications in urban environments. This is because urban environment is quite
different from the open-sky.

Urban environments present great challenges to common commercial GNSS receivers. The



4 Chapter 1. Introduction

Figure 1.1 – GNSS Required Navigation Performance (RNP) Parameters for Aviation Navi-
gation

main difficulty for GNSS positioning in urban environments is the existence of local effects
due to the nearby obstacles. The most harmful ones are known as Non-Line-of-Sight (NLOS)
reception and the multipath interference. These two phenomena are not exactly the same
although sometimes they occur together. The multipath phenomenon refers to the case that
the reflected signals are received together with the Line-of-Sight (LOS) signal while the NLOS
reception occurs when the LOS signal is blocked and only the reflected signal is received. The
latter one is particularly common in dense urban areas where tall buildings block lots of
signals. The multipath phenomenon and the NLOS receptions strongly affect the positioning
quality that can introduce large errors (up to several kilometers). Moreover, the satellite
visibility is usually poor in urban canyon because of obstacles.

However, the algorithms developed in aviation fields are under the assumption that only one
failure occurs at a time and based on the fact that a high data redundancy exists. These are
hardly true in urban environments due to the reasons mentioned above.

No doubt, it is essential to guarantee the positioning performances, such as accuracy and in-
tegrity, for urban transport applications, especially the liability critical ones. How to improve
positioning accuracy by eliminating the frequent measurement faults and how to correctly
transfer the concept of integrity from civil aviation applications to the mass-market urban
GNSS applications are currently hot topics since no well-developed integrity monitoring al-
gorithm is ready to be implemented by the urban applications in real time.
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1.2 Research Objectives

As described in the previous paragraphs, GNSS positioning performances, especially accuracy
and integrity, are usually poor in urban environments due to existing local effects. For personal
navigation applications, especially liability-critical ones, knowing one’s positions as well as
the certainty of the positioning information provided by navigation system are extremely
important. The global objective of this research work is to improve the geolocation service
quality of GNSS in constrained environments. The geolocation performances targeted here in
this research work are mainly GNSS positioning accuracy and integrity with the presence of
severe signal disturbances such as multipath and NLOS.

Thus, more precisely, this overall objective can be divided into the following sub-objectives:

1. The first phase of this thesis is mainly to better characterize the GNSS measurement
errors in stringent environments in order to improve GNSS positioning accuracy. So
it is necessary to analyze the main sources of GNSS measurement errors especially the
local effects induced by multipath and the NLOS receptions. This includes:

- To review and to implement the existing measurement error models, which allow
considering the real-time local effects. To evaluate and to compare their perfor-
mance with real GNSS data collected in urban environments.

- To propose new error models which can better characterize measurement errors in
urban environments for low-cost commercial GNSS receivers.

2. The second main part of this research work is to guarantee the GNSS positioning in-
tegrity for urban personal navigation applications as well as the liability critical ones.
That is to say, the erroneous measurements should be detected and further identified if
possible. Ideally, if the detection, identification and exclusion of faulty measurements
can be properly done, the GNSS positioning integrity can be well guaranteed and its
accuracy can also be improved. But the challenges lie on the fact that, firstly, in urban
environments, there is often not enough redundancy to realize the identification or even
detection. Secondly, when the multiple simultaneous faults happen, the erroneous mea-
surements can possibly correlate among them or even be "absorbed" by their geometry
in such a way as to produce a large position error but very small residuals [5], which
will make these faults unobservable by the integrity monitoring algorithms. All these
challenges make this topic a hot issue in the current GNSS research society.

Due to the complexity of the GNSS integrity monitoring in urban environments de-
scribed above, the following sub-objectives will be studied in this thesis:

- To review the state of the art of the existing integrity monitoring techniques for
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aviation and road transport utilities. To understand the difficulties and limitations
of implementing the existing integrity monitoring algorithms for urban transport
applications;

- To analyze and to evaluate the existing Fault Detection and Exclusion (FDE) algo-
rithms allowing eliminating multiple faults in order to summarize their advantages
and disadvantages.

3. Based on the first two phases of research work above, a complete integrity monitoring
scheme for low cost urban navigation equipments will be proposed. More precisely, if
the first part of this research work concerning the characterization of the measurement
errors can be effectively done, it can already reduce or correct measurement errors from
upstream of the system. Then, this can already contribute to improving the capability
of FDE. Finally, a statistical position error bound, Horizontal Protection Level (HPL),
can be calculated. Though the total processing adds complexity to the computation of
navigation solution, this integrity monitoring system can enhance navigation accuracy
or at least when the fault identification is not available, the system can provide warning
to users in the case of unreliable positioning.

Other sensor hybridizations can be involved afterwards in order to achieve a possibly
sub-meter or lane-level accuracy but this is not included in the objective of this thesis.

1.3 Main Contributions and Publications

1.3.1 Main Contributions

The main contributions of this thesis are as follows:

- Providing a complete review of the state of the art for the GNSS positioning integrity
monitoring in urban environments while analyzing the limitations of the existing in-
tegrity algorithms established in aviation domain as well as the possible research direc-
tions around this issue;

- Presenting and analyzing the existing GNSS measurement error models which allow
taking into account the real-time local effects. These models are tested and evaluated
with real GPS data collected in urban canyons using Weighted Least Squares (WLS)
estimator;

- Proposing a novel GNSS measurement error model which combines the information
of C/N0 (carrier-power-to-noise-density ratio), satellite elevations, the signal reception
state LOS/NLOS as well as the range corrections for NLOS signals. The signal reception
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states and the range corrections are provided by error models established with the help
of digital maps, i.e., the Urban Trench Model (UTM) and the Urban Multipath Model
(UMM);

- Optimizing the Urban Trench Model (UTM) model by developing a simplified ray trac-
ing model called Urban Multipath Model (UMM) while getting rid of the infinite length
street assumption;

- Analyzing and evaluating several HPL computation methods for the snapshot residual-
based Receiver Autonomous Integrity Monitoring (RAIM) existing in the literature while
choosing the one adapted best for urban GNSS-based applications.

- Evaluating the performance of several FDE techniques with real GPS data, including
Classic Test (CT), Subset Test (ST), iterative Local Test (LT), Forward-Backward (FB)
Test as well as the Danish Method;

- Proposing the concept of Weighted Extended Kalman Filter (WEKF) by scaling the
measurement covariance matrix with the help of more realistic error models;

- Analyzing the differences located between the WLS residual-based snapshot FDE and
the Extended Kalman Filter (EKF) innovation-based FDE. Their performances are
evaluated with real GPS data collected in urban environments.

- Proposing a complete GNSS integrity monitoring scheme for low cost urban transport
navigation system by combining the accuracy enhancement module and the FDE tech-
niques with two classes of estimators (WLS or EKF). The HPL are also calculated and
evaluated.

- Proposing a HPL computation method in the framework of EKF innovation-based in-
tegrity monitoring algorithm by taking into consideration the potential impact of the
former fault on the current navigation solution.

The proposed scheme can enhance GNSS navigation accuracy as well as integrity in stringent
environments. This thesis evaluated both snapshot and sequential filtering integrity monitor-
ing approaches. Further extensions, such as hybridizations with different sensors, are possible
but not included in the framework of this thesis.

1.3.2 List of Publications

In the framework of this PhD research work, the following publications are published in some
international conferences or journals:

* [P1]: Ni Zhu, Juliette Marais, David Bétaille, Marion Berbineau (2017). Evaluation
and Comparison of GNSS Navigation Algorithms Including FDE for Urban Transport
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Applications, Proceedings of the Institute of Navigation (ION) International Technical
Meeting (ITM), January 30-February 2, 2017, Monterey, California, United States.

* [P2]: Ni Zhu, Juliette Marais, David Bétaille, Marion Berbineau (2017). Evaluation and
Comparison of GNSS Navigation Integrity Monitoring Algorithms for Urban Transport
Applications, Young Research Seminar (YRS), May 16-18, 2017, Berlin, Germany.

* [P3]: Ni Zhu, Juliette Marais, David Bétaille, Marion Berbineau (2018). GNSS Po-
sition Integrity in Urban Environments: A Review of Literature. IEEE Transactions
on Intelligent Transportation Systems (ITS), Vol.19, Issue 9, pp2762-2778, 17p. DOI:
10.1109/TITS.2017.2766768.

* [P4]: Ni Zhu, David Bétaille, Juliette Marais, Marion Berbineau (2018). GNSS Integrity
Enhancement for Urban Transport Applications by Error Characterization and Fault
Detection and Exclusion (FDE), Les Journées Scientifiques 2018 d’URSI (Union Radio-
Scientifique Internationale)-France, Géolocalisation et Navigation, March 28-29, 2018,
Meudon, France.

* [P5]: Ni Zhu, David Bétaille, Juliette Marais, Marion Berbineau (2018). Extended
Kalman Filter (EKF) Innovation-based Integrity Monitoring Scheme with C/N0Weight-
ing, 2018 IEEE 4th International Forum on Research and Technology for Society and
Industry (RTSI) (RTSI 2018), September 10-13, 2018, Palermo, Italy.

* [P6]: Ni Zhu, David Bétaille, Juliette Marais, Marion Berbineau (2018). GNSS Integrity
Enhancement for Urban Transport Applications by Error Characterization and Fault
Detection and Exclusion (FDE), REE: Revue de l’électricité et de l’électronique after
the conference of the URSI (International Union of Radio Science) 2018.

* [P7]: Ni Zhu, David Bétaille, Juliette Marais, Marion Berbineau, GNSS Integrity Moni-
toring Schemes for Terrestrial Applications in Harsh Environments, submitted to IEEE
Intelligent Transportation Systems Magazine (Special Issue on GNSS for ITS) the 1st
September.

1.4 Organization and Structure of the Dissertation

With the two main objectives defined above, i.e., to improve the GNSS positioning accuracy
and to guarantee its integrity in urban environments, the main content of this dissertation is
divided into three parts, in which, 8 chapters are included. Fig. 1.2 depicts the structure of
this thesis, which is organized as follows:

* Part I. The first part contains the literature review, inside which there are two chapters:
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Chapter 1:
Introduction

Part I: Literature Review

Chapter 2:
GNSS Overview

Chapter 3: GNSS Integrity
Theories and Its Developpe-
ment in Urban Environments

Part II: Accuracy Enhancement

Chapter 4: GNSS Local Error
Characterization and Mitigation

Chapter 5: Accuracy Perfor-
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Part III: Integrity Enhancement

Chapter 8:
Conclusions and
Perspectives

Chapter 6: Snapshot Residual-
based Integrity Monitoring

Chapter 7: EKF Innovation-
based Integrity Monitoring

Figure 1.2 – Structure of the Dissertation

– Chapter 2 provides an overview of GNSS system. This includes the introduction
of GNSS measurement models, error sources as well as different GNSS position
estimators;

– Chapter 3 presents the current state of the art of the GNSS position integrity
monitoring in urban environments.

* Part II. The second part includes two chapters which mainly address the local effects
in urban environments and the error characterizations:

– Chapter 4 deals with the characterization of the errors due to local effects in con-
straint environments. Several error models existing in the literature are discussed.
Moreover, a hybrid model, taking into consideration the the information of C/N0

(carrier-power-to-noise-density ratio), satellite elevations, the signal reception state
LOS/NLOS as well as the range corrections provided by the geometry feature of
the digital map, is proposed.

– Chapter 5 firstly makes the calibration for the error models described in Chapter
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4. Then these error models are evaluated and tested with real GPS data collected
in urban canyons by Weighted Least Squares (WLS) estimators. The accuracy
performance is compared.

* Part III. The third part includes also two chapters concerning the integrity monitoring
with two classes of approaches:

– Chapter 6 proposes a complete snapshot residual-based integrity monitoring
scheme. Five FDE techniques and several HPL computation methods are dis-
cussed. Finally, the complete scheme is evaluated with real GPS data collected in
urban canyons.

– Chapter 7 aims at designing an Extended Kalman Filter (EKF) innovation-based
integrity monitoring approach, which is a parallel class with the snapshot approach
in Chapter 6. Firstly, the concept of Weighted Extended Kalman Filter (WEKF)
is proposed by implementing several error models evaluated in Chapter 5 into the
EKF. Then, the derivation of HPL computation in the framework of innovation-
based approach is made and a new method of HPL computation is proposed. The
complete scheme is evaluated with real data collected in urban canyons.

* Chapter 8 draws the conclusions and addresses the possible perspectives for future
work.
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Summary

This chapter aims at introducing the fundamental theories and backgrouds of the Global Nav-
igation Satellite Systems (GNSS). The review of GNSS principles in this section can facilitate
the comprehension of the integrity monitoring theories in following chapters. The discussion
of this chapter is mainly based on [6–8] and other references mentioned in the text.

The structure of this chapter is as follows: it begins with an overview of GNSS positioning
principles. This followed by an introduction of GNSS measurement models and their mathe-
matical expressions. Then the measurement error sources will be detailed according to signal
propagation channel. Finally, different GNSS position estimators will be briefly introduced.
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2.1 Introduction of the Global Navigation Satellite Systems

(GNSS)

2.1.1 An Overview of GNSS

Global Navigation Satellite Systems (GNSS) is a generic term denoting the constellations
of satellites providing signals from space that transmit positioning and timing data which
enable users to determine their three-dimensional position with global coverage. Several
GNSS constellations exist. The US Global Positioning System (GPS) is fully operational
since 1995. The Russian GLObal NAvigation Satellite System (GLONASS) was restored to
full operation in December 2011. The Chinese BeiDou Navigation Satellite System (BDS) and
the European GALILEO system are currently under development although the BDS started
an initial operating service (Phase II) in late December 2011 and Galileo has been declared
operational in december 2016 for initial services.

Generally speaking, a GNSS constellation can be divided into three major segments as shown
in Fig.2.1:

Figure 2.1 – GNSS architecture

- Space segment: This segment comprises the satellites from which users make ranging
measurements. The main functions of the space segment are to generate and transmit
code and carrier phase signals, and to store and broadcast the navigation messages
uploaded by the control segment. The space segment of a GNSS constellation with
global coverage must ensure at least four satellite in view simultaneously from any
point on the Earth’s surface at any time.

- Control segment: This segment is also referred to as the ground segment, which is
responsible for the proper operation and functioning of the system. It is usually com-
posed of a network of ground infrastructures, such as control stations, ground antennas,
etc. They can help to control and maintain the satellite constellation status, to predict
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ephemeris and satellite clock evolution as well as to update the navigation messages for
all the satellites.

- User segment: This segment refers to all kinds of user receiving equipments, typically
referred to as "GNSS receivers". GNSS receivers are capable of receiving GNSS signals
transmitted by satellites, determining the pseudo-distances (or other measurements),
then providing Position, Velocity and Timing (PVT) solutions.

Figure 2.2 – GNSS-based Trilateration

GNSS receivers utilize the concept of one-way Time of Arrival (TOA) ranging and trilateration
mechanism to determine its position on the surface of the Earth. That is to say, the receiver
will measure the time it takes for a signal transmitted by a satellite at a known location to
reach the receiver itself. The signal propagation is multiplied by the speed of light to obtain
the emitter-to-receiver distance, which is called pseudo-distance or pseudo-range. As a result
of this measurement process, the user would be located on the surface of the sphere centered
on the satellite with the corresponding measured pseudo-range as radius (shown in Fig.2.2).
If several pseudo-range measurements can be simultaneously made by different satellites, the
user will be located on the intersection of several spheres centered at each satellite. In order
to determine user positions in three dimensions (xu, yu, zu) as well as the receiver clock offset
with respect to system time δtu, at least four pseudo-range measurements are needed.
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2.1.2 GNSS augmentation systems

For aviation utilities, the performances of the standalone GNSS cannot meet the signal-in-
space requirements for certain flight modes, such as the accuracy for precision approaches and
integrity monitoring for any operation. For this reason, different augmentation systems are
developed in order to enhance the GNSS performance and allow its use in civil aviation to
meet the ICAO specifications.

The main augmentation systems can be classed into three categories according to the source
of information from which the user receive the augmentation information:

- Ground-Based Augmentation System (GBAS): The augmentation information
of GBAS is provided by groud-based transmitters. Based on a network of ground sta-
tion references, GBAS can provide estimates of common-mode errors and detect GNSS
faults and anomalies. And integrity information can be obtained by comparing the true
position of the ground reference and the estimated position obtained from the GNSS.
This kind of augmentation system is mainly used at a local level, typically in airports.
An example of the GBAS is the Local Area Augmentation System (LAAS), which is
based on real-time differential correction of the GPS signal.

- Satellite-Based Augmentation System (SBAS): The augmentation information of
SBAS is provided by satellite-based transmitters. SBAS transmits differential correc-
tions and integrity messages for navigation satellites that are within sight of a network
of stations, typically deployed for an entire continent. All the SBAS satellites signals
covering a given zone are monitored in order to update the error model at the raw range
measurement level. Several famous example of SBAS: the US Wide Area Augmentation
System (WAAS), the European European Geostationary Navigation Overlay Service
(EGNOS), the Japanese Multi-functional Satellite Augmentation System (MSAS) and
the Indian GPS Aided Geo Augmented Navigation (GAGAN).

- Airborne-Based Augmentation System (ABAS): The augmentation information
of ABAS is autonomously calculated within the aircraft equipment. It can provide
integrity monitoring for the position solution using redundant information within the
GNSS constellation. ABAS is usually referred to as Receiver Autonomous Integrity
Monitoring (RAIM) when GNSS information (range measurements) is exclusively used
and as Aircraft Autonomous Integrity Monitoring (AAIM) when information from addi-
tional on-board sensors (e.g. barometric altimeter, clock and Inertial Navigation System,
INS) are also used.
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2.2 Measurement Models

The GNSS pseudorange measurement model is a key input for the design of integrity moni-
toring algorithms and the prediction of the statistical positioning error bounds since it sum-
marizes measurement error budgets. In general, GNSS receivers provide two main types of
pseudorange measurements from satellites: code and carrier phase measurements.

A code peudorange measurement P is obtained as the time difference between the emission
time and reception time of the signal. This time is then scaled by the speed of light c to obtain
the pseudodistance. A carrier phase pseudorange measurement φ is obtained by estimating
the phase shift of the local carrier. This phase can be expressed as a distance by converting
radians into meters using the carrier wavelength.

The code pseudorange measurement P and the carrier phase pseudorange measurement φ at
the epoch k for the satellite i can be mathematically described with the following equations
in units of length:

P i(k) = ρi(k) + c(δtu(k)− δti(k)) + diI(k) + diT (k) +Di
mult(k) + nip(k) (2.1)

φi(k) = ρi(k) + c(δtu(k)− δti(k))− diI(k) + diT (k) + φimult(k) + niφ(k) +N iλi (2.2)

where,
- ρi represents the true geometric distances between the receiver and the satellite i;
- δtu represents the advance of the receiver clock with respect to system time;
- δti represents the advance of the satellite clock with respect to system time;
- diI represents the ionospheric propagation delay residual;
- diT represents the tropospheric propagation delay residual;
- Di

mult and φ
i
mult represent the error due to multipath on the code and phase pseudo-ranges;

- nip and niφ represent measurement noises on code and phase pseudo-ranges;
- N i represents the carrier phase ambiguity;
- λi represents the wavelength of the carrier.

We can see from the expressions above that the differences between the code and phase pseu-
dorange measurements are located mainly on the residual error due to ionospheric propagation
and the presence of an unknown integer number of carrier phase cycles N i, which is called
ambiguity:

- The ionospheric effects on carrier phase pseudorange measurements is an advance while
on code pseudorange measurements is a delay. This is due to the differences of the
refractive index. The phase refractive index is less than the unity resulting in a phase
velocity that is greater than the speed of light in vacuum (i.e., phase advance) while the
group refractive index is greater than the unity resulting in a group velocity that is less
than the speed of light in vacuum (i.e., group delay). [9]
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- The carrier phase pseudorange measurements are ambiguous. The solution of the integer
ambiguity N , the number of whole cycles on the path from satellite to receiver, is the
key to fast and high precision GNSS positioning. But the ambiguity resolution is more
difficult in urban environments since the existence of local effects can lead to frequent
tracking loss and Cycle Slip (CS).

Besides, the two kinds of pseudo-range measurements possess different characteristics:

- The code pseudorange measurements are robust and not ambiguous. But they are more
affected by tracking errors due to noise and multipath. They are the basic measurements
generally used to estimate the position.

- The carrier phase pseudorange measurements are less affected by tracking errors due to
noise and multipath. But they are not robust due to frequent measurement losses (loss
of carrier tracking) and Cycle Slip (CS). Moreover, the presence of ambiguity prevents
carrier phase measurements from acting as absolute measurements to estimate the PVT.
The process to fix these ambiguities is very sophisticated especially in adverse reception
conditions such as urban canyons.

As a result, we will only concentrate on the code pseudorange measurements during this
research work.

In order to determine the user position in three dimensions (x, y, z) and the receiver clock offset
δtu, the code pseudorange measurements can be rewritten into following form by developing
the true geometry distance as a function of user and satellite positions:

P i(k) =
√

(x(k)− xi(k))2 + (y(k)− yi(k))2 + (z(k)− zi(k))2 + cδtu(k) + ei(k) (2.3)

where:
- x, y, z are the Cartesian coordinates of the receiver antenna at the time of signal reception
expressed in an Earth-centered Earth-fixed (ECEF) reference frame;
- xi, yi, zi are the Cartesian coordinates of the ith satellite antenna at the time of signal
emission expressed in an ECEF reference frame;
- ei(k) represents the sum of the code measurement errors mentioned in Eq. (2.1), i.e.,
ei(k) = diI(k) + diT (k) +Di

mult(k) + nip(k)− cδti(k).

The non-linear relationship in Eq. 2.3 can be expressed in the following vector form:

Y (k) = h(X(k)) + E(k) (2.4)

where,
- Y (k) represents the pseudorange measurement vector at epoch k with size [m× 1];
- X represents the navigation solution vector at epoch k with size [n× 1];
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- E(k) represent pseudorange measurement error vector at epoch k with size [m× n];

Pseudorange measurement errors are the addition of nominal errors and faults:

E = ε+B (2.5)

where,
- ε represents the nominal error vector with size [m× 1];
- B represents the fault vector with size [m× 1].

2.3 Error Sources

Figure 2.3 – GNSS Measurement Error Sources

2.3.1 Nominal Error Sources

The nominal error model characterizes the pseudorange measurement errors that are present
when all GNSS segments are working according to their specifications and the magnitudes of
other external error sources have typical values. GNSS measurements are affected by several
error sources mainly including satellite clock and orbit error tropospheric residual error, iono-
spheric residual error, multipath error as well as the receiver noise error as shown in Fig. 2.3.
All these nominal errors are modeled as zero-mean independent normal distributions in civil
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aviation standards and classic GNSS integrity monitoring theories are designed under this as-
sumption. The summary of the total error budget affecting a pseudorange is called the User
Equivalent Range Error (UERE). Since the error components are assumed to be independent,
the UERE for a given satellite can be approximated as a zero mean Gaussian random variable
whose variance is determined as the sum of the variance of each error component [6]. That is
to say, the nominal measurement error ε can be modeled as a zero-mean Gaussian distribution
with a known variance σ2

UERE:
ε ∼ N(0, σ2

UERE) (2.6)

Then, the variance of the UERE can be written as:

σ2
UERE = σ2

URA + σ2
iono + σ2

tropo + σ2
multipath + σ2

noise (2.7)

where,

σ2
URA: User Range Accuracy (URA) is an estimation of ephemeris and satellite clock errors.

Ephemeris errors result from a mismatch between the actual location of the satellite and
the predicted satellite position as broadcast in the navigation message. Satellite clock
errors are due to satellite clock offset with regard to GPS time. The distribution of every
satellite’s range error is modeled by overbounding a zero mean Gaussian distribution
with standard deviation equal to URA [10, 11], which varies from 0.35 to 3.9 m for
different GPS generations. For Galileo, the parameter Signal-In-Space Accuracy (SISA)
corresponds to the GPS URA [12], which equals to 0.85 m. Besides, Satellite-Based
Augmentation System (SBAS) can also provide satellite clock and ephemeris corrections
by applying fast and slow correction models. The former is applied to correct the rapid
changing satellite clock errors and the latter is to correct the slow changing errors in
ephemeris and the long term satellite clock errors. This correction is characterized by
the User Differential Range Error (UDRE), which is typically around 0.3 m for EGNOS
operational area [13].

σ2
iono: represents the ionospheric residual error. Ionosphere is the ionized part of the earth’s

upper atmosphere lying between about 60 km to 1000 km. It is characterized by a highly
dynamical plasma density, which are formed principally by photo-ionization under the
effect of solar radiation. A trans-ionospheric radio wave propagating through the plasma
experiences a propagation delay / phase advance of the signal causing a travel distance
or time larger / smaller than the real one. The ionospheric delay for satellites at low
elevation is almost three times than the satellite at the zenith and the delay is longer
during the day than at night. The delay ranges from 3 m up to 45 m. [6]
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GNSS receivers systematically correct the ionospheric errors. For single frequency re-
ceivers, different ionospheric error models are applied, such as the Klobuchar model [14]
for GPS civil signals, the NeQuick model for Galileo signals [15]. These models can
help correct at least 50% (with Klobuchar model) to 70% (with NeQuick model) of
the ionospheric delay for single frequency receivers [14,16]. Besides, the Satellite-Based
Augmentation System (SBAS) can also provide GPS L1 ionospheric delay corrections
at the pre-defined Ionospheric Grid Points (IGP). Users are supplied with the mapping
of Grid Ionosphere Vertical Error (GIVE), which indicates the standard deviation of the
overbounding zero-mean normally distributed residual error model that remains after
applying the corrections to signals received at the zenith of each IGP. If user is not
exactly located on the predefined IGP, interpolations of GIVEs of neighboring IGPs
may be needed in order to calculate the ionospheric delay at their own position. In
this case, this parameter is called User Ionosphere Vertical Error (UIVE). Finally, the
UIVE is scaled by a mapping function in order to take into consideration the elevation
of satellite. This final result is called User Ionosphere Range Error (UIRE), which is
the standard deviation of the ionospheric residual error provided by SBAS.

For dual-frequency receivers, the first order ionospheric delay can be removed by combin-
ing the pseudorange measurements from two different frequencies since the ionospheric
delay is frequency-dependent. But higher order error still remain with neglected am-
plitudes (at the zenith 0-2 cm for second order ionospheric delay and 0-2 mm for third
order [17]).

σ2
tropo: represents the tropospheric residual error. The troposphere is the lower part of the

atmosphere, which is non-dispersive for frequencies up to 15 GHz [6]. This delay is a
function of the tropospheric refractive index, which depends on the local temperature,
pressure and relative humidity. Since it is a local phenomenon, there is no corrections
broadcast in GNSS navigation messages. It is estimated and corrected by user segment
thus the tropospheric residual errors depend on the model used by users. The tropo-
spheric delay model specified in [18] for civil aviation GPS/WAAS airborne equipment
is based on the University of New Brunswick (UNB3) tropospheric delay model while
simplifying the computational burden. The tropospheric delay varies from about 2.4
m for a satellite at zenith and the user at sea level to about 25 m for a satellite at an
elevation angle of approximately 5◦.

σ2
multipath: represents the multipath error. Multipath refers to the phenomenon that a signal

arrives at the receiver via reflections or diffractions and they are combined with the
LOS signal. The sum of the LOS and the NLOS signals induce a biased measurement.
In aviation domain, nominal multipath errors are generally considered as ranging errors
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due to multipath from the aircraft structure. Following model is validated and adopted
by Radio Technical Commission for Aeronautics (RTCA) for GPS L1 C/A [19] mainly
using data during normal flight tests:

σmultipath[i] = 0.13 + 0.53e(−θi/10) (2.8)

where, θi represents the elevation angle for ith satellite in degrees. This model is only
applicable for an aircraft in flight and not to an aircraft on the ground. We can see
from this model that nominal multipath errors are far from sufficient for GNSS receivers
in urban environment since numbers of obstacles exist which can cause range errors up
to several kilometers. This is will be discussed in the following section as faulty case
multipath errors.

σ2
noise: represents the noise of receivers. The main error source of receiver comes from the

tracking loop such as Delay Lock Loop (DLL) and Phase Lock Loop (PLL). This mainly
includes thermal noise jitter, dynamic stress noise etc. Several models exist in literature
for different discriminators [20,21].

Table 2.1 – A Summary of GPS Pseudorange Error Budget [7, 22]

Error Sources Potential Size Residual Error Standard Deviation
(after Corrections) of the Residual Error

Satellite Clock Error 2 m 0 m (DGPS) 1 m
Ephemeris Error 2 m 0.1 m (DGPS) 0.45 m

Ionospheric Error 2-10 m (zenith) 1-5 m (Mono-frequency) 4 m
1 m (Dual-frequency) 0.1 m
0.2 m (DGPS) –

Tropospheric Error 2.3-2.5 m (zenith) 0.1-1 m 0.2 m
0.2 m (DGPS)

Multipath Error 0.5-1 m (open-sky) – –
> 150 m (constraint environments) – –

Receiver Noise 0.25-1 m – –

Table 2.1 gives a report about the GPS pseudorange error budget summary. What should be
emphasized is that, except the multipath error model, all the other error models established in
aeronautic domain can be applied to the urban GNSS applications since they have been thor-
oughly tested for Safety-of-Life (SoL) applications. Errors due to multipath and other local
effects should be considered and characterized specifically for receivers in urban environment
since the multipath error can even achieve several kilometers in challenging environments.
This will be discussed in detail in chapter 4.
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2.3.2 Error Sources in Fault Cases

A measurement fault is said to occur when a significantly large error in the range measurement
(whether that error is due to an anomaly of the satellite itself or to environmental effects on the
satellite ranging signal such as multipath or interference) may potentially cause an integrity
failure [23]. Integrity is the measure of the trust that can be placed in the correctness of
the information supplied by a navigation system, which includes the ability of the system to
provide timely warnings to users when the system should not be used for navigation. An
integrity failure occurs when an Hazardously Misleading Information (HMI) is produced but
no warning is provided by the system. In this case, a faulty measurement is also called an
outlier. Faulty case errors are modeled as a bias which is added into the nominal case error.
That is say, the fault vector B in Eq. (2.5) can be expressed as:

B = [b1, b2, · · · , bm]T (2.9)

where, bi are biases of the ith measurement.

Different possible sources exist for measurement faults. Here are some main sources of faulty
measurements:

– satellite failures: this mainly includes Major Satellite Failure (MSF) and smaller
satellite failure.

* MSF defined to be a condition over a time interval during which a healthy GPS
satellite’s ranging signal error (excluding atmospheric and receiver error) exceeds
the range error limit [24]. This error limit LMSF is defined as:

LMSF = max(4.42× URA, 30 m) (2.10)

* smaller satellite failure [25]: This mainly includes satellite signal deformation and
distortion (so-called "Evil Waveforms"), the code carrier divergence, ephemeris
error and the GNSS signal fault.

– Large and irregular ionospheric delay: This may be caused by the scintillation
effects. Scintillation refers to random fluctuations in the received wave field strength
("signal fading"), as well as phase and group delay caused by the irregular structure of
the propagation medium. Ionospheric scintillations are random rapid variations in the
intensity and phase of the received signals resulting from plasma density irregularities in
the ionosphere [26]. These scintillation activities can occur at both high or low latitude
level, such as the 11-year solar cycle or certain magnetic activities, etc.

– High power and large multipath or NLOS reception: In urban environments,
due to the presence of numbers of obstacles, high power and large multipath may occur.
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The NLOS reception is also particularly frequent due to the lack of LOS signal reception.
Multipath effects and NLOS receptions are strongly environment dependent, which is
difficult to be modeled. And it is extremely harmful to GNSS positioning since it can
induce a range error up to several kilometers or even cause the receiver tracking loops
to lose lock. We will discuss in detail about this effect and the techniques of mitigation
later in the Chapter 3.

2.4 GNSS Position Estimators

The whole GNSS positioning procedure includes three main tasks: acquisition, tracking and
positioning as shown in Fig. 2.4. The acquisition process tries to detect the presence of the
useful signals and to give a rough estimate of main parameters (e.g., code delay and Doppler
frequency) in order to prepare for the signal tracking. With the output of acquisition pro-
cedure, the receiver should be able to track the signal in order to estimate accurately the
signal propagation time and its Doppler. Once the propagation time is estimated, the code
pseudoranges measurements can be calculated by multiplying the light speed. The final task
of the receiver is to compute the user position.
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Figure 2.4 – Architecture of a Classic GNSS digital receiver

Different strategies exist in order to estimate the user’s position from the measured code
pseudoranges, which can be classified into two main categories: the snapshot estimator and
the sequential estimator. The former ones only use the information of the current epoch and
the latter one takes into consideration also the previous epochs. The most classic snapshot-
type estimators are the Least Squares (LS) estimator and its variant Weighted Least Squares
(WLS). And the most typical sequential estimator is the Kalman Filter (KF) as well as its
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variant Extended Kalman Filter (EKF). In the following section, we will mainly introduce
the estimators mentioned above as well as other some other GNSS position estimation aiding
approaches.

2.4.1 Least Square Estimator and Weighted Least Square Estimator

In the framework of snapshot estimators, the Least Squares (LS) is one of the most commonly
used estimators for GNSS position estimation with pseudorange measurements. As described
in Section 2.2, GNSS code pseudorange measurement model can be generally expressed as
follow:

P i(k) = ρi(k) + cδtu(k) + ei(k) (2.11)

The true geometrical distance between the ith satellite and the receiver ρi can be written
as a function of user position (x, y, z) and satellite position (xi, yi, zi) in the Earth-Centered
Earth-Fixed (ECEF) frame:

ρi =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 (2.12)

This function between the measurements and the navigation solution is non-linear. Thus, an
iterative least squares estimation technique is applied by linearizing the measurement model
around successive estimations of the navigation solution.

Denoting
hi(X) =

√
(x− xi)2 + (y − yi)2 + (z − zi)2 + bu (2.13)

where,
- X = [x, y, z, bu]T represents the true navigation solution vector with four unknowns;
- bu = cδtu represents the user clock offset with respect to GNSS system time in meter.

Then, the linearization will be made by choosing an initial estimation of the navigation solu-
tion X̂0. This initial estimation can be determined by using past measurements or information
from other sensors, so the true navigation solution can be written as:

X = X̂0 + ∆X (2.14)

where, ∆X = [∆x,∆y,∆z,∆bu]T represents the increments of the navigation solution.

The first-order Taylor expansion of hi(X) around the initial estimation X̂0 is:

hi(X̂0 + ∆X) ' hi(X̂0) +
∂hi

∂X
(X̂0)×∆X (2.15)
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And the partial derivatives can be further expressed as:

∂hi

∂x
(X̂0) =

x̂0 − xi√
(x̂0 − xi)2 + (ŷ0 − yi)2 + (ẑ0 − zi)2

(2.16)

∂hi

∂y
(X̂0) =

ŷ0 − yi√
(x̂0 − xi)2 + (ŷ0 − yi)2 + (ẑ0 − zi)2

(2.17)

∂hi

∂z
(X̂0) =

ẑ0 − zi√
(x̂0 − xi)2 + (ŷ0 − yi)2 + (ẑ0 − zi)2

(2.18)

∂hi

∂bu
(X̂0) = 1 (2.19)

Consequently, at epoch k, the navigation equation in vector form of Eq. (2.4) can be rewritten
as:

Y (k)− h(X̂0(k)) = H ×∆X(k) + E(k) (2.20)

where, the observation matrix H = ∂h
∂X (X̂0), which is:

H =


∂h1

∂x
(X̂0(k))

∂h1

∂y
(X̂0(k))

∂h1

∂z
(X̂0(k))

∂h1

∂bu
(X̂0(k))

...
...

...
...

∂hm

∂x
(X̂0(k))

∂hm

∂y
(X̂0(k))

∂hm

∂z
(X̂0(k))

∂hm

∂bu
(X̂0(k))

 (2.21)

In fact, the matrix H is composed of the unit direction vector ai between the linearization
point and the ith satellite:

ai = (aix, a
i
y, a

i
z) (2.22)

with

aix =
x̂0 − xi
ρ̂i

aiy =
ŷ0 − yi
ρ̂i

aiz =
ẑ0 − zi
ρ̂i

(2.23)

and ρ̂i =
√

(x̂0 − xi)2 + (ŷ0 − yi)2 + (ẑ0 − zi)2.

As a result, the matrix H can be re-written as:

H =


a1
x a1

y a1
z 1

...
...

...
...

amx amy amz 1

 (2.24)

Let us denote ∆Y = Y (k)−h(X̂0(k)), which represents the deviation between the pseudorange
measurements and the predicted noiseless measurements that receiver would have made if its
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state is at X̂0(k), then Eq. (2.20) can be simplified as following linear model:

∆Y (k) = H ×∆X(k) + E(k) (2.25)

The least square estimator aims at seeking an estimation of ∆X which can minimize the norm
of the residual vector RSE :

RSE = r̂T · r̂ (2.26)

where, r̂ represents the residual vector which is defined as:

r̂ = ∆Y (k)−H ×∆X̂ (2.27)

Finally, the Least Squares (LS) estimation of the ∆X̂(k) is:

∆X̂LS(k) = (HTH)−1HT ×∆Y (k) (2.28)

What should be mentioned is that, in this LS navigation solution, the quality matrix Q =

(HTH)−1 is often used to compute the Dilution of Precision (DOP), which is an indicator
of the geometry quality of the user/satellite configuration [6]. More precisely, Q is a 4 × 4

matrix which can be expressed as:

Q =


qxx qxy qxz qxt

qyx qyy qyz qyt

qzx qzy qzz qzt

qtx qty qtz qtt

 (2.29)

As a result, several DOP parameters, i.e., Geometric Dilution of Precision (GDOP), Position
Dilution of Precision (PDOP) and Time Dilution of Precision (TDOP), can be defined as
follows:

GDOP =
√
qxx + qyy + qzz + qtt (2.30)

PDOP =
√
qxx + qyy + qzz (2.31)

TDOP =
√
qtt (2.32)

If the matrix H is expressed in a local East-North-Up (ENU) fram, the Horizontal Dilution
of Precision (HDOP) and Vertical Dilution of Precision (VDOP) can be also calculated:

HDOP =
√
qee + qnn (2.33)

V DOP =
√
quu (2.34)
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Returning back now to the navigation solution: if the error covariance matrix of measurement
is known, then the Weighted Least Squares (WLS) estimation is:

∆X̂WLS(k) = (HTΣ−1H)−1HTΣ−1 ×∆Y (k) (2.35)

where, Σ = cov(E(k)) denotes the measurement error covariance matrix. Supposing the
measurement error of each receiver channel is independent, Σ can be further expressed as a
diagonal matrix with measurement variance as its diagonal components:

Σ =


σ2

1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
m

 (2.36)

This estimation of ∆X̂ can be made in several iterations until the convergence of its norm. And
the estimation of the navigation solution can be updated in each iteration by this increments
∆X̂.

The WLS estimator can provide better accuracy performance than the LS estimator thanks
to the information in the covariance matrix. In fact, with WLS, measurements with bigger
error variances will contribute less weights in the position estimation while measurements
with smaller error variance will contribute huge weights. This is a pre-process of optimization
if the error variances are characterized correctly. It is proved that the WLS estimator is the
Best Linear Unbiased Estimator (BLUE) which reaches the Cramer-Rao lower bound [27].

2.4.2 Kalman Filter (KF) Position Estimator

The user Position, Velocity and Timing (PVT) solutions obtained from the Least Squares
(LS) estimator and Weighted Least Squares (WLS) estimator can be noisy since they may be
corrupted by measurement noises and other error sources mentioned previously. One method
for computing smoothed navigation solutions is Kalman Filter (KF).

The KF is a widely used tool in a broad class of estimation problems, which is introduced in
1960 by Dr. R. E. Kalman [28]. The filter depends on measurements as well as a dynamic
model of the GNSS receiver platform motion. It can estimate different user states and its
corresponding error variance by optimally weighting information from the system dynamic
model and current measurements. For linear system models, KF can provide an unbiased
estimation.

Thanks to its recursive nature and ability to hybridize system dynamics with measurements
from different sensors, the KF and one of its variant Extended Kalman Filter (EKF) are
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used in many navigation system including systems with multiple sensor hybridization such as
Inertial Navigation System (INS).

2.4.2.1 Standard Kalman Filter

The KF can solve the general problem of trying to estimate the state x ∈ <n of a discrete-time
controlled process that is governed by the linear stochastic difference equation:

xk = Fxk−1 +Guk−1 + wk−1 (2.37)

with measurement z ∈ <m which can be written as:

zk = Hkxk + vk (2.38)

The random variables wk and vk represent respectively the process and measurement noises.
They are assumed to follow zero-mean Gaussian distributions independently:

w ∼ N (0, Q) (2.39)

v ∼ N (0, R) (2.40)

where, Q and R represent respectively the process noise covariance and the measurement
covariance, which are two parameters to be set according to system and measurement char-
acteristics. They are supposed to be diagonal and can be either constant or not.

The n × n matrix F in Eq. (2.37) is the state transition matrix which relates xk−1 to xk in
the absence of either a driving function or process noise. It can be derived from the system
dynamic motion model. The n× l matrix G relates the optional control input vector u ∈ <l
to the state vector x. The m× n matrix H in the measurement equation (2.38) provides the
noiseless connection between the state vector and the measurement zk.

Denoting x̂−k ∈ <n an a priori state estimate at epoch k given the state estimate at last epoch
as well as the system dynamic model and x̂k ∈ <n an a posteriori state estimate at epoch k
given the measurement zk. Then the a priori and a posteriori error can be defined as:

e−k = xk − x̂−k
ek = xk − x̂k

(2.41)

So the a priori and a posteriori estimate state error variances are:

P−k = E[e−k e
−T
k ]

Pk = E[eke
T
k ]

(2.42)
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KF uses a linear blending of the a priori estimate x̂−k and a weighted difference between the
actual measurement zk and a measurement prediction Hx̂−k in order to update and improve
the a priori state estimate:

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (2.43)

The difference zk − Hkx̂
−
k in Eq. (2.43) is called innovation (or predicted residual), which

reflects the discrepancy between the predicted measurement and the actual measurement. A
residual of zero means that the two are in complete agreement.

The n×m matrix K in Eq. (2.43) is named Kalman gain (or blending factor) which minimizes
the a posteriori state error covariance in Eq. (2.42) and can be written in the following
form [29–31]:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1

=
P−k H

T
k

HkP
−
k H

T
k +Rk

(2.44)

By observing the above expression of Kalman gain, we can see that, if the a priori state
estimate error covariance P−k approaches zero, the Kalman gain will also approach zero,
which means that the innovation term will be weighted less heavily and the system dynamic
model will be trusted more:

lim
P−k →0

Kk = 0 (2.45)

On the contrary, if the measurement error covariance matrix R approaches zero, the Kalman
gain will give more weight to the innovation and the measurement will be trusted more:

lim
Rk→0

Kk = H−1
k (2.46)

The KF algorithm includes two main stages: prediction and update. More precisely, they can
be described by the following five equations, which are the basis of the Kalman Filtering:

- Prediction
x̂−k = Fx̂k−1 +Guk−1 (2.47)

P−k = FPk−1F
T +Q (2.48)

- Update
Kk = P−k H

T
k (HkP

−
k H

T
k +Rk)

−1 (2.49)

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (2.50)

Pk = (I −KkHk)P
−
k (2.51)
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Fig. 2.5 shows us the flowchart of the Kalman Filtering procedures. After initializing the
filter, the a priori state vector x̂−k and its covariance matrix P−k can be predicted with the
help of the transition matrix F and the process noise covariance matrix Q as in Eq. (2.47)
and Eq. (2.48). Then in the update stage, the Kalman gain will be calculated as in Eq. (2.49).
And the a posteriori state estimate x̂k will be generated by correcting the a priori state vector
with weighted innovation in Eq. (2.50). The final step is to calculate the a posteriori state
estimate error covariance Pk via Eq. (2.51).

Compute Kalman Gain:
Kk = P−

k HT
k (HkP

−
k HT

k + Rk)
−1

Update estimate
with measurement zk:

x̂k = x̂−
k + Kk(zk − Hkx̂

−
k )

Compute error covari-
ance for updated estimate:

Pk = (I − KkHk)P
−
k

Project ahead:
x̂−
k = Fx̂k−1 + Guk−1

P−
k = FPk−1F

T + Q

enter prior estimate x̂−
0

and its error covariance P−
0

z0, z1, · · ·

x̂0, x̂1, · · ·

Figure 2.5 – Kalman Filter Loop [30]

2.4.2.2 Extended Kalman Filter (EKF)

As described in the last section, the standard KF addresses the general problem of trying to
estimate the state x ∈ <n of a discrete-time controlled process that is governed by a linear
stochastic difference equation. But in reality, the process to be estimated is often non-linear.
One of the variants of the KF, named Extended Kalman Filter (EKF), is designed to solve
the non-linear problems.

Assuming the state vector x ∈ <n, and it is governed by a non-linear model:

xk = f(xk−1, uk−1, wk−1) (2.52)

The measurement z ∈ <m can be modeled as:

zk = h(xk, vk) (2.53)

where, the random variable wk and vk represent respectively the process and measurement
noises as previously mentioned in Eq. (2.37) and Eq. (2.38).
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Here, the transition function f(xk−1, uk−1, wk−1) and the measurement model h(xk, vk) are
non-linear. So we can linearize them by computing the Jacobian matrix of the functions
f(xk−1, uk−1, wk−1) and h(xk, vk) around the state estimation at the last epoch xk−1:

Fk =
∂f

∂x
(xk−1) (2.54)

Hk =
∂h

∂x
(xk−1) (2.55)

Once the transition model and the measurement model are linearized, the standard KF algo-
rithm described in the previous section can be applied while keeping the non-linear function
in the state prediction and update. That is to say, the EKF algorithm can be summarized as:

- Prediction
x̂−k = f(x̂k−1, uk−1) (2.56)

P−k = FkPk−1F
T
k +Q (2.57)

- Update
Kk = P−k H

T
k (HkP

−
k H

T
k +Rk)

−1 (2.58)

x̂k = x̂−k +Kk(zk − h(x̂−k )) (2.59)

Pk = (I −KkHk)P
−
k (2.60)

2.4.3 Performance Improvement with Other Aiding Approaches

Except for the basic positioning techniques mentioned in the previous sections, other ap-
proaches exist to improve the GNSS positioning performances. We will present briefly several
of them in the following text.

* GNSS/INS Integration

A large body of research work contributes to the hybridization of the GNSS and the
Inertial Navigation System (INS). An INS is a navigation aid that uses a computer, mo-
tion sensors (accelerometers), rotation sensors (gyroscopes) and occasionally magnetic
sensors (magnetometers), to continuously calculate by dead reckoning the position, the
orientation and the velocity (direction and speed of movement) of a moving object
without the need for external references.

Thanks to the complementary nature of GNSS and INS, the integration of these two
systems can deliver more robust and reliable systems than either of the individual sys-
tems. This is because, on the one hand, INS short-term errors are relatively small, but
they degrade rapidly with time and are unbounded so external aiding is necessary [32].
On the other hand, GNSS can provide bounded accuracy and more stable in long-term.
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Moreover, INS can provide accurate short term data with very high rate which can
be used to interpolate GNSS measurements. And the measurements of INS are less
disturbed by outages such as signal blocking or interference, which is more robust to
some extent.

Different strategies of GNSS/INS integration exist [33]:

- Uncoupled Integration;

- Loose Integration;

- Tight Integration;

- Deep/Ultra-tight Integration;

* Map Matching

Digital road maps can be used as an aiding approach for GNSS navigation for land
vehicles by map-matching. Map-matching algorithms integrate positioning data with
spatial road network data to identify the correct link on which a vehicle is traveling and
to determine the location of a vehicle on a link [34].

Since the emergence of the novel applications such as autonomous vehicles and the au-
tomated toll-collection system, the demand of a high positioning quality is continuously
growing. For these kinds of applications, map-matching algorithm could be used as
a key component to improve the performance of systems especially in urban canyons.
With the help of a 3D digital map, the GNSS signal reception state LOS/NLOS can be
distinguished [35,36] and the pseudorange error can be further corrected by computing
the additional distances of the NLOS signals, which will be applied later in this thesis.

Different map-matching techniques exist in the literature, such as:

- Geometric analysis [37, 38];

- Topological analysis [39,40];

- Probabilistic map-matching algorithms [41,42];

- Other advanced map-matching algorithms (e.g., EKF [43], particle filter [44].)

However, the performance of map-matching techniques strongly depends on the map
accuracy and availability. Positioning performances can be improved with high accu-
racy map but maps with poor accuracy will involve additional errors into positioning
procedures. Moreover, the necessity of updating in order to keep coherence with the
real road configuration is another limitation of the digital map-based techniques.
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Summary

This chapter will present the theoretical foundations of GNSS position integrity especially its
expansion to urban transport applications. Beginning with basic terminology and definition of
integrity monitoring, it is followed by an introduction of famous classic integrity monitoring
algorithms for aviation utility: the Receiver Autonomous Integrity Monitoring (RAIM). Then
different FDE approaches will be discussed. Finally, the problematic and complexity of in-
tegrity monitoring in urban environments will be analyzed and the state of the art of existing
integrity monitoring approaches in urban environment will be summarized.
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Part of the work presented in this chapter is the subject of the published journal paper in IEEE
Transactions on Intelligent Transportation Systems [45].
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3.1 Introduction

The GNSS integrity concept has been firstly developed and formalized in the aviation field for
Safety-of-Life (SoL) applications [18]. It is defined as a measure of trust which can be placed
in the correctness of the information supplied by the total system [46]. As one of the most
essential performance parameters, GNSS integrity has recently attracted interest from other
transportation fields especially in the urban environment. This is because the GNSS-based
urban applications proved to be a huge and appealing market which is currently in a constant
growth [47].

For GNSS-based urban applications such as in the rail and in the vehicular domains, knowing
the certainty of one’s localization is of great importance. The framework of GNSS integrity
in urban environment is firstly introduced especially in the vehicle domain, for instance, the
famous Liability Critical Applications. Here, the computed Position, Velocity and/or Time
(PVT) are used as the basis for legal decisions or economic transactions [5,48], such as Elec-
tronic Toll Collection (ETC) and Pay as you Drive insurance. In such kinds of scenarios, large
errors can lead to consequences such as wrong legal decisions or wrong charge computation
as the example shown in Fig. 3.1. In rail where GNSS-based solutions are expected to replace
the use of physical balises placed along the track, one should demonstrate a high level of
performances especially in link with integrity. Indeed, the new system shall be as safe as the
replaced one and the integrity is one of the indicators for safety [49]. In addition, an increasing
number of Unmanned Aerial Vehicles (UAV) in urban environment require also high integrity
performances since multipath effects associate with their low-level flights [50]. Consequently,
it is necessary and important to bound the errors and to ensure that the probability of errors
not properly bounded is below a certain limit in order to reduce the probability of the harm-
ful effects and to guarantee the correctness and fairness of the decision. These requirements
attach extreme importance to the concept of positioning integrity in urban environments.

Figure 3.1 – An example of impact of positioning for Road User Charge [51]
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However, the urban environment presents great challenges to common commercial GNSS
receivers [52, 53]. This is mainly because the GNSS positioning performance can be severely
degraded by the limited satellite visibility, multipath effect, interference and other undesired
impairments such as foliage attenuation [54–56]. Much research has been developed in terms
of techniques to mitigate the effect of multipath interference and Non-line-of-sight (NLOS)
signals at different levels, for example, the antenna design techniques [57, 58], the receiver-
based techniques [59], as well as the post-receiver techniques [60], which help to improve
accuracy and reliability of the GNSS positioning in urban environment. But these techniques
are still an issue to be ceaselessly developed especially for its compatibility and robustness to
different stringent environments.

Despite the existing difficulties, introducing the integrity concept to urban GNSS receivers
is more and more attractive as a result of emerging GNSS-based applications in stringent
environments. But the integrity monitoring algorithms developed in the aviation domain
cannot be transported directly into the urban vehicle applications. This is because, on the
one hand, the integrity monitoring algorithms developed in the aviation context are established
on the fact that a high data redundancy exists, which is not the case in the urban context. On
the other hand, the single-fault assumption made in the aerospace applications is not true for
urban GNSS receivers due to the potentially large and frequent errors provoked by multipath
interference and NLOS. [61]

This chapter is organized as follows: Section 3.2 introduces definitions and theoretical foun-
dations about GNSS navigation performance criteria as well as some parameters of integrity.
Section 3.3 presents the traditional integrity monitoring approaches in the aviation context
especially the Receiver Autonomous Integrity Monitoring (RAIM), which is applied for avi-
ation receivers. Then Section 3.4 analyzes the limitation of the classic integrity monitoring
approaches in the urban context by summarizing the complexity of the GNSS signal reception
in the urban environment and gives a structured overview of the existing integrity monitoring
approaches for the urban GNSS receivers. Finally, Section 3.5 will discuss about different
Fault Detection and Exclusion (FDE) approaches which can be potentially applied for in-
tegrity monitoring of GNSS-based urban transport applications.

3.2 Terminology and Definitions

3.2.1 GNSS Navigation Performance Criteria

Generally, when talking about the performance of GNSS, we will necessarily mention the four
criteria: accuracy, integrity, continuity and availability which are defined as follows:
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Accuracy of an estimated or measured position and velocity of a vehicle at a given time is the
degree of conformance of these position and velocity with the true ones of the vehicle [3].
Accuracy is related to the statistical features of merit of position or velocity error. So
accuracy metrics are often built from the statistical distribution of the errors. Thus,
the accuracy specifications are often given at a certain percentile of the Cumulative
Distribution Function (CDF) (e.g., 95th percentile). Generally, for ITS applications, as
specified by the European Committee for Standardization (CEN) and European Com-
mittee for Electrotechnical Standardization (CENELEC), accuracy is represented with
a set of three statistical values given by the 50th, 75th and 95 th percentiles of the CDF
of the position error [62].

Integrity is conventionally defined as follow:

Definition 1 Integrity is a measure of trust that can be placed in the correctness of the
information supplied by a navigation system [3].

This concept is originally introduced in the aviation context in the last decades in order
to measure the influence of the navigation performance on the safety. Since the concept
of integrity was intended for Safety-of-Life (SoL) applications, it also includes the ability
of the system to provide timely warnings to users when some system anomaly results
in unacceptable navigation accuracy [3, 63]. In summary, it is an indicator of veracity
and trustworthiness that can be placed in the information supplied by the navigation
system.

Recently, integrity monitoring has been more and more introduced into road transport
especially for the liability critical applications. Under this context, the definition of
integrity is re-adapted, for instance, by the SaPPART (Satellite Positioning Performance
Assessment for Road Transport) action [51] as following:

Definition 2 Integrity is a general performance feature referring to the trust a user can
have in the delivered value of a given position or velocity quantity (e.g., horizontal posi-
tion). This feature applies to 2 additional quantities associated to the value delivered at
each epoch of pseudo-range measurement: the Protection Level (PL) and the associated
Integrity Risk (IR).

The definitions of the parameters (e.g., PL, IR) mentioned in the definition above will
be detailed hereafter in the following section.

Continuity is the probability that the specified system performance (accuracy and integrity)
will be maintained for the duration of a phase of operation, presuming that the system
was available at the beginning of that phase of operation. Hence it expresses reliable
operation (no failure) of the system during the specific time interval given that the
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system was operating at the start of the operation.

Under the context of mass-market applications, unlike integrity, which is important
for liability critical applications, the concept of continuity is essential especially for
the Location-Based Service (LBS) [64]. These kinds of services refer to the software
applications for mobile devices that require knowledge about where the mobile device is
located. For instance, based on the knowledge of users’ positions, LBS can provide the
nearest points of interest (bank, restaurant, etc). For these applications, the continuity
of the user positions is more important than other criteria since ideally the service should
be available anywhere at anytime.

Availability is officially defined by ICAO as the percentage of time that the services of
the system are usable by the navigator, which is an indication of the ability of the
system to provide reliable information within the specified coverage area. But for the
road GNSS applications, this feature can be defined in many different ways according
to application needs. For example, for certain applications, availability can be the
percentage of the measurement epochs where the considered output is delivered with
the required performance or simply where the considered output is delivered by the
terminal, whatever its quality.

In fact, the criteria mentioned above come from the Required Navigation Performance (RNP)
concept. These criteria are related to each other as shown in Fig.3.2. We can see that accuracy
is the base and the starting point of the performance pyramid which is specified at a certain
confidence level (e.g., %95).

Then, there is a direct link between the definition of integrity and accuracy because the
condition when a system should not be used for navigation is a lack of confidence in accuracy.
And the continuity is the probability that accuracy and integrity will be maintained over a
certain period. So continuity builds upon both accuracy and integrity. Finally, the definition
of availability contains the notion of reliable information. To be reliable, the information must
meet the accuracy, integrity and continuity specifications. Thus, availability is based on the
assumption of certain levels of accuracy, integrity and continuity.

Except for these classic performance criteria from the aeronautical RNP, in the context of
urban GNSS applications, other important performance features of GNSS can also include:
robustness to spoofing and jamming, indoor penetration etc [65]. This research work will only
focus on the positioning accuracy and integrity aspect.
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Figure 3.2 – Navigation Performance Pyramid: Accuracy, Integrity, Continuity and Availabil-
ity

3.2.2 Basic Definitions of Integrity Parameters

As mentioned in the previous section, integrity is defined as a measure of trust that can be
placed in the correctness of the information supplied by a navigation system and it includes
the ability of the system to provide timely warnings to users when the system should not be
used for navigation [3, 63]. This definition can be clarified thanks to four main parameters:
Alert Limit (AL), Integrity Risk (IR), Time to Alert (TTA) and Protection Level (PL).

Alert Limit (AL) represents the largest position error allowable for safe operation, more
precisely, it is defined as follow [3]:

Definition 3 Horizontal Alert Limit (HAL) is the radius of a circle in the horizontal
plane (the local plane tangent to the WGS-84 ellipsoid), with its center being at the true
position, which describes the region that is required to contain the indicated horizontal
position with the required probability for a particular navigation mode.

Definition 4 Vertical Alert Limit (VAL) is half the length of a segment on the vertical
axis (perpendicular to the horizontal plane of WGS-84 ellipsoid), with its center being
at the true position, that describes the region that is required to contain the indicated
vertical position with the required probability for a particular navigation mode.

In the urban context, generally we are only interested in the horizontal dimension.

Time to Alert (TTA) is the maximum allowable elapsed time from the onset of a posi-
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tioning failure until the equipment announces the alert [3]. So with this parameter, the
integrity risk can be specified in a time interval.

Integrity Risk (IR) is the probability of providing a signal that is out of tolerance without
warning the user in a given period of time [3]. It defines the maximum probability with
which a receiver is allowed to provide position failures not detected by the integrity
monitoring system [66].

Protection Level (PL) is a parameter of the integrity concept which will be well high-
lighted in urban vehicular contexts. It is formally defined as:

Definition 5 The PL is a statistical error bound computed so as to guarantee that the
probability of the absolute position error exceeding the said number is smaller than or
equal to the target integrity risk [3].

Similar to the definition of AL, PL is also typically defined separately for the horizontal
plane (Horizontal Protection Level (HPL)) and the vertical direction (Vertical Protection
Level (VPL)). And here we only focus on the horizontal dimension which is defined as:

Definition 6 The HPL is the radius of a circle in the horizontal plane (the local plane
tangent to the WGS-84 ellipsoid), with its center being at the true position, that describes
the region assured to contain the indicated horizontal position. It is a horizontal region
where the missed detection and false alert requirements are met for the chosen set of
satellites when autonomous fault detection is used [18].

Generally, the AL is specified according to the targeted applications and the PL is
calculated by users. Since the position error is not observable, the decision of alert is
done by comparing the AL specified and the PL calculated, more precisely:

- If PL > AL, the alert triggers;

- If PL < AL, the alert does not trigger.

3.2.3 Integrity Events

In the context of integrity monitoring, according to the relationship between AL, PL and
Position Error (PE), integrity events can be summarized as follows:

Integrity Failure is an integrity event that lasts for longer than the TTA and with no alarm
raised within the TTA.

Misleading Information (MI) is an integrity event occurring when, being the system de-
clared available, the position error exceeds the PL but not the AL.



Chapter 3. GNSS Position Integrity Theory 43

Figure 3.3 – Illustration of relationship between integrity parameters and events: PL, AL, PE
and MI, HMI.

Hazardously Misleading Information (HMI) is an integrity event occurring when, be-
ing the system declared available, the Position Error (PE) exceeds the AL. Typically, in
operating an aircraft, the risk for HMI due to navigation system is budgeted at the level
of 10−7 to 10−9, which is extremely tight in order to guarantee the safety of operations.
But the specification of HMI probability for urban applications has not been set yet.

Fig. 3.3 provides a clearer illustration of the relationship between integrity parameters and
each integrity event. Besides, the Stanford diagram (or Stanford plot) is generally used as a
handy tool to explain and illustrate most of these integrity events and their relations (as well
as to assess positioning performance of systems), which is shown in Fig. 3.4.

The Stanford diagram is plotted in this way: at each epoch, for each sample of a position
error and a protection level, a point can be plotted in the Stanford diagram, whose abscissa
represents the absolute position error and whose ordinate represents its associated protection
level. The diagonal line of the diagram separates the samples in which the position errors
are well covered by the computed protection level, i.e., the ones above the diagonal, and
the samples in which the computed protection levels fail to bound the position errors, i.e.,
the ones below the diagonal. If the Alert Limit (AL) is specified according to the targeted
applications, the Stanford diagram can be further divided into different zones according to
the relationship between Position Error (PE), Protection Level (PL) and the AL. Each zone
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represents an integrity events:

- Normal operation: PE < PL < AL;

- System Unavailable: AL < PL;

- Misleading Information (MI): PL < PE < AL;

- Hazardously Misleading Information (HMI): PL < AL < PE.

But the disadvantage of Stanford diagram is that the true position error should be known,
which is difficult in practice.

Figure 3.4 – Stanford Diagram (or Stanford plot)

3.3 Classic Integrity Monitoring Approaches for Aviation Ap-

plications

Generally, the GNSS integrity information can be obtained from different ways. The most
basic is the GNSS navigation messages, which indicate the anomalies related to the system
and satellite operations such as satellite clock errors. But this kind of integrity information
cannot be used for the real-time applications since the ground control segment can take a few
hours to identify and broadcast the satellite service failure [6]. Thus, additional sources have
to be used to deal with the integrity control.
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In the aviation field, the information of integrity is provided by the three normalized aug-
mentations known under the terms Airborne-Based Augmentation System (ABAS), Ground-
Based Augmentation System (GBAS) and Satellite-Based Augmentation System (SBAS) [67].
Among the three architectures, the GBAS and SBAS have to rely on some external aiding
devices, such as sensor stations. ABAS can provide integrity information, which is calculated
autonomously within the aircraft equipment. These augmentation systems are introduced in
Section 2.1.2 of Chapter 2.

Integrity monitoring algorithms developed for land vehicles are mostly based on the principles
of the traditional Receiver Autonomous Integrity Monitoring (RAIM). In the following section,
the principles of RAIM will be presented.

3.3.1 Overview of Receiver Autonomous Integrity Monitoring (RAIM)
Techniques

Receiver Autonomous Integrity Monitoring (RAIM) is a technique based on the consistency
check of redundancy of range measurements which is initially investigated in the aviation field
since the late 1980s [68–75]. Many different RAIM schemes have been proposed over the past
few years, most of which are snapshot algorithms, such as the range comparison RAIM, the
parity method RAIM, Least-Squares-Residuals (LS) RAIM and the Separation Solution (SS)
RAIM [76–80]. Except for these snapshot algorithms, several Kalman filter based RAIM/FDE
schemes are proposed [81,82], which will be discussed later in Chapter 7.

In fact, the research of RAIM algorithms began since the late 1980s with the publications
as [68–70] and [71], which are basics of the further development of RAIM algorithms. As main
representatives of this first generation RAIM algorithms, LS RAIM and Weighted RAIM are
still used today in aviation field as a classic way to provide low-precision lateral integrity only.

Fig. 3.5 provides an overview of the flowchart of classic RAIM algorithms. Generally speaking,
these classic RAIM has following important features:

• The classic RAIM technique mainly aims at detecting and excluding large errors caused
by satellite service failure. Since the probability of occurrence of two or more satellite
service failures is negligible, classic RAIM detect only one fault each time.

• RAIM may include the function of fault detection and fault exclusion (FDE). It re-
quires at least five (six) pseudo-range measurements to realize the fault detection (fault
exclusion).

• The RAIM availability check module does not need to employ current measurements,
that is to say, a HPL can be predicted with the satellite/user geometry, the nominal



46 Chapter 3. GNSS Position Integrity Theory

Figure 3.5 – Flowchart of classic RAIM algorithms

error characteristic (error variance) as well as the integrity probability requirements.
Only if HPL< HAL can RAIM continue to enter into the FD module. In addition, after
the FDE, actual uncertainty level can be calculated with the help of the geometry, the
measurements (i.e. the residuals) as well as the error variance. In this case, this level is
called the Horizontal Uncertainty Level (HUL) [83].

• Classic RAIM techniques used in the aviation field model the nominal pseudorange error
as Gaussian distribution with zero-mean and a known variance.

Till now, no RAIM implementation exists in aviation domain for any flight operations re-
quiring integrity in vertical planes, which has more stringent requirement such as precision
approaches. This gave the motivation of developing the second generation of RAIM. Under
this context, Advanced RAIM (ARAIM) and Relative RAIM (R-RAIM) are proposed as two
parallel candidates for future generation integrity monitoring architectures to support preci-
sion approach operations with both lateral and vertical guidance [84,85]. In fact, as reported
in GEAS [85] with updated results, ARAIM with Multiple Hypothesis Separation Solution
(MHSS) method was adopted as the major architecture and the position domain RRAIM was
only used when ARAIM was not available. Compared to the classic LS RAIM, ARAIM can
provide following improvements:

• ARAIM is designed to account for the multi-faults and is possible to exploit the multi-
constellation GNSS with dual-frequency observation to remove the first order ionospheric
delay [78,79].
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• ARAIM allows explicit computation of the integrity risk allocation while the classic
RAIM is mainly based on probability of false alarm and missed detection [86].

Besides, other RAIM architectures exist such as Carrier-Phase-based RAIM (CRAIM) and
Extended RAIM (ERAIM). CRAIM is mainly based on the GNSS carrier phase measurements
[87,88]. Although the carrier phase measurement is much more precise compared to the code
measurement since a lower level of noise is involved, the ambiguities exists which is difficult
to be successfully fixed especially in harsh environments. This is also the reason for which the
carrier phase measurements generally cannot be used as an absolute measurement to estimate
PVT solutions while they are preferred to be used to estimate the users’ dynamic in GNSS-
based relative navigation and positioning. ERAIM uses the hybridization of GNSS and INS
measurements to realize the integrity monitoring [89–92], which is generally based on the EKF
filter. Table 3.1 makes a summary about the classification of the RAIM techniques.

Table 3.1 – Classification of RAIM techniques

Architecture Measurement Algorithms FDE Capability References

Classic RAIM GNSS Code LS / WLS Residual-based method FDE for single fault [68–70]
or parity-based method [71,76,93] [77]

ARAIM GNSS Code Solution Separation (SS) method FDE possible for [78,86,94]
(Single alternative hypothesis multiple faults [79,80,95]

or Multiple hypothesis) [84,85,96]
or Classic Residual-based method [97,98]

RRAIM GNSS Code and MHSS or Classic Single FDE possible for [96,99,100]
(Range RRAIM or Time-Differenced Carrier alternative hypothesis method multiple faults [84,85,101]
Position RRAIM) Phase (TDCP)

CRAIM GNSS Carrier Phase EKF innovation-based method Only FD is possible [87,88]
& ambiguity resolution methods

(e.g., LAMBDA [102])

ERAIM GNSS Code and INS EKF innovation-based MHSS or FDE possible for [89–92]
EKF innovation-based parity method multiple faults

3.4 GNSS Integrity Monitoring In Urban Environments

3.4.1 Limitations of the Classic Integrity Concepts in Urban Context

The classic integrity concept employed in aeronautic domain can not be transported straight-
forwardly into the urban vehicular context because of the limitations due to the stringent
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environment. More precisely, following constraints exist.

First of all, integrity control techniques in the aviation field such as RAIM, suppose that the
distribution of the range and position domain error is Gaussian with zero-mean and a known
variance in the nominal case, while just a single bias is added in the faulty case [72, 73].
The effects of multipath, limited satellite visibility, NLOS due to obstacles are not taken
into consideration, which is also the case for the EGNOS [103]. These augmentation systems
such as EGNOS can help the low cost commercial receivers to get a better accuracy in open
sky conditions but, in a severe environment, their performances degrade, which is proved by
experimental data in [103, 104]. Thus, the error models have to be characterized in order to
make them more adapted to the urban GNSS applications. We will further address the error
models in Chapter 4.

Secondly, the satellite visibility is badly degraded in urban canyons [105]. The availability
of traditional augmentation systems such as SBAS will also be affected due to bad satellite
visibility [104]. In addition, SBAS adopts the Gaussian model with zero-mean and a known
variance as measurement errors and the HPL computed by SBAS takes into account only the
measurement noise without bias. As a result, either the SBAS satellites are not visible or the
obtained PLs are not sufficient to bound the PEs. They are not usable for urban applications.

Thirdly, as already mentioned in section 3.3, the RAIM algorithm supposes a scenario of high
redundancy and that no more than one failure is detected at a time, which is not true in the
urban environment. Because the major errors that threaten the GNSS urban integrity are
caused by local effects such as multipath and NLOS. The errors provoked by the local effects
can be very large and frequent.

Finally, the typical requirements of integrity risk in aviation are often too conservative for the
vehicular applications [106].

These limitations have been proved by several research works. For instance, with real GNSS
data, [61] shows that, in the dual-constellation case and a HAL of 50 m, the percentage of
epochs in which a RAIM configured with Pmd = 5 × 10−5 and Pfa = 5 × 10−3 is available
decreases from almost 100% in the rural environment to approximately 55% in the urban
one. In the GPS case, it decreases from 50% to around 7%. Lower Pmd or Pfa would still
decrease the availability rate. Similar conclusions are obtained with simulations by [107].
In addition, [5] also proves that the HPL calculated by the classic measurement rejection
approach is too big for the urban applications (e.g., for a data set of urban Madrid, only 10%
of the measurement epochs have a protection level smaller than 100 meters).
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3.4.2 Existing Approaches of Integrity Monitoring in Urban Environments

In recent years, some different possibilities of solutions have been studied in terms of naviga-
tion integrity monitoring in urban environments. Often, the hybridization techniques between
GNSS and other sensors are used to ensure that the solutions could reach the required perfor-
mances. For example, [108] proposed an integrity monitoring approach with map-matching
techniques for land vehicle applications. [109] proposed a initial concept of integrity monitor-
ing architecture using a fisheye camera which is not completely implemented yet.

Besides, a new concept which implements Vehicular Ad-hoc Network (VANET) infrastruc-
tures is currently proposed by [110]. That is to say, different vehicles participating to a
VANET can share and combine their observations of GNSS signals so that a collaborative
spatial/temporal characterization and prediction of the local degradation of the GNSS signals
can be implemented.

For the UAVs, multipath effects associate with their low-level flights but the integrity monitor-
ing techniques for urban environments are still in its infancy. GNSS Aircraft-Based Integrity
Augmentation (ABIA) technique [50,111–113] is introduced as the main role to guarantee the
integrity performance for the UAVs. The ABIA system delivers integrity caution (predictive)
and warning (reactive) flags, as well as steering information to the electronic commands of the
UAV flight control system. These features allow real-time avoidance of safety-critical flight
conditions and fast recovery of the required navigation performance in case of GNSS data
losses. In fact, this is similar to the concept of the ABAS, in which the integrity processing of
GNSS data is performed onboard the UAV itself, and can be aided by additional sensors. And
cooperation between different UAVs and exchange with UAV Traffic Management station are
also possible to make in order to realize integrity control.

However, in terms of autonomous integrity monitoring, that is to say, using standalone GNSS
receivers, no methods or techniques exist which are well developed and ready to be imple-
mented. Yet, this approach is more promising and attractive for users since it can reduce the
complexity of the on-board equipment as well as the costs. Thus, we will concentrate on the
integrity monitoring approaches without any other external equipment.

In current literature, two groups of theoretical approaches for integrity monitoring in urban
environment exist: the Measurement Rejection Approach (MRA) and the Error Characteri-
zation Approach (ECA) [5].

3.4.2.1 Measurement Rejection Approach (MRA)

The principle of the MRA is to reject faulty range measurements such as the classic concept
mentioned previously. This approach not only works well in the open-sky environment but
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also can work in other environments if the assumption that only a single fault can occur at a
time can be got rid of. Yet, removal of such an assumption is really a big challenge.

If multiple simultaneous faulty range measurements are considered, the threat exists that the
error sizes can combine with the satellite geometry in such a way as to produce a large position
error but very small residuals, thus passing unnoticed to a conventional Fault Detection and
Exclusion (FDE) algorithm [5].

[114] proposed an integrity monitoring approach based on the RANdom SAmple Consensus
(RANSAC) algorithm. This method is capable of detecting multiple satellite failures. It
calculates position solutions based on subsets of four satellites and compares them with the
pseudorange of all the other satellites that do not contribute to the solution. Also, a modified
RANSAC algorithm, called P-RANSAC, is proposed. P-RANSAC performs a final range
comparison using the state estimate obtained with only the inliers identified by RANSAC.
The range measurements identified as outliers from this last comparison will be excluded from
the final solution. The number of outliers that this approach can identify is the number of
satellites in view minus four for the estimation.

There is no doubt that the RANSAC algorithm is a breakthrough for the MRA approach in the
urban scenario since it realizes multiple fault detection. And the improvement in performance
by the P-RANSAC algorithm is proven by collected data compared to the classic RAIM and
RANSAC algorithm in [114]. But these algorithms (RANSAC or P-RANSAC) are not optimal
enough considering their computational cost and the difficulty of implementation since the
subset technique requires a great amount of storage space as well as computation time.

However, for some of the liability critical applications such as Electronic Toll Collection (ETC),
whose main task is to decide whether a user has driven through a road segment or not and
charge him if he has. This decision, which is called geo-object recognition, can be taken as
a function of the number of user positions lying inside the geo-object boundaries. Thanks
to this particularity, only the number of valid positions are concerned by the system and
the continuity of the system is not required. So [61] has proposed a modified Weighted
Least Square (WLS) RAIM algorithm based on this point. The main difference between the
aviation classic RAIM and the WLS RAIM is that the former provides a time-variant HPL
with a constant Pmd and Pfa, while the latter provides a time-variant Pfa with a constant Pmd
and a HPL (which is always equal to HAL). This is a special case of road integrity monitoring.

Generally speaking, the main disadvantage of the MRA is that it cannot guarantee the avail-
ability of the navigation solution with an associated PL since several range measurements
are possibly removed. This point is problematic for GNSS users in the urban environment as
the satellite visibility is already degraded, which causes the risk of insufficient range measure-
ments. Fortunately, this situation can be improved by using multiple GNSS constellations.
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[115] proposed a modified RAIM algorithm which includes geometry and separability checks.
This method allows us to detect and exclude erroneous range measurements with the help of
GPS/Galileo multi-constellation. Better performances are achieved compared to the classic
mono-constellation RAIM. So, other GNSS constellations may be an added value for integrity
monitoring in degraded environments.

Besides, the FDE can also be realized based on the Extended Kalman Filter (EKF) innova-
tions, which is proved to have better global performances especially for dynamic platforms
assuming the state and observation models are correct [81,82]. However, the limitation of the
EKF-based method is its model dependence. That is to say, it is susceptible to unmodelled
errors and when unexpected system dynamics occur, this method is prone to high false alarm.

3.4.2.2 Error Characterization Approach (ECA)

The second group of integrity monitoring approach for GNSS-based urban applications is
called Error Characterization Approach (ECA) approach. The main idea of the ECA is to
characterize the range measurement errors and be able to compute a PL that actually protects,
without the need for identifying and removing degraded range measurements, even if they are
contaminated with very large errors [5]. As a result, this approach can possibly lead to large
protection levels which cannot suit the requirement of quite particular applications.

Isotropy-Based Protection Level (IBPL) is a patented algorithm of GMV as well as an ECA
concept implementation which can provide a PL autonomously [116].

The basis of the IBPL algorithm consists in using the vector of least square estimation residuals
as a characterization of the position error. And the only assumption made is that the range
measurement error vector has an isotropic distribution in the measurement space [116]. This
means the error vector can point in any direction of the measurement space with the same
probability. Then the following relationship is used:

HPL = k · ‖r‖ ·HDOP (3.1)

where, r is the least square residual vector and k is called Isotropic Confidence Ratio (ICR)
which depends on the target confidence level 1 − α (α is the integrity risk), the number of
range measurements m and the number of unknown to estimate n.

The detailed derivation of k’s expression as a function of α, m and n is in [116]. Some tables
of pre-calculated values of k with different α, m and n are available. Other values not in the
table can be obtained by the interpolation method.

The IBPL method can perfectly deal with the problem of single fault assumption in the
classic RAIM algorithm. It has been proven to be relatively reliable and robust in certain
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degraded environment. But the disadvantage is that the calculated PL depends too closely
on the number of range measurements. That is to say, if the visibility of the satellite is not
good enough, the performance of the IBPL method will be badly degraded. Thus, for mono-
constellation receivers in urban environment, IBPL algorithm is not very interesting due to
bad satellite visibility.

Despite the robustness of the ECA approaches such as IBPL, their common problem is that,
since neither range measurement is removed, the size of PL has the risk of being too large.
So a trade-off should be made between the size of PL and the level of integrity risk.

In order to resolve the problems and the shortages of the existing IBPL method, GMV has
lately expanded the IBPL method to support the Kalman filter, which is called the KIPL
method. The KIPL can apply to GNSS-standalone or hybrid GNSS/INS navigation system.
And the KIPL is able to provide tight integrity bounds in all kinds of environments for
virtually any desired confidence level [117].

Except for the IBPL and KIPL methods, [118] has proposed a composite approach for HPL
computation in urban environments. The principle of this method is to treat the biases and
noises in a separate way. The PL can be formulated as a sum of noise component, PLn plus
a bias component, PLb:

PL = PLn + PLb (3.2)

And in [118], the bias and noise composites are separated by an autoregressive (AR) model.
The noise component of HPL is calculated using the weighting model in [119]. For the
additional term which represents the bias, the residuals obtained from the least-square PVT
algorithm are used.

The analyses of the performances of HPL computation using this method in urban environ-
ments have not been made in detail. But in the open sky, it is proven that its main advantage
is a clear final decrease in PL [120]. This is good news for urban integrity controlling with
the ECA approach. Thus, further research about this method in urban contexts is needed.

3.5 Fault Detection and Exclusion (FDE)

The techniques of Fault Detection and Exclusion (FDE) is widely used in the industry for
system diagnosis problems. FDE techniques belong to the Measurement Rejection Approach
(MRA) described previously. For GNSS navigation systems, the FDE algorithms are mainly
based on the consistency check with the help of the measurement residuals. As described in
Chapter 2, the measurement residuals are defined as the difference between the actual mea-
surements and the predicted noiseless measurement that receiver would have made supposing
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its state is the current estimation. Residuals are key symbols of presence or absence of mea-
surement outliers since they can indicate the extent to which the measurements are internally
consistent.

As mentioned in the previous sections, the integrity monitoring scheme generally consists of
two basic functions: the Fault Detection (FD) and the Fault Exclusion (FE). The goal of
fault detection is to detect the presence of positioning failure. Upon detection, proper fault
exclusion determines and excludes the source of the failure.

The FDE techniques used in GNSS integrity monitoring are mostly based on the hypothesis
test. That is to say, a comparison between a test statistic which depends on the measurement
residuals and a threshold will be performed. The threshold is set according to the specified
integrity probabilities and the statistical distribution of the test.

In this section, two basic test approaches will be presented: the Global Test, which is mainly
used for detecting the presence of faults and the Local Test, which is mainly used for iden-
tifying the detected faults. Based on these two test schemes, different strategies of FDE
will be introduced, which can be potentially applied for GNSS-based applications in urban
environments since they can exclude multiple faults.

3.5.1 Different Test Approaches

The Fault Detection and Exclusion (FDE) procedures employed in the GNSS navigation prob-
lems are mainly based on the hypothesis test, which is an essential technique in statistics. A
hypothesis test evaluates two mutually exclusive statements about a population to determine
which statement is best supported by the sample data.

A null hypothesis H0 and an alternative hypothesis Ha are defined. The former one denotes
a fault-free situation which is a reference level from which the situation represented by the
alternative hypothesis is deviated, which is hoped to be detected.

Since the sample number is limited, there is always possibility of making wrong decisions.
According to the true situation and the decisions, four statistical events exist as shown in
Table 3.2. The test is efficient if the probabilities of Correct Decision and Correct Rejection
are maximal and the probabilities of False Alarm and Missed Detection are minimal.

Generally, for GNSS integrity monitoring algorithms, the probability of False Alarm and the
probability of Missed Detection should be specified according to corresponding applications.
With these pre-defined specifications, the hypothesis test can be conducted.
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Table 3.2 – Events of a Hypothesis Test

True Situation
Decision

H0 accepted H0 rejected

H0 true Correct Decision False Alarm

H0 false Missed Detection Correct Rejection

3.5.1.1 Global Test (GT)

Global Test (GT) is generally implemented as the primary stage in the whole FDE scheme. It
uses the Normalized Sum of Squared Error (NSSE) as the test statistic, which can be written
in following quadratic form:

NSSE = r̂TΣ−1r̂ (3.3)

where,
- r̂ represents the residual vector, which is defined as the difference between the measurements
made and the predicted noiseless measurements if the user’s state is the estimated ones. Its
expression can be found in Eq. (2.27);
- Σ denotes Variance Covariance Matrix (VCM) of measurements, which is a diagonal matrix
with measurement variances as its diagonal components:

Σ =


σ2

1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
m


Denoting Z the test statistic NSSE, the GT is conducted as follows:

- Under fault-free (nominal) cases, each residual r̂i is supposed to follow a centered Gaus-
sian distribution:

r̂i ∼ N (0, σ2
i ) (3.4)

Then, Z can be written as in Eq. (3.5), which follows a centered χ2 distribution with k
Degree of Freedom (DoF), i.e., Zc ∼ χ2

k:

Zc =
m∑
i=1

r̂2
i

σ2
i

(3.5)

The DoF (or redundancy) of the system can be expressed as:

k = m− n (3.6)
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with m the number of measurement and n the number of unknown to estimate which
equals to 4 in our case. At least one redundancy is necessary for Fault Detection and
at least two redundancies are needed for Fault Exclusion.

The Probability Density Function (PDF) of a centered χ2
k is defined as:

P(z = Zc) =
1

2
k
2 Γ(k2 )

z
k
2
−1e−

z
2 (3.7)

and
Γ(
k

2
) =

∫ ∞
0

t
k
2
−1e−tdt (3.8)

- Under faulty cases, one or several residuals r̂i are supposed to follow a non-centered
Gaussian distribution:

r̂i ∼ N (µi, σ
2
i ) (3.9)

Then, Z can be defined similarly as in Eq. (3.5), which follows a non-centered χ2 dis-
tribution. There are two parameters to fix a non-centered χ2 distribution: the DoF k

and the non-centrality parameter λ, i.e., Znc ∼ χ2
k,λ.

The non-centrality parameter λ is related to the mean and variance of each Gaussian
distribution:

λ =

m∑
i=1

µ2
i

σ2
i

(3.10)

The PDF of the non-centered χ2 distribution is defined as:

P(z = Znc) =

∞∑
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The two hypothesis can be defined as:

H0 : (fault-free cases) Z ∼ χ2
k

Ha : (faulty cases) Z ∼ χ2
k,λ

(3.12)

The decision is made with the help of a threshold T , which is used to compare with the test
statistic Z, i.e., the NSSE:

H0 : if Z ≤ T
Ha : if Z > T

(3.13)

The threshold T is defined with the help of the Pfa, which can be written as:

Pfa = P(Z > T |H0) =

∫ ∞
T

1

2
k
2 Γ(k2 )

z
k
2
−1e−

z
2 dz (3.14)
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Figure 3.6 – Global Test

Similarly, the probability of missed detection Pmd can be defined as:

Pmd = P(Z ≤ T |Ha) =

∫ T

0
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Fig. 3.6 gives an illustration of the Global Test: a centered χ2 distribution in blue, a non-
centered χ2 distribution in red, the Pfa, Pmd as well as the threshold T .

In fact, for a FDE problem with GT, a general logic of solution can be as follows:

1) The DoF k is known since the number of measurement m and the number of unknown
to be solved n are known: k = m− n;

2) Once the Dof k is known, a centered χ2 distribution can be defined;

3) Set Pfa so that the threshold T can be calculated according to the Eq. (3.14);

4) Finally, it remains the Pmd and the non-centrality parameter λ. One of the two param-
eters can be pre-defined, according to which, the other will be deduced. If the Pmd is
pre-defined, in this case, the deduced non-centrality parameter can be used to calculate
the Minimum Detectable Bias (MDB) or to calculate the Horizontal Protection Level
(HPL), which will be detailed in Chapter 6. On the contrary, it is also possible to
pre-define the non-centrality parameter in order to predict the Pmd of a dangerous bias.

Consequently, if the null hypothesis H0 is rejected and the alternative hypothesis Ha is ac-
cepted, this means an inconsistency of the total measurement set is detected. Then, the fault
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identification procedure is needed to isolate and exclude the faulty measurement. The LT is
one of methods to realize the fault identification.

3.5.1.2 Local Test (LT)

If a fault is detected by Global Test (GT), that means an outlier exists in one or several
measurements. A Local Test (LT) can be carried out so as to identify the outlier. The LT
uses the normalized residuals as test statistic, which can be written as follows:

wi = | r̂i√
(Cr̂)ii

| (3.16)

where, (Cr̂)ii represents the ith diagonal element of the covariance matrix of the residuals Cr̂.
The covariance matrix of the residual vector is calculated as follows:

Cr̂ = Σ−H(HTΣ−1H)−1HT (3.17)

Figure 3.7 – Local Test

If the ith measurement is not an outlier, wi is supposed to follow a standard normal dis-
tribution, which is the local null hypothesis H0,i. Otherwise, wi follows a biased normal
distribution with a bias of λ0, which corresponds to the local alternative hypothesis Ha,i as
shown in Fig. 3.7. In Fig. 3.7, th denotes the local threshold, which can be calculated with
the predetermined local significance level Pfa,0.

Denoting:
- α = Pfa, the probability of false alarm or the significance level of the GT;
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- β = Pmd, the probability of missed detection of GT;
- α0 = Pfa,0, the probability of false alarm or the significance level of the LT.

Then, according to Fig. 3.7, we have the following relations:

P(w > th|H0) =

∫ ∞
th

1

σ
√

2π
exp(

x

2σ2
)dx =

Pfa,0
2

=
α0

2
(3.18)

P(w < th|Ha) =

∫ ∞
th

1

σ
√

2π
exp(

x− µ
2σ2

)dx = Pmd = β (3.19)

For a real number q with 0 < q < 1, the q-quantile of a random variable X is defined as the
value of x such that:

P(X ≤ x) ≤ q (3.20)

Denoting nq the q-quantile of a normal distribution, then, by combing the definition above of
the quantile and the equations (3.18) and (3.19), we can conclude that:

n1−α0
2

= th (3.21)

If we denote n1−β the (1− β)-quantile of the normal distribution, by observing the Fig. 3.7,
the following equation can be deduced:

n1−α0
2

+ n1−β = λ0 (3.22)

where, λ0 represents the bias of the normal distribution.

In fact, the α and β of the GT and the significance level α0 of LT are interrelated [121]. That
is to say, only two of them can be fixed arbitrarily and the remainder can be deduced. These
three parameters have following relationships including the one mentioned in Eq. (3.22):

λ = λ2
0 = (n1−α0

2
+ n1−β)2 (3.23)

χ2
β,k,λ = χ2

1−α,k (3.24)

Finally, the LT is realized as follows:

H0,i : (ith measurement not an outlier) wi ≤ th
Ha,i : (ith measurement an outlier) (wi > th) ∧ (wi > wk ∀k)

(3.25)

The measurement with the largest local test statistic wi exceeding the local threshold will be
excluded. This procedure can be repeated several times in a loop until no outlier exists in
current measurement set.
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What should be highlighted is that, the assumption of a single outlier is made in each iteration
of LT. The exclusion of multiple faults can be realized by performing LT in several iterations.

What is more, an additional test of redundancy could be optionally added into the LT proce-
dure, which is concerning the contribution of the examined measurement to the total redun-
dancy. This will be described in the following text.

The redundancy matrix R can be written as [122]:

R = Cr̂Σ
−1 (3.26)

where, Cr̂ represents the covariance matrix of the residual vector which is defined in Eq. (3.17)
and Σ represents the covariance matrix of the measurement errors.

The trace of the matrix R is the redundancy (i.e., the Degree of Freedom) of the system. It
can be proven that the diagonal elements ri are always between 0 and 1, which correspond
to the contribution of the ith measurement to the overall redundancy [123, 124]. Ideally, all
the diagonal elements of the matrix R should be approximately equal. When ri is closed to
zero, it means that the ith measurement contributes little to the overall redundancy and it is
closed to an uncontrolled measurement [124].

Besides, due to the correlation among measurements, a fault of a measurement is possible to
spread over all the residuals so as to prevent the detection or even lead to wrong detection.
As a result, it is necessary to guarantee that the detected faulty measurement is separated
enough with other measurements. That is to say, the following condition can be added into
the LT if the ith measurement is detected as faulty one [123]:

ri > |rji|, (j 6= i, j = 1 : m) (3.27)

3.5.2 Different Fault Detection and Exclusion (FDE) Methods

Different strategies of Fault Detection and Exclusion (FDE) exist by combining in different
ways the basic tests mentioned previously, i.e., Global Test (GT) and Local Test (LT). In this
section, five FDE techniques will be introduced: the Classic Test (CT), the Subset Test (ST),
the Iterative Local Test, the Forward-Backward (FB) Test and the Danish Method.

3.5.2.1 Classic Test (CT)

One of the most basic FDE techniques is to simply use the GT to detect whether there is a
fault. If it is the case, the measurement with the largest normalized residual calculated in
Eq. (3.16) will be excluded. This scheme will be called Classic Test since the Fault identifi-
cation is conducted only by choosing the largest normalized residual. Fig 3.8 shows us the
flowchart of this procedure.
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Figure 3.8 – Flowchart of the Classic Test

3.5.2.2 Subset Test (ST)
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Figure 3.9 – Flowchart of the Subset Test

The principle of the Subset Test (ST) is to perform Global Test (GT) several times while
taking out one or several measurements at a time in order to find the right measurement
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set excluding the huge errors [123]. More precisely, as shown in Fig. 3.9, the test statistic
used in ST is the same as that of the GT. After the initial failure of the GT with all the
measurements, if there are enough satellites, that is to say, at least 2 redundancies to realize
the fault exclusion, the ST will begin. The test statistics will be calculated for all the possible
subsets that include n + 1 to m − 1 measurement, where n is the number of unknown to be
estimated which is equal to 4 in our case and m is the number of measurements. Thus, all
the possible subsets contain the cases of 1 to m − (n + 1) measurements excluded. Then,
the subset that has the smallest test statistic below the threshold, and at the same time, the
largest number of measurement, will be chosen to calculate the position solution.

There is no doubt that the multiple faults can be excluded by the ST. The drawback of ST,
however, is the computational complexity especially for the future multi-constellation, which
will provide more visible satellites for users. On the contrary, for the mono-constellation in
urban environments, the main constraint is that there are often not enough redundancies for
the ST, which will badly affect its performance.

3.5.2.3 Iterative Local Test
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Solution
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Solution
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Yes

NoYes

No

Yes

No

Figure 3.10 – Flowchart of the Iterative Local Test
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The principle of the iterative Local Test (LT) is to combine the Global Test (GT) and the
Local Test (LT) during each iteration. The GT is used to detect the existence of fault. If
the GT is failed and there is enough redundancy, then the LT will be performed individually
for each measurement. The measurement with the largest test statistic which is also above
the threshold will be examined with the redundancy check. If the redundancy check passes,
i.e., the condition in Eq. (3.27) is met, the measurement with the largest test statistic will be
excluded. This LT can be continued until there is not enough redundancy or all the actual
test statistics are below the threshold. The flowchart of the iterative local test is shown in
Fig. 3.10.

The iterative local test is not computationally expensive, especially compared to the previous
ST algorithm, since there are not many combinations of cases to do. But the same potential
problem of poor redundancy exists in urban canyons.

3.5.2.4 Forward-Backward (FB) Test

Forward-Back (FB) testing is a FDE scheme which uses both global and local tests. The
necessity of introducing FB testing is due to the existence of several phenomena in urban
environments. First of all, the mutual influence of measurements, that is to say, an error of
a measurement which can be absorbed by the residuals of other measurement, will possibly
cause erroneous rejection of a good measurement [125]. What is more, the threat of multiple
simultaneous failures can induce the risk of Unobservable Multiple Fault (UMF) [5]. That is
to say, the error size can combine with the satellite geometry such that a huge position error
is produced by very small residual, which make these faulty measurements unobservable by
FDE algorithms. Thus, special measure ought to be taken in order to mitigate the mutual
influence or even non-observability of the faulty measurements.

Furthermore, at least one redundancy is generally necessary in order to identify an outlier.
But the visibility of satellites is usually poor in urban canyons, which means not much redun-
dancy exists. This is also the drawback of the previous algorithms, especially in presence of
multiple faults. As a result, FB will include a process of reconsideration of an earlier rejected
measurement if more than one observation is excluded.

There are two main parts in the FB testing algorithm: the forward part and the backward
part. In the forward part, the GT is firstly carried out to check the measurement consistency.
If the GT fails, the LT will be performed in order to identify and exclude the outliers. This
forward part will be conducted recursively until no more erroneous measurements are detected
and the solution is declared reliable or unreliable. If the GT in the forward part is passed
and more than one measurement is excluded, then the backward part will begin, where the
excluded measurements will be reintroduced into the measurement set. Fig. 3.11 shows us
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Figure 3.11 – Flowchart of the Forward-Backward Test

the complete scheme of the FB testing.

The main contribution of the FB testing is that the erroneous rejection of the measurement can
be mitigated, which can also help to avoid the positioning failure due to the poor redundancy
caused by fault exclusion.

3.5.2.5 Danish Method

The Danish method [124] is an iteratively reweighted least square scheme firstly used in the
geodetic applications. This method aims at providing consistency among measurements by
modifying the a priori weights. It is able to reweight the measurements specially to reduce
the weights of the suspected outliers.

Here, the Danish method also begins with a Global Test (GT). If the GT is failed, a Local
Test (LT) will be carried out in order to identify the faulty measurements. Once the outlier
is identified by LT, the exclusion step is replaced by the reweighting scheme. The variance of
the suspected measurement will exponentially increase based on the normalized residuals as
follows [126]:

σ2
i,j+1 = σ2

i,0 ·

e
wi,j
th , if wi,j > th

1, if wi,j < th
(3.28)

where,
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- σ2
i,j+1 represents the variance of the ith measurement after j + 1 iterations;

- σ2
i,0 represents the a priori variance of the ith measurement error;

- wi,j represents the local test statistic of the ith measurement described in Eq. (3.16) after j
iterations.
- th represents the local test threshold.

The Danish method is able to reduce the weight of the measurement with huge errors by
increasing their variance instead of excluding them. This process can be iteratively repeated
until the solution coverage and the weight no longer need to be changed. Fig. 3.12 gives an
illustration of the overall Danish method scheme and here a maximal number of iteration
which equals to 10 is added in order to avoid the slow convergence.

In fact, the Danish method replaces the exclusion step by the step of weakening the contri-
bution of the faulty measurement to the overall measurement set. As a result, the problem
of non-feasibility due to poor redundancy will be solved, which will be theoretically more
adapted to urban environments to some extent.

3.6 Conclusions and Discussions

This chapter deals with the topics concerning GNSS position integrity. After an introduction
of the principle terminology and definitions in the domain of GNSS integrity, the limitations
and problematics of integrity monitoring in urban environments are analyzed. The difficulty
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of integrity monitoring for urban transport applications is firstly to get rid of the one fault
assumption made in traditional aeronautic integrity monitoring algorithms. Then the poor
satellite visibility in urban canyons is also a limitation.

Different techniques of Fault Detection and Exclusion (FDE) are presented in detail: the
Subset Test (ST), the iterative Local Test (LT), the Forward-Backward (FB) Test, the Danish
re-weighting method as well as the Classic Test (CT). These FDE algorithms are able to detect
and to exclude multiple faults, which can be potentially implemented into the low-cost GNSS
commercial receivers. All these FDE techniques discussed in this chapter will be evaluated
and compared with real data collected in urban canyons later in Chapter 6.
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Summary

GNSS performance in challenging environments is one of the most problematic issue for land
users. This chapter will mainly discuss about the local effects which degrade the performances
of the GNSS positioning and several models allowing to better characterize them.

This chapter will begin by analyzing the harmful local effects (e.g., NLOS receptions and mul-
tipath effects) and the way in which they may affect the GNSS positioning performances such
as accuracy and integrity. Then, the existing approaches of NLOS/multipath mitigation is
summarized. One of approaches adopted in this research work is signal weighting by Weighted
Least Squares (WLS) estimator. The WLS can be highly efficient if correct measurement error
models are adopted. As a result, several error models are presented, among which, a hybrid
model is proposed. These models will be implemented and evaluated later in the chapter 5
with the help of a WLS estimator, which can distribute different weights by considering the
real-time local effects.
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4.1 Local Effects in Urban Environments and the Approaches

of Mitigation

The urban environment presents several challenges to the GNSS signal reception, which could
lead to severe degradation of positioning accuracy if no special measures are taken. These
complexities can be sorted into two major issues.

First of all, since obstacles in the urban environment can block GNSS Line-of-Sight (LOS)
signals, the number of satellites in view will be effectively reduced. Yet this situation can
be improved by using a multi-constellation receiver in order to obtain sufficient direct-LOS
signals for the computation of a position solution [115, 127]. This effect influences also the
geometrical distribution of the satellites around the users, i.e., Dilution of Precision (DOP).

Secondly, due to flat surface reflectors presenting in the urban environment, the problems of
multipath interference and NLOS reception arise [53], which are illustrated in Fig. 4.1. In
fact, the multipath interference and NLOS reception should be considered as two different
phenomena as they can produce different ranging errors. The detailed explanations about
these two phenomena are in [128].

Figure 4.1 – (left)Multipath interference; (right)NLOS reception [128]

The consequences of the two major problems mentioned above are:

1. Distort the correlation function of receiver

In GNSS received signal processing, correlation is an essential step which helps receivers
to estimate Time of Arrival (TOA) ∆t of the GNSS signals, which directly links to
pseudorange measurements. In fact, by correlating the received satellite Pseudo Random
Noise (PRN) code with the replica generated by the local receiver, the TOA ∆t can be
determined from the maximum of the correlation function as shown in Fig. 4.2 [129].
The reception of a multipath-contaminated signal will effectively distort the correlation
function so that the code and carrier phase tracking accuracy will be degraded. This
effect can lead to large range errors as well as inaccurate position solutions. Fig. 4.3 gives
us an illustration of the effect of multipath interference on the correlation function [7].
The resulting code tracking error depends on the receiver design as well as the direct



Chapter 4. GNSS Local Error Characterization and Mitigation 71

and reflected signal strengths, path delay and phase difference, and this error can be up
to half a code chip [130,131].

Figure 4.2 – Principle of GNSS code delay tracking [129]

2. Increase or decrease the carrier-power-to-noise-density ratio (C/N0) of the

received signals

The carrier-power-to-noise-density ratio, i.e., C/N0, represents the ratio of signal power
and noise power per unit of bandwidth. In urban environments, constructive multipath
interference leads to an increase in C/N0, while destructive multipath interference leads
to a decrease. The level of C/N0 will mainly influence the signal tracking performance
of GNSS receivers. For instance, the noise of the receivers’ tracking loop is directly
linked with C/N0 and the linear domain of the discriminator output is also strongly
affected by the level of C/N0, which will further influence the tracking error [6]. Since
the phase of a reflected signal with respect to its directly received counterpart depends
on the wavelength, multipath interference may be constructive on one frequency and
destructive on another frequency. As a result, these characteristics contribute to new
multipath detection technique by comparing the difference in measured C/N0 between
two or multiple frequencies with what is expected for that signal at the elevation angle
[53].

3. Change the polarization of the signal

GNSS signals directly received from satellites have Right-Handed Circular Polariza-
tion (RHCP). But after one reflection, the polarization becomes Left-Handed Circular
Polarization (LHCP). Thus, most reflected signals have LHCP or mixed polarization.
Consequently, multipath mitigation techniques can be developed at antenna design level
by differentiating the sensitivity of antenna for RHCP and LHCP [53,57,58,132].
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Figure 4.3 – Effect of constructive and destructive multipath interference on the correlation
function [7]

4. Inconsistent GNSS pseudorange measurements

Because of the stringent environment for the GNSS signal reception, it is possible that
the pseudorange measurements provided by one or more GNSS satellites are not con-
sistent with other ones. Hence, it is necessary to implement algorithms to ensure that
the pseudorange measurements are all consistent. [114] has implemented the RANdom
SAmple Consensus (RANSAC) algorithm, developed for computer vision tasks, in the
GNSS context. This algorithm is based on consistency checking and it is capable of
detecting multiple fault unlike the RAIM technique, which is compatible to a degraded
scenario such as urban environment.

The techniques of detecting and mitigating the NLOS receptions and multipath effects exist at
different levels. Table 4.1 provides us with a detailed classification of the existing approaches
in the literature as well as their main features.

In the framework of this thesis, we will mainly concentrate on the approaches of signal weight-
ing, consistency checking as well as a statistical approach such as the EKF-based filtering.
In the next section, several weighting models will be presented, among which, the proposed
hybrid model involves also the technique of mapping-aided approach.
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Table 4.1 – Classification of the GNSS Multipath Mitigation Approaches

Approaches Techniques Features of Techniques References

Antenna design

1© Dual polarization antenna
This method cannot detect all the NLOS,

[53,57,58]
especially those reflected by even times

[132–134]

(e.g., twice or 4 times).

2© Choke Rings
The volume of choke-ring antenna system is too
large for most dynamic positioning applications

3© Controlled Reception Better performance for high elevation signals;
Pattern Antenna (CRPA) large volume and expensive
4© Angle of Arrival (AOA) suitable for NLOS and strong multipath;
measurement interference; expensive

5©Multiple Antennas
suitable for large vehicles (e.g.ships,
trains or large aircraft)

Receiver Design

1© Code Discriminator Design
expensive for manufacturing;

[7, 59]
huge power consumption

2© Early-Late Correlator Comparisons more effective for dynamic applications
[135,136]

3© Vector Tracking Similar mechanism with carrier smoothing

Weighting model

1© C/N0-based Weighting model Can improve the positioning accuracy;
2© Satellite elevation-based weighting model easy to implement [137–140]

3© Danish Reweighting Method
it is an empirical procedure with no valid
statistical explanation but perform well in practice

Signal Processing

1© Carrier Smoothing more adapted to dynamic applications;

[141–143]
2© Doppler Domain Multipath Mitigation only multipath interference mitigation,

not NLOS mitigation
3© Multi-frequency C/N0 reliable for static applications; easy to implement

Image Processing 1© Fisheye Camera Discrimination between LOS/NLOS [144–146]

Consistency Checking
1© RAIM Measurement redundancy required

[130,139,140]2© Subset Testing Performance degraded if a large proportion of
3© Forward-Back Testing signals are NLOS
4© Iterative Local Test

Mapping-Aided

1©2D map-matching Mapping error exist without knowing true position;
[36,147,148](e. g., Urban Trench Model (UTM)) computationally intensive;

2© 3D environment model huge work to establish and load 3D city model.

Statistical Approaches

1© Bayesian approaches latter state is easy to be contaminated by the
[149–151]

2© Particle filtering former one because of the sequential procedures;
3© KF-based innovation filtering high processing load is possible

[152–154]
4© Maximum likelihood Estimation

4.2 Characterization of the Pseudorange Errors

4.2.1 Estimation of the Pseudorange Errors

GNSS code pseudorange errors come from a variety of sources, which are analyzed in detail
in chapter 2. Except errors due to local effects, all the other errors in nominal conditions are
well modeled and tested in aeronautic domain for Safety-of-Life (SoL) utilities. The faulty
case errors due to GNSS constellation (such as the major satellite failure) or atmosphere (such
as the irregular ionospheric delay) occur with low probability: for instance, the probability of
occurrence of a major satellite failure is 3 times per year for a 24 GPS satellites constellation.

The pseudorange errors due to local effects, such as multipath, are the most complicated
to be modeled because of their variations which strongly depend on the local environments.
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And they are frequent and extremely harmful for GNSS receivers since the errors can even be
up to several kilometers. In this section, we will present the methodology of estimating the
pseudorange (PR) errors in order to understand their behavior in urban canyons and pave
the way for the error characterization in the following sections.

The method for computing the PR error in this research work has mainly been developed and
employed in the framework of the project named INTURB1. It is a post processing procedure
with the help of the test trajectories and reference trajectories collected by the navigation
systems implemented on the Vehicle for Experimental Research on Trajectories (VERT) of
the IFSTTAR. The raw data are collected with a low-accuracy receiver Ublox LEA 6T and the
corresponding reference trajectories are provided by an Inertial Navigation System LandINS
hybridizing a tactical Inertial Measurement Unit and a high-accuracy dual-frequency GNSS
receiver Novatel-DLV3 [155].

The code pseudorange measurement of the ith satellite at epoch k can be written as in
Eq.(2.1):

P i(k) = ρi(k) + c(δtu(k)− δti(k)) + diI(k) + diT (k) +Di
mult(k) + nip(k)

where,
- ρi represents the true geometric distance between the receiver and the satellite i;
- δtu represents the advance of the receiver clock with respect to system time;
- δti represents the advance of the satellite clock with respect to system time;
- diI represents the error due to ionospheric propagation delay;
- diT represents the error due to tropospheric propagation delay;
- Di

mult represents the error due to multipath;
- nip represent measurement noises.

Thus, the PR error can be estimated in this way:

1. The true geometric distances between the receiver and the satellite ρi is calculated with
the help of the ground truth and the position of ith satellite;

2. The satellite clock offset δti is corrected with the broadcast term provided by the system;

3. The atmospheric delay dI , dT are corrected by applying the standard models: For the
tropospheric delay, the Hopfield model with Essen and Froome coefficients is adopted
with standard meteorological parameters defined in [19]. For the ionospheric delay, the
GPS broadcast model is used;

4. The receiver clock offset is estimated with the satellite nearest to the zenith, which is
theoretically not or the least affected by multipath among all the other satellites in view;

1INTURB: positioning INTegrity in URBan environments
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5. Finally, by subtracting all the terms estimated in the steps above from the code pseu-
dorange measurement, we can obtain the code pseudorange measurement errors due
to multipath, the receiver noise as well as the residual errors which cannot be totally
corrected by the error models.

In fact, in the constraint environments, the measurement noises are almost negligible compared
to the error caused by local effects, such as multipath error or especially the NLOS reception.
We will consider approximately here that the final term obtained in the last step is the error
due to local effects, i.e., multipath and NLOS.
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Figure 4.4 – Histograms of the PR Errors (tails are due to Multipath)

Fig. 4.4 shows the histograms of the estimated PR error with GPS data collected in urban
environments of different cities. Table 4.2 reports a summary of the numbers of epochs, the
numbers of measurements and the total duration of each dataset. From the histograms we
can find that the PR errors have heavy tails especially in the positive part (the largest error
reaches more than 100 meters) and the distributions are skew. As expected, this is mainly due
to the multipath or NLOS reception since a reflected signal usually travels a longer distance
than the direct one. Obviously, the PR errors in urban environments are severely biased by
the local effects.

Thus, how to correctly model the PR errors or to properly reduce/exclude the contribution
of the severely contaminated signal on the navigation solutions are the main tasks of the
following sections.
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Table 4.2 – A Summary of Dataset

Number of Epochs Number of Observations Duration

Nantes Center 17903 130073 59min40sec

Toulouse 13779 106568 45min55sec

Boulevards, Paris 80152 585921 4h27min10sec

La Défense, Paris 14776 106413 49min15min

Paris XIIth 33567 256141 1h51min53sec

Nantes 3326 24656 11min5sec

4.2.2 Existing Pseudorange Error Models

In a WLS adjustment, the theoretically optimal estimate, which is supposed to be unbiased
with minimal variance, can never be achieved unless the correct stochastic measurement error
model is applied. The measurement models describe the precision of measurement, which can
contribute to improving the positioning accuracy as well as the integrity monitoring process.

The main objective of this section is to present several existing methods that estimate the
pseudorange error variance in real time while taking into consideration the local effects in
constraint environments. The criteria the most employed to evaluate the signal quality are
for example the Carrier-Power-to-Noise-Density Ratio C/N0 and the satellite elevation. These
parameters are easy to be obtained but sometimes cannot correctly reflect the signal quality.
The signal reception state, i.e., LOS/NLOS indicator, can be a good criterion of signal quality.
But it can only be obtained with the help of other techniques such as the fisheye camera [146]
or digital map information. The latter one will be introduced later in the next section.

4.2.2.1 Carrier-Power-to-Noise-Density Ratio (C/N0) Based Variance Model

The Carrier-Power-to-Noise-Density Ratio C/N0 is one of the key parameters that determine
receiver performance. It is an indicator of GNSS signal tracking quality. For example, tracking
loops experience a rapid increase of tracking error for signals with low C/N0 (e.g., lower than
25dbHz) or even loose lock. In most of the cases, the low C/N0 are due to multipath, i.e.,
signal received after reflections/diffractions or a poor satellite geometry.

Fig. 4.5 shows an illustration of the absolute PR errors as a function of C/N0 with GPS
data collected in the urban canyon of Nantes and Toulouse, France. As expected, PR errors
increase when the values of C/N0 decrease.

According to this feature between C/N0 and the measurement errors, several models of mea-
surement variance exist in the literature as a function of the carrier-power-to-noise-density
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(a) Data Collected in Nantes Urban Canyon
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(b) Data Collected in Toulouse Urban Canyon

Figure 4.5 – Absolute Pseudorange Errors as a function of C/N0 in different urban canyons

ratio (C/N0), such as the sigma-ε model [138] and the sigma-∆ model [156]. Here in this
research work, we choose to implement one of the C/N0 models: sigma-ε model, which is
studied in many research work and is proved to be generally efficient.

The sigma-ε model was built up firstly for geodetic receivers by [138], which links the C/N0

observable to the variance of the GPS phase observation. Then this model is generalized
by [137]. A complete formula that goes with all receiver types is proposed, which can be
written as:

σ2
i = a+m× 10−

C/N0
10 (4.1)

where,
- σ2

i (in m2) represents the variance of the measurement error of the ith satellite;
- a (in m2) and m (in m2Hz) are model parameters which depends on the receiver/antenna
type and environments.

There are two parameters to calibrate in this sigma-ε model: a and m. They should be
chosen according to the particular user equipment as well as the environment. In the current
literature, these two parameters are usually calibrated empirically. Once proper parameters
are chosen, this model generates little computational load and is well suited for kinematic and
real time applications.
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4.2.2.2 Satellite Elevation-Based Variance Model

Satellite elevation is another criteria to evaluate signal quality since a satellite with high
elevation is generally less impacted by the local effects. Fig. 4.6 shows the absolute PR error
as a function of satellite elevation with GPS data collected in the urban canyons of Nantes
and Toulouse. Similar trend with the previous C/N0-PR error can be observed, the PR errors
decrease when satellite elevations increase.
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(a) Data Collected in Nantes Urban Canyon
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(b) Data Collected in Toulouse Urban Canyon

Figure 4.6 – Absolute Pseudorange Errors as a function of Satellite Elevation in different
urban canyons

In many GNSS analysis software packages (such as Gamit [157]), the elevation-dependent
measurement error models are implemented because of their simplicity of implementation
and the global efficiency.

Several elevation dependent PR error variance exist in the literature, such as the sin type one
in Eq. (4.2) and the exponent type one in Eq. (4.3) [119,158]:

σ2
i = c2

1/sin
2(θi) (4.2)

σ2
i = c2

2 + c2
3 × exp(−

2θi
θ0

) (4.3)

where,
-θi represents the elevation of the ith satellite;
-c1, c2, c3 and θ0 are model parameters which depend on the receiver and environment.
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The model parameters should fit the receiver equipment used for data collecting as well as the
traveled environments. There is not yet a methodology in the literature to efficiently choose
these model parameters except empirically calibrating.

4.2.2.3 Dirichlet Process Mixture (DPM) Model

The Dirichlet Process Mixture (DPM) model is a flexible density modeling based on a Bayesian
nonparametric approach [159]. It is adapted into the context of GNSS by the PhD research
work of N. Viandier in [160]. DPM can get rid of the drawback of the Jump Markov System
(JMS). That is to say, instead of using a limit number of Gaussian, DPM can generate an
infinite Gaussian mixture. Moreover, not like the JMS, which has to allocate the time of sliding
window length for initialization, DPM can start immediately at the time of acquisition [161] .

The basis of the DPM is the Dirichlet Process (DP) [162], which is a distribution over distribu-
tions, i.e., each component draw from a Dirichlet process is itself a distribution. Distributions
draw from a Dirichlet process are discrete, but cannot be described using a finite number of
parameters, thus it is classified as a nonparametric model.

The general principle of the DPM is to model a set of observations {y1, · · · , yn} using a set of
latent parameters or also called cluster {θ1, · · · , θn}. The preliminary theory of DPM begins
from the Bayesian non-parameter density estimation problem.

* Preliminary Knowledges of Bayesian Non-Parametric Density Estimation
Denoting F the distribution of the observations yk. The nonparametric model allowing
to estimate F can be written as:

F (y) =

∫
θ
f(y|θ)dG(θ) (4.4)

where,
- θ ∈ Θ is the latent parameters or cluster;
- f(· |θ) is a mixed Probability Density Function (PDF) representing the likelihood func-
tion;
- G is a Random Probability Measure (RPM) distributed according to a prior distribu-
tion.

For the DPM, the DP is selected as a RPM prior for G. There are two parameters to
determine a DP: a base distribution G0 and a positive scaling parameter α. Since the
DP is a distribution over distributions (i.e., a measure on measures), we can randomly
draw a distribution G from a DP and then independently draw n random variables θk
for G. That is to say,

θk|G ∼ G (4.5)
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where,
G ∼ DP (G0, α) (4.6)

Moreover, an important property of the DP is that G is discrete with probability which
equals to one. Consequently, the stick breaking representation can be introduced as an
infinite sum of Dirac measures [163]:

G =
∞∑
k=1

πkδθk (4.7)

where,
- θ ∼ G0;
- πk = βk

∏k−1
j−1(1− βj);

- βk ∼ B(1, α) and B is the standard Beta distribution;
- δθk is a Dirac measure located in θk.

What is more, it is proven in [164] that, by marginalizing out G, the predicted distri-
bution of θn+1 knowing cluster {θ1, · · · , θn} follows a Polya urn scheme:

θn+1|θ1:n ∼
1

α+ n

n∑
k=1

δθk +
α

α+ n
G0 (4.8)

This means that, the new sample θn+1 can take the value of a previous sample with the
probability n

α+n or can take a random value from G0 with the probability α
α+n .

Finally, the unknown distribution of observation F can be estimated as follow:

F (y) =

∞∑
k=1

πkf(y|θk) (4.9)

* Dirichlet Process Mixture (DPM) and Its Adaptation in the Context of
GNSS
With the preliminary knowledges described in the previous text, we can now enter into
the Dirichlet Process Mixture (DPM), which is based on the Dirichlet Process (DP) in
the framework of Bayesian non parametric approaches.

Fig. 4.7(a) provides an hierarchical representation of the DPM models. The DP is
mainly used to specify the latent distribution. The core part of the DPM can be seen
as a simple Bayesian problem with the likelihood function yi ∼ pθi(yi) and the prior
θi ∼ G(θi). The prior G is not fixed, which is a random distribution generated by the
DP described previously. They can be summarized as:

yi ∼ pθi(yi), i = 1, . . . ,m

θi ∼ G(θi)

G ∼ DP (G0, α)

(4.10)
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G0 α

G

θ1 · · · θk · · · θm

y1 · · · yk · · · ym

(a) DPM [161]

G0 α

G

θ1 · · · θk · · · θm

y1 · · · yk · · · ym

LOS/NLOS

(b) DPM with Signal Reception States [160]

Figure 4.7 – Hierarchical representation of DPM models

A special case of the DPM is that the prior likelihood function is chosen as a Gaussian
distribution. That is to say, if we choose the latent parameters θi as the couple of mean
and variance of the PR errors:

θi = {µi,Σi} (4.11)

the mean and the pθi(yi) in the equation above can be written as:

pµi,Σi(yi) = N (yi;µi,Σi) (4.12)

Under this condition, the base distribution is a Normal Inverse-Wishart (IW) Distribu-
tion since the IW distribution represents positive definite matrices, which can serve as
a prior for any covariance matrix Σ. So, we have:

G0(µ,Σ) = N (µ;m,B)×W−1(Σ−1;R, r) (4.13)

where,
- m and B are respectively the mean and the variance-covariance matrix of the normal
distribution;
- R and r are respectively the scale matrix and the degree of freedom of the IW Distri-
bution.
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The DPM can now be adapted to the context of GNSS applications with the steps
above. The PhD research of [160] has improved this version of DPM by adding another
level at the top of the DPM hierarchical representation as shown in Fig. 4.7(b). That is
to say, the signal reception states LOS/NLOS are considered to help construct the base
distribution G0 and the strength parameter α of the DP.

The variables of the DPMwill change according to the signal reception state LOS/NLOS.
This means, for LOS reception, we have:

G ∼ DP (G0, α1)

σk ∼ W−1(Σ1, dof1)

µk ∼ N (µ0,
σk
k1

)

(4.14)

For NLOS reception, we have: 
G ∼ DP (G0, α2)

σk ∼ W−1(Σ2, dof2)

µk ∼ N (µ0 + r̂k,
σk
k2

)

(4.15)

where,
- α1 and α2 are DP strength scaling factors, where α1 << α2;
- Σ1 and Σ2 are scale matrix of the IW distribution, where Σ1 < Σ2;
- dof1 and dof2 are Degree of Freedom of the IW distributions, where dof1 < dof2;
- µ0 represents the mean of the normal distribution, which is to be fixed;
- k1 and k2 are scale factors and k1 > k2;
- r̂k is the estimated PR errors, which can be taken as the estimated residual.

In fact, according to Eq. (4.8), the fact of choosing DP strength parameter as α1 << α2

means that the latent parameter for a NLOS signal reception has a high probability
of being drew from the base distribution G0 rather than being equal to the previous
clusters. This procedure is essential since it can better follow the parameter (error mean
an error variance) jumps caused by the NLOS receptions.

As a result, at each epoch for each satellite, the final mean µ and variance σ of the
mixture error distribution estimated by DPM are obtained with the weighted sum of N
particles as follows:

µ =
N∑
k=1

wkµk (4.16)

σ2 =

N∑
k=1

wk(σ
2
k + µ2

k)− µ2 (4.17)
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where,
- wk represent the weight of the kth particle, which can be calculated according to
the Sequential Importance Sampling (SIS) algorithm or Rao-Blackwellisation particle
filter [165].

The research work of [160] adopts thresholds on C/N0 or estimated residuals in order to
distinguish the signal reception state (LOS/NLOS). But these criteria are not exactly suitable
in face of complex dense urban canyons. This is because C/N0 values can possibly increase due
to constructive multipath interference. And the estimated residuals are probably small with
the presence of the correlated measurement faults, which is also mentioned as Unobservable
Multiple Fault (UMF). As a result, these criteria may induce erroneous estimation from the
beginning of the DPM hierarchical level.

The DPM has several advantages compared to the traditional models since it can estimate
dynamically the mean and variance at each epoch for each satellite according to their state
of reception. But the choice of parameters is always complicated and not yet a methodology
exists in the literature.

The choices of parameters include the number of particle N , the strength parameter of the
DP under LOS and NLOS α1,2, the parameters for IW distribution under LOS/NLOS as well
as their degree of freedom, the scale factors k1,2 as well as the prior distribution initialization
parameters. These parameters should be chosen carefully since they will influence on the final
estimations.

Furthermore, the complexity of algorithm implementation and parameter calibration prevent
DPM from being employed as real-time algorithm for GNSS applications.

4.2.3 A Proposed Hybrid Model: Contribution of the Urban Multipath
Model (UMM)

4.2.3.1 Starting from the Urban Trench Model (UTM)

The Urban Trench Model (UTM) is proposed in [35]. It is based on the exploitation of a 2D+1
digital map containing simplified features of urban environment as well as the corresponding
building height information in real time. By geometric modeling, the UTM can provide signal
reception states by separating the satellites which are in direct visibility from the ones which
are hidden or in indirect visibility. Moreover, the additional distance traveled by the NLOS
signals can be calculated by UTM and further corrected from the pseudorange measurements.

The map information is from the BD TOPOr of the IGN2, which can be registered as a set
2Institut National de l’Information Géographique et Forestière
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of attributes applicable to the standard polyline structure of digital maps. For instance, the
street are made of links between nodes (i.e., segments) and shape points; the buildings are
made of polygons. An illustration of the BD TOPOr layers is shown in Fig. 4.8(a).

The first step of the UTM is to characterize the street segment, on which is located the vehi-
cle, with several parameters as follows:
- The segment ID;
- The direction angle;
- The point coordinates at two sides of the segment;
- The neighbor’s id list (for a fast map-matching process);
- W : Width of the street;
- H: Height of buildings;
- P : Position of the vehicle, which is a normalized indicator and takes the value zero for the
extreme left side of the street and the value one for the extreme right side.

This step can pave the way for the following step of satellite mask computation. An important
assumption of UTM is that, the urban streets are approximately considered as trenches with
constant width and homogeneous heights at each side and the length of each trench is infinite,
where comes from the model name "Urban Trench". Fig. 4.8(b) provides a street view of a
typical urban trench.

Then, with the previous triplet parameters, the geometric model of the street can be es-
tablished as shown in Fig. 4.8(c). The algorithm for calculating the critical elevations can
be carried out as an illustration shown in Fig. 4.8(c). And the mask of visibility can be
constructed by exploring each direction of the vehicle as an example shown in Fig. 4.8(d).

The elevation of each satellite will be compared with the critical elevation in the visibility
mask. If the satellite elevation is lower than the critical elevation, the signal reception state
is NLOS, otherwise, the signal is received as LOS.

Finally, the additional distances traveled by the NLOS signals can be calculated according to
the geometry relations, which can be later corrected in the calculation of navigation solutions.

The basic version of UTM is a deterministic one. And a later version has been expanded to
a probabilistic one in [36] by taking into consideration the distribution of the pseudorange
errors. In the following part of the research work, we will only consider the deterministic
UTM.

In terms of the computation of the additional distances for the NLOS signals, the initial
version of the deterministic UTM considers that the number of reflections that may occur is
supposed not to exceed 3 and the opposite buildings are always high enough to reflect the
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(a) The BD TOPO r layers (b) A typical uban trench (corresponding to the
red line in (a))

(c) The geometric model (d) Mask of Visibility

Figure 4.8 – Urban Trench Model Illustration [35]

NLOS signals. This version is further improved by taking into consideration the height of the
opposite building. That is to say, if the opposite building is not high enough to reflect the
signal, the additional distance will not be calculated by the specular reflection law. In these
situations, the signals are potentially received by diffractions. Due to the complexity of fixing
the diffraction direction of the received signal, the additional distance will be considered as
zero.

The two versions of UTM will be further implemented and evaluated with real data in the
chapter 5.
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4.2.3.2 From Urban Trench Model (UTM) to Urban Multipath Model (UMM)

As mentioned in the previous section, an important hypothesis of UTM is that, the length of
the streets is infinite and the buildings at each side of the street are of the same height. In
fact, this hypothesis is an approximation of the map geometry. It fits well the reality when
the vehicle is inside the homogeneous streets which have approximately the same geometric
features at each side. An example of a typical urban trench is shown in Fig. 4.9(a). However,
this assumption is no longer true especially in the non-homogeneous streets or the intersections
as illustrated in Fig. 4.9(b).

(a) Inside a homogeneous street: a typical urban
trench

(b) At an intersection area

Figure 4.9 – Example of two kinds of streets

In order to avoid the drawback of the UTM, the Urban Multipath Model (UMM) is proposed
while getting rid of the infinite length street assumption, which allows improving the robust-
ness of the model. The UMM uses the same BD TOPO road layers as UTM. A simplified ray
tracing approach is adopted by UMM while taking into consideration the geometric features
of the surrounding environments.

The process is first to detect if any facade exists in every satellite azimuth, with a height
high enough to occult the corresponding satellite elevation. This initial step will identify
LOS/NLOS satellites. Fig. 4.10 shows an example of this step at a crossroad in the Chaussée
de la Madeleine of Nantes. Fig. 4.10(a) is an illustration with the information of digital map,
where the polygons represent upside view of buildings. The red lines represent the directions
of each received satellite azimuth. Fig. 4.10(b) is the street view of the same location provided
by Google Earth R©.

The next step is to examine every facade locally, to detect whether it could make a specular
reflection with the occulted satellite previously identified. In this case, the final step is to
check that no other facade may occult the reflected ray, whether in between the antenna and
the impact point, or whether in between the impact point and the satellite. In case several
facades exist with reflected rays, the one with the largest grazing angle (i.e., the smallest
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(a) (b)

Figure 4.10 – An illustration of the first step of the UMM

angle of incidence) is preferred. Facades are regarded as vertical planes, with the height of
the polygon they belong to. Fig. 4.11 shows an illustration of this step provided respectively by
digital map (Fig. 4.11(a)) and the same location provided by Google Earth R© (Fig. 4.11(b)).
The green line represents a NLOS satellite signal which is reflected by a facade (in blue) and
then received by the user.

Finally, the additional distances will be calculated for all the NLOS receptions according to
the geometrical rules of specular reflection.

Algorithm 1 provides the complete procedure of the LOS/NLOS identification and the com-
putation of the additional distance by the Urban Multipath Model (UMM).

(a) (b)

Figure 4.11 – An illustration of the second step of the UMM
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Algorithm 1 Urban Multipath Model (UMM) LOS/NLOS Identification and Computation
of the Additional Distances
Require: BD TOPO R© road layers: ID of road links, segments, polygons representing the
buildings, height of each building, height of the receiver antenna
procedure LOS/NLOS Identification

Step 1: Prepare the ray segments Ri at each direction of azimuth Azimi for each visible
satellite i, with ‖Ri‖ = L, i ∈ [1,m]; . L=100 m in this research work

Step 2:
for i = 1 to m do

Explore the ray segment Ri to see if there exists intersection points with the line segments
of polygons (vertical projection of buildings on the plan);

if ∃ intersection points Pi then
Choose the nearest intersection point and calculate the critical elevation angle θc by taking
into consideration the height of the building;

if θi ≥ θc then . θi is the elevation angle of the ith satellite
return ith Satellite is LOS

else if θi ≤ θc then
return ith Satellite is NLOS

end if
end if

end for
end procedure
procedure Additional Distance Computation

if ith Satellite is NLOS then
Explore every local facade in a circle zone centered at the user with a radius of l meters in
order to find the possible reflection facades . l = 50m in this research work

if Several facades can make specular reflections then
Choose the facade with the largest grazing angle

end if
Calculate the additional distance ADi according to the geometric rules of specular

reflection.
end if

end procedure
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4.2.3.3 A Proposed Hybrid Error Model

Despite their non-complicated implementation, the C/N0 dependent and satellite elevation
dependent error models mentioned previously present some drawbacks especially in dense
urban canyons.

In terms of C/N0-dependent error model, constructive multipath interference leads to an
increase in C/N0, while destructive multipath interference leads to a decrease. Thus all signals
with high C/N0 do not possess high quality. And concerning the satellite elevation-dependent
error model, it is possible that a signal with high elevation is received from multipath while
on the contrary, a low-elevation signal is received in direct way. It strongly depends on the
local environment especially the geometry of the traveled street.

As a result, only one indicator, such as C/N0 or satellite elevation, cannot correctly model
the measurement errors in dense urban. Thus it is necessary to consider several criteria at
the same time in order to increase the probability of correctly indicating the signal quality.

Inspired by [119], a hybrid model, which combines both C/N0, satellite elevation as well as
the contribution of the Urban Multipath Model (UMM), is proposed. Here, the UMM is
involved to provide the signal reception state as well as the additional distance correction for
the NLOS signals. For each code pseudorange measurement, the hybrid model can be written
as:

σ2 = k × m · 10−0.1×C/N0

sin2(θ)
(4.18)

where,
- m is a parameter for model calibration, which depends on receivers and environments.
- k is an multiplier which differentiates the LOS signals from NLOS signals in this way:

k =

k1 if LOS

k2 if NLOS

and k1 < k2.

This hybrid model takes into consideration not only the C/N0, satellite elevation but also the
signal reception state (LOS/NLOS) as well as the correction of the additional distance at the
pseudorange measurement level. The latter two information are provided by the UMM. The
indicator k is used here as a spring in order to amplify the error of the NLOS signals so that
the weight of NLOS signals will decrease in the total contribution of the navigation solution
estimation.

The additional term a in Eq. (4.1) is not necessary in the numerator of hybrid model since
its impact is proved to be very low in practice.
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4.3 Conclusions and Discussions

This chapter begins by a detailed analysis of local effects existing in urban environments
as well as the approaches to mitigate the local effects. Different techniques of local effects
mitigation exist at different levels. In this research work, error characterizations, consistency
check and statistic-based filtering will be adopted as main approaches. And this chapter
mainly deals with the error characterization.

Several models existing in the literature which allow modeling GNSS measurement error
variances are introduced: the C/N0-based error model, the satellite elevation-based error
model as well as the Dirichlet Process Mixture (DPM).

The C/N0-based model and the satellite elevation-based model are easy to be implemented
and are possible to be used in real-time. But they cannot perfectly reflect signal qualities.
Because all the healthy signals do not have high C/N0 values and the signals with high
C/N0 can be produced by constructive multipath interferences. Similarly, satellites with high
elevations are more probable to be received as LOS but this is not absolute since it strongly
depends on the local environment configurations.

DPM can dynamically estimate the measurement error variance and mean. But its complexity
of implementation prevents it from being employed in real time. And the choice for the
parameters of DPM is also extremely sophisticated.

Under this context, a new hybrid model is proposed by considering simultaneously several
information: the C/N0, the satellite elevation, the signal reception state LOS/NLOS as well as
the range corrections for the NLOS signals. The last two pieces of information are provided by
the proposed Urban Multipath Model (UMM) with the help of a 2D+1 digital map (containing
simplified plan features of urban environments as well as the corresponding building height
information). This model is an improved version of the Urban Trench Model (UTM) proposed
in [35]. UMM is based on a simplified ray-tracing approach to distinguish signal reception
state LOS/NLOS and at the same time it can calculate the additional distances traveled by
the NLOS signal. These additional distances are removed when applying the hybrid model.

The hybrid model can be implemented into common commercial receivers once a digital map
is integrated. It is not computational expensive so that it is possible to be employed in real
time.

All the error models introduced in this chapter will be implemented and evaluated with
real data in Chapter 5. The model calibrations and the choices of parameters will also be
addressed. They will be embedded into a Weighted Least Squares (WLS) estimator in which
signals will be re-weighted according to the error variances estimated by the corresponding
error models.
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Summary

This chapter aims at evaluating the error models described in Chapter 4 with real GPS data
collected in urban canyons. The GPS dataset used in this PhD research work is collected
during the project named INTURB (positioning INTegrity in URBan environments) in urban
canyons of three cities: Paris, Nantes and Toulouse. The error models are mainly calibrated
and analyzed in detail with the data of Nantes city center and then applied on the total dataset.
Different error models are compared and evaluated with the Weighted Least Squares (WLS)
estimator.

This chapter will begin by an introduction of the GPS data, which is used for evaluating the
error models. Then, the model calibration will be described. Finally, the main results about
the accuracy improvement are presented.

Part of results presented in this section is the subject of the author’s publication in [139].
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5.1 Introduction of the GPS Dataset

The GPS dataset used in this PhD research work is collected by the Geoloc team of the
IFSTTAR during the data campaign of the project INTURB (positioning INTegrity in URBan
environments) in 2013. The data are collected in the urban environments of Nantes, Paris and
Toulouse in France. The receiver under test is an ublox-LEA-6T, which is a typical low-cost
car navigation equipment. Its measurement update rate is 5 Hz. The reference trajectories
corresponding to the test trajectories are provided by the Reference Trajectory Measurement
System (RTMeS). This RTMeS includes a LandINS inertial unit and a dual frequency Novatel-
DL3 receiver, which is a high accuracy GNSS receiver enabling PPK with the French network
of permanent local stations. The accuracy with the RTMeS can achieve less than 10 cm.

The test receiver and the RTMeS are both installed at the roof of the Vehicle for Experimental
Research on Trajectories (VERT) of the IFSTTAR as shown in Fig. 5.1 [155].

Figure 5.1 – VERT, the vehicle of IFSTTAR used to collect GPS data [155]

The data are collected in three cities of France: Nantes, Toulouse and Paris. There are six
data sets as shown previously in Table 4.2, which gives a detailed report about each data
set concerning the total number of epochs, the number of measurements as well as the total
duration of each data campaign. Fig. 5.2 shows the reference trajectories of the six datasets.

These data are collected in urban environments of each city (part of data in sub-urban is also
included) as an example of trajectory of Nantes center shown in Fig. 5.3 by Google Earth R©.
The traveled streets were in deep urban with medium height buildings, and various width.
It is a typical urban environment of French (European) city center of the 19th and 20th
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Figure 5.2 – Reference trajectories of the six datasets

centuries. Besides, the dataset of La Défense, Paris and Boulevards, Paris include part of
severely degraded data collected in deep urban canyons or with skyscrapers at each side.

Figure 5.3 – An overview of the trajectory in the city center of Nantes, France
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5.2 Calibration and Test with Real GPS Data

5.2.1 Model Calibration

Except the Dirichlet Process Mixture (DPM), the other three error models described in Chap-
ter 4 provide the error information by error variance characterization. The utilities of these
error variances are twofold, as explained in the following:

- Firstly, these error variances will be used in the Weighted Least Squares (WLS) esti-
mator in order to distribute different weights for different measurements. According
to the navigation equation of the WLS described in Chapter 2, the estimation of the
navigation solution vector ∆X̂WLS including the user 3D position and the user clock
offset can be written as:

∆X̂WLS(k) = (HTWH)−1HTW ×∆Y (k)

where, the weighting matrix W is defined as the inverse matrix of the measurement
error variance-covariance matrix Σ, that is to say:

W = Σ−1 =


1
σ2
1

0 . . . 0

0 1
σ2
2

. . . 0

...
...

. . .
...

0 0 . . . 1
σ2
m


Since each weight is inversely proportional to each error variance respectively, measure-
ments with small error variances will contribute to large weights in the estimation. On
the contrary, measurements with large error variances, such as NLOS signals, will get
small weights or even approximately canceled from the measurement set by a nearly
zero weight.

Due to this concern, one of the strategies of the error model calibration is to enlarge the
difference between the error of the healthy signals and the unhealthy signals in order
to distribute larger weights to the former ones and small weights to the latter ones.
The criteria for distinguishing healthy and unhealthy signals (or LOS/NLOS signals
if possible) are as discussed in the error models such as C/N0, satellite elevation or
directly the LOS/NLOS indicators provided by the map-based models (Urban Trench
Model (UTM) or Urban Multipath Model (UMM)).

- Secondly, these error variances will be used further in the integrity monitoring proce-
dures. More precisely, they will be involved in the computation of the test statistics -
Normalized Sum of Squared Error (NSSE) as well as the calculation of the Horizontal
Protection Level (HPL).



Chapter 5. Accuracy Performance Comparison and Evaluation 95

Special attention should be payed to the error model calibration, that the errors should
not be too "over-bounded". That is to say, ideally, the error variances obtained from
the models should only well cover the nominal signal errors.

If the measurement errors are over-estimated by the error models, the integrity monitor-
ing procedures, especially the Fault Detection and Exclusion (FDE) algorithms, will give
more tolerance to the measurement faults, i.e., they are less selective. This is because
the test statistic - NSSE, will be possibly too small since the residuals are normalized by
over-bounded error variances. Moreover, if the error variances are over estimated, the
sizes of HPLs will be too huge which leads to conservative position error bounds. The
size of HPL is one of criteria to evaluate the quality of integrity monitoring especially
fo urban transport applications. The HPLs with huge sizes have not much meaning if
they are much larger than the road configurations.

As a result, from an integrity monitoring point of view, the estimated error should not
be too conservative, otherwise, they will prevent huge errors from being detected and
will provide too huge HPLs.

Of course, the choice of the model parameters is also application-dependent. If the targeted
applications attach more importance to the navigation continuity instead of a strong liability,
i.e., integrity, the error models can be calibrated to have a high coverage ratio for both nominal
and faulty errors.

Since our target applications are liability-critical ones, we will take into consideration the
two strategies analyzed above in order to make the calibration for the models described in
Chapter 4.
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Figure 5.4 – PR Error Histogram of LOS/NLOS (La Défense)

With the help of the Urban Multipath Model (UMM), the LOS/NLOS signal can be distin-
guished. Before calibrating, let us observe the PR error distribution of LOS and NLOS signals
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Figure 5.5 – PR Error Histogram of LOS/NLOS (Nantes)

according to the UMM.

Fig. 5.4 - Fig. 5.7 show the histograms of the PR error of LOS and NLOS in different cities.
The sub-figures at left side are the histograms of LOS/NLOS superposed together and the
sub-figures at the right sides are the corresponding histograms with separated figure windows.
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Figure 5.6 – PR Error Histogram of LOS/NLOS (Nantes Center)

We can find that the PR errors of LOS signals are mostly centered around zero (e.g., as shown
in the top figures of Fig. 5.5(b)), while that of the NLOS signals are biased with multiple peaks
(e.g., the bottom figure of the Fig. 5.7(b)) and more extended with heavy tail (e.g., the bottom
figure of the Fig. 5.4(b)), which are caused by the multipath reception.

Fig. 5.8 shows the quantile-quantile (Q-Q) plot of the PR error of Nantes dataset with respect
to a normal distribution. Q-Q plot is a graphical tool to help check the coherence between
data samples and a theoretical distribution, which is a normal distribution here. If the sample
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Figure 5.7 – PR Error Histogram of LOS/NLOS (Toulouse)
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Figure 5.8 – Quantile-quantile plot of the PR errors with a normal distribution (Nantes)

data follow exactly the theoretical distribution, they will have a linear pattern in the Q-Q
plot, otherwise, they are not linear. We can see from the Fig. 5.8 that the PR error of the
LOS signals have a large coherence with the normal distribution but the errors of the NLOS
signals have not, which follow a strongly nonlinear pattern. This proves again that the PR
error of NLOS signals are strongly biased.

5.2.1.1 The carrier-power-to-noise-density ratio (C/N0)-based variance model

The objective of this sub-section is to calibrate the C/N0-based model in order to find suitable
model parameters for GNSS-based applications in urban environments. These parameters
should be suitable not only for position estimation but also for integrity monitoring.
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This model can be written as:
σ2
i = a+m× 10−

C/N0
10 (5.1)

where, a and m are model parameters to be calibrated.

In the literature, the two parameters in this model are usually fixed empirically. There is not
yet a well-developed methodology for calibrating the two parameters. According to [166], the
choice of the two parameters can be made by empirically fitting the model variance curve
with the pseudorange error as a function of C/N0. We will also employ this strategy while
taking into consideration the two precautions mentioned previously.

In order to further analyze the role of the two parameters, the formula above can be re-written
as:

σ2
i = m× (10−

C/N0
10 + γ) (5.2)

where, γ =
a

m
.

We can consider that there are still two parameters to be fixed: m and γ. In fact, according
to the Eq. (5.2), the multiplier m will not impact on the weights of the measurements since
it can be factorized out of the weighting matrix:

W = Σ−1 =
1

m



1
σ2
0,1

0 . . . 0

0 1
σ2
0,2

. . . 0

...
...

. . .
...

0 0 . . . 1
σ2
0,m



where, σ0,k = 10−
C/N0,k

10 + γ.

Despite the fact that m does not impact on the weight distribution for the measurements, it
plays an important role to decide the magnitude of the measurement error level. So, it will
be involved into the integrity monitoring procedure.

In terms of the factor γ, it is important to properly calibrate it since together with the C/N0,
it helps to differentiate the weights between each measurement. If we take into consideration
the first strategy of calibration mentioned previously, i.e., to enlarge the difference between
the healthy and the unhealthy signal, we can consider:

lim
C/N0→C/N0,max

f(C/N0)→ 0 (5.3)

where,
f : C/N0 7→ m× (10−

C/N0
10 + γ) (5.4)
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The maximal value of the C/N0 of out total dataset equals to 54 dBHz. As a result, we will
fix the factor γ as follow in order to decrease the error variance for high C/N0 values so that
they will contribute large weights for navigation solution estimation:

γ = −10−
55
10 = −3.16× 10−6 (5.5)

On the other hand, the multiplier m is calibrated empirically with LOS signals identified a
priori using UMM due to the concerns discussed in Section 5.2.1. Sub urban or landscape
testing can also be used for the calibration. Then the calibrated parameters are applied
to all the other dataset in order to validate the model calibration while not loosing the
generalization.
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with respect to the C/N0 (Nantes Center)
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The final choice for the two parameters are as follow:m = 165000

γ = −3.16× 10−6
⇐⇒

m = 165000

a = −0.52
(5.6)

Table 5.1 – C/N0-based Error Model Coverage Ratio

1− σ coverage ratio (%) 3− σ coverage ratio (%)

Nantes Center 61.42 92.73

Toulouse 80.39 94.60

Boulevards, Paris 73.94 93.63

La Défense, Paris 75.66 89.86

Paris XIIth 71.99 95.35

Nantes 77.30 97.45

Fig. 5.9 provides the 1-σ and 3-σ error envelopes of the calibrated model as well as the absolute
PR errors with respect to the C/N0 (Nantes Center). Table 5.1 reports the C/N0-based error
model coverage ratio when applied with all the other dataset. The 1-σ error envelope coverage
ratio is around 61%-77% and the 3-σ error envelope coverage ratio is around 90%-97%. Since
the measurement errors should not be over-estimated for the reason of integrity monitoring
issue, this coverage ratio is considered satisfactory.

In the following sections, we will thus apply this model calibration on the Weighted Least
Squares (WLS) estimator and further on the integrity monitoring module in Chapter 6.

5.2.1.2 The elevation-based variance model

The following elevation-based model is chosen to be implemented [158]:

σ2
i = c2

1/sin
2(θi) (5.7)

where, θi is the elevation angle of the ith satellite and c1 is the model parameter to be
calibrated.

Similarly, as discussed in the C/N0-based model, the multiplier c2
1 has no impact on weights

of the measurements. It is only involved into the procedure of the integrity monitoring. Thus,
the model will be calibrated ideally to cover most of the nominal errors.

After trials, the parameter c2
1 = 5 is chosen for this elevation-dependent model. Fig. 5.10

provides the 1-σ and 3-σ error envelopes of the calibrated model as well as the absolute PR
errors of LOS signals with respect to the satellite elevations (Nantes Center). The coverage
ratios of the 1-σ and 3-σ error envelopes are respectively 85% and 98%.
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Figure 5.10 – 1-σ and 3-σ error envelope of the calibrated model vs the absolute PR errors
with respect to the satellite elevation (Nantes Center)

Table 5.2 – Elevation-based Error Model Coverage Ratio

1− σ coverage ratio (%) 3− σ coverage ratio (%)

Nantes Center 84.58 98.08

Toulouse 88.89 98.26

Boulevards, Paris 88.82 98.20

La Défense, Paris 81.90 88.21

Paris XIIth 90.07 98.09

Nantes 96.87 99.81

Table 5.2 reports the elevation-based error model coverage ratio with all the other dataset.
The 1-σ error envelope coverage ratio is around 81%-96% and the 3-σ error envelope coverage
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ratio is around 88%-99%.

5.2.1.3 The Dirichlet Process Mixture (DPM)

The DPM in the context of GNSS applications described in Chapter 4 can be briefly summa-
rized as follows:

- For LOS receptions: 
G ∼ DP (G0, α1)

σk ∼ W−1(Σ1, dof1)

µk ∼ N (µ1,
σk
k1

)

(5.8)

- For NLOS receptions: 
G ∼ DP (G0, α2)

σk ∼ W−1(Σ2, dof2)

µk ∼ N (µ2,
σk
k2

)

(5.9)

The DPM parameters employed in [160] for GNSS-based applications in urban or sub-urban
environments will be used in this research work. The particle number N is fixed equal to 20
as a result of a compromise between computational complexity and performance. Table 5.3
provides the list of values for the other parameters.

Table 5.3 – DPM Parameters

Parameters α1,2 k1,2 dof1,2 Σ1,2 µ1,2

LOS 500 0.1 10 1 r̂k

NLOS 3000 1 5 10 r̂k

where, r̂k is the estimated residual.

5.2.1.4 The Hybrid Model

The Hybrid model can be written in the following form:

σ2 = k × m · 10−0.1×C/N0

sin2(θ)
(5.10)

where,
- m is a parameter for model calibration, which depends on receivers and environments.
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- k is a multiplier which differentiates the LOS signals from NLOS signals in this way:

k =

k1 if LOS

k2 if NLOS

and k1 < k2.

Recall that the signal reception state is distinguished with the help of the map-based model
Urban Trench Model (UTM) proposed in [35,36] or Urban Multipath Model (UMM) proposed
in this PhD research work.
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Figure 5.11 – Absolute PR error, C/N0 and Satellite elevation of LOS signals with: Real
GPS data (upper figure) vs Hybrid model (bottom figure)

A similar analysis is made for the choice of m and k with the help of the PR errors with
respect to the C/N0 and the satellite elevations. The factor k is used to amplify the weight
differences between the LOS signals and the NLOS, which will be fixed as:k1 = 1 if LOS

k2 = 10 if NLOS
(5.11)



104 Chapter 5. Accuracy Performance Comparison and Evaluation

And the factor m is empirically tested with different values in the interval of [3× 104, 4× 104]

and is finally be fixed as:
m = 30375 (5.12)

Fig. 5.11 and Fig. 5.12 show the behavior of absolute PR error as a function of C/N0 and
the satellite elevations, which are made respectively with LOS and NLOS signals. The upper
figures are drawn with real GPS data and the bottom figures are with the hybrid model with
the calibrations described above.

We can see that the absolute PR errors increase when the C/N0 and satellite elevations
decrease for both LOS and NLOS signals, which is as expected. Yet for the NLOS signals, the
global inclination of the surface is steeper than that of the LOS signals. This phenomenon is
better modeled by the factor k. This can be observed more clearly in Fig. 5.13, where absolute
PR errors of both LOS and NLOS signal modeled by the Hybrid model are illustrated.
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Figure 5.12 – Absolute PR error, C/N0 and Satellite elevation of NLOS signals with: Real
GPS data (upper figure) vs Hybrid model (bottom figure)

In fact, this model takes into consideration both information of the C/N0 and the satellite
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elevations. This will enhance the probability of correctly modeling the signal quality compared
to the C/N0-dependent model and the satellite elevation-dependent model. At the same time,
the factor k helps improve the contribution of the healthy signals on the final navigation
solution and decrease that of the unhealthy signals.

Besides the digital map-based Urban Multipath Model (UMM) used in this research work,
there exists other possible means to distinguish the signal reception states. For example,
several research works in literature use a simple threshold of C/N0 (such as, the signals with
C/N0 > 40dBHz will be considered as LOS) to distinguish the signal reception states. And
the use of a fisheye camera is also possible to help distinguish the LOS/NLOS signals as
in [146].
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Figure 5.13 – Hybrid model: LOS and NLOS

5.2.2 Analysis of Accuracy Performance

In the previous section, we have calibrated all the necessary parameters of each error model
presented in Chapter 4. Then they will be implemented into the Weighted Least Squares
(WLS) estimator with real data presented at the beginning of this chapter. The performance
of accuracy will be evaluated and compared.

The evaluation of accuracy performance will begin with a comparison between the Urban
Multipath Model (UMM) and the two versions of Urban Trench Model (UTM). Then all the
error models presented previously will be compared and their accuracy gain will be ranked.
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A final sub-section contributes to testing and discussing the performance of Dirichlet Process
Mixture (DPM).

5.2.2.1 The Improvement of Urban Multipath Model (UMM) Compared to Ur-
ban Trench Model (UTM)

As described in the Section 4.2.3.1 of Chapter 4, in the framework of the deterministic Urban
Trench Model (UTM), there are two versions in the development history of this model. These
two versions are mainly different in terms of the additional distance computations for the
NLOS signals.

The initial version of the deterministic UTM considers that the number of reflections that
may occur is supposed not to exceed 3 and the opposite buildings are always high enough to
reflect the NLOS signals. This initial version is further improved by taking into consideration
the height of the opposite building, which is the second version. That is to say, if the opposite
building is not high enough to reflect the signal, the additional distance will not be calculated
by the specular reflection law. In these situations, the signals are potentially received by
diffractions or other situations. Due to the complexity of fixing the direction of the received
signal, the additional distance will be considered as zero.

The Urban Multipath Model (UMM) proposed here, in fact, is still an improved version of the
previous UTM in terms of the additional distance computation. The UMM uses a simplified
ray tracing approach to distinguish the signal reception state and to calculate the additional
distances, which can get rid of the assumption of infinite-length street of UTM and can also
take into consideration the heights of opposite buildings.

In this sub-section, we will mainly evaluate and compare the accuracy performance of the two
versions of deterministic UTM and the UMM. In summary, they are:

- UTM v1: Urban Trench Model (UTM) without taking into consideration the height
of the opposite buildings, i.e., the opposite buildings are always high enough to reflect
the signals;

- UTM v2: Urban Trench Model (UTM) with taking into consideration the heights of
the opposite buildings. If the opposite building is not high enough to reflect the signal,
the additional distance will be considered as zero;

- UMM: Urban Multipath Model (UMM), which is a simplified ray tracing approach to
distinguish the signal reception state and to calculate the additional distance for NLOS
signals.

Fig. 5.14 shows the Cumulative Distribution Function (CDF) of the Horizontal Position Error
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(HPE) using Weighted Least Squares (WLS) estimator with the total dataset (163503 epochs).
The hybrid model is used to estimate the measurement error variance with the help of the
UTM v1, UTM v2 as well as the UMM, which are described in the text above. Besides,
the CDF of HPE estimated with the Ordinary Least Squares (OLS) estimator (i.e., each
measurement has the same weight for the navigation estimation) is also drawn in the same
figure for comparison purpose.
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Figure 5.14 – Cumulative Distribution Function (CDF) of the Horizontal Position Error (HPE)
with the total dataset (163503 epochs)

Table 5.4 – Accuracy Performances (Total Data)

Position Estimator HPE (meter)
50% 75% 95%

Ordinary Least Squares (OLS) 10.17 19.64 42.87

WLS Hybrid model with UTM v1 8.10 16.74 45.97

WLS Hybrid model with UTM v2 5.63 11.11 25.54

WLS Hybrid model with UMM 3.57 6.34 16.10

As expected, the hybrid model with the UMM achieves the best performance in terms of
accuracy. And the second version of UTM, which takes into consideration of the heights of
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the opposite buildings, performs better than the first version of UTM.

Table 5.4 reports the accuracy of HPE at 50%, 75% and 95% quantile with the four solvers
illustrated in the Fig. 5.14. The WLS with Hybrid UMM model can improve the median HPE
by 65% compared to the OLS. This ratio for the two versions of UTM is respectively 20%
(UTM v1) and 45% (UTM v2).

In conclusion, in terms of the proposed hybrid model combined with respectively the three
digital map-based model: UTM v1 (without taking into consideration the opposite building
heights), UTM v2 (taking into consideration the opposite building heights) and the UMM
(using a simplified ray tracing approach), the ranking of accuracy performance from best to
worst is:

1. WLS Hybrid UMM;

2. WLS Hybrid UTM v2;

3. WLS Hybrid UTM v1.

This proves that the Urban Multipath Model (UMM) effectively provides better accuracy
than the other two versions of Urban Trench Model (UTM). What about their performances
compared to the other error models, such as C/N0-dependent error variance model and the
satellite elevation-based error variance model. This will be analyzed in the following section.

5.2.2.2 Accuracy Comparison of Error Models

This section will mainly compare the accuracy performance of the C/N0-dependent error
variance model, the satellite elevation-based error variance model as well as the hybrid model.
The Dirichlet Process Mixture (DPM) will be analyzed separately in Section 5.2.2.3.

Table 5.5 – Accuracy Performances Summary (Total Dataset)

Position Estimator HPE (meter)
50% 75% 95% Accuracy

Ranking

WLS Hybrid model with UMM 3.57 6.34 16.10 1

WLS C/N0-based model 4.41 8.36 21.84 2

WLS Hybrid model with UTM v2 5.63 11.11 25.54 3

WLS Elevation-based model 6.89 13.86 30.04 4

WLS Hybrid model with UTM v1 8.10 16.74 45.97 5

Ordinary Least Squares (OLS) 10.17 19.64 42.87 6
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Figure 5.15 – Cumulative Distribution Function (CDF) of HPE (Total Dataset)

Fig. 5.15 shows the CDF of the HPE of different error models obtained with the total dataset
(163503 epochs). We can see that the hybrid model combined with UMM always remains the
first place concerning the accuracy among all the other solvers.

The C/N0-based error variance model has the second best accuracy performance. This is no
doubt a good news since the C/N0-based model is convenient for the low-cost commercial
GNSS receivers thanks to its simplicity of implementation and its ease of access. Table 5.5
provides quantitative analysis about the accuracy performance with the six solvers shown in
the figure as well as their ranking of accuracy. This ranking only takes into account the global
accuracy performance.

Table 5.6 – Accuracy Performances Summary (Nantes Center Dataset)

Position Estimator HPE (meter)
50% mean 75% 95%

Ordinary Least Squares (OLS) 5.66 10.14 11.51 30.70

WLS Elevation-based model 3.81 6.12 7.86 17.52

WLS C/N0-based model 2.64 4.81 4.84 13.78

WLS Hybrid model with UMM 2.32 3.61 3.87 10.83
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Figure 5.16 – Cumulative Distribution Function (CDF) of the HPE (Nantes Center dataset)

Since the two versions of deterministic UTM model cannot provide better accuracy perfor-
mance than the UMM in the framework of hybrid model, we will only implement the UMM
model hereafter in the following research work.

After analyzing the error models with the total dataset, let’s take one of the datasets, the
Nantes center, to analyze in detail the accuracy performance of these error models.

Fig. 5.16 shows the CDF of the HPE estimated respectively with the Ordinary Least Squares
(OLS) and the Weighted Least Squares (WLS), in which three error models are employed:
the elevation-dependent model, the C/N0-dependent model and the Urban Multipath Model
(UMM). Fig. 5.17 shows the reference trajectory, the estimated trajectories with different
solvers as well as the comparison of the HPE in certain period of time. The same accuracy
performance trend is observed with the results obtained with total dataset. Table 5.6 reports
the quantitative results about the HPE accuracy. The hybrid model can achieve 2.32 meters
in median, which improves significantly compared to the OLS estimator, which has 5.66
meters in median for HPE. The C/N0-based error variance model is better than the satellite
elevation-based model in terms of the accuracy performance.
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Figure 5.17 – Reference Trajectory (in green) and Estimated Trajectories (Ordinary Least
Squares (OLS) (in blue) and Weighted Least Squares (WLS) in red) as well as their HPE
comparison (Nantes Center Dataset)
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5.2.2.3 Concerning the Dirichlet Process Mixture (DPM)

Figure 5.18 – An overview Nantes dataset trajectory

The implementation of the Dirichlet Process Mixture (DPM) is much more complicated than
the other models described previously. And this model is computationally expensive since a
particle filter is integrated, which is essentially a Monte Carlo method.

Due to these limitations, the Dirichlet Process Mixture (DPM) is not suitable to be im-
plemented in real-time navigation system. But it is still interesting to take a look at its
performance compared to other error models described above. As a result, we will implement
the DPM with the dataset of Nantes, which includes 3326 epochs. The traveled streets were
also in deep urban as shown in Fig. 5.18.

Table 5.7 – Accuracy Performances Summary (Nantes)

Position Estimator HPE (meter)
50% 75% 95%

Ordinary Least Squares (OLS) 5.40 14.18 59.89

WLS Elevation-based model 4.27 11.71 38.31

WLS Dirichlet Process Mixture (DPM) 3.77 9.52 24.65

WLS C/N0-based model 3.06 6.46 18.37

WLS Hybrid model with UMM 2.33 3.59 7.76

Fig. 5.19 provides the CDF of the HPE with the OLS as well as the WLS with four different
error models: the satellite elevation-based error model, the C/N0-based error model, the
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Figure 5.19 – Cumulative Distribution Function (CDF) of the Horizontal Position Error (HPE)
with Nantes dataset

hybrid model with UMM and the DPM. Table 5.7 reports the statistical HPE results with all
the solvers.

The WLS with DPM model implemented here does not provide a performance as good as
expected in the theory. Its accuracy performance, with 3.77 m median HPE, is only better
than the OLS estimator (median HPE: 5.40 m) and the WLS with elevation-based error model
(median HPE: 4.27 m); it is worse than the C/N0-based model (median HPE: 3.06 m) and the
hybrid model with UMM (median HPE: 2.33 m). In order to find the reason, let us take a look
into the variance and mean values estimated by DPM compared to the PR errors estimated
in Section 4.2.1, which will be considered as true PR error, and the estimated residuals.

Fig. 5.20 provides a skyplot of the initial epoch of Nantes dataset. Here, we will choose two
most representative satellites to make the analysis: the satellite 32 (SAT 32) and the satellite
31 (SAT 31). SAT 32 is near to the zenith, which is theoretically less contaminated by the
multipath and NLOS, as it is declared as LOS during 96% of its visible time in the Nantes
dataset according to the UMM. On the contrary, the SAT 31 has a low elevation and it is
declared as LOS only during 37% of its visible time. As a result, SAT 32 can be considered
as a typical LOS satellite and SAT 31 can be considered as a typical NLOS satellite.
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Figure 5.20 – A skyplot of the initial epoch of Nantes dataset

Fig. 5.21 and Fig. 5.22 show the 1-σ and 3-σ error bounds with respect to the true PR errors
estimated in Section 4.2.1 as well as the estimated measurement residuals with WLS DPM
estimator. We can observe that for SAT 32, i.e., in the case of LOS signals, the DPM error
bound for the true PR error is still satisfactory. The 1-σ error can bound 54% of the true
PR error (Fig. 5.21(a)) and the 3-σ error can bound 81% of the true PR error (Fig. 5.21(b)).
Detailed zooms are shown in Fig. 5.21(e). For the SAT 31, i.e., in the case of NLOS signals,
however, the DPM error bound can hardly well bound the true PR error. The 1-σ error can
only bound 19% of the true PR error (Fig. 5.22(a)) and the 3-σ error can bound 48% of the
true PR error (Fig. 5.22(b)). Fig. 5.22(e) shows a zoom of 1-σ error bound, where, huge errors
appear but the error bounds do not well follow.

However, the DPM error bounds can almost perfectly bound the estimated residuals both in
LOS cases and NLOS cases as shown in Fig. 5.21(c), Fig. 5.21(d), Fig. 5.22(c) and Fig. 5.22(d).
The 1-σ error bound has already achieved 97% for SAT 32 and 99.7% for SAT 31.

It is not difficult to observe that, the mean estimated by DPM has too much dependence
on the residual. As mentioned several times in the previous chapters, since the residuals are
possible "absorbed" by Unobservable Multiple Fault (UMF), the strong dependence of DPM
on the residual may cannot correctly reflect the signal quality.
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(b) 3-σ error bound for true PR errors

time ×104

4.02 4.04 4.06 4.08 4.1 4.12 4.14 4.16

m
e

te
r

-30

-25

-20

-15

-10

-5

0

5

10

15

20
1-sigma Error Bound Availability = 0.970821 (SAT 32)

mean+sigma

mean-sigma

PR Residual

(c) 1-σ error bound for estimated residuals
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(d) 3-σ error bound for estimated residuals
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(e) a zoom of 1-σ error for true PR errors
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Figure 5.21 – DPM Error Bound Availability for SAT 32, a typical LOS satellite
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(a) 1-σ error bound for true PR errors
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(b) 3-σ error bound for true PR errors
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(c) 1-σ error bound for estimated residuals
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(d) 3-σ error bound for estimated residuals
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(e) a zoom of 1-σ error for true PR errors
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Figure 5.22 – DPM Error Bound Availability for SAT 31, a typical NLOS satellite
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Also, the parameter adaptation of the DPM is always a huge work to do. A better performance
is possible to achieve by adapting different DPM parameters.

5.3 Conclusion and Discussion

This chapter aims at evaluating and comparing the accuracy performance of the following
error models in the framework of the Weighted Least Squares (WLS) estimator:

- The C/N0-based variance error model;

- The satellite elevation-based variance error model;

- The Dirichlet Process Mixture (DPM);

- The proposed hybrid model combined with the following three map-based error model
in order to distinguish the signal reception state and to correct the additional distances
for the NLOS signals:

* Urban Trench Model (UTM) v1: not taking into consideration the heights of the
opposite buildings, i.e., the opposite buildings are always hight enough to reflect
the signals;

* Urban Trench Model (UTM) v2: taking into consideration the heights of the op-
posite buildings. If the opposite building is not high enough to reflect the signal,
the additional distance will be considered as zero;

* Urban Multipath Model (UMM): a simplified ray tracing approach to distinguish
the signal reception state and to calculate the additional distance for NLOS signals.

Generally speaking, all the weighting schemes can provide better accuracy performance than
the Ordinary Least Squares (OLS), in which all the measurements have the same weight.

Among all these solvers, the WLS with the hybrid model combined with UMM achieves the
best accuracy performance. This solver improve the median Horizontal Position Error (HPE)
from 10.17 m to 3.57 m compared to the OLS with the total dataset. With the Nantes center
dataset, the median HPE can achieve 2.32 m. The main advantages of this solver is that it is
not complicated to be implemented once a digital map is integrated in the receiver. Moreover,
its computational charge is not heavy, which open the possibility of real-time implementation.
However, the dependence of the map information is at the same time a limitation for this
solver despite of its best accuracy performance. The digital map accuracy and the need of
update are also important to be taken into consideration if this model will be implemented
into commercial GNSS receivers. But it is also possible to use other methods to distinguish
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the signal reception state, such as a simple C/N0 threshold or the use of fisheye camera with
image processing. This may be a perspective for future research.

The WLS with the C/N0 model provides the second best accuracy performance among all
these solvers. The median HPE with the total dataset is 4.41 m. Its simplicity of implemen-
tation and the ease access of C/N0 information make it popular to be implemented in the
GNSS receivers. However, its limitation is that, on the one hand, it cannot properly indi-
cate the signal quality especially in dense urban environments since constructive multipath
interference leads to an increase in C/N0, while destructive multipath interference leads to
a decrease. On the other hand, the model parameter depends not only on the receivers but
also the traveled environment and it is possible to make slight adaptations according to the
targeted applications. A better methodology to calibrate the parameters of this model is still
an issue to be discussed.

The Dirichlet Process Mixture (DPM) is at the third place concerning the accuracy among all
the solvers mentioned. This model is able to provide a mean and a variance of measurement
error at each epoch for each visible satellite with the help of a set of cluster. Compared to the
C/N0-based error model, it seems not really profitable to use the DPM due to its complexity
of implementation and the high computational cost. The choice of the model parameters is
also a huge work for the use of DPM. The performance of this model can be expected better
with other parameters but this is not the main objective of this research work.

Then it comes the elevation-based variance error model, whose accuracy performance is only
better than the OLS but worst than all the other WLS solvers mentioned previously. Satellites
near to the zenith have less possibility to be contaminated by local effects but this is not
absolute due to the complexity of street geometry. Thus, it is better to use the elevation as
an auxiliary information to indicate signal quality.

In the following chapter concerning GNSS integrity, we will focus on the WLS estimator with
the two best error models analyzed above: the hybrid model with UMM and the C/N0-based
model.
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Summary

Based on the error models analyzed in Chapter 5, this chapter will construct a complete snap-
shot residual-based integrity monitoring system by adding the FDE techniques in Chapter 3 at
the next step of the Weighted Least Squares (WLS) estimator. And the Horizontal Protection
Level (HPL) is also calculated.

This chapter begins with an overview of the complete system, including an accuracy enhance-
ment module, an integrity enhancement module as well as the computation of HPL. The HPL
computation will be analyzed in detail. Then follows the integrity performance evaluation and
comparison with real GPS data collected in urban canyons. Finally, the conclusion will be
addressed.

Part of the results presented in this section is the subject of the author’s publication in [167].
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6.1 Introduction

For the liability or safety critical applications, it is of utmost importance to ensure not only
high accuracy but also the required integrity performance for the specific applications. Yet
urban environments present great challenges for GNSS positioning performances due to the
existence of local effects such as multipath and NLOS reception. To overcome the urban
environment constraints and to guarantee a satisfactory level of trust for the final PVT solu-
tion, we propose here a complete integrity monitoring scheme for GNSS-based low-cost urban
transport receivers.

This scheme consists of two main modules highlighting respectively the positioning accuracy
and integrity. The accuracy enhancement model relies mainly on better characterizations
of the measurement errors and the integrity module employs FDE techniques in order to
eliminate measurements with huge errors.

In fact, the two metrics, GNSS accuracy and integrity, are not completely independent. They
are related between each other. This means, if an estimator is optimal in integrity monitoring,
that is to say, the FDE algorithms can correctly detect and exclude the faulty measurements,
this will no doubt help improve the positioning accuracy. On the contrary, an estimator which
is suboptimal in integrity monitoring can possibly further degrade the accuracy performance
due to the erroneous exclusion of healthy measurements. This latter phenomenon can occur for
example in the presence of strongly correlated multiple faults. They can be absorbed in error
residuals, preventing the detection of the faulty measurements, which is called Unobservable
Multiple Fault (UMF).

Moreover, if the number of faulty measurements is more than half the total measurement
number, certain FDE algorithms will have difficulty in properly detecting the faulty measure-
ments, especially the ones depending on the consistency check among total measurement set.
In constraint environments, such as urban canyons, this phenomenon can often happen, which
is a great challenge for integrity monitoring procedure implemented for land users.

In this section, different possibilities of combination between the Weighted Least Squares
(WLS) solvers presented in the Chapter 5 and the FDE techniques presented in Chapter 3
will be tested in order to find the optimal one for urban integrity monitoring. Different HPL
computations will be also discussed and evaluated with real GPS data collected in urban
environments.
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6.2 Overview of the System Design

Fig. 6.1 shows an overview of the complete system. There are two main modules in this
integrity monitoring system:

- An accuracy enhancement module, in which, the two best Weighted Least Squares
(WLS) solvers evaluated in Chapter 5 are selected: the WLS with Hybrid Urban Mul-
tipath Model (UMM) and the WLS with C/N0-based model;

- An integrity enhancement module, in which, five FDE techniques are implemented: the
Classic Test (CT), the Subset Test (ST), the iterative Local Test (LT), the Forward-
Backward (FB) Test as well as the Danish re-weighting method. These FDE techniques
are described in detail in Section 3.5.

Accuracy Enhancement Module

Raw GNSS Measurements

WLS EstimatorOLS Estimator

C/N0 model Hybrid model

C/N0

Satellite
elevation

UMM

Integrity Enhancement Module

ST LT FB DAN CT

HPL Computation

FDE

HPL Computation

Specified Integrity
Probability

Figure 6.1 – An overview of the complete integrity monitoring scheme

The Ordinary Least Squares (OLS) solver is also implemented in purpose of performance
comparison.

The justifications of this proposed scheme come from the required performances for the navi-
gation system: to provide accurate positioning information accompanied with certainty. That
is to say, the final navigation solution should be not only accurate but also with trust. As a
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result, starting from inaccurate positions contaminated by multipath or NLOS reception, the
accuracy enhancement module will help improve the positioning accuracy by better charac-
terizing the measurement errors. The output of the accuracy enhancement module should be
relatively accurate positioning informations but without certainty.

Then the integrity enhancement module will further eliminate the faulty measurements by
FDE algorithms and a HPL will be calculated in order to provide a statistical error bound
for users. In fact, the main functionalities expected from a FDE technique are twofold:

- On the one hand, the non reliable positions with huge errors should be flagged so that
a warning can be sent to the users to inform them of the non credible information.
This is important in an original integrity point of view in that the integrity monitoring
techniques are designed to provide timely warnings for users in case of non reliable
navigation information. The prevention of the huge errors is essential for liability-critical
applications;

- On the other hand, the reliable positions obtained after applying FDE, are expected to
have better accuracy performance thanks to the exclusion of the faulty measurements.
But the accuracy improvement is not the main task of the FDE algorithms. If the huge
error prevention is correctly done, the accuracy improvement can be considered as an
added value.

Except the computation of HPL, all the other techniques in the complete system are in-
troduced in the previous chapters. So in the following section, we will discuss about the
computation of HPL.

6.3 Horizontal Protection Level (HPL) Discussion and Compu-

tation

6.3.1 Derivation of the HPL Computation

Protection Level (PL) is an important output of integrity monitoring procedures, which plays
a role of a statistical tool to bound the position error. For users, it is a factor that quantifies
the certainty of the positioning information. It is also a parameter to evaluate the external
reliability of the system.

Let us recall the definition of the PL and HPL, which is briefly mentioned in the Chapter 3:

PL is a statistical error bound computed so as to guarantee that the probability of the absolute
position error exceeding the said number is smaller than or equal to the target integrity
risk [3].



Chapter 6. Snapshot Residual-Based Integrity Monitoring 125

HPL is the radius of a circle in the horizontal plane (the local plane tangent to the WGS-84
ellipsoid), with its center being at the true position, that describes the region assured
to contain the indicated horizontal position. It is a horizontal region where the missed
detection and false alert requirements are met for the chosen set of satellites when au-
tonomous fault detection is used [18].

As more and more GNSS-based applications emerged in different domains, the meaning of
PL has been assigned with more variations. Fig. 6.2 shows an illustration of the xPL (x:
Vertical or Horizontal) under the context of the aeronautic, the automobile as well as the
train domains. This figure also presents the integrity events according to the relationship
among the PE, AL and the PL, which is described in Chapter 3.

Figure 6.2 – An illustration of Position Error (PE), Alert Limit (AL), Protection Level (PL)
in different domains [168]

The computation of xPL is originally developed for aeronautic users, for whom, both HPL
and VPL are required. The VPL is usually more stringent than the HPL for the aircraft
especially during the precision-approach with vertical guidance. Then the concept of PL is
expanded into the automobile domain. Here, the HPL is attached more importance than
the VPL since the vertical movement of a vehicle is negligible compared to the horizontal
one. And the needs are more in the horizontal plan such as the guidances, the anti-collision,
etc. Thus, the PL estimation problem can be simplified from 3D to 2D under the context
of automobile. Moreover, for applications requiring lane-level accuracy, it is also possible to
introduce the Cross-Track (CT) PL and the Along-Track (AT) PL. This is similar for trains:
once the railway track is fixed, the AT PL is enough to bound the position error. So the PL
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estimation problem can be simplified to only one dimension for railway applications. In this
research work, we will concentrate on the HPL in the framework of automobile applications.

The objective of HPL is to bound the estimated position errors, i.e., the difference between
the estimated positions and the true (unknown) position of the receiver, while taking into
consideration the impact of measurement errors and bias on the estimated position error.
Thus the design of HPL computation begins from deducing the expression of the estimated
position error as a function of measurement error and bias.

In Chapter 2, we have obtained the following relationship with WLS estimator:

∆X̂ = (HTΣ−1H)−1HTΣ−1 ×∆Y (6.1)

with,
∆Y = H∆X + E

= H∆X +B + ε
(6.2)

where, B represents the measurement bias vector and ε represent the measurement error
vector.

Denoting H+ = (HTΣ−1H)−1HTΣ−1, the left pseudo-inverse matrix of H, i.e., H+H = I,
then:

∆X̂ = H+∆Y

= H+(H∆X + E)

= ∆X +H+E

(6.3)

So that,
∆X̂ −∆X = H+(B + ε) (6.4)

Since ∆X̂ −∆X = (X̂ − X̂0) − (X − X̂0) = X̂ −X, with X̂0 the point of linearization, we
obtain the final expression of the position error as a function of measurement error and bias:

X̂ −X = H+(B + ε) (6.5)

In a normal use of the positioning solutions, the true position errors are not observable. In an
integrity monitoring problem, the estimated residual r̂ is an observable quantity which allows
checking the consistency of measurements. If we can find the relationship between the residual
and the estimated position error or at least between the residual and the measurement error,
this will no doubt help bound the estimated position error.

As is defined previously in chapter 2, the measurement residual represents the deviation
between the measurements made and the predicted noiseless measurements that the receiver
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would have made if its state is the estimated one:

r̂ = ∆Y −H ×∆X̂

= ∆Y −H ×H+∆Y

= (I −HH+)∆Y

4
= S∆Y

(6.6)

where, the matrix S is idempotent, i.e., SS = S. This means S is singular so not invertible.

From Eq. (6.6), we can continue the derivation by substituting ∆Y with its expression in
Eq. (6.2):

r̂ = S(H∆X +B + ε)

= (I −HH+)H∆X + S(B + ε)
(6.7)

Since (I − HH+)H = 0, we obtain the following expression of the estimated measurement
residual as a function of measurement error and bias:

r̂ = S(B + ε) (6.8)

According to the two important equations framed above, we can observe that the impacts of
measurement error and bias on the position error and the residual are transfered respectively
by the matrix H+ and S. Since the matrix S is non invertible, we cannot directly link the
residual, which is an observable quantity, with the estimated position error, which is our
objective to bound.

In fact, the calculation of HPL should always take into consideration two sources of impacts on
the position error: the impacts of measurement noise and the impacts of the measurement bias.
In other words, the position error (X̂−X) should be bounded while taking into consideration
the measurement noise ε and the measurement bias B. The relationship would be better
expressed as a function of the observable quantities.

We will begin by firstly looking for the impact of the measurement bias on the position error.
Supposing there is only one biased measurement, that is to say:

B =
[
0 · · · bj · · · 0

]
(6.9)
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According to Eq. (6.5), we have1:

(X̂ −X)b = H+ ×



0
...
bj
...
0


=


· · · H+

E,j · · ·
· · · H+

N,j · · ·
· · · H+

U,j · · ·
· · · H+

T,j · · ·

×


0
...
bj
...
0


(6.10)

So the Horizontal Position Error (HPE) can be expressed in a local ENU frame as following:

HPEb =

√
(X̂ −X)2

E + (X̂ −X)2
N

=
√

(H+
E,j)

2 + (H+
N,j)

2 × bj
(6.11)

The bias at the jth measurement bj can be bounded from two different points of view:

- If we start from the test statistic NSSE, which is defined as:

NSSE = r̂TΣ−1r̂ (6.12)

Taking into consideration the bias of jth measurement, according to Eq. (6.8) and
Eq. (6.9), we have:

NSSE = BTSTΣ−1SB =
Sj,jb

2
j

σ2
j

(6.13)

As a result:

|bj | =
√
NSSE

Sj,j
σj (6.14)

By substituting the equation above into the Eq. (6.11), we can finally obtain:

HPEb =
√

(H+
E,j)

2 + (H+
N,j)

2 ×
√
NSSE

Sj,j
σj (6.15)

Denoting:

HSLOPEj =

√
(H+

E,j)
2 + (H+

N,j)
2√

Sj,j
(6.16)

The horizontal position error can be bounded by the worst-case satellite, so that:

HPEb ≤ max
i

(HSLOPEi × σi)
√
NSSE (6.17)

1the sub-index ’b’ hereafter means ’bias’
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In fact, the term HSLOPEi represents the sensitivity of HPE to the bias of ith satellite.
That is to say, the satellite with the largest HSLOPE is the most difficult to detect
because given the same HPE, it yields the smallest test statistic. Also, given the same
test statistic, the satellite with the highest HSLOPE produces the largest HPE.

- Similar with the previous derivation but starting from the non-centrality parameter,
which is defined in Eq. (3.10) as:

λ =

m∑
i=1

µ2
i

σ2
i

Under the assumption of only-one bias present in the jth measurement, the expression
above can be simplified as:

λ =
µ2
j

σ2
j

(6.18)

where, µj and σj represent the mean and standard deviation of the jth residual: r̂j ∼
N (µj , σ

2
j ).

According to Eq. (6.8), the mean of jth residual can be written as:

µj = Sj,jbj (6.19)

As a result,

λ =
Sj,jb

2
j

σ2
j

(6.20)

So,

|bj | =
√
λ√
Sj,j

σj (6.21)

By substituting the equation above into the Eq. (6.11), we can finally obtain:

HPEb =
√

(H+
E,j)

2 + (H+
N,j)

2 ×
√

λ

Sj,j
σj

= HSLOPEj × σj
√
λ

(6.22)

By assuming the bias occurs on the worst-case satellite, we finally obtain:

HPEb ≤ max
i

(HSLOPEi × σi)
√
λ (6.23)

Then, it remains the impact of the measurement noise ε on the position error. According to
the Eq. (6.5), the impact of noise on the position error can be written as2:

‖(X̂ −X)n‖ = ‖H+ε‖ (6.24)
2the sub-index ’n’ hereafter means ’noise’
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The term at the right side of the equation can be bounded by calculating its covariance matrix,
which is a quality matrix for position error denoted as QX :

QX = H+Cov(ε)H+T

= H+Σ H+T

= (HTΣ−1H)−1HTΣ−1Σ((HTΣ−1H)−1HTΣ−1)T

(6.25)

Since the measurement error covariance matrix Σ is diagonal, i.e., ΣT = Σ and (Σ−1)T = Σ−1,
the equation above can be simplified as:

QX = (HTΣ−1H)−1 (6.26)

As defined in [18], the matrix QX can be reformed as:

QX =


d2
E dEN dEU dET

dEN d2
N dNU dNT

dEU dNU d2
U dUT

dET dNT dUT d2
T

 (6.27)

The position error uncertainty along the semi-major axis of the error ellipse, which is shown
in Fig. 6.3 in green, can be calculated as:

dmajor =

√
d2
E + d2

N

2

√
(
d2
E − d2

N

2
)2 + d2

EN (6.28)

As a result, the impact of measurement noise on the position error can be estimated by
multiplying an inflation factor k, which can be deduced from the specified probability of
missed detection and the corresponding degree of freedom:

‖(X̂ −X)n‖ ≤ k · dmajor (6.29)

Finally, by summing up the impact of measurement error and that of the bias, or taking into
consideration only one of them, we can find different expressions of HPL proposed in the
literature, which will be listed as follows. One can also find the use of Horizontal Uncertainty
Level (HUL) to bound the horizontal position errors. The difference between the HPL and
the HUL will be discussed later in this section.

The HPL proposed in [74], which will be denoted as HPL1 hereafter in this chapter:

HPL1 = max
i

(HSLOPEi × σi)
√
T + k · dmajor (6.30)

where, T is the threshold defined in Eq. (3.14).
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The HUL proposed in [83]:

HUL = max
i

(HSLOPEi × σi)
√
NSSE + k · dmajor (6.31)

The HPL proposed in [75], which will be denoted as HPL2 hereafter in this chapter:

HPL2 = max
i

(HSLOPEi × σi)
√
λ+ k · dmajor (6.32)

And the HPL calculated in SBAS consider only the impact of measurement noise on the
position error [18]:

HPLSBAS = k · dmajor (6.33)

The main difference between the HPL and the HUL is the predictability. HPL is predictable
with the help of the satellite geometry information, the expected measurement error charac-
teristics as well as the specified probability requirements (e.g., Pmd, Pfa). Yet the HUL is not
predictable and requires the real-time measurements. This is the reason why the threshold T
is present in the expression of HPL in Eq. (6.30) but the NSSE is present in the expression
of HUL in Eq. (6.31).

One important metric to evaluate a HPL is that it can properly bound the errors with a
reasonable size which depends strongly on the targeted application. Usually, a compromise
should be found between the size of the HPL (the smaller the better) and the error bounding
capability.
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6.3.2 HPL evaluation with the total dataset

To evaluate the potential of the HPL in urban environment, the four methods of HPL com-
putation described previously (i.e., the HPL1 in Eq. (6.30), the HPL2 in Eq. (6.32), the
HPLSBAS in Eq. (6.33) and the HUL in Eq. (6.31)) will be tested with the total dataset. The
total number of epoch is 163503, among which 161724 epochs (near 9h) are available to realize
HPL computations (since it is impossible to compute a HPL if the visible satellite number is
strictly smaller than 5). In this research work, we will fix Pmd = Pfa = 10−2.

Fig. 6.4 and Fig. 6.5 provide the Stanford diagram for the four HPLs with respectively the
C/N0-based WLS estimator and the Hybrid Urban Multipath Model (UMM) WLS estimator
(without applying any FDE).

lo
g

1
0
 o

f 
th

e
 n

u
m

b
e
r
 o

f 
p

o
in

ts
 p

e
r
 d

o
t

MI
Epochs: 2146

0.01327

Normal Operation

0.98673

2.20% of 161724 epochs out of plot limits

HPE [m]

0 50 100 150 200

H
P

L
1
 [

m
]

0

50

100

150

200

0

0.5

1

1.5

2

2.5

(a) HPL1

lo
g

1
0
 o

f 
th

e
 n

u
m

b
e
r
 o

f 
p

o
in

ts
 p

e
r
 d

o
t

MI
Epochs: 1044

0.00646

Normal Operation

0.99354

4.13% of 161724 epochs out of plot limits

HPE [m]

0 50 100 150 200

H
P

L
2
 [

m
]

0

50

100

150

200

0

0.5

1

1.5

2

(b) HPL2

lo
g

1
0
 o

f 
th

e
 n

u
m

b
e
r
 o

f 
p

o
in

ts
 p

e
r
 d

o
t

MI
Epochs: 20135

0.12450

Normal Operation

0.87550

0.25% of 161724 epochs out of plot limits

HPE [m]

0 50 100 150 200

H
P

L
S

B
A

S
 [

m
]

0

50

100

150

200

0

0.5

1

1.5

2

2.5

(c) HPLSBAS

lo
g

1
0
 o

f 
th

e
 n

u
m

b
e
r
 o

f 
p

o
in

ts
 p

e
r
 d

o
t

MI
Epochs: 427

0.00264

Normal Operation

0.99736

1.56% of 161724 epochs out of plot limits

HPE [m]

0 50 100 150 200

H
U

L
1
 [

m
]

0

50

100

150

200

0

0.5

1

1.5

2

2.5

(d) HUL

Figure 6.4 – Stanford Diagram for Four Different HPLs Obtained with C/N0-based WLS
estimator without FDE (161724 epochs)

What should be highlighted is that the FDE algorithms are not yet applied in this section
since we will firstly evaluate the HPLs in order to choose one most fitted for urban trans-
port applications. In the following sections, this optimal HPL will be implemented in the
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complete integrity monitoring scheme together with the FDE techniques. Moreover, the size
of Horizontal Alert Limit (HAL) is not specified here. This is because the HAL is strongly
application dependent and there are not yet any specifications concerning the size of HAL for
urban transport GNSS integrity monitoring.
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Figure 6.5 – Stanford Diagram for Four Different HPLs Obtained with Hybrid UMM WLS
estimator without FDE (161724 epochs)

Fig. 6.6 plots the Cumulative Distribution Function (CDF) of the four different HPLs with
the two weighting models and the Table 6.1 summarizes the HPL size statistics and the
probability of Misleading Information (MI) events.

From the Stanford diagram and the statistics, we can conclude that the HPL2 is the most
"conservative" one. That is to say, it has the biggest size compared to the other three methods
(median(HPL2) = 42.11 m with C/N0 model and median(HPL2)=50 m with Hybrid UMM
model). Putting apart HUL, HPL2 can better bound the position errors than the HPL1 and
the HPLSBAS (Pmi = 0.65% with C/N0 model and Pmi = 0.27% with hybrid UMM model).

Then the HPL1 is the second conservative. Its size is reduced compared to the HPL2 (me-
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Table 6.1 – Statistics of the Four Different HPLs

HPL C/N0-based WLS (m) Hybrid UMM WLS (m)
Type 5% 50% 95% Pmi(%) 5% 50% 95% Pmi(%)

HPL1 13.40 30.92 109.53 1.33 10.45 34.84 214.36 0.49

HPL2 17.45 42.11 170.60 0.65 13.78 50.00 328.85 0.27

HPLSBAS 5.30 10.91 31.35 12.45 3.99 8.11 50.36 10.11

HUL 9.36 27.24 95.95 0.26 7.18 21.16 107.43 0.24

dian(HPL1) = 30.92 m with C/N0 model and median(HPL1) = 34.84 m with Hybrid UMM
model) but it produces more MI events (Pmi = 1.33% with C/N0 model and Pmi = 0.49%

with hybrid UMM model).

Concerning the HPLSBAS , it can hardly well bound the estimated position errors with such
small sizes (median(HPLSBAS) = 10.91 m with C/N0 model and median(HPLSBAS) = 8.11
m with Hybrid UMM model). This is expected since the HPLSBAS considers only the impact
of the measurement noises on the estimated position error as discussed in the previous section,
which is far from sufficient in urban environments. So it produces a high probability of MI
events (Pmi = 12.45% with C/N0 model and Pmi = 10.11% with hybrid UMM model). This is
why the HPL provided by SBAS cannot be employed directly for urban GNSS-based transport
applications.
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Figure 6.6 – CDF of the Four Different HPLs with Two Weighting Models (161724 epochs)

Finally, the HUL can reach a compromise between the size and the error bounding capability
among all these four methods. Its size is smaller than the HPL1 and HPL2 (median(HUL)
= 27.24 m with C/N0 model and median(HUL) = 21.16 m with Hybrid UMM model) so
that it is less conservative. It is capable of providing the lowest probability of MI events
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(Pmi = 0.26% with C/N0 model and Pmi = 0.24% with hybrid UMM model).

The same conclusions can be drawn by analyzing the Horizontal Safety Index (HSI), which is
proposed in [5] and is defined as follow:

HSI =
HPL−HPE

HPL
(6.34)

HSI is a factor to evaluate the performance of HPL computation algorithm. The more conser-
vative the algorithm, the closer the HSI is to one. The MI events are represented by negative
values of HSI. Ideally, the HSI index should be positive, which means no MI events, and near
to zero, which means its size is not too large compared to that of HPE.

Fig. 6.7 shows the curves of CDF for HSI with two weighting schemes. Obviously, the
HPLSBAS has a large part of negative HSI index, which is a proof of its poor error bounding
capability. The HPL2 and HPL1 have more values of HSI index close to one so that they are
conservative. HUL is able to provide the best compromise among these four methods.
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Figure 6.7 – HSI of the Four Different HPLs with Two Weighting Models (Total Dataset)

In short, the HUL can reach a compromise between the size and the error bounding capability,
which is the most suitable for integrity monitoring of GNSS-based urban transport applica-
tions. Consequently, in the following sections of this chapter, we will choose this method in
order to provide a bound for the estimated position errors.

6.4 Analysis of the Integrity Performance of the Complete Scheme

The following performances of the complete proposed scheme (Weighted Least Squares (WLS)
+ Fault Detection and Exclusion (FDE)) shown in Fig. 6.1 will be evaluated in this section:
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- Horizontal positioning accuracy;

- The size of the HPL;

- The probability of misleading information Pmi;

- The Ratio of Reliable Positions (RRP) declared by FDE: if there is not enough redun-
dancy to realize the FDE or to exclude all the faulty measurements, the solutions will
be flagged as unreliable. Otherwise, the positions are flagged as reliable. In the case
without FDE, the RRP represents the percentage of epochs where enough redundancy
(at least one) exists to compute a HPL.

Here, we fix Pfa = Pmd = 10−2.

6.4.1 Results with Nantes center Dataset

Let’s begin by analyzing the results with the Nantes center dataset, which includes 17903
epochs (near 1h). The complete overview of the trajectory is shown previously in Fig. 5.3.

Table 6.2 and Table 6.3 summarize the system performances before and after applying the
FDE techniques with respectively C/N0-based WLS estimator and the Hybrid UMM WLS
estimator.

Table 6.2 – Performances Summary for C/N0-based WLS with FDE (Nantes Center)

FDE Accuracy: HPE (m) Integrity
Type 50% mean 95% std 50% HPL (m) Pmi(%) RRP(%)

None 2.64 4.81 30.74 26.79 19.46 0.28 98.68

ST 2.45 4.61 14.44 8.02 18.26 0.76 98.58

LT 2.38 3.56 9.56 4.41 17.76 0.11 93.55

FB 2.32 3.43 9.90 4.36 17.46 0.14 95.01

DAN 2.50 4.13 11.18 6.17 19.21 0.28 94.81

CT 2.46 4.55 13.61 8.07 18.29 0.75 98.57

Concerning the C/N0-based WLS estimator, the accuracy performance is again improved by
FDE techniques especially huge errors are removed since the standard deviations of HPE are
much reduced. For example, the iterative Local Test (LT) can reduce the 95% HPE from 30.74
m to 9.56 m compared to the solver without FDE. The sizes of HPLs can be also reduced
especially by Forward-Backward (FB) Test and the iterative LT. What has to be highlighted
concerning these two FDE techniques is that, their probabilities of Misleading Information
(MI) events Pmi are also reduced at the same time with their size reductions. This is a proof
of strong enhancement of integrity performance. The performances of the Subset Test (ST)
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Figure 6.8 – Zoomed trajectories: Reference Trajectory (in green), Trajectory estimated by
Ordinary Least Squares (OLS) (in blue), Trajectory estimated with C/N0-based WLS (in sky
blue), Trajectory estimated with C/N0-based WLS with Forward-Backward (FB) (Reliable
positions in magenta and UNreliable in black)

and the Classic Test (CT) are similar on both accuracy and integrity. But they are relatively
worse than the other three FDE techniques. They can only exclude huge faults but are not
very effective for small faults since the low percentiles HPE have very small improvement
compared to the solver without FDE. The Ratio of Reliable Positions (RRP) of the five FDE
techniques varies from 93.55% to 98.58%.

Fig. 6.8 presents some details about an example with the FB test. Several zoomed trajectories
are drawn: the reference trajectory (in green), the trajectory estimated by Ordinary Least
Squares (OLS) (in blue), the trajectory estimated with C/N0 WLS (in sky blue) as well as
the trajectory estimated with WLS C/N0 and FB (the reliable positions are in magenta and
unreliable positions are in black). Especially in the red circles, the huge HPEs are either
reduced or flagged as unreliable, which provides a strong integrity monitoring capability.

In terms of the Hybrid UMM WLS estimator with FDE, its global performances on accuracy
and integrity are generally better than the C/N0-based WLS with FDE, if a comparison is
made between Table 6.2 and Table 6.3. The best accuracy can be obtained by applying the
iterative LT on the Hybrid UMMWLS estimator, where the median HPE achieves 2.29 m with
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Table 6.3 – Performances Summary for Hybrid UMM WLS with FDE (Nantes Center)

FDE Accuracy: HPE (m) Integrity
Type median mean 95% std 50% HPL (m) Pmi (%) RRP(%)

None 2.32 3.61 10.83 4.43 15.92 0.05 98.68

ST 2.33 3.76 11.27 5.49 15.49 0.17 98.59

LT 2.29 3.46 10.55 4.04 15.40 0.06 96.56

FB 2.30 3.48 10.59 4.09 15.44 0.07 96.78

DAN 2.31 3.59 10.70 4.64 15.83 0.04 98.31

CT 2.33 3.74 11.13 5.39 15.48 0.17 98.59

std = 4.04m. Concerning integrity performance, the position errors can be better bounded
with smaller HPL while producing less MI events by the Hybrid UMM WLS estimator with
FDE compared to the C/N0-based WLS with FDE. The RRP with the five FDE varies from
96.56% to 98.59%, which is also slightly higher than the C/N0-based WLS with FDE.
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Figure 6.9 – PDOP Increments After Subset Test (Nantes Center)

Then a comparison will be made inside Table. 6.3, i.e., to compare the effects of FDE tech-
niques on the Hybrid UMM WLS estimator. The improvements on accuracy are slight by
iterative LT, FB test and the Danish method. However, by ST and CT, the accuracy is de-
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graded. This is because the effects of satellite geometry degradation is predominant compared
to the effects of fault elimination.

In fact, the GNSS positioning accuracy depends not only on the range measurement quality
but also the user/satellite geometry, i.e., Dilution of Precision (DOP). For a FDE method,
correct exclusions of faulty measurements will ameliorate the range measurement quality but
will also inevitably degrade the satellite geometry due to a decrease of available satellite
measurements. If the former effect is predominant against the latter one, the final accuracy
can be improved. But if the latter one is predominant, the final accuracy will be degraded.
Moreover, heavy correlations among measurements in urban canyons can also possibly lead
to erroneous exclusion of healthy satellites.
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Figure 6.10 – HPL and HPE by Hybrid UMM without and with FDE techniques

Here, with the Hybrid UMM WLS estimator, huge bias are corrected at a first level by UMM
model, in which the calculated additional distances are removed. The ST and CT is generally
efficient only for huge bias as results shown previously with the C/N0-based WLS estimator.
Consequently, the DOP degradation is predominant against the effects of measurement quality
improvement. Fig. 6.9 shows an example of Position Dilution of Precision (PDOP) increment
after applying the ST, which is a proof of severe satellite geometry degradation.

The overall integrity performances of the Hybrid UMM WLS applied with different FDE
techniques are satisfactory: the Pmi varies from 0.04% to 0.17%. This can be further observed
in Fig. 6.10, which shows the HPL and HPE over a certain period of time window with Hybrid
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UMM WLS estimator as well as that applied with the five FDE techniques.

6.4.2 Results with the total Dataset

The complete system presented in Section 6.2 is then applied on the total dataset, which in-
cludes 163503 epochs (near 9h) collected in urban canyons of three different cities as described
in Section 5.1.

Before analyzing the performance in detail, Table 6.4 summarizes the test situations before
entering into each FDE technique. Among the 163503 epochs in the total dataset, there are
1779 epochs with zero redundancy. That is to say, FDE is impossible to be carried out for
1.09% of the total data due to lack of redundancy. An initial Global Test (GT) failure means
a fault is detected and it will be isolated later by each FDE technique. In the framework of
C/N0-based WLS estimator, 32% of epochs detect a fault and this ratio is lower with Hybrid
UMM WLS estimator, which is 14%.

Table 6.4 – Test Situation Summary (Total Dataset)

Test C/N0 WLS Hybrid UMM WLS
Situation Number of Epochs (%) Number of Epochs (%)

Zero Redundancy 1779 1.09 1779 1.09

Initial GT failure 51936 31.76 22960 14.04

Table 6.5 and Table 6.7 present the performance summary of the five FDE techniques in
the framework of two weighting solvers: the C/N0-based WLS and the Hybrid UMM WLS.
Table 6.6 and Table 6.8 present refined statistical results of reliable positions declared by
each FDE technique with two weighting solvers. That is to say, in these two latter tables,
the statistical analysis is made by keeping the same epoch samples (i.e., the epochs declared
as reliable) for WLS solutions and WLS with FDE. Fig. 6.11 and Fig. 6.12 provide the
corresponding Stanford diagrams.

Huge errors exist in the total dataset, which are possibly due to badly degraded measurements
caused by local effects and losses of lock of the receiver. These huge errors can reach several
kilometers with only WLS estimators as observed in the tables: std(HPE) = 9.48 km for
C/N0-based WLS and std(HPE) = 2.62 km for Hybrid UMM WLS. Fortunately, they can
be effectively detected by the FDE techniques since the standard deviation of the errors are
all reduced to smaller than 20 m. This proves the efficiency of the FDE on huge errors.

In the framework of C/N0-based WLS estimator, as shown in Table 6.5, the accuracy is
globally improved while applying the FDE techniques. Among all the FDE, the iterative
Local Test (LT) has the best performance on accuracy and integrity. It improves the median
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Table 6.5 – Performances Summary for C/N0-based WLS with FDE (Total Dataset)

FDE Accuracy: HPE (m) Integrity
Type 50% 95% std 50% HPL (m) Pmi (%) RRP(%)

None 4.41 21.84 9.48×103 27.24 0.26 98.91

ST 4.12 28.78 13.60 23.32 2.26 98.21

LT 3.62 15.66 7.17 21.70 0.34 84.61

FB 3.72 16.75 7.97 22.50 0.42 89.66

DAN 3.98 19.50 9.31 24.93 0.19 90.32

CT 4.12 28.05 17.51 23.34 1.98 98.17

HPE from 4.41 m to 3.62 m and the median HPL is 21.70 m while guarantees a probability
of Misleading Information (MI) Pmi at 0.34%. The Forward-Backward (FB) Test has the
second best performance after LT, whose RRP is slightly higher than that of the LT because
of the backward loop. The Danish method is not as good as the latter two FDE on accuracy
but it performs well on integrity since it reduces the size of HPL and Pmi at the same time
compared to the WLS estimator. The Ratio of Reliable Positions (RRP) declared by the FDE
techniques with C/N0-based WLS varies from 85% to 98%. The integrity performance can
be observed more clearly with the help of the Stanford diagram in Fig. 6.11.

Table 6.6 – Refined Analysis on Reliable Positions: C/N0-based WLS with FDE (Total
Dataset)

Reliable RRP Accuracy: HPE (m) Integrity
Positions (%) 50% mean 95% std 50% HPL (m) Pmi (%)

WLS
98.21

4.37 97.04 21.63 6.80×103 27.08 0.26
ST 4.12 8.12 28.78 13.60 23.32 2.26

WLS
84.61

3.99 36.48 17.95 3.97×103 25.06 0.25
LT 3.62 5.51 15.66 7.71 21.70 0.34

WLS
89.66

4.15 6.79 19.43 29.55 26.08 0.25
FB 3.72 5.78 16.75 7.97 22.50 0.42

WLS
90.32

4.20 6.88 20.83 9.91 26.26 0.26
DAN 3.98 6.46 19.50 9.31 24.93 0.19

WLS
98.17

4.37 97.07 21.60 6.81×103 27.07 0.26
CT 4.12 7.98 28.05 17.51 23.34 1.98

If we take a look at the performance summary on the reliable epochs declared by each FDE
in Table 6.6, the effectiveness of the FDE technique is clearer. In this table, each couple of
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WLS and FDE has the same epoch samples, which are the ones declared as reliable by the
corresponding FDE. The accuracy improvement is obvious especially in mean values and the
standard deviation of HPE. For example, the mean HPE is reduced from 97.04 m to 8.12 m
for the epochs declared as reliable by ST. This means huge errors are "corrected" by FDE
since faulty measurements are excluded. The Danish method has the smallest size of HPL
with the lowest Pmi among its

Table 6.7 – Performances Summary for Hybrid UMM WLS with FDE (Total Dataset)

FDE Accuracy: HPE (m) Integrity
Type 50% 95% std 50% HPL (m) Pmi (%) RRP(%)

None 3.57 16.45 2.62×103 21.16 0.24 98.91

ST 3.63 19.53 11.18 20.00 0.92 98.63

LT 3.42 14.67 7.00 19.48 0.33 90.34

FB 3.46 15.09 8.03 19.75 0.36 92.21

DAN 3.52 15.48 8.24 20.77 0.23 96.44

CT 3.63 19.08 10.17 20.02 0.80 98.61

Table 6.8 – Refined Analysis on Reliable Positions: Hybrid UMM WLS with FDE (Total
Dataset)

Reliable RRP Accuracy: HPE (m) Integrity
Positions (%) 50% mean 95% std 50% HPL (m) Pmi (%)

WLS
98.63

3.56 30.42 16.28 2.62×103 21.11 0.23
ST 3.63 6.40 19.53 11.18 20.00 0.92

WLS
90.34

3.46 22.62 14.87 1.27×103 20.20 0.24
LT 3.42 5.22 14.67 7.00 19.48 0.33

WLS
92.21

3.49 10.17 15.26 622.23 20.49 0.24
FB 3.46 5.42 15.09 8.03 19.75 0.36

WLS
96.44

3.54 5.65 15.87 8.56 21.01 0.24
DAN 3.52 5.57 15.48 8.24 20.77 0.23

WLS
98.61

3.56 30.42 16.27 2.62×103 21.10 0.23
CT 3.63 6.27 19.08 10.17 21.02 0.80

In terms of the Hybrid UMM WLS estimator, as shown in Table 6.7, the global performance
of accuracy and integrity are better than the former C/N0-based WLS estimator. That is
to say, the size of HPL are smaller but covers in a correct way the HPE as seen that the
Pmi is lower. The overall HPE have been reduced by the use of our estimator. Especially



Chapter 6. Snapshot Residual-Based Integrity Monitoring 143

with the iterative LT, the median HPE can achieve 3.42 m and the Pmi can be guaranteed
at 0.33% with a median HPL at 19.48 m. The RRP varies from 90% to 99% for the five
FDE techniques, which is also slightly higher than the previous C/N0-based WLS with FDE.
Fig. 6.12 shows the corresponding Stanford diagrams.
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Figure 6.11 – Stanford Diagram by CN0-basedWLS estimator without and with FDE (Total
Dataset)
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Figure 6.12 – Stanford Diagram by Hybrid UMM WLS estimator without and with FDE
(Total Dataset)

Table 6.8 reports the performance summary for reliable epochs declared by each FDE tech-
nique. Similar trends are observed: huge position errors are repaired by the FDE techniques
thanks to the exclusion of the faulty measurements.
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6.5 Conclusion and Discussion

This chapter firstly introduced the proposed scheme of integrity monitoring system, which
can be potentially applied on the GNSS-based urban transport applications. This system
includes two main modules: an accuracy enhancement module and an integrity monitoring
module.

The accuracy enhancement module employs two different weighting solvers: the C/N0-based
Weighted Least Squares (WLS) and the Hybrid Urban Multipath Model (UMM) WLS. The
integrity enhancement module includes five different FDE techniques for purpose of com-
parison: the Subset Test (ST), the iterative Local Test (LT), the Forward-Backward (FB)
Test, the Danish re-weighting method as well as a Classic Test (CT). Finally, a Horizontal
Protection Level (HPL) is calculated in order to provide a statistical error bound.

After the introduction of the complete integrity monitoring system, several methods of HPL
computation existing in the current literature are derived in detail. Four HPL computation
methods are tested and evaluated with the total dataset described in Section 5.1, which are
collected in urban canyons of three different cities in France (near 9h). The one most adapted
to GNSS-based urban applications is chosen to be implemented into the complete integrity
system.

Finally, the complete system is tested with the dataset of Nantes center and the total dataset.
The Hybrid UMM WLS estimator with FDE has a better performance of accuracy and in-
tegrity than the C/N0-based WLS estimator. Among all the combinations of weighting solvers
and the FDE techniques, the Hybrid UMM WLS estimator with the LT can achieve the best
performance of accuracy and integrity with the total dataset: median(HPE)= 3.42 m and
median(HPL)=19.48 m while guaranteeing the probability of Misleading Information (MI)
Pmi = 0.33%.

The Subset Test (ST) and the Classic Test (CT) has similar performances. These two meth-
ods can eliminate huge errors. But special attention should be payed while using these two
methods especially after applying the range corrections, such as the Hybrid UMM model.
Since the small quantile of HPE can be degraded with these two FDE techniques. This is be-
cause a correct elimination of faulty measurement can help improve accuracy but also degrade
the satellite geometry due to a reduction of the satellite number. If the former phenomenon
is predominant against the latter, the overall accuracy can be improved. Otherwise, the ac-
curacy, especially the small-quantile one, will be degraded. An additional satellite geometry
control can be added after ST and CT by simply choosing a threshold for Dilution of Precision
(DOP).

The Ratio of Reliable Positions (RRP) declared by the five FDE techniques varies from 85%
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to 98% in the framework of the C/N0-based WLS scheme and it varies from 90% to 99% with
the Hybrid UMM WLS. The non-reliable positions are flagged due to a lack of redundancy to
realize or to accomplish the FDE. The lack of redundancy to realize the FDE is mainly because
of a limited satellite visibility while the lack of redundancy to accomplish the FDE may occur
especially with the presence of multiple heavily degraded measurements. This latter means,
despite the exclusion of several faulty measurements, the remaining measurements still cannot
provide a reliable position but their is no longer enough redundancy to continue the FDE.

In fact, the lack of redundancy is a limitation of the snapshot-based integrity monitoring.
This situations is expected to be improved by multi-constellation or the use of a sequential
integrity monitoring scheme in order to increase the degree of freedom of the complete system.
The latter will be analyzed in detail in the next chapter.

The proposed integrity monitoring system can be potentially implemented in the low-cost
GNSS receivers for the purpose of eliminating huge errors. The overall performances can be
further improved by hybridizing other sensors, which is not in the framework of this PhD
research work.
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Summary

As a parallel class of approach with the snapshot residual-based integrity monitoring, the se-
quential integrity monitoring approach recently attracts more and more attention in this re-
search domain. The main estimator employed in this approach is an Extended Kalman Filter
(EKF), which is widely used in different domain. It can provide optimal estimations of nav-
igation parameters if the system dynamic motions and the observation are properly modeled.

This chapter begins by introducing the basic theories of EKF innovation-based integrity mon-
itoring approach especially the corresponding FDE techniques. Then the HPL computation in
the framework of innovation-based quality control is discussed, in which, a novel HPL compu-
tation method is proposed. Finally, the complete system is evaluated and tested with real GPS
data collected in urban canyons. The final results are compared with the results obtained in
Chapter 6.
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Part of results in this chapter is the subject of the author’s publication in [169].
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7.1 Extended Kalman Filter (EKF) Innovation-Based Integrity

Monitoring System Design

7.1.1 Introduction

Kalman Filter (KF) and Extended Kalman Filter (EKF) are tools widely used in different
domains for estimation problems. By optimally weighting the current measurements and the
dynamic model, the KF can provide recursive estimations for state vector. It is possible
to implement KFs at different levels of navigation information processing procedures, for
example, at a preliminary level to process physical measurements provided by sensors, at
an intermediate level to hybridize measurements from different sensors, or at a final level to
optimize the position information estimated by different systems.

The EKF-based integrity monitoring approach has attracted more and more attention recently
thanks to its possibility of hybridizing other sensors with GNSS [170–173]. Besides, one
important advantage of the sequential approach compared to the snapshot one is that the
Degree of Freedom (DoF) of the system is exactly equal to the number of observations, this
being not decreased by the number of unknown parameters (i.e. the dimension of the state
vector).

As described in Section 2.4.2 concerning the theory of the EKF, the main difference between
the EKF and the Least Squares (LS) method is the involvement of the dynamic model, which
allows the system to make the prediction according to the dynamic model. The predicted
state introduce additional redundancy for the integrity monitoring problem.

For the snapshot residual-based method, the Degree of Freedom (DoF) of the system is m−n
(m is the number of measurements, and n is the number of states to estimate, i.e., n = 4

in this research work). Thus, at least n + 1 measurements are needed to realize the Fault
Detection and at least n+2 measurements are needed to realize the Fault Exclusion. While in
the case of the innovation-based FDE with EKF, thanks to the presence of the n-dimensioned
predicted states, the DoF of system is m. If there are always n states to estimate, only one
measurement is sufficient to realize the same FD test and only 2 measurements are needed
for the FDE. Table 7.1 makes the summary of the system DoF and redundancy in the two
classes of integrity monitoring approach.

Since in urban environments satellite visibility is often poor, the fact that less measurements
are required for KF innovation-based FDE will make the integrity monitoring system more
robust.

In the following sections, an EKF innovation-based integrity monitoring scheme will be de-
signed and then implemented. Its performance will be evaluated with real data collected in
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urban canyons of three different cities in France as described in Section 5.1.

Table 7.1 – Summary of System DoF and Redundancy

Integrity The Number of Minimal Number
Monitoring of measurements
Approach measurement unknown DoF for FD for FDE

Snapshot Residual m n m− n n+ 1 n+ 2

Sequential Innovation m n m 1 2

7.1.2 Extended Kalman Filter (EKF) Implementation

7.1.2.1 Basic Implementation

Figure 7.1 – Flowchart of Extended Kalman Filter (EKF)

The basic theories of Extended Kalman Filter (EKF) is presented previously in Section 2.4.2.2
of Chapter 2. Fig. 7.1 shows the flowchart of the EKF implemented in this research work.
Here, the EKF is designed to estimate the vehicle position (e, n, u), velocity (ve, vn, vu) as
well as the user clock offset δt and user clock drift dδt. The state vector consists of:

xk = [e ve n vn u vu cδt cdδt]T (7.1)

where, c is the speed of light.

A constant velocity dynamic model described in [174] is employed. That is to say, the state
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transition matrix F can be simply expressed as:

F =


φ 0 0 0

0 φ 0 0

0 0 φ 0

0 0 0 φ

 where, φ =

[
1 ∆t

0 1

]
(7.2)

in which, ∆t is the time interval between subsequent measurement samples.

So the vehicle motion can be modeled as follows:

xk = Fxk−1 + wk−1 (7.3)

where, wk denotes the zero-mean Gaussian process model noise with covariance matrix Q.

The matrix Q is designed as follow [174]:

Q =


QPV 0 0 0

0 QPV 0 0

0 0 QPV 0

0 0 0 QT

 (7.4)

where,

QPV =

Sp∆t
3

3

Sp∆t
2

2
Sp∆t

2

2
Sp∆t

 and QT =

 Sf∆t+
Sg∆t

3

3

Sg∆t
2

2
Sg∆t

2

2
Sg∆t


and Sp, Sg, Sf are the spectral densities associated with the white noise [174].

The calibration of the three spectral density values are made with the help of a time-window
mask on GNSS measurements. That is to say, during this time window (i.e., 10 seconds in
this research work), there is no GPS measurements to feed the EKF and the state estimations
are carried out only according to the system dynamic model. Under this configuration, the
estimated Horizontal Position Errors (HPEs) are roughly compared with an estimated error
bound, which is the a posteriori estimated horizontal position error covariance multiplied by
an inflation factor k (i.e., k = 3 in this research work). If the divergence of the HPEs inside
time window mask can be mostly covered by the estimated error bounds, this means the
spectral densities are satisfactory. These parameters are finally be fixed as in Table 7.2 for
each dataset.

The research in this PhD aims at studying the performances of a standalone GNSS receiver,
hence, measurement vector zk is composed of GNSS code pseudorange and Doppler measure-
ments, which will be used to feed the EKF. The linearized measurement vector can be written
as:

zk = Hkxk + νk (7.5)



152
Chapter 7. Extended Kalman Filter (EKF) Innovation-Based Integrity

Monitoring

Table 7.2 – Spectral Density Parameter Values for Each Dataset

Sp Sg Sf

Nantes Center 70 70 70

Toulouse 200 200 200

Boulevards, Paris 300 300 300

La Défense, Paris 350 350 350

Paris XIIth 200 200 200

Nantes 70 70 70

where, Hk denotes the observation matrix and νk represents the measurement noise at the
epoch k, which is assumed to follow a zero-mean Gaussian distribution with covariance matrix
R:

νk ∼ N (0, Rk)

The design of the matrix Rk will be described in the next section.

7.1.2.2 EKF Measurement Error Covariance Matrix Design: Weighted
EKF (WEKF) Scheme

The covariance matrix of the measurement noise Rk plays an important role to guarantee
the performance of the EKF. Traditionally, the matrix Rk is diagonal and supposed as time-
invariant. Its diagonal components are variances of measurement errors. However, in urban
environments, the GNSS signals are severely degraded and measurement errors vary frequently
depending on local effects. Thus, a time-variant Rk instead of a fixed one is preferred.

Recall that the error models described and proposed in Chapter 4 can take into consideration
the real-time signal quality by modeling the pseudo-range measurement error variances with
different criteria. As a result, we propose here a Weighted Extended Kalman Filter (WEKF)
scheme, in which the measurement error covariance matrix Rk will be scaled by error models.
The two error models, the C/N0-based one and the Hybrid UMM, which are evaluated as the
best ones in Chapter 5, will be implemented in the matrix Rk in the WEKF scheme.

The measurement error covariance matrix at the kth epoch Rk ∈ R2m×2m can be written as1:

Rk =

[
ΣPR 0

0 ΣDop

]
(7.6)

where, ΣPR and ΣDop are respectively the measurement covariance matrix of the pseudorange
measurements and the Doppler measurements.

1m is the number of visible satellites
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The two error variance models, i.e., the C/N0 model and the Hybrid UMM model, calibrated
in Chapter 5 will be only implemented for the pseudorange measurements error covariance
matrix, i.e., ΣPR. The Doppler error covariance ΣDop will adopt a fixed value as its diagonal
components, which varies from (2 m/s)2 to (6 m/s)2 for different datasets in this research
work.
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32

SATELLITE SKYPLOT

Figure 7.2 – A skyplot of the initial epoch of the Nantes Center dataset

The justifications for this choice are as follows. The Doppler measurements are generally less
affected by the local effects compared to the pseudorange measurements. Fig. 7.2 shows a
skyplot of the initial epoch of Nantes center dataset and Fig. 7.3 shows the PR errors as well
as the Doppler errors for each visible satellite present in the skyplot. The PR errors and the
Doppler errors are estimated with the method described in Section 4.2.1 of Chapter 4.

Fig. 7.3 shows that the Doppler measurements are less affected compared to the PR mea-
surements. For instance, if we look into the satellite 11, whose elevation is the lowest in the
skyplot, its Doppler errors are much smaller and more stable than its pseudorange errors.

Of course, it is possible to implement the same error models for Doppler error covariances.
But the model parameters should be carefully re-calibrated. Considering that the Doppler
measurements are less affected by the local effects, the fixed Doppler measurements covariance
will be adopted in this research work.
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Figure 7.3 – Pseudorange Error and Doppler Error (Nantes Center dataset)

7.1.3 EKF Innovation-based Fault Detection and Exclusion (FDE)

The innovation γk at instant k is defined as the difference between the measurement and its
prediction at time k:

γk = zk −Hkx̂
−
k (7.7)

where, Hk denotes the observation matrix and x̂−k represents the a priori state estimation at
instant k.

As a result, the covariance matrix Sk of the innovation vector can be derived as:

Sk = HkP
−
k H

T
k +Rk (7.8)
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where, P−k denotes the covariance matrix of the EKF predicted state and Rk represents the
covariance matrix of measurement errors.

Similar with the residual in the snapshot method, the innovation is supposed to follow a cen-
tered Gaussian distribution in nominal cases and to follow a non-central Gaussian distribution
in faulty cases [172].

For the EKF innovation-based FDE, the Normalized Innovation Squared (NIS) is used as the
test statistic to realize the initial Global Test (GT) for the purpose of fault detection. With
Eq. (7.7) and Eq. (7.8), the NIS at instant k qk can be computed as:

qk = γTk S
−1
k γk (7.9)

The two hypotheses of the test are:

- Under fault-free conditions, qk follows a central chi-squared distribution with mk degree
of freedom, where mk is the number of visible satellite at instant k. With a specified
probability of false alarm Pfa, a threshold Tk can be defined as follow:

Pfa =

∫ ∞
Tk

1

2
mk
2 Γ(mk2 )

z
mk
2
−1e−

z
2 dz (7.10)

- Under faulty conditions, qk follows a non-central chi-squared distribution withmk degree
of freedom and a non-centrality parameter λ2

k [172]:

λ2
k = E[γTk ]S−1

k E[γk] (7.11)

The system will declare a detection of fault if the GT fails:

qk > Tk (7.12)

If a fault is detected, the Fault Exclusion procedure will start in order to isolate the faulty
measurements. Different fault isolation techniques exist. The general ideas of these FDE tech-
niques are similar but some details should be adapted in accordance with the EKF innovation-
based sequential method. The main difference between the innovation-based FDE and the
snapshot-based FDE is mainly in the step of re-adaptation after each exclusion, that is to say:

- For the snapshot-based FDE, after each exclusion, a new position solution will be cal-
culated with the remaining measurements. Then the new test statistic, i.e., Normalized
Sum of Squared Error (NSSE), will be constructed from the residual with the help of
this new position solution;
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- While for the innovation-based FDE, after identifying the faulty measurement, the ex-
clusion will be made directly from the innovation vector γk, its covariance matrix Rk
as well as the geometry matrix Hk. Then, the new test statistic, i.e., Normalized Inno-
vation Squared (NIS), can be calculated. The predicted state vector remains the same
after the exclusion. As a result, the final exclusion effect of the innovation-based FDE
only affects on the Kalman gain and the innovation vector.

As a result, the effects of the innovation-based FDE is less stronger than that of the snap-
shot residual-based FDE. We propose here to introduce the Classic Test and the Danish
re-weighting method presented in the snapshot residual-based integrity monitoring scheme
into the innovation-based scheme. In fact, it is also possible to adapt the Subset Test (ST),
the iterative Local Test (LT) as well as the Forward-Backward (FB) Test. But our preliminary
results (not presented in this PhD thesis) show that their performances are not better than
the Classic Test and the Danish re-weighting method. This issue can be an axis of future
research.2

7.1.3.1 Innovation-based Classic Test (IBCT) Scheme

In case of a fault detected, the EKF Innovation-based Classic Test (IBCT) scheme excludes the
measurement with the biggest normalized innovation. But the difference with the snapshot-
based method is that the innovations cannot be normalized simply by dividing the corre-
sponding diagonal term of its covariance matrix S. This is because the matrix S involves the
cross correlations of the state components.

One possible solution is to apply the Cholesky decomposition as in [175]. Since the matrix S is
proved to be positive semi-definite, its inverse matrix S−1 is also positive semi-definite. Hence
it is possible to apply the Cholesky decomposition to S−1 in order to remove correlations.
This means that S−1 can be written as follows:

S−1 = MTM (7.13)

where, the matrix M is lower triangular, which can be used to normalize the innovation.

Finally, the normalized innovation used to identify the fault is:

γ̃ = Mγ (7.14)

γ̃ is a vector of size 2m × 1 with m the number of visible satellite. The first m terms in
γ̃ represent the normalized innovations of pseudorange measurements and the last m terms
represent that of the Doppler measurements.

2in the following text, the sub-index k, which represents the epoch number, will be omitted for the purpose
of simplicity.
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Figure 7.4 – Flowchart of the Innovation-based Classic Test (IBCT)

Fig. 7.4 presents the flowchart of the Innovation-based Classic Test (IBCT). Once a fault is
detected by the initial Global Test, the measurement with the biggest normalized innovation
will be excluded. This procedure can be repeated several times in a loop until there is no
fault detected or there is no longer redundancy existing to continue the fault isolation. In the
latter case, the estimated position will be flagged as unreliable.

7.1.3.2 Innovation-based Danish (IBDAN) Re-weighting Scheme

Danish method aims at providing consistency among measurements by re-weighting the mea-
surement variances. In the literature, it is often used with the Least Squares (LS) solver or its
variance Weighted Least Squares (WLS). Here, we proposed to adapt this method in the con-
text of the innovation-based integrity monitoring scheme. A flowchart of the Innovation-based
Danish (IBDAN) re-weighting scheme is shown in Fig. 7.5.

If a fault is detected during the jth iteration, the Danish method will firstly calculate the
normalized innovation vector γ̃ as in Eq. (7.14). At the same time, a local threshold th is also
calculated in the same way as the snapshot approach, which is described in Section 3.5.1.2.
Then the re-weighting approach will be applied on the measurement error covariance matrix
R in this way:

σ2
i,j+1 = σ2

i,0 ·

e
γ̃i,j
th , if γ̃i,j > th

1, if γ̃i,j < th
(7.15)

where, σ2
i,0 represents the a priori error variance of the ith measurement during the jth
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Figure 7.5 – Flowchart of the Innovation-based Danish method

iteration and the σ2
i,j+1 represents the re-weighted error variance for the ith measurement in

the (j + 1)th iteration.

This re-weighted measurement error covariance matrix R will be involved in the computation
of the innovation covariance matrix S as in Eq. (7.8). So a new Normalized Innovation
Squared (NIS) and a new threshold can be calculated in order to realize a new Global Test
(GT). In the case that GT succeeds, the EKF update procedure will be conducted by taking
into consideration the re-weighted measurement error covariance matrix R.

7.1.4 EKF Innovation-Based HPL

7.1.4.1 Derivation of the Innovation-based HPL

A large body of research work contributes to the computation of the HPL for the snapshot
residual-based integrity monitoring algorithm [18, 73–75, 83] while very few papers can be
found dealing with the EKF innovation-based HPL [172,173,176].

Similar with the residual-based snapshot integrity monitoring approach, the EKF innovation-
based HPL can also take the slope-based form [74,83] as described in Chapter 6:

HPL = max
i

(Hslopeiσi)
√
pbias +K(Pmd)dmajor (7.16)
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where,
- Hslopei represents the sensitivity of HPE to a bias of ith satellite;
- σi denotes the standard deviation of the ith measurement error;
- pbias represents the bias in the space of test statistic, which can take the following values
according to how much conservative one will be:

* The Test Threshold Tk;

* The non centrality parameter λk;

* The Normalized Innovation Squared (NIS).

- K(Pmd) is an inflation factor in order to meet specified integrity risk;
- dmajor denotes the position error uncertainty along the semi-major axis of the error ellipse.

In the case of EKF, the dmajor can be deduced with the help of the estimated state variance
matrix P :

dmajor =
√
Pee + Pnn (7.17)

where, Pee and Pnn are respectively the position variances in the East and North directions.

Now we will make the derivation of theHslope for EKF innovation-based integrity monitoring.
According to [173], the failure-mode slope ρ2

k can be formulated as:

ρ2
k =

E[εk]
2

λ2
k

(7.18)

where, εk denotes the error between state vector estimation and the true value at the instant
k, i.e., εk = x̂k − xk.

Keeping the same notions as in Section 2.4.2 of Chapter 2 where addresses the EKF principles,
the measurement model can be written as:

zk = Hkxk + vk (7.19)

with vk the measurement noise. If we substitute the measurement zk into the following EKF
state update equation:

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (7.20)

We have:
x̂k = x̂−k +Kk(Hkxk + vk −Hkx̂

−
k ) (7.21)

Then, with the help of the EKF state prediction equation, Eq. (7.21) can be written as:

x̂k = K
′
kFx̂k−1 +KkHkxk +Kkvk (7.22)

where, K ′k = I −KkHk.
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If we subtract xk at two sides of Eq. (7.22), and substitute Eq. (7.3) into it at the same time,
the following expression can be obtained:

εk = K
′
kFεk−1 +Kkvk −K

′
kwk−1 (7.23)

So that,
E[εk] = K

′
kFE[εk−1] +KkE[vk] (7.24)

since the process model noise wk is supposed to be zero-mean, i.e., E[wk] = 0.

Assuming there is no prior fault, i.e., all the faults at the previous epochs are instantaneously
detected and correctly excluded, we have:

E[εk−1] = 0 (7.25)

So under faulty conditions, we have E[vk] = fk, with fk the fault profile vector, thus:

E[εk] = Kkfk (7.26)

Concerning the denominator of the slope term ρ2
k, the non-centrality parameter λ2

k can be
written as:

λ2
k = E[γTk ]S−1

k E[γk] (7.27)

Similarly, with the help of the EKF state prediction equation, Eq. (7.3) and Eq. (7.19), the
innovation can be written as:

γk = zk −Hkx̂
−
k

= −HkFεk−1 +Hkwk−1 + vk
(7.28)

So,
E[γk] = −HkFE[εk−1] +HkE[wk−1] + E[vk] (7.29)

Thus, under fault conditions and without prior fault, we have:

E[γk] = fk (7.30)

Finally, the Hslopek,i at the instance k for the ith measurement can be derived as [176]:

Hslopek,i =

√
E[εe,k]2 + E[εn,k]2

E[γTk ]S−1
k E[γk]

=

√
fTi K

T
k τ

T
e τeKkfi + fTi K

T
k τ

T
n τnKkfi

fTi S
−1
k fi

(7.31)

where, τ is a vector allowing to select the desired state from the full state vector and fi is a
fault profile vector containing zeros except for the corresponding satellite under evaluation.
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7.1.4.2 Discussion about the Innovation-based Hslope

In this research work, the main differences between the implemented Extended Kalman Filter
(EKF) and the Weighted Least Squares (WLS) are the involvement of the system dynamic
model and the measurements of Doppler. Let us take a look at the impacts of these differences
on the Hslope.

Figure 7.6 – A comparison of snapshot WLS residual-based Hslope and the EKF innovation-
based Hslope (Nantes Center Dataset)

Fig. 7.6 shows the Hslope calculated respectively by the snapshot residual-based approach
(blue curve) and the sequential innovation-based approach (red curve). The latter is calculated
according to Eq. (7.31). The measurement error variance model used for both two approaches
is the C/N0-based model.

What can be observed is that the EKF sequential innovation-based Hslopes are generally
much smaller than the WLS residual-based Hslopes. This means, theoretically, given the
same size of bias, the EKF innovation-based approach yields a smaller position error than
the snapshot residual-based approach. At the same time, for a same level of HPE, the EKF
innovation-based approach can provide a larger test statistic which makes the fault easier to
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be detected.

Recall that, however, the assumption of no prior fault is made for this innovation-based slope
in Eq. (7.31). This means, if the prior faults are all correctly detected and excluded, the
theoretical advantages of the innovation-based HPL mentioned in the previous paragraph can
be true. Otherwise, if the prior faults remain, because of the sequential feature of the EKF,
this innovation-based HPL can lead to a high Pmi due to its non sufficient size. This will be
proved with our real dataset in the next section.

7.1.4.3 A Proposed Innovation-based HPL Computation

The analysis in the previous section shows the potential risk of non sufficient HPL size by
taking into account the non prior fault assumption. As a result, a compromise should be
found between the optimal assumption [176], i.e., non prior fault assumption, and the worst-
case assumption [172], i.e., all the history fault exist. The optimal assumption can possibly
lead to too small HPLs since one or several prior faults, which are not detected or excluded
instantaneously, can impact the estimation of current epoch. The worst-case assumption can
potentially lead to too huge HPLs since all the historical faults are considered. This latter
one is used to find the worst case fault of spoofing attacks in [172].

Motivated and inspired by this analysis, we propose here a new innovation-based HPL, es-
pecially a new Hslope computation, by taking into consideration the fault of the last epoch.
That is to say, if a fault was detected at the last epoch, the Hslope in the HPL will be com-
puted according to the following proposed method. Otherwise, the assumption of no prior
fault will be made so that Eq. (7.31) will be used.

Begin from the following slope expression in Eq. (7.18):

ρ2
k =

E[εk]
2

λ2
k

In Section 7.1.4.1, what have been have already obtained under faulty cases are:

E[εk] = K
′
kFE[εk−1] +KkE[vk]

= K
′
kFE[εk−1] +Kkfk

= K
′′
kE[εk−1] +Kkfk

(7.32)

where, K ′′k = K
′
kF .

and,

E[γk] = −HkFE[εk−1] +HkE[wk−1] + E[vk]

= −HkFE[εk−1] + fk
(7.33)
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Only the fault of the last epoch, i.e., (k− 1)th epoch, will be taken into account. As a result,
a particular solution to Eq. (7.32) as a function of fault profile of the two epochs fk−1|k can
be written as:

E[εk] =
[
K
′′
kKk−1 Kk

]
︸ ︷︷ ︸

Ak

[
fk−1

fk

]
︸ ︷︷ ︸
fk−1|k

=Akfk−1|k

(7.34)

Substituting Eq. (7.34) into Eq. (7.33), the following expression can be obtained:

E[γk] =−HkFKk−1fk−1 + fk

=
[
−HkFKk−1 I

]
︸ ︷︷ ︸

Bk

[
fk−1

fk

]
︸ ︷︷ ︸
fk−1|k

=Bkfk−1|k

(7.35)

As a result, the proposed Hslope, denoted as Hslope+
k,i at the instance k for the ith measure-

ment can be derived as:

Hslope+
k,i =

√
E[εe,k]2 + E[εn,k]2

E[γTk ]S−1
k E[γk]

=

√√√√fT(k−1|k),iA
T
k τ

T
e τeAkf(k−1|k),i + fT(k−1|k),iA

T
k τ

T
n τnAkf(k−1|k),i

fT(k−1|k),iB
T
k S
−1
k Bkf(k−1|k),i

(7.36)

where, τ is a vector allowing to select the desired state from the full state vector and f(k−1|k),i

a fault profile vector containing zeros except for the ith satellite under evaluation.

In summary, the proposed innovation-based HPL at instant k will be computed in this way:

HPL =K(Pmd)
√
Pee + Pnn

+
√
λ2
k ·


max
i

(Hslopek,iσi), if no fault detected at (k − 1)th epoch

max
i

(Hslope+
k,iσi), if fault detected at (k − 1)th epoch

(7.37)

The non-centrality term is chosen here in the expression of the HPL for purpose of conservative
due to the analysis made in Section 7.1.4.2.

7.2 Test Results and Performance Analysis

Similarly with the Chapter 6, the following performances of the proposed sequential innovation-
based integrity monitoring scheme (Extended Kalman Filter (EKF) + Fault Detection and
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Exclusion (FDE)) will be evaluated in this section:

- Horizontal positioning accuracy;

- The size of the HPL. The following two HPL are implemented for comparison:

* The one under the assumption of no prior fault:

HPL1 = max
i

(Hslopeiσi)
√
λ2
k +K(Pmd)

√
Pee + Pnn (7.38)

* The proposed one:

HPL2 =K(Pmd)
√
Pee + Pnn

+
√
λ2
k ·


max
i

(Hslopek,iσi), if no fault detected at (k − 1)th epoch

max
i

(Hslope+
k,iσi), if fault detected at (k − 1)th epoch

(7.39)

- The probability of misleading information Pmi;

- The Ratio of Reliable Positions (RRP) declared by the complete system.

Here, we also fix Pfa = Pmd = 10−2, which are the same as in Chapter 6.

A special detection for the receiver clock jump phenomenon, which occurs usually in the low-
cost receivers, is added in order to deal with the potential EKF divergence. Once a clock
jump is detected, the EKF will be reset. In this case, the estimated positions will also be
considered as unreliable.

7.2.1 Results with Nantes Center Dataset

The Nantes center dataset (17903 epochs) will be used in this section to evaluate the EKF
innovation-based integrity monitoring system.

First of all, in order to prove the benefit of Weighted Extended Kalman Filter (WEKF), a
classic EKF with time-invariant measurement error covariance matrix R is also implemented,
in which σpseudorange = 8m and σDoppler = 2m/s.

Fig. 7.7 shows the Cumulative Distribution Function (CDF) curves with the six solvers in
two classes of approaches (without FDE applied): the dashed lines are with the snapshot
approach (the Ordinary Least Squares (OLS), the Weighted Least Squares (WLS) with the
C/N0-based model and the WLS with the Hybrid UMM model) and the solid lines are with
the sequential EKF approach (the EKF with fixed R, the WEKF with C/N0-based model
and WEKF with the Hybrid UMM model). Table 7.3 summarizes the statistical performance
of accuracy.
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Figure 7.7 – HPE Comparison with the Six Solvers without FDE (Nantes Center Dataset)

Table 7.3 – Summary of Accuracy with Six Solvers no FDE Applied (Nantes Center)

Estimator Accuracy: HPE (m)
Type 50% 75% 95%

OLS 5.66 11.51 30.70

EKF 5.76 11.26 29.21

C/N0 2.64 4.84 13.78
WLS

Hybrid UMM 2.32 3.87 10.83

C/N0 2.30 4.13 13.21
WEKF

Hybrid UMM 2.09 3.29 7.54

The accuracy with the OLS and the classic EKF is almost at the same level. They are
both much worse than the weighted solvers. This proves the advantages of implementing
the weighting models. Concerning the two weighting models, the accuracy with the Hybrid
UMM model is better than the C/N0-based model both in snapshot approach and sequential
approach. The median HPE can achieve 2.09 m with the WEKF Hybrid UMM estimator,
which improves 63% compared to the OLS estimator. In terms of the two classes of approaches,
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the EKF sequential one is better than the snapshot one thanks to the involvement of system
dynamic model. This effect is more obvious between the WEKF and the WLS.

The fact that the sequential approach performs better than the snapshot approach is mainly
due to the presence of the dynamic model and the filtering effects which make the estimated
trajectory smoother than the one with the snapshot approach. This effect can be observed
more clearly in Fig. 7.8. Fig. 7.8(b) shows the zoomed trajectories in the red squared zone of
the Fig. 7.8(a). The estimated trajectories are obtained respectively by the WLS and WEKF
with the C/N0-based weighting model. The trajectory with the WEKF is much smoother
than the one with the WLS, which produces the accuracy gain.

Table 7.4 – Performances Summary for C/N0-based WEKF with FDE (Nantes Center)

Accuracy Integrity
FDE HPE (m) 50% HPL (m) Pmi(%) RRP
Type 50% mean 95% std HPL1 HPL2 P1 P2 (%)

None 2.32 4.44 13.21 20.42 12.76 – 1.71 – 99.99

IBCT 2.32 3.40 9.89 3.78 10.79 11.49 0.98 0.49 99.99

IBDAN 2.31 3.28 9.39 3.45 11.12 11.41 0.45 0.44 96.69

Then, the FDE techniques, i.e., the Innovation-based Classic Test (IBCT) and the Innovation-
based Danish (IBDAN) re-weighting method, will be applied on the WEKF estimator with
the two error models, i.e., the C/N0-based model and the Hybrid UMM model. Table 7.4
and Table 7.5 summarize the accuracy and the integrity performance of the complete EKF
innovation-based integrity monitoring system. What should be mentioned is that, the HPL
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Table 7.5 – Performances Summary for Hybrid UMM WEKF with FDE (Nantes Center)

Accuracy Integrity
FDE HPE (m) 50% HPL (m) Pmi(%) RRP
Type 50% mean 95% std HPL1 HPL2 P1 P2 (%)

None 2.09 2.81 7.54 2.61 8.28 – 1.03 – 99.99

IBCT 2.09 2.77 7.26 2.54 8.30 8.39 0.74 0.53 99.99

IBDAN 2.08 2.78 7.19 2.74 8.35 8.40 0.62 0.51 99.18

is calculated with the two methods described at the beginning of this section in Eq. (7.38),
i.e., without prior faults, and Eq. (7.39), i.e., with prior fault of the last epoch, for purpose of
comparison. The proposed one, i.e., HPL2, is only computed when the FDE techniques are
applied due to its designed feature.
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Figure 7.9 – Receiver Clock Jump (Nantes Center Dataset)

Generally speaking, the global performance of accuracy and integrity with theWEKF innovation-
based integrity monitoring scheme are better than the snapshot residual based approach. This
is because the sizes of HPE and HPL are both reduced. There is an augmentation of Pmi,
which can be guaranteed however under 2%. Moreover, thanks to the redundancy gain of
the EKF sequential approach, the FDE is more available since the Ratio of Reliable Posi-
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tions (RRP) declared by the system is higher than the snapshot approach. This can be an
advantage especially in face of the poor satellite visibility in urban canyons. The RRP of the
WEKF with the two error models without FDE both achieve 99.99%. The lack of 0.01% is
due to the detection of the clock jump (2 epochs) as shown in Fig. 7.9.

Figure 7.10 – Horizontal Position Error (HPE) Comparison Before vs After Applying FDE
techniques on WEKF with C/N0 model (Nantes Center Dataset)

Concerning the C/N0-based WEKF, the improvement of accuracy by the two FDE techniques
is obvious. Especially with the IBDAN re-weighting method, the high-quantile errors are
effectively removed, for example, the 90% accuracy is reduced from 13.21 m to 9.39 m and
the standard deviation is reduced from 20.42 m to 3.45 m. Fig. 7.10 shows the HPE with
only WEKF C/N0 solver and this one applied with the two FDE techniques, i.e., IBCT and
IBDAN. The huge errors are reduced especially at the time intervals of [0,2000], [6000,8000],
as well as [14000,17000].

The median sizes of both HPLs for both FDE techniques vary around 10 m∼13 m and the
Pmi varies from 0.44% to 1.71%. What should be highlighted is that, the proposed HPL, i.e.,
HPL2, performs better than the HPL1 especially with the IBCT: with an increase of median
HPL by less than 1 m, the Pmi is reduced by 50%. Fig. 7.11 shows the Stanford diagrams of
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Figure 7.11 – Stanford Diagram of WEKF C/N0 + IBCT (Nantes Center Dataset)

the WEKF C/N0 with IBCT. The HPL is calculated respectively with HPL1 (Fig. 7.11(a))
and HPL2 (Fig. 7.11(b)). HPL2 is more conservative compared to the HPL1 since its size is
bigger but produces significantly lower Pmi. As a result, when choosing the method of HPL, a
compromise should be found between the size and the ratio of Pmi according to the targeted
applications.

The IBDAN can provide better integrity performances with the Hybrid UMM WEKF than
the IBCT except its RRP is slightly lower.

In terms of the Hybrid UMM WEKF, its global performance is still better than the C/N0-
based approach as shown in Table 7.5. Compared to the C/N0-based model analyzed in the
previous text, its accuracy is better and the size of HPL is smaller with generally lower ratios of
Pmi, which proves a better error bounding capability. Concerning the proposed HPL2, similar
conclusions as in C/N0-based approach can be drawn under the framework of WEKF with
Hybrid UMM. Fig. 7.12 shows the Stanford diagrams of the WEKF Hybrid UMM with the
IBCT. The HPL is calculated respectively with HPL1 (Fig. 7.12(a)) and HPL2 (Fig. 7.12(b)).

For the Hybrid UMM based WEKF, the accuracy improvement by the FDE techniques is not
so obvious as in the C/N0-based WEKF. This is because, firstly, the pseudorange errors are
already corrected at a first level by the UMM model based on the geometry of the digital map.
Secondly, the number of epochs where faults are detected is more in the C/N0-based WEKF
than in the Hybrid UMM-based WEKF. Table 7.6 reports the situation of initial Global
Test (GT) failures by the two weighting models. As shown in Table 7.6, the measurements
possess more consistency with the Hybrid UMM WEKF so that only 2.66% of epochs are
detected with faults thanks to the range error corrections by the UMM. This ratio is higher
in C/N0-based WEKF, i.e., 9.35%.
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Figure 7.12 – Stanford Diagram of WEKF Hybrid UMM + IBCT (Nantes Center Dataset)

Table 7.6 – Test Situation Summary (Nantes Center Dataset)

Test C/N0 WEKF Hybrid UMM WEKF
Situation Number of Epochs (%) Number of Epochs (%)

Initial GT failure 1674 9.35 476 2.66

Moreover, among these epochs where the initial GT fails, the number of excluded measure-
ments (pseudorange measurements or Doppler measurements) in C/N0-based approach is
more than that of the Hybrid UMM WEKF. Fig. 7.13 shows a comparison of the number
of excluded measurements by IBCT with respectively C/N0-based WEKF and the Hybrid
UMM-based WEKF. For the Hybrid UMM-based WEKF, the IBCT excludes 3 measurements
maximum but for the C/N0-based WEKF, the maximum number of excluded measurements
reaches 10.

7.2.2 Results with the Total Dataset

In this section, the complete EKF Innovation-based integrity monitoring scheme will be eval-
uated with the total dataset described in Section 5.1, in which the total number of epoch is
163503 (near 9h).

Table 7.7 – Test Situation Summary (Total Data)

Test C/N0 WEKF Hybrid UMM WEKF
Situation Number of Epochs (%) Number of Epochs (%)

Initial GT failure 28394 17.37 15237 9.32
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Figure 7.13 – Number of Excluded Measurements (Nantes Center Dataset)

Table 7.7 summarizes the number of the initial Global Test (GT) failure respectively in the
framework of the two Weighted Extended Kalman Filter (WEKF) schemes with the two
weighting models. 17.37% of epochs have the initial GT failure with the C/N0-based WEKF
while this ratio is only 9.32% with the Hybrid UMM WEKF. This means less epochs are
involved by the FDE techniques with the Hybrid UMM model because it produces smaller
EKF innovations thanks to the range corrections.

Table 7.8 – Performances Summary for C/N0-based WEKF with FDE (Total Dataset)

Accuracy Integrity
FDE HPE (m) 50% HPL (m) Pmi(%) RRP
Type 50% 95% std HPL1 HPL2 P1 P2 (%)

None 4.14 20.89 22.95 18.69 – 1.86 – 99.90

IBCT 3.86 19.53 21.66 18.43 20.43 1.71 0.67 99.89

IBDAN 3.67 15.39 20.38 15.59 16.53 1.13 1.02 92.37

Table 7.8 gives a summary about the accuracy and integrity performances of the C/N0-based
WEKF with and without the FDE techniques. The HPLs are calculated respectively with the
two methods mentioned at the beginning of this section. If a comparison is made between the



172
Chapter 7. Extended Kalman Filter (EKF) Innovation-Based Integrity

Monitoring

snapshot and sequential approaches without FDE with the C/N0 model, the accuracy with
the WEKF is better. Especially the huge errors are directly removed by filtering since the
standard deviation of HPE with the WLS C/N0 is 9.48 km (in Table 6.5) and here is 22.95 m.
The sequential EKF innovation-based approach has tendency to provide tighter HPL bound
compared to the snapshot-based approach since the sizes of HPL are smaller and the Pmi is
generally higher.
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Figure 7.14 – Cumulative Distribution Function (CDF) of HPE with C/N0-based WEKF
(Total Dataset)

The Innovation-based Danish (IBDAN) re-weighting method performs globally better than
the Innovation-based Classic Test (IBCT) in terms of accuracy and error bounding capability.
Fig. 7.14 shows the Cumulative Distribution Function (CDF) of the HPE under the context
of C/N0-based WEKF. The best accuracy is obtained with the IBDAN method especially the
huge tail errors are effectively removed (e.g., the zoomed CDF curved on 95% accuracy are
shown in Fig. 7.14(b)).

But the Ratio of Reliable Positions (RRP) declared by the IBDAN is lower than the IBCT,
which is due to difficulties of convergence. But this ratio, i.e., 92.37%, is still higher than the
parallel WLS approach with Danish method, i.e., 90.32%, thanks to the redundancy gain of
the EKF innovation-based approach.

The proposed HPL2 can better bound the HPE despite of its conservative nature. For exam-
ple, with IBCT, a gain of 10.85% in median size compared to HPL1 can reduce the Pmi by
60.83%. Fig. 7.15 plots the Stanford Diagrams of the C/N0-based WEKF with the two FDE
(i.e., IBCT and IBDAN) and the two HPL computation methods. The HPL1 has a smaller
size but a higher Pmi and the HPL2 has the opposite features, which are more conservative.
A compromise should be made according to the applications when choosing these two HPL
computations.
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Figure 7.15 – Stanford Diagram of WEKF C/N0 with FDE (Total Dataset)

Table 7.9 – Performances Summary for Hybrid UMM WEKF with FDE (Total Dataset)

Accuracy Integrity
FDE HPE (m) 50% HPL (m) Pmi(%) RRP
Type 50% 95% std HPL1 HPL2 P1 P2 (%)

None 3.85 20.71 12.30 19.04 – 2.26 – 99.90

IBCT 3.74 19.96 29.09 19.53 20.95 1.37 0.73 99.89

IBDAN 3.60 16.52 12.21 16.38 17.17 1.55 1.36 95.51
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Figure 7.16 – Cumulative Distribution Function (CDF) of HPE with Hybrid UMM-based
WEKF (Total Dataset)
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Figure 7.17 – Stanford Diagram of WEKF Hybrid UMM with FDE (Total Dataset)
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Concerning the Hybrid UMM-based WEKF, Table 7.9 makes a summary about the accuracy
and integrity performances and Fig. 7.16 shows the corresponding CDF curves. Fig. 7.16
proves that the global accuracy performance can be improved by both of the two FDE espe-
cially the IBDAN re-weighting method.

Concerning the two HPL computation methods, similar conclusions can be drawn as previ-
ously with C/N0-based model. Fig. 7.17 plots the Stanford diagrams with the two FDE and
two HPL in the framework of the Hybrid UMM-based WEKF. The proposed HPL2 has a
better error bounding capability compared to the HPL1 even though its size is bigger. The
RRP declared by IBCT is higher than the parallel method in the snapshot approach. But
the RRP declared by IBDAN is slightly lower than this one in the snapshot approach due to
difficulties of convergence.

7.3 Conclusion and Discussion

This chapter aims at designing and implementing a complete Extended Kalman Filter (EKF)
innovation-based integrity monitoring scheme. The following points concerning some conclu-
sions and discussions can be addressed:

- Firstly, the accuracy with the EKF estimator is globally better than that with the WLS
estimator. In particularly, the concept of Weighted Extended Kalman Filter (WEKF)
is proposed and tested here by implementing two error models evaluated in the previous
chapters (i.e., the C/N0-based model and the Hybrid Urban Multipath Model (UMM))
into the measurement error covariance matrix of the EKF. The results with the real data
collected in urban canyons prove that the accuracy can still be significantly improved
by the WEKF compared to the classic EKF.

- Secondly, as a parallel approach with the snapshot residual-based integrity monitoring
scheme, the innovation-based scheme has the advantage of redundancy gain thanks to
the prediction states. This advantage can be observed obviously with the IBCT. There
are no longer unreliable positions due to initial zero redundancy. Receivers can benefit
from the redundancy gain especially in face of poor satellite visibility.

- Thirdly, two FDE techniques existing in the snapshot approach are adapted in the
sequential innovation-based integrity monitoring approach, i.e., the Innovation-based
Classic Test (IBCT) and the Innovation-based Danish (IBDAN) re-weighting method.
Of course, other FDE techniques discussed in Chapter 6, such as the Local Test (LT)
and the Forward-Backward (FB) Test, are also possible to be adapted into the EKF
innovation-based approach. But for EKF, without re-calculation of a new solution after
each exclusion, these two approaches cannot provide better performances compared to
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the IBCT, which is proved by our preliminary results. This can be a perspective for
future research.

- Under the assumption of no prior fault, the EKF innovation-based approach produces
lower fault slopes compared to the WLS residual-based snapshot approach. This means
tighter HPLs can be provided by the EKF-based approach. Theoretically, this means
the position errors are less sensitive to the measurement bias and faults are easier to
be detected. However, with the results of the real data, the HPL computed under this
assumption is not big enough to bound the HPE. As a result, a new method of HPL
computation is proposed by taking into consideration the fault of the last epoch. With
the results of the real data, the proposed HPL can better bound the position error with
a slight augmentation of size.

- Concerning the final performances with the complete EKF innovation-based scheme, it
is sophisticated to conclude in one sentence. In terms of the FDE technique, the IBDAN
method can provide better accuracy improvement compared to the IBCT with both of
the two error models. And the IBDAN can provide tighter HPL compared to the IBCT.
But the IBCT possess a lower Pmi and a higher Ratio of Reliable Positions (RRP).
The choice of the method can be made according to the requirement of the targeted
applications. For example, applications requiring high integrity can choose the IBCT
while applications requiring high continuity can choose the IBDAN.
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Summary

This chapter summarizes the research work conducted in the framework of this PhD Thesis and
draws the conclusions from the results obtained from the previous chapters. Some perspectives
for future work will also be addressed.
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8.1 Conclusions

The research work of this PhD is carried out in the context of an increasing number of the
Global Navigation Satellite Systems (GNSS)-based applications in constraint environments.
The performances of GNSS can be severely degraded by the local effects, such as the mul-
tipath and the Non-Line-of-Sight (NLOS) reception. The main objective of this research is
to improve the positioning service quality of a GNSS receiver for the applications in con-
straint environments. The targeted performances are mainly GNSS positioning accuracy and
integrity for low-cost GNSS receivers.

Firstly, an overview on GNSS positioning principles and a survey on GNSS integrity moni-
toring techniques in urban environments are made. The survey regarding the GNSS integrity
monitoring in urban environments corresponds to the author’s publication of [45]. Then,
the main research work is conducted around two axis: accuracy enhancement and integrity
enhancement.

The accuracy enhancement is mainly realized by the use of more realistic error models, which
are presented and tested in Chapter 4 and Chapter 5. These error models can reflect the real-
time signal quality by taking into consideration different criteria, such as the C/N0 (carrier-
power-to-noise-density ratio), the satellite elevation, the signal reception states LOS/NLOS,
etc. Under this axis of work, a new hybrid model is proposed. This model combines the
information of C/N0, the satellite elevations, the signal reception state LOS/NLOS as well
as the range corrections. The last two informations are obtained with the help of a 2D+1
map (2D building features with building heights) by geometric approach. A novel model
named Urban Multipath Model (UMM) is proposed with a simplified ray-tracing approach,
which is an improved version of the existing Urban Trench Model (UTM) [36]. The UMM
can distinguish the signal reception state LOS/NLOS and can provide the range corrections
for NLOS signals, which are used for the proposed hybrid error model.

Then, all these error models are embedded with the help of a Weighted Least Squares (WLS)
estimator, in which, measurements with large errors will contribute low weights to the final
position solutions and measurements with small errors will contribute more. The results with
real GPS data collected in urban canyons in Chapter 5 show that, among all these error
models, the best accuracy is obtained by the Hybrid UMM-based WLS estimator.

The Hybrid UMM-based WLS is not complicated to be implemented once a digital map is
integrated in the receiver. But the main constraint is that its performance strongly depends
on the map accuracy and availability. The current results with Hybrid UMM can be still
improved with a high accurate map while it can be possibly degraded if a low-quality map is
used since additional errors will be involved. Moreover, the necessity of updating is also an
important issue to be considered.
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Except the Hybrid UMM, the C/N0-based model performs better than all the other error mod-
els evaluated in this thesis, as shown in Chapter 5. The main advantage of this model is the
easy access of the C/N0 information. It does not depend on other aiding techniques. However,
the model calibration is sophisticated since the two parameters are environment-dependent
and receiver-dependent. The parameters used in this research work can be considered as ref-
erence values for similar low-cost receivers in urban environments especially for applications
required high integrity.

After the accuracy enhancement, the two best error models, i.e., the C/N0-based model and
the Hybrid UMM, are chosen to help construct the complete integrity monitoring schemes.
The integrity monitoring schemes are designed in the framework of two classes of approaches:
the snapshot residual-based integrity monitoring and the Extended Kalman Filter (EKF)
innovation-based integrity monitoring. These two classes of integrity monitoring methods are
presented and evaluated respectively in Chapter 6 and Chapter 7, which are respectively the
subjects of the author’s publications of [139,167] and [169,177].

The snapshot residual-based integrity monitoring scheme designed in Chapter 6 consists of
two main modules: an accuracy enhancement module, in which weighting models discussed
previously are implemented with a WLS estimator, and an integrity enhancement module.
In the integrity enhancement module, following five Fault Detection and Exclusion (FDE)
techniques are evaluated for purpose of comparison: the Classic Test (CT), the Subset Test
(ST), the iterative Local Test (LT), the Forward-Backward (FB) Test as well as the Danish
re-weighting method. Finally, the Horizontal Protection Level (HPL) is calculated and the
Probability of Misleading Information Pmi is evaluated.

As a result, different combinations of weighting solvers and FDE techniques are tested as in
author’s publications of [139] and [167]. The results show that huge errors can be removed
by most of the FDE techniques so that the GNSS performance reliability is improved. The
Hybrid UMM-based WLS estimator with FDE has better global performances than the C/N0-
based WLS with FDE. In particular, the Hybrid UMM WLS with the LT performs the best
among all these combinations in terms of positioning accuracy, the size of HPL as well as
its error bounding capability. But due to lack of redundancy before or during the FDE, the
Ratio of Reliable Positions (RRP) declared by this complete system after LT is only 90.34%
with the total dataset (163503 epochs). This situation is hoped to be further improved by
the use of multi-constellation or the involvement of other sensors.

In the framework of the EKF innovation-based integrity monitoring presented in Chapter 7,
the two error models are implemented in the proposed Weighted Extended Kalman Filter
(WEKF) in order to enhance the accuracy at the first level. Here, a classic dynamic model
with constant velocity is implemented for the EKF. Results show that, with the help of more
realistic error models, the WEKF can effectively provide better accuracy than the classic
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EKF, where the measurement errors are considered as invariant. This part of research is
partly published in [169].

Then, two of the FDE techniques implemented in the snapshot approach are adapted for
the EKF innovation-based approach, i.e., the Innovation-based Classic Test (IBCT) and the
Innovation-based Danish (IBDAN) re-weighting method. One important advantage of the
innovation-based integrity monitoring is the gain on redundancy thanks to the predicted
states. As a result, the FDE availability can be improved especially in face of the poor
satellite visibility in dense urban canyon. This feature can be proved by comparing the RRP
declared by the IBCT (i.e., 99.89%) and that declared by the CT in the snapshot approach
(i.e., 98.17%) with the total dataset. Since the Danish re-weighting method does not exclude
measurements, there is no problem of redundancy lack. But difficulties can be found in the
procedure of convergence for the Danish re-weighting method, which is the cause of unreliable
positions.

Concerning the HPL computation, the innovation-based HPL provides too tight bound under
the assumption of no prior fault. Thus, a new method of HPL computation is proposed by
taking into account of the fault detected at the last epoch. This choice is a compromise
between the HPL size and its error bounding capability. Results show that, this proposed
HPL is more conservative since it can better bound the position errors with a slight gain of
size compared to the one with the assumption of no prior fault.

The Hybrid UMM-based WEKF integrity monitoring scheme performs better than the one
based on C/N0 in terms of the accuracy and integrity. And the IBDAN method has a global
better performance than the IBCT in both of the two weighting EKF in terms of accuracy
and HPL size. But the IBCT is able to provide lower Pmi and higher availability despite of
larger sizes of HPL. The choice of the FDE method can be made according to the requirement
of the targeted applications. For example, applications requiring high integrity can choose
the IBCT while applications requiring high continuity prefer to choose the IBDAN.

Finally, the comparisons are made between the two parallel integrity monitoring schemes: the
snapshot residual-based scheme and the EKF innovation-based scheme, as in author’s publi-
cation of [177] (which is under review actually). In the framework of the C/N0-based error
model, the EKF innovation-based scheme is globally better than the snapshot residual-based
scheme especially in terms of accuracy and availability. But the snapshot-based approach
can provide lower Pmi with bigger HPL. On the contrary, for the Hybrid UMM-based error
model, the best accuracy is obtained with the snapshot WLS solver. The erroneous range
corrections made by UMM can induce huger impacts with EKF due to its sequential feature.
Thus, the UMM hybridizes better with the snapshot approach. And the overall performance
of the Hybrid UMM is still better than the C/N0-based approach.
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8.2 Perspectives

As more and more GNSS constellations will be ready to be operational, such as the Eu-
ropean Galileo and the Chinese Beidou, the integrity monitoring techniques studies in this
research work can be extended with Multi-Constellation Multi-Frequency (MCMF). With
multi-constellations, satellite visibility will be significantly improved in urban environments
so that the issue of lack of redundancy for FDE will be solved. If multi-frequency is used, the
ionospheric error will be better corrected and the accuracy can still be improved.

Moreover, all the schemes proposed in this research work can also be applied with multiple
sensor hybridization, such as the Inertial Navigation System (INS). The hybrid system can
breakthrough the drawbacks of the standalone GNSS since the can provide accurate short
term measurements with high rate which can be used to interpolate the GNSS measurements
and to cover unavailable areas of GNSS. But it will also introduce additional errors and sensor
faults.

More realistic dynamic models for system motion can be implemented into the EKF in order
to replace the classic one in this research work. If the dynamic model is more coherent with
the true system motion, better performance can be expected for both accuracy and integrity.

Other filters, which are more robust in face of measurement outliers, can be used instead of the
classic one. For example, the Outlier Robust Kalman Filter (ORKF) proposed in [178, 179]
which is able to detect the measurement outliers in real-time. This kind of robust filtering
can get rid of the assumption of Gaussian distribution for measurement noises and it can be
used especially for non-Gaussian and heavy-tailed noises. Moreover, all the parameters of
the ORKF can be learned in a completely unsupervised manner, which much simplifies the
calibration procedures compared to the classic EKF.

Concerning the Urban Multipath Model (UMM), better performance can be expected with
high accuracy maps. And the Hybrid UMM weighting model will no doubt performs better.

The GNSS integrity monitoring for urban transport applications is a challenging and promising
topic. Corresponding integrity specifications for road applications are being finalized. And
in the railway sector, where some track-side equipments are envisaged to be replaced by
GNSS-based solutions for signaling purpose, integrity specifications will also be mandatory.
The integrity monitoring control techniques are hopefully to be implemented into the GNSS
receivers for personal navigation systems or railway signaling systems in the near future.
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