
HAL Id: tel-01959367
https://hal.science/tel-01959367

Submitted on 18 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Solution Phase of Direct Solvers for Sparse
Linear Systems with Multiple Sparse Right-Hand Sides

Gilles Moreau

To cite this version:
Gilles Moreau. On the Solution Phase of Direct Solvers for Sparse Linear Systems with Multiple Sparse
Right-Hand Sides. Distributed, Parallel, and Cluster Computing [cs.DC]. ENS Lyon; Université de
Lyon, 2018. English. �NNT : �. �tel-01959367�

https://hal.science/tel-01959367
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2018LYSEN084

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Spécialité : Informatique

Soutenue publiquement le 10/12/2018, par

Gilles Moreau

On the Solution Phase of Direct Methods
for Sparse Linear Systems with Multiple

Sparse Right-Hand Sides
De la phase de résolution des méthodes directes pour systèmes

linéaires creux avec multiples seconds membres creux

Devant le jury composé de :

Patrick AMESTOY Professeur, INPT-ENSEEIHT-IRIT, Toulouse, France Co-encadrant
Jocelyne ERHEL Directrice de recherche, Inria Rennes, France Examinatrice
John GILBERT Professeur, University of California, Etats-Unis Rapporteur
Laura GRIGORI Directrice de recherche, Inria Paris, France Examinatrice
Jean-Yves L’EXCELLENT Chargé de recherche, Inria, Lyon, France Directeur de thèse
Pierre RAMET Maître de conférences, Université de Bordeaux, France Rapporteur

ii

Aknowledgements

J’aimerais d’abord remercier les membres du jury qui sont venus assister à ma soutenance,
Jocelyne Erhel, Laura Grigori, et plus particulièrement John Gilbert et Pierre Ramet pour avoir
lu attentivement mon manuscrit et pour leurs remarques constructives.

Ensuite, j’aimerais consacrer quelques mots à ceux qui m’ont aidé à la construction de ce
manuscrit en y apportant une rigueur scientifique et des idées originales qu’il m’aurait été im-
possible de trouver seul. D’abord, merci à Daniil Shantsev et Jan Petter Morten de m’avoir
accueilli en Norvège. Alfredo, Théo, François-Henry, Guillaume et Marie m’ont aussi apporté
au cours de ces trois années une aide précieuse, ce fut un plaisir pour moi de collaborer avec
eux. Je remercie aussi Patrick et tout particulièrement Jean-Yves de m’avoir transmis de nou-
velles compétences qui j’en suis persuadé seront déterminantes.

Je remercie mes amis qui m’ont suivi au cours de ces trois ans, mes co-bureaus et aussi
amis, Bertrand, Loïc et Issam, et mon amie, Ioanna, qui m’a accompagné au cours de cette
dernière année. Pour finir, merci à mes parents de m’avoir soutenu et encouragé dans cette
voie.

iii

iv

Abstract

We consider direct methods to solve sparse linear systems

AX = B,

where A is a sparse matrix of size n × n with a symmetric structure and X and B are respec-
tively the solution and right-hand side matrices of size n × nrhs. A is usually factorized and
decomposed in the form LDLT , or LU , where L and U are respectively a lower and an upper
triangular matrix, and D is diagonal. Then, the solve phase is applied through two triangular
resolutions named the forward and the backward substitutions. Solving sparse linear systems
arises in numerous fields of applications and for many years, the factorization has been the
subject of much attention compared to the solve. It has rightly been considered as the most
computationally intensive phase due to its higher complexity. Recent advances on the exploita-
tion of data sparsity by low-rank approximations of matrices reduced this complexity but also
increased the relative weight of the solve. In addition, for some applications, the very large
number of right-hand sides (RHS) in B, nrhs � 1, makes the solution phase the computational
bottleneck. However, B is often sparse and its structure exhibits specific characteristics that
may be efficiently exploited to reduce this cost.

The exploitation of sparsity in matrix B may be divided into two main features: vertical
sparsity to reduce the number of operations by avoiding computations on rows that are entirely
zero, and horizontal sparsity to go further by performing each elementary solve operation only
on a subset of the RHS columns. We propose in this thesis to study the impact of the exploita-
tion of this structural sparsity during the solve phase going through its theoretical aspects down
to its actual implications on real-life applications. Although we mainly focus on the forward
substitution, all the results obtained also apply to the backward substitution, when only part of
the solution is required.

First, we investigate the asymptotic complexity, in the big-O sense, of the forward substi-
tution when exploiting the RHS sparsity in order to assess its efficiency when increasing the
problem size. In particular, we study on 2D and 3D regular problems the asymptotic complex-
ity of the forward substitution both for traditional full-rank unstructured solvers and for the case
when low-rank approximation is exploited. A significant asymptotic improvement is observed
in the latter case. These complexity results are indeed more general, since they also provide a
measure of the available parallelism of the solve phase in the dense RHS case.

Next, we extend state-of-the-art algorithms on the exploitation of RHS sparsity, and more
particularly the horizontal feature, and also propose an original approach converging toward
the optimal number of operations while preserving performance. For that, we propose a new

v

vi

algorithm to build a permutation of the RHS columns, and then propose an original approach
to split the RHS columns into a minimal number of blocks, while reducing the number of
operations down to a given threshold. Both algorithms are motivated by geometric intuitions
and designed using an algebraic approach, so that they can be applied to general systems.

Finally, we show the impact of the exploitation of sparsity in a real-life application.
Controlled-Source ElectroMagnetism (CSEM) is a method of choice for oil and gas explo-
ration that often requires the solution of sparse systems of linear equations with a large num-
ber of sparse right-hand sides. We explain why and how the algebraic properties described
previously relate to the CSEM physical and geometrical context. We also adapt the parallel
algorithms that were designed for the factorization to solve-oriented algorithms and describe
performance optimizations particularly relevant for the very large numbers of right-hand sides
of the CSEM application. The total CSEM simulation time can be divided by approximately a
factor of 3 on all the matrices from our set (from 3 to 30 million unknowns, and from 4 to 12
thousands RHS).

We validate and combine the previous improvements using the parallel solver MUMPS,
conclude on the contributions of this thesis and give some perspectives.

Contents

Abstract v

French summary ix

1 General introduction 1
1.1 Solution of sparse linear systems . 2

1.1.1 Dense matrices: LU factorization and solve phases 2
1.2 Sparse direct methods: analysis and factorization phases 4

1.2.1 The analysis phase . 4
1.2.2 The factorization phase . 9

1.3 The solve phase . 10
1.3.1 General case: dense RHS . 11
1.3.2 Extension to sparse RHS . 12

1.4 Operation count for the solve phase on regular problems with nested dissection 18
1.5 Low-rank matrix formats . 23
1.6 Motivations and experimental environment . 24

1.6.1 Experimental environment and computational systems 24
1.6.2 Applications . 25
1.6.3 Outline of the thesis . 26

2 On the complexity of the solution phase with sparse right-hand sides 27
2.1 Introduction . 27
2.2 Preliminaries . 28

2.2.1 Nested dissection and complexity formulas 28
2.2.2 Exploiting the RHS sparsity . 30
2.2.3 Model problems and experimental setting 31

2.3 Complexity analysis . 32
2.3.1 Models for sparse RHS . 32
2.3.2 Ideal setting: one RHS with one nonzero 33
2.3.3 Generalization to one RHS with multiple nonzeros 34
2.3.4 Generalization to multiple RHS (with multiple nonzeros) 38

2.4 Experimental validation on real-life applications 39
2.5 Extension to tree parallelism . 40
2.6 Conclusion . 41

vii

viii CONTENTS

3 On the exploitation of right-hand side sparsity 43
3.1 The flat tree permutation . 45

3.1.1 Geometrical intuition . 45
3.1.2 Algebraic approach . 46

3.2 Towards a minimal number of operations using blocks 50
3.2.1 Geometrical intuition . 50
3.2.2 Algebraic formalization . 51
3.2.3 A greedy approach to minimize the number of groups 54

3.3 Experimental results . 55
3.3.1 Impact of the flat tree algorithm . 55
3.3.2 Impact of the blocking algorithm . 57
3.3.3 Experiments with other orderings . 57
3.3.4 Sequential performance . 58

3.4 Guided nested dissection . 60
3.5 Applications and related problems . 61
3.6 Conclusion . 62

4 On the parallel efficiency of the solve phase with multiple sparse right-hand sides 63
4.1 Introduction . 63
4.2 Background and motivations . 65

4.2.1 Finite difference electromagnetic modeling 65
4.2.2 Impact of the source structure . 68
4.2.3 Characteristics of the models and computing environment 69
4.2.4 Solve phase algorithms . 71

4.3 Exploiting RHS sparsity to reduce the amount of computations 73
4.4 Improving the parallel aspects of the solve algorithms 77

4.4.1 Differences between the factorization and the solve algorithms 77
4.4.2 Improving algorithms for the solve phase 79

4.5 Exploiting sparsity during the backward substitution 80
4.6 Performance analysis in a parallel context . 81

4.6.1 Exploiting sparsity . 81
4.6.2 Improvement through load-balancing and multithreading 85
4.6.3 Global resolution times . 87

4.7 Concluding remarks . 88

5 Conclusion 91
5.1 Contributions . 91
5.2 Performance and improvements . 93
5.3 Perspectives . 96

Bibliography 99

Publications 105

French summary

Introduction

Nous considérons la résolution de systèmes linéaires avec multiples seconds membres de la
forme

AX = B, (1)

oùA est une matrice carrée, creuse, non singulière, de taille n×n avec une structure symétrique
ou symétrisée, et oùX etB sont respectivement la matrice de solutions et la matrice de seconds
membres, toutes deux de taille n×nrhs. La résolution de systèmes linéaires creux se pose dans
de nombreux domaines d’application et est un domaine de recherche actif. Parmi les applica-
tions industrielles nécessitant la résolution efficace de l’équation (1), on peut citer la mécanique
des structures, la géophysique, l’électromagnétisme, l’analyse ou optimisation de données. Le
besoin de précision numérique et la complexité croissante des simulations numériques entraî-
nent des difficultés pour résoudre de grands systèmes linéaires avec des centaines de millions
d’inconnues et font de la résolution des systèmes creux une véritable clé de voûte du calcul
scientifique.

Du point de vue théorique et algorithmique, même si la question de la résolution de tels
problèmes est bien comprise, il s’agit toujours d’un domaine de recherche très actif, comme
cela sera illustré dans cette thèse. En outre, les progrès constants et impressionnants de la
puissance informatique ainsi que l’évolution des architectures des supercalculateurs ont motivé
un travail d’adaptation également constant. En effet, les supercalculateurs modernes dotés
de milliers de nœuds de calcul constituent les nouveaux outils indispensables à la résolution
de problèmes de plus en plus grands, mais au prix d’une difficulté accrue pour préserver la
précision et atteindre une certaine efficacité dans l’utilisation de la mémoire et des processeurs.

Il existe deux classes principales de méthodes pour la résolution de systèmes linéaires creux
de la forme de l’équation (1). Avec les méthodes directes, la matrice A est d’abord factorisée
comme un produit de matrices dont la structure permet une résolution aisée (matrices diag-
onales, à permutation, triangulaires, orthogonales, par exemple). Dans notre contexte, nous
considérerons la factorisation de A en un produit de deux matrices triangulaires L et U re-
spectivement triangulaire inférieure et triangulaire supérieure. Même si, pour une question de
stabilité numérique, cette factorisation LU peut également impliquer des matrices diagonales
(pour la mise à l’échelle des lignes et des colonnes) et des matrices de permutation pour le
pivotage numérique, nous supposerons, par souci de simplicité, que A = LU après la phase
de factorisation. La prochaine étape, appelée phase de résolution dans la suite de cette thèse,

ix

x CONTENTS

effectue deux résolutions triangulaires, la descente, qui consiste à résoudre

LY = B, (2)

pour obtenir la matrice Y de taille n× nrhs, suivie de la remontée

UX = Y. (3)

D’une autre manière avec les méthodes itératives, une séquence de Xk qui converge, à une
précision donnée, vers la solution X de notre système linéaire est construite. Les méthodes
directes sont connues pour être numériquement plus stables mais plus exigeantes en termes de
mémoire et de calculs, alors que les méthodes itératives qui pourraient être plus rapides, sont
en général moins exigeantes en terme de mémoire mais numériquement moins robustes.

Dans cette thèse, nous nous concentrons sur les méthodes directes et plus particulièrement
dans la résolution des équations (2) et (3) soit lorsque la matrice de seconds membres B est
creuse, soit lorsque l’ensemble des solutions recherchées dans la matrice X est réduit. Ainsi,
nous commençons par rappeler le contexte des méthodes directes en nous concentrant sur la
phase de résolutions triangulaires. Deux applications de modélisation sismique et électromag-
nétique pour lesquelles la phase de résolutions triangulaires domine les temps de calcul seront
utilisées pour illustrer nos discussions. Nous évaluons tout d’abord le comportement asympto-
tique de la phase de résolution dans le contexte de seconds membres creux et d’approximations
de rang faible. Une amélioration des algorithmes existants permettant l’exploitation du creux
dans les seconds membres est ensuite décrite et une approche originale permettant d’atteindre
le nombre minimal d’opérations est introduite. Ensuite, nous présentons à nouveau des mé-
canismes permettant l’exploitation du creux mais cette fois-ci en terme de propriétés physiques
liées à l’application. Des algorithmes pour améliorer les performances dans un environnement
parallèle sur des applications réelles sont également proposés. Enfin, nous tentons de rassem-
bler les contributions apportées des études précédentes puis concluons sur le travail effectué.

Contributions

Comme dit précédemment, nous nous intéressons plus particulièrement dans cette thèse à
la phase de résolution soit lorsque les seconds membres (ou RHS pour Right-Hand Side)
sont creux, soit lorsque seulement un sous-ensemble des entrées de la solution est requis.
L’objectif de la première partie est de rappeler des travaux existants concernant l’exploitation
de RHS creux et d’introduire quelques concepts nécessaires dans les études suivantes. En par-
ticulier, cette première partie fournit un formalisme qui sera utilisé dans l’étude traitant de
l’amélioration de l’existant pour prouver de nouvelles propriétés. En plus des notions liées
aux méthodes directes, notamment l’arbre d’élimination, nous caractérisons le creux vertical et
horizontal, chacun associé à un outil permettant de l’exploiter. De plus, des notions telles que
nœuds actifs/colonnes actives sont introduites. Nous illustrons également dans cette première
partie l’importance de choisir une bonne permutation des colonnes de RHS.

Cette thèse s’articule ensuite autour de trois contributions principales (trois chapitres du
manuscrit) brièvement résumées ci-après.

CONTENTS xi

Calcul de complexité de la phase de résolution avec RHS creux multiple [JS1].
Nous soulignons que, dans le contexte d’un très grand nombre de RHS, la phase de résolution
peut devenir le goulot d’étranglement de la simulation numérique complète. Dans ce chapitre
nous étudions la complexité asymptotique de la phase de résolution en tenant aussi compte
du fait que les matrices de facteurs peuvent être représentés avec des approximations de rang
faible. Nous prouvons sur des problèmes réguliers 2D et 3D que l’exploitation des RHS creux
dans le contexte des approximations de rang faible modifie significativement la complexité
asymptotique des résolutions triangulaires.

Tout d’abord, l’utilisation de techniques d’approximations de rang faible ramène la com-
plexité asymptotique de la phase de résolution, notée C(n), à une complexité linéaire O(n) (à
un coefficient logarithmique près). Deuxièmement, le creux dans la matrice de seconds mem-
bres B peut être exploité pour réduire les coûts de la phase de descente et ainsi sa complexité
asymptotique, notée CES(n). En particulier, nous étudions sur des problèmes réguliers 2D et
3D les complexités asymptotiques à la fois pour les solveurs traditionnels non structurés de
rang plein et pour le cas où des approximations de rang faible sont exploitées. Nous étudions
particulièrement le rapport suivant :

GES(n) = C(n)
CES(n) .

Une importante amélioration asymptotique est observée dans le cas de l’utilisation
d’approximations de rang faible, pouvant aller jusqu’à Θ(n1/2)1. Nous confirmons ces
résultats théoriques d’abord sur des problèmes réguliers et ensuite sur un ensemble de matrices
provenant d’applications réelles. Nous mentionnons que le résultat pourrait être étendu à
l’ensemble de la phase de résolution lorsqu’une partie seulement de la solution est demandée.

De plus, cette étude de complexité fournit une mesure du parallélisme d’arbre disponible
lors de la phase de résolution dans le cas de seconds membres denses. Une comparaison avec la
complexité et le parallélisme de la factorisation montre des propriétés intéressantes de la phase
de résolution à prendre en compte lors de la conception des algorithmes.

Amélioration des algorithmes existants sur l’exploitation du creux dans les RHS
[W2, J1]. Dans ce chapitre, nous nous concentrons sur l’extension des algorithmes actuels
pour l’exploitation des seconds membres creux. En nous basant sur une intuition géométrique
en lien avec l’algorithme des dissections emboîtées, nous proposons tout d’abord une approche
générique et plus efficace permettant de permuter les seconds membres et de réduire le coût de
la phase de descente. Une deuxième contribution est la description d’un algorithme de blocage
qui diminue encore ce coût en choisissant intelligemment des groupes de seconds membres
pouvant être traités ensemble. Bien que les deux algorithmes soient motivés par des observa-
tions géométriques, ils sont conçus avec une approche algébrique, donnant une portée générale
à ce travail. Les notions d’optimalité de nœud et d’indépendance de seconds membres sont
introduites et formalisées, et des preuves théoriques justifiant l’efficacité des algorithmes pro-
posés sont fournies.

1Par définition, f(n) = Θ(g(n)) ssi ∃C1, C2, n0 > 0, ∀n > n0, C1g(n) ≤ f(n) ≤ C2g(n). La notation
devient nécessaire par la division dans GES .

xii CONTENTS

Les expériences confirment l’efficacité de la démarche proposée, notre permutation nom-
mée “flat tree” réduit en moyenne de 13% de nombre d’opérations par rapport aux travaux
précédents. L’algorithme de blocage réduit encore le nombre d’opérations. Basé sur une ap-
proche glouton, ce dernier tente de limiter le nombre de groupes nécessaires pour atteindre
un nombre d’opérations qui peut être arbitrairement proche de la solution optimale. Dans un
environnement séquentiel et sur nos applications réelles, nous comparons les performances de
l’approche proposée avec des stratégies de blocage régulières et nous montrons la supériorité
de notre approche de blocage.

Étude d’une application réelle dans un contexte de résolution parallèle [JS2,
W1]. L’électromagnétisme à source contrôlée (“Controlled Source ElectroMagnetism” ou
CSEM) est une méthode de plus en plus utilisée pour l’exploration du gaz et du pétrole. Dans ce
contexte, l’inversion des données électromagnétiques (EM) pour des applications géophysiques
à grande échelle nécessite souvent la résolution de systèmes d’équations linéaires avec un grand
nombre de seconds membres creux, chacun correspondant à la position d’une source/d’un émet-
teur de l’application. Les solveurs creux directs sont très attrayants pour ce type de problèmes,
surtout lorsqu’ils sont combinés avec des approximations de rang faible qui réduisent la com-
plexité et le coût de la factorisation.

Nous montrons que l’exploitation des seconds membres creux et le calcul d’un sous-
ensemble de la solution peuvent avoir un impact important sur les performances de la phase
de résolutions triangulaires. Nous expliquons pourquoi et comment les propriétés algébriques
et les outils introduits précédemment peuvent être utilisés pour accélérer le calcul dans le con-
texte CSEM.

Le premier objectif de ce chapitre est de proposer un autre point de vue sur les seconds
membres creux qui ne nécessite pas d’être spécialiste des méthodes directes et/ou de la théorie
des graphes, et de comprendre le potentiel applicatif de l’exploitation de ces seconds membre
creux. Le deuxième objectif est d’adapter les algorithmes parallèles conçus pour la factori-
sation à la phase de résolution pour améliorer la performance de l’application, ce qui apparait
particulièrement pertinent dans le cas d’un très grand nombre de seconds membres comme dans
l’application CSEM. Alors que les précédents travaux ciblaient le nombre d’opérations, nous
traitons plus particulièrement ici des problèmes de performances et de mémoire dans un envi-
ronnement parallèle. Ce contexte motive l’amélioration des algorithmes pour mieux préserver
le parallélisme de la phase de résolution. Nous montrons que le nombre d’opérations et le temps
écoulé pour les résolutions triangulaires peuvent être considérablement réduits. La durée totale
de la simulation CSEM peut être divisée par environ un facteur 3 sur tous les systèmes linéaires
de notre ensemble (de 3 à 30 millions d’inconnues et de 4 000 à 12 000 RHS).

Conclusion et perspectives

Dans cette dernière section, nous résumons les contributions apportées puis dessinons quelques
perspectives ou extensions du travail présenté dans ce manuscrit.

Ce travail se divise en trois contributions principales qui tentent d’évaluer théoriquement
et d’améliorer techniquement les travaux existants exploitant les seconds membres creux. Le

CONTENTS xiii

premier aspect du travail est lié à l’établissement d’un formalisme théorique pour l’exploitation
des seconds membres creux. Dans ce contexte, nous montrons théoriquement une réduction de
la complexité asymptotique de la phase de descente (avec une extension à la phase de remontée
lorsque la solution aussi est creuse), réduction d’autant plus importante que des approximations
de rang faible sont utilisées. Ce résultat permet dans un premier temps de justifier l’importance
de l’exploitation du creux dans les seconds membres, et dans un second temps de montrer
des caractéristiques intéressantes de parallélisme d’arbre dans les résolutions triangulaires. La
discussion se poursuit ensuite sur l’amélioration des algorithmes d’exploitation du creux ex-
istants. Nous concluons à la fin de cette seconde étude, pour les applications fournies, que la
combinaison des deux algorithmes permet la réduction du nombre d’opérations jusqu’à une
solution presque optimale tout en conservant de bonnes propriétés nécessaires à une résolu-
tion haute performance. Enfin, nous poursuivons par une étude naissant de la collaboration
avec une entreprise travaillant sur une méthode numérique pour la recherche d’hydrocarbure.
Nous y décrivons sous un autre point de vue l’exploitation du creux et proposons de nouveaux
algorithmes adaptés à la phase de résolution.

En conclusion, nous avons essayé dans ce manuscrit de fournir une étude exhaustive de la
phase de résolution avec seconds membres ou solution creuse. Théoriquement, nous définis-
sons des notions utiles à la démonstration de propriétés mathématiques, nous continuons avec
l’amélioration des algorithmes existants et enfin nous en étudions les effets sur une application
réelle. En fin de manuscrit, nous rassemblons les résultats des différentes études, en combinant
approximations de rang faible, nouveaux algorithmes d’exploitation du creux et algorithmes
adaptés à la phase de résolution.

En perspective, tandis que cette thèse porte principalement sur la phase de résolution avec
seconds membres multiples, dans de nombreuses applications, la phase de résolution s’effectue
sur un seul second membre mais de nombreuses fois. C’est le cas par exemple des applications
en régime instables où chaque second membre dépend de la solution du pas de temps précédent.
Dans ce cas, le temps de résolution peut également devenir critique ou prédominant. Les algo-
rithmes adaptés à la phase de résolution peuvent être appliqués, cependant, de nombreux autres
travaux peuvent être menés pour adapter les algorithmes actuels qui sont orientés factorisation
vers des algorithmes basés sur la phase de résolution. Par exemple, certains de nos résultats
théoriques ont montré que la résolution présente plus de parallélisme d’arbre que la factorisa-
tion; cette propriété peut être utilisée pour piloter la conception de nouveaux algorithmes afin
de mieux exploiter ce potentiel. Enfin, l’utilisation d’approximations de rang faible a modi-
fié radicalement le comportement des algorithmes actuels dans des environnements parallèles
(mémoire partagée et / ou distribuée). Des efforts algorithmiques ont été déployés pour ex-
ploiter efficacement les structures de rang faible au cours de la phase de factorisation et il reste
beaucoup à faire pour améliorer les performances de la phase de résolution dans ce contexte.

xiv CONTENTS

Chapter 1

General introduction

We consider the solution of linear systems with multiple right-hand sides of the form

AX = B (1.1)

where A is a large square nonsingular sparse matrix of size n × n with a symmetric or sym-
metrized structure, X and B are respectively the solution matrix and the matrix of right-hand
sides of size n × nrhs. Solving sparse linear systems arises in numerous fields of applications
and is an active field of research. Among the industrial applications that require the efficient
resolution of Equation (1.1), we can cite structural mechanics, geophysics, electromagnetism,
data analysis or optimization. The need for numerical precision and the increasing complex-
ity of numerical simulations result in difficulties to solve large linear systems and makes the
resolution of sparse systems a keystone in scientific computation.

From the theoretical and algorithmic point of view, even if the question of solving such
problems is well understood, it is still quite an active research area, as will be illustrated in
this thesis. Furthermore, the steady and impressive progress of computer power as well as the
evolution of computer architectures have also motivated both algorithmic and more finalized
work. Indeed modern supercomputers with thousands of computing nodes make the solution
of increasingly large problems possible, but at the cost of an increased difficulty to preserve
accuracy and to reach efficiency in memory and processor use.

There exists two main classes of methods for the resolution of large sparse linear systems
of the form of Equation (1.1). With direct methods, matrix A is first factored as the product
of easy to solve matrices (e.g. diagonal, permutation, triangular, orthogonal matrices). In our
context we will consider the factorization of A into the product of two triangular matrices L
and U respectively lower and upper triangular. Even if for numerical stability this so-called
LU factorization might also involve diagonal matrices (for scaling the rows and the columns)
and permutation matrices for numerical pivoting, we will assume, for the sake of simplicity,
that A = LU after the factorization phase. The next step, referred to as the solve phase in the
remainder of this thesis, performs two triangular resolutions, the so-called forward substitution

LY = B, (1.2)

1

2 CHAPTER 1. GENERAL INTRODUCTION

obtaining the n× nrhs matrix Y , followed by the so-called backward substitution

UX = Y. (1.3)

With iterative methods, a sequence of Xk that converges, at a given precision, toward the
solution X of our linear system is built. Direct methods are known to be numerically more
stable but more demanding in terms of memory and computations, whereas iterative methods
might be faster, are in general less memory demanding but are numerically less robust.

In this thesis, we focus on direct methods which share with graph theory many algorithmic
aspects. This strong relation between graph and direct methods will be highlighted in this chap-
ter, with a special focus on the forward and backward substitutions. The chapter is organized
as follows. We first consider dense matrices in Section 1.1.1 and describe simplified algorithms
for the factorization and solve phases. In Section 1.2, we approach the main steps and main
notions involved in the processing of sparse matrices with direct methods. In Section 1.3, we
study in more details the resolution of Equations (1.2) and (1.3) and consider the case where
matrix B is sparse. In Section 1.4, we provide operation counts of the solve phase on regular
problems and illustrate some properties that are different from the ones of the factorization.
Low-rank formats are briefly introduced in Section 1.5. Finally, we give some remarks on the
test cases and the computational environment in Section 1.6.

1.1 Solution of sparse linear systems

1.1.1 Dense matrices: LU factorization and solve phases
At each step of the LU factorization of a dense matrix, Gaussian elimination is applied on a
reduced matrix to build part of the L and U matrices. The LU factorization algorithm does not
impact the solution, giving an easy way to compute it. In the general case, depending on the
properties of matrix A, Gaussian elimination can be used to factor the matrix A in the general
form LU if A is unsymmetric, LDLT with D diagonal (possibly with 2x2 diagonal blocks) if
A is general symmetric and LLT if A is symmetric definite positive.

Algorithm 1.1 Dense LU (Right-looking) factorization.
1: Input: a matrix A of order n
2: Output: A is replaced by its LU factors
3: for k = 1 to n− 1 do
4: Factor: ak+1:n,k ← ak+1:n,k/ak,k
5: Update: ak+1:n,k+1:n ← ak+1:n,k+1:n − ak+1:n,kak,k+1:n
6: end for

Algorithm 1.1 is a simplified sketch of the dense LU factorization based on Gaussian elimi-
nation in which the lower part ofA is replaced by theL factor with implicit ones on the diagonal
and the upper part is replaced by the U factor.

At each step k of the Gaussian elimination, the diagonal entry akk is used as a pivot to
eliminate entries in column k of A and build column k of L. For the sake of simplicity, we

1.1. SOLUTION OF SPARSE LINEAR SYSTEMS 3

have assumed here that all pivots are large enough to preserve the numerical stability of the
factorization so that columns of A can be processed in order without performing so-called
numerical pivoting. At each step k of our proposed algorithm, firstly the column k of the L
factor is computed, denoted as Factor in Algorithm 1.1. Secondly the trailing submatrix is
modified through a rank-one update, denoted as Update in Algorithm 1.1. Please note that the
order in which the entries of the L and U matrices are computed is not unique.

Following the steps in Algorithm 1.1, the operation count of the factorization is

n−1∑
k=1

n∑
i=k+1

(1 +
n∑

j=k+1
1),

and is proportional to O(n3) while the memory consumption is of the order O(n2) [38]. Given
the two factor matrices L and U , the solution of the linear system at Equation (1.1) requires
two triangular resolutions: first the forward substitution which solves a lower triangular system
using L, second the backward substitution which solves an upper triangular system using U . In
Algorithm 1.2, the L factors are accessed by columns and the U factors are accessed by rows.
This leads to a right-looking algorithm for the forward substitution and a left-looking algorithm
for the backward substitution.

Algorithm 1.2 Dense triangular solution through forward and backward substitutions.

1: Solution of Ly = b
2: (forward substitution)
3:
4: y ← b
5: for j = 1 to n do
6: for i = j + 1 to n do
7: yi ← yi − lij · yj
8: end for
9: end for

1: Solution of Ux = y
2: (backward substitution)
3:
4: x← y
5: for i = n to 1 by − 1 do
6: for j = i+ 1 to n do
7: xi ← xi − uij · xj
8: end for
9: xi ← xi/uii

10: end for

In Wilkinson’s definition, a matrix is considered sparse when it is worth taking advantage
of its nonzero structure. In physical applications, sparsity is often due to the fact that distant
points in the physical domain do not interact with each other. Strictly speaking, the interaction
between two nodes in the domain is represented by a nonzero entry (or a nonzero block) in the
matrix A. In modern numerical computing, A can be extremely large (a few hundred millions
of equations). It is thus critical to adapt dense algorithms to sparse objects, with the underlying
objective to avoid storing the zero entries and thus spare useless operations and storage.

In the following sections we describe the main steps for the direct solution of sparse linear
systems. We limit our description to the so-called three phase methods for which the resolution
can be divided into three consecutive steps: the analysis, the factorization and the solve phases.
The first two steps are briefly described in Section 1.2. The solution phase is described in more
details in Section 1.3.

4 CHAPTER 1. GENERAL INTRODUCTION

1.2 Sparse direct methods: analysis and factorization
phases

1.2.1 The analysis phase
For the sake of simplicity, we assume that A has a symmetric structure and is factored in the
form A = LU , as in Algorithm 1.1. The extension of the analysis phase to matrices with an
unsymmetric structure is not straightforward and will be discussed at the end of this section.

In sparse direct methods, one key issue is the fill-in phenomenon. From the Update opera-
tion of Algorithm 1.1, fill-in appears when an entry aij in matrixA is initially zero and becomes
nonzero. Indeed, an elementary Update operation can be written as

i, j > k, i aij ← aij − aik · akj
If aij = 0 but aik 6= 0 and akj 6= 0, then aij 6= 0 after the factorization phase if there is no
numerical cancellation.

One should note that the order in which pivots are selected can influence the amount of
fill-in during factorization. Furthermore, for a given sequence of pivots, one may also want
to predict the fill-in that would occur during factorization. This will be referred to as the the
symbolic factorization phase. The symbolic factorization is an important step that provides es-
timates of the cost in terms of number of operations and memory footprint of the factorization
phase. The analysis phase most important steps are thus the preprocessing of the matrix to re-
duce the fill-in during factorization and the symbolic factorization to predict the main structures
involved during the numerical phases: factorization and solve. Remark that the analysis phase
may be performed only once when sequences of matrices with different numerical values but
identical structure need to be factored. We will illustrate how a modelization based on graphs
can be efficiently used to design the algorithms involved in the analysis phase and to model the
factorization phase.

Adjacency graph

Graph formalism is introduced to analyze the properties of a sparse matrix A. The sparsity
pattern of any sparse matrix A can be modeled by a so-called adjacency graph G(A).

Definition 1.1 (Adjacency graph). The adjacency graph G(A) of a general matrix A of order
n is a graph (V,E) such that:

• V is a set of n vertices, where vertex i is associated with variable i.

• There is a (directed) edge (i, j) ∈ E iff aij 6= 0 and i 6= j.

If A is structurally symmetric (i.e. aij 6= 0 iff aji 6= 0), then one can also consider an
undirected graph representation. When not explicitly stated, we will assume that the matrix
is structurally symmetric and that its adjacency graph has undirected edges. We discuss the
generalization to structurally unsymmetric matrices at the end of this section.

The example of Figure 1.1a represents a simple undirected adjacency graph that will be
used to drive our discussion.

1.2. SPARSE DIRECT METHODS: ANALYSIS AND FACTORIZATION PHASES 5

7

4

1

8

5

2

9

6

3

(a) Adjacency graph.

7

4

1

8

5

2

9

6

3

(b) Filled graph.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

(c) Sparsity pattern of the factors
(original nonzeros are in gray, fill-in
in red, zeros in white).

Figure 1.1: Symbolic factorization: predicting the sparsity pattern of the factors.

Symbolic factorization based on elimination graphs

We explain how a sequence of graphs, so-called elimination graphs, can be built to predict
the structure of the L matrix and thus perform a symbolic factorization. Although simple and
elegant, the elimination graphs are costly to build and to store and not used in practice to
compute the symbolic factorization of a symmetric matrix. For an efficient way to compute the
row and column structures of the L matrix we recommend the work of Gilbert, Ng and Peyton
[37].

Starting from the adjacency graph of the matrix, we describe in the following how this
graph can be updated to mimic the symbolic factorization of the matrix.

During symbolic factorization we want to simulate the effect of Gaussian elimination oper-
ations during the elementary Update operation

ai,j ← aij − aik · akj,

to detect the position of the new entries aij in the updated matrix. We assume no numerical
cancellation so that the new nonzero entries will remain nonzeros in the matrix of factors. In
terms of graph, this translates into the fact that when vertex k is eliminated from the current
adjacency graph, all its neighbors become interconnected, i.e. a clique is formed. The updated
graph is referred to as the elimination graph. A clique is defined as a set of vertices that are
pairwise connected. For example, in Figure 1.1a, if vertex 1 is eliminated, vertices 2 and 4
becomes interconnected, i.e. an edge (2, 4) must be added (as done in red in Figure 1.1b).

We define the filled graph G(F) as the adjacency graph where all edges that were created
during the symbolic factorization have been added (see illustration in Figure 1.1b). Since the
new edges correspond to filled entries, the filled graph is the adjacency graph of the factors
F = L+ U (or L+ LT in our context). The sparsity pattern of the factor matrix L (resp. U) is
reported in the lower triangular part (resp. upper triangular part) of Figure 1.1c.

The filled graph and the elimination graphs fully describe the structures that will be pro-
cessed during factorization. As mentioned before, since they are costly to handle, we will

6 CHAPTER 1. GENERAL INTRODUCTION

introduce a simpler tree structure called the elimination tree that can be used to represent in a
compact way the mains steps and structures involved during the factorization.

Reordering and permutations

If a matrix can be factorized so that no fill-in occurs, then the elimination ordering on this
graph is said to be perfect; the graph of F is one such matrix [29, 55]. However, it is usually
not the case for the graph of A, G(A), so that the first step of the analysis phase is to find a good
fill-reducing permutation of the pivot variables.

We show that the order in which the variables are eliminated, referred to as the ordering,
can significantly influence the fill-in. Obviously, we want to minimize the amount of fill-in,
since it increases the computational cost of the factorization and the storage of the matrix of
factors; thus, finding a good ordering is a crucial issue to make sparse direct methods effective.
For example, [27] shows that fill-in is catastrophic for random matrices which cause the sparse
factorization to require O(n2) memory and O(n3) operations.

However, finding the ordering that minimizes the fill-in is an NP-complete problem [68].
Several heuristic strategies exist, whose effectiveness is matrix-dependent and whose objectives
may differ (operation count, parallel performance, memory consumption). We can distinguish:

• Local heuristics, that successively eliminate vertices in an order depending on some local
criterion: for example, the vertex of minimum degree (such as AMD [7] or MMD [45]),
or the vertex that produces the minimum fill (such as AMF or MMF [50]).

• Global heuristics, such as nested dissection(ND) [34], that recursively partition the graph
into subgraphs, or the (Reverse) Cuthill-McKee algorithm [25].

• Hybrid heuristics, which first use a global heuristic to partition the graph, and then apply
local heuristics to each subgraph. This is the strategy implemented in several partitioning
libraries, such as METIS [43] and SCOTCH [52].

We now briefly review the nested dissection ordering that will be illustrated on a 3D regular
mesh in Section 1.3 and analyzed in more details in Section 1.4. It is a fill-reducing ordering
well-suited to matrices arising from the discretization of a problem with 2D or 3D geometry.
It divides the adjacency graph into a given number of domain subgraphs (or subdomains) sep-
arated by a set of vertices called separator. In this section, we consider that the number of
subgraphs/subdomains at each step is equal to two, but one can also consider 4 subdomains or
8 subdomains at each step for 2D and 3D regular problems, respectively, as we will do later in
this thesis. As a consequence, the vertices of a given subdomain are only connected to other
vertices in the same subdomain or in the separator, but not to other subdomains [56]. This way,
the elimination of a vertex within a subdomain will not create any fill-in in the other subdo-
mains and the vertices in the separator can be eliminated after the subdomains. The process
is then recursively applied to the each subdomain created until the domain subgraphs become
too small to be subdivided again. This generates a separator tree. This process is illustrated in
Figure 1.2a on our illustrative example where at each iteration, separators divide the domain
or subdomains in two subdomains of equal size. This generates an associated separator tree
reported in Figure 1.2b.

1.2. SPARSE DIRECT METHODS: ANALYSIS AND FACTORIZATION PHASES 7

4

7

1

6

9

3

5

8

2

(a) Ordering computed by the nested dissection on the
adjacency graph.

7,8,9

3 6

1 2 4 5

(b) Associated separator tree.

Figure 1.2: Nested dissection on example mesh.

4

7

1

6

9

3

5

8

2

(a) Filled graph.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

(b) Sparsity pattern of the factors (original nonzeros
are in gray, fill-in in red, zeros in white).

Figure 1.3: Symbolic factorization after nested dissection reordering.

In Figure 1.3a and 1.3b, we describe the corresponding filled graph and factor sparsity
pattern obtained by performing the symbolic factorization on the reordered matrix. The com-
parison with Figure 1.1 shows that the fill-in has decreased from 16 to 10 filled entries, which
is a considerable improvement compared to the number of nonzeros in the original matrix.

Dependencies between variables and elimination tree

As said previously, the sparse structure of the matrix of factors L depends on the elimination
sequence of the pivot variables. Furthermore, the elimination of one variable does not impact
all other variables. The study of these dependencies is essential in sparse direct methods to
manage the numerical phases. We want to characterize the fact that j depends on i if and only
if the elimination of imodifies column j. This will naturally lead to introducing the elimination
tree a crucial structure in sparse matrix factorization. A detailed study on the role and properties
of the elimination tree can be found in [48].

8 CHAPTER 1. GENERAL INTRODUCTION

4

7

1

6

9

3

5

8

2

(a) Directed filled graph.

4

7

1

6

9

3

5

8

2

(b) Transitive reduction.

1 2 4 5

3 6

7

8

9

(c) Elimination tree.

Figure 1.4: Construction of the elimination tree.

Definition 1.2 (Vertex dependency). Let i, j be two vertices such that i < j. Vertex j depends
on i (noted i→ j) if and only if lji 6= 0.

Therefore, the vertex dependencies are characterized by the sparsity pattern of the factors,
and thus by the filled graph G(F). However, the dependency is not a symmetric relation: a
vertex j can only depend on vertices eliminated before it, i.e. i → j implies i < j. Therefore,
we introduce the directed version of the filled graph.

Definition 1.3 (Directed filled graph). Let the undirected filled graph be G(F) = (V,E). Then,
the directed filled graph ~G(F) is the graph (~V , ~E) such that:

• ~V = V , i.e., both graphs have the same vertices;

• For all edges (i, j) ∈ E, if i < j then (i, j) ∈ ~E else (j, i) ∈ ~E, i.e., the edges of E have
been directed following the elimination order.

The directed filled graph thus characterizes the dependencies between vertices. By defi-
nition, (i, j) ∈ ~E ⇒ i < j and therefore it cannot have any cycle. It is therefore a directed
acyclic graph (DAG) [2]. We can thus introduce the notion of descendant and ancestor between
columns as follows: i descendant of j ⇔ j ancestor of i⇔ i→ j. The directed filled graph on
our example is given on Figure 1.4a.

The directed filled graph contains however many redundant dependencies: in our example,
1 → 7 can be obtained from 1 → 3 and 3 → 7. We can thus obtain a more compact represen-
tation of the vertex dependencies by removing the redundant dependencies, i.e., by computing
the transitive reduction. The transitive reduction thus consists in removing edges which can be
replaced by a path in the directed filled graph. Because the directed filled graph is a DAG, its
transitive reduction is unique [1]. This is illustrated on Figure 1.4b.

The transitive reduction of G(F) is obviously still a DAG. One key observation here is that
its undirected version is still acyclic, i.e. it is actually a spanning tree of the directed filled

1.2. SPARSE DIRECT METHODS: ANALYSIS AND FACTORIZATION PHASES 9

graph, as illustrated in Figure 1.4c. This tree is referred to as the elimination tree [58] and we
note it T .

The advantage of the elimination tree is that it provides a more compact representation of
the directed filled graph and to some extent the structure of the factors. Liu [48] shows how to
obtain the structure of L from the elimination tree and from the structure of A. The elimination
tree also provides a way to express the parallelism inherent to the direct solution of sparse linear
systems in the sense that two variables in different subtrees can be computed independently.

Before describing how it is used to schedule the computations done during the numerical
factorization, let us first briefly comment on the case of structurally unsymmetric matrices.

The unsymmetric case

In the previous sections we have assumed that the matrix is symmetric, or structurally symmet-
ric. The extension to the unsymmetric case is not straightforward. It has been been studied by
Gilbert and Liu in [36] who generalized the elimination tree structure. In this context, instead
of a tree, the structures that can be used to characterize the dependencies between steps of the
factorization are directed acyclic graphs, referred to as elimination dags or edags in [36]. The
edags can be viewed as the transitive reduction of the directed graphs associated to the L and
U matrices. Another possibility is to use the elimination tree structure introduced by Eisenstat
and Liu (the theory of elimination trees for sparse unsymmetric matrices, [32]). In this work,
the authors extend the notion of elimination tree to unsymmetric matrices. The existence of
paths in graphs associated to the L and U factors is used to generalize the elimination tree.

A much simpler approach is to symmetrize artificially the original matrix using the structure
of A + AT . Note that in [15], only a partial symmetrization is performed, that makes the use
of the elimination tree possible. In both cases, all previous results based on the symmetric
structure are applicable. In many applications, the structures of A and AT are similar and the
overhead introduced by the artificial addition of nonzero entries can be limited. This approach
was suggested by Duff and Reid [31] and is the one that we will consider in this thesis.

1.2.2 The factorization phase

To efficiently process sparse matrices, we have shown that the original matrix needs to be
permuted to reduce the fill-in. The dependency between steps of the elimination process is
then captured by the elimination tree that also gives information about the dynamic structures
involve during factorization.

A first simple view of the factorization of a sparse matrix is to consider Algorithm 1.1,
assume that the original matrix A has already been permuted and process the permuted matrix
in order. Fill-in obtained during the update operation will be limited but will have to be stored.

Let us recall that each node of the elimination tree corresponds to the elimination of one
pivot variable. Then exploiting the properties of the elimination tree, one can also view the
factorization of a sparse matrix as a bottom to top traversal of the elimination tree respecting son
to father dependencies. Each elimination of pivot, or equivalently, each elimination of a node
of the elimination tree, is then divided into two consecutive operations: Factor to eliminate
variable i, and Update to compute the contributions of this elimination, which are used to

10 CHAPTER 1. GENERAL INTRODUCTION

update all ancestor nodes j such that i→ j. In our example, when node 1 is eliminated, nodes
3 and 7 must be updated; when node 3 is eliminated, nodes 7, 8, and 9 are updated.

The independence described by the elimination tree gives a degree of freedom to schedule
the elimination of the pivot variables. Once the Factor operations are scheduled following the
dependencies given by the elimination tree, there exists different ways to schedule the Update
operations. This results in two different approaches: the left-looking and the right-looking
algorithms. In the right-looking approach, the updates are performed as soon as possible:
after the elimination of i, all ancestors j such that i → j are updated. On the contrary, in
the left-looking approach, the updates are performed as late as possible: all the contributions
coming from descendants i such that i→ j are applied just before the elimination of j. A final
possibility that we describe in more detail is the multifrontal method which derives from the
right-looking method and make full use of the elimination tree structure to limit the number of
direct dependencies between elimination steps.

The multifrontal method was introduced by Duff and Reid [30] as a generalization of the
frontal method [42]. They present in this article the first formal and detailed description of the
computations and data structures of all phases: analysis, factorization and solve phases. It is
directly based on the elimination tree [47, 58] and relies on the following observation: if i→ j,
then node j is an ancestor of node i in the elimination tree. As a consequence, a contribution
from the elimination of a node i to a node j can be carried through the path from node i to
node j in the elimination tree. The local contribution, right term of the Update operation, is
computed during the processing of the node but will be passed on the tree, from child to parent
up to its destination. The multifrontal method can be described in terms of operations on dense
matrices. To each node of the elimination tree is associated a dense matrix, called frontal
matrix or front. Each front is constituted of the variable to be eliminated and the variables that
are updated and that correspond to ancestors in the elimination tree.

In practice, the nodes of the elimination tree are grouped together when their associated
columns have the same sparsity structure in the reduced matrix. This is referred to as amalga-
mation and the resulting nodes are called supernodes. This can be relaxed to enable grouping
nodes that have a similar structure leading to so-called relaxed supernodes. The resulting tree
is then known as the assembly tree. This allows the fronts to have more than one pivot to elim-
inate at each node. Variables that can be eliminated at a node are referred to as fully-summed
variables because all contributions from descendants variables associated to descendant nodes
in the elimination tree have been summed. The elimination of the fully summed variables of a
front takes the form of a partial dense factorization that makes great use of dense linear algebra
kernels [44]. The variables (ancestors in the elimination tree) that are only updated during the
process of node are called the non fully-summed variables of the corresponding frontal matrix.

1.3 The solve phase

Once A is factorized, it follows the solve phase on which we give a special focus. The illustra-
tion will be based on a 3D example of Figure 1.5 as it lend itself more easily to the description of
the exploitation of sparse right-hand sides (RHS) that comes later. Moreover, we now consider
the general A = LU decomposition.

1.3. THE SOLVE PHASE 11

Firstly, we discuss the solution phase with a particular focus on the forward substitution
and in the general case of a dense RHS. Secondly, we give a detail study of available advances
in the litterature concerning the exploitation of sparse RHS.

1.3.1 General case: dense RHS

We introduce a 3 × 3 × 3 domain in Figure 1.5a on which we applied the nested dissection
algorithm introduced in Section 1.2.1. The domain is first divided by a 3× 3 constant-x plane

xz

y

1

4

2

5

10

11

13

14
3

6

12

15

7

9

8

16

18

17

19

20

21

22
23

24

25

26

27

(a) 3× 3× 3 regular mesh.

1

5

10

15

20

25

×××××××××××××××××××××××××××

×

×

×

×

×

×

×

×

×

×

×
×
×

×

×

×
×

××

×
×

×

×

×

×

×

×

×

×
×

×

××
×

×

×

××

×

×

×
×

××××××××××××

f

f f

f

f f

f

f

f

f

f

f
f

f

f

f

f f

f

f ff

f

f f
f

f f

f f
f

f

f

f

f

f

f
f

f

f

f f

f

f

f f
f f
f f

f f f
f f
f f

f
f f f

f
f

f
f
f

f
f

f

f
f

f
f

f

f

f
f

f

f
f
f

f
f f

u0

u2

u211

u22

...

u1

u111
...

u12

(b) Structures of A and L.

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

{19, . . . ,27}

{16,17,18}

{15}

{14}{13}

{12}

{11}{10}

{7,8,9}

{6}

{5}{4}

{3}

{2}{1}

(c) Separator tree T .

Figure 1.5: (a) A 3D mesh with a 7-point stencil. Mesh nodes are numbered according to a
nested dissection ordering. (b) Corresponding matrix with initial nonzeros (×) in the lower
triangular part of a symmetric matrix A and fill-in (f) in the L factor. (c) Separator tree, also
showing the sets of variables to be eliminated at each node.

separator u0 and each subdomain is then divided recursively. By ordering the separators af-
ter the subdomains, we obtain the separator tree of Figure 1.5c when choosing supernodes
identical to separators1. The order of the tree nodes (u111, u112, u11, u121, u122, u12, . . . , u0),
partially represented on the right of the matrix, is here a postordering: nodes in any subtree are
processed consecutively. This order, suitable for memory issues [46], also defines the order in
which the nodes will be processed during the forward substitution.

Considering a single RHS b and the decomposition A = LU , the solution of the triangular
system Ly = b (and Ux = y) relies on block operations at each node of the tree T following
respectively a bottom-up and a top-down traversal of the tree for the forward and the backward
substitutions. Figure 1.6 represents the L and U factors restricted to a given node u of T , where

1In this example, identifying supernodes with separators leads to relaxed supernodes: the sparsity in the inter-
action between u1 and u0 (and u2 and u0) is not exploited to benefit from larger blocks.

L11

U11

L21

U12

βu

αu

Figure 1.6: Structure of the factors associated to a node u of the tree.

12 CHAPTER 1. GENERAL INTRODUCTION

the diagonal block is formed of the two lower and upper triangular matrices L11 and U11, and
the update matrices are L21 and U12. The αu variables are the ones of node (or separator) u,
also called earlier the fully-summed variables, and the βu variables correspond to the nonzero
rows in the off-diagonal parts of the L factor restricted to node u (Figure 1.5b), that have
been gathered together, called the non fully-summed variables. For example, node u1 from
Figure 1.5 corresponds to separator {7, 8, 9}, so that L11 and U11 are of order αu1 = 3 and
there are βu1 = 9 update variables {19, . . . , 27}, so that L21 is of size 9× 3 (and U12 is of size
3× 9). Starting with y ← b, the active components of y are gathered into two temporary dense
vectors y1 of size αu and y2 of size βu at each node u of T , where the triangular solve

y1 ← L−1
11 y1, (1.4)

is performed, followed by the update operation

y2 ← y2 − L21y1. (1.5)

y1 and y2 can then be scattered back into y, and y2 will be used at higher levels of T . When the
root is processed, y contains the solution of Ly = b. The backward substitution is very similar
to the forward substitution except that the two operations are reversed. Starting from x ← y,
the backward update operation at each node u is x1 ← x1−U12x2 followed by a triangular solve
x1 ← U−1

11 x1. x1 and x2 are partial dense solution vectors gathering the variables concerned by
u and that can be scattered back into a global solution vector x for later use at lower levels of the
tree. It is important to note that the dependencies are reversed between forward and backward
phase. Although several variants of the solve algorithm may be defined, depending on the way
parts of y or x are passed up and down the tree, possibly in a parallel environment [8, 59], those
will not impact the study of sparse RHS. Because the matrix blocks in Figure 1.6 are considered
dense, there are αu(αu − 1) arithmetic operations for the triangular solution (1.4) and 2αuβu
operations for the update operation (1.5), leading to a total number of operations

∆ =
∑
u∈T

δu, (1.6)

where δu = αu × (αu − 1 + 2βu) is the number of arithmetic operations at node u.

1.3.2 Extension to sparse RHS
As said precedently, we focus our attention on the forward substitution for which we recall the
formula:

LY = B. (1.7)

Structure prediction

In this section, we review two approaches to exploit sparsity in B when solving the triangular
system (1.2). The first one exploits a formalism and properties established by Gilbert [35] and
Gilbert and Liu [36], called tree pruning in [61], which consists in pruning the nodes at which
only computations on zeros are performed. The second approach goes further by working on
different sets of RHS columns at each node of the tree [11].

1.3. THE SOLVE PHASE 13

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

×

×

×

f

f

f
f
f

f
f
f
f
f

f
f
f
f
f
f

u0

u2

u211

u22

...

u1

u111

u12

...

×
f

f

×
f

f

×u0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

(a) Structure of L−1b.

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

(b) Pruned tree Tp(b).

Figure 1.7: Illustration of Example 1.1. (a) Structure of L−1b with respect to matrix variables
(left) and to tree nodes (right). × corresponds to original nonzeros and f to fill-in. In the right
part, gray parts of L−1b correspond to the nodes involving computation. (b) Pruned tree Tp(b):
pruned nodes and edges are represented with dotted lines and nodes in Vb are filled.

Tree pruning Consider a non-singular n × n matrix A with a nonzero diagonal, and
its directed graph G(A), with an edge from vertex i to vertex j if aij 6= 0, see Defini-
tion 1.1. Given a vector b, let us define struct(b) = {i, bi 6= 0} as its nonzero structure,
and closureA(b) as the smallest subset of vertices of G(A) including struct(b) without incoming
edges. Gilbert [35, Theorem 5.1] characterizes the structure of the solution of Ax = b by the
relation struct(A−1b) ⊆ closureA(b), with equality in case there is no numerical cancellation.
In our context of triangular systems, ignoring such cancellation, struct(L−1b) = closureL(b) is
also the set of vertices reachable from struct(b) in G(LT), where edges have been reversed [36,
Theorem 2.1]. Finding these reachable vertices can be done using the transitive reduction of
G(LT), which is a tree (the elimination tree) when L results from the factorization of a matrix
with symmetric (or symmetrized) structure. Since we work with a tree T with possibly more
than one variable to eliminate at each node (supernode), let us define Vb as the set of nodes in
T including at least one element of struct(b). The structure of L−1b is obtained by following
paths from the nodes of Vb up to the root. The tree consisting of these paths is the pruned tree
of b, and we denote it by Tp(b). The number of operations ∆ from Equation (1.6) now depends
on b:

∆(b) =
∑

u∈Tp(b)
δu. (1.8)

Example 1.1. Let b be a vector with nonzeros at positions 4, 13, and 21. The corresponding
tree nodes are given by Vb = {u121, u221, u0}, see Figures 1.5 and 1.7. Following the paths in
T from nodes in Vb to the root results in the pruned tree of Figure 1.7b. Compared to ∆ = 288
in the case of a dense right-hand side, ∆(b) = 228 (δu121 = δu221 = 6, δu12 = δu22 = 12, δu2 =
δu1 = 60, δu0 = 72).

We now consider the multiple RHS case of Equation (1.2), where RHS columns have dif-
ferent structures and we denote by Bi the columns of B, for 1 ≤ i ≤ nrhs. Rather than solving
nrhs systems each with a different pruned tree Tp(Bi), we favor matrix-matrix computations by
considering VB = ⋃

1≤i≤nrhs VBi
, the union of all nodes in T with at least one nonzero from

matrix B, and the pruned tree Tp(B) = ⋃
1≤i≤nrhs Tp(Bi) containing all nodes in T reachable

14 CHAPTER 1. GENERAL INTRODUCTION

1

5

10

15

20

25

×

×

×
×

×

f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f

f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f
f

f

f
f
f
f
f
f
f
f
f
f
f
f

f

f
f
f

f
f
f
f
f
f
f
f
f

u0

u2

u211

u22

...

u1

u111

u12

...

×
f

f

f

×
f

f

×
f

f

f

×
f

f

f

×
f

f

f u0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

19-27
16-18

15
14
13
12
11
10
7-9

6
5
4
3
2
1

1 2 3 4 5 1

×
f

f

f

2

×
f

f

3

×
f

f

f

4

×
f

f

f

5

×
f

f

f

(a) Structures of L−1B, L−1B1, . . . , L−1B5.

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

(b) Pruned tree Tp(B) = Tp(B1) ∪ . . . ∪ Tp(B5).

Figure 1.8: Illustration of multiple RHS and tree pruning. × corresponds to an initial nonzero
in B and f to “fill-in” that appears in L−1B, represented in terms of original variables and tree
nodes. Gray parts of L−1B (resp. of L−1Bi) are the ones involving computations when RHS
columns are processed in one shot (resp. one by one).

from nodes in VB. The triangular and update operations (1.4) and (1.5) become Y1 ← L−1
11 Y1

and Y2 ← Y2 − L21Y1, leading to:

∆(B) = nrhs ×
∑

u∈Tp(B)
δu. (1.9)

Example 1.2. Figure 1.8a shows a RHS matrix B = [{B11,1}, {B6,2}, {B13,3},
{B10,4}, {B2,5}] in terms of original variables (1 to 27) and in terms of tree nodes
(VB = {u212, u12, u221, u211, u112}). In Figure 1.8a, × corresponds to an initial nonzero in
B and f corresponds to “fill-in” that appears in L−1B during the forward substitution on
the nodes that are on the paths from nodes in VB to the root (see Figure 1.8b). We have
∆(B) = 5× 264 = 1320 and ∆(B1) + ∆(B2) + . . .+ ∆(B5) = 744.

At this point, we exploit tree pruning, or vertical sparsity, but perform extra operations
by considering globally Tp(B) instead of each individual pruned tree Tp(Bi). Processing B
by smaller blocks of columns would further reduce the number of operations at the cost of
more traversals of the tree and a smaller arithmetic intensity, with a minimal number of op-
erations ∆min(B) = ∑

i=1,nrhs ∆(Bi) reached when B is processed column by column, as in
Figure 1.8a(right). We note that performing this minimal number of operations while traversing
the tree only once (and thus accessing the L factor only once) may require performing complex
and costly data manipulations at each node u with copies and indirections to work only on the
nonzero entries of L−1B at u.

We now present a simpler approach which exploits the notion of intervals of columns at
each node u ∈ Tp(B). This approach to exploit what we call horizontal sparsity in B was
introduced in another context [11].

Working with column intervals at each node Given a matrixB, we associate to a node
u ∈ Tp(B) its set of active columns

Zu = {j ∈ {1, . . . , nrhs} | u ∈ Tp(Bj)} . (1.10)

1.3. THE SOLVE PHASE 15

×
f

f

f

×
f

f

×
f

f

f

×
f

f

f

×
f

f

f u0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

19-27
16-18

15
14
13
12
11
10
7-9

6
5
4
3
2
1

1 2 3 4 5

(a) Structure of L−1B.

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

�1,5�

�1,4�

�3,3�

;�3,3�

�1,4�

�1,1��4,4�

�2,5�

�2,2�

;;

�5,5�

�5,5�;

(b) Pruned tree Tp(B) with intervals.

Figure 1.9: Column intervals for the RHS of Figure 1.8: in gray (a) and above/below each
node (b). Taking for instance u21, there are nonzeros in columns 1 and 4, so that Zu21 = {1, 4}.
Instead of performing the solve operations on nrhs = 5 columns at u21, computation is limited
to the θ(Zu21) = 4 columns of interval J1, 4K (and to a single column at, e.g., node u221).
Overall, ∆(B) is reduced from 1320 to 948 (while ∆min(B) = 744).

The interval Jmin(Zu),max(Zu)K includes all active columns, and its length is

θ(Zu) = max(Zu)−min(Zu) + 1.

Zu is sometimes defined for an ordered or partially ordered subset R of the columns of B,
in which case we will use the notation Zu|R and θ(Zu|R). For u in Tp(B), Zu is non-empty
and θ(Zu) is different from 0. As illustrated in Figure 1.9, the idea is then to perform the
operations (1.4) and (1.5) on the θ(Zu) contiguous columns Jmin(Zu),max(Zu)K instead of
the nrhs columns of B, leading to

∆(B) =
∑

u∈Tp(B)
δu × θ(Zu). (1.11)

Example 1.3. In Example 1.2, there are nonzeros in columns 1 and 4 at node u21 so that
Zu21 = {1, 4} (see Figure 1.9). Instead of performing the solve operations on all 5 columns
at node u21, we limit the computations to the θ(Zu21) = 4 columns of interval J1, 4K (and
to a single column at, e.g., node u221). Overall, ∆(B) is reduced from 1320 to 948 (while
∆min(B) = 744).

It is clear from Example 1.3 that θ(Zu) and ∆(B) strongly depend on the order of the
columns in B.

In the next Section, we formalize the problem of permuting the columns of B and evaluate
the application of the postorder. Chapter 3 will propose a new permutation and an adapted
blocking technique to further decrease the number of operations by identifying and extracting
“problematic” columns.

16 CHAPTER 1. GENERAL INTRODUCTION

Permuting RHS columns

We showed in Section 1.3.2 that horizontal sparsity can be exploited thanks to column intervals.
The number of operations to solve (1.2) then depends on the permutation of the columns of B.
We express the corresponding minimization problem as:

Find a permutation σ of {1, . . . , nrhs} that minimizes ∆(B, σ) = ∑
u∈Tp(B) δu × θ(σ(Zu)),

where σ(Zu) = {σ(i) | i ∈ Zu} , and
θ(σ(Zu)) is the length of the permuted interval Jmin(σ(Zu)),max(σ(Zu))K.

(1.12)
If we assume that we work with a balanced tree in terms of computational cost, we reduce

the problem to the minimization of the sum of all interval lengths in Tp(B) such that:
We first define the notion of node optimality.

Definition 1.4. Given a node u in Tp(B), and a permutation σ of {1, . . . , nrhs}, we say that we
have node optimality at u, or that σ is u−optimal, if and only if θ(σ(Zu)) = #Zu, where #Zu
is the cardinality of Zu. Said differently, σ(Zu) is a set of contiguous elements.

θ(σ(Zu))−#Zu, the number of columns (or padded zeros) on which extra computation is
performed, is 0 if σ is u−optimal.

Example 1.4. Consider the RHS structure of Figure 1.9a and the identity permutation. We
have node optimality at u0 because #Zu0 = #{1, 2, 3, 4, 5} = 5 = θ(Zu0). We do not have
node optimality at u1 and u2 because the numbers of padded zeros are θ(Zu1) − #Zu1 = 2
and θ(Zu2)−#Zu2 = 1, respectively. Our aim is thus to find a permutation σ that reduces the
difference θ(σ(Zu))−#Zu.

The postorder permutation In Figure 1.5, the sequence [u111, u112, u11, u121, u122, u12,
u1, u211, u212, u21, u221, u222, u22, u2, u0] used to order the matrix follows a postordering.

Definition 1.5. Consider a postordering of the tree nodes u ∈ T , and a RHS matrix B =
[Bj]j=1...nrhs where each column Bj is represented by one of its associated nodes u(Bj) ∈ VBj

(see below). B is said to be postordered if and only if: ∀j1, j2, 1 ≤ j1 < j2 ≤ nrhs, we have
either u(Bj1) = u(Bj2), or u(Bj1) appears before u(Bj2) in the postordering. In other words,
the order of the columns Bj is compatible with the order of their representative nodes u(Bj).

The postordering has been applied [10, 61, 67] to build regular chunks of RHS columns with
“nearby” pruned trees, thereby limiting the accesses to the factors or the amount of computa-
tion. It was also experimented together with node intervals [11] to RHS with a single nonzero
per column, although it was then combined with an interleaving mechanism for parallel issues.

In Figure 1.9a, B has a single nonzero per column. The initial natural order of the columns
(INI) induces computation on explicit zeros represented by gray empty cells and we had
∆(B) = ∆(B, σINI) = 948 and ∆min(B) = 744 (see Figure 1.9). On the other hand, the
postorder permutation, σPO, reorders the columns of B so that the order of their representative
nodes u112, u12, u211, u212, u221 is compatible with the postordering. In this case, there are

1.3. THE SOLVE PHASE 17

×
f

f

f

×
f

f

×
f

f

f

×
f

f

f

×
f

f

f u0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

19-27
16-18

15
14
13
12
11
10
7-9

6
5
4
3
2
1

1 2 3 4 5

→
σPO

×
f

f

f

×
f

f

×
f

f

f

×
f

f

f

×
f

f

f

5 2 4 1 3

(a) RHS with one nonzero per col-
umn.

×
f

f

×
f

f

×

×
f

f

f

×
×
f

f

×
f

f

f

×
f

f

×
f

f

×

×
f

f

f19-27
16-18

15
14
13
12
11
10
7-9

6
5
4
3
2
1

u0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

1 2 3 4 5 6

→
σPO

×
f

f

×
f

f

×

×
f

f

f

×
×
f

f

×
f

f

f

×
f

f

×
f

f

×

×
f

f

f

1 4 2 5 6 3

(b) RHS with multiple nonzeros per
column.

Figure 1.10: Illustration of the postordering of two RHS with one or more nonzeros per column.

no gray empty cells (see Figure 1.10a) and ∆(B, σPO) = ∆min(B). More generally, it can be
shown that the postordering induces no extra computations for RHS with a single nonzero per
column [11].

For applications with multiple nonzeros per RHS, each column Bj may correspond to a
set VBj

with more than one node, among which a representative node should be chosen. We
describe two strategies.

The first one, called PO_1, chooses as representative node the one corresponding to the first
nonzero found in Bj (in the natural order associated to the physical problem). The second one,
called PO_2, chooses as representative node in VBj

the one that appears first in the sequence
of postordered nodes of the tree. A comparison of the two postorders with the initial natural
order is provided in Table I, for a subset of four problems presented in Table III of Section 1.6.
Note that the initial order depends on the physical context of the application and has some
geometrical properties.

Table I: Comparison of the number of operations (×1013) between postorder strategies PO_1
and PO_2.

∆ INI PO_1 PO_2 ∆min

H0 .086 .076 .070 .050
H3 2.48 1.69 1.47 .95

5Hz .44 .44 .36 .22
7Hz 1.46 1.48 1.21 .69

Table I shows that the choice of the representative node has a significant impact. The
superiority of PO_2 over PO_1 is clear and is larger when the number of nonzeros per RHS
column is large (problems 5Hz and 7Hz). Indeed, PO_1 is even worse than the initial order on
problem 7Hz.

Example 1.5. Let B = [B1, B2, B3, B4, B5, B6] = [{B1,1, B10,1, B19,1}, {B4,2}, {B13,3, B15,3},
{B2,3},{B5,4, B14,4, B22,4}, {B10,5}] be the RHS represented in Figure 1.10b. In terms of tree
nodes, we have: VB1 = {u111, u211, u0}, VB2 = {u121}, etc. Because the rows ofB have already

18 CHAPTER 1. GENERAL INTRODUCTION

been permuted according to the postordering of the tree, the representative nodes for strategies
PO_1 and PO_2 are in both cases the nodes u111, u121, u221, u112, u122, u211 (cells with a
bold contour), for columns B1, B2, B3, B4, B5, B6, respectively. The postorder permutation
yields σPO(B) = [B1, B4, B2, B5, B6, B3], which reduces the number of gray cells and the
volume of computation with respect to the original column ordering: ∆(B) = 1368 becomes
∆(B, σPO) = 1242. Computations on padded zeros still occur, for example at nodes u211 and
u21 where θ(σPO(Zu211)) = θ(σPO(Zu21)) = 5 whereas #Zu211 = #Zu21 = 2.

The quality of σPO depends on the tree postordering. If u111 and u112 were exchanged in
the original postordering, B1 and B4 would be swapped, further reducing ∆. One drawback of
the postorder permutation is that, since the position of a column is based a single representative
node, some information is unused. Other permutations exist that further decrease the number
of operations with respect to σPO. This motivates a deeper study, that will be the object of
Chapter 3.

1.4 Operation count for the solve phase on regular
problems with nested dissection

In this section, we provide an analytical formula of the operation count for the solve phase
on regular problems when nested dissection is applied. We consider a single right-hand side.
We will extend these results to the computation of the asymptotic complexity for sparse right-
hand sides and for low-rank representations in Chapter 2. This section relies a lot on the work
of George [34] who introduced the nested dissection ordering (see Section 1.2.1) for regular
meshes. In particular, we use the same formalism based on meshes and elements, although
notation slightly differs.

In [34], George proposed a new ordering strategy for which the number of operations for
the factorization of a sparse matrix of order n resulting from an N × N 2D mesh requires
O(n) operations for the factorization and O(n log(n)) nonzeros in the L factor. The number of
operations for the solve phase, directly related to the number of nonzeros in the factors, is thus
also of the order ofO(n log(n)). For anN×N×N 3D mesh, the number of operations for the
factorization is O(n2) and the number of nonzeros in the L factor (and number of operations
for the solve) is O(n4/3).

To prove this result, the author draws an interesting parallel between the matrix and the so-
called finite element mesh in the process of the elimination of variables during the factorization.
Using this model, it is possible to compute precisely the number of operations either for the
factorization or for the solve phase. We thus propose here to describe the method and then
extend it to the computation of formulas on the critical path of the separator tree, with the
objective to assess some intrinsic properties of the solve phase.

Consider a 2D mesh of N×N elements, with the strong assumption that N = 2l, for l ≥ 2.
Any nodal point i corresponds to an unknown xi while any area delimited by edges of the mesh
corresponds to an element. This leads to a matrix of order n = (N + 1)2. Furthermore, we
consider as [34] a 9-point stencil to connect nodal points. This means that each nodal point in
an element is pairwise connected with all other nodal points of that element. In Figure 1.11,

1.4. OPERATION COUNT FOR THE SOLVE PHASE ON REGULAR PROBLEMS WITH
NESTED DISSECTION 19

•

•

•

•

•

•

•

•

•

7 8 9

5 1 6

2 3 4

A =




1
• 2
• • 3
• • 4
• • • 5
• • • 6
• • 7
• • • • 8
• • • 9




Figure 1.11: 2D mesh and matrix A repre-
senting connections between variables.

• 7 • 8 • 9

• 5 • 6

• 2 • 3 • 4

A =




1
• 2
• • 3
• ◦ • 4
• • • ◦ 5
• ◦ • • ◦ 6
• ◦ ◦ ◦ • ◦ 7
• ◦ ◦ ◦ • • • 8
• ◦ ◦ ◦ ◦ • ◦ • 9




Figure 1.12: Effect of the elimination of
variable x1 on the “fill in” in matrix A.

•

•

•

•

•

•

•

•

•

h
u

b

spoke spoke

3 8 4

5 9 6

1 7 2

A =




1
2

3
4

• • 5
• • 6

• • • • 7
• • • • • 8

• • • • • • • • 9




Figure 1.13: Numbering of variables using cross-shaped separators.

we have a mesh composed of n = 9 nodal points/unknowns and N2 = 4 elements. In this
mesh point of view, two variables are connected if and only if they belong to the same element.
In particular, x1 belongs to all elements so that it is connected to all variables x2, . . . , x9 in
Figure 1.11 (dense first column of matrix A). Note that the mesh is included in but different
from the graph G(A) introduced in Section 1.2.1 which would, for example, include the edges
from x1 to all other variables.

Instead of the graph view of Section 1.2.1 where edges were added to the graph G(A) in
order to obtain the filled graph of the factors G(F), the elimination process is now modeled in
terms of mesh operations: the elimination of one variable induces the removal of the associated
nodal point and all its connected edges, forming a new element. For example, Figure 1.12
shows the effect of the elimination of variables x1 on the fill-in. The elimination of variable x1
implies that all variables belong now to the same element and thus become pairwise connected,
resulting in the matrix structure of Figure 1.12.

The nested dissection process as presented by [34] is a divide-and-conquer strategy, in
which separators take the form of crosses built with two “spokes” and one “hub”, so that there
are four subdomains per separator, as shown in Figure 1.13. The variables corresponding to
the subdomains created by the separator are numbered first (corner variables x1, x2, x3, x4).
The numbering of the separator variables orders first the variables of the spokes and then the
variables of the hub. When subdomains are large enough, the process is repeated recursively
within each separator.

We now mention and illustrate in Figures 1.14 and 1.15 two different sequences to eliminate
separator variables in corner elements. We note that a corner is composed of 2k × 2k nodal
points (2 < k < l, with k = 1, 2 treated as special cases), that the separator cannot divide the
corner in four exactly equal parts, and that it is better to have 2(k−1)× 2(k−1) nodal points in the
bottom-left corner at the next level (and only (2(k−1) − 1)× (2(k−1) − 1) on the opposite side).

20 CHAPTER 1. GENERAL INTRODUCTION

Figure 1.14: Elimination sequence of spokes in [34] for a bottom left corner of a 2D mesh.
Extern spokes are eliminated first.

Figure 1.15: Elimination sequence of spokes in a classical nested dissection algorithm.

1.4. OPERATION COUNT FOR THE SOLVE PHASE ON REGULAR PROBLEMS WITH
NESTED DISSECTION 21

Figure 1.14 corresponds to the sequence presented in [34]. It numbers first the two spokes
that are closest to the border. Figure 1.15 corresponds to the classical sequence of elimination
usually implemented in nested dissection ordering packages and numbers horizontal spokes
before the vertical spoke, although this leads to slightly more operations. In the following, the
first one will be referred to as the “George” sequence and the second one as the “classical”
sequence2.

Computation of the number of operations

With such a construction, George gives in [34, Lemma 2.3] the number of operations and the
factor storage associated to the elimination of a spoke or a hub Q. During the elimination
process, such a spoke or hub forms part of an element and thus forms a clique, and it is fully
connected to the other variables of the elements it belongs too, called R. Focusing on storage,
the part of the L factor associated to the corresponding q eliminated variables and update of
r eliminated unknowns is: s(q, r) = q(q+2r−1)

2 . We note that this formula corresponds to the
number of entries in the L factor represented in Figure 1.6, with q = αu and r = βu. It leads
to a number of operations for the solve equal to δu = αu × (αu − 1 + 2βu), considering one
addition and one multiplication per non-diagonal factor entry in L, as discussed at the end of
Section 1.3.1. (In a multifrontal context, αu = q is also the number of fully summed variables,
and βu the number of non-fully summed variables at a given node of the elimination tree.)
Remark that Lemma 2.3 of [34] is applied first to the spokes and then to the hub. It is not
applied directly on the unknowns of an entire cross-shaped separator because those are not
fully connected.

Example 1.6. Consider the elimination of the cross-shaped separator of Figure 1.13. Variables
x1, x2, x3 and x4 already eliminated. Then, the first spoke x5 is connected to x7, x8 and x9.
As a consequence, the number of off-diagonal entries in the column of L associated to x5 is
s(1, 3) = 3 and the number of operations is δu(1, 3) = 6. The same quantities are obtained
for the second spoke. The variables of the hub are connected to no other variables, leading to
δu(3, 0) = 4.

The same approach can be used to compute the operation count on any separator. Thanks
to the strong assumption on the mesh size, N = 2l, one may determine exactly the operation
count on any separator. The regularity of the mesh and the recursivity of the nested dissection
create sets of separators with equal shapes for which the number of operation can be efficiently
computed (after dealing with separators located on the borders of the domains), leading to an
analytical expression of the total number of operations ∆ as a function of the mesh size N .
All materials for a formal proof can be found in [34] and we provide here only the formulas.
Because we identified two elimination sequences (“George” and “classical”), we provide in the
following two sets of equations:

2For elements not in a corner but on a border of the mesh, George eliminates first the spoke closest to the
border, then the one on the other side and finally the one parallel to the border. We consider the same is true for
the “classical sequence”, as this leads to slightly less operations.

22 CHAPTER 1. GENERAL INTRODUCTION

Table II: Ratio ∆Classical(N)
∆Classical

c (N) when N tends to∞.

∆
∆c

Facto Solve

N ×N 2D-mesh 13.74 2.98 log2N
N ×N ×N 3D-mesh 3.95 7.07

Theorem 1.1. Let N = 2l be the 2D-mesh size, with l ≥ 2. Then, the number of operations
(multiplications and additions) to perform the solve phase is

∆George(N) = 31
2 log2(N)N2 − 146

3 N2 + 48 log2(N)N + 6N + 8 log2(N) + 176
3 (1.13)

in the case of George’s elimination sequence, and

∆Classical(N) = 31
2 log2(N)N2 − 48N2 + 48N log2(N) + 6N + 8 log2(N) + 48 (1.14)

in the case of a classical elimination sequence.

The two formulas have been computed using the formal computation tool Maple. We note
that the correct elimination of the corners is useful to slightly decrease the total number of
operations, but this only affects the lower order terms. In the rest of this thesis, we used a
classical nested dissection ordering when dealing with regular problems.

Computation of the critical path

We are also interested in the number of operations on the critical path noted ∆c of the assem-
bly/separator tree and we have extended this work for its computation.

We identify the critical path as the path in the separator tree containing most of the oper-
ations. As said precedently, using finite element mesh representation of [34], the critical path
is composed of sets of spokes and hubs. To identify them, we chose the ones located on the
interior of the domain, for which their number r of connected variables in R is bigger than for
the spokes and hubs on the borders. Using this approach and Maple again, we obtain for l ≥ 2:

∆Classical
c (N) = 125

24 N
2 − 10N + 4 log2(N) + 38

3 . (1.15)

We now divide the total amount of work by the work on the critical path. Since we also
computed formulas for the 3D case (with a 27-point stencil instead of a 9-point stencil in this
case) and for the factorization, we provide in Table II the result when N tends to infinity for
the different cases, including the constants.

We distinguish two different ways to interpret the ratio reported in Table II:

• first, as a theoretical speed-up and thus a metric for tree parallelism;

• second, as a lower bound of the gain that one would obtain when exploiting RHS sparsity.

1.5. LOW-RANK MATRIX FORMATS 23

With the first interpretation, the ratio represents the speed-up of the solve phase when using
an infinite number of processors, when using tree parallelism only. It thus provides a simple
measure of the available tree parallelism. The second assertion will be discussed and pushed
further together with the use of low-rank approximations in Chapter 2. As a brief introduction,
a sparse RHS, as described in Section 1.3.2, may be represented by a pruned tree Tp that is
sufficiently narrow to be considered as a branch of the tree T , at least asymptotically.

First, we see in Table II that the ratio (theoretical speed-up and gain due to RHS sparsity)
is always higher for the solve than for the factorization phase, and may even be asymptotically
proportional to log2N in the 2D case. Second, from 2D to 3D regular problems, we observed
a decrease of the ratio, in other words, a loss of tree parallelism. Indeed, 3D problems tend
to have larger top nodes (size proportional to N2 rather than N in the 2D case) that become
predominant.

We now provide a short introduction to low-rank approximations, that we will use in Chap-
ter 2 to compute asymptotic complexities of the solve phase in both full-rank and low-rank
settings, for different models of sparse RHS.

1.5 Low-rank matrix formats

In many applications requiring the solution of a dense linear system Ax = b, such as the
solution of discretized PDEs, the matrix A has been shown to have a low-rank property [19]:
its off-diagonal blocks have low numerical rank, i.e., they can be well approximated by matrices
of small rank r.

Several formats have been proposed to exploit this property depending on how the block
partitioning of the matrix is computed. Let us consider a dense matrix S of order m. In our
context the dense matrix S will be related to the dense frontal matrix processed at each step
of the mulitfrontal factorization. The simplest format is the block low-rank (BLR) format [3].
It partitions the dense matrix S with a flat, 2D blocking and approximates its off-diagonal
blocks by low-rank submatrices, as illustrated in Figure 1.16a. Compared with the quadratic
O(m2) cost of storing S as a full-rank (FR) matrix, storing its BLR representation only requires
O(m3/2r1/2) entries [5]. One may find in [49, 64] an exhaustive description of the method.

More advanced formats are based on a hierarchical partitioning of the matrix: matrix S is
partitioned with a 2 × 2 blocking and the two diagonal blocks are recursively refined, as il-
lustrated in Figure 1.16c. Different hierarchical formats can be defined depending on whether
the off-diagonal blocks are directly approximated (so-called weakly-admissible formats) or
further refined (so-called strongly-admissible formats). The most general of the hierarchi-
cal formats is the strongly-admissible H-matrix format [39]; the HODLR format [17] is its
weakly-admissible counterpart. These hierarchical formats have a near-linear storage complex-
ity O(mr logm). The log factor can be removed by using a so-called nested-basis structure.
The strongly-admissible H2-matrix format [22] and the weakly-admissible HSS [66] format
exploit such nested basis structures to achieve linear complexity O(mr).

More recently, a multilevel BLR (MBLR) format [16] has been proposed to bridge the gap
between flat and hierarchical formats. As illustrated in Figure 1.16b, it aims at finding a com-
promise between the simplicity of the BLR format and the low complexity of the hierarchical

24 CHAPTER 1. GENERAL INTRODUCTION

(a) BLR partitioning. (b) MBLR partition-
ing.

(c) H partitioning

Figure 1.16: Illustration of different low-rank formats of a dense matrix S of order m. Gray
blocks are stored in full-rank whereas white ones are approximated by low-rank matrices.

ones. By setting the number of levels used in the block hierarchy to a given constant parameter
` ≥ 2, its storage complexity can be easily controlled and is equal to O(m(`+2)/(`+1)r`/(`+1)).

In this thesis, we will show the impact of low-rank formats on the complexity of the solve
phase with sparse RHS in Chapter 2, and present a few results using a block-low-rank solve
implementation in Chapter 5.

1.6 Motivations and experimental environment

1.6.1 Experimental environment and computational systems

We first describe computational systems on which we have run our experiments:

• EOS: CALMIP supercomputer EOS3, which is a BULLx DLC system composed of 612
computing nodes, each composed of two Intel Ivybridge processors with 10 cores (total
12 240 cores) running at 2.8 GHz, with 64 GBytes of memory per node.

• brunch: machine from the LIP laboratory which has 4 "Broadwell" CPUs (24 cores
each) running at 2.2GHz and 1.5TB of memory.

Moreover, all experiments are performed with the MUMPS4 solver [9, 12]. The MUMPS
solver is a parallel direct solver that implement the multifrontal method. It relies on the elim-
ination tree of the matrix to be factored; in case A is unsymmetric, the pattern of A + AT

is used. We refer the reader to the MUMPS User’s Guide for more details on the available
functionalities.

Regarding parallelism, MUMPS was initially designed for distributed-memory systems but
also uses multithreaded BLAS and OpenMP in shared memory environments and on clusters
of shared-memory nodes. Then, it takes advantage of both tree and node parallelism: first, it
uses the inherent parallelism coming from the properties of the elimination tree; second, it also

3https://www.calmip.univ-toulouse.fr/
4www.http://mumps.enseeiht.fr

https://www.calmip.univ-toulouse.fr/
www.http://mumps.enseeiht.fr

1.6. MOTIVATIONS AND EXPERIMENTAL ENVIRONMENT 25

Table III: Characteristics of the n× n matrix A and n× nrhs matrix B for different test cases.
D(A) = nnz(A)/n and D(B) = nnz(B)/nrhs represent the average column densities for A
and B, respectively.

application matrix n(×106) D(A) sym nrhs D(B)

seismic
modeling

5Hz 2.9 24 no 2302 567
7Hz 7.2 25 no 2302 486

10Hz 17.2 26 no 2302 486

electro-
magnetism
modeling

H0 .3 13 yes 8000 9.8
H3 2.9 13 yes 8000 7.5

H17 17.4 13 yes 8000 6
H116 116.2 13 yes 8000 6

S3 3.3 13 yes 12340 19.7
S21 20.6 13 yes 12340 9.5
S84 84.1 13 yes 12340 8.6
D30 29.7 23 yes 3914 7.6

distributes sufficiently large nodes following a 1D row-wise partitionning: the so-called master
holds the fully-summed rows to be eliminated while the off-diagonal block is distributed among
slave processes. The adaptation of distributed-memory parallelism to target the performance of
the solve phase (rather than the factorization phase) will be illustrated in Chapter 4.

1.6.2 Applications

As said previously, the solve phase with a large number of RHS can be a bottleneck. It is even
more the case when low-rank approximation are used because the reduction of the operation
count is larger for the factorization than for the solve. In the following, we describe two types
of applications (geophysics and electromagnetism) which offer the characteristics discussed
previously: many RHS and sparse RHS. We first give a description of these two applications
and then motivate our work.

The two applications we used were composed of systems of different sizes and different
numbers of RHS. The characteristics of these systems are gathered in Table III.

The first application corresponds 3D seismic modeling based on the Full-waveform Inver-
sion [63] and that is intensively used in the oil industry as part of a seismic imaging work-
flow. The matrices were provided by the the Geoscience Azur laboratory and are used in the
SEISCOPE Consortium. Each matrix corresponds to the finite-difference discretization of the
Helmholtz equation at a given frequency (5, 7, and 10 Hz). It has been shown, in a collabora-
tion between the MUMPS group and the SEISCOPE consortium, that low-rank approximation
can be efficiently used in this context to speed up the factorization [4]. We mention that the
exploitation of sparsity in [4] is used to speed up the forward substitution.

The second application which will be the subject of an extensive study in Chapter 4 is a
3D electromagnetic modeling applied to marine Controlled-Source Electromagnetism (CSEM)

26 CHAPTER 1. GENERAL INTRODUCTION

Table IV: Resolution times (analysis has been ommitted) on one matrix from each model pre-
sented (EMGS and SEISCOPE). 90 MPI × 10 OMP on the EOSsupercomputer.

Tf Ts Ttot

10Hz 267 (38%) 439 (62%) 706
S21 476 (6%) 7819 (94%) 8295

surveying, a widely used method for detecting hydrocarbon reservoirs and other resistive
structures embedded in conductive formations. Matrices were provided by the EMGS com-
pany (Norway). They are built through a finite-difference discretization of frequency-domain
Maxwell equations. During data acquisition from CSEM surveying, transmitters and receivers
are placed on a large surface above the seafloor and thus induce the resolution of large sparse
linear systems with multiple RHS, up to 10000. [60] showed the efficiency of the application
of a BLR solver to reduce the factorization time but increased the importance of the solve time.

We now motivate the contributions of this thesis by showing in Table IV the times for
factorization (Tf) and solve (Ts) and their proportion on the whole resolution. In Table IV,
sparsity is not exploited during the solution phase, and the runs were done with a version of
MUMPS exploiting low-rank compression during the factorization phase but not during the
solve phase. For each application, the BLR accuracy was chosen to match the application
requirements.

We clearly see that the solve phase is the bottleneck in such applications since it takes up to
93% of the total resolution time.

1.6.3 Outline of the thesis
This thesis focuses on the reduction of the cost of the solve phase in the presence of sparse,
multiple, right-hand sides. In Chapter 2, we evaluate the theoretical implication of exploiting
RHS sparsity. Then we improve state-of-the-art algorithms to order and organize computations
on multiple sparse RHS in Chapter 3 and finally concentrate on the practical impact of RHS
sparsity in parallel environments on the CSEM application mentioned above in Chapter 4.

Chapters 2, 3 and 4 can be read independently from eachother.
We will also see that in these chapters, although the results obtained most often focus on

the exploitation of RHS sparsity in the forward substitution, they can all be transposed to the
backward substitution when only part of the solution is requested.

Chapter 2

On the complexity of the solution
phase with sparse right-hand sides

2.1 Introduction

In this chapter, we consider applications with single and multiple sparse right-hand sides (RHS)
on regular problems of size n = N × N in 2D and n = N × N × N in 3D, where N is the
mesh size. As originally presented in [36] and discussed in the introduction of this thesis, RHS
sparsity can be exploited to reduce the cost of the forward substitution of sparse direct solvers.
We will also present new practical approaches to exploit sparsity of multiple RHS in Chapters 3
and 4, but focus here on complexity issues.

Specifically, the question we aim at answering is whether exploiting the RHS sparsity im-
proves the asymptotic complexity of the solution phase or leaves it unchanged. Table II in
Section 1.4 provides a first partial answer, in the case of a full-rank solver (for one RHS with a
single nonzero). However, we consider a more general setting in this chapter, and include the
case of compressed factor storage thanks to low-rank representations (see Section 1.5).

If C(n) and CES(n) are respectively the complexities of the solve phase with and without
the exploitation of RHS sparsity, then we examine in this chapter the asymptotic behavior of
the gain noted GES(n) and expressed as:

GES(n) = C(n)
CES(n) . (2.1)

In this chapter, we sometimes express these quantities as a function of N and also use the
notation GES(N) = C(N)

CES(N) , with N = n
1
2 or N = n

1
3 for 2D and 3D problems, respectively.

Because of the division, we need asymptotic expressions bounded by above and below, and use
for that the big-Θ notation, rather than the big-O notation1. The exploitation of RHS sparsity
was presented in Section 1.3.2 and is shortly discussed in Section 2.2.2 for our purpose. In this
chapter, assuming a given storage complexity for dense matrices that depends on the full-rank
or low-rank format, we first compute CES(n) for one RHS and extend the results to the case of

1By definition, f(n) = Θ(g(n)) iff ∃C1, C2, n0 > 0, ∀n > n0, C1g(n) ≤ f(n) ≤ C2g(n).

27

28
CHAPTER 2. ON THE COMPLEXITY OF THE SOLUTION PHASE WITH SPARSE

RIGHT-HAND SIDES

Figure 2.1: Nested dissection with cross-shaped separators and its corresponding separator tree.

multiple RHS with multiple nonzeros to give a realistic model of the complexity and properties
of the Equation (1.2).

This chapter is organized as follows. In Section 2.2, we present general complexity formu-
las of the solve phase, recall how RHS sparsity can be exploited and present model problems
that will be used to validate our theoretical results. We prove in Section 2.3 that GES is constant
or nearly constant in the case of a full-rank unstructured solver, whereas it increases with n in
the case of a low-rank solver. Specifically, the gain due to the RHS sparsity is of order Θ(log n)
in 2D and Θ(1) in 3D in the full-rank case, whereas in the low-rank case, it can be as high as
Θ(n1/2) in 2D and Θ(n1/3) in 3D. In Section 2.4, we then illustrate these complexity results
with some practical experiments on two real-life applications. In Section 2.5, we consider the
interpretation of the results obtained (Equation (2.1)) as a metric for tree parallelism so that all
demonstrated results also give insights on the inherent parallel properties of the solve phase.
Finally, we provide our concluding remarks in Section 2.6; in particular, we discuss how our
theoretical results can also apply to the backward substitution when only part of the solution is
needed, i.e., when only a sparse subset of X is required.

2.2 Preliminaries

2.2.1 Nested dissection and complexity formulas

As discussed in Sections 1.2.1 and 1.4, a widely used approach to limit the size of the factors
(which is proportional to the number of operations in the solve phase), is the nested dissection
ordering [34]. In terms of graph, we recall that it divides the adjacency graph associated with
A into s domain subgraphs separated by a separator subgraph. The process is then recursively
applied to the s domain subgraphs until they become too small to be subdivided again. This
generates a separator tree, as illustrated in Figure 2.1 with s = 4 in the case of a 2D regular
domain.

Both the factorization and solution phases then consist in a traversal of the separator tree
where, at each node of the tree, dense operations are performed on the unknowns associated
with the corresponding separator. To be specific, the forward and backward substitutions take
the form of a bottom-up and top-down traversals, respectively. Since at each node, the dense
operation that is performed is a triangular solve, the complexity of the solution phase will
be directly derived from the complexity Θ(mα) of storing a given separator of m unknowns.
If the separator is stored in full-rank (FR) format, its storage complexity is Θ(m2). If it is

2.2. PRELIMINARIES 29

Table I: Complexity of the solution phase for a sparse system ofN×N (2D case) orN×N×N
(3D case) unknowns, assuming a storage complexity Θ(mα).

C2D(N) C3D(N)
α > 2 Θ(Nα) α > 3/2 Θ(N2α)
α = 2 Θ(N2 logN) α = 3/2 Θ(N3 logN)
α < 2 Θ(N2) α < 3/2 Θ(N3)

approximated by a low-rank matrix format, its complexity depends on which format is used
and has been given in Section 1.5 of Chapter 1.

Then, the overall complexity of the solution phase is the sum of the storage complexities
over all separators. This in turn depends on the shape and size of the physical domain.

• For a two-dimensional (2D) problem of n = N×N unknowns, the separators are crosses
whose size begins at 2N at the root of the tree and is then divided by two at each level.
Separators at level k of the tree are therefore of size Θ(N/2k). Moreover, each separator
subdivides the domain into s = 4 subdomains and thus there are 4k nodes at level k.

• Similarly, for a three-dimensional (3D) problem of size n = N × N × N unknowns,
there are 8k hypercross separators of size Θ(N2/4k) at level k of the separator tree.

When eliminating a cross-shaped separator, spokes are eliminated first and the hub is eliminated
last (see description of George’s algorithm in Section 1.4), exploiting some sparsity in the sep-
arator. Since we are interested here in the asymptotic complexity (without the constants), it is
sufficient to consider for each separator the factorization of a dense matrix of size proportional
to that of the entire cross separator. Therefore, the complexity of the solution phase is given by

C2D(N,α) =
K2D∑
k=0

Θ
(
4k
(
N/2k

)α)
, (2.2)

C3D(N,α) =
K3D∑
k=0

Θ
(
8k
(
N2/4k

)α)
, (2.3)

where K2D = Θ(log2N) = Θ(log4N
2) = K3D denote the total number of levels in the

separator tree in 2D and 3D, and where α defines the storage complexity of the format used to
represent the separators. (2.2) and (2.3) are geometric series of common ratio q = 22−α and
q = 23−2α, respectively. Using

K∑
k=0

qk =


Θ(K) if q = 1,
1−qK+1

1−q =
{

Θ(1) if q < 1,
Θ(qK+1) = Θ(qK) if q > 1,

we can easily compute the 2D and 3D solution complexities depending on the value of α. We
report the result in Table I.

Note that when considering low-rank matrix formats, the value of α depends on the asymp-
totic dependence of the rank r with respect to n. For example, consider a given format with

30
CHAPTER 2. ON THE COMPLEXITY OF THE SOLUTION PHASE WITH SPARSE

RIGHT-HAND SIDES

Table II: Complexity of the solution phase of a sparse system ofN×N (2D case) orN×N×N
(3D case) unknowns, depending on which of the FR, BLR, MBLR, and hierarchical formats is
used and depending on the rank bound r.

r = Θ(1) r = Θ(m1/2)
α C2D(N) C3D(N) α C2D(N) C3D(N)

FR 2 Θ(N2 logN) Θ(N4) 2 Θ(N2 logN) Θ(N4)
BLR 3/2 Θ(N2) Θ(N3 logN) 7/4 Θ(N2) Θ(N7/2)
MBLR (`+ 2)/(`+ 1) Θ(N2) Θ(N3) (3`/2 + 2)/(`+ 1) Θ(N2) Θ(N (3`+4)/(`+1))
Hier. 1 Θ(N2) Θ(N3) 3/2 Θ(N2) Θ(N3 logN)

storage complexity Θ(mβrγ). If r = Θ(1) does not depend on m (e.g., a Poisson problem),
then α = β. However, if r = Θ(m1/2) (e.g., a Helmholtz problem), then α = β + γ/2.

The complexity of the solution phase is given for two types of rank bounds and for the FR,
BLR [5], MBLR [16], and hierarchical formats in Table II. Note that throughout this chapter,
we do not need to distinguish between the different types of hierarchical low-rank formats (H,
H2, HSS, etc.) since the logarithmic terms in m in the storage complexity do not impact the
complexity of the sparse solution phase.

2.2.2 Exploiting the RHS sparsity

Along with the multiplication of RHS, electromagnetic or seismic applications often feature
RHS characterized by their locality, in other words, their nonzero structure could be very sparse
(tens or few hundreds of nonzero per RHS column). We recall from Chapter 1 how to exploit
this sparsity and how this translates into the computation of a single branch of the separator
tree.

For Ax = b where b is a sparse vector, it is shown in [35] that the nonzero structure of b
after the forward substitution can be predicted a priori, and demonstrated in [36] that we can
reduce the computation to the set of meaningful variables that are on paths of the separator
tree from the nodes corresponding to initial nonzero variables to the root node. This was also
referred to as tree pruning in [61], or vertical sparsity in Chapter 1. Therefore, if the number
of nonzero variables is limited, the exploitation of RHS sparsity amounts to the traversal of a
sufficiently small (Θ(1)) number of branches of the separator tree.

ForAX = B, whereB is a sparse matrix, the computation of CES in the previous context is
not straightforward. Indeed, the optimality that we had in the case of a single RHS may vanish
in the case of multiple RHS. This is due to the definition of tree pruning, see Chapter 1. In
other words, the complexity CES(N, nrhs) may not be equal to nrhs times the complexity of one
branch CES(N). Indeed, the worst case scenario would be to solve a problem where the pruned
tree would be equal to the initial tree. Then, we would have CES(N, nrhs) = C(N, nrhs). To
overcome this problem, one optimal approach is the so-called sequential approach, in which we
sequentially process the RHS one by one. Only then, we may conclude that CES(N, nrhs) =
nrhs × CES(N). Because we also have C(N, nrhs) = nrhs × C(N), we may conclude the

2.2. PRELIMINARIES 31

following:

GES(N, nrhs) = C(N, nrhs)
CES(N, nrhs)

= nrhs × C(N)
nrhs × CES(N) = C(N)

CES(N) = GES(N) (2.4)

This approach however does not exploit BLAS-3 operations, which are typically an order of
magnitude faster than their BLAS-2 counterpart. We thus wish to process multiple RHS by
groups of enough columns (say, 256 or 512), although this introduces operations on zeros. To
limit the number of operations on zeros and stay close to the minimal number of operations,
one should exploit horizontal sparsity, permutations (e.g. postorder) or blocking techniques, as
discussed in Chapter 1. In Chapter 3, new RHS permutations and blocking techniques will be
shown to lead to a number of operations that can be arbitrarily close to that of the sequential
approach, so that Equation (2.4) will hold for multiple right-hand sides. We will develop our
complexity study for increasingly general models of sparse RHS in Section 2.3.

2.2.3 Model problems and experimental setting
For the complexity experiments described in the next section, we have used standard Poisson
and Helmholtz operators. The resulting matrices exhibit low-rank properties and will be used
to give an experimental validation of the complexity results obtained.

The Poisson problem generates the symmetric positive definite matrix A from a 7-point
finite-difference discretization of equation

∆u = f

on a cubic domain with Dirichlet boundary conditions. We perform the computations in double-
precision arithmetic. In case of BLR representation, it may be shown that the rank r of the
approximated blocks resulting from the partition is asymptotically equal to r = Θ(1) [5].

The Helmholtz problem builds matrix A as the complex-valued unsymmetric impedance
matrix resulting from the finite-difference discretization of the heterogeneous Helmholtz equa-
tion, that is the second-order visco-acoustic time-harmonic wave equation(

−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω)

where ω is the angular frequency, v(x) is the seismic velocity field, and u(x, ω) is the time-
harmonic wavefield solution to the forcing term s(x, ω). The matrix A is built for an infinite
medium. This implies that the input grid is augmented with PML absorbing layers. Frequency
is fixed and equal to 4 Hz. The grid interval h is computed such that it corresponds to 4 grid
points per wavelength. Computations are done in single-precision arithmetic. In case of BLR
representation, it may be shown that the rank r of the approximated blocks resulting from the
partition is asymptotically equal to r = Θ(m1/2).

In our experiments, we use the multifrontal solver MUMPS, in which the BLR format has
been integrated [6]. We compute the low-rank approximations to the off-diagonal blocks by
computing theirQR factorization with column pivoting and truncating it after a given threshold
ε has been reached (i.e., we stop the factorization after the diagonal element rkk ofR falls below
ε). We refer to ε as the low-rank threshold.

32
CHAPTER 2. ON THE COMPLEXITY OF THE SOLUTION PHASE WITH SPARSE

RIGHT-HAND SIDES

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

(a) MAXOPS

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

(b) MINOPS

Figure 2.2: Example of construction of a RHS with 3 nonzeros for strategies MAXOPS and
MINOPS. The 3 nonzeros are placed in the 3 filled nodes.

2.3 Complexity analysis

In this section, we provide our complexity analysis of the forward substitution phase when RHS
sparsity is exploited. Since the RHS structure can be arbitrary, one must rely on a particular
structure in order to compute complexity models. We first present in Section 2.3.1 some real-
istic models of sparse RHS structures, then provide in Sections 2.3.2 to 2.3.4 our complexity
analysis for these increasingly realistic models.

2.3.1 Models for sparse RHS

Let us first model one sparse RHS with only one nonzero. As studied earlier, the associated
computations in the pruned tree will be represented as a branch of the separator tree, starting
from the active node, or equivalently the node containing the nonzero variable, up to the root.
We have chosen the position of this nonzero to be located on the leaf that belongs to the critical
path of the separator tree. This corresponds to the worst case scenario. As a consequence,
any RHS structure with a single nonzero will have a complexity bounded by this worst case
scenario. This corresponding theoretical complexity is discussed in Section 2.3.2.

As a second more general model we consider RHS structures with multiple nonzeros per
column. We note nnz the number of nonzeros and consider that it can either be constant, or
growing with N . To do so, we make the following assumptions on the structure of such RHS:

• only one nonzero per active node (this is indeed enough because multiple nonzeros per
node would not change the operation count);

• the active node is a leaf or is at depth Θ(log(N)); in other terms we do not assume
any specific property that would imply that the nonzeros are associated to the top-level
separators;

• the dependence over N of nnz may not be superior to Θ(N).

Based on these assumptions and in order to cover a wide range of cases one may model two
types of right-hand sides:

2.3. COMPLEXITY ANALYSIS 33

• MAXOPS: it corresponds to a RHS structure that maximizes the number of operations
during the solve phase. For that, we identify the first layer, called the target layer of the
tree containing at least nnz nodes in the tree. We pick nnz nodes in this layer and pick
a leaf in the nnz associated subtrees that we define as active, that is, on which we place
a nonzero, as shown in Figure 2.2a. Geometrically, this would translate as a RHS whose
set of nonzeros is almost uniformly spread in a large part of the domain.

• MINOPS: it corresponds to a RHS structure that would be gathered inside a smaller sub-
tree, thus limiting the number of operations. We still pick the nonzeros in the leaves,
but choose the smallest subtree containing at least nnz leaves, see Figure 2.2b. Geo-
metrically, this would translate in nonzeros that are all localized in a small part of the
domain.

We will see later that in the context of typical real-life applications, RHS are sometimes assim-
ilated to sources geometrically localized in the domain. This is why we thought the MINOPS

strategy could provide a reasonable model.

2.3.2 Ideal setting: one RHS with one nonzero
In this ideal setting, the forward substitution only requires the traversal of a single branch in the
separator tree. Thus, exploiting the RHS sparsity amounts to dropping the term corresponding
to the number of nodes at level k in the complexity formulas (2.2) and (2.3):

CES2D (N,α) =
K2D∑
k=0

Θ
((
N/2k

)α)
= Θ(Nα), (2.5)

CES3D (N,α) =
K3D∑
k=0

Θ
((
N2/4k

)α)
= Θ(N2α), (2.6)

We now measure the asymptotic gain obtained by exploiting the RHS sparsity, defined as

GES(N,α) = C(N,α)
CES(N,α) . (2.7)

For the FR unstructured format, we obtain GES2D (N) = Θ(N2 logN)/Θ(N2) = Θ(logN) and
GES3D (N) = Θ(N4)/Θ(N4) = Θ(1). Without the use of low-rank approximations, the gain
due to the exploitation of the RHS sparsity is thus constant or nearly constant (see also the last
column of Table II, for 9-point/27-point stencils in 2D/3D, respectively).

Interestingly, this changes when considering low-rank formats. For example, with the BLR
format and assuming r = Θ(1) (i.e., α = 3/2), we obtain GES2D (N) = Θ(N2)/Θ(N3/2) =
Θ(N1/2). The asymptotic gain GES2D is thus rapidly increasing with the number of unknowns.
Similar results hold for the other formats and for other values of r; they are reported in Table III.
The asymptotic gain can be as high as Θ(N) for hierarchical formats.

In Figure 2.3, we validate these theoretical results with numerical experiments performed
with 2D and 3D Poisson and Helmholtz problems, and use the same fitting method as in [5]. We
compare the asymptotic complexity fit of the forward substitution flops depending on whether

34
CHAPTER 2. ON THE COMPLEXITY OF THE SOLUTION PHASE WITH SPARSE

RIGHT-HAND SIDES

Table III: Asymptotic gain due to the exploitation of the RHS sparsity obtained for the forward
substitution phase of a sparse system of N ×N (2D case) or N ×N ×N (3D case) unknowns,
depending on which of the FR, BLR, MBLR, and hierarchical formats is used and depending
on the rank bound r.

r = Θ(1) (Poisson) r = Θ(m1/2) (Helmholtz)
GES2D (N) GES3D (N) GES2D (N) GES3D (N)

FR Θ(logN) Θ(1) Θ(logN) Θ(1)
BLR Θ(N1/2) Θ(logN) Θ(N1/4) Θ(1)
MBLR Θ(N `/(`+1)) Θ(N (`−1)/(`+1)) Θ(N `/(2`+2)) Θ(1)
Hierar. Θ(N) Θ(N) Θ(N1/2) Θ(logN)

we use a FR unstructured or BLR matrix format, and on whether the RHS sparsity is exploited
or not. For the results with BLR, we use a low-rank threshold ε = 10−6 for Poisson and
ε = 10−3 for Helmholtz. Finally, we mention that we have chosen the branch (or the RHS) to
be the critical path of the solve phase.

These experimental results are in relative good agreement with the theoretical gains re-
ported in Table III. In fact, the experimental values of the asymptotic gain GES(N) obtained
with these problems and the fitting method used are always better and, sometimes, even much
better than their theoretical bounds. Although it would be interesting to be able to use larger
problems, possibly avoiding the smallest problems, in order to see the impact on the fitting, the
experimental results go in the expected direction.

For the 2D Poisson problem, we obtain a Θ(N0.3 logN) asymptotic gain in the case of
the FR format, whereas in the BLR case we obtain a much larger gain of Θ(N1.2), thereby
confirming our theoretical finding that RHS sparsity benefits much more from the low-rank
solver. In the 3D case, almost no asymptotic gain is achieved by the FR format, as predicted by
theory; the BLR gain is however much larger than its theoretical prediction Θ(logN), reaching
Θ(N0.6 logN).

For the Helmholtz problem, we obtain only a constant GES gain in the 3D case, as expected,
whereas in the 2D case, both the FR and BLR formats benefit from a small asymptotic gain.
Interestingly, when the RHS sparsity is not exploited, the BLR format does not succeed in sig-
nificantly reducing the global number of flops (triangle and circle curves are indistinguishable
in Figure 2.3b), which is dominated by the processing of nodes at the bottom of the separator
tree, whereas a significant BLR reduction is achieved (diamond curve is well below square one)
when RHS sparsity is exploited.

2.3.3 Generalization to one RHS with multiple nonzeros

In real-life applications, the RHS typically have more than one nonzero. Let us now consider
the case of RHS with nnz nonzeros. If nnz = Θ(1), then the theoretical results of the previous
section obviously still hold, since exploiting the RHS sparsity then amounts to traverse Θ(1)
branches of the separator tree. nnz will now be considered as a parameter depending on N .

2.3. COMPLEXITY ANALYSIS 35

(a) 2D Poisson problem. (b) 2D Helmholtz problem.

(c) 3D Poisson problem. (d) 3D Helmholtz problem.

Figure 2.3: Experimental fit of the forward substitution complexity for the FR and BLR matrix
formats, depending on whether RHS sparsity is exploited or not.

36
CHAPTER 2. ON THE COMPLEXITY OF THE SOLUTION PHASE WITH SPARSE

RIGHT-HAND SIDES

Table IV: Complexity of the solution phase with a non-constant number of nonzeros per RHS
of a sparse system of N×N (2D case) or N×N×N (3D case) unknowns, assuming a storage
complexity Θ(mα), when using the MAXOPS model.

CES2D (N) CES3D (N)
α > 2 Θ(Nα) α > 3/2 Θ(N2α)
α = 2 Θ(N2 log nnz) α = 3/2 Θ(N3 log nnz)
α < 2 Θ(Nα × nnz (2−α)) α < 3/2 Θ(N2α × nnz (3−2α))

In fact, in most applications, RHS do have a Θ(1) number of nonzeros. Nonetheless, it is
interesting to evaluate the behavior of CES when the number of nonzeros is not constant as it
gives insights on the limits of the application of this complexity study.

Using the MAXOPS model

The first modelisation represents the worst case scenario where the RHS structure induces a
rapid increase in terms of operations since the pruned tree contains the upper and largest nodes
of the separator tree. The application of tree pruning may thus not be enough to preserve the
results of Section 2.3.2.

We express here the complexity of the forward substitution for the 2D case with the
sparse structure built with the MAXOPS strategy as a function of the nnz nonzeros. Let
K1 = log4(nnz) be the depth of the target layer, see Section 2.3.1. In the first K1 levels of
the tree, the computation of CES2D remains unchanged compared to C2D, and below layer K1 we
compute on nnz branches so that CES2D becomes

CES2D (N,α, nnz) =
K1∑
k=0

Θ
(
4k
(
N/2k

)α)
+

K2D∑
k=K1+1

nnz ×Θ
((
N/2k

)α)
. (2.8)

The first term can be expressed as Nα ×∑K1
k=0 Θ

(
2(2−α)k

)
so that it depends on α:

1. Case α > 2: A = Nα

2. Case α = 2: A = N2 log4 nnz

3. Case α < 2: A = Nα ×Θ(2(2−α)K1) = Θ
(
Nαnnz1−α/2

)
, since K1 = log4 nnz.

The second term may be expressed as Nα × nnz ×∑K2D
k=K1+1 Θ

(
(1/2α)k

)
. Using the fact that∑K2D

k=K1 q
k = qK1−qK2D

1−q = Θ(qK1), we obtain:

Nα × nnz ×Θ
(
2−αK1

)
= Θ

(
Nαnnz1−α/2

)
We can conclude that the order of CES2D corresponds to the order of the first term. The results
are gathered in Table IV.

2.3. COMPLEXITY ANALYSIS 37

The consequence of the results of Table IV is that, using the MAXOPS model, the complex-
ity directly depends on nnz and we might thus lose part of the asymptotic gain observed in the
previous section. For example, we may choose a model of nonzero such as nnz = Θ(Nγ) with
0 ≤ γ ≤ 1. Then, we see that for α = 2 (full-rank case), CES2D (N) = Θ(N2 logN) = C2D(N)
so that the gain is lost. However, the low-rank approximation with α = 3/2 limits the loss
in the sense that as long as γ < 1, we still have an asymptotic gain. It also proves that, in
this scenario corresponding to RHS nonzeros spread in the domain, having a non-constant nnz
induces a direct loss on CES .

Using the MINOPS model

In typical applications from geosciences, the RHS nonzeros represent physical locations sur-
rounding a given point referred to as source, in other words, these nonzeros are geometrically
clustered. First, if the number of nonzeros does not depend on N (nnz = Θ(1), as in some
applications), the asymptotic complexity results are identical to the ones with a single nonzero
from Section 2.3.2. Then, with such a configuration of nonzero structure, if nnz is not constant,
our objective is to understand under which condition the theoretical results from Section 2.3.2
may still hold.

This locality of RHS matches the construction of the nnz nonzeros using the MINOPS

strategy. The forward substitution consists in processing the entire subtree and then traversing
the branch from the root of the subtree to the root of the global separator tree. We mention
that considering the entire subtree whereas there may be slightly less nonzeros than the number
of leaves in that subtree (see the Example of Figure 2.2b) does not change the asymptotic
complexity.

We first focus on the 2D case. Let K1 be the number of levels of the subtree, and K2 =
K2D −K1 be the number of levels in the remaining branch. We can compute K1 using

nnz =
K1∑
k=0

4k2K1−k ⇒ K1 = Θ(log4 nnz).

The root of the subtree is thus of size Θ(N/2K2) = Θ(2K1) = Θ(nnz1/2). We can therefore
compute the complexity of the forward substitution with sparse RHS with nnz nonzeros as

CES2D (N,α, nnz) =
K2∑
k=0

Θ
((
N/2k

)α)
+

K1∑
k=0

Θ
(
4k
(
nnz1/2/2k

)α)
. (2.9)

The first term is equal to CES2D (N,α) = Θ(Nα), while the second term is of order Θ(nnz) if
α < 2. Thus, as long as nnz ≤ Θ(Nα), having multiple nonzeros does not increase the overall
asymptotic complexity of the forward substitution; nnz can thus potentially be nonconstant.
We can prove a similar result in the 3D case:

CES3D (N,α, nnz) = CES3D (N,α) +
log8 nnz∑
k=0

Θ
(
8k
(
nnz2/3/4k

)α)
, (2.10)

from which we conclude that, for α < 3/2, CES3D (N,α) remains of the same asymptotic order
as long as nnz ≤ Θ(N2α).

38
CHAPTER 2. ON THE COMPLEXITY OF THE SOLUTION PHASE WITH SPARSE

RIGHT-HAND SIDES

(a) 2D Poisson problem. (b) 3D Poisson problem.

Figure 2.4: Experimental fit of the forward substitution complexity using the BLR matrix for-
mat and exploiting the RHS sparsity, depending on the number of nonzeros of the RHS.

We illustrate this fact in Figure 2.4 for the 2D and 3D Poisson problems. We mention that
the RHS were built upon the MINOPS(m)odel with the additionnal characteristic that one of the
nonzeros is located on the critical path. Regardless of the value of nnz , the experimental com-
plexity of the BLR forward substitution remains very close to Θ(N0.8) in 2D and Θ(N2.4) in
3D, although some instability is observed for nnz = N in 2D in our experimental environment.

2.3.4 Generalization to multiple RHS (with multiple nonzeros)

As mentioned in the introduction, we are interested in the case where we have a multiple
number of RHS nrhs.

If the RHS are processed sequentially then the complexity of the forward substitution is
straightforward to compute and equal to

CES(N,α, nnz , nrhs) = nrhs × CES(N,α, nnz), (2.11)

which is the best result we can expect since it is linear with respect to nrhs.
However, as explained in Section 2.2.2, this approach does not allow us to exploit BLAS-3

operations. We therefore wish to process the RHS by groups, of a size brhs > 1.
In Figure 2.5, we compare the impact of tree pruning, of the postorder and of the sequential

(RHS processed one-by-one) strategies on 2D and 3D Poisson problems with a RHS structure
following the MINOPS model, where we chose a random subtree for each RHS. We mention
that RHS have a different nonzero structure, that is, for each RHS is associated a different
subtree containing the nnz chosen nonzeros, see Section 2.3.1. We plot the cost of the BLR
forward substitution normalized by the number of RHS, which is here set to nrhs = brhs = 256.

2.4. EXPERIMENTAL VALIDATION ON REAL-LIFE APPLICATIONS 39

(a) 2D Poisson problem. (b) 3D Poisson problem.

Figure 2.5: Experimental fit of the forward substitution complexity using the BLR matrix for-
mat and exploiting the RHS sparsity, depending on the strategy to process multiple RHS (here,
nrhs = brhs = 256 and nnz = 64).

In Figure 2.5, the cost is divided by almost 50 (in 2D) and 15 (in 3D) when using the improved
strategy, and we even observe that the application of the Postorder strategy on the RHS built
with the MINOPS model gives the optimal solution, that is the Sequential and Postorder curves
of Figure 2.5 overlap. This confirms the effectiveness of the Postorder permutation on such
models (i.e., MINOPS).

Thus, in our setting and with our MINOPS model to define the nonzero structure of each
RHS, the number of operations with the Postorder permutation is optimal even when using
blocks of RHS columns and the asymptotic complexity gain GES is preserved. However, we
may argue that the different models from Section 2.3.1 do not suffice to describe real-life ap-
plications that do not always reach the optimality of the Postorder showed in Figure 2.5.

2.4 Experimental validation on real-life applications

In the following, we observe and discuss the behavior the gain on real-life applications con-
sidering both the number of operations and the time of the forward substitution. To do so, we
took a restricted set of matrices from Table III of Section 1.6, namely matrices 5Hz, 10Hz from
the seismic application and H3, H17 and S3, S21 from the electromagnetic application. The
results are depicted in Tables V and VI. Each couple of matrices derives from the same model
problem so that their matrices differ only by their size (e.g, H17 is larger than H3). We are thus
able to assess the evolution of the gain as the problem size increases.

We used for these results a geometric nested dissection ordering, and a recent version of
the MUMPS solver that includes a Block-Low Rank feature for both the factorization and the
solve stages. We used a 2D block cyclic factorization on the root node (from ScaLAPACK),
so that we do not include flops and timings for that node for the purpose of the comparison.
Furthermore, these results benefit from the work of Chapter 4 (e.g., concerning the organization
of the RHS by blocks and within each block).

40
CHAPTER 2. ON THE COMPLEXITY OF THE SOLUTION PHASE WITH SPARSE

RIGHT-HAND SIDES

Table V: Number of operations
(OPS×1012) and associated gains of
the forward substitution phase in FR
and BLR from SEISCOPE and EMGS.
OPS do not include the root node where
ScaLAPACK is used.

OPS
FR BLR GBLR FR BLR GBLR

5Hz 10Hz

ES Off 16.9 12.6 1.3 201.6 114.9 1.8
ES On 3.3 1.2 2.8 39.4 9.0 4.3
GES 5.1 10.5 5.1 11.7

H3 H17

ES Off 69.7 34.5 2.0 777.0 404.9 1.9
ES On 10.7 4.2 2.6 101.9 10.2 10.0
GES 6.5 8.2 7.6 40.0

S3 S21

ES Off 131.4 37.7 3.5 1521.3 432.3 3.5
ES On 21.2 8.3 2.5 208.9 35.0 6.0
GES 6.2 4.5 7.3 12.4

Table VI: Time (s) and associated gains of
the forward substitution phase in FR and
BLR for matrices from the SEISCOPE and
EMGS sets. 90 MPI×1 OMP on EOS.
Times do not include the root node where
ScaLAPACK is used.

Time
FR BLR GBLR FR BLR GBLR

5Hz 10Hz

ES Off 50 42 1.2 458 250 1.8
ES On 26 18 1.4 201 92 2.2
GES 1.9 2.3 2.3 2.7

H3 H17

ES Off 377 273 1.4 5449 3097 1.8
ES On 166 119 1.4 1339 630 2.1
GES 2.3 2.3 4.1 4.9

S3 S21

ES Off 641 443 1.4 6719 3104 2.2
ES On 404 255 1.6 3748 1386 2.7
GES 1.6 1.7 1.8 2.2

We mention that, for each matrix, the comparison of the values from column GBLR gives
insights on the performance of the low-rank compression when exploiting sparsity or not. Sim-
ilarly, values of row GES assesses the performance of the exploitation of sparsity when using
low-rank approximations or not.

We recall that the conclusions from Section 2.3 were first that the acceleration of the for-
ward substitution increases with N when exploiting sparsity (at least in regular 3D problems)
and second that this acceleration was more significant with the use of BLR approximations.
Indeed, we are here interested in the evolution of GES and GBLR as the problem size increases,
that is their evolution on each set of couple matrices. Considering GES in FR, the increase
exists but seems moderate (going from 6.5 to 7.6 for matrices H3 and H17 in Table V). How-
ever, it is noticeably improved in the BLR case (going from 8.2 to 40.0) and the result remains
true for any other set of matrices. As a consequence, GES increases more rapidly with BLR
approximations. This is coherent with the theoretical results of Section 2.3.

Concerning the timings, we observe a similar tendency in Table VI, although less pro-
nounced: the gain due to exploiting sparsity increases more a BLR setting than a FR setting.

2.5 Extension to tree parallelism

We now consider the solve phase in the general case of dense RHS on which we propose to
interpret the previous asymptotic study in this context.

As indicated in Chapter 1, tree parallelism arises from the fact that two nodes from different
subtrees can be computed in parallel. A qualitative measure of tree parallelism is the compu-
tation of the so-called theoretical speed up associated with the solution of sparse systems. The

2.6. CONCLUSION 41

Table VII: Theoretical speed up obtained for the factorization phase of a sparse system ofN×N
(2D case) or N × N × N (3D case) unknowns, depending on which of the FR, BLR, MBLR,
and hierarchical formats is used and depending on the rank bound r.

r = Θ(1) r = Θ(m1/2)
S2D(N) S3D(N) S2D(N) S3D(N)

FR Θ(1) Θ(1) Θ(1) Θ(1)
BLR Θ(logN) Θ(1) Θ(1) Θ(1)
Hierar. Θ(N) Θ(N) Θ(N1/2) Θ(logN)

former metric, noted S supposes an infinite number of processors and it is defined as the ratio
between the workload on the whole separator tree and on its critical path, that was already in-
troduced in Section 1.4 and that was noted ∆

∆c
. On an infinite number of processors, the solve

time corresponds to the time to compute the critical path ∆c. S is thus the maximal quantity of
tree parallelism present in the tree. As a consequence, the larger (resp. thinner) is the tree, the
better (resp. worse) the tree parallelism.

Yet, the speed-up is similar to the definition of GES when defining CES as the complexity to
process one branch of the separator tree (assuming a balanced tree, which is the case on regular
problems). As a consequence, the results previously obtained for the case of a single nonzero
and a single RHS apply to the metric S but are now to be interpreted differently. Indeed, we
may now conclude from Table III that tree parallelism increases asymptotically with N , and
that this is even more true when low-rank approximation are used.

The comparison with the factorization stresses one other main difference between the two
algorithms. Indeed, a close comparison of Tables III and VII shows that the solve algorithm
exhibits more tree parallelism than the factorization. This result gives a valuable insight to drive
the design of algorithms to efficiently take into account the inherent properties (tree parallelism)
of the solve phase. We will discuss again the different intrinsic properties of the factorization
and the solve phase to drive parallel algorithms dedicated to the solve phase in Chapter 4.

2.6 Conclusion

In this chapter we have investigated the asymptotic complexity of the solution phase of sparse
linear systems AX = B with multiple right-hand sides, focusing on the forward substitution
LY = B.

In the case of traditional full-rank solvers, exploiting the sparsity of B only leads to a
constant or nearly constant gain for 3D problems, thus leaving the asymptotic complexity of
the forward substitution unchanged. However, this is no longer true for solvers based on low-
rank formats, such as BLR or hierarchical formats, for which a significant asymptotic gain
is obtained. Specifically, our theoretical computations prove that exploiting the RHS sparsity
improves the complexity of the BLR forward substitution by a factor of order Θ(n1/4) in 2D
(significantly larger than the Θ(log n) obtained using traditional solvers) and Θ(log n) in 3D.

42
CHAPTER 2. ON THE COMPLEXITY OF THE SOLUTION PHASE WITH SPARSE

RIGHT-HAND SIDES

The factor of improvement is even larger for multilevel or hierarchical formats. Our numerical
experiments support these bounds and show that in practice even higher gains are obtained.

Due to this result, the forward substitution becomes dominated by the backward substitution
and thus of negligible cost for large enough problems. Therefore, exploiting the RHS sparsity
divides the cost of the solution phase by a factor of two. Importantly, in some applications, only
part of the solution is needed; then, X is also a sparse matrix and the analysis performed in this
chapter also applies to the backward substitution. In that case, the asymptotic complexity of
the overall solution phase could itself be improved by exploiting the sparsity in both B and X .

With the RHS model MINOPS described in Section 2.3.1, we observed that in the presence
of multiple right-hand sides, the number of operations is optimal, that is, equal to those one
would obtain when treating the RHS columns sequentially, one-by-one. This is indeed due
to the fact that RHS nonzeros were localized within a subtree. However, geometrical locality
could lead to some RHS that are not fully part of low-level subtrees (e.g. if they are cut by high-
level separators) and we will see why in such cases, the postorder is no longer optimal. One
may also have more general RHS structures that may question the optimality of the Postorder
permutation obtained with the model used in Section 2.3.4, and the validity of Equation (2.4).
In the next chapter, we will propose techniques to limit this number of operations down to an
arbitrarily threshold above the optimum, while keeping large-enough blocks. This will allow
the theoretical complexity results of this chapter can effectively hold in the case of general
multiple RHS.

Chapter 3

On the exploitation of right-hand side
sparsity

We still consider the direct solution of sparse systems of linear equations

AX = B, (3.1)

where A is an n × n sparse matrix with a symmetric structure and B is an n × nrhs matrix of
right-hand sides (RHS). We consider the decomposition A = LU or A = LDLT with a sparse
direct method [28], and we focus on the efficient solution of the forward system

LY = B, (3.2)

where the unknown Y and the right-hand side B are n × nrhs matrices. We will see in this
study that the ideas developed for Equation (3.2) are indeed more general and can be applied
in a broader context. In particular, they can be applied to the backward substitution phase, in
situations where the system UX = Y must be solved for a subset of the entries in X [10, 61,
69, 70]. The work presented in this chapter was motivated by electromagnetism, geophysics or
imaging applications that can lead to systems with sparse multiple right-hand sides for which
the solution phase is significantly more costly than the factorization phase [4, 60].

This chapter assumes familiarity with the notions presented in Chapter 1. It relies a lot on
the separator tree (noted T) and on the pruned tree Tp(B), which allows to exclude RHS rows
for which computation can be fully avoided (vertical sparsity). We refer the reader to Sec-
tion 1.3.2 for an introduction of how RHS sparsity can be exploited and for the other concepts
and notation used in this chapter. We recall that the efficiency of horizontal sparsity strongly
depends on the way the columns of B are ordered, as this impacts the sizes of the intervals Zu
(defined in Equation (1.10)) of RHS columns on which computations are performed for a given
node u ∈ T . There are δu operations per RHS column processed at node u of the tree, and our
minimization problem (already presented in (1.12)) is:

Find a permutation σ of {1, . . . , nrhs} that minimizes ∆(B, σ) = ∑
u∈Tp(B) δu × θ(σ(Zu)),

where σ(Zu) = {σ(i) | i ∈ Zu} , and
θ(σ(Zu)) is the length of the permuted interval Jmin(σ(Zu)),max(σ(Zu))K.

(3.3)

43

44 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

×
f

f

×
f

f

×

×
f

f

f

×
×
f

f

×
f

f

f

×
f

f

×
f

f

×

×
f

f

f19-27
16-18

15
14
13
12
11
10
7-9

6
5
4
3
2
1

u0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

1 2 3 4 5 6

→
σPO

×
f

f

×
f

f

×

×
f

f

f

×
×
f

f

×
f

f

f

×
f

f

×
f

f

×

×
f

f

f

1 4 2 5 6 3

→
σFT

×
f

f

f

×
f

f

f

×
f

f

×
f

f

×

×
f

f

×
f

f

×

×
f

f

f

×
×
f

f

4 2 1 5 6 3

Figure 3.1: An RHS matrix B with multiple nonzeros per column (left), its postorder permuta-
tion (σFT , middle), and a more efficient permutation (σFT , right).

Restarting from Example 1.5 of Section 1.3.2, we present in Figure 3.1(left) the structure
of a RHS composed of 6 columns and leading to an amount of computation represented by
the gray cells (see also Figure 1.10 and the details on the operation count in the corresponding
text). With the postorder permutation σPO from Definition 1.5, the number of gray cells, and
the number of operations, is reduced. One of the contributions of this chapter is to introduce
a new permutation, represented on the right of Figure 3.1(right), that further reduces the num-
ber of operations with respect to the postorder. The algorithm will first be introduced for a
nested dissection ordering and for a regular mesh using geometric intuitions, then generalized
to arbitrary elimination trees.

Computation can then be further reduced by dividing the RHS into blocks. However, in-
stead of enforcing a constant number of columns per block, our objective is to minimize the
number of blocks created. If ∆min(B) represents the number of operations to solve (3.2) when
processing the RHS columns one by one, we show on real applications that our blocking algo-
rithm can approach ∆min(B) within a tolerance of 1% while creating a small number of blocks.
Please note that RHS sparsity limits the amount of tree parallelism because only a few branches
are traversed in the elimination tree. Therefore, whenever possible, our heuristics also aim at
choosing the approach that maximizes tree parallelism.

This Chapter is organized as follows. In Section 3.1, we introduce a new permutation to
reduce the size of such intervals and thus limit the number of operations, first using geometrical
considerations for a regular nested dissection ordering, then with a pure algebraic approach that
can then be applied in a general case and for arbitrary right-hand sides. We call it the Flat Tree
algorithm (hence the name σFT in Figure 3.1) because of the analogy with the ordering that
one would obtain when “flattening” the tree. In Section 3.2, an original blocking algorithm is
then introduced to further improve the flat tree ordering. It aims at defining a limited number of
blocks of right-hand sides to minimize the number of operations while preserving parallelism.
Section 3.3 gives experimental results on a set of systems coming from two geophysics appli-
cations relying on Helmholtz or Maxwell equations. Section 3.4 discusses adaptations of the

3.1. THE FLAT TREE PERMUTATION 45

nested dissection algorithm to further decrease computation and Section 3.5 shows why this
work has a broader scope than solving Equation (3.2) and presents possible applications.

3.1 The flat tree permutation

With the aim of satisfying node optimality (see Definition 1.4), we present another algorithm
to compute the permutation σ by first illustrating its geometric properties and then extending it
to rely only on algebraic properties.

3.1.1 Geometrical intuition

As said previously, the variables of a separator u are the ones of the corresponding node u in
the tree T . We use the same approach to represent a domain: for u ∈ T , the domain associated
with u is defined by the subtree rooted at u and is noted T [u]. The set of variables in T [u]
corresponds to a subdomain created during the nested dissection algorithm. As an example, the
initial 2D domain in Figure 3.2a (left) is T [u0] and its subdomains created by dividing it with
u0 are T [u1] and T [u2]. In the following, T [u] will equally refer to a subdomain or a subtree.

We do the strong assumption here that the nonzeros in an RHS column correspond to geo-
metrically contiguous nodes in a regular domain on which a perfect nested dissection has been
performed. For instance, all separators are in the same direction at each level of the tree.

u0

u1 u2a

a

a

a

b

b

b

c

c

c

c

a b c

T [u1]

u1

T [u2]

u2
u0

×

f

×

×

×

×

f

(a) Flat tree step 1.

u0

u1 u2

u12

u11

u22

u21

e

d

d

f

h

g

i

k

j

l

l

d e f g h i j k l

T [u11]

T [u12]

u1

T [u21]

T [u22]

u2
u0

×

f

f

×

×
×

f

×
f

f

×

f

×

f

×

×

×
×
×

×
×
×

×
f

×
f

×

×

f

f

×

×
×
f

×
f

f

(b) Flat tree step 2.

Figure 3.2: Flat tree geometrical illustration. In (a) and (b), the figure on the left represents
different types of RHS, and the one on the right the permuted RHS matrix. × or f in a rectangle
indicate the presence of nonzeros in the corresponding submatrix, parts of the matrix filled in
gray are fully dense and blank parts only contain zeros.

The flat tree algorithm relies on the evaluation of the position of each RHS column com-
pared to separators. The name flat tree comes from the fact that, given a parent node with two
child subtrees, the algorithm orders first RHS columns included in the left subtree, then RHS
columns associated to the parent (because they intersect both subtrees), and finally, as in an
inorder, RHS columns included in the right subtree.

Figure 3.2a shows the first step of the algorithm: it starts with the root separator u0 which
divides T = T [u0] into T [u1] and T [u2]. The initial RHS columns may be identified by three
different types noted a, b and c according to their positions and nonzero structures. An RHS

46 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

column is of type a when its nonzero structure is included in T [u1], c when it is included in
T [u2], and b when it is divided by u0. First, we group the RHS according to their type (a, b, or
c) with respect to u0 which leads to the creation of submatrices/subsets of RHS columns noted
a, b and c. Second, we make sure to place b between a and c. We thus achieve operation
reduction by guaranteeing node optimality at u1 and u2: since all RHS in a and b have at least
one nonzero in T [u1], u1 belongs to the pruned tree of all of them, hence the dense area filled
in gray in the RHS structure. The same is true for b and c and u2. By permuting B as [a, b, c]
([c, b,a] would also be possible), a and b, and b and c, are contiguous. Thus, θ(Zu1) = #Zu1 ,
θ(Zu2) = #Zu2 and we have u1− and u2−optimality.

The algorithm proceeds recursively on each submatrix created to obtain local node opti-
mality. First, d, e,f (resp. j, k, l) form subsets of the RHS of a (resp. c) based on their
position/type with respect to u1 (resp. u2), see Figure 3.2b. Second, thanks to the perfect
nested dissection assumption, u1 and u2 can be combined to form a single separator that sub-
divides the RHS of b into three subsets g, h and i. During this second step, B is permuted as
[d, e,f , g,h, i, j,k, l]. The algorithm stops when the tree is fully processed or the RHS sets
contain a single RHS.

This draws the outline of the algorithm introduced with geometrical considerations. The
permutation fully results from the position of each RHS with respect to separators. However,
the algorithm relies on strong assumptions regarding the ordering algorithm and the RHS struc-
ture. Without them, it is difficult or impossible to discriminate RHS columns in many cases
(for example, when they are separated by several separators).

In order to overcome these limitations and enlarge the application field, we now extend
these geometrical considerations with a more general approach.

3.1.2 Algebraic approach

Let us consider the columns of B as an initially unordered set of RHS columns that we denote
RB = {B1, B2, . . . , Bnrhs}. R ⊂ RB is a subset of the columns of B and r ∈ R is a generic
element of R (one of the columns Bj). A permuted submatrix of B can be expressed as an
ordered sequence of RHS columns. For two subsets of columns R and R′, [R, R′] denotes a
sequence of RHS columns in which the RHS from the subset R are ordered before those from
R′, without the order within R and R′ to be necessarily defined. We found this framework of
RHS sets and subsets better adapted to formalize our algebraic algorithm than matrix notation
with complex index permutations.

We now characterize the geometrical position of a RHS using the notion of pruned layer:
for a given depth d in the tree, and for a given RHS r ∈ RB, we define the pruned layer
Ld(r) as the set of nodes at depth d in the pruned tree Tp(r). In the example of Figure 3.2a,
L1(r) = {u1} for all r ∈ a, L1(r) = {u2} for all r ∈ c, and L1(r) = {u1, u2} for all r ∈ b.
The notion of pruned layer formally identifies sets of RHS with common characteristics in the
tree, without geometric information. This is formalized and generalized by Definition 3.1.

Definition 3.1. Let R ⊂ RB be a set of RHS, and let U be a set of nodes at depth d of the tree
T . We define R[U] = {r ∈ R | Ld(r) = U} as the subset of RHS with pruned layer U .

3.1. THE FLAT TREE PERMUTATION 47

We have for example, see Figure 3.2: R[{u1}] = a, R[{u2}] = c and R[{u1, u2}] = b at
depth d = 1.

The algebraic recursive algorithm is depicted in Algorithm 3.1. Its arguments are R, a set
of RHS and d, the current depth. Initially, d = 0 and R = RB = R[u0]. At each recursion step,
the algorithm builds the distinct pruned layers Ui = Ld+1(r) for the RHS r in R. Then, instead
of looking for a permutation σ to minimize

∑
u∈Tp(RB) δu × θ(σ(Zu)), it orders the R[Ui] by

considering the restriction of (1.12) to R and to nodes at depth d + 1 of Tp(R). Furthermore,
with the assumption that T is balanced, all nodes at a given level of Tp(R) are of comparable
size. δu may thus be assumed constant per level and needs not be taken into account. The
algorithm is a greedy top-down algorithm, where at each step a local optimization problem
is solved. This way, priority is given to the top of the tree, which is in general more critical
because factor matrices are larger.

Algorithm 3.1 Flat Tree
procedure FLATTREE(R, d)

1) Build the set of children C(R)
1.1) Identify the distinct pruned layers (pruned layer =

set of nodes)
U ← ∅
for all r ∈ R do
U ← U ∪ {Ld+1(r)}

end for
1.2) C(R) = {R[U] | U ∈ U}
2) Order children C(R) as [R[U1], . . . , R[U#C(R)]]:
return [FLATTREE(R[U1], d+ 1),. . .,FLATTREE(R[U#C(R)], d+ 1)]

end procedure

The recursive structure of the algorithm can be represented by a recursion tree Trec defined
as follows: each node R of Trec represents a set of RHS, C(R) denotes the set of children
of R and the root is RB. By construction of Algorithm 3.1, C(R) is a partition of R, i.e.,
R = ⋃̇

R′∈C(R)R
′ (disjoint union). Note that all r ∈ R such that Ld+1(r) = ∅ belong to R[∅],

which is also included in C(R). In this special case, R[∅] can be added at either extremity of
the current sequence without introducing extra computation and the recursion stops for those
RHS, as will be illustrated in Figures 3.3 and 3.4a. With this construction, each leaf of Trec
contains RHS with indistinguishable nonzero structures, and keeping them contiguous in the
final permutation avoids introducing extra computations. Assuming that for each R ∈ Trec the
children C(R) are ordered, this induces an ordering of all the leaves of the tree, which defines
the final RHS sequence. We now explain how the set of children C(R) is built and ordered at
each step:

1) Building the set of children The set of children of R ∈ Trec is built by first identifying
the pruned layers U of all RHS r ∈ R. The different pruned layers are stored in U and we
have for example (Figure 3.2, first step of the algorithm), U = {{u1}, {u2}, {u1, u2}}. We
define C(R) = {R[U] | U ∈ U} (Definition 3.1), which forms a partition of R. One important

48 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

R[u0]
d = 0

R[u1] R[u1u2] R[u2]
d = 1

R[u11] R[u11u12] R[u12] ∗ R[u21] R[u21u22] R[u22]
d = 2

Figure 3.3: A layered sequence built by the flat tree algorithm on a binary tree. Sets R[∅]
(not represented) could be added at either extremity of the concerned sequence (e.g., right after
R[u2] for a RHS included in u0). With the strong assumptions of Figure 3.2, * = R[u11u21],
R[u11u12u21u22], R[u12u22]. Otherwise, * is more complex.

property is that all r ∈ R[U] have the same nonzero structure at the corresponding layer so that
numbering them contiguously prevents the introduction of extra computation.

2) Ordering the children The children sequence [R[U1], . . . , R[U#C(R)]] at depth d + 1
should minimize the size of the intervals for nodes u at depth d+ 1 of Tp(R). The order inside
each R[Ui] does not impact the size of these intervals (it will only impact lower levels). For any
node u at depth d+ 1 in Tp(R), we have

θ(Zu|R) = max(Zu|R)−min(Zu|R) + 1 =
imax(u)∑
i=imin(u)

#R[Ui],

where Zu|R is the set of permuted indices representing the active columns restricted to R, and
imin(u) = min{i ∈ {1, . . . ,#C(R)} | u ∈ Ui} (resp. imax(u) = max{i ∈ {1, . . . ,#C(R)} |
u ∈ Ui}) is the first (resp. last) index i such that u ∈ Ui.

Proof. In the sequence [R[U1], . . . , R[U#C(R)]], min(Zu|R) (resp. max(Zu|R)) corresponds to
the index of the first (resp. last) column in R[Uimin

] (resp. R[Uimax]). Since all columns from
R[Uimin

] to R[Uimax] are numbered consecutively, we have the desired result.

Finally, we minimize the local cost function (sum of the interval sizes for each node at depth
d+ 1):

cost([R[U1], . . . , R[U#C(R)]]) =
∑

u∈Tp(R)
depth(u)=d+1

imax(u)∑
i=imin(u)

#R[Ui] (3.4)

To build the ordered sequence [R[U1], . . . , R[U#C(R)]], we use a greedy algorithm that starts
with an empty sequence, and at each step k ∈ {1, . . . ,#C(R)} inserts a RHS set R[U] picked
randomly in C(R) at the position that minimizes (3.4) on the current sequence. To do so,
we simply start from one extremity of the sequence of size k − 1 and compute (3.4) for the
new sequence of size k for each possible position 0 . . . k; if several positions lead to the same
minimal cost, the first one encountered is chosen. In case u−optimality is obtained for each
node u considered, then the permutation is said to be perfect and the cost function is minimal,
locally inducing no extra operations on those nodes.

3.1. THE FLAT TREE PERMUTATION 49

×
×
×
f

f

f

f

×
×
×

×
× ×

×
f

f

×
f

×

f

f

×

f

×
f

fu0

u2

u22

u21

u1

u12

u11

1 2 3 4 5 6 7

σFT

f

f

×
×
×

×
×

×
f

×

f

f

×
×
×
f

f

×

f

×
f

f

×
f

f ×

2 3 6 1 7 5 4

(a) RHS structure.

u0

u2

u22u21

u1

u12u11

(b) Separator tree T .

R[u0]
B1, . . . ,B7

R[u1u2]
B1B3B6B7

R[u11u22]
B7

R[u21u22]
B1

R[u12u21]
B6

R[u12]
B3

R[u1]
B2

R[u2]
B5

R[;]
B4

(c) Recursion tree Trec.

Figure 3.4: Illustration of the algebraic Flat Tree algorithm on a set of 7 RHS. Small example
with (a) a RHS structure, (b) the corresponding tree and (c) the recursion tree built by the
application of the Flat Tree algorithm on a set of 7 right-hand sides.

Figure 3.3 shows the recursive structure of the RHS sequence after applying the algorithm
on a binary tree. We refer to this representation as the layered sequence. For simplicity, the
notation for pruned layers has been reduced from, e.g., {u1} to u1, and from {u1, u2} to u1u2.
From the recursion tree point of view, R[u1], R[u1u2], R[u2] are the children of R[u0] in Trec,
R[u11], R[u11u12], R[u12] the ones of R[u1], etc.

Example 3.1. Let B = [B1, B2, B3, B4, B5, B6, B7] be a RHS matrix with the structure pre-
sented in Figure 3.4a. Although we still use a binary tree, we make no assumption on
the RHS structure, the domain, or the ordering in the example of Figure 3.4. We have
RB = R[u0] = {B1, B2, B3, B4, B5, B6, B7}. The set of pruned layers corresponding to
R[u0] is U = {u1u2, u1, ∅, u2}, so that C(R[u0]) = {R[u1u2], R[u1], R[∅], R[u1u2]}. As
can be seen in the non-permuted RHS structure, R[∅] = B4 at depth 1 induces extra oper-
ations at nodes descendants of u0, which disappear when placing R[∅] at one extremity of the
sequence. We choose to place it last and obtain the sequence [R[u1], R[u1u2], R[u2], R[∅]].
A recursive call is done on the identified sets, as illustrated in Figure 3.4c. Since R[u1],
R[u2] and R[∅] contain a single RHS, we focus on R = R[u1u2], whose set of pruned lay-
ers is U = {u21u22, u12, u12u21, u11u22}. The sequence [R[U1], R[U2], R[U3], R[U4]], where
U1 = u12, U2 = u12u21, U3 = u21u22, and U4 = u11u22 is a perfect sequence which gives local
optimality. However, taking the problem globally, we see that θ(Zu11) 6= #Zu11 in the final
sequence [B2, B3, B6, B1, B7, B5, B4].

Although not relying on geometric assumptions, particular RHS structures or binary trees,
computations on explicit zeros (for example zero rows in column f and subdomain T [u11]
in Figure 3.2b), may still occur with the flat tree algorithm. This will also be illustrated in
Section 3.3, where ∆(B, σFT) is 39% larger than ∆min(B), in the worst case. A blocking
algorithm is now introduced to further reduce ∆(B, σFT).

50 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

3.2 Towards a minimal number of operations using
blocks

In this section, we identify the causes of the remaining extra operations and provide an efficient
blocking algorithm to reduce them efficiently while creating a small number of blocks. The
algorithm relies on a property of independence of right-hand sides that is first illustrated, and
then formalized.

3.2.1 Geometrical intuition

The use of blocking techniques may fulfill different objectives. In terms of operation count,
optimality (∆min(B)) is obtained when processing the columns ofB one by one, which implies
the creation of nrhs blocks. However, this requires processing the tree nrhs times and will
typically lead to a poor arithmetic intensity (and likely a poor performance). On the other hand,
the algorithms of Section 3.1 only use one block, which allows a higher arithmetic intensity but
leads to extra operations. In the dense case, blocks are also often used to improve the arithmetic
intensity. In the sparse RHS case, blocking techniques with regular blocks of columns have
been associated to tree pruning to either limit the access to the factors [10], or limit the number
of operations [67]. They were either based on a preordering of the columns or on hypergraph
models. In this section, to give as much flexibility as possible to the underlying algorithms and
avoid unnecessary constraints, our objective is to create a minimal number of (possibly large)
blocks while reducing the number of extra operations by a given amount. In particular, we
allow blocks to be irregular and assume node intervals are exploited within each block.

On the one hand, two RHS or sets of RHS included in two different domains exhibit inter-
esting properties, as can be observed for sets a ∈ T [u1] and c ∈ T [u2] from Figure 3.2a. No
extra operations are introduced between them: ∆([a, c]) = ∆(a) + ∆(c). We say that a and
c are independent sets and they can be associated together. On the other hand, a set of RHS
intersecting a separator (such as set b) has zeros and nonzeros in rows common to their adja-
cent RHS sets (a and c) which will likely introduce extra computation. In Figure 3.2b, we have
for example ∆([a, b]) = ∆([d, e,f , g,h, i]) > ∆([d, e,f]) + ∆([g,h, i]) = ∆(a) + ∆(b)
and ∆([a, b, c]) > ∆(a) + ∆(b) + ∆(c). We say that b is a set of problematic RHS. Fig-
ure 1.10 (right) gives another example where extracting the problematic RHS B1 and B5 from
[B4, B2, B1, B5, B6, B3] suppresses all extra operations: ∆([B4, B2, B6, B3]) + ∆([B1, B5]) =
∆min = 1056.

To give further intuition on the Blocking algorithm, consider the RHS structure of Fig-
ure 3.2b. Problematic RHS e and k in [d, e,f , j,k, l] can be extracted to form two blocks,
or groups, [e,k] and [d,f , j, l]. The situation is slightly more complicated for [g,h, i], where
h indeed intersects two separators, u1 and u2. In this case, h should be extracted to form the
groups [g, i] and [h]. We note that the amount of extra operations will likely be much larger
when the separator intersected is high in the tree.

Situations where no assumption on the RHS structure is made are more complicated and
require a general approach. For this, we formalize the notion of independence, which will be
the basis for our blocking algorithm.

3.2. TOWARDS A MINIMAL NUMBER OF OPERATIONS USING BLOCKS 51

3.2.2 Algebraic formalization

In this section, we give a first version of the Blocking algorithm. It is based on a sufficient
condition allowing to group together sets of RHS without introducing extra computation. We
assume the matrix B to be flat tree ordered and the recursion tree Trec to be built and ordered.
Using the notations of Definition 3.1, we give an algebraic definition of the independence
property:

Definition 3.2. Let U1, U2 be two sets of nodes at a given depth of a tree T , and letR[U1], R[U2]
be the corresponding sets of RHS. R[U1], R[U2] are said to be independent if and only if U1 ∩
U2 = ∅.

With Definition 3.2, we are able to formally identify independent sets that can be as-
sociated together. Take for example a = R[u1] and c = R[u2] (Figure 3.2a), R[u1] and
R[u2] are independent and ∆([R[u1], R[u2]]) = ∆(R[u1]) + ∆(R[u2]). On the contrary, when
R[U1], . . . , R[Un] are not pairwise independent, we group together independent sets of RHS,
while forming as few groups as possible. This problem is equivalent to a graph coloring prob-
lem, where R[U1], . . . , R[Un] are the vertices and an edge exists between R[Ui] and R[Uj] if
and only if Ui ∩ Uj 6= ∅. Several heuristics exist for this problem, and each color will corre-
spond to one group. The blocking algorithm as depicted in Figure 3.5 traverses Trec from top

Algorithm 3.2 Blocking algorithm
for d = 0 to dmax do

j ← 0 /* #groups at depth d+ 1 */
for all groups gdi at detph d do

(gd+1
j+1 . . . g

d+1
j+k) ← BUILD-

GROUPS(gdi , d+ 1)
/* k new groups have been created */
j ← j + k

end for
end for

R[u0]

g01d = 0

R[u1] R[u2] R[u1u2]

g11 g12d = 1

R[u11] R[u12] R[u21] R[u22]

g21

R[u11u12] R[u21u22]

g22

∗1 ∗2

g23

∗3

g24d = 2

Figure 3.5: A first version of the blocking algorithm (left). It is illustrated (right) on the layered
sequence of Figure 3.3. With the geometric assumptions of Figure 3.2, ∗1 = R[u11u21], ∗2 =
R[u12u22], and ∗3 = R[u11u12u21u22].

to bottom. At each depth d, each intermediate group gdi verifies the following properties: (i) gdi
can be represented by a sequence [R[U1], . . . , R[Un]], and (ii) the sequence respects the flat tree
order of Trec. Then, BUILDGROUPS(gdi , d+1) first builds the sets of RHS at depth d+1, which
are exactly the children of theR[Uj] ∈ gdi in Trec. Second, BUILDGROUPS(gdi , d+1) solves the
aforementioned coloring problem on these RHS sets and builds the k groups (gd+1

j+1 , . . . , g
d+1
j+k).

In Figure 3.5(right), there is initially a single group g0
1 = [R[u0]] with one set of RHS,

which may be expressed as the ordered sequence [R[u1]R[u1u2]R[u2]]. g0
1 does not satisfy the

independence property at depth 1 because u1∩u1u2 6= ∅ or u2∩u1u2 6= ∅. BUILDGROUPS(g0
1 ,

52 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

1) yields g1
1 = [R[u1], R[u2]] and g1

2 = [R[u1u2]]. The algorithm proceeds until a maximal
depth dmax: (g2

1, g
2
2) = BUILDGROUPS(g1

1, 2), (g2
3, g

2
4) = BUILDGROUPS(g1

2, 2), etc. To il-
lustrate the interest of property (ii), let us take sets d = R[u11],f = R[u12], j = R[u21] and
l = R[u22] from Figure 3.2b. One can see that ∆([d,f , j, l]) = ∆(d)+∆(f)+∆(j)+∆(l) <
∆([d, j,f , l]). Compared to [d,f , j, l] which respects the global flat tree ordering and ensures
u1- and u2-optimality, [d, j,f , l] does not and would thus increase θ(Zu1) and θ(Zu2). Further-
more, Algorithm 3.2 ensures the property, that the independent sets of RHS grouped together
do not introduce extra operations:

Property 3.1. For any group gd = [R[U1], . . . , R[Un]] created through Algorithm 3.2 at depth
d, we have ∆([R[U1], . . . , R[Un]]) = ∑n

i=1 ∆(R[Ui]).

Proof. For d ≥ 1, let gd = [R[Ud
i]i=1,...,nd] be a group at depth d created through Algorithm 3.2

(we use superscripts d in this proof to indicate the depth without ambiguity). Let us split nodes
above (A) and below (B) layer d in the pruned tree Tp(gd). The number of operations to process
gd is:

∆(gd) =
∑

u∈Tp(gd)
δu × θ(Zu|gd) =

∆A︷ ︸︸ ︷∑
u∈A

δu × θ(Zu|gd) +
∆B︷ ︸︸ ︷∑

u∈B
δu × θ(Zu|gd), (3.5)

where A = {u ∈ Tp(gd) | depth(u) < d} and B = {u ∈ Tp(gd) | depth(u) ≥ d}.
(i) We first consider the term ∆B. Let Bi = {u ∈ Tp(R[Ud

i]) | depth(u) ≥ d}. Thanks to
the independence property of the R[Ud

i] forming gd, the pruned layers Ud
i in T are disjoint and

since T is a tree, we have Bi ∩Bj = ∅ for all i 6= j. Hence, B = ⋃̇nd

i=1Bi, where
⋃̇

denotes the
disjoint union. Therefore,

∆B =
∑

u∈
⋃̇nd

i=1Bi

δu × θ(Zu|[R[Ud
j]

j=1,...nd]) =
nd∑
i=1

∑
u∈Bi

δu × θ(Zu|[R[Ud
j]

j=1,...nd]).

We recall that a RHS r is said to be active at node u if u ∈ Tp(r). In the inner sum, the only
possible active RHS inBi are the ones that belong toR[Ud

i] (independence of theR[Ud
j]), so that

for all u ∈ Bi, we have θ(Zu|[R[Ud
i]

i=1,...nd]) = θ(Zu|R[Ud
i]). Therefore, ∆B = ∑nd

i=1
∑
u∈Bi

δu ×
θ(Zu|R[Ud

i]).
(ii) We now consider the term ∆A. Similarly to (i), we define Ai = {u ∈ Tp(R[Ud

i]) |
depth(u) < d}. We have A = ⋃nd

i=1Ai but the union is no longer disjoint. Let Trec(gd) be
the restriction to gd of the recursion tree Trec associated to the flat-tree algorithm applied to RB

(see Section 3.1.2 for the definition of Trec). Trec(gd) is obtained by excluding at each node
of Trec the right-hand sides that are not part of gd, then by pruning all empty nodes. We also
restrict Definition 3.1 to gd and thus note R[U] = {r ∈ gd | Ld(r) = U}. In particular, the root
of Trec(gd) is R[u0] = gd.

By construction of Algorithm 3.2 (Figure 3.5), we know that any layer at depth d′ < d of the
group gd consists of independent sets R[Ud′

j] of RHS. Therefore, ∀u ∈ A, ∃!R[U] ∈ Trec(gd)
such that u ∈ U . This means that the only active columns at node u are those in this unique

3.2. TOWARDS A MINIMAL NUMBER OF OPERATIONS USING BLOCKS 53

R[U] and, since the RHS in R[U] are all contiguous in gd thanks to the global flat tree ordering,
we have θ(Zu|R[U]) = θ(Zu|gd) = #R[U].

Furthermore, by construction of the recursion tree (children nodes form a partition of each
parent node), the RHS in R[U] are the ones in the disjoint union of R[Ud

i] ⊂ R[U], the sets
of right-hand sides at layer d that are descendants of R[U] in Trec(gd). Therefore, #R[U] =∑
R[Ud

i]⊂R[U] #R[Ud
i]. Furthermore, since the R[Ud

i] such that R[Ud
i] ⊂ R[U] are contiguous

sets in gd and are all active at node u, we also have θ(Zu|R[Ud
i]) = #R[Ud

i]. It follows:

θ(Zu|gd) =
∑

R[Ud
i]⊂R[U]

θ(Zu|R[Ud
i]).

We define ξi(u) = 1 if R[Ud
i] ⊂ R[U] (with R[U] derived from u as explained above),

and ξi(u) = 0 otherwise. The condition R[Ud
i] ⊂ R[U] means that u is an ancestor of Ud

i

nodes in T . Thus, ξi(u) = 1 for u ∈ Ai and ξi(u) = 0 for u /∈ Ai. We can thus write∑
R[Ud

i]⊂R[U] θ(Zu|R[Ud
i]) = ∑nd

i=1 ξi(u)θ(Zu|R[Ui]) and redefine ∆A as:

∆A =
∑
u∈A

δu × θ(Zu|gd) =
∑
u∈A

δu ×
nd∑
i=1

ξi(u)θ(Zu|R[Ud
i])

=
nd∑
i=1

∑
u∈A

δu × ξi(u)θ(Zu|R[Ud
i])

=
nd∑
i=1

∑
u∈Ai

δu × θ(Zu|R[Ud
i]).

Joining the terms ∆A and ∆B, we finally have:

∆(gd) = ∆A + ∆B =
nd∑
i=1

∑
u∈Bi

δu × θ(Zu|R[Ui]) +
nd∑
i=1

∑
u∈Ai

δu × θ(Zu|R[Ui]) =
nd∑
i=1

∆(R[Ui])

Interestingly, Property 3.1 can be used to prove, in the case of a single nonzero per RHS,
the optimality of the flat tree permutation.

Corollary 3.1. Let RB be a set of RHS such that ∀r ∈ RB,#Vr = 1. Then the flat tree
permutation is optimal: ∆(RB) = ∆min(RB).

Proof. Since ∀r ∈ RB,#Vr = 1, Tp(r) is a branch of T . As a consequence, any set of RHS
R[U] built through the flat tree algorithm is represented by a pruned layer U containing a single
node u. At each step of the flat tree algorithm (Algorithm 3.1), the RHS sets identified are thus
all independent from each other. When applying Algorithm 3.2, a unique groupRB is then kept
until the bottom of the tree. Blocking is thus not needed and Property 3.1 applies at each level
of the recursion. ∆(RB) is thus equal to the sum of the ∆(R[U]) for all leaves R[U] of the
recursion tree Trec. Since ∆(R[U]) = ∆min(R[U]) on those leaves (all RHS in R[U] involve
the exact same nodes and operations), we conclude that ∆(RB) = ∆min(RB).

54 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

R[u111] R[u112]

g11d = 1

R[u221] R[u222] R[u21] R[u22]

g21

R[u221u222] R[u21u22]

g22d = 2

R[u111] R[u112]

g11d = 1

R[u221] R[u222] R[u21u22]

g21

R[u21] R[u22] R[u221u222]

g22d = 2

Figure 3.6: Two strategies to build groups: CritPathBuildGroups (left) and
RegBuildGroups (right).

This proof is independent of the ordering of the children at step 2 of Algorithm 3.1. Corol-
lary 3.1 is thus more general: any top-down recursive ordering keeping together RHS with
identical pruned layer at each step is optimal, as long as the pruned layers identified at each
step are independent.

Back to the BUILDGROUPS function, the solution of the coloring problem may not be
unique. Even on the simple example of Figure 3.5, there are several ways to define groups, as
shown in Figure 3.6 for g1

1: both strategies satisfy the independence property and minimize the
number of groups. The CRITPATHBUILDGROUPS strategy tends to create a large group g2

1 and
a smaller one, g2

2 . In each group the computations on the tree nodes are expected to be well
balanced because all branches of the tree rooted at u0 might be covered by the RHS (assuming
thus a reasonably balanced RHS distribution over the tree). The choice of CRITPATHBUILD-
GROUPS can be driven by tree parallelism considerations, namely, the limitation of the sum of
the operation counts on the critical paths of all groups. The REGBUILDGROUPS strategy tends
to balance the sizes of the groups but may create more unbalance regarding the distribution of
work over the tree.

We note that for a given depth, applying BUILDGROUPS on all groups may not always be
necessary, and that for a given group, enforcing the independence property may create more
than two groups. In the next section we minimize the number of groups created using greedy
heuristics.

3.2.3 A greedy approach to minimize the number of groups

Compared to Algorithm 3.2, Algorithm 3.3 adds the group selection, limits the number of
groups created from a given group to two, and stops depending on a given tolerance on the
amount of operations.

First, instead of stepping into each group as in Algorithm 3.2, we select among the current
groups the one responsible for most extra computation, that is, the one maximizing ∆(g) −
∆min(g). This implies that groups that are candidate for splitting might have been created at
different depths and we use a superscript to indicate the depth d at which a group was split, as
in the notation gd0 .

Second, instead of a coloring problem which creates as many groups as colors obtained,
we look (procedure BUILDMAXINDEPSET) inside the RHS sets of gd0 for a maximal group of
independent sets at depth d + 1, denoted gd+1

imax. The other sets are left in another group gdc ,

3.3. EXPERIMENTAL RESULTS 55

whose depth remains equal to d. gdc may thus consist of dependent sets that may be subdivided
later if needed1. Rather than an exact algorithm to determine gd+1

imax, we use a greedy heuristic.
Finally, we define µ0 as the tolerance of extra operations authorized. With a typical value

µ0 = 1.01, the algorithm stops when the number of extra operations is within 1% of the minimal
number of operations ∆min, returning G as the final set of groups.

Algorithm 3.3 Blocking algorithm
G← {RB}, ∆min ← ∆min(RB), ∆← ∆(RB)
while ∆/∆min > µ0 do

Select gd0 such that ∆(gd0)−∆min(gd0) = maxg∈G (∆(g)−∆min(g)) . Group selection
(gd+1
imax, g

d
c)← BUILDMAXINDEPSET(gd0 , d+1)

G← G ∪ {gd+1
imax, g

d
c} \ {gd0}

∆← ∆−∆(gd0) + ∆(gd+1
imax) + ∆(gdc)

end while

3.3 Experimental results

In this section, we report on the impact of the proposed permutation and blocking algorithms on
the forward substitution (Equation (3.2)), using a set of 3D regular finite difference problems
coming from seismic and electromagnetism modeling [4, 60], for which the solve phase is
costly. The characteristics of the corresponding matrices and RHS are presented in Table III.
In both applications, the nonzeros of each RHS correspond to a small set of close points, near
the top of the 3D grid corresponding to the physical domain, with some overlap between RHS.
Except in Section 3.3.3, a geometric nested dissection (ND) algorithm is used to reorder the
matrix.

3.3.1 Impact of the flat tree algorithm

We first introduce the terminology used to denote the different strategies developed in this
study and that impact the number of operations ∆. DEN represents the dense case, where no
optimization is used to reduce ∆, and TP means tree pruning. When column intervals are
exploited at each tree node, we denote by RAN, INI, PO and FT the random, initial (σ = id),
postorder (σPO) and flat tree (σFT) permutations, respectively.

The improvements brought by the different strategies are presented in Table I. Compared
to the dense case, TP divides ∆ by at least a factor 2. When column intervals are exploited
at each node, the large gap between RAN and INI shows that the original column order holds
geometrical properties. FT behaves better than INI and PO and gets reasonably close to ∆min.
Overall, FT provides a 13% gain on average over PO. However, the gain on ∆ decreases from
25% on the 10Hz problem to 1% on the H116 problem. This can be explained by the fact thatB
is denser for the seismic applications than for the electromagnetism applications (see Table III).

1In case gd
c consists of independent sets and is selected, gd+1

c = gd
c will only be subdivided at depth d+ 2.

56 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

Table I: Number of operations (×1013)
during the forward substitution
(LY = B) according to the strat-
egy used (ND ordering).

∆ DEN TP RAN INI PO FT ∆min

5Hz 1.73 .74 .74 .44 .36 .28 .22
7Hz 5.94 2.54 2.52 1.46 1.21 .92 .69

10Hz 20.62 9.01 8.92 4.78 3.85 2.87 2.26

H0 .39 .11 .11 .086 .070 .057 .050
H3 7.19 3.33 3.31 2.48 1.47 1.26 .95

H17 81.34 37.15 36.97 27.52 10.41 10.21 10.12
H116 990.02 448.31 445.91 327.89 123.79 121.76 120.68

S3 13.36 4.98 4.91 3.73 2.65 2.17 1.71
S21 156.20 49.04 48.07 35.42 25.73 22.53 19.43
S84 983.48 286.57 282.70 222.59 161.87 138.56 118.51
D30 71.60 39.78 39.38 19.49 10.93 10.21 7.31

Table II: Theoretical tree parallelism accord-
ing to the strategy used (ND ordering).

S DEN TP RAN INI PO FT

5Hz 8.60 3.91 3.88 3.11 2.39 2.54
7Hz 8.92 3.97 3.94 3.02 2.25 2.48

10Hz 9.10 4.04 4.02 2.96 2.30 2.30

H0 5.88 2.11 2.11 1.75 1.51 1.45
H3 5.99 3.22 3.21 2.47 2.02 2.11

H17 6.32 3.34 3.32 2.54 2.00 1.97
H116 7.92 3.63 3.61 2.75 2.05 2.02

S3 6.12 2.84 2.83 2.18 1.73 1.61
S21 6.30 2.56 2.46 1.85 1.49 1.47
S84 8.01 2.41 2.38 1.90 1.53 1.52
D30 8.50 4.73 4.70 2.86 2.05 2.56

Table III: Impact of the number of groups
NG on the normalized operation count, until
∆NG/∆min becomes smaller than the toler-
ance µ0 = 1.01 (ND ordering).

∆NG/∆min FT NG= 2 NG= 3 NG= 4 NG= 5
5Hz 1.283 1.111 1.001 x x
7Hz 1.321 1.116 1.002 x x

10Hz 1.269 1.029 1.002 x x

H0 1.148 1.029 1.010 1.002 x
H3 1.329 1.068 1.027 1.005 x

H17 1.009 x x x x
H116 1.009 x x x x

S3 1.275 1.120 1.045 1.012 1.003
S21 1.160 1.037 1.015 1.003 x
S84 1.169 1.041 1.015 1.002 x
D30 1.397 1.082 1.058 1.024 1.004

Indeed, the sparser B, the closer we are to a single nonzero per RHS in which case both FT and
PO are optimal.

Second, we evaluate the impact of exploiting RHS sparsity on tree parallelism. Table II
gives the maximal theoretical speed-up S that can be reached using tree parallelism only (node
parallelism is also needed, for example on the root). It is defined as S = ∆

∆cp
where ∆cp

is the number of operations on the critical path of the tree. We observe that, when sparsity
is exploited, tree parallelism is significantly smaller than in the dense case. This is because
the depth of the pruned tree Tp(B) is similar to that of the original tree (some nonzeros of
B generally appear in the leaves), while the tree effectively processed is pruned and thus the
overall amount of operations is reduced. For the same reason, S is smaller for test cases where
D(B) is small. For the 5Hz, 7Hz, and 10Hz problems which have more nonzeros per column of
B, besides decreasing the operation count more than the other strategies, FT exhibits equivalent
or even better tree parallelism than PO. For such matrices, where D(B) is large, FT balances

3.3. EXPERIMENTAL RESULTS 57

the work on the tree better than PO and reduces the work on the critical path more than the
total work. Overall, FT reduces the operation count better than any other strategy and has good
parallel properties.

3.3.2 Impact of the blocking algorithm

First, we show that the blocking algorithm decreases the operation count ∆ while creating a
small number of groups. Second, we discuss parallel properties of the clustering strategies
illustrated in Figure 3.6. In Table III, we report the value of ∆NG

∆min
as a function of the num-

ber of groups created. x means that the blocking algorithm stopped because the condition
∆NG/∆min ≤ µ0 was reached, with µ0 for Algorithm 3.3 set to 1.01. Computing from Ta-
ble III the ratio of extra operations reduction 1− ∆NG−∆min

∆1−∆min
forNG groups created, we observe

an average reduction of 74% of the extra operations when NG = 2, i.e., when only two groups
are created. Table III also shows that ∆NG reaches a value close to ∆min very quickly.

Table IV: Sum of critical paths’ operations (×1013) for two grouping strategies when three
groups are created.

∑
g ∆cp(g) 5Hz 7Hz 10Hz H0 H3

CRITPATHBUILDGROUP .092 .30 1.00 .037 .50
REGBUILDGROUP .12 .43 1.58 .044 .72

In Table IV, we report the sum of operation counts on the critical paths ∆cp over all groups
created using CRITPATHBUILDGROUP and REGBUILDGROUP strategies, when the number of
groups created is three, leading to a value ∆ close to ∆min, see column “NG=3” of Table III.
In this case, the total number of operations ∆ during the forward solution phase on all groups
is equal whether we use CRITPATHBUILDGROUP or REGBUILDGROUP. Tree parallelism is
thus a crucial discriminant between both strategies, and we indeed observe in Table IV that
CRITPATHBUILDGROUP effectively limits the length of critical paths over the three groups
created, justifying its use.

3.3.3 Experiments with other orderings

As mentioned earlier, several orderings may be used to order the unknowns of the original
matrix, thanks to the algebraic nature of our flat tree and blocking algorithms. Although local
ordering methods (AMD, AMF as provided by the MUMPS package2) are known not to be
competitive with respect to algebraic nested dissection-based approaches such as SCOTCH3 or
METIS4 on large 3D problems, we include them in Table V in order to study how the flat tree
and blocking algorithms behave in general situations.

First, an important aspect of using other orderings is that they often produce much more
irregular trees, leading to a large number of pruned layers to sequence. The FT permutation

2http://mumps.enseeiht.fr/
3http://www.labri.fr/perso/pelegrin/scotch/
4http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

http://mumps.enseeiht.fr/
http://www.labri.fr/perso/pelegrin/scotch/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

58 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

Table V: Operation count ∆(×1013) for permutation strategies PO and FT, and number of
groups NG required to reach ∆NG

∆min
≤ 1.01 for blocking strategies REG and BLK. Different

orderings (AMD, AMF, SCOTCH, METIS) are used.

AMD AMF SCOTCH METIS

σ
PO REG FT BLK ∆min

PO REG FT BLK ∆min
PO REG FT BLK ∆min

PO REG FT BLK ∆min

∆ NG ∆ NG ∆ NG ∆ NG ∆ NG ∆ NG ∆ NG ∆ NG
5Hz 1.44 53 1.36 4 1.25 .75 51 .87 7 .68 .47 328 .32 3 .25 .43 230 .30 3 .24
7Hz 5.03 38 4.44 4 4.35 15.3 18 17.8 12 14.9 1.60 287 1.14 3 .86 1.42 230 1.08 3 .82

10Hz 19.3 154 19.8 3 15.3 96.9 253 99.1 11 82.1 5.86 288 4.21 3 3.05 4.67 281 3.44 3 2.53

H0 .54 533 .53 4 .47 .12 333 .12 5 .091 .073 499 .063 3 .055 .077 615 .067 3 .057
H3 135 380 106 5 9.07 101 63 134 17 9.26 2.19 615 1.76 5 1.18 1.95 533 1.53 5 1.12

H17 183 266 226 7 136 467 173 558 50 396 22.8 380 19.0 5 12.6 21.49 242 16.8 4 12.3
H116 2244 1 2244 1 2244 39383 1 39384 1 39383 291 109 224 4 153 264 78 215 4 157

S3 20.9 725 17.9 6 15.1 20.7 184 24.8 10 17.8 4.5 771 3.41 5 2.72 3.24 771 2.64 5 2.09
S21 393 685 349 5 311 1141 493 1352 77 831 50.9 492 39.6 4 31.7 34.3 223 28.5 5 24.9
S84 3025 352 2848 5 2501 38664 725 45346 213 30977 289 286 228 4 193 207 171 174 4 151
D30 115 111 121 8 94.5 1015 139 1280 75 825 16.7 156 12.8 5 8.77 15.5 144 13.0 5 8.61

reduces the operation count significantly with SCOTCH and METIS, for which we observe an
average 31% and 26% reduction compared to the PO permutation. Gains are also obtained with
AMD for most test cases. However, FT does not perform well with AMF. This can be explained
by the fact that AMF produces too irregular trees which do not fit well with our design of the
FT strategy.

Second, we evaluate the blocking algorithm (BLK) and compare it with a regular blocking
algorithm (REG) based on the PO permutation, that divides the initial set of columns into regular
chunks of columns. Table V shows that the number of groups required to reach ∆

∆min
≤ 1.01 is

much smaller for BLK than for REG in all cases. Our blocking algorithm is very efficient with
most orderings except AMF, where the number of groups created is high (but still lower than
REG).

3.3.4 Sequential performance

We analyze in this section the time for the forward substitution and for the flat tree and blocking
algorithms on a single Intel Xeon core @2.2GHz. A performance analysis in multithreaded or
distributed environment for the largest problems is out of the scope of this study. In Table VI,
we report the time of the forward substitution of the MUMPS solver5 and the percentage of
time spent in BLAS operations, excluding the time for data manipulation and copies. Timings
with the regular blocking REG to reach our target number of operations (∆NG

∆min
≤ 1.01), at the

cost of a larger number of groups, NG� 1, are also indicated.
Table VI shows that the time reduction is in agreement with the operations reduction re-

ported in Table I. One can also notice that when exploiting sparsity, the proportion of time
spent in BLAS operations increases. This is due to the fact that the relative weight of the top
of the tree (with larger fronts for which time is dominated by BLAS operations) is larger when
sparsity is exploited. When targeting a reduction of the number of operations with a regular
blocking (REG), the large number of blocks (last column of Table VI) makes the granularity
of the BLAS operations too small to reach the performance of the BLK strategy. On the other

5http://mumps-solver.org

http://mumps-solver.org

3.3. EXPERIMENTAL RESULTS 59

Table VI: Time (seconds) of the forward substitution according to the strategy used and number
of groups NG created with BLK and REG (ND ordering). The percentage of actual computation
time (BLAS) is indicated in parentheses.

DEN TP INI PO REG FT BLK NGBLK NGREG

5Hz 3132 (34) 561 (80) 305 (88) 246 (89) 429 (95) 190 (89) 148 (91) 3 328
7Hz 9101 (40) 1727 (89) 951 (93) 784 (94) 1137 (97) 594 (94) 460 (95) 3 255

H0 862 (58) 161 (82) 125 (85) 97 (89) 88 (96) 79 (89) 67 (92) 4 328
H3 12419 (72) 4478 (92) 3274 (94) 1901 (96) 1709 (98) 1624 (96) 1234 (97) 4 306
S3 26328 (64) 6839 (89) 5005 (92) 3429 (95) 3450 (99) 2804 (96) 2195 (97) 5 536

0 50 100 150 200 250 300 350
Number of groups

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6 1e11 REG, H0, ND
REG
MIN
TOL

(a) Matrix H3 from EMGS.

0 50 100 150 200 250 300 350
Number of groups

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4 1e12 REG, 5Hz, ND
REG
MIN
TOL

(b) Matrix 5Hz from SEISCOPE.

Figure 3.7: Number of operations for the forward substitution as a function of the number of
groups created with the REG strategy. MIN and TOL are respectively ∆min and 1.01 × ∆min.
ND ordering is used.

hand, Table VII shows that larger regular blocks improve the Gflop rate but are not competitive
with respect to BLK because of the increase in the number of operations. We also observe that
the best block size for REG is problem-dependent.

In Figure 3.7, we represented for the two matrices H3 and 5Hz the number of operations
when increasing the number of regular groups created. This figure confirms the difficulty of
the REG strategy to decrease efficiently the number of operations down to a low threshold, here
1.01 × ∆min. Figures 3.7a and 3.7b both show a decrease for the first 50 groups but then the
REG strategy experiences a plateau before reaching the requested threshold. We also mention
the irregularity of the decreasing and expect the same behavior for other matrices. Overall, it is
difficult to determine the number of groups that should be chosen for the ReG strategy.

Table VIII relates the execution time of the flat tree and blocking algorithms. The execution
times are reasonable compared to the corresponding execution time of the forward substitution.
Moreover, we observe that the time of the flat tree algorithm only slowly increases with the
problem size. The time of the blocking algorithm, due to its limited number of iterations, is not
critical.

60 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

Table VII: Operation count (×1013) and time
(seconds) of REG for different block sizes.

REG
64 128 256 512 1024

∆ Ts ∆ Ts ∆ Ts ∆ Ts ∆ Ts

5Hz .24 188 .25 179 .27 188 .27 188 .31 209
7Hz .74 558 .78 538 .86 575 .93 611 .98 643

H0 .051 77 .051 74 .052 72 .054 74 .058 79
H3 .98 1447 1.02 1405 1.04 1369 1.09 1407 1.16 1499
S3 1.75 2533 1.78 2448 1.80 2358 1.86 2379 1.91 2424

Table VIII: Time (seconds) of the flat tree
and blocking algorithms for different order-
ings.

ND AMD AMF SCOTCH METIS
FT BLK FT BLK FT BLK FT BLK FT BLK

5Hz .77 .11 .64 .19 1.35 .34 .79 .20 1.02 .13
7Hz 1.30 .30 1.56 .62 5.68 3.9 1.85 .56 2.48 .34

H0 .09 .04 1.72 .04 .13 .04 .09 .02 .12 .04
H3 .52 .26 1.56 .29 1.15 3.0 .55 .24 1.15 .54
S3 .88 .33 2.20 .41 2.51 1.3 .84 .36 1.75 .49

3.4 Guided nested dissection

Given an ordering and a tree, one may think of moving the unknowns corresponding to RHS
nonzeros to supernodes higher in the tree with on the one hand, a smaller pruned tree, but
on the other hand, an increase in the factor size due to larger supernodes. Better, one may
guide the ordering to include as many nonzeros of B as possible within separators during the
top-down nested dissection and prune larger subtrees. This will however involve a significant
extra cost for applications where each RHS contains several contiguous nodes in the grid, e.g.,
form a small parallelepiped. For such applications, the geometry of the RHS nonzeros could
however be exploited. A first idea avoids problematic RHS by choosing separators that do not
intersect RHS nonzeros. Although this idea could be tested by adding edges between RHS
nonzeros before applying SCOTCH or METIS, this does not appear to be so useful in our
applications, where we observed significant overlap between successive RHS. Another idea,
when all RHS are localized in a specific area of the domain, is to shift the separators from the
nested dissection to insulate the RHS in a small part of the domain. Such a modification of
the ordering yields an unbalanced tree in which the RHS nonzeros appear at the smaller side
of the tree, improving the efficiency of tree pruning and resulting in a reduction of ∆min, and
thus ∆. This so called guided nested dissection was implemented and tested on the set of test
cases shown in Table IX, where we observe that the number of operations ∆min is decreased,
as expected. Since the factor size has also increased significantly, a trade-off may be needed to
avoid increasing too much the cost of the factorization.

Table IX: Number of operations ∆min and factor size for original (ND) and guided (GND)
nested dissection orderings.

Matrices 5Hz 7Hz 10Hz H0 H3

Strategy ND GND ND GND ND GND ND GND ND GND

∆min(×1013) .22 .19 .69 .62 2.26 1.99 .050 .025 .95 .81

factor size (×109) 3.72 5.18 12.8 19.7 44.8 73.4 .24 .37 4.50 5.57

3.5. APPLICATIONS AND RELATED PROBLEMS 61

3.5 Applications and related problems

We describe applications where our contributions can be applied. When only part of the so-
lution is needed, one can show that the approaches described in Section 1.3.2 can be applied
to the backward substitution (UX = Y), which involves similar mechanisms as the forward
substitution [61, 69]. The backward substitution traverses the tree nodes from top to bottom
so that the interval mechanism is reversed, i.e., the interval from a parent includes the intervals
from its children and the properties of local optimality are preserved. If the structure of the
partial solution requested differs from the RHS structure, another call to the flat tree algorithm
must then be performed to optimize the number of operations. Exploiting sparsity also in the
backward step can for instance be useful in some augmented approaches [70] to deal with small
matrix updates without complete refactoring, and in some 3D EM geophysics applications [60].
Another application of this work is the computation of Schur complements, where instead of
truncating a factorization of the whole system (A C

B D), one exploits the factorization of A to use
triangular solves with sparse RHS. Taking the symmetric case where C = BT , the Schur com-
plement S can be written S = D−BA−1BT = D−B(LLT)−1BT = D−(L−1BT)T (L−1BT),
as in the PDSLin solver [67]. Since B is sparse, B′ = L−1BT can be computed thanks to the
algorithms developed in this chapter before computing the sparse product B′TB′.

Finally, we comment on related problems and algorithms. We indicated that the blocking
algorithm is closely related to graph algorithms like coloring and maximum independent set.
Concerning the minimization problem (1.12) which we addressed with the flat tree algorithm,
it can also be regarded globally: using the structure of L−1B, the objective is to find a permu-
tation of the columns that minimizes the sum of the intervals weighted with δu. This interval
minimization problem is similar to a sparse matrix profile reduction problem [20, 54] (and we
thus suspect it to be NP-complete). As mentioned in the introduction, hypergraph models have
been used in the context of blocking algorithms, with different constraints and objectives com-
pared to ours [10, 67]. Modeling L−1B as an hypergraph might lead to other heuristics than
the flat tree algorithm using some variants of hypergraph partitioning, although dense parts in
L−1B might need special treatment. One advantage of our permutation and blocking algo-
rithms is that, instead of tackling the problem globally, they decompose the problem into easier
subproblems with low complexity by making use of the separator tree T , thereby exploiting the
fact that L−1B has a very special structure closely related to the tree. In the context of general
unsymmetric matrices, the structure of the solution of the forward step is given by the set of
reachable vertices in the elimination dag of LT [36]. To make the elimination dag a tree to be
used in our context, one could consider adding a limited number of entries in L. Similarly to
the case of matrices with a symmetric or quasi-symmetric pattern for which the elimination tree
of the matrix A+AT is used, one could add entries in L having a symmetric counterpart in U .
Another possibility is to use the work presented in [32] that extends the notion of elimination
tree to unsymmetric matrices by considering paths in the factor matrices to characterize the
elimination tree. How useful this generalization of the elimination tree can be in our context
would deserve to be further studied.

62 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

3.6 Conclusion

We introduced permutation and blocking algorithms to improve the tree pruning [61] and the
node interval [11] algorithms. A first contribution is the “flat tree” algorithm which permutes
RHS to reduce the cost of the forward substitution. A second contribution is a blocking al-
gorithm that further decreases this cost by adequately choosing groups of RHS that can be
processed together. Although both algorithms are based on geometrical observations, they are
designed with an algebraic approach, giving a general scope to this work. Notions of node
optimality and RHS independence were introduced and formalized, together with theoretical
properties to provide insight and to support the proposed algorithms. Experimental results
on real test cases showed the effectiveness of both the flat tree and the blocking algorithms.
Compared to a postorder-based permutation, the flat tree permutation showed an average (resp.
maximum) gain of 13% (resp. 25%) on the total operation count with a nested dissection order-
ing, and interesting parallel properties. Moreover, results with the blocking algorithm validated
our approach since only a handful of groups is created compared to several hundreds when
using a regular blocking technique. Furthermore, sequential performance results confirmed the
good potential of the proposed approaches. Finally, we have discussed possible variants of the
nested dissection ordering to exploit RHS sparsity, and discussed possible applications of these
contributions regarding for example the backward substitution and the computation of Schur
complements.

Chapter 4

On the parallel efficiency of the solve
phase with multiple sparse right-hand
sides

In this chapter we consider an approach to solve marine controlled-source electromagnetic
(CSEM) for which the solution of sparse linear equations with a large number of sparse right-
hand sides (few thousands RHS) is required. In this context, the solution phase becomes the
most critical step of the complete simulation. This observation has motivated a very fruitful
collaboration with a research group at EMGS ASA1.

In this application, each RHS corresponds to a CSEM source or receiver and one of the
objectives of this chapter is to carefully explain the relations between the application and the
sparsity structure of both the right-hand sides and requested entries of the solution at each itera-
tion of a Gauss-Newton method. To explain how sparsity can be exploited to reduce operations
and to exploit parallelism, we relate the sparsity and the ordering of the columns of the RHS to
geometric properties of the sources/receivers of the CSEM application. Doing so it is possible
to give a geometric intuition of the proposed algorithms without using all the graph formalism
introduced in the previous chapter. We also describe performance improvement of the solve
phase for applications with many RHS.

Note that this work has been done in parallel of Chapter 3 so that results do not take into
account the flat tree and blocking algorithms introduced in Chapter 3. This will be the object of
Chapter 5. This chapter is intended to be self-contained and thus may briefly redefine notions
that were previously introduced in Section 1.3.2.

4.1 Introduction

It was demonstrated in 2002 that marine controlled-source electromagnetic (CSEM) method
could be used to detect offshore hydrocarbon reservoirs [33]. Over years the CSEM method has
become an established tool for oil and gas exploration [24], and the technology development

1www.emgs.com

63

www.emgs.com

64
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

keeps going at a high pace [40]. Successful interpretation of the growing volume of geophysical
CSEM data, including also land EM data [62], requires efficient large-scale 3D electromagnetic
(EM) modeling algorithms.

Among various approaches to handle 3D EM problems, the most popular is to solve a
sparse linear system of frequency-domain Maxwell equations built using finite-difference or
finite-element methods [18, 23]. Recent applications of the Gauss-Newton inversion algorithm
to large-scale marine CSEM problems indicates that it is very efficient and will likely become
the standard inversion approach in the nearest future [51]. The Gauss-Newton method requires
that the linear system is solved for all transmitter positions in a given survey often resulting in
several thousands of RHSs. The system of linear equations may then take the formMX = S,
where M is a sparse symmetric matrix of size n × n, while RHS matrix S and solution X
are of size n × m. Such systems can be solved with iterative methods which in general are
relatively cheap in terms of memory and computational requirements, but may have conver-
gence issues in some cases. In this case the cost is proportional to the number of right-hand
sides, i.e. the number of EM sources. Direct methods are numerically robust and well suited to
multi-source simulations since once the matrix factorization is performed, only the solve phase
needs be applied on all the right-hand side vectors. The complexity of the factorization phase
can be a bottleneck for large 3D problems since the number of floating-point operations scales
as O(n2) and the number of nonzero entries in the factors is O(n4/3) which is also proportional
to the complexity of the solve phase. However, in the context of CSEM applications, it has
been shown [60] that using Block Low-Rank (so-called BLR) format and related approxima-
tions significantly improves the performance of the direct approach, making it competitive with
respect to iterative approaches. Indeed, the complexity of the factorization can be reduced to
O(n4/3) for a simple block low-rank (BLR) format [5] or O(n) for fully structured hierarchical
formats [65]. Thanks to the improvements of the factorization phase due to low rank com-
pression (further improved in [5, 6] with respect to [60]), and since CSEM modeling involves
thousands of right-hand sides, the time needed to perform the complete CSEM simulation be-
comes largely dominated by the solve phase of the direct solver. Furthermore, the complexity
of the solve step O(n4/3) (multiplied by the number of columns in S) becomes comparable to
that of a low-rank factorization, so that the cost of the solve phase will become more critical as
the sizes of the problems grow.

To improve the performance of the solve phase in the context of many right-hand side vec-
tors, we first explain how to exploit both the structure of CSEM sources and the fact that only a
partial solution might be needed. Indeed, the positions of the sources in the 3D domain define
the sparsity structure of the right-hand sides and the locations where the solution is required. It
was showed in [35] that the nonzero structure of Y , after the forward substitution, could be pre-
dicted beforehand so that one could only target the nonzero variables and thus limit the number
of operations, see Chapter 1. This was also referred to as tree pruning in [61]. In the context
of computing selected entries of the inverse of a matrix [11], the notion of intervals combined
to an appropriate column permutation of the right-hand sides was introduced. We will explain
why such techniques can be applied or adapted in the context of the CSEM application.

In the chapter we also introduce several new algorithms and techniques to improve the
performance of the solution phase for CSEM applications on modern parallel architectures.
In a distributed memory parallel environment, how computational tasks are mapped onto the

4.2. BACKGROUND AND MOTIVATIONS 65

computer nodes is critical for performance. Mapping controls the equilibration of the work
between processors and is driven by factorization phase metrics. We show that using workloads
metrics from the solution phase can improve the overall performance of the CSEM simulation.
Finally to benefit from good arithmetic intensity and parallelism, large blocks of right-hand
sides must be processed simultaneously. For this approach to be efficient, we show that locality
of computations should be improved during the solve phase, especially when several threads
are used within each distributed memory process (MPI process). This corresponds to an hybrid
distributed-multithreaded setting, well adapted to the clusters of multicore processors that we
target in this type of applications.

This chapter is organized as follows. In Section 4.2, we describe our frequency-domain
finite-difference EM modeling approach in the context of nested dissection, and emphasize on
the structure of the right-hand sides. We also describe the test problems and show how much
the cost of the solve phase of a direct solver can be critical for CSEM applications, compared to
the other phases of a direct solver. We consider direct methods based on a multifrontal approach
[28, 30] even if the proposed algorithms are more general and could also be applied to other
sparse direct methods. A brief background on direct solvers, with a focus on the solve phase
is then provided. In Section 4.3, we explain how the sparse structure of the right-hand sides
(RHS) may influence the solve phase and can be used to reduce the amount of computations.
In Section 4.4, we discuss parallel aspects of the solution phase. First, we propose strategies to
balance the workload for the solution phase, which differ from the ones typically used for the
factorization. Then, we show that RHS sparsity and parallelism are contradictory objectives and
present ways to group RHS columns together to recover some parallelism. While RHS sparsity
can only be exploited during the forward substitution, we show in Section 4.5 that the same
ideas can be transposed to the backward substitution, leading to further computational gains.
This is due to the particularity of the CSEM application where only part of the solution may be
needed. Section 4.6 then studies and illustrates the effects of each of the proposed algorithms
on the performance of the solve phase. The global results are summarized in Section 4.6.3,
showing that thanks to this work, a direct approach becomes very competitive with the iterative
approach previously used. Concluding remarks are provided in Section 4.7.

4.2 Background and motivations

4.2.1 Finite difference electromagnetic modeling

The frequency-domain Maxwell equations in the conductive earth in a presence of a current
source J can be approximated as follows:

∇×∇×E − iωµσ̄E = iωµJ , (4.1)

whereE is the electric field, σ̄ is the conductivity tensor, µ is the magnetic permeability, and ω
is the frequency. Using finite differences on a grid of size N = Nx×Ny×Nz corresponding to
the discretization of the physical domain, the electric field has three components Ex, Ey, Ez at
each grid point and can be approximated by solving linear systems of the formMx = s, where

66
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

(a) Sources layout.

S∗k

Box

(b) Boxing.

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

(c) Sampling.

Figure 4.1: (a) Schematic example of a CSEM survey with locations of receivers (blue circles)
and transmitter positions (brown circles). (b) Entries of the final solution are those inside the
“box” centered around the corresponding source S∗k. (c) Entries of the final solution corre-
spond to a subset of nodal points uniformly distributed in the domain.

M is a sparse matrix of order n = 3N and s is a source vector resulting from the right hand-
side in Equation (4.1). M can easily be made symmetric. Let us now discuss the properties
of RHSs and the solution that follow from the geometry of marine CSEM surveys as well as
inversion approaches used to analyze CSEM data.

The CSEM receivers are typically placed at the seafloor in a regular grid with 1–3 km
spacing, while the transmitter is towed above the receiver lines. To achieve illumination of
subsurface with different transmitter orientations, two orthogonal directions of towlines are
often chosen. A schematic picture of such a CSEM survey outline is presented in Figure 4.1a,
where receiver locations are indicated with blue circles. Yellow circles along the towlines
indicate transmitter locations: it is usually assumed that distinct transmitter positions are spaced
by 100 m. Since the transmitter is moving, while seabed receivers are fixed, the number of
transmitters nt is much larger (by 1–2 orders of magnitude) than the number of receivers nr.

The number of right-hand sides is determined by the inversion algorithm used to analyze
CSEM data. The gradient-based (BFGS) scheme [71] is relatively cheap: at each iteration one
needs to solve a linear system of equations for source terms placed only at the receiver positions
(due to reciprocity). In this chapter we will however focus on the more powerful Gauss-Newton
scheme that is expected to soon become the prevailing inversion method [51]. In the Gauss-
Newton method, the sources should also be placed at each transmitter position, i.e., the total
number of RHSs is becoming much larger since nt � nr. Note also that the transmitter is
usually towed within 30–100 m above the seafloor therefore all RHSs (due to both transmitters
and receivers) belong to a narrow depth interval near the seafloor – the property we shall utilize
later in the chapter.

The right hand sides are usually very sparse since they describe a source term that is local-
ized in space. A point transmitter is usually represented by placing source terms at 2×2×2 = 8
nearest nodes in 3D problems, i.e., a RHS will have only 8 nonzero elements. In marine CSEM
a horizontal electric-dipole transmitter is often an extended antenna of ∼ 300 m length, rather
than a point. In that case, the number of nonzero elements will be slightly larger (e.g. 16 or 24),
but this complication will have only minor effect on our results, thus for the sake of simplicity
we shall stick to considering point sources with 8 nonzero elements in RHSs.

4.2. BACKGROUND AND MOTIVATIONS 67

Figure 4.2: Illustration of the acquisition of data in a CSEM study.

68
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

The initial ordering of RHSs defining order of the columns in X usually reflects the trans-
mitter trajectory. In our context, the ordering of transmitter positions obeys the following
simple rule, see Figure 4.1a. We start with towline Tx01x, and there go over all transmitter
positions in the ~x direction, see Figure 4.1a. Then we switch to towline Tx02x and follow
the same ordering, and so on until we reach the last ~x-directed towline. Then we switch to ~y-
directed towlines, starting with Tx01y, and for each of them go over all transmitter positions in
the direction of ~y axis. As we shall see below, this continuous ordering of RHSs is not optimal
for the solver performance, and considerable gains can be achieved by appropriate reorderings.
Strictly speaking, in the Gauss-Newton scheme, one also has to handle right-hand sides related
to receiver positions. However their number is much smaller since nt � nr, and therefore we
have not included them in the analysis below for the sake of simplicity.

Only a subset of entries in the solution X needs to be computed when inverting marine
CSEM data. For each column k and source vector S∗k, only the entries in a box with a square
section and centered around S∗k are needed, see Figure 4.1b. The box excludes the top of the
domain: the air since its resistivity is known, and also the water layer since water conductivity
is usually measured during the CSEM survey. The CSEM data decay with increasing offset
between transmitter and receiver and eventually drop below the noise level. We shall assume
that the maximum offset for CSEM data is 12.5 km and therefore the lateral extent of the box
will be 25 km × 25 km. All the regions beyond this box, in particular, the perfectly matched
layers at the edges, are excluded from the solve phase. Depending on the problem, the box may
represent around one half of the whole computational domain.

Reducing the number of inversion parameters can make the Gauss-Newton inversion faster.
Since the CSEM method resolution decreases with depth, it is common to use fewer inversion
parameters in deeper formation layers. As a result, the solution X in some regions may be
required for a coarser sampling than the grid used to build the system matrix. In Section 4.6.1,
we assume that the solution could be required on a uniformly distributed subset of nodal points,
see Fig. 4.1c, where only every 20th or every 100th point is included into the subset.

In the next paragraphs we give some preliminary hints on how sparsity described above can
be used to reduce the solver complexity.

4.2.2 Impact of the source structure

In this section we focus on the forward substitution,and on the sparsity in the source vectors S.
The discussion on exploiting sparsity in the backward substitution relies on similar ideas but is
postponed to Section 4.5.

Application of direct solvers to linear EM systems built on finite-difference methods is
often illustrated by a hierarchical domain decomposition based on nested dissection [34], see
Section 1.2.1 for more details. A separator can be defined as a set of nodal points the removal
of which divides the domain (or subdomains) into two balanced and disjoint subdomains. In a
regular 3D grid such as the one represented in Figure 4.3, the separator shapes are planes with
normals in the ~x, ~y or ~z directions. In Figure 4.3a, we represented with (red, yellow, green, . . .)
colors the successive top separators that led to the subdomain corresponding to the red subcube
in the top right corner of the domain.

4.2. BACKGROUND AND MOTIVATIONS 69

◦••• •••• •••• •••• ××××
×××

~x ~z

~y

(a) Initial source order.

◦
•• • • •• •

• •• • • •• •
×

~x ~z

~y

(b) Optimized source order.

Figure 4.3: A 3D domain with sources (• or ◦) and a connecting line representing the trans-
mitter trajectory. A hierarchical domain decomposition with 2D plane-shaped separators is
applied. (a) shows the separators leading to the red subcube containing the first source (◦).
The red crosses show indicates where the transmitter trajectory crosses the main separator.
(b) shows a source ordering that minimizes the crossings of top separators.

Since the source term is geometrically localized, all nonzero elements of a source vector
usually belong to the same subdomain. The nested dissection creates independence between
disjoint subdomains, hence the source contribution during the forward substitution will not
affect any other subdomains. In other words, for the computation of Y , we have to consider
only the given subdomain and top separators. In Figure 4.3a, the contribution of the first source
is represented by its subdomain (red cube), top separators (colored planes), while all other parts
of the domain will stay out of its area of influence. Section 4.3 is dedicated to the exploitation
of this feature.

Furthermore, we will show that the initial ordering of sources is not optimal with respect
to the operation counts, especially if one aims at processing simultaneously many sources. A
simplified example of initial ordering is depicted in Figure 4.3a showing the source locations
(symbols) and their connecting line, “transmitter trajectory”. The important message here is
that the transmitter trajectory crosses the top separator multiple times. We will show that the
optimal ordering will be such that the transmitter trajectory has the smallest possible number of
crossings of top separators. The transmitter trajectory displayed in Figure 4.3b will be shown
in Section 4.3 to possess most of the properties of the theoretically optimal solution.

4.2.3 Characteristics of the models and computing environment
Our study is based on realistic anisotropic earth resistivity models characteristic for marine
CSEM applications. The models are discretized using finite-difference Yee grids with a uniform
core and growing cell sizes at the model edges and an air layer on top. Properties of system
matrices and right-hand sides resulting from these discretizations are summarized in Table I.

70
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

Table I: Characteristics of the systems of equations MX = S. n = 3Nx × Ny × Nz is the
order of M , m is the number of columns of the right-hand side matrix S, D(M) and D(S)
are the average numbers of nonzeros per column for M and S, respectively. The resolution
times for the different phases of a sparse direct solver using 90 MPI processes and 10 threads
per MPI process are also reported: Ta for analysis, Tf for factorization, Ts for solve and Ttotal =
Ta + Tf + Ts for the entire resolution.

Model System
Grid shape MatrixM (n× n) RHS S(m× n) Timings in seconds (percentage of total time)

Nx ×Ny ×Nz n D(M) m D(S) Ta Tf Ts Ttotal

Shallow H3 114× 114× 74 2,885,112 12.9 8000 7.5 10 (1%) 34 (4%) 806 (95%) 850
water H17 214× 214× 127 17,448,276 12.9 8000 6 56 (1%) 378 (8%) 4133 (91%) 4567

SEAM S21 181× 160× 237 20,590,560 12.9 12340 9.5 68 (1%) 476 (6%) 7819 (93%) 8363

DayBreak DB30 230× 422× 102 29,700,360 12.9 3914 7.6 106 (2%) 765 (15%) 4246 (83%) 5117

The matrices H3, H17 and S21 are described in detail in [60]. The two H-matrices are based
on a half-space 1 Ωm model with a 100 m water layer and a pizza-box resistor of 100 Ωm. The
H3 matrix is based on a coarser grid, with cell sizes (in the central part) double of those used
for the H17 matrix. The S21 matrix is obtained from the SEAM (SEG Advanced Modeling
Corporation) Phase 1 resistivity model representative of the Gulf of Mexico: it has a rough
bathymetry, hydrocarbon reservoirs and salt bodies. The DB30 matrix is built from a resistivity
model corresponding to a CSEM survey “Daybreak” acquired in Alaminos Canyon, Gulf of
Mexico [41].

The RHSs are generated by listing all transmitter positions using the ordering indicated in
Figure 4.3a. For example, for the SEAM S21 matrix, the survey layout suggested 36 towlines,
40 km long, in one direction, and 29 towlines, 35 km long in the orthogonal direction. The
distance between towlines was 1 km. We downsampled the transmitter positions to 200 m
spacing, which resulted in in 36 × 201 + 29 × 176 = 12340 RHSs. RHSs for the Daybreak
matrix were given by the real survey that included 12 towlines of 60 km length and 2 km
apart, and 2 orthogonal towlines of 30 km length, 4 km apart. For each system, the number of
right-hand sides m reaches several thousands and their density D(S) is below 10 nonzeros per
column.

We also report in Table I the analysis, factorization and solve times of the sparse di-
rect solver MUMPS using BLR compression [6] on the CALMIP supercomputer EOS
(https://www.calmip.univ-toulouse.fr/), which is a BULLx DLC system composed of 612 com-
puting nodes, each composed of two Intel Ivybridge processors with 10 cores (total 12 240
cores) running at 2.8 GHz, with 64 GBytes of memory per node. As mentioned earlier, the
introduction of low-rank approximations has significantly reduced the factorization time [60],
and the initial solve time Ts (not using the work presented in this chapter) has become predom-
inant. Note that the solve phase was performed by blocks of size BLK = 1024 for H3 and
BLK = 512 for H17, S21 and DB30. This was mandatory as the memory required to process
all right-hand sides in one shot otherwise exceeded the available memory.

In the following subsection, we give some background on the solve phase of sparse direct
solvers, before explaining in Section 4.3 how to take advantage of the right-hand side sparsity
resulting from the geometrical structure of CSEM applications.

4.2. BACKGROUND AND MOTIVATIONS 71

~x
~z

~y

13

10

14

11

4

5

1

2
15

12

6

3

16

18

17

7

9

8

21

22

19

20
26

24

25

23

27

(a) 3× 3× 3 regular mesh.

u15

u14

u13

u12u11

u10

u9u8

u7

u6

u5u4

u3

u2u1

{19, . . . ,27}

{16,17,18}

{15}

{14}{13}

{12}

{11}{10}

{7,8,9}

{6}

{5}{4}

{3}

{2}{1}

(b) Assembly/separators tree.

1

5

10

15

20

25

×××××××××××××××××××××××××××

×

×

×

×

×

×

×

×

×

×

×
×
×

×

×

×
×

××

×
×

×

×

×

×

×

×

×

×
×

×

××
×

×

×

××

×

×

×
×

××××××××××××

f

f f

f

f f

f

f

f

f

f

f
f

f

f

f

f f

f

f ff

f

f f
f

f f

f f
f

f

f

f

f

f

f
f

f

f

f f

f

f

f f
f f
f f

f f f
f f
f f

f
f f f

f
f

f
f
f

f
f

f

f
f

f
f

f

f

f
f

f

f
f
f

f
f f

(c) Structure of L.

Figure 4.4: (a) A 3D regular mesh based on a 7-point stencil; each node is numbered according
to the nested dissection algorithm following a postorder. Each double circles are elementary
sources modeling two stacked sources from the CSEM application. (c) Resulting separators or
assembly tree; also showing the sets of variables to be eliminated at each node. (c) Correspond-
ing matrix with initial nonzeros (×) in A and fill-in (f) in L.

4.2.4 Solve phase algorithms

We first describe the algorithms used to solve the linear systems LDLTX = S, where M =
LDLT , from an algebraic point of view. We also explain how they can be interpreted and
correlated to the structural and geometrical properties of CSEM applications.
L is a unit lower triangular sparse matrix of order n whereas S is an n×m matrix of right-

hand sides. As mentioned earlier, the first part of the solve algorithm consists in performing
the forward substitution, which can be written as LY = S.

We assume that Y∗k ← S∗k for each column k so that all our algorithms can be expressed
only in terms of modifications of Y∗k. The first version of our forward algorithm is a scalar
two-loop algorithm limited to nonzero entries in L.

#

"

!

Y∗k ← L−1Y∗k (Scalar two-loop algorithm)
for j = 1, . . . , n− 1

for i ≥ j + 1 such that lij 6= 0
yik ← yik − lijyjk

(4.2)

The algorithm described in (4.2) exploits the fact that the diagonal of L is the identity, and
that L is sparse, i.e., many of the lij entries are zero. We explain why and how sparsity can
be exploited in an efficient way based on the example of Figure 4.4 and will reformulate the
algorithm to illustrate it.

Figure 4.4a provides a simplified version of the CSEM application, where we reduced the
number of degrees of freedom from 3 to 1 on each nodal point and used a 7-point stencil to
represent the mesh. The corresponding matrix is represented in Figure 4.4c. Moreover, for the
right-hand side matrix S, we consider only eight sources with a single nonzero per source. The
sources are placed at nodal points 2, 5, 14 and 17 which belong to the same ~z-plane to illustrate

72
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

L11

L21r

q

Figure 4.5: Structure of the factor associated to a node from the separator tree.

the fact that the transmitter trajectory along the seafloor is usually quite horizontal. The initial
ordering of the sources is assumed to be 2-17-5-14 and then 2-5-17-14, which is similar to the
ordering shown in Figure 4.1a and convenient for illustrative purposes. The matrix S has the
structure depicted in Figure 4.6a. We will reuse this matrix of sources in Section 4.3.

We focus now on the independence created through the nested dissection process. Initially,
the process builds a separator that divides the domain into two disjoint and independent sub-
domains, see Figure 4.4a. It numbers the variables of each subdomain contiguously and the
variables of the separator last. This can also be expressed as a root node u15 (separator) and
two subtrees (subdomains) in the separator tree of Figure 1.5c. The two subtrees characterize
the aforementioned independence between the variables of both subdomains which is reflected
by the empty square in the structure of L corresponding to rows [10, 18] and columns [1, 9] in
Figure 4.4c. From the algorithm corresponding to Equation (4.2), the computation of the com-
ponents of Y inside each subdomain will then be independent from each other. For i ∈ [10, 18]
and j ∈ [1, 9] we have lij = 0 so that, for any k, and for any i1 ∈ [1, 9] and i2 ∈ [10, 18]
component yi1k does not depend on component yi2k. The separator tree also characterizes the
parallelism of the solve phase. The nested dissection process is reproduced recursively on both
subdomains, preserving the mentioned properties.

In the context of the multifrontal method, each node of the separator tree may be represented
by a dense matrix called front which is used to compute a part of the L factor, as illustrated
in Figure 4.5. Each front is associated with two sets of variables: the q variables of the sepa-
rator (also called fully-summed variables), which are used to compute entries of the Y or X
solutions; and the r off-diagonal variables (or non fully-summed variables), which are used to
compute contributions. Data computed at each node will be used by the parent (resp. children)
fronts in case of forward (resp. backward) substitution. More precisely, the forward substitution
is a bottom-up process which performs, for each front, the two block operations Y 1 ← L−1

11 Y 1
and Y 2 ← Y 2 −L21Y 1, whereas the backward substitution is a top-down process which per-
forms, for each front, the block operations X1 ← X1 − LT21X2 and X1 ← L−T11 X1. Here,
Y 1,Y 2,X1,X2 are partial matrices of Y andX containing only the variables corresponding
to the q+ r rows of the front. As follows from the properties of the separator tree, if two fronts
belong to different subtrees, the computations at those fronts can be done in parallel.

We will use the notation u(j) to denote the node of the separator tree containing vari-
able j. We have, for example, u(14) = u12, or u(25) = u15. Thanks to the compact repre-
sentation of the structure of the factors at each node (see Figure 4.5), operations reported in
Equation (4.2) can be performed on dense matrices and the condition “lij 6= 0” is replaced
by “i in the structure of the factors at node u(j)”, as will be indicated in Equation (4.3). Fur-
thermore, in the context of sparse RHSs y∗k might remain equal to zero so that Equation (4.2)

4.3. EXPLOITING RHS SPARSITY TO REDUCE THE AMOUNT OF COMPUTATIONS73

should perform the update of yik only for nonzero entries yjk, Equation (4.2) becomes:#

"

!

Y ← L−1Y (Nodal algorithm)
for j = 1, . . . , n− 1

for i in the structure of the factors at node u(j), i > j

if (yjk 6= 0) yik ← yik − lijyjk

(4.3)

Note that in our example, the numbering of the node identifiers u1, u2, . . . , u15 obeys the
following postordering rule: all nodes in any subtree are numbered consecutively and precede
the number for the root of the subtree. Moreover, any subtree of T rooted at node u (which
we denote as T [u]), corresponds to a subdomain created through the nested dissection. For
example, T [u7] corresponds to the subdomain on the right of the first separator (u15) and is
composed of the variables {1,2,3,4,5,6,4,7,8,9}. Note also that the resolution of the diagonal
system DZ = Y can be performed in-between the forward and the backward substitutions or
can be combined with one of these phases by computing each component as zik = yik/dii.

4.3 Exploiting RHS sparsity to reduce the amount of
computations

In the previous section, we have shown that thanks to the knowledge of the frontal matrix struc-
ture at each node of the separator tree, testing nonzero entries in the rows i of column L∗j was
not needed and the two-loop algorithm (Equation 4.2) could be simplified. Furthermore, since
S is sparse, some elements yjk in Equation (4.3) may remain equal to zero. Similarly one
would like to avoid systematic testing for yjk 6= 0 at each update of the nodal algorithm (Equa-
tion 4.3). For efficiency, we also want to perform operations on a block of columns and thus
to a priori identify blocks of columns sharing the same structure and allowing simultaneous
operations.

We describe the graph structure that needs to be introduced and exploited to avoid system-
atic testing and relate this structure to the geometric properties of the CSEM application.

We focus in this section on the forward substitution (LY = S), but the same ideas can be
applied to the backward substitution (LTX = Z) when a partial solution is needed, as will be
discussed in Section 4.5.

Making efficient use of the sparsity in the RHS matrix is a three-step process:

• firstly, exploit sparsity within the columns of the sources (.i.e., detecting empty rows),
referred to as vertical sparsity

• secondly, exploit sparsity within the rows (i.e., detecting nonzero blocks within non-
empty rows) of Y , referred to as horizontal sparsity

• finally find a suitable column ordering to improve the performance of horizontal sparsity.

We describe in the following each step and also relate it to geometric/applicative interpre-
tations. We refer the reader to Section 1.3.2 to get of more “technical” point of view of the
exploitation of sparsity.

74
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

×

×

×

×

×

×

×

×S =

u15

u14

u7

u1
u2
u3
u4
u5
u6

u8
u9
u10
u11
u12
u13

×

×

×

×

×

×

×

×

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

1 2 3 4 5 6 7 8

(a) Structure of S

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f

f
f
f

f
f
f

f
f
f

f
f
f

f
f
f

f
f
ff f

f f

f f

f f

×

×

×

×

×

×

×

×Y =

u15

u14

u7

u1
u2
u3
u4
u5
u6

u8
u9
u10
u11
u12
u13

×
f

f

f

×
f

×
f

f

f

×
f

f

f

×
f

f

f

×
f

f

f

×
f

×
f

f

f

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

1 2 3 4 5 6 7 8

(b) Structure of Y = (L)−1S

u15

u14

u13

u12u11

u10

u9u8

u7

u6

u5u4

u3

u2u1

(c) Pruned tree Tp(S)

Figure 4.6: (a) Structure of right-hand side matrix S (associated to sources described in Fig-
ure 4.4) and its node representation, nonzero are represented with ×. (b) Structure of Y after
the forward substitution, fill in are represented with f (left and right). (c) Corresponding pruned
tree, pruned nodes are dotted, active nodes are plain.

Vertical sparsity

Exploiting vertical sparsity in the forward substitution makes use of the properties proved
in [35] and was also formulated in terms of paths using the tree structure in [36]. We ex-
plain in this section how it relates to our application and to the position of the sources in the
CSEM application.

In Figure 4.3a of Section 4.2.1, we illustrated the fact that the contribution of each source is
limited to its local subdomain (the red subcube) and to the top separators. For a given source, or
equivalently a column S∗k of the RHS matrix S, the aforementioned contribution corresponds
to nonzero components of Y∗k. This gives the intuition of the importance of the separator
tree. In the following, we explain how the separator tree can be used to efficiently characterize
nonzero entries in Y so that the loop on index j can be set up a priori without need for any
checks to restrict the subset of indices.

Figure 4.6a represents a matrix S composed of 8 right-hand sides associated with 8 sources
(Figure 4.4) placed at nodes 2, 17, 5, 14, 2, 5, 17, 14, in this precise order. In our simplified
model and for the sake of clarity, we considered a single nonzero element per source. To
simplify the figure, we also provide a compact representation of matrix S where each row

4.3. EXPLOITING RHS SPARSITY TO REDUCE THE AMOUNT OF COMPUTATIONS75

corresponds to the set of variables from a node of the tree. Finally, each node whose set of
variables includes at least one nonzero from matrix S, i.e., each node u(i) for which there
exists a column index k such that sik 6= 0, will be called an active node2. Active nodes have
been filled in the separator tree represented in Figure 4.6c corresponding to our simplified
model.

As the solve algorithm proceeds, new nonzero entries (so called fill-in) with respect to the
original entries ofS appear inY . Given the initial nonzero structure ofS, [35] and [36] showed
that it is possible to predict the nonzero structure of Y . In our context, [36, Theorem 2.1] can
be translated into:

Theorem 4.1. When solving LY∗k = S∗k, the structure of the vector Y∗k is given by the union
of the variables in nodes on paths in the tree T from the set of active nodes of S∗k up to the
root.

As a consequence, a component yik will be different from zero if and only if sik 6= 0 or
there exists an sjk 6= 0 such that either u(j) = u(i) or u(j) is a descendant of u(i) in T .
Equation (4.3) is only computed for variables j belonging to such nodes. This was referred to
as tree pruning in Section 1.3.2. As an example, take S∗1 from Figure 4.6a with s2,1 6= 0 and
u(2) = u2. Then every nonzero component of Y∗1 belongs to nodes that are on the path from
u2 to u15. This algebraic perspective translates into the geometrical interpretation illustrated in
Figure 4.3a.

Furthermore, to enhance the performance of the solve phase, computation should be done
on multiple columns at the same time. In doing so, one can benefit from the use of BLAS
3 operations [26] that can often reach the peak performance of a processor. Theorem 4.1 is
then performed for the union of the set of active nodes of each column, see Section 4.2.3. The
tree resulting from the pruning process is called the pruned tree and, if we consider the whole
matrix S as one block, it is noted Tp(S) and shown in Figure 4.6c. Therefore, Equation (4.3)
becomes:#

"

!

Y ← L−1Y (Pruned tree nodal algorithm)
for Yj∗ 6= 0, 1 ≤ j ≤ n− 1 (i.e., variable j belongs to the pruned tree)

for i in the structure of the factors at node u(j), i > j

Yi∗ ← Yi∗ − lijYj∗

(4.4)

where Yj∗ is the j-th row of Y and Yj∗ 6= 0 means that at least one of its component is different
from 0. In Figure 4.6c, each pruned node in Tp(S) corresponds to an empty row in Y , this is
why sparsity is exploited vertically.

Horizontal sparsity and column ordering
Equation (4.4) assumes that all columns are processed at each node of the pruned tree. How-
ever, sources do not all have the same structure and thus it is possible to further exploit sparsity
by reducing the number of columns on which Equation (4.4) is applied. This will be referred to

2This would have been defined as VS = ∪1≤k≤mVS∗k
in Section 1.3.2

76
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

•

•

•

•

•

•

•

•

•

◦

◦

◦◦

1

5

2

7

3

6

4

8

PO

~x

~y
•

•

•

•

•

•

•

•

•

◦

◦

◦◦

1

5

2

7

3

6

4

8

(a) Initial column ordering (1-2-3-4-5-6-7-8, left, correspond-
ing to nodal points 2-7-5-14-2-5-17-14 in Figure 4.4a) and Pos-
torder (1-5-3-7-2-6-4-8, right).

×
f

f

f

×
f

×
f

f

f

×
f

f

f

×
f

f

f

×
f

f

f

×
f

×
f

f

f

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

1 2 3 4 5 6 7 8

PO

×
f

f

f

×
f

×
f

f

f

×
f

f

f

×
f

f

f

×
f

f

f

×
f

×
f

f

f

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

1 5 3 6 4 8 2 7

(b) Initial (left) and Postorder
(right) orderings.

Figure 4.7: (a) A 2D section from Figure 4.4a located on the plane containing the source
positions. The numbering of nodal points has been omitted for clarity. (b) Illustration of
horizontal sparsity with node intervals and influence of the ordering of columns on sparsity.

as horizontal sparsity. To do so, we explain how and why the notion of node intervals combined
with column ordering introduced for computing selective entries of the inverse of a matrix [11]
can be effective in our context to reduce the number of operations. We illustrate these aspects
in Figure 4.7 on the same simplified example with 8 sources as in the previous section.

The subset of columns of S that possesses at least one nonzero element at a given node
u ∈ T is called the set of active columns at node u, see Section 1.3.2 for more details on
the definition. For example for node u5, corresponding to row u5 in Figure 4.7b (left), there
are only two active columns: 3 and 6. Ideally, one would like to operate only on these two
columns which would require complex data reorganizations or the computation of the columns
one after the other. This would not be efficient since processing simultaneously a block of
columns is faster that processing them one by one. What can be done at no extra reorganization
cost is to consider a subinterval of columns including the first and the last indices of the active
columns at that node. The intervals are thus defined for each node of the separator tree. In
Equation (4.4) and for the computation of component Yi∗, ∗ is replaced by the interval defined
for node u(i). For example, the active columns for node u5 are 3 and 6, thus the interval at
node u5 includes only four columns: 3, 4, 5 and 6, rather than all 8 columns. With intervals,
we reduce computation on columns and thus exploit horizontal sparsity.

Clearly, the size of the intervals is influenced by the ordering of the columns. The idea is
to order successively columns with close initial nonzero structure or, equivalently, to limit the
crossing of top separators as was mentioned in relation to Figure 4.3b. The permutation used
in this study is called a postorder and is built as follows: let the tree be numbered following a
postordering, as in Section 4.2.4. For a column k of S, we define urep(k) as the node among
the active nodes for column S∗k ({u(i), sik 6= 0}) that appears first in the postordering of the
tree. We have for example urep(1) = u2 and urep(2) = u14 in Figure 4.6a (and 4.7b, left), and
call urep(k) the representative node of column k.

4.4. IMPROVING THE PARALLEL ASPECTS OF THE SOLVE ALGORITHMS 77

Now S is said to be postordered if and only if: ∀k1, k2, 1 ≤ k1 < k2 ≤ m, urep(k1) appears
before (or is identical to) urep(k2) in the postordering. In other words, the order of the columns
S∗k and the postordering of their representative nodes urep(k) are compatible.

In Section 4.2.1, we said that the postorder trajectory should minimize the number of cross-
ing of top separators. We see in Figure 4.7b that the postorder trajectory can also be interpreted
in terms of nonzero structure of S and Y . Namely, it corresponds to order the columns of S
such that two successive columns have a close nonzero structure (in Y). Indeed, the initial
transmitter trajectory, see Figure 4.7a, first implies a “superposition” of non-successive sources
in S. Thus, columns with close positions were not initially close in the column ordering. This
resulted in large interval sizes, see rows u7 and u3 in Figure 4.7b (left). The postorder heuristic
addresses this problem, see Figure 4.7b (right) and is optimal in this case since the gray ar-
eas do not include zero entries anymore. Note that for the purpose of our illustration we have
considered sources with only one nonzero entry and that in this case the postorder heuristic has
been shown to be optimal [11]. On our CSEM application, each source has more than one entry
per column, thus possibly more than one active node, hence the definition of urep.

Tree pruning, node intervals and a suitable column ordering exploit the sparsity of the
application to reduce the amount of computations in the solve phase. However, this is done
at the expense of reduced parallelism. The next section shows how to still exploit parallelism
efficiently in the solve phase, even when dealing with sparse right-hand sides.

4.4 Improving the parallel aspects of the solve algo-
rithms

In this section, we first explain the differences between the factorization and the solve phase in
terms of parallel algorithms. We then show how the blocks of sparse RHS can be defined and
how the solve phase can be adapted to improve the available parallelism.

4.4.1 Differences between the factorization and the solve algo-
rithms

The factorization and the solve algorithms have different properties in terms of parallelism and
load balancing. Although in pratice we apply a BLR factorization, we consider in this sec-
tion Full-Rank metrics because they are the basis for the mapping and scheduling algorithms
we use [12]. We recall that, on the one hand, tree parallelism is represented by the separator
tree (two nodes from different subtrees can be processed independently, as explained in Sec-
tion 4.2.4). On the other hand, large nodes of the separator tree offer an additional potential
for parallelism. This will be referred to as node parallelism. Moreover, on a dense matrix of
order n, the complexity in terms of number of operations of the factorization and solve phases,
respectively O(n3) and O(n2), is quite different. With nested dissection, the size of the sepa-
rators and thus the size of the frontal matrices increases as we get closer to the top of the tree.
Computation is thus concentrated near the top of the tree and this is more true for the factoriza-
tion than for the solve. This effect is illustrated in Figure 4.8, which compares the distribution

78
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

16 14 12 10 8 6 4 2 00.0

0.2

0.4

0.6

0.8

1.0

50%

19%

H3
solve
facto

18 16 14 12 10 8 6 4 2 00.0

0.2

0.4

0.6

0.8

1.0

50%

18%

H17
solve
facto

18 16 14 12 10 8 6 4 2 00.0

0.2

0.4

0.6

0.8

1.0

50%

18%

S21
solve
facto

20 18 16 14 12 10 8 6 4 2 00.0

0.2

0.4

0.6

0.8

1.0

50%

17%

DB30
solve
facto

Figure 4.8: Normalized operation count
of the solve and factorization phases as a
function of the depth in the separator tree,
with depth(root) = 0. The nested dissec-
tion ordering has been used.

r

q

r1

r2

r3

Master

Worker 1

Worker 2

Worker 3

(a) Front during factoriza-
tion (triangular frontal ma-
trix).

r

q

r1

r2

r3

Master

Worker 1

Worker 2

Worker 3

(b) Front during solve (fac-
tors).

Figure 4.9: Mapping of the rows of a front
to balance the workload of the factorization
between processors.

of computations in the separator tree for both phases. At a depth where 50% of the computation
is completed for the solve phase, only 20% is completed for the factorization. This indicates
that the solve phase will benefit more from tree parallelism than the factorization phase.

Tree pruning limits the number of branches of the separator tree that can be computed
independently, so that tree parallelism and tree pruning introduced to exploit RHS sparsity
are thus conflicting objectives. A classical approach to balance the workload between the
processors during the factorization is to use a proportional mapping [53]. Starting from the
root node to which all processors are allocated and going down the tree, at each level of the tree
the list of processors of the current node is partitioned between its sons according to the load of
each of the subtrees rooted at each son. This is referred to as strict proportional mapping and is
illustrated in Figure 4.10a. It can be adapted or relaxed in order to allow for dynamic mapping
and scheduling decisions, or to reduce memory usage [12]. If the whole set S is considered,
and if the set of sources is separated by the top level separators, then the width of the pruned
tree Tp(S) may be large enough to cover most of the tree and almost fully benefit from tree
parallelism. However, because of the memory constraints mentioned in Section 4.2.3, the solve
phase is generally processed by blocks of limited size (BLK), potentially reducing the width
and parallelism of the pruned tree. In this context, it is important to decide how these blocks
can be created to minimize the loss of tree parallelism introduced by the use of RHS sparsity.

Furthermore, at each node of the separator tree, a symmetric frontal matrix is partially
factored. For frontal matrices associated with large separators near the top of the tree, the pro-
portional mapping assigns several processors and the workload of the factorization is divided
between a master and several workers. This is illustrated in Figure 4.9 where q is the size of
the separator and r is the number of rows to be updated. At each node the first r variables are
factorized so that the number of operations is

W f (q, r) = W f
m(q) +W f

w(q, r) = 1
6(2q3 + 3q2 − 5q) + qr(q + r + 1), (4.5)

4.4. IMPROVING THE PARALLEL ASPECTS OF THE SOLVE ALGORITHMS 79

P3P2P1P0

u15

u14

u13

u12u11

u10

u9u8

u7

u6

u5u4

u3

u2u1

P3P0

P1 P2

P1P0 P3P2

(a) T with 4 processors.

P3P2P1P0

u15

u14

u13

u12u11

u10

u9u8

u7

u6

u5u4

u3

u2u1

P3P0

P1 P2

P1P0 P3P2

(b) Tp(S1) with S1 = (S∗1, S∗5).

P3P2P1P0

u15

u14

u13

u12u11

u10

u9u8

u7

u6

u5u4

u3

u2u1

P3P0

P1 P2

P1P0 P3P2

(c) Tp(S2) with S2 = (S∗1, S∗4).

Figure 4.10: Proportional mapping and comparison of tree coverage between three blocks of
right-hand sides based on the example from Figure 4.4. (a) Dense RHS (all the tree is covered);
(b) set of two close sources; (c) set of two distant sources.

where W f
m(q) = 1

6(2q3 + 3q2− 5q) corresponds to the operation count on the master processor
and W f

w(q, r) = qr(q + r+ 1) to the operation count on the workers. As shown in Figure 4.9a,
more rows must then be associated to the processors that appear first in the front. Note that we
also want to adjust relative size of q and r to balance the workload between the master and each
worker by splitting nodes of the separator tree [9, 14].

In CSEM applications, where the solve phase becomes predominant, we need to drive our
algorithms with metrics related to the solution phase, as described in the following subsection.

4.4.2 Improving algorithms for the solve phase

Because of memory constraints, we have seen that the columns of S need be processed by
blocks. In the scheme presented in Section 4.2.3, the columns of matrix S are processed using
the initial ordering and by blocks of size BLK. In that case, only a subpart of the domain is
covered by the partial transmitter trajectory within each block. Large subdomains, or subtrees,
will be pruned from the separator tree, limiting the number of operations but also leading to a
significant loss of tree parallelism. Figures 4.10b and 4.10c illustrate this property with two sets
S1 and S2, containing close and distant sources, respectively. To improve the tree coverage,
one can select non-contiguous columns from matrix S. They will better cover the physical
domain because the transmitter follows a regular trajectory. Furthermore, since we also want
the efficiency of BLAS-3 kernels, we propose to select each block of BLK columns such that
it is composed of a set of sub-blocks of constant size equally distributed onto the transmitter
trajectory. To do so for a given sub-block size whose size is related to the BLAS-3 performance
kernel, one can compute a constant gap to provide a good trajectory coverage and thus a good
separator tree coverage. We mention that within each block, we still apply a postordering
permutation to maximize the effect of horizontal sparsity.

80
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

Moreover, node parallelism has an important role in the performance of the solve phase. As
shown before, Figure 4.9b illustrates the distribution of data among processors when the work
is balanced for the factorization. Considering the solve, the number of operations performed
during the forward substitution (or the backward substitution) at each node is:

W fwd(q, r) = W fwd
m (q) +W fwd

w (q, r) = q(q − 1) + 2rq, (4.6)

where W fwd
m (q) = q(q − 1) and W fwd

w = 2rq. As a consequence, to balance W fwd
w among

workers, data need to be reorganized so that all workers possess the same number of rows. For
that, we also switched off the dynamic schedulers from the factorization that lead to irregular
partitions with a dynamic choice of the workers at each node and, as a consequence, used a
strict static proportional mapping of the processors in the tree. This strategy will be referred to
as S-ROWDISTRIB().

Furthermore, to balance the work between the master and each worker, we aim at splitting
nodes in the separator tree so that W fwd

m (q) ≈ W fwd
w (q, ri), where ri, the number of rows of

each worker is equal to r divided by the number of workers. This strategy is referred to as
S-SPLIT().

In summary, the optimizations above aim at favoring tree and node parallelism during the
solve phase when dealing with either sparse or dense RHSs. Concerning the optimizations
specific to sparse RHSs, we focused on the forward substitution but they also apply to the
backward substitution, as discussed in Section 4.5. In Section 4.6, we also experiment with
another optimization of the solve phase regarding locality of data access and multithreading,
which was motivated by the need to process large blocks of columns to improve tree coverage
and tree parallelism.

4.5 Exploiting sparsity during the backward substitu-
tion

During the backward phase (LTX = Z), the nonzero structure ofZ results from the operations
performed during the forward substitution since DZ = Y with D diagonal. When the matrix
M is irreducible, which is the case in the CSEM application, the variables of Y belonging to
the root node of the separator tree will be nonzero, independently of the position of the sources.
The backward substitution processes the L matrix in a backward way which translates into
a top-down traversal of the separator tree. As a result, all the nodes in the tree are reached
and need to be processed during the backward phase. This translates back into the fact that Z
is dense and that sparsity in the sources S does not result in any reduction of the number of
backward-phase operations.

However, the sparsity of the solution can result from the properties of the physical problem,
typically when only part of the solution has value and needs to be computed. As explained
in Section 4.2.1 and illustrated in Figure 4.1, boxing and/or regular sampling can be used to
select a subset of valuable entries. Why and how sparsity can be exploited during the backward
substitution is explained below.

Given a valuable entry xik in the solution, the computations that contribute to updating xik
can be characterized, similarly to the forward phase, by Theorem 4.1. Only nodes in the path

4.6. PERFORMANCE ANALYSIS IN A PARALLEL CONTEXT 81

from the root node to node u(i) need be considered to compute xik. In other words and from
a geometric perspective, if one assumes that i belongs to the filled subdomain of Figure 4.3a
then the variables involved in the computation of xik will correspond to the colored separators
and part of the filled-subdomain. As a consequence, the process of tree pruning introduced in
Section 4.3 can be applied to the backward substitution [57, Lemma 2.2]. The exploitation of
horizontal sparsity also remains unchanged and the computation of a suitable column ordering
inside each block follows the same rule, namely, “columns with similar structure of valuable
entries should be kept close in the column ordering”.

First, sources close to each other have high overlapping boxes of valuable entries and also
have close to each other representative nodes in the separator tree. Second, in the case of regular
sampling of the entries in the solution, we have no locality property to preserve since all the
space is regularly covered by the solution. Thus, the representative nodes of the sources can
also be used for the boxes and therefore, the column ordering chosen during the forward phase
can be used during the backward phase and the choice of the blocks from Section 4.4.2 can be
identical.

The valuable entries in each column of X are thus defined as a sampled set of variables
in a box around the corresponding source location. It should be noted that this numerical
sparsification of X is quite moderate compared to extreme sparsification of the sources S.
Thus, X is a much denser matrix with less geometrically localized nonzero variables than S.
As illustrated in the next section, one should thus expect less impact of exploiting sparsity
during the backward step than during the forward step.

4.6 Performance analysis in a parallel context

We analyze the impact exploiting RHS sparsity and of using parallel solve-aware strategies on
the performance of the solve phase in a parallel environment. We also present global resolu-
tion times showing that the relative weight of the solution phase has significantly decreased
compared to the initial results from Table I.

A perfect nested dissection ordering has been chosen for all the following results, which
were obtained using the MUMPS solver [9, 12]. We list Tf , Ts, Tfwd, Troot, Tbwd – the times to
perform the factorization, solve, forward substitution, solve on the root node (through ScaLA-
PACK [21]) and backward substitution, respectively.

4.6.1 Exploiting sparsity

We first study vertical and horizontal sparsity, and show the impact of the choice of the columns
and of their order on parallelism. We consider the forward substitution in Section 4.6.1 and the
backward substitution in Section 4.6.1.

The forward substitution

We first report in Table II the performance in terms of number of operations and time for
solution of the proposed algorithms (vertical, horizontal sparsity and postorder reordering of

82
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

Table II: Number of operations (OPS×1010)
for the forward elimination for 1024 contigu-
ous RHSs of system H3.

OPS
Dense

Vertical Horiz. Horiz. sparsity
(×1010) sparsity sparsity and Postorder

Contiguous
first 1024 (S1) 951 270 225 149
last 1024 (S′1) 951 232 190 151

Table III: Times (seconds) for the forward
elimination for 1024 contiguous RHSs of sys-
tem H3, with 32 MPI and 1 thread per MPI.

Tfwd (s)
Dense

Vertical Horiz. Horiz. sparsity
sparsity sparsity and Postorder

Contiguous
first 1024 (S1) 170 112 85 60
last 1024 (S′1) 170 114 87 69

Table IV: Number of operations (OPS×1010)
for the forward elimination for 1024 non-
contiguous RHSs of system H3.

OPS
Dense

Vertical Horiz. Horiz. sparsity
(×1010) sparsity sparsity and Postorder

Non- 16 cols, gap 109 (S2) 951 428 306 125
Contiguous 32 cols, gap 218 (S′2) 951 427 302 132

Table V: Times (seconds) for the forward
elimination for 1024 non-contiguous RHSs of
system H3, with 32 MPI and 1 thread per
MPI.

Tfwd (s)
Dense

Vertical Horiz. Horiz. sparsity
sparsity sparsity and Postorder

Non- 16 cols, gap 109 (S2) 170 111 98 30
Contiguous 32 cols, gap 218 (S′2) 169 107 96 31

RHS columns) on the system H3 on 1024 contiguous columns of RHS. As expected from the
theory (compare columns 3 and 4 of Table II) using vertical sparsity significantly reduces the
number of operations with respect to processing dense RHS. Adding horizontal sparsity and
postordering of the columns further reduces the number of operations. However, as shown in
Table III, this operation reduction is not fully converted into time reduction and most notably
for the operations reduction due to vertical sparsity.

Let us illustrate with Figure 4.11 the conflicting objectives of vertical sparsity and perfor-
mance and explain how to address this issue. With the initial order of the columns in S, the
1024 first ones (set S1) are located at the low y part of the horizontal plane containing the
sources, see Figure 4.11a, and appear in the order described in Figure 4.3a. From an algebraic
point of view, the effect of tree pruning (see Figure 4.11b) is that Tp(S1) is quite narrow (many
branches have no active columns). On the contrary, choosing 1024 non-contiguous columns
spreads the RHS in the domain, as illustrated in Figure 4.11c with the set S2 consisting of sets
of 16 columns in S separated by 109 columns. The first consequence of such a distribution is
a wider pruned tree. Indeed, comparing Tp(S1) and Tp(S2) from Figures 4.11b and 4.11d, we
see that the top subdomains are not filled with sources from S1 so that the pruned tree Tp(S1)
contains less nodes than Tp(S2).

As a consequence, when only vertical sparsity is used, one can expect a larger number of
operations with S2 than with S1 (compare columns “Vertical sparsity” of Tables II and IV).
However it is also interesting to observe that the exploitation of horizontal sparsity combined
with a postordering of the columns of RHS recovers this increase in the number of operations
(compare last columns of Tables II and IV). We discuss/explain it in the following.

In Section 4.3, we explained that sources closely located in the geometrical domain needed
to be close in the column ordering to reduce the operation count. The color gradient from Fig-
ure 4.11c illustrates the effect of postordering the columns: sources that belong to the same
subdomain become close with respect to the column ordering. This property explains why the
efficiency of horizontal sparsity is increased even more when a postordering of the columns is
applied. Indeed, for set S1, we have a 17% reduction in the number of operations with horizon-

4.6. PERFORMANCE ANALYSIS IN A PARALLEL CONTEXT 83

X

Y

Z

(a) Separators and set of 1024 con-
tiguous sources (S1).

(b) Tp(S1) with active columns.

X

Y

Z

(c) Separators and set of 1024 non
contiguous sources (S2).

(d) Tp(S2) with active columns.

Figure 4.11: Geometrical and algebraic RHS distribution for two subsets of 1024 columns for
system H3. (a) and (c) represent top views of the geometrical domain for, respectively, 1024
contiguous RHS in natural order and 1024 non-contiguous RHS sets of 16 columns with a
gap of 109 columns permuted using a postorder. The color gradient indicates the index of the
column (source) in the (possibly reordered) set of RHS columns. (b) and (d) are respectively
the corresponding top 6 layers of the separator tree with, for each node, the number of active
columns, as defined in Section 4.3.

84
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

Table VI: Number of operations (OPS×1010)
for the backward substitution for 1024 non-
contiguous RHS of system H3. Except for
column “Dense”, only a subset of the solu-
tion is computed with coarse solution vector
sampling applied.

OPS
Samp. Dense

Vertical Horiz. Horiz. sparsity
(×1010) sparsity sparsity and Postorder

16 cols, gap 109 20 951 876 702 636
(S2) 100 951 876 701 635

32 cols, gap 218 20 951 876 703 626
(S′2) 100 951 876 702 625

Table VII: Estimated times (seconds) for
the backward substitution for 1024 non-
contiguous RHS of system H3, with 32 MPI
and 1 thread per MPI. Except for column
“Dense”, only a subset of the solution is com-
puted with coarse solution vector sampling
applied.

Tbwd (s)
Samp. Dense

Vertical Horiz. Horiz. sparsity
sparsity sparsity and Postorder

16 cols, gap 109 20 169 160 141 127
(S2) 100 170 160 140 131

32 cols, gap 218 20 169 160 137 127
(S′2) 100 170 160 141 127

tal sparsity, reaching 45% when postordering is applied. With non-contiguous columns, the op-
eration reduction due to horizontal sparsity and postordering reaches 71% (see Table IV).Thus,
even in the case of non-contiguous columns, the number of operations is comparable (even
slightly smaller) than with contiguous columns (compare last columns of Tables II and IV).
Non-contiguous columns also expose the forward step to more parallelism and thus the time
for the forward step with contiguous columns (already divided by a factor of three with respect
to dense RHS processing, compare last and third columns of Table III) is further divided by a
factor of two (see last column in Table V).

The backward substitution

We analyze in Tables VI and VII the impact of computing only a subset of the solution on
the operation count and on the execution time, respectively. In these tables, the postorder
used is identical to the one from the forward substitution, avoiding any RHS permutation be-
tween the forward and the backward phases. We only show results with non-contiguous sets of
columns which enable, as in the forward phase, to better exploit parallelism. To measure the
time and the number of operations, we exploit the fact that performing the backward substitu-
tion (LTX = Z) while computing only a subset of the entries of the solution X is equivalent
in terms of operations, computation kernels used and parallelism, to performing the forward
substitution LY = X exploiting the sparsity of the right-hand side X . All options to ex-
ploit sparsity developed for the forward phase could then be used to analyze the potential of
exploiting sparsity during the backward step.

The density of the solution is such that one should expect much more moderate gains due
to sparsity compared to the forward phase. Indeed, the model of Figure 4.1b and the RHS
distribution of Figure 4.11c show that most of the domain is concerned by the solve phase and
thus most of the nonzero structure will be concerned. Hence, the ratio of operations between
the dense and the vertical strategies is close to one. We also observe that the performance
using coarse solution vector sampling is not affected when the number of degrees of freedom
on which the solution is computed decreases from 1 over 20 to 1 over 100 (from sampling
20 to 100). Although coarse solution vector sampling can be useful to reduce the volume of
data corresponding to the solution, it indeed only affects vertical and horizontal sparsity in the

4.6. PERFORMANCE ANALYSIS IN A PARALLEL CONTEXT 85

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 00.0

0.2

0.4

0.6

0.8

1.0

50%

23%

7%4%

H3 - 1024 non-contiguous RHS with Postorder
Dense
Horizontal sparsity
Horiz. sparsity with Postorder
Minimum

Figure 4.12: Normalized accumulation of operations by levels in the separator tree for the
forward substitution with 1024 non-contiguous RHS permuted in postorder (S2) for H3.
Minimum corresponds to the minimal number of operations, if all operations on zeros were
avoided.

lowest levels of the tree, which constitute only a minor part of the computation. Overall, the
exploitation of sparsity in the computed entries of X brings an approximate 1.35x gain on
the time for the backward substitution. These gains are significant and will be included in the
global results of Section 4.6.3.

4.6.2 Improvement through load-balancing and multithreading

Load-balancing is performed at several levels. In this section we first evaluate the impact of
sparsity on tree parallelism, and then show the importance of pushing forward node parallelism
through balanced workload between workers and between the master and the workers. We
mention that sparsity is not exploited for the backward substitution in this section and we report
the actual times obtained for the dense backward substitution.

In Figure 4.12 we analyze the relation between tree parallelism and exploitation of right-
hand side sparsity during the forward substitution. Note that for the dense RHS case we have
shown in Figure 4.8 that the solve phase offers a greater potential for exploiting tree parallelism
than the factorization phase. We see in Figure 4.12 that at depth five, when 50% of the computa-
tion is performed with dense RHS, only 23% of the computation is performed using horizontal
sparsity and only 7% when all optimizations are used. This translates into an important loss
of tree parallelism that confirms the increasing relative weight of node parallelism. Table VIII
gathers results for the different strategies introduced in Section 4.4.2.

86
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

Table VIII: Effect of different mapping strategies on the time for the factorization and solve
phases for H3, on EOS, with 1024 RHS (set S2), using 32 MPI processes and 1 thread per MPI
process.

Mapping Factorization Forward Solve
strategy time sparsity Ts Tfwd + Troot + Tbwd

Standard MUMPS solver 203
No 346 170+9+167
Yes 206 30+9+167

with S-ROWDISTRIB() 203
No 306 153+9+144
Yes 174 24+9+144

with S-ROWDISTRIB() and S-SPLIT() 197
No 295 147+9+139
Yes 167 19+9+139

Table IX: Effect of locality and multithreading optimizations (THREADOPT) on Ts (seconds)
to process the RHS columns S2 of system H3. Ts is reported as a a function of the block size
BLK (standard or large) and of the number of threads (1 or 10) per MPI process, for 32 MPI
processes. Sparsity is exploited during the forward elimination phase only.

Threads THREADOPT() Tf
Ts

BLK =16 BLK =1024

1 Off 197 272 167
On 197 271 136

10 Off 48 106 79
On 48 87 28

We first observe that, thanks to the efficient use of sparsity during the forward step, the solve
phase is dominated by the backward step. However, balancing the workload between workers
through equal distribution of rows (S-ROWDISTRIB() strategy in Table VIII), and balancing
the workload between master and workers (S-SPLIT() strategy) significantly improves the per-
formance of the solve phase. The forward substitution time with sparse RHS decreases from 30
seconds down to 19 seconds, showing a significantly larger relative gain than the one obtained
during the (dense) backward substitution, from 167 down to 139 seconds. This is coherent with
the observation reported in Figure 4.12 that node parallelism is more critical when sparsity is
exploited.

We now consider the performance of the solve phase in an hybrid MPI-OpenMP envi-
ronment, where multiple threads are used within each MPI process. In general, sparse direct
solvers are used on a limited number of right-hand sides, and processing several of them to-
gether (e.g., 16 or 32) leads to better arithmetic intensity and performance thanks to the use of
BLAS 3 operations at each node of the separator tree, for which one can rely on multithreaded
BLAS libraries. However, CSEM applications have a much larger number of sparse right-hand
sides and larger blocks of right-hand sides (ideally all of them if memory was not an issue)
are needed to cover the tree and benefit from sufficient tree parallelism (see Section 4.6.1).
In this context, and especially in a multithreaded environment, efficient data manipulations at
each node of the tree and data locality become critical to efficiently exploit the caches and the
memory bandwidth of the processors. We have thus worked on improving locality and on mul-

4.6. PERFORMANCE ANALYSIS IN A PARALLEL CONTEXT 87

Table X: Time (seconds) of the analysis, factorization and solve phases on 90 MPI× 10 threads
with and without all the improvements described in the study. Dense timings of the backward
substitution have been divided by 1.35, see Section 4.6.1. The numbers in parenthesis indicate
the percentage of Ttotal.

Statistics with improvements
H3 H17 S21 DB30

Ta 10 (4%) 56 (3%) 68 (2%) 106 (8%)

Tf 31 (11%) 380 (24%) 434 (16%) 510 (37%)

Ts 233 (85%) 1163 (73%) 2284 (82%) 755 (55%)
Tfwd 73 (27%) 289 (18%) 759 (27%) 184 (13%)
Troot 14 (5%) 190 (12%) 326 (12%) 80 (6%)
Tbwd 146 (53%) 684 (43%) 1199 (43%) 491 (36%)

Ttotal 274 1599 2786 1371

Statistics without improvements (see details in Table I)

Ttotal 850 4567 8363 5117

tithreading memory-bound operations in both the forward and backward solve phases: arrange
nested loops to match the storage of right-hand sides and intermediate solutions, introduce new
OpenMP directives, improve data locality and suppress intermediate storage whenever possi-
ble.

Table IX reports the impact of these improvements on locality and multithreading (noted
THREADOPT) on the solve time for the system H3 with the 1024 non-contiguous RHS cor-
responding to the set S2 used in Sections 4.6.1 and 4.6.1. The block size (BLK) defines the
number of right-hand sides treated in one shot. We see that with a block size of 16, the im-
provement due to better data locality is nonexistent with one thread and relatively limited with
10 threads. However, with a block size of 1024 (i.e., when all RHS of S2 are processed in one
shot), the impact of these optimizations motivated by the CSEM sparse RHS context become
very large, as Ts decreases from 79 to 28 seconds.

We end the study with results on several test matrices that combine all techniques introduced
previously.

4.6.3 Global resolution times

We now summarize the new results obtained on the set of systems presented in Table I, and
show that the work described in this chapter has a large impact on the global resolution times.
We also relate the results to previous work [60] which compared the direct approach to an
iterative one.

The experimental environment is the one described in Section 4.2.3. Runs are performed
on the EOS machine on 90 MPI ×10 threads, hence a total of 900 cores, and the solve phase is

88
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

Table XI: Extrapolation of the total resolution time (seconds) for S21 on 900 cores of the EOS
machine.

Number of RHS BLR solver (ε = 10−7) Iterative solver
Ta Tf Ts Ttotal

968 68 434 170 672 803
3784 68 434 670 1172 3141

performed using a blocking parameter BLK equal to 1024 columns for system H3 and to 512
for the larger systems H17, S21, and DB30. Compared to Table I, each block now consists of
non-contiguous columns in order to encourage tree parallelism, and the columns within each
block are postordered. The root node of the separator tree uses ScaLAPACK for both the
factorization and the solve phases (as in Table I).

We report in Table X the detailed times for the solve phase, as well as the time for the
analysis and factorization phases when all the improvements described in this chapter are ap-
plied. To take into account the results of Section 4.6.1 showing that sparsity can be efficiently
exploited during the backward substitution, we have also divided the times for the dense back-
ward substitution by 1.35.

Whereas the solve time represented between 83% and 95% of the complete resolution time
in Table I, its weight now only represents between 55% and 85% of the resolution time. The
solve time has indeed been divided by a factor between 3.4 (for H3) and 5.7 (for DB30). We
note that the factorization times have slightly varied between Tables I and X. Although not
expected, the modified mapping described in Section 4.4.1 also improves Tf . Overall, the time
for the entire resolution has been divided by a factor between 2.8 (for H17) and 3.7 (for DB30).

Finally, we would like to compare the performance of our improved direct solver with an
iterative multigrid solver. For that purpose we shall revisit results of our previous work [60,
table 5] where both solvers were tested on the S21 matrix with two sets of sparse RHSs with
sizes 968 and 3784. The conclusion of the previous work was that the iterative solver is always
better because of slow solve phase of the direct solver that required around one second per RHS.
After the improvements described in the present chapter the conclusions change dramatically.
As we see from Table XI, for the moderate number of right-hand sides (< 1000), the two
solvers show similar performance. However for several thousands of RHSs, which is typical
for Gauss-Newton iterations, the direct solver demonstrates a superior speed.

4.7 Concluding remarks

We have shown that the performance of direct solvers for large-scale 3D EM problems is critical
and we have explained why the structure of the problem can be used to significantly improve the
performance. The improvements are twofold: first, we reduced the computational load through
the exploitation of sparsity in RHS and solution, second we highlighted certain properties of
the solve phase to drive parallel algorithms for modern parallel architectures.

On the one hand, thanks to the sparse structure of the EM sources we have been able to
restrict computation during the forward substitution of the solve phase. For a matrix with 3

4.7. CONCLUDING REMARKS 89

million unknowns and thousands of RHSs, the resulting gains in the operation count for for-
ward substitution is a factor of ∼7.5x leading to a run-time reduction by a factor of ∼6.7x.
These numbers have been achieved by exploiting both horizontal and vertical sparsity and by
reordering the columns ofS. We have also exploited the sparsity of the solution. Indeed, in ma-
rine CSEM applications only the entries that belong to a box with a square section and centered
around the source position and excluding water and air needs be computed. We have shown
that exploiting this sparsity provides an opportunity to reduce also the time of the backward
step. The results should be applicable to linear systems arising in other physical problems on
finite-difference or finite-element grids as long as the sources are localized in space and leads
to very sparse RHS.

On the other hand, since the solve phase is the most critical step for CSEM application (due
to the very large number of right-hand sides) we have shown that this gives scope to design
algorithms that will be driven by solve phase metrics to better balance work and data in a
parallel environment. Combined to improved multithreading while exploiting large numbers
of RHS, it provides an additional time reduction for the forward substitution and backward
substitutions.

In the end, with all the improvements included, the overall time reduction for the solve
phase is between a 3.4x and 5.7x factor for the tested CSEM problems and makes direct meth-
ods now competitive against iterative methods.

Finally, we have shown that combining the improvements on the solve phase with the use of
Block Low-Rank (BLR) approximation to speed up the factorization phase makes competitive
an approach based on a direct solver at least for problem with numerous RHSs occurring e.g.
in the Gauss-Newton inversion. Moreover, since the solve phase is still often the most compu-
tationally intensive part of direct solver, one interesting perspective and future work would be
to exploit the Block Low-Rank (BLR) format of the factors also during the solve phase. This
would further decrease the number of operations during the solve phase and would also reduce
memory footprint during factorization, to solve larger problems.

90
CHAPTER 4. ON THE PARALLEL EFFICIENCY OF THE SOLVE PHASE WITH

MULTIPLE SPARSE RIGHT-HAND SIDES

Chapter 5

Conclusion

In this concluding chapter, we first briefly summarize the contributions in the area of sparse
systems of linear equations with multiple sparse right-hand sides reported in this manuscript. In
Chapter 1, the necessary background to analyze the solve phase, its complexity and properties
in the context of multiple sparse right-hand sides is provided. Two applications in seismic and
electromagnetism modeling for which the solution phase is the most time consuming will be
used to illustrate our discussions. Chapter 2 assesses the asymptotic behavior of the solve phase
in the context of both sparse right-hand sides and low-rank approximation. How to improve
the existing algorithms is described in Chapter 3 where an original approach leading toward
an optimal solution is introduced. Finally Chapter 4 revisits our graph related algorithm to
explain and justify them in terms of properties of the application. Algorithms to improve the
performance in a parallel environment on a real applications is also provided.

Since Chapters 3 and 4 were developed in parallel, our application related chapter, Chap-
ter 4 did not benefit from the new algorithms presented in Chapter 3. We show in Section 5.2
preliminary results to illustrate the gains obtained by exploiting, in a parallel environment, the
algorithm presented in Chapter 3 on our two applications. Gains as introduced in the in Chap-
ter 2 are also reported. Section 5.3 describes few perspectives for future work and closes this
concluding chapter.

5.1 Contributions

The field of sparse RHS is well known [11, 36, 61]. The objective of Chapter 1 is to introduce
some concepts needed in the other chapters. In particular, it provides the formalism needed for
Chapter 3: we characterize sparsity and define the so-called vertical and horizontal sparsity as
well as notions such as active nodes/column that are intensively used in Chapter 3. We also
illustrate in this chapter the importance of choosing a good permutation of the RHS columns
and introduce the formalism needed for Chapter 3.

This thesis is built around three main contributions (three chapters in the manuscript) briefly
summarized in the following.

91

92 CHAPTER 5. CONCLUSION

Solve complexity with multiple sparse RHS [JS1]. We emphasize that, in this con-
text of a very large number of sparse RHS, the solve phase can become the bottleneck of the
complete numerical simulation. In this chapter we investigate the asymptotic complexity of the
problem taking also into account the fact the factor matrices can be represented with a low-
rank format. We prove that although exploiting the sparsity of the RHS does not change the
asymptotic complexity of the forward substitution this is not the case in the context of low-rank
representation of the factors.

First, the use of low-rank approximation techniques brings the solution phase down to a
(nearly) linear O(n) asymptotic complexity. Second, the sparsity of B can be exploited to re-
duce the cost of the forward substitution. In Chapter 2, we investigate the asymptotic gain on
the complexity of the forward substitution achieved by exploiting the RHS sparsity. In partic-
ular, we study on 2D and 3D regular problems the asymptotic complexity both for traditional
full-rank unstructured solvers and for the case when low-rank approximation is exploited. A
significant asymptotic improvement is observed in the latter case, possibly as large asO(n1/2).
We confirm the theoretical results first on regular Poisson and Helmholtz problems and second
on a set of matrices coming from real-life applications. We mention that the result could be
extended to the whole solve phase when only part of the solution is requested, as it is the case
in Chapter 4.

As a side result, this complexity study also provides a measure of the available parallelism
of the solve phase in the dense RHS case for which a comparison with the factorization shows
interesting properties that should be taken into account for the design of algorithms.

Improvement of the exploitation of RHS sparsity [W2, J1]. In this chapter, we focus
on the extension of current algorithms to exploit sparsity of the RHS. Based on a geometri-
cal intuition built upon the nested dissection ordering, we first propose a more efficient and
generic approach to permute RHS and to reduce the cost of the forward substitution. A second
contribution is the description of a blocking algorithm that further decreases this cost by ade-
quately choosing groups of RHS that can be processed together. Although both algorithms are
motivated by geometrical observations, they are designed with an algebraic approach, giving a
general scope to this work. Notions of node optimality and RHS independence were introduced
and formalized, together with theoretical properties to provide a global insight and to support
the proposed algorithms.

The experiments confirm the effectiveness of the proposed approach, so-called flat tree
permutation with an average reduction of 13% in the number of operations. The so-called
blocking algorithm further reduces the number operations. Based on a greedy approach, the
blocking algorithm tries to limit the number of groups needed to reach complexity at a given
distance from the optimal solution. In a sequential environment and on our real applications,
we compare the performance the proposed blocking approach with regular blocking strategies
and show the superiority of our blocking approach.

Application to a real-life application and solve-oriented algorithms [JS2, W1].
Controlled-Source ElectroMagnetism (CSEM) is a method of choice for oil and gaz explo-
ration. In this context, the inversion of electromagnetic (EM) data for large-scale geophysical

5.2. PERFORMANCE AND IMPROVEMENTS 93

applications often requires the solution of sparse systems of linear equations with a large num-
ber of sparse right-hand sides each corresponding to a source/transmitter position of the appli-
cation. Sparse direct solvers are very attractive for these problems, especially when combined
with low-rank approximations which significantly reduce the complexity and the cost of the
factorization.

We show in Chapter 4 that exploiting the sparsity of both the RHS and the solution nicely
impacts the performance of the solve phase. We explain why and how the algebraic properties
and tools introduced in Chapter 1 can be used to accelerate computation in the CSEM context.

The first objective of this chapter is to propose another point of view on RHS sparsity that
is more comprehensible for a reader who is not a specialist of sparse direct methods and/or
graph theory. The second objective is to adapt the parallel algorithms that were designed for
the factorization to solve-oriented algorithms and to describe performance optimizations par-
ticularly relevant for the case of a very large number of right-hand sides such as in the CSEM
application. While Chapters 2 and 3 were targeting the number of operations, this chapter is
more concerned with performance and memory issues in a parallel environment. This context
motivates the improvement of algorithms to better preserve the parallelism of the solve phase.
We show that both the operation count and the elapsed time for the solution phase can be very
significantly reduced. The total time of CSEM simulation can be divided by approximately
a factor of 3 on all linear systems from our set (from 3 to 30 million unknowns with 4 to 12
thousands RHSs).

5.2 Performance and improvements

In this section, we propose to combine the algorithms developed in Chapters 3 and 4 giving thus
an overview of the possibilities offered by a combination of the main contributions described
in previous chapters.

The experimental context is that of Chapter 4, i.e., the nested dissection ordering is applied
and we consider a limited memory that implies to select a subset of columns from matrixB. As
explained in Section 4.2.3, B is processed by blocks of BLK = 1024 or BLK = 512 columns.

As explained in Chapter 4, to preserve tree parallelism, one needs to select RHS that are suf-
ficiently distributed over the physical domain. This was obtained by selecting non-contiguous
columns from matrix B. We name it here the interleave mechanism. The success of such an
approach thus also relies on the properties of the initial ordering of the columns of the RHS.
In Chapter 4, the interleaving mechanism relies on the following properties. Each block of
BLK columns is composed of a set of fixed size sub-blocks of contiguous columns equally
distributed onto the set of columns of B. Doing so we expect locality within the sub-blocks
(efficient memory access) and a good coverage of the total space (good potential for paral-
lelism). Postordering withing each BLK block can then be applied to further improve the data
locality and the performance of the algorithms as illustrated in Chapter 4. Our simple interleave
mechanism is sensitive to the original ordering of the columns of B.

In the following we compare the use of an algebraic approach based on the flat tree permuta-
tion described in Chapter 3 with the natural ordering provided by the application. As explained
in Chapter 3, the flat tree permutation groups the RHS depending their position with respect

94 CHAPTER 5. CONCLUSION

to the elimination tree so that we can expect an equilibrated distribution of the RHS over the
physical domain after the use of the interleave mecanism.

To illustrate our discussion, we introduce the following strategies to permute the RHS:

• Inter_OFF+PO: B is split into blocks of size BLK columns. A permutation based on
a Post-Ordering of the elimination tree, σPO, is then applied within each block;

• Inter_ON+PO: the blocks of BLK columns are built with the interleave mechanism.
Then, a permutation based on a Post-Ordering of the elimination tree, σPO, is applied
within each block;

• FT+Inter_ON: flat tree permutation, σFT, is applied first on the columns of B. The
blocks of BLK columns are then built with the interleave mechanism.

Table I: Comparison of number of operations (×1012) of the forward substitution in FR and
BLR with different interleaving strategies. Root node not included.

EMGS H3 H17 S3 S21
OPS FR BLR FR BLR FR BLR FR BLR

Inter_OFF+PO 8.8 3.4 84.2 6.7 16.5 6.7 179.7 30.2
Inter_ON+PO 10.7 4.2 101.9 10.2 21.2 8.3 208.9 35.0
FT+Inter_ON 8.0 3.1 72.9 3.9 15.9 6.5 159.8 26.7
SEISCOPE 5Hz 7Hz 10Hz
OPS FR BLR FR BLR FR BLR

Inter_OFF+PO 2.7 1.0 9.0 2.6 30.1 7.0
Inter_ON+PO 3.0 1.0 10.8 3.0 35.8 8.0
FT+Inter_ON 2.5 0.9 7.5 2.2 25.1 5.9

In Tables I and II, we compare both the number of operations and the time for the forward
substitution. We also consider both full-rank (FR) and block low-rank (BLR) formats to store
the factors.

Let us first analyze the case of FR factors. The application of the flat tree permutation
beforehand gives quite interesting results. As expected, when the interleave mechanism is
applied first then it increases the number of operations (compare lines Inter_OFF+PO with
Inter_ON+PO in Table I). This increase is motivated by the better parallel behavior (compare
lines Inter_OFF+PO with Inter_ON+PO in Table II). Applying first the flat tree algorithm
before the interleave mechanism has positive effects on the number of operations and even
more on the time for parallel execution. For example, for the large matrices H17 or 10Hz, the
time with FT+Inter_ON is divided respectively by a factor 1.6x and 1.7x when compared
to the time with Inter_ON+PO, whereas, the number of operations is only divided by 1.4x.
Thus, on our test problems, the capacity of the interleave mechanism to expose parallelism is
improved when the flat tree permutation is applied beforehand. This will have to be confirmed
with a more detailed study. It also suggests to compare our FT+Inter_ON with the use of a
regular post-ordering beforehand.

5.2. PERFORMANCE AND IMPROVEMENTS 95

Table II: Comparison of times (s) of the forward substitution in FR and BLR with different
interleaving strategies. 90 MPI ×1 threads. Root node not included.

EMGS H3 H17 S3 S21
TIME FR BLR FR BLR FR BLR FR BLR

Inter_OFF+PO 230 158 1561 715 435 256 3854 1290
Inter_ON+PO 166 119 1339 630 404 255 3748 1386
FT+Inter_ON 105 76 845 386 281 189 2483 887
SEISCOPE 5Hz 7Hz 10Hz
TIME FR BLR FR BLR FR BLR

Inter_OFF+PO 26 18 76 45 203 91
Inter_ON+PO 23 16 76 44 186 85
FT+Inter_ON 16 12 40 26 109 54

One can also see in Table I that the BLR compression of the factors leads to quite an
important reduction in the number of operations with respect to full-rank (FR) storage, a re-
duction that is larger than the average compression of the factors (statistic not provided in the
tables). This is due, as already explained in Section 2.4, to the fact that the factor compres-
sion is more effective on the top of the elimination tree which is where most of the work is
concentrated in the context of sparse RHS. The time reduction of BLR with respect to FR is
quite interesting (factor of 2.8x on the large matrix S21) but still quite far from the theoretical
flop reduction. With a block low rank format, the matrices of factors is represented as a set of
small dense matrices. Small BLAS kernels are thus involved during the forward substitution
and algorithmic work is still needed to improve the performance, balance the workload in a
distributed-environment context, and better capture the potential resulting from the reduction
in the number of operations. Considering now the BLR (Block Low-Rank) columns, Table I
and II confirm the good properties of the flat tree permutation observed for the FR case.

We make some final remarks on the evolution of the gain GES . We recall that GES measures
the gain resulting from exploiting the sparsity of the RHS and is defined as the ratio of the
complexity of processing RHS as dense over the complexity of processing them as sparse
(see Chapter 2 for a precise definition). GES thus depends on how the RHS are permuted.
We compare, in Table III, the gains GES(σPO) with an Inter_ON+PO permutation of the
RHS and GES(σFT) with a FT+Inter_ON permutation. Gains with respect to time for the
forward substitution are also reported. For gains reported in BLR columns it is assumed that
the factors are always stored in BLR format. We thus do not report here the gains of BLR
format over FR format. Numbers related to GES(σPO) are extracted from Tables V and VI of
Chapter 2. In Table IV, GES(σFT) values are computed using values reported in Tables I and II
(row FT+Inter_ON). Also when factors are stored in BLR format, we observe that GES is
substantially improved both in terms of operations and times. As mentioned before for the FR
case, this is justified by the good properties of the flat tree permutation to both reduce operations
and preserve tree parallelism. The conclusions from Chapter 2 in terms of complexity remain
however unchanged.

96 CHAPTER 5. CONCLUSION

Table III: Gains relative to the number of
operations (OPS) of the forward substitu-
tion. Root node not included.

OPS
FR BLR

5Hz 10Hz 5Hz 10Hz

GES(σPO) 5.1 5.1 10.5 11.7
GES(σFT) 6.8 8.0 14.0 19.5

H3 H17 H3 H17

GES(σPO) 6.5 7.6 8.2 40.0
GES(σFT) 8.0 10.7 11.1 103.8

S3 S21 S3 S21

GES(σPO) 6.2 7.3 4.5 12.4
GES(σFT) 8.3 9.5 5.8 16.2

Table IV: Gains relative to the time of the
forward substitution. 90MPI× 1 thread on
EOScomputer. Root node not included.

Times
FR BLR

5Hz 10Hz 5Hz 10Hz

GES(σPO) 1.9 2.3 2.3 2.7
GES(σFT) 3.1 3.5 4.2 4.6

H3 H17 H3 H17

GES(σPO) 2.3 4.1 2.3 4.9
GES(σFT) 3.6 6.4 3.6 8.0

S3 S21 S3 S21

GES(σPO) 1.6 1.8 1.7 2.2
GES(σFT) 2.3 2.7 2.3 3.5

5.3 Perspectives

In this concluding section, we want to draw few perspectives or extensions to the work pre-
sented in this manuscript. This section divides the discussion into two different areas: the first
related to the topic of sparse RHS and how the work presented in this thesis can be further
improved, the second discusses more general features on the solve phase.

The previous section already revealed some ideas on how to pursue the work related to the
solution phase with sparse RHS. As a first simple proposition, the application of the blocking
algorithm has not been integrated in the performance study reported in the previous tables and
this should be analyzed. But before, one may want to consider the following approach. We
believe that the formalization introduced in Chapter 3 can be used to improve the interleaving
mechanism designed to expose parallelism with a block of RHS. To improve tree parallelism,
an alternative to our simple interleave mechanism could be to exploit the recursion tree Trec
since it formally represents the position of the RHS in the domain. We could then build the
groups of BLK columns by choosing RHS in each of the R[Ui] sets at a given depth d. In
this case, we ensure to place in each group of BLK RHS, RHS that will be located in every
possible part of the domain.

The second class of perspectives could have a larger scope of applications. While the thesis
mainly focus on the solve phase with multiple RHS, in many applications the solve phase is
performed on one RHS but many times. This is for example the case in non steady applications
where the solution depends on the solution from the previous time step. Then, the time of the
solve can also be critical or predominant. Some of the improvements introduced in Chapter 4
(load-balancing between master and slaves) can be applied, however, many other fields can be
explored to adapt the current factorization-oriented algorithms toward solve-based algorithms.
For example, theoretical results from Chapter 2 showed that the solve exhibits more tree paral-

5.3. PERSPECTIVES 97

lelism than the factorization; this property may be used to drive the design of new algorithms to
better exploit this potential. Finally, the use of low-rank approximations has dramatically mod-
ified the behavior of the current algorithms in parallel environments (shared and/or distributed
memory). Quite some algorithmic efforts have been done to efficiently exploit low-rank struc-
tures during the factorization phase and there is much scope to improve the performance of the
solve phase in this context.

98 CHAPTER 5. CONCLUSION

Bibliography
[1] A. V. Aho, M. R. Garey, and J. D. Ullman. “The transitive reduction of a directed

graph.” In: SIAM Journal on Computing 1 (1972), pp. 131–137.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Reading,
MA.: Addison-Wesley, 1983.

[3] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weis-
becker. “Improving multifrontal methods by means of block low-rank representations.”
In: SIAM Journal on Scientific Computing 37.3 (2015), A1451–A1474.

[4] P. R. Amestoy, R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier, A.
Miniussi, and S. Operto. “Fast 3D frequency-domain full waveform inversion with a
parallel Block Low-Rank multifrontal direct solver: application to OBC data from the
North Sea.” In: Geophysics 81.6 (2016), R363–R383.

[5] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. “On the complexity of the
Block Low-Rank multifrontal factorization.” In: SIAM Journal on Scientific Computing
39.4 (2017), A1710–A1740. DOI: 10.1137/16M1077192.

[6] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. “Performance and Scalabil-
ity of the Block Low-Rank Multifrontal Factorization on Multicore Architectures.” In:
(2018). Accepted for publication.

[7] P. R. Amestoy, T. A. Davis, and I. S. Duff. “An approximate minimum degree order-
ing algorithm.” In: SIAM Journal on Matrix Analysis and Applications 17.4 (1996),
pp. 886–905.

[8] P. R. Amestoy, I. S. Duff, A. Guermouche, and Tz. Slavova. “Analysis of the Solution
Phase of a Parallel Multifrontal Approach.” In: Parallel Computing 36 (2010), pp. 3–
15.

[9] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. “A Fully Asynchronous Mul-
tifrontal Solver Using Distributed Dynamic Scheduling.” In: SIAM Journal on Matrix
Analysis and Applications 23.1 (2001), pp. 15–41.

[10] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, Y. Robert, F.-H. Rouet, and B. Uçar. “On
computing inverse entries of a sparse matrix in an out-of-core environment.” In: SIAM
Journal on Scientific Computing 34.4 (2012), A1975–A1999.

[11] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and F.-H. Rouet. “Parallel computation of
entries of A-1.” In: SIAM Journal on Scientific Computing 37.2 (2015), pp. C268–C284.

[12] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. “Hybrid scheduling for
the parallel solution of linear systems.” In: Parallel Computing 32.2 (2006), pp. 136–
156.

[13] P. R. Amestoy, J.-Y. L’Excellent, and G. Moreau. On Exploiting Sparsity of Multiple
Right-Hand Sides in Sparse Direct Solvers. Research report RR-9122. INRIA, 2017.

99

https://doi.org/10.1137/16M1077192

100 APPENDIX . BIBLIOGRAPHY

[14] P. R. Amestoy, J.-Y. L’Excellent, F.-H. Rouet, and W. M. Sid-Lakhdar. “Modeling
1D distributed-memory dense kernels for an asynchronous multifrontal sparse solver.”
anglais. In: High Performance Computing for Computational Science, VECPAR 2014 -
11th International Conference, Eugene, Oregon, USA, June 30 - July 3, 2014, Revised
Selected Papers. 2014, pp. 156–169.

[15] P. R. Amestoy and C. Puglisi. “An unsymmetrized multifrontal LU factorization.” In:
SIAM Journal on Matrix Analysis and Applications 24 (2002), pp. 553–569.

[16] P. Amestoy, A. Buttari, J.-Y. L ’excellent, and T. Mary. Bridging the gap between
flat and hierarchical low-rank matrix formats: the multilevel BLR format. Research
Report. University of Manchester, Apr. 2018. URL: https://hal.archives-
ouvertes.fr/hal-01774642.

[17] A. Aminfar, S. Ambikasaran, and E. Darve. “A fast block low-rank dense solver with
applications to finite-element matrices.” In: Journal of Computational Physics 304
(2016), pp. 170–188.

[18] D. B. Avdeev. “Three-Dimensional Electromagnetic Modelling and Inversion from
Theory to Application.” In: Surveys in Geophysics 26.6 (Nov. 2005), pp. 767–799. ISSN:
1573-0956. DOI: 10.1007/s10712-005-1836-x. URL: https://doi.org/
10.1007/s10712-005-1836-x.

[19] M. Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary
Value Problems. Vol. 63. Lecture Notes in Computational Science and Engineering
(LNCSE). Springer-Verlag, 2008. ISBN: ISBN 978-3-540-77146-3.

[20] M. W. Berry, B. Hendrickson, and P. Raghavan. “Sparse Marix Reordering Schemes for
Browsing Hypertext.” In: Lecture notes in applied mathematic 32 (1996), pp. 99–124.

[21] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. SIAM Press, 1997.

[22] S. Börm, L. Grasedyck, and W. Hackbusch. “Introduction to hierarchical matrices with
applications.” In: Engineering analysis with boundary elements 27.5 (2003), pp. 405–
422. ISSN: 0955-7997. DOI: 10.1016/S0955-7997(02)00152-2.

[23] R.-U. Börner. “Numerical Modelling in Geo-Electromagnetics: Advances and Chal-
lenges.” In: Surveys in Geophysics 31.2 (Mar. 2010), pp. 225–245. ISSN: 1573-0956.
DOI: 10.1007/s10712-009-9087-x. URL: https://doi.org/10.1007/
s10712-009-9087-x.

[24] S. Constable. “Ten years of marine CSEM for hydrocarbon exploration.” In: GEO-
PHYSICS 75.5 (2010), 75A67–75A81. DOI: 10.1190/1.3483451. URL: https:
//doi.org/10.1190/1.3483451.

[25] E. Cuthill and J. McKee. “Reducing the bandwidth of sparse symmetric matrices.” In:
Proceedings 24th National Conference of the Association for Computing Machinery.
New Jersey: Brandon Press, 1969, pp. 157–172.

https://hal.archives-ouvertes.fr/hal-01774642
https://hal.archives-ouvertes.fr/hal-01774642
https://doi.org/10.1007/s10712-005-1836-x
https://doi.org/10.1007/s10712-005-1836-x
https://doi.org/10.1007/s10712-005-1836-x
https://doi.org/10.1016/S0955-7997(02)00152-2
https://doi.org/10.1007/s10712-009-9087-x
https://doi.org/10.1007/s10712-009-9087-x
https://doi.org/10.1007/s10712-009-9087-x
https://doi.org/10.1190/1.3483451
https://doi.org/10.1190/1.3483451
https://doi.org/10.1190/1.3483451

101

[26] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. “Algorithm 679: A set of
Level 3 Basic Linear Algebra Subprograms.” In: ACM Transactions on Mathematical
Software 16 (1990), pp. 1–17.

[27] I. S. Duff. “On the number of nonzeros added when Gaussian elimination is performed
on sparse random matrices.” In: mathematics of computation 28.125 (1974), pp. 219–
230.

[28] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices, Second
Edition. London: Oxford University Press, 2017.

[29] I. S. Duff and J. K. Reid. “A note on the work involved in no-fill sparse matrix factor-
ization.” In: IMA Journal of Numerical Analysis 18 (1983), pp. 1145–1151.

[30] I. S. Duff and J. K. Reid. “The multifrontal solution of indefinite sparse symmetric
linear systems.” In: ACM Transactions on Mathematical Software 9 (1983), pp. 302–
325.

[31] I. S. Duff and J. K. Reid. “The multifrontal solution of unsymmetric sets of linear
systems.” In: SIAM Journal on Scientific and Statistical Computing 5 (1984), pp. 633–
641.

[32] S. C. Eisenstat and J. W. H. Liu. “The theory of elimination trees for sparse unsym-
metric matrices.” In: SIAM Journal on Matrix Analysis and Applications 26 (2005),
pp. 686–705.

[33] S. Ellingsrud, T. Eidesmo, S. Johansen, M. C. Sinha, L. M. MacGregor, and S. Consta-
ble. “Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from
a cruise offshore Angola.” In: The Leading Edge 21.10 (2002), pp. 972–982. DOI:
10.1190/1.1518433. URL: https://doi.org/10.1190/1.1518433.

[34] J. A. George. “Nested dissection of a regular finite-element mesh.” In: SIAM Journal
on Numerical Analysis 10.2 (1973), pp. 345–363.

[35] J. R. Gilbert. “Predicting structure in sparse matrix computations.” In: SIAM Journal
on Matrix Analysis and Applications 15 (1994), pp. 62–79.

[36] J. R. Gilbert and J. W. H. Liu. “Elimination structures for unsymmetric sparse LU
factors.” In: SIAM Journal on Matrix Analysis and Applications 14 (1993), pp. 334–
352.

[37] J. R. Gilbert, E. G. Ng, and B. W. Peyton. “An efficient algorithm to compute row
and column counts for sparse cholesky factorization.” In: SIAM Journal on Scientific
Computing 15 (1994), pp. 1075–1091.

[38] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th ed. Baltimore, MD.: Johns
Hopkins Press, 2012.

[39] W. Hackbusch. “A sparse matrix arithmetic based onH-matrices. Part I: introduction to
H-matrices.” In: Computing 62.2 (1999), pp. 89–108. ISSN: 0010-485X. DOI: http:
//dx.doi.org/10.1007/s006070050015.

https://doi.org/10.1190/1.1518433
https://doi.org/10.1190/1.1518433
https://doi.org/http://dx.doi.org/10.1007/s006070050015
https://doi.org/http://dx.doi.org/10.1007/s006070050015

102 APPENDIX . BIBLIOGRAPHY

[40] P. Hanssen, A. K. Nguyen, L. T. T. Fogelin, H. R. Jensen, M. Skaro, R. Mittet, M.
Rosenquist, L. O. Suilleabhain, and P. van der Sman. “The next generation offshore
CSEM acquisition system.” In: SEG Technical Program Expanded Abstracts 2017.
2017, pp. 1194–1198. DOI: 10.1190/segam2017-17725809.1. URL: https:
//library.seg.org/doi/abs/10.1190/segam2017-%2017725809.1.

[41] M. Hiner, Y. Martinez, and S. Sun. “Delineating salt bodies with 3D CSEM tech-
nology.” In: Salt Challenges in Hydrocarbon Exploration, SEG Annual Meeting Post-
convention Workshop, New Orleans, 2015. 2015.

[42] B. M. Irons. “A frontal solution program for finite-element analysis.” In: Int. Journal of
Numerical Methods in Engineering 2 (1970), pp. 5–32.

[43] G. Karypis and V. Kumar. METIS – A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Ma-
trices – Version 4.0. University of Minnesota. Sept. 1998.

[44] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. “Basic Linear Algebra
Subprograms for Fortran Usage.” In: 5 (1979), pp. 308–323.

[45] J. W. H. Liu. “Modification of the Minimum Degree Algorithm by Multiple Elimina-
tion.” In: ACM Transactions on Mathematical Software 11.2 (1985), pp. 141–153.

[46] J. W. H. Liu. “On the storage requirement in the out-of-core multifrontal method for
sparse factorization.” In: 12 (1986), pp. 127–148.

[47] J. W. H. Liu. “The multifrontal method for sparse matrix solution: Theory and Practice.”
In: 34 (1992), pp. 82–109.

[48] J. W. H. Liu. “The Role of Elimination Trees in Sparse Factorization.” In: SIAM Journal
on Matrix Analysis and Applications 11 (1990), pp. 134–172.

[49] T. Mary. “Block Low-Rank multifrontal solvers: complexity, performance, and scala-
bility.” PhD Thesis. Université de Toulouse, Nov. 2017.

[50] E. G. Ng and P. Raghavan. “Performance of greedy heuristics for sparse Cholesky fac-
torization.” In: SIAM Journal on Matrix Analysis and Applications 20 (1999), pp. 902–
914.

[51] A. K. Nguyen, J. I. Nordskag, T. Wiik, A. K. Bjorke, L. Boman, O. M. Pedersen, J.
Ribaudo, and R. Mittet. “Comparing large-scale 3D Gauss-Newton and BFGS CSEM
inversions.” In: SEG Technical Program Expanded Abstracts 2016. 2016, pp. 872–877.
DOI: 10.1190/segam2016-13858633.1. URL: https://library.seg.
org/doi/abs/10.1190/segam2016-%2013858633.1.

[52] F. Pellegrini. SCOTCH and LIBSCOTCH 5.0 User’s guide. Technical Report. LaBRI,
Université Bordeaux I, 2007.

[53] A. Pothen and C. Sun. “A Mapping Algorithm for Parallel Sparse Cholesky Factoriza-
tion.” In: SIAM Journal on Scientific Computing 14(5) (1993), pp. 1253–1257.

[54] J. K. Reid and J. A. Scott. “Reducing the Total Bandwidth of a Sparse Unsymmetric
Matrix.” In: SIAM Journal on Matrix Analysis and Applications 28.3 (2006), pp. 805–
821.

https://doi.org/10.1190/segam2017-17725809.1
https://library.seg.org/doi/abs/10.1190/segam2017-%2017725809.1
https://library.seg.org/doi/abs/10.1190/segam2017-%2017725809.1
https://doi.org/10.1190/segam2016-13858633.1
https://library.seg.org/doi/abs/10.1190/segam2016-%2013858633.1
https://library.seg.org/doi/abs/10.1190/segam2016-%2013858633.1

103

[55] D. J. Rose. “A Graph-Theoretic Study of the Numerical Solution of Sparse Positive
Definite Systems of Linear Equations.” In: Graph Theory and Computing. Ed. by R. C.
Read. New York: Academic Press, 1972.

[56] D. J. Rose, R. E. Tarjan, and G. S. Lueker. “Algorithmic aspects of vertex elimination
on graphs.” In: SIAM Journal on Computing 5.2 (1976), pp. 266–283.

[57] F.-H. Rouet. “Memory and performance issues in parallel multifrontal factorizations
and triangular solutions with sparse right-hand sides.” PhD Thesis. Institut National
Polytechnique de Toulouse, Oct. 2012.

[58] R. Schreiber. “A new implementation of sparse Gaussian elimination.” In: ACM Trans-
actions on Mathematical Software 8 (1982), pp. 256–276.

[59] J. A. Scott and J. D. Hogg. A note on the solve phase of a multicore solver. Tech. rep.
RAL-TR-2010-07. Rutherford Appleton Laboratory, 2010.

[60] D. Shantsev, P. Jaysaval, S. de la Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y.
L’Excellent, and T. Mary. “Large-scale 3D EM modeling with a Block Low-Rank mul-
tifrontal direct solver.” In: Geophysical Journal International 209.3 (2017), pp. 1558–
1571.

[61] Tz. Slavova. “Parallel triangular solution in the out-of-core multifrontal approach for
solving large sparse linear systems.” Available as CERFACS Report TH/PA/09/59.
Ph.D. dissertation. Institut National Polytechnique de Toulouse, Apr. 2009.

[62] R. Streich. “Controlled-Source Electromagnetic Approaches for Hydrocarbon Explo-
ration and Monitoring on Land.” In: Surveys in Geophysics 37.1 (Jan. 2016), pp. 47–
80. ISSN: 1573-0956. DOI: 10.1007/s10712-015-9336-0. URL: https:
//doi.org/10.1007/s10712-015-9336-0.

[63] A. Tarantola. “Inversion of seismic reflection data in the acoustic approximation.” In:
Geophysics 49.8 (1984), pp. 1259–1266.

[64] C. Weisbecker. “Improving multifrontal solvers by means of algebraic block low-rank
representations.” PhD Thesis. Institut National Polytechnique de Toulouse, Oct. 2013.
URL: http://ethesis.inp-toulouse.fr/archive/00002471/.

[65] J. Xia. “Efficient Structured Multifrontal Factorization for General Large Sparse Ma-
trices.” In: SIAM Journal on Scientific Computing 35.2 (2013), A832–A860. DOI: 10.
1137/120867032.

[66] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. “Fast Algorithms for hierarchically
semiseparable matrices.” In: Numerical Linear Algebra with Applications 17.6 (2010),
pp. 953–976.

[67] I. Yamazaki, X. S. Li, F.-H. Rouet, and B. Uçar. “On Partitioning and Reordering
Problems in a Hierarchically Parallel Hybrid Linear Solver.” In: 2013 IEEE 27th In-
ternational Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW). Cambridge, MA, United States, 2013, pp. 1391–1400.

[68] M. Yannakakis. “Computing the Minimum Fill-In is NP-Complete.” In: SIAM Journal
on Algebraic and Discrete Methods 2 (1981), pp. 77–79.

https://doi.org/10.1007/s10712-015-9336-0
https://doi.org/10.1007/s10712-015-9336-0
https://doi.org/10.1007/s10712-015-9336-0
http://ethesis.inp-toulouse.fr/archive/00002471/
https://doi.org/10.1137/120867032
https://doi.org/10.1137/120867032

104 APPENDIX . BIBLIOGRAPHY

[69] Y.-H. Yeung, J. Crouch, and A. Pothen. “Interactively Cutting and Constraining Vertices
in Meshes Using Augmented Matrices.” In: ACM Trans. Graph. 35.2 (Feb. 2016), 18:1–
18:17. ISSN: 0730-0301. DOI: 10.1145/2856317. URL: http://doi.acm.
org/10.1145/2856317.

[70] Y. H. Yeung, A. Pothen, M. Halappanavar, and Z. Huang. “AMPS: An Augmented
Matrix Formulation for Principal Submatrix Updates with Application to Power Grids.”
In: SIAM Journal on Scientific Computing 39.5 (2017), S809–S827.

[71] J. Zach, A. Bjorke, T. Storen, and F. Maao. “3D inversion of marine CSEM data using
a fast finite-difference time-domain forward code and approximate hessian-based opti-
mization.” In: SEG Technical Program Expanded Abstracts 2008. 2008, pp. 614–618.
DOI: 10.1190/1.3063726. URL: https://library.seg.org/doi/abs/
10.1190/1.3063726.

https://doi.org/10.1145/2856317
http://doi.acm.org/10.1145/2856317
http://doi.acm.org/10.1145/2856317
https://doi.org/10.1190/1.3063726
https://library.seg.org/doi/abs/10.1190/1.3063726
https://library.seg.org/doi/abs/10.1190/1.3063726

List of publications1

Articles in International Refereed Journals (accepted
with minor revision)

[J1] P. Amestoy, J.-Y. L’Excellent, and G. Moreau. “On Exploiting Sparsity of Multiple
Right-Hand Sides in Sparse Direct Solvers.” In: SIAM Journal on Scientific Computing,
also available as a research report RR-9122 (accepted with minor revision, 2018).

Articles in International Refereed Journals (to be sub-
mitted)

[JS1] P. Amestoy, A. Buttari, J.-Y. L’Excellent, T. Mary, and G. Moreau. “Exploiting the
sparsity of right-hand sides to improve the asymptotic complexity of low-rank sparse
direct solvers.” In: SIAM Journal on Scientific Computing (to be submitted).

[JS2] P. Amestoy, S. de la Kethulle de Ryhove, J.-Y. L’Excellent, G. Moreau, and S. Daniil.
“Efficient use of sparsity by direct solvers applied to 3D controlled-source EM prob-
lems.” In: (To be submitted).

Abstracts in International Refereed Workshops

[W1] P. Amestoy, S. de la Kethulle de Ryhove, J.-Y. L’Excellent, G. Moreau, and S. Daniil.
“Fast direct solver for 3D marine controlled-source EM problems based on sparsity uti-
lization and BLR approximation.” In: 24th EM Induction Workshop EMIW2018. Aug.
2018.

[W2] P. Amestoy, J.-Y. L’Excellent, and G. Moreau. “Elimination Tree Flattening to Exploit
Right-Hand Sides Sparsity.” In: SIAM Workshop on Combinatorial Scientific Comput-
ing 2018. 2 pages extended abstract. Bergen, Norway, June 2018.

Communications in International Conferences

[C1] P. Amestoy, A. Buttari, J.-Y. L’Excellent, T. Mary, and G. Moreau. “Complexity and
parallelism of the solution phase in sparse direct solvers.” In: 10th International Work-
shop on Parallel Matrix Algorithms and Applications PMAA18. June 2018.

1Authors are listed in alphabetical order.

105

106 APPENDIX . PUBLICATIONS

[C2] P. Amestoy, J.-Y. L’Excellent, and G. Moreau. “Direct solution of sparse systems
of linear equations with sparse multiple right-hand sides.” In: Sparse Days. Cerfacs,
Toulouse, France, Sept. 2017.

[C3] P. Amestoy, J.-Y. L’Excellent, and G. Moreau. “On the Solution Phase of Sparse Direct
Solvers with Many Right-Hand Sides.” In: SIAM Conference on Computational Science
and Engineering (SIAM CSE17). Atlanta, USA, Feb. 2017.

Other Communications

[O1] P. Amestoy, J.-Y. L’Excellent, and G. Moreau. “Avancées récentes et prochains défis de
la phase de résolution pour les solveurs directs creux.” In: Journées MUMPS au Pôle
Scientifique de Modélisation Numérique. ENS de Lyon, Lyon, France, Mar. 2017.

[O2] P. Amestoy, J.-Y. L’Excellent, and G. Moreau. “Performance of the Solution Phase:
Recent Work and Perspectives.” In: Internal communication. Grenoble, France, May
2017.

[O3] P. Amestoy, J.-Y. L’Excellent, and G. Moreau. “Recent advances on the solution phase
of sparse solvers with multiple sparse right-hand sides.” In: MUMPS User’s days. Inria,
Montbonnot, France, June 2017.

[O4] P. Amestoy, J.-Y. L’Excellent, and G. Moreau. “When the Solution Phase is the Most
Critical Part of Computation.” In: Solveurs linéaires HPC pour les études industrielles.
EDF Lab Paris-Saclay, Paris, France, Mar. 2017.

	Abstract
	French summary
	General introduction
	Solution of sparse linear systems
	Dense matrices: LU factorization and solve phases

	Sparse direct methods: analysis and factorization phases
	The analysis phase
	The factorization phase

	The solve phase
	General case: dense RHS
	Extension to sparse RHS

	Operation count for the solve phase on regular problems with nested dissection
	Low-rank matrix formats
	Motivations and experimental environment
	Experimental environment and computational systems
	Applications
	Outline of the thesis

	On the complexity of the solution phase with sparse right-hand sides
	Introduction
	Preliminaries
	Nested dissection and complexity formulas
	Exploiting the RHS sparsity
	Model problems and experimental setting

	Complexity analysis
	Models for sparse RHS
	Ideal setting: one RHS with one nonzero
	Generalization to one RHS with multiple nonzeros
	Generalization to multiple RHS (with multiple nonzeros)

	Experimental validation on real-life applications
	Extension to tree parallelism
	Conclusion

	On the exploitation of right-hand side sparsity
	The flat tree permutation
	Geometrical intuition
	Algebraic approach

	Towards a minimal number of operations using blocks
	Geometrical intuition
	Algebraic formalization
	A greedy approach to minimize the number of groups

	Experimental results
	Impact of the flat tree algorithm
	Impact of the blocking algorithm
	Experiments with other orderings
	Sequential performance

	Guided nested dissection
	Applications and related problems
	Conclusion

	On the parallel efficiency of the solve phase with multiple sparse right-hand sides
	Introduction
	Background and motivations
	Finite difference electromagnetic modeling
	Impact of the source structure
	Characteristics of the models and computing environment
	Solve phase algorithms

	Exploiting RHS sparsity to reduce the amount of computations
	Improving the parallel aspects of the solve algorithms
	Differences between the factorization and the solve algorithms
	Improving algorithms for the solve phase

	Exploiting sparsity during the backward substitution
	Performance analysis in a parallel context
	Exploiting sparsity
	Improvement through load-balancing and multithreading
	Global resolution times

	Concluding remarks

	Conclusion
	Contributions
	Performance and improvements
	Perspectives

	Bibliography
	Publications

