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Merci à mes co-auteurs dont Christophe, Gabi, Guy, Chouki, Luc, Djamel et à mes doc-
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pouce ou qui ont contribué à me montrer le chemin.
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Foreword

Since the beginning of my PhD in the end of year 1994, I have been working on various
subjects related to modeling information systems and software using various abstrac-
tions: objects, components and services. This habilitation thesis is an opportunity for
me to present these works altogether and try and provide the big picture I have in mind
in which they fit.

During these 22 years, I indeed have worked on connected topics. The path followed
is yet not linear. Even if my research is centered on the same few research questions I
have been investigating on for this long, research themes were impacted by many fac-
tors: collaboration opportunities, research grant opportunities, projects, advised PhD
students, etc. Subjects overlap. Others have long been idle and come back to the front.
Altogether, they nonetheless form a whole I am happy to present today, a whole with
blank zones I surely will be exploring in the future.

All these reasons led me to choose not to present my work chronologically. Not
even in a sequence of subjects each studied with one of the PhD students I co-advised.
Indeed, the works of some of them have spanned several subjects. Instead, I have chosen
to organize this thesis thematically, mentioning where needed the contribution of whom
I am talking about.

But before introducing my research subject to you, I would like to precise that the
work I have been doing all these years would not have existed without the researchers
and students with whom I collaborated. The work presented in this thesis is inherently
collaborative. I owe my co-workers a lot. Even if the writing exercise will have me
sometimes use ”I ”, the reader should always understand ”we ”.

I wish you a pleasant reading ...
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Chapter 1

Introduction

”The software industry is weakly founded, and (...) one aspect of this weakness is the ab-
sence of a software components subindustry” [76]. This visionary declaration was made
by M. Douglas McIlroy 45 years ago. A lot of progress have been made since then. A
lot of theories, languages, techniques and tools have appeared, but, to some extent, this
quote still applies. The forthcoming sections are going to define and introduce today’s
issues of software engineering before starting to focus on my field of research, that is
component-based software engineering, and the three main activities of composition,
reuse and evolution.

1.1 Software engineering issues

Software engineering is a young discipline the concern of which is to provide software ar-
chitects and developers with languages, models, methodologies and tools that help build
software in a controlled manner. Controlling the engineering process is a step towards
maturity as enforced in other, more traditional, engineering domains such as electronics,
mechanics or civil engineering, to cite a few.

As defined in the IEEE Standard Glossary of Software Engineering Terminology
(IEEE610, 1990), ”software engineering is the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software; that
is, the application of engineering to software”. The IEEE standard’s vision is close to
that of M. Douglas McIlroy: ”What I have just asked for is simply industrialism, with
programming terms substituted for some of the more mechanically oriented terms ap-
propriate to mass production” [76].

The control of the software engineering process aims to rationnalize the way software
is produced in order to reach (and be able to reproduce) better adequacy to user needs.
This includes identifying and responding to user requirements but also being able to in-
crease software complexity, reach better quality, longer lifetime (better maintainability),
lower costs and shorter time to market.
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Chap. 1 — Introduction

As software pervades in our modern lives, it reaches more and more sectors of human
activities and constraints are becoming harder.

◦ Software used to be critique in fields where human life could be threatened (in
aeronautics for example). Today, as software pervades in cars, it is as much
critique but also has to tackle the constraints of mass consumption goods (low
costs, quicker development, frequent changes, etc.) that did not apply as sharply
in more traditional critique applications.

◦ Software used to run in computer centers and be administered by highly qualified
operating system and database experts. Today, as software pervades through in-
tranets or in our mobile devices, it has to be more robust, less difficult to maintain,
able to execute in various contexts (such as in open environments) and somehow
should self-repair and self-adapt.

◦ Software used to support human activities (assist a plane pilot for example). Today
metros are fully automatic and, in the near future, cars are going to be automated
too. More burden relies on software in that it has to be perfect.

◦ Software used to be of intelligible size (as most projects did rely solely on new de-
velopments). Today, software better reuses previously developed parts and reaches
higher complexity and size.

Software development is more critique and important as ever. Pressure on providing
better methods to control its development is higher. Guaranteeing quality can no longer
rely on the hero model (highly qualified experts who are very few to have the required
capabilities). There must be a shift from crafts to engineering. Methods and tools are
needed that makes high quality software development accessible to more software engi-
neering professionals.

This can be achieved by sticking to up-to-date development methodologies or using
the latest coding paradigms but, at the end, always amounts to:

(De)compose to manage complexity. It is a well known ancient principle that de-
composing coarse problems into finer-grained ones to design their solutions and then
compose back the solution to the coarser grained problem from the partial solutions is
a mean to manage complexity. This divide and conquer principle can also be used as
a basis for reuse (see below). A hierarchical decomposition / composition mechanism
thus makes it possible to have different point of views on the modelled problem: coarse
views that only show the coarser grained parts (aka black-boxes) or more detailed views
that show finer-grained details inside coarser grained views (aka grey boxes).

Reuse to gain efficiency and quality. Reuse is the first step to mature engineering.
It makes it possible to use previously designed problem solutions thus making it faster,
less expensive and more reliable to reach the solution to the new problem. Reliability is
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1.2. Component-Based Software Engineering

increased because a reused component has been thoroughly designed by experts (which
might not be the case for a freshly designed one) and is supposedly more robust as it
has been used (tested) by several people and in several contexts already.

Evolve to correct faults and take new user requirements into account. As an
ability and not a quality, maintainability is not easy to measure [73, 34]. It nonetheless
is central for software engineering. Easier maintenance indeed decreases the costs of
software evolution, either it be to meet new requirements (that come from the user or
from a changing environment), increase software quality or correct some detected failure.
Software evolution is a crucial phase of software engineering as it is a life-long process
that concentrates most of the costs and conditions software usability as times goes by.
This is attested by Lehman’s laws of program evolution as for example:

◦ ”A program that is used and that as an implementation of its specification reflects
some other reality, undergoes continual change or becomes progressively less useful”
[69].

◦ ”Programs will be perceived as of declining quality unless rigorously maintained
and adapted to a changing operational environment” [70].

1.2 Component-Based Software Engineering

Component-based software engineering (CBSE ) is a software engineering paradigm that
aims to provide better solutions to overcome these issues, as defended in Ivica Crnković
et al. [38]: ”To achieve its primary goals of increased development efficiency and quality
and decreased time to market, CBSE is built on the following four principles. Reusability
[...]. Substitutability [...]. Extensibility [...]. Composability [...].”. This can be reconciled
to the above-mentioned main issues of software engineering if one considers component
substitutability and software extensibility to be means to reach software evolvability.

1.2.1 Components are reusable assets

In order to achieve a better reuse of software, several abstractions have been proposed
over time from libraries and modules to classes or services, from traits to mixins or as-
pects. Software components are one of them. In these different proposals or coding
paradigms, the piece of software to reuse is of variable size and its role in the resulting
software is of a variable nature. First, technical code, such as classical data structures,
input / output capabilities or classical algorithms have been proposed as reusable assets
in software libraries. This technical code indeed is highly reusable and does not present a
lot of variability. Then, GUI components have been proposed in standard libraries. Fol-
lowing, reuse has been considered to encompass business code and several abstractions
have been proposed as the reuse unit: modules, classes and objects, traits, components,
etc. The point is to identify which one suits best. This depends on their size but also on
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Chap. 1 — Introduction

the nature of the available meta-information that is going to help (re)use them. The time
where library contents had to be known by the architect or the developer as a preliminary
knowledge is gone. To implement reuse at a larger scale, content to be reused is not
known in advance and immutable. The reusable artifacts thus have to be documented
in a certain way that makes their usability information accessible to humans, but also to
automated programs.

Components are at the crossroads of many different research fields and thus can be
given various definitions.

Research works on Architecture Description Languages (ADLs ) [77] have long been
talking about components. According to David Garlan et al., components are said to
“represent the primary computational elements and datastore of a system” [54] and be
“the locus of computation and state” [99] as Mary Shaw et al. points out.

In UML 2.5 [89], “a component represents a modular part of a system that encap-
sulates its contents and whose manifestation is replaceable within its environment. A
component specifies a formal contract of the services that it provides to its clients and
those that it requires from other components or services in the system in terms of its
provided and required Interfaces. A component is a substitutable unit that can be re-
placed at design time or run-time by a component that offers equivalent functionality
based on compatibility of its interfaces.”

According to the very famous definition of Clemens Szyperski’s book [107], a software
component is ”a unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed independently and is
subject to composition by third parties”.

Heineman and Councill [63] define a software component as “a software element
that conforms to a component model and can be independently deployed and composed
without modification according to a composition standard”.

Components are typically described as grey boxes.

Unlike modules and classes which solely provide a description of the services / functio-
nalities that are provided by the module, software components try to avoid the possible
side-effects of hidden dependencies. To do so, their external view exposes both the ser-
vices they provide (their capabilities) and the services they require (their needs). This
is the first asset of software components that is going to make it possible to assemble
them by comparing their types as these types describe the two points of view of their
potential collaboration, both the server and the client side. Components can thus be
considered as fully packaged pieces of code, ready to be reused if assembled together
and deployed in a component execution environment. There is no need to know their
implementation in order to assemble them. This is why they are considered reusable.

6



1.2. Component-Based Software Engineering

Component assembly is a form of composition, sometimes called horizontal composition.
Components’ internal view can be hidden for decoupling.

When components are hierarchically composed of components which is the case in
hierarchical (or composite) component models, their internal view (or inner architecture)
itself is a component assembly. The relation that links a (coarser-grained) component to
its inner (finer-grained) components is another form of composition, sometimes called
vertical composition. Hierarchical component models are preferred as they enable both
abstraction and complexity management. Hierarchical component models are also a
cornerstone of component reuse as they encapsulate some existing component assembly
into a component and in turn assemble it, at a higher granularity level, with other com-
ponents.

Components must be designed thoroughly to be both versatile and usable through
their parameterization. They must be sufficiently independent to be usable in various
contexts (and not necessitate fixed extra material to be able to function). They also must
have an adapted granularity as one will prefer a component that best fits his requirements
without to much extra capabilities (that add unneeded dependencies which also means
extra complexity for the architect and error sources). This is why a component repository
must contain components of diverse granularities and that we recommend hierarchically
composeable components, so as to easily build coarser grained components from small
ones and be able, in turn, to reuse them.

1.2.2 Component reuse impacts the engineering process

Traditional software development processes have to be adapted to component reuse [37,
32]. As compared to traditional development processes, CBSE presents the advantage
of separating concerns for developers and architects. Component engineering follows
a traditional development scheme1 and results in components stored in a repository and
available for reuse from there (see left part of Figure 1.1).

After component engineering comes the second step: the engineering of software ap-
plications from components. Software development by component reuse is about
finding into dedicated repositories the components that match the application require-
ments and assemble them into applications (see right part of Figure 1.1). This process
is clearly separated from the previous one. It neither requires the same languages and
tools nor the same capabilities. Moreover, provided that the component interaction con-
straints are clearly expressed, this separation does not require to know the technology
(language, communication protocol) used to code a component.

1This scheme is traditional in that it is one of the main concerns of software engineering research

and practice. Development can follow whatever process (waterfall, V, spiral, agile, etc.). It is not the

central concern of our work but the interested reader can refer to, for example, Chapter 3 of Van Vliet’s

book [112] to have an overview.
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Chap. 1 — Introduction

Figure 1.1: Activities of component development for reuse and of software development
by component reuse

As shown on the right part of Figure 1.1, the activities for searching, choosing,
adapting and assembling reusable components from repositories are very different from
the activities of component development for reuse. First, the requirements must be
expressed (as wished) in the form of an hypothetic component that will be searched for.
Depending on the results of the search, several activities follow:

◦ if a single matching component is found, then it will be used in the software
architecture and assembled to the others found to do so.

◦ if too much components match the query, the component that is going to be used
has to be chosen among those. The choice can be anything from random to any
combination of strengthening constraints (for example on qualities, usage, ranking,
etc.) available and suitable that still provide solutions as a subset of the initially
found set of possible solutions.

◦ if no component is found, there are several possibilities:

8



1.4. Organization of the document

� the wished component can be built by assembling smaller grained components
from the repository. Such a composition might result in a composite that
exactly matches the needs or by a component that closely matches the needs
and must further be adapted.

� another relaxed search might be performed that searches for a component
that matches the needs as closely as possible. Missing characteristics can the
further be automatically or manually completed, depending on their complex-
ity (component adaptation).

� the wished component can be developed from scratch.

Once components are chosen, they are assembled to form a component-based soft-
ware architecture then deployed into a component-based software.

1.3 Research questions

This development process being set, several research questions arise.

◦ q1 : how has the component repository to be indexed so as to ease component
search?

◦ q2 : how is the wished architecture going to be expressed?

◦ q3 : when considering a component’s interface, which other interface can it be
connected to?

◦ q4 : what are the interfaces of a given component that have to be connected?

◦ q5 : when is a component assembly correctly (fully) connected?

◦ q6 : can components be assembled automatically?

◦ q7 : what parts of software can evolve? its code? its design model? its specifica-
tion?

◦ q8 : do evolutions need to be anticipated?

◦ q9 : can evolution be automated?

These questions are going to be tackled by the various contributions of Chapter 2.
They all target a specific activity or aim at a specific result from the activities of com-
ponent development for reuse and of software development by component reuse as syn-
thetized graphically on Figure 1.2.

9



Figure 1.2: Research questions and their corresponding activities / results of CBSE

1.4 Organization of the document

This habilitation thesis comprises two main chapters.

Chapter 2 presents a synthesis of my contributions on composition, reuse and evo-
lution in component-based software engineering. A first section briefly introduces the
formal models of components I have proposed. Next section presents my work on index-
ing components into repositories. A third section introduces the Dedal ADL that was
proposed to support component reuse. After that, a fourth section is about architecture
composition by assembling port-enhanced components. Last section spans several con-
tributions on software architecture evolution.

Chapter 3, in turn, concludes this dissertation. A first section is dedicated to a
synthesis. Then, I briefly introduce the chosen appended articles before drawing some
perspectives to my research.

Appendices follow the bibliography and compile five research articles – four of which
published in journals, one presented at a conference – that complement the dissertation.



"L’intelligence est caractérisée par la puissance indéfinie de décomposer

selon n’importe quelle loi et de recomposer en n’importe quel système."

Henri Bergson (1859 – 1941),

L’évolution créatrice.





Chapter 2

Synthesis of contributions

This chapter is going to present the subjects I have been working on in the field of
component-based software engineering.

After briefly introducing the need for a formalized model of components, I will present
how I used Formal Concept Analysis as a classification technique to order components
according to a component substitutability relation, thus proposing a pre-calculated index
of components into repositories that will ease later searches.

Then, I will show how adding a third specification level into and ADL is a basis for a
better support of component reuse. I will present Dedal, such a three-level ADL tailored
for component reuse.

After this, I will present how enhancing components with ports that group together
interfaces and define a more precise connection semantics can provide a means to calcu-
late whether components are connected in a manner that guarantees that the assembly
supports the desired functionalities. This is a means to connect only what is necessary
thus supporting reuse and avoiding unnecessary causes of errors.

To conclude, I will present several viewpoints on managing software architecture
evolution, from co-versioning to managing changes as first class entities and calculating
evolution plans.

2.1 Definition of the component model

Chapter 1 has shown that components are reusable pieces of software. Their reusability
is possible thanks to the fact that the external view of these components explicitly ex-
poses their dependencies to their environment, that is to other components they can be
assembled to compose a software system.

Several differences exist between component models. As there is no widely accepted
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Chap. 2 — Synthesis of contributions

standard or consensus, working on component-based software engineering starts with
defining the component model that is going to be used.

There are common acceptions though. Most of the models agree on the fact that
the external description of components contains their declared provided and required
interfaces that are each composed of a set of functionality signatures.

There is less consensus on ports however (see Section 2.4). The fact that component
models are hierarchic is not widely accepted but for most hierarchical component models,
the inner view of components is a component assembly where relations are of two types:
connections between opposite direction interfaces of distinct components and delegation
between same direction interfaces one of which is from the inner assembly, the second of
which is of the composite (i.e., belongs to the external view of the hierarchically coarser
component).

In order to be able to reason about components, I have proposed several means to
model them, each corresponding to a different presented contribution:

◦ with the dedicated (informal) modular Dedal ADL [119, 117, 121].

In this component model, defined during the PhD thesis of Huaxi (Yulin) Zhang,
components are described textually, using the concrete syntax of our proposed
Dedal ADL (see Section 2.3). The component model is quite minimal but nonethe-
less hierarchical.

◦ with a formal set-theory inspired ad hoc notation [43, 42].

This component model, defined during the PhD thesis of Nicolas Desnos, is de-
scribed mathematically. This makes it possible to define a precise semantics. The
component model is hierarchic and extended with the notion of ports (primitive
and composite) as presented in Section 2.4. The formal nature of the model helped
precisely define how components connect to one another (research question q3)
and when a connected component assembly is completely connected (research
questions q4 and q5). This last property calculates for components and general-
izes to assemblies. It depends on the novel connection semantics given to ports.
The calculability of this property further makes it possible to automatically build
component assemblies (see Section 2.4).

◦ with the formal and tooled B language [84, 81].

This component model, defined during the PhD thesis of Abderrahman Mokni, is
called formal Dedal. It is the formalized form of the model of the Dedal language
(see Section 2.3). Expressed in B [3], a first order set-theoretic formalism, this
model has the advantages of being both mathematically founded and tooled with
solvers. Well-formedness of instances of this model can thus be automatically
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checked. The validity of formalized properties can also be automatically assessed.
The solver is even used as a planning tool to search for sequences of actions that
restore a given property (see Section 2.5.4).

2.2 Indexing components into repositories using For-
mal Concept Analysis

In order to be able to define operations that involve several components such as com-
ponent connection or component substitution, there is a need to type components. It
then becomes possible to define various comparison relations between those types. In
my work, the subject of component typing thus is a foundation subject. I have explored
several ways to define and compare component types.

2.2.1 Issues of components typing

Typing components is a novel idea. A lot of research has been led, however, on function-
ality substitutability and on ordering types in object-oriented programming languages.
Indeed, these mechanisms are the theory on which compiling techniques have been built
upon and have been explored quite extensively by early works on class inheritance. Typ-
ing has also been explored from the point of view of analyzing the dynamics of sys-
tems. In this case, the dynamics can be described using various formalisms such as:
state-charts [62], state-machines (e.g., UML behavior state-machines or protocol state-
machines [89]), Petri-nets [87], etc. At last, typing can also be inferred from more
semantical information such as natural language descriptions that can be found in meta-
data descriptions such as WSDL [113] descriptiors.

Information type classification axes. It is a fact that component typing can be
founded on several sorts of information. The types of this information can be classified
using three criteria.

◦ the IE criteria. Some information are intrinsic (I) to code. They do not necessitate
further human intervention. Others are extrinsic (E) meta-data, that is a part of
the documentation that accompanies code.This information can be missing or be
badly written. If not, it can be very rich and possibly more difficult to analyze
automatically.

◦ the SD criteria. Some of the information is static (S). The other documents the
dynamics (D) of the component behavior.

◦ the SySe criteria Some information is said to be Syntactic (Sy). The other docu-
ments the semantics (Se).
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Nature of the information. The information itself can be of different nature. We
can list:

◦ n1: functionality name,

◦ n2: functionality input parameter types,

◦ n3: functionality input parameter names,

◦ n4: functionality input parameter number,

◦ n5: functionality input parameter order,

◦ n6: functionality output parameter type,

◦ n7: exception types that can be thrown by the functionality,

◦ n8: interface (or service) name,

◦ n9: interface (or service) types (as sets of functionality signatures),

◦ n10: list of interfaces that are provided by a component,

◦ n11: list of interfaces that are required by a component,

◦ n12: textual documentation on interfaces,

◦ n13: behavior protocols attached to interfaces,

◦ n14: global behavior protocol attached to a component.

Each nature of information can relate to one or more information types.

Functionality substitutability based on their static types. In order to compare
functionalities, a technique is to compare their signatures in terms of their domain (the
cartesian products of their parameter types) and range (their output parameter types).

Parameter types can be partially ordered by their substitutability relations. These
have been theoretized by Barbara Liskov’s substitution principle [74, 75]. The substi-
tution principle, as defined in those works, relies on a partial order based on object
(static) types that can be explained as is: if a type Sub is a subtype of another type Typ
then, whenever an object of type Typ is expected in a program, it can be substituted for
an object of type Sub without altering the program.

This rule generalizes to function signature comparison. For a function fsub to be a
valid substitute of a function f, their parameters must obey the following rules:
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◦ there must exist a matching between the parameter types of fonction f and those
in fsub such as each parameter type Sub among f ’s have a matching parameter
type Typ in fsub such that Sub is a subtype of Typ. Functions are often said to
have contravariant input parameter types.

◦ the output parameter type of fsub must be a subtype of that of f. Functions are
often said to have covariant return types.

This well known substitution principle uses information with a limited number of
natures. They correspond to information natures number n2 and n6, according to the
above enumeration.

2.2.2 Formal Concept Analysis basics

Formal Concept Analysis (FCA) is a data mining and classification theoretical tool
[26, 53]. It relies on various mathematical structures among which are concept lat-
tices that represent partially ordered set of concepts mined from a dataset composed of
objects described by attributes.

A formal context is a triple K = (O, A, R) where O and A respectively are object
and attribute sets and R ⊆ O × A a binary relation. Table 2.1 gives the example of
a formal context that models information about vegetables, their edible part and their
botanical families.

A formal concept is a pair (E, I) composed of:

◦ an object set, the extent, subset of O, composed of all the objects that share all
attributes in I and defined by E = {o ∈ O| ∀ a ∈ I, (o, a) ∈ R},

◦ an attribute set, the intent, subset of A, composed of the all attributes that are
shared by all elements in E and defined as I = {a ∈ A| ∀ o ∈ E, (o, a) ∈ R}.

Given a formal context K = (O, A, R) and two formal concepts C1 = (E1, I1)
and C2 = (E2, I2) of K, the concept specialization partial order ≤s is defined by
C1 ≤s C2 if and only if E1 ⊆ E2 (extents covary). It could be defined equivalently by
I2 ⊆ I1 (intents contravary). C1 is said to be a sub-concept of C2 and C2 a super-
concept of C1.

The set CK of all concepts of a formal context K provided with the ≤s specialization
partial order is the concept lattice (CK , ≤s) associated with K.

For readability’s sake, diagrams (see Figure 2.1) often present extents (white labels)
and intents (gray labels) in a simplified way such that each object or attribute appear
only once. This amounts to removing top-down inherited attributes and bottom-up in-
cluded objects.
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Carrot × ×
Beet × × ×
Radish × × ×
Celery × ×
Broccoli × × ×
Lettuce × ×
Spinach × ×

Cauliflower × ×
Artichoke × ×
Tomato × ×

Cucumber × ×
Eggplant × ×
Zucchini × × ×
Corn × ×
Bean × ×
Pea × ×
Onion × ×

Table 2.1: The formal context of vegetables

In order to scale up, we sometimes consider the Attribute Object Concept poset
(AOC-poset) instead of the lattice. The AOC-poset is the sub-order of (CK , ≤s) re-
stricted to object-concepts (concepts the simplified extent of which are not empty) and
attribute-concepts (concepts the simplified intent of which are not empty). As such,
AOC-posets do not remove any significant information and scale much better than lat-
tices.

Figure 2.1 gives an example of concept lattice. It is generated1 from the above formal
context of vegetables. One can see on the lattice that we eat the leaves of all known
sorts of chenopodiaceae (spinach and beets). One can also see that, among known
cucurbitaceae, cucumbers are the only species from which we only eat the fruit. Indeed,
the other cucurbitaceae we know, zucchinis, have edible fruits and flowers.

2.2.3 Components classification based on their syntactic types

Starting from functionality signature substitutability, this notion of substitutability is first
extended to interface (sets of functionality signatures) types and further to component

1To do so, the conexp concept explorer open-source tool (http://conexp.sourceforge.net) was
used.
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Figure 2.1: The vegetable concept lattice

(sets of interfaces) types. The need appears for a classification technique that can
produce a partial order on groups of characteristics (groups of parameter types, groups
of functionality signatures or groups of interfaces). Formal Concept Analysis is chosen
as this technique because it creates and classifies formal concepts as demanded but also
because it mines new abstract concepts that are created for the purpose of classification.
We will explain why this is interesting at the end of this section. This work has been
the opportunity of an international collaboration with Gabriela Arévalo from Argentina
[16, 17, 18, 2, 20, 19, 1].

Statically typing components provided and required functionalities. In order to
provide types to components and thus be able to define component substitutability or
component compatibility, one of my contributions is a generalization of such substitution
principle to components. The result is a definition of component types that relies on
Barbara Liskov’s substitutability principle and extends it to fit the needs of components.

First, a slightly different definition of (provided) functionality substitutability was
considered.

We indeed added a naming constraint on functionalities, choosing not to concentrate
solely on typing as in Barbara Liskov’s work but define a substitutability mechanism that
resembles those of programming languages where only homonymic functionalities can
be substituted to one another. We also considered that the substitute functionality can
declare the need for less input parameters than the functionality it replaces.

We then transposed the definition of substitutability from provided functionalities to
required functionalities. As these latter are the opposite of the first, all constraints are
reversed.

For a required function fsub to be a valid substitute of another required function f,

19



Chap. 2 — Synthesis of contributions

they must obey the following rules:

◦ fsub and f must have identical names,

◦ input parameter types must be covariant,

◦ return types must be contravariant.

The proposed component classification process. The proposed component typing
process is divided into three steps, each of which uses FCA as a classification mechanism.
The entry of the process is composed of type hierarchies (so as to be able to compare
functionality parameter types). Then, the process recursively classifies:

◦ functionality signatures. Homonymic functionalities are classified based on their
full signatures using FCA and the type hierarchy of their input and output param-
eters according to the substitutable type inference rules mentioned above.

◦ interfaces. They are classified based on their types (as sets of functionality sig-
natures; their name does not matter) using FCA and the classification of their
functionality signatures as pre-calculated substitutable functionality inference rules.
Provided interfaces and required interfaces are dealt with separately.

◦ components. They are classified based on their types (as sets of provided and
required interfaces; their name does not matter) using FCA and the classification of
both their provided and required interfaces as pre-calculated substitutable interface
inference rules.

Figure 2.2 provides an overview of the three steps classification process.

On the top left part of the figure, the type hierarchy is the input information on ob-
ject types. It is composed of two connected components: one for the Location and the
other for the Route groups of types. This object type partial ordering serves to classify
functionality signatures. On the top right part of the figure, the route functionalities
are classified according to their parameter types (here, only their output types vary) and
an extract of the lattice is shown. This functionality signature partial ordering in turn
serves as an entry to classify interfaces. In the bottom right of the figure, provided
Route interfaces are classified and an extract of the lattice is shown. Here, the only
variation is the signature of the route functionality. In a last step, the interface partial
ordering serves as an entry of the component classification process. On the bottom left
part of the figure, RouteCalculation components are classified and an extract of this
classification shown. One of the variations between C4 (BotanicRouteCalculation)
and C10 (TouristicRouteCalculation) is the provided interface at their bottom right
corner which are the ones that were classified in the shown extract of the previous step.

The result of this classification process is a component type poset, the partial order
being the component substitutability relation. This poset thus acts as an automatically
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Figure 2.2: Synopsis of the three-step component classification process [1]

pre-calculated component index that eases the search for substitutable components and
can therefore be a support for architecture evolution. It comprises both real components
– the ones that served as data for the classification process – and abstract (mined) com-
ponents – components that do not exist but are interesting generalizations of existing
components. Abstract components are discovered abstractions that could be useful in a
component reengineering process.

The same poset can also be used to assemble components (that is, compose archi-
tectures from components). To do so, the component candidate to composition must
be mirrored (its interface directions reversed), optionally classified in the component
hierarchy (if the mirrored component is not already there) and then possible substitutes
searched for. As they are substitutable with the component that has the candidate com-
ponent exact matching type (which is the most obviously connectable component type),
the list of possible substitutes can all be connected to the candidate component.

The proposed approach that classifies components based on their syntactic types
uses information with a limited number of natures to define component types. They
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correspond to information natures number n1, n2, n6, n9, n10 and n11 according to the
above enumeration.

This classification can be used as a pre-calculated index in order for component
substitutes to be easily found. It is a possible response to research question q1.

2.2.4 Service classification based on semantical meta-information

During the PhD of Zeina Azmeh, classification was explored in several complementary
way [23, 24, 22]. The objective was to classify web services and thus, the classification
criteria were naturally influenced by the information retrieval research field.

Requirements are modelled in a way inspired from the abstract specification of
the as-wished architecture in the CBSE process (see Figure 2.4). Firstly, an abstract
WSDL [113] descriptor describes all the needed services by specifying functional and
non-functional requirements. A needed service is characterized by the functionalities
it provides (along with its input parameter names and types and its output parameter
type) and the expected QoS levels for every supported quality attribute. Secondly, the
messages that can be exchanged by such described web services (their orchestration) are
described in an abstract BPEL [88] descriptor. An abstract BPEL descriptor differs from
a (normal) concrete BPEL descriptor in that it refers to abstract services described in (a
local) abstract WSDL descriptor, instead of concrete services retrieved from the web.

This system requirement model is somewhat similar to the specification of a component-
based architecture, where abstract WSDL descriptors can be compared to the external
view of components (their interfaces) and abstract BPEL descriptors to the abstract
architecture. Abstract web services only describe their provided functionalities and ab-
stract BPEL descriptors describe the dynamics of the service-based composition (aka
orchestration) instead of focusing essentially on the structure in CBSE.

As it is the case in CBSE (see Section 2.3), the information conveyed in these
descriptors serves as a guide to search for concrete services that match the wished ones.
To do so, an index of similar substitutable services is built by the proposed service
classification process [22] which decomposes in two phases and uses FCA at each of
them two.

Phase 1: Finding groups of similar functionalities. In this work, web-services are
searched for in various data sources on the web using search engines. They are described
by their WSDL descriptor which acts as external meta-information on its functionalities.
The information available is both syntactical (functionality signatures) and semantical
(free natural language text). As they come from various sources and they have been
developed and documented separately, one cannot expect that web-services be named,
or manipulate parameter types that are named, in an identical manner.
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Figure 2.3: The composite currency service, supported by backups from the service
lattices [22]

Though, searching for web services amounts in being able to identify close services
or, close functionalities by semantically comparing these names and / or the types. This
can be done in various ways such as vector space modelling inspired techniques [115, 93],
clustering using machine learning techniques [64, 36] or ontology-based techniques [27].

In this work, it is done by comparing, as two natural language strings, all pairs
of functionality signatures to measure their similarity [48, 106, 68] and then clustering
them using FCA techniques. The chosen similarity measure for experiments is the Jaro-
Winkler distance [116]. It provides a value between 0 (incomparable functionalities that
are served by a same web-service) and 1 (strict equality). If we consider the relation
between the set of functionality signatures and itself (where the object set equals the
attribute set), this leads to a multi-valued (non binary) formal context that is a square
similarity matrix of diagonal 1 which presents the property of being symmetrical (because
of the symmetry of the similarity measure). If the measure values are applied a threshold
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to make them binary, the matrix then becomes a symmetrical formal context. Applying
FCA therefore results in a lattice where similar functionality (according to the chosen
measure and threshold) are grouped into formal concepts.

Phase 2: Using these groups to classify services. Using these functionality groups
as if their member functionalities were a single one, the containment services × group
relation is modelled as a formal context. Applying FCA results in a service lattice that
can be used to find similar services (grouped in same formal concepts) or substitutable
services (linked by a sub-concept to super-concept relation).

Figure 2.3 shows an example of a composite service that is described by a BEPL pro-
cess involving several sub-services that themselves refer to the lattice of their classified
similar services that could be used as backups.

The proposed approach that classifies services based on semantical meta-information
uses information with a limited number of natures to define service types. They corre-
spond to information natures number n1, n3 and n4 according to the above enumeration.

The approach constitutes a variation of the indexation method proposed in Sec-
tion 2.2.3 tailored for web-service, so as possible substitutes to web services can be
easily found. It is another possible response to research question q1.

2.3 Dedal, a three level ADL that supports compo-
nent reuse in CBSE

2.3.1 Issues of architecture-driven component reuse

Building software applications from components amounts to have models of compo-
nents and models of applications described in a non-procedural language. Architecture
description languages (ADLs ) which are used to do so are declarative domain specific
languages (DSLs). Some of them are XML dialects. Others have their own concrete
syntax. UML diagrams (or slightly modified UML with profiles) can even be used to do so.

There is a close analogy with model-driven engineering. Indeed, the grammar of
ADLs can be described as a meta-model, their abstract syntax as both an instance of
the meta-model and a class model for concrete architecture definitions (that can be seen
as instances of the model that describes the syntax).

Therefore, there is a convergence in the tools used to define languages and models,
especially accompanying UML-based tools. Indeed, the Eclipse IDE and its MOF are
tools that can be used to easily describe the abstract and concrete syntax of an ADL
(see Section 3.3.4).
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This analogy can be continued further to describe the continuum, in terms of models
of a software, from its specification to its design, its implementation and, furthermore,
to its runtime. As models are everywhere, even at runtime (Models@runtime) they can
provide at any development stage the necessary information to make design decisions or
to discipline changes that can occur on software.

This is why, designing an ADL to support reuse, it must represent the various points
of views on the software system that correspond to each development stage and that are
available at any time so as to guide component choices (reuse) and software evolution
(as described in Section 2.5).

Apart from this characteristic, the qualities of an ADL are those of a component
model: modular (so as to be able to reuse small fragments), loosely coupled (so as to
distinguish types and their implementations) and hierarchical (so as to manage complex-
ity and favor reuse).

2.3.2 The three levels of Dedal

The process of software application development from component reuse has three main
development steps: specification (the wish product on Figure 2.4), implementation
(the component-based architecture product on Figure 2.4) and deployment (the
component-based application product on Figure 2.4).

The Dedal architectural model has been proposed as one of the contributions of the
PhD of Huaxi (Yulin) Zhang [119, 117, 121]. It models the views of the architecture at
each of these three development steps:

◦ Model of requirements. The model of the wish product of Figure 2.4 models
the requirements. The as-wished architecture description is represented as an
abstract architecture specification in Dedal where abstract component roles model
the ideal components the architect would like to reuse.

◦ Model of design. The component-based architecture product of Figure 2.4
models the design.The architect creates as-found the concrete architecture con-
figuration by reusing existing components classes from the repository.

◦ Model of runtime. The component-based application product on Figure 2.4
models the runtime software. Component instance assemblies describe the runtime
constraints on instantiated components.

Figure 2.4 proposes the software application development from component reuse ac-
tivities with their corresponding architectural models that are intended to guide reuse
and evolution.

Figure 2.4 also shows that changes can occur at any of the description levels which
is the more realistic option of modelling change occurrences because architects and de-
velopers hardly stick to a top-down approach. Such option however implies that both
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forward (model-driven) and reverse (retro) propagation mechanisms be implemented so
as to propagate the impact of changes to other models (see Section 2.5). This is an
answer to research question q7 in the form of an a priori manifesto.

Figure 2.4: Activities of CBSE and their corresponding architectural models

The Dedal ADL defines variants of components and connectors at those three levels:

◦ Component roles model abstract component types in the abstract architecture
specification.

◦ In the concrete architecture configuration, components are modelled by their
component types and component classes. Component types define the reusable
full types of at least one (maybe several) existing component implementations.
They are defined by describing the interfaces and behavior of these component
classes. Component classes describe concrete component implementations. Each
component class implements a component type and each can either be primitive
or composite.

◦ Component instances document the real artifacts that are connected together
in an instantiated component assembly at runtime.

Figure 2.5, Figure 2.6 and Figure 2.7 provide small examples of (a part of) the con-
crete syntax of the Dedal ADL.
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1 component role BikeCourse

2 required interfaces BikeQS; CourseQS

3 provided interfaces BikeOprs; CourseOprs

4 component behavior
5 (!BikeCourse.BikeOprs.selectBike,

6 ?BikeCourse.BikeQS.findBike;)

7 +

8 (!BikeCourse.CourseOprs.startC,

9 ?BikeCourse.CourseQS.findCourse;)

Figure 2.5: Dedal description of the BikeCourse component role

Figure 2.5 defines a component at the specification level (it is called a component
role). It provides its name, its required and provided interface names (to refer to external
descriptions of the interface types), a behavior protocol (written as a regular expression
inspired from SOFA [92] where the ! and ? symbols respectively prefix emitted and
received messages).

1 component type BikeTripType

2 required interfaces BikeQS ; CourseQS; LocOprs

3 provided interfaces BikeOprs; CourseOprs

4 component behavior
5 (?BikeTripType.BikeOprs.selectBike,

6 ?BikeTripType.LocOprs.findStation,

7 !BikeTripType.BikeQS.findBike;)

8 +

9 (?BikeTripType.CourseOprs.startC,

10 !BikeTripType.CourseQS.findCourse;)

Figure 2.6: Dedal description of the BikeTripType component type

Figure 2.6 defines a component type at the configuration level. It provides its name,
its required and provided interface names (to refer to external descriptions of the inter-
face types) and a behavior protocol (also written as a regular expression).

1 component class BikeTrip

2 implements BikeTripType

3 using fr.ema.BikeTripImpl

4 versionID 1.0

5 attributes string company; string currency

Figure 2.7: Dedal description of the BikeTrip (primitive) component class

Figure 2.7 defines a component class at the configuration level. It provides its name,
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the name of the component type it implements, a link to the concrete implementation
class, a version ID and a list of observable attributes (that are used to describe con-
straints at the assembly level).

The link between the component class and the component role it realizes is not
described here but in the description of the configuration in the form:

BikeTrip (1.0) as BikeCourse;

2.3.3 Inter-level relations in Dedal

A special focus is put on inter-level relations that define how a concrete architecture
configuration is compatible with its abstract architecture specification and how an in-
stantiated component assembly corresponds to its concrete architecture configuration.
Indeed, these relations vehicle an important part of semantics of the three level ar-
chitecture level model as they define whether the three descriptions are coherent with
one another. These inter-level relations between descriptions are declined on their con-
stituents. As most of the semantics is vehicled by components in Dedal (as for now,
connectors are passive semantics-free links), the inter-level relations the semantics of
which we are going to focus on are those between component descriptions in the three
levels.

Figure 2.8 and Figure 2.9 represent the relations that are set between the different
representations of a given component. A component role can be realized by several
component classes (each being a different concrete realization of the specification car-
ried by the role). A given component role can be partially realized by a component
class, thus necessitating several component classes (each realizing a part of it) to fully
realize the role. Each component class implements a single component type which can
be implemented by any number of component classes (each fully implementing its type).
A component type matches a component role either fully or partially (as for component
classes). A component instance instantiates a single component class. A given compo-
nent class might have several instances.

The Dedal ADL and these inter-level relations have been formalized using the B lan-
guage [3]. The result is a new formal ADL expressed in B: formal Dedal. This has been
done during the PhD of Abderrahman Mokni [80, 84, 81].

Dedal architecture descriptions can be automatically transformed, in a model-driven
engineering (MDE) approach, into formal Dedal descriptions. The formal ground of the
B language together with the existence of B solvers make it possible to automatically
verify that an architecture description is both well-formed (each level description is well-
formed) and coherent (all inter-level relations are verified).
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Figure 2.8: Inter-level relations between component descriptions (a) [117]

Figure 2.9: Inter-level relations between component descriptions (b) [117]

As an illustrative example, Table 2.2 shows the B machine that describes the config-
uration level.

There are three inter-level coherence rules. An example is the relation between a CT
component type at the configuration level and its corresponding CR role at the specifi-
cation level. It can be ruled as follows. A component type CT matches a component
role CR iff an injection inj between the set of interfaces of CR and the set of interfaces
of CT exists such that int can be substituted for inj(int), int being an interface of CR.
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MACHINEArch configuration
INCLUDES Arch concepts, Arch specification
SETS

COMP CLASS; CLASS NAME; ATTRIBUTES; ATT NAMES ; CONFIGURATIONS
CONSTANTS

COMP TYPES

PROPERTIES
/* Component types are also a specialization of components distinct from roles */

COMP TYPES ⊆ COMPS ∧ COMP TYPES = COMPS - COMP ROLES

VARIABLES
config, config components, config connections, compType, compClass,
class name, class attributes, compositeComp, delegatedInterface, delegation, . . .

INVARIANT
compType ⊆ COMP TYPES ∧

/* A component class has a name and a set of attributes */
compClass ⊆ COMP CLASS ∧ class name ∈ compClass → CLASS NAME ∧
attribute ⊆ ATTRIBUTES ∧ class attributes ∈ compClass → P(attribute) ∧

/* A composite component is also a configuration as it is constituted of
component classes */
compositeComp ⊆ compClass ∧ composite uses ∈ compositeComp → config ∧

/* A delegation is a mapping between a delegated interface and
its corresponding one */
delegatedInterface ⊂ interface ∧
delegation ∈ delegatedInterface � interface ∧

/* A configuration is a set of component classes */
config ⊆ CONFIGURATIONS ∧
config components ∈ config → P1(compClass) ∧
config connections ∈ config → P(connection)

Table 2.2: Formal specification of the configuration level [81]

Formally [81]:

matches ∈ compType ↔ compRole ∧
∀(CT, CR).(CT ∈ comType ∧ CR ∈ compRole
⇒
((CT, CR) ∈ matches

⇔
∃(inj).(inj ∈ comp interfaces(CR) inj.→ comp interfaces(CT ) ∧

∀(int).(int ∈ interface
⇒

inj(int) ∈ int substitution[{int}]) ∧
)))

The work on Dedal is an answer to research question q2: how is the wished archi-
tecture going to be expressed?
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Once this as-wished architecture (abstract architecture specification) is modelled,
there is a support of the modelling intentions of the architect that is going to be preserved
in all stages of development and runtime. This model of the intentions serves as a guide
to search for concrete components in the architecture design step. As such, it enhances
reusability. It is also a guide for architecture evolution (see Section 2.5) as it keeps track
of the architect’s intentions to which thought changes can be compared to.

2.4 Architecture composition by port-enhanced com-
ponents assembling

Assembling components is a central issue of component-based software engineering,
whether it be at the specification level where assembling amounts to find roles and con-
nect them though their interfaces so as to build a coherent architecture specification, at
design-time where assembling amounts to select component classes of adequate types
and connect their interfaces until the assembly is valid and forms a software configuration
or at runtime where assembling amounts to connect component instances that verify the
assembling constraints and can be followed by automatic deployment.

This section proposes my vision of component assembling, its issues and a proposed
solution. This work has been led during the PhD of Nicolas Desnos [45, 44, 43, 42],
some of which has been the opportunity to collaborate with Guy Tremblay from Canada.

2.4.1 Issues of components assembling

Assembling components amounts to connect them through their interfaces. A candidate
provided interface of a component is going to be connected to a candidate required
interface of another component so that the needs of a component in terms of capa-
bilities are satisfied by another. The type of the candidate provided interface must be
compatible with the type of the candidate required interface. Type compatibility can be
interpreted very differently from a component model to another. To my sense, it is to be
interpreted in a broader sense than strict equality, as described in Section 2.2. Finding
an interface of opposite direction (required or provided) and of compatible type is an
answer to research question q3: when considering a component’s interface, which other
interface can it be connected to?

This question is under-documented in state-of-the-art works. Most of them con-
sider type equality as a sound connection criteria between interfaces. Such a connection
scheme obviously over-constrains connections as sub-typing (which is a highly docu-
mented topic in object-oriented programming) is ignored. This is why we studied how
objected-oriented sub-typing could be generalized to components in Section 2.2. In such
a component matching process, there are two main differences as compared to objects.
First, the required point of view, which did not exist in object orientation has to be taken
care of. Typing rules thus have to be generalized to this new point of view on interfaces.
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Secondly, as we are not aiming at substitutability soundness as a compiler would be
(components can further be adapted either automatically or manually), the strength of
the desired relation can vary. This can lead to multiple compatibility or substitutability
relations as evoked in Section 2.2.

The other research question that has to be answered is question q4: what are the
interfaces of a given component that have to be connected? The answer to this ques-
tion is going to provide means to automatically decide wether a component is correctly
connected to be able to function in an assembly. As a consequence, this property will
also be computable for a whole component assembly (an architecture), thus providing
means to verify the correctness of assemblies in an automated way while automatically
assembling components or automatically repairing damaged assemblies.

In most component models, all the required interfaces of the used components are
to be connected [114]. Automatically verifying such a property is trivial but this con-
nection scheme over-constrains the software architecture: as components are likely to
provide more services than strictly needed, fully connecting components implies search-
ing for components that are never going to be used by the application. Such a search
diminishes the chances to find reusable components that suit all needs (even if some
of the needs are artificial). It makes architectures artificially large (thus error-prone)
and furthermore diminishes the architecture’s extendability (as artificial requirements are
fulfilled in a manner that might be contradictory to future requirements).

In some models [111, 29], several interfaces are a priori declared as not mandatory
to connect. Most of the times, components have more capabilities than strictly needed
(because of them being reused) which means all required interfaces need not be con-
nected in all contexts. These models consider architectures in which optional required
interfaces are not connect as valid ones. To me, this solution fails to model what in-
terfaces of components have to be connected as the optionality of services is not an
intrinsic property of the component but probably depends on the context in which the
component is used. Indeed, a service might be mandatory in some context and optional
in some other context. Defining components with inherently optional required interfaces
thus includes hidden assumptions on future component usage.

In a third category of models, dependencies between interfaces are dynamically cal-
culated. When an interface is connected, all its dependant ones must also be. These
models [39, 105, 55, 94, 95, 4] thus enable partial connection of components based on
extra information on component behavior dynamics. Some are able to determine if an
interface has to be connected or not by analyzing behavior protocols [92, 4], others by
reasoning on interface automata [39]. Dimitra Giannakopoulou et al. [55] uses model-
checking. Judith Stafford et al. [105] use dependency analysis.

The third category of models is the one that provides the best answer to connecting
the smallest set of required interfaces possible while still satisfying all requirements. Such
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connection policy, however, is expensive to compute. Comparing components’ dynamics
indeed requires complex algorithms. The idea behind this work was to be able to test
compatibility of a chosen component with all the potentially compatible ones that are
found in a component repository, having in mind the objective of exploring assembling
possibilities automatically in order either to provide candidate assemblies for architects
to choose from or even, in less critic environment such as home automation, try and
automatically select an assembly to be deployed. For such an application, the need for a
new connection criteria emerged. The criteria had to be more precise and context-aware
than connections schemes of the two first categories but it also had to be less difficult
to compute than dynamic comparison of component behavior [92]. The metaphor of
the plug, that simultaneously connects several plots altogether to another compatible
plug led to use the port notion as an adequate concept to gather dependencies between
interfaces and have a more sophisticated component connection scheme to meet our
needs.

2.4.2 Ports improve components assembling

Several component models introduce the concept of port but definitions vary. In most
component models a port is an interaction point for components to interact with their
environment. It is the case in ArchJava [13], Java/A [58] (which extends ArchJava with
protocols), Wright [14] or in COMPO [104].

For other models, such as UML 2.5 [89] and ACCORD [109], ports group interfaces.
Such ports can be seen as both interaction points and concepts that structure the ex-
ternal view of components by grouping interfaces that are likely to be used in a same
component-to-component collaboration.

In the general case, a port is bi-directional (it is composed of both provided and
required interfaces) as in UML 2.5 [89].

In most models, a port embodies a peer in a peer-to-peer collaboration. Peer-to-peer
port connection then amounts to connect each element from a component’s port to a
compatible element from another single port belonging to another single component.
UML [89] is, to my knowledge, unique in defining multi-peer connections between ports
(a port from a component can connect to two distinct ports belonging to two distinct
components) with the use of n-ary connectors.

In the work developed during the PhD of Nicolas Desnos, components enhanced with
ports (that represent dependencies between several provided and required interfaces of
a component) help identify the smallest interface set to connect to have an assembly
that is correctly connected to handle some desired functionality. Ports thus embody
the set of interfaces involved in the collaboration two components establish in order to
implement a given functionality. Ports are a peer-to-peer means to connect components
(one port is to be connected to a single compatible port). Connecting ports in one step
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(atomically), instead of connecting each pair of interfaces in turn, decreases complexity.

Port compatibility is an answer to research question q4: what are the interfaces of
a given component that have to be connected? After having identified the wished func-
tionality (we call the functional objective) in an interface, the ports that contain this
interface have to be connected.

In Figure 2.10(a), ports are connected through a valid connection. Figure 2.10(b)
illustrates an impossible connection as it is not peer-to-peer. A solution to this issue
might resemble Figure 2.10(c) if the model had a concept to signify that connecting one
port of the :ATM component implies connecting the :ATM’s other port. This is made
possible using the new notion of composite port. Standard ports are now said to be
primitive ports.

Figure 2.10: Primitive port peer-to-peer atomic connection

Composite ports offer a new structure to model complex collaborations. Composite
ports combine a set of ports, primitive or composite, that all must be connected simulta-
neously but need not be connected to a unique port / component (multi-peer non-atomic
connections). Composite ports can be seen as a means to express dependencies between
ports. A connected composite port is shown on Figure 2.11.

Primitive and composite ports form a full toolset to express dependencies between in-
terfaces. Combining primitive and composite ports makes it possible to express complex
dependency schemes between interfaces. Ports provide information on correct interface
connection being given the functional objectives of the software (research question q4).
If all ports of all its components are either not connected or correctly connected, an
assembly is in turn correctly connected: the property that stands for ports can be com-
posed to calculate the same property for component assemblies. This answers research
question q5: when is a component assembly correctly (fully) connected?
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Figure 2.11: Composite port multi-peer non-atomic connection

As compared to models that connect all a component’s interfaces or to models that
define a priori optional interfaces, ports are more expressive and make it possible to define
more precise connection schemes for components in an architecture. This precision both
eases reuse and increases reusability. As compared to calculating the compatibility of
the dynamics of components (e.g., expressed as protocols), port compatibility and port
connection computes much easier. This benefit is obtained at the expense of providing
extra documentation for components: the structuring of their external view with ports.
Compared to providing collaboration protocols, ports are easier to model. Ports do not
substitute to defining collaboration protocols: both notions might be complementary.
Furthermore, ports might probably be calculated from protocols, where dependencies
(which ports model) are expressed altogether with time sequencing (which ports do not
model). Calculating ports once and for all and saving the result of the calculus in the
component repository would further decrease the computing cost of calculating whether
an assembly is correctly connected or not.

The property of correctly connected component assemblies has been described for-
mally using a formal set-theory inspired ad hoc notation [43, 42].

2.4.3 Port-guided automatic components assembling

Starting from identified functionalities (the requirements) components can be automat-
ically connected to form coherent assemblies, meaning assemblies where all necessary
ports are coherently connected.

The functionalities identified as objectives are a rudimental way to express the wished
architecture (research question q2: how is the wished architecture going to be ex-
pressed?). Starting from this data, components are searched for that provide these
functionalities. The selection of these components create dependencies that have to
be satisfied (their required interfaces) which in turn leads to components that provide
these functionalities and so on. Dependencies are all satisfied in turn until none remain
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unsatisfied which means that the assembly is correctly connected. Instead of taking
into account all of the required interfaces of a component to determine the inferred
dependencies, only those embedded in the same port as already connected interfaces are
considered.

By this means, correctly connected component assemblies can be generated by explor-
ing all connections possibilities with all the components from the component repository.
All correct assemblies can theoretically be generated using the port connection property
and then discriminated amongst by using the more costly components dynamics com-
parison [92]. At this point, architects could also be asked to select assemblies that they
consider pertinent to solve their problem.

Despite the simplification of the connection scheme, the automatic connection ex-
ploration is a complex process. Combinatorial explosion is tamed in practical cases (in
which the size of architectures never exceed a reasonable number of components) by the
use of problem-specific heuristics [42] (e.g., search for the smallest, in terms of number
of components, possible solutions).

Experiments with artificially generated component external descriptions with ports
showed that the proposed property and assembly exploration algorithm makes it possible
to give a positive answer to research question q6: can components be assembled auto-
matically? To the best of my knowledge, such a search-based approach for components
assembling is quite a novel contribution even if a close subject is much more commonly
explored in the paradigm of web services where composition is automated using planning
techniques [31, 72, 41].

2.5 Software architecture evolution

Handling evolution is a core component-based software engineering activity. It is consid-
ered to concentrate costs and to be the longest activity of the engineering process as it
spans the whole life-cycle of the software. It is also multi-facetted. This section presents
the several viewpoints of software architecture evolution I have explored.

2.5.1 Issues of software architecture evolution

Architecture evolution is a multi-facetted topic [25, 28].

It can be studied from a theoretical point of view, trying to identify what is the object
of change and what is the motivation of the change or a pragmatic point of view, trying
to provide concrete tools to implement evolution [71]. Some works [30, 78] define a
taxonomy of changes, thus decomposing evolution in more focused fields or proposing
to treat changes according to a priority order. Some works concentrate on managing the
history of the changing software by maintaining its versions [35].
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Unmanaged changes may cause architecture degradation. Architecture drift and ero-
sion [91] are well known manifestations of such degradations.

We set as a manifesto that evolutions cannot all be anticipated and enumerated
extensively. This would be equivalent to knowing in advance the future of the software.
Such predictable changes would considerably ease the management of architectures but
are not per se changes but rather functioning modes of the software. Real changes can-
not be anticipated. This is an answer to research question q7 . This is also the reason of
the existence of such mechanisms to control the unanticipated evolution of the software
architecture and of the software itself this section is going to present.

2.5.2 Version propagation along relations

Model versions are recognized to be a medium for tracing evolution and maintaining
data coherent.

Inspired from well established source code versioning systems, model versions were
first widely studied in the context of databases in late 1980’s and early 1990’s. They ap-
plied at both data (which can be compared to instances in the object-oriented paradigm)
and database schema (which can be compared to the class level model in the object-
oriented paradigm) [86, 96]. Model version were also particularly used in computer-aided
design applications [33, 108] in a wide range of domains such as VLSI, telecommuni-
cation networks, mechanics, architecture, software engineering, hypertext or multimedia
creation. These applications were characterized by design steps made up of parallel
proposals representing various points of view on the system (collaborative work) which
needed to be validated, compared, sometimes reconciled (merged). Moreover, the data
structures dealt with by these applications are complex and involve several distinct rela-
tions with their domain-specific semantics.

In this context, the aim of my PhD thesis was to define a version model which tackled
the complex nature of the modelled entities, using the concepts defined in object systems.

The proposed version model, which is intended for application designers, proposes a
parameterizable means to manage data evolution. This approach differs from the one
usually chosen by version models, which provide fixed version management capabilities.
The proposed complex entity version management model consequently divides into two
user-levels: microscopic and macroscopic. Depending on their needs and on those of
the targeted application, designers can choose the level they consider to suit them best.
The microscopic level is intended for expert users who have specific version management
needs, while the macroscopic level needs less parameterization.

Moreover, the proposed model allows any type of complex entity to be versioned, as
it has not been defined for a particular category of dependency relations. It is parameter-
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izable: existential dependencies are dealt with by an operation propagation mechanism
described by the means of propagation rules and strategies. Designers can either reuse
predefined rules and / or strategies or create new ones in order to correspond to a given
objective.

Propagation strategies group active propagation rules which obey to the Event Condi-
tion Action (ECA) structure [47]. They are associated to relations. They define whether
versioning one end of the relation implies versioning the other end. This version cre-
ation propagation mechanism is parameterizable using predefined or specific strategies
or rules. In enables to maintain graphs of related model entities coherent as related to
their versioning, as all versions of all entities might not be compatible with one another.

The proposed version creation propagation model is a partially affirmative answer to
research question q9: can evolution be automated?

2.5.3 Many-to-one component substitution

When a component in an architecture misses or fails, there is a need to replace it by
some equivalent. Most research work that do so search for a single substitute to provide
the services of the removed component.

The port-enhanced components, presented in Section 2.4, are a means to replace
a missing component (one) and its now unused dependencies by a component assem-
bly (many) that fills the functional gap. This many-to-one component substitution
mechanism uses the same technique as the one presented for composing architectures
from components in a repository and is one of the results of the PhD of Nicolas Desnos
[43, 42].

The replacement of the missing component can then be decomposed into two steps:

◦ Remove the defective component and its dependencies, called the dead compo-
nents. When the component assembly without the defective component is consid-
ered as a graph, all connected components of the graph (its isolated subgraphs)
that do not contribute to realizing a functionality listed in the architecture’s ob-
jectives is composed of dead components (which used to be here only to fulfil the
dependencies created by the defective component). These components can be
removed to ”clean up” the architecture and make it more simpler to replace the
missing component by avoiding extra useless dependencies.

◦ Consider the incomplete component assembly as an intermediate result of our iter-
ative building algorithm as presented in Section 2.4 and therefore run the building
algorithm based on port-enhanced components on this incomplete assembly to
re-build a complete assembly.
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Figure 2.12 illustrates such a substitution on a simple evolution scenario. For simplic-
ity’s sake, instead of representing components as they usually are with all their connected
interfaces, here, architectures are graphs, the nodes of which are components (shown as
circles) and the edges of which are inter component connections (a single edge represents
all dependencies).

When the (defective) MemberBank component is removed, the graph is analyzed
and its connected components separated in two groups: the connected components that
contribute to a functional objective (live components) and the connected components
that were dedicated only to fulfilling the dependencies of the removed component (dead
components). The dead components are removed and the assembly completed by adding
the Independent Bank and Bank IS new components.

Figure 2.12: A many-to-one component substitution scenario [42]

If components are found in the repository that can together replace the missing com-
ponent, the result is a restored architecture where one component has been changed
for a component assembly of many smaller-grained ones. Such a process increases the
chances to find a replacement component as it does not only search for complete coarse-
grained components that implements at once all the missing functionalities but also for
smaller grained components that will altogether be able to play this role. As the building
algorithm searches for the smallest possible solutions (in terms of number of compo-
nents), these two strategies are complementary: if a single component is not found, the
smallest possible assembly will be searched for. Of course, the selected assembly can be
stored in the repository as an already built solution for future (re)use.

The proposed many-to-one component substitution mechanism is an affirmative an-
swer to research question q9: can evolution be automated?

This many-to-one component substitution mechanism can also be seen as an au-
tomatic composition mechanism that assembles smaller-grained components into a
coarser-grained one. This coarser-grained component fulfils the objectives defined by

39



Chap. 2 — Conclusion and research project outlook

what previously was the missing component, here considered as an abstract component
representing the composition objectives (the external description of the wished resulting
component). Such an automatic composition mechanism would be useful to complete
another step of the CBSE activities (i.e., the compose activity of Figure 1.1) and should
be integrated in a tooling that covers the whole software application development by
component reuse process (see Section 3.3.4).

2.5.4 Automatic calculus of architecture evolution plans

Changes must be treated as first class entities. During the PhD of Huaxi (Yulin) Zhang
an evolution management model that suits the three-level architectural model of Dedal
[119, 118, 120] was proposed.

Changes are handled when initiated at any abstraction levels: specification, imple-
mentation and deployment. Their effects are applied locally and propagated to the
neighbouring levels so as to maintain all descriptions coherent with one another. If
changes are considered to disturb the equilibrium of the architecture descriptions, the
propagation mechanism can be seen as a means to reach another point of equilibrium,
that is another state where architectural descriptions are coherent. If the architecture
specification is to be affected by the change, the change management system can either
forbid the change (in a computer-empowered mode) or create a new coherent version
of the whole architecture with modified specifications (in an architect-empowered mode).

During the PhD of Huaxi (Yulin) Zhang, evolution was managed in an ad hoc manner.
Thanks to the formal ground of his work, the PhD of Aderrahman Mokni brings these
ideas further. Indeed, a more disciplined and formal approach of evolution [81, 83, 82, 85]
is proposed.

First, basic architecture change operations (i.e., addition, deletion and modification
of components and connections) are described formally at each of the architecture de-
scription levels. Then, evolution rules that react to changes by restoring the coherence
of the architecture are formally defined. Finally, the B solver is used as a planning tool
as the exploration of the rules to reach the objective of all description being consistent
is equivalent to the compilation of a sequence of change operations. This sequence con-
stitutes an evolution plan that is automatically searched for among all possible change
operation sequences and restores the consistency of the architecture.

To overcome the inherent complexity of the search in practical cases, the generic
B solver has been adapted using problem-specific heuristics. After being proposed for
validation to the architect as a roadmap that describes the necessary changes consequent
to an initial perturbation, the evolution plan can be transformed into an executable se-
quence of operations that are effectively executed on the architecture.

The proposed automatic calculus of architecture evolution plans is an affirmative
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answer to research question q9: can evolution be automated?
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Chapter 3

Conclusion and research project
outlook

This conclusive chapter is going to present a synthesis of the contributions I have talked
about in this dissertation. It also says a word on the work of PhD students and postdocs I
did not include in this dissertation. The five research articles appended to this document
are then introduced. To finish, some perspectives to this research are presented.

3.1 Synthesis

This dissertation showed how questions around the process of engineering and maintain-
ing component-based applications have been the central theme of my research work so
far.

During my PhD, I have worked on evolution, tracing the states of systems using
a versioning mechanism that applied on models of both class and instance levels. The
main contribution of this work is a co-evolution mechanism that could be parameterized
in various ways using strategies and rules attached to relations that define how versioning
had to propagate or not from a (changed) class or instance to its related ones that might
be affected by the change or not. One of the relations studied explicitly is composition.

With Nicolas Desnos, I explored composability, defining the semantics of primi-
tive and composite port connections to be able to automatically assemble components
from a repository while connecting the smallest possible number of each component
interfaces. I also explored means to automate evolution management when using the
automatic assembly algorithm and ports semantics to repair an architecture configura-
tion or an assembly in which a component misses (because it is unavailable or defective).

With Huaxi (Yulin) Zhang, I explored reusabiliity, defining a (third) system require-
ment level in our new Dedal ADL that serves as a perennial description of the architect’s
intention. This intention is exploited at design time to choose the component implemen-
tations that best match the wished ones and compose the architecture’s configuration.

43



Chap. 3 — Conclusion and research project outlook

It also serves as a guide to the evolution process to determine if changes that occurred
in the assembly or in the configuration result in a software that still matches the system
requirements expressed in the architecture specification or if they imply either to forbid
such changes or to check with the architects if he / she wants to modify the specification
accordingly. A small Domain Specific Language (DSL) was also proposed to describe
changes that both gathers information in a single place and serves for traceability.

With Abderrahman Mokni, I further explored these topics. Writing a formal seman-
tics for the Dedal ADL and formalizing evolution rules gave us access to new tools for the
management of component-based development. Indeed, the B formal language comes
with automatic solvers and semi automatic provers that made it possible to check the
well-formedness of (each of the three levels of) architecture descriptions and the validity
of the semantics of inter-level relations thus acting as a complementary tool to support
modelling and composition. The B formal language and tools were also used as a planner
to repair an architecture configuration or an assembly after it being affected by changes.
This newly tooled approach makes it more concrete to reuse components and evolve
component-based software as it provides more automated help to architects in the core
of their eclipse-based integrated development environment (IDE).

With Gabriela Arévalo, I explored automatic indexing of components according to
their substitutability relation. This type-based indexing is a key mechanism of the effi-
cient organization of component repositories and eases the querying of components that
match some specification, can substitute to a component or can assemble to a com-
ponent. It therefore is a cornerstone of all component-based development major tasks:
indexing makes component reuse possible when repositories are too big, too numerous
or too distributed for an expert to learn what components are available. Thanks to such
indexing, components can be searched for in order to either be assembled to or replace
some other component. It thus is a central mechanism for composition and evolution.
The proposed type-based substitutability partial order is mainly based on syntactical in-
formation.

With Zeina Azmeh, I started to explore complementary (more semantical) means
to index services by comparing meta-information extracted from their descriptors. This
work used techniques inspired from natural language analysis and information retrieval
techniques. These, combined with FCA, resulted in automatic service classification ac-
cording to the proposed substitutability relation. Such classification was the pre-calculus
of a partial order among services that was meant to enable to quickly search a replace-
ment service in case one became unavailable. It is therefore clearly a contribution to
service reuse by composition and service-based application evolution.

These contributions are all summed up in Figure 3.1.

In this dissertation, I did not present the work done with Rafat Al’Msiedeen on the
retro-engineering of software product lines from the code of several software product
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Figure 3.1: Synthesis of the presented contributions

variants [10, 11, 12, 7, 9, 8, 6, 5]. In this work, I explored deeper how information
retrieval techniques (e.g., Latent Semantic Indexing (LSI) [40]) could be used to mine
information from textual data (here, software code) by assessing their similarity. This
work is inspiring in two ways. First, it encourages me to further explore various means
to classify components, using syntactical data as well as semantical data and further-
more, collecting extra data from usage or from users. This will be the basis for providing
context-aware typing relations as described in Section 3.3.1. Second, it encourages me
to further exploit the feature models designed to express commonalities and variabilities
in software product lines in order to better describe variability in architectures. Indeed,
having their system requirements described as a set of possibilities represented not solely
by the types of the specified roles (and the component class to role matching relation)
but also by a model that explicitly represents more complex variations in the admissible
specifications would expand the possibilities of automatically building or evolving archi-
tectures as foreseen in Section 3.3.2.

In this dissertation, I did not present the work done with Guillaume Grondin either.
During his post doctorate on the Hydroguard flood surveillance project, we worked on
AROLD, a Domain Specific Language (DSL) to declaratively describe missions that had
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to be achieved by the software system [56]. This language was adapted to describing
several alternative missions that correspond to alternative objectives depending on the
context. For example, the system had to monitor parameters measured by sensors and
collect their values over time but when a parameter had an abnormal value, meaning
something was going wrong on the field, the system had to automatically switch to
a crisis mode in which its missions where different, directed to alert the authorities.
The missions were automatically deployed based on existing implementations and their
deployment optimized on the existing calculation units using a greedy approximation
algorithm and problem-specific heuristics. This work was a first step into providing high
level knowledge on the system behavior in order for it to autonomically adapt to changes
in its environment. Such an idea could be exploited further with a feature-based vision
of the specifications of architectures (see Section 3.3.2).

During their PhDs Fady Hamoui and Matthieu Faure both studied how component-
based software engineering techniques could apply in pervasive environments to have
control software self-adapt to its context. I chose not to include the presentation of
their work in this dissertation even if I strongly believe pervasive environments are a
choice application domain for my research. Indeed, in pervasive environments there are
distributed devices that each can carry its own local component repository. There are
also sensors and actuators that make it possible for the software to have inputs from
its context and to concretely act on it. Mobility of users carrying devices and mobil-
ity of sensors and actuators as they come with equipment that can be added to or
removed from the environment easily make applications that are developed for these
environments in demand for runtime self-* mechanisms that strongly resemble those
studied and described above. At last, Home Automation Applications are examples of
applications that execute in such pervasive environment and they are very concerning as
they can participate at increasing our comfort and security at home, better managing
our energy consumption so as to preserve the environment or providing services tailored
for the more fragile among us (elderly or disabled people). In this context, with Fady
Hamoui, I explored how home monitoring applications could be described in a high level
manner through rule-based scenarios. These scenarios are deployed and executed thanks
to an agent-based system in which the software part of agents is self-assembled from
generated components some of which control a sensor or an actuator and another of
which is responsible for coordinating the execution of the scenario [59, 61, 60]. With
Matthieu Faure [50, 52, 51], I proposed a DSL to declaratively describe scenarios. One
of its characteristics is that it inherently adapts to its context with, for example, the
all and any quantifiers that make it possible to describe actions such as turn any of
the dining room lamps on or shut all shutters. This DSL is furthermore tooled with
a composition engine that composes the software that is going to be executed and a
step by step execution model that takes device (thus service) mobility into account in
order to define scenarios that span over several places. Scenario sharing is also possible.
As an application field, home automation still is a perspective for my research (see 3.3.4).

In this dissertation, I did not present the results of Frédéric Souchon’s PhD either.
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The objective of this work was to propose a fault tolerance mechanism in the form of an
exception handling system adapted to distributed, asynchronous software such as agent
systems or message-driven component-based applications [101, 103, 100, 102]. This
work nonetheless is an incentive to fully integrate exceptions as a key information on
functionality that impacts their substitutability (see Section 3.3.1).

3.2 Choice of appended articles

This synthesis of my contributions is accompanied by a selection of five research articles.
They have been chosen so as to cover this overview. Most of them are long (journal)
papers. As such, they provide deeper details on most aspects of this overview. They are
appended in the chronological order of their publication:

1 – Christelle Urtado and Chabane Oussalah. Complex entity versioning at two granu-
larity levels. Information Systems, 23(2/3):197–216, 1998. IF (1998) 1,547. ERA
rank A*.

It is one of the achievements of my doctoral thesis. It sums up the vision I had on
versioning as a mean to trace (co-)evolution. Indeed, it defines a versioning model
that parameterizes using versioning strategies and rules how relations between
concepts impact their being versioned together or not. See Appendix A.

2 – Nicolas Desnos, Marianne Huchard, Guy Tremblay, Christelle Urtado, and Syl-
vain Vauttier. Search-based many-to-one component substitution. Journal of
Software Maintenance and Evolution: Research and Practice, Special issue on
Search-Based Software Engineering, 20(5):321–344, September / October 2008.
IF (2008) 0,971. ERA rank B.

Published during the PhD of Nicolas Desnos, this journal article shows how prim-
itive and composite ports, together with a companion algorithm to automatically
assemble components can be used as a mean to drive evolutions that repair an
assembly after a component failure. See Appendix B.

3 – Gabriela Arévalo, Nicolas Desnos, Marianne Huchard, Christelle Urtado, and Syl-
vain Vauttier. Formal concept analysis-based service classification to dynamically
build efficient software component directories. International Journal of General
Systems, 38(4):427–453, May 2009. IF (2009) 0,611. ERA rank C.

This journal article reflects the results on component classification and component
repository indexing that was developed with Gabriela Arévalo. See Appendix C.

4 – Huaxi (Yulin) Zhang, Christelle Urtado, and Sylvain Vauttier. Architecture-centric
component-based development needs a three-level ADL. In Muhammad Ali Babar
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and Ian Gorton, editors, Proceedings of the 4th European Conference on Software
Architecture (ECSA 2010), volume 6285 of LNCS, pages 295–310, Copenhagen,
Denmark, August 2010. Springer. AR 25,3%. ERA rank A.

This conference paper was published during the PhD of Huaxi (Yulin) Zhang and
introduces the Dedal ADL and its three architecture representation levels tailored
for component reuse. See Appendix D.

5 – Abderrahman Mokni, Christelle Urtado, Sylvain Vauttier, Marianne Huchard, and
Huaxi (Yulin) Zhang. A formal approach for managing component-based archi-
tecture evolution. Science of Computer Programming, special issue of the 11th
international symposium on Formal Aspects of Component Software, 127:24–49,
October 2016. IF (2014) 0,715. ERA rank A.

This journal article is one of the achievements of the PhD of Abderrahman Mokni.
It shows that a B formalization of the Dedal ADL and formalized evolution rules
make it possible to have evolution plans calculated automatically in order to restore
an assembly after it being impaired by some change. See Appendix E.

3.3 Research project

My perspectives for this research are numerous but all converge towards the objective of
proving the interest of setting a concrete software engineering based on components.

3.3.1 Context-aware and usage-aware component substitution
relations

Substitution and compatibility relations are central to component search, connection
and replacement. Several definitions are possible for the substitution relation: from
strict equality, to strict typing in the sense compilers do, to less strict type-based pro-
posals that admit small adaptations (parameter duplication or re-orderings), to semantic
typing relations inspired from information theory. All the possible information natures
identified in Section 2.2 might lead to several pertinent and yet unexplored combinations
thus defining interesting typing relations. As an example, it is not easy to take func-
tionality raised exception types into account as the semantics of sub-typing a required
functionality that can signal an exception type is not obvious.

In an adaptable system, all these relations could all be available and the best that
suits some component search context be adopted automatically. We could distinguish
two situations:

◦ searching in the large. There are contexts where there are a lot of components.
Component search has to deal with the heterogeneity of the component sources
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and their being numerous. It might be useful to have a strict substitutability re-
lation that will strongly discriminate components and identify components that
strictly match requests. The fact that components come from various providers,
might be addressed by considering semantics-based relations to mitigate different
vocabularies and thus constitute a first filter before applying type-based selection
methods. Ontologies might be used here, for example [97, 57]. Discriminating
among components might also mean strengthening the search constraints, asking
for higher quality of service or availability and comparing costs to choose the lowest.

◦ searching in the small. On the opposite, there are contexts where components
are scarce. In order to still find something (and not redevelop unless it is really
needed), a less strong substitutability relation that will find extra close matches
might be used. Resulting components might not be exactly what would initially
have been searched for but they might become suitable for reuse after small adap-
tations. These adaptations might be automated in some simple cases or manual.
Adaptations should be preferred to development from scratch as long as they are
less costly [79].

Such a system would imply to have metrics to qualify the search context and make
decisions accordingly. Metrics could be calculated on metadata provided by developers
when they store components in the repository or obtained automatically (e.g., by query-
ing the repository with some requests and generalizing from them).

Ultimately users might be involved in a sort of collaborative social network in which
experiences with component reuse might be shared in several ways and constitute an
aggregated rating that creates a feedback loop and parameterizes future searches. For
example, tracking component usage (e.g., usage frequency, number of tries for a same re-
quest) or having users rank or evaluate the components they use might be user-centered
information used to increase trust in component choices. There might also be an auto-
matic recommender system that scans your usages and determines your profile in order
to proactively propose new components that might suit your needs.

Such ideas have been rapidly outlined in one of my prospective research paper [15].

3.3.2 Feature-based architecture requirements

System requirements are the first entry of the software development by component reuse
process. In the proposed system, they are expressed by the means of abstract architec-
ture specifications. These are a flexible expression of what is needed as compared to
many models. Indeed, in most of them, solely configurations exist that do not permit
to make changes to them in the range of broader specifications (except if enumerating
extensively all valid configurations which is a ”closed” means to define possible evolu-
tions). Abstract architecture specifications define what the architecture should look like
intently as roles and the type-to-role matching relation state what is the minimum set
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of functionalities that should be implemented but do not make the set of possibilities an
extensively enumerated one.

The expression of system requirements might yet be more flexible if it could be based
on the definition of mandatory or optional roles (and maybe even include constraints be-
tween those roles to express co-occurence or mutual exclusion).

Using features models [66] as a complement of abstract architecture specifications
[21, 65] might be an interesting means to define more complex (and larger) sets of
possible configurations that meet the requirements while still defining them intently (as
opposed to extensively enumerating all possibilities).

Feature models are used to specify commonalities and variability when defining soft-
ware product lines. In the case of feature-based system requirements, they might define
various types of configurations, that each could be considered as a specific product in
the architecture product line.

3.3.3 Seeding the reuse process by reverse-engineering compo-
nents and architectures

In order to seed and promote such a component reuse process, there is a need for
a sufficiently rich component offer. The idea is to have components in an adequate
number to start constitute a panel of reuse possibilities. There is also a need for material
to analyze in order to experiment our ideas on concrete cases and validate them. As such
repositories still do not exist, there is a need to seed the process of concretely adopting a
component-based engineering development process. This can be done by mining existing
projects. Three sorts of data could be searched for and exploited:

◦ components or architecture fragments. The idea is also to have the compo-
nents be adequately documented, with their ports for example, so as to be able to
adequately connect them. To identify components from existing non component
projects, it is possible to reverse engineer existing open-source projects. It is easier
if these are written using an object-oriented language.

A rough approximation would be to consider a class as a component and analyze
its methods and dependencies to respectively determine its provided or required
interfaces. If there are no interfaces in the code (either they have not been pro-
grammed or the concept does not exist in the chosen programming language),
there will be a need to cluster provisions and requirements in order to define these
interfaces.

If assimilating a class to a component looks unsatisfactory, classes will have to be
clustered from code into components [67] using some heuristics and metrics (such
as cohesion and coupling [46]). An alternative way does not need that the code be
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available and clusters object-oriented APIs into components from their usages [98].

If hierarchical, these approach might detect (composite) components that them-
selves are architecture fragments. Storing both detail levels – the inner components
and the architecture fragment that describes a coarser-grained component – is in-
teresting in that it provides components of various granularities and increases both
the probability of finding a suitable component that does not provide too much
extra functionalities (in order not to over-constrain the remaining of the search)
and the probability of finding sufficiently coarse components to suit our needs (not
to have to take the risk of rebuilding them from smaller ones).

◦ architectures. The idea is also to have adequately documented architectures so
as to be able to test our proposals against. The three levels of architecture descrip-
tions have to be mined, especially their specifications. Architecture specification
will be a guide for architecture evolution or will serve to a posteriori validate past
evolutions that occurred during the life of the studied application.

In a first approach, classes can be assimilated to components if their dependencies
can be discovered and exposed. More precise approaches can also apply as de-
scribed above. Application description in the form of declarative scripts are close
to configuration descriptions. Such scripts (XML assembly descriptors in J2EE,
Spring scripts and, maybe, build scripts) could be used to automatically generate
configurations by reverse engineering real open-source applications. This is a lead
to explore for mining configurations but other approaches could be studied as clas-
sified in Stéphane Ducasse et al.’s literature review [49].

The assembly level description and instance constraints can be searched for in the
code: even if it might not be easy to explore all possible instantiations in theory,
I hope, in practice, instantiation patterns are limited.

The remaining problem, that is specific to the presented approach, is the need for
an architecture specification description. For this level, there might not be any
documentation to mine the information from. In a first (restrictive) approximation,
specifications can be the exact definition of the configurations found. It might be
more interesting to mine them from several resembling configurations. If such
various configurations exist, classification techniques such as FCA could be used
for this purpose. Abstract concepts that supersed a group of concept representing
existing configurations might be good descriptions of specifications that undergo
this set of configurations.

◦ component and architecture histories. In order to be able to test our ideas
against real evolution scenarios, there is also a need to mine version histories of
components and architectures. This will make it possible to replay realistic changes
and confront our tools to real evolutions. This will also serve to encourage their

51



Chap. 3 — Conclusion and research project outlook

use in a forward component-based software engineering process.

A key issue will be to improve version management of components and architecture
descriptions in our proposal. This is necessary in order to better manage inter-
version (in)coherence or propose a framework where several versions of a given
component might co-exist in a single version of an architecture.

Having adequately documented components and architectures as well as their his-
tories would be the first step towards developing wider range experiments of automatic
component assembly (and comparing the results to real architectures), architecture co-
herence verification and architecture evolution (replay of real mined evolution scenarios).
A well supplied repository would also become an argument to promote component and
architecture fragment reuse.

Several sources might be used to reverse engineer components and architectures
such as: long-lived object-oriented open-source projects (e.g., ArgoUML1), projects that
already include components (e.g., Fractal2 or FraSCAti3 projects), Spring open-source
projects, etc.

3.3.4 Tooling and applications

In order to better promote the ideas presented in this manuscript, there is a need to pursue
the effort towards having a single demonstrator that embeds all the ideas developed here.

The different steps and activities of software application development by component
reuse have to be completed so as to compose a continuous process (see Figure 3.1 for
activities that have not been yet tackled). Conversely, when several proposals for a given
activity coexist in my proposed works, they have to be merged or one must be chosen
(see also Figure 3.1 for activities where several proposals exist).

As an implementation platform, the choice to tool the eclipse IDE has become our
option after having worked around the Julia implementation of the Fractal component
model and ADL (during the 2005-2010 frame period). Eclipse is both a well known (de
facto standard) IDE and an extensible application, tooled with numerous plugins that
help constitute a full tool suite without the needs of reinventing what already exists.

We can, for example, rely on frameworks and tools we have already used:

◦ the Eclipse Modeling Framework (EMF) meta-model4 to support the concepts of
the proposed component model (e.g., primitive and composite ports),

1http://argouml.tigris.org.
2http://fractal.ow2.org.
3The FraSCAti component framework implements the Service Component Architecture (SCA) spec-

ification. http://wiki.ow2.org/frascati/.
4https://eclipse.org/modeling/emf/.
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◦ the Eclipse Sirius5 platform to create original graphical modeling tools (DSLs with
their own graphical concrete syntax) on top of EMF,

◦ the ProB API that provides access to B solver capabilities (animation and model-
checking) and makes it possible to code a dedicated specific solver,

◦ the OSGi service platform6 to manage component deployment and host their ex-
ecution.

The prototype developed during the PhD of Abderrahman Mokni, called the Dedal-
Studio tool suite, can be a starting point for this tooling integration.

The application domain of pervasive, cyber-physical systems, meaning systems that
mix software and hardware devices or things (sensors, actuators, robots, etc.) is a
context where software would better be self-* and context-sensitive. It is a very inspiring
application field for the proposed software engineering techniques. Focusing on home
automation for the elderly or disabled people as well as setting a software architecture
that makes it possible to use connected things, as named by the Internet of Things (IoT)
trend, to propose new services while preserving the privacy of the collected data is a real
challenge.

5https://eclipse.org/sirius/.
6https://www.osgi.org/.
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generation for software component verification. In Proceedings of the 17th IEEE
international conference on Automated Software Engineering (ASE 2002), pages
3–12, Edinburgh, UK, September 2002.

[56] Guillaume Grondin, Matthieu Faure, Christelle Urtado, and Sylvain Vauttier.
Mission-oriented autonomic configuration of pervasive systems. In Proceedings
of the 7th International Conference on Software Engineering Advances (ICSEA
2012), pages 685–690, Lisbon, Portugal, November 2012.

[57] Suresh Chand Gupta and Ashok Kumar. Reusable Software Component Retrieval
System. International Journal of Application or Innovation in Engineering and
Management, 2(1):187–194, January 2013.

[58] Florian Hacklinger. JavaA - taking components into java. In Proceedings of
the ISCA 13th international conference on Intelligent and Adaptive Systems and
Software Engineering (IASSE 2004), pages 163–168, Nice, France, July 2004.

[59] Fady Hamoui, Marianne Huchard, Christelle Urtado, and Sylvain Vauttier. Specifi-
cation of a component-based domotic system to support user-defined scenarios. In
Proceedings of 21st International Conference on Software Engineering and Knowl-
edge Engineering (SEKE 2009), pages 597–602, Boston, USA, July 2009.

[60] Fady Hamoui, Marianne Huchard, Christelle Urtado, and Sylvain Vauttier.
SAASHA: a Self-Adaptable Agent System for Home Automation. In Proceed-
ings of the 36th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA 2010), pages 227–230, Lille, France, September 2010. IEEE.

[61] Fady Hamoui, Marianne Huchard, Christelle Urtado, and Sylvain Vauttier. Un
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[120] Huaxi (Yulin) Zhang, Christelle Urtado, Sylvain Vauttier, Lei Zhang, Marianne
Huchard, and Bernard Coulette. Dedal-CDL: Modeling first-class architectural
changes in Dedal. In Proceedings of the Joint 10th Working IEEE / IFIP Conference
on Software Architecture & 6th European Conference on Software Architecture
(WICSA /ECSA 2012), Helsinki, Finland, August 2012. Short paper. AR 35,7%.
ERA rank A.

[121] Huaxi (Yulin) Zhang, Lei Zhang, Christelle Urtado, Sylvain Vauttier, and Mar-
ianne Huchard. A three-level component model in component-based software
development. In Proceedings of the 11th International Conference on Genera-
tive Programming and Component Engineering (GPCE 2012), Dresden, Germany,
September 2012. ACM.

67





Appendices

69





Appendix A

Complex entity versioning at two
granularity levels

This journal article [110] has been published in Information Systems in 1998. It is an
extended and selected version of the conference paper [90] published at CAiSE in 1997.
It is a good summary of my PhD thesis.

It defines a version management model tailored for what I called ”complex entities”
at that time. Entities because it is not only about versioning objects as class versions
are considered too. Complex because it is not only about versioning isolated entities as
dependancies between entities build entity dependency graphs in which versioning a node
might in turn necessitate to version dependent ones. The proposed version management
model, which is intended for application designers, manages evolution in an original
parameterizable way:

◦ It divides into two user-levels: microscopic and macroscopic. Depending on their
needs and on those of the targeted application, designers can choose the level they
consider to suit them best. The microscopic level is intended for expert users who
have specific version management needs, while the macroscopic level is much more
suitable for non-expert users.

◦ It has not been defined for a particular category of dependence relations and is pa-
rameterizable: existential dependencies are dealt with by an operation propagation
mechanism described with propagation rules and strategies.

◦ It is modular as designers can either reuse predefined rules and/or strategies or
create new ones in order to respond to new requirements (new version propagation
strategies, new dependency relation between entities, etc.).
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Composition relation Derivation relation between complex objects

My-car
- brand : Golf
- weight : 1 ton
- quoted value : 100 000 FF
- type : GTI

My-carbody
- color : dark green
- dimensions : 2*5
- serial number : vvv5478c9

My-carengine
- serial number : jjh7i994
- fuel type : unleaded

First version of the complex object car : Car-container

the-body

the-engine

 My-car
- brand : Golf
- weight : 1 ton

- type : GTI

 My-carbody

- dimensions : 2*5
- serial number : vvv5478c9

My-carengine
- serial number : jjh7i994
- fuel type : unleaded

Second version of the complex object car : Car-container'

the-body

the-engine - quoted value : 105 000 FF

 - color : metallic gray

Composition relation

Derivation relation between 
elementary objects

My-car
My-carbody

My-carengine

My-carbody'

- brand : golf
- weight : 1 ton
- quoted value : 100 000 FF
- type : GTI

- serial number : jjh7i994
- fuel type : unleaded

- color : dark green
- dimensions : 2*5
- serial number : vvv5478c9

the-body

the-body'My-car'
- brand : golf
- weight : 1 ton
- quoted value : 105 000 FF
- type : GTI

- color : metallic gray
- dimensions : 2*5
- serial number : vvv5478c9

the-engine

the-e
ngine'









Creation rule R3
direction : forward
mode : extended
event : X' <- create-version(X)
condition : let r(X, Y) be a relation
action : r' <- derive (r)
            Y' <- create-version (Y)
            r'.source <- X'
            r'.destination <- Y'

direction : backward
mode : restricted
event : Y' <- create-version(Y)
condition : let r(X, Y) be a relation 
action : r' <- derive (r)
             r'.source <- X
             r'.destination <- Y'

Creation rule R5



Project-management

Project
Id
Manager
Schedule
Phase
Resource-plan
Financial-plan

Assembly
Id
Phase
Assembly-process

Part

CADsystem
Field
Platform
Manufacturer

CADstation
Engineer-name

Drawing-board
Engineer-name

Engineering
Engineering-fields
Engineer-list

Drawing
Id
Field
Creator
Last-modified

Part-having-a-hole
Hole-center
Hole-radius

Inheritance

Composition

Association

PartD
raw

ing

A
ss

em
bl

yD
ra

w
in

g

AssemblyPart

Id
Manufacturing-process



25

d-102-front

25

d-101-front

N
7 20

25

50
d-102-top

105

25
10

30

8

N
 7

d-101-top

d-101-102-front 

a-101-102
Id : 101-102
Phase : conception
Assembly-process : bolting

p-101
Id : 101
Manufacturing-process : machining
Hole-centre : (65 ; 12,5)
Hole-radius : 7

p-102
Id : 102
Manufactring-process : machining
Hole-centre : (30 ; 12,5)
Hole-radius : 7

d-101-front
Id : 101-front
Domain : Mechanical conception
Creator : Mr. Dupond
Last-modified : 13 Jan 94

d-102-front
Id : 102-front
Domain : Mechanical conception
Creator : Mr. Durand
Last-modified : 9 Dec. 95

d-101-top
Id : 101-top
Domain : Mechanical conception
Creator : Mr. Dupond
Last-modified : 13 Jan 94

d-102-top
Id : 102-top
Domain : Mechanical conception
Creator : Mr. Durand
Last-modified : 10 Dec. 95

d-101-102-front
Id : 101-102-front
Domain : Mechanical conception
Creator : Mr. Durand
Last-modified : 6 Jan. 97

AssemblyDrawing1

AssemblyPart1

AssemblyPart2

PartD
raw

ing1

PartDrawing2

PartDrawing3
PartDrawing4

25

d-102-front

N
7 20

25

50
d-102-top

25

d-101-front'

105

25
10

75

8

N
 7

d-101-top'

d-101-102-front' 

a-101-102'
Id : 101-102
Phase : conception
Assembly-process : bolting

Id : 101
Manufacturing-process : machining
Hole-centre : (30 ; 12,5)
Hole-radius : 7

p-102
Id : 102
Manufactring-process : machining
Hole-centre : (30 ; 12,5)
Hole-radius : 7

d-101-front'
Id : 101-front
Domain : Mechanical conception
Creator : Mr. Dupond
Last-modified : 1 Feb. 97

d-102-front
Id : 102-front
Domain : Mechanical conception
Creator : Mr. Durand
Last-modified : 9 Dec. 95

d-101-top'
Id : 101-top
Domain : Mechanical conception
Creator : Mr. Dupond
Last-modified : 1 Feb. 97

d-102-top
Id : 102-top
Domain : Mechanical conception
Creator : Mr. Durand
Last-modified : 10 Dec. 95

d-101-102-front'
Id : 101-102-front
Domain : Mechanical 
conception
Creator : Mr. Durand
Last-modified : 6 Jan. 97

AssemblyDrawing1'

AssemblyPart1'

AssemblyPart2'

PartD
raw

ing1'

PartDrawing2'

PartDrawing3
PartDrawing4

p-101'



Strategy S2
has-as-creation-rules : (R2, R4)
has-as-destruction-rules : ()
is-the-default-strategy-for-class  : ()
is-an-admissible-strategy-for-class : ()
is-the-default-strategy-for-instance : (AssemblyPart)
is-an-admissible-strategy-for-instance : (AssemblyPart)

Strategy S3
has-as-creation-rules : (R3)
has-as-destruction-rules : ()
is-the-default-strategy-for-class  : ()
is-an-admissible-strategy-for-class : ()
is-the-default-strategy-for-instance : (PartDrawing, 
AssemblyDrawing)
is-an-admissible-strategy-for-instance : (PartDrawing, 
AssemblyDrawing, AssemblyPart)

Propagation strategy root

Creation rule root

Creation rule R3
direction : forward
mode : extended
event : X' <- create-version(X)
condition : let r(X, Y) be a relation 
action : r' <- derive (r)
            Y' <- create-version (Y)
            r'.source <- X'
            r'.destination <- Y'

Creation rule R2
direction :backward
mode : extended
event : Y' <- create-version(Y)
condition : let r(X, Y) be a relation 
action : r' <- derive (r)
            X' <- create-version (X)
            r'.source <- X'
            r'.destination <- Y'

direction : forward
mode : restricted
event : X' <- create-version(X)
condition : let r(X, Y) be a relation 
action : r' <- derive (r)
            r'.source <- X'
            r'.destination <- Y

Creation rule R4







Software-pack
Hardware : PC
Minimum-operating-system : 6.0

Software-container

Word-processor   
Hardware : PC
Edition : 1995

Spreadsheet
Hardware : PC
Edition : 1994

Drawing-program
Hardware : PC
Edition : 1995

Word-processor-main-module
Author : Mr. Durand
End-coding-phase : 1 March 1995
End-testing-phase : 1 August 95

French-dictionary
Language : French
Number-words : 50 000
Last-modified : Jan. 94

Spreadsheet-main-module
Author : Mr. Dupond
End-coding-phase : 1 June 94
End-testing-phase : 1 August 94

Vector-drawing-module
Characteristics : Black and white

Macro-function-interpreter
End-coding-phase : 1 April 94

the
-w

p

the-spreadsheet

the-drawing

the-main-wp

the-dictionary-wp

the-dictio
nary-sprd

the-main-sprd
the-interpreter

the-main-drw

Composition relation

Composition relation

Software-pack
Hardware : Mac
Minimum-operating-system : 7.0

Word-processor   
Hardware : Mac
Edition : 1996

Spreadsheet

Edition : 1994

Drawing-program
Hardware : Mac
Edition : 1994

Word-processor-main-module
Author : Mr. Durand
End-coding-phase : 1 March 1995
End-testing-phase : 1 August 95

French-dictionary
Language : French
Number-words : 50 000
Last-modified : Jan. 94

Spreadsheet-main-module
Author : Mr. Dupond
End-coding-phase : 1 June 94
End-testing-phase : 1 August 94

Vector-drawing-module
Characteristics : Black and white

Software-container'

the
-w

p

the-spreadsheet
the-drawing

the-main-wp

the-dictionary-wp

the-dictionary-sprd
the-main-sprd

the-main-drw

Hardware : Mac

English-dictionary
Language : English
Number-words : 30 000
Last-modified : Jan. 96

the-dictionary-wp



Software-container

is-contained-in-6
is-contained-in-7

is-contained-in-5
is-contained-in-4
is-contained-in-3
is-contained-in-2
is-contained-in-1

is-contained-in-8
is-contained-in-9
is-contained-in-10
is-contained-in-11
is-contained-in-12
is-contained-in-13
is-contained-in-14
is-contained-in-15
is-contained-in-16
is-contained-in-17
is-contained-in-18

Software-pack
Word-processor   
Spreadsheet
Drawing-program
Word-processor-main-module
French-dictionary
Spreadsheet-main-module

the-wp
the-spreadsheet
the-drawing
the-main-wp
the-dictionary-wp
the-dictionary-sprd
the-main-sprd
the-interpreter
the-main-drw

Vector-drawing-module
Macro-function-interpreter

Creation rule R0
direction : none
mode : -

Creation rule R1
direction : forward
mode : extended
event : X' <- create-version(X)
condition : let r(X, Y) be a relation
action : r' <- derive (r)
            Y' <- derive (Y)
            r'.source <- X'
            r'.destination <- Y'

Creation rule root

Propagation strategy root

Strategy S0
has-as-creation-rules : (R0)
has-as-destruction-rules : ()
is-the-default-strategy-for-class  : ()
is-an-admissible-strategy-for-class : ()
is-the-default-strategy-for-instance : (is-contained-in-5, 
is-contained-in-6, is-contained-in-7, is-contained-in-9)
is-an-admissible-strategy-for-instance : (is-contained-in)

Strategy S1
has-as-creation-rules : (R1)
has-as-destruction-rules : ()
is-the-default-strategy-for-class  : ()
is-an-admissible-strategy-for-class : ()
is-the-default-strategy-for-instance : (is-contained-in)
is-an-admissible-strategy-for-instance : (is-contained-in)
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Appendix B

Search-based many-to-one
component substitution

This journal article [42] has been published in a special issue on Search-Based Software
Engineering of the Journal of Software Maintenance and Evolution: Research and Prac-
tice, in 2008. It presents part of the work realized during the PhD of Nicolas Desnos
and with the collaboration of Guy Tremblay from Canada.

It presents a search-based automatic many-to-one component substitution mecha-
nism. When a component is removed from an architecture to overcome component
obsolescence, failure or unavailability, most existing fault tolerant systems try to find
another comparable component to perform component-to-component (one-to-one) sub-
stitution. Doing so, they can only handle situations where a specific candidate compo-
nent is available. As this is not the most frequent case, it would be more flexible to
allow a single component to be replaced by a whole component assembly (many-to-one
component substitution).

This article proposes such an automatic substitution mechanism, which does not
require the possible changes to be anticipated and which preserves the quality of the
assembly. This mechanism requires components to be enhanced with ports, providing
synthetic information on their assembling capabilities. Such port-enhanced components
then constitute input data for a search-based mechanism that looks for possible assem-
blies inside a component repository and progressively builds coherent architectures, using
various heuristics to tame complexity.
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SUMMARY

In this paper, we present a search-based automatic many-to-one component substitution

mechanism. When a component is removed from an assembly to overcome component

obsolescence, failure or unavailability, most existing systems perform component-to-

component (one-to-one) substitution. Thus, they only handle situations where a specific

candidate component is available. As this is not the most frequent case, it would be more

flexible to allow a single component to be replaced by a whole component assembly

(many-to-one component substitution). We propose such an automatic substitution

mechanism, which does not require the possible changes to be anticipated and which

preserves the quality of the assembly. This mechanism requires components to be

enhanced with ports, which provide synthetic information on components’ assembling

capabilities. Such port-enhanced components then constitute input data for a search-

based mechanism that looks for possible assemblies using various heuristics to tame

complexity.

key words: component substitution, component assembly evolution, search-based building process,

many-to-one component replacement, heuristics, dead components

Introduction

Nowadays, software systems have to meet the needs of long life, autonomous and ubiquitous
applications and must therefore be flexible, dynamic, and adaptable like never before.
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2 N. DESNOS, M. HUCHARD, G. TREMBLAY, C. URTADO AND S. VAUTTIER

Component-based software engineering (Cbse) [1] is a good solution to optimize software reuse
and dynamic evolution while guaranteeing the quality of the software. Typically, a component is
seen as a black box which provides and requires services through its interfaces. An architecture
is built to fulfill a set of functional objectives (its functional requirements) while enforcing a set
of properties (its non-functional requirements) and is described as a static interconnection of
software component classes. A component assembly is a runtime instantiation of an architecture
composed of linked component instances.

In long life applications or evolving environments, component substitution is a necessary
mechanism for software evolution: it is a response to such events as component obsolescence,
failure or unavailability. Anticipating valid component substitutions while designing some
software is not always possible as the various contexts in which that software may run are
not known in advance. Repairing a component assembly after a component has been removed
while still preserving its whole set of functionalities is thus difficult. When a component is
removed from an assembly, most existing approaches perform component-to-component (one-
to-one) substitution [2, 3, 4, 5]. However, these approaches rely on the fact that an appropriate
component, candidate for substitution, is available. This situation can hardly happen because
it is difficult to find a component that has the same capabilities as the removed one. When such
a component does not exist, allowing a single component to be replaced by a whole component
assembly would permit more flexibility.

In this article, we propose an automatic substitution mechanism such that the possible
changes do not need to be anticipated. Our approach uses primitive and composite ports for
ensuring that a component can be replaced by a group of components while preserving the
quality of the whole assembly. Such many-to-one component replacements are allowed by a
search-based building algorithm that combines backtracking and branch and bound techniques
to examine candidate assemblies. This algorithm is optimized using various search strategies
and heuristics.

The rest of this paper proceeds as follows. The first two sections set up the context of
this work. First, we briefly recall the typical Cbse process, in order to define correctness
and completeness of an architecture. Then, we analyze the needs and limits of state-of-the-
art practices for dynamic architecture reconfiguration. The following sections introduce our
contribution. First, we present how ports allow us to automatically build valid assemblies [6]
and how the assembly building process can be seen as a search-based problem, more precisely as
a Csp. We then show how our building algorithm can be used as part of a four step component
substitution process, and discuss how the complexity of the algorithm can be tamed using
various search strategies and heuristics. Next, we discuss our implementation as well as some
experiments we performed. Finally, we conclude and discuss some possible future work.

Software Architecture Correctness and Completeness in CBSE
This section discusses the issues of correctness and completeness of software architectures that
result from a component reuse-based development process.

Copyright c� 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–18
Prepared using smrauth.cls



SEARCH-BASED MANY-TO-ONE COMPONENT SUBSTITUTION 3

Typical CBSE process. Cbse [7] makes it possible to build large systems by assembling
reusable components. The life cycle of a component-based architecture can be divided into
three phases: design-time, deployment-time and runtime.
At design-time, the system is analyzed, designed and the design validity is checked. An

architecture is built to fulfill a set of functional objectives (its functional requirements) [8, 9].
Functional objectives are deduced from problem analysis and defined as a set of functionalities
to be executed on selected components. Then, the structure of the architecture is described as
a static interconnection of software component classes through their interfaces. This requires
both selecting and connecting the software components to be reused†. This description,
typically written in an architecture description language [10], expresses both the functional
and non-functional capabilities of the architecture, as well as both the structural and
behavioral dependencies between components. For simplicity’s sake, this work only focuses on
preserving functional requirements while the software evolves. Non-functional properties are
also important but can be handled only after the functional constraints have been satisfied.
Once the architecture is described, its validity is statically checked. Most systems verify the
correctness of the architecture, while some also guarantee its completeness—both notions
are described below. Once the validity of the architecture is checked, it can be deployed.
Deployment requires instantiating the architecture, configuring its physical execution context
and dispatching the components in this physical context. One of the results of deployment is
a component assembly: a set of linked component instances that conforms to the architectural
description. At runtime, the component assembly executes.
The evolution of this assembly is an important issue for the application to adapt to its

environment in situations such as maintenance, evolution of the requirements, fault-tolerance,
component unavailability, etc. In this context, an important question is: What are the possible
dynamic evolutions that can be supported by the component assembly and by the architecture
itself? The remaining of this paper is a tentative answer to this question.

Correctness. Verifying the correctness of an architecture amounts to verifying the connections
between components and checking whether they correspond to a possible collaboration [9].
These verifications use various kinds of meta-information (types, protocols, assertions, etc.)
associated with various structures (interfaces, contracts, ports, etc.). The most precise checks
are done by protocol comparison, which is a hard combinatorial problem [11, 12, 13, 14, 15].

Completeness. An architecture must guarantee that all its functional objectives will be met.
In other words, the connections of an architecture must be sufficient to allow the execution of
collaborations that reach (include) all its functional objectives. We call this completeness of
the architecture [6]. Indeed, the use of a component functionality (modeled by the connection

†We assume that the selected components need no adaptation (or have already been adapted) as it is the
only situation in which the components’ external definitions are sufficient to match (whatever the definition of
matching is) with other components’ needs. Complementary approaches, interested in automating the assembly
building process and performing component adaptation, must necessarily rely on additional information
(e.g., domain specific semantics, data or usage patterns) either provided by designers or collected through
a reingeneering process. Thus, our approach is lighter.
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4 N. DESNOS, M. HUCHARD, G. TREMBLAY, C. URTADO AND S. VAUTTIER

of an interface) can require the use of other functionalities which, in turn, entail new interface
connections. Such functionalities (or interfaces) are said to be dependent. This information
is captured in the description of component behavior and depends on the context in which the
functionality is called (execution scenario). There are various ways to ensure completeness:

• For a first class of systems [16], completeness of an architecture is characterized by the
fact that all interfaces of any of the architecture’s component are connected. This notion
of completeness is simple to check but over-constrains the assembly, thus diminishing
both the capability of individual components to be reused in various contexts and the
possibilities of building a complete architecture given a set of predefined components.

• A second class of systems [3] defines two categories of interfaces, namely, mandatory
and optional. An architecture is then considered complete if all mandatory interfaces
are connected, while optional ones can be left pending. This does not complicate
completeness checking, yet increases the opportunities of building a complete architecture
given a set of predefined components. However, associating the mandatory / optional
property to an interface regardless of the assembly context does not increase the
capability of individual components to be reused in various contexts.

• The third, more relaxed view of completeness, requires connecting only the interfaces that
are strictly necessary [12, 17, 18] by exploiting the component behavior’s description.
This is typically done by analyzing protocols which makes completeness checking less
immediate.

In order to build correct and complete component assemblies we consider having as precise
correction checking as possible and adopt the third vision on completeness while trying to limit
the costs of protocol comparison by dismissing the less useful information. To achieve this, we
define a port-enhanced component model.

Example. Figure 1 illustrates that completeness of an assembly can be ensured while
connecting only the strictly necessary interfaces. For simplicity’s sake, in the example,
compatible operations and interfaces have the same name whereas, in the general case, interface
types only need to be substitutable. The Dialogue interface from the Client component
represents a functional objective and must therefore be connected. As can be deduced by
analyzing the execution scenario that has to be supported, all the dependent interfaces (grayed
on Figure 1) must also be connected in order to reach completeness. For example, as shown
in line 12 of the execution scenario, the Control interface from the MemberBank component
must be connected whereas the Question interface from the Client component, which is not
used in the scenario, does not need to be connected.

Dynamic Architecture Reconfiguration

This section discusses correctness and completeness issues for evolving software assemblies. To
ensure that an evolving valid component assembly remains valid at runtime, all systems try
to control how the assembly evolves. Different evolution policies exist:
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SEARCH-BASED MANY-TO-ONE COMPONENT SUBSTITUTION 5

Figure 1. A complete assembly and a possible corresponding execution scenario

• Some systems simply forbid dynamic reconfigurations [19, 20], so assemblies cannot
evolve at runtime. This, of course, is an unsatisfactory policy.

• Some systems [21, 3] allow the architectural structure to be violated when modifying
component assemblies at runtime. They allow component and connection modifications
(addition, suppression) based on local interface type comparisons. The result is a lack of
control on the assembly: its validity is not guaranteed anymore.

• Other systems ensure that component assemblies always conform to the architectural
structure. All possible evolutions must therefore be anticipated at design-time and
described in the architecture itself [10]. Different techniques can be used. For example,
[22, 5] use patterns to specify which interfaces can be connected or disconnected and
which components can be added or removed. [23, 24] use logical rules, a more powerful
means to describe the possible evolutions. These solutions, however, complicate the
design process and make anticipation necessary, which is not always possible [5, 25].

Dynamic Component Removal. Among the situations that must be handled to enable
component assembly evolution is dynamic component removal. Other facets of interest in the
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6 N. DESNOS, M. HUCHARD, G. TREMBLAY, C. URTADO AND S. VAUTTIER

change process are related to identifying changes, interrupting components’ execution, saving
the removed components’ state, deploying the new components, and migrating the saved states
to the new components‡. When removing a component from an assembly, the main constraint
is to ensure that there will be no functional regression. The third category of systems mentioned
above typically allow a removed component to be replaced by a component which provides
compatible services in order for the assembly to still conform to the architecture. Anticipating
possible evolutions allows these systems to ensure that the new assembly will still be valid, as
it has been statically checked on the architecture at design-time.

There are two major interpretations of component compatibility. In most systems [26, 2, 5, 3],
components must strictly be compatible: the new component must provide at least the provided
interfaces of the removed component and cannot require more required interfaces. In [27],
compatibility is less restrictive and context-dependent. If a provided interface from the removed
component is not used by another component in the assembly (not used in this context), the
new component is not required to provide this interface (as it is not necessary in this context).
On the other hand, the new component can have additional required interfaces as soon as
they find a compatible provided interface among the assembly’s components. This context-
dependent definition of compatibility allows better adaptability of assemblies.

Discussion. There are two main restrictions to the state of the art solutions to completing a
component assembly after a component has been dynamically removed:

1. Anticipating all possible evolutions to include their description in the initial, design-time,
architecture description is not always possible because it requires knowing all situations
that may occur in the system’s future evolution. Ideally, it would be better to manage
the evolution of software assemblies in an unanticipated way.

2. Replacing the removed software component by a single component is not always possible
because it is generally unlikely that a component having compatible interfaces exist
among the potential candidates for substitution. Yet, in the (more frequent) case when
an adequate component does not exist, it might be possible to replace the removed
component by a set of linked components that, together, provide the required services.

The problem of replacing a removed component by an assembly of components in an
unanticipated way while guaranteeing, as much as possible, the quality (executability) of the
whole assembly is the initial motivation for the work presented in this paper.

‡Even though we have not yet studied the deployment process itself, our system could help identify which
components might be impacted when removing some components, thus minimizing the number of components
that need to be interrupted. Moreover, as far as state consistency is concerned, we assume, as in all Cbse
approaches, that no assumption can be made on the components’ implementation. This assumption thus
makes state migration impossible, as it would constrain the internal structure of components. If some change
occurs, a robust implementation of our sytem would rollback the states of all components so that they all are
in some initial state that enables them to be restarted safely.
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SEARCH-BASED MANY-TO-ONE COMPONENT SUBSTITUTION 7

Port Enhanced Components for Incremental Assembly Completeness Checking

This section describes how adding ports to components provides a means to automatically
build complete component assemblies [6, 28]. Existing approaches usually statically describe
architectures in a top-down manner. Once the architecture is defined, they verify its validity
using costly checking algorithms [11, 12, 13, 14, 15]. Our building of assemblies from
components obeys an iterative (bottom-up) process. This makes the combinatorial cost of
these algorithms critical and prevents us from using them repeatedly, as a naive approach
would require. To reduce the complexity, we chose to simplify the information contained in
protocols—more precisely, behavior protocols such as those used in SOFA [29], which are
regular expressions that express the various possible sequences of events (traces) allowed by
a component—and represent this information in a more abstract and usable manner through
primitive and composite ports. Ports allow us to build a set of interesting complete assemblies
from which it is possible to choose and check the ones that are best adapted to the architect’s
needs.

Primitive and Composite Ports. The underlying idea for building a complete component
assembly is to start from the functional objectives, select the suitable components, and then
establish the necessary links between them. Completeness is a global property that we will
guarantee locally, in an incremental way, all along the building process. The local issue is to
determine which interfaces to connect and where (to which component) to connect them. This
information is hidden into behavior protocols where it is difficult to exploit in an incremental
assembly process. We thus enhance the component model with the notion of port, to model the
information that is strictly necessary to guarantee completeness in an abstract way. Primitive
and composite ports will represent two kinds of connection constraints on interfaces, so that
the necessary connections can be correctly determined. In some way, ports express the different
usage contexts of a component, making it possible to connect only the interfaces which are
useful for completeness. Primitive ports are used to model simple usage contexts (possible
collaboration between two components) and composed into composite ports that model more
complex contexts (complex collaborations). As in UML2.0 [30], one can also consider that
the functional objectives of an architecture are represented by use cases, that collaborations
concretely realize use cases and contain several entities that each play a precise role in the
collaboration. Primitive and composite ports can be considered as the part of a component
that enables the component to play a precise role with respect to a given use case.
Primitive ports are composed of interfaces, as in many other component models [30, 31].

Ports are introduced as a kind of structural meta-information, complementary to interfaces,
that group together the interfaces of a component corresponding to a given usage context.
More precisely, a primitive port can be considered as the expression of a constraint to connect
a set of interfaces both at the same time and to a unique component.
In Figure 2, the Money Dialogue primitive port gathers the Dialogue and the Money

interfaces from the Client component. It expresses a particular usage context for this
component: here, a collaboration the Client component can establish with another (yet
unknown) component to withdraw money. Connecting two primitive ports is an atomic
operation that connects their interfaces: two primitive ports are connected together when all
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8 N. DESNOS, M. HUCHARD, G. TREMBLAY, C. URTADO AND S. VAUTTIER

Figure 2. Example of components with primitive and composite ports

the interfaces of the first port are connected to interfaces of the second port (and reciprocally).
Thus, port connections make the building process more abstract (port-to-port connections)
and more efficient (no useless connections). In this example, the Money Dialogue primitive
port from the Client component is connected to the Money Dialogue primitive port from the
ATM component.

Composite ports are composed of other ports. They model complex collaborations that are
composed of finer grained ones (modeled by the sub-ports). Indeed, they provide an abstract
description of a part of the component behavior—less information than in component behavior
protocols but more information than the syntactic description of component capabiliies
modelled by interfaces. A composite port expresses a constraint to connect a set of interfaces
at the same time but possibly to different components. In Figure 2, the ATM component
has a composite port named Money Withdraw which is composed of the Money Dialogue and
Money Transaction primitive ports.

Much like a designer must do with protocols, ports have to be manually added to document
the design of components; however, we are currently working on their automatic generation
from behavior protocols.
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SEARCH-BASED MANY-TO-ONE COMPONENT SUBSTITUTION 9

Completeness of an Assembly as Local Coherence of its Components. Calculating the
completeness of an already built component assembly is of no interest in an incremental
building approach. Our idea is to better consider a local property of components that, if true,
guarantees that the component is adequately connected to its immediate neighbors, and then
to aggregate these local values into a global completeness property. We call this local property
coherence and have shown [6] that it is a necessary condition for validity. Intuitively, we
will see that when all components of an assembly are coherent, the assembly is complete. A
component is said to be coherent if all its exposed (top-level) composite ports are and these
latter are coherent if their primitive ports are connected in a coherent way (see below).
To determine the completeness of an assembly, we need to know if the interfaces that must

be connected are indeed connected. The main idea is to check the coherence of each composite
port. Two cases must be checked: when the composite port does not share any primitive port
with another unrelated composite port and when it does share some primitive ports.
An exposed composite port is said to be coherent if one of these three mutually exclusive

cases holds:

1. All its primitive ports are connected.
2. None of its primitive ports is connected.
3. Some, but not all, of its primitive ports are connected. In this case, the composite port

can still be coherent if it shares the connected primitive ports with another unrelated
composite port (of the same component) which is itself entirely connected. Indeed,
sharing of primitive ports represents alternative connection possibilities [6]. A partially
connected composite port can represent a role which is useless for the assembly as long as
its shared primitive ports are connected in the context of another (significant) composite
port.

A component is said to be coherent if all its exposed composite ports are coherent. An
assembly of components is said to be complete if i) all the primitive ports which represent
functional objectives are connected; ii) all its components are coherent.
In the next section, we provide more formal definitions in order to show that the building

of all complete component assemblies can be seen as a search-based problem.

Building Complete Component Assemblies: a Search-Based Problem

Formal Definition of Completeness. More formally, completeness can be described after
setting some preliminary definitions.

• We define a component C as a quintuple:

C = (PrvC ,ReqC ,PrimC ,CompC ,TopCompC )

PrvC is the set of C ’s provided interfaces and ReqC its set of required interfaces.
PrimC is the set of all C ’s primitive ports, CompC its whole set of composite ports and
TopCompC ⊆ CompC its set of exposed (top-level) composite ports.
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10 N. DESNOS, M. HUCHARD, G. TREMBLAY, C. URTADO AND S. VAUTTIER

• We denote by IntC = PrvC ∪ ReqC the whole set of C ’s interfaces and by PortsC =
PrimC ∪ CompC the whole set of C ’s ports.

• An interface is characterized by a set of operation signatures (its interface type) and
a direction (provided or required). We assume, as in most object-oriented languages
(e.g., Java) and modeling languages (e.g., Uml), that interface types are partially ordered
in a specialization hierarchy. If not, or if a finer definition is required, it is always possible
to (re)define such a specialization relation as we have done in [32].

• A primitive port ρ is a set of interfaces. Let ρ ∈ PrimC be a primitive port of C ,
ρ ⊆ IntC .

• A composite port γ of C is a set of ports, primitive or composite, from C , subject to
some restrictions described below.

• Let γ ∈ CompC be a composite port of C , where γ ∈ 2PortsC . We define PrimPorts∗(γ),
resp. CompPorts∗(γ), as the set of all primitive, resp. composite, ports that are directly
or indirectly contained in γ:

PrimPorts∗(γ) = {ρ ∈ γ ∩ PrimC} ∪

�

γ�∈γ∩CompC

PrimPorts∗(γ�)

CompPorts∗(γ) = {γ
�
∈ γ ∩CompC } ∪

�

γ�∈γ∩CompC

CompPorts∗(γ�)

Note that for γ to be well-defined, γ cannot be a (direct or indirect) sub-port of itself,
that is, γ /∈ CompPorts∗(γ).
For component C to be well-defined, each of its composite ports must either itself be or
be a sub-port of an exposed composite port of C . This can be expressed as:

∀ γ ∈ CompC · γ ∈ TopCompC ∨ ∃ γ
�
∈ TopCompC · γ ∈ CompPorts∗(γ�)

• Let i be an interface. We denote by Dir(i) ∈ {pro, req} the direction of interface i and
by Type(i) its type. We denote by � the specialization relation between interface types.
An interface i is said to be compatible with an interface i � iff the provided interface
type is equal to or more specific than the required interface type:

Compat(i , i �) = ⊕

�
Dir(i) = pro ∧Dir(i �) = req ∧ Type(i) � Type(i �)
Dir(i) = req ∧Dir(i �) = pro ∧ Type(i �) � Type(i)

• A primitive port ρ is said to be compatible with another primitive port ρ�, noted
(ρ, ρ�) ∈ Rcomp , iff there is a bijection from one’s set of interfaces to the other’s set of
interfaces such that corresponding interfaces are compatible. Primitive port compatibility
is symmetric.

(ρ, ρ�) ∈ Rcomp = ∃ f : ρ → ρ� · ∀ i � ∈ ρ� · ∃! i ∈ ρ · f (i) = i � ∧ Compat(i , i �)

Let us now consider a component assembly that involves a set of components and a set of
primitive port connections.

• We denote by �ρ the fact that, with respect to a set of components, ρ is connected—i.e.,
any required (resp. provided) interface of ρ is correctly linked with a provided (resp.
required) interface of another (primitive) port.
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SEARCH-BASED MANY-TO-ONE COMPONENT SUBSTITUTION 11

• We denote by �γ when all primitive ports contained in γ are connected§:

�γ = ∀ ρ ∈ PrimPorts∗(γ) · �ρ

• Let γ ∈ TopCompC be a top-level composite port of component C . SharedC (γ) is the
set of primitive ports shared by γ and by any other top-level composite port of C :

SharedC (γ) = {ρ ∈ PrimPorts∗(γ) | ∃ γ� ∈ TopCompC · γ �= γ
�
∧ ρ ∈ PrimPorts∗(γ�)}

Given an exposed composite port γ ∈ TopCompC , three mutually exclusive cases are possible
for γ to be coherent as argued in the previous section.

• γ ∈ TopCompC is coherent (with respect to component C ) if the following holds:

⊕






∀ ρ ∈ PrimPorts∗(γ) · �ρ (which is equivalent to �γ)
∀ ρ ∈ PrimPorts∗(γ) · ¬�ρ

∧






∀ ρ ∈ SharedC (γ) ·
�ρ ⇒ ∃ γ� ∈ TopCompC · γ �= γ� ∧ ρ ∈ PrimPorts∗(γ�) ∧ �γ�

∀ ρ ∈ PrimPorts∗(γ) \ SharedC (γ) · ¬�ρ

• A component C is coherent iff: ∀ γ ∈ TopCompC · γ is coherent

Building All Complete Assemblies as a Constraint Satisfaction Problem. The inputs of our
problem are:

• A component repository. This repository is characterized by the set Π of all primitive
ports from all the components in the repository, and by the set TopComp of all the
exposed (top-level) composite ports from all the components in the repository.

• Functional objectives. These functional objectives are defined through O ⊆ Π , the set
of primitive ports which match the functional objectives.

Let us now define Role(ρ) as the set of all the exposed composite ports to which a primitive
port ρ belongs.

Role(ρ) = {γ ∈ TopComp | ρ ∈ PrimPorts∗(γ)}

We also note Compatible(ρ) the set of all primitive ports in Π that are compatible with a
primitive port ρ.
Let Connectionsρ = {x ρ

γ}ρ∈Π ,γ∈Role(ρ) be the set of variables that represent the connections
of a primitive port ρ.
Each variable represents the connection of a primitive port in the context of one of the

exposed composite ports it belongs to. The connection of a shared primitive port is thus
represented by several variables. Each variable enables to distinguish the different connection
contexts, in which a shared primitive port is considered at the same time as connected, when

§As in VDM [33] and B [34], “·” separates the (typed) variable introduced by the quantifier and the associated
predicate.
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12 N. DESNOS, M. HUCHARD, G. TREMBLAY, C. URTADO AND S. VAUTTIER

it participates to the connection of a connected exposed composite port, or unconnected, when
it belongs to another unconnected exposed composite port.
Let Connections =

�
ρ∈Π Connectionsρ be the set of variables that are used to describe all

connections between all existing components. Connections is thus the set of variables of the
Csp we have to solve. The value domains of these variables are:

∀ x ρ
γ ∈ Connections ·Dom(x ρ

γ ) = Compatible(ρ) ∪ {nil}

Given those value domains, each variable, which represents a given primitive port, can be
assigned as value the primitive port to which it is connected—nil is a special value indicating
that the primitive port is unconnected.
Building a component assembly then amounts to assigning values for the various variables

of Connections , with respect to a set of constraints that guarantee the consistency of the
architecture:

1. Constraints on functional objectives. All primitive ports selected as functional objectives
must be connected in the solution.

∀ ρ ∈ O · ∃ x ρ
γ · x ρ

γ �= nil

2. Constraints on port connection symmetry. When a primitive port is connected to another
primitive port, then the latter primitive port must be connected to the former.

x ρ

γ = ρ
�
⇒ ∃ x ρ

�

γ� · x
ρ
�

γ� = ρ

3. Constraints on exposed composite port coherence. The variables that correspond to
connections of primitive ports of an exposed composite port must either all be set to
nil or all be set to some non-nil value.

∀ γ ∈ TopComp · ∀ ρ, ρ� ∈ PrimPorts∗(γ) · x ρ

γ �= nil ⇒ x ρ
�

γ �= nil ⊕ x ρ

γ = nil ⇒ x ρ
�

γ = nil

4. Constraints on shared primitive port connection well-formedness. When a shared
primitive port belongs to several connected exposed composite ports, it must be
connected to the same primitive port in every context.

∀ γ, γ� ∈ TopComp · ∀ ρ ∈ SharedC (γ) ∩ SharedC (γ�) · x ρ

γ �= nil ∧ x ρ

γ� �= nil ⇒ x ρ

γ = x ρ

γ�

When there is no functional objective, a trivial solution that satisfies all the constraints is an
assembly with no connection (every variable in Connections is nil). Every defined functional
objective adds a constraint that excludes nil from the domain of the associated variable: the
corresponding port must be connected. A non-trivial solution must then be found thanks to
a combination of different problem solving techniques. We propose a backtracking algorithm
that enumerates the possible variable assignment combinations, optimized with strategies that
prune the search tree and heuristics that speed up its traversal—thus effectively resulting in a
branch-and-bound strategy. These search techniques are combined with constraint propagation
(arc consistency) that filter inconsistent values from variable domains to reduce the search
space. This algorithm, its optimizations and its results are presented next.
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Overview of the Incremental Building Process. The principle of our automatic building
process is first to connect all the primitive ports representing functional objectives and then
to iteratively list and connect all the primitive ports that must be connected to maintain
the coherence of the components’ exposed composite ports. This process is implemented as a
depth-first traversal of a construction tree. Backtracking allows a complete exploration of every
construction paths (alternative connection choices), thus ensuring that all possible solutions
are found.

The building algorithm uses a set (FO-set) that always contains a list of the ports that still
have to be connected. This FO-set contains only primitive ports: when a composite port (γ)
has to be connected, it is decomposed into the set of primitive ports it contains, directly or
indirectly (PrimPorts∗(γ)), and these primitive ports are added to the FO-set. The FO-set is
initialized with the primitive ports that correspond to the functional objectives. The building
process can be decomposed into three steps:

1. Choice of the primitive port. One of the primitive ports is selected from the FO-set.
2. Choice of a compatible unconnected primitive port and connection. Compatible primitive

ports are searched for amongst the ports of components from the repository or from
the already built sub-assembly. If compatible unconnected ports are found, one of them
is selected. If the chosen port belongs to a component that does not yet belong to the
assembly, the component is added to the assembly. The two ports are then connected
together.

3. Choice of a collaboration context and update of the dependency set. If the chosen
compatible port belongs to a single exposed composite port, all other primitive ports
of that composite port are added to the FO-set. If the chosen compatible port is shared
by several exposed composite ports, one of those exposed composite ports (defining one of
the possible collaboration contexts) is chosen as a collaboration context and its primitive
ports are added to the FO-set. The other exposed composite ports may in turn be chosen
when the building process backtracks to explore another solution. In any case, no port
dependencies—and therefore no interface dependencies—are left unsatisfied.

These three steps are iterated until the FO-set is empty. All the initial primitive ports
that represent functional objectives are then connected along with all ports they are
recursively dependent upon: the resulting assembly is thus complete. During the whole process,
backtracking allows to both rollback unsuccessful connection attempts—past connection
choices lead to a situation where there is no available primitive port where to connect a
primitive port from the FO-set—and build all possible complete assemblies. This enumerative
building process, of which the basic principle is presented here, is highly combinatorial.
Optimization strategies and heuristics have been used to speed up the traversal of the
construction space as presented below.

As a result, the building algorithm provides a set of complete architectures. Since
architecture completeness is a necessary condition for architecture validity, the resulting set of
complete architectures provides preselected assemblies on which classical correctness checkers,
such as [5], can then be used.

Copyright c� 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–18
Prepared using smrauth.cls



14 N. DESNOS, M. HUCHARD, G. TREMBLAY, C. URTADO AND S. VAUTTIER

Figure 3. An assembly can be seen as (a) an abstract graph which is divided (b) in two sets of connected
components when a component has been removed

Many-to-one Component Substitution Using the Automatic Building Process

To react to the dynamic removal of a software component, we propose a two step process that
allows a flexible replacement of the missing component:

1. Analyze the assembly from which the component has been removed and remove the now
useless (dead) components;

2. Consider the incomplete component assembly as an intermediate result of our iterative
building algorithm and therefore run the building algorithm on this incomplete assembly
to re-build a complete assembly.

Removing Dead Components. When a component has been removed from a complete
assembly, some parts of the assembly may become useless. Indeed, some of the components
and connections in the original assembly might have been there to fulfill needs of the removed
component. To determine which parts of the assembly have become useless, let us define a
graph which provides an abstract view of the assembly.
An assembly can be represented as a graph where each node represents a component and

each edge represents a connection between two (primitive) ports of two of its components.
We also distinguish two kinds of components: those which fulfill a functional objective—i.e.,
the components which contain a port which contains an interface which contains a functional
objective—and those which do not (cf. Figure 3).
An assembly A can then be seen as a graph along with a set of functional objectives:

A = (GA,FOA)

Here, GA = (CmpsA,ConnsA) is a graph, with CmpsA the set of nodes—each node being a
component—, ConnsA the set of edges—each edge indicating the existence of some primitive
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SEARCH-BASED MANY-TO-ONE COMPONENT SUBSTITUTION 15

port connection between the components—, and FOA ⊆
�

C∈CmpsA
PrimC the set of primitive

ports that contain some functional objectives¶.
If we consider the graph that results from the removal of the node representing the removed

component, we can partition the graph in two parts: the connected components� that have
at least a node which contains a functional objective and the connected components without
any node that contains a functional objective. The second part of the graph is no longer
useful because the associated components were not in the assembly to fulfill some functional
objectives but rather to fulfill some of the removed component’s needs. Removing this part of
the graph amounts to removing now useless parts of the assembly before trying to re-build the
missing part with new components and connections.
Let A = (GA,FOA) be an assembly and let C ∈ CmpsA be the component to remove. We

define HA,C as the graph GA from which we removed component C and all the edges (denoted
by ConnsC ) corresponding to primitive port connections between C and another component
of GA:

HA,C = (CmpsA \ {C},ConnsA \ ConnsC )

We define LA,C the live connected components of HA,C as the graph composed of all the
connected components of HA,C that have at least a node which contains a functional objective.
We also define DA,C the dead connected components of HA,C as the graph composed of all

the connected components of HA,C that have no node which contains a functional objective.
Let us just notice that:

HA,C = LA,C ∪DA,C

Figure 3 illustrates the definitions of LA,C and DA,C . When a component is removed from
the assembly, all components which do not participate anymore in the assembly’s completeness
can be removed. Components from the dead connected components set DA,C can be removed
from the assembly because they only participated in the removed component’s coherence.
Indeed, as dependencies are modelled by edges of the graph, if there are unconnected subgraphs
that are not needed to implement the functional objectives (which we call subgraphs of dead
components), these subgraphs are useless (no dependency links them to the parts of the graphs
that contain functional objectives).
Removing the dead components is a necessary step because keeping useless components add

useless dependencies that make the resulting assembly considerably larger, thus complicating
the building process, making the validity checks more difficult and making the assembly more
subject to failures, less open for extensions, etc. Let us just also note that the components in
DA,C are dead components but that there still might be useless components in LA,C (those
we keep). We are considering future improvements that would exploit the protocols to improve
the detection of dead components.

¶Recall that a functional objective is simply an operation defined in one of the provided interfaces.
�In this subsection of the paper, a connected component refers to a subgraph that is connected, meaning that
there exists a path between any of its two nodes.
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Figure 4. Evolution scenario on the ATM example: removal of the MemberBank component

Re-building the Incomplete Assembly. Once the dead components have been removed
from the component assembly, the assembly contains all the components necessary to
ensure completeness except for one component (the removed one) along with its dependent
components. Some of the remaining components’ dependencies are not yet satisfied. The goal is
then to find a single component (like other systems do) or a series of assembled components that
can fulfill the same unsatisfied dependencies as the removed component did. We suppose that
it is quite unlikely that there exists a component that exactly matches the role the removed
component had in the assembly. It is more likely (more flexible) to have the possibility of
replacing the removed component by a set of assembled components that, together, can replace
the removed component.
The partial assembly in LA,C is the re-building process starting point. It is considered an

intermediate result of the global building process described above. The partial assembly is not
complete yet: there still exist unsatisfied dependencies that were previously fulfilled by the
removed component. These dependencies are identified, and the building process we described
above is run to complete the architecture. In this case, the initial FO-set contains the primitive
ports that correspond to unsatisfied dependencies, to which is added, if applicable, the removed
component’s primitive ports that were part of the assembly’s initial functional objectives.

Evolution Scenario. For our ATM example, Figure 4(a) represents the graph corresponding
to the example of Figure 2. The Client node represents the Client component which
contains a functional objective. The other nodes (MemberBank , ATM , CentralBank ,
LocalDatabase and DataWarehouse) represent components which do not contain any functional
objective. We also assume there is a component repository, which will be searched for
possible replacement components. Figure 4(b) shows that the partial component assembly
from LATMexample,MemberBank is not complete because the ATM component has become
incoherent after the MemberBank component and the three now consequently dead
components (DATMexample,MemberBank = {CentralBank ,LocalDatabase,DataWarehouse})
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have been removed. To complete the assembly, new components must be added. Figure 4(c)
sketches the result of this re-building process: The IndependentBank component is connected
to the BankIS component and they both replace the components that had been removed to
complete the ATM example assembly.
Figure 5 details the resulting architecture. In this example, MemberBank is the component

to remove. When it is removed, completeness of the architecture is lost. Indeed, the
ATM component is not locally coherent anymore. Its Money Withdraw composite port
is not coherent because the primitive port Money Transaction is not connected while
the Money Dialogue primitive port is not shared and still connected. The CentralBank ,
LocalDatabase and DataWarehouse components constitute the DATMexample,MemberBank graph
and can also be removed. Completeness is reached by selecting and connecting new components.
In this example, an IndependentBank component is connected to the ATM component through
its Money Transaction primitive port. At this step, the assembly is not yet complete because
all the components are not yet coherent. Indeed, the IndependentBank component is not
coherent because its Manage Withdraw composite port is not coherent. Another component
is thus added to the assembly: the BankIS component is connected to the IndependentBank
component through its Request Data primitive port. At this point, the assembly is complete.
As a result, one can then consider that the removed component has been replaced by an
assembly composed of the IndependentBank and the BankIS components.

Optimization of the Re-building Process using Strategies and Heuristics

As described previously, the optimization problem is defined as a Csp. Our search space is the
set of possible assemblies, considering only syntactical compatibility rules to connect ports.
Assemblies that satisfy a set of functional objectives and consistency properties (connection
dependencies) are searched for in this search space. Our solution strategy classically uses
backtracking [35] to enumerate all possible connections and incrementally build all possible
assemblies. Backtracking is combined with a branch-and-bound (B&B) strategy [36] that
prunes the solution exploration tree. The objective function to be minimized is the number
of connections in the assembly. For a given assembly, this amounts to minimizing the number
of non-nil valuations for the Connectionsρ variables. As quoted in [37], B&B techniques have
little been used in Sbse although there are some exceptions: B&B is used to deal with the
next release problem where requirements are chosen under some resource and dependency
constraints [38], and for solving the staffing problem expressed as a Csp.
We measured the performance of the building algorithm. We chose to test the whole

building algorithm instead of its restriction to the re-building of an incomplete assembly after
the removal of a component. In other words, we started building assemblies from scratch
instead of starting from an incomplete sub-assembly. For this purpose, we implemented a test
environment that generates random component sets, thus providing various building contexts,
differing in both size and complexity. Once a component set is generated, an arbitrary number
of ports can be chosen as functional objectives and the building algorithm can be launched.
Our experiments show that the combinatorial complexity of the building process is quite high,
as illustrated in the next section. To use our approach in highly demanding situations, such
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Figure 5. Dynamic reconfiguration of the assembly

as runtime deployment and configuration of components, we studied various heuristics that
speed up the building process.

B&B strategy to build minimal assemblies. A first strategy is to try to find not all the
possible assemblies but only the most interesting ones. Minimality is an interesting quality
metrics for an assembly [39]. More precisely, we try to minimize the number of primitive
port connections: fewer connections entail fewer semantic verifications, fewer interactions and,
therefore, fewer conflict risks. Fewer connections also entail more evolution capabilities (free
ports). To efficiently search for minimal assemblies, we added a branch-and-bound strategy
to our building algorithm. The bound is the maximum number of primitive port connections
allowed for the construction of the assembly. When this maximum is reached while exploring
a branch of the construction tree, the rest of the branch can be discarded as any new solution
will be suboptimal relative to any previously found solution (pruning).

Look-ahead (LA) Strategy. An estimate can be used to predict if traversing the current
construction branch can lead to a minimal solution. This estimate is based on the minimum
number of primitive port connections required to complete the building process. As soon as
the sum of the estimate and the number of already existing connections is larger than the
current bound, the branch can be pruned. A simple example of such an estimate is the number
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of ports in the FO-set divided by two, which corresponds to a lower bound of the number of
connections needed to connect the ports that already are in the FO-set (in the most optimistic
case, each port from the FO-set can connect to another port from the FO-set thus adding no
new dependency and, moreover, satisfying two dependencies at once). A more selective and
realistic estimate consists in calculating how many of primitive port pairs from the FO-set
can be connected with one another. The number of remaining connections is higher than the
cardinality of the FO-set minus the number of primitive port pairs.

Min Domain (MD) Heuristic. This heuristic is used to efficiently choose primitive ports
from the FO-set in step 1 of the building algorithm. To each port can be associated the set of
primitive ports it can be connected to. Amongst these, the port with the fewest free compatible
ports is chosen first. This minimizes the effort to try all the connection possibilities: in case of
repeated failures, impossible constructions can be detected sooner.

Min Effort (ME) Heuristic. In the branch-and-bound strategy, every time the bound is
lowered, traversal of the tree is speeded up. During step 2 of the building algorithm, when
choosing the compatible primitive port to connect to, the free compatible primitive port
that belongs to the composite port (γ) that contains the fewest primitive ports (smallest
Card(PrimPorts∗(γ))) is chosen first. This corresponds to choosing the primitive port that adds
the fewest dependencies, thus minimizing future connection efforts. Another similar situation
occurs during step 3 of the building algorithm: when the primitive port to connect to is chosen,
if it is shared by several composite ports, then the composite port that contains the fewest
primitive ports is chosen as the first collaboration context to explore.

No New Dependency (NND) Heuristic. In step 2 of the building algorithm, compatible ports
are first searched for in the FO-set itself. When a compatible port can be found in that set,
it is preferred to others because its connection will add no new dependency and, furthermore,
will satisfy two dependencies at once—indeed, when a port belongs to the FO-set, its related
primitive port is already in the FO-set.

Implementation and Experimentation

The two processes presented above (automatic component assembly building and dynamic
substitution after a component removal) have both been implemented as an extension of the
open-source Julia implementation∗∗ of the Fractal component model [3].

Experimentation framework. To evaluate the applicability and usefulness of the built
assemblies and the optimization techniques, we needed a test environment. We were not able
to experiment on real components because real-world component repositories, with properly
documented behavior, are not yet available. Indeed, to (manually or semi-automatically) add

∗∗http://www.objectweb.org

Copyright c� 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–18
Prepared using smrauth.cls



20 N. DESNOS, M. HUCHARD, G. TREMBLAY, C. URTADO AND S. VAUTTIER

Build 1 Build 2 Build 3 Subst 1

Number of components in a base 15 20 30 40
Max. number of primitive ports by component 10 10 10 29
Max. number of composite ports by component 4 10 10 3
Max. number of primitive ports by composite port 5 6 6 6

Table I. Variable values defining experimentation contexts: three building contexts of growing
complexity and a substitution context

ports to components, component behavior must be described in an abstract way (for example,
with protocols). We expect that research aiming at facilitating component reuse will encourage
the building of such component repositories, thus providing better frameworks for future
experimentation. To overcome this lack of real repositories, instead we simulated component
repositories, aiming to define components as complex as real ones. Moreover, as a meantime
alternative, we also plan to contribute to standardizing benchmarks in Sbse by providing our
simulated repositories data online. As it is already the case in other applications of search-based
methods, this will contribute to enabling comparisons and increasing reproducibility.
We implemented a test environment that generates random component sets, thus providing

various building contexts, differing in both size and complexity. Once a component set is
generated, an arbitrary number of ports can be chosen as functional objectives and the
building algorithm can be launched. In this environment, a test repository has the following
characteristics:

• Fixed parameters. The number of randomly generated method names is set to 5000, the
number of randomly generated interfaces to 150, the maximum number of methods in
an interface to 5, the maximum number of interfaces in a primitive port to 5, and the
number of initial functional objectives to 3.

• Variable parameters. Depending on the experiments, we tried various values for some
of the other characteristics. For example, the number of components in a component
repository, the maximum number of primitive or composite ports by component, and
the maximum number of primitive ports by composite port were variable parameters.
This allowed us to have problem instances of various complexities.

Evaluation of the building algorithm. To evaluate the building algorithm, we empirically
defined 3 building contexts that allowed to increase complexity and see how robust our
heuristics were (see Table I). More precisely, for each context, we generated 3 different
component repositories, and for each repository, we randomly chose 3 different initial functional
objective sets. Then, for each FO-set, we ran the building algorithm, to build minimal complete
assemblies, 5 times. Results are synthesized in Table II which shows how the algorithm behaves
when various sets of strategies and heuristics are used. The table records both the percentage
of runs that did not exceed 2700 seconds (45 minutes), and, when applicable, the average
execution times (in seconds) for such runs. A run is a complete search for minimal solutions.
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No heuristic B&B B&B+LA B&B+LA+MD B&B+LA+
MD+NND+ME

Build 1 55% 1347 100% 8 100% 2 100% 2 100% 1
Build 2 0% 0% 89% 22 100% 57 100% 9
Build 3 0% 16% 106 100% 12 100% 5 100% 3

Table II. Comparison of the percentage of completed runs and average execution time of
the building algorithm while varying strategies and heuristics

% solved cases 80
% one-to-one substitution among solved cases 19
% reused dead components 20

Table III. Synthetic view of results for
reconfiguration experiments

As execution is interrupted after 45 minutes, 0% means that all runs have been interrupted
before the search for minimal solution was completed. 100% means that all runs succeeded in
founding all minimal solutions. Execution times lower than one second are simply noted as
1 second. Results show how the whole set of strategies and heuristics are necessary for and
efficient at taming the building process complexity. Minimal solutions vary in size from 3 to
35 connections and from 4 to 18 components. As the simulated situations corresponding to
the third context seem to be more complex than any typical component assembly found in the
literature, we decided it was not worth trying further heuristics or switching to an incomplete
search method.

Evaluation of the dynamic reconfiguration approach. Our dynamic reconfiguration approach
has been tested in the same environment used to test the building process. The experimentation
context is defined by the variable values shown in last column of Table I. We generated 10
component repositories for this context. Then, to test our solution for evolution, we started
from a generated complete component assembly from which a randomly chosen component
was removed. The substitution process was then triggered by considering that the removed
component was not available anymore. We ran the dynamic reconfiguration process 40 times,
each time with a newly generated assembly (varying the set of functional objectives) and a new
component to remove. Results are synthesized in Table III. Those experiments showed that
our solution provides alternative substitution possibilities (compared to existing one-to-one
substitution mechanisms), thus is more flexible because it does not depend on the presence
of a component that can exactly match (the role of) the removed one. In some situations
(20%), no solution exists—the repository does not contain components that can be combined
to be substituted to the removed one— but among the solved situations, 81% are solved
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thanks our many-to-one substitution proposal (compared to only 19% that can be solved with
usual one-to-one substitution techniques). Furthermore, the resulting substitution was usually
many-to-one. Also, we noticed that the complexity of the mechanism exposed here is not
higher than the complexity of the complete building process—which was efficient thanks to
the optimization strategies and heuristics.

Conclusion

To strengthen the ability of component-based software to dynamically evolve, we presented
a solution for the dynamic replacement of a component from an assembly. Its originality lies
in the fact that it is not restricted to component-to-component (one-to-one) substitution.
Our approach requires that components carry information on the possible collaborations they
can establish with other components, embodied by primitive and composite ports (similar
to complex plugs). Using this information, a search-based mechanism builds a minimal
sub-assembly in order to replace the removed component while guaranteeing there is no
functional regression. A cleaning step then removes the useless components. The advantage
of this approach is that it increases the number of reconfiguration possibilities by being less
constraining. As the problem of assembly (re-)building is highly combinatorial, optimization
strategies and heuristics have been proposed, implemented, and compared. The whole solution
is implemented as an extension of an existing open source implementation of the Fractal
component model and successfully tested on generated components.
Next steps will consist in experimenting our approach using real-world software components:

our experimentation framework allowed us to validate our approach and be confident that it can
deal with realistic situations. Another open issue is component documentation with primitive
and composite ports. We are currently investigating strategies to automatically generate ports
from protocols (in a design for reuse process) or from execution traces obtained by executing
component assemblies (in a design by reuse approach). Run-time replacement of a component
also raises the problem of identifying the minimal (yet sufficient) set of components that have
to be stopped. We plan to investigate how port connections could help provide an efficient
solution to this problem.
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du Québec à Montréal (UQAM) since 1985. He is also a member of the LAboratory for research
on Technology for E-commercE (LATECE). His research interests include parallel programming,
model checking techniques, business process modeling languages and formal methods for (web) service
composition and software components.

Christelle Urtado is a fulltime assisant-professor at the Ecole des Mines d’Alès since 1999. Her
resarch interests include self-* approaches for component-based software engineering (component self-
assembly, component evolution, component directories) and fault tolerance (exception handling) in
component-based or agent-based software systems. She also interests in helping designers build and
maintain complex software systems.

Copyright c� 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–18
Prepared using smrauth.cls



SEARCH-BASED MANY-TO-ONE COMPONENT SUBSTITUTION 25

Sylvain Vauttier is a fulltime assistant-professor at Ecole des Mines d’Alès since 2000. His research
interests encompass component and agent-based software engineering techniques. His work, focused
on behavior composition mechanisms, is more recently applied on the autonomous construction and
evolution of software deployed on ambiant intelligence environments.

Copyright c� 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–18
Prepared using smrauth.cls



Appendix C

FCA-based service classification to
dynamically build efficient software
component directories

This journal article [20] has been published in the International Journal of General Sys-
tems, in 2009. It presents work realized in collaboration with Gabriela Arévalo from
Argentina.

This work states the theoretical basis of an on-the-fly indexing of component direc-
tories using Formal Concept Analysis, based on the syntactic description of the compo-
nents’ required and provided services. In such directories, components are more intelli-
gibly organized and new abstract and highly reusable component external descriptions
are suggested. But over all, such substitutability-based indexing eases component search
which is useful in automating both component assembly and component substitution.
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Component directories index components by the services they offer thus enabling us to rapidly
access them. Component directories are also the cornerstone of dynamic component assembly
evolution when components fail or when new functionalities have to be added to meet new
requirements. This work targets semi-automatic evolution processes. It states the theoreti-
cal basis of on-the-fly construction of component directories using Formal Concept Analysis
based on the syntactic description of the services that components require or provide. In these
directories, components are more clearly organized and new abstract and highly reusable com-
ponent external descriptions suggested. Moreover, this organization speeds up both automatic
component assembly and automatic component substitution.

Keywords: Component-Based Software Engineering, Component directories, Formal
Concept Analysis, Component classification

1. Introduction

Component-based software engineering (Cbse) enables software applications to be
built by assembling off-the-shelf components. To ease this process, components
expose their external description: a component’s set of required and provided in-
terfaces corresponds to the syntactical description of the services the component
provides to other components in its environment or requires from other compo-
nents of its environment to execute itself. Previous work on automatic component
assembly and dynamic component assembly evolution (Desnos et al. 2006, 2007,
2008) convinced us that an efficient component directory is needed. Indeed, search-
ing in a directory for a component from a given repository that is compatible with,
or substitutable for, a given component is a non-trivial task. Additionally, white-
page-like directories, which represent the mostly used category of directories, are
not suitable because they are not structured to enable the search for compatible
or substitutable components.
The idea of this paper is to propose mechanisms to semi-automatically index

software components through a yellow-page-like component directory that supports
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efficient search for components that are compatible or substitutable to a given
component. Our approach relies on Formal Concept Analysis (FCA) that enables
us to pre-calculate three categories of lattices:

• Functionality signature lattices order functionality signatures in a way that
naturally eases their search and can be used for required and provided func-
tionality connection or for required or provided functionality substitution. This
category of lattices serves as the basis for building interface lattices.
• Interface lattices are more abstract than functionality signature lattices; they
code information on functionality specialization that has been modeled in func-
tionality signature lattices. They order component interfaces — organize service
descriptions — in a way that naturally eases their search and can be used for
required and provided interface connection or for required or provided interface
substitution. This category of lattices serves as the basis for building component
type lattices.
• Component type lattices are more abstract than interface lattices; they code
the information on interface specialization that has been modeled in interface
lattices. They order component types in a way that naturally eases their search
and can be used for component connection or component substitution.

These lattices provide the architect or developer with intelligible classifications for
functionality signatures, interfaces and component types. They enable us to sepa-
rate the service compatibility calculus from the component search itself during the
processes of assembly or component assembly evolution (component substitution).
Indeed, a component type lattice can be used as an index for the search of a com-

patible component (in order to build an assembly) or of a comparable component
(in order to find a substitute). Furthermore, FCA creates new component external
descriptions (new component types) that do not exist in the component repository
but are more abstract and reusable than existing components. These new abstrac-
tions can be an opportunity for component developers to be guided during their
engineering or re-engineering process. They can also enrich the repository.
The remainder of this paper is organized as follows. Section 2 shows an extension

of object-oriented type theory to component types. Then, after recalling the basics
of FCA and describing the example used in the paper, Section 3 shows how to build
a lattice of functionality signatures and how to use it as a basis for component
assembly or component substitution. Section 4 generalizes these results to entire
interfaces and shows how to use the resulting interface lattice. Section 5 goes one
step further in proposing a methodology to build and interpret a component lattice.
To finish, Section 6 compares our approach to related existing work and Section 7
concludes and presents future research directions.

2. Functionality signatures and interface syntactical compatibility

This section explains how the syntactical compatibility of component interfaces
can be calculated from functionality signatures which define the syntactical type
of interfaces. The syntactical compatibility of interfaces is used to check the validity
of connection and substitution operations on component assemblies. It statically
asserts a certain level of coherence in a component assembly that, before semantic
analysis or execution, provides early error detection and correction.

2.1 Functionality signature compatibility in object-oriented programming

In strongly-typed object-oriented programming languages (Cardelli 1984), method
signature overriding is allowed in subclasses but constrained by rules that enforce
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the substitutability of subclass instances towards superclass instances. Thus, a
method signature in a subclass must have contravariant argument types and a
covariant return type: argument types must be generalized and the return type
must be specialized. Intuitively, a method implements a service provided by an
object: when the method is called, assuming that sufficient information is received
(as specified by argument types), a result of the defined return type is sent back.
This corresponds to the concept of software contract, introduced by Meyer (1991)
to reason about interactions between objects. Following the above rules, an instance
of a class can replace an instance of one of its superclasses because it provides at
least the same services, but is allowed to require less invocation information and
to return a richer result.
These principles are also used to define relaxed matching schemes used to re-

trieve a class or a functionality from a repository (Zaremski and Wing 1995). A
request is expressed as the signature of the functionality that is searched for. Any
functionality the signature of which specializes (overrides) the requested signature
is returned as an approximate but still (type-) compatible answer.

2.2 Functionality signatures and component interface specification

An interface is a type that collects functionality signatures; it is used to qualify the
collaborations a component can establish with other components. An interface is
also a communication point through which a component exchanges service request
and response messages with another component. Messages are sent and received
along connections linking the interfaces of a component to compatible interfaces of
other components (Szypersky et al. 2002). Comparing the syntactical types of two
interfaces amounts to compare pairs of functionality signatures from both interfaces
(Zaremski and Wing 1997). But in contrast with object models, a direction is
added to the definition of interfaces in order to specify whether a component is
a client (i.e., uses the interface to require a service) or a server (i.e., uses the
interface to provide a service). Thus, two kinds of compatibilities can be verified
between interfaces: a connection compatibility between a client interface and a
server interface or a substitution compatibility between interfaces that have the
same direction. The connection or substitution compatibility of two components
can in turn be determined by verifying the connection or substitution compatibility
of pairs of interfaces from both components.
In this paper, functionality signatures are defined by a name, a list of argument

types and a return type. As in classical programming languages, names are used
as the primary semantic element to match functionalities. Then, the types of the
in-parameters and out-parameters of homonymic functionalities are considered.
For the sake of simplicity, only a single out-parameter (the functionality result) is
used in this paper. But the same principles can be applied to any out-parameter
when multiple out-parameters are used in a functionality signature.
Figure 1 shows an example of different signatures for homonymic functionali-

ties named create, associated with both required and provided component in-
terfaces. The data type hierarchy used to define parameter types is presented in
Figure 1(d). The different cases of functionality signature specialization are il-
lustrated: argument type specialization (cf. Figure 1(a)), result type specialization
(cf. Figure 1(b)) and argument addition into the in-parameter set (cf. Figure 1(c)).
When associated with a provided interface, a functionality signature has the same

semantics as in object-oriented programming: the argument types define what the
server component requires to receive in order to execute its service and the return
type defines what result it commits to provide. When associated with a required
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interface, a functionality signature specifies the service that is searched for by a
client component: the argument types define the invocation information that the
client component will send to a server component and the return type defines the
type of the result it requires.

Figure 1. Interface compatibility when types and number of parameters vary.

2.3 Functionality signature specialization and provided interface substitution

Zaremski and Wing (1997) present functionality signature matching based on pre-
and post- conditions. Consider a provided interface I1, which holds a functionality
of signature S = f(X x) : Z. As informally stated above, its software contract
corresponds to the following pre-condition and post-condition:

Spre(x) : Type(x) ≤ X

Spost(x) : Type(f(x)) ≤ Z

Let us consider another provided interface I2, which holds a functionality of signa-
ture T = f(L l) : M , along with its pre-condition and post-condition:

Tpre(l) : Type(l) ≤ L

Tpost(l) : Type(f(l)) ≤ M

To soundly substitute I2 to I1 in an assembly, the following predicate must hold:

Substitutionprovided(I2, I1) = Spre(x) ⇒ Tpre(x) ∧ Tpost(x) ⇒ Spost(x)

This verifies that f in I2 can execute the same invocations as f in I1; second,
it verifies that the results returned by f in I2 can be used instead of the results
returned by f in I1.
To be true, the predicate entails that:

X ≤ L (indeed, Type(x) ≤ X ∧X ≤ L ⇒ Type(x) ≤ L),
M ≤ Z (indeed, Type(f(x)) ≤ M ∧M ≤ Z ⇒ Type(f(x)) ≤ Z).

This respectively corresponds to a contravariant specialization of the argument
types and to a covariant specialization of the result type between the two function-
ality signatures, as previously presented for object-oriented languages. A provided
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interface can be replaced by another provided interface with more specific func-
tionality signatures, following the above specialization rules.
For example (cf. Figure 1(a)), a provided interface holding the create(In-

formation) signature can be substituted to a provided interface holding the
create(PersonnalInformation) signature (contravariant specialization of the ar-
gument type). Similarly (cf. Figure 1(b)), a provided interface holding the cre-
ate():GoldCustomer signature can be substituted to a provided interface holding
the create():SilverCustomer signature (covariant specialization of the result
type).

2.4 Functionality signature specialization and required interface substitution

Let us now consider a required interface I3, which holds a functionality of signature
S = f(X x) : Z. The pre-condition and post-condition corresponding to its software
contract are the same as for a provided interface but, as discussed above, their
semantics are converse. Indeed, x now represents the data the client component
commits to send and f(x) the data the client expects to receive:

Spre(x) : Type(x) ≤ X

Spost(x) : Type(f(x)) ≤ Z

Let us also consider another required interface I4, which contains a functionality
of signature T = f(L l) : M . This corresponds to the same pre-condition and
post-condition as above:

Tpre(l) : Type(l) ≤ L

Tpost(l) : Type(f(l)) ≤ M

To soundly substitute I4 to I3 in an assembly, the following predicate must hold:

Substitutionrequired(I4, I3) = Tpre(x) ⇒ Spre(x) ∧ Spost(x) ⇒ Tpost(x)

This firstly verifies that the client component holding I4 will call f in the same
way as the client component holding I3 (to have the guarantee that the connected
server component can execute all invocations); secondly, this verifies that the results
received by I3 will also satisfy the requirements of the client component holding
I4.
To be true, the predicate entails that:

L ≤ X (indeed, Type(x) ≤ L ∧ L ≤ X ⇒ Type(x) ≤ X),
Z ≤ M (indeed, Type(f(x)) ≤ Z ∧ Z ≤ M ⇒ Type(f(x)) ≤ M).

This respectively corresponds to a covariant specialization of the argument types
and a contravariant specialization of the result type between the two functionality
signatures. Unsurprisingly, the specialization rules for functionality signatures in
required interfaces are the opposite of those which apply to provided interfaces.
Here again, following the above rules, a required interface can be replaced by an-
other required interface with more specific functionality signatures.
For example (cf. Figure 1(a)), a required interface holding the create(ChildIn-

formation) signature can be substituted to a required interface holding the
create(PersonnalInformation) signature (covariant specialization of the argu-
ment type). Similarly (cf. Figure 1(b)), a required interface holding the cre-
ate():Customer signature can be substituted to a required interface holding the
create():SilverCustomer signature (contravariant specialization of the result
type).
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2.5 Functionality signature specialization and interface connection

Finally, let us again consider the provided interface I1 and the required interface
I4. To soundly connect I1 to I4, the following predicate must hold:

Connection(I4, I1) = Tpre(x) ⇒ Spre(x) ∧ Spost(x) ⇒ Tpost(x)

This firstly verifies that any data sent by the client component holding I4 can
effectively be used by the server component holding I1 to execute f ; secondly, this
verifies that the data sent by the server component holding I1 corresponds to the
result expected by the client component holding I4.
To be true, the predicate entails that:

L ≤ X (indeed, Type(x) ≤ L ∧ L ≤ X ⇒ Type(x) ≤ X),
Z ≤ M (indeed, Type(f(x)) ≤ Z ∧ Z ≤ M ⇒ Type(f(x)) ≤ M).

This corresponds to a contravariant specialization of argument types and a covari-
ant specialization of the result type between the two functionality signatures. The
functionality signatures associated with a required interface of the client compo-
nent must be more generic than the functionality signature associated with the
provided interface of the server component.
For example (cf. Figure 1(a)), a required interface holding the create(Per-

sonalInformation) signature can be connected to a provided interface hold-
ing the create(Information) signature (contravariant specialization of the ar-
gument type). Similarly (cf. Figure 1(b)), a required interface holding the
create():Customer signature can be connected to a provided interface holding
the create():SilverCustomer signature (covariant specialization of the result
type).

2.6 Functionality signature specialization and parameter addition or
suppression

A special case of parameter type generalization is now considered. When a param-
eter type is generalized in a functionality signature, it conceptually means that the
specification becomes less demanding on parameters. The objects of the Object
type (root of the object type hierarchy) are the objects which contain the least
data. We extend the generalization principle by stating that void is the root type
in our system and that it further generalizes the Object type.
This way, a special case of parameter type generalization is to set a parameter

type to void. Any data, including no data, becomes suitable for this parameter.
As this parameter is optional, it is possible to remove the parameter from the
functionality signature. We therefore consider suppressing a parameter as a special
case of parameter type generalization.
Conversely, it is possible to add an extra parameter of type void to a functionality

signature without changing its semantics (this additional parameter can always be
ignored). The type of such a parameter can then be specialized in the process
of functionality signature specialization, thus becoming a parameter of a concrete
type. We therefore consider parameter addition as a special case of parameter type
specialization.
For example (cf. Figure 1(c)), a provided interface holding the create(Informa-

tion) signature can be substituted to a provided interface holding the create(In-
formation,BankIdentity) signature, as the former signature is obtained by re-
moving the second parameter of the latter signature (contravariant specialization
of the parameter type). Similarly, a required interface holding the create(In-
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formation,BankIdentity) signature can be substituted to a required interface
holding the create(Information) signature, as the former signature is obtained
by adding a second parameter to the latter signature (covariant specialization of a
virtual second parameter of type void).

2.7 Discussion

In Zaremski and Wing (1997), which proposes an extensive study and classification
of functionality signature matching, the above predicates correspond to a kind of
functionality signature matching called “plug-in” matching. It is used to verify
that the code of a functionality can be plugged into some other code, to handle
some expected behavior, as specified by a syntactical signature. We have adapted
this generic functionality signature matching principle to the specific concepts of
component models, namely the syntactical coherence of interface connection and
substitution.
Our formalization shows that checking the coherence of these operations amounts

to verifying the existence of specialization relations between functionality signa-
tures. Thus, we studied how to build specialization hierarchies of functionality
signatures, interfaces and component types. We intend to use these hierarchies as
a practical, systematic and efficient means to set up and structure a component
directory, where components are indexed by the type of services they provide and
require, in other words, a trading service for component-based platforms (Iribarne
et al. 2004)).
The next sections describe how an FCA-based approach to this problem can

be used to build the necessary specialization lattices. It is to be noticed that,
at any step, a single lattice is sufficient to compare both required and provided
elements for both substitution and connection. Indeed, as shown previously, only
two specialization rules are used, which are converse.

3. Lattice of functionality signatures

The substitutability rules presented in the previous section can be considered as
the basis of a specialization relationship among functionalities: a functionality that
can substitute for another can be considered as its specialization. Existing func-
tionalities can thus be organized — classified — in a hierarchy based on their
substitutability relationships. Furthermore, this section will show that FCA pro-
vides a finer-grained classification. After recalling the basics of Formal Concept
Analysis, we show how it can be used to build a lattice of functionality signatures
and how the lattice can then be interpreted and used.

3.1 A survival kit for Formal Concept Analysis

The classification we build is based on the partially ordered structure known as
Galois connection-based lattice (Birkhoff 1940, Davey and Priestley 1991) or con-
cept lattice (Wille 1982) which is induced by a context K, composed of a binary
relation R over a pair of sets O (objects) and A (attributes) (Table 1). A formal
concept C is a pair of corresponding sets (E, I) such that:

E = { e ∈ O| ∀ i ∈ I, (e, i) ∈ R} is called extent (covered objects),
I = { i ∈ A| ∀ e ∈ E, (e, i) ∈ R} is called intent (shared features).
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For example, ({1, 2}, {b, c}) is a formal concept because objects 1 and 2 exactly
share attributes b and c (and vice-versa). On the contrary, ({2}, {b, c}) is not a
formal concept.
Furthermore, the set of all formal concepts C constitutes a lattice L when pro-

vided with the following specialization order based on intent / extent inclusion:

(E1, I1) ≤L (E2, I2) ⇔ E1 ⊆ E2 (or equivalently I2 ⊆ I1).

Figure 3.1 shows the Hasse diagram of ≤L.

Table 1. Binary relation of K = (O,A,R) where O={1, 2, 3, 4, 5, 6} and A= {a, b, c, d, e, f, g, h}.
a b c d e f g h

1 × × × ×

2 × × × × ×

3 × × × × ×

4 × ×

5 × ×

6 × ×

Figure 2. Hasse diagram of the concept lattice L.

3.2 Example of an online bookstore application

In the rest of this article, we will use, as an illustration, the example of an online
bookstore application that targets both the adult and children audiences (cf. Fig-
ure 3(a) to see the hierarchy of product types). Two categories of customers can
interact with this application. Adults can save favorite book lists (as wish lists)
through the application or shop for books following various protocols defined ac-
cording to a client typology (cf. Figure 1(d)). Children can establish children book
wish lists that constitute virtual orders that adults can offer them as soon as their
parents obtain the SilverCustomer client category. For this online bookstore ap-
plication, we have a component repository (cf. Figure 3(b)) in which we can see
various components to manage orders (by adults or children) and various compo-
nents to manage customer lists. These components each expose an interface list
the types of which are enumerated in Figure 3(c).
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Figure 3. Data types, interfaces and components of an online bookstore application.

3.3 Building the functionality signature lattice

We explain here the construction of the required functionality signature lattice. As
provided functionality signatures are reversely ordered, the lattice we obtain can
also be used to deal with them, when considered upside down.
We illustrate our explanation considering the required functionality create(PI,

BI,CCN):SC as it is described by Table 2. At first, for each create functionality
whose signature is held by one of the interfaces of Figure 3, attributes are deduced
from in and out parameter types that explicitly appear in the signature. These
attributes are marked using the × symbol in Table 2: create(PI,BI,CCN):SC is
thus described explicitly by attributes in:PI, in:BI, in:CCN and out:SC. Then,
we infer attributes (marked with a ⊗ symbol in Table 2) when their types are
compatible, regarding specialization of signatures. Here are our inference rules:

• in parameters. As explained previously, if a required functionality sends a
parameter of some type, it implicitly sends a parameter of any more general
type. For example, the in:I attribute is inferred when the in:PI attribute is
already present.
• out parameters. If a required functionality expects to receive a return value
of a type, any return value of a more specific type is also suitable. For example,
the out:GC attribute is inferred when the out:SC attribute is already present.

Figure 4 depicts the concept lattice corresponding to the binary relation shown in
Figure 2, built with the GaLicia FCA tool (GaLicia 2002). Concepts are presented
using reduced intents and extents (resp. denoted by ReducedI et ReducedE) for
readability sake: an object (signature) that belongs to the reduced extent of a con-
cept is inherited by all concepts that are above (down-to-up inheritance); similarly,
a property (in or out parameter type) that belongs to the reduced intent of a
concept is inherited by all concepts that are below (up-to-down inheritance).
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10 Arévalo et al.

Table 2. Rcreate context describing signatures of the required create functionality through its parameters.

in parameters out param.
I PI CI BI CCN Co C SC GC

create(I,BI,Co):C × × × × ⊗ ⊗
create(PI,BI,CCN):SC ⊗ × × × × ⊗
create(PI,BI,CCN):GC ⊗ × × × ×

create(CI,BI):SC ⊗ ⊗ × × × ⊗
create(PI):GC ⊗ × ×

I Information

PI PersonalInfo.

CI ChildInfo.

BI BankIdentity.

CCN CreditCardNb

Co Country

C Customer

SC SilverCustomer

GC GoldCustomer

FC ForeignCustomer

Figure 4. Signature lattice Lcreate for the create functionalities.

3.4 Using the functionality signature lattice

The functionality signature lattice can be used in various types of situations related
to component connection or substitution.
Let us consider the lattice of Figure 4 with the viewpoint of required func-

tionalities. In this lattice, create(PI):GC is represented by concept C3 while
create(CI,BI):SC is represented by concept C8. Concept C3 is more general than
concept C8 which can be interpreted as: concept C8 can replace concept C3. In
a component assembly, a connection to a required functionality corresponding to
concept C3 can be replaced by a connection to a required functionality correspond-
ing to concept C8. In the general case, when there is a path between two concepts,
the more specific (which has more properties) can replace the more general (which
has a subset of properties) when the more general concept is connected (cf. Fig-
ure 5(a)). The same lattice can also be used to substitute a provided functionality
when read upside down (cf. Figure 5(b)). This generalizes as follows.

Property 3.1 Functionality substitution. Let Cfather, Cson be two concepts of the
signature lattice of functionality f , such that Cson ≤Lf Cfather. Functionalities of
Cson can replace functionalities of Cfather when the functionalities are required.
Opposite replacement applies when the functionalities are provided.

Both provided and required points of view can be combined to address com-
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ponent connection. Let us consider the create(PI,BI,CCN):GC signature (con-
cept C7). The corresponding required functionality can obviously connect to
the provided functionality that has the same signature (create(PI,BI,CCN):GC).
Given the substitution rule, provided functionalities which are upper in the lat-
tice, such as provided create(PI):GC (concept C3), can be connected to re-
quired create(PI,BI,CCN):GC (cf. Figure 5(c)). Using the same rule in the
symmetric way, required functionalities which are below in the lattice, such as
required create(PI,BI,CCN):SC (concept C10), can be connected to provided
create(PI,BI,CCN):GC. By transitivity, we can deduce that required create(PI,
BI,CCN):SC can be connected to provided create(PI):GC. This is expressed in the
following connection rule that formalizes how valid functionality connection can be
deduced from the lattice.

Figure 5. Interpretation of the lattice of functionality signatures.

Property 3.2 Functionality connection rule. Let C, Cfather, Cson be three concepts
of the signature lattice of functionality f such that Cson ≤Lf C ≤Lf Cfather,
required functionalities of Cson can be connected to provided functionalities of
Cfather.

4. Interface lattice

Components are reusable software entities that are chosen off-the-shelf and fulfill
high-level goals (database component, planning component, and so on). Interfaces
play an important role to achieve these goals by grouping functionalities that have
close semantics and may participate together in potential collaborations. Com-
ponent assembly is based mainly on the connection of compatible interfaces in a
higher abstraction level than simple functionalities.
Considering included functionalities, the interfaces can be provided with a spe-

cialization order in a natural way. This “natural” classification simply uses the
inclusion relation between sets of functionalities in the interfaces and can equally
benefit from FCA to look for factorizable functionalities (in our case remove(P)
can be factored out).
Then, if we consider substitution or connection, we can improve our search and

discover more pertinent abstractions when using the abstractions discovered in the
functionality signature lattice. Lattices of the modify, add and remove functional-
ities of our example are built similarly to the lattice of the create functionality.
Tables 3 and 4 detail the contexts, while Figure 6 and 7 show the corresponding
lattices. As we have observed, these abstractions on the signatures are the concepts
the extent of which has a set of signatures (the signatures covered by the concept)
and the intent of which has a set of attributes describing the signature (in and
out parameters). For each concept, we can calculate a corresponding canonical
signature. We show an example before giving the general definition.
Figure 4 shows the concepts built using the binary relation described in Table

2. A concept the reduced extent of which has an original signature (e.g., concept
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Table 3. Context Rmodify describing the signatures of the required modify functionalities.

In parameters Out param.
I PI CI BI CCN void C SC GC

modify(I):C × × ⊗ ⊗
modify(PI,BI):SC ⊗ × × × ⊗

modify(PI,BI,CCN):GC ⊗ × × × ×
modify(CI):void ⊗ ⊗ × × ⊗ ⊗ ⊗
modify(PI):GC ⊗ × ×

Table 4. Context Radd describing the signatures of the required add functionalities. The context Rremove is

identical.

In parameters Out param.
P AB CB EB void

add(P):void × ×
add(AB):void ⊗ × ×
add(CB):void ⊗ × ×
add(EB):void ⊗ ⊗ × ×

Figure 6. Signature lattice Lmodify for the modify functionalities

C9) exactly represents that signature (e.g., create(I,BI,Co):C). A concept the
reduced extent of which is empty can be interpreted as a new signature that we
can infer starting from the attributes inherited by the concept, and considering only
the more specific ones. For example, concept C6 of Figure 4 inherits attributes in:I,
in:PI, in:BI, out:GC, out:SC. In case of required signatures, in:PI is more specific
than in:I meanwhile out:SC is more specific than out:GC. Concept C6 can be then
interpreted as signature create(PI,BI):SC which we call the canonical signature
of the concept. This enables us to build an interface description based on the set
of original signatures completed by all the signatures created in the generalization
process (cf. Table 5).
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Figure 7. Signature lattice Ladd for the add functionalities. The lattice Lremove, isomorphic to Ladd, is
not represented.

Definition 4.1 Canonical functionality signature of a concept: Let C be a
concept in a signature lattice Lf which describes functionality f and ≤Types, the
specialization partial order on parameter types. σ(C), the canonical signature of
C, is defined as follows:

• If ReducedE(C) = {s}, then σ(C)= s.
• If ReducedE(C) = ∅, then σ(C)= f(i) : o, where i = min≤Types{T |in : T ∈

Intent(C)} and where o = max≤Types{T |out : T ∈ Intent(C)}.

This exact description enables us to build more pertinent interface generalizations
than those we obtained with the “natural” classification of interfaces. It is used as
follows to build interface descriptions within the new context RIntSigCar.

• The canonical signatures are used as attributes in the formal context.
• When an interface I has a signature s in a functionality f in its original
description, if we denote by C the concept such that σ(C)= s, we associate to
the interface the attribute s and all the canonical signatures of the concepts that
are upper of C in the lattice:
RIntSigCar = {(I, sc)|s belongs to the definition of I, sc =σ(Cfather),
Cfather ≥Lf C with s =σ(C)}.

For example, interface I1 holds the signature create(I,BI,Co):C. This signature
is the canonical signature of concept C9 in lattice Lcreate. In Tab. 5, we associate
I1 to create(I,BI,Co):C (marked with symbol ×) and we equally associate to
I1 the canonical signatures of all concepts of Lcreate that are upper of C9. That
results in the following signatures (marked with symbol ⊗) : create(I,BI):SC
(concept C5), create(I,BI):GC (concept C2), and create(I):GC (concept C1).
From required functionality viewpoint, these signatures are generalizations of the
original signature create(I,BI,Co):C (with the semantics of substitutability).
The built lattice LI (cf. Figure 8) shows specialization relations between inter-

faces. These relations show possible connections or substitutions which are deduced
from the previously mentioned rules on functionality signatures that are extended
to interfaces (repeatedly applied to all signatures that constitute these interfaces).
For example, the required interface I10 can be connected to provided interface
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Table 5. Context RIntSigCar encoding required interfaces using signature generalizations.

Rows: interfaces. Columns: canonical signatures and concepts.
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I6. Still, required interface I10 (C10) can replace required interface I6 (C2) . We
see that a manual or automatic search of components is faster with this lattice that
defines a search index. We thus avoid looking at all components in the repository
since we only look for relevant branches. Let us imagine the case in our example
where component SilverAdultOrder searches, logically, to be connected to compo-
nent SilverAdultDB usually present in the system that is temporarily unavailable.
The relation in the lattice, starting from the expected required interface I9 (C5),
enables us to immediately find (just traversing the edge that goes from concept
C5 to concept C2, that possesses the I6 interface) that component GoldDB could
be used as a replacement. Temporarily the user will benefit of a higher service in
replacement of a missing service.
In the lattice, we also find new interfaces, obtained using the existing interface

generalization. Starting from functionalities discovered in the first lattice, the tech-
nique can then infer a new interface, including at least this shared functionality.
Here we see one of the main advantages of FCA-based techniques compared to
simple calculation of signature comparison: new signatures appear, and thus we
have new interfaces more abstract than existing ones. The following generalization
step is to use this lattice to build a component lattice. This latter lattice is more
interesting for designers who can be guided when creating more general new com-
ponents, as well as for assemblers who can consult an organized library rather than
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just a flat set of artifacts.

Figure 8. Interface lattice LI using the functionality signature lattice.

5. Lattice of component types

In this section, we first propose a solution to build the lattice of component types.
The technique used to do so is the same as the one previously used for interfaces: the
interface lattice helps enrich the description of the formal context that will be used
to build the component type lattice. Then, the remainder of the section shows
possible uses of this lattice.

5.1 Definition of the lattice of component types

Component types are described by their required and provided interfaces. This
information can be organized by specialization, but, similarly to that done with
interfaces, component types can benefit from both the specialization relationships
between interfaces and the discovered interfaces obtained from the interface lattice.
We thus get an enrichment of the description of components and a more precise
classification, offering more abstractions.
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The first phase of the building process entailed the introduction of the notion of
a “canonical interface” associated to an interface concept. This notion is similar
to the canonical functionality signature corresponding to a signature concept that
we defined above. Let us just mention that our analysis is still based on the case
of required interfaces.

Definition 5.1 Required canonical interface corresponding to an interface con-
cept: Let C be a concept in the interface lattice LI . The corresponding canonical
interface I(C) is defined as follows:

• If ReducedE(C) ⊇ {I}, then I(C) = I. We can choose any interface in the
reduced extent because they are all equivalent.
• If ReducedE(C) = ∅, then I(C) = min≤SigCar{s ∈ Intent(C)}. The canon-
ical interface gathers more specialized signatures from the set of canonical sig-
natures that forms the intent. The order ≤SigCar between canonical signatures
is naturally inferred from the specialization relationship between concepts of
the lattice Lf : sson ≤SigCar sfather iff sson = σ(cson), sfather = σ(cfather) and
cson ≤Lf cfather.

Canonical interfaces found in the lattice are all the original interfaces (I1 to I6,
I8 and I10, and a single interface corresponding to the {I7,I9} interface pair) to
which new abstract interfaces are added by the classification process. These new
abstract interfaces are described by their signature set (cf. Tab. 6).

Table 6. New canonical interfaces.

Int. name Signature set Concept
I11 {} C1

I12 {create(I) : GC;modify(I) : GC} C3

I13 {create(I, BI) : GC;modify(I) : GC} C4

I14 {create(I,BI) : SC;modify(I) : SC} C8

I15 {create(I, BI) : SC;modify(I) : C} C9

I16 {create(PI,BI) : GC;modify(PI) : GC} C11

I17 {create(PI,BI) : SC;modify(PI) : SC} C15

I18 {create(PI,BI, CCN) : GC;modify(PI, BI) : GC} C13

I19 {create(CI,BI, CCN,Co) : C;modify(CI, BI, CCN) : void; C18

add(AB, EB) : void; remove(AB, EB) : void}

We then set up a relation RCompCanInt between component types and canonical
interfaces including their orientation (required or provided) (cf. Tab. 7). The rows
represent components, the columns interfaces. Interface identification (in column
heads) combines the two interface orientations (noted req: and pro:) with each
canonical interface name and is followed by their concept number in the interface
lattice. For example, column 1 corresponds to the canonical required interface I1,
associated to concept C12 (as I1 is member of its reduced extent). Column 11
corresponds to the canonical required interface I12, associated to concept C3.

Definition 5.2 Component relation RCompCanInt:
Component types are the formal objects while canonical interfaces are the formal
attributes. Let C be a component and I an interface, (C, I) ∈ RCompCanInt iff one
of the following properties is true:

• I is declared by C,
• I ≥LI J and J is declared by C.

Figure 9 shows lattice LC of component types. The following section will show
how it can be used.
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Table 7. The component context RCompCanInt.
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5.2 Usage of the lattice of component types

While interfaces represent parts of collaborations, component types introduce con-
sistent units dedicated to the provision of a consistent set of services. As in the
previous lattices, but at a higher level in the structure of software artifacts, the
lattice of component types offers both a specialization relation between component
types and new abstract component types. This lattice has several applications in
component assembly and software application re-engineering.

5.2.1 Emergence of new component types

The concepts in the lattice of component types can be interpreted as component
types that we define as “canonical component types” to remain coherent with the
previous definitions. Some of these canonical component types correspond to the
original components: they are associated with concepts the reduced extent of which
contains an original component. When the reduced extent of a concept is empty, we
explore the intent of the concept to build the corresponding canonical component
type. Thus, we consider symmetrically the required and provided interfaces from
the intent. In the case of required interfaces, we consider those that have the small-
est (more specific) type as shown in the interface lattice. In the case of provided
interfaces, we consider those that have the largest (more general) type. These rules
are a transcription of the substitution rules for functionality signatures, extended
to interfaces.

Definition 5.3 Canonical component type corresponding to a component type
concept: Let C be a concept in the component type lattice LC . The canonical
component type Tc(C) is defined as follows:

• If ReducedE(C) ⊇ {T}, then Tc(C) = T . We can choose any component type
from the reduced extent because they are all equivalent.
• If ReducedE(C) = ∅, then Tc(C) = {pro : I, I ∈ max≤LI

{J |pro : J ∈

Intent(C)}} ∪ {req : I, I ∈ min≤LI
{J |req : J ∈ Intent(C)}}.

In the case where an original component type appears in the reduced extent, the
proposed construction finds an identical canonical component type. For example,
concept C15 of lattice LC has {pro:I5, pro:I6} as its canonical component type
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Figure 9. Lattice LC of component types using the interface lattice.

because I5 and I6 are the maximum of Intent(C15) (we do not make a distinction
between required and provided interfaces because there are only provided interfaces
in this intent). The reader will also notice that {pro:I5, pro:I6} is exactly the
component type GDB that is found in the reduced extent of C15.

5.2.2 Substitution and connection

The specialization relation we have built between concepts is tailored for sub-
stitution. Component substitution can be necessary in the event an entirely con-
nected component fails. For example, let us suppose that an assembly is formed
by component CO of type {req:I8,req:I4} entirely connected to component GDB
of type {pro:I5,pro:I6}. Firstly, we can convince ourselves about the syntactical
validity of the assembly that is ensured by two properties: required I8 specializes
provided I6 and required I4 specializes provided I5 (as we generalize to inter-
faces the property described on Figure 5). Let us now imagine that component CO
fails. Specialization in the lattice enables us to efficiently find a potential replace-
ment. Component PO of type {req:I10, req:I4} will be a good candidate. The
assembly remains valid because required I10 specializes provided I6. The user will
have access to a partial service because it is now only possible, among child books
(ChildBook type), to ask for educational books (EducationalBook type), but the
service may also perform better because it specializes about educational books.
Let us now analyze the connection problem. We note that two complementary

components are not necessarily related to each other in the lattice: for example,
there is no link between the components AO2 of type {req:I1,req:I7} (concept
C9) and CDB of complementary type {pro:I1,pro:I7} (concept C3). Indeed req:I
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and pro:I are considered independent attributes. Given a component (e.g., AO2 of
type {req:I1,req:I7}), it is nonetheless possible to find components that it can be
connected to. A solution firstly consists in classifying the type of its complementary
component (e.g., {pro:I1,pro:I7}) applying the inferences. In our example, we
obtain {pro:I1,pro:I7,pro:I19}. In this case, the classification enables us to
reach concept C3. C3 and all smaller (more specific) concepts define, by the mean
of their corresponding canonical component type, the types of components that
can entirely connect to AO2.

5.2.3 Reingeneering and building generic architectures

We have previously described how the lattice discovers new component types.
For example, concept C5 of canonical type {req:I14,req:I6} has an empty ex-
tent. It indicates that the concept does not precisely correspond to an original
component. However, it is an abstraction of all component types corresponding to
lower (more specific) concepts. This canonical type, {req:I14,req:I6}, abstracts
components relative to product orders in the example. It can be replaced by any of
the more specific components. If a component of this canonical type participates
in a component architecture, this architecture will have the capability of being
instantiated using an important variety of concrete components. The discovery of
such new abstract components into the classification can be interpreted as reengi-
neering the set of existing components, and can help the developer design more
generic architectures.

5.2.4 Architecture abstraction

The component lattice shows both specialization relationships among component
types and newly discovered abstract component types. This can serve as the basis
of whole architecture classification. This new objective is a little less direct to reach
than the other generalization steps we have described in the paper because, in an
architecture, components are not only described by binary attributes but also by
their interconnections. Several ideas can be explored to take into account these
connections such as Relational Concept Analysis (Huchard et al. 2007) or relations
in Logical Information Systems (Ferré et al. 2005).

6. Related work

Few of the related approaches use a syntactical type hierarchy to structure compo-
nent indexes and help component search. Zaremski and Wing (1995) suggest such
a mechanism but in the more general context of functionality signature matching.
The functionality hierarchy lies on the partial order relationship defined by the
signature matching operator used, whether it be exact or relaxed. Module match-
ing (component matching) is deduced from functionality matching: a component
is comparable with another if each of its functionalities match a functionality of
the other.
Existing yellow page-based service directories, also called service traders (Irib-

arne et al. 2004), such as Corba Trading Object Service (OMG 2000), conform
to the principles of the ODP standard (Information Technology Open Distributed
Processing 1998). A component exports an advertisement into the component
directory in order to be registered as the provider of some service. The service
advertisement conforms to an existing service type that lists the properties and
syntactical interfaces the components must have to provide the service. Service
types can be ordered in a specialization hierarchy which is static and manually
built. As opposed to our approach, these models use statically defined service
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hierarchies (Marvie et al. 2001). This kind of indexing and the corresponding
directories are not adapted to dynamical, evolving and open environments.

Works based on FCA propose to semi-automatically index components (Lindig
1995) in order to be able to help the developer identify adequate components
from all the components stored in a component repository. Component search lies
on groups of names and keywords and on incremental queries that help focus the
search, diminishing the number of potential results as the search gets more precise.
Fischer (1998), Sigonneau and Ridoux (2004) both aim at building such browsable
functionality directories. Concepts are used to handle the iterative selection of
attributes that define the user request as a traversal of the concept hierarchy.
Thus, in these approaches, concept hierarchies do not directly reflect specialization
relations between the syntactical types of functionality signatures. Fischer (1998)
uses attributes which represent fragments of the formal specifications of func-
tionalities (elementary pre- and post- conditions). Sigonneau and Ridoux (2004)
use syntactical types of input and output parameters, along with covariant and
contravariant specialization rules. In the context of web service search, machine
learning techniques are used for service classification and annotation (Bruno et al.
2005, Corella and Castells 2006). Starting from textual documentation, services
are automatically clustered using support vector machines or ontologies. FCA is
then used in a second step to drive the matching between textual information and
searched services.

As compared to these proposals, the originality of our work is to study directo-
ries of components described by sets of required and provided interfaces. Different
specialization relations are defined to take into account not only parameter but
also functionality directions. Moreover, we propose an iterative process to build
lattices of component types which are composed of interfaces of both directions,
which are in turn composed of functionalities. This iterative nature strongly differs
from other works that use FCA which only build lattices of functionality types.

7. Conclusion and future work directions

In this article, we proposed to build component directories using FCA. The direc-
tory relies on the last built lattice that organizes components in order to speed
up their retrieval, for either assembly or substitution. This component lattice is
built upon some related lattices: an interface lattice which itself uses a classifica-
tion provided by a functionality signature lattice. Beyond its usefulness for com-
ponent assembly or component substitution, this classification also discovers new
abstractions (new functionality signatures, new interface types and new compo-
nent types), providing developers with valuable information about highly reusable
elements. The developer can use this information as a guide along the development
process or as re-engineering information.
The work presented in this article raises new research issues. Firstly, we want to

study how our system can be implemented and integrated into an IDE to assist the
management of component-oriented applications. This task comprises four steps:

• Extracting information about the component interfaces. We want to use the
introspection capabilities of components to extract and dynamically maintain
information on interfaces as the components enter or leave the system.
• Encoding the information in formal contexts, taking into account the identi-
fied inference rules and the type hierarchy of the system.
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• Building lattices. Kuznetsov and Obiedkov (2002) present several incremental
algorithms that enable new concepts to be added to an existing lattice. Several
of these algorithms are implemented in GaLicia (Valtchev et al. 2003). These
algorithms could be used to calculate the different lattices and also maintain
them dynamically as components enter or leave the system.
• Using lattices. The obtained lattices can be used not only as a component
index to ease search, but also as a way of visualizing the content of compo-
nent libraries using the graphical interface of GaLicia or a similar FCA tool like
TOSCANA (Vogt and Wille 1994) or CONEXP (Yevtushenko 2000).

This will enable us to systematically experiment with our approach on large
component repositories, considering various component or interface granularity and
function signature complexity.
We also plan to study complementary features of components, interfaces and

signatures, such as ports, protocols or exceptions. For instance, ports (Desnos et al.
2006, 2007) would enable specifications of the dynamic behavior of components to
be considered, providing more accurate component indexing and retrieval.
Another extension is inspired by Web Services directories (Klusch 2008). Con-

trary to component directories, they mainly use semantic information (names, de-
scriptions) in their search mechanism. We can experiment with these techniques
to refine classification considering the name of the parameters in the functionality
signatures. Conversely, it is interesting to analyze how our approach could be used
to improve the calculation of syntactical compatibility in Web Services.
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Corella, M.Á. and Castells, P., 2006. Semi-automatic Semantic-Based Web Service
Classification. In: J. Eder and S. Dustdar, eds. Business Process Management
Workshops, LNCS 4103 Springer, 459–470.

Davey, B.A. and Priestley, H.A., 1991. Introduction to lattices and orders. second
Cambridge University Press.

Desnos, N., Huchard, M., Tremblay, G., Urtado, C. and Vauttier, S., 2008. Search-
based many-to-one component substitution. Journal of Software Maintenance
and Evolution: Research and Practice. Special Issue on Search-Based Software
Engineering, 20 (5), 321–344.

Desnos, N., Huchard, M., Urtado, C., Vauttier, S. and Tremblay, G., 2007.



November 2, 2008 12:7 International Journal of General Systems arevaloetal

22 REFERENCES

Automated and unanticipated flexible component substitution. LNCS 4608
Springer, 33–48.

Desnos, N., Vauttier, S., Urtado, C. and Huchard, M., 2006. Automating the Build-
ing of Software Component Architectures. LNCS 4333 Springer, 228–235.
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Appendix D

Architecture-centric
component-based development needs
a three-level ADL

This conference paper [117] has been presented at the 4th European Conference on
Software Architecture (ECSA 2010). It presents part of the work realized during the
PhD of Huaxi (Yulin) Zhang.

It introduces the Dedal ADL, with its three architecture representation levels tailored
for reused-centered architecture development in three steps.

Architecture specifications first capture abstract and ideal architectures imagined by
architects to meet requirements. Specifications do not describe complete component
types but only component roles (usages).

Architecture configurations then capture implementation decisions, as the architects
select specific component classes from the repository to implement component roles.

Finally, architecture assemblies define how components instances are created and
initialized to customize the deployment of architectures in their own execution contexts.

The refinement relationships between these architecture representations are also dis-
cussed.
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Architecture-centric component-based
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Abstract. Architecture-centric, component-based development inten-
sively reuses components from repositories. Such development processes
produce architecture definitions, using architecture description languages
(Adls). This paper proposes a three step process. Architecture specifi-
cations first capture abstract and ideal architectures imagined by ar-
chitects to meet requirements. Specifications do not describe complete
component types but only component roles (usages). Architecture config-
urations then capture implementation decisions, as the architects select
specific component classes from the repository to implement component
roles. Finally, architecture assemblies define how components instances
are created and initialized to customize the deployment of architectures
in their own execution contexts. This development process is supported
by a three-level Adl which enables the separate definition of these three
representations. The refinement relationships between these architecture
representations are also discussed.

1 Introduction

Component-based software development (Cbsd) consists in two activities: the
development of software components for reuse and the development of software
applications by the reuse of components. The first activity can be managed by
classical software development processes, with an analysis, a design and then
a coding phase. The produced software modules, encapsulated as component
classes, are then stored and indexed in repositories to be reused later on. The
second activity corresponds to a more specific and still scarcely studied devel-
opment processes. We propose an architecture-centric development process that
aims at defining the structure of an application as a set of reused components and
a set of connections between them, using a dedicated language called an Archi-
tecture Description Language (Adl). This process is structured in three steps,
through which architecture definitions are gradually refined, from abstract to
concrete representations. After a classical analysis step, architecture specifica-
tions first capture design decisions as ideal architectures imagined by architects
to meet the requirements. Specifications do not describe complete component
types but only component roles (usages). These roles are used to search for
matching component classes in repositories. Specification and roles are thus key
concepts to integrate component reuse effectively in the development process.



Second, architecture configurations capture implementation decisions, as the ar-
chitects select specific component classes to implement component roles. Finally,
architecture assemblies define how components instances are created and initial-
ized to customize the deployment of architectures in different execution contexts.
Our process is supported by an three-leveled dedicated Adl, called Dedal, which
enables the explicit and separate definitions of architecture specifications, con-
figurations and assemblies. This way, a single abstract architecture definition
can be refined into many concrete architecture definitions, to foster not only
the reuse of components but also of architectures. The refinement relationships
between these separate architecture representations — i.e. the relationship be-
tween the component roles, classes and instances they are composed of — are
proposed to control and verify the global coherence of these multi-level architec-
ture definitions.

The remaining of this paper is organized as follows. Section 2 introduces
our proposed architecture-centric, reuse-based development process. It studies
how existing Adls are suitable for it. Section 3 presents the different component
description levels supported in Dedal, our proposed Adl to support this devel-
opment process. Section 4 presents the different architecture description levels
which can be expressed in Dedal, along with the refinement relations between
them. Section 6 concludes with future work directions.

2 Software Architectures in CBD

2.1 A Development Process for Component Reuse

Component-based software development is characterized by its implementation
of the “reuse in the large” principle. Reusing existing (off-the-shelf) software
components therefore becomes the central concern during development. Tradi-
tional software development processes cannot be used as is and must be adapted
to component reuse [1, 2]. Figure 1 illustrates our vision of such a development
process which is classically divided in two:

– the component development process (sometimes referred to as component
development for reuse), which is not detailed here. This development pro-
cess is the producer of components that are stored in repositories for later
consumption by the component reuse process.

– and, the component-based software development process (referred to as com-
ponent-based software development by reuse) that describes how previously
developed software components can be used for software development (and
how this reuse process impacts the way software is built).

The proposed component-based software development process deliberately
focuses on the produced artifacts (architecture descriptions, as models of the
software) for each development step. For simplicity’s sake, it is also exclusively
“reuse-centered” and does not describe how components should be developed
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Fig. 1. Component-based software development process

from scratch if no component is found that matches or closely matches specifi-
cations, adapted if no existing component type perfectly matches specifications,
tested and integrated or, physically deployed.

In this component-based software development process, software is considered
to be produced by the reuse of components that have previously been stored
and indexed in a component repository. It decomposes in three steps each of
which produces a description that models the view of the architecture at this
development step:

1. Model of requirements. After a classical requirement analysis step, architects
establish the abstract architecture specification. They define which func-
tionalities should be supplied by components, which interfaces should be
exported by components, and how interfaces should connect to build a soft-
ware system that meets the requirements.

2. Model of design. In a second step, architects create architecture configura-
tions that define the sets of component implementations (classes) by search-
ing and selecting from the component repository. Abstract component types
from the architecture specification then become concrete component types
in architecture configurations.

3. Model of runtime. In a third step, configurations are instantiated into com-
ponent instance assemblies and deployed to executable software applications.

The claim of this paper is that an architectural description should correspond
to each of the three steps of the component-based software development process.
In other words, architectures should be described from all specification (model of
requirements), configuration (model of design) and assembly (model of runtime)
point of views. These three descriptions should reflect the architect’s design de-
cisions at each step of the development cycle and be expressed using an adequate



Adl. State-of-the-art Adls have been analyzed from this perspective, trying to
answer the following questions (that provide a taxonomy for comparison):

– Do existing Adls support multiple view representations?
– If so, are these views used to reflect successive development steps?
– In cases where several descriptions of a given architecture coexist, which

development step can they be associated to?
– Which information on software is captured? In which view / level represen-

tation?

2.2 Expressiveness of Existing ADLs

A software system architecture [3] gathers design decisions on the system. It is
expressed using an Adl which, in most cases, provides information on the struc-
ture of the software system listing the components and connectors the system
is composed of. Quality attributes are sometimes provided (e.g. xAdl [4]). The
dynamic behavior of systems is often described (e.g. C2SADEL [5], Wright [6],
Sofa [7]) but their descriptions are not homogeneous as various technologies
(e.g. message-based communication, Csps, regular expressions) are used.

When systems are too complex to easily be described, two classical mech-
anisms can be used to split descriptions into smaller ones. Hierarchical decom-
position enables to view the system at various granularities (e.g. Darwin [8],
Sofa [7] or Fractal Adl [9]). Systems are composed of sub-systems that can fur-
ther be described at a finer level. Thematic decomposition amounts to consider
the system from distinct viewpoints (e.g. syntactic and behavioral diagrams of
Uml [10]). Whole systems are seen from several partial viewpoints that make
each description focus on some system attributes.

Systems can also be described at various steps of their life-cycles. To our
knowledge, no Adl really includes this “time” dimension. Some works such as
Uml [10] or Taylor et al. [3] implement or describe close notions. Uml makes it
possible to describe object-oriented software at various life-cycle steps but this
capability is not transposed in their component model. Taylor et al. [3] distin-
guish two description levels for architectures at design and programming time,
respectively called perspective (or as-intended) and descriptive (or as-realized)
architectures. However, as far as we know, they do not propose any Adl or
metamodel to concretely implement these two architecture descriptions. Garlan
et al. [11] propose a three-layer framework (task, model and runtime layers) and
points out the importance of three levels for dynamic software evolution man-
agement. Beside their having close notions, these existing works do not propose
such descriptions that would follow the three identified steps of component-based
software development.

We then examine the representative Adls to see which levels of architecture
descriptions are supported (as shown in Tables 1 and 2). As far as we know, the
studied Adls unfortunately do not enable the three levels that correspond to
lifecycle steps to be all described. This analysis results in requirements for the
language presented in this paper:



Table 1. Expressiveness of existing ADLs — Modeling of the three lifecycle steps

ADL Specification Configuration Assembly

C2SADEL � � ×
Wright × � ×
Darwin × � ×
Unicon × � ×
SOFA 2.0 × � ×
FractalADL × � ×
xADL 2.0 × � �

Table 2. Expressiveness of existing ADLs — Component representations

ADL Abstract

component

type

Concrete

component

type

Component

class

Component

instance

C2SADEL × � � ×
Wright × � � ×
Darwin × � � ×
Unicon × � � ×
SOFA 2.0 × � � ×
FractalADL × � � ×
xADL 2.0 × � � �

1. No Adls presented in Table 1 is tailored to Cbd. Switching to such a reuse-
centered development process shall impact the description language.

2. No Adls presented in Table 1 models component types in an abstract way in
order to support the search and selection of concrete component in compo-
nent repositories. Concrete components in architecture configurations should
not be strictly identical to abstract component types described in their ar-
chitecture specification. As components pre-exist, the specification should
define abstract (ideal) and partial component types while configurations de-
scribe concrete (satisfying) components that are going to be used (as claimed
by Taylor et al. [3]).

3. Connectors should not necessary be explicit but the architect should have the
possibility to explicit them when needed. Explicit connectors model specific
connection types and can be reused from one design to another. However,
in most situations, connectors can be system-generated and thus remain
implicit for simplicity’s sake.

4. Most Adls do not model the running system (assembly level) or component
instances, except xAdl 2.0. Adls should include some description on how
components classes are instantiated and what are the characteristics of the
running assemblies (constraints on component state values).

5. Components should possibly be primitive (implemented by an implemen-
tation class) or hierarchically composed of components (implemented by a
configuration).



6. Component types should be reusable. This implies that their description is
modularized (outside architectures).

7. Both structural and behavioral viewpoints should be provided for both com-
ponents and architectures.

2.3 Example of a Bicycle Rental System

Figure 2 shows the example used throughout the paper: the architecture spec-
ification of a bicycle rental system (Brs). A BikerGUI component manages a
user interface. It cooperates with a Session component which handles user com-
mands. The Session component cooperates with the Account and Bike&Course
components to identify the user, check the balance of its account, assign him an
available bike and then calculate the price of the trip when the rented bike is
returned. In the following sections, we will use a part of this system to illustrate
our concepts and Adl syntax.

The two following sections present Dedal, the proposed Adl which spans the
three levels of architecture descriptions. Dedal enables the description of abstract
architecture specifications, concrete architecture configurations and instantiated
component assemblies. It also supports a controlled architecture evolution pro-
cess the description of which is out of the scope of this paper (see [12] for this
aspect).

Fig. 2. Brs abstract architecture specification

3 Component Descriptions in the Three Levels of Dedal

Dedal models architectures at three separate abstraction levels, each of which
contains different forms of components and connectors. For now, Dedal mainly
focuses on modeling components. At the specification level, components are mod-
eled as roles which are requirement models for concrete component search. These
specifications thus are abstract and partial. At the configuration level, compo-
nents are modeled as (whole) component classes which realize the specifications.



Several component classes might correspond to a single component role as there
might exist several concrete realizations of a single specification. At the assem-
bly level, concrete component classes are instantiated into component instances
that represent runtime components and their parameterizations. Figure 3 shows
a complete example of components at three levels.

Fig. 3. The Session component role, some possible concrete realizations and some of
their instantiations

3.1 Components in Abstract Architecture Specifications

Component roles model abstract component types in that they describe the roles
components should play in the system. A component role lists the minimum list
of interfaces (both required and provided) the component should expose and the
component behavior protocol that describes the behavior of the component in
the architecture (dynamics of the architecture). As they define the requirements
of the architect (its ideal view) to guide the search for corresponding concrete
components, component roles are abstract and partial component representa-
tions (e.g. Session component role on Fig. 3). Dedal uses the protocol syntax
of Sofa [7] to describe component behavior as regular expressions1. Other for-
malisms could have been used instead; the notation chosen is interesting as it is
compact and is implemented as an extension of the Fractal component model we
used for or experimentation, with companion verification tools. Component pro-
tocols capture the behavior of components in their context describing all valid
sequences of emitted function calls (emitted by the component and addressed to
neighbor components) and received function calls (received by the component
from neighbor components). As component roles are abstract component spec-
ifications, Dedal modularly describes them outside architecture specifications,
so as they can be reused from a specification to another (which would not be
possible if they were embedded). Figure 4 shows the description of the Session
component role. This description contains (a part of) the Sofa-like description
of its behavior.

1
!i.m (resp. ?i.m) denotes an outgoing (resp. incoming) call of method m on interface
i. A+B is for A or B (exclusive or) and A;B for B after A (sequence).



component role Session

required interfaces BikeOprs; CourseOprs; AccountOprs

provided interfaces Account; Bike

component behavior
(!Session.Bike.findB,

?Session.BikeOprs.findB;)

+

(!Session.Account.login,

?Session.AccountOprs.checkID;)

. . .

Fig. 4. Session component role

3.2 Components in Concrete Architecture Configurations

At configuration level, components are modeled in two ways with component
types and component classes. Figure 5 provides a close-up view of the relation-
ships between a component role (that model an abstract and partial view of a
required component), a component type that models the complete type of some
existing concrete implementation, a component class that represent the concrete
component implementation and a parameterized component instance.

Fig. 5. BikeCourseDBClass composite component

Component types represent the full types of at least one (maybe several) ex-
isting component implementations. They are defined by describing the interfaces
and behavior of these component classes. Component types are reusable as they
can be implemented by multiple component classes which possess the same in-
terfaces and component behavior. The BasketType component type description
of Fig. 6 is an example of component type description.

Component classes represent concrete component implementations. Each com-
ponent class points to the component type it implements. Component classes can
either be primitive or composite.

Primitive component classes (e.g. Basket as described in Fig. 7) define the
reused components by describing their interfaces, behavior, version2 and imple-

2 This information (as well as all the versioning information included in other descrip-
tions later on) serves evolution management purposes that are not described in this
paper. For more information, the interested reader might refer to [12].



component type BasketType

required interfaces BikeOprs; CourseOprs; AccountOprs; CampusOprs;

AccessoryOprs

provided interfaces Account; Bike

component behavior
(!BasketType.Bike.findB,

?BasketType.BikeOprs.findB;)

+

(!BasketType.Account.login,

?BasketType.AccountOprs.checkID;)

. . .

Fig. 6. Description of the BasketType component type

menting class. Existing models usually do not include links to the implementaing
class as they assume there is a single implementation. In Dedal, components can
thus have several implementations (which can be useful to have implementations
versioned in such cases as software product lines management).

component class Basket

implements BasketType

using fr.ema.locaBike.Basket

attributes string company; string currency

Fig. 7. The Basket (primitive) component class description

Composite component classes will be introduced in Sect.4.2. Both primitive
and composite component classes can export an attribute list (as exemplified
on Fig. 7 and 11). Attributes are not mandatory but can be declared as observ-
able / visible properties for component classes so as to be able to set assembly
constraints on attribute values in the instantiated component assembly level.

3.3 Components in Instantiated Software Component Assemblies

Component instances document the real artifacts that are connected together
in an assembly at runtime. They are instantiated from the corresponding com-
ponent classes. They might define constraints on components’ attributes that
reflect design decisions impacting component states (attribute values) over time.
They also set the initial component state by initializing attributes values.

component instance BasketLocaBike

instance of Basket (1.0)
initiation state company="LocaBikecurrency"; currency=="Euro."

Fig. 8. The BasketLocaBike component instance description



4 Three Levels of Architecture Description in Dedal

4.1 Abstract Architecture Specifications

Abstract architecture specifications (Aass) are the first level of software archi-
tecture descriptions. They provide a generic definition of the global structure
and behavior of software systems according to previously identified functional
requirements. They model the requirements expressed by the architect to serve
as a basis to search for concrete component to create concrete architecture con-
figurations. These architecture specifications are abstract and partial: they do
not identify concrete component types that are going to be instantiated in the
software system. They only describe the “ideal” component types from the ap-
plication point of view. Types of concrete components need not be identical to
abstract types. As Cbd processes favors component reuse, component type com-
patibility should be more permissive than strict identity but still guarantee safety
of use. Compatible concrete component types can, for example, provide more
functionalities than strictly specified (extra functionality will remain unused)
or provide more generic functionalities (use of polymorphism of object-oriented
languages)3.

specification BRSSpec

component roles
BikeCourse; BikeCourseDB

...

connections
connection connection1

client BikeCourse.BikeQS

server BikeCourseDB.BikeQS

connection connection2

client BikeCourse.CourseQS

server BikeCourseDB.CourseQS

...

architecture behavior
(!BikeCourse.BikeOprs.selectBike;

?BikeCourse.BikeQS.findBike;

!BikeCourseDB.BikeQS.findBike;)

+

(!BikeCourse.CourseOprs.startC;

?BikeCourse.CourseQS.findCourse;

!BikeCourseDB.CourseQS.saveCourse;)

...

version 1.0

Fig. 9. Aas of the Brs (partial)

In Dedal, an Aas is composed of a set of component roles, a set of connec-
tions and its architecture behavior. Figure 9 provides an example of the Aas
for the Brs. For readability reasons, this description represents only a small

3 The reader further interested about component compatibility can refer to authors’
work on component repositories [13] and component substitution [14].



part of the Brs Aas depicted in Fig. 2. Connections make interactions be-
tween two components possible. They define which component interfaces are
bound together. connection1 and connection2 from Fig. 9 are such connections.
Architecture behaviors describe the protocols of complete architectures –
meaning all possible interactions between their constituent components. As for
component protocols, the syntax used is that of Sofa protocols4. Compatibility
between individual component protocols and the protocol of their containing
architecture as well as compatibility between the protocols of two connected
components is not studied in this work as we interface our language with cor-
responding mechanisms (trace inclusion) from Sofa. Figure 9, that describes
the Brs architecture specification, contains the Brs architecture protocol. The
reader can intuitively check that the protocol of the BikeCourse component role
is compatible with (“included” in) the protocol of the Brs architecture.

4.2 Concrete Architecture Configurations

Concrete architecture configurations (Cacs) are the second level of system ar-
chitecture descriptions. They result from the search and selection of real compo-
nent types and classes in a component repository. These component types must
match abstract component descriptions from the architecture but need not be
identical; compatibility is sufficient. Component classes must be valid implemen-
tations of their declared component type. Cacs describe the architecture from
an implementation viewpoint (by assigning component roles to existing compo-
nent types). Architecture configurations thus list the concrete component and

configuration BRSConfig

implements BRSSpec (1.0)
component classes
BikeTrip (1.0) as BikeCourse;

BikeCourseDBClass (1.0) as BikeCourseDB

version 1.0

Fig. 10. A possible Cac for the Brs

connector classes which compose a specific version of a software application.
The architecture of a given software is thus defined by a unique Aas and pos-
sibly several Cacs. For a given software, each architecture configuration must
conform to the architecture specification. This means that each component or
connector class used in an architecture configuration must be a legal implemen-
tation of the corresponding component role or connection in the architecture
specification. Figure 10 describes the architecture configuration of the Brs. The
explicit description of connector classes is possible (as exemplified on Fig. 12)
but not mandatory. In cases where they are implicit, we consider connectors as

4
!c.i.m (resp. ?c.i.m) denotes an outgoing (resp. incoming) call of method m on
interface i of component c.



generic entities which are provided by containers (execution environments) in
which configurations are deployed. Connections are automatically administered
by containers at runtime to manage the instantiation of configurations. In cases
where connectors are explicitly added, their descriptions define the specific con-
nector classes that reflect design choices and that must be used to manage special
communication, coordination, and mediation schemes.Composite component
classes are components the implementation of which is not a simple class but
a complete configuration that differ from the above described configurations in
that it has some unconnected interfaces. The composite component class con-
cept enables hierarchical composition of architectures which has been identified
as an effective means to manage system complexity and concretely implement
reuse (as whole configurations can be considered as coarser grained components).
Composite component classes further define how unconnected interfaces from the
inner configuration can be delegated to interfaces of the composite component.
As for provided and required interfaces in primitive components, delegated inter-
faces are implementations of the corresponding provided and required interfaces
in the corresponding component role. Figures 11 and 12 give the example of
the composite component class BikeCourseDBClass that implements the Bike-
CourseDB role where the BikeQS provided interface of the BikeData component
inside the BikeCourseDBConfig configuration is delegated as a provided inter-
face of the composite component that implements the BikeQS interface of the
BikeCourseDB component role. Figure 11 shows a graphical representation of
the same BikeCourseDBClass component.

component class BikeCourseDBClass

implements BikeCourseDB

using BikeCourseDBConfig (1.0)
delegated interfaces
provided
BikeCourseDBConfig.BikeData.BikeQS

as BikeCourseDB.BikeQS

provided
BikeCourseDBConfig.TripData.CourseQS

as BikeCourseDB.CourseQS

version 1.0

attributes company

Fig. 11. The BikeCourseDBClass composite component class and its description

Conformance between an AAS and a CAC is a matter of conformance
between component roles and the component classes that supposedly implement
them. Many conformance relations could be defined, from stricter to very loose
ones. On the one hand, we defend that reused components need not be exactly
identical to specifications because being too strict in this matter might seriously
decrease the number of reuse opportunities. On the other hand, it is expected
from a conformance relation that it enables verifications that guarantees good



specification BikeCourseDBSpec

component roles
BikeDB; CourseDB

connections
connection ConnectionCourseQuery;

client BikeDB.CourseQuery

server CourseDB.CourseQuery

version 1.0

configuration BikeCourseDBConfig

implements BikeCourseDBSpec (1.0)
component classes
BikeData (1.0) as BikeDB;

TripData (1.0) as CourseDB

connector classes
CourseQuery (1.0) as

ConnectionCourseQuery;

version 1.0

Fig. 12. Descriptions of the BikeCourseDBSpec abstract specification and of the Bike-
CourseDBConfig inner configuration

chances that the thought component combination will execute. The rule of the
thumb that can be used is that concrete components must provide at least what
is the specification declare it provides and require less than what the specification
already requires. This translates into rules for interfaces and rules for behavior
protocols:

– the provided interfaces list of the concrete component class must contain all
the interfaces specified in the component role,

– all the required interfaces of the concrete component class must be specified
in the component role,

– the behavior of a component class includes (in the sense of trace inclusions)
the behavior specified in the component role.

Variations on these rules can further consider interface specialization rules as
in [13]. Figure 7 shows an example of a concrete component class (BikeTrip)
that has a required interface (LocOprs) that is not in the specification (Bike-
Course component role) it conforms to. In the case of composite components,
delegated interfaces of provided (resp. required) direction are considered exactly
as if they where provided (resp. required) interface of primitive components. In-
deed, when considered externally, composite components can be seen as if they
where primitive. Figure 7 provides an example of the BikeCourseDBClass com-
posite component class, that conforms to the specification of the BikeCourseDB
component role.

4.3 Instantiated Software Component Assemblies

Instantiated software component assemblies (Iscas) are the third level of system
architecture descriptions. They result from the instantiation of the component
classes from a configuration. They provide a description of runtime software sys-
tems and gather information on their internal states. Indeed, this description
level enables the record of state-dependent design decisions [15]. Iscas list the
component and connector instances that compose a runtime software system,
the attributes of this software system, and the assembly constraints the compo-
nent instances are constrained by. Figure 13 gives the description of a software
assembly that instantiates the Brs architecture configuration of Fig. 10.



assembly BRSAss

instance of BRSConfig (1.0)
component instances
BikeTripC1; BikeCourseDBClassC1

assembly constraints
BikeTripC1.currency="Euro.";

BikeCourseDBClassC1.company=

BikeTripC1.company

version 1.0

component instance BikeTripC1

instance of BikeTrip (1.0)
component instance BikeCourseDBClassC1

instance of BikeCourseDBClass (1.0)

Fig. 13. Component assembly description of the Brs

The explicit description of connector instances is possible but not manda-
tory. In cases where they are implicit, we consider them as generic entities which
are provided by containers (execution environments) in which configurations
are deployed. In cases where connector instances are explicitly added, their de-
scriptions define the specific attributes that reflect implementation choice to
meet different situation. By default, component classes can be instantiated into
multiple component instances. When more precise cardinality information is
needed, it is expressed in component role descriptions using minInstances and
maxInstances that define the minimum and maximum numbers of component
instances that are permitted to instantiate from the component class which im-
plements this component role. By this means, component classes do not include
this configuration-dependent information and remain reusable. In the assembly
level, assembly constraints that restrain the valid number of instances will be
checked against the cardinality information defined in the component role (in
the specification level). There is no rule to constrain the name of component
instances of a given component class. Assembly constraints define conditions
that must be verified by attributes of some component instances of the assem-
bly, to enforce its consistency. Such assembly constraints are not mandatory. For
now, Dedal only permits to list several constraints that must all be enforced and
that either:

– limit the possible values for an attribute to a given constant,
– restrain the cardinality of some connection end (i.e.,the number of instances

of the component class that stands at the end of the connection in the
configuration) to a given constant,

– or, enforce equality of the values of two distinct attributes that pertain to
two distinct component instances of a given component assembly.

Such assembly constrains are illustrated on Fig. 13 where the value of the cur-
rency attribute of component BikeTripC1 is fixed to Euro and where the value of
the attribute company of the BikeCourseClassDBC1 component must be main-
tained identical to the value of attribute company of component BikeTripC1.
Another example that involves cardinalities would be expressed as the assembly



constraint InstanceNbr(BikeTrip)=2 that mean that exactly two component in-
stances of the BikeTrip component class should be instantiated in this system.
The cardinality of the BikeTrip component class is recorded in the BikeCourse
component role specification. These constraints are very simple and do not yet
enable the expression of alternatives, negation, nor the resolution of possible con-
flicts. Such extended assembly constraint management is one of the perspectives
for this work for which we plan to take inspiration from systems that manage
architectural styles as constraints sets [6, 16].

Conformance between a CAC and an ISCA is quite straightforward.
All component instances of the assembly must be an instance of a correspond-
ing component class from its source configuration (and reciprocally). Confor-
mance also includes the verification that attribute names used in an assembly
constraint of some component assembly pertain to the component classes the
components of the assembly are instances of. For example, the assembly con-
straint BikeTripC1.currency=”Euro.” of Fig. 13 has the conformance process
check whether the BikeTrip component class (from which BikeTripC1 is instan-
tiated) possesses a currency attribute.

5 Implementation of Dedal in the Arch3D tool suite

The Dedal Adl presented in this paper has been implemented in the Arch3D
tool suite. The language has been implemented twice: as an XML-based Adl
and as a Java-based Adl. The tools also propose a component model which en-
ables to instantiate and manipulate corresponding assemblies at runtime which
is extended as an extension of Julia, the open-source java implementation of the
Fractal component platform5. Our extension of the Fractal platform tools has
two purposes: to support the explicit and separate representation of specifica-
tions and configurations and, to embed these representations in the component
model. The three architecture representations are then available and manipulable
at runtime, also providing a full support for evolution management. The Arch3D
Editor tool provides a graphical console to create, view and modify Dedal-based
Fractal architectures. Architects can simultaneously display the different repre-
sentations of an architecture and work on them.

6 Conclusion

Dedal enables the explicit and separate representations of architecture specifica-
tions, configurations and assemblies. Architecture design decisions can thus be
precisely captured and traced throughout the development process. The three-
level syntax of Dedal supports the expression of requirements by the means
of abstract and partial component roles that are used as the main conceptual
support for the search of reusable components to be included in configurations.
The model of the runtime system (the instanciated component assembly) is rich

5
http://fractal.ow2.org/



enough to serve as the baseis of a full evolution process [12]. A perspective for
this work is to experiment the use of Dedal to manage component-based software
product lines.
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Appendix E

A formal approach for managing
component-based architecture
evolution

This journal article [85] is to appear in Science of Computer Programming in October
2016. It is an extended, selected version of a paper presented at the 11th international
symposium on Formal Aspects of Component Software (FACS 2014) [83]. It is the natu-
ral extension of the conference paper of Appendix D. It presents part of the work realized
during the PhD of Abderrahman Mokni.

Software architectures are subject to several types of change during the software
lifecycle (e.g., adding requirements, correcting bugs, enhancing performance). The va-
riety of these changes makes architecture evolution management complex because all
architecture descriptions must remain consistent after change. To do so, whatever part
of the architectural description they affect, the effects of change have to be propagated
to the other parts.

The goal of this work is to provide support for evolving component-based archi-
tectures at multiple abstraction levels. Architecture descriptions follow the Dedal ar-
chitectural model, the three description levels of which correspond to the three main
development steps - specification, implementation and deployment. This article formal-
izes an evolution management model that generates evolution plans according to a given
architecture change request, thus preserving consistency of architecture descriptions and
coherence between them. To do so, it uses the B formal language and its companion B
solver.

The approach is implemented as an Eclipse-based tool and validated with three
evolution scenarios of a Home Automation Software example.

161



A formal approach for managing component-based
architecture evolution

Abderrahman Mokni a, Christelle Urtadoa, Sylvain Vauttiera,
Marianne Huchardb, Huaxi Yulin Zhangc

aLGI2P, Ecole Nationale Supérieure des Mines Alès, Nı̂mes, France
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1. Introduction

Component-based software development (Cbsd) promotes a reuse-based
approach to defining, implementing and composing loosely coupled indepen-
dent software components into whole software systems [1]. While component
reuse is crucial to shorten large-scale software systems development time,
handling evolution in such processes is a significant issue [2]. Indeed, soft-
ware systems have to evolve to extend their functionalities, correct bugs,
improve performance and quality, or adapt to their environment. While un-
avoidable, software changes may engender several inconsistencies and system
dysfunction if not analyzed and handled carefully. In turn, an ill-mastered
evolution engenders software degradation, the loss of its evolvability and then
its phase-out [3].

A famous problem of software evolution is software architecture ero-
sion [4, 5]. It arises when modifications of the software implementation
violate the design principles captured by its architecture. To increase confi-
dence in reuse-centered, component-based software systems, all architecture
descriptions must remain consistent and coherent with each other after every
change.

While a lot of work has been dedicated to architectural modeling and
evolution, there still is a lack of means and techniques to tackle architectural
inconsistencies, and erosion in particular. Indeed, most existing approaches
to architecture evolution hardly support the whole life-cycle of component-
based software and only enable evolution of early stage models by propagat-
ing change impact to runtime models while evolution of runtime models are
not fully dealt with, thus increasing the risks of architecture erosion.

This paper proposes an approach and its implementation to automatically
manage component-based architecture evolution at multiple abstraction lev-
els in a manner that preserves architecture consistency and coherence all
along the software lifecycle. The approach is based on the Dedal [6, 7] archi-
tectural model that explicitly models architectures at three abstraction levels,
each corresponding to one of the three major steps of Cbsd – specification,
implementation and deployment, thus granting a full evolution management
process. Given a change request at any abstraction level, it transforms Dedal
models into B formal models to analyze the requested change and generates
an evolution plan that guarantees the consistency of architecture descrip-
tions and the coherence between them. The proposed approach is centered
on a formal evolution management model that includes the generated B mod-
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els, the architecture properties to preserve and a set of evolution rules. It
is implemented as an Eclipse-based tool that generates B models from dia-
grammatic Dedal models and uses our specific solver to resolve architecture
evolution. The overall approach is illustrated with a Home Automation Soft-
ware case-study.

The remainder of this paper outlines as follows: Section 2 presents the
background of this work. Section 3 presents our proposal to tackle multi-level
architecture evolution (i.e. the evolution of architecture definitions composed
of multiple description levels) while Section 4 presents the implemented tool
and experiments on three evolution scenarios. Section 5 discusses related
work and finally, Section 6 concludes the paper and discusses future work.

2. Background

Our approach combines the use of Dedal to model software architectures
and B to support automated analysis and verification. This section briefly
introduces these languages.

2.1. The Dedal architecture model
2.1.1. Component-based software development by reuse

Cbsd follows the reuse-in-the-large principle. Reusing existing (off-the-
shelf) software components [8] therefore becomes the central concern during
development. Traditional software development processes cannot be used as
is and must be adapted to component reuse [1]. Figure 1 illustrates our vision
of such a development process which is classically divided in two:

• the component development process (referred to as software component
development for reuse), which will not be detailed in the sequel. This
development process produces components that are stored in reposito-
ries for later use by the software development process.

• the software development process (referred to as software development
by component reuse) that describes how previously developed software
components can be used for software development (and how this reuse
impacts the way software is built).

Dedal is a novel architectural model and Adl [6, 7] that targets reuse-
centered development. It covers the whole software development by com-
ponent reuse life-cycle. The main idea of Dedal is to build a concrete ar-
chitecture composed of stored and indexed components that are found in a
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Figure 1: Dedal reuse-centered development process [7]

component repository as candidates to satisfy the design decisions specified
in an intended architecture specification. The resulting concrete architecture
can then be instantiated and deployed in multiple contexts. Therefore, Dedal
proposes a three-step approach for specifying, implementing and deploying
software architectures.

2.1.2. Dedal abstraction levels
To illustrate the concepts of Dedal, we propose to model a home automa-

tion software (Has) that manages comfort scenarios, which automatically
controls buildings’ lighting and heating depending on time and ambient tem-
perature. For this purpose, we propose an architecture with an orchestrator
component that interacts with the appropriate devices to implement the de-
sired scenario.

The abstract architecture specification is the first level of software archi-
tecture descriptions. It is abstract: it represents the architecture as imagined
by the architect to meet the requirements of the future software. In Dedal,
the architecture specification is composed of component roles, their connec-
tions and the expected global behavior. Component roles are abstract and
partial component type specifications. Consequently, the provided interfaces
of each role are to be connected to compatible required interfaces. Compo-
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nent roles are identified by the architect in order to search for and select
corresponding concrete components in the next step. Figure 2-a shows a
possible Has architecture specification. In this specification, five component
roles are identified. A component playing the HomeOrchestrator role controls
four components playing the Light, Time, Thermometer and CoolerHeater
roles.

Figure 2: Architecture specification, configuration and assembly of the HAS

The concrete architecture configuration is an implementation view of soft-
ware architectures. It results from the selection of existing component classes
in component repositories. Thus, an architecture configuration lists and con-
nects the concrete component classes that compose a specific version of the
software. In Dedal, component classes can either be primitive or compos-
ite. A primitive component class encapsulates executable code. A composite
component class encapsulates an inner architecture configuration (i.e. a set
of connected component classes which may, in turn, be primitive or compos-
ite). A composite component class exposes a set of interfaces corresponding
to the unconnected interfaces of its inner components. Figure 2-b shows a
possible architecture configuration for the Has example as well as an example
of an AirConditioner composite component and its inner configuration. As
illustrated in this example, a single component class may realize several roles
from the architecture specification as with the AirConditioner component
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class, which realizes both the Thermometer and CoolerHeater roles. Con-
versely, a component class may provide more services than those listed in
(its role in) the architecture specification as with the Lamp component class
which provides an extra service to control the intensity of light. These extra
interfaces may be left unconnected.

The instantiated architecture assembly describes software at runtime and
holds information about its internal state. The architecture assembly models
an instantiation of its architecture configuration. It lists the instances of the
component and connector classes that compose the deployed architecture at
runtime and their assembly constraints (such as the maximum number of
connected instances). Component instances document how the component
classes from an architecture configuration are instantiated in the deployed
software. Each component instance has an initial and a current state defined
by a list of valued attributes. Figure 2-c shows an instantiated architecture
assembly for the Has example.

2.2. The B modeling language

B [9, 10] is a formal modeling language and a proof-based development
method for software systems. The principle of such method is to start from a
very abstract model of the system and then gradually refine it. Initially de-
signed by Abrial in 1985 to specify critical systems, B was rapidly adopted by
industry and used in many case studies such as the Meteor project [11] for
controlling train traffic and the Pci protocol [12]. B is also widely used and
studied in academia, mainly as a formal modeling language for verification,
validation and model-checking.

2.2.1. Expressiveness and semantics
B is based on Zermelo-Fraenkel (ZF) set theory and first order logic lan-

guage. The B notation is very similar to mathematical language and includes
all standard logical connectors (e.g. ∧,∨,⇒), set-theoretic operations (e.g.
∈,∪), closure and specific relations like injective (� ), surjective (� ) and
bijective ( �� ) functions. B also supports sequences and the basic boolean
(BOOL), integer (INTEGER) and natural (NAT ) types.

B specifications are composed of abstract machines similar to modules
(cf. Figure 3). They are defined independently and can be reused as mod-
ules and refined to obtain more concrete models. An abstract machine is
divided into a declarative part and a dynamic part. The declarative part
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contains the declaration of sets (SETS ), constants (CONSTANTS ), vari-
ables (VARIABLES ) which represent the state of the machine and invariant
properties (INVARIANT ) related to variables. Optionally, it is also possi-
ble to set definitions (DEFINITIONS ) (like macros). Definitions are useful
to define extensive sets and parametrized predicates and can be reused by
invariants and operations. The dynamic part contains the initialization (INI-
TIALISATION ) of the machine as well as operations (OPERATIONS ) over
the state (variables) of the machine. The behavior of operations is explicitly
defined in B using various constructs such as preconditions (PRE P THEN
S END), bounded choice (CHOICE S1 OR S2 ) or non-determinism (ANY v
WHERE P THEN S END). Post-conditions are expressed by substitutions
that state the new assignments of the involved variables. Output variables
may also be defined as values returned by operations.

MACHINE
name and eventually parameters

INCLUDES (optional)
imported specifications

(Static/declarative part)
SETS

declaration of abstract / enumerated sets
CONSTANTS

declaration of constants
PROPERTIES

constraints on constants
VARIABLES

declaration of variables (the machine state)
INVARIANT

declaration of invariant properties of the machine
DEFINITIONS (optional)

construction of formulas / sets using the variables of the machine
(Dynamic part)
INITIALISATION

initialization of the state of the machine (all declared variables)
OPERATIONS

definition of operations that modify the state of the machine

Figure 3: Structure of an abstract B machine

2.2.2. Tool support for B
B is supported by powerful tools like AtelierB [13], BToolkit [14] and the

more recent Bware platform [15]. These tools focus on theorem-proving but
they do not enable model-checking. ProB [16] was designed for this purpose.
It is a model checker and animator for B models. It automatically generates
counterexamples for given assertions by exhaustively exploring the model
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(using state space exploration techniques). It also simulates the execution
of operations on a given subset of the model and generates traces leading to
some desired state. An API is also provided for developers to integrate the
features of ProB in their tools.

2.3. Motivation and contribution

Component reuse helps decrease large-scale software systems time-to-
market. Handling the evolution in such component-based software prevents
architecture erosion and has long been identified and still remains an impor-
tant thus difficult task [17, 18]. To tackle this issue, this paper proposes an
approach to manage the evolution of component-based software architectures
based on the three-level Dedal architecture model.

Dedal is tailored for reuse [6, 7] and provides as an original feature its three
architecture definition levels. Indeed, specifications are the cornerstone of
the concrete component search that is performed on component repositories
to design, by reuse, the implementation of architectures. Along with Dedal
configurations and assemblies, Dedal architecture definitions keep track of all
the design decisions taken during the development process. This information
is very useful to control evolution and evaluate its impact on the intentions
of the architects. This is why Dedal is a choice Adl for architecture-based
software evolution management.

The evolution process proposed here is driven by an evolution manage-
ment model that captures changes initiated at any abstraction level, controls
their impact to preserve / restore consistency and propagates them to other
levels to maintain global coherence. This model is based on the B formal
language which provides a rich and rigorous notation to formalize the archi-
tectural concepts and express properties over them. It supports automated
analysis and model-checking thanks to the ProB tool.

In previous work [19, 20], we specified Dedal models using the B mod-
eling language and proposed an evolution management model to enable the
simulation, analysis and validation of evolution scenarios at any abstrac-
tion level using ProB. At that time, evolution was not yet automated since
models were specified and evolved manually and separately. In the remain-
der, our approach integrating both Dedal and B to automatically manage
component-based architecture evolution is presented. The automated Dedal
to B transformation as well as a problem-specific B solver built on top of the
ProB tool are the cornerstones of the contribution of this paper.
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Using our problem-specific solver enables the automatic generation of
evolution plans (sequences of change operations) to leverage the impact of a
change request in a problem-specific manner and maintain the architecture
descriptions coherent after change. The feasibility of our approach is demon-
strated by experimenting on three evolution scenarios that each addresses
change in a different abstraction level.

3. The formal evolution approach

This section presents our approach to formally handle the evolution of
multi-level component-based architecture descriptions produced during soft-
ware development. Its key idea is to use a B solver to automatically generate
evolution plans that correspond to intended changes (cf. Figure 4).

Figure 4: Evolution management approach

Given a model in an initial state, a set of state transition rules and a goal
state, a B solver finds sequences of rules that reach the goal state or proves
that the goal state cannot be reached (when it does not run out of time or
resources because of high computational complexity).
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A first requirement is thus to transform the Dedal models produced during
development into B models that can be used as an input for the solver. The
principles of this transformation are detailed in Section 3.1. Architecture
evolution operations along with validation properties must also be expressed
as a set of rules. The resulting Evolution Management Model is presented in
Section 3.2. Finally, initiated architecture changes must be described as goal
states, as explained in Section 3.3. With these inputs, a B solver can then
find an evolution plan (a sequence of rules) that achieves the intended change
(reaches the goal state) while preserving the coherence of the architecture
definition (enforcing properties), as presented in Section 3.4.

3.1. Dedal to Formal Dedal transformation

Dedal models need to be translated into B models, so that a B solver
can calculate modifications and evaluate properties on the resulting formal
architecture descriptions. Defining this transformation amounts to formalize
in B the concepts of the Dedal meta-model (cf. Figure 6). This way, any
instance of the Dedal meta-model can be transformed into an equivalent
instance of the Formal Dedal meta-model (cf. Figure 5).

Figure 5: Dedal to Formal Dedal transformation
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Figure 6: Dedal meta-model

A meta-class is usually mapped to a B variable typed by an abstract B
set while an association relation is translated into a B relation. For instance,
Figure 7 presents the formalizaton of the Component and Interface meta-
classes and their compInterfaces association.

SETS
COMPS; INTERFACES
VARIABLES
component, interface, comp interfaces
INVARIANT
component ⊆ COMPS ∧
interface ⊆ INTERFACES ∧
comp interfaces ∈ component � P1(interface)

Figure 7: Formalization of meta-classes and associations in B
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The Component and Interface meta-classes are respectively mapped to
the component and interface variables and typed with the COMPS and IN-
TERFACES abstract sets. Their compInterfaces association holding a one-
to-many relation is translated into an injective function between the compo-
nent variable and a non-empty set of interfaces: P1(interface).

The whole Dedal meta-model formalization results in four main B ma-
chines (extracts of which are shown in Figure 8).

MACHINE Arch concepts
INCLUDES Basic concepts
SETS
ARCHS;COMPS;COMP NAMES
VARIABLES
architecture, arch components, arch connections,
component, comp name, connection,
comp interfaces client, server, . . .

INVARIANT
component ⊆ COMPS ∧
comp name ∈ component → COMP NAMES ∧
comp interfaces ∈ component � P1(interface) ∧
client ∈ component ↔ interface ∧
server ∈ component ↔ interface ∧
connection ∈ client ↔ server ∧
architecture ⊆ ARCHS ∧
arch components ∈ architecture → P(component) ∧
arch connections ∈ architecture → P(connection)

MACHINE
Arch specification
INCLUDES
Arch concepts
CONSTANTS
COMP ROLES, ARCH SPEC
PROPERTIES
COMP ROLES ⊆ COMPS ∧
ARCH SPEC ⊆ ARCHS
VARIABLES
compRole, specification, . . .

MACHINEArch configuration
USES Arch specification
SETS
COMP CLASS; CLASS NAME; ATTRIBUTES; ...

CONSTANTS
COMP TYPES
PROPERTIES
COMP TYPES ⊆ COMPS ∧
COMP TYPES = COMPS - COMP ROLES
VARIABLES
config, config components, config connections,
compType, compClass, compositeComp, class name ,

attribute, class attributes, composite uses ,

delegatedInterface , delegation , . . .

INVARIANT
compType ⊆ COMP TYPES ∧
compClass ⊆ COMP CLASS ∧
class name ∈ compClass → CLASS NAME ∧
attribute ⊆ ATTRIBUTES ∧
class attributes ∈ compClass → P(attribute) ∧
compositeComp ⊆ compClass ∧
composite uses ∈ compositeComp → config ∧
delegatedInterface ⊂ interface ∧
delegation ∈ delegatedInterface � interface ∧
. . .

MACHINE Arch assembly
USES Arch configuration
SETS
COMP INSTANCES;ASSEMBLIES;

ATTRIBUTES V ALUES
VARIABLES
compInstance, assm components, assm, current state,
attribute value, . . .

INVARIANT
compInstance ⊆ COMP INSTANCES ∧
attribute value ∈ attribute → ATTRIBUTES V ALUES ∧
current state ∈ compInstance → P(attribute value) ∧
assm ⊆ ASSEMBLIES ∧
assm components ∈ assm → P1(compInstance)
. . .

Figure 8: Overview of the Dedal formal meta-model

A generic Arch concepts machine helps define the three specific Arch specification,
Arch configuration and Arch assembly machines that each correspond to one
of the three architecture description levels of Dedal. Arch concepts covers
the generic concepts of a software architecture (corresponding to the ab-
stract Component, Connection, and ArchitectureDescription meta-classes).
It includes an inner Basic concepts machine that contains definitions for the
finer-grained architectural elements like Interface, InterfaceType, Signature
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or Parameter meta-classes.
These generic definitions are reused in the three specific machines. For

instance, in the Arch specification machine, component roles are defined as a
subset of components: COMP ROLES ⊆ COMPS ∧ compRole ⊆ COMP ROLES.

This corresponds to the inheritance relation between the Component and
CompRole meta-classes. Consequently, all relations defined for the compo-
nent set (such as comp interfaces) also stand for the compRole set.

The abstract B machines define a formal meta-model that can be instan-
tiated (concrete values are given to their variables) in order to generate a
Formal Dedal model. The latter is then used as an input for the B solver.

3.2. The evolution management model

The evolution management model is composed of generic evolution rules
that are used by the solver to find evolution plans satisfying given evolution
goals. It consists in a B machine that defines the rules and properties that
respectively enable the simulation and validation of architecture evolution at
the three abstraction levels (cf. Figure 9).

MACHINE
EvolutionManager
INCLUDES
Arch specification, Arch configuration, Arch assembly
SETS
/*Enumerated set to indicate the level of change*/

CHANGE LEVEL = {eLevel, specLevel, configLevel, asmLevel}
VARIABLES
/*Variable to control the level of change*/
changeLevel, . . .
DEFINITIONS
/*Consistency and coherence properties*/
. . .
global consistency == spec consistency ∧ config consistency ∧ assm consistency
global coherence == specConfigCoherence ∧ configAssmCoherence
/*GOAL is the predicate given to the solver to find an evolution plan satisfying it*/
GOAL == global consistency ∧ global coherence ∧ . . .
INITIALISATION
/*Initialization is used to set the initial level of change and
the initiated change*/
. . .
OPERATIONS
/*Initialization operations*/
. . .
/*Evolution rules(control the architecture manipulation operations) */
. . .
END

Figure 9: The EvolutionManager machine
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Its main elements are detailed in the following subsections.

3.2.1. Evolution rules
Evolution rules are operations that control the access and the impact

of architecture manipulation operations in order to manage evolution and
generate consistent evolution plans (cf. Figure 10). Each evolution rule
embeds a corresponding architecture manipulation operation that handles
the actual modification of the model, not taking into account the context of
the current evolution plan.

output ← evolutionRuleName(targetArchitecture, artifacts) =
PRE

initialization = true ∧
changeLevel = currentChangeLevel ∧
artifacts /∈ addedArtifacts ∪ deletedArtifacts ∧
manipulationOperationPrecondition

THEN
/* execute manipulationOperationName(targetArchitecture, artifacts),
update the sets of added artifacts and deleted artifacts,
set the value of output parameters */

END

Figure 10: Schema of an evolution rule

The evolution rule preconditions act as a primary filter for model ma-
nipulation operations. Initialization preconditions check that all the model
initialization operations have completed before starting calculating evolu-
tion plans. Initialization includes calculating and checking relations between
architecture elements, such as compatibility and substitution between com-
ponents and interfaces. Change level preconditions restrict access to the op-
erations related to the current level of change (evolution is managed on one
level at a time). History preconditions prevent operations that may generate
cycles and then decrease the efficiency of the solver. For instance, deleting
and adding the same artifact several times is unnecessary during an evolu-
tion process. Similarly, removing an added artifact results in a null operation
that may be avoided. History consists of two sets: one for added artifacts
and the other for deleted ones. Evolution rules also inform the solver about
the artifacts that have to be manipulated after the last executed change op-
eration. This information is used as a heuristic to increase the efficiency of
the solver. Heuristics are further discussed in Section 4.1.2.

Figure 11 gives the definition of the evolution rule that controls the role
addition operation. This rule is enabled when evolution is handled at the
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specification level, after initialization, provided that the role has not yet
been added or previously removed. If so, the precondition of the role addi-
tion operation is checked and, when it is verified, the operation is executed.
Finally, the set of added component roles (addedRoles) is updated and the
output is set to the added component role (newRole).

output ← mng addRole(spec, newRole) =
PRE
/*Initialization precondition*/

initialisation = TRUE ∧
/*Change level precondition*/

changeLevel = specLevel ∧
/*Precondition to avoid cycles (inverse operation)*/

newRole �∈ (deletedRoles ∪ addedRoles) ∧
/*Precondition of the role addition operation*/

roleAdditionPrecondition
THEN
/*Access to role addition operation*/

addRole(spec, newRole) ||
addedRoles := addedRoles ∪ {newRole} ||
outpout := newRole

END;

Figure 11: The component role addition evolution rule

3.2.2. Model manipulation operations
A model manipulation operation is an operation that changes a target

software architecture by the deletion, addition or substitution of one of its
elements (components and connections). They are composed of three parts:

• the operation signature that defines the operation name and its argu-
ments,

• preconditions that are related to the architectural model (e.g. a pre-
condition that checks if substitutability between two component classes
holds),

• actions (called substitutions in B) that update a set of variables re-
lated to the architectural model (e.g. the set of components of the
architecture).
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Architecture specification evolution. Evolving an architecture specification is
usually a response to a new software requirement. For instance, the archi-
tect may need to add new functionalities to the system and hence add some
new roles to the specification. Moreover, a specification may also be modified
during the change propagation process to preserve coherence and keep an up-
to-date specification description of the system that may be implemented in
several ways. The proposed manipulation operations related to the specifica-
tion level are the addition, deletion and substitution of a component role and
the addition and deletion of connections. Figure 12 presents the definition
of the role addition operation as an example of an architecture specification
manipulation operation. Its precondition first checks that arguments are
soundly typed and then that the chosen role does not already belong to the
architecture specification and will not name clash. Its actions update the
set of component roles of the architecture specification, along with the sets
of connected provided and required interfaces (respectively spec components,
spec servers and spec clients). Indeed, as only effectively used elements are
defined at specification level, every interface must be connected.

addRole(spec, newRole) =
PRE
spec ∈ arch spec ∧ newRole ∈ compRole ∧ newRole �∈ spec components(spec) ∧
/* spec does not contain a role with the same name*/
∀ cr.(cr ∈ compRole ∧ cr ∈ spec components(spec)
⇒ comp name(cr) �= comp name(newRole))
THEN

spec servers(spec) := spec servers(spec) ∪ servers(newRole) ||
spec clients(spec) := spec clients(spec) ∪ clients(newRole) ||
spec components(spec) := spec components(spec) ∪ {newRole}

END;

Figure 12: The component role addition manipulation operation

Architecture configuration evolution. Change can be initiated at the configu-
ration level, for example when new versions of software component classes are
released or when component classes are not available anymore. Otherwise,
an implementation may also be impacted by change propagation either from
the specification level, in response to new requirements, or from the assembly
level, in response to a dynamic change of the system. Indeed, a configuration
may be instantiated several times and deployed in multiple contexts. Figu-
re 13 presents the component class substitution operation as an example of
an architecture configuration manipulation operation.
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replaceClass(config, oldClass, newClass) =
PRE

oldClass ∈ compClass ∧ newClass ∈ compClass ∧ config ∈ configuration ∧
oldClass ∈ config components(config) ∧
/* The old component class can be substituted for the new one

(verified by the component substitution rule)*/
newClass �∈ config components(config) ∧ (oldClass, newClass) ∈ class substitution

THEN
config components(config) := (config components(config) - {oldClass}) ∪ {newClass}

END

Figure 13: The component class substitution manipulation operation

Besides checking the type of the arguments, its precondition verifies that
the new component class does not already belong to the configuration and
can be a substitute for the old component class (using the relations calcu-
lated during initialization). When the precondition is verified, the set of
component classes composing the configuration is updated. As compared to
the role addition operation presented in previous section, there is no need to
update the sets of client and server interfaces (connected required and pro-
vided interfaces) here, as substitution must preserve the connections of the
replaced component class (see § 3.2.3 for deeper insight about substitution
rules).

Architecture assembly evolution. Since the architecture assembly represents
the software at runtime, managing the assembly level relates to dynamic
evolution issues. Indeed, some software systems have to be self-adaptive to
keep providing their functions despite environmental changes (e.g. lack of
resources, failures, user requests). Dealing with unanticipated changes is one
of the most important issues in software evolution. This issue is handled by
the evolution manager which monitors the execution state of the software
through its corresponding formal model. It then triggers the assembly evolu-
tion rules to restore consistency and coherence when needed. The assembly
manipulation operations include component instance addition, component
instance removal, component instance substitution and component instance
connection / disconnection. Figure 14 gives the definition of the component
instance addition as an example of an assembly manipulation operation. Af-
ter checking the types of the arguments, the precondition verifies that the
instance corresponds to the chosen component class, that it does not already
belong to the assembly and that another instance of the class can be added
in the assembly. It also verifies that the chosen initial state is valid.

17



deployInstance(asm, inst, class, state) =
PRE
asm ∈ assembly ∧ class ∈ compClass ∧

/* The instance is a valid instantiation of the chosen component class*/
inst ∈ compInstance ∧ class = comp instantiates(inst) ∧ inst �∈ assm components(asm) ∧

/* The state given to the instance is a valid value assignment of its attributes
of the instantiated component class*/
state ∈ P (attribute value) ∧ card(state) = card(class attributes(class)) ∧

/* The maximum number of allowed instances of the given component class
is not already reached*/
nb instances(class) < max instances(class)

THEN
/*initial and current state initialization*/

initial state(inst) := state ||
current state(inst) := state ||

/*updating the number of instances and the assembly architecture*/
nb instances(class) := nb instances(class) + 1 ||
assm components(asm) := assm components(asm) ∪ {inst} ||
assm clients(asm) := assm clients(asm) ∪ clients(inst)

END;

Figure 14: The component instance deployment manipulation operation

When executed, the operation adds the instance in the assembly, updates
the count of instances of the component class and updates the set of client
interfaces. The set of server interfaces will be updated later, as client inter-
faces are automatically connected by the evolution manager to maintain the
consistency of the assembly (see § 3.2.3).

Manipulation operations constitute the dynamic aspect of the architec-
tural formal models. They enable to change the state of a model which
must therefore be validated thanks to consistency and coherence properties
exposed in the following sections.

3.2.3. Consistency properties
Consistency properties maintain the correctness of each architecture de-

scription level during the evolution process. Taylor et al. [21] define consis-
tency as an internal property intended to ensure that different elements of an
architecture model do not contradict one another. They point out five kinds
of inconsistencies that may occur in architecture models: name, interface,
behavior, interaction and refinement. Our consistency properties deal with
the following inconsistencies:

• Name consistency ensures that each component holds a unique name
to avoid conflicts when selecting components.
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• Interface consistency ensures that all architecture connections are cor-
rect (i.e. a required interface is always connected to a compatible
provided interface).

• Interaction consistency ensures that the architecture realizes its func-
tional objectives (components are able to soundly cooperate through
their connected interfaces). In our approach, this property is imple-
mented as a verification that each required interface is connected to a
compatible provided one. Moreover, in architecture specifications, all
server interfaces must also be connected (no unused feature is described
at this level). Besides, every architecture definition must be composed
of a connected graph, so that no part of the architecture is isolated.

Behavior consistency is out of the scope of the work presented in this
paper which only considers static type definitions, for now. Refinement con-
sistency is handled separately by our coherence properties (cf. Section 3.2.4).

As an example, the formalization of our interface consistency property is
presented in Figure 15.

∀ (cl, se).(cl ∈ client ∧ se ∈ server ⇒
((cl, se) ∈ connection ⇒
∃ (C1 , C2 , int1 , int2 ).(C1 ∈ component ∧ C2 ∈ component ∧ C1 �= C2 ∧
int1 ∈ interface ∧ int2 ∈ interface ∧ cl = (C1 , int1) ∧ se = (C2 , int2) ∧
(int1 , int2) ∈ int compatible)))

Figure 15: Interface consistency property

This property states that a required (client) interface is properly con-
nected to a provided (server) interface when these two interfaces belong to
different components and have compatible types.

Consistency properties are based on commonly adopted syntactic typing
rules that state compatibility and substitution between finer grained entities
such as components and interfaces. These rules transpose the well studied
typing principles used in the object-oriented paradigm to the component-
oriented paradigm. As usual, the main principle is that a component that
belongs to a subtype can substitute for a component that belongs to a su-
pertype (i.e. be connected at the same place in the same architecture).
This entails that a component subtype must define a set of interfaces that
can replace all the interfaces defined in its supertype (identical interfaces
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or interfaces belonging to subtypes). Moreover, a component subtype can-
not define extra required interfaces, as they correspond to extra connection
requirements that break the substitution guarantee with the supertype. Con-
versely, extra provided interfaces can be defined in a subtype as they do not
imply mandatory extra connections.

Comparing component types thus amounts to comparing interface types.
Interface type hierarchies are built with respect to the same substitution prin-
ciple: an interface subtype must define a set of operations that can replace
those of its supertypes. Usual specialization rules are applied to provided
interface types, that are comparable to object types. A provided interface
subtype must define at least the same operations as its supertypes or special-
ized operations that can replace them. Classically, an operation specializes
another one when it has the same name, a contravariant set of input parame-
ters (at most as many parameters, with identical or more generic data types)
and a covariant set of output parameters (at least as many parameters, with
identical or more specific data types). With these rules, it is always possible
to call a more specialized operation with the input values of a more generic
one and then to use the output values of the more specialized operation in
place of the output value of the more generic one.

Regarding required interfaces, opposite specialization rules are used. In-
deed, a required interface corresponds to dependencies. Thus, a required
interface subtype cannot define more operations than its supertypes, in or-
der not to add extra dependencies. It cannot define less operations either,
as this can impair interactions with other components. A required interface
subtype must then implement the same operations as its supertypes, or more
generic operations (i.e. operations with the same name, at least as many in-
put parameters of identical or more specific data types and at most as many
output parameters with identical or more generic data types). Requiring
more generic operations than its supertypes, a more specialized required in-
terface can replace a more generic required interface. Dedal typing rules are
discussed and detailed in previous work [22].

Compatibility is calculated thanks to the aforementioned typing rules.
Basically, a required interface is compatible with a provided interface when
they have the same type (i.e. are defined by the same set of operations). The
required interface is also compatible with a provided interface that belongs to
a subtype of its type (because of the substitution principle). Compatibility
rules are also detailed in [22].
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3.2.4. Coherence properties
Coherence properties prevent architecture erosion (mismatches between

the different description levels) so as to maintain the global correctness of
architecture definitions. Coherence properties maintain the relations that
must exist between the specification, configuration and assembly defining
an architecture (cf. Figure 16-b): its configuration must be a valid imple-
mentation of its specification; its assembly must be a valid instance of its
configuration.These relations between description levels rely on typing rela-
tions between their composing elements. The component classes composing
the configuration of an architecture must implement the component roles of
its specification. In the same way, the component instances composing its
assembly must be valid instances of the component classes of its configura-
tion. This relates to a generic principle (cf. Figure 16-a) that a relation
between two kinds of models implies a relation between their composing ele-
ments (and possibly reciprocally under restrictive conditions). For instance,
a model can be considered as a specialization of another model only when
its composing elements specialize the elements of the other model.

(a) inter-model coherence relation
generic principle

(b) coherence relations between the
Dedal architecture levels

Figure 16: Coherence relations between architecture levels

The generic principle can be formalized by the generic coherence rule
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depicted in Figure 17.

coherence(modelA, elemA,modelB , elemB , rela, relb, R,Q) ==
∀(Ma,Mb).(Ma ∈ modelA ∧ Mb ∈ modelB ⇒ ((Ma,Mb) ∈ R

⇔
(∀ eb.(eb ∈ elemB ∧ (Mb, eb) ∈ relb ⇒

∃ ea.(ea ∈ elemA ∧ (Ma, ea) ∈ rela ∧ (ea, eb) ∈ Q)))))

Figure 17: Generic coherence rule

In our work, two properties are defined in the Evolution Management
Machine to assert the coherence of an architecture definition : coherence
between configuration and specification and coherence between assembly and
configuration.

Coherence between configuration and specification. A specification is a formal
description of software requirements that is used to guide the search for suit-
able concrete component classes to implement the software. An architecture
configuration is coherent with a specification when two properties hold:

• all component roles from the specification are realized by component
classes in the configuration. This results in a many-to-many relation
as several component roles may be realized by a single component class
while, conversely, several component classes may be needed to realize a
single role. Using the generic coherence rule (cf. Figure 17), this first
property can be expressed as shown in Figure 18.

implements ∈ configuration ↔ specification ∧
coherence(configuration, compClass, specification, compRole,

config components, spec components, implements, realizes)

Figure 18: Implementation coherence property using the generic rule

To illustrate the instantiation of the generic coherence rule, we give the
expansion of the implementation coherence property in Figure 19. In
the remainder (Figure 20 and Figure 21), only the generic coherence
rule is used.

• each connected provided (server) interface in the configuration is de-
fined in the specification. This prevents having a configuration that
implements extra functions not specified at the higher level which leads
to architectural drift or erosion (cf. Figure 20).
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implements ∈ configuration ↔ specification ∧
∀ (Conf, Spec).(Conf ∈ configuration ∧ Spec ∈ specification ⇒
(Conf, Spec) ∈ implements
⇔
∀ CR.(CR ∈ compRole ∧ CR ∈ spec components(Spec) ⇒
∃ CL.(CL ∈ compClass ∧ CL ∈ config components(Conf) ∧
(CL,CR) ∈ realizes)))

Figure 19: Implementation coherence property (expanded)

conform ∈ specification ↔ configuration ∧
coherence(configuration, server, specification, server,

config servers, spec servers, conform, int substituion�)
where :
(s, s�) ∈ int substitution� ⇔ (serverInterfaceElem(s), serverInterfaceElem(s�)) ∈ int substitution

Figure 20: Provided interface connection coherence property

Coherence between assembly and configuration. As the definition of an as-
sembly is not obtained from a configuration by an instantiation process (as-
semblies are defined at design-time), coherence between assembly and con-
figuration descriptions must be checked a posteriori explicitly. An assembly
is coherent with a configuration when every class of the configuration is in-
stantiated at least once in the assembly and, conversely, every component
instance in the assembly is a valid instance of a component class of the con-
figuration (cf. Figure 21).

instantiates ∈ assembly → configuration ∧
coherence(assembly, compInstance, configuration, compClass,

assm components, config components, instantiates, comp instantiates)
∧
coherence(configuration, compClass, assembly, compInstance,

config components, assm components, instantiates−1, comp instantiates−1)
where:
instantiates−1 and comp instantiates−1 are the respective reverse relations of instantiates and comp instantiates

Figure 21: Configuration instantiation coherence property

3.3. Evolution goal

The evolution goal (GOAL) consists in a predicate definition that the
solver will attempt to satisfy by searching for a valid sequence of evolution
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rules (evolution plan) to execute on the architecture. The evolution goal con-
sists of a static and a variable part. The static part contains all the consis-
tency (global consistency) and coherence (global coherence) properties: the
calculated evolution plan must maintain the validity of the architecture. The
variable part contains the arguments of the initiated change: the evolution
plan must achieve the intended change. For example, if the initiated change
consists in the addition of a component role cr in a specification spec, the
evolution goal would be the following:

GOAL == global consistency ∧ global coherence ∧ cr ∈ spec components(spec)

3.4. Evolution plan generation

Our evolution process distinguishes two kinds of change: initiated change
and triggered change. Initiated changes have an external source: they origi-
nate from a user action or from the execution environment. Triggered changes
are induced by the evolution manager to restore architecture consistency at
each level (they are called local changes) and / or global architecture coher-
ence (they are called propagated changes), after they have been impacted by
an initiated change.

Evolution is handled as a three step process (cf. Figure 22).

Figure 22: Evolution plan generation process

First, the initiated changes that compose a change request are all pro-
cessed. These changes all affect a given level of architecture description
(called the changed architecture level). In a second step, the impact of these
initiated changes are calculated at the changed architecture definition level,
thanks to the consistency properties. Maintaining consistency may imply
additional (triggered) changes. Finally, the impact of these changes on the
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other architecture definition levels are calculated thanks to the coherence
properties. Maintaining coherence may also imply additional (propagated)
changes on the other architecture definition levels.

4. Implementation and experimentation

To support our approach, we have implemented DedalStudio, a CASE
tool which provides a Dedal modeler, a Formal Dedal generator and an evo-
lution manager based on a solver. Three experiments are then presented in
this section to assert the feasibility of our formal evolution approach. Each
evolution scenario illustrates a change propagation issue that starts at a dif-
ferent abstraction level, in order to cover the three kinds of multi-level evolu-
tion: top-down, bottom-up and mixed. Finally, we evaluate the performance
of our solver on the basis of the three experiments.

4.1. DedalStudio
4.1.1. Architecture of the tool suite

To validate our approach, we have implemented DedalStudio, an Eclipse-
based modeling and evolution management environment for Dedal. The tool
architecture is shown in Figure 23.

Figure 23: Architecture of the Dedal modeling and evolution management environment

DedalStudio enables the creation of architecture definitions, using a graph-
ical concrete syntax designed for the Dedal meta-model, composed of Spec-
ification Diagrams (SD), Configuration Diagrams (CD) and Assembly Di-
agrams (AD). The diagram editor (DedalModeler), shown in Figure 24 is
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based on SIRIUS 1, a generic platform that enables the creation of graph-
ical modeling tools on top of EMF (Eclipse Modeling Framework) 2. The
FormalDedalGenerator creates Formal Dedal models corresponding to Dedal
diagrams. The DedalManager handles the evolution process and the gener-
ation of evolution plans. It implements a customized solver built upon the
ProB API 3 that enables the animation and model-checking of B models. Fi-
nally, the DedalChangeParser parses the generated evolution plans and apply
the manipulation operations on the Dedal models. All theses tools, except
for DedalModeler which is targeted to the architect, are fully automatic.

Figure 24: The DedalModeler tool

4.1.2. The DedalManager solver
Evolution management starts when a change to the architecture model is

requested (for instance, a component class addition is requested in the config-
uration). The DedalManager receives the request, identifies the change level
and deduces the evolution goal. It then invokes its solver, that conforms to
the design principles presented in Section 3. The resolution algorithm imple-
mented in the solver explores the search space to find a sequence of evolution

1https://eclipse.org/sirius/
2https://eclipse.org/modeling/emf/
3http://stups.hhu.de/ProB/w/ProB Java API
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rules leading to the chosen goal. If a solution is found, the DedalManager
generates an evolution plan that can then be committed by user. Otherwise
(i.e. in case of failure), the DedalManager rejects the change request.

In previous work [20], we have made an evaluation of the performances
of the ProB solver to generate evolution plans by state space exploration.
The tested strategies were Depth-First (DF), Breadth-First (BF) and mixed
(DF/BF) [23]. In most cases DF performed best, better than DF/BF and
BF. The ProB solver, however, is general-purpose and increasing resolution
time (over 3 minutes) is necessary when models become complex. To try and
overcome this problem, this paper proposes an alternative: the implementa-
tion of a customized solver, using the API provided with ProB. It also consists
in a depth-first search algorithm but enhanced with two specific heuristics:
the artifact-oriented heuristic and the operation-oriented heuristic.

The artifact-oriented heuristic. The idea of artifact-oriented heuristic is to
prioritize the operations manipulating the artifacts that are more likely to
satisfy the evolution goal (thereafter called the main artifacts). For instance,
adding a new component usually entails several connection operations on that
component to restore architecture consistency. Main artifacts are determined
at each iteration of the search process by the output of last executed evolution
rule.

The operation-oriented heuristic. The operation-oriented heuristic adopts an
opposite point of view. It delays the use of operations that engender unsat-
isfied dependencies between the components of the architecture and hence
more evolution operations to be found in order to reestablish architecture
consistency. Addition operations are the most concerned ones. They are
therefore ordered as the least priority operations while performing the search
process.

The search algorithm. Listing 1 describes the search algorithm of our cus-
tomized solver. Lines 1–14 define and initialize the main variables of the
algorithm. Transitions refers to the set of all the evolution rules instances
in the current state of the architecture model. The set of already explored
transitions is stored in visited, in order to avoid cycles in the search pro-
cess. The current sequence of executed transitions is stored in pl, to collect
the candidate evolution plan. The traversal of the search graph is handled
by stack. At each step of the search process, the set of all the enabled tran-
sitions (i.e. the evolution rule instances whose preconditions are verified) is
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pushed on the stack in order to explore them in the next steps. Transitions
are pushed on the stack along with the current state of the architecture model
and the current evolution plan. This enables to backtrack to previous nodes
in the search graph and explore other paths when dead ends are reached. The
main artifact a is used in the evaluation of the artifact-oriented heuristics.
The initialMainArtifact references the artifact modified by the initiated
change. It is calculated from the post-conditions of the corresponding oper-
ations.

1 // initialisation step
2 s = initialState;
3 a = initialMainArtifact;
4 pl = null;
5 stack = null;
6 visited = ∅;
7 enabledTransitions = {ei ∈ Transitions where pre(ei) == true};
8 priorTransitions = {ei ∈ enabledTransitions where h1(ei) == true};
9 lowpriorTransitions = ∅;

10 enabledTransitions = enabledTransitions - priorTransitions;
11
12 // organizing stack
13 stack.push(s, pl , enabledTransitions);
14 stack.push(s, pl , priorTransitions);
15
16 // starting forward , DF search
17 while (stack �= ∅)
18 {
19 (s, pl , ei) = stack.pop();
20 if ((s, ei) /∈ visited)
21 {
22 visited = visited ∪ {(s, ei)};
23 s = execute(ei);
24 pl = pl+ei;
25 if (goal == true) return pl;
26 a = output(ei);
27 enabledTransitions = {ei ∈ Transitions where pre(ei) == true};
28 priorTransitions = {ei ∈ enabledTransitions where h1(ei) == true};
29 lowpriorTransitions = {ei ∈ enabledTransitions where h2(ei) == true};
30 enabledTransitions = enabledTransitions - (priorTransitions ∪

lowpriorTransitions);
31 stack.push(s, pl, lowpriorTransitions);
32 stack.push(s, pl, enabledTransitions);
33 stack.push(s, pl, priorTransitions);
34 }
35 }
36 return null; // no solution for this change request

Listing 1: Search algorithm of our specific solver

At each iteration of the search process (lines 17–33), the top of the stack
is popped (line 19), setting a context consisting of an architecture model state
(s), an evolution plan (pl) and an enabled transition (ei). If the transition
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has already been visited from this state (line 20), another context is popped
from the stack (this happens when a state can be reached by several paths of
the search tree). If the transition has not been explored, it is listed as visited
(line 22) and executed (line 23), updating the state of the architecture model.
The last executed transition is appended to the evolution plan (line 24). If
the goal is satisfied, an evolution plan has been found and it is returned
(line 25). Otherwise, the set of the enabled transitions in the current state
is calculated (line 27) as is the set of higher priority enabled transitions (line
28) based on the artifact-oriented heuristic (h1). This uses the main artifact
defined as the output of the last executed transition (line 26). The set of
lower priority enabled transitions is also calculated (line 29), based on the
operation-oriented heuristic (h2). This enables to push on the stack the
enabled transitions to be explored depending on the priority determined by
our heuristics (lines 31–33). The use of a stack enables a DF traversal of the
graph: the next iteration of the search process will pop one of the currently
enabled transitions, from the current architecture state, trying to extend the
search path down to the goal. When a dead end is reached (no transitions
are enabled in the current state), the search process implicitly backtracks to
a previous graph node by popping from the top of the stack a previously
pushed context. This enables the complete traversal of the search graph
(breadth search). The search process is iterated until the goal is reached
or there is no more transition to explore (line 17). In this latter case, the
requested change is rejected (line 36).

Three examples of evolution plans calculated by our solver are presented
in the next sections.

4.2. First experiment: requirement change

The first scenario addresses a requirement change. The initial Has archi-
tecture enables to switch on / off the lights at specific hours (cf. Figure 25).
However, it does not enable any control on light intensity. To add this
new functionality, an architect should modify the Has specification. This
corresponds to a top-down evolution since the change starts at the highest
abstraction level. A solution is to replace the Light component role by a
new one (Luminosity) that enables intensity control. Figure 26 presents the
initial architecture specification and the evolved one.

An extract of the instantiation of the Arch specification machine corre-
sponding to the Has is presented in Figure 27.
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Figure 25: Architecture definitions of the HAS

Figure 26: Evolving the HAS specification by role replacement

4.2.1. Evolution goal and initiated change
The initiated change consists in replacing the Light component role (cr1 )

by the Luminosity component role (cr1a). This corresponds to the execution
of the role substitution operation on the Has specification:

spec replaceRole(HAS spec, cr1, cr1a)

The following goal is thus given to the solver, based on the post-conditions
of the substitution operation, defining the change that must be achieved by
the evolution process:
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GOAL == global consistency ∧ global coherence ∧ cr1a ∈ spec components(HAS spec) ∧
cr1 �∈ spec components(HAS spec)

The solver then calculates an evolution plan that can restore the consis-
tency and coherence of the architecture that may have been altered by the
initial change.

compRole := {cr1, cr1a, cr2, cr3, cr3a}||
comp name := {cr1 �→ Light, cr1a �→ Luminosity, cr2 �→ T ime,

cr3 �→ HomeOrchestrator,
cr3a �→ HomeOrchestrator2}||

arch spec := {HAS spec}||
spec components := {HAS spec �→ {cr1, cr2, cr3}}||
spec connections := {HAS spec �→ {

((cr3, rintILight) �→ (cr1, pintILight)),
((cr3, rintIT ime) �→ (cr2, pintIT ime)), }}||

spec clients := {(HAS spec �→ {(cr3, rintILight), (cr3, rintIT ime)}}||
spec servers := {(HAS spec �→ {(cr1, pintILight), (cr2, pintIT ime)}

Figure 27: Instantiation of the Arch specification machine for the Has

4.2.2. Triggered change
The intended role substitution entails the addition of a new server inter-

face (the IIntensity provided interface) which must be connected to restore
the consistency of the Has specification (all interfaces must be connected at
specification level). The solver generates the plan presented in Figure 28 to
restore the consistency of the Has specification.

spec disconnect(HAS spec, (cr3, rintILight), (cr1a, pintILight))
spec disconnect(HAS spec, (cr3, rintIT ime), (cr2, pintIT ime))
spec deleteRole(HAS spec, cr3)
spec addRole(HAS spec, cr3a)
spec connect(HAS spec, (cr3a, rintILight2), (cr1a, pintILight2))
spec connect(HAS spec, (cr3a, rintIT ime2), (cr2, pintIT ime))
spec connect(HAS spec, (cr3a, rintIIntensity), (cr1a, pintIIntensity))

Figure 28: Has specification consistency restoration plan

Change entails the disconnection of all the required interfaces, the deletion
of the initial orchestrator (cr3 ), the addition of a new orchestrator (cr3a)
and finally the connection of all the required interfaces (this is enough to get
all the interfaces connected and satisfy the interaction consistency property
at specification level).

After consistency is verified for specification, change is propagated to the
configuration in order to restore the coherence of the architecture definition.

31



4.2.3. Change propagation to the configuration
Coherence is altered due to the new requirement defined by the specifica-

tion. Indeed, the initial Has configuration (cf. Figure 25) does not correctly
implement all the roles of the evolved Has specification. Figure 29 details the
instantiation of the Arch configuration machine corresponding to the initial
Has configuration.

compClass := {cl1, cl1a, cl2, cl3, cl3a, cl2a}||
comp name := {cl1 �→ Lamp, cl1a �→ AdjustableLamp, cl2 �→ Clock,

cl3 �→ Orchestrator, cl3a �→ AndroidOrchestrator,
cl2a �→ AndroidClock}||

configuration := {HAS config}||
config components := {HAS config �→ {cl1, cl2, cl3}}
config connections := {HAS config �→ {

((cl3, rintIPower) �→ (cl1, pintIPower)),
((cl3, rintIClock) �→ (cl2, pintIClock))}

Figure 29: Initial Has configuration in Formal Dedal

Change propagation is therefore needed to restore coherence. The restora-
tion plan found by the solver is presented in Figure 30.

config replaceClass(HAS config, cl1, cl1a)
config disconnect(HAS config, (cl3, rintILamp), (cl1, pintILamp))
config disconnect(HAS config, (cl3, rintIClock), (cl2, pintIClock))
config deleteClass(HAS config, cl3)
config addClass(HAS config, cl3a)
config connect(HAS config, (cl3a, rintILamp2), (cl1a, pintILamp2))
config connect(HAS config, (cl3a, rintIClock2), (cl2, pintIClock))
config connect(HAS config, (cl3a, rintIIntensity), (cl1a, pintIIntensity))

Figure 30: Coherence restoration plan for the Has configuration

It first consists in replacing the Lamp component class by the Adjustable-
Lamp component class. This operation does not require any modification
of the connections, as it is based on the substitution principle between the
two component classes (the AdjustableLamp class is a specialization of the
Lamp class). The situation is different regarding the Orchestrator compo-
nent class. It cannot be simply replaced by the existing AndroidOrchestrator
component class, which is a valid implementation of the HomeOrchestrator2
role. Indeed, as it holds an extra required interface, the AndroidOrchestrator
component class is not a specialization of the Orchestrator component class.
Nonetheless, the solver is able to find a suitable plan to restore consistency
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in this more difficult situation. The Orchestrator component class is dis-
connected and removed. The AndroidOrchestrator component class is then
added and connected. This way, the configuration is consistent (all required
interfaces are connected and the configuration is composed of a unique con-
nected graph of components) and coherent with the specification (every role
is implemented in the configuration).

4.2.4. Change propagation to the assembly
After coherence is reached in the configuration, change is propagated

to the architecture assembly. Here again, coherence is altered because the
current Has assembly is not a valid instantiation of the evolved Has configu-
ration. Figure 31 details the initial state of the corresponding Arch assembly
machine.

compInstance := {ci11, ci12, ci1a1, ci1a2, ci2, ci2a, ci3, ci3a}||
comp instantiates := {ci11 �→ cl1, ci12 �→ cl1, ci1a1 �→ cl1a

ci1a2 �→ cl1a, ci2 �→ cl2, ci2a �→ cl2
ci3 �→ cl3, ci3a �→ cl3}||

compInstance name := {ci11 �→ lamp1, ci12 �→ lamp2, ci1a1 �→ adjustableLamp1,
ci1a2 �→ adjustableLamp2, ci2 �→ clock1
ci3 �→ orchestrator1, ci3a �→ androidOrchestrator1,
ci2a �→ androidClock1}||

assembly := {HAS assembly}||
assm components := {HAS assembly �→ {ci11, ci12, ci2, ci3}}
assm connections := {HAS assembly �→ {

((ci3, rintIPowerInst) �→ (ci11, pintIPowerInst)),
((ci3, rintIClock) �→ (ci2, pintIClockInst)), . . . }

Figure 31: Initial Has architecture assembly

The coherence restoration plan presented in Figure 32 is generated by the
solver to propagate changes. First, the client interfaces of the Orchestrator
component instance are disconnected. Then, the two Light component in-
stances are replaced by AdjustableLight component instances (as allowed by
the substitution principle). The Orchestrator component instance is removed
and an AndroidOrchestrator component instance is added. As explained for
the configuration coherence restoration, substitution is not possible because
of the extra required interfaces of the AndroidOrchestrator component. For-
tunately, an evolution plan can still be found so that every component class
in the configuration is instantiated at least once in the assembly. Finally,
all the required interfaces are connected to compatible provided interfaces,
maintaining a consistent assembly.
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assm unbind(HAS assembly, (ci3, rintILampInst), (ci11, pintILampInst1))
assm unbind(HAS assembly, (ci3, rintILampInst), (ci2, pintILampInst2))
assm unbind(HAS assembly, (ci3, rintIClockInst), (ci12, pintIClockInst))
assm replaceInstance(HAS assembly, ci1, ci1a1)
assm replaceInstance(HAS assembly, ci12, ci1a2)
assm removeInstance(HAS assembly, ci3)
assm deployInstance(HAS assembly, ci3a)
assm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci1a1, pintILampInst1))
assm bind(HAS assembly, (ci3a, rintIIntensity2Inst), (ci1a1, pintIIntensityInst1))
assm bind(HAS assembly, (ci3a, rintIClockInst), (ci2, pintIClockInst))
assm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci1a2, pintILampInst2))
assm bind(HAS assembly, (ci3a, rintIIntensity2Inst), (ci1a2, pintIItensityInst2))

Figure 32: Coherence restoration plan for the Has architecture assembly

4.3. Second experiment: implementation change

The second scenario addresses an implementation change. The objective
is to enable the control of the building through a mobile device (running
Android OS for example). To adapt the current implementation to Android,
the Orchestrator component class (cl3 ) should be removed and replaced with
an Android compatible one (cl3a). Change is initiated at the configuration
level, which entails a mixed evolution: bottom-up because the change has
to be propagated to the higher level specification and top-down because it
has to be propagated also to the lower assembly level. Figure 33-a shows the
initial implementation of the Has while Figure 33-b shows the evolved one.

Figure 33: Evolving the HAS configuration by component substitution

4.3.1. Initiated change
Change is initiated by deleting the initial orchestrator (cl3 ) and adding

the Android compatible one (cl3a). This is processed by the following se-
quence of operations:
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config disconnect(HAS config, (cl3, rintILamp), (cl1, pintILamp))
config disconnect(HAS config, (cl3, rintIClock), (cl2, pintIClock))
config deleteClass(HAS config, cl3)
config addClass(HAS config, cl3a)

To start the evolution process, the following goal is given to the solver:

GOAL == global consistency ∧ global coherence ∧ cl3a ∈ config components(HAS config) ∧
cl3 �∈ config components(HAS config)

4.3.2. Triggered change
The generated triggered change is listed in Figure 34. To restore consis-

tency, all component classes must be correctly connected. The AndroidOrches-
trator component class requires an additional server interface to control the
intensity of light. The Lamp component class (cl1 ) is suitably replaced with
AdjustableLamp (cl1a) that provides the IIntensity server interface. This is
another illustration of the solving capabilities of our approach.

config connect(HAS config, (cl3a, rintIClock2), (cl2, pintIClock))
config replaceClass(HAS config, cl1, cl1a)
config connect(HAS config, (cl3a, rintIPower2), (cl1a, pintIPower2))
config connect(HAS config, (cl3a, rintIIntensity), (cl1a, pintIIntensity))

Figure 34: Has configuration consistency restoration plan

After configuration consistency is verified, change is propagated to the
architecture specification.

4.3.3. Change propagation to the specification
The current Has specification is not any more a good design model of

the new version of the Has configuration. This corresponds to an erosion
problem as light intensity control is not included in the current specification.
Hence, a new specification version is required to keep architecture descrip-
tions coherent.

Change is propagated to the Has specification (cf. Figure 35) by replac-
ing the HomeOrchestrator role (cr3 ) with the HomeOrchestrator2 (cr3a).
To do so, the HomeOrchestrator role is disconnected and deleted. Then the
HomeOrchestrator2 role is added. On the other way, the Luminosity role
(cr1a) can be directly substituted for the Light role (cr1 ). This enforces
coherence between the specification and the configuration. Finally, the con-
nection of all client interfaces is sufficient to restore the consistency of the
specification (no pending interfaces; a unique connected component graph).
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spec disconnect(HAS spec, (cr3, rintILight), (cr1, pintILight))
spec disconnect(HAS spec, (cr3, rintIT ime), (cr2, pintIT ime))
spec deleteRole(HAS spec, cr3)
spec addRole(HAS spec, cr3a)
spec replaceRole(HAS spec, cr1, cr1a)
spec connect(HAS spec, (cr3a, rintILight2), (cr1a, pintILight2))
spec connect(HAS spec, (cr3a, rintIIntensity), (cr1a, pintIIntensity))
spec connect(HAS spec, (cr3a, rintIT ime2), (cr2, pintIT ime))

Figure 35: Has specification coherence restoration plan

4.3.4. Change propagation to the assembly
The current version of the Has assembly is no more a valid instantiation

of the evolved Has configuration. Change has to be propagated at assembly
level to restore coherence (cf. Figure 36).

assm unbind(HAS assembly, (ci3, rintILampInst), (ci11, pintILampInst1))
assm unbind(HAS assembly, (ci3, rintILampInst), (ci12, pintILampInst2))
assm unbind(HAS assembly, (ci3, rintIClockInst), (ci2, pintIClockInst))
assm removeInstance(HAS assembly, ci3)
assm deployInstance(HAS assembly, ci3a, cl3a)
assm replaceInstance(HAS assembly, ci11, ci1a1)
assm replaceInstance(HAS assembly, ci12, ci1a2)
assm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci1a1, pintILampInst1a))
assm bind(HAS assembly, (ci3a, rintIIntensity2Inst), (ci1a1, pintIItensityInst1))
assm bind(HAS assembly, (ci3a, rintIClockInst), (ci2, pintIClockInst))
assm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci1a2, pintILampInst2a))
assm bind(HAS assembly, (ci3a, rintIIntensity2Inst), (ci1a2, pintIItensityInst2))

Figure 36: Has assembly coherence restoration plan

In a similar way to specification coherence restoration, the Orchestrator
component instance (ci3 ) is disconnected and deleted. An AndroidOrchestra-
tor component instance (ci3a) is added to the assembly. Two AdjustableLight
component instances (ci1a1 ) and (ci1a2 ) are substituted for the existing
Light component instances (ci11 ) and (ci12 ). This restores the coherence
of the assembly with the configuration. The server interfaces of the compo-
nents are then bound to compatible provided interfaces, so that the assembly
remains consistent (no pending server interfaces; a unique connected compo-
nent graph).

4.4. Third experiment: runtime change

The third scenario addresses a runtime change. It corresponds to a
bottom-up evolution since the change is initiated at the lowest abstraction
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level. Because of a dry battery, the clock device in the building is out of
service. This environmental change induces the dysfunction of the clock1
driver (ci2 ). The objective is to find a solution to dynamically repair the
architecture in order to maintain the functionalities of the system.

Figure 37 shows the initial and evolved version of the Has assembly.

Figure 37: Evolving the Has assembly by component instance substitution

4.4.1. Initiated change
clock1 (ci2 ) must be replaced by another component instance that pro-

vides the same services. An instance of the AndroidClock component class,
androidClock1 (ci2a), is thus chosen to replace clock1. The initiated change
is handled by the following operations:

replaceInstance(HAS assembly, ci2, ci2a)

The solver then searches an evolution plan that reaches the following goal:

GOAL == global consistency ∧ global coherence ∧ ci2a ∈ assm components(HAS assembly) ∧
ci2 �∈ assm components(HAS assm)

4.4.2. Triggered change
The component instance replacement does not alter the consistency of

the assembly architecture. However, coherence with the configuration archi-
tecture has to be reestablished. Indeed, the evolved assembly architecture is
not a valid instantiation of the current configuration architecture since the
ci2a component instance does not instantiate the cl2 component class.
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4.4.3. Change propagation to the configuration
Change propagation induces the substitution of the AndroidClock com-

ponent class (cl2a) for the Clock component class (cl2 ), which amounts to
the following evolution plan:

replaceClass(HAS config, cl2, cl2a)

As connections are preserved by the substitution operation, the consistency
of the configuration is also preserved. The evolution plan thus includes no
other operation.

4.4.4. Change propagation to the specification
The component class substitution preserves the coherence between the

specification and the configuration. Indeed, when a component class imple-
ments a given role, any component subclass, as a substitute, also implements
the role. As a consequence, no change needs to be propagated to the speci-
fication.

4.5. Performance evaluation

The performance of the solver has been measured during the three exper-
iments, in order to evaluate the influence of our proposed heuristics. Tests
were run on a standard PC (2.5 GHZ Intel Core i5, 8 GB SDRAM) under
Windows 7. Test of the three evolution scenarios are then performed first
using DF and then using DF enhanced with heuristics (H-DF ) to compare
the results. Table 1 shows the average time in milliseconds of 5 runs for each
evolution scenario, using depth-first search without heuristics (DF ) and with
heuristics (H-DF ).

Change level DF (ms) H-DF (ms)

Exp 1

specLevel (initial) 3260 2100
configLevel 3254 1393
asmLevel 26738 1926

Exp 2

configLevel (initial) 4712 2537
specLevel 8733 1896
asmLevel TIME-OUT 1927

Exp 3

asmLevel (initial) 4747 1184
configLevel TIME-OUT 2351
specLevel (not affected) – –

Table 1: Performance evaluation

Timeout is set to 3 minutes. Results doubtlessly show the benefits of a
custom solver that integrates specific heuristics. The order and number of
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evolution rules may differ from a generated evolution plan to another (our
algorithms are not deterministic as they make random choices when sets of
equivalent elements are considered, such as a set of candidate main artifacts)
but all generated plans are valid and lead to the same goal state.

A more precise performance evaluation, based on a larger set of experi-
ments and a theoretical study of the combinatorial complexity of the search
space is needed. Performance is indeed an inherent limitation for search-
based software engineering, as the resolution time of solvers generally grows
exponentially depending on the size of the problems. Designing and inte-
grating new heuristics to cut down resolution time is promising (we can for
instance preferentially choose transitions that generate no or little incoher-
ence in the architecture model).

5. Related work

This section presents three areas of related work. The first area is that
of software architecture evolution which is the main theme of this work. It
presents a survey of the main state-of-the-art evolution approaches our work
can be compared to. The second area is that of formal modeling languages.
It presents a brief comparison of seven formal modeling languages including
B. The third area describes other approaches based on model transformation
and integration of semi-formal and formal methods. These approaches do
not necessarily focus on architecture evolution but they present interesting
alternatives from the technical point of view.

5.1. Software architecture evolution

Most of the approaches dealing with architecture evolution adopt an Adl
to model architectures and propose a mapping between the Adl and a run-
time framework in order to implement the change and enable dynamic evo-
lution. C2-SADEL [24], Darwin [25], ArchWare [26] and Plastik [27] fall into
this category. C2-SADEL models architectures in the C2 style [28] and pro-
vides multiple component subtyping mechanisms to favor reuse and enable
architecture evolution. Its tool support is Dradel, an environment that en-
ables the mapping between architectural description and the implementation
by translating them into Java code. The tool supports static evolution by
applying changes on architectural descriptions first and then implementing
them. The architecture analysis however is limited since no powerful anal-
ysis techniques were integrated. Darwin and ArchWare (which provides π-
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Adl [29] as an Adl) focus on modeling dynamic structures. They both rely
on π-calculus to define the semantics of architecture constructs and guar-
antee a reliable interaction between components and compile architecture
descriptions into code. ArchWare also proposes π-Arl [30] an architecture
refinement language to evolve architecture descriptions by stepwise refine-
ment. Plastik was also proposed to deal with dynamic reconfigurations. It
relies on Armani, an extension of the ACME [31] Adl to enable invariants
expression and reconfigurations properties. Compared to the previous ap-
proaches, Plastik has the advantage to map its Adl to OpenCOM [32], a
runtime component model dedicated to component-based programming and
proposing built-in reconfiguration operations. The main shortcoming of these
approaches is that they don’t consider changes as first-class elements and fo-
cus more on how to implement architecture evolution rather than specify,
analyze and propagate it. Moreover, adopted Adls hardly cover the entire
Cbsd process. The specification level (necessary to guide reuse) and assem-
bly level (that describes the software at runtime) are often missing. Finally,
the coherence between architectural descriptions and implementation is not
guaranteed since evolution is processed top-down only.

Recent work by Sanchez et al. [33] proposes an architecture-based re-
engineering approach to evolve and maintain legacy software. The principle
is to produce a high level architecture description of the legacy system so
that it becomes easy to reason about change and then reversely use the pro-
duced knowledge to modify source code. The approach is guided through a
bidirectional transformation and relies on Archery [34], an Adl for modeling
architecture patterns corresponding to translated code parts. Targetted at
legacy system re-engineering, this work is different from our proposal on the
evolution of component-based software systems developed by a reuse-based
process.

Other recent approaches show a particular interest to specifying architec-
ture evolution as first-class entities. A first example is the work of Tamazalit,
Le Goaer et al. [35, 36]. The authors introduce the notion of evolution styles,
first-class entities that can be specified and classified for reuse to evolve a par-
ticular family of systems. Evolution styles include evolution operations that
can be specialized, composed and instantiated to deal with change. Barnes
et al. [37] adopt a wider definition of evolution styles and introduce the con-
cept of evolution paths as a way to plan the evolution of domain-specific
software systems. A path is an evolution trace leading from an initial archi-
tecture to a desired target architecture. An evolution style refers to a family
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of evolution paths sharing common properties. It includes operations, con-
straints and functions to evaluate paths according to quality metrics. Path
constraints can be formally specified using the path constraint language, a
specific extension of LTL (Linear Temporal Logic). While the computability
of the language was proved, as far as we know, there is no existing model
checker to support the automated analysis of path constraints. The authors
also propose a solution [38] to automate evolution planning using PDDL [39]
(the Planning Domain Definition Language). However, this approach still
lacks automation since no translation from any Adl to PDDL specification
was proposed. Moreover, the evolution is specified and planned beforehand.
In our approach, changes are not necessarily expected and the architect in-
tervenes only to validate the work of the evolution manager.

Another closely related work is the one of Hansen, Ingstrup and oth-
ers [40, 41]. The authors propose an approach to model and analyze runtime
architectural change. They opt for a runtime architecture model that closely
maps to the OSGi 4 platform to facilitate implementation and for Alloy [42]
as a relational first-order logic modeling language to formalize the static
and dynamic (operations) concepts of the architecture model. The choice of
Alloy is motivated by its support for object-oriented modeling and its ac-
companying analyzer that enables automated verification. The objective is
to apply architectural changes without violating some predefined properties.
For this purpose, the authors model the reconfiguration planning as a pred-
icate satisfaction problem with pre- and post-conditions. Then, they run
the Alloy SAT solver to find sequences of the model instances satisfying the
problem where the first instance satisfies the pre-conditions and the last in-
stance satisfies the post-conditions. This work is similar to ours in the sense
that both aim to provide a reliable and automated way to handle architec-
tural changes. It proposes an interesting alternative for resolving evolution
using the constraint-solving technique. However, this work focuses only on
one level of change which is runtime. Moreover, the formalized architecture
model is dependent on OSGi. Finally, the work lacks automation, since no
automatic translation from Adl models to Alloy models was proposed.

4http://www.osgi.org/Main/HomePage
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5.2. Comparison of formal modeling languages

Formal modeling brings abstraction, precision and rigor to software sys-
tems. It intervenes at the very early stages of software development to give a
formal specification of system requirements. Resulting models constitute un-
ambiguous descriptions that enable software analysis, verification and valida-
tion. Several languages and methods were proposed to aid formal modeling.
Formal languages provide abstractions to represent concepts, properties over
them and possibly behavior. However, they differ in expressiveness, underly-
ing semantics and purpose. Some languages focus more on descriptions and
how to make formal modeling more accessible whereas others focus more on
automated analysis neglecting expressiveness. A good formal language must
be a compromise between both aspects. In the following, we compare seven
formal modeling languages. These languages are B [9], Z [43], Ocl [44],
Alloy [42], Vdm [45], Coq [46] and Agda [47].

B, Z and Vdm are quite similar in term of expressiveness since they
were basically designed for theorem-proving. All of them enable to express
properties practically in the same way and support almost the same types
(In addition, Vdm supports real numbers). However there are some subtle
differences between them. Z is more abstract while Vdm and B are more low
level and intended to be refined into code. Both Vdm and B adopt a similar
structure that realizes abstract state machines. They explicitly separate the
declarative (structure) from the dynamic (operations) part and, unlike Z,
they separate pre-conditions from post-conditions. B has the particularity
to modify variables by assignments like in programming languages while in
Vdm and Z, pre and post states must be explicit.

Coq and Agda are proof assistants designed for the verification of func-
tional programs. Unlike the previously mentioned formal modeling lan-
guages, Coq and Agda are implementations of type theories rather than set
theory. They support higher order logic, polymorphism, dependent types, as
well as inductive types. Set theoretic operators (e.g. ∪, ∩), for instance, are
not directly predefined in such systems. Unlike B and VDM, these languages
do not implement state machines. Therefore, there is no built-in structure
that explicitly defines variables, invariants and operations.

Ocl and Alloy are different and were designed for different purposes. Ocl
was basically developed to express constraints that can not be expressed us-
ing graphical notations on UML diagrams. It has an object-oriented notation
and heavily relies on navigation. Hence predicate expressions are sometimes
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verbose comparing to the mathematical notation adopted by the other lan-
guages. Alloy is a structural modeling language inspired by Z. It was designed
for supporting fully automated analysis. Being strictly first-order, Alloy is
less expressive than the other languages [48]. For instance, set of sets and
predicates over relations are not directly expressible with Alloy.

Regarding analysis support, all these languages are typed and hence sup-
port type-checking. Theorem-proving is supported by Coq, Agda, Z, B and
Vdm which were basically designed for software correctness. Model-checking
and constraint solving is only supported by B, with the ProB tool, and Al-
loy, with the Alloy analyzer. To some extent, Jaza [49], an animator for Z,
enables constraint-solving on small domains. However, Z is limited in terms
of model-checking capabilities. This is due to the high abstract nature of the
Z language making its handling challenging [50]. Nevertheless, continuous
attempts to build a model checker for Z are undertaken [51].

B seems to be the best compromise between expressiveness and analysis
support. Alloy could also be a good alternative in our case. However, re-
gardless its expressiveness, it presents another shortcoming. As witnessed in
Torlak et al. [52], Alloy lacks support of partial instances. Partial instances
are explicit representations of instances included in the specification of the
model. This is central in our approach since instances are generated automat-
ically from graphical models and injected in B specifications (so-called deep
embedding technique [53]). Montaghami et al. [54] argued that this feature
enables a number of capabilities such as test-driven development, regression
testing, modeling by example, and combined modeling and meta-modeling.
The authors also proposed a syntax extension of Alloy to support partial
instance definition but, as far as we know, this feature is not yet integrated
in the last version of Alloy [55].

5.3. Alternative formal approaches

Integration between semi-formal and formal methods is gaining more and
more interest in software engineering. On the one hand, semi-formal lan-
guages, such as Uml [56], offer graphical notations that significantly ease
modeling. On the other hand, formal modeling languages provide a strong
support for automated software analysis. Several works benefit from com-
bining both kinds of notation to validate their approaches.

Ledru et al. [57] propose an approach based on the transformation of Uml
into B to validate security policies for information systems. They use their
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B4MSecure 5 tool to generate B specifications corresponding to a security
model. Conjointly, they use ProB to validate security policy scenarios.

Keznikl et al. propose the ARCAS method [58], an automated approach
to generate connections solutions for middleware architectures. Given a con-
nector specification, the approach translates it into a corresponding Alloy
model and performs constraint-solving to find connector instances that real-
ize the specification.

Macedo et al. propose Echo [59], an Eclipse-based tool for model repair
and transformation using model finding. Given a set of meta-models with
internal constraints (specified using OCL) and a set of inter-model consis-
tency rules (specified using QVT-R [60] transformations), Echo can detect
inconsistencies on derived models and keep them consistent with their corre-
sponding meta-models and between them as well. The detection and repair
mechanism is based on translating MDE [61] artifacts (meta-models and their
annotations with OCL and QVT-R rules) to Alloy. The output is then ana-
lyzed using a procedure built on top of Alloy solver that generates consistent
models as close as possible to the original ones.

6. Conclusions and future work

Managing software architecture evolution throughout the whole software
lifecycle is a significant issue. This paper proposes an approach to man-
age the evolution of component-based software architectures. Thanks to the
three-level Dedal architecture model, our approach handles change at three
abstraction levels of software architectures: specification, implementation
and deployment. The evolution process is driven by an evolution manage-
ment model that captures changes initiated at any abstraction level, controls
their impact to preserve / restore consistency and propagates them to other
levels to maintain global coherence.

The proposed evolution management model is based on the B formal
language. Using our solver built on top of the ProB tool, it enables the gen-
eration of reliable evolution plans as sequences of change operations. The
feasibility of our approach is demonstrated by experimenting on three evolu-
tion scenarios that each addresses change in a different abstraction level.

The limitation of this work is its scalability. This limitation is classical in
comparable works as architecture descriptions can be considered as graphs

5http://b4msecure.forge.imag.fr/
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(of connected software components) the size of which can theoretically be
arbitrarily big. Establishing evolution plans therefore amounts to exploring
all possible change action combinations on these graphs to restore properties
that can be seen as (local or global) constraints on these graphs. Scalability
issue is an inherent limitation for search-based software engineering problems.
However, such limitation is mitigated by two factors. First, architecture
descriptions are often limited in size as architects prefer to split them in
intelligible parts of moderate size using hierarchical composition, an asset
of Cbsd [1]. Secondly, instead of using an off-the-shelf agnostic B solver,
we proposed our own solver that integrates problem-specific heuristics that
decrease the calculation time.

Threats to the validity of our approach lie in the example scenarios that
we have considered for experimental validation. Although, the examples
cover all kinds of scenarios, experimenting with real architecture descriptions
might reveal unforeseen issues (scalability, efficiency of heuristics, etc.). Fur-
ther experiments on real case studies is therefore necessary to fully validate
our approach.

As future work, we would like to extend our definition of the consistency
property in order to include behavioral consistency as described in Taylor et
al. [21] and thus cover all their identified five kinds of consistency. This would
amount in considering architectural protocols and component behavior.

Another interesting research direction would be to integrate the notion of
evolution style [36] in our evolution management model. The idea is to enable
the generation of multiple candidate evolution plans that can be evaluated
considering non-functional properties (e.g. quality, cost, time) as proposed
by Barnes et al. [37].

Regarding the technical aspect, we are investigating new heuristics to
improve the performance of our solver and reduce complexity.
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