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Resumé

Le but principal de cette thèse est de présenter des conditions suffisantes pour garantir
l’existence de subdivisions dans les graphes dirigés. Bien que ce genre de questions soit
assez bien maitrisé dans le cas des graphes non orientés, très peu de résultats sont connus
sur le sujet des graphes dirigés. La conjecture la plus célèbre du domaine est sans doute
celle attribuée à Mader en 1985 qui dit qu’il existe une fonction f tel que tout graphe
dirigé de degré sortant minimal supérieur à f(k) contient le tournoi transitif sur k sommets
comme subdivision. Cette question est toujours ouverte pour k = 5. Cette thèse présente
quelques résultats intermédiaires tendant vers cette conjecture. Il y est d’abords question de
montrer l’existence de subdivisions de graphes dirigés autre que les tournois, en particulier
les arborescences entrantes. Il y a aussi la preuve que les graphes dirigés de grand degré
sortant contiennent des immersions de grand tournois transitifs, question qui avait été posée
en 2011 par DeVos et al. En regardant un autre paramètre, on montre aussi qu’un grand
nombre chromatique permet de forcer des subdivisions de certains cycles orientés, ainsi que
d’autre structures, pour des graphes dirigés fortement connexes.

Cette thèse présente également la preuve de la conjecture de Erdős-Sands-Sauer-Woodrow
qui dit que les tournois dont les arcs peuvent être partitionnés en k graphes dirigés transitifs
peuvent être dominé par un ensemble de sommet dont la taille dépend uniquement de k.

Pour finir, cette thèse présente la preuve de deux résultats, un sur l’orientation des hy-
pergraphes et l’autre sur la coloration AVD, utilisant la technique de compression d’entropie.

Mots-clés: Graphes dirigés; Coloration; Subdivisions; Compression d’entropie



Abstract

The main purpose of the thesis was to exhibit sufficient conditions on digraphs to find
subdivisions of complex structures. While this type of question is pretty well understood in
the case of (undirected) graphs, few things are known for the case of directed graphs (also
called digraphs). The most notorious conjecture is probably the one due to Mader in 1985.
He asked if there exists a function f such that every digraph with minimum outdegree at least
f(k) contains a subdivision of the transitive tournament on k vertices. The conjecture is still
wide open as even the existence of f(5) remains open. This thesis presents some weakening of
this conjecture. Among other results, we prove that digraphs with large minimum outdegree
contain large in-arborescences. We also prove that digraphs with large minimum outdegree
contain large transitive tournaments as immersions, which was conjectured by DeVos et al.
in 2011. Changing the parameter, we also prove that large chromatic number can force
subdivision of cycles and other structures in strongly connected digraphs.

This thesis also presents the proof of the Erdős-Sands-Sauer-Woodrow conjecture that
states that the domination number of tournaments whose arc set can be partitioned into
k transitive digraphs only depends on k. The conjecture, asked in 1982, was still open for
k = 3.

Finally this thesis presents proofs for two results, one about orientation of hypergraphs
and the other about AVD colouring using the recently developed probabilistic technique of
entropy compression.

Keywords: Directed graphs; Colouring; Subdivisions; Entropy compression
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Chapter 1

Introduction

This chapter serves as introduction to this thesis. After giving some standard definitions and
notations in Section 1.1, in Sections 1.2, 1.3, 1.4, 1.5 we motivate and present the results
obtained on subdivisions and other related structures in certain classes of digraphs. In
Section 1.6, we discuss domination in tournaments and the proof of the Erdős-Sands-Sauer-
Woodrow conjecture. Finally, Section 1.7 introduces the method of entropy compression and
presents two results obtained using this method.

1.1 Definitions

We denote by [j, k] the set of integers {j, . . . , k} and [k] the set [1, k].
A graph is a pair G = (V,E) of finite sets such that E is a set of unordered pairs of

elements of V . A multigraph is a graph where we allow an edge to appear multiple times.
We call these edges parallel edges, and the multiplicity of an edge is the number of times it
appears in E(G). The elements of V are the vertices and the elements of E are the edges.
For a graph G, we write V (G) for its vertex set and E(G) for its edge set. Let u and v be
vertices of V . If {u, v} belongs to E(G), we say that u and v are adjacent, neighbours or that
u sees v, and we will use uv to denote the edge. Let G = (V,E) be a graph and v a vertex
of G. The neighbourhood of v, denoted by N(v) is the set of vertices adjacent to v, and the
degree of v is d(v) = |N(v)|. For a subset of vertices A, we write NA(v) = N(v) ∩A and set
dA(v) = |NA(v)|. We also write N(A) = ∪x∈AN(x). We say that G has minimum degree at

least k if every vertex v is such that d(v) ≥ k. The average degree of G is the number |E||V | .

Let A ⊆ V , we call subgraph of G induced by A, the graph G[A] = (A,E ∩ A2). We denote
by G− A = G[V \ A]. If B ⊆ E, then G[B] = (V,B) and G \ B = G[E \ B]. The complete
graph on k vertices, denoted by Kk is the graph on k vertices with every possible edge. A
stable set S of G is a set of vertices such that G[S] has no edge. A clique K of G is a set
of vertices such that G[K] is a complete graph. The clique number, denoted by ω(G), is the
size of the largest clique in G and the stability number, denoted by α(G), is the size of its
largest stable set.

A path P is a sequence of distinct vertices x1 . . . xl such that xixi+1 is an edge for every
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0 < i < l. The vertices x1 and xl are called the endvertices of P and P is referred to as an
x1xl-path, or a path between x1 and xl. The vertices xi for i ∈ [2, l − 1] are referred to as
the inner vertices of P . A set of paths P1, . . . , Pk are said to be internally disjoint if the
sets of inner vertices of these paths are pairwise disjoint. If S and T are two sets of vertices,
a (S, T )-path is a st-path for some s ∈ S and t ∈ T . A cycle C is a sequence of distinct
vertices x1 . . . xl such that xixi+1 is an edge for every 0 < i < l and xlx1 is an edge. The
length of a cycle is the number of vertices in this cycle. The girth of G is the length of its
smallest cycle.

The grid of size k is the graph on [k] × [k] where vertex (i, j) is adjacent to vertices
(i− 1, j), (i+ 1, j), (i, j − 1) and (i, j + 1) when these vertices exist.

In a graph G, we say that vertices x and y have connectivity k if there exists k inter-
nally disjoint paths between x and y. A graph is k-connected if every pair of vertices has
connectivity k and |V | ≥ k + 1. We write connected for 1-connected. Let X and Y be
sets of vertices. A set of vertices S is an (X, Y )-vertex-cut if G − S does not contain any
(X \ S, Y \ S)-path. The following theorem due to Menger [52] relates the connectivity
between vertices and vertex-cuts.

Theorem 1 (Menger’s theorem [52]). Let G be a graph, and let S, T ⊆ V (G). The maximum
number of vertex-disjoint (S, T )-paths is equal to the minimum size of an (S, T )-vertex-cut.

A proper k-colouring of G is a function c : V (G) → [k], such that the vertices in c−1(i)
form a stable set for every i. A graph G is said to be k-colourable if there exists a proper
k-colouring of G. The chromatic number of G, denoted by χ(G) is the least k such that a
proper k-colouring exists.

Let G and H be two graphs. We say that G admits a subdivision of H if there exist
functions π1 : V (H) → V (G) and π2 mapping the edges of H to paths of G satisfying the
following conditions:

• the map π1 is an injection;

• for every edge e ∈ E(H) between u and v, π2(e) is a π1(u)π1(v)-path; and

• for all distinct e, e′ ∈ E(H), π2(e) and π2(e′) are internally disjoint.

We say that G admits an immersion of H if there exist functions π1 : V (H) → V (G)
and π2 mapping the edges of H to paths of G satisfying the following conditions:

• the map π1 is an injection;

• for every edge e ∈ E(H) between u and v, π2(e) is a π1(u)π1(v)-path; and

• for all distinct e, e′ ∈ E(H), π2(e) and π2(e′) have no edge in common.

In a subdivision or in an immersion, the vertices of π1(V (H)) are called the branching
vertices of H.
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Let e = xy be an edge of a graph G = (V,E). By G/e we denote the graph obtained from
G by contracting the edge e into a new vertex ve, which is adjacent to all former neighbours
of x and y. We say that G admits a minor of H if there exists a graph G′ such that, G′ can
obtained from G by repeated contractions, and H is a subgraph of G′. These notions are
strongly related as minor and immersion are both weaker versions of subdivision.

A digraph is a pair D = (V,A) of finite sets such that A is a set of ordered pairs of
elements of V . The elements of V are the vertices and the elements of A are the arcs. For
a digraph D, we write V (D) for its vertex set and A(D) for its arc set. A multidigraph is
a digraph where we allow an arc to appear multiple times. We call these arcs parallel arcs,
and the multiplicity of an arc is the number of times it appears in A(D). We say that a
multidigraph has multiplicity k if all its arcs have multiplicity smaller than or equal to k.
Let u and v be vertices of V . If (u, v) belongs to A(D), we say that u sees v, u dominates
v, v is seen by u or v is dominated by u. We also say that v is an outneighbour of u and u
is an inneighbour of v. For an arc a = (u, v), u is said to be the tail of a and v its head. Let
D = (V,A) be a digraph and X and Y be two subsets of V . Then A(X, Y ) represents the
set of arcs of A with tail in X and head in Y . Let v be a vertex of some digraph D. The
inneighbourhood of v, denoted by N−(v), is the set of inneighbours of v and the indegree
of v, d−(v) = |N−(v)| is its size. For a subset of vertices A, let N−A (v) = N−(v) ∩ A and
denote by d−A(v) = |N−A (v)|. We also write N−(A) = ∪x∈AN−(x). The minimum indegree
(resp. maximum indegree) of a digraph D, denoted by δ−(D) (resp. ∆−(D)), is the minimum
(resp. maximum) value of d−(v) over all vertices of D. The closed inneighbourhood of v,
denoted by N−[v] is defined as N−[v] = N−(v) ∪ {v}. The outneighbourhood of v, denoted
by N+(v), is the set of outneighbours of v and the outdegree of v, d+(v) = |N(v)| is its size.
For a subset of vertices A, let N+

A (v) = N+(v) ∩ A and d+
A(v) = |N+

A (v)|. We also write
N+(A) = ∪x∈AN+(x). The minimum outdegree (resp. maximum outdegree) of a digraph
D, denoted by δ+(D) (resp. ∆+(D)), is the minimum (resp. maximum) value of d+(v)
over all vertices of D. The closed outneighbourhood of a v, denoted by N+[v], is defined as
N+[v] = N+(v) ∪ {v}. The underlying graph of a digraph D is the graph obtained from D
by forgetting the orientation. The degree of a vertex v in a digraph D is the degree of v in
the underlying graph of D. The chromatic number χ(D) of a digraph D is the chromatic
number of its underlying graph. The chromatic number of a class of digraphs D, denoted by
χ(D), is the smallest k such that χ(D) ≤ k for all D ∈ D.

A digraph D is said to be Eulerian if d+(v) = d−(v) for every vertex v.

A tournament on k vertices is an orientation of the complete graph on k vertices. The
transitive tournament on k vertices, denoted by TTk, is the acyclic tournament on k vertices.

The complete digraph on k vertices, denoted by
←→
Kk is the digraph on k vertices with all

possible arcs. A multidigraph is complete if the underlying graph is complete. Let S ⊆ V ,
we call subdigraph of G induced by S, the digraph D[S] = (S,A ∩ S2). We denote by
D − S = D[V \ S]. If B ⊆ A, then D[B] = (V,B) and D \B = D[A \B].

An oriented path P is a sequence of vertices together with arcs such that the underlying
graph is a path on the same sequence. Let P = (x1, x2, · · · , xn) be an oriented path. We say
that P is an (x1, xn)-path. The vertex x1 is the initial vertex of P and xn its terminal vertex.
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The vertices xi for i ∈ [2, l − 1] are referred to as the inner vertices of P . A set of oriented
paths P1, . . . , Pk is said to be internally disjoint if the sets of inner vertices of these paths are
pairwise disjoint. P is a directed path or simply a dipath, if xixi+1 ∈ A(D) for all i ∈ [n− 1].
Let P be a dipath, we denote by s(P ) its initial vertex and by t(P ) its terminal vertex. For
any two vertices u and v, a (u, v)-dipath or dipath from u to v is a dipath P with s(P ) = u
and t(P ) = v. For two sets X, Y of vertices, an (X, Y )-dipath or dipath from X to Y is a
dipath P such that s(P ) ∈ X, t(P ) ∈ Y , and no internal vertex is in X ∪ Y . Let x and y be
two vertices of D, an (x, y)-walk is a non-empty sequence of vertices v0, . . . , vl such that,
x = v0, y = vl and (vi, vi+1) ∈ A(D) for all i ∈ [l− 1]. Note that the same vertex can appear
multiple times. An oriented cycle C is a set of vertices such that the underlying graph is a
cycle. An oriented cycle x1, . . . xl of a digraph D is said to be directed if (xi, xi+1 ∈ A(D)
for 0 < i < l and (xl, x1) ∈ A(D). For convenience, we will sometimes use path or cycle to
talk about oriented path or oriented cycles. A digraph D is said to be acyclic if it doesn’t
contain a directed cycle as a subdigraph. In a digraph D, a directed cycle C of a dipath P
is said to be Hamiltonian if it contains all vertices of D.

A block of a path P or a cycle C is a maximal directed subpath of P or of C. A path
is entirely determined by the sequence (b1, . . . , bp) of the lengths of its blocks and the sign
+ or − indicating if the first arc is forward or backward respectively. Therefore we denote
by P+(b1, . . . , bp) (resp. P−(b1, . . . , bp)) the oriented path whose first arc is forward (resp.
backward) with p blocks, such that the ith block along it has length bi.

An out-arborescence is a rooted tree where all the arcs are oriented away from the root
and a k-out-arborescence is an out-arborescence in which every vertex apart form the leaves
has outdegree k. An in-arborescence is a tree where all the arcs are oriented towards the root
and a k-in-arborescence is an in-arborescence in which every vertex apart form the leaves
has indegree k. We use arborescence to talk about an in- or out-arborescence. The depth of
an arborscence is the length of its longest dipath. Let x be a vertex of an arborescence T .
The ancestors of x is the set of vertices on the path from the root to x and the father of x
is the last vertex (towards x) on this path.

Let D and H be two digraphs, we say that D admits a subdivision of H if there exist
functions π1 : V (H) → V (G) and π2 mapping the arcs of H to dipaths of D satisfying the
following conditions:

• the map π1 is an injection;

• for every arc e ∈ A(H) from u to v, π2(e) is a (π1(u), π1(v))- dipath; and

• for all distinct e, e′ ∈ A(H), π2(e) and π2(e′) are internally disjoint.

We say that D admits an immersion of H if there exist functions π1 : V (H) → V (G)
and π2 mapping the arcs of H to dipaths of D satisfying the following conditions:

• the map π1 is an injection;

• for every arc e ∈ A(H) from u to v, π2(e) is a π1(u)π1(v)- dipath; and
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• for all distinct e, e′ ∈ A(H), π2(e) and π2(e′) are arc-disjoint.

In a digraph D, we say that vertices x and y have connectivity k if there exists k vertex-
disjoint dipaths betweeen x and y. We say that vertices x and y have arc-connectivity k
if there exists k arc-disjoint paths betweeen x and y. A digraph is k-strongly-connected if
every pair of vertices has connectivity k. We write strongly connected or strong for 1-strongly-
connected. Let X and Y be sets of vertices. A set S of vertices is an (X, Y )-vertex-cut if
D − S does not contain any (X \ S, Y \ S)-dipath. A set A of arcs is an (X, Y )-arc-cut if
D \ A does not contain any (X, Y )-dipath.

Theorem 2 (Menger’s theorem [52]). Let D be a digraph, and let S, T ⊆ V (D). The
maximum number of vertex-disjoint (S, T )-dipaths is equal to the minimum size of an (S, T )-
vertex-cut.

The same result holds for arc-connectivity

Theorem 3 (Menger’s theorem [52]). Let D be a digraph, and let S, T ⊆ V (D). The
maximum number of arc-disjoint (S, T )-dipaths is equal to the minimum size of an (S, T )-
arc-cut.

A hypergraph is a pair H = (S,E) of disjoint sets, where the elements of E are non-empty
subsets of S. The set S is called the ground set of H. The elements of E are called the
hyperedges of H. A hypergraph H is k-uniform if every hyperedge has cardinality k.

Let H be a hypergraph on a ground set S and S ′ be a subset of S. The projection of a
hyperedge E onto S ′ is defined as E ∩ S ′. Let H∩ S ′ denotes the hypergraph defined on S ′

where the edges are the projections of the edges of H onto S ′.
Let D = (V,A) be a digraph, the inneighbourhood hypergraph of D is the hypergraph

H = (V,E), where E = {N−[x];x ∈ V }.

1.2 Structures in graphs

What are the properties of a graph forbidding a certain structure? This is a very natural set-
ting in graph theory under which many interesting conjectures and results can be rephrased.
One of the classical results in Graph Theory is Kuratowski’s Theorem, saying that planar
graphs are precisely the graphs avoiding K5 and K3,3 as minors. Generalising this result,
the celebrated Robertson-Seymour Theorem states:

Theorem 4 (Robertson-Seymour [60]). Every class of graphs closed under the minor relation
can be defined by a finite set of forbidden minors.

This theorem means that in order to understand a minor-closed class, it is sufficient
to understand graphs avoiding a certain set of obstructions as minor. A very important
consequence of this theorem and its proof is the development of the graph decomposition
technique which led to important results in both structural and algorithmic graph theory.
The main parameter in this field is the tree-width, where graphs with small tree-width behave
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like trees. On the other hand, if the graph has large tree-width, the following theorem allows
us to understand some of its structure:

Theorem 5 (Grid Minor Theorem, Robertson-Seymour [58]). For every k, there exists a
function f(k) such that any graph with tree-width at least f(k) contains a grid of size k as
a minor.

This gives a template for solving many problems: either the graph has small tree-width
and the problem can be solved easily (most of the time using a dynamic programming
argument), or it contains a large grid as a minor and then we can solve the problem using
this specific structure. Probably the most important example of a proof using this technique
is the k-linkage problem. An instance of this problem is a graph G and a set of k pairs of
vertices (si, ti) and the goal is to decide if there are k internally disjoint paths of G joining
every possible pair (si, ti). In [59], Robertson and Seymour gave a cubic-time algorithm for
this problem using the above mentioned strategy, this was later improved to quadratic time.

Even outside this setting of graph decomposition, the question of what parameter can
force a certain structure in a graph is natural on its own. The most famous conjecture
concerning properties of graphs with a forbidden minor is Hadwiger’s Conjecture, which
tries to generalise the 4-Colour Theorem:

Conjecture 6 (Hadwiger, 1943). For every t ≥ 1, every graph without Kt+1 as a minor is
t-colourable.

The case t = 5 was proved by Robertson, Seymour and Thomas [61] but it remains
open for t > 5. On the other hand, it was independently proved in 1984 by Kostochka and
Thomason [44, 68] that a graph without Kt as a minor is O(t(logt)1/2)-colourable. In fact
they showed the following stronger theorem:

Theorem 7 (Kostochka [44] and Thomason [68]). For every t ≥ 1, every graph with mini-
mum degree greater than Θ(t(logt)1/2) contains Kt as a minor.

Understanding graphs with a large minimum degree has also been studied beyond this
link with Hadwiger’s Conjecture. The following beautiful result due to Mader [47] in 1967
is probably the most famous example.

Theorem 8 (Mader [47]). For every k ≥ 1, there exists an integer f(k) such that every
graph with minimum degree at least f(k) contains a subdivision of the complete graph on k
vertices.

Mader, Erdős and Hajnal, conjectured that the right value for f(k) should be in O(k2).
Bollobás and Thomason [8] as well as Komlós and Szemerédi [43] proved this conjecture 30
years later.

Another related result was obtained recently by DeVos et al. [19]. Studying a variant
of Hadwiger’s Conjecture that deals with immersions instead of minors, they showed that
graphs with minimum degree greater than 200t contain an immersion of the complete graph
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on t vertices, proving the first linear bound for these kind of questions. Proving a linear
bound for Hadwiger’s Conjecture would be a major breakthrough.

Developing a decomposition theory for digraphs is a major challenge in computer science
because, in many applications, the most natural model is a digraph. However, apart from a
recent breakthrough due to Kawarabayashi and Kreutzer [38] who proved in a very technical
paper the directed version of the Grid Minor Theorem, not much is known. There are many
reasons for that, one being that the directed versions of the problems are inherently more
difficult than their undirected version. This difficulty is particularly clear for the linkage
problem. An instance of the directed k-linkage problem is a digraph D and a set of k
pairs of vertices (si, ti) and the goal is to decide if there are k internally disjoint dipaths of
D joining every possible pair (si, ti). While the k-linkage problem is solvable in quadratic
time for every k, the directed version was proved to be NP-hard for k = 2 in [29]. In fact,
Thomassen proved in [71], that the problem is NP-hard for k = 2 even in the case of digraphs
with arbitrarily high connectivity. When introducing the directed tree-width, Reed [57] and
Johnson, Robertson, Seymour and Thomas [36] chose a definition such that the k-linkage is
polynomial-time solvable on digraphs with bounded directed-tree-width, but the notion is
hard to handle. Another reason is our lack of understanding concerning the structural aspect
of the problem. The biggest example is probably the following conjecture due to Mader [49]
in 1985, which is still open for k ≥ 5.

Conjecture 9 (Mader [49]). For every k ≥ 1, there exists an integer f(k) such that every
digraph with minimum outdegree at least f(k) contains a subdivision of TTk, the transitive
tournament on k vertices.

A large part of this thesis is dedicated to understand some structural questions related
to Mader’s Conjecture.

1.3 Subdivisions of cliques and local connectivity

Before discussing Conjecture 9, we will talk about the proof of the statement in the undirected
case. The first thing to note, is that in any graph with average degree greater than k, there
exists a subgraph with minimum degree greater than k/2. In fact Mader in [48] proved that
large average degree forces the existence of a subgraph with large connectivity.

Theorem 10 (Mader [48]). Any graph G with average degree greater than 4k contains a
k-connected subgraph.

Proof. For inductive purposes we will prove the following stronger result. Every graph G on
n ≥ 2k−1 vertices and m > (2k−3)(n−k+1) edges has a k-connected subgraph. Note that
the condition m > (2k−3)(n−k+1) implies for large value of n a average degree of roughly
4k. The proof is by induction on n. If n = 2k − 1, then G must be the complete graph, so
we can assume n ≥ 2k. If a vertex v satisfies d(v) < 2k−3, we can apply induction on G−v
and we are done. Thus δ(G) > 2k − 2. Assume G is not k-connected. By Theorem 1, there
exists a vertex-cut X of less than k vertices. Call V1 and V2 the two components of G−X
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and Gi = G[Vi ∪X], for i ∈ [2]. If the Gi are not k-connected, then by induction hypothesis
on each Gi: e(Gi) < (2k− 3)(|Gi| − k+ 1). However, since |G1 ∩G2| = |X| < k, we get that
e(G) ≤ e(G1) + e(G2) ≤ (2k − 3)(n− k + 1), a contradiction.

For a pair of vertices with high connectivity, the following tight result was proved by
Mader [47].

Theorem 11 (Mader [47]). Any graph G with minimum degree k contains a pair of vertices
with connectivity k.

The proofs that Mader gave of Theorem 11 and Theorem 8 both use the same idea of
induction where the graph is partitioned into a clique and the rest and the induction will go
on by contracting vertices onto the clique, while ensuring that the rest of the graph keeps
the right properties. We now present theses proofs.

Let K = {x1, . . . , xk} be a clique in a graph G. For every v ∈ N(x1)\∩ki=1N(xk), let φ(v)
be the smallest integer such that xφ(v)v 6∈ E(G). Let GK be the graph obtained from G by
removing x1 and adding for each vertex v ∈ N(x1)\∩ki=1N(xk) the edge vxφ(v). The following
lemma is the key part of the proof of Theorem 11. The idea is that, if K is a maximal clique,
then doing the transformation described just above, we can remove one vertex of the clique,
while preserving the connectivity between vertices outside of K.

Lemma 12 (Mader [47]). For every k ≥ 1, if K = {x1, . . . , xk} is a maximal clique, then
GK is such that:

• the vertices in V (G) \K have the same degree in G and GK;

• the connectivity between two vertices in V (G) \K is the same in G and GK.

Proof. The first property is by construction of φ(v), since ∩ki=1N(xi) is empty because K is
a maximal clique.

Let u and v be vertices in V (G) \K and suppose there exist l disjoint paths P1, . . . , Pl
in GK between u and v. Without loss of generality, we can assume that all these paths use
vertices of K. This means there exist l paths Q1, . . . , Ql of GK from u to K intersecting only
on u, and l paths S1, . . . Sl of GK from v to K intersecting only on v. Moreover, for every
i ∈ [l] and j ∈ [l] (possibly the same), the path Qi and the path Sj can only intersect on K.
Note that we can assume that Qi ∩K and Si ∩K are reduced to a single vertex for every
i ∈ [l]. So let ui = K ∩Qi and vi = K ∩Si denote these vertices. Without loss of generality,
we can assume that the ui and the vi are ordered on K, meaning that if i < j and ui = xl(i)
and uj = xl(j), then l(i) < l(j). Finding two sets of paths Q′1, . . . , Q

′
l and S ′1, . . . , S

′
l of G

with the exact same properties would prove the lemma as one can easily use edges in K to
close the paths between u and v.

We will obtain each path Q′i of G from u to u′i by changing only the last vertex of Qi

as follows: If the last edge of Qi belongs to G then u′i = ui and Q′i = Qi. If this edge
doesn’t belong to G, it means by construction of GK that this edge is an edge txφ(t) for some
t ∈ V (G) \ K. However, by definition of φ(t), it means that t is adjacent in G to all the
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vertices xr with r < φ(t) (including x1). In particular, if there exists uj with j < i such that
the last edge of Qj is not in G, then tuj ∈ E(G). So in this case u′i is the biggest uj with
j < i such that the last edge of Qi is not in G, if it exists and x0 if not. By doing the same
with the Si between v and K and using edges of K to connect them, we find l disjoint paths
between u and v in G.

To prove Theorem 11 Mader proved the following stronger result.

Theorem 13 (Mader [47]). For every k ≥ 1, let G be a graph with a clique K such that
|V (G) \K| ≥ 2 and every vertex of V (G) \K has degree at least k in G. Then there exists
a pair of vertices of V (G) \K with connectivity k in G.

Proof. The proof is by induction on the order of G. Note that, no matter the order of G,
if |V (G) \K| = 2, then the result is trivially true. This makes the case |G| = k + 2 trivial.
Suppose now that |G| is larger than k + 2. If K is maximal, then using the previous lemma
and the induction hypothesis on GK gives the result. If K is not maximal, then we can add
vertices to K to make it maximal. If during this procedure, |V (G) \ K| ≤ 2, then we can
conclude. If not we can apply induction on GK .

The proof of Theorem 8 is a bit different, as we will sometimes need to remove vertices
of a clique which is not maximal, thus we cannot guarantee the degree of every vertex in
V (G)\K. However by doing an induction on k, we will be able to guarantee a large average
degree.

The following lemma, that we do not prove here, is quite similar to Lemma 12:

Lemma 14 (Mader [47]). For every l ≥ 1, let G be a graph and K a clique in G. Suppose
there exists a subidvision of Kl in GK with all branching vertices {x1, . . . , xl} in V (G) \K
and such that paths of the subdivision between vertices in {x2, . . . , xl} only use vertices in
V (G) \K. Then there exists a subdivision of Kl in G with branching points {x1, . . . , xl} in
V (G) \ K and such that paths of the subdivision between vertices in {x2, . . . , xl} only use
vertices in V (G) \K.

Proof of Theorem 8. We will prove by induction on p that a graph with average degree 3p

contains Kp as a subdivision. The case p = 2 is trivial. Suppose now that the result is true
for some p. We will prove it for p + 1. We will prove by induction on the size of G the
following:

Let G be a graph of average degree greater than 3p+1 and K = {x1, . . . , xl} a clique of size
smaller than p + 2. Then G contains a subdivision of Kp+1 with all the branching vertices
{x1, . . . , xp+1} in V (G) \ K and such that that paths of the subdivision between vertices in
{x2, . . . , xp+1} only use vertices in V (G) \K.

Let n = |G|. Again, the case where n = 3p+1 +1 is trivial. If K is maximal, then applying
the induction hypothesis on the size of G to GK works as the number of edges of GK is equal
to

E(G)− (p+ 1) ≥ 3p+1

2
× n− (p+ 1) >

3p+1

2
× (n− 1)
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and thus the average degree is greater than 3p+1. This allows us to conclude using Lemma
14. Suppose now that K is not maximal. By adding some vertices to it we can assume
that |K| = p + 1. Consider the set of vertices X = ∩ki=1N(xl). If the subgraph G[X] has
minimum degree 3p + 1, then we can apply the induction hypothesis on p to G[X] to find a
subdivision of Kp in X \ {x} for some vertex x ∈ X and extend it to a subdivision of Kp+1

using x and edges with K. Suppose G[X] has minimum degree smaller than 3p + 1 and let
s ∈ X be a vertex of degree at most 3p in G[X]. If we add s to K, then the difference in the
number of edges between G and GK is precisely |NX∪K(s)| ≤ p+ 1 + 3p. Since

3p+1

2
× n− (p+ 1)− 3p >

3p+1

2
× (n− 1),

GK has average degree greater than 3p+1 and we can conclude by applying the induction
hypothesis on the size of G to GK and using Lemma 14.

1.4 Subdivisions and immersions in digraphs with large

minimum outdegree

When one tries to generalise Theorem 8 to digraphs, the first natural question is to ask
if there exists a function f(k) such that every digraph with minimum outdegree at least
f(k) contains a subdivision of the complete digraph on k vertices. However the following
construction, due to DeVos et al. [20](slightly adapted), shows the existence of digraphs
with arbitrarily large outdegree and without two arc-disjoint directed cycles between the

same pair of vertices. In particular it cannot contain
←→
K3 as a subdivision. Let Dk be the

digraph obtained from a k-out-arborescence of depth k + 1 by adding to each leaf the set of
its ancestors as outneighbours. This is indeed a digraph with minimum outdegree at least
k. Let x and y be two vertices of Dk. Without loss of generality, we can assume that x is
deeper than y in the arborescence. Hence every cycle containing x and y must use the arc
from the father of y to y, proving the fact that there cannot exist two arc-disjoint directed
cycles going through both vertices.

However, for transitive tournaments, the question remains open. In [49] Mader made the
following conjecture.

Conjecture 9 (Mader [49]). For every k ≥ 1, there exists an integer f(k) such that every
digraph with minimum outdegree at least f(k) contains a subdivision of TTk, the transitive
tournament on k vertices.

The question turned out to be way more difficult than the non oriented case, as the
existence of f(5) remains unknown. Weakening the statement, DeVos, McDonald, Mohar
and Scheide [20] made the following conjecture replacing subdivision with immersion and
proved it for the case of Eulerian digraphs.

Conjecture 15 (DeVos et al. [20]). For every k ≥ 1, there exists an integer h(k) such that
every digraph with minimum outdegree at least h(k) contains an immersion of TTk.
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Note that the construction Dk given above also prove that, even in the case of immersions,←→
K3 cannot be forced through minimum outdegree.

An important part of the proof of Mader and the one of Bollobás and Thomason about
subdivision of the complete graph is the fact that one can easily find a subgraph with large
connectivity inside a graph with large average degree. In digaphs however, the picture is
completely different, as the complete bipartite digraph with all arcs oriented in the same
direction is an example of a digraph with large average outdegree and without a subdigraph
with large minimum outdegree. An interesting remark is that for Eulerian digraphs, a similar
result was obtained in [20], namely that every Eulerian digraph with large outdegree contains
an immersion of an Eulerian digraph with large arc-connectivity.

Another useful tool for finding subdivisions of the complete graph is to find a subgraph
with good linkage property. A graph or a digraph is said to be k-linked if every instance of
the k-linkage problem admits a solution. Thomas and Wollan in [67] proved the following.

Theorem 16 (Thomas and Wollan [67]). Every 10k-connected graph is k-linked.

However Thomassen in [71] proved the existence of digraphs with arbitrarily large con-
nectivity which are not 2-linked.

Another example about the difficulties of understanding digraphs with large minimum
degree is the following conjecture due to Alon [4] and still open for k = 2.

Conjecture 17 (Alon [4]). There exists a function f(k) such that every digraph with min-
imum degree at least f(k) can be partitioned into two digraphs of minimum outdegree at
least k.

The existence of f(1) means that one can find two disjoint directed cycles in digraphs
with large minimum outdegree. This was proved by Thomassen in [69]. Even showing that
large minimum outdegree digraphs can be partitioned into a directed cycles and a digraph
with minimum outdegree 2 is open. Note that the existence of f(2) would imply the existence
of f(k) for every k. Indeed, suppose f(2) is known and let D be a digraph with minimum
outdegree f(2)k+1. For each vertex v, we partition N+(v) into f(2)k sets S1(v), . . . , Sf(2)k(v),
each of size f(2). Consider the digraph H obtained from D by replacing every vertex v by
an f(2)-out-arborescence of depth k, T (v), and where the ith leaf of T (v) is linked to the
roots of the arborescence associated to the vertices in Si(v). Note that contracting each
f(k)-out-arborescence into one vertex yields exactly the digraph D. So H can be seen as the
digraph D where every vertex is blown-up into an f(k)-out-arborescence and the outdegree
of each vertex is distributed to the leaves of the out-arborescence replacing it. H is a digraph
with minimum outdegree f(2), so there exists a partition of it into two digraphs of outdegree
2. It is easy to see that, by looking at the roots of the out-arborescences, this corresponds
to a partition of D into two digraphs of minimum outdegree 2k+1.

A very nice result about digraphs with large minimum outdegree is the existence of
vertices with large connectivity. Remember that in graphs with minimum degree d there
exists a pair of vertices of connectivity d and the proof of this fact uses ideas similar to
the one of Theorem 8. Such a tight result is not possible in digraphs, as Mader showed
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in [49] the existence of digraphs with minimum outdegree 12m and maximum connectivity
11m. However he showed in [50] the existence of a function f(k) such that every digraph
with minimum outdegree greater than f(k) contains a pair of vertices with connectivity k.
Despite being relatively short, the proof is quite difficult to understand, in part because of
the optimisation of the function f(k). We will present our understanding of the proof for
arc-connectivity. First because, despite being simpler, it uses most of the very nice ideas of
Mader for the verxtex-connectivity and because it served us as base to solve Conjecture 15
in [45].

Theorem 18. For every k ≥ 1, there exists an integer f(k) such that every digraph with
minimum outdegree at least f(k) contains a pair of vertices with arc-connectivity at least k.

Proof. We will prove by contradiction that every digraph D where every vertex but at most
k2 has outdegree greater than k4 contains a pair of vertices with arc-connectivity k. Let
D be the smallest, in term of arcs and vertices, counterexample. By minimality of D, all
the vertices have outdegree exactly k4 except the k2 with outdegree 0. Let T be the set of
vertices with outdegree 0. Pick a vertex v with outdegree k4. For every vertex y ∈ D there
does not exist a set of k arc-disjoint directed paths from v to y. Hence, by Theorem 3, there
exists a set Ey of less than k arcs such that there is no directed path from v to y in D \Ey.
For every y ∈ D − v, define Cy as the set of vertices which can reach y in D \ Ey. Now
take Y a minimal set such that ∪y∈YCy covers D − y. Y consists of at least k3 elements as
∪y∈YEy contains all the arcs of D with tail v.

For each y ∈ Y , define Sy as the set of vertices which belong to Cy and no other Cy′ for
y′ ∈ Y , y′ 6= y. Since Y is minimal, every Sy is non-empty. Note that for u ∈ Sy, if there
exists y′ ∈ Y \ y and v ∈ Cy′ such that (u, v) ∈ A(D), then (u, v) ∈ Ey′ . Note that T ⊆ Y as
vertices in T have outdegree 0 and if y ∈ Y \T then Sy consists only of vertices of outdegree
k4 in D.

Let R be the digraph with vertex set Y and arcs the pairs (y, y′) such that there is an arc
from Sy to Cy′ . As noted before, d−R(y) ≤ |Ey| ≤ k. The average outdegree of the vertices

of Y \ T in R is then at most k×k3
k3−k2 < k2 − 1. Let y be a vertex of R \ T with outdegree

at most this average. Consider the digraph induced by Sy ∪ v. As noted before the arcs of
A(Sy, S̄y) are precisely the arcs contributing to the outdegree of y in R. Therefore, D[Sy ∪v]
is a digraph strictly smaller than D, without two vertices with arc-connectivity k and such
that apart from k2 vertices, every vertex has outdegree k4, a contradiction.

Let F (k, l) be the multidigraph consisting of k vertices x1, . . . , xk and l arcs from xi to
xi+1 for every 1 ≤ i ≤ k − 1. It is clear that F (k,

(
k
2

)
) contains an immersion of TTk, so

extending the previous proof to F (k, l) would prove Conjecture 15. The main difficulty to
do that, if one removes the arcs of a subdivision of F (k − 1, l) and tries to extend it using
the same proof as above, is that there is no control on the number of vertices that lose some
outdegree. The way around this problem is to remark that, using the notations of last proof,
you can add new arcs in D[Sy ∪ v] between vertices which belonged to same directed path of
the copy of the subdivision of F (k − 1, l), so that each of the (k − 1)l directed paths of the
subdivision of F (k − 1, l) contributes to the loss of outdegree of at most one vertex. With
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this, we are able to control the number of vertices that lose some outdegree and proceed
with the induction. The complete proof is presented in Chapter 3.

Trying to extend this technique to obtain the result for subdivisions seems hard, as it
looks like the removal of the vertices on the directed paths disturbs the structure of the
digraph too much.

Overall not much is known about Conjecture 9. In [41], Kühn et al. proved that a digraph
of order n whose minimum outdegree is at least d contains a subdivision of a complete
digraph of order d2

8n3/2 . In [1], with several co-authors, we looked at subdivisions of digraphs
different from the transitive tournament. The first thing we did was to give a tight bound
for orientations of paths.

Theorem 19. Let (k1, k2, . . . , k`) be a sequence of positive integers, and let D be a digraph
with δ+(D) ≥

∑`
i=1 ki. For every v ∈ V (D), D contains a path P+(k′1, k

′
2, . . . , k

′
`) with initial

vertex v such that k′i ≥ ki if i is odd, and k′i = ki otherwise.

The bound is indeed thight as the complete digraph on k vertices has minimum outdegree
k − 1 and contains no path on more than k vertices.

The next natural digraphs to look at are trees. It is easy to see that, by a greedy
algorithm, finding a large out-arborescence in a digraph with large minimum outdegree is
trivial. The question of in-arborescence is a however interesting as one needs to control the
vertices with large indegree. The main result of paper [1] was to prove the existence of large
in-arborescences in digraphs with sufficiently large minimum outdegree.

Theorem 20. Let F be an in-arborescence. There exists a constant C(F ) such that every
digraph with minimum outdegree at least C(F ) contains a subdivision of F .

The proofs of the two previous theorems are presented in Chapter 3 together with some
other results. Finding subdivisions remains however open for oriented trees in general. We
believe it would be an interesting step towards Conjecture 9.

Problem 21. Let T be an oriented tree. Does there exist a constant a(T ) such that any
digraph with minimum outdegree at least a(T ) contains T as a subdivision.

One interesting problem while attacking Conjecture 9 is that it is hard to find a strength-
ening of the conjecture which makes sense. For example, requiring that D has large in and
outdegree, despite making the question trivial for trees does not add anything for the tran-
sitive tournament. Indeed suppose that there exists a function g(k) such every digraph with
minimum in and outdegree greater than g(k) contains a subdivision of TTk. Let D be a di-
graph with outdegree greater than g(k), and D̄ be the digraph obtained from D by reversing
all the arcs. Consider H obtained by taking a disjoint copy of both D and D̄ and adding
all arcs from D̄ to D. H is a digraph with minimum in and outdegree greater than g(k)
and thus contains a subdivision of TTk. Without loss of generality, we can assume half of
the branching vertices of this subdivision belong to D and thus D contains a subdivision of
TTk/2.
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1.5 Subdivisions in digraphs with large (di)chromatic

number

What can we say about the subgraphs of a graph with large chromatic number? Of course,
one way for a graph to have large chromatic number is to contain a large complete subgraph.
However, if we consider graphs with large chromatic number and small clique number, then
we can ask what other subgraphs must occur. We can avoid any graph that contains a cycle
because, as proved by Erdős [22], there are graphs with arbitrarily high girth and chromatic
number. Reciprocally, one can easily show that every graph with chromatic number n
contains every tree of order n as a subgraph.

The following more general question attracted lots of attention.

Problem 22. Which are the graph classes G such that every graph with sufficiently large
chromatic number contains an element of G?

If such a class is finite, then it must contain a tree, by the above-mentioned result of
Erdős. If it is infinite however, it does not necessary contain a tree. For example, every
graph with chromatic number at least 3 contains an odd cycle. This was strengthened
by Erdős and Hajnal [23] who proved that every graph with chromatic number at least k
contains an odd cycle of length at least k. A counterpart of this theorem for even length
was settled by Mihók and Schiermeyer [53]: every graph with chromatic number at least k
contains an even cycle of length at least k. Further results on graphs with prescribed lengths
of cycles have been obtained [32, 53, 73, 46].

During this thesis, we looked at similar problems for directed graphs: which are the
digraph classes D such that every digraph with sufficiently large chromatic number contains
an element of D? Let us denote by Forb(H) (resp. Forb(H)) the class of digraphs that do
not contain H (resp. any element of H) as a subdigraph. The previous question can be
reformulated as follows:

Problem 23. Which are the classes of digraphs D such that χ(Forb(D)) is finite?

If D is a simple digraph, then χ(Forb(D)) < +∞ only if D is an oriented tree. Burr [13]
proved that every (k − 1)2-chromatic digraph contains every oriented tree of order k. This
was slightly improved by Addario-Berry et al. [2] who proved the following.

Theorem 24 (Addario-Berry et al. [2]). Every (k2/2 − k/2 + 1)-chromatic digraph con-
tains every oriented tree of order k. In other words, for every oriented tree T of order k,
χ(Forb(T )) ≤ k2/2− k/2.

Burr conjectured that the right bound should be linear:

Conjecture 25 (Burr [13]). Every (2k − 2)-chromatic digraph D contains a copy of any
oriented tree T of order k.
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This question appears to be extremely difficult, as even the case of tournaments which
can be seen as the easiest case of n-chromatic digraphs, was only recently proved by Kühn
et al. [40].

For special oriented trees T , better bounds on the chromatic number of Forb(T ) are
known. The most famous one, known as the Gallai-Roy Theorem, can be seen as a variant
of Dilworth’s Theorem on orders:

Theorem 26 (Gallai [30], Hasse [34], Roy [62], Vitaver [72]). χ(Forb(P+(k))) = k.

The chromatic number of the class of digraphs not containing a prescribed oriented path
with two blocks (blocks are maximal directed subpaths) has been determined by Addario-
Berry et al. [3].

Theorem 27 (Addario-Berry et al. [3]). Let P be an oriented path with two blocks on k
vertices.

• If k = 3, then χ(Forb(P )) = 3.

• If k ≥ 4, then χ(Forb(P )) = k − 1.

One interesting case is the case when D is the set of all subdvisions of a certain di-
graph. Let us denote by S-Forb(D) (resp. S-Forb(D)) the class of digraphs that contain
no subdivision of D (resp. any element of D) as a subdigraph. Note that in the case of
undirected graphs, as every graph with chromatic number greater than k contains a graph
with minimum degree greater than k, Theorem 8 implies the following.

Theorem 28. For every graph H, there exists a constant C(H) such that any graph with
chromatic number greater than C(H) contains a subdivison of H.

Consider the case where D is the set of all subdivisions of a fixed cycle. Let us denote
by ~Ck the directed cycle of length k. For all k, transitive tournaments provide examples of
digraphs with arbitrarily large chromatic number and without ~Ck as a subdivision. More
generally, the following construction communicated to us by Nešetřil generalise this result
to any oriented cycle.

Theorem 29. For any positive integers b, c, there exists an acyclic digraph D with χ(D) ≥ c
in which all oriented cycles have more than b blocks.

Proof. By [22], there exist graphs with chromatic number c and girth greater than cb. Let G
be such a graph and consider a proper c-colouring φ of it. Let D be the acyclic orientation
of G in which an edge uv of G is oriented from u to v if and only if φ(u) < φ(v). By
construction, the length of all directed paths in D is less than c and since each oriented cycle
of D has length more than cb, they all have more than b blocks.

This directly implies the following theorem.
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Theorem 30. For any finite family C of oriented cycles,

χ(S-Forb(C)) =∞.

On the other hand, considering strongly connected digraphs may lead to dramatically
different results. An example is provided by the following celebrated result due to Bondy [9] :
every strong digraph of chromatic number at least k contains a directed cycle of length at
least k. Denoting the class of strong digraphs by S, this result can be rephrased as follows.

Theorem 31 (Bondy [9]). χ(S-Forb(~Ck) ∩ S) = k − 1.

The proof of this result is particularly elegant as it starts with the longest cycle where
each vertex gets one different colour and extend this colouring to the rest of the digraph.

One natural question is to extend Bondy’s result to other oriented cycles.

Problem 32. Let C be an oriented cycle. Is χ(S-Forb(C) ∩ S) bounded?

The first class of oriented cycles to consider is probably the case of cycles with two blocks.
Addario-Berry et al. [3] posed the following problem.

Problem 33 (Addario-Berry et al. [3]). Let k and ` be two positive integers. Does S-Forb(C(k, `)∩ S)
have bounded chromatic number?

In [17] we proved the following theorem:

Theorem 34. S-Forb(C(k, `) ∩ S) has chromatic number O((k + l)4).

The proof of this theorem, as well as other related results will be presented in Chapter
2. The function has been recently improved to O((k + l)2) by Kim et al. in [42].

A p-spindle is the union of k internally disjoint (x, y)-dipaths for some vertices x and
y. Vertex x is said to be the tail of the spindle and y its head. A (k1 + k2)-bispindle is the
union of k1 (x, y)-dipaths and k2 (y, x)-dipaths, all these dipaths being internally disjoint.
One possible interpretation of Theorems 34 and 31 is to view a cycle on two blocks as a
2-spindle (two internally disjoint dipaths between the same pair of vertices) and a directed
cycle as a (1+1)-spindle. A natural question is to try to extend Theorems 31 and 34 to larger
spindles. First, we give a construction of digraphs with arbitrarily large chromatic number
that contains no 3-spindle and no (2 + 2)-bispindle. Therefore, the most we can expect in
all strongly connected digraphs with large chromatic number are (2 + 1)-bispindles.

Theorem 35. For every integer k, there exists a strongly connected digraph D with χ(D) > k
that contains no 3-spindle and no (2 + 2)-bispindle.

Proof. Let Dk,4 be an acyclic digraph with chromatic number greater than k in which every
cycle has at least four blocks. The existence of such a digraph is given by Theorem 29. Let
S = {s1, . . . , sl} be the set of vertices of Dk,4 with outdegree 0 and T = {t1, . . . , tm} the set
of vertices with indegree 0.
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Consider the digraphD obtained fromDk,4 as follows. Add a dipath P = (x1, x2, . . . , xl, z,
y1, y2, . . . , ym) and the arcs (si, xi) for all i ∈ [l] and (yj, tj) for all j ∈ [m]. It is easy to see
that D is strong. Moreover, in D, every directed cycle uses the arc (xl, z). Therefore D does
not contain a (2 + 2)-bispindle, because it contains two arc-disjoint directed cycles.

Suppose now that D has a 3-spindle with tail u and head v, and let Q1, Q2, Q3 be its
three (u, v)-dipaths. Observe that u and v are not vertices of P , because all vertices of this
dipath have either indegree 2 or outdegree 2. In D, each oriented cycle with two blocks
between vertices outside P must use the arc (xl, z). The union of Q1 and Q2 form a cycle
on two blocks, which means that one of the two paths, say Q1, contains (xl, z). But Q2 and
Q3 also form a cycle on two blocks, but they cannot contain (xl, z), a contradiction.

Let B(k1, k2; k3) denote the digraph formed by three internally disjoint paths between
two vertices x, y, two (x, y)-directed paths, one of size k1, the other of size k2, and one (y, x)-
directed path of size k3. Note that B(k1, k2; k3) is a (2+1)-bispindle where the length of the
dipaths are specified. In [16], we conjectured the following:

Conjecture 36. There is a function g : N3 → N such that every strong digraph with
chromatic number at least g(k1, k2, k3) contains a subdivision of B(k1, k2; k3).

As an evidence, we proved the following result:

Theorem 37. For every k ≥ 1, there is a constant γk such that if D is a strong digraph
with χ(D) > γk, then D contains a subdivision of B(k, 1; k).

The proof is quite technical. However the main idea is to use the fact that strong di-
graphs with a Hamiltonian cycle and without a subdivision of B(k, 1; k) easily have bounded
chromatic number. To colour a digraph without a subdivision of B(k, 1; k), we will then
contract the long directed cycles one after the other until we reach a digraph without any
long cycle. By Theorem 31, the resulting digraph has bounded chromatic number, and by
carefully analysing how the contracted cycles can interact with one another, we deduce a
colouring of the original digraph. The full proof, as well as the simpler case of B(k, 1; 1) is
presented in Chapter 2.

The following conjecture, probably very hard and way stronger than the results we are
looking at here, would be an interesting tool for Conjecture 36.

Conjecture 38. For every k ≥ 1, there exists an integer f(k) such that every strong digraph
with chromatic number greater than f(k) contains a subdigraph H with chromatic number
at least k and such that H contains a Hamiltonian cycle.

Recently, another notion of colouring for digraphs has received a lot of attention, mainly
for its link to the celebrated Erdős-Hajnal conjecture (see [7] for more details), the directed
colouring, or simply dicolouring. A k-dicolouring is a k-partition (V1, . . . , Vk) of V (D) such
that D[Vi] is acyclic for every i ∈ [k], and the dichromatic number of D is the minimum k
such that D admits a k-dicolouring.

To analyse digraphs with large dichromatic number, one can consider only strong di-
graphs, as shown by the next lemma:
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Lemma 39. The dichromatic number of a digraph is the maximum of the dichromatic num-
bers of its strong components.

Remember that Theorem 8 implies the following:

Theorem 28. For every graph H, there exists a constant C(H) such that any graph with
chromatic number greater than C(H) contains a subdivison of H.

In [1] we proved the following theorem, which can be seen as a generalisation of the
previous theorem:

Theorem 40. Let F be a digraph on n vertices and m arcs. Every digraph D with ~χ(D) >
4m(n− 1) + 1 contains a subdivision of F .

The proof is presented in Chapter 2. An interesting question would be to see how much
the bound 4m(n− 1) + 1 can be improved.

1.6 The Erdős-Sands-Sauer-Woodrow conjecture

We interpret a quasi-order on a set S as a digraph, where the vertices are the elements of S
and the arcs are the ordered pairs (x, y) such that x ≤ y. The transitive closure of a digraph
D = (V,A) is the digraph defined on V , with arc set the set of ordered pairs (x, y) such that
there exists a dipath from x to y in D. The transitive closure of a digraph is a quasi-order.
In a multidigraph D, a set S is dominating if for every u ∈ D − S, there exists s ∈ S such
that su is an arc. Let γ(D) be the size of the smallest dominating set in D. In 1986, Sands,
Sauer and Woodrow proved the following result:

Theorem 41 (Sands et al. [63]). Let D be a digraph whose arcs are coloured with two colours.
Then there exists a stable set S such that for every x not in S, there is a monochromatic
dipath from x to a vertex of S.

By considering the transitive closure of each colour class, the result can be stated as
follows:

Theorem 42 (Sands et al. [63]). Every multidigraph D whose arc set is the union of the
arc sets of two quasi-orders contains a stable set dominating D.

This statement can be seen as a generalisation of the Stable Marriage theorem. This
theorem states that, given a complete bipartite graph B between n men and n women,
where each person has ranked all members of the opposite gender in order of preference,
there exists a perfect matching (set of marriages) such that there are no two people of
opposite gender who would both rather marry each other than their current partners. To
prove that there always exists such a matching, consider the following 2-arc-coloured (blue
and red) digraph D: each vertex of D corresponds to an edge of B, the blue arcs correspond
to the preferences of the men: if u prefers v1 over v2 then there is a blue arc from uv1 to
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uv2 in D. Likewise the red arcs represent the preferences of the women. Applying Theorem
42 to D gives the desired matching, as a stable set in D is precisely a matching in B and
two people of opposite gender who would both rather have each other than their current
partners corresponds to a non dominated vertex in D.

In the same paper, Sands et al. conjectured the following generalisation:

Conjecture 43 (Sands et al. [63]). For every k ≥ 1 there exists an integer f(k) such that,
for any multidigraph D whose arc set is the union of the arc sets of k quasi-orders, there
exists f(k) stable sets such that the union is dominating.

A weaker conjecture concerning tournaments was also asked in the same paper (and
attributed to Erdős).

Conjecture 44 (Erdős and Sands et al. [63]). For every k ≥ 1 there exists an integer f(k)
such that for any complete multidigraph D whose arc set is the union of the arc sets of k
quasi-orders, γ(D) ≤ f(k).

This conjecture turned out to be very difficult, as despite attracting a lot of attention,
the case k = 3 remained unresolved. In fact, before our proof of Conjecture 44 that will be
presented in this thesis, even the following weaker conjecture due to Gyárfás was still open
for k = 3.

Conjecture 45 (Gyárfás). For every k ≥ 1 there exists an integer f(k) such that for any
tournament T whose arc set is the union of the arc sets of k quasi orders, γ(T ) ≤ f(k).

We will call the tournaments whose arc set is the union of the arc sets of k quasi orders
k-transitive tournaments.

A nice application of Conjecture 45 was proved in [56]. Given two points p = (p1, p2, . . . , pd)
and q = (q1, q2, . . . , qd) in Rd, define box(p,q) as the smallest box in Rd containing p and
q. In other words, box(p,q) = {x ∈ Rd | ∀imin(pi, qi) ≤ xi ≤ max(pi, qi)}. In 1987, Bárány
and Lehel [11] proved that every finite subset X of Rd can be covered by h(d) X-boxes (boxes
between points of X). To derive this statement from Conjecture 45, we consider a coloured
clique on X. Take p = (p1, . . . , pd) and q = (q1, . . . , qd) and assume p1 < q1 (we can assume
that all the coordinates are different). The colour of the edge pq is given according to the
2d−1 possible relations of the other d− 1 coordinates. This gives a clique with 2d−1 colours.
Note that if pq is a red edge, then box(p,q) contains all the vertices r such that (p, r,q) is a
red dipath. Now for each colour class, there are two possible orientations giving a transitive
order: if p1 < q1 or if q1 < p1. Consider all the tournaments obtained by taking any of
these orientations. This gives 22d−1

k-transitive tournaments. If Conjecture 45 is true, then
each one has a dominating set of size depending only on d. Consider the union S of the
dominating sets of all these tournaments, and take all the boxes between pairs of points of
S. We claim that this is a covering of X. Suppose it is not, and let x be a point not covered
by the boxes of S. This means that for any colour class, x is not in the middle of a path on
three vertices between two vertices of S, so there exists an orientation of this colour class
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such that x is not dominated by S in this colour. By doing this for all the classes, we obtain
a tournament where S is not dominating x, a contradiction.

A useful result for this problem is the following result due to Fisher [26]:

Theorem 46 (Fisher [26]). For every digraph D, there exists a probability distribution on
the vertices w such that for every vertex x, w(N−(x)) ≥ w(N+(x)).

Fisher uses this result in [26] to prove the tournament version of Seymour’s second neigh-
bourhood conjecture, which states that any oriented graph has a vertex whose outdegree is
at most its second outdegree. The proof of this theorem uses Farkas’s Lemma.

Lemma 47 (Farkas’s Lemma). Let M ∈ Rn×m and b ∈ Rm. Then exactly one of the
following statements is true:

1. There exists x ∈ Rn such that Mx = b and x ≥ 0.

2. There exists y ∈ Rm such that MTy ≥ 0 and bTy < 0.

Let D be a digraph on vertices {v1, . . . , vn}. The adjacency matrix M(D) = (mij) of
D is the n × n matrix where mij = 1 if (vi, vj) ∈ A(D), mij = −1 if (vj, vi) ∈ A(D) and
else mij = 0. Note that a probability distribution w satisfying Theorem 46 can be seen as a
vector w ∈ Rn such that w ≥ 0, w1T = 1 and M(D)w ≤ 0.

Proof of Theorem 46. Suppose that w doesn’t exist. This means that the following system
has no solutions (I is the identity matrix):

C =

[
M(D) I

1T 0T

](
w
z

)
=

(
0
1

)
with

(
w
z

)
≥
(

0
0

)
Farkas’s Lemma implies that the following system has a solution:

C =

[
M(D)T 1

I 0T

](
u
v

)
≥
(

0
0

)
with

(
0T 1

)( u
v

)
< 0

As M(D)T = −M(D) we get that M(D)u ≤ v1 with v < 0, so M(D)u < 0. Moreover,
as Iu ≥ 0, then u ≥ 0 and by normalising u, we get the required probability distribution on
the vertices.

If we apply this result to a tournament, we get that w(N−[x]) ≥ 1/2. To get the intuition,
it can be useful to forget this weight function and consider that the indegree of every vertex
is at least half the vertices.

A powerful tool to bound the domination on certain class of tournaments is the VC-
dimension of the inneighbourhood hypergraph. Let H = (V,E) be a hypergraph. We say
that a subset S ′ of V is shattered if H∩ S ′ contains all subsets of S ′. The VC-dimension of
a hypergraph is the size of the biggest shattered set of H. A fundamental result concerning
VC-dimension is the following lemma, due to Sauer [64] (see also Lemma 10.2.5 of [51]).
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Lemma 48 (Sauer [64]). Let H be a hypergraph of VC-dimension at most k. Then for every

subset A of the ground set, |E(H ∩ A)| < ( e|A|
k

)k .

The VC-dimension of a tournament is the VC-dimension of its inneighbourhood hyper-
graph. It was first observed by Alon et al.[5] that any tournament T with VC-dimension
bounded by t has γ(T ) ≤ O(t log(t)), because the fractional domination of a tournament is
bounded by 2 and thus we can apply the ε-net Theorem (see chapter 10.2 of [51] for a nice
presentation). Rephrasing the proof of the ε-net Theorem in the case of tournaments with
large indegree gives something along these lines:

For simplicity, we assume here that the indegree of every vertex is at least |T |/2. The
probability distribution given by Theorem 46 will be the tool to deal with the general case
in a similar fashion. Let c be some constant only depending in the VC-dimension t. We
want to prove that there exists a dominating set of size c by contradiction. Take two random
subsets of size c, S1 and S2, uniformly in T and let A be the following event: “There exists
a vertex v that dominates S1 and |N−(v) ∩ S2| ≥ 1/4.” We will compute the probability
of A in two different ways and reach a contradiction. First, since we assumed that no set
of size c is dominating, there exists an element v dominating S1, and the probability that
|N−(v) ∩ S2| ≥ 1/4 is a lower bound on the probability of A. Since c is a constant, we
can view roughly the random variable S2 as picking c vertices uniformly and independently
among vertices of T . Since |N−(v)| ≥ 1/2 the random variable |N−(v) ∩ S2| follows a
binomial distribution with parameter c and p ≥ 1/2. Using a classical bound on the binomial
distribution (see Lemma 10.2.6 of [51]), we have that Pr[A] ≥ 1/2. For the second way of
computing Pr[A], instead of taking S1 and S2 uniformly at random, we select a set A of
size 2c uniformly at random and then partition it uniformly at random into (S1, S2). The
resulting distribution is the same as above. To bound Pr[A], we fix S ⊆ A and compute the
probability that a vertex v dominates S1 and |N−(v) ∩ S2| ≥ 1/4 conditioned by the fact
that N−(v)∩A = S. If N−(v)∩A < c/4, then the probability is 0; if N−(v)∩A ≥ c/4, then
the probability is bounded by the probability that a random sample of size c in 2c elements
avoids at least c/4 positions. This is at most(

2c−c/4
c

)(
2c
c

) ≤ (1− 1/8)c ≤ exp(−c/8).

Now remark that for a vertex v, the probability that v dominates S1 and |N−(v)∩S2| ≥
1/4 depends only on A∩N−(v). However, we proved that, for each possible intersection, the
probability is bounded by exp(−c/8). Since the VC-dimension of the inneighbourhood of T
is bounded from above by t, by Lemma 48 there are at most (ec/k)k possible intersections
and we get,

1/2 ≤ Pr[A] ≤ exp(−c/8)(ec/k)k

which for c big enough compared to k is a contradiction.

When we tried to attack Conjecture 44, we first looked at the case k = 3 of Conjecture
45. We proved it using a sampling argument inspired by the proof of the ε-net Theorem
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presented above, despite the fact that 3-transitive tournaments do not have bounded VC-
dimension. Trying to extend the proof to k > 3, we found in [10] a very simple proof of
Conjecture 44 which does not use the VC-dimension at all.

Theorem 49. For every k ≥ 1, if T is a complete multidigraph whose arc set is the union
of the arc sets of k quasi-orders, then γ(T ) = O(ln(2k) · kk+2).

The two proofs are presented in Chapter 4.

1.7 Entropy Compression

The probabilistic method is a surprisingly powerful method in combinatorics and one of its
central tool is the Lovász Local lemma (LLL in short).

Lemma 50 (LLL). Let A1, A2, . . . , An be random events of an arbitrary probability space.
Suppose that each event Ai is mutually independent of all the other event Aj but at most d,
and that Pr[Ai] ≤ p for all i. If ep(d+ 1) ≤ 1, then Pr[∩iĀi] > 0.

One very common setting is to view the probability space as a set of independent variables
X1, X2, . . . , Xl and each event Ai depends on a finite set D(Ai) of these variables. The LLL
tells us that under the right conditions on probability and dependency, there exists an
assignment of the variables such that none of the Ai happens. Note that the Ai are usually
called the “bad events” because the goal is to avoid them. A very natural question that has
attracted a lot of attention over the years was to find a way to compute these assignments. In
2009, Moser [55] gave the answer to this problem by showing that the most natural algorithm
works:

Algorithm 1: Moser Fix it Algorithm

Pick X1, . . . , Xn uniformly at random;
while There exists i such that Ai is true do

Repick all the variables in D(Ai) uniformly at random;
return the Xi;

What is especially interesting is how he managed to prove that the algorithm terminates.
Suppose for example that the Xi are random bits and assume that the algorithm never
finishes after k steps, where a step is one random choice. In this case, a way to see this
algorithm is to see it as a deterministic algorithm which takes the random choices as a k-bits
vector input and produces some assignments of the Xi, which correspond to the state of the
Xi at the end of the algorithm run on the vector. Moser’s idea was that he could modify
the algorithm to produce some sequence of integers such that, given this sequence and the
value of the Xi at the end of the algorithm, one can deduce the value of the k-bit vector
taken as input. The sequence produced is called a log. Usually the logs produced by the
algorithm have very specific properties and this allow us to show that the set of possible logs
after k steps is strictly smaller than 2k. Since 2k is the number of k-bit vectors, this gives a
contradiction. The intuitive way of seeing the log is to see it being built step by step during
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the algorithm: each time the algorithm erases a set of random choices, it encodes it in the
log using less information. For example, if Ai is a bad event, and the algorithm erased the
values of D(Ai), then the log need to encode two things: how to know that Ai was the bad
event and then the value of the variable in D(Ai). Usually, describing which Ai is a bad
event is the hard part, and this is where we use the local aspect of the problem. Indeed,
since Pr[Ai] is small, then describing the assignment of D(Ai) such that Ai happens doesn’t
cost much compared to the set of all possible choices. Writing the proof usually requires
more efforts, as one needs to define the log, show that we can deduce the random choices
from it, and compute the number of possible logs (sometimes using analytic combinatorics).
However the point of view of “information deleted versus information needed to recover it”
is the one people use to get the intuition.

This method of showing the existence of a combinatorial object by proving that a random
algorithm terminates by encoding its random choices into a set of smaller size is called “the
entropy compression method”. Since then, it has been used a lot, sometimes to improve on
bounds obtained by the usual LLL but not always. During this thesis, we use this setting
for two different results, which we shortly describe here and that one can find in Chapter 5.

1.7.1 Orientations of Hypergraphs

In [15], Caro, West, and Yuster presented a generalization to hypergraphs of the notion of
orientation defined for graphs. Their acknowledged purpose was to study how hypergraphs
can be oriented in such a way that minimum and maximum degree are close to each other,
knowing that the following theorem is true for graphs.

Theorem 51 (Folklore). If G is a graph, then there exists an orientation D of G such that
|d+(u)− d−(u)| ≤ 1 for every vertex u.

Identifying an orientation of a hyperedge with a total ordering of its elements, they
defined a notion of degree on oriented r-uniform hypergraphs.

Definition 52. Let H be an r-uniform hypergraph, and let every S ∈ E(H) define a total
order on its elements as a bijection σS : S 7→ [r]. The degree dP (U) of a set of vertices
U ⊆ V (H) with respect to a set of positions P ⊆ [r] (where |P | = |U |) is equal to:

dP (U) = |{S ∈ H : U ⊆ S and σS(U) = P}|

From there they defined equitable orientations:

Definition 53. The orientation of a r-uniform hypergraph H is said to be p-equitable if
|dP (U)− dP ′(U)| ≤ 1 for any choice of U ⊆ V (H) and P, P ′ ⊆ [r] of cardinality p. It is said
to be nearly p-equitable if the looser requirement |dP (U)− dP ′(U)| ≤ 2 holds.

Caro, West, and Yuster [15] proved that all hypergraphs admit a 1-equitable as well as
a (r − 1)-equitable orientation, and also proved that some hypergraphs do not admit any
p-equitable orientation for all other values of p. Additionally, they parameterized the notion
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of maximum degree in order to focus on hypergraphs which are sparse with respect to the
problem at hand:

∆p(H) = max
U⊆V (H)
|U|=p

|{S ∈ H : U ⊆ S}|

Thus, they proved that for any fixed values of p and k, and for every sufficiently large integer
r, every r-uniform hypergraph H with ∆p(H) ≤ k admits a nearly p-equitable orientation.
They conjectured that this setting actually ensured the existence of a p-equitable orientation,
which we proved in [18] with Nathann Cohen.

Theorem 54. Let p, k be fixed integers. There exists r0 such that for every r ≥ r0, every
r-uniform hypergraph with ∆p(H) ≤ k admits a p-equitable orientation.

Note that, as r is big compared to ∆p(H), a p-equitable orientation means that dP (U) is
equal to 0 or 1 for every choice of set of positions P and set of vertices U .

In order to prove the existence of nearly p-equitable orientations, Caro, West, and
Yuster [15] used the Lovász Local Lemma. We use the entropy compression technique to
improve their result. The algorithm we propose will orient the hyperedges of H one by one
at random such that, at any time during the algorithm, the number of times a set U of p
vertices is sent to a set of positions P by the hyperedges which have been oriented is 0 or
1. This means that if at some point in the algorithm all the hyperedges are oriented, then
H admits a p-equitable orientation. Suppose now we have a partial orientation of H and we
try to orient an hyperedge X. For any subset U of p vertices of X, the orientation we give
on X cannot send U to a set of position P which it has already been sent to before. Call
valid such a permutation. So for any subset of p vertices of X, there is a list of forbidden
positions, and a valid orientation is one which avoids all of those. This can be seen as a
generalization of derangements. Remember that a permutation σ of [n] is a derangement if
σ(i) 6= i for all i.

The main idea of the algorithm is to ensure that, at any time, the number of valid
orientations available for every hyperedge is large. To do so we need the following lemma,
which can be seen as a generalization of the classical result saying that the number of
derangement of size n tends to n!/e. The proof will make use of another variant of the LLL,
namely the Lopsided Lovász Local lemma.

Lemma 55. Let p, k ∈ N and α < 1 be fixed. Let X be a set of cardinality r and let LS be,
for every S ∈

(
X
p

)
, a collection of p-subsets of X with |LS| ≤ k. Then, if no p-subset occurs

in more than rα of the LS, a random permutation σ of X satisfies σ(S) 6∈ LS for every S

with probability ≥ (1− 2k/
(
r
p

)
)(

r
p) = e−2k + o(1) when r grows large.

The collection LS corresponds to the list of forbidden positions for S. What the previous
lemma says is that if a position is not forbidden too many times, i.e it appears in too many
different LS, then there will be a constant fraction of the permutations available as valid
orientations.

So the algorithm will be the following: Chose the permutations one by one among the
valid ones, and if at some point there exists an edge X of H and a set P of positions such
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that P is forbidden too many times for X, then erase the permutations that forbid P for X.
The algorithm stops once every permutation is chosen.

The idea behind this algorithm is to make sure that at each step, the number of good
permutations is high enough to make the entropy compression argument work. In this sense
it is a bit different from a normal LLL argument and reminds us more of a semi-random
method, where we pick part of the solution while ensuring that the rest has nice properties.

1.7.2 AVD-colouring

An edge colouring of a graph G is defined as a mapping c : E(G) → N associating integers
(colours) to the edges of G. An edge colouring is said to be proper if no two adjacent edges
receive the same colour. Vizing Theorem says that every graph has a proper edge colouring
with ∆(G) + 1 colours. In 2002 Zhang, Liu, and Wang [74], introduced a new variant of
edge colouring. Given a proper edge colouring c of G and a vertex u ∈ V (G), we let Sc(u)
denote the set of colours appearing on edges incident to u. A proper edge colouring c is
adjacent vertex distinguishing (AVD for short) if Sc(u) 6= Sc(v) for every edge uv ∈ E(G).
They conjectured:

Conjecture 56 (Zhang et al. [74]). Every connected graph G with maximum degree ∆
which is distinct from K2 and C5 has an AVD-colouring with at most ∆ + 2 colours.

This conjecture captured the attention of several researchers over the years. It is known
to be true e.g. if G is bipartite [6] or if ∆ = 3 [6]. It also holds asymptotically almost
surely for random 4-regular graphs [31]. Hatami [35] in 2005 proved that every graph with
maximum degree ∆ > 1020 and no isolated edge has an AVD-colouring with at most ∆+300
colours. Since then no further progress has been made on Conjecture 56.

With Gwenaël Joret in [37], we improved this result to ∆ + 19 for large value of ∆.

Theorem 57. For ∆ large enough, every digraph with maximum degree ∆ and no isolated
edge has an AVD-colouring with at most ∆ + 19 colours.

Algorithm

We will now describe the proof in the case of d-regular graphs. The presentation uses a
simpler argument than the one presented in Chapter 5. It leads to a worse constant but
contains the general ideas. The method of the proof is the following one, already present
in the proof of Hatami. Start with a proper (d + 1)-edge-colouring c given by Vizing’s
Theorem. Let c′ be a partial edge colouring, then Sc′(u) is the set of colours incident to u in
this colouring. The goal is to uncolour the edges such that the partial colouring c′ obtained
has the following properties:

(i) The graph of uncoloured edges has maximum degree bounded by q+3 for some constant
q; and

(ii) c′ is AVD, meaning that if uv is an edge of G, then Sc′(u) 6= Sc′(v).
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Now pick cs a proper edge colouring of the uncoloured graph using a set of new colours
(different from those of c): the colouring cf obtained by taking the union of cs and c′ is an
AVD-colouring with d + q + 5 colours. Indeed, it is easy to see that this produces a proper
edge colouring of the graph. Moreover if u and v are two adjacent vertices, then by definition
of c′, there exists a colour i adjacent to v and not to u in c′. But since cs uses new colours,
the colour i is still incident to v and not to u in cf .

To find c′, we describe an algorithm that chooses, for every v, a set U(v) of three edges
adjacent to v such that

⋃
u∈V (G) U(v) will be the set of uncoloured edges. At the beginning

of the algorithm, all the sets U(v) are set to empty. Now at each step, the algorithm will
pick deterministically a vertex v such that U(v) = ∅ and pick U(v) among the

(
d
3

)
possible

choices. The goal of the algorithm is to make sure that, if it ends, then property (i) and (ii)
are satisfied. We will define two types of bads events, for which the algorithm will reset some
of the U(v) to empty when they occur. The first type is defined to ensure that property (i)
is satisfied. Note that, the degree of a vertex v in the uncoloured graph is equal to three plus
the number of times v has been chosen in U(u) for u ∈ N(v). So the first bad event will be:

Bad event of type 1. After choosing U(x), v ∈ U(x) belongs to q sets U(u).

In this case, the algorithm erases the choices of these U(u).
To deal with property (ii), we define the following notion: We say that an edge uv is

finished if U(w) 6= ∅ for each vertex w in N(u)∪N(v) (note that this set includes u and v).
When an edge is finished, it means that all the random choices relevant to the set of colours
adjacent to u and v at the end of the algorithm have been made. In particular if these sets
are the same, then the algorithm triggers a bad event:

Bad event of type 2. After choosing U(x), there exists v ∈ N(x) and u ∈ N(v) such that,
uv is finished and Sc′(u) = Sc′(v).

In this case, the algorithm erases the choice for U(v).

Encoding

It is clear that, if the algorithm terminates, it produces the desired partial colouring c′. In
order to complete the proof, we only need to show that, there exists a set of random choices
such that the algorithm terminates. Using the entropy compression template, we need to
show that, any time we erase a random choice, we can encode it with less information. To
do this encoding, we suppose that we know the state of the U(v) for every vertex in the
graph after treating the bad event. If we are able to recover the value of the variable that
we just erased, it means that, by looking at the log and the state of the sets U(v) when the
algorithm stops, we can recover the values of U(v) at any moment of the algorithm.

When a Bad event of type 1 is triggered, the algorithm erases q choices of U(u), so
(
d
3

)q
possibilities. To encode this we need to give two information: the vertex v and neighbours
of v for which we deleted the choices of U . Because the bad event occurs when a vertex
x of N(v) chooses v in U(x), describing v is just describing for which neighbour of x the
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bad event happens and thus can be encoded using an integer in [d]. To encode the q − 1
neighbours of v outside of u we can use an integer in

(
d
q−1

)
. And finally for these vertices

we need to encode the two other choices which makes U :
(
d
2

)
. Overall we encode the

(
d
3

)q
possibilities using an integer in d×

(
d
q−1

)
×
(
d
2

)q
. And for q big enough (10 for example works

here)
(
d
3

)q
< d×

(
d
q−1

)
×
(
d
2

)q
, so we managed to compress some information.

When a Bad event of type 2 happens, the algorithm erases choices for U(v), so
(
d
3

)
possibilities. Note that to recover the information, we just need to know the vertices u and
v. Indeed since u and v have the same set of adjacent colours, U(v) is precisely the set of
colours adjacent to v and not to v. In this case encoding the

(
d
3

)
possible choices only requires

an integer in [d2] which is needed to say which neighbour of x is v and which neighbour of
v is u.

Overall this proves that, if t is big enough, then we can encode all the of t random choices

such that the algorithm doesn’t terminate in a set of logs of size o
((

d
3

)t)
. Thus there exists

a set of t random choices such that the algorithm terminates, which gives the desired partial
colouring.

The general proof is presented in Chapter 5.
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Chapter 2

Subdivisions in digraphs with large
chromatic number

In this chapter, we present some results on subdivisions in digraphs with large chromatic
and dichromatic number.

After some definitions we present some proofs from [17] obtained with Nathann Cohen,
Frédéric Havet and Nicolas Nisse about oriented cycles in digraphs with large chromatic
number. Then we present the proof obtained in [16] with Nathann Cohen, Frédéric Havet
and Raul Lopes about subdivisions of spindles (so directed paths between the same pair
of vertices). Finally we present a proof of a theorem obtained in [1] with Pierre Aboulker,
Nathann Cohen, Frédéric Havet, Phablo Moura and Stéphan Thomassé saying that any
digraph H is contained in a digraph with dichromatic number greater than a function of H.

2.1 Definitions

Let F be a digraph. An F -subdivision is a subdivision of F . A digraph D is said to be
F -subdivision-free, if it contains no F -subdivision.

The union of two digraphs D1 and D2 is the digraph D1 ∪D2 defined by V (D1 ∪D2) =
V (D1) ∪ V (D2) and A(D1 ∪D2) = A(D1) ∪ A(D2). If D is a set of digraphs, we denote by⋃
D the union of the digraphs in D, i.e. V (

⋃
D) =

⋃
D∈D V (D) and A(

⋃
D) =

⋃
D∈D A(D).

If D is a dipath or a directed cycle, then we denote by D[a, b] the subdipath of D with
initial vertex a and terminal vertex b. We denote by D[a, b[ the dipath D[a, b]− b, by D]a, b]
the dipath D[a, b]− a, and by D]a, b[ the dipath D[a, b]−{a, b}. If P and Q are two dipaths
such that V (P ) ∩ V (Q) = {t(P )} = {s(Q)}, the concatenation of P and Q, denoted by
P �Q, is the dipath P ∪Q.

In a digraph D, the distance from a vertex x to another y, denoted by distD(x, y) or
simply dist(x, y) when D is clear from the context, is the minimum length of an (x, y)-
dipath or +∞ if no such dipath exists. For a set X ⊆ V (D) and vertex y ∈ V (D), we define
dist(X, y) = min{dist(x, y) | x ∈ X} and dist(y,X) = min{dist(y, x) | x ∈ X}, and for two
sets X, Y ⊆ V (D), dist(X, Y ) = min{dist(x, y) | x ∈ X, y ∈ Y }.
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An important notion in this chapter is the notion of levelling. An out-generator in D is a
vertex u such that, for every x ∈ V (D), there exists an (u, x)-dipath in D. Analogously, an
in-generator in D is a vertex u such that, for every x ∈ V (D), there exists an (x, u)-dipath
in D. For simplicity, we call a vertex generator if it is an in- or out-generator. Observe
that every vertex in a strong digraph is an in- and out-generator. Let D be a digraph.
Let w, u be in- and out-generators of D, respectively. We remark that w and u are not
necessarily different. For every nonnegative integer i, the ith out-level from u in D is the
set Lu,+i = {v ∈ V (D) | distD(u, v) = i}, and the ith in-level from w in D is the set
Lw,−i = {v ∈ V (D) | distD(v, w) = i}. Note that

⋃
i L

u,+
i =

⋃
i L

w,−
i = V (D).

An out-Breadth-First-Search Tree or out-BFS-tree T+ with root u, is a subdigraph of D
spanning V (D) such that T+ is an oriented tree and, for every v ∈ V (D), distT+(u, v) =
distD(u, v). Similarly, an in-Breadth-First-Search Tree or in-BFS-tree T− with root w, is a
subdigraph of D spanning V (D) such that T− is an oriented tree and, for every v ∈ V (D),
distT−(v, w) = distD(v, w).

It is well-known that if D has an out-generator, then there exists an out-BFS-tree rooted
at this vertex. Likewise, if D has an in-generator, then there exists an in-BFS-tree rooted
at this generator. Let T denote an in- or out-BFS-tree rooted at u. For any vertex x of D,
there is a single (u, x)-dipath in T if T is an out-BFS-tree, and a single (x, u)-dipath in T
if T is an in-BFS-tree. The ancestors or successors of x in T are naturally defined.

If y is an ancestor of x, we denote by T [y, x] the (y, x)-dipath in T . If y is a successor of
x, we denote by T [x, y] the (x, y)-dipath in T .

Lemma 58. Let D be a strong digraph and let T be an in- or out-BFS-tree in D. There is
a level L such that ~χ(D[L]) ≥ ~χ(D)/2.

Proof. First, let us suppose, without loss of generality, that T is an out-BFS-tree in D. The
proof when T is an in-BFS-tree is analogous.

Let D1 and D2 be the subdigraphs of D induced by the vertices of odd and even levels,
respectively. Since there is no arc from Li to Lj for every j ≥ i+ 2, the strong components
of D1 and D2 are contained in the levels. Hence, by Lemma 39, ~χ(D1) = max{~χ(D[Li]) |
i is odd} and ~χ(D2) = max{~χ(D[Li]) | i is even}. Moreover, note that V (D1) ∪ V (D2) =
V (D) because D is strong. Therefore, ~χ(D) ≤ ~χ(D1) + ~χ(D2) ≤ 2 · max{~χ(D[Li]) | i ∈
N}.

The following lemma is well-known.

Lemma 59. Let D1 and D2 be two digraphs. χ(D1 ∪D2) ≤ χ(D1)× χ(D2).

Proof. Let D = D1∪D2. For i ∈ {1, 2}, let ci be a proper colouring of Di with {1, . . . , χ(Di)}.
Extend ci to (V (D), A(Di)) by assigning the colour 1 to all vertices in V3−i. Now the function
c defined by c(v) = (c1(v), c2(v)) for all v ∈ V (D) is a proper colouring of D with colour set
{1, . . . , χ(D1)} × {1, . . . , χ(D2)}.
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2.2 Oriented cycles

In this section we first prove that S-Forb(C(k, `)) ∩ S has bounded chromatic number for
every k, `. We use the notion of levelling, but only for out-generators. For simplicity, we
note Lui = Lu,+i . Let v be a vertex of D, we set lvlu(v) = distD(u, v), hence v ∈ Lulvl(v). In
the following, the vertex u is always clear from the context. Therefore, for sake of clarity,
we drop the superscript u.

We write BFS-tree for out-BFS-tree. For an ancestor y of x, we note y ≥T x. For any
two vertices v1 and v2, the least common ancestor of v1 and v2 is the common ancestor x
of v1 and v2 for which lvl(x) is maximal. (This is well-defined since u is an ancestor of all
vertices.)

The following proposition directly follows from the definitions

Proposition 60. Let D be a digraph having an out-generator u. If x and y are two vertices
of D with lvl(y) > lvl(x), then every (x, y)-dipath has length at least lvl(y)− lvl(x).

2.2.1 Cycles with 2 blocks

Theorem 61. Let k and ` be positive integers such that k ≥ max{`, 3} and ` ≥ 2, and let D
be a digraph in S-Forb(C(k, `))∩ S. Then, χ(D) ≤ (k+ `− 2)(k+ `− 3)(2`+ 2)(k+ `+ 1).

Proof. Since D is strongly connected, it has an out-generator u. Let T be a BFS-tree with
root u. We define the following sets of arcs.

A0 = {(x, y) ∈ A(D) | lvl(x) = lvl(y)};
A1 = {(x, y) ∈ A(D) | 0 < | lvl(x)− lvl(y)| < k + `− 3};
A′ = {(x, y) ∈ A(D) | lvl(x)− lvl(y) ≥ k + `− 3}.

Since k + ` − 3 > 0 and there is no arc (x, y) with lvl(y) > lvl(x) + 1, (A0, A1, A
′) is a

partition of A(D). Observe moreover that A(T ) ⊆ A1. We further partition A′ into two sets
A2 and A3, where A2 = {(x, y) ∈ A′ | y is an ancestor of x in T} and A3 = A′ \ A2. Then
(A0, A1, A2, A3) is a partition of A(D). Let Dj = (V (D), Aj) for all j ∈ {0, 1, 2, 3}.

Claim 61.1. χ(D0) ≤ k + `− 2.

Subproof. Observe that D0 is the disjoint union of the D[Li] where Li = {v | distD(u, v) = i}.
Therefore it suffices to prove that χ(D[Li]) ≤ k + `− 2 for every non-negative integer i.

L0 = {u} so the result holds trivially for i = 0.
Assume now i ≥ 1. Suppose for a contradiction χ(D[Li]) ≥ k + ` − 1. Since k ≥ 3, by

Theorem 27, D[Li] contains a copy Q of P+(k − 1, ` − 1). Let v1 and v2 be the initial and
terminal vertices of Q, and let x be the least common ancestor of v1 and v2. By definition,
for j ∈ {1, 2}, there exists an (x, vj)-dipath Pj in T . By definition of least common ancestor,
V (P1) ∩ V (P2) = {x}, V (Pj) ∩ Li = {vj}, j = 1, 2, and both P1 and P2 have length at least
1. Consequently, P1 ∪ P2 ∪Q is a subdivision of C(k, `), a contradiction. ♦
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Claim 61.2. χ(D1) ≤ k + `− 3.

Subproof. Let φ1 be the colouring of D1 defined by φ1(x) = lvl(x) (mod k + ` − 3). By
definition of D1, this is clearly a proper colouring of D1. ♦

Claim 61.3. χ(D2) ≤ 2`+ 2.

Subproof. Suppose for a contradiction that χ(D2) ≥ 2` + 3. By Theorem 27, D2 contains
a copy Q of P−(` + 1, ` + 1), which is the union of two dipaths which are disjoint except
in there initial vertex y, say Q1 = (y0, y1, y2, . . . , y`+1) and Q2 = (z0, z1, z2, . . . , z`+1) with
y0 = z0 = y. Since Q is in D2, all vertices of Q belong to T [u, y]. Without loss of generality,
we can assume z1 ≥T y1.

If z`+1 ≥T y`+1, then let j be the smallest integer such that zj ≥T y`+1. Then the union
of T [y1, y]�Q2[y, zj]�T [zj, y`+1] and Q1[y1, y`+1] is a subdivision of C(k, `), because T [y1, y]
has length at least k − 2 as lvl(y) ≥ lvl(y1) + k + `− 3. This is a contradiction.

Henceforth y`+1 ≥T z`+1. Observe that all the zj, 1 ≤ j ≤ `+ 1 are in T [y`+1, y1]. Thus,
by the Pigeonhole principle, there exists i, j ≥ 1 such that yi+1 ≥T zj+1 ≥T zj ≥T yi ≥T zj−1.

If lvl(zj−1) ≥ lvl(yi) + `− 1, then T [yi, zj−1]� (zj−1, zj) has length at least `. Hence its
union with (yi, yi+1)�T [yi+1, zj], which has length greater than k, is a subdivision of C(k, `),
a contradiction.

Thus lvl(zj−1) < lvl(yi) + `− 1 (in particular, in this case, j > 1 and i > 2). Therefore,
by definition of A′, lvl(yi) ≥ lvl(zj) + k − 1 and lvl(yi−1) ≥ lvl(zj−1) + k − 1. Hence both
T [zj−1, yi−1] and T [zj, yi] have length at least k− 1. So the union of T [zj−1, yi−1]� (yi−1, yi)
and (zj−1, zj)� T [zj, yi] is a subdivision of C(k, k) (and thus of C(k, `)), a contradiction. ♦

Claim 61.4. χ(D3) ≤ k + `+ 1.

Subproof. In this claim, it is important to note that k + ` − 3 ≥ k − 1 because ` ≥ 2. We
use the fact that lvl(x)− lvl(y) ≥ k − 1 if (x, y) is an arc in A3.

Suppose for a contradiction that χ(D3) ≥ k+ `+ 1. By Theorem 27, D3 contains a copy
Q of P−(k, `) which is the union of two dipaths which are disjoint except in there initial
vertex y, say Q1 = (y0, y1, y2, . . . , yk) and Q2 = (z0, z1, z2, . . . , z`) with y0 = z0 = y.

Assume that a vertex of Q1− y is an ancestor of y. Let i be the smallest index such that
yi is an ancestor of y. If it exists, by definition of A3, i ≥ 2. Let x be the common ancestor
of yi and yi−1 in T . By definition of A3, yi is not an ancestor of yi−1, so x is different from
yi and yi−1. Moreover by definition of A′, lvl(y) − k ≥ lvl(yi−1) − k ≥ lvl(yi) − 1 ≥ lvl(x).
Hence T [x, yi−1] and T [x, y] have length at least k. Moreover these two dipaths are disjoint
except in x. Therefore, the union of T [x, yi−1] and T [x, y] � Q1[y, yi−1] is a subdivision of
C(k, k) (and thus of C(k, `)), a contradiction.

Similarly, we get a contradiction if a vertex of Q2− y is an ancestor of y. Henceforth, no
vertex of V (Q1) ∪ V (Q2) \ {y} is an ancestor of y.

Let x1 be the least common ancestor of y and y1. Note that |T [x1, y]| ≥ k so |T [x1, y1]| <
k, for otherwise G would contain a subdivision of C(k, k). Therefore lvl(y1) − lvl(x1) < k.
We define inductively x2, . . . , xk as follows: xi+1 is the least common ancestor of xi and yi+1.
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As above |T [xi, yi−1]| ≥ k so lvl(yi)− lvl(xi) < k. Symmetrically, let t1 be the least common
ancestor of y and z1 and for 1 ≤ i ≤ ` − 1, let ti+1 be the least common ancestor of ti and
zi+1. For 1 ≤ i ≤ `, we have lvl(zi) − lvl(ti) < k. Moreover, by definition all xi and tj are
ancestors of y, so they all are on T [u, y].

Let Py (resp. Pz) be a shortest dipath in D from yk (resp. z`) to T [u, y] ∪Q1[y1, yk−1] ∪
Q2[z1, z`−1]. Note that Py and Pz exist since D is strongly connected. Let y′ (resp. z′) be
the terminal vertex of Py (resp. Pz). Let wy be the last vertex of T [xk, yk] in Py (possibly,
wy = yk.) Similarly, let wz be the last vertex of T [t`, z`] in Pz (possibly, wz = z`.) Note that
Py[wy, y

′] is a shortest dipath from wy to y′ and Pz[wz, z
′] is a shortest dipath from wz to z′.

If y′ = yj for 0 ≤ j ≤ k− 1, consider R = T [xk, wy]�Py[wy, yj] as an (xk, yj)-dipath. By
Proposition 60, R has length at least k because lvl(yj)− lvl(xk) ≥ lvl(yj)− lvl(yk) + 1 ≥ k.
Therefore the union of R and T [xk, y]∪Q1[y, yj] is a subdivision of C(k, k), a contradiction.

Similarly, we get a contradiction if z′ is in {z1, . . . , z`−1}. Consequently, Py is disjoint
from Q1[y, yk−1] and Pz is disjoint from Q2[y, z`−1].

Suppose Py and Pz intersect in a vertex s. By the above statement, s /∈ V (Q) \ {yk, z`}.
Therefore the union of Q1 � Py[yk, s] and Q2 � Pz[z`, s] is a subdivision of C(k, `), a contra-
diction. Henceforth Py and Pz are disjoint.

Assume both y′ and z′ are in T [u, y]. By symmetry, we can assume y′ ≥T z′ and then the
union of Q1�Py�T [y′, z′] and Q2�Pz form a subdivision of C(k, `). This is a contradiction.

Henceforth a vertex among y′ and z′ is not in T [u, y]. Let us assume that y′ is not
in T [u, y] (the case z′ 6∈ T [u, y] is similar), and so y′ = zi for some 1 ≤ i ≤ ` − 1. If
lvl(y′) ≥ lvl(xk) + k, then both T [xk, wy]� Py[wy, y′] and T [xk, y]�Q2[y, zi] have length at
least k by Proposition 60, so their union is a subdivision of C(k, k), a contradiction. Hence
lvl(xk) ≥ lvl(zi)− k + 1 ≥ lvl(z`) ≥ lvl(t`).

If z′ = yj for some j, then necessarily lvl(z′) ≥ lvl(xk)+k ≥ lvl(t`)+k and both T [t`, wz]�
Pz[wz, z

′] and T [t`, y] � Q1[y, yj] have length at least k, so their union is a subdivision of
C(k, k), a contradiction.

Therefore z′ ∈ T [u, y]. The union of T [t`, z
′] and T [t`, wz]�Pz[wz, z′] is not a subdivision

of C(k, k) so by Proposition 60, lvl(z′) ≤ lvl(t`) + k − 1 ≤ lvl(z`) + k − 1 ≤ lvl(z`−1).
If lvl(z′) ≤ lvl(xk), then the union of Q1 and Q2�Pz�T [z′, yk] is a subdivision of C(k, `),

a contradiction. Hence lvl(z′) > lvl(xk). Therefore lvl(y′) = lvl(zi) ≤ lvl(xk) + k − 1 ≤
lvl(z′) + k − 2 ≤ lvl(z`) + 2k − 3, which implies that i = ` − 1 that is y′ = zi = z`−1. Now
the union of T [x1, y1]�Q1[y1, yk]� Py and T [x1, y]�Q2[y, z`−1] is a subdivision of C(k, `),
a contradiction. ♦

Claims 61.1, 61.2, 61.3, and 61.4, together with Lemma 59 yield the result.

2.2.2 Cycles with four blocks in strong digraphs

Let Ĉ4 be the orientation of the 4-cycle with 4 blocks.

Theorem 62. Let D be a digraph in S-Forb(Ĉ4). If D admits an out-generator, then χ(D) ≤
24.
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Proof. The general idea is the same as in the proof of Theorem 61.

Suppose that D admits an out-generator u and let T be an BFS-tree with root u We
partition A(D) into three sets according to the levels of u.

A0 = {(x, y) ∈ A(D) | lvl(x) = lvl(y)};
A1 = {(x, y) ∈ A(D) | | lvl(x)− lvl(y)| = 1};
A2 = {(x, y) ∈ A(D) | lvl(y) ≤ lvl(x)− 2}.

For i = 0, 1, 2, let Di = (V (D), Ai).

Claim 62.1. χ(D0) ≤ 3.

Subproof. Suppose for a contradiction that χ(D) ≥ 4. By Theorem 27, it contains a P−(1, 1)
(y1, y, y2), that is (y, y1) and (y, y2) are in A(D0). Let x be the least common ancestor of
y1 and y2 in T . The union of T [x, y1], (y, y1), (y, y2), and T [x, y2] is a subdivision of Ĉ4, a
contradiction. ♦

Claim 62.2. χ(D1) ≤ 2.

Subproof. Since the arcs are between consecutive levels, then the colouring φ1 defined by
φ1(x) = lvl(x) mod 2 is a proper 2-colouring of D1. ♦

Claim 62.3. χ(D2) ≤ 4.

Subproof. Let x be a vertex of V (D). If y and z are distinct outneighbours of x in D2, then
their least common ancestor w is either y or z, for otherwise the union of T [w, y], (x, y),
(x, z), and T [w, z] is a subdivision of Ĉ4. Consequently, there is an ordering y1, . . . , yp of
N+
D2

(x) such that the yi appear in this order on T [u, x].

Let us prove that, in D2, N+(yi) = ∅ for 2 ≤ i ≤ p − 1. Suppose for a contradiction
that yi has an outneighbour z in D2. Let t be the least common ancestor of y1 and z. If
t = z, then the union of (yi, z)� T [z, y1], (x, y1), (x, yp), and T [yi, yp] is a subdivision of Ĉ4;
if t = y1 6= z, then the union of (yi, z), (x, y1)�T [y1, z], (x, yp), and T [yi, yp] is a subdivision

of Ĉ4. Otherwise, if t /∈ {y1, z}, T [t, y1], T [t, z], (x, yi)� (yi, z) and (x, y1) is a subdivision of
Ĉ4.

Henceforth, in D2, every vertex has at most two outneighbours that are not sinks (vertices
with outdegree 0). Let V0 be the set of sinks in D2. It is a stable set in D2. Furthermore
∆+(D2 − V0) ≤ 2, and since D2 − V0 is acyclic, it is 2-degenerate and thus 3-colourable.
Therefore χ(D2) ≤ 4. ♦

Claims 62.1, 62.2, 62.3, and Lemma 59 implies χ(D) ≤ 24.
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2.3 Spindles

Remember that B(k1, k2; k3) denotes the digraph formed by three internally disjoint paths
between two vertices x, y, two (x, y)-directed paths, one of order k1, the other of order k2,
and one (y, x)-directed path of order k3. In [16] we conjectured the following.

Conjecture 36. There is a function g : N3 → N such that every strong digraph with
chromatic number at least g(k1, k2, k3) contains a subdivision of B(k1, k2; k3).

As an evidence, we proved this conjecture for k2 = 1 and arbitrary k1 and k3.

Theorem 37. For every k ≥ 1, there is a constant γk such that if D is a strong digraph
with χ(D) > γk, then D contains a subdivision of B(k, 1; k).

The goal of this section is to present the proof of this result.

2.3.1 Definitions and preliminaries

A (directed) graph G is k-degenerate if every subgraph H of G has a vertex of degree at
most k. The following statements are well-known.

Proposition 63 (Folklore). Every k-degenerate (directed) graph is (k + 1)-colourable.

Theorem 64 (Brooks [12]). Let G be a connected graph. Then χ(G) ≤ ∆(G) unless G is a
complete graph or an odd cycle.

Lemma 65. Let D be a digraph, D1, . . . , Dl be disjoint subdigraphs of D and D′ the digraph
obtained by contracting each Di into one vertex di. Then χ(D) ≤ χ(D′)·max{χ(Di) | i ∈ [l]}.

Proof. Set k1 = max{χ(Di) | i ∈ [l]} and k2 = χ(D′). For each i, let φi be a proper
colouring of Di using colours in [k1] and let φ′ be a proper colouring of D′ using colours in
[k2]. Define φ : V (D) → [k1] × [k2] as follows. If x is a vertex belonging to some Di, then
φ(x) = (φi(x), φ′(di)), else φ(x) = (1, φ′(x)). Let x and y be adjacent vertices of D. If they
belong to the same subdigraph Di, then φi(x) 6= φi(y) and so φ(x) 6= φ(y). If they do not
belong to the same component, then the vertices corresponding to these vertices in D′ are
adjacent and so φ(x) 6= φ(y). Thus φ is a proper colouring of D using k1 · k2 colours.

The rotative tournament on 2k − 1 vertices, denoted by R2k−1, is the tournament with
vertex set {v1, . . . , v2k−1} in which vi dominates vj if and only if j− i modulo 2k− 1 belongs
to {1, 2, . . . , k − 1}.

Proposition 66. Every strong tournament of order 2k−1 contains a B(k, 1; 1)-subdivision.

Proof. Let T be a strong tournament of order 2k − 1. By Camion’s Theorem, it has a
Hamiltonian directed cycle C = (v1, v2, . . . , v2k−1, v1). If there exists an arc (vi, vj) with
j − i ≥ k (indices are modulo 2k − 1), then the union of C[vi, vj], (vi, vj) and C[vj, vi] is
a B(k, 1; 1)-subdivision. Henceforth, we may assume that T = R2k−1. Then the union of
C[v1, vk−1]� (vk−1, vk+1, vk+2), (v1, vk, vk+2), and C[vk+2, v1] is a B(k, 1; 1)-subdivision.
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We will need the following lemmas:

Lemma 67. Let σ = (u1, . . . , up) be a sequence of integers in [k], and let l be a positive
integer. If p ≥ lk, then there exists a set L of l indices such that for any i, j ∈ L with i < j
the following holds : ui = uj and ut > ui, for all i < t < j.

Proof. By induction on k. The result holds trivially when k = 1. Assume now that k > 1.
Let L1 be the elements of the sequence with value 1. If L1 has at least l elements, we are

done. If not, then there is a subsequence σ′ of
⌈
lk−(l−1)

l

⌉
= lk−1 consecutive elements in

{2, . . . , k − 1}. Applying the induction hypothesis to σ′ yields the result.

Lemma 68. Let σ = (u1, . . . , up) be a sequence of integers in [k]. If p > k(m − 1), then
there exists a subsequence of m consecutive integers such that the last one is the largest.

Proof. By induction on k. The result holds trivially when k = 1. Let i be the smallest
integer such that ut ≤ k − 1 for all t ≥ i. If i > m, then ui−1 = k, and the subsequence
of the i − 1 first elements of σ is the desired sequence. If i ≤ m, apply the induction on
σ′ = (ut)i≤t≤p which is a sequence of more than (k− 1)(m− 1) integers in [k− 1], to get the
result.

2.3.2 B(k, 1; 1)

Before proving the main result for spindles, we present a proof of a weaker result in order to
introduce some of the ideas.

Theorem 69. Let k ≥ 3 be an integer and let D be a strong digraph. If χ(D) > (2k −
2)(2k − 3), then D contains a subdivision of B(k, 1; 1).

Let C be a collection of directed cycles. It is nice if all cycles of C have length at least
2k − 2, and any two distinct cycles of C intersect on at most one vertex. A component of C
is a connected component in the adjacency graph of C, where vertices correspond to cycles
in C and two vertices are adjacent if the corresponding cycles intersect. Note that if S is a
component of C, then

⋃
S is both a connected component and a strong component of

⋃
C.

For sake of simplicity, we denote by D[S] the digraph D[
⋃
S]. Observe that this digraph

contains
⋃
S but has more arcs.

We will prove that every B(k, 1; 1)-subdivision-free strong digraph D has bounded chro-
matic number in the following way: We take a maximal nice collection C of directed cycles.
We will prove that for every component S of C, the digraph D[S] has bounded chromatic
number. Then we will prove that, since it contains no long directed cycle and it is strong,
the digraph DC obtained from D by contracting each component of C into one vertex has
bounded chromatic number. Those two results allow us to conclude by Lemma 65.

We will need the following lemma:

Lemma 70. Let C be a nice collection of directed cycles in a B(k, 1; 1)-subdivision-free
digraph D and let C, C ′ be two cycles of the same component S of C. There is no dipath P
from C to C ′ whose arcs are not in A(

⋃
S).

36



Proof. By the contrapositive. We suppose that there exists such a dipath P and show that
there is a B(k, 1; 1)-subdivision in D.

By definition of S, there exists a dipath Q from C ′ to C in
⋃
S. By choosing C and C ′

such that Q is as small as possible, then s(Q) 6= t(P ) and t(Q) 6= s(P ) (note that s(Q) and
t(Q) can be the same vertex).

Since C has length at least 2k − 2, either C[t(Q), s(P )] has length at least k − 1 or
C[s(P ), t(Q)] has length at least k.

• If C[t(Q), s(P )] has length at least k − 1, then the union of Q � C[t(Q), s(P )] � P ,
C ′[s(Q), t(P )] and C ′[t(P ), s(Q)] is a B(k, 1; 1)-subdivision between s(Q) and t(P ).

• If C[s(P ), t(Q)] has length at least k, then the union of C[s(P ), t(Q)], P�C ′[t(P ), s(Q)]�
Q and C[t(Q), s(P )] is a B(k, 1; 1)-subdivision between s(P ) and t(Q).

Lemma 71. Let k ≥ 3 be an integer, and let C be a nice collection of directed cycles in a
B(k, 1; 1)-subdivision-free digraph D and S a component of C. Then χ(D[S]) ≤ 2k − 2.

Proof. By induction on the number of directed cycles in S. Let C be a cycle of S. There
is no chord (x, y) of C such that C[x, y] has length at least k, for otherwise there would be
a B(k, 1; 1)-subdivision. Hence D[C] has maximum degree at most 2k − 2. Moreover, by
Proposition 66, D[C] is not a tournament of order 2k − 1. Thus, by Brooks’ Theorem (64),
χ(D[C]) ≤ 2k − 2. Let c be a proper colouring of C with 2k − 2 colours. Let S1,S2, . . . ,Sr
be the components of S \ {C}. Since S is the union of the Sl for l ∈ [r], and {C}, each Sl
has less cycles than S. By the induction hypothesis, there exists a proper colouring cl using
2k − 2 colours for each D[Sl].

Now, we claim that each D[Sl] intersects C in exactly one vertex. It is easy to see that
C must intersect at least one cycle of each Sl. Now suppose there exist two vertices of C, x
and y, in D[Sl]. By definition of a nice collection, they cannot belong to the same cycle of
Sl, so there exist two cycles Ci and Cj of Sl such that x ∈ Ci and y ∈ Cj. Now C[x, y] is a
dipath from Ci to Cj whose arcs are not in A(

⋃
Sl). This contradicts Lemma 70.

Consequently, free to permute the colours of cl, we may assume that each vertex of C
receives the same colour in c and in cl. In addition, by Lemma 70, there is no arc between
different D[Sl] nor between D[Sl] and C. Hence the union of cl and c is a proper colouring
of D[S] using 2k − 2 colours.

Lemma 72. Let C be a maximal nice collection of directed cycles in a B(k, 1; 1)-subdivision-
free strong digraph D and DC the digraph obtained from D by contracting each component
of C into one vertex. Then χ(DC) ≤ 2k − 3.

Proof. First note that since D is strong, then so is DC. Suppose χ(DC) ≥ 2k−2. By Bondy’s
Theorem (31), there exists a directed cycle C = (x1, . . . , xl, x1) of length at least 2k − 2 in
DC. We derive a directed cycle C ′ in D the following way: Suppose the vertex xi corresponds
to a component Si of C: the arc (xi−1, xi) corresponds in D to an arc whose head is a vertex
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pi of
⋃
Si, and the arc (xi, xi+1) corresponds to an arc whose tail is a vertex li of

⋃
Si. Let

Pi be a dipath from pi to li in D[Si]. Note that Pi intersects each cycle of Si on a, possibly
empty, subdipath of Pi. Then C ′ is the directed cycle obtained from C by replacing the
vertices xi by the path Pi.

C ′ is a directed cycle of D of length at least 2k − 2 because it is no shorter than C. Let
C1 be a cycle of C. By construction of C ′ and DC, C

′ and C1 can intersect only along a
subdipath of one Pi. Suppose this dipath is more than just one vertex. Let x and y be the
initial and terminal vertex, respectively, of this dipath. Then the union of C ′[x, y], C1[x, y]
and C1[y, x] is a B(k, 1; 1)-subdivision, a contradiction.

So C ′ is a directed cycle of length at least 2k− 2, intersecting each cycle of C on at most
one vertex, and which does not belong to C, for otherwise it would be reduced to one vertex
in DC. This contradicts the fact that C is maximal.

We can finally prove Theorem 69.

Proof of Theorem 69. Let C be a maximal nice collection of directed cycles in D. Lemmas
71, 72 and 65 give the result.

2.3.3 B(k, 1; k)

We will now present a proof of Theorem 37.
We prove the result by the contrapositive. We consider a B(k, 1; k)-subdivision-free

digraph D. We shall prove that χ(D) ≤ γk = 8k2(4k2 + 2)(2 · (4k)4k + 1)(2 · (6k2)3k + 14k).
Our proof heavily uses the notion of k-suitable collection of directed cycles, which can

be seen as a generalization of the notion of nice collection of directed cycles used to prove
Theorem 69.

A collection C = {C1, C2, . . . , CN} of directed cycles is k-suitable if all cycles of C have
length at least 8k, and for any two distinct directed cycles Ci, Cj ∈ C, the intersection Ci∩Cj
is either empty or a dipath of order at most k, denoted by Pi,j. We denote by si,j (resp. ti,j)
the initial (resp. terminal) vertex of Pi,j.

The proof of Theorem 37 uses the same general idea as Theorem 69: take a maximal
k-suitable collection of directed cycles C; show that the digraph DC obtained by contracting
the components of C has bounded chromatic number, and that each component also has
bounded chromatic number; conclude using Lemma 65. However, because the intersection
of cycles in this collection are more complicated and because there might be arcs between
directed cycles of the same component, bounding the chromatic number of the components
is way more challenging. The next part is devoted to this.

k-suitable collections of directed cycles

Let φ be a colouring of a graph G. A subset of vertices or a subgraph S of G is rainbow-
coloured by φ if all vertices of S have distinct colours.

Set αk = 2 · (6k2)3k + 14k. The first step of the proof is the following lemma.
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Lemma 73. Let C be a k-suitable collection of directed cycles in a B(k, 1; k)-subdivision-free
digraph. There exists a proper colouring φ of

⋃
C with αk colours, such that, each subdipath

of length 7k of each directed cycle of C is rainbow-coloured.

In order to prove this lemma, we need some definitions and preliminary results.

Lemma 74. Let C be a k-suitable collection of directed cycles in a B(k, 1; k)-subdivision-free
digraph. Let C1, C2, C3 be three pairwise-intersecting directed cycles of C, and let v be a
vertex in V (C2) ∩ V (C3) \ V (C1). Then exactly one of the following holds:

(i) C2[t1,2, v] and C3[t1,3, v] both have length less than 3k;

(ii) C2[v, s1,2] and C3[v, s1,3] both have length less than 3k.

Proof. Observe first that since C2 has length at least 8k and P1,2 has length at most k − 1,
the sum of the lengths of C2[t1,2, v] and C[v, s1,2] is at least 7k+ 1. Similarly, the sum of the
lengths of C2[t1,3, v] and C[v, s1,3] is at least 7k + 1. In particular, if (i) holds, then (ii) does
not hold and vice-versa.

Suppose for a contradiction that none of (i) and (ii) holds. By symmetry and the above
inequalities, we may assume that both C2[t1,2, v] and C3[v, s1,3] have length more than 3k.
But v /∈ V (C1), so v /∈ V (P1,3). Thus C3[v, t1,3] has also length at least 3k as well.

If there is a vertex in V (C1)∩V (C2)∩V (C3), then C3[v, t1,3] would have length less than
2k (since it would be contained in P2,3 ∪ P1,3 and each of those paths has length less than
k), a contradiction. Hence V (C1)∩V (C2)∩V (C3) = ∅. In particular, P1,2, P1,3, and P2,3 are
disjoint.

The dipath C2[s1,2, t2,3] has length at least 3k because it contains C2[t1,2, v]. Moreover,
the dipath C3[t2,3, s1,3] has length at least 2k because C3[v, s1,3] has length at least 3k and
C3[v, t2,3] has length less than k. Thus C3[t2,3, s1,3]�C1[s1,3, s1,2] has length at least 2k. Con-
sequently, the union of C2[s1,2, t2,3], C2[t2,3, s1,2], and C3[t2,3, s1,3]�C1[s1,3, s1,2] is a B(k, 1; k)-
subdivision, a contradiction.

Let C be a k-suitable collection of directed cycles. For every set of vertices or digraph S,
we denote by C ∩ S the set of directed cycles of C that intersect S.

Let C1 ∈ C. For each Cj ∈ C ∩ C1 such that Cj 6= C1, let Qj be the subdipath of Cj
containing all the vertices that are at distance at most 3k from P1,j in the cycle underlying Cj.
Then the dipaths Cj[s(Qj), s1,j] and Cj[t1,j, t(Qj)] have length 3k. Set Q−j = C[s(Qj), s1,j[
and Q+

j = C]t1,j, t(Qj)].
Set I(C1) = C1 ∪

⋃
Cj∈C∩C1

Qj, I
+(C1) =

⋃
Cj∈C∩C1

Q+
j and I−(C1) =

⋃
Cj∈C∩C1

Q−j .
Observe that Lemma 74 implies directly the following.

Corollary 75. Let C be a k-suitable collection of directed cycles and let C1 ∈ C.

(i) I+(C1) and I−(C1) are vertex-disjoint digraphs.

(ii) I−(C1) ∩ Cj = Q−j and I+(C1) ∩ Cj = Q+
j , for all Cj ∈ C ∩ C1.
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Lemma 76. Let C be a k-suitable collection of directed cycles in a B(k, 1; k)-subdivision-free
digraph D. Let C1 ∈ C and let A be a connected component of

⋃
C−I(C1). Then all vertices

of
⋃

(C ∩ A)− A belong to a unique directed cycle CA in C.

Proof. Suppose it is not the case. Then there are two distinct directed cycles C2, C3 of
C ∩ A that intersect with C1. Observe that there is a sequence of distinct directed cycles
C2 = C∗1 , C

∗
2 , . . . , C

∗
q = C3 of C ∩ A such that C∗j ∩ C∗j+1 6= ∅ because A is a connected

component of
⋃
C − I(C1). Free to consider the first C∗j 6= C2 in this sequence such that

V (C∗j ) 6⊆ A in place of C3, we may assume that all C∗j , 2 ≤ j ≤ q − 1, have all their vertices
in A. In particular, there exists a (C3, C2)-dipath QA in D[A].

Let R3 = C1[t1,2, t1,3]�Q+
3 . Clearly, R3 has length at least 3k. Let v be the last vertex in

Q2 ∩R3 along Q2. (This vertex exists since t1,2 ∈ Q2 ∩R3.) Since there is a (C3, C2)-dipath
in D[A], by Corollary 75, C3[t(Q3), s(QA)] is in D[A]. Thus there exists a (t(Q3), C2)-dipath
RA in D[A]. Let w be its terminal vertex. By definition of A, w is in C2[t(Q2), s(Q2)],
therefore C2[w, v] has length at least 3k since it contains C2[s(Q2), s1,2]. Consequently, both
C2[v, t(Q2)] and R3[v, t(Q3)] have length less than k for otherwise the union of C2[w, v],
C2[v, w] and R3[v, t(Q3)] � RA would be a B(k, 1; k)-subdivision. In particular, v 6= t(Q2).
This implies that s2,3 ∈ V (Q2∩R3). Moreover, Q2[s2,3, t(Q2)] has length less than 2k because
Q2[s2,3, v] is a subdipath of P2,3 and so has length less than k. Therefore C2[t1,2, s2,3] =
Q2[t1,2, s2,3] has length at least k because Q2 has length at least 3k. It follows that the union
of C2[s2,3, t1,2], C2[t1,2, s2,3] and R3[t1,2, s2,3] is a B(k, 1; k)-subdivision, a contradiction.

Lemma 77. Let C be a k-suitable collection of directed cycles in a B(k, 1; k)-subdivision-free
digraph. For any directed cycle C1 ∈ C, the digraph I+(C1) has no directed cycle.

Proof. Suppose for a contradiction that I+(C1) contains a directed cycle C ′. Clearly, it must
contain arcs from at least two Q+

j .
Assume that C ′ contains several vertices of Q+

j . Necessarily, there must be two vertices
x, y of Q+

j ∩ C ′ such that no vertex of C ′]x, y[ is in Cj and y is before x in Q+
j . Therefore

C ′[x, y] � Q+[y, x] is also a directed cycle in I+(C1). Free to consider this cycle, we may
assume that C ′ ∩Q+

j is a dipath.
Doing so, for all j, we may assume that C ′ ∩ Q+

j is a dipath for every Cj ∈ C ∩ C1.
Without loss of generality, we may assume that there are directed cycles C2, . . . , Cp such
that

• C ′ is in Q+
2 ∪ · · · ∪Q+

p ;

• for all 2 ≤ j ≤ p, C ′ ∩Q+
j is a dipath P+

j with initial vertex aj and terminal vertex bj;

• the aj and the bj appear according to the following order around C ′: (a2, bp, a3, b2, . . . , ap, bp−1, a2)
with possibly aj+1 = bj for some 1 ≤ j ≤ p where ap+1 = a2.

For 2 ≤ j ≤ p, set Bj = Cj[bj, aj]. Note that Bj has length at least 4k, because Q+
2 has

length less than 3k.
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Consider the closed directed walk

W = Cp[a2, bp]�Bp � Cp−1[ap, bp−1]� · · · �B3 � C2[a3, b2]�B2.

W contains a directed cycle CW . Wihtout loss of generality, we may assume that this cycle
is of the form

CW = Bq[v, aq]� Cq−1[aq, bq−1]� · · · �B3 � C2[a3, b2]�B2[b2, v]

for some vertex v ∈ B2 ∩Bq. (The case when W is a directed cycle corresponds to q = p+ 1
and B2 = Bp+1.)

Note that necessarily, q ≥ 4, for B3 does not intersect B2, for otherwise b3 = b2 since the
intersection of C2 and C3 is a dipath.

Observe that CW [b2, v] = C2[b2, v] or CW [v, a4] has length at least k. Indeed, if q = p+ 1,
then it follows from the fact that B2 has length as least 4k; if 5 ≤ q ≤ p, then it comes from
the fact that B4 is a subdipath of CW [v, ar]; if q = 4, then it follows from Lemma 74 applied
to C3, C2, C4 in the role of C1, C2, C3 respectively. In both cases, CW [b2, a4] has length at
least k.

Furthermore, CW [a4, b2] has length at least k because it contains B3. Therefore the union
of CW [b2, a4], CW [a4, b2] and C ′[b2, a4] = C3[b3, a4] is a B(k, 1; k)-subdivision, a contradiction.

Lemma 78. Let C be a k-suitable collection of directed cycles in a B(k, 1; k)-subdivision-free
digraph.

Let φ be a partial colouring of a directed cycle C1 ∈ C such that only a path of length
at most 7k is coloured and this path is rainbow-coloured. Then φ can be extended into a
colouring of I(C1) using αk colours, such that every subdipath of length at most 7k of C1 is
rainbow-coloured and Qj is rainbow-coloured, for every Cj ∈ C ∩ C1.

Proof. We can easily extend φ to C1 using 14k colours (including the at most 7k already
used colours) so that every subdipath of C1 of length 7k is rainbow-coloured.

We shall now prove that there exists a colouring φ+ of I+(C1) with (6k2)3k (new) colours
so that Q+

j is rainbow-coloured for every Cj ∈ C ∩ C1, and a colouring φ− of I−(C1) with

(6k2)3k (other new) colours so that Q−j is rainbow-coloured for every Cj ∈ C ∩C1. The union
of the three colourings φ, φ+, and φ− is clearly the desired colouring of I(C1). (Observe
that a vertex of I(C1) is coloured only once because C1, I+(C1) and I−(C1) are disjoint by
Corollary 75.)

It remains to prove the existence of φ+ and φ−. By symmetry, it suffices to prove the
existence of φ+. To do so, we consider an auxiliary digraph D+

1 . For each Cj ∈ C ∩ C1, let
T+
j be the transitive tournament whose Hamiltonian dipath is Q+

j . Let D+
1 =

⋃
Cj∈C∩C1

T+
j .

The arcs of A(T+
j ) \A(Q+

j ) are called fake arcs. Clearly, φ+ exists if and only if D+
1 admits

a proper (6k2)3k-colouring. Henceforth it remains to prove the following claim.

Claim 78.1. χ(D+
1 ) ≤ (6k2)3k.
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Subproof. To each vertex v in I+(C1) we associate the set Dis(v) of the lengths of the
Cj[t1,j, v] for all directed cycles Cj ∈ C ∩ C1 containing v such that Cj[t1,j, v] has length at
most 3k.

Suppose for a contradiction that χ(D+
1 ) ≤ (6k2)3k. By Theorem 26, D+

1 admits a dipath
of length (6k2)3k. Replacing all fake arcs (u, v) in some A(T+

j ), by Q+
j [u, v] we obtain a

directed walk P in I+(C1) of length at least (6k2)3k. By Lemma 77, P is necessarily a
dipath. Set P = (v1, . . . , vp). We have p ≥ (6k2)3k.

For 1 ≤ i ≤ p, let mi = min Dis(vi). Lemma 67 applied to (mi)1≤i≤p yields a set L of
6k2 indices such that for any i < j ∈ L, mi = mj and mk > mi, for all i < k < j. Let
l1 < l2 < · · · < l6k2 be the elements of L and let m = ml1 = · · · = ml6k2

.
For 1 ≤ j ≤ 6k2 − 1, let Mj = max

⋃
lj≤i<lj+1

Dis(vi). By definition Mj ≤ 3k. Applying

Lemma 68 to (Mj)1≤j≤6k2 , we get a sequence of size 2k Mj0+1, . . . ,Mj0+2k such that Mj0+2k

is the greatest. For sake of simplicity, we set `i = j0 + i for 1 ≤ i ≤ 2k. Let f be the smallest
index not smaller than `2k for which M`2k ∈ Dis(vf ).

Let j1 be an index such that Cj1 [t1,j1 , v`1 ] has length m and set P1 = Cj1 [t1,j1 , v`1 ]. Let
j2 be an index such that Cj2 [t1,j2 , v`k ] has length m and set P2 = Cj2 [t1,j2 , v`k ]. Let j3 be an
index such that Cj3 [t1,j3 , vf ] has length M`2k and set P3 = Cj3 [vf , s1,j3 ] (some vertices of P3

are not in I+(C1)).
Note that any internal vertex x of P1 or P2 has an integer in Dis(x) which is smaller than

m and every internal vertex y of P3 has an integer in Dis(y) which is greater than M`2k , or
does not belong to I+(C1). Hence, P1, P2 and P3 are internally disjoint from P [v`1 , vf ].

We distinguish between the intersections of P1, P2 and P3:

• Suppose P3 does not intersect P1 ∪ P2.

– Assume first that P1 and P2 are disjoint. If s(P1) is in C1[t(P3), s(P2)], then the
union of P1�P [v`1 , v`k ], P [v`k , vf ]�P3�C1[t(P3), s(P1)] and C1[s(P1), s(P2)]�P2

is a B(k, 1; k)-subdivision, a contradiction. If s(P1) is in C1[s(P2), t(P3)], then the
union of C1[s(P2), s(P1)]� P1 � P [v`1 , v`k ], P [v`k , vf ]� P3 � C1[t(P3), s(P2)], and
P2 is a B(k, 1; k)-subdivision, a contradiction.

– Assume now P1 and P2 intersect. Let u be the last vertex along P2 on which they
intersect. The union of P1[u, v`1 ] � P [v`1 , v`k ], P [v`k , vf ] � P3 � C[t(P3), s(P1)] �
P1[s(P1), u], and P2[u, v`k ] is a B(k, 1; k)-subdivision, a contradiction.

• Assume P3 intersects P1 ∩ P2. Let v be the first vertex along P3 in P1 ∩ P2 and
let u be the last vertex of P1 ∩ P2 along P2. The union of P1[u, v`1 ] � P [v`1 , v`k ],
P [v`k , vf ]�P3[vf , v]�P1[v, u], and P2[u, v`k ] is a B(k, 1; k)-subdivision, a contradiction.

• Assume now that P3 intersects P1 ∪P2 but not P1 ∩P2. Let v be the first vertex along
P3 in P1 ∪ P2.

– If v ∈ P2, let u be the last vertex on P2 ∩ P3 along P3. Observe that P3[v, u]
is also a subdipath of P2 and therefore contains no vertex of P1. Furthermore,
there is a dipath Q from u to v`1 in P3[u, t(P3)] ∪ C1 ∪ P1. Hence, the union of
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P [v`k , vf ] � P3[vf , v], Q � P [v`1 , v`k ], and P2[u, v`k ] is a B(k, 1; k)-subdivision, a
contradiction.

– If v ∈ P1, let u be the last vertex on P1∩P3 along P3. Observe that P3[v, u] is also
a subdipath of P1 and therefore contains no vertex of P2. Furthermore, there is a
dipath Q from u to v`k in P3[u, t(P3)]∪C1∪P2. The union of P [v`k , vf ]�P3[vf , u],
P1[u, v`1 ]� P [v`1 , v`k ] and Q is a B(k, 1; k)-subdivision, a contradiction.

♦

Claim 78.1 shows the existence of φ+ and completes the proof of Lemma 78.

We are now ready to prove Lemma 73. In fact, we prove the following stronger statement.

Lemma 79. If there exists a partial colouring φ such that one of the directed cycle C1 has
a path of length less than 7k which is rainbow-coloured, then we can extend this colouring
to all D[C] using less than αk colours such that, on each directed cycle, every subdipath of
length 7k is rainbow-coloured.

Proof. By induction on the number of directed cycles in C. Consider a rainbow-colouring of
a subdipath of length less than 7k of a directed cycle C1 ∈ C. By Lemma 78, we can extend
this colouring to a colouring φ1 of I(C1) at most αk colours. Note that the non-coloured
vertices of

⋃
C are in one of the connected components of

⋃
C−I(C1). Let A be a connected

component of
⋃
C − I(C1). The coloured (by φ1) vertices of C ∩A are those of (C ∩A)−A.

Hence, by Lemma 76, they all belong to some directed cycle Cj and so to the dipath Qj

which has length at most 7k. Hence, by the induction hypothesis, we can extend φ1 to A.
Doing this for each component, we extend φ1 to the whole

⋃
C.

Set βk = k(4k2 +2)(2 ·(4k)4k+1)αk. The second step of the proof is the following lemma.

Lemma 80. Let C be a k-suitable collection of directed cycles in a B(k, 1; k)-subdivision-free
digraph D. For every component S of C, we have χ(D[S]) ≤ βk.

Proof. We define a sort of Breadth-First-Search for S. Let C0 be a directed cycle of S and
set L0 = {C0}. For every directed cycle Cs of S ∩ C0, we put Cs in level L1 and say that
C0 is the father of Cs. We build the levels Li inductively until all directed cycles of S are
put in a level : Li+1 consists of every directed cycle Cl not in

⋃
j≤i Lj such that there exists

a directed cycle in Li intersecting Cl. For every Cl ∈ Li+1, we choose one of the directed
cycles in Li intersecting it to be its father. Henceforth every directed cycle in Li+1 has a
unique father even though it might intersect many directed cycles of Li. A directed cycle C
is an ancestor of C ′ if there is a sequence C = C1, . . . , Cq = C ′ such that Ci is the father of
Ci+1 for all i ∈ [q − 1].

For a vertex x in
⋃
S, we say that x belongs to level Li if i is the smallest integer such that

there exists a directed cycle in Li containing x. Observe that the vertices of each directed
cycle Cl of S belong to consecutive levels, that is there exists i such that V (Cl) ⊆ Li ∪Li+1.

To bound the chromatic number of D[S], we partition its arc set in (A0, A1, A2), where
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• A0 is the set of arcs of D[S] whose ends belong to the same level, and

• A1 is the set of arcs of D[S] whose ends belong to different levels i and j with |i−j| < k.

• A2 is the set of arcs of D[S] whose ends belong to different levels i and j with |i−j| ≥ k.

For i ∈ {0, 1, 2}, let Di be the spanning subdigraph of D[S] with arc set Ai. We shall
now bound the chromatic numbers of D0, D1 and D2.

Claim 80.1. χ(D1) ≤ k.

Subproof. Let φ1 be the colouring that assigns to all vertices of level Li the colour i modulo
k, it is easy to see that φ1 is a proper colouring of D1. ♦

Let Cl be a directed cycle of Li, i ≥ 1 and Cl′ its father. Let p+
l and r+

l be the vertices
such that Cl[tl,l′ , p

+
l ] and Cl[p

+
l , r

+
l ] have length k. Let p−l and r−l be the vertices such that

Cl[p
−
l , sl,l′ ] and Cl[r

−
l , p

−
l ] have length k. Let R−l be the set of vertices of Cl]r

−
l , sl,l′ [, P

−
l the

set of vertices of Cl]p
−
l , sl,l′ [, R

+
l the set of vertices of Cl]tl,l′ , rl[, P

+
l the set of vertices of

Cl]tl,l′ , p
+
l [, and finally let R′l be the set of vertices belonging to Li in Cl \ {R+

l ∪R
−
l }.

Claim 80.2. Let x be a vertex in Li with i ≥ 1. Let Cl and Cm be two directed cycles of Li
containing x. Then either x ∈ P+

l and x ∈ P+
m , or x ∈ P−l and x ∈ P−m .

Subproof. Suppose for a contradiction that x ∈ P+
l and x 6∈ P+

m . Let Cl′ and Cm′ be the
fathers of Cl and Cm respectively (they can be the same directed cycle). By definition of
the Lj’s, there exists a dipath P from tl,l′ to sm,m′ only going through Cl′ , Cs′ and their
ancestors. In particular P is disjoint from Cl − Cl′ and Cs − Cs′ . Observe that Cl[sl,l′ , tl,m]
has length at most 3k because it is contained in the union of Pl,l′ , Pl,m, and Cl[tl,l′ , x] which
has length at most k because x ∈ P+

l . Hence Cl[tl,m, sl,l′ ] has length at least k. Moreover
Cm[sm,m′ , tl,m] contains Cm[tm,m′ , x] which has length at least k because x /∈ P+

m . Thus the
union of Cl[tl,m, sl,l′ ] � P , Cm[tl,m, sm,m′ ], and Cm[sm,m′ , tl,m] is a B(k, 1; k)-subdivision, a
contradiction. The case where x ∈ P−l and x 6∈ P−m is symmetrical and the case where x
does not belong to P−l ∪ P

+
l ∪ P−m ∪ P+

m is identical. ♦

Claim 80.2 implies that each level Li may be partitioned into sets X+
i , X−i and X ′i, where

X+
i (resp. X−i ) is the set of vertices x of Li such that every x ∈ R+

l (resp. x ∈ R−l ) for
every directed cycle Cl of Li containing x and X ′i is set of vertices in Li but not in X+

i ∪X−i .
Set X+ = V (C0) ∪

⋃
i≥1X

+
i , X− =

⋃
i≥1X

−
i and X ′ =

⋃
i≥1X

′
i. Clearly (X+, X−, X ′) is a

partition of V (D[S]).

Claim 80.3. χ(D2) ≤ 4k2 + 2.

Subproof. Since X+∪X−∪X ′ = V (D2), we have χ(D2) ≤ χ(D2[X+∪X ′])+χ(D2[X−∪X ′]).
We shall prove that χ(D2[X+ ∪X ′]) ≤ 2k2 + 1 and χ(D2[X− ∪X ′]) ≤ 2k2 + 1, which imply
the result.

Let x and y be two adjacent vertices of D2[X+ ∪ X ′]. Let Li be the level of x and Lj
be the level of y. Without loss of generality, we may assume that j ≥ i + k. Let Cx be the
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directed cycle of Li such that x ∈ Cx and Cy the directed cycle of Lj such that y ∈ Cy. By
considering ancestors of Cx and Cy, there is a shortest sequence of directed cycles C1, . . . , Cp
such that C1 = Cx and Cp = Cy and for all l ∈ [p − 1], either Cl is the father of Cl+1 or
Cl+1 is the father of Cl. In particular Cp−1 is the father of Cp. Since y ∈ X+ ∪ X ′, then
C[y, tp−1,p] has length at least k.

Assume that (x, y) is an arc. In
⋃p−1
l=1 Cl, there is a dipath P from tp−1,p to x. This dipath

has length at least k − 1 because it must go through all levels Li′ , i ≤ i′ ≤ j − 1 because
the vertices of any directed cycle of S are in two consecutive levels. Hence the union of
P � (x, y), Cp[tp−1,p, y], and Cp[y, tp−1,p] is a B(k, 1; k)-subdivision, a contradiction. Hence
(y, x) is an arc.

Suppose that Cx is not an ancestor of Cy. In particular, C2 is the father of C1 and there
exists a path P from t1,2 to y in

⋃p−1
l=2 Cl of length at least k− 1 and internally disjoint from

C1. Hence the union of P � yx, C1[x, t1,2] and C1[t1,2, x] is a subdivsion of B(k, 1; k). Hence
Cx is an ancestor of Cy.

In particular, Cl is the father of Cl+1 for all l ∈ [p−1]. Let P be the dipath from t1,2 to y
in
⋃p
l=2Cl. It has length at least k−1 because it must go through all levels Li, 1 ≤ i ≤ p−1.

C1[x, t1,2] has length less than k, for otherwise the union of P � yx, C1[x, t1,2] and C1[t1,2, x]
would be a subdivision of B(k, 1; k).

To summarize, the only arcs of D2[X+∪X ′] are arcs (y, x) such that Cx is an ancestor of
Cy and C1[x, t1,2] has length less than k with C1 . . . Cp the sequence of directed cycles such
that C1 = Cx to Cp = Cy and Cl is the father of Cl+1 for all l ∈ [p − 1]. In particular,
D2[X+ ∪X ′] is acyclic.

Let y be a vertex of D2[X+ ∪ X ′]. Let Lp be the level of y and let C0, . . . , Cp be the
sequence of directed cycles such that Cl−1 is the father of Cl for all l ∈ [p]. For 0 ≤ l ≤ p−1,
let Rl be the subdipath of Cl of length k − 1 terminating at tl,l+1. By the above property,
the outneighbbours of y are in

⋃p−1
l=0 Rl. Suppose for a contradiction that y has outdegree

at least 2k2 + 1. Then there are 2k + 1 distinct indices l1 < · · · < l2k+1 such that for all
i ∈ [2k+ 1], Cli contains an outneighbour Xi of y. Let P be the shortest dipath from x1 to y
in
⋃p
l=l1

Cl. This dipath intersects all directed cycles Cl l1 ≤ l ≤ p. Let z be the first vertex
of P along Clk+1

[xk+1, tlk+1,lk+2
]. Vertex z belongs to either Llk+1−1 or Llk+1

. Thus P [x1, z]
and P [z, y] have length at least k− 1 and k respectively since P goes through all levels from
Ll1 to Lp. Hence the union of (y, x1) � P [x1, z], (y, xk+1) � Clk+1

[xk+1, z], and P [z, y] is a
B(k, 1; k)-subdivision, a contradiction. Therefore D2[X+ ∪ X ′] has maximum outdegree at
most 2k2.

D2[X+ ∪ X ′] is acyclic and has maximum outdegree at most 2k2. Therefore it is 2k2-
degenerate, and so χ(D2[X+ ∪ X ′]) ≤ 2k2 + 1. By symmetry, we have χ(D2[X− ∪ X ′]) ≤
2k2 + 1. ♦

To bound χ(D0) we partition the vertex set according to a colouring φ of
⋃
S given

by Lemma 73. For every colour c ∈ [αk], let X+(c) be the set X+ ∩ φ−1(c) of vertices of
X+ coloured c, and X−(c) the set X− ∩ φ−1(c) of vertices of X− coloured c. Similarly, let
X+
i (c) = X+

i ∩ φ−1(c) and X−i (c) = X−i ∩ φ−1(c). We denote by D+
0 (c) (resp. D−0 (c), D′0(c))

the subdigraph of D0 induced by the vertices of X+(c), (resp. X−(c), X ′(c)).
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Claim 80.4. χ(D′0(c)) = 1 for every c ∈ [αk].

Subproof. We need to prove that D′0(c) has no arc. Suppose for a contradiction that (x, y)
is an arc of D′0(c). By definition of D0, the vertices x and y are in a same level Li. Let Cl
and Cm be two directed cycles of Li such that x ∈ Cl and y ∈ Cm.

If Cl = Cm, then both Cl[x, y] and Cl[y, x] have length at least 7k because the subdipaths
of length 7k of Cl are rainbow-coloured by φ. Hence the union of those paths and (x, y) is a
B(k, 1; k)-subdivision, a contradiction. Henceforth, Cl and Cm are distinct directed cycles.

Suppose first that Cl and Cm intersect. By Claim 80.2, sl,m belongs to P−l , P+
l or Li−1,

and by construction of R′l, Cl[x, sl,m] and Cl[sl,m, x] are both longer than k. Therefore they
form with (x, y)� Cm[y, sl,m] a B(k, 1; k)-subdivision, a contradiction.

Suppose now that Cl and Cm do not intersect. Let C ′l and C ′m be the fathers of Cl and Cm
respectively. Let P be the dipath from sm,m′ to sl,l′ in

⋃
j<i Lj. Then the union of Cl[sl,l′ , x],

(x, y)� Cm[y, sm,m′ ]� P , and Cl[x, sl,l′ ] is a B(k, 1; k)-subdivision, a contradiction. ♦

Claim 80.5. χ(D+
0 (c)) ≤ (4k)4k for every c ∈ [αk].

Subproof. Set p = (4k)4k. Suppose for a contradiction that there exists c such that
χ(D+

0 (c)) > p. Observe that D+
0 (c) is the disjoint union of the D[X+

i (c)]. Thus there
exists a level Li0 such that χ(D[X+

i (c)]) > p. Moreover i0 > 0, because the vertices of C0

coloured c form a stable set. By Theorem 26, there exists a dipath P = (v0, . . . , vp) of length
p in D[X+

i (c)].

Suppose that P contains two vertices x and y of a same directed cycle C of S. Without
loss of generality, we may assume that P ]x, y[ contains no vertices of C. Now both C[x, y]
and C[y, x] have length at least 7k because the subdipaths of length 7k of C are rainbow-
coloured by φ. Thus the union of C[x, y], P [x, y] and C[y, x] is a B(k, 1; k)-subdivision, a
contradiction. Hence P intersects every directed cycle of S at most once.

For every v ∈ V (P ), let Len(v) be the set of lengths of Cl[tl,l′ , v] for all directed cycles
Cl ∈ Li0 containing v and whose father is Cl′ .

For 1 ≤ i ≤ p, let mi = min Len(vi). By Claim 80.2, Len(vi) ⊆ [2k]. Lemma 67 applied
to (mi)1≤i≤p yields a set L of 4k2 indices such that for any i < j ∈ L, mi = mj and mk > mi,
for all i < k < j. Let l1 < l2 < · · · < l4k2 be the elements of L and let m = ml1 = · · · = ml4k2

.

For 1 ≤ j ≤ 4k2 − 1, let Mj = max
⋃
lj≤i<lj+1

Len(vi). By definition Mj ≤ 2k. Applying

Lemma 68 to (Mj)1≤j≤4k2 , we get a sequence of size 2k Mj0+1, . . . ,Mj0+2k such that Mj0+2k

is the greatest. For sake of simplicity, we set `i = j0 + i for 1 ≤ i ≤ 2k. Let f be the smallest
index not smaller than `2k for which M`2k ∈ Len(vf ).

Let j1 and j′1 be indices such that v`1 ∈ Cj1 , Cj1 is in Li0 , Cj′1 is the father of Cj1
and Cj1 [tj′1,j1 , v`1 ] has length m. Set P1 = Cj1 [tj′1,j1 , v`1 ]. Let j2 and j′2 be indices such
that v`k ∈ Cj2 , Cj2 is in Li0 , Cj′2 is the father of Cj2 and Cj2 [tj′2,j2 , v`k ] has length m. Set
P2 = Cj2 [tj′2,j2 , v`k ]. Let j3 and j′3 be indices such that vf ∈ Cj3 , Cj3 is in Li, Cj′3 is the father
of Cj3 and Cj3 [tj′3,j3 , vf ] has length M`2k . Set P3 = Cj3 [vf , sj′3,j3 ]. Note that any internal
vertex x of P1 or P2 has an integer in Len(x) which is smaller than m and every internal
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vertex y of P3 either has an integer in Len(y) which is greater than M`2k , or does not belong
to X+(c). Hence, P1, P2 and P3 are disjoint from P [v`1 , vf ].

We distinguish cases according to the intersection between P1, P2 and P3: Let P4 be a
shortest dipath in ∪i<i0Li from tj′1,j1 to tj′2,j2 and P5 be a shortest dipath in ∪i<i0Li from
sj′3,j3 to tj′2,j2

• Suppose P3 does not intersect P1 ∪ P2.

– Suppose P1 and P2 are disjoint. Let v be the last vertex of P4 in P4∩P5. The union
of P5[v, tj′1,j1 ]� P1 � P [v`1 , v`k ], P4[v, tj′2,j2 ]� P2, and P [v`k , vf ]� P3 � P5[sj′3,j3 , v]
is a B(k, 1; k)-subdivision, a contradiction.

– Assume now P1 and P2 intersect. Let u be the last vertex along P2 on which they
intersect. The union of P1[u, v`1 ]�P [v`1 , v`k ], P2[u, v`k ], and P [v`k , vf ]�P3�P5�
P1[tj′1,j1 , u] is a B(k, 1; k)-subdivision, a contradiction.

• Assume P3 intersects P1 ∩ P2. Let v be the first vertex along P3 in P1 ∩ P2 and let u
be the last vertex of P1 ∩ P2 along P2. The union of P1[u, v`1 ] � P [v`1 , v`k ], P2[u, v`k ],
and P [v`k , vf ]� P3[vf , v]� P1[v, u] is a B(k, 1; k)-subdivision, a contradiction.

• Assume now that P3 intersects P1 ∪P2 but not P1 ∩P2. Let v be the first vertex along
P3 in P1 ∪ P2.

– If v ∈ P2, let u be the last vertex of P2 ∩ P3 along P3. Observe that P3[v, u]
is also a subdipath of P2 and therefore contains no vertex of P1. Hence, the
union of P3[u, sj′3,j3 ]� P5 � P1 � P [v`1 , v`k ], P2[u, v`k ], and P [v`k , vf ]� P3[vf , v] is
a B(k, 1; k)-subdivision, a contradiction.

– If v ∈ P1, let u be the last vertex of P1 ∩ P3 along P3. Observe that P3[v, u] is
also a subdipath of P1 and therefore contains no vertex of P2. Hence the union
of P1[u, v`1 ] � P [v`1 , v`k ], P3[u, sj′3,j3 ] � P6 � P2, and P [v`k , vf ] � P3[vf , u], is a
B(k, 1; k)-subdivision, a contradiction.

♦

Similarly to Claim 80.5, one proves that χ(D−0 (c)) ≤ (4k)4k for every c ∈ [αk]. Hence,
χ(D0(c)) ≤ χ(D+

0 (c)) + χ(D−0 (c)) + χ(D′0(c)) ≤ 2 · (4k)4k + 1. Thus

χ(D0) ≤ (2 · (4k)4k + 1)αk.

Via Lemma 59, this equation and Claims 80.1 and 80.3 yield

χ(D) ≤ χ(D0)× χ(D1)× χ(D2) ≤ k(4k2 + 2)(2 · (4k)4k + 1)αk = βk.
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Proof of Theorem 37

Consider a maximal k-suitable collection C of directed cycles in D. Recall that DC is the
digraph obtained by contracting every component of C into one vertex. For each connected
component Si of C, we denote by si the new vertex created.

Claim 80.6. χ(DC) ≤ 8k.

Proof. First note that since D is strong so is DC.
Suppose for a contradiction that χ(DC) > 8k. By Theorem 31, there exists a directed

cycle C = (x1, x2, . . . , xl, x1) of length at least 8k. For each vertex xj that corresponds to
an si in D, the arc (xj−1, xj) corresponds in D to an arc whose head is a vertex pi of Si
and the arc (xj, xj+1) corresponds to an arc whose tail is a vertex li of Si. Let Pj be the
dipath from pi to li in

⋃
C. Note that this dipath intersects the elements of Si only along

a subdipath. Let C ′ be the directed cycle obtained from C where we replace all contracted
vertices xj by the dipath Pj. First note that C ′ has length at least 8k. Moreover, a directed
cycle of C can intersect C ′ only along one Pj, because they all correspond to different strong
components of

⋃
C. Thus C ′ intersects each directed cycle of C on a subdipath. Moreover

this subdipath has length less than k for otherwise D would contain a B(k, 1; k)-subdivision.
So C ′ is a directed cycle of length at least 8k which intersects every directed cycle of C along
a subdipath of length less than k. This contradicts the maximality of C.

Using Lemma 65 with Claim 80.6 and Lemma 80, we get that χ(D) ≤ 8k · βk. This
proves Theorem 37 for γk = 8k · βk = 8k2(4k2 + 2)(2 · (4k)4k + 1)(2 · (6k2)3k + 14k).

2.4 Subdivisions in digraphs with large dichromatic

number

Recall that a k-dicolouring is a k-partition {V1, . . . , Vk} of V (D) such that D[Vi] is acyclic
for every i ∈ [k], and that the dichromatic number of D, noted ~χ(D), is the minimum k such
that D admits a k-dicolouring.

We present here a proof of the following Theorem, obtained in [1].

Theorem 40. Let F be a digraph on n vertices and m arcs. Every digraph D with ~χ(D) >
4m(n− 1) + 1 contains a subdivision of F .

The proof uses induction on m with the following lemma providing the induction step.

Lemma 81. Let F be a digraph and let a = (x, y) be an arc in A(F ). Suppose there exists
a constant c such that any digraph D with ~χ(D) ≥ c contains a subdivision of F − a. Then
any digraph D with ~χ(D) ≥ 4c− 3 contains a subdivision of F .

Proof. Let D be a digraph with ~χ(D) ≥ 4c−3. We shall prove that D contains a subdivision
of F .
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By Lemma 39, we may assume that D is strong. Let u be a vertex in D and Tu an
out-BFS-tree with root u. By Lemma 58, there is a level Lu such that ~χ(D[Lu]) ≥ 2c − 1.
By Lemma 39, there is a strong component C of D[Lu] such that ~χ(C) = ~χ(D[Lu]) ≥ 2c−1.
Since D is strong, there is a shortest (v, u)-dipath P in D such that V (P ) ∩ V (C) = {v}.
Let Tv be an in-BFS-tree in C rooted at v. By Lemma 58, there is a level Lv of Tv such that
~χ(D[Lv]) ≥ c. By definition of c, D[Lv] contains a subdivision S of F − a. Let x′ and y′ be
the vertices in S corresponding to the vertices x and y of F . Now Tv[x

′, v] ∪ P ∪ Tu[u, y′] is
a directed (x′, y′)-walk with no internal vertex in Lv. Hence it contains an (x′, y′)-dipath Q
whose internal vertices are not in S. Therefore, S ∪Q is a subdivision of F in D.

We can now prove Theorem 40

Proof of Theorem 40. We prove the result by induction on m. If m = 0, then F is an
empty digraph and the result is trivial. If m > 0, then consider an arc a ∈ A(F ). By the
induction hypothesis on F − a, we obtain that any digraph D with ~χ(D) ≥ 4m−1(n− 1) + 1
contains a subdivision of F − a. By Lemma 81, we obtain that any digraph with ~χ(D) ≥
4(4m−1(n− 1) + 1)− 3 contains a subdivision of F , which proves the result.
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Chapter 3

Digraphs with large minimum
outdegree

In 1985, Mader made the following beautiful conjecture:

Conjecture 9 (Mader [49]). For every k ≥ 1, there exists an integer f(k) such that every
digraph with minimum outdegree at least f(k) contains a subdivision of TTk, the transitive
tournament on k vertices.

The conjecture remains open for k ≥ 5 which shows our lack of understanding of what it
means for a digraph to have large minimum degree. In this chapter we present some work
on weakenings of the conjecture. First we present some results obtained in [1] with Pierre
Aboulker, Nathann Cohen, Frédéric Havet, Phablo Moura and Stéphan Thomassé concerning
subdivisions of digraphs which are simpler than the transitive tournaments. Then we present
the proof of Conjecture 15 concerning immersions of transitive tournaments obtained in [45].

3.1 Subdivisions in digraphs with large minimum out-

degree

3.1.1 Subdivisions of oriented paths

The first case to consider when one tries to weaken Mader’s conjecture is probably the case
of oriented paths.

Theorem 19. Let (k1, k2, . . . , k`) be a sequence of positive integers, and let D be a digraph
with δ+(D) ≥

∑`
i=1 ki. For every v ∈ V (D), D contains a path P+(k′1, k

′
2, . . . , k

′
`) with initial

vertex v such that k′i ≥ ki if i is odd, and k′i = ki otherwise.

Proof. By induction on `. If ` = 1, then the result holds trivially. Assume now ` ≥ 2, and
suppose that, for every path P+(x1, x2, . . . , xt) with t < ` and every digraph G with δ+(G) ≥∑t

i=1 xi, G contains a path P+(x′1, x
′
2, . . . , x

′
t) starting at any vertex of G such that x′i ≥ xi

if i is odd, and x′i = xi otherwise.
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Let v be a vertex of D. Since δ+(D) ≥
∑`

i=1 ki, there exists a (v, u)-dipath Pv,u in D
of length exactly k1, for some vertex u ∈ V (D). Let D′ = D − (Pv,u − u), let C be the
connected component of D′ containing u, and let H be a sink strong component of C (i.e. a
strong component without arcs leaving it) that is reachable by a directed path in C starting
at u. We denote by Pu,x a (u, x)-dipath in C such that V (Pu,x) ∩ V (H) = {x}.

Note that no vertex of H dominates a vertex in V (Pu,x) \ {x} since H is a sink strong
component. Thus, δ+(H) ≥ δ+(D)−k1 ≥ k2. As a consequence, H contains a directed cycle
of length at least k2. Using this and the fact that H is strongly connected, we conclude that
there exists a dipath Py,x in H from a vertex y ∈ V (H) \ {x} to x of length exactly k2. Let

G = H − (Py,x− y). One may easily verify that δ+(G) is at least δ+(D)− k1− k2 ≥
∑`

i=3 ki.
Let Qv,y = Pv,uPu,xPy,x. Note that Qv,y is a path P+(k′1, k2) starting at v with k′1 ≥ k1.

Therefore, the result follows immediately if ` = 2. Suppose now that ` ≥ 3. By the induction
hypothesis, G contains a path Wy := P+(k′3, . . . , k

′
`) with initial vertex y such that k′i ≥ ki

if i is odd, and k′i = ki otherwise. Therefore, Qv,yWy is the desired path P+(k′1, k
′
2, . . . , k

′
`)

with initial vertex v.

The result is tight, as
∑`

i=1 ki = |V (P+(k1, k2, . . . , k`))|−1, and the complete digraph ~Kk

on k vertices has minimum outdegree k − 1 and contains no path on more than k vertices.

3.1.2 Subdivisions of in-arborescences

The aim of this subsection is to prove that in-arborescences are contained in digraphs with
large minimum outdegree as subdivision. We need the following result about flows.

Lemma 82. Let D be a digraph with |A(D)| ≥ 1, let S ⊆ V (D) be a nonempty subset of
vertices of indegree 0 in D, and let T ⊆ V (D) such that T ∩ S = ∅. If d+(v) ≥ ∆−(D) for
all v ∈ V (D) \ T , then there exist |S| vertex-disjoint (S, T )-dipaths in D.

Proof. Suppose to the contrary that there do not exist |S| vertex-disjoint (S, T )-dipaths
in D. By Theorem 2, there exists a set of vertices X ⊆ V (D) with cardinality |X| < |S|
which is an (S, T )-vertex-cut. Let C be the set of vertices in D−X that are reachable in D
by a dipath with initial vertex in S \X. Set k = |X ∩ S|. Observe that k < |S|.

Let us count the number a(C,X) of arcs with tail in C and head in X. Since the vertices
in S have indegree 0 and every vertex in C has outdegree at least ∆−(D),

a(C,X) ≥ |C| ·∆−(D)− [|C| − (|S| − k)] ·∆−(D) = (|S| − k) ·∆−(D).

Moreover, a(C,X) is at most the number of arcs with head in X which is at most (|X|−k) ·
∆−(D), because the vertices in S∩X have indegree 0. Hence (|S|−k) ·∆−(D) ≤ a(C,X) ≤
(|X| − k) ·∆−(D). This is a contradiction to |X| < |S|.

Let k and ` be positive integers. The `-in-arborescence of depth k is denoted by B(k, `).

The number of vertices of B(k, `) is denoted by b(k, `); so b(k, `) =
∑k

i=0 `
i = `k+1−1

`−1
.

52



Observe that every in-arborescence T is a subdigraph of B(k, `) with ` = ∆−(T ) and k
the maximum length of a dipath in T . Therefore proving the result for B(k, `) for all k and
` implies the result for in-arborescences.

We define a recursive function f : N → N as follows. For all positive integers k and `
such that ` ≥ 2, f(1, `) = ` and, for k ≥ 2, we define f(k, `) = t(k, `) · (` − 1) · k + t(k, `),
where t(k, `) := f(k − 1, b(k − 1, `) · (`− 1) + 1) · b(k − 1, `).

If D is a family of digraphs, a packing of elements of D is the disjoint union of copies of
elements of D.

Theorem 83. Let k ≥ 1 and ` ≥ 2 be integers, and let D be a digraph with δ+(D) ≥ f(k, `).
Then D contains a subdivision of B(k, `), the `-in-arborescence of depth k.

Proof. We prove the result by induction on k and `. If k = 1, then δ+(D) ≥ `. Thus,
∆−(D) · |V (D)| ≥

∑
v∈V (D) d

−(v) =
∑

v∈V (D) d
+(v) ≥ ` · |V (D)|. Hence there is a vertex

with indegree at least ` in D and, consequently, the result follows when k = 1. Assume
now k ≥ 2, and suppose that, for every positive integers k′ < k and `′, and every digraph H
with δ+(H) ≥ f(k′, `′), H contains a subdivision of the `′-branching in-arborescence of
depth k′.

Let F be a packing of `-branching in-arborescences subdigraphs of any non-zero depth
in D that covers the maximum number of vertices.

We denote by U ⊆ V (D) the set of vertices not covered by F , that is, U = V (D) \⋃
A∈F V (A). Let rA denote the root of the in-arborescence A, for each A ∈ F , and let R =
{rA ∈ V (D) : A ∈ F} be the set of the roots of the arborescences in F .

We now construct the digraph H with vertex set R such that there exists an arc (rA, rB)
in H if and only if rA dominates some vertex of V (B) in D.

Claim 83.1. If δ+(H) ≥ t(k, `)/b(k − 1, `), then D contains a subdivision of B(k, `).

Subproof. Let p = b(k − 1, `) · (` − 1) + 1. By the induction hypothesis, H contains a
subdivision T of B(k − 1, p). Let R′ be the set of branching vertices of T , that is, R′ =
{r ∈ T : d−T (r) = p}. We assume that each in-arborescence of F has at most b(k − 1, `)
vertices, as any larger arborescence would yield the theorem. Thus, for each r ∈ R′, there
exists a vertex hr in the in-arborescence rooted at r such that hr is dominated in D by `
vertices of V (T ). Similarly, for each r ∈ V (T ) with indegree 1, there exists a vertex hr in
the in-arborescence rooted at r such that hr is dominated in D by a vertex of V (T ). Using
these remarks, we next define a procedure to obtain a subdigraph of T that is a subdivision
of B(k − 1, `).

For each r ∈ R′, we remove from T all arcs with head r but exactly ` arcs from vertices
in V (T ) that dominate hr in D. We denote by T ′ the component of the subdigraph of T
obtained by applying the above-described procedure and that contains the root of T . One
may easily verify that T ′ is a subdivision of B(k − 1, `). Let Pr be the path from hr to r in
the in-arborescence corresponding to r, for every r ∈ V (T ′) such that either r ∈ R′ or r has
indegree 1.

Let Q be the in-arborescence obtained from T ′ in the following way. For each r ∈ V (T ′)
such that either r ∈ R′ or r has indegree 1, we add hr to T ′, and we add an arc from every
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inneighbour of r in T ′ to hr. Additionally, we remove all arcs with head r in T ′, and link hr
to r by using the dipath Pr. Finally, for each r ∈ V (T ′) that is a leaf, we replace r by its
corresponding in-arborescence belonging to F .

By this construction, we have that Q is a subdigraph of D such that every internal
vertex has either indegree ` or 1. Furthermore, it has depth at least k. Therefore, by
possibly pruning some levels of Q, we obtain a subdivision of B(k, `). ♦

Suppose now δ+(H) < t(k, `)/b(k−1, `). Observe that, for every v ∈ R such that d+
H(v) <

t(k, `)/b(k − 1, `), we have, in the digraph D, that d+
U(v) ≥ t(k, `) · (`− 1) · k since δ+(D) ≥

t(k, `) · (`− 1) · k + t(k, `). We define X = {v ∈ R : d+
U(v) ≥ t(k, `) · (`− 1) · k}.

Let D′ be the digraph obtained from D[U ∪ X] by removing all arcs with head in X.
From D′, we construct a digraph G by replacing every vertex v ∈ X by t(k, `) new ver-
tices v1, . . . , vt(k,`), and adding, for each i ∈ [t(k, `)], at least (`− 1) · k arcs from vi to N+

D′(v)
in such a way that d−D′(u) = d−G(u), for all u ∈ N+

D′(v). In other words, we “redistribute” the
outneighbours of v in D′ among its t(k, `) copies in G so that every copy has outdegree at
least (`− 1) · k, and the indegrees of vertices belonging to U are not changed. Let S ⊆ V (G)
be the set of vertices that replaced those of X, that is, S =

⋃
v∈X {v1, . . . , vt(k,`)}. Let T be

the set of vertices in U that have large outdegree outside U in the digraph D, more formally,
T = {v ∈ U : d+

V (D)\U(v) ≥ t(k, `) + 1}.
For every i ∈ [k − 1], let Fi = {A ∈ F : A has depth exactly i}. Note that {Fi}i∈[k−1]

forms a partition of the packing F . Additionally, observe that, due to the maximality
of F , every vertex in U is dominated by at most ` − 1 vertices belonging to U , and by at
most ` − 1 roots of in-arborescences in Fi, for each i ∈ [k − 1]. Thus, the indegree in G of
every vertex belonging to U is at most (` − 1) + (` − 1) · (k − 1) = (` − 1) · k. Therefore,
we have ∆−(G) ≤ (` − 1) · k. Moreover, since δ+(D) ≥ t(k, `) · (` − 1) · k + t(k, `), we
have d+

G(v) ≥ t(k, `) · (` − 1) · k for every v ∈ U \ T . Hence, d+
G(v) ≥ (` − 1) · k, for

every v ∈ V (G) \ T . By Lemma 82, there exists a set P of |S| vertex-disjoint paths from S
to T in G.

Note that, in D, every vertex belonging to T has at least t(k, `) + 1 outneighbours
in V (D) \ U . Therefore one can greedily extend each path of P with an outneighbour of its
terminal vertex in V (D) \ U in order to obtain a set P ′ of |S| vertex-disjoint paths from S
to V (D) \ U such that for any v ∈ X all the paths in P ′ with initial vertex v have distinct
terminal vertices (and different from v).

We now construct the digraph M on the vertex set R where there exists an arc from
v = rA to rB in M whenever

either rA dominates some vertex of V (B) in D,

or there is a dipath from some vi to V (B) in P ′.

Since, for each v ∈ X, all vertices in {vi}i∈[t(k,`)] are the initial vertices of vertex-disjoint di-
paths in P ′, we obtain δ+(M) ≥ t(k, `)/b(k−1, `). Therefore, the result follows by Claim 83.1
with M playing the role of H.
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3.1.3 Cycles with two blocks

Recall that C(k1, k2) is the oriented cycle with two blocks, one of length k1 and one of length
k2. It can also be seen as the union of two internally disjoint dipaths, one of length k1 and
one of length k2 with the same initial vertex and same terminal vertex.

Theorem 84. Let D be a digraph with δ+(D) ≥ 2(k1+k2)−1. Then D contains a subdivision
of C(k1, k2) as a subdigraph.

Proof. Let us assume, without loss of generality, that k1 ≥ k2. Let ` be a positive in-
teger. An (`, k1, k2)-fork is a digraph obtained from the union of three disjoint dipaths
A = (a0, a1, · · · , a`), B1 = (b1

1, · · · , b1
k1−1) and B2 = (b2

1, · · · , b2
k2−1) by adding the arcs

(a`, b
1
1) and (a`, b

2
1).

Since a (1, k1, k2)-fork has k1 + k2 vertices and δ+(D) ≥ k1 + k2 + 1, then D contains a
(1, k1, k2)-fork as a subdigraph by a greedy argument. Let ` ≥ 1 be the largest integer such
that D contains an (`, k1, k2)-fork as a subdigraph. Let F be such a fork. For convenience,
we denote its subpaths and vertices by their labels in the above definition.

If there exist i, j ∈ [` − 1] ∪ {0}, where i ≤ j (resp. j ≤ i), such that ai ∈ N+(b1
k1−1)

and aj ∈ N+(b2
k2−1), then the union of the dipaths (a`, B

1, ai, · · · , aj) and (a`, B
2, aj) (resp.

(a`, B
1, ai) and (a`, B

2, aj, · · · , ai)) is a subdivision of C(k1, k2).
Suppose now that b1

k1−1 has no outneighbour in {a0, · · · , a`−1}, that is, N+(b1
k1−1)∩ (A \

{a`}) = ∅ (the case N+(b2
k2−1)∩(A\{a`}) = ∅ is similar). Since |B1∪B2∪{a`}| = k1 +k2−1

and δ+(D) ≥ 2(k1 + k2 − 1) + 1, b1
k1−1 has two distinct outneighbours, say c1

1 and c2
1, not in

F .
Let i1 ≥ 1 be the largest integer such that there exist two disjoint dipaths C1 and C2

in D − F with initial vertex c1
1 and c2

1, respectively, and length i1 and i2 = min{k2, i1}.
Set C1 = (c1

1, · · · , c1
i1

) and C2 = (c2
1, · · · , c2

i2
). By maximality of `, if i1 ≥ k2, then i1 <

k1 − 1. Otherwise, the union of A ∪ B1, C1, C2, (b1
k1−1, c

1
1) and (b1

k1−1, c
2
1) would contain an

(`+ k1 − 1, k1, k2)-fork, contradicting the maximality of `.
Suppose to the contrary that none of c1

i1
and c2

i2
have outneighbour in A \ {a`}. Since

|V (B1)∪V (B2)∪{a`}∪V (C1)∪V (C2)| = k1 +k2 + i1 + i2−1 < 2(k1 +k2)−2 (since i1 + i2 <
k1+k2−1) and δ+(D) ≥ 2(k1+k2−1)+1, then there exist c1

i1+1, c
2
i2+1 ∈ V (D−(F ∪C1∪C2))

such that (c1
i1
, c1
i1+1), (c2

i2
, c2
i2+1) ∈ A(D) and c1

i1+1 6= c2
i2+1. This contradicts the maximality

of i1. Henceforth, we assume that c1
i1

has an outneighbour aj ∈ A \ {a`} for some 0 ≤ j < `.
The case in which c2

i2
has an outneighbour in A \ {a`} is similar.

If also b2
k2−1 has an outneighbour am ∈ A\{a`}, then the union of the dipaths (a`, B

1, C1, aj, . . . , am)
and (a`, B

2, am) (if m ≥ j) or of the dipaths (a`, B
1, C1, aj) and (a`, B

2, am, . . . , aj) (if m < j)
is a subdivision of C(k1, k2).

If b2
k2−1 has an outneighbour z ∈ V (C1 ∪ C2), say z = c1

h for some h ≤ i1 (the case in
which z ∈ V (C2) is similar), then the union of the dipaths (a`, B

2, c1
h) and (a`, B, c

1
1, · · · , c1

h)
is a subdivision of C(k1, k2).

So, we may assume that b2
k2−1 has no outneighbour in A \ {a`} ∪ C1 ∪ C2. Hence, b2

k2−1

has two distinct outneighbours, say c3
1 and c4

1, not in F ∪C1 ∪C2. Let i3 ≥ 1 be the largest
integer such that there exist two disjoint dipaths C3 and C4 in D − (F ∪ C1 ∪ C2) with
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initial vertex c3
1 and c4

1, respectively, and length i3 and i4 = min{k2, i3}. By the maximality
of `, if i4 ≥ k2 then i3 < k1 − 1 since otherwise the union of A ∪ B2, C3, C3, (b2

k2−1, c
3
1) and

(b2
k2−1, c

4
1) would contain an (`+ k1 − 1, k1, k2)-fork, contradicting the maximality of `.

For sake of contradiction, assume that both c3
i3

and c4
i4

have no outneighbour in (A\{a`})∪
C1∪C2. Because |V (B1)∪V (B2)∪V (C3)∪V (C4)∪{a`}| = k1+k2+i3+i4−1 < 2(k1+k2)−2
(since i3 + i4 < k1 + k2− 1) and δ+(D) ≥ 2(k1 + k2− 1) + 1, then there exist distinct vertices
c3
i3+1, c

4
i4+1 ∈ V (D − (F ∪ C1 ∪ C2 ∪ C3 ∪ C4)) (if i3 ≥ k2, we only define ci3+1) such that

(c3
i3
, c3
i3+1), (c4

i4
, c4
i4+1) ∈ A(D). This contradicts the maximality of i3.

So one of c3
i3
, c4
i4

has an outneighbour in (A \ {a`}) ∪ C1 ∪ C2. We assume that it is c3
i3

;
the case when it is c4

i4
is similar.

If c3
i3

has an outneighbour aq ∈ A \ {a`} (for some q < `), then the union of either the
dipaths (a`, B

1, C1, aj, . . . , aq) and (a`, B
2, C3, aq) (if q ≥ j), or the dipaths (a`, B

1, C1, aj)
and (a`, B

2, C3, aq, · · · , aj) (if q < j), is a subdivision of C(k1, k2).
If c3

i3
has an outneighbour c1

h ∈ V (C1) for some 1 ≤ h ≤ i1, then the union of the
dipaths (a`, B

1, c1
1, · · · , c1

h) and (a`, B
2, C3, c1

h) is a subdivision of C(k1, k2). Similarly, we
find a subdivision of C(k1, k2) if c3

i3
has an outneighbour in C2.

3.1.4 Three dipaths between two vertices

A slight adaptation of the proof of Theorem 84 leads to a stronger result. Let k1, k2, k3

be positive integers. Remember that B(k1, k2; k3) is the digraph formed by three internally
disjoint paths between two vertices x, y, two (x, y)-dipaths, one of size k1, the other of size
k2, and one (y, x)-dipath of size k3. We denote by Buv(k1, k2; k3) a subdivision of B(k1, k2; k3)
where the vertex u plays the role of x and the vertex v plays the role of y.

Theorem 85. Let k1, k2, k3 be positive integers with k1 ≥ k2. Let D be a digraph with
δ+(D) ≥ 3k1 + 2k2 + k3 − 5. Then D contains B(k1, k2; k3) as a subdivision.

Proof. Let ` be an integer. An (`, k3; k1, k2)-fork is a digraph obtained from the union of
four disjoint directed paths P = (p1, . . . , p`), A = (a1, · · · , ak3−1), B1 = (b1

1, · · · , b1
k1−1) and

B2 = (b2
1, · · · , b2

k2−1) by adding the arcs (p`, a1), (ak3−1, b
1
1) and (ak3−1, b

2
1).

Since a (1, k3; k1, k2)-fork has k1 + k2 + k3− 2 vertices and δ+(D) ≥ k1 + k2 + k3− 2, then
D contains a (1, k3; k1, k2)-fork as a subdigraph. So, let ` ≥ 1 be the largest integer such that
D contains an (`, k3; k1, k2)-fork as a subdigraph. Let F be such a fork. For convenience, we
denote its subpaths and vertices by their labels in the above definition.

If there exist i, j ∈ [`], with i ≤ j, such that pi ∈ N+(b1
k1−1) and pj ∈ N+(b2

k2−1) or
pi ∈ N+(b2

k2−1) and pj ∈ N+(b1
k1−1), then F contains a Bak3−1pj(k1, k2; k3).

So, let us assume that b1
k1−1 has no outneighbour in P (the case where b2

k2−1 has no
outneighbour in P is similar). Since |A∪B1∪B2| = k1+k2+k3−3 and δ+(D) ≥ k1+k2+k3−1,
b1
k1−1 has two distinct outneighbours, say c1

1 and c2
1, not in F .

Let i1 ≥ 1 be the largest integer such that there exist two disjoint directed paths C1 =
(c1

1, . . . c
1
i1

) and C2 = (c2
1, . . . , c

2
i2

) in D−F with initial vertex c1
1 and c2

1 respectively and length
i1 and i2 = min{k2−1, i1}. If i1 ≥ k1−1, then i2 ≥ k2−1, and thus P∪A∪B1∪C1∪C2 would
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contain a fork that contradicts the maximality of `. Hence we may assume that i1 ≤ k1 − 2
(and in particular |V (C1) ∪ V (C2)| ≤ k1 + k2 − 3).

For sake of contradiction, assume that both c1
i1

and c2
i2

have no outneighbour in P . Since
|V (A)∪V (B1)∪V (B2)∪V (C1)∪V (C2)| ≤ 2k1 + 2k2 +k3− 6 < δ+(D)− 2, then there exist
c1
i1+1, c

2
i2+1 ∈ V (D−(F ∪C1∪C2)) such that (c1

i1
, c1
i1+1), (c2

i2
, c2
i2+1) ∈ A(D) and c1

i1+1 6= c2
i2+1.

This contradicts the maximality of i1. Henceforth, we assume that c1
i1

has an outneighbour
pi ∈ P (the case in which c2

i2
has an outneighbour in P is similar).

If b2
k2−1 has also an outneighbour pj ∈ P , then F ∪C1 contains a Bak3pj

(k1, k2; k3) if i ≤ j,
and a Bak3pi

(k1, k2; k3) if j ≤ i.

So, we may assume that b2
k2−1 has no outneighbour in P . Hence, b2

k2−1 has two distinct
outneighbours, say c3

1 and c4
1, not in F ∪ C1. Let i3 ≥ 1 be the largest integer such that

there exist two disjoint dipaths C3 and C4 in D − (F ∪ C1) with initial vertex c3
1 and c4

1

respectively and length i3 and i4 = min{k2 − 1, i3}. If i3 ≥ k1, then i4 ≥ k2 − 1 and thus
P ∪ A ∪ B2 ∪ C3 ∪ C4 contains a fork that contradicts the maximality of F . Thus, we may
assume that i3 ≤ k1 − 2. In particular |V (C3) ∪ V (C4)| ≤ k1 + k2 − 3.

Suppose to the contrary that both c3
i3

and c4
i4

have no outneighbour in P , where c3
i3

and c4
i4

are the last vertices of C3 and C4. Note that |V (A) ∪ V (B1) ∪ V (B2) ∪ V (C1) ∪
V (C3) ∪ V (C4)| ≤ 3k1 + 2k2 + k3 − 7 ≤ δ+(D) − 2. Hence, there exist distinct vertices
c3
i3+1, c

4
i4+1 ∈ V (D − (F ∪ C1 ∪ C3 ∪ C4)) such that (c3

i3
, c3
i3+1), (c4

i4
, c4
i4+1) ∈ A(D). This

contradicts the maximality of i3.
Therefore, one of c3

i3
, c4
i4

has an outneighbour in pj in P . We assume that it is c3
i3

; the
case when it is c4

i4
is similar. We conclude that F ∪ C1 ∪ C3 contains a Bak3pj

(k1, k2; k3) if
i < j, and a Bak3pi

(k1, k2; k3) if j < i.

3.2 Immersions of transitive tournaments

An interesting weakening of Mader’s conjecture has been made by DeVos et al.[20]:

Conjecture 15 (DeVos et al. [20]). For every k ≥ 1, there exists an integer h(k) such that
every digraph with minimum outdegree at least h(k) contains an immersion of TTk.

In the same paper, they proved the result for Eulerian digraphs. In fact they showed that,
in the case of Eulerian digraphs, large minimum outdegree is enough to force immersions of
large complete digraphs.

Remember that F (k, l) is the multidigraph consisting of k vertices x1, . . . , xk and l arcs
from xi to xi+1 for every 1 ≤ i ≤ k − 1. It is clear that F (k,

(
k
2

)
) contains an immersion of

TTk, so the following theorem proved in [45] implies Conjecture 15.

Theorem 86. For every k ≥ 1 and l ≥ 1, there exists a function h(k, l) such that every
multidigraph with minimum outdegree at least h(k, l) and multiplicity at most kl contains an
immersion of F (k, l).

Proof. Note that F (k, 1) is a dipath on k vertices and thus h(k, 1) = k. We prove the
result for h(k, l) = 2k3l2 and l ≥ 2. We proceed by induction on k. For k = 1 this is
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trivial because F (1, l) is one vertex. Suppose now that the result holds for k and assume
for a contradiction that it does not hold for k + 1. Let D be the multidigraph with the
smallest number of arcs and vertices such that D has multiplicity at most (k + 1)l, all
but at most c1 = k + (k + 1)l vertices have outdegree at least h(k + 1, l) and without an
immersion of F (k+ 1, l). By minimality of D, every vertex has outdegree exactly h(k+ 1, l),
except c1 of them with outdegree 0. Call T the set of vertices of outdegree 0. Suppose
we want to remove arcs from D such that the multiplicity of the remaining digraph is
at most kl, while keeping the minimum outdegree as large as possible. For a vertex v,
the worst case is when, for every vertex y ∈ N+(v), the multiplicity of (v, y) is equal to

(k + 1)l. In this case we have to remove at most l arcs for each of the h(k+1,l)
(k+1)l

vertices

of N+(v). Therefore, by removing T and these parallel arcs, we obtain a multidigraph of

outdegree greater than d′ = h(k + 1, l) − c1(k + 1)l − h(k+1,l)
k+1

with multiplicity kl. Because

h(k + 1, l) − h(k, l) = 2(3k2 + 3k + 1)l2 and c1(k + 1)l + h(k+1,l)
(k+1)

= k(k + 1)l + 3(k + 1)2l2,

we get that d′ ≥ h(k, l) and by induction there exists an immersion of F (k, l) in D − T .
Call X = {x1, · · · , xk} the set of vertices of the immersion and Pi,j the jth directed path
of this immersion from xi to xi+1. We can assume this immersion is of minimum size, so
that every vertex in Pi,j has exactly one outgoing arc in Pi,j. Let D′ be the multidigraph
obtained from D by removing all the arcs of the Pi,j and the vertices x1, . . . , xk−1. By the
previous remark, the outdegree of each vertex in D′ is either 0 if this vertex belongs to T or
at least h(k + 1, l)− (k − 1)l − (k − 1)(k + 1)l.

For every vertex y ∈ D′ − xk, there do not exist l arc-disjoint directed paths from xk to
y in D′, for otherwise there would be an immersion of F (k + 1, l) in D. Hence, by Menger’s
Theorem there exists a set Ey of less than l arcs such that there is no directed path from xk
to y in D′ \Ey. Define Cy for every vertex y ∈ D′−xk as the set of vertices which can reach
y in D′ \Ey. Now take Y a minimal set such that ∪y∈YCy covers D′ − xk. We claim that Y

consists of at least c2 ≥ h(k+1,l)−(k−1)l−(k−1)(k+1)l
l

≥ 2c1 elements, as ∪y∈YEy must contain all
the arcs of D′ with xk as tail.

For each y ∈ Y , define Sy as the set of vertices which belong to Cy and no other Cy′ for
y′ ∈ Y . Since Y is minimal, every Sy is non-empty. Note that for u ∈ Sy, if there exists
y′ ∈ Y \ y and v ∈ Cy′ such that uv ∈ A(D), then uv ∈ Ey′ . Note that T ⊂ Y as vertices in
T have outdegree 0 and if y ∈ Y \T then Sy consists only of vertices of outdegree h(k+ 1, l)
in D.

Let R be the digraph with vertex set Y and arcs from y to y′ if there is an arc from Sy
to Cy′ . As noted before, d−R(y) ≤ |Ey| ≤ l. The average outdegree of the vertices of Y \ T in

R is then at most c1l+(c2−c1)l
c2−c1 ≤ 2l. Let y be a vertex of R \ T with outdegree at most this

average. Let H be the digraph induced on D′ by the vertices in Sy to which we add X, all
the arcs that existed in D (with multiplicity) from vertices of Sy to vertices of X and the
following arcs: For each Pi,j, let z1, z2, . . . , zl = Pi,j ∩Sy, where zi appears before zi+1 on Pi,j
and add all the arcs (zi, zi+1) to H. Note that, if (x, y) is an arc of D′, then by minimality
of the immersion of F (k, l), every time x appears before y on some Pi,j, then Pi,j uses one
of the arcs (x, y). Thus for each pair of vertices x and y in H, either (x, y) ∈ A(D) and the
number of (x, y) arcs in H is equal to the one in D, or (x, y) 6∈ A(D) and the number of
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(x, y) arcs in H is bounded by (k−1)l. This implies that H has multiplicity at most (k+1)l.

Claim 86.1. H is a multidigraph with multiplicity at most (k+1)l, such that all but at most
c1 vertices have outdegree greater than h(k + 1, l) and H does not contain an immersion of
F (k + 1, l).

Proof of the claim. Suppose H contains an immersion of F (k + 1, l), then by replacing
the new arcs by the corresponding directed paths along the Pi,j we get an immersion of
F (k + 1, l) in D. Moreover, we claim that the number of vertices in H with outdegree
smaller than h(k + 1, l) is at most k + 2l+ (k − 1)l = c1. Indeed, the vertices of H that can
have outdegree smaller in H than in D are the xi, or the vertices with outgoing arcs in Ey′
for some y′ ∈ Y \ y, or the vertices along the Pi,j. But with the additions of the new arcs,
we know that there is at most one vertex per path Pi,j that loses some outdegree in H. �

However, since H is strictly smaller than D, we reach a contradiction.
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Chapter 4

The Erdős-Sands-Sauer-Woodrow
conjecture

All the proofs in this chapter are joint work with Nicolas Bousquet and Stéphan Thomassé.
In this chapter we will present a proof of conjecture 44:

Theorem 49. For every k ≥ 1, if T is a complete multidigraph whose arc set is the union
of the arc sets of k quasi-orders, then γ(T ) = O(ln(2k) · kk+2).

The first part of this chapter is dedicated to the proof of the case k = 3 of Conjecture
45:

Proposition 87. There exists an integer C such that every 3-transitive tournament T has
γ(T ) ≤ C.

While Proposition 87 is much weaker than Theorem 49, we decided to present it for two
reasons. First it uses a new variation of the VC-dimension technique that we find interesting
and could be applied to prove other results, and second it provides a context onto how we
arrived to the short and simple proof of Theorem 49.

4.1 Domination in 3-transitive tournaments

In this section, T is a 3-transitive tournament. We will prove that T has bounded domination
number.

By definition, A(T ) decomposes into three sets, R, G and B such that T [R], T [G] and
T [B] are quasi-orders. We will use the colours red, blue and green to speak about the sets
R, G and B, respectively. A chain is a monochromatic subtournament of T . As a chain is a
transitive tournament, we will refer to a chain as its directed Hamiltonian path x1, . . . , xk.

Remember that the VC-dimension of a tournament is the VC-dimension of the inneigh-
bourhood hypergraph. It is not very difficult to see that a 3-transitive tournament does not
necessarily have bounded VC-dimension. For example, if you take two red chains such that
all the arcs from one chain to the other are blue and the arcs in the other direction are green,
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then no matter the orientations of the arcs between the red chains, the resulting tournament
will be a 3-transitive tournament. In particular, a random orientation will give arbitrarily
large VC-dimension.

Let T be a tournament and S a set of vertices of T . The VC-dimension of S is the VC-
dimension of S in the inneighbourhood hypergraph. S is said to be shattered if it is shattered
in the inneighbourhood hypergraph. In a tournament, the VC-dimension argument tells us
that the vertices which are difficult to dominate are the vertices with large in and outdegree
inside some shattered set. However, in the example we just provided, the structure of a
shattered set makes the domination of these vertices very easy.

The goal of our approach was to understand the structure of shattered sets in order to
deal with them during the sampling part of the proof of the ε-net Theorem. In the first part
of the proof, we analyse shattered sets in a 3-transitive tournament and prove that they have
a long monochromatic chain, meaning that we only have to consider shattered chains.

4.1.1 Structure of shattered sets

Let C = x0, . . . , xk be a chain of order k + 1, we denote by I(C) the set of vertices xi for
0 < i < k.

Lemma 88. Let C = x0, . . . , xk be a chain of a 3-transitive tournament T . If v is a vertex
of T such that (v, x0) and (xk, v) belong to A(T ), then none of the arcs between v and I(C)
have the same colour as C.

Proof. Suppose C is a red chain and let xi be a vertex of I(C). If (xi, v) belongs to T and
is coloured red, then by transitivity (x0, v) belongs to T and is coloured red. Likewise, if
(vi, x) is coloured red then (v, xk) belongs to T .

Let C = x0, . . . , xk be a chain of a 3-transitive tournament T and let G(C) be the set
of vertices v of T such that (v, x0) and (xk, v) belong to A(T ). The previous lemma implies
that, for a vertex v of G(C), it is not possible to have one arc from I(C) to v and one arc
from v to I(C) of the same colour. Indeed since this colour cannot be the colour of C by the
previous lemma, it would force an arc of another colour between vertices in C. Thus, the
vertices of G(C) divide in two types, depending on the colour of A(v, I(C)) and A(I(C), v).
For example, if C is a red chain, then the two types are the following:

• The vertices v such that the arcs in A(v, I(C)) are green and the arcs in A(I(C), v)
are blue.

• The vertices v such that the arcs in A(v, I(C)) are blue and the arcs in A(I(C), v) are
green.

Lemma 89. Let C = x0, . . . , xk be a chain of a 3-transitive tournament T . Let u and v
be two vertices of G(C) with the same type such that there exist two indices 0 < i < k and
0 < j < k where uxivxj is a directed cycle, then the arc between u and v is of the same
colour as C.
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Proof. Suppose C is a red chain. Without loss of generality, we can assume that (u, xi) and
(v, xj) are blue and (xi, v) and (xj, u) are green and moreover that (u, v) belongs to T . If
(u, v) is blue, then by transitivity (u, xj) belongs to T . Likewise, if (u, v) is green then (xj, v)
belongs to T . This means that (u, v) is red.

Lemma 90. Let T be a 3-transitive tournament and S a set of vertices of T such that S is
a shattered set of the inneighbourhood hypergraph of T . Then T [S] cannot have two chains
of length 6 of different colours.

Proof. Suppose it does and let C1 = (c1
0, . . . , c

1
5) and C2 = (c2

0, . . . , c
2
5) be those two chains.

For each i ∈ [2], we define 5 sets of vertices of G(Ci):

• Set Ai consists of vertices x such that xci1, xci2, ci3x and ci4x belong to A(T ).

• Set Bi consists of vertices x such that xci1, xci3, ci2x and ci4x belong to A(T ).

• Set Li consists of vertices x such that xci1, xci4, ci3x and ci2x belong to A(T ).

• Set Di consists of vertices x such that xci3, xci2, ci1x and ci4x belong to A(T ).

• Set Ei consists of vertices x such that xci4, xci2, ci3x and ci1x belong to A(T ).

The purpose of these sets is that, if there exist two vertices, say a and b, such that
a ∈ A1 ∩A2 and b ∈ B1 ∩B2 and these vertices have the same type towards C1 and C2, then
we reach a contradiction. Indeed ac1

2bc
1
3 and ac2

2bc
2
3 are directed cycles, but since C1 and C2

are two chains of different colours, then Lemma 89 implies that the arc between a and b has
two different colours, which is impossible.

To find two vertices like this, we use the fact that the set is shattered. Because the set
is shattered, it means that for every possible subset S ′ of S, there exists a vertex x in T
such that the inneighbourhood of x in S is precisely S ′ (and thus the outneighbourhood is
precisely S \ S ′). This means that we can find five vertices: a (resp. b, l, d, e) that belongs
to A1 ∩ A2 (resp. B1 ∩ B2, L1 ∩ L2, D1 ∩D2, E1 ∩ E2). Now each of these vertices has one
of two specific types regarding C1 and C2, this means there are 4 combinations of types. By
the Pigeonhole Principle, we can find two vertices, say a and b such that they both have the
same type towards C1 and the same type towards C2. This ends the proof.

Lemma 91. Let T be a 3-transitive tournament and S a set of vertices of T such that S is a
shattered set of the inneighbourhood hypergraph of T . Then T [S] contains a chain of length
|S|/25.

Proof. By the previous lemma and without loss of generality, all the chains of S in blue or
red have size smaller than 5. Consider the digraph induced by the arcs with colour blue. By
Theorem 26, there exists a stable set of size |S|/5. Now consider the digraph induced by the
arcs of colour red on these |S|/5 vertices. Again, by Theorem 26, there exists a stable set of
size |S|/25. This set is a green chain of length |S|/25.
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4.1.2 Dominating shattered sets

Let u and v be two vertices of a 3-transitive tournament T , define S(u, v) as the set of vertices
x such that there exist two disjoint vertices u1 = u1(x), u2 = u2(x), such that u, u1, v, u2 is
a monochromatic chain (in that order), x dominates u and v and x is dominated by the ui.

Lemma 92. Let T be a 3-transitive tournament. For every pair of vertices u and v of T ,
there exists a set φ(u, v) of four vertices which dominates S(u, v).

Proof. Without loss of generality we can assume that (u, v) is a blue arc. Let x be a vertex
of S(u, v) and u1, u2 the vertices completing the blue chain, then one of the following is true:

(i) The arcs (ui, x) are green and the arcs (x, u) and (x, v) are red; or

(ii) the arcs (ui, x) are red and the arcs (x, u) and (x, v) are green.

To prove this, first note that none of the arcs (ui, x), (x, u) or (x, v) can be blue. Indeed, if
(x, u) or (x, v) is blue, then (x, u2) must be an arc, and if (u1, x) or (u2, x) is blue, then (u, x)
must be an arc. Finally, since uu1vu2 is a blue chain, (x, u) and (x, v) must have different
colour than (u2, x) and (u1, x).

Consider S1 the set of vertices of S(u, v) such that (i) is true and let U1 = {u1(x);x ∈ S1}
and U2 = {u2(x);x ∈ S1}. First note that if a ∈ U1 and b ∈ U2 then (a, b) is a blue arc by
transitivity with v. Now let x ∈ S1, we claim that for every y in U1, either the arc (y, x)
exists and is green or the arc (x, y) exists and is red. Indeed if (y, x) is blue, then (u, x) must
be blue, if (x, y) is blue then (x, v) must be blue, if (x, y) is green then (u2(x), y) must be
green and if (y, x) is red then (y, u) must be red. In all cases, this is a contradiction. The
same can be said with U2, so we have the following property: For every vertex x ∈ S1, the
set of arcs A(x, U1 ∪ U2) is red and the set of arcs A(U1 ∪ U2, x) is green. This means that
for any x1 and x2 two different vertices of S1, if the arc (x1, x2) is red then by transitivity
N−U1∪U2

(x1) ⊆ N−U1∪U2
(x2) and if the arc (x1, x2) is green then N+

U1∪U2
(x1) ⊆ N+

U1∪U2
(x2) which

implies N−U1∪U2
(x2) ⊆ N−U1∪U2

(x1).
Now define the following bicoloured complete multidigraph T ′ on S1: (x, y) is a grey arc

of T ′ if N−U1∪U2
(x) ⊆ N−U1∪U2

(y) and (x, y) is a blue arc of T ′ if it is a blue arc of T . T ′

satisfies the hypothesis of Theorem 42 and therefore has a dominating vertex x, and thus,
in T , {x} ∪ u1(x) dominates S1.

By doing the same thing with the set of vertices such that (ii) is true, we obtain a set of
four vertices dominating S(u, v).

For a set X, let φ(X) be the union of all the φ(x, y) for x and y in X.

4.1.3 Sampling argument

We are now ready to prove Proposition 87. Basically we will show that, if we take a set of
vertices S of a certain size at random, then with positive probability S∪φ(S) is a dominating
set of T .

We need the following (not tight) lemma:
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Lemma 93. Let S be a set of size 2s and S = (A,B) a random bipartition such that |A| =
|B| = s and G a subset of S of size t. Then Pr[|G∩A| < t/4 or |G∩B| < t/4] < t

4
(2/3)t/4.

Proof. By considering the set between A and B with the smallest intersection with G, we
get the following bound:∑t/4

i=0

(
t
i

)(
2s−t
s−i

)∑t/2
i=0

(
t
i

)(
2s−t
s−i

) ≤ ∑t/4
i=0

(
t
i

)(
2s−t
s−i

)∑t/2
i=t/4

(
t
i

)(
2s−t
s−i

) ≤ ∑t/4
i=0

(
t
i

)∑t/2
i=t/4

(
t
i

) ≤ t

4

(
t
t/4

)(
t
t/2

) ≤ t

4

t/4 . . . t/2

t/2 . . . 3t/4
.

We first show the case where every vertex has large indegree.

Proposition 94. There exists a constant C such that any 3-transitive tournament T with
minimum indegree greater than |T |/6 has domination number bounded by C.

Proof. Let t be an integer and let A be a random set of vertices picked by t2 independent
random draws, where each element is drawn from V (T ) uniformly. The goal is to show
that A ∪ φ(A) is a dominating set with positive probability when t is big enough (but still
a constant). Suppose A ∪ φ(A) is not a dominating set and let B be another random set
obtained by picking t2 vertices randomly. Formally, we regard A and B as sequences of
elements of T , with possible repetitions. So A = (a1, . . . , at2) and B = (b1, . . . , bt2). For a
sequence S = (s1, . . . , sl), |S| will denote the number of elements in the sequence. Abusing
the notation slightly, d−S (u) will denote the number of indices i ∈ [l] such that si ∈ N−(u), so
one vertex could count multiple times. Let E0 be the event “there exists a vertex u such that u
dominates A∪φ(A) and d−B(u) ≥ t2/12”. Since we assumed that A∪φ(A) is not a dominating
set, there exists a vertex u dominating this set. Hence Pr[E0] ≥ Pr[d−B(u) ≥ t2/12]. Since
d−(u) ≥ n/6, the following claim can be proved with Chebyshev’s inequality (see Lemma
10.2.6 of [51] for the complete proof)

Claim 94.1. Pr[E0] ≥ 1/2.

Now we are going to bound Pr[E0] differently. First let N = (z1, . . . , z2t2) be a random
sequence of 2t2 elements chosen uniformly. In a second stage, we randomly chose t2 positions
in N and put the elements at these positions in A, and the remaining elements in B. The
resulting distribution of A and B is the same as the one described before. We now prove that
the probability of E0 is small. To do so, consider the set N ′ corresponding to the elements
of N (so removing repetitions). If this set has VC-dimension bounded by 25t, it means we
can do the same proof as the ε-net Theorem and prove that Pr[E0] is smaller that 1/2. If
the VC-dimension is not bounded by 25t, then by Lemma 91, there exists a shattered chain
of length t. Let T1, . . . , Tl be a maximal collection of disjoint subsequences of N , such that
the elements of each Ti forms a shattered chain of length t in N ′, without repetition. This
means that one element can belong to different chains if it appeared multiple times in N .
Note that l ≤ 2t. Let R = N \ ∪iTi be the remaining subsequence of N . Note that, if
we note R′ the set of elements contained in R, then R′ has VC-dimension bounded by 25t.
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For each i ∈ [l], let Li be the event: “there exists a vertex x with d−Ti(x) ≥ t/48 and the
random partition of N is such that x is not dominated by A∩ Ti ∪ φ(A∩ Ti)”. Let C be the
event:“|R| > t2

23
, there exists a vertex x with N−R (x) > |R|/12 and the random cut is such

that x is not dominated by A∩R”. Remember that E0 is the event that there exists a vertex
u such that u dominates A∪φ(A) and d−B(u) ≥ t2/12. In order for such a vertex u to exists,
this vertex u must satisfy d−N(u) ≥ t2/12. Suppose this vertex is such that d−Ti(u) < t/48

for all i ∈ [l]. This means that 2t2−|R|
48

+ R ≥ t2

12
, which implies that |R| ≥ 2t2

47
≥ t2

23
and

N−R (x) > |R|/12. This means that, if E0 is satisfied, then either one of the Li is satisfied,
or C is satisfied. Next we bound the probabilities of all these events, which will finish the
proof.

Claim 94.2. Pr[Li] ≤ 2(3/4)t/100t3 + t
4
(2/3)t/4.

Subproof. We will condition on the event Si : “|Ti ∩ A| > t
4
”. By Lemma 93, Pr[S̄i] <

t
4
(2/3)t/4. To compute Pr[Li|Si], we condition on the position (relatively to Ti) of the first,

middle and last inneighbour of a vertex x with d−Ti(x) ≥ t/48 on Ti. Remember that the
Ti are without repetition, so these vertices are defined without ambiguity. If A contains
one vertex of Ti between the first and the middle vertex and one vertex between the middle
and the last, then by Lemma 92, x is dominated by (A ∩ Ti) ∪ φ(A ∩ Ti). Because x has
indegree greater than t

48
in Ti, this is bounded by the probability that a random sample of

t/4 elements out of t elements in T avoid one of the two sets of s = bt/96c elements. For
each of the two sets, the probability that it is avoided is bounded by(

t−s
t/4

)(
t
t/4

) =
(t− s)!(t− t/4)!

(t− s− t/4)!t!
=

(t− s− t/4 + 1) . . . (t− t/4)

(t− s+ 1) . . . t
≤ (3/4)s.

We can suppose that t is big enough so that this value is bounded by (3/4)t/100, and the
probability that one of the two sets is avoided is then smaller than 2(3/4)t/100. Overall, since
there are at most

(
t
3

)
choices for the positions of the first, middle and last inneighbour on

Ti, we get that

Pr[Li] ≤ 2(3/4)t/100t3 +
t

4
(2/3)t/4

. ♦

Claim 94.3. Pr[C] ≤ (276/t2)t
2/276( et

575
)25t + t2

100
(2/3)t

2/100

Subproof. We condition on the event R1 that |R ∩ A| > r/4. By Lemma 93, P [R̄1] <
t2

100
(2/3)t

2/100. If we look at the trace of the inneighbourhood hypergraph on R, it has VC-
dimension bounded by 25t by Lemma 91. Fix the inneighbourhood S of x in R, then the
probability PS = Pr[S ∩ A = 0|R1] is at most the probability that a random sample of r/4
elements avoids the r/12 elements of S so:

PS ≤

(
r−r/12
r/4

)(
r
r/4

) ≤ (r − r/12)!(r − r/4)!

(r − r/3)!r!
<

(r − r/4)!

(r − r/3)!
≤ (12/r)r/12
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Because the VC-dimension of R is bounded by 25t, by Lemma 48 there are at most ( er
25t

)25t

possible inneighbourhoods S and by the union bound, Pr[C] ≤ (276/t2)t
2/276( et

575
)25t +

t2

100
(2/3)t

2/100. ♦

Finally, because l ≤ 2t, we have

Pr[E0] ≤ (276/t2)t
2/276(

et

575
)25t +

t2

100
(2/3)t

2/100 + 2t(2(3/4)t/100t3 +
t

4
(2/3)t/4)

And when t is big enough, this is smaller than 1/2, so we reach a contradiction.

Now we show how to prove the general case, using the probability distribution given by
Lemma 46 (actually we use a slightly more precise version found in [27]).

Proof of Proposition 87. Let C be as Proposition 94. If T has a dominating vertex we are
done so we can assume it does not. By Thereom 1.5 of [27], there exists a rational number
p(v) for every vertex v such that p is a probability distribution on the vertices, p(v) ≤ 1/3 for
all v and p(N−[v]) ≥ 1/2. This implies that p(N−(v)) ≥ 1/6. By blowing each vertex v of
T with a red transitive tournament of size Mf(v) for some integer M , we get a tournament
T ′ satisfying the conditions of Proposition 94, so with a dominating set of size C. Finally,
by taking for each vertex in the dominating set of T ′, its original vertex in T we obtain a
dominating set of T of cardinality at most C.

4.2 General proof

In this section we prove Theorem 49.
The important part in the last proof is that, if A is a shattered set and B is the set of

vertices with large in and outdegree in A, then the structure of B is simple. The question
we had was to know if this was still true if T is the union of more than three quasi-orders.
One way for B to be simple is to have bounded VC-dimension and a natural question was to
ask what happens when B doesn’t have bounded VC-dimension? Suppose there exists a set
C in B such that C has large in and outdegree in B, what can we say about that set? The
answer to this question, when all the arcs involved belong to the same transitive digraph is
the following lemma which is the essential part of the proof of Theorem 49.

Let P be a quasi-order on S. We say that A ⊆ P is ε-dense in P if there exists a probabil-
ity distribution w on the vertices of P such that w(N−[x]) ≥ ε for every element x of A. Let T
be a complete multidigraph whose arcs are the union of the arcs of k quasi orders P1, . . . , Pk,
we define N−i [x] (resp N+

i [x]) as the closed inneighbourhood (resp. outneighbourhood) of
the digraph induced by Pi.

Lemma 95. Let ε be a real in [0, 1]. There exists an integer g(ε) such that for every quasi-
order P on a set A and two subsets C ⊆ B of A such that B is ε-dense in P and C is ε-dense
in B, there exists a set of g(ε) elements in A dominating C.
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Proof. Let wA : A → [0, 1] and wB : B → [0, 1] be the probability distributions such that
wA(N−[x]) ≥ ε for every x ∈ B and wB(N−[x]) ≥ ε for every x ∈ C.

Let g(ε) = b ln(ε)
ln(1−ε)c+ 1 and pick independently at random according to the distribution

wA a (multi)set S of g(ε) elements of A. For every vertex x ∈ B, Pr(x ∈ N+[S]) ≥
1− (1− ε)g(ε) > 1− ε. Thus, by linearity of wB and the expectation, E(wB(N+[S])) > 1− ε.
Therefore, there exists a choice of S such that wB(N+[S]) > 1 − ε. Since wB(N−[y]) ≥ ε
for every y ∈ C, the set N−[y] intersects N+[S]. In particular, by transitivity, S dominates
y.

The next lemma is a direct consequence of Theorem 46.

Lemma 96. Let T be a complete multidigraph whose arc set is the union of the arc sets of
k quasi-orders. There exists a probability distribution w on V (T ) and a partition of V (T )
into sets T1, T2, . . . , Tk such that for every i and x ∈ Ti, w(N−i [x]) ≥ 1/2k.

Proof. By Theorem 46 there exists a weight function w : V (T )→ [0, 1] such that w(N−[x]) ≥
1/2 for all x ∈ T . For every i in [k], let T ′i be the subset of vertices such that w(N−i [x]) ≥
1/2k. The sets T ′i cover the vertices, so we can extract a partition with the required prop-
erties.

We are now ready to prove the main theorem:

Proof of Theorem 49. Consider P1 = T1, T2, . . . , Tk together with w the partition given by
Lemma 96 applied to T . Each of the Ti is a complete multidigraph whose arc set is the union
of the arc sets of k quasi-orders, this means we can apply Lemma 96 and obtain Ti,1, Ti,2
. . . , Ti,k together with a probability distribution wi on Ti such that wi(N

−
j [x]) ≥ 1/2k for

every x ∈ Ti,j. By repeating this process k times, we obtain a sequence of k + 1 partitions
P1, . . . , Pk+1 with Pi = ∪j1,j2,...,ji≤kTj1,j2,...,ji such that for every l ≤ k + 1 and each j1, . . . , jl
in [k]l, Tj1,j2,...,jl is a subset of Tj1,j2,...,jl−1

and the probability distribution wj1...,jl−1
is such

that wj1...,jl−1
(N−jl [x]) ≥ 1/2k for every x in Tj1,...,jl .

Fix j1, . . . , jk+1, in [k]k+1, by the Pigeonhole Principle there exist two indices, i < l
such that ji = jl, then by applying Lemma 95 where Tj1,...,ji−1

, Tj1,...,ji and Tj1,...,jl play the
roles of, respectively, A, B and C there exists a set of size g(1/2k) that dominates Tj1,...,jl
and thus Tj1,...,jk+1

. This means that γ(T ) ≤ kk+1 · g(1/2k). Moreover since g(1/2k) ≤
ln(2k)× (2k − 1/2 + o(1)), we have γ(T ) = O(ln(2k) · kk+2).

4.3 The Sands-Sauer-Woodrow conjecture

In a recent paper, Harutyunyan et al. [33] proved that the fractional domination of a
digraph D is bounded by 2α(D). This means that there exists a probability distribution on
the vertices, where every vertex x has d−[x] > 1

2α(D)
. With this result, we can adapt the

previous proof to show that there exists a function f(α, k) such that any multidigraph whose
arcs are the union of k quasi-orders and with stability number smaller than α is dominated
by f(α, k) vertices. However Conjecture 43 remains open.
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Chapter 5

Entropy compression

5.1 Orientations of Hypergraphs

We present here the proof of the following theorem, obtained with Nathann Cohen in [18].

Theorem 54. Let p, k be fixed integers. There exists r0 such that for every r ≥ r0, every
r-uniform hypergraph with ∆p(H) ≤ k admits a p-equitable orientation.

We first describe a random algorithm that produces such orientation. To analyse the
behaviour of this algorithm we will need the following lemma on permutations, which we
will prove in the last subsection.

Lemma 55. Let p, k ∈ N and α < 1 be fixed. Let X be a set of cardinality r and let LS be,
for every S ∈

(
X
p

)
, a collection of p-subsets of X with |LS| ≤ k. Then, if no p-subset occurs

in more than rα of the LS, a random permutation σ of X satisfies σ(S) 6∈ LS for every S

with probability ≥ (1− 2k/
(
r
p

)
)(

r
p) = e−2k + o(1) when r grows large.

5.1.1 Algorithm

In what follows, we assume that every finite set S has an implicit enumeration on its elements,
and in particular that the hyperedges of a hypergraph H are implicitly ordered. We will say
that i represents an element s ∈ S when s is the i-th element of S in this implicit ordering.

We will orient the hyperedges of H one by one as a (partial) equitable orientation of H,
i.e. in such a way that no p-subset of V (H) appears more than once at the same position
among the oriented hyperedges. To do so, we require the partial orientation to enforce an
additional property.

Definition 97. Let H be a partially oriented r-uniform hypergraph. We say that an hyper-
edge S ∈ H is pressured by a family {S1, . . . , Sl} of hyperedges (oriented by σS1 , . . . , σSl

) if

there exists P ∈
(

[r]
p

)
such that σ−1

Si
(P ) ⊆ S for every i.
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Note that Lemma 55 ensures that a partial orientation of H can be extended to an unori-
ented hyperedge S, provided that no family of more than rα oriented hyperedges pressures
S. It asserts, for c < e−2k and r sufficiently large, that at least cr! orientations of S are
admissible for this extension: we name them good permutations of S. Algorithm 2 selects
an ordering randomly among them, while ensuring that no other hyperedge is pressured by
a family of hyperedges larger than r1 = brαc.

Algorithm 2: A non-deterministic algorithm

Data: A r-uniform hypergraph H with ∆p(H) ≤ k
Result: A p-equitable orientation of H
while not all hyperedges are oriented do

S1 ← unoriented hyperedge of smallest index
Pick for S1 the orientation indexed vi (among ≥ cr! available)
if some hyperedge S of H is pressured by a family {S1, . . . , Sr1} then

Cancel the orientation of all hyperedges Si.
Return the oriented H

Algorithm 2 starts with every hyperedge being unoriented. At each step it orients the
unoriented hyperedge of smallest index by choosing a random permutation amongst the cr!
first good permutations. We call bad event the event that a hyperedge S ∈ H is pressured
by a family {S1, . . . , Sr1} of cardinality r1. If a bad event occurs after orienting S1, then the
algorithm erases the orientation of the S1, . . . , Sr1 .

It is trivial to see that Algorithm 2 only returns p-equitable orientations of H. Moreover,
every time the algorithm chooses a random permutation, it does so among at least cr! good
ones by Lemma 55. Note that we need to consider large families pressuring already oriented
hyperedges: indeed, we might have to cancel the orientation of such a hyperedge to redefine
it again later.

Theorem 98. Let p, k ∈ N, α, c ∈ R>0 with α < 1 and c < e−2k. For every sufficiently large
r, there is a set of random choices for which Algorithm 2 terminates.

In order to prove this result we will analyse the possible executions of the M first steps
of Algorithm 2. To this end we make it deterministic by defining a log (following the idea of
[55]) and obtain Algorithm 3, in the following way:

• Take as input a vector v ∈ [cr!]M which simulates the random choices.

• Output a log when it is not able to orient all hyperedges.

We define a log of order M to be a triple (R,X, F ) where:

• R is a binary word whose length lies between M and 2M .

• X is a sequence of h 7-tuples of integers (x1, x2, x3, x4, x5, x6, x7) where:
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x1 ≤
(
r
p

)
; x2 ≤ k; x3 ≤

( (r
p)

r1−1

)
; x4 ≤ kr1−1;

x5 ≤ p!r1−1; x6 ≤ (r − p)!r1−1; x7 ≤ r!;

• F is an integer smaller than (r! + 1)|H| representing a partial orientation of H.

The log of order M (or just log) is actually a trace of the deterministic algorithm’s
execution after M steps. Its objective is to encode which orientations get canceled during
the algorithm’s execution. We will show later that Algorithm 3 cannot produce the same log
from two different input vectors v, v′ ∈ [cr!]M , and that, for M big enough, that the set of
possible logs is smaller than (cr!)M . We now describe the log and how Algorithm 3 produces
it.

• R is initialized to the empty word. We append 1 to R whenever Algorithm 3 adds a
new orientation; we append 0 whenever it cancels one.

• Consider the following bad event: after orienting S1, a hyperedge S ∈ H is pressured
by a family {S1, . . . , Sr1} of cardinality r1. We note si the set of vertices that Si maps
to P . We associate the following 7-tuple which identifies the sets Si as well as their
orientations:

– x1 <
(
r
p

)
represents the set s1 among the

(
r
p

)
possible subsets of size p of S1.

– x2 < k identifies S as one of the (at most k) hyperedges containing s1.

– x3 <
( (r

p)
r1−1

)
is an integer representing the set of subsets s2, . . . sr1 amongst the

(
r
p

)
subsets of size p of S.

– x4 < kr1−1 is an integer representing the sequence (y2, . . . , yr1) ∈ [k]r1−1 such that
the yl-th edge containing sl is Sl.

– x5 < p!r1−1 is an integer representing the sequence (p1, . . . , pr1), where pi ∈ [p!]
represents the subpermutation of Si onto si (we know it’s a permutation of P ).

– x6 < (r − p)!r1−1 is the integer representing the sequence [p2, . . . , pr1 ], where
pi ∈ [(r − p)!] represent the subpermutation of Si onto [r] \ si.

– x7 < r! is the integer representing the permutation chosen for S1.

X is the list of the 7-tuples describing the bad events, in the order in which they
happen.

• F is the integer representing the partial orientation of H (i.e. a choice among r! + 1
per hyperedge of H) after M steps.
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This gives the following algorithm:

Algorithm 3: A deterministic algorithm

Data:

1. A r-uniform hypergraph H with ∆p(H) ≤ k,

2. A vector v ∈ [cr!]M

Result: A p-equitable orientation of H, or a log of order M

R← ∅, X ← ∅
for 1 ≤ i ≤M do

S1 ← unoriented hyperedge of smallest index
Pick for S the orientation indexed vi among ≥ cr! available
if some hyperedge of H is pressured by {S1, . . . , Sr1} then

Append 1 to the end of R
Append to X a 7-tuple describing the conflict
Cancel the orientation of all r1 + 1 hyperedges involved in the conflict

else if all hyperedges are oriented then
Return the oriented H

else
Append 0 to the end of R

F ← the integer representing the partial orientation of H.
Return (R,X, F )

We will show the following claim.

Claim 98.1. Let e be a vector in [cr!]M from which Algorithm 3 cannot produce a p-equitable
orientation of H and outputs a log (R,X, F ). We can reconstruct e from (R,X, F ).

Proof of the claim. First we show that we can find, for every z ≤ M , the set C(z) of
hyperedges which are oriented after z steps. We proceed by induction on z, starting from
C(0) = ∅. At step z + 1, Algorithm 3 chooses an orientation for the smallest index i not in
C(z). If, in R, the (z + 1)-th 1 is not followed by a 0, then there is no bad event triggered
by this step. In this case the set C(z + 1) is the set C(z) ∪ i. Suppose now that the
(z + 1)-th 1 is followed by a sequence of 0: this means that the algorithm encountered a
bad event. By looking at the number of sequences of 0 in R before the z + 1-th 1 we can
deduce the number of bad events before this one. This mean we can find, in X, the 7-tuple
(x1, x2, x3, x4, x5, x6, x7) associated to this bad event. We take the following notations for the
bad event : After orienting S1, a hyperedge S of H is pressured by a family {S1, . . . , Sr1}
of cardinality r1. We note si the subset of Si that is sent to P . S1 is the last hyperedge
we oriented (known by induction), x1 indicates s1 amongst the subset of S, x2 indicates
S amongst the set of hyperedges containing s1, x3 indicates the sd for d ∈ [2, r1], and x4

indicates the Sd for d ∈ [2, r1]. In this case the set C(z + 1) is the set C(z) for which we
removed all the ESd for d ∈ [2, r1].

We can now deduce the set S(z) of all chosen orientations after z steps. We also proceed
by induction, this time starting from step M . By construction, F is exactly the integer
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representing the partial orientation of H at step M . If the last letter of R is a 1, this means
the last step of the algorithm consisted only of choice of an orientation. We just showed that
we know which orientation was chosen after M − 1 steps, so we can deduce the state of all
orientations after M −1 steps. If the last letter is a 0, Algorithm 3 encountered a bad event.
Keeping the notation of the bad event, let (x1, x2, x3, x4, x5, x6, x7) be the 7-tuple associated
to this bad event. Like before x1, x2, x3, x4 and the knowledge of C(M − 1) allow us to
know which permutations Algorithm 3 erased at this step. Moreover x7 tells us the random
choice made by Algorithm 3 and from x7 and x1 we can deduce P . For each si we know the
orientation chosen for Si at the step M − 1 sends P onto si, from x5 we deduce exactly in
which order and from x6 we get the rest of the orientation. Therefore we can deduce the set
of chosen orientations before the bad event occurred. With the sets S(z) and C(z) known
for all z ≤M we can easily deduce e. �
The previous claim has the following corollary:

Corollary 99. If H admits no p-equitable orientation, then Algorithm 3 defines an injection
from the set of vectors [cr!]M into LM .

Let LM be the set of all possible logs after M steps of Algorithm 3. To show Theorem
98 it suffices to show that, for M big enough, |LM | is strictly smaller than (cr!)M .

Lemma 100. For M big enough, |LM | < (cr!)M .

Proof. We will compute a bound for |LM |. R is a binary word of size ≤ 2M , and there are
at most 4M such words. X is a list of 7-tuples. As Algorithm 3 made M choices and each
bad event removes r1 of those, there exist at most M

r1
bad events. Moreover, for each 7-tuple,

(x1, x2, x3, x4, x5, x6, x7) we have x1 ≤
(
r
p

)
, x2 ≤ k, x3 ≤

( (r
p)

r1−1

)
, x4 ≤ kr1−1, x5 ≤ p!r1−1,

x6 ≤ (r − p)!r1−1, x7 ≤ r!. Using the bounds
(
n
k

)
≤ (n·e

k
)k or

(
n
k

)
≤ nk we get the following

bound.

|X| ≤

(
rp · k ·

(
rp · e
r1 − 1

)r1−1

· (k · p! · (r − p)!)r1−1 · r!

)M/r1

≤ (r! · (rp)r1 · (r − p)!r1−1)
M/r1 · (k · e · p!)M

(r1 − 1)M(r1−1)/r1

≤

[
rp · r!r1 ·

(
rp

r(r − 1) . . . (r − p+ 1)

)r1−1
]M/r1

·
(

k · e · p!
(r1 − 1)(r1−1)/r1

)M
We can assume r > 2p, and so r

r−p+1
< 2:

|X| ≤ r!M ·
(
rp/r1 · 2p · k · e · p!

(r1 − 1)(r1−1)/r1

)M
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As |F | ≤ (r! + 1)|H| and |LM | ≤ |F ||X||R| we get the following bound on |LM |:

|LM | ≤ r!M ·
(

4 · rp/r1 · 2p · k · e · p!
(r1 − 1)(r1−1)/r1

)M
· (r! + 1)|H|

5.1.2 Derangements

This subsection is devoted to the proof of Lemma 55. The main ingredient is the following
lemma from Erdős and Spencer [24]:

Lemma 101 (Lopsided Lovász Local Lemma). Let A1, . . . , Am be events in a probability
space, each with probability at most p. Let G be a graph defined on those events such that
for every Ai, and for every set S avoiding both Ai and its neighbours, the following relation
holds:

Pr[Ai|
∧
Aj∈S

Āj] ≤ P [Ai]

Then if 4dp ≤ 1, all the events can be avoided simultaneously:

Pr[Ā1 ∧ · · · ∧ Ām] ≥ (1− 2p)m > 0

Thanks to this result we can prove the following, which can be seen as a generalization of
the fact that a random permutation of n points is a derangement with asymptotic probability
1/e.

Lemma 55. Let p, k ∈ N and α < 1 be fixed. Let X be a set of cardinality r and let LS be,
for every S ∈

(
X
p

)
, a collection of p-subsets of X with |LS| ≤ k. Then, if no p-subset occurs

in more than rα of the LS, a random permutation σ of X satisfies σ(S) 6∈ LS for every S

with probability ≥ (1− 2k/
(
r
p

)
)(

r
p) = e−2k + o(1) when r grows large.

Proof. For every S ∈
(
X
p

)
, we define the bad event BS with:

BS =
∨

S′∈LS

[σ(S) = S ′]

Each BS has a probability Pr[BS] ≤ k/
(
r
p

)
. On these bad events we define a lopsidependency

graph (see [24]) GB with the following adjacencies:{
(BS1 , BS2) : S1, S2 ∈

(
X

p

)
s.t.

[
S1

⋃
LS1

]⋂[
S2

⋃
LS2

]
6= ∅
}

As a p-subset of X intersects at most O(rp−1) others, and noting that every p-subset can
occur at most rα times, we have that:
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∆(GB) ≤ (k + 1)rα ×O(rp−1) = o(rp)

In order to apply the Lopsided Lovász Local Lemma to the events BS and graph GB, we
must ensure for every S ∈

(
X
p

)
and SB ⊆ V (GB)\NGB

[BS] that:

Pr[BS|
∧

BS′∈SB

B̄S′ ] ≤ Pr[BS] (5.1)

Indeed, if we denote by T (for trace) the number of elements of
⋃
BS′∈SB

S ′ sent by the

random permutation σ into
⋃
LS:

Pr[BS] =
∑
t

Pr[BS | T = t]Pr[T = t]

Pr[BS|
∧

BS′∈SB

B̄S′ ] =
∑
t

Pr[BS | T = t,
∧

BS′∈SB

B̄S′ ]Pr[T = t |
∧

BS′∈SB

B̄S′ ]

As
⋃
LS is disjoint from the

⋃
LS′ ,∀BS′ ∈ SB, we have:

Pr[BS | T = t,
∧

BS′∈SB

B̄S′ ] = Pr[BS | T = t]

And thus:
Pr[BS|

∧
BS′∈SB

B̄S′ ] =
∑
t

Pr[BS | T = t]Pr[T = t |
∧

BS′∈SB

B̄S′ ]

In order to prove (5.1), we will first need the following observation:

Claim 101.1. Pr[BS | T = t] is a decreasing function of t.

Proof of the claim. We compute the value of Pr[BS | T = t] exactly, denoting by r′ ≤ r the
cardinality of

⋃
BS′∈SB

S ′. It is equal to 0 when t > r′ − p, and is otherwise equal to:

Pr[BS | T = t] =
∑
S′∈LS

Pr[σ(S) = S ′ | T = t]

=
|LS|(
r−t
p

) (r′−pt )(
r′

t

)
=

(
|LS|

(r′ − p)!p!
r′!

)(
(r − p− t)!(r′ − t)!
(r′ − p− t)!(r − t)!

)
= Pr[BS | T = t− 1]

(
(r′ − p− t+ 1)

(r − p− t+ 1)

(r − t+ 1)

(r′ − t+ 1)

)
≤ Pr[BS | T = t− 1]

�
Additionally, we will prove a relationship on the members of

∑
t Pr[T = t] and on those

of
∑

t Pr[T = t |
∧
BS′∈SB

B̄S′ ], which both sum to 1.
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Claim 101.2. If Pr[T = t |
∧
BS′∈SB

B̄S′ ] is nonzero, then

Pr[T = t+ 1]

Pr[T = t]
≤
Pr[T = t+ 1|

∧
BS′∈SB

B̄S′ ]

Pr[T = t |
∧
BS′∈SB

B̄S′ ]

Proof of the claim. According to Bayes’ Theorem applied to the right side of the equation,

Pr[T = t+ 1|
∧
BS′∈SB

B̄S′ ]

Pr[T = t |
∧
BS′∈SB

B̄S′ ]
=
Pr[
∧
BS′∈SB

B̄S′ | T = t+ 1]Pr[T = t+ 1]

Pr[
∧
BS′∈SB

B̄S′ | T = t]Pr[T = t]

We thus only need to ensure the following, which is a consequence of Lemma 102:

Pr[
∧

BS′∈SB

B̄S′ | T = t+ 1] ≥ Pr[
∧

BS′∈SB

B̄S′ | T = t]

�
We are now ready to prove (5.1), and we define dt for every t where Pr[T = t] is nonzero:

dt = Pr[T = t]− Pr[T = t |
∧

BS′∈SB

B̄S′ ]

Because dt is a difference of probability distributions the sum
∑

t dt is null, and we can
rewrite (5.1) using dt:

0 ≤ Pr[BS]− Pr[BS|
∧

BS′∈SB

B̄S′ ]

≤
∑
t

Pr[BS | T = t]Pr[T = t]−
∑
t

Pr[BS | T = t]Pr[T = t |
∧

BS′∈SB

B̄S′ ]

≤
∑
t

dtPr[BS | T = t]

We will thus prove that the sum
∑

t dtPr[BS | T = t] is nonnegative. It is a consequence
of Claim 101.2 that all nonnegative values of dt appear before all nonpositive ones, and so
that there is a t0 such that dt ≥ 0 if and only if t ≤ t0. As a result, |

∑
t≤t0 dt| = |

∑
t>t0

dt| = 1
2

and we can write:∑
t

dtPr[BS | T = t] =
∑
t≤t0

dtPr[BS | T = t] +
∑
t>t0

dtPr[BS | T = t]

≥ 1

2
Pr[BS | T = t0]− 1

2
Pr[BS | T = t0 + 1] ≥ 0 (by Claim 101.1)

The second hypothesis of Lemma 101 is that 4pd ≤ 1, which translates in our case to
4 k

(r
p)
o(rp) = o(1) and is thus satisfied when r grows large. Hence, we have that:

Pr[
∧
S

B̄S] ≥
[
1− 2k/

(
r

p

)](r
p)

= e−2k + o(1)
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Lemma 102. Let A,B be two sets of size r, and let σ : A 7→ B be a random bijection. For
every A1, . . . , Ak ⊆ A′ ⊆ A and B1, . . . , Bk ⊆ B′ ⊆ B, the following function increases with
t.

Pr

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′)\B′ has cardinality t

]
(5.2)

Proof. We implicitly assume in this proof that the conditionning event has a nonzero prob-
ability for t and t + 1. Let S1, S2 be two sets of cardinality |A′| with symmetric difference
S1∆S2 = {x, y} where x ∈ S2 is an element of B\B′. Let σxy be the permutation transposing
x and y. Then,

Pr

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S1

]
≤ Pr

[∧
i

[σxyσ(Ai) 6= Bi]
∣∣∣ σ(A′) = S1

]

= Pr

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S2

]

We are now ready to derive the result:

(5.2) =
1(|B\B′|

t

)( |B′|
|A′|−t

) ∑
S⊆B
|S|=|A′|
|S\B′|=t

Pr

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S

]

Using our previous remark, we find an upper bound on the last term of the equation by
averaging it over sets S ′ obtained from S by the exchange of two elements:

(5.2) ≤
1(|B\B′|

t

)( |B′|
|A′|−t

) ∑
S⊆B
|S|=|A′|
|S\B′|=t

1

(|B\B′| − t)(|A′| − t)
∑

S′⊆B
|S′|=|A′|
|S′\B′|=t+1

|S∆S′|=2

Pr

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S′

]

=
1(|B\B′|

t

)( |B′|
|A′|−t

) (t+ 1)(|B′| − |A′|+ t+ 1)

(|B\B′| − t)(|A′| − t)
∑

S′⊆B
|S′|=|A′|
|S′\B′|=t+1

Pr

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S′

]

=

(|B\B′|
t+1

)( |B′|
|A′|−t−1

)
(|B\B′|

t

)( |B′|
|A′|−t

) (t+ 1)(|B′| − |A′|+ t+ 1)

(|B\B′| − t)(|A′| − t)
Pr

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′)\B′ has cardinality t+ 1

]

= Pr

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′)\B′ has cardinality t+ 1

]
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5.2 AVD-colouring

In this section, we present the proof of Theorem 57 obtained in [37] with Gwenaël Joret.
In Subsection 5.2.1 we set up the plan for the proof of Theorem 57. In particular,

vertices with big degrees (at least ∆/2, roughly) and those with small degrees are treated
independently, and differently. Then, Subsection 5.2.2 and Subsection 5.2.3 are devoted to
handling big and small degree vertices, respectively.

5.2.1 Initial colouring

Fix some ε with 0 < ε < 1/2, which will be assumed small enough later in the proof. Let G
be a graph with maximum degree ∆ and no isolated edge. We assume ∆ is large enough for
various inequalities appearing in the proof to hold.

The beginning of our proof of Theorem 57 follows closely that of Hatami [35]. In particu-
lar, we reuse his approach of treating differently vertices with ‘small’ degrees and those with
‘big’ degrees, except we use (1/2− ε)∆ as the threshold instead of ∆/3 in [35]. This larger
threshold helps a little bit in reducing the additive constant in the main theorem; however,
the bulk of the reduction from 300 to 19 comes from treating big degree vertices differently.

Let d := d(1/2− ε)∆e. Taking ∆ large enough, we may assume that d < ∆/2. We begin
as in [35] by modifying the graph G as follows. Let G′ be the multigraph obtained from
G by contracting each edge uv ∈ E(G) such that dG(u) < d and dG(v) < d but neither u
nor v has any other neighbour w with dG(w) < d. Then G′ has maximum degree ∆ and
maximum edge multiplicity at most 2. Every proper edge colouring c′ of G′ can be extended
to a proper edge colouring c of G with the same set of colours as follows: For each edge
e ∈ E(G) appearing in G′, set c(e) := c′(e). For each edge uv ∈ E(G) that was contracted,
we know that dG(u) + dG(v) < ∆. Thus some colour α of c′ is not used on any of the edges
incident to u and v, set then c(uv) := α.

In [35], the author points out that if moreover c′ is an AVD-colouring of G′ then c is an
AVD-colouring of G. Using this observation, the proof in [35] then focuses on finding an
AVD-colouring of G′. This is done by starting with a proper edge colouring c′ with ∆ + 2
colours, which exists by Vizing’s theorem, and then recolouring some edges of G′ with new
colours to obtain an AVD-colouring of G′. The advantage of working in G′ instead of G
is that the subgraph of G′ induced by the vertices with degree strictly less than d has no
isolated edge, which is important in that proof.

In our proof, we follow a similar approach but we keep the focus on G: We start with a
proper edge colouring c′ of G′ with ∆+2 colours obtained from Vizing’s theorem and extend
it to an edge colouring c of G as in the above remark. Thus, the edge colouring c uses ∆ + 2
colours and satisfies the following property:

Sc(u) ∩ Sc(v) = {c(uv)} ∀uv ∈ E(G) s.t.{w ∈ N(u) ∪N(v) : dG(w) < d} = {u, v}. (5.3)

Then, we modify c to obtain an AVD-colouring of G. Thus G′ is only used to produce the
initial edge colouring c of G. One advantage of working in G is that we avoid having to
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deal with parallel edges, which would introduce (trivial but annoying) technicalities in our
approach. On the other hand, a small price to pay compared to [35] is that we will have
to watch out for these edges uv such that {w ∈ N(u) ∪ N(v) : dG(w) < d} = {u, v} in our
proof.

Say that a vertex u ∈ V (G) is small if dG(u) < d, and big otherwise. Let A and B be the
sets of small and big vertices of G, respectively. Our goal is to transform the edge colouring c
into an AVD-colouring of G. The plan for doing so is roughly as follows. First we show that
we can uncolour a bounded number of edges per big vertex in such a way that edges uv with
Sc(u) = Sc(v) and u, v ∈ B that remain form a matching satisfying some specific properties.
Then we show how we can recolour these uncoloured edges, plus a few other edges of G, to
obtain an edge colouring where every edge uv with u, v ∈ B satisfies Sc(u) 6= Sc(v). Finally,
we recolour edges with both endpoints in A in such a way that the resulting edge colouring
is an AVD-colouring of G.

5.2.2 Big vertices

For each vertex u ∈ B, choose an arbitrary subset N+(u) of N(u) of size d. We use a
randomised algorithm, Algorithm 4, to select a subset U+(u) ⊆ N+(u) of size 2 for each
vertex u ∈ B. For each vertex v ∈ V (G), we let U−(v) := {u ∈ B : v ∈ U+(u)}. Algorithm 4
chooses the subsets U+(u) iteratively, one big vertex u at a time. Hence, we see the sets
U+(u) as variables, and the sets U−(v) (v ∈ V (G)) as being determined by these variables.
(For definiteness, we set U+(u) := ∅ for every small vertex u.) Just after choosing the subset
U+(u) of a big vertex u, the algorithm checks whether this choice triggered any ‘bad event’.
If so, the bad event is handled, which involves resetting the variable U+(u), which means
setting U+(u) := ∅, and possibly resetting other variables U+(v) for some well-chosen big
vertices v close to u in G.

Thanks to these bad events, the selected subsets satisfy a number of properties. A key
property is that |U−(v)| ≤ q for every v ∈ V (G), with q := 13 being the constant that is
optimised in this proof.

At any time during the execution of the algorithm, we say that an edge uv ∈ E(G) is
selected if v ∈ U+(u) or u ∈ U+(v). In the algorithm, we will make sure that if v ∈ U+(u)
then u /∈ U+(v) (that is, an edge can be selected ‘at most once’).

After the algorithm terminates, selected edges will be used to fix locally the edge colouring
c for big vertices: The plan is to recolour them using q + 3 new colours, and then recolour
a well-chosen matching of G with yet another new colour, in such a way that at the end
Sc(u) 6= Sc(v) holds for all edges uv ∈ E(G) with u, v ∈ B. The resulting edge colouring of
G will use ∆ + q + 6 colours in total.

Let us explain the conventions and terminology used in Algorithm 4. First, we assume
that the vertices of G are ordered according to some fixed arbitrary ordering. This naturally
induces an ordering of each subset of V (G) as well, of each set of pairs of vertices (say using
lexicographic ordering), and more generally of any set of structures built using vertices of
G. This is used implicitly in what follows.
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We say that an edge uv linking two big vertices is finished if U+(w) 6= ∅ for each big
vertex w in N(u) ∪ N(v) (note that this set includes u and v). For u ∈ V (G), define S ′(u)
as the set Sc(u) minus colours of edges incident to u that are selected. That is,

S ′(u) := {c(uv) : v ∈ N(u), v /∈ U+(u) ∪ U−(u)}.

In the algorithm, we check whether S ′(u) = S ′(v) for two big vertices u, v with dG(u) = dG(v)
only when uv is finished, the idea being that if there are still big vertices adjacent to u or
v waiting to be treated then this could potentially impact the sets S ′(u) and S ′(v). We say
that an edge uv ∈ E(G) is bad if u, v ∈ B, uv is finished, dG(u) = dG(v), and S ′(u) = S ′(v).

As mentioned earlier, we need to watch out for edges uv such that dG(u) = dG(v) < d
and dG(w) ≥ d for all w ∈ (N(u) ∪N(v))− {u, v}. This is because every edge incident to u
or v distinct from uv is incident to a big vertex, and all these edges will have a fixed colour
when we are done dealing with big vertices. Indeed, in the next section we only recolour
edges in the subgraph induced by small vertices. Thus, if u and v were to see the same set
of colours at the end of this step, we would have no way to fix this later. Note that at the
beginning u and v see disjoint sets of colours in the edge colouring c except for colour c(uv).
Once the algorithm terminates, we will recolour at most q + 2 edges incident to each big
vertex w (with new colours). Thus, if dG(u) = dG(v) ≥ q + 4, we know that there will be at
least one edge e incident to u distinct from uv that kept its original colour c(e). Since v does
not see the colour c(e), we are then assured that u and v see different sets of colours after the
recolouring step. Therefore, it is only when dG(u) = dG(v) ≤ q+3 that we need to be careful
when selecting edges incident to u or v to recolour. Let us call such edges fragile edges, i.e.
uv is fragile if dG(u) = dG(v) ≤ q + 3 and dG(w) ≥ d for all w ∈ (N(u) ∪ N(v)) − {u, v}.
Fragile edges will be carefully handled in the algorithm.

As mentioned, the algorithm considers remaining big vertices u with U+(u) = ∅ one
by one, selects the subset U+(u) randomly each time, and deals with any bad event that
may occur. Let us explain how the random choices are made. Given a big vertex u with
U+(u) = ∅, an unordered pair {v, w} ⊆ N+(u) is admissible for u if the following three
conditions are satisfied:

• v, w /∈ U−(u);

• if vw ∈ E(G) then vw is not fragile, and

• setting U+(u) := {v, w} does not create any bad edge incident to u.

At the beginning of the while loop, the algorithm chooses an admissible pair for the vertex
u ∈ B under consideration uniformly at random among the first s :=

(
d−q

2

)
− 3d admissible

pairs. Lemma 103 below shows that there are always at least s such pairs, thus this random
choice can always be made.

Five types of bad events are considered in the algorithm. They correspond to the five
conditions tested by the if / else if statements; we refer to them as Bad Event 1, Bad
Event 2, etc. in order. These events state the existence of certain structures in the graph.
We remark that there could be more than one instance of the structure under consideration
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Bad Event 1 Bad Event 2 Bad Event 3

Bad Event 4 Bad Event 5
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wv y

u u z
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or

≥ 1

wv

u x

fragile

Figure 5.1: The five types of bad events in Algorithm 4. Bad edges are drawn in bold. (Note
that possibly z = u in Bad Event 5.)

in the graph. (For instance, there could be two vertices v ∈ N(u) with |U−(v)| = q + 1 in
Bad Event 1.) In this case, we assume that the algorithm chooses one according to some
deterministic rule. For the convenience of the reader, the five types of bad events considered
are illustrated in Figure 5.1. Let us emphasise that if any bad event is triggered, then the
current vertex u is always reset (i.e. the algorithm sets U+(u) := ∅). This will ensures that no
other bad event remains in the graph after dealing with the bad event under consideration.

The following lemma establishes some key properties of Algorithm 4. Note that by an
invariant of the while loop, we mean a property that is true every time the condition of the
loop is being tested. Thus, such a property holds when a new iteration of the loop starts,
and also when the loop (and thus the algorithm) stops.

Lemma 103. The following properties are invariants of the while loop in Algorithm 4:

1. |U−(v)| ≤ q for every v ∈ V (G).

2. At least one of U−(v), U−(w) is empty for each fragile edge vw.

3. Bad edges form a matching.

4. If w, x ∈ B belong to distinct bad edges, then ({w} ∪ U+(w)) ∩ ({x} ∪ U+(x)) = ∅.

5. Every u ∈ B with U+(u) = ∅ has at least s admissible pairs.

Proof. Let us start with property (1). Clearly, |U−(v)| ≤ q for every v ∈ V (G) the first time
the condition of the while loop is being tested. This remains true for every subsequent test
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Algorithm 4: Uncolouring some edges incident to big vertices.

U+(u)← ∅ ∀u ∈ B
while ∃v ∈ B with U+(v) = ∅ do

u← first such vertex
U+(u)← admissible pair chosen uniformly at random among first s ones
if ∃v ∈ N(u) with |U−(v)| = q + 1 then

U+(w)← ∅ ∀w ∈ U−(v)
else if ∃ fragile edge vw and x ∈ V (G)− {u, v, w} s.t. u ∈ U−(v) and
x ∈ U−(w) then
U+(a)← ∅ ∀a ∈ {u, x}

else if ∃ distinct bad edges vw,wx with u ∈ N(v) ∪N(w) then
U+(a)← ∅ ∀a ∈ {u, v, x}

else if ∃ two independent bad edges vw, xy with u ∈ N(v)∪N(w)∪N(x)∪N(y)
and x ∈ U+(w) then
U+(a)← ∅ ∀a ∈ {u, v, w, y}

else if ∃ two independent bad edges vw, xy with u ∈ N(v) ∪N(w), and
∃z ∈ V (G)− {v, w, x, y} with w, x ∈ U−(z) then
U+(a)← ∅ ∀a ∈ {u, v, w, x, y}

of the condition, thanks to Bad Event 1: Selecting the subset U+(u) for a vertex u ∈ B
could create up to two vertices v with |U−(v)| = q+ 1 but these get fixed immediately when
u is reset. Hence, (1) is an invariant of the loop.

Similarly, it is clear that property (2) is an invariant of the while loop, thanks to Bad
Event 2.

Let us consider property (3). The property is true at the beginning of the algorithm,
since there are no bad edges. Next, suppose that property (3) held true at the beginning of
the loop but that there are two incident bad edges e, f just after selecting the admissible pair
U+(u) for a big vertex u. Then at least one of e, f , say e, became bad just after treating u.
Note that e cannot be incident to u, by definition of admissible pairs. Thus e is at distance
1 from u. It suffices to show that some bad event is triggered, since then u is reset and e
is no longer bad (since e is not finished). This is clearly true, since either Bad Event 1 or
Bad Event 2 is triggered, and if not then Bad Event 3 is triggered for sure (because of the
existence of the pair e, f). Thus we see that property (3) is an invariant of the loop.

The proof for property (4) is similar. The property clearly holds at the beginning of the
algorithm. Next, suppose that it held true at the beginning of the loop but that just after
selecting the subset U+(u) for a big vertex u, there are two independent bad edges vw, xy
s.t. {w} ∪ U+(w) and {x} ∪ U+(x) intersect. Then at least one of the two edges, say vw, is
at distance exactly 1 from u. (Recall that u cannot be incident to either of the two edges,
by definition of admissible pairs.) As before, it suffices to show that some bad event occurs,
since then u is reset and vw is no longer bad. Let z ∈ ({w} ∪ U+(w)) ∩ ({x} ∪ U+(x)) and
say none of the first four bad events happens. Then z /∈ {v, w, x, y}, since otherwise Bad
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Event 4 would have been triggered. But this shows that Bad Event 5 occurs. We deduce
that property (4) is maintained.

Finally, it remains to show that property (5) is an invariant of the loop. Consider thus
any vertex u ∈ B with U+(u) = ∅ when the condition of the loop is being tested. (Thus, a
new iteration of the loop is about to start.) From invariant (1), we know that there are at
least

(
d−q

2

)
unordered pairs of distinct vertices in N+(u)−U−(u). Next, a key observation is

that for every x ∈ N(u), if there exists {v, w} ⊆ N+(u)−U−(u) s.t. setting U+(u) := {v, w}
makes the edge ux bad, then the set {v, w} is uniquely determined. Hence, potential bad
edges forbid at most |N(u)| ≤ ∆ pairs of vertices in N+(u) − U−(u). Finally, among the
remaining pairs {v, w}, at most bd/2c of them are s.t. vw is a fragile edge. Therefore, we
conclude that there are at least

(
d−q

2

)
− ∆ − bd/2c ≥

(
d−q

2

)
− 3d = s admissible pairs for

u.

The properties listed in Lemma 103 hold in particular when Algorithm 4 stops. However,
it is not clear at first sight that the algorithm should ever stop. Our next result shows that
it does so with high probability. For simplicity, we sometimes call one iteration of the while

loop a step.

Theorem 104. The probability that Algorithm 4 stops in at most t steps tends to 1 as
t→∞.

We use an ‘entropy compression’ argument to prove this theorem, a proof method intro-
duced by Moser and Tardos [54] in their celebrated algorithmic proof of the Lovász Local
Lemma. In a nutshell, the main idea of the proof is to look at sequences of t random
choices such that the algorithm does not stop in at most t steps. Exploiting the fact that
the algorithm did not stop, we show how one can get an implicit lossless encoding of these
sequences, by writing down a concise log of the execution of the algorithm. Then, looking at
the structure of the algorithm, we prove that there are only o (st) such logs. Since in total
there are st random sequences of length t, we deduce that only a o(1)-fraction of these make
the algorithm run for at least t steps. Theorem 104 follows.

To describe the log of an execution of the algorithm, we need the following definitions.
First, recall that a Dyck word of semilength k is a binary word w1w2 . . . w2k with exactly k
0s and k 1s such that the number of 0s is at least the number of 1s in every prefix of the
word. A descent in a Dyck word is a maximal sequence of consecutive 1s, its length is the
number of 1s.

For our purposes, it will be more convenient to drop the requirement that a Dyck word
has the same number of 0s and 1s. Let us define a partial Dyck word of semilength k as a
binary word w1w2 . . . wp with exactly k 0s and at most k 1s such that the number of 0s is at
least the number of 1s in every prefix of the word. Descents are defined in the same way as
for normal Dyck words.

Let us consider a sequence (r1, . . . , rt) of t random choices such that Algorithm 4 does not
stop in at most t steps when run with these random choices. In other words, the algorithm is
about to start its (t+1)-th iteration of the while loop, at which point we freeze its execution.
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Each random choice ri consisted in choosing an admissible pair for some big vertex u among
its first s admissible pairs, thus we see ri as a number in [s].

For each i ∈ [t + 1], let U+
i and U−i denote the functions U+ and U−, respectively, at

the beginning of the i-th iteration, and let Bi denote the subset of vertices u ∈ B with
U+
i (u) = ∅. We associate to the sequence (r1, . . . , rt) a corresponding log (W, γ, δ, U+

t+1),
where W is a partial Dyck word of semilength t such that the length of each descent is in the
set {2, 3, 4, 5, q + 1}, and γ = (γ1, . . . , γt) and δ = (δ1, . . . , δt) are two sequences of integers.

The partial Dyck word W is built as follows during the execution of the algorithm:
Starting with the empty word, we add a 0 at the end of the word each time a big vertex is
treated. If the corresponding random choice triggers a bad event, we moreover add ` 1s at
the end of the word, where ` is the number of big vertices that are reset (so ` = q+1, 2, 3, 4, 5
for bad events of types 1, 2, 3, 4, 5, respectively). Thus descents in W are in bijection with
bad events treated during the execution, and the length of a descent tells us the type of the
corresponding bad event.

The two sequences γ and δ are defined as follows. For i ∈ [t], the integers γi and δi
encode information about the bad event handled during iteration i. If there was none, we
simply set γi := δi := −1. Otherwise, γi is a nonnegative integer encoding the set of big
vertices that are reset when the bad event is handled, and δi is a nonnegative integer encoding
extra information which will help us recover the random choice ri from the log. The precise
definitions of γi and δi depend on the type of the bad event (see the list below); however,
before giving these definitions we must explain the assumptions we make.

The definition of γi assumes that the set Bi is known. In turn, γi will encode enough
information to determine completely Bi+1 from Bi. Since B1 = B, it then follows that we
can read off all the sets B1, B2, . . . , Bt+1 from the sequence γ: For i = 1, . . . , t, either γi ≥ 0,
in which case Bi+1 is determined by Bi and γi. Or γi = −1, in which case no bad event
occurred during iteration i, and thus Bi+1 := Bi − {u} where u is the first vertex in Bi.

As already mentioned, the purpose of the log is to encode all t random choices r1, . . . , rt
that have been made during the execution. To encode ri (i ∈ [t]), we work backwards: We
assume that the function U+

i+1 is known, and we show that one can then deduce ri and U+
i

using the log. Since U+
t+1 is part of the log, this implies that the log uniquely determines

rt, rt−1, . . . , r1, as desired. Let us remark that if no bad event occurred during the i-th
iteration, then we can already deduce ri and U+

i from U+
i+1 using the sets Bi and Bi+1.

Indeed, in this case Bi = Bi+1 ∪ {u} where u is the vertex treated during the i-th iteration.
Thus, for v ∈ B,

U+
i (v) =

{
U+
i+1(v) if v 6= u
∅ if v = u

Furthermore, U+
i+1(u) tells us what was the random choice ri that was made for u during

iteration i. Indeed, using U+
i we can deduce what was the set of admissible pairs for u at

the beginning of iteration i. Then, ri is the position of the pair U+
i+1(u) in the ordering of

these admissible pairs. Therefore, it is only when a bad event happens that we need extra
information to determine ri and U+

i . This is precisely the role of δi.

Definitions of γ and δ. Let i ∈ [t]. If no bad event occurred during iteration i, set
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γi := −1 and δi := −1. Otherwise, say that a bad event β of type j was handled. The
definition of γi assumes that Bi is known, while that of δi assumes that Bi and U+

i+1 are both
known. In particular, we know the vertex u treated at the beginning of the iteration, since
it is the first vertex in Bi. With these remarks in mind, γi and δi are defined as follows:

j = 1 The bad event β was triggered because the admissible pair chosen for u contained a ver-
tex v with |U−i (v)| = q. Vertex u and the q vertices in U−i (v) were subsequently reset.
There are at most d choices for vertex v and at most

(
∆
q

)
choices for U−i (v). We may

thus encode v and U−i (v) with a number γi ∈
[
d
(

∆
q

)]
. Observe that Bi+1 = Bi∪U−i (v).

Now that v and U−i (v) are identified, we want to encode the admissible pair {v, x} that
was chosen for u at the beginning of the iteration, and the sets U+

i (w) for each vertex
w ∈ U−i (v). There are at most d choices for x, and similarly for each w ∈ U−i (v) there
are at most d choices for the vertex in U+

i (w) which is distinct from v. We let δi ∈ [dq+1]
encode these choices. Since U+

i only differs from U+
i+1 on vertices w ∈ U−i (v), with the

encoded information we can deduce U+
i from U+

i+1. Note also that ri is determined by
the admissible pair {v, x} that was chosen for u.

j = 2 The bad event β was triggered because the admissible pair chosen for u contained a
vertex v incident to a fragile edge vw with U−i (w) 6= ∅. Then two vertices were reset,
namely u and some vertex x in U−i (w). There are at most d choices for vertex v. Once
v is identified, we know vertex w since fragile edges form a matching. Finally, there
are at most q + 2 choices for x, since dG(w) ≤ q + 3 and x 6= v. We let γi ∈ [(q + 2)d]
encode v, w, and x. Observe that Bi+1 = Bi ∪ {x}.

Next, to encode ri we only need to specify the vertex in the admissible pair chosen for
u that is distinct from v (d choices). Similarly, there are at most d possibilities for the
set U+

i (x) since we know that it includes w. Hence, we can encode this information
with a number δi ∈ [d2]. Note that, knowing x and U+

i (x), we can directly infer U+
i

from U+
i+1, since U+

i (y) = U+
i+1(y) for all y ∈ B − {x}.

j = 3 After selecting the admissible pair for u, we had S ′(v) = S ′(w) = S ′(x) for three dis-
tinct vertices v, w, x ∈ B − {u} with vw,wx ∈ E(G) and u ∈ N(v) ∪ N(w). Then
u, v, x were reset. There are at most 2∆3 choices for the triple v, w, x (the factor 2 is
due to the fact that u can be adjacent to v or w). We let γi ∈ [2∆3] encode v, w, x.
Observe that Bi+1 = Bi ∪ {v, x}.

Knowing v, w, x and U+
i+1, our next aim is to encode U+

i and ri using δi. First, we
simply encode the admissible pair {u1, u2} that was chosen for u during the i-th itera-
tion explicitly, thus there are

(
d
2

)
possibilities. Next, we observe that U+

i (y) = U+
i+1(y)
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for every y ∈ B − {u, v, x}, and U+
i (u) = ∅. Thus it only remains to encode U+

i (v)
and U+

i (x). Here the idea is that, since at this point we know the set U+
i (w) and

the admissible pair {u1, u2} chosen for u, there are only O(1) possibilities for the sets
U+
i (v) and U+

i (x) in order to have that S ′(v) = S ′(w) = S ′(x) just before u, v, x were
reset.

Let us focus on the set U+
i (v), the argument for U+

i (x) will be symmetric. First, let
us write down the following local information: (1) Is w ∈ U+

i (v)? (2) Is w ∈ U+
i (x)?

(3) Is v ∈ U+
i (x)? Thus there are 8 possibilities. (1)–(2) gives enough information

to reconstruct the set S ′(w) just before the resets, since we already know U+
i (w) and

whether w ∈ {u1, u2} or not. From (3) we also know the set S ′′(v) := S ′(v)− {c(vv′) :
v′ ∈ U+

i (v)} just before the resets, since we know whether v ∈ {u1, u2} or not, and
whether v ∈ U+

i (z) or not for every z ∈ N(v)− {u}. Now, it only remains to observe
that U+

i (v) is determined by the two sets S ′′(v) and S ′(w), namely U+
i (v) = {v′ ∈

N(v) : c(vv′) ∈ S ′′(v)− S ′(w)}.

Proceeding similary for the set U+
i (x) (8 possibilities again), this fully determines U+

i .
Now, given U+

i we know exactly the set of admissible pairs for u at the beginning of
the i-th iteration. Since we know that the pair {u1, u2} was chosen, we can deduce
the value of ri. Hence, this shows that U+

i and ri can be encoded using a number
δi ∈ [64

(
d
2

)
]. (The constant 64 could be reduced with a more careful analysis but this

would not make a difference later on.)

j = 4 Here we let γi ∈ [4∆4] encode the four vertices v, w, x, y as seen from u (the factor 4
comes from the fact that u is adjacent to at least one of them but we do not know
which one). Since u, v, w, y are reset during this iteration, we have Bi+1 = Bi∪{v, w, y}.

Next, we set up δi to encode U+
i and ri knowing U+

i+1. As in the previous case, we
encode the admissible pair {u1, u2} that was chosen for u during the i-th iteration
explicitly (

(
d
2

)
choices). Once we know U+

i , we know which are the admissible pairs
for u at the beginning of the i-th iteration, and thus we can determine ri, exactly as
before. Thus, it only remains to encode U+

i (v), U+
i (w), and U+

i (y).

Let us start with U+
i (w). We already know that x ∈ U+

i (w), and we encode the other
vertex in U+

i (w) explicitly (d choices).

Next, consider U+
i (v). Here, the idea is the same as for Bad Event 3, namely once

U+
i (w) is known there are only O(1) possibilities for U+

i (v) to have that S ′(v) = S ′(w)
just before the resets. To be precise, we write down the following local information:
(1) Is w ∈ U+

i (v)? (2) Is w ∈ U+
i (x)? (3) Is w ∈ U+

i (y)? (4) Is v ∈ U+
i (x)?
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(5) Is v ∈ U+
i (y)? Thus there are 32 possibilities. (1)–(3) gives us enough informa-

tion to reconstruct the set S ′(w) just before the resets, since we already know U+
i (w)

and whether w ∈ {u1, u2} or not. Similarly, (4)–(5) allow us to determine the set
S ′′(v) := S ′(v)− {c(vv′) : v′ ∈ U+

i (v)} just before the resets, which in turn determines
U+
i (v) since U+

i (v) = {v′ ∈ N(v) : c(vv′) ∈ S ′′(v)− S ′(w)}.

For U+
i (y), we proceed exactly as for U+

i (v), exchanging v with y and w with x. The
only difference here is that x is not reset, thus U+

i (x) = U+
i+1(x). We similarly conclude

that there are at most 32 possibilities for the set U+
i (y). In summary, we may encode

all the necessary information with a number δi ∈
[
210d

(
d
2

)]
.

j = 5: We let γi ∈ [2∆5] encode the vertices v, w, x, y, z. (Recall that possibly z = u.) Since
u, v, w, x, y are reset during this iteration, we have Bi+1 = Bi ∪ {v, w, x, y}.

Next, we encode U+
i and ri based on U+

i+1. Again, we encode the admissible pair

{u1, u2} chosen for u explicitly (
(
d
2

)
choices), which will determine ri once we know

U+
i . It only remains to encode U+

i (v), U+
i (w), U+

i (x), U+
i (y).

Similarly as for Bad Event 4, there are most d possibilities for the set U+
i (w), since we

already know that z ∈ U+
i (w). The same is true U+

i (x).

For U+
i (v) we proceed exactly as in the previous case, exploiting the fact that U+

i (w) is
already encoded: Writing down which sets among U+

i (v), U+
i (x), U+

i (y) include vertex
w, and similarly which of U+

i (x), U+
i (y) include v, is enough to determine U+

i (v). Thus
there are 32 choices. This is also true for U+

i (y) since the situation is completely
symmetric (swapping v, w with y, x, respectively). Hence, we can record the desired
information with a number δi ∈

[
210d2

(
d
2

)]
.

Let Rt denote the set of sequences (r1, . . . , rt) with each ri ∈ [s] such that Algorithm 4
does not stop in at most t steps when using r1, . . . , rt for the random choices. Also, let Lt
denote the set of logs defined by the algorithm on these sequences. The following lemma
follows from the discussion above.

Lemma 105. For each t ≥ 1, there is a bijection between the two sets Rt and Lt.

Next, we bound |Lt| from above when t is large. To do so we need to count some
specific Dyck words where each descent is weighted with some integer: Given a set E =
{(l1, w1), . . . , (lk, wk)} of couples of positive integers with all lj’s distinct, we let Ct,E be the
number of Dyck words of semilength t where each descent has length in the set {l1, . . . , lk},
and each descent of length lj is weighted with an integer in [wj].

For our purposes, we take E := {(l1, w1), . . . , (l5, w5)}, where (lj, wj) is determined by
the characteristics of Bad Event j: lj is the number of vertices that are reset, and wj is
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an upper bound on the number of values the corresponding pair (γi, δi) can take in the log
during the corresponding i-th iteration of the algorithm. Thus, following the discussion of
bad events above, we take:

• l1 = q + 1 and w1 =
(

∆
q

)
dq+2

• l2 = 2 and w2 = (q + 2)d3

• l3 = 3 and w3 = 27∆3
(
d
2

)
• l4 = 4 and w4 = 212∆4d

(
d
2

)
• l5 = 5 and w5 = 211∆4d2

(
d
2

)
In our logs we deal with partial Dyck words that are weighted as above. The difference

between the number of 0s and 1s in the partial Dyck word corresponds to the number of big
vertices u ∈ B for which U+(u) is currently not set; we call this quantity its defect. Observe
that partial weighted Dyck words of semilength t and defect k can be mapped injectively
to weighted Dyck words of semilength t + k by adding k occurrences of 011 at the end,
where each of the k new descents of length 2 are weighted with, say, the number 1. Since
k ≤ n = |V (G)|, we obtain the following lemma.

Lemma 106. |Lt| ≤
∑n

k=0Ct+k,E.

In our setting, n and s are fixed while t varies; thus, to prove that |Lt| ∈ o (st), it is
enough by the above lemma to show that Ct,E ∈ o (st). In order to bound Ct,E from above,
we follow [25] and use a bijection between Dyck words and rooted plane trees.

Lemma 107. The number Ct,E is equal to the number of weighted rooted plane trees on t+1
vertices, where each vertex has a number of children in E ∪ {0}, and for each i ∈ [5] each
vertex with li children is weighted with an integer in [wi] (leaves are not weighted).

The proof of this lemma is essentially that of Lemma 7 in [25].
Now we use generating functions and the analytic method described e.g. in [21, Section

1.2]. Let

y(x) :=
∑
t≥1

Ct,Ex
t

denote the generating function associated to our objects, and let

φ(x) := 1 +
5∑
i=1

wix
li .

Then y(x) satisfies y(x) = xφ(y(x)). As noted in [21, Theorem 5] (see also [28, p.278,
Proposition IV.5]), the following asymptotic bound holds for Ct,E.
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Theorem 108. Let R denote the radius of convergence of φ and suppose that limx→R−
xφ′(x)
φ(x)

>

1. Then there exists a unique solution τ ∈ (0, R) of the equation τφ′(τ) = φ(τ), and
Ct,E = O(γt), where γ := φ(τ)/τ .

The radius of convergence of our function φ is R = ∞, and limx→∞
xφ′(x)
φ(x)

> 1, thus the
theorem applies. For our purposes, it is not necessary to compute exactly τ , a good upper
bound on γ = φ(τ)/τ will be enough. To obtain such an upper bound we use the following
lemma.

Lemma 109. For every x ∈ (0, R), if xφ′(x)/φ(x) < 1 then φ(τ)/τ < φ(x)/x.

Proof. As noted in [28, Note IV.46] the function xφ′(x)/φ(x) is increasing on (0, R). Thus,
xφ′(x)/φ(x) < 1 if and only if x < τ . Consider the function xφ′(x)/φ(x) on (0, τ). Since

xφ′(x)/φ(x) < 1, we have xφ′(x) − φ(x) < 0. Moreover, since ∂
∂x

(φ(x)
x

) = xφ′(x)−φ(x)
x2

, we see

that φ(x)
x

is decreasing on (0, τ). Hence, φ(x)
x
> φ(τ)

τ
.

Using these tools we can bound γ from above.

Lemma 110. γ < s when d is large enough.

Proof. We will use Lemma 109. Let ε1 > 0 be fixed (at the end of the proof ε1 will be taken
small enough as a function of q = 13). Let

x :=

(
1

q(1 + ε1)w1

)1/(q+1)

.

We claim that xφ′(x)/φ(x) < 1 when d is large enough. First, let us give some intuition:
If we counted only the subset of weighted Dyck words where each descent is of length
l1 = q + 1 and is weighted with an integer in [w1], then the corresponding function φ would

be φ(x) = 1+w1x
q+1, and one would get τ =

(
1
qw1

)1/(q+1)

. As it turns out, the value of τ for

our function of φ tends to that one (from below) as d→∞, hence our choice of
(

1
qw1

)1/(q+1)

,

slightly scaled down, for x.

To show xφ′(x)/φ(x) < 1, we make the following observations, each of which is self
evident:

• xφ′(x) =
∑5

i=1 liwix
li

• φ(x) ≥ 1 + w1x
q+1

• x = O
(

1
d2

)
• liwi = O(d2li−1) for each i ∈ [2, 5].
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It follows that ∑5
i=2 liwix

li

φ(x)
= O

(
1

d

)
and

xφ′(x)

φ(x)
≤ (q + 1)w1x

q+1

1 + w1xq+1
+O

(
1

d

)
=

1
1+ε1
· q+1

q

1 + 1
(1+ε1)q

+O

(
1

d

)
=

1
1+ε1
· q+1

q

1
1+ε1
· q+1

q
+ ε1

1+ε1

+O

(
1

d

)
.

Thus xφ′(x)/φ(x) < 1 when d is large enough, as claimed. Hence, to prove the lemma it
is enough to show that φ(x)/x < s for d large enough, by Lemma 109.

Observe that
φ(x)

x
=

1

x
+ w1x

q +O(d).

Since s =
(
d−q

2

)
− 3d = Θ(d2), to prove that φ(x)/x < s for d large enough it is enough to

show that 1/x+ w1x
q < (1− δ)s for some fixed δ > 0. Let

cq,ε1 := (q(1 + ε1))1/(q+1) +

(
1

q(1 + ε1)

)q/(q+1)

.

Using that
(
a
b

)
≤ ab

b!
and d ≤ ∆/2, we obtain the following bound:

1

x
+ w1x

q = cq,ε1

((
∆

q

)
dq+2

)1/(q+1)

≤ cq,ε1

(
∆2q+2

2q+2q!

)1/(q+1)

= cq,ε1

(
1

2q+2q!

)1/(q+1)

∆2.

Since s =
(
d−q

2

)
− 3d, for any fixed ε′ > 0 we have s ≥ 1−ε′

2
d2 ≥ (1−ε′)(1/2−ε)2

2
∆2 if d is

large enough. Hence, to conclude the proof it suffices to show that the following inequality
holds if ε, ε′ and ε1 are chosen small enough:

cq,ε1

(
1

2q+2q!

)1/(q+1)

<
(1− ε′)(1/2− ε)2

2
. (5.4)

This is true, since cq,0

(
1

2q+2q!

)1/(q+1)

' 0.12292 < 1/8 for q = 13.

It follows from Theorem 108 and the above lemma that Ct,E ∈ o (st), and hence |Lt| ∈
o (st), when d is large enough. (To avoid any confusion, let us emphasise that here the o(·)
notation is w.r.t. the variable t, that is, we first assume that d is large enough for Lemma
110 to hold, and then when the graph is fixed we let t vary.) Since there are st random
sequences of length t, Theorem 104 follows from Lemma 105 and Lemma 110.

It follows from Theorem 104 that Algorithm 4 stops on some random sequence, and thus
a function U+ satisfying the properties of Lemma 103 exists. Consider such a function U+

and the corresponding set of selected edges. Recall that each vertex of G is incident to
at most q + 2 selected edges, as follows from property (1) of Lemma 103. Using Vizing’s
theorem we recolour the set of selected edges properly using q+ 3 new colours, say from the
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set [∆ + 3,∆ + q + 5]. Let c′ denote the resulting edge colouring of G. That is, c′(e) := c(e)
if e was not selected, and c′(e) denotes the new colour of e if e was selected.

For each bad edge uv ∈M , choose one of its two endpoints, say u, and mark one edge uw
for some vertex w ∈ U+(u), with w 6= v in case v ∈ U+(u). It follows from property (4) of
Lemma 103 that marked edges form a matching, and that each bad edge is incident to exactly
one marked edge. Recolouring all marked edges with a new colour, say colour ∆ + q+ 6, we
obtain a proper edge colouring c′′ of G with ∆ + q + 6 colours such that Sc′′(u) 6= Sc′′(v) for
all edges uv ∈ E(G) with u, v ∈ B and dG(u) = dG(v). Indeed, if uv is a bad edge this holds
because there is exactly one marked edge incident to uv, and it is distinct from uv itself.
If uv is not a bad edge, then by definition u and v see distinct sets of colours in the edge
colouring c when considering only non-selected edges. Since marked edges form a subset of
selected edges, we see that Sc′′(u) 6= Sc′′(v) as desired.

Finally, consider edges uv ∈ E(G) with u, v ∈ A that are isolated in G[A] (i.e. such
that all neighbours of u, v outside {u, v} are big) with dG(u) = dG(v). Recall that dG(u) =
dG(v) ≥ 2, since uv is not isolated in G. Recall also that in the initial colouring c of G
we had Sc(u) ∩ Sc(v) = {c(uv)}, that is, u and v saw no common colour except for that of
uv. If uv is fragile, then at least one of u, v is such that no incident edge was selected, by
property 2 of Lemma 103, and hence Sc′′(u) 6= Sc′′(v) (since marked edges form a subset of
selected edges). If uv is not fragile, then dG(u) = dG(v) ≥ q+ 4 by definition. Since at most
q+ 2 edges incident to u were selected, and same for v, we see that u and v are each incident
to a non-selected edge distinct from uv. It follows that Sc′′(u) 6= Sc′′(v).

5.2.3 Small vertices

At this point, we know that Sc′′(u) 6= Sc′′(v) for every edge uv ∈ E(G) with u, v ∈ B, and
for every edge uv ∈ E(G) with u, v ∈ A which is isolated in G[A]. However, we could have
Sc′′(u) = Sc′′(v) for some non-isolated edges uv of G[A]. Let A′ be the subset of vertices of
A that are not incident to an isolated edge of G[A]. In this section we modify the colouring
c′′ on the graph G[A′] only, and make sure that Sc′′(u) 6= Sc′′(v) for every uv ∈ E(G) with
u, v ∈ A′. Since this has no effect on the sets Sc′′(u) for u ∈ B ∪ (A − A′), the resulting
colouring will be an AVD-colouring of G.

First, uncolour every edge of G[A′] and fix an arbitrary ordering of these edges. We
colour these edges one by one using the following iterative algorithm; at all times, we let
c′′′ denote the current partial edge colouring of G. Consider the first uncoloured edge uv
in the ordering. Let s := d2ε∆e. Since (dG(u) − 1) + (dG(v) − 1) ≤ 2(d − 1) ≤ ∆ − 2ε∆,
there are at least s + q + 6 available choices for the edge uv in order to maintain a proper
(partial) edge colouring. In case all other edges around u are already coloured, we possibly
remove one colour from the set of available choices as follows: Say that a neighbour w of u in
A′−{v} is dangerous for u if dG(u) = dG(w), all edges incident to w are already coloured, and
Sc′′′(w) = Sc′′′(u)∪{i} for some colour i ∈ [∆+q+6]; the colour i is a dangerous colour for u.
Dangerous neighbours and colours for v are defined similarly. If u has exactly one dangerous
neighbour, remove the corresponding dangerous colour from the set of available choices. Do
the same for v. Thus, there are at least s + q + 4 ≥ s available choices remaining for the
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edge uv. Colour uv with a colour chosen at random among the first s colours available.
As with the algorithm from the previous section we define some bad events that could

happen after colouring the edge uv. Here, we only need to consider one type of bad event:

The edge uv received a colour that was dangerous for u or v.

If such an event happens, consider a corresponding dangerous neighbour w, say it was dan-
gerous for u. Let F denote the set of edges incident to u in G[A′] that are distinct from
uv. Observe that |F | ≥ 2, since otherwise we would have removed the dangerous colour
for u from the available choices. Our ordering of the edges of G[A′] induces an ordering of
the edges in F ; it will be convenient to see this ordering as a cyclic ordering. With these
notations, the bad event is handled as follows:

Uncolour uv and the edge just after uw in the cyclic ordering of F .

After possibly handling one such bad event, the algorithm proceeds with the next un-
coloured edge in this fashion, until every edge is coloured.

Lemma 111. If the algorithm terminates, then the resulting edge colouring c′′′ is an AVD-
colouring of G.

Proof. Consider an edge uv ∈ E(G) with dG(u) = dG(v). We already know that Sc′′′(u) 6=
Sc′′′(v) if u, v ∈ B, so let us assume that u, v ∈ A. Arguing by contradiction, suppose that
Sc′′′(u) = Sc′′′(v). Recall that G[A′] has no isolated edges, thus there is at least one edge
incident to u or v which is distinct from uv in G[A′]. Let e be the last edge coloured by
the algorithm among all such edges. Suppose w.l.o.g. that e is incident to v, say e = vw.
Then, just before the edge vw was coloured for the last time, vertex u was dangerous for v,
with dangerous colour c′′′(vw). Hence, a bad event has been triggered after colouring vw.
The bad event that was handled by the algorithm could have been the one with edge uv, or
another one corresponding to another edge incident to v or w. In any case, the edge vw got
uncoloured, a contradiction.

Thanks to the above lemma, to conclude the proof it only remains to show that the
algorithm terminates with nonzero probability, which we do now.

Theorem 112. The algorithm terminates with high probability.

Proof. The proof is very similar to the corresponding proof in the previous section (but
simpler). Let us encode the first t steps (iterations) of an execution of the algorithm with a
corresponding log (W, γ, δ, c′′′), where

• W is a partial Dyck word of semilength t, obtained by adding a 0 (a 1) each time an
edge is coloured (uncoloured, respectively);

• γ = (γ1, . . . , γt);

• δ = (δ1, . . . , δt);
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• c′′′ is the current edge colouring at the end of the t-th iteration.

For each i ∈ [t], we let γi := −1 and δi := −1 in case no bad event was triggered during
the i-th iteration. Otherwise, if a bad event occurred, say involving a vertex w that was
dangerous for one of the two endpoints of the edge uv coloured during the iteration, we let
γi ∈ [2d] identify vertex w knowing uv (recall that u and v have degree at most d). Observe
that this identifies also the extra edge that is uncoloured (besides the edge uv).

Then, we let δi ∈ [2] identify the colours of the two edges that got uncoloured, assuming
we know these two edges and the edge colouring c′′′ at the end of iteration i. Observe that we
already know the set of colours that was used for these two edges, these are the two colours
appearing around w but not around the vertex (u or v) that triggered the bad event. Thus
it only remains to specify the mapping of these two colours to the two edges (2 possibilities).

Reading W and γ from the beginning, one can deduce which subset of the edges of G[A′]
was coloured at any time during the execution. Then using the edge colouring c′′′ at the end
of the t-th iteration and working backwards, we can reconstruct the edge colouring c′′′ at any
time during the execution using γ and δ, and deduce in particular which random choice was
made for the edge under consideration during the i-th iteration. Hence, the log (W, γ, δ, c′′′)
uniquely determines the t random choices that were made.

As before, we see a random choice as a number in [s]. Let Rt denote the set of random
vectors (r1, . . . , rt) of length t, where each entry is a number in [s]. Let Lt denote the set of
logs after t steps resulting from executions of the algorithm that last for at least t steps. By
the discussion above, there is an injective mapping from Lt to Rt. Since |Rt| = st, to prove
Theorem 112 it only remains to show that |Lt| = o(st).

Here, a rather crude counting will do. First, we count the partial Dyck words W of
semilength t that can appear in our logs. Each such word has only descents of length 2.
They can be mapped to Dyck words of semilength t simply by adding the missing 1s at the
end. Notice that each Dyck word of semilength t is the image of at most two such partial
Dyck words. (Two of our partial Dyck words have the same image iff they are the same
except one ends with 0 and the other ends with 011.) Hence, the number of our partial Dyck
words of semilength t is at most twice the number of Dyck words of semilength t, and thus
is at most 2 · 4t.

Next, given a log (W, γ, δ, c′′′), the indices i ∈ [t] such that γi 6= −1 and δi 6= −1
correspond to descents of W . Thus there are at most t/2 such indices, and we see that the
number of possible pairs (γ, δ) for a given W is at most (2d)t/2 · 2t/2 = (4d)t/2 ≤ (2∆)t/2.

Finally, the number of partial edge colourings c′′′ of G is at most |E(G)|∆+q+7, and is in
particular independent of t.

Assuming that ∆ is large enough so that s = d2ε∆e > (32∆)1/2, we conclude that

|Lt| ≤ 2 · 4t · (2∆)t/2 · |E(G)|∆+q+7 = O
(
(32∆)t/2

)
= o(st),

as desired.
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Chapter 6

Conclusions and further work

In this thesis, we investigated different problems regarding structures in digraphs, in partic-
ular subdivisions.

The first topic was to study the relation between subdivisions and chromatic number of
digraphs. In Theorem 61, we generalised Bondy’s Theorem (Theorem 31), by showing that
large cycles with two blocks can be found in strong digraphs with large chromatic number.
An interesting result would be to generalise this result to any oriented cycle.

Problem 32. Let C be an oriented cycle. Is χ(S-Forb(C) ∩ S) bounded?

Let us remind our conjecture, which would be an interesting tool towards this question.

Conjecture 38. For every k ≥ 1, there exists an integer f(k) such that every strong digraph
with chromatic number greater than f(k) contains a subdigraph H with chromatic number
at least k and such that H contains a Hamiltonian cycle.

Another interesting generalisation would be the following.

Conjecture 36. There is a function g : N3 → N such that every strong digraph with
chromatic number at least g(k1, k2, k3) contains a subdivision of B(k1, k2; k3).

In Theorem 37, we proved a weaker result for B(k, 1; k). The proof is quite technical,
and we believe some new ideas are necessary to prove the general statement. In this case as
well, being able to prove Conjecture 38 would be an interesting step.

A famous open question concerning the chromatic number of digraphs is Burr’s conjec-
ture, which states that digraphs with chromatic number greater than 2k − 2 contain all the
oriented trees on k vertices as subdigraphs. The current best upper bound is in k2

2
+ o(k2)

and getting it down to linear seems to be very challenging. An interesting weaker problem
is the following, where we replace subdigraph with subdivision.

Conjecture 113. There exists a constant a such that for every k, every digraph D with
χ(D) ≥ ak contains every oriented tree of size k as a subdivision.

The most important question concerning subdivisions in digraphs is probably Mader’s
conjecture about subdivisions of transitive tournaments.
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Conjecture 9 (Mader [49]). For every k ≥ 1, there exists an integer f(k) such that every
digraph with minimum outdegree at least f(k) contains a subdivision of TTk, the transitive
tournament on k vertices.

A major part of this thesis was devoted to the study of this question, which remains
widely open and deserves further research. In Theorem 19 and Theorem 20 we proved
the existence of large oriented paths and in-arborescences in digraphs with large minimum
outdegree. It might be interesting to generalise these results to other acyclic digraphs, in
particular to oriented trees:

Problem 21. Let T be an oriented tree. Does there exist a constant a(T ) such that any
digraph with minimum outdegree at least a(T ) contains T as a subdivision.

Another interesting case is the one for oriented cycles:

Problem 114. Let C be a oriented cycle. Does there exist a constant f(C) such that any
digraph with minimum outdegree at least f(C) contains a subdivision of C.

Mader in [50] proved the existence of a pair of vertices with connectivity k in digraphs
with large minimum outdegree. This means finding k vertex-disjoint dipaths between some
pair of vertice x and y. However, forcing the length of these paths seems difficult. We proved
in Theorem 84 that digraph with large minimum outdegree contains subdivisions of C(k, k)
(the cycle with two blocks of length k). A natural generalisation is the following problem:

Problem 115. Let k1, k2, . . . , kl be positive integers. Does there exist an integer f(k1, k2, . . . , kl)
such that in any digraph with minimum outdegree at least f(k1, k2, . . . , kl) there exist two
vertices x and y and a collection of l internally disjoint (x, y)-dipaths P1, . . . , Pl, such that
|Pi| ≥ ki for every i ∈ [l].

We do not know about the existence of f(2, 2, 3).
One of the difficulties in solving Mader’s conjecture is the effect of removing directed

paths for connectivity. In the case of undirected graphs, the famous Lovász’ path removal
conjecture (see [39]) states the following:

Conjecture 116 (Lovász’ path removal conjecture). There is an integer-valued function
f(k) such that if G is any f(k)-connected graph and x and y are any two vertices of G, then
there exists a path P with ends x and y such that G− V (P ) is k-connected.

A weaker version of the conjecture which removes the edges of the path instead of the
vertices has been proved by Kawarabayashi et al. in [39]. A similar statement for digraphs
has been proved false by Thomassen in [71]. This probably indicates why strengthening the
requirement from large minimum outdegree to large connectivity doesn’t seem to be helpful
for finding a subdivision of TTk. Understanding, which parameters stronger than the min-
imum outdegree condition can help us in finding transitive tournaments, is an interesting
question. Remember that proving the result for large out and indegree would imply Mader’s
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conjecture. On the other hands, it makes the version of the conjecture for oriented trees triv-
ial. It is likely that the key parameter isn’t something as symmetrical as k-connectivity. In
this regard, Mader’s proof of the existence of vertices with high connectivity in digraphs with
large minimum outdegree, is interesting to analyse. In the undirected case, by considering
the dense part of an (x, y) k-vertex-cut, we can progress towards a k-connected subgraph. In
the directed case however, we obtain a digraph with some vertices of degree 0 and for every
vertex x with d+(x) > 0, there exists a vertex y such that the connectivity between x and
y is greater than k. Another interesting observation is that, despite the fact that we mainly
focused on acyclic digraphs, they are not the only possible candidates to be found in all
digraphs with large minimum outdegree. For example, by considering a miximal dipath, one
can easily show that every digraph with minimum degree at least k contains a directed cycle
of length at least k. With constructions given in [20] and in [70], we have a pretty rough
idea of the probable candidates. However the fact that we are not able to give a precise
and simple characterisation shows, once again, our lack of understanding. Investigating this
question might help us find a key notion for Mader’s conjecture.

Another obstacle for Mader’s conjecture, and also part of the reason why we believe it is
a crucial one, is that the class of digraphs with large minimum outdegree remains a mystery.
Let us remind the following conjecture due to Alon in [4] and whose difficulty is particularly
intriguing:

Conjecture 17 (Alon [4]). There exists a function f(k) such that every digraph with min-
imum degree at least f(k) can be partitioned into two digraphs of minimum outdegree at
least k.

We can also cite the following infamous conjecture on the class of digraphs with large
minimum degree:

Conjecture 117 (Cacceta-Häggkvist [14]). Every simple digraph of order n with minimum
outdegree at least r has a directed cycle with length at most dn/re.

The case r = n
3

of the conjecture is still open, and is probably the most studied question
in structural digraph theory (see [66] for a survey on this conjecture). Thus finding any
structure for this class of digraphs is interesting.

In Theorem 86, we proved a weakening of Mader’s conjecture, due to DeVos et al., about
immersions instead of subdivisions. Proving the conjecture for butterfly-minors (see [38] for
more details on butterfly-minors), which is another weakening of subdivisions, seems to be
an interesting middle step towards Mader’s conjecture. Especially since finding a complete
graph (or just a dense one) as a minor is an important part of both the proof of Thomas
and Wollan of Theorem 16 and the proof of Bollobás and Thomason in [8] that a minimum
degree of O(k2) is enough to force a subdivision of the complete graph on k vertices.

Conjecture 118. There exists a function f such that every digraph with minimum outdegree
at least f(k) contains a TTk as a butterfly-minor.
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Proving Alon’s conjecture (Conjecture 17) would also be a major step in our understand-
ing of digraphs with large minimum outdegree. A tempting approach is to use the entropy
compression technique. The major obstacle for this approach are the vertices of large in-
degree as they are the ones creating large dependencies in a random partition. It could be
interesting to look at the case of undirected graphs. In [65] Stiebitz proved that graphs with
minimum degree s+ t+ 1 can be partitioned into two graphs, one of minimum degree s and
one of minimum degree t, which is optimal. However, as far as we know, no probabilistic
proof of the existence of a partition (even not the optimal one) exists, and once again dealing
with the vertices of large degree seems to be the main difficulty.

In Theorem 49, we provided a proof that the domination of k-transitive tournaments is
bounded by a function of k. The generalisation of this theorem to digraphs remains open:

Conjecture 43 (Sands et al. [63]). For every k ≥ 1 there exists an integer f(k) such that,
for any multidigraph D whose arc set is the union of the arc sets of k quasi-orders, there
exists f(k) stable sets such that the union is dominating.

Our proof can be extended to the class of digraphs with bounded stability number. An
interesting result would be to find classes of digraphs with unbounded stability number and
where the conjecture holds.
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[6] P. N. Balister, E. Győri, J. Lehel, and R. H. Schelp. Adjacent vertex distinguishing
edge-colorings. SIAM J. Discrete Math., 21(1):237–250, 2007.

[7] E. Berger, K. Choromanski, M. Chudnovsky, J. Fox, M. Loebl, A. Scott, P.D. Seymour,
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[24] P. Erdős and J. Spencer. Lopsided Lovász Local lemma and latin transversals. Discrete
Applied Mathematics, 30(2):151 – 154, 1991.

[25] L. Esperet and A. Parreau. Acyclic edge-coloring using entropy compression. European
Journal of Combinatorics, 34(6):1019–1027, 2013.

[26] D.C. Fisher. Squaring a tournament: A proof of Dean’s conjecture. Journal of Graph
Theory, 23(1):43–48, 1996.

[27] D.C. Fisher and J. Ryan. Probabilities within optimal strategies for tournament games.
Discrete Applied Mathematics, 56(1):87 – 91, 1995.

100



[28] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press,
New York, NY, USA, 2009.

[29] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem.
Theoretical Computer Science, 10(2):111 – 121, 1980.

[30] T. Gallai. On directed paths and circuits. In: Erdös, P. and Katona, G., Eds., Theory
of Graphs, Academic Press, New York, pages 115–118, 1968.
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