
HAL Id: tel-01956321
https://hal.science/tel-01956321v1

Submitted on 6 Jan 2019 (v1), last revised 11 Jun 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the design space of highly-available
distributed transactions

Alejandro Tomsic

To cite this version:
Alejandro Tomsic. Exploring the design space of highly-available distributed transactions. Databases
[cs.DB]. Sorbonne Universites, UPMC University of Paris 6, 2018. English. �NNT : �. �tel-01956321v1�

https://hal.science/tel-01956321v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Alejandro Zlatko TOMSIC

Pour obtenir le grade de

DOCTEUR de SORBONNE ’UNIVERSITÉ

Sujet de la thèse :

Exploring the design space of
highly-available distributed transactions

soutenue le 19 avril 2018

devant le jury composé de :

M. Marc SHAPIRO Directeur de thèse
M. Vivien QUEMA Rapporteur
M. Guillaume PIERRE Rapporteur
M. Nuno PREGUIÇA Examinateur
M. Pierre SENS Examinateur
M. Lorenzo ALVISI Examinateur
M. Sébastien MONNET Examinateur

Abstract

The storage systems underlying today’s large-scale cloud services handle a high volume
of requests from users around the world. These services must provide fast response and an
"always-on" experience. Failing to do so results in reduced user engagement, which directly
impacts revenues. To fulfil these requirements, storage systems replicate data at multiple
locations worldwide. Users minimise latency by connecting to their closest site and, in the
case of site failures, users can connect to other healthy ones. Moreover, each location scatters
data across a large number of servers. This way, each site can handle volumes of requests
larger than what a single machine can handle.

Transactional guarantees simplify the development of applications that rely on storage
systems. In particular, transactional isolation hides anomalous behaviour sourced in con-
currency. However, in a distributed environment, their application can translate into users
perceiving high latencies and service downtimes. This has lead to production stores —for in-
stance, the ones underlying services such as Facebook and Amazon— to eschew isolation. This
thesis studies how to enforce isolation in a cloud environment without affecting availability
and responsiveness.

Our first contribution is Cure, a transactional protocol that ensures high level of seman-
tics compatible with availability: Transactional Causal Consistency (TCC), an interactive
transactional interface, and support for Convergent data types (CRDTs). TCC ensures there
are no ordering anomalies, atomic multi-key updates and consistent-snapshot reads. Cure’s
interactive interface allows reading and updating objects in a single transaction. CRDTs
expose a developer-friendly API and resolve concurrent updates safely, guaranteeing conver-
gence and that no updates are lost. When compared to systems that eschew consistency and
isolation, these guarantees minimise the anomalies caused by parallelism and distribution,
thus facilitating the development of applications. Cure features a mechanism to make up-
dates visible respecting causal order that incurs minimal overhead over systems that do not
guarantee causal consistency. It relies on a novel metadata encoding to improve performance
and progress with respect to state-of-art solutions. Experimentally, Cure is as scalable as a
weakly-consistent protocol, even though it provides stronger semantics.

Transactional protocols like Cure simplify application development without compromising
availability. Nevertheless, their transactional mechanisms exhibit latency overheads that
have impeded their adoption at scale. Our second contribution is to explore how to implement
distributed isolation with no extra delays with respect to a non-transactional system. In
this quest, we find, quantify and demonstrate a three-way trade-off between read isolation,
delay (latency), and data freshness. For our analysis, we identify a read-isolation property
called Order-Preserving Visibility. Order-Preserving reads are weaker than Atomic reads,
guaranteed by TCC and stronger models (e.g., Snapshot Isolation and Serialisability). They
do not forbid a concurrency anomaly called Read Skew, which allows observing the updates
of other transactions partially. On the positive side, like Atomic Visibility, Order-Preserving
Visibility disallows reading uncommitted data and observing (e.g. causal) ordering anomalies.

The three-way trade-off between read isolation, delay (latency), and data freshness can
be summarised as follows: (i) To guarantee reading data that is the most fresh without delay
is possible only under a weakly-isolated mode, similar to that provided by the standard Read

iii

Committed. (ii) Conversely, reads that enforce stronger isolation at minimal delay impose
reading data from the past (not fresh). (iii) Minimal-delay Atomic reads force transactions
to read updates that were committed and acknowledged in the past. (iv) On the contrary,
minimal-delay Order-Preserving reads can read the updates of concurrent transactions.
(v) Order-Preserving and Atomic reads at maximal freshness require mutually-exclusive
read and write operations, which may block reads or writes indefinitely. These results hold
independently of other features, such as update semantics (e.g., monotonically ordered or not)
or data model (e.g., structured or unstructured).

Motivated by these results, we propose two isolation properties: TCC– and §. They result
from degrading the (Atomic) read guarantees of TCC and PSI to Order Preserving Visibility.
Using the results of the trade-off, we use Cure, which’s read algorithm sometimes blocks,
to create three protocols which are latency optimal. AV maintains Cure’s TCC guarantees
by degrading freshness. The remaining two protocols improve freshness by weakening the
isolation guarantees. OP provides TCC–, and CV provides Read Committed Isolation, where
reads enforce Committed Visibility.

The experimental evaluation of these protocols supports the theoretical results. All three
protocols exhibit similar latency. The exception is Cure, which sometimes exhibits higher
latency due to blocking. Regarding freshness, CV always reads the most up-to-date data. OP
degrades freshness negligibly under all tested workloads, whereas under Cure and AV, the
freshness degradation is severe.

iv

To my family.

Acknowledgements

This work would have not been possible without the many people who gave me their support and

worked with me.

I am particularly thankful to my advisor, March Shapiro, for his guidance, help and support

throughout this years. Also, for the exchanges that contributed to this work and my develop-

ment. Finally, for opening many doors that lead to meeting the people and institutions I have

collaborated with, traveling to many countries and realising two internships abroad.

I want to thank Inria, the LIP6 laboratory, and the Regal team, where I worked during this

period. In particular, to thank Pierre Sens for opening its doors when I first entered as a masters

intern, and for his kind support and help whenever needed. Also, to all the people I worked and

shared time with: Mahsa Najafzadeh, Pierpaolo Cincilla, Marek Zawirski, Flavio Pileggi, Masoud

Saeida, Ilyas Toumlilt, Santiago Alvarez, Vinh Tao, Michal Rudek, Michal Jabczyński, Rudyar

Cortez, Dimitrios Vasilas, Sreeja Nair, Paolo Viotti, Johnathan Sid-Otmane, and Saalik Hatia.

I want to thank the SyncFree and LightKone European projects, who funded this PhD.

Also, for the opportunity of collaborating with the involved institutions and their members. In

particular, thanks to the coauthors of Part I of this work: Deepthi Devaki Akkoorath, Annette

Bieniusa, and Nuno Preguiça for all our exchanges and time spent together.

I would like to thank the members of the jury, Sébastien Monnet, Vivien Quema, Guillaume

Pierre and Roberto Alvisi for taking the time to read and review this manuscript, as well as for

taking the time to travel to assist the defence of this thesis.

I am grateful to Sebastian Burckhardt and Phil Bernstein, who I had the opportunity to

work with during the rich experience that was my internship. Our daily interactions helped me

learn about different aspects of programming models and databases, as well as a different way of

working.

I am grateful to the people I collaborated with and had the chance to become friends with.

Thanks Zhongmiao Li for all the discussions and laughs exchanged during these years. Also,

to Tyler Crain for your help and exchanges during the first years of this PhD, for being always

open to actively contributing to the work in this thesis, and the moments we exchanged outside

work. Thanks to Christopher "workshop-brother" Meiklejohn, who I had the chance to (endlessly)

discuss many aspects of this work and this life with, and being a friend during the conference

trips and internships. I am specially thankful to Manuel Bravo, who I was lucky to meet when I

vii

first disembarked in Europe. Thank you for our endless exchanges, your contributions to this

work, your strong support both in the professional and the personal, and offering me shelter

whenever needed.

I want to thank my parents, Daniel and María del Rocío, and my siblings, Matías and Rocío.

Thank you for your love and support, and for giving me wings to follow my path. Also, I want to

thank my close friends for their care and support during this period, Ignacio Carreras, Joseba

Dalmau, Ignacio Arch, Lourdes Ferro, Mudit Verma, Leandro Macchi, Analía Ramos and Julián

Najles.

viii

Table of Contents

Page

List of Tables xv

List of Figures xvii

1 Introduction 3
1.1 Contributions . 4

1.1.1 Part I - Cure: Strong semantics meets high availability and low-latency . . 4

1.1.2 Part II - The three-way trade-off for transactional reads 5

2 System Model 7
2.1 Cloud Service Architecture . 8

2.2 Tight Latency and Availability requirements . 9

2.2.1 The effects of latency . 9

2.2.2 The effects of downtimes . 9

2.3 Geo-distribution and the CAP theorem . 9

2.3.1 CP designs . 10

2.3.2 AP designs . 10

3 Storage Semantics 11
3.1 Transactions - ACID properties . 11

3.1.1 Moving away from, back to ACID . 12

3.2 Atomicity of Updates (or All-or-Nothing) . 12

3.3 Transactional Isolation Levels (Consistency Criteria) 13

3.3.1 Notation . 13

3.3.2 Concurrency control . 13

3.3.2.1 Lock-based concurrency control . 13

3.3.2.2 Multi-version concurrency control (MVCC) 14

3.3.2.3 Choosing a technique. 14

3.3.2.4 Mixing them. 14

ix

TABLE OF CONTENTS

3.3.3 Anomalies . 15

3.3.3.1 Dirty read. 15

3.3.3.2 Non-repeatable read. 15

3.3.3.3 Lost update. 15

3.3.3.4 Write skew. 16

3.3.3.5 Non-monotonic snapshots. 16

3.3.3.6 Read Skew. 16

3.3.3.7 Real-time violation. 16

3.3.3.8 Order Violation. 16

3.3.4 CP (Strong) Isolation . 17

3.3.4.1 Strict Serialisability (SS) - no anomalies 17

3.3.4.2 Serialisability (S) - relaxing real-time ordering 17

3.3.4.3 Snapshot Isolation (SI) - removing serialisability checks from

read operations . 17

3.3.4.4 Update Serialisability (US) - non-monotonic snapshots 18

3.3.4.5 Parallel Snapshot Isolation (PSI) 19

3.3.5 AP (Weak) Isolation . 19

3.3.5.1 Transactional Causal Consistency (TCC) 19

3.3.5.2 Read Atomic (RA) . 19

3.3.5.3 Read Committed (RC and RC+) . 19

3.3.5.4 No Isolation (NI) . 20

3.3.6 Summary of anomalies allowed/disallowed by Isolation levels 20

3.4 Session guarantees . 20

3.5 Single-object Consistency and Isolation . 21

3.5.1 CP Consistency . 21

3.5.1.1 Linearisability . 21

3.5.2 AP Consistency . 21

3.5.2.1 Causal Consistency (CC) . 21

3.5.2.2 Eventual Consistency (EC) . 23

3.5.2.3 Causal+ Consistency (CC+) . 23

3.5.2.4 Ensuring Convergence . 23

I Cure: strong semantics meets high availability and low latency 27

4 Introduction to Part I 29

5 Overview of Cure 31
5.1 Transactional Programming Model . 31

5.2 Programming interface . 32

x

TABLE OF CONTENTS

5.3 Design - causal consistency . 33

5.3.1 Updates applied in causal order for high availability. 33

5.3.2 Dependency stabilisation for scalability. 33

5.3.3 Vector clocks for serving fresh data. 34

6 Protocol description 35
6.1 Notation and definitions . 35

6.2 Transaction Execution . 36

6.3 Replication and stable snapshot computation . 40

6.4 Correctness . 40

6.5 Discussion . 41

6.5.1 Session Guarantees . 41

6.5.2 Efficient SS computation . 42

6.5.3 Garbage Collection . 42

6.5.4 Support for CRDTs . 42

7 Evaluation of Cure 43
7.1 Setup . 43

7.2 Cure’s scalability . 44

7.3 Comparison to other systems . 45

8 Conclusion of Part I 49

II The three-way trade-off: Read Isolation, Latency and Freshness 51

9 Introduction to Part II 53

10 Requirements 57
10.1 Transactions . 57

10.2 Snapshot guarantees . 57

10.2.1 Committed Visibility . 58

10.2.2 Order-Preserving Visibility . 58

10.2.3 Atomic Visibility . 58

10.3 Delay . 59

10.3.1 Minimal Delay . 59

10.3.2 Bounded delay . 59

10.3.3 Mutex reads/writes (or unbounded delay) . 59

10.4 Freshness . 60

10.4.1 Latest Freshness . 60

10.4.2 Stable Freshness . 60

xi

TABLE OF CONTENTS

10.4.3 Concurrent Freshness . 60

10.5 Optimal reads . 60

11 The three-way trade-off 63
11.1 Notation and Definitions . 63

11.2 Impossibility of optimal reads under ordered visibility 65

11.3 What freshness is compatible with minimal delay? 65

11.3.1 Optimal reads under Committed Visibility 65

11.3.2 Order-Preserving visibility and concurrent freshness 65

11.3.3 Minimal-delay Atomic Visibility requires stable freshness 67

11.4 What is possible under latest freshness? . 68

11.5 Isolated reads with bounded delays and concurrent freshness. 68

12 Unexplored Isolation Levels 71
12.1 CV-US and OP-US . 72

12.2 TCC– . 72

12.3 PSI– . 72

13 Designing protocols for minimal delay 75
13.1 A refresher on Cure . 75

13.2 Changes to Cure . 76

13.3 Transaction execution . 76

13.3.1 Transaction Coordinator Algorithm . 77

13.3.2 Partition Servers Algorithm . 77

13.4 Correctness . 78

13.5 Stabilisation protocol . 79

13.6 Causal consistency: session guarantees . 80

13.6.1 Read your writes . 80

13.6.2 Monotonic Reads . 80

14 Evaluation 85
14.1 Implementation . 85

14.2 Setup . 85

14.3 Experiments . 86

14.3.1 Single-shot read-only transactions . 87

14.3.2 Facebook-like read-only transactions. 91

15 Conclusion of Part II 95

xii

TABLE OF CONTENTS

IIIRelated Work 97

16 Causal Consistency for Cloud Deployments 99
16.1 Causally-Consistent Systems . 99

16.1.1 Single-machine Causal Consistency . 100

16.2 Strongly-Consistent Systems Enforcing Causal Consistency 100

17 Semantics, delay and freshness 103
17.1 Impossibility results . 105

17.2 Systems . 105

17.2.1 Weakly-consistent systems . 105

17.2.2 Strongly-consistent systems . 107

18 Conclusion 111
18.1 Contributions . 112

18.1.1 Part I . 112

18.1.2 Part II . 112

19 Future Work 115

IV Appendix 117

A Résumée de la Thèse 119
A.1 Partie I - Cure: Des sémantiques fortes liées à une haute disponibilité et des

latences faibles . 121

A.2 Partie II - Le compromis à trois niveaux pour des lectures transactionnelles 122

Bibliography 125

xiii

List of Tables

TABLE Page

3.1 Anomaly comparison of isolation levels . 20

6.1 Notation used in the protocol description. 36

10.1 Snapshot guarantees - Anomaly comparison . 58

12.1 Combination of snapshot and termination guarantees - In bold: combinations not

previously studied . 71

12.2 Anomaly comparison of new isolation levels . 73

16.1 Property comparison of causally-consistent systems . 100

16.2 Property comparison of strongly-consistent systems enforcing causal consistency . . . 101

17.1 Guarantees, delay and freshness for several published systems. The sector numbers

cross-reference to Figure A.1; /5 refers to the second plane of Sector 5. 106

xv

List of Figures

FIGURE Page

2.1 Typical Cloud Service Deployment at multiple interconnected data centres worldwide.

Each data centre consists of front-end servers hosting the application logic and storage

servers handling application data. This supports a high level of parallelism. 7

7.1 Scalability of Cure . 45

7.2 Comparison of Cure to other systems using LWW registers. 46

7.3 Comparison of Cure to an eventually-consistent system using CRDT sets. 47

9.1 The three-way trade-off. The boxed areas represent possible guarantee/read delay/

freshness combinations. Upwards and right is better performance; guarantees get

stronger from the back to the front planes. Combinations missing from the picture are

impossible. 54

11.1 The three snapshot guarantees . 64

11.2 A read transaction executes concurrently with two update transactions at two partitions 66

11.3 A read transaction executes concurrently with an atomic update transaction at two

partitions . 67

14.1 Single-shot read-only-transactions (100 read ops/txn) . 87

14.2 Cure blocking scenarios - Single-shot read-only-transactions (100 read ops/txn) 89

14.3 Freshness of single-shot read-only-transactions . 90

14.4 Facebook-like read-only transactions (1000 read ops/txn) 92

14.5 Cure blocking scenarios - Facebook-like read-only-transactions (100 read ops/txn) . . 93

14.6 Freshness of Facebook-like read-only transactions . 94

A.1 Le compromis à trois niveaux. Les aires présentent les combinaisons possibles de

garanties/délais de lectures/fraîcheur. On trouve les meilleures performances en haut

à droite; les garanties sont plus fortes au premier plan. Les numéros de secteurs sont

référencés dans la Table 17.1. 123

xvii

List of Algorithms

ALGORITHM Page
6.1 Transaction coordinator at server m of DC d . 37

6.2 Protocol executed by partition pm
d . 38

13.1 Transaction Coordinator tc at site n . 81

13.2 Partition m at site n pn
m . 82

13.3 Stabilisation for AV and OP at pn
m . 83

xix

Preliminaries

1

Chapter 1

Introduction

Large-scale web services rely on highly-distributed, highly-parallel deployments to handle large

load and volumes of data. For instance, "Amazon runs a world-wide e-commerce platform that

serves tens of millions customers at peak times using tens of thousands of servers located in many

data centers around the world [43]", and Tao, the data store storing Facebook’s social graph "runs

on thousands of geographically-distributed machines, provides access to many petabytes of data,

and can process a billion reads and millions of writes each second [33]".

These services must serve requests in a timely fashion and provide an always-on experience.

Response times directly affect revenues [44, 76] and, as Amazon has reported, "even the slightest

service outage has significant financial consequences and impacts customer trust [43]". To reduce

response times and tolerate failures, they employ geo-replication: deploying replicas of the appli-

cation logic and state at multiple data centers worldwide. Users minimise latency by connecting

to their closest site and, in the presence of failures that render a data centre unavailable, they can

fail-over to other available ones. At each data centre (or replica), the application logic is deployed

at multiple front-end servers, and the state is partitioned across multiple storage servers. This

way, each replica can serve a volume of requests and store amounts of data beyond what a single

machine can handle.

It is well known that, in this scenario, a system design must chose between simplicity of

application development, and responsiveness and availability:

• Network partitions (P) and high latencies are unavoidable in long-distance and inter-

continental network links. By the CAP theorem [50], a geo-replicated system must then

choose between high availability (A) and strong consistency (C); ensuring both desirable

properties simultaneously is impossible. Choosing strong consistency simplifies the task of

developing the application logic, as it hides the complexity of geo-replication by keeping

data-centers synchronised at all times. Nevertheless, it exposes users to the high-latencies

and downtimes of wide-area network links. On the contrary, a design can chose to fos-

ter responsiveness and availability by serving user requests entirely from their closest

3

CHAPTER 1. INTRODUCTION

site, avoiding the downsides of cross-data-centre communication, and by synchronising

data-centers lazily [55], yet this exposes concurrency, which renders application-logic devel-

opment complex and error prone [25].

• Consistently reading and updating data scattered across machines requires implementing

distributed transactions that enforce atomicity, the all or nothing property for updates, and

read isolation, which ensures, for instance, all updates created atomically are observed

simultaneously [24], the absence of order-related inconsistencies [60] and other anomalies

sourced in concurrency [19]. Distributed transactions can hide the complexity of distribution

from the application, but often incur communication overheads and blocking scenarios that

directly impact latency [15, 63].

The above has motivated many latency-constrained production designs to eschew consistency

and adopt fast multi-object operations with no transactional guarantees, thus exposing application

developers, and sometimes users [25, 62], to anomalies sourced in distribution and replication.

Examples include Facebook’s Tao [33], LinkedIn’s Espresso [73], Yahoo’s PNUTS [39], and

Amazon’s Dynamo [43]

In this thesis, we study the design space of distributed and geo-replicated storage providing

transactional semantics while guaranteeing availability and responsiveness similar to systems

that, like the above-mentioned, implement no consistency or transactions whatsoever.

1.1 Contributions

In the first part, we introduce we present Cure1, a transactional protocol that offers clear

semantics that remain compatible with high-availability and low latency. Cure implements

Transactional Causal Consistency (TCC) and offers support for conflict-free replicated data types

(CRDTs). Cure implements these guarantees while achieving performance similar to weaker

semantics.

In the second part, we analyse how to design distributed transactional protocols that do not

exhibit extra delays with respect to non-transactional systems. We demonstrate a three-way

trade-off between read isolation, delay (latency), and data freshness (the recency of the values a

transaction reads). We use the results of the trade-off to modify Cure, which exhibits blocking

scenarios, to derive novel isolation levels, and protocols with no extra delays.

1.1.1 Part I - Cure: Strong semantics meets high availability and low-latency

To alleviate the ease-of-development vs. performance problem, recent work has focused on

enhancing AP designs with stronger semantics [60, 61, 81]. Cure is our contribution in this
1Cure is the transactional core and provides the base guarantees of Antidote DB [4], a database project that aims

at providing applications with consistent storage exhibiting the minimal synchronisation required to respect their
invariants. During this PhD, I’ve been an active contributor to Antidote’s development.

4

1.1. CONTRIBUTIONS

direction. In comparison to previous available and low-latency protocols, it guarantees that (i) if

one update happens before another, they will be observed in the same order, (ii) replicas converge

to the same state under concurrent conflicting updates, (iii) support for high-level replicated

data types (CRDTs) and not just registers with a last-writer wins policy, and (iv) transactions,

ensuring that multiple keys (objects) are read and updated consistently.

Taken together, the above guarantees provide clear and strong semantics to developers. In fact,

their combination equip Cure with the strongest semantics ever provided by an always-available

data store. Cure implements these guarantees efficiently —it makes causally-ordered updates

visible at remote sites fast while minimising metadata overhead. It achieves performance close to

a weakly-consistent protocol, and outperforms other state-of-art systems.

The contributions of this part are the following:

• a novel programming model providing causally consistent interactive transactions with

high-level, confluent data types (Section 5.1);

• a high-performance protocol, supporting this programming model for geo-replicated data

stores (Section 6);

• a comprehensive evaluation, comparing our approach to state-of-the-art protocols (Section

7), which shows that Cure is able to achieve scalability and latency similar to protocols

with weaker semantics.

1.1.2 Part II - The three-way trade-off for transactional reads

Systems like Cure provide clear semantics, high performance, and remain available under parti-

tion. Nevertheless, existing implementations exhibit delays that have impeded their adoption at

scale [15]. In Part II of the thesis, we study how to build transactional protocols designed to incur

no extra delay with respect to a non-transactional system. In this quest, we find that achieving

minimal-relay reads imposes a trade-off between the freshness of the values transactions can

read, and the level of isolation they enforce.

We consider three levels of read isolation: The weakest, Committed Visibility, ensures reading

committed data (i.e., the read guarantees of Read Committed Isolation [19]). The strongest,

Atomic Visibility, summarises the read properties of many existing isolation levels, including

TCC, Snapshot Isolation [27] and Serialisable Isolation [19]. When compared to Committed

Visibility, atomic visibility further guarantees that reads i) do not observe ordering anomalies,

given an order of updates. updates created atomically are observed by other readers respecting

atomicity, and ii) do not observe ordering anomalies, given an order of updates. We identify

the intermediate Order-Preserving Visibility. When compared to Atomic visibility, reads do not

observe other transaction’s updates atomically (an anomaly called Read Skew [27]).

5

CHAPTER 1. INTRODUCTION

We demonstrate the three-way trade-off between read isolation, delay, and data freshness,

which we summarise as follows.

• Under Atomic Visibility it is possible to read with no extra delay, but then the freshest

data is not accessible, only data that was stable (written and acknowledged) before the

transaction started.

• Minimal-delay Order-Preserving Visibility improves freshness significantly over Atomic by

allowing reading concurrent updates.

• If, on the other hand, the application requires the freshest data, under either Atomic or

Order-Preserving Visibility, this is possible only if reads and writes are mutually exclusive,

i.e., either might be delayed indefinitely by the other.

• The only model that allows transactions to access the freshest data with no extra delay is

Committed Visibility.

Motivated by the results of the trade-off, we (i) propose isolation levels that result from

combining Order-Preserving reads with different and update/commit semantics: TCC– and PSI–.

They result from degrading the (Atomic) read guarantees of TCC and Parallel Snapshot Isolation

(PSI) [81] to Order Preserving. (ii) Moreover, use the results of the trade-off to drive protocol

design. We modify Cure, which exhibits delays, to provide three protocols, all ensuring minimal

delay. AV maintains Cure’s TCC guarantees by degrading freshness. The other two improve

freshness by weakening the isolation guarantees: OP provides TCC–, and CV provides Read

Committed Isolation, where reads enforce Committed Visibility.

Experimentally, as expected, the three protocols exhibit similar latency. Our protocol for

Committed Visibility always observes the most recent data, whereas freshness degrades negligibly

for Order-Preserving reads, and the degradation is severe under Atomic Visibility.

6

Chapter 2

System Model

Data Center
app. storage

Figure 2.1: Typical Cloud Service Deployment at multiple interconnected data centres worldwide.
Each data centre consists of front-end servers hosting the application logic and storage servers
handling application data. This supports a high level of parallelism.

Cloud services rely on highly-parallel geo-distributed architectures handle requests of millions

of users worldwide. For instance, "Amazon runs a world-wide e-commerce platform that serves

tens of millions customers at peak times using tens of thousands of servers located in many data

centres around the world [43]" and Tao, the data store storing Facebook’s social graph "runs on

thousands of geographically-distributed machines, provides access to many petabytes of data,

and can process a billion reads and millions of writes each second [33]". Moreover, these services

must reply to each user request fast, and must remain available in the presence of faults that

render a data centre unavailable.

7

CHAPTER 2. SYSTEM MODEL

In this chapter, we introduce the architecture that we target throughout this work, and

discuss the complexity of building transactional storage atop.

2.1 Cloud Service Architecture

Figure 2.1 shows a typical configuration, where a service is deployed at many data centres

geo-distributed for fault-tolerance, and providing fast access to users (who can minimise latency

by connecting to their closest site). To simplify reasoning, we assume that each data centre (or

replica) stores a full replica of the service1. A data centre comprises a (possibly large) number of

servers to fulfil processing and storage demands beyond what a single machine can handle. The

service is configured in an application-logic and a storage tier.

• The application-logic tier (or front end) executes the service’s business logic, and handles

end user requests. When handling a request, the application-logic reads and updates data

of the storage tier. Each application has its own set of rules that determine its correctness,

called invariants. E.g., a banking system might ensure that a certain kind of account can

never go exhibit a negative balance. The application logic must ensure that these invariants

are preserved. In this thesis, we do not address application-logic mechanisms, including

those that decide which data to access for read or write on behalf of a particular request.

• The storage tier (or storage backend) stores and manages access to application data

by handling requests from the front-end tier. It exposes, to the application-logic tier, an

interface for reading and updating data. Transactional storage systems allow multiple

reads and/or writes to be expressed as a transaction, a group of operations that the storage

system treats efficiently. For instance, a system can issue the operations in a transaction

in parallel. Moreover, transactions provide a number of desirable semantics including

atomicity and isolation (Section 3). Intuitively, the stronger the guarantees the storage tier

provides, the easier it is to ensure application invariants and, therefore, the simpler the

task of developing the application logic. If storage disallows concurrent modifications to

the same data items, e.g.., concurrent withdrawals to the same account are impossible, it

suffices for a developer to check the balance after each withdrawal/transfer to guarantee

correctness. On the contrary, this check is insufficient over storage relaxing this guarantee.

This thesis addresses some of the trade-offs between a transactional storage system’s perfor-

mance and availability, and its guarantees. In the following sections, we elaborate on storage

guarantees, performance, and the tension between them in our highly parallel and distributed

model.

1In this work, we do not consider partial geo-replication, where each replica stores a subset of the application
state.

8

2.2. TIGHT LATENCY AND AVAILABILITY REQUIREMENTS

2.2 Tight Latency and Availability requirements

2.2.1 The effects of latency

In this section, we summarise evidence of the negative effects of users perceiving high latencies.

Shopzilla, a shopping website, reported that a 5 second speed up (from around 7 to 2 seconds)

to execute a purchase resulted in a 25% increase in page views, a 7-12% increase in revenue, a

50% reduction in hardware costs and a 120% increase in traffic from Google [44]. Amazon finds

that every 100ms of latency costs them 1% in sales [76]. Google finds that adding 500 milliseconds

to search page generation time decreases traffic by 20% [59].

Wall Street traders place orders of a small amount, and erase them after less than 500 ms.

This is done to observe how slower traders react. This way, they obtain a competitive advantage

over their competitors. "High-frequency traders generated about $21 billion in profits using this

method in 2009" [11].

Psychological studies show that slow responses make users experience increased frustration

[36]. Moreover, users tend to perceive slow websites as not trustworthy [49] and poor quality [31].

On the contrary, fast websites are perceived to be more interesting [74] and attractive [80].

2.2.2 The effects of downtimes

In this section, we summarise evidence of the negative effects of service downtimes. A 2004 study

found that the tolerable wait time on non-working links without feedback peaked at between 5

to 8 seconds [68]. Amazon has reported that "even the slightest service outage has significant

financial consequences and impacts customer trust [43]". When the Amazon.com site went down

for approximately 49 minutes in January of 2013, it cost the company an estimated $4 million in

lost sales. Another outage in August of the same year lasted 30 minutes and cost an estimated of

almost $ 2 million. Google’s five-minute outage in 2013 caused an estimated loss of $500.000 [8].

Because of the effects of high latencies and downtimes, system designs must foster latency and

availability. As we will see in the following section, this comes at the cost of ease of programming.

2.3 Geo-distribution and the CAP theorem

Cloud services rely on geo-distribution to minimise user-perceived latencies and to maximise

availability: a user connects to his closest data centre, thus avoiding wide-area network delays.

In case of full-data-centre failures, he can be redirected to a healthy data centre. Nevertheless,

this architecture poses a design choice to these services, known as the CAP theorem [50]. Long-

distance inter-data-centre network links exhibit latencies in the order of the tens to hundreds

of milliseconds, which are orders of magnitude higher than their under-millisecond intra-data-

centre counterparts. Moreover, as network partitions between data centres do occur in production

9

CHAPTER 2. SYSTEM MODEL

systems and are more complex to handle than those between co-located servers [21], geo-replicated

systems must be designed with network partitions (P) in mind. This forces a choice between (low-

latency, weakly-consistent) highly-available (AP) and (high-latency, unavailable-under-partition)

strongly-consistent (CP) designs: ensuring both strong consistency and high availability under

network partitions is impossible.

2.3.1 CP designs

A strongly-consistent design simplifies the task of developing the application logic. It provides

the abstraction of a single sequential system as it hides the complexity of replication by keeping

replicas synchronised at all times. Nevertheless, it exposes users to the high latencies and

downtimes of the network links between replicas as operations have to be synchronised across

data centres before finishing execution.

2.3.2 AP designs

A highly-available design provides an "always-on" experience and excellent responsiveness by

synchronising replicas lazily, out of the critical path of an operation [55]. Users can execute

operations entirely at a single data centre, avoiding the need to wait for data centres to syn-

chronise, which happens in the background, after replying to the client. Nevertheless, it exposes

concurrency issues that render application-logic development hard and error prone [25]. We

introduce such issues in Section 3.3.3.

Motivated by the tight latency and availability requirements of these systems, in this work,

we focus mainly on AP designs.

In the following sections, we introduce the guarantees provided by many AP and CP isolation

models. We explain how these guarantees affect performance and ease of programming.

10

Chapter 3

Storage Semantics

Traditionally, transactional storage provides a way to access data in an efficient and programmatically-

simple fashion —for instance, through a query language such as SQL [19]. In this chapter, we

introduce background on these system’s properties.

3.1 Transactions - ACID properties

Atomicity guarantees that all the effects of a transactions are in the store, or none is. E.g.,

that executing a transfer in a bank application both withdraws money from a source account and

makes the corresponding deposit to a destination account, or does not execute either action;

Correctness/Safety ensures that each transaction individually updates state respecting ap-

plication invariants. E.g., that the balance of a bank account is never negative;

Isolation establishes which intermediate states (if any) transactions can observe of other

transactions. In the bank transfer example, strong isolation ensures that, if balance inquiries

to the involved accounts are done concurrently with the transfer, these inquiries do not observe

a state where money was withdrawn from the origin and not deposited to the destination (or

vice-versa);

Durability ensures that when an update transaction (i.e., a transaction that updates data) is

acknowledged by the system, its effects will be visible to other transactions.

In this work, we focus in those aspects of correctness (C) related to storage: atomicity and

isolation. Moreover, we do not focus on durability, which we take for granted throughout this

thesis. Finally, we do not address the issues of porting query languages and query-processing

mechanisms to large-scale deployments (a recently-started trend [10, 12]).

11

CHAPTER 3. STORAGE SEMANTICS

3.1.1 Moving away from, back to ACID

Transactional semantics simplify the task of programming the application logic: the ACID

properties eliminate the concerns of handling concurrent access to data consistently. Nevertheless,

the advent of distributed and replicated architectures has pushed designs, called NoSQL, to

completely eschew query languages and transactional isolation [33, 37, 39, 43, 73]. The reason

behind this trend is availability and latency. Isolation mechanisms were originally designed

for single-machine architectures, and porting them as is to a cloud environment results in

storage that is slow and unavailable under certain kinds of failures not present in the single-

machine environment (e.g., network partitions between data centres). Therefore, developing the

application logic on top of these stores is a hard task.

Recently, the complexity of developing applications over stores with no transactional isolation

has motivated the development of distributed transactional isolation. This has resulted in

production systems and research prototypes providing a wide variety of guarantees for cloud

environments [7, 40, 60, 70, 71, 75, 81].

We focus, in the following sections, in the inherent trade-offs of implementing atomicity and

isolation in cloud deployments and recently proposed isolation models.

3.2 Atomicity of Updates (or All-or-Nothing)

All-or-Nothing ensures that, at any point in time, either all of a transaction’s writes are in the

store, or none of them is. They are instrumental for ensuring state transitions consistently with

respect to certain invariants. Examples include foreign key constrains to represent relationships

between data records (e.g., the symmetry of the friendship or the like relationships in a social

network application [33]: if Bob belongs to Alice’s friends, then Alice belongs to Bob’s and, if Bob

likes a photo, the photo is liked by Bob), secondary indexing and materialised view maintenance

(e.g., keeping a list of comments of a certain post and a comments count can be done by updating,

with each comment creation, the comments count instead of computing this count on reads)

[24]. Moreover, all-or-nothing updates simplify rolling back inconsistent intermediate state of

failed transactions. Consider, for instance, a bank application where a transfer withdraws money

from an account and deposits it into another. If the withdrawal succeeds but not the deposit,

programmers using storage lacking atomic updates need to develop mechanism to detect and roll

back the withdrawal, such as a compensating deposit.

In transactional storage, atomically-updating data in parallel (or distributed) environments

is achieved by an atomic commitment protocol such as Two-Phase Commit [57], where all updated

entities must agree on applying their individual updates, before the transaction is effectively

committed.

In the following section, we present existing read isolation properties. Unless stated otherwise,

they assume update atomicity.

12

3.3. TRANSACTIONAL ISOLATION LEVELS (CONSISTENCY CRITERIA)

3.3 Transactional Isolation Levels (Consistency Criteria)

The stronger the level of isolation a system implements, the more its behaviour resembles that

of a sequential system. However, implementing strong isolation in a highly-parallel setting

requires concurrency control, i.e., techniques that limit the possible interleaving of a transaction’s

operations. This introduces an overhead over a transaction’s execution. Weakening isolation

exposes anomalous effects of concurrency, called anomalies. The presence of anomalies increases

the complexity of developing correct applications. On the positive side, reducing concurrency

control boosts performance by imposing fewer restrictions on how operations interleave, which

enables a variety of optimisations.

A large body of research, both from the parallel and the distributed programming communities,

has focused on proposing isolation levels (also called consistency criteria) along the design space

created by the isolation-performance trade-off. In this section, we introduce isolation levels and

concurrency control techniques. In Chapter 12, we propose new isolation levels and, in Chapters

5 and 13, new implementations thereof. In Chapter 16, we elaborate on how existing systems

and research prototypes implement isolation. A list of many commercial database systems and

their default and maximum offered isolation level can be found elsewhere [23].

3.3.1 Notation

The application state is composed of objects (or items), noted x, y, Each read or update (or

write) operation acts on a single item. A read operation returns the object’s value, and an update

operation modifies its value. A transaction T is a finite sequence of read and write operations

followed by a terminating operation, commit or abort. A transaction that commits applies its

updates, making them visible to other transactions1. When a transaction aborts, all its updates

are discarded.

3.3.2 Concurrency control

Isolation is achieved through concurrency control mechanisms. There are two main techniques:

3.3.2.1 Lock-based concurrency control

This technique relies on locking objects prior to reading and/or modifying them —depending on

the isolation property the mechanism ensure. This technique is called pessimistic concurrency

control, as transactions lock objects even when other concurrently-executing transactions might

not need to access them.

1We do not consider, throughout this document, any isolation property or transactional system that allows
transactions to observe uncommitted data such as, for instance, the ANSI Read Uncommitted [19].

13

CHAPTER 3. STORAGE SEMANTICS

3.3.2.2 Multi-version concurrency control (MVCC)

MVCC is a form of optimistic concurrency control (OCC) that relies on keeping multiple versions

of each object. Transactions are allowed to execute optimistically under the assumption that no

concurrency issues will happen, and only checked for concurrency issues at the end.

Optimistic Execution. Under MVCC, transactions read object versions from a database

snapshot. A snapshot represents a view of the state of the store composed by a version of each

object. Each isolation property defines the rules that object versions must satisfy to belong

to a snapshot. For instance, a requirement of strong isolation models (e.g., Serialisability and

Snapshot Isolation) is that all atomically-created updates are in a snapshot, or none is. This is

not a requirement of weak isolation (e.g., Read Committed and Read Uncommitted isolation).

Concurrency checks. At commit time, if necessary, the read and/or update operations of a

transaction undergo checks to verify the transaction has not interleaved with other concurrent

transactions in ways forbidden by the target isolation property. If the certification passes, the

transaction commits. Otherwise, it aborts [28]. For instance, under Snapshot Isolation, a trans-

action reading an updating a certain object must certify that no other transaction has modified

the same object since the object was read. In case a concurrent modification is detected, the

transaction aborts (Section 3.3.4.3).

3.3.2.3 Choosing a technique.

MVCC does not incur the overheads of acquiring and removing locks. MVCC is useful to im-

plement strong isolation when the levels of contention are low. High contention can cause

interleaving transactions to access the same objects, which can lead to transactions being aborted

and retried frequently. MVCC is also the only technique used to implement weak isolation where

transactions do not require exclusive access to objects and, therefore, they never abort due to

concurrency issues.

Lock-based concurrency control is suited for strong isolation, which requires exclusive ac-

cess to objects. In particular, this technique is applied to workloads that exhibit high levels of

contention, as it never causes a transaction to abort.

3.3.2.4 Mixing them.

Mixing optimistic and pessimistic techniques in a single system is possible and common practice.

An implementation can, for instance, rely on locks for highly-contended objects and on MVCC for

objects which are less contended.

14

3.3. TRANSACTIONAL ISOLATION LEVELS (CONSISTENCY CRITERIA)

3.3.3 Anomalies

The highest level of isolation, Strict Serialisability, provides an abstraction where each transaction

executes alone in the system —thus not interfering with other transactions— in the same order

they are received by the system [52, 69]. Therefore, running under the strongest isolation prevents

observing concurrency issues. An anomaly is a (normally undesirable) effect that results from

allowing multiple transactions to execute concurrently in a system that weakens isolation, i.e.,

which exposes operations or transactions to the intermediate states of others. Anomalies help

defining isolation properties, as they exemplify undesirable situations that are possible under a

particular model, which is useful for a programmer to take action at the application level when

needed (an anomaly might be harmful to some applications and harmless to others). We first

introduce concurrency anomalies, to later define isolation levels according to both undesirable

anomalies and desirable properties they offer.

In what follows, we list the definition of anomalies, as they will be referred from the rest of

this document. We suggest the reader to jump to Section 3.3.4, and to read each definition when

necessary.

3.3.3.1 Dirty read.

A dirty read occurs when a transaction Tr reads an update made by a transaction Tu that has

not yet committed. It could happen that Tu aborts, invalidating the update observed by Tr.

Example. Initially x = 0. Tu sets x = 1 and later x = 2 and commits (or aborts). Concurrently, Tr

reads x = 1.

In this work, we do not consider this anomaly as its avoidance can be achieved trivially, for

instance, by buffering the reads a transaction has already performed.

3.3.3.2 Non-repeatable read.

A non-repeatable read occurs when a transaction reads the same object twice, obtaining different

results.

Example. Initially x = 0. Tu updates x = 1 and commits. Concurrently Tr reads x = 0 and then

reads x = 1.

3.3.3.3 Lost update.

A lost update occurs when multiple transactions make updates concurrently to a common object,

causing one transaction’s updates to be lost, i.e., unobservable by other transactions.

Example. Initially x = 0. Tu reads x = 0, writes x = 1, and commits. Concurrently, T ′
u reads x = 0,

writes x = 2, and commits.

15

CHAPTER 3. STORAGE SEMANTICS

3.3.3.4 Write skew.

A write skew occurs when a transactions executing concurrently read an intersecting group of

objects and make updates to disjoint objects belonging to that intersection read. None of these

transactions observe the effects of the other(s). This anomaly is also known as short fork [81].

Example. Initially x = y = 0. Tu and T ′
u read x = y = 0. Concurrently, Tu writes x = 1 and T ′

u

writes y= 1. Then, both transactions commit.

3.3.3.5 Non-monotonic snapshots.

Non-monotonic snapshots are observed when concurrent transactions make updates to different

objects. After they both commit, transactions observe the effect of those transactions as occurring

in different order. This anomaly is also known as long fork [81].

Example. Initially x = y= 0. Tu updates x = 1, and commits. Concurrently, T ′
u writes y= 1, and

commits. Tr and T ′
r execute concurrently with Tu and T ′

u. Tr reads x = 1, y = 0, and T ′
r reads

x = 0, y= 1.

3.3.3.6 Read Skew.

A transaction updates multiple objects. Other transactions reading a number of those objects

observe some but not all the updates of the updating transaction [27]. This anomaly is also known

as a fractured read [24].

Example. Initially x = y= 0. Tu updates x = y= 1, and commits. Concurrently, Tr reads x = 1, y= 0

(or x = 0, y= 1).

3.3.3.7 Real-time violation.

This anomaly occurs when two or more transactions execute in a certain order as witnessed by

an external observer, and later transactions do not observe the effects of earlier ones. I.e., A

transaction Tu performs one or more updates and commits. A transaction Tr, issued after Tu

finished, reads objects updated by Tu but does not observe Tu ’s updates.

Example. Initially x = 0. Tu updates x = 1 and commits. Later, Tr reads x = 0.

3.3.3.8 Order Violation.

This anomaly occurs when two or more transactions execute in a some significant order estab-

lished by the system, and a transaction performs a number of reads, observing gaps in that

order.

Example. Initially x = y= 0. Tu updates x = 1 and commits. After, T ′
u reads x = 1 (the update made

by Tu), updates y= 2 and commits. Tr, running concurrently with Tu and T ′
u, reads x = 0, y= 2.

16

3.3. TRANSACTIONAL ISOLATION LEVELS (CONSISTENCY CRITERIA)

3.3.4 CP (Strong) Isolation

A strongly consistent models is one that does not allow concurrent transactions to commit

modifications to the same object, thus disallowing the lost update anomaly. Under geo-replication,

this requires across-data-centre communication on the critical path of an update transaction. In

this section, we introduce CP isolation models. Table 3.1 summaries the anomalies these models

present.

3.3.4.1 Strict Serialisability (SS) - no anomalies

This is the strongest isolation property [69] and, therefore, the simplest to program against.

It disallows all anomalies. It ensures that every transaction appears to execute at a single

point in time between its beginning (or first operation), and its commit point. More precisely,

SS ensures that the results of concurrently committed transactions is equivalent to a serial

execution (i.e., one transaction after another) that respects the order of real time (a property

called External Consistency [58]). Under SS, consistency is guaranteed also when communication

happens outside the boundaries of the system. For instance, Alice makes a deposit into Bob’s

account and calls to let Bob know over phone. SS guarantees that Bob will observe the deposit in

his account when checking his balance. This guarantee is not provided the other isolation models

we consider.

3.3.4.2 Serialisability (S) - relaxing real-time ordering

S is very similar to SS. S ensures that the execution of committed transactions is equivalent to

some serial execution of the same transactions, but not necessarily in real-time order. Therefore,

it allows the occurrence of real-time violations.

The performance benefit of allowing real-time violations. Allowing real-time violations

gives the system flexibility to order transactions in multiple ways, which allows for increased

concurrency. Consider the following example. Initially x = y = 0. Tu updates x = y = 1 and

commits. Tr reads x, y while Tu is committing (Tu has not finished). The system can chose to

reply immediately with x = y = 0 (and does not need to wait for Tu to commit to reply with

x = y= 1, as it should under SS), meaning that it can serialise Tr as happening before Tu, and

allow two transactions to run concurrently instead of one.

3.3.4.3 Snapshot Isolation (SI) - removing serialisability checks from read
operations

This isolation property was defined in terms of how a transaction should execute under a given

implementation [27], which is based on MVCC. Under SI, a transaction T reads from a possibly-

stale snapshot of the database (thus allowing real-time violations) and makes updates over that

17

CHAPTER 3. STORAGE SEMANTICS

view. When finishing execution, T aborts if a concurrent transaction has committed updates to

some object updated by T since T ’s snapshot.

SI is one of the most widely-adopted isolation properties, and it is supported by most com-

mercial database systems [23]. The rationale behind its design is that reads predominate in

many workloads, and removing their serialisation checks improves the overall performance of

the system significantly. However, removing serialisability checks from reads comes at the cost of

exhibiting the write-skew (or short-fork) anomaly.

The benefit of removing serialisability checks from read operations. Serialisability

checks can require blocking objects or extra messages to servers storing read objects, which can

be particularly expensive under replication. By removing serialisability checks from reads, under

SI, transactions execute faster and read-only transactions never abort.

3.3.4.4 Update Serialisability (US) - non-monotonic snapshots

US ensures that update transactions are serialisable, but relaxes isolation for read-only trans-

actions, which can observe the non-monotonic snapshots (or long-fork) anomaly [?]. Similarly

to SI, read-only transactions read from a consistent snapshot of the state, and do not undergo

concurrency checks. Differently, both the reads and updates of update transactions undergo

serialisability checks and, for this reason, US does not exhibit the write-skew anomaly.

The benefit of non-monotonic snapshots. By removing the requirement of monotonic snap-

shots, implementations can avoid synchronisation, particularly under geo-replication. To illus-

trate this, consider the following example execution in a geo-replicated system comprised of two

data centres DC1 and DC2:

Initially x = y= 0 at both DC1 and DC2. T1
u, running at DC1, updates x = 1 and commits. Con-

currently, T2
u, running at DC2, writes y= 1 and commits. By allowing non-monotonic snapshots,

T1
r can execute at DC1 after T1

u commits, and read x = 1, y= 0, while T2
r can execute at DC2 after

T2
u commits, and read x = 0, y= 1. T1

r and T2
r can proceed before DC1 and DC2 have exchanged

the updates made by T1
u and T2

u. This execution is not serialisable, as it is impossible to order T1
u

with respect to T2
u, or T1

r with respect to T2
r (T2

r has observed T2
u ’s effects before those of T1

u and

T1
r has observed T1

u ’s effects before those of T2
u).

To disallow this behaviour, the system must either establish an order between T1
u and T2

u

before T1
r and T2

r read the values of x and y, or hide their updates from other transactions until

such an order is established. The former alternative requires synchronising DC1 and DC2, which

can slow down some of these transactions. The latter has two problems: (i) it lets T1
r and T2

r read

stale data (with respect to what is already available at their sites of execution), and (ii) if T1
u

and T1
r (or T2

u and T2
r) were executed by the same client, this would violate the read-your-writes

session guarantee (Section 3.4).

18

3.3. TRANSACTIONAL ISOLATION LEVELS (CONSISTENCY CRITERIA)

3.3.4.5 Parallel Snapshot Isolation (PSI)

PSI, also known as Non-Monotonic Snapshot Isolation [75], combines the relaxations made by SI

and US over S, thus allowing both their anomalies (long fork and write skew)[81].

3.3.5 AP (Weak) Isolation

AP designs rank availability and performance over ease of programming. They further remove

serialisability checks from updates, thus allowing concurrent updates to the same objects. The

benefit is that update operations do not acquire locks or never abort due to serialisation checks,

which allows to completely avoid synchronous operations under geo-replication. Therefore, AP

models exhibit the lost update anomaly. To avoid coordination, the first distributed and replicated

AP designs provided no isolation (NI) or update atomicity, allowing all possible anomalies

[33, 37, 39, 43, 73]. Later research has proposed stronger isolation that remains available under

partition. We introduce such models in this section. Table 3.1 summaries the anomalies presented

by both CP and AP isolation models.

3.3.5.1 Transactional Causal Consistency (TCC)

Under TCC, updates respect causal order, which guarantees that if one update happens before

another, they will be observed in the same order (Section 3.5.2.1). TCC guarantees a transactions

reads committed data, from a snapshot that respects causal order and ensures a transaction does

not read the updates of another transaction partially. Under geo replication, it is the strongest

(so-far-proposed) isolation property that remains always available under partitions. A detailed

definition of this model is provided in Section 5.1.

3.3.5.2 Read Atomic (RA)

RA is a model that ensures that transactions observe committed data, and that they do not

observe the updates of other transactions partially. Therefore, RA only forbids transactions to

observe uncommitted data and read skews [24].

3.3.5.3 Read Committed (RC and RC+)

The standard Read Committed (RC) ANSI isolation level [19] only prevents transactions from

reading uncommitted data. Therefore, all anomalies except dirty reads are observable. When

compared to TCC, it allows causally-consistent snapshot violations and the Read-Skew anomaly.

RC is sometimes specified in terms of a lock-based implementation that disallows the Lost-Update

anomaly. Under replication, this requires synchronous updates (which turns RC into a CP model).

Throughout this work, we call this variant RC+.

19

CHAPTER 3. STORAGE SEMANTICS

CP Models AP Models
Anomalies \ Isolation SS S US SI PSI RC+ TCC RA RC NI

Dirty Read x x x x x x x x x -
Read Skew x x x x x - x x - -

Lost Update x x x x x x - - - -
Write Skew x x x - - - - - - -

Non-monotonic snapshots x x - x - - - - - -
Order violation x x x x x - x - - -

Real-time Violation x - - - - - - - - -

Table 3.1: Anomaly comparison of isolation levels

The benefit of allowing Order violations and read skews. To disallow these anomalies,

existing APdesigns (i) keep multiple versions of each object, and (ii) apply concurrency control

to transactions to disallow them observing these anomalies. Item i requires extra storage and

processing. Under existing implementations, item ii affects latency.

3.3.5.4 No Isolation (NI)

NI permits all introduced anomalies. In particular, under NI it is possible to observe uncommitted

data. NI is called Read Uncommitted (RU) in the ANSI standard [19].

3.3.6 Summary of anomalies allowed/disallowed by Isolation levels

Table 3.1 summaries the anomalies presented by the introduced CP and AP isolation models.

3.4 Session guarantees

Session guarantees provide a client with a view of the data store that is consistent with his own

actions [84]. Their implementation is often independent from that of isolation levels.

Monotonic reads. This property requires that a client never observes state older than what it

has observed during a previous operation. Consider the following example: Initially, x = 0. Tu

updates x = 1. Tr reads x = 1. From this moment on, further transactions issued by the client

that issued Tr must observe x = 1 or the result of subsequent updates.

Writes follow reads. This guarantee ensures that, if a client observes an update of a trans-

action Tu and subsequently performs updates in a transaction T ′
u, any client will observe the

effects of T ′
u only if she can also observe those of Tu.

Monotonic writes. This property guarantees that a user’s updates are applied by the system

in the order they were submitted.

20

3.5. SINGLE-OBJECT CONSISTENCY AND ISOLATION

Read your writes. This property guarantees that if a client performs certain updates, further

reads issued by the same client will observe their effects.

3.5 Single-object Consistency and Isolation

We present single-object consistency models. They can be classified into AP and CP.

3.5.1 CP Consistency

3.5.1.1 Linearisability

This property is equivalent to Strict Serialisability (Section 3.3.4) for single objects [52]. It

guarantees that the operations on an object are executed sequentially in the order they were

submitted. Strict Serialisability ensures each object is linearisable.

3.5.2 AP Consistency

3.5.2.1 Causal Consistency (CC)

To define CC, we first define causal order, characterised by the happens-before relation ; [56].

Definition 1 (Happens Before). For two operations a and b, we say a happens before b or,

equivalently, a; b, if any of the following conditions hold:

• Thread-of-execution: a and b are executed by the same thread (or client), and a is ordered

by the thread before b.

• Reads-from: a performs an update, b reads the values written by a.

• Transitivity: There exists c such that, if a ; c and c ; b, then a ; b.

Causal consistency requires that clients observe updates in causal order. Therefore, if updates

a to an object A and b to an object B happened in the order a ; b and a client that reads B

observes the effects of b, when she later attempts to read A, her read must observe the effects

of a. We say that, if a; b, then a is a causal dependency of b. This property is similar to TCC

(Section 3.3.5) for single objects [13].

A key ingredient in consistency criteria. Causal order is a key ingredient of TCC, PSI and

US. Systems implementing those models include a mechanism to causally order updates.

Mechanisms to ensure causal consistency in cloud environments. In a replicated set-

ting, causally-related updates can arrive out of order to remote replicas. In this situation, a

receiving replica must ensure that it makes these updates visible to clients respecting causal

order. The situation is more complex when a replica is partitioned, as a given update and its

causal dependencies might be stored at different servers, requiring extra communication. There

21

CHAPTER 3. STORAGE SEMANTICS

have been four mechanisms proposed by the literature under this setting: (i) explicit dependency

check messages, (ii) dependency stabilisation, (iii) dependency dissemination trees, and (iv) no

dependency checking, that we also call unavailable causal consistency.

To explain each of these mechanisms, consider a sample cloud deployment that stores two

objects A and B, comprised of two replicas R1 and R2, each comprised by two partitions, storing

one object each: pA
1 , pB

1 ⊂ R1, pA
2 , pB

2 ⊂ R2. Now consider an execution that creates, at R1, updates

a to A and b to B, such that a ; b. If the system provides causal consistency, then any client

that reads B and observes b, must observe a (and possibly updates to A causally depending on a)

when later reading A.

Explicit Dependency Check Messages. Upon arrival of an update, a partition receiving

communicates with each partition storing the update’s dependencies to verify that these depen-

dencies have been applied. In our example, when R2 receives update b from R1, pB
2 will send a

message to pA
2 asking if it has applied a. pA

2 replies to pB
2 only after receiving and applying a

(which, in turn, might require similar checks). pB
2 makes b visible to read operations only after

receiving this response.

Dependency Stabilisation The goal of this mechanism is to reduce the number of mes-

sages required to make an update visible respecting causal order, with respect to explicit depen-

dency check messages. A partition groups, and periodically broadcasts, information regarding the

updates it have recently received from sibling partitions at other replicas. Upon receiving such

information from all the partitions of its local data centre, a partition can compute locally which

of its received updates is ready to be made visible to readers. The number of messages exchanged

between servers remains constant with the number of updates. Its downside is that updates take

potentially more time to be made visible or, equivalently, update-visibility latency is larger.

In our example, pA
2 and pB

2 periodically exchange messages informing each other of the

updates each has received from pA
1 and pB

1 , respectively. Consider, for instance, pB
2 receives b

before pA
2 receives a. pB

2 buffers b until one of the periodic messages from pA
2 informs it has

applied a.

Dependency Dissemination Trees This technique consists of building a tree that takes

care of delivering updates to other replicas in causal order. Each replica acts as a node in the tree

and submits its updates to it.

Dependency dissemination trees are particularly useful for edge networks, where the number

of replicas is large, and where replicas do not replicate the entire state (i.e., under partial

replication). If the tree is built carefully taken into consideration across-replica latencies, it

exhibits high throughput and low update-visibility latency. The downside of this mechanism is

that it requires each replica to totally order its updates and submit them to the tree respecting

this order. Moreover, each replica subscribes to the tree through a single point, which delivers

22

3.5. SINGLE-OBJECT CONSISTENCY AND ISOLATION

a stream of updates. This single point might become a bottleneck in large data centres. Other

techniques do not pose this restriction. They allow partitions to exchange updates independently.

In our example, pA
1 and pB

1 submit updates to the entry point of tree at R1 in the order ab.

The tree delivers these updates to R2 through an entry point, that sends a to pA
2 , and b to pB

2 ,

respecting this order.

No dependency Checking (or unavailable causal consistency). All mechanisms in-

troduced above guarantee high availability by applying updates in causal order (which includes

enforcing the monotonic-writes session guarantee). However, it is also possible to implement

this model without guaranteeing high availability, by applying updates arriving from remote

replicas immediately, and performing dependency checks at read time. This mechanism does not

guarantee high availability, as it allows an update that arrives before its causal dependencies to

be read, while its dependencies may not arrive due to a network partition.

In our example, consider that pB
2 receives b before pA

2 receives a. pB
2 applies b immediately,

making it visible to readers. A client reads B, observing b and later reads A. If pA
2 has not

received a, the client must block, possibly indefinitely, until the arrival of a.

In Section 16.1, we will discuss how existing systems enforce causal order.

3.5.2.2 Eventual Consistency (EC)

EC is model for replicated data that ensures that replicas that have received the same updates

converge to the same state independently of the order in which they process them.

3.5.2.3 Causal+ Consistency (CC+)

CC+ is a model for replicated data that results from the combination of Causal Consistency and

Eventual consistency. It ensures that clients observe updates respecting causal order and that

replicas converge to the same state when they have received the same updates.

3.5.2.4 Ensuring Convergence

Concurrent operations are not ordered under AP consistency. If two concurrent operations update

the same object, then they can lead to a conflict. Under replication, this can lead to divergent

replicas and losing updates. Ensuring convergence requires the adoption of a mechanism to

resolve conflicting operations. Examples include exposing the conflict to be resolved by the

application, or relying on conflict-free data types (CRDTs) [78], such as registers with a the

last-writer wins rule [85].

The last-writer-wins (LWW) rule. In the presence of concurrent conflicting updates, data

types implementing LWW keep the update that occurred "last". Each update has a unique

23

CHAPTER 3. STORAGE SEMANTICS

identifier taken from a totally-ordered space. When a replica applies concurrent updates, it

picks the one with the highest identifier and discards the remaining ones. As each replica can

perform the same action, independently, without communicating to other replicas, this mechanism

guarantees Eventual Consistency. This technique achieves convergence, but does not prevent the

Lost-Update anomaly (in the presence of concurrent conflicting updates, some may be discarded).

Convergent and Commutative Data Types (CRDTs). CRDTs are data types such as reg-

isters counters, sets, lists, tables and maps that implement a mechanism to resolve concurrent

conflicting updates automatically.

CRDTs guarantee convergence by ensuring all operations commute: applying a number of

operations to a CRDT in an initial state will converge to the same final state independently

of the order in which those operations are delivered [78]. The simplest example is a counter

that exposes an interface consisting of an increment and a decrement operation. A counter c

with a given initial value will exhibit the same final value if one applied c.increment followed

by c.decrement or the same operations in the inverse order (the same would happen with two

increments or two decrements).

Some CRDTs disallow the lost update anomaly, as they apply all conflicting operations.

Consider, for instance, a two-replica deployment where a counter’s initial value at both sites

is c = 1 and two users increment the value of the counter at different replicas concurrently. A

CRDT counter will guarantee that both increments are applied at both sites when the system

synchronises. There are a number of ways to implement this behaviour. We introduce two of

them.

Operation-based implementation. Under an operation-based implementation, replicas

exchange operations. These operations encode the state over which they must be applied. Under

replication, an operation-based implementation of a CRDT requires updates to be applied in

causal order and exactly-once at remote replicas.

Causal order ensures that, at a remote replica, an update is applied after the updates that

were present at its source. As an illustrative example, imagine an empty CRDT set s in a

replicated system where one replica executes s.add(A) followed by s.remove(A). If the remove

operation arrives to the other replica before the add operation, the resulting state at one replica

could show an incorrect state where A ∈ s.

Exactly-once delivery is required by operations that are not idempotent. For instance, applying

more than once the same increment to a counter would lead to an incorrect value.

State-based implementation. The state-based approach relies on state that encodes the

information of how to handle remote updates. A state-based CRDT implementation does not

require exactly-once delivery nor causal order from the system for correctness. In the case of

replication, this state is exchanged among replicas. When receiving state from a replica, each

24

3.5. SINGLE-OBJECT CONSISTENCY AND ISOLATION

replica locally applies a merge function over its local and received states to compute its current

state.

Observed-remove set example. We compare an operation and a state-based implemen-

tation of a set. A set exposes two operations: add(E) adds element E to the set, and remove(E)

removes element E from the set. Two operations do not commute: add and remove over the same

element in the set. There are many possible policies to resolve this situation. We present an

implementation with intuitive semantics, called the observed-remove set, or OR-Set, where a

remove(A) operation removes the "observed" instances of A. We chose the OR-Set as it is used

in the evaluation of Cure (Part I). OR-Sets are also called Add-Win-Sets as, in the presence

of conflicting concurrent add(A) and remove(A) operations, A will remain in the set since the

remove operation has not observed the concurrent add operation.

Sketch of a state-based implementation. Each add operation is internally assigned a unique

identifier, and each remove operation, a list of the identifiers of the add operations observed by

the remove operation. The state of the set results from the add operations which have not been

marked as removed.

For instance, consider the following sample execution. Initially, set s =;. The following operations

are applied. s.add(A) followed by s.add(A). The internal representation of s after those updates

will be: s = {(A,uid1), (A,uid2)}. A later s.remove(A) will result in s = {(A∗, [uid1,uid2])}, where

(A∗, [uid1,uid2]) is a "tombstone" indicating that a remove operation on A has removed the

(observed) add(A) operations identified by uid1 and uid2.

This implementation presents two drawbacks: (i) remove operations leave tombstones that

cannot be garbage collected (as exactly-once delivery is not assumed,2 and (ii) under replication,

the entire state has to be exchanged by replicas.3

Sketch of an operation-based implementation. We sketch a possible operation-based Set implemen-

tation. We assume that each operation is augmented with an unique identifier. Identifiers respect

causal order. As we will see, this simplifies garbage collection. Moreover, operation exchanges

among replicas are lighter than state exchanges.

We illustrate the algorithm with the same example execution of s.add(A) followed by s.add(A)

over s =;. Internally, the implementation will assign uid1 to the first operation, and uid2 to

the second, where uid1; uid2. The internal representation of the s after those updates will be:

s = {(A,uid2)}: only the causally-latest add needs to be recorded and, in the replicated case where

updates are sourced at the same replica, transferred.

2An optimised implementation removes this problem [30].
3There are some optimised state-based implementations that reduce the size of the state exchanged [17].

25

CHAPTER 3. STORAGE SEMANTICS

A later s.remove(A) will be assigned uid3 : uid2 ; uid3. This will result in the following

internal representation: s =;: as the remove operation has a causally-after id, all add operations

to A with smaller identifiers can be removed.

26

Part I

Cure: strong semantics meets high
availability and low latency

27

Chapter 4

Introduction to Part I

Many cloud services are layered over a high-performance distributed data store running at a

number of data centers (DC) worldwide. Geo-replication across several DCs saves users wide-

area-network latencies and partitions, and DC downtimes. As presented in Section 2.2, this is of

paramount importance for such systems.

Traditional CP databases provide ACID guarantees and a high-level SQL interface, but lose

availability. In contrast, AP databases are highly available and bring significant performance

benefits. However, they expose application developers to inconsistency anomalies, and most

provide only low-level key-value interface (Section 2.3).

To alleviate this problem, recent work has focused on enhancing AP designs with stronger

semantics [60, 61, 81]. In this part of this work, we present Cure, our contribution in this direction.

While providing availability and performance, Cure provides (i) Transactional Causal Consistency

(TCC), i.e., causal consistency, ensuring that if one update happens before another, they will be

observed in the same order, (ii) support for operation-based replicated data types (CRDTs) such

as counters, sets, tables and sequences, with intuitive semantics and guaranteed convergence in

the presence of concurrent updates and partial failures, and (iii) general transactions, ensuring

that multiple keys (objects) are both read and written consistently.

Causal consistency (CC) represents a sweet spot in the availability-consistency trade-off

[14, 60]. It is the strongest model compatible with availability for individual operations [20].

Since it ensures causal consistency (introduced in Section 3.5), it is easier to reason about for

programmers and users. Consider, for instance, a user who posts a new photo to her social

network profile, then comments on the photo on her wall. Without causal consistency, a user

might observe the comment but not be able to see the photo. To avoid the anomaly, this requires

extra programming effort at the application level.

CRDTs are developer-friendly high-level data types that have rich semantics (Section 3.5.2.4).

Operations on CRDTs are not only register-like assignments, but methods corresponding to

the CRDT object’s type. CRDTs ensure that replicas eventually converge to the same state

despite concurrent conflicting updates. For guaranteeing convergence, previous causal+ consistent

29

CHAPTER 4. INTRODUCTION TO PART I

systems [18, 45, 47, 60, 61] adopt the last-writer-wins rule, where the update that occurs “last”

overwrites the previous ones. Cure provides support for operation-based CRDTs. For instance, the

Bet365 developers report that using Set CRDTs changed their life, freeing them from low-level

detail and from having to compensate for concurrency anomalies [64].

Performing multiple operations in a transaction enables the application to maintain relations

between multiple objects. AP isolation eschews traditional strong isolation properties, which

require synchronisation, in favour of availability and low latency [22, 35]. Previous transactional

CC+ implementations provide either reading from a snapshot [18, 45, 47, 60, 61] or atomicity of

updates [24, 61]. In Cure, a transactions provides both.

Taken together, the above features provide clear and strong semantics to developers. In fact,

as Cure combines the three, it has the strongest semantics ever provided by an always-available

data store.

Cure’s design is based on a novel approach to support parallelism between servers within the

data centre that minimises the overhead of causal consistency in inter-DC traffic [47]. Instead

of the usual approach of checking whether a received update satisfies the causality conditions,

which requires to wait for a response from a remote server —called explicit dependency check

messages— Cure relies on dependency stabilisation, which makes updates visible in batches that

are known to be safe according to causal consistency. Cure improves on previous work by encoding

causal-order metadata as a single scalar per DC —thus incurring small overhead— to improve

freshness and resilience to network partitions with respect to the state-of-art implementation of

such mechanism (See Section 6.5).

To summarise, the contributions of this part of the thesis are the following:

• A novel programming model providing causally-consistent interactive transactions with

high-level, conflict-free data types (Chapter 5.1).

• A high-performance protocol, supporting this programming model for geo-replicated data

stores (Chapter 6).

• A comprehensive evaluation, comparing our approach to state-of-the-art data stores (Chap-

ter 7).

This work is the result of collaboration with members of University of Kaiserslautern, Université

Catholique de Louvain, and NOVA LINCS. It has been published in ICDCS’16 [16].

30

Chapter 5

Overview of Cure

5.1 Transactional Programming Model

A body of research has extended the causal+ consistency (CC+) model [60] by adding multi-

key operations. There are two major efforts in this direction: static read-only transactions [18,

45, 47, 60, 61] that provide clients with a consistent view of multiple keys, and update-only

transactions [61] that permit clients to perform atomic multi-key updates. Cure adds general

transactions and CRDT support to ensure replica convergence.

General Transactions. Static-reads offer limited functionality. They are useful to perform

reads in rounds, where the objects read in each round are selected according to the results of

reads performed in the previous one(s). Consider the example of populating a news feed on a

social network application with the most recent activity of a user’s contacts. The application

should first read the user’s friends to retrieve their latest posts. Then, it should read the list

of comments and likes of those posts, etc. Indeed, Facebook has reported that populating a

user’s news feed requires dozens of rounds alike [15]. With a static interface, the reads across

rounds lose isolation guarantees, as they must be issued in different transactions. Our general

transactions are interactive: they allow clients to combine read and write operations flexibly

within the same transaction, when the read set is not known in advance. Under TCC, they ensure:

• Update atomicity, i.e., all updates occur and are made visible simultaneously.

• Transactions read from a snapshot that, as defined in Section 3.3.5, avoids causality

violations and read skews. Moreover, Cure’s transactions ensure all the session guarantees

(Section 3.4).

Support for CRDTs. In Cure, an update is a CRDT-specific operation. For instance, a counter

implements increment(amount) and decrement(amount), while a register’s is assign(value).

31

CHAPTER 5. OVERVIEW OF CURE

Cure ensures that updates are delivered to replicas exactly once and in causal order, which

enables lightweight operation-based implementations of CRDTs (Section 3.5.2.4).

5.2 Programming interface

Cure’s interactive interface offers the following operations:

• TxId ← START_TRANSACTION(CausalClock)

initiates a transaction by creating a transaction coordinator process. This process returns a

transaction handle that will be used when issuing reads and updates for that transaction.

The system guarantees that reads in the transaction will observe updates no older than

those encoded in the CausalClock vector clock. When CausalClock is not specified the server

that receives the request creates a vector clock for the transaction that will include the

most recent updates known to be available by this server.

If START_TRANSACTION is not issued before the first read or update operation, the first

operation starts the transaction implicitly, and additionally returns the transaction handle.

In this case, it is also possible to pass a CausalClock as an argument. To simplify the

explanation of the algorithms, we do not explain these cases in detail.

• Values ← READ_OBJECTS(Keys, TxId)

returns the list of values that correspond to the state of the objects identified by the

elements of the Keys list. The system guarantees that the values returned belong to a

consistent snapshot.

• ok ← UPDATE_OBJECTS(Updates, TxId)

declares a list of Updates for a transaction. Each update must respect the form:

(key,CRDT − type, operation,arguments), where key is the object identifier, CRDT − type is

the type of CRDT, operation an operation exposed by CRDT − type, and arguments, the

parameters the operation accepts. For instance, incrementing a counter identified by the

key "my-counter" by two would look like: update(my− counter, crdt− counter, increment, (2)).

The function returns ok.

• CommitTime ← COMMIT(TxId)

commits the transaction identified by transaction handler TxId. It executes the updates

(if any) and makes them visible to other transactions. It returns the transaction’s Com-

mitTime, which can be used by the client on further transactions (as a parameter of the

START_TRANSACTION(CausalClock) operation). The process coordinating the transaction

terminates.

32

5.3. DESIGN - CAUSAL CONSISTENCY

• ok ← ABORT(TxId)

discards the updates (if any) issued on behalf of the transaction and terminates the

coordinator process.

Static Interface. Cure also offers a static transactions. These receive a list of read and/or

update operations. The system executes the transaction completely in a single call that

starts, executes and commits the transaction. We do not illustrate this path to simplify

explanation.

5.3 Design - causal consistency

Cure is designed with the goal of providing TCC in a cloud environment, while remaining highly-

available under partition, without compromising scalability, and while serving fresh data. To

meet these goals:

• Cure ensures that updates arriving from remote replicas are applied in causal order.

• Its design decouples propagating updates among replicas from making these updates visible

respecting causal consistency. Partitions propagate updates pairwise, without requiring

coordination with other partitions. A lightweight protocol involving all partitions runs

asynchronously to establish the set of updates that are causally-consistent and thus safe to

read.

• Causal order information is encoded using vector clocks sized with the number of replicas.

Each partition relies on the timestamps taken from the physical clock to timestamp events,

avoiding centrally assigned time-stamps [46].

In what follows: we explain how each of these design choices help us achieve our goals. In

Section 16.1, we compare these design choices with those of other causally-consistent stores.

5.3.1 Updates applied in causal order for high availability.

In a geo-replicated setting, the requirement of availability under partition forces a replica receiv-

ing a remote update to verify that all the updates that causally precede (or causal dependencies)

it were applied before making this update visible to readers. To illustrate the issue, consider an

execution where update a to object A and b to object B, such that a; b, b arrives at a remote

replica before a. A client reads B and sees the effects of b. Then, a network partition occurs such

that a never arrives. To ensure causal consistency, the reader is not allowed to read A before a

arrives, which would render this operation unavailable (or causally inconsistent).

5.3.2 Dependency stabilisation for scalability.

Ensuring that the causal dependencies of an update have been applied requires computation and,

when the key space is partitioned, communication across servers (e.g., if the partitions storing

33

CHAPTER 5. OVERVIEW OF CURE

a and b are held by different servers). The traditional approach is explicit dependency check

messages, where a partition receives a remote update and sends a message to each partition

storing causal dependencies of the update. This mechanism is expensive in terms number

of messages exchanged which affects throughput. It is possible to implementing an efficient

broadcast protocol among partitions which results in negligible throughput degradation [47]. This

is called dependency stabilisation, where partitions at a replica periodically exchange information

regarding the updates they have received, and each partition uses this information to compute

which updates have their dependencies satisfied. Cure follows this approach.

5.3.3 Vector clocks for serving fresh data.

Explicit dependency check messages normally rely on large causal-order metadata to reduce the

number of per-update exchanged messages: by tracking dependencies more precisely, upon arrival

of a remote update, a partition needs to contact fewer partitions. This results in small latencies

to make a remote update visible (called update-visibility latency). On the contrary, GentleRain,

which implements dependency stabilisation, relies on compact single-scalar timestamps [47]. To

make an update with a given timestamp visible, a replica must wait to receive all updates with a

smaller timestamp from all other replicas. This results in update-visibility latencies governed by

the latency to the most distant replica and, under network partitions or failures, replicas do not

apply updates that arrive from healthy remote replicas.

To improve visibility latency and progress without resorting to dependency check messages,

Cure encodes dependencies in a vector clock sized with the number of replicas. This way, it makes

the updates of a given replica visible independently of the state of others.

In the following chapter, we provide detailed protocol design, including and transaction

execution, update propagation, and causal stabilisation.

34

Chapter 6

Protocol description

There are two kinds of processes involved in the execution of a transaction, a transaction

coordinator (TC) which handles user requests from clients, and forwards it to partitions (p), which

store object versions, and reply to requests arriving from TCs to read and update the subset

of objects they store. Every replica (or DC) follows an identical partitioning scheme. Note that

partitioning is logical. A physical server can host multiple logical partitions.

Our protocol assumes that each server is equipped with a physical clock. Clocks are loosely syn-

chronised by a time synchronisation protocol such as NTP [5]. Each clock generates monotonically

increasing timestamps. The correctness of the protocol does not depend on the synchronisation

precision. However, clock skew between servers can impact performance.

Cure annotates an update with a the commit time of its transaction, which is a vector

timestamp with an entry per DC. Commit times produce a partial order that respects causal

consistency. The protocol uses these commit times to make transactions visible in accordance with

causality. Transactions originating at the local DC are immediately visible to clients when they

commit, as their causal dependencies are automatically satisfied. In contrast, updates arriving

from remote DCs depend on the globally stable snapshot (GSS), which represents a consistent

view of the store known to be available at all partitions in the local DC. A remote transaction

is made visible when the GSS advances past their commit time. This ensures that all causally

preceding transactions, i.e., that have a smaller commit timestamp, are already visible locally.

Cure keeps multiple versions of each object in order to read from a causally-consistent

snapshot. Each version stores its value along with the vector timestamp that encodes its causal

dependencies. Old versions are periodically garbage collected by the system.

6.1 Notation and definitions

Table 6.1 introduces the notation followed in this section for the state managed by transaction

coordinators and storage partitions. We assume a total number of D DCs and P partitions. A

partition m at DC d, denoted by pm
d , keeps the following state:

35

CHAPTER 6. PROTOCOL DESCRIPTION

cvc Client causal vector timestamp

pm
d Partition m at DC d

Clockm
d Current physical time at pm

d

pvcm
d vector timestamp at pm

d

SSm
d Stable snapshot at pm

d

prepTxm
d Prepared transactions at pm

d

committedTxm
d Committed transactions at pm

d

Logm
d Log of updates at pm

d

PMCm
d Matrix of received pvci

d at pm
d

T Transaction

TCT Transaction Coordinator of T

svcT Snapshot vector timestamp of T

ctT Commit vector timestamp of T

wsT [m] Write set of T for partition m

Table 6.1: Notation used in the protocol description.

• pvcm
d , a vector timestamp of size D, where position pvcm

d [k] = j indicates that pm
d has

received updates up to j from pm
k , the partition that stores the same subset of the key space

at DC k.

• SSm
d , a vector timestamp of size D that denotes the latest consistent snapshot known by

pm
d to be applied by all partitions at DC. In order to advance SSm

d , partitions of the same

DC periodically exchange their pvc. Each pm
d computes its SSm

d as the aggregate minimum

of all pvci
d,∀i ∈ 1. . .P.

A client connects to a Cure server to issue a transaction. A server receiving a client request to

start a transaction T starts a transaction coordinator process (TCT), which lives throughout the

lifetime of the transaction.

6.2 Transaction Execution

Algorithms 6.1 and 6.2 show the pseudocode of the protocol for executing transaction T at DC d

followed by the transaction coordinator (TCT) and the partitions involved, respectively.

Start transaction. The transaction coordinator TCT starts by ensuring that it assigns T a

snapshot no older than the last one seen by the client, represented by cvc (Alg. 6.1, line 3). This

is necessary to ensure that clients observe monotonically increasing causally consistent views of

the data store.

To define the causally consistent snapshot that T will access, TCT sets the vector timestamp

svcT to include all remote transactions that are stable in the local DC, plus all locally committed

36

6.2. TRANSACTION EXECUTION

Algorithm 6.1 Transaction coordinator at server m of DC d
1: function START_TRANSACTION(cvc)
2: for k = 1 . . .D,k 6= d do
3: wait until cvc[k]≤ SSm

d [k]

4: allocate T
5: svcT ← SSm

d
6: svcT [d]← MAX(cvc[d], Clockm

d)
7: return T
8:
9: function UPDATE_OBJECTS(T, U pdates)

10: for all 〈K ey,Operation〉 ∈U pdates do
11: pi

d ← PARTITION(K ey)
12: if pi

d ∉ UpdatedPartitionsT then
13: UpdatedPartitionsT ← UpdatedPartitionsT ∪ {pi

d}

14: wsT [i]← wsT [i]∪ {〈K ey,Operation〉}
15: return ok
16:
17: function READ_OBJECTS(T, K eys)
18: for all K ey ∈ K eys do
19: pi

d ← partition(K ey)
20: V al ← send READ_KEY(svcT , K ey) to pi

d
21: for all 〈K ey,Operation〉 ∈ wsT [i] do
22: V al ← APPLY_OPERATION(V al, Operation)
23: V alues ← V alues ∪ {V al}
24: return V alues
25:
26: function COMMIT(T)
27: if UpdatedPartitionsT =; then
28: return svcT

29: for all pi
d ∈ UpdatedPartitionsT do

30: send PREPARE(T, wsT [i], svcT) to pi
d

31: wait until received (T, PrepTime) from pi
d

32: CommitTime ←MAX(all prepare times)
33: ctT ← svcT
34: ctT [d]← CommitTime
35: for all pi

d ∈ UpdatedPartitionsT do
36: send COMMIT(T, ctT) to pi

d

37: return ctT

37

CHAPTER 6. PROTOCOL DESCRIPTION

Algorithm 6.2 Protocol executed by partition pm
d

1: function READ_KEY(svcT , K ey)
2: wait until svcT [d]≤ pvcm

d [d]
3: V al ← SNAPSHOT(K ey, svcT ,Logm

d)
4: send V al to TCT

5:
6: function PREPARE(T, wsT [m], svcT)
7: wait until svcT [d]≤ Clockm

d
8: PrepTime ← Clockm

d
9: Logm

d ← Logm
d ∪ {〈wsT [m],PrepTime, svcT〉}

10: prepTxm
d ← prepTxm

d ∪ {〈T,PrepTime〉}
11: send 〈T, PrepTime〉 to TCT

12:
13: function COMMIT(T, ctT)
14: Logm

d ← Logm
d ∪ {〈ctT〉}

15: prepTxm
d ← prepTxm

d \{〈T,PrepTime〉}
16: committedTxm

d ← committedTxm
d ∪ {〈T, ctT〉}

17:
18: function PROPAGATE_TXS() . Run periodically
19: if prepTxm

d 6= ; then
20: pvcm

d [d]←MIN(prepTxm
d) −1

21: else
22: pvcm

d [d]← Clockm
d

23: if committedTxm
d =; then

24: for k = 1 . . .D,k 6= d do
25: send HEARTBEAT(pvcm

d [d],d) to pm
k

26: return
27: for all 〈T, ctT〉 ∈ committedTxm

d | ctT < pvcm
d [d] do

28: for k = 1 . . .D,k 6= d do
29: send REPLICATE_TX(wsT [p], ctT , svcT ,d) to pm

k
30: committedTxm

d ← committedTxm
d \{〈T, ctT〉}

31:
32: function REPLICATE_TX(wsT [p], ctT , svcT ,k)
33: Logm

d ← Logm
d ∪ {〈wsT [p], ctT , svcT〉}

34: pvcm
d [k]← ctT [k]

35:
36: function HEARTBEAT(TimeStamp,k)
37: pvcm

d [k]← TimeStamp

38:
39: function BCAST_PVC() . Run periodically
40: for i = 1 . . . N, i 6= m do
41: send UPDATE_GSS(m, pvcm

d) to pi
d

42:
43: function UPDATE_GSS(i, pvc)
44: PMCm

d [i]← pvc
45: for k = 1 . . .D,k 6= d do
46: SSm

d [k]← min
i=1...N

PMCm
d [i][k]

38

6.2. TRANSACTION EXECUTION

transactions. The former is achieved by setting the vector to the value of SSm
d (Alg. 6.1, Line

5), while the latter is achieved by setting the entry for the local DC in svcT to the maximum of

either the physical clock of the server or the client’s previously observed timestamp (Alg. 6.1,

Line 6). The transaction’s snapshot includes the updates of all transactions that have a commit

vector timestamp smaller than or equal to svcT . This guarantees that the snapshot is causally

consistent, since it includes the dependencies of all transactions.

Update objects. To update, a client provides a list of key-update pairs, which TCT buffers in a

per-partition write set (wsT [m]) to be sent, when committing T, to each updated partition at DC

d, and replies with an ok response.

Read objects. To read, the client provides a list of keys. TCT forwards a read request to each

local partition (retrieved by the call to the PARTITION function) storing some desired objects.

Upon receiving such request, and in order to ensure that the snapshot includes all updates with

commit time smaller than svcT , pm
d might need to wait for its pvcm

d [d] to catch up (Alg. 6.2,

Line 2). Once this is satisfied, pm
d returns the latest version of the object with commit time no

newer than svcT , which is retrieved by calling the SNAPSHOT function (Alg. 6.2, Line 3). When

TCT receives this reply, it applies the update operations on the same object (if any) issued by T

during previous UPDATE_OBJECTS operations (Alg. 6.1, Line 22), generating a new version of the

object. Note that this is a consequence of providing more developer-friendly data types than just

basic registers. TCT caches this result until all objects in the operation are read. This process is

repeated for every requested key. Once it finishes, TCT returns all read values to the client.

Commit. When receiving a commit request from a client, TCT starts a two-phase commit (2PC)

protocol to atomically commit the updates of transaction T at local DC d. In the first phase, TCT

sends a prepare message including wsT [m] to each of the updated partitions (Alg. 6.1, Lines

29-31). Upon receiving such message, each partition takes the current value of its physical clock

(Alg. 6.2, Line 8) and proposes it as the transaction’s commit timestamp. Next, it stores its write

set in its log. We use the abstraction of a log to illustrate persistent storage. Internally, the system

stores an in-memory cache of CRDT object versions and operations where reads are served from.

TCT computes the transaction’s commit timestamp as the maximum of all proposed prepare

timestamps (Alg. 6.1, Line 32), and generates ctT , the commit vector timestamp of T, by applying

this commit time, at position d, to svcT . Following, the coordinator sends a commit message that

includes the transaction’s commit vector timestamp. to all involved partitions

When a partition receives the commit message, it removes T from prepTxm
d , stores the ctT

in its log (this can be done asynchronously depending on the recovery mechanism in place), and

adds T and its commit timestamp to committedTxm
d for propagating its updates to the other

DCs.

Choosing the maximum of the proposed timestamps as the commit timestamp of a transaction

is important for correctness. The read protocol waits for prepared transactions expected to be

included in a snapshot (Alg. 6.2, Line 2). If TCT were to choose a ct smaller than the prepare

39

CHAPTER 6. PROTOCOL DESCRIPTION

timestamp of some participant partition, a transaction reading from the partition with svc

smaller than the prepare timestamp but greater than this ct would not be delayed to include the

committing transaction. Therefore, it would read from an inconsistent snapshot.

6.3 Replication and stable snapshot computation

Each partition periodically synchronises with its sibling partitions in other DCs. When there

are no new updates to send, a heartbeat is sent to indicate remote partitions that the partition’s

clock has advanced. This allows the remote replica to make updates visible arriving from other

partitions. Upon receiving a heartbeat (Alg. 6.2, Line 36), a replica advances pvcm
d [k], thus

acknowledging that it has received all updates from DC k, up to the received timestamp. When

there are updates to send, a replica sends, in commit-time order, all committed updates with

timestamp smaller than any prepared but not yet committed transaction (Alg. 6.2, Lines 27-29).1

On receiving an update replication message from DC k, a replica inserts the received updates in

its log and advances pvcm
d [k], setting it to the update’s commit timestamp ctT [k].

Our algorithm decouples propagating updates among replicas from making these updates

visible. An update received from a remote replica is only made visible after it is known that all

updates from the same transaction (and their dependencies) have already been received at all

partitions. To this end, partitions in each DC exchange their pvcd vectors in the background (Alg.

6.2, Line 39), and each partition m computes its SSm
d as the aggregate minimum of known pvcd

(Alg. 6.2, Line 43).

6.4 Correctness

We provide an informal proof that Cure implements TCC by showing that the snapshot read by a

transaction is causally consistent, and respects the atomicity of committed transactions.

Proposition 1. Version commit vectors respect causal order. If an update u1 depends on an

update u2, then u2.ct < u1.ct.

An update u1 depends on u2 if the transaction of u2 reads from a snapshot that contains u1.

From Alg. 6.2 line 7, a proposed timestamps is always greater than its snapshot time (in DC d,

the entry d of its snapshot vector timestamp). Since the commit timestamp is generated as the

maximum of proposed timestamps, the commit time of a transaction is always greater than its

snapshot time. Then, by Alg 6.1 lines 33-34, the commit vector timestamp of an update is always

greater than its snapshot vector timestamp.

Proposition 2. A partition vector timestamp pvcm
d = t implies that pm

d has received all updates

with commit vector timestamp ≤ t.
1A transaction being prepared with a given prepare timestamp can commit before a concurrent transaction with a

lower one when they update different partitions.

40

6.5. DISCUSSION

First, we show that the proposition is valid for remote updates. We prove this by contradiction.

Assume there is a remote update u from DC j such that u.ct < t, and pm
d has not received u.

By Alg. 6.2 lines 33-34, the partition would have received an update u1 such that u1.ct[j]= t[j].

Because the updates are sent in the order of their timestamps, the partition cannot receive

another update u1 before u if u1.ct[j]> u.ct[j]. Hence u.ct[j]> t[j], implying u.ct 6< t, leading to

the contradiction.

Now we show that there are no pending local updates with commit vector timestamp ≤ t.

When updating pvc[d], the partition finds the minimum prepared time stamps of the transactions

in the prepared phase. Since the physical clock is monotonic and the commit time is calculated as

the maximum of all prepared times, it is guaranteed that all future transactions will receive a

commit time which is greater than or equal to this minimum prepared time stamp. So, when the

pvc[d] is set to the minimum prepared time minus 1 (Alg. 6.2, Line 20), the partition has already

received all updates for the snapshot pvc.

Proposition 3. Reads return values from a causally consistent snapshot.

When a transaction attempts to read from a given snapshot, it waits until pvc includes the

snapshot time (Alg 6.2 line 2). This ensures the partition will not further commit any transaction

with commit vector smaller than the transaction’s, as the local position of pvc advances to time t

when there are no further transactions which have proposed a prepare time smaller or equal than

t (Alg 6.2 lines 20-22). By Proposition 2, all updates from remote sibling partitions with commit

vector smaller or equal to the transaction’s snapshot time have been applied locally, in causal

order. Therefore, the read returns values from a causally consistent snapshot. As this occurs at

every partition, reading from many partitions also ensures reads are causally consistent.

Proposition 4. Reading from a snapshot respects atomicity.

Atomicity is not violated even though updates (local and remote) are made visible indepen-

dently by each partition. All updates from a transaction belong to the same snapshot because they

receive the same commit vector timestamp. The proof of this proposition follows directly from

Proposition 3. A read is delayed until the same snapshot is available at all (accessed) partitions,

thus reading all or no updates from a transaction.

From Propositions 1-4, it follows that Cure implements TCC, since every transaction reads

from a causally consistent snapshot that includes all effects of its causally-preceding transactions.

6.5 Discussion

6.5.1 Session Guarantees

Cure ensures that the transactions of a client see (i) the effects of previously committed trans-

actions by the same client, and (ii) monotonically-non-decreasing snapshots of the data store.

41

CHAPTER 6. PROTOCOL DESCRIPTION

When a client finishes a read-only transaction, its snapshot vector timestamp is returned. Simi-

larly, when a client successfully commits an update transaction, its commit vector timestamp

is returned. A client must keep this vector timestamp, called cvc. When a client starts a new

transaction, it sends cvc with its request. In the unlikely case where cvc is greater than the SS

at the server receiving the request, the client is blocked until SS proceeds past cvc. Otherwise, it

starts immediately.

6.5.2 Efficient SS computation

Under Cure, partitions within the same DC periodically exchange their pvc to compute their

SS. To do this efficiently, Cure builds a tree over all servers in a DC and computes an aggregate

minimum using the tree [47]. When compared to a simple broadcast approach, this reduces

the number of messages exchanged in the network, while computing and distributing SS in a

reasonable amount of time. This is important for remote update visibility latency as the updates

of a remote transaction are only made visible after SS passes the transaction’s commit vector

timestamp.

6.5.3 Garbage Collection

Each partition periodically garbage-collects object versions that will no longer be accessed by

any transaction (not depicted in the algorithm). Using the same broadcast mechanism as update

stabilisation, a partition periodically sends to all other partitions at its site the minimum snapshot

vector timestamp of its active transactions. Upon collecting this information from all partitions,

a partition computes the aggregate minimum. This computed vector is then used to remove

versions older than the version with higher timestamp that is smaller or equal to the computed

minimum, which are guaranteed to be never accessed again.

6.5.4 Support for CRDTs

Cure offers support for operation-based CRDTs (Section 3.5.2.4). Their implementation requires

adequate support from the system, as an object’s value is defined not just by the last update,

but also by the state it is applied on. This requires that updates are applied exactly once, and in

causal order. Cure encodes, with each update, the snapshot vector timestamp of its transaction.

This vector represents the state over which the update must be applied at a remote DC. To ensure

that an update is applied exactly once, partitions assign, to each update-propagation message,

a totally ordered unique identifier. In the absence of new updates to send, a partition sends a

heartbeat including a unique identifier. A partition receiving a transaction or heartbeat from a

sibling partition uses this timestamp to detect missing and duplicate messages.

42

Chapter 7

Evaluation of Cure

7.1 Setup

We built Cure as part of Antidote [4], an open-source cloud database. Antidote is built using

Erlang/OTP, a functional language designed for concurrency and distribution. To partition the

set of keys across distributed, physical servers we use riak_core [82], an open source distribution

platform using a ring-like distributed hash table (DHT), partitioning keys using consistent

hashing. Key-value pairs are stored in an in-memory hash table, with updates being persisted to

an on disk operation log using Erlang’s disk-log module [48].

For comparison, we implemented a protocol that ensures eventual consistency and Read

Committed isolation. This protocol single versioned. It supports LWW registers, where the

ordering of concurrent updates is determined by physical clocks. It also supports an Erlang

library of state-based CRDTs called riak_dt [83]. We also implemented two state-of-art causally-

consistent protocols, Eiger and GentleRain. Eiger implements causal consistency and supports

LWW registers. It tracks one-hop nearest dependencies, and uses explicit dependency checks to

apply updates in causal order. GentleRain uses a dependency stabilisation mechanism similar

to Cure’s, but encodes causal-order information in a single scalar. In addition to LWW registers,

Cure supports operation-based CRDTs. Cure, Eiger and GentleRain guarantee consistent, (static)

read-only and atomic update transactions. Cure additionally supports interactive read and update

transactions. Objects in Cure, Eiger, and GentleRain are multi-versioned. For each key, a linked

list of recent updates and snapshots is stored in memory. An update operation appends a new

version of the object to the in-memory list and asynchronously writes a record to the operation

log. Old versions are garbage-collected following the mechanism described in Section 6.5.

The following experiments are run using a variable number of DCs, each comprised of a

variable number of servers. Nodes within the same DC communicate using the distributed

message-passing framework of Erlang/OTP running over TCP. Connections across separate DCs

use ZeroMQ [6] sockets running TCP. Each server connects to all other servers to avoid any

centralisation bottlenecks. To simulate the DCs being geo-distributed, we added a 50ms delay to

43

CHAPTER 7. EVALUATION OF CURE

all messages sent over ZeroMQ. Lost messages are detected at the application level and resent.

Hardware. All experiments are run on the Grid5000 [51] experimental platform using dedicated

servers. Servers were located located within a cluster in Rennes. Each server consists of two

Intel Xeon E5-2630 v3 CPUs, with eight cores/CPU, 126GB RAM, and two 558GB hard drives.

Nodes are connected through shared 10Gbps switches. The measured latency among servers in

the cluster, over TCP/IP, was approximately 0.15 ms. Before running each experiment, clocks

were synchronised using an NTP [5] server running within the cluster.

Workload generation. The data set used in the experiments includes 100k key-value pairs per

server with each pair being replicated at all three DCs. Tests are performed with LWW registers

and CRDT sets.

We use a custom version of Basho Bench [1] to generate load. A client repeatedly runs

single-operation transactions of either a read or an update. To select a key, a client uses a

power-law distribution. The ratio of reads to updates varies depending on the benchmark. For

Cure, Eiger, and GentleRain, transactions ensure the Read-Your-Writes session guarantee. When

committing, a transaction returns a commit timestamp. The client passes this timestamp as an

argument when issuing a subsequent transaction. Each protocol uses this information to ensure

a transaction observes state no older than that encoded in the timestamp. Clients run on their

own physical machines, with a ratio of one client machine per five Cure servers. We found this

ratio to sufficiently load the system, without over-stressing it for any workload. Each client uses

40 threads to send requests at full load. Each instance of the benchmark is run for two minutes,

the first minute being a warm-up period. Google’s Protocol Buffer interface is used to serialise

messages between Basho Bench clients and Antidote servers.

7.2 Cure’s scalability

To evaluate the scalability of Cure, we run a single-DC configuration and vary the number of

servers from 5 to 25. We run the same experiment on 2 and 3 DCs comprised of 25 servers each

(50 and 75 Cure servers in total, respectively). In both cases the read/update ratio varies from

99/1 percent read/write to 50/50 percent read/update ratio. Objects are LWW registers an an

update assigns random binary values of 1 KB.

As Figure 7.1 shows, throughput increases 4.8 times when going from 5 to 25 nodes within a

single DC, under all workloads. Furthermore, on the configurations of 2 and 3 DCs consisting of

25 servers each, we observe a 1.8x and a 2.8x respective increase for 99 percent reads, and 1.8x

and 2.6x for 50 percent writes when compared to a single DC with the same number of servers.

The observed scalability is expected due to the decentralised design of Cure. Still, numbers

do not show a perfect linear progression due to the cost of replicating updates across DCs and

because the background stable time calculation becomes more expensive as the number of servers

increases per DC.

44

7.3. COMPARISON TO OTHER SYSTEMS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

99(1) 90(10) 75(25) 50(50)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

Percentage of Read(Update) Operations

1DC, 5Nodes
1DC, 10Nodes
1DC, 25Nodes

1DC, No clock wait
2DCs
3DCs

Figure 7.1: Scalability of Cure

Latency. For this experiment, the median latency for reads was 0.7 ms for all workloads. The

median for updates varied from 1 to 2ms when increasing the update rate. Writes are more

expensive than reads, as they require updating in memory data structures and writing to disk.

Additionally, given that updates are replicated 3 times, they create a greater load on the system

than reads.

Impact of waiting. In order to evaluate the impact of clock skew in performance, we imple-

mented an unsafe version of Cure that avoids waiting for a snapshot to be ready at a partition

receiving a read request (Alg. 6.2, Line 2). The No clock wait bar shows the throughput obtained

by this protocol when run at a single DC consisting of 25 servers, which displays up to 1.25x

increase when compared to the correct implementation, under the read dominant workload.

7.3 Comparison to other systems

To evaluate the performance of Cure when compared to other protocols, we run a three-DC

benchmark with 25 servers per DC, varying the update to read ratio. We compare all systems

using LWW registers, and Cure to eventual consistency using CRDT sets. Figures 7.2 and 7.3

show the results.

LWW registers. We compare all systems using LWW registers of 1 KB values each (Figure 7.2).

Unsurprisingly, eventual consistency performs better than all other protocols, outperforming Cure

by approximately 30 percent across all workloads. Under eventual consistency, reads and updates

are cheaper, since they are single versioned and do not require processing causal dependencies.

Under the 99/1% read/write workload, causally-consistent systems perform similarly to each

other. At this read-write ratio, the amount of dependency checks performed by Eiger is small. As

45

CHAPTER 7. EVALUATION OF CURE

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

99(1) 90(10) 75(25) 50(50)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

Percentage of Read(Update) Operations

Eiger 3DC
GR 3DC

Cure 3DC
EC 3DC

Figure 7.2: Comparison of Cure to other systems using LWW registers.

soon as the update rate is increased to 10 percent, the cost of explicitly checking dependencies

increases dramatically and the throughput of Eiger degrades. This trend continues throughout

higher-update-rate workloads. When compared to Cure, we observe a small additional overhead

for GentleRain, which normally needs to retrieve slightly older versions of objects than Cure.

This happens due to its larger remote update visibility latency, which incurs extra processing of

lists of object versions.

CRDT sets. We compare Cure to the eventually-consistent protocol using CRDT sets (Figure

7.3). Cure supports operation-based CRDTs, where objects transfer updates among replicas. On

the contrary, the eventually-consistent protocol requires state-based CRDTs (as explained in

Chapter 3.5.2.4, operation-based CRDT require causal delivery of operations), where replicas

exchange object state.

For this experiment, we use "small" and "big" sets that grow up to 10 and 100 elements of 100

bytes each (1 and 10 KB in total), respectively. Once sets reach this size, the workload balances

the amount of add and remove operations to keep their average size constant.

For both sizes of sets, we observe a similar behaviour. As observed in the LWW-register

experiment, under the 99/1% read/write workload, eventual consistency outperforms Cure. For

90/10% reads/writes, this difference becomes smaller. Finally, at higher update rates, Cure

overtakes eventual consistency’s performance. The eventually-consistent protocol transfers and

processes CRDT state (1 and 10 KB for small and big sets respectively). Under Cure replicas

transfer operations (100 bytes to perform an add operation).

Update visibility latency. To calculate the stable time, each node within a DC broadcasts

its vector clock to other nodes within the DC at a frequency of 10ms. Additionally, heartbeats

between DCs are sent at a rate of 10ms in the absence of updates.

46

7.3. COMPARISON TO OTHER SYSTEMS

 0

 200

 400

 600

 800

 1000

 1200

99(1) 90(10) 75(25) 50(50)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

Percentage of Read(Update) Operations

Cure, ORSet
EC, ORSet

Cure, ORSet Large
EC, ORSet Large

Figure 7.3: Comparison of Cure to an eventually-consistent system using CRDT sets.

For all experiments, we measured the remote visibility latency observed by DC 1 for updates

coming from DCs 2 and 3. Under Cure, we observed an average remote update visibility latency of

between 80 and 90 ms for updates originating at DCs 2 and 3. Under GentleRain, we observed a

visibility latency of 90 ms for both DCs 2 and 3. Moreover, under the update-intensive workloads,

we observed frequent short lived peaks of around 150 ms visibility latency for one or both of the

DCs due to the cost of processing external updates. Under such conditions, Cure only observed

that delay for updates from the affected DC while under GentleRain, the visibility latency of both

DCs was penalised under load. The use of a single scalar penalises GentleRain, which is able

to make updates visible at the rate of the slowest DC (See Section 5.3). By using a vector clock,

Cure is able to make updates coming from different DCs visible independently (As explained in

Section 5.3.3).

47

Chapter 8

Conclusion of Part I

In this part of the thesis, we have introduced Cure, a transactional protocol for distributed

and geo-replicated storage. Cure offers the strongest properties achieved so far that remain

highly available: Transactional Causal Consistency with CRDT support through an interactive

transactional interface. Its design is available under network failures. It offers high throughput,

and penalises minimally the latency required to make an update visible. We have evaluated

Cure’s implementation, showing that its scalability is similar to eventual consistency, while

offering stronger semantics. Our comparison to existing causally-consistent systems shows that

Cure exhibits better performance, smaller update visibility latency, and better progress.

49

Part II

The three-way trade-off: Read
Isolation, Latency and Freshness

51

Chapter 9

Introduction to Part II

In this part of the thesis, we study the costs of reading data in a distributed, transactional storage

system. In particular, we try to understand whether it is possible to provide strong read guaran-

tees while ensuring both fast response and fresh data. It is well known that stronger guarantees

will come with higher costs: protocols rely on blocking, retrying operations, or reading from the

past to isolate transactions. Other systems completely eschew isolation to avoid these costs: a

recent paper from Facebook (whose performance is strongly read-dominated) states:“stronger

properties have the potential to improve user experience and simplify application-level program-

ming [. . . but] are provided through added communication and heavier-weight state management

mechanisms, increasing latency [. . .] This may lead to a worse user experience, potentially resulting

in a net detriment” [15]. Is this wariness justified, i.e., is it inherently impossible to combine fast

reads with strong guarantees, or can the situation be improved by better engineering? This work

provides a formal and operational study of the costs and trade-offs. We formalise the three-way

tension between read guarantees, read delay (and hence latency), and freshness, and show the

desirable points of the design space which are possible/impossible.

Because non-serialisable guarantees can improve performance and availability, in this work,

we do not necessarily assume that updates are totally ordered.1 Furthermore, we allow weakening

read isolation: in addition to Atomic Visibility, the strongest guarantee, which is assumed by

classical transactional models, we identify (the weaker) Order-Preserving Visibility, which ensures

the absence of ordering anomalies but allows Read Skews (Section 3.3.3) and consider (the

weakest) Committed Visibility, which ensures read guarantees equivalent to Read Committed

isolation (Section 3.3.5.3). Finally, we also consider the freshness dimension, because (as we show)

decreasing read delay sometimes forces to read a version of the data that is not the most recent.

Figure A.1 illustrates the three-way trade-off between the guarantees, delay, and freshness of

transactional reads. For instance, under Order-Preserving and Atomic Visibility, it is possible to

read with no extra delay (compared to a non-transactional system), but then the freshest data is

1 In replicated systems, enforcing a monotonic total order of updates enables Strong Consistency under Partition
(CP); but, conversely, Availability under Partition (AP) requires accepting concurrent updates [79].

53

CHAPTER 9. INTRODUCTION TO PART II

Committed
visibility

O-Preserving
Visibilityminimal

delay

bounded
delay

mutex reads/
writes

(unbounded)

stable
freshness

concurrent
freshness

latest
freshness

freshness

delay

read isolation

Atomic Visibility

(1)
(2)

(3)

(4) (5) (6)

(7) (8) (9)

Figure 9.1: The three-way trade-off. The boxed areas represent possible guarantee/read delay/
freshness combinations. Upwards and right is better performance; guarantees get stronger from
the back to the front planes. Combinations missing from the picture are impossible.

not accessible. Transactions that access the freshest data with no extra delay are only possible

under Committed Visibility (Sector 3). However, we show that minimal-delay Order-Preserving

reads allow observing updates of concurrently-committed transactions (Sector 2). As we will

see in our evaluation chapter, this allows for a significant freshness improvement over Atomic

Visibility, which forces reading data that was stable (written and acknowledged) before the

transaction started (Sector 1). If, on the other hand, the application requires the freshest data,

under either Atomic or Order-Preserving Visibility, this is possible only under a protocol where

reads and writes are mutually exclusive, e.g., a read might be delayed (blocked, or in a retry loop)

indefinitely by writes, or vice-versa (Sector 9).

This work includes the following contributions:

1. A formal study of the trade-offs between the read guarantees, delay, and freshness of

transactional reads. We prove which desirable combinations are possible and which are not.

2. Two new isolation properties, TCC– and PSI–, which result from degrading the read

guarantees of TCC and PSI, from Atomic Visibility to (causal) Order-Preserving, which

positions these models differently with respect to the trade-off.

3. Three minimal-delay protocols guided by the results of our analysis: AV ensuring TCC at

Sector 1, OP ensuring TCC– at Sector 2, and CV ensuring Read Committed Isolation at

Sector 3. We provide detailed protocol design, including pseudo-code. To our knowledge,

these protocols are the first to offer these guarantees in a latency-optimal fashion.

4. An evaluation of these protocols to empirically validate our theoretical results. In our mea-

surements, we compare the introduced protocols to Cure, which ensures Atomic Visibility,

concurrent freshness, and bounded delays because of blocking scenarios (Sector 5). Our

minimal-delay protocols exhibit similar latency. CV always observes the most recent data,

whereas freshness degrades negligibly for OP, and severely under AV.

54

We expect these results help system designers make decisions when selecting and building

transactional storage.

Earlier versions of this work were published in PaPoC’15 [86], SRDSW’15 [88], and PaPoC’16 [87].

55

Chapter 10

Requirements

10.1 Transactions

The application consists of transactions. A transaction consists of any number of reads, followed

by any number of writes, and terminated by an abort (writes have no effect) or a commit (writes

modify the store; in what follows, we consider only committed transactions). The transaction

groups together low-level storage operations into a higher-level abstraction, with properties

that help developers reason about application behaviour.1 These are often summarised as the

ACID properties (Section 3). Atomicity and durability will be taken for granted in the trade-off

analysis. Interestingly, our results are independent of the write model, e.g., totally ordered or

not. Therefore, we do not assume strong consistency or isolation (e.g., serialisability). Specifically,

neither writes nor reads are necessarily totally ordered, and we consider several read guarantees.

For simplicity, we assume that a transaction reads a data item at most once (and similarly for

writes). The set of item states read by a transaction is called its snapshot. Our study distinguishes

some important properties of a snapshot, explained in the next few sections: snapshot guarantees,

delay, and freshness.

10.2 Snapshot guarantees

Snapshot guarantees constrain the states of the data items that can be accessed by a given

snapshot. The stronger guarantees provide higher isolation, and thus facilitate reasoning by

the application developer. As we shall see, the weaker ones enable better performance along the

freshness and delay metrics.

We distinguish three levels of snapshot guarantees, which will be defined formally later (in

Section 11.1): Committed, Order-Preserving, and Atomic Visibility. Table 10.1 summarises the

guarantees of each level in terms of read-related anomalies.

1 A model that does not support transactions is identical to one where each individual read or write operation is
wrapped in a transaction that commits immediately.

57

CHAPTER 10. REQUIREMENTS

Read Anomalies / Snapshot Committed Order Preserving Atomic
Dirty Read x x x

Order (e.g. causal) violation - x x
Read Skew - - x

Table 10.1: Snapshot guarantees - Anomaly comparison

10.2.1 Committed Visibility

At the weakest level, Committed Visibility, a snapshot may include any updates that have been

committed. As it sets no constraints between items, it allows many read anomalies. Committed

Visibility offers read guarantees equivalent to those of Read Committed Isolation (RC).

10.2.2 Order-Preserving Visibility

We identify Order-Preserving Visibility, an intermediate level that strengthens Committed

Visibility by ensuring that the snapshot preserves a (partial or total) order relation O. O might

be the (partial) happens-before order, in order to enforce causal consistency [14, 56], or the total

order of updates in the context of a strong isolation criterion such as Serialisability or Snapshot

Isolation [27, 29].

Specifically, Order-Preserving Visibility ensures that transactions do not observe gaps in a

prescribed order relation. Consider, in a social network, the data items photos and acl represent-

ing user Alice’s photo album and the associated permissions. The set of their states (initially

photos0 and acl0) is ordered, for instance, by causal order (defined in Section 1). Alice changes

the permissions of her photo album from public to private (new state acl1), then adds private

photos to the album (state photos2). Thus, acl0 ; acl1 ; photos2. Unlike Committed Visibility,

Order-Preserving Visibility disallows the situation where Bob would observe the old permissions

(acl0) along with the new photos (photos2), missing the causally-related update, i.e., observing a

gap, that restricted the permissions (acl1). This pattern, where the application enforces a relation

between two data items by issuing updates in a particular order, is typical of security invariants

[79]. It also helps to preserve referential integrity (create an object before referring to it, and

destroy references before deleting the referenced object). Under causal order, order-preserving

reads have been called causally-consistent snapshot reads [14].

In Chapter 12, we introduce new isolation levels that result from combining Order-Preserving

reads with different update/commit guarantees.

10.2.3 Atomic Visibility

Atomic Visibility is the strongest read isolation level. It is order-preserving, and additionally

disallows read skews (Section 3.3.3): if the transaction reads some data item written by another

transaction, then it must observe all updates written by that transaction (unless overwritten

58

10.3. DELAY

by a later transaction). Atomic Visibility is provided by all models that disallow the read skew

anomaly (see Table 3.1).

As we saw in Chapter 3.2, Atomic updates serve to maintain equivalence or complementarity

between data items [79]; for instance, ensuring in a bank application that during a transfer

Alice’s account is debited a certain amount if and only if this amount is credited to Bob’s. Atomic

Visibility ensures that a transaction will observe both updates, or none, thus forbidding other

transactions from observing a state where Bob’s account has been credited, and Alice’s not debited

(or vice-versa).

10.3 Delay

Serving requests with low latency keeps users engaged and directly affects revenue (Section

2.2). Read latency is also an important performance metric for services that are heavily read-

dominated, such as social networks. For instance, serving a Facebook page requires tens of

rounds to read thousands of items for a single page [33]. Each round reads many items. A round

influences what is read in the next round.

10.3.1 Minimal Delay

The fastest read protocol is one that addresses multiple servers in parallel within a round, and

where any one server responds immediately, in a single round-trip, without coordinating with

other servers. Intuitively, this design makes it difficult to ensure strong snapshot guarantees.

We will characterise protocols by estimating the added delay above this baseline, called

Minimal delay. Systems that ensure minimal delays include Linkedin’s Espresso [73] and

Facebook’s Tao [33], which offer no isolation.

10.3.2 Bounded delay

A protocol exhibits bounded delay when it requires sequential reads (i.e., parallel reads are not

supported), a bounded number of retry round-trips may occur to read from a server, and/or a

server may block for a bounded amount of time before replying to a read request. For instance,

in Cure a server might block for a bounded amount of time to wait for clocks to catch up, or for

transactions to commit. Thus, Cure exhibits bounded delay.

10.3.3 Mutex reads/writes (or unbounded delay)

A protocol exhibits unbounded delays —or, equivalently, requires mutually-exclusive reads and

writes— when a read might be delayed indefinitely by writes, or vice-versa, because the protocol

disallows the same data item from being read and written concurrently (e.g., Google’s Spanner

strictly-serialisable transactions [40]).

59

CHAPTER 10. REQUIREMENTS

10.4 Freshness

Another important metric is how recent is the data returned by a read. Users prefer recent

data [3]. Some isolation levels (e.g., Strict Serialisability) require data to be the latest version.

Under others (e.g., Snapshot Isolation), serving recent data makes aborts less likely and hence

improves overall throughput [71, 75]. Storing only the most recent version of a data item enables

update-in-place and avoids the operational costs of managing multiple versions.

However, MVCC protocols [28] maintain multiple versions of a data item to ensure snapshot

guarantees. Serving an old item may be faster than waiting for the newest one to become

available; indeed, it would be easy for reads to be both fast and isolated, by always returning the

initial state.

Freshness is a qualitative measure of whether snapshots include recent updates or not. We

consider three degrees of freshness, latest, stable, and concurrent.

10.4.1 Latest Freshness

The most aggressive is Latest Freshness, which guarantees a server always returns the most-

recent committed version of any data item that it stores, at the moment which it replies to a read

request. Because they do not make snapshot guarantees, intuitively, systems like Espresso and

Tao [33, 73] can read with minimal delay under latest freshness.

10.4.2 Stable Freshness

The most conservative is Stable Freshness, which enables fast reads by returning data from

a stable snapshot, i.e., one known to be ready when the transaction started. Therefore, stable

freshness prevents a transaction from reading the updates of other transactions that concurrently

update the objects it reads. Spanner’s serialisable read-only transactions [40] exhibit stable

freshness. When a read-only transaction starts, it is assigned a timestamp t that guarantees that

no transaction running in the system will commit with timestamp ≤ t.

10.4.3 Concurrent Freshness

Finally, the intermediate Concurrent Freshness does not necessarily return the latest version.

It allows a server to read updates that are not stable. For instance, it allows reading the updates

of a committed transaction that ran concurrently with the reader. For instance, COPSs exhibits

concurrent freshness [60].

10.5 Optimal reads

We say a protocol has optimal reads if it ensures both minimal delay and latest freshness. An

optimal-read protocol is one that supports parallel reads, and where a server is always able to

60

10.5. OPTIMAL READS

reply to a read request immediately, in a single round trip, with the latest committed version

that it stores.

61

Chapter 11

The three-way trade-off

In this section, we study the three-way trade-off between transactional reads semantics, delay

and freshness. In summary, our analysis concludes the following:

(i) Impossibility of optimal order-preserving reads. Ensuring optimal reads (Section 10.5) is not

possible under Order-Preserving or Atomic Visibility (Section 11.2).

(ii) Order-Preserving Visibility with minimal delay and concurrent freshness. Order-Preserving

Visibility can ensure concurrent freshness at minimal delay (Section 11.3.2).

(iii) Atomic Visibility with minimal delay forces stable freshness. To ensure minimal delay, Atomic

Visibility forces transactions to read from a stable snapshot, i.e., a snapshot consisting of

updates known to have committed in the past (Section 11.3.3).

(iv) Consistent reads with latest freshness. To guarantee reading the freshest data, Order-

Preserving and Atomic Visibilities require reads and updates mutually exclusive (Sec-

tion 11.4).

11.1 Notation and Definitions

Notation. A committed update transaction creates a new version of the data items it updates.

For some data item (or object) x ∈X, where X is the universe of object identifiers, we denote a

version xv ∈V , where V denotes the universe of versions. We assume an initial state ⊥ consisting

of a initial version x⊥ for every x ∈X. If versions follow a partial or total order O = (V ,≺), we say

a version xi is more up-to-date (or fresher) than a version yj when yj ≺ xi.

The database is partitioned, i.e., its state is divided into P ≥ 1 disjoint subsets, where all the

versions of a given object belong to the same partition. Throughout the text, we use the terms

partition, server and storage server interchangeably.

Definitions. We define the three types of snapshots introduced in Section 10.2 formally:

Definition 2 (Committed snapshot). A committed snapshot S is any subset of V that includes

exactly one version of every object x ∈X. S denotes the set of all committed snapshots.

63

CHAPTER 11. THE THREE-WAY TRADE-OFF

px

py

pz

snapshot with
order and atomicity

violations

consistent
(atomicity
violation)

atomic
(no violations)

atomicxi≺yj,zk

xi

yj

zk
T T’

x⊥

y⊥

z⊥

Figure 11.1: The three snapshot guarantees

Definition 3 (Order-Preserving Snapshot). Given a partial or total order of versions O = (V ,≺),

a committed snapshot SO ∈ S preserves O if ∀xi, yj ∈ S, Øxk ∈V such that xi ≺ xk ≺ yj. Intuitively,

there is no gap in the order of versions visible in an order-preserving snapshot. We denote SO ⊆ S

the set of committed snapshots preserving order O.

Definition 4 (Atomic Snapshot). Given an order O, an order-preserving snapshot SA ∈ SO is

atomic if ∀xi, yj ∈ V such that xi, yj were written by the same transaction, if xi, yk ∈ SA then

yk ⊀ yj, i.e., it disallows “broken reads”. We denote SA the set of atomic snapshots for order O,

SA ⊆ SO.

Definition 5 (Snapshot guarantee). Given some order O, we say that a read protocol guarantees

Committed (, Order-Preserving or Atomic) Visibility if it guarantees that every transaction reads

from a Committed (, Order-Preserving, or Atomic, respectively) snapshot.

We illustrate the three types of snapshots in Figure 11.1. The figure shows a system con-

sisting of three partitions, px, py, and pz, each storing a single object x, y, and z, in an initial

state x⊥, y⊥, z⊥, respectively. Two transactions T and T ′ have committed updates in order

x⊥, y⊥, z⊥ ≺ xi ≺ yj, zk. T updates only partition px, whereas T ′ updates py and pz atomically.

The figure highlights three possible snapshots. Under Atomic Visibility, only the atomic snap-

shot is admissible, precluding both order violation (both T and T ′’s updates are included) and

read skew (as both yj and zk are included). Under Order-Preserving Visibility, the atomic and

the order-preserving snapshots are both admissible. The latter precludes order violations, but

not read skews (e.g., the snapshot includes yj from transaction T ′, and not zk). Finally, under

Committed Visibility, all three depicted snapshots are admissible because order violations and

read skews are allowed. The snapshot at the left of the picture exhibits two anomalies: an order

violation, and a read skew. The order violation occurs by reading x⊥ and yj, as x⊥ ≺ xi ≺ yj, and

xi is not read. The read skew occurs by reading z⊥ and yj, as yj was created atomically with zk,

which is not read.

64

11.2. IMPOSSIBILITY OF OPTIMAL READS UNDER ORDERED VISIBILITY

11.2 Impossibility of optimal reads under ordered visibility

Proposition 5. A read protocol that guarantees Order-Preserving (or Atomic) Visibility cannot

ensure optimal (delay and freshness) reads.

Proof. We prove this proposition by contradiction. Assume that there exists a read-optimal

protocol that guarantees Order-Preserving (or Atomic) Visibility, w.r.t. order O = (V ,≺). Consider

the execution in Figure 11.2 where, initially, partition px stores x⊥ and py stores y⊥. Two

transactions Tu and Tu′ write xk at px and yj at py respectively, establishing the following order:

x⊥, y⊥ ≺ xk ≺ yj. For instance, under causal order, this can result from an execution where a

transaction reads x⊥, and updates x, creating xk, and later another transaction reads xk and

updates y, creating yj. A Tr, running concurrently with Tu and Tu′ , reads objects x and y in

parallel from px and py. Tr reaches px before the creation of xk, and py after the creation of yj.

To satisfy read optimality, partitions must reply immediately with the latest version they store,

namely x⊥ and yj, observing an order violation1 . Contradiction. ■

11.3 What freshness is compatible with minimal delay?

In this section we explore which are the maximum freshness degrees achievable for each snapshot

guarantee, under the requirement of minimal delay.

11.3.1 Optimal reads under Committed Visibility

Proposition 6. A read protocol that guarantees Committed Visibility can be optimal.

Proof. Committed Visibility imposes no restrictions to the committed versions a transaction can

read. Therefore, to serve a request under this model, a partition can reply immediately with the

latest object version it stores. ■

11.3.2 Order-Preserving visibility and concurrent freshness

Proposition 7. A read protocol that guarantees Order-Preserving Visibility and minimal delay

can ensure concurrent (Sector 2 of Figure A.1) or stable freshness, but not latest.

We prove this proposition by sketching a read protocol with such characteristics, followed by

a correctness proof. In Chapter 13, we present a protocol with these characteristics.

Consider a protocol that orders its updates following some order O = (V ,≺), and where reads

preserve O. When a read transaction starts, the protocol assigns it an O-preserving stable

snapshot SO (Section 10.4). Read requests are sent to their corresponding partition in parallel. A

partition can reply immediately with the version in SO or with a more up-to-date version that is

1 A similar situation occurs with the execution of Figure 11.3, where reading x⊥ and yj results in a read skew.

65

CHAPTER 11. THE THREE-WAY TRADE-OFF

px

py

Tu Tu’

Tr

xk

yj

x0

y0

Figure 11.2: A read transaction executes concurrently with two update transactions at two
partitions

compatible with SO. An object version yj is compatible with a given order-preserving snapshot

SO if replacing version ys ∈ SO by yj results in an order-preserving snapshot. Formally:

Definition 6 (Compatible version). Given an order O = (V ,≺), a version yj ∈ V and an order-

preserving snapshot SO, an object version yj ∉ SO is compatible with SO, if ∀xi ∈ SO, Øxk ∈ V

such that xi ≺ xk ≺ yj.

Lemma 1. Given an order-preserving snapshot SO, replacing any number of versions xo ∈ SO by

xi ∉ SO, such that xi is compatible with SO, results in an order-preserving snapshot SO′ .

Proof. Assume by contradiction that the resulting snapshot SO′ is not order-preserving w.r.t. order

O = (V ,≺). According to Definition 3, this implies that ∃xi, yj ∈ SO′ , xk ∈V : xi ≺ xk ≺ yj. Since SO

is order-preserving, if the versions returned by read partitions were those in SO, i.e., xo and yo, no

inconsistency could have been created. Now consider the case where only one compatible version

with SO, e.g., yj, is more up-to-date than yo ∈ SO (yo ≺ yj). By Definition 6, Øxk ∈V : xo ≺ xk ≺ yj.

Finally, assume that both xi, yj ∉ SO are more up-to-date compatible versions of objects x and

y. As they are compatible with SO, by Definition 6, (i)Øxk : xo ≺ xk ≺ yj and Øyl : yo ≺ yl ≺ xi.

Moreover, we know that (ii)xo ≺ xi and yo ≺ yj. (i) and (ii) imply yj ⊀ xi and xi ⊀ yj. Therefore,

there cannot exist xk : xi ≺ xk ≺ yj. Contradiction. ■

Lemma 2. The above protocol guarantees Order-Preserving Visibility.

Proof. This follows directly from Lemma 1. ■

Lemma 3. The above protocol allows concurrent freshness.

Proof. We prove this lemma by describing a sample execution. Assume transaction Tr starts

with stable snapshot S = {xo, yo}. Tr sends a read request for objects x and y to partitions px

and py respectively. Concurrently, update transactions create versions xu and yv establishing

the following order between them: xo, yo ≺ xu ≺ yv. Tr ’s request arrives to px after xu and yv are

committed. By Definition 6, px can reply with xu, a more up-to-date version. However, py can

66

11.3. WHAT FRESHNESS IS COMPATIBLE WITH MINIMAL DELAY?

px

py

Tu

Tr

xk

yj

x0

y0

Figure 11.3: A read transaction executes concurrently with an atomic update transaction at two
partitions

only reply with yo, as yv is not compatible with S (∃xu ∈V : xo(∈ S)≺ xu ≺ yv). As xu is committed

by an update transaction concurrent to Tr, this execution exhibits concurrent freshness. ■

Lemma 4. The above protocol guarantees minimal delays

Proof. The protocol reads versions in parallel. In the absence of fresher committed updates than

those in SO, a partition can reply immediately with versions belonging to SO, which is stable

and, therefore, already committed. In the presence of fresher and compatible committed updates,

a partition can reply to a request with those, immediately. ■

Proof of Proposition 7. This follows directly from Lemmas 1, 4, 2 and 3.

11.3.3 Minimal-delay Atomic Visibility requires stable freshness

Proposition 8. A minimal-delay read protocol that guarantees Atomic Visibility requires stable

freshness.

The intuition is that, due to the minimal-delay requirement, a partition receiving a read

request from a transaction Tr cannot know whether other partitions accessed by Tr are returning

updates of a concurrent update transaction Tu or not, which forces it to read from a stable

snapshot to avoid Read Skews.

Proof. Assume by contradiction that there exists a minimal-delay protocol that guarantees Atomic

Visibility and allows a transaction to read updates committed by other concurrent transactions

(concurrent freshness). Consider the example execution in Figure 11.3. A transaction Tr sends

parallel requests to read objects x and y from partitions px and py respectively. A concurrent

transaction Tu commits versions xk and yj. Assume that Tr ’s request reaches py after Tu commits.

By Definition 4, py can return yj only if it is certain that Tr will read xk from px. Due to the

minimal-delay requirements, px does not have access to such information, since reads can be

executed in parallel and no extra communication among partitions is allowed. Given that Tr can

reach px before Tu commits xk, py cannot risk returning yj, and must ignore Tu. Therefore, a

partition can only return a version of an update transaction Tu if it knows Tu had committed at

67

CHAPTER 11. THE THREE-WAY TRADE-OFF

all its updated partitions by the time Tr sent its read requests. This implies that Tr has to read

from stable snapshot, which contradicts our assumptions. ■

11.4 What is possible under latest freshness?

Proposition 9. Order-Preserving (and Atomic) Visibility require mutually-exclusive reads and

updates to guarantee latest freshness.

Lemma 5. It is not possible to guarantee Order-Preserving or Atomic Visibility with latest

freshness under bounded delay.

Proof. Consider again the sample execution of Figure 11.2 (where x⊥, y⊥ ≺ xk ≺ yj). To ensure lat-

est freshness, partitions must reply to read requests with the latest committed version they store.

If px returned x⊥ and py returned yj, Tr would observe an inconsistent result (by missing xk).

The protocol could retry reading from px to read xk, thus ensuring reading a version compatible

with yj. If such request arrived to px before Tu created xk, px could block until xk was applied to

read it. During the blocking period, a concurrent update transaction may have written a new

version xm such that yj ≺ yw ≺ xm. To satisfy latest freshness, px would be forced to reply with

xm, inconsistent with the version read from py: yj. If updates are not stopped, this situation can

repeat itself indefinitely, making reading with bounded delays impossible. ■

Lemma 6. A read protocol can ensure Order-Preserving (and Atomic) Visibility and latest

freshness by enforcing mutually-exclusive reads and updates.

Proof. We prove this lemma by following the proof of Lemma 5. In the execution of Figure 11.2,

Tr can retry indefinitely reading the latest versions of x and y until the results belong to an

order-preserving snapshot. The equivalent holds for building an atomic snapshot under the

execution of Figure 11.3. ■
Proof of Proposition 9. This follows directly from Proposition 5, and Lemmas 6 and 5.

11.5 Isolated reads with bounded delays and concurrent
freshness.

Lemma 7. A read protocol can ensure Order-Preserving (and Atomic) Visibility and concurrent

freshness under bounded delays.

Proof. Consider again the execution in Figure 11.2 where read transaction Tr executes concur-

rently with update transactions Tu and Tu′ . If px returns x⊥ and py returns yj, it is possible to

issue a second round to force px to return xk, which would ensure Order-Preserving Visibility and

concurrent freshness. The same holds for ensuring Atomic Visibility in the example execution in

Figure 11.3. ■

68

11.5. ISOLATED READS WITH BOUNDED DELAYS AND CONCURRENT FRESHNESS.

As we will see in Chapter 16, many existing systems exhibit these characteristics.

69

Chapter 12

Unexplored Isolation Levels

An isolation level restricts the interleaving of the operations of one transaction with those of

others, in order to forbid certain anomalous behaviours. Under multi-version concurrency control,

a transaction reads from a snapshot. When committing, a commit protocol checks that the

operations of the transaction have interleaved with the operations of other transactions only

in ways permitted by the isolation level it implements (Chapter 3.3.2.2). In Chapter 10.2, we

discussed the three snapshot guarantees considered for the trade-off. In this chapter, we discuss

some new isolation levels that result from the combinations of those snapshot properties with

different commit guarantees. Table 12.1 shows the properties of the combinations of read and

commit guarantees. Order-Preserving Visibility can be combined in unexplored ways. TCC–
is the combination of Order-Preserving Visibility with non-serialised atomic updates. PSI–
combines Order-Preserving Visibility with write serialisation (or write-write conflict) checks.

Changing Update Serialisability (US) so that read-only transactions ensure Committed and

Order-Preserving visibility results in two models, which we call CV-US and OP-US, respectively.

Table 12.2 compares the anomalies of several models.

Snapshot / Termination

Non-monotonic Order Monotonic Order
of Operations of Operations

Not Ser. Ser. Ser. Ser.
Ser. Writes R. and W. Writes R. and W.

Committed RC RC+ CV-US
N/A N/A

Order-Preserving TCC– PSI– OP-US
Atomic TCC/RA PSI US SI S

Table 12.1: Combination of snapshot and termination guarantees - In bold: combinations not
previously studied

71

CHAPTER 12. UNEXPLORED ISOLATION LEVELS

12.1 CV-US and OP-US

Under Update Serialisability (US), only update transactions are serialisable. Read-only trans-

actions read from Atomically-consistent snapshots that do not form a monotonic order. CV-US

relaxes the guarantees of read-only transactions to committed visibility and, OP-US, from relaxing

reads to Order-Preserving visibility.

12.2 TCC–

Under Transactional Causal Consistency (TCC), a transaction reads from an atomically-consistent

snapshot. Both reads and updates can be concurrent (they are not serialised). TCC– weakens

TCC’s read guarantees to Order-Preserving Visibility. Therefore, when compared to TCC, TCC–

further allows the read-skew anomaly. On the positive side, as the results of the trade-off show,

this relaxation positions TCC– in a better position with respect to latency and freshness. In the

next chapter, we introduce a protocol offering these guarantees. In Chapter 14, we evaluate this

protocol in terms of latency, throughput, and freshness.

12.3 PSI–

Under Parallel Snapshot Isolation (PSI), a transaction reads from an atomically-consistent

snapshot, and updates are serialised. PSI– weakens the read guarantees to Order-Preserving

Visibility. Compared to PSI, PSI– adds the read-skew anomaly. In line with our study of trade-offs,

this relaxation can improve the latency and freshness of PSI–.

Fresh reads have the potential to reduce the abort rate of update transactions. An imple-

mentation of PSI requires reading up-to-date data to commit a transaction. When committing, it

must verify that other transactions do not update the same objects concurrently. For each object

updated, if there exists an update since the transaction’s snapshot, the transaction aborts.

An interesting observation is that under a similar implementation, a protocol ensuring PSI–

disallows Read Skews over the objects a transaction updates. This occurs because serialisation

disallows the existence of versions more up-to date than those read by the transaction. An

experienced programmer desiring the latency/freshness properties of Order-Preserving reads

could issue updates on the particular objects it requires reading atomically. Unfortunately, we

have not experimented with algorithms implementing PSI–.

72

CP Models AP Models
Anomaly / Model SS S US OP CV SI PSI PSI– RC+ TCC TCC– RA RC NI

US US
Dirty Read x x x x x x x x x x x x x -
Read Skew x x x - - x x - - x - x - -

Lost Update x x x x x x x x x - - - - -
Write Skew x x x x x - - x - - - - - -
Long Fork x x - - - x - - - - - - - -

Order violation x x x x - x x x - x x - - -
Time Violation x - - - - - - - - - - - - -

Table 12.2: Anomaly comparison of new isolation levels

Chapter 13

Designing protocols for minimal
delay

In this section, we apply our previous trade-off analysis to the design of protocols. Motivated by

the tight latency requirements of cloud services (Section 2.2), we implement three minimal-delay

read protocols, called CV, OP and AV that ensure Read Committed, TCC– and TCC isolation

respectively.

Our protocols are a modification of Cure. Cure’s reads ensure Atomic Visibility preserving

causal order, bounded delay and concurrent freshness (Sector 5 of Figure A.1). Using the insights

taken from the analysis, to remove the extra delays of Cure, one must degrade either read seman-

tics or freshness. CV’s reads ensure Committed Visibility, minimal delay and latest freshness

(Sector 3 in the figure). TCC– provides Order-Preserving Visibility, and to ensure minimal-delay

reads, OP can provide, at best, concurrent freshness (Sector 2). Similarly, to provide TCC’s Atomic

Visibility, AV requires stable freshness (Sector 1).

13.1 A refresher on Cure

(Cure) Our base transactional protocol ensures Transactional Causal Consistency (TCC), i.e.,

both causal-consistency and Atomic Visibility, bounded delays and concurrent freshness. It can

be deployed in a multi-site setting. Each site stores a full replica of the state. All sites follow

the same partitioning scheme, Updates are replicated across sites asynchronously. We refer to

partitions storing the same set of objects at different sites as sibling partitions. Each transaction

executes entirely within a site.

Cure’s data access APIs are multi reads and multi updates. A client can group any number of

read or update operations respectively, and execute them against the storage servers in parallel.

A transaction comprises any number of such multi-operations.

In order to read consistently, the protocol associates a snapshot timestamp to a transaction

when it starts. A partition replies to a read request with the version that is in the snapshot.

75

CHAPTER 13. DESIGNING PROTOCOLS FOR MINIMAL DELAY

Therefore, the system stores versions of each individual object along with a version timestamp.

The protocol has concurrent freshness and bounded delays. A partition might need to delay a read

request while a concurrent write commits an update belonging to the snapshot. It may also block

in cases of clock skew between servers (as explained in Section 6.2). Causal order is encoded in a

vector sized with the number of sites to provide a good balance between update visibility latency

and throughput (Section 5.3.3). The protocol can be characterised as Deferred Update Replication

(DUR), i.e., a transaction buffers updates which are sent to storage servers when committing

[77]. A classic two-phase commit protocol ensures that a transaction’s writes are applied in an

all-or-nothing fashion, and that transaction’s commit timestamps respect causal order.

13.2 Changes to Cure

In Cure, the snapshot associated to transactions is not necessarily stable. Thus, when a read

request reaches a partition, the version satisfying the snapshot might not be available yet, which

forces the partition to delay its reply.

To minimise delays of update transactions, all protocols implement a optimisation over

Cure’s two-phase commit. Under this optimisation, a transaction is considered to be committed

after a successful prepare phase, i.e., after every involved partition has persisted a prepare

record including its updates. A client can, then, receive a response after a single round-trip of

communication with updated partitions.

In order to provide minimal-delay reads for CV, OP and AV; we apply the following modifica-

tions:

• AV degrades freshness. Specifically, it ensures that the snapshot assigned to a transaction

is stable.

• OP degrades visibility to Order-Preserving. Given an initial stable snapshot, a partition is

allowed to return a more up-to-date compatible version (Definition 6, Section 11.3.2).

• CV degrades read guarantees to Committed Visibility, allowing a partition to return the

latest committed version.

13.3 Transaction execution

Setting and notation. The design of the new protocols considers M fully-replicated sites. Every

site partitions data into N partitions. All sites follow the same partitioning scheme, i.e., for

each partition pm
n ,n = 1...N at a given site m, there exists a partition pk

n storing the same

objects at every other site k : k = 1...M,k 6= m. All algorithms share a general skeleton. In this

chapter, we look at what is common across all protocols. In Chapter 13.4, we address each

algorithm’s particularities. There are two types of processes involved in a transaction’s execution:

a transaction coordinator (TC), and the partition servers.

76

13.3. TRANSACTION EXECUTION

13.3.1 Transaction Coordinator Algorithm

The server that receives a new transaction starts a new TC process. The TC lives throughout the

execution of the transaction and terminates once the transaction commits or aborts.

Init. A TC initialises (Algorithm 13.1, Lines 33-38) on a client’s first read or update request. It

initialises the write set for the transaction WST , the associated snapshot ssT , the transaction’s

commit time ctT , and the dependency vector clock depT (used for creating a causal order of

updates).

Reads. When receiving a read request for a list of object keys (Line 1), the TC splits them by

partition by calling the GET_P ARTITIONS function (Line 4) and sends a read request to each

partition in parallel (Line 6). Once it receives all responses (Line 7), it returns the read values to

the client.

Updates and commit. When a client submits an update, the transaction coordinator buffers

it (Line 17) in its write set. When the client calls commit (Line 20), if the transaction updated

multiple partitions, the TC starts a two-phase commit protocol among the updated partitions

(Lines 23-30). In the prepare phase, the TC sends, in parallel, a prepare message containing

partition’s updates to each updated partition (Line 24). The participants reply with a prepare

time, a proposed commit timestamp for the transaction. Once it has received the response from

every participant, the TC i) computes the commit time of the transaction as the maximum

proposed prepare time, ii) replies to the client confirming that the transaction has committed,

and iii) sends the commit instruction, including the commit timestamp, to all participants. If

the transaction updated a single partition, we collapse the prepare and commit messages. This

optimisation is not depicted in the pseudocode. An abort will occur only if requested by the client,

or in case of a failure. The abort path discards the transaction updates. The protocol, identical to

that of classical two-phase commit, is not depicted in the pseudocode.

13.3.2 Partition Servers Algorithm

A partition server stores versions of the objects in its partition and replies to requests from

transaction coordinators that access those objects.

Reads. When a partition receives a read request from a TC, it replies with the most up-to-date

version of each requested object that satisfies the algorithms’ visibility criteria (Lines 20-23).

Updates and commit. A partition server participates in instances of two-phase commit coordi-

nated by some TC. In the first phase, the partition server receives a prepare message containing

updates (Line 8). It persists those updates to stable storage (not depicted in the pseudocode), and

replies with a prepared message; a positive vote to commit the transaction. At this stage, these

updates are persisted but not accessible by other transactions, as the transaction has not yet

committed. Later, if the partition server receives a commit message (Line 15), it makes updates

visible to future readers.

77

CHAPTER 13. DESIGNING PROTOCOLS FOR MINIMAL DELAY

Update propagation. Under replication, a partition server propagates committed updates asyn-

chronously to sibling partitions at remote sites. When a partition receives a remote transaction’s

updates, it applies them locally and makes them available to future read operations. CV makes

updates visible as they arrive. The stabilisation protocol run by AV and OP ensures a remote

update is made visible to readers respecting causal consistency, as explained in the next section.

13.4 Correctness

In this section, we discuss the differences between the three protocols and focus on their correct-

ness.

Consistent Reads. OP and AV provide across-object isolation. When a TC executes the first

read (or update), it assigns the transaction a snapshot timestamp ssT , which is used as a pivot to

compute versions consistent with the target isolation level. ssT is assigned the partition’s stable

vector SV m
n , which denotes the latest stable snapshot known by the partition where the TC runs

(Line 37). In Section 6.3, we describe how each partition maintains this vector.

A TC includes ssT in each read request it sends to partition servers (Line 6). When a server

receives a request, it responds with the most up-to-date version that complies with the requested

snapshot, according to a COND function parametrised by protocol:

• Under CV, COND returns the latest committed version.

• Under AV, COND ensures that versions do not violate an atomic snapshot that preserves

causal order. COND returns the newest version with a commit vector smaller than ssT

(Alg. 13.2, Line 23). It ensures causal consistency, since the snapshot is stable, i.e., all

updates with cv ≤ ssT have been applied. It satisfies minimal delay, as partitions can reply

immediately. It also guarantees Atomic Visibility (the absence of fractured reads) because

all updates of a given transaction commit with the same commit timestamp (as explained

later in this section).

• Under OP, COND ensures that versions belong to a causal-order-preserving snapshot. A

partition server returns either the version belonging to the stable snapshot ssT , as above,

or with a more up-to-date version compatible with ssT , if available (see Definition 6). A

version is compatible if its associated dependency vector is not larger than ssT (Alg. 13.2,

Line 22).

Causal order of updates. OP and AV ensure updates are causally ordered. A transaction

creates an object version with a commit timestamp, and a dependency vector dep. dep indicates

a version is ordered causally after all versions with commit vector cv ≤ dep. A commit vector

cv is created by replacing, in dep, the entry of the site where the version was committed by

its commit timestamp ct. To establish a correct causal order, these algorithms must ensure a

78

13.5. STABILISATION PROTOCOL

version’s cv is larger than its dep. The transaction coordinator ensures this by picking a ct which

is larger than the transaction dependencies (in Alg. 13.1, Line 21). To ensure that dep is larger

than the cv of its predecessors:

• Under OP, a transaction may read a version with cv larger than ssT . After receiving a read

response, the TC updates the transaction’s dependency vector depT to the maximum cv of

a version read (Alg. 13.1, Line 12).

• AV’s read algorithm ensures that a transaction will never read a version with cv larger

than ssT . Therefore, it suffices to assign ssT to the transaction’s dependency vector depT

(Alg. 13.1, Line 37).

As Cure, OP and AV ensure that every update of a transaction is assigned the same cv by

choosing a transaction’s ct as the maximum proposed time by an updated partition (Alg. 13.1,

Line 27). This is used by AV’s read protocol to ensure atomic visibility.

13.5 Stabilisation protocol

Under OP and AV, a transaction uses the knowledge of a stable snapshot to read consistently

and with minimal delay. A stabilisation protocol among all partitions in the system computes

stable snapshots at each site periodically. Algorithm 13.3 describes this protocol. It includes the

following steps:

1. When a partition server commits a transaction, it adds the transaction’s updates to to_send,

the list of updates to be sent to sibling partitions at remote sites (Alg. 13.2, Line 18).

2. Periodically, updates in to_send are propagated to sibling partitions (Line 9). A partition

sends updates in commit timestamp (ct) order. A prepared transaction can commit with ct

bigger than the prepared time proposed by the partition. A local stable time stablen is set

to be smaller than the minimum prepared time of the transactions prepared at the partition

server (Line 3). To ensure updates are sent in ct order, only updates with ct ≤ stablen

are sent to sibling partitions (Line 8). If to_send is empty, the partition sends a heartbeat

message (Line 10).

3. Each partition server maintains a vector vecp with an entry per site. An entry j indicates

that partition p of site i has delivered locally all updates with commit time ct ≤ vecp[j]

from its sibling partition at site j. The local entry of the vector is set to stablen, as the ct

of prepared transactions is not defined.

4. Periodically, each partition server sends its vecp to the other partition servers of its site

(Line 6).

79

CHAPTER 13. DESIGNING PROTOCOLS FOR MINIMAL DELAY

5. each partition pn
m computes SV n

m, the latest stable snapshot known by pn
m, as the minimum

of all vecp received (Line 13).

This protocol ensures that the snapshot is stable since (i) no local partition will commit a

transaction with commit time smaller than vecp[i], and (ii) no remote update will be received

from a remote site j with commit time smaller than vecp[j].

13.6 Causal consistency: session guarantees

13.6.1 Read your writes

The algorithms presented do not ensure the read your writes session guarantee, required by

causal consistency. The problem arises because updates must undergo the stabilisation process to

be available to further transactions. If a client’s transaction performs some updates, a subsequent

transaction by the same client might miss its latest updates because they are not stable yet.

Read your writes can be enforced by a client caching its latest updates. When receiving a

read response, the client compares the version received with the cached one (if any). If the cached

version is fresher, the one returned by the system is discarded. After a transaction finishes, a TC

returns the latest stable vector SV it is currently aware of. A client can invalidate all updates

with cv ≤ SV .

13.6.2 Monotonic Reads

Under AV and OP, monotonic reads are ensured if a client always connects to the same server.

However, if the server fails or becomes unreachable, a client might connect to a server where

SV is behind that of the ss of the client’s last transaction. This might lead to observing less

up-to-date data than what the client previously observed. This violates the monotonic-reads

session guarantee.

To ensure monotonic reads, a client informs a TC of its latest ss. When a transaction commits,

the TC returns the transaction’s ss. If a TC detects that its SV is behind the client’s ss (SV < ss),

it catches up as follows: if the TC runs at the same site as the client’s latest transaction, it

updates its SV to ss immediately. This is possible because the snapshot was previously observed

as stable by another partition at the same site. If the TC runs at a different site, TC has to block

until the stabilisation protocol validates SV ≥ ss.

80

Algorithm 13.1 Transaction Coordinator tc at site n
1: function READ_OBJECTS(keys)
2: If (!initiated) INIT()
3: result = ;
4: read_partitionsT=GET_PARTITIONS(keys)
5: for all 〈p, keysp 〉 ∈ partitionsT do
6: send 〈read, keysp, ssT〉 to p

7: for all 〈p, keysp 〉 ∈ partitionsT do
8: receive 〈partition_result〉 from p
9: result = result ∪ {partition_result}

10: If (protocol == OP)
11: commit_vc=MAXv(v.commit_vc ∈ result)
12: depT=MAXv(depT , commit_vc)
13: return result.values
14:

15: function UPDATE_OBJECTS([〈key, update〉])
16: If (!initiated) INIT()
17: WST = WST ∪ {[〈key, update〉]}
18: return ok
19:

20: function COMMIT()
21: ctT=depT [n] +1
22: updated_partitionsT = GET_PARTITIONS(WST .keys)
23: for all 〈p, updatesp 〉 ∈ updated_partitionsT do
24: send 〈prepare, updatesp, depT , ctT〉 to p

25: for all 〈p, keysp 〉 ∈ updated_partitionsT do
26: receive 〈prepared, timep〉 from p
27: If (protocol 6= CV) ctT=MAX(ctT , timep)

28: return ok
29: for all 〈p, updatesp 〉 ∈ updated_partitionsT do
30: send 〈commit, ctT〉 to p
31: TERMINATE()
32:

33: function INIT()
34: WST=;
35: If (protocol == OP or AV)
36: ctT = ⊥
37: depT = ssT = GET_STABLE_VECTOR()
38: initiated = true

CHAPTER 13. DESIGNING PROTOCOLS FOR MINIMAL DELAY

Algorithm 13.2 Partition m at site n pn
m

1: upon receive 〈read, keys,ssT〉 from tc
2: result=;
3: for all k ∈ keys do
4: v= newest ki ∈ ver[k] : COND(ki, ssT)
5: result = result ∪ {v}
6: send 〈result〉 to tc
7:

8: upon receive 〈prepare, upd, depT , ctT〉 from tc
9: If (protocol 6= CV)

10: time = MAX(READ_CLOCK(), ctT)
11: prepared = prepared ∪ 〈tc, upd, depT , time〉
12: Else prepared = prepared ∪ 〈tc, upd〉
13: send 〈prepared, time〉 to tc
14:

15: upon receive 〈commit, ctT〉 from tc
16: prepared = prepared \〈tc, upd, depT , time〉
17: UPDATE_VERSIONS(〈upd, depT , ctT , n〉)
18: to_send=to_send ∪ {〈upd, depT , ct〉}
19:

20: function COND(ki, depT)
21: If (protocol==CV) return true
22: If (protocol==OP) return ki.dep ≤ depT
23: Else return ki.cv ≤ depT

24:

25: function UPDATE_VERSIONS(upd, depT , ct, n)
26: for all 〈k,val〉 in upd do
27: If (protocol = CV) ver[k] = {val}
28: Else ver[k] = ver[k]∪ {〈val, depT , ct, n〉}

82

13.6. CAUSAL CONSISTENCY: SESSION GUARANTEES

Algorithm 13.3 Stabilisation for AV and OP at pn
m

1: periodically
2: If (prepared 6= ;)
3: stablen = MIN(time ∈ prepared) - 1
4: Else stablen = READ_CLOCK()
5: vecp[n] = stablen
6: send 〈stable, vecp〉 to pn

k , ∀k ∈ P,k 6= m
7: If (to_send 6= ;)
8: for all 〈updp, dep, ct〉 ∈ to_send : ct ≤ stablen do
9: send 〈updates, updp, dep, ct〉 to p j

m j 6= n

10: Else send 〈heartbeat, stablen〉 to p j
m, j 6= n

11:

12: upon receive 〈stable, vecp〉 from all pn
k , k 6= m

13: SV n
m=MINv(vecp), # ∀p j

m

14:

15: upon receive 〈updates,updates, dep, ct〉 from p j
m

16: UPDATE_VERSIONS(updates, dep, ct, n)
17: vecp[j] = ct
18: # update known committed transactions from site j
19:

20: upon receive 〈heartbeat,stable j〉 from p j
m

21: vecp[j] = stable j
22: # update stable time from site j

83

Chapter 14

Evaluation

We empirically explore how the results of the three-way trade-off in Chapter 11 affect real

workloads. We evaluate Cure and the three minimal-delay protocols presented in Chapter 13: CV,

OP and AV.

14.1 Implementation

The implementation of the protocols was done in the same environment as Cure (Section 7.1), on

the Antidote database.

Under CV, objects are single-versioned. Objects in OP, AV and Cure are multi-versioned. Each

key stores a linked list of recent updates. Old versions are garbage collected using the same

mechanism as Cure uses (Section 3.5.2.4).

14.2 Setup

Hardware. All experiments were run on a cluster located in Rennes, France, on the Grid5000

[51] experimental platform using fully-dedicated servers, where each server consists of 2 CPUs

Intel Xeon E5-2630 v3, with 8 cores/CPU, 128 GB RAM, and two 558 GB hard drives. Nodes are

connected through shared 10 Gbps switches. The ping latency measured within the cluster during

the experiment was approximately 0.15 ms.

Configuration. Within the cluster, we configured two logical sites consisting of 16 machines each.

Each site is comprised of 512 logical partitions, scattered evenly across the physical machines.

Nodes within the same DC communicate using the distributed message passing framework of

Erlang/OTP running over TCP. Connections across separate DCs use ZeroMQ sockets [6], also

over TCP, where each node connects to all other nodes to avoid any centralisation bottleneck. The

stabilisation protocol is run every 10 ms under OP, AV, and Cure, the same configuration used for

the evaluation of Cure (Section 7).

85

CHAPTER 14. EVALUATION

Workload generation. The data set used in the experiments includes 100k keys per server,

totalling 1.6 million keys per site. Objects are registers with the last-writer wins (LWW) policy

[54], where updates generate random 100-byte binary values. All objects were replicated at all

sites. A custom version of Basho Bench is used to generate workloads [1]. Google’s Protocol Buffer

interface is used to serialise messages between Basho Bench clients and Antidote servers [34]. To

avoid across-machine latencies, two instances of Basho Bench run at each server, which issue

requests to the Antidote instance running on it. Each instance of the benchmark was run for two

minutes, the first minute being used as a warm-up period. A variable number of clients repeatedly

run read-only and update transactions. Unless stated otherwise, read and update operations

within a transaction select keys using a power-law distribution, where 80% of operations are

directed to 20% of keys.

14.3 Experiments

We run all experiments in a single logical data centre, and in two. We observed very similar

results under both configurations. In what follows, we only present the results of the experiments

with two data centers.

We expect to observe a similar latency response for all minimal-delay protocols, and a slight

degradation for Cure, which may block for a small amount of time under clock skew or due to

not-yet-committed concurrent transactions. We expect to observe higher throughput for CV, as

it does not incur the overheads of multi-versioning: traversing version lists to find a version

compatible with a given snapshot, and garbage collecting versions. Moreover, we expect to observe

OP, which offers Order-Preserving visibility to exhibit significantly better freshness than Cure

and AV, which implement the strongest Atomic Visibility.

Workloads. We run experiments under two workloads which run different read-only transactions.

Under the first workload, a read-only transaction reads a number of objects in parallel, in a

single round, i.e., in a single call. In the second workload, we try to mimic Facebook’s multi-read

operations, by issuing read-only transactions that make many calls, each reading a number of

objects in parallel.

Under both workloads, each client repeatedly executes a read-only transaction followed by an

update transaction in a closed-loop (zero thinking time). we vary the number of client threads

and measure how latency, throughput, and staleness change as load is added to the system.

Throughput is measured in operations per second, where each operation is a read or write in a

transaction. We measure staleness as follows. Upon treating a read request for a given object,

a partition asynchronously logs the number of versions it needs to skip to guarantee a given

isolation property. For Cure, a partition also logs the cases where it has to wait due to clock skew

or for other transactions to commit. We process these logs offline.

86

14.3. EXPERIMENTS

((a)) throughput w:2 ((b)) throughput w:10 ((c)) throughput w:100

((d)) latency w:2 ((e)) latency w:10 ((f)) latency w:100

Figure 14.1: Single-shot read-only-transactions (100 read ops/txn)

Single-shot read-only transactions. A single-round transaction performs 100 reads in parallel.

Update transactions perform 2, 10 or 100 updates, generating an update rate of approximately 2,

10 and 50% respectively.

Facebook-like read-only transactions. The multi-round experiment mimics the Facebook social

network, where transactions read thousands of objects in tens to dozens of rounds, and updates

represent 0.2% of the workload [33]. In our synthetic Facebook-like workload, a read-only trans-

action executes 10 rounds of 100 parallel reads each (totalling 1000 reads). Update transactions

perform 2, 100 or 1000 updates, generating an update rate of approximately 0.2, 10 and 50%

respectively.

14.3.1 Single-shot read-only transactions

We performed multiple runs of the experiment with a increasing number of client threads. A

point on a curve represents the result of a particular run.

Throughput. We measure throughput as the total number of operations of both read-only and

update transactions. Each graph shows the results under a different update rate. We observe

that:

87

Alejandro Z. Tomsic

CHAPTER 14. EVALUATION

• Under all workloads, throughput increases when increasing the number of client threads,

up to a point where the system works at full capacity, and adding more client threads does

not result in more throughput. CV outperforms all other protocols due to the lightweight

implementation enabled by its weak semantics: objects are single versioned and there is no

overhead for ensuring read isolation.

• Under a low update rate (Figure 14.1(a)), the gap between CV and the remaining protocols

is small, and we observe that all protocols behave similarly. This occurs as, at low update

rate, (i) version lists grow slowly, (ii) protocols are able to read the most up-to-date-version

of each object most of the times (as we will see in the freshness discussion) and (iii) garbage

collection of versions is less expensive. In this graph, under small number of client threads,

we observe that Cure presents the smallest throughput. This happens because Cure requires

blocking under scenarios of clock skew between servers. This slightly hampers the latency

of its read-only transactions. As under small numbers of client threads the system is not

working at its maximum capacity, this results in a degradation of throughput generated

by blocked threads. As we increase the number of client threads, this effect dissipates, as

larger number of clients saturate the system’s capacity.

• Under approximately 10% of writes (Figure 14.1(b)), we observe that the gap between CV

and the other protocols grows to a difference of up to 1.12X under high number of client

threads. This happens due to the effects of handling and garbage-collecting multiple object

versions to read under the protocols that enforce isolation. Under this workload and small

number of client threads, we still observe that Cure presents the smallest throughput

response due to the effect of clock skew between servers.

• Under 50% of writes (Figure 14.1(c)), all protocols degrade their overall throughput. We

observe that the throughput gap between CV and the rest of the protocols is large — of up

to approximately 1.35X for high number of client threads— because of the heavy-weight

version management the other protocols incur. The effects of Cure’s blocking scenarios is

not visible, as a larger portion of operations are updates and the system behaves closer to

its capacity limits.

Latency. Figures 14.1(d), 14.1(e) and 14.1(f) show the latency response of read-only trans-

actions under 2, 10, and 100 writes per update transaction respectively. All systems exhibit a

similar trend: increasing the number of client threads causes an increase in latency, as the system

must handle higher load. CV exhibits the lowest latency, by a small difference with respect to

OP and AV, which are latency optimal and behave similarly. This happens as CV does not incur

overheads for searching for a compatible version.

Cure’s Latency. The design of Cure is not latency optimal. Figures show the following:

88

14.3. EXPERIMENTS

((a)) Wait due to committing update ((b)) Wait due to clock skew

Figure 14.2: Cure blocking scenarios - Single-shot read-only-transactions (100 read ops/txn)

• For low update rates, Figures 14.1(d) and 14.1(e) show that, under small number of client

threads, Cure exhibits extra (up to 1.9X) latency due to clock skew between servers. We

plot, in Figure 14.2(b), the percentage of read operations that blocked due to clock skew

under Cure. This effect is frequent under small number of client threads, and dissipates as

the system becomes more loaded. Under high load, the time it takes to process a received

read-request message is larger, and during this time, lagging clocks can catch up.

• At high update rate (Figure14.1(f)), read operations in Cure wait for update transactions

to commit frequently. This causes the latency gap between this protocol and the remaining

ones when the number of client threads is large. Figure 14.2(a) shows how, when keys

become highly contended (i.e., at high update rate and number of client threads), waiting

for an update operation becomes frequent. At maximum contention —640 threads and 50%

of updates— a read operation waits, on average, for 0.45 update operations to finish or,

equivalently, each transaction waits for an average of 45 updates to commit.

Freshness. Figures 14.3(a), 14.3(b)and 14.3(c) show the freshness response as the number of

client threads increases, for different update rates. Plots display the percentage of read operations

that returned the most up-to-date version available at the contacted server. CV is not present in

the figures as it always returns the latest version. Figures 14.3(d), 14.3(e)and 14.3(f) display

a CDF showing how stale a read version is under 480 client threads for each update rate. We

observe that:

• OP outperforms the other protocols under all workloads. Its freshness response remains

nearly constant: over 99.8% of reads observe the latest version under all configurations.

This shows that its design, which allows for concurrent freshness, allows this protocol to

behave nearly optimally.

89

CHAPTER 14. EVALUATION

((a)) freshness w:2 ((b)) freshness w:10 ((c)) freshness w:100

((d)) CDF w:2 - threads:480 ((e)) CDF w:10 - threads:480 ((f)) CDF w:100 - threads:480

((g)) MV overhead w:2 ((h)) MV overhead w:10 ((i)) MV overhead w:100

Figure 14.3: Freshness of single-shot read-only-transactions

• Under the 2%-writes workload (Figure 14.3(a)), OP exhibits, 0.2% of stale reads in the

worst case, while Cure 2% (10X), and AV 3% (15X). Figure 14.3(d) shows how fresh reads

were under 480 client threads. All protocols read, most of the times, the latest or second

most recent version. OP read, in the worst case, the third most recent version, while the

remaining two protocols, the fourth. Cure exhibits, under the same conditions, 1.2% (6X)

and, AV, 1.8% (9X) stale reads, meaning that potentially every transaction observes stale

versions.

• Under 10% of writes (Figure 14.3(b)), OP does not further degrade its freshness, and reads

observe the same percentage of stale versions, whereas freshness degrades significantly

for AV, which shows 25% (125X) stale reads in the worst case, and Cure, which shows 22%

(110X). Figure 14.3(e) shows that OP read mostly fresh versions and, in the worst case, the

90

14.3. EXPERIMENTS

fourth most-recent version. Cure and AV show a higher frequency or returning the second

(≈ 20%), third (≈ 5%) and fourth (≈ 2%) most recent versions. As each read transaction

executes 100 reads, this means that this potentially affects every transaction. In the worst

case, these two protocols read the 12th-to-latest version, not shown in the picture to display

them more clearly.

• Under 50% of writes (Figure 14.3(c)), we observe the biggest difference between all pro-

tocols: OP still suffers from up to 0.2% of stale reads, while Cure from up to 41% (205X)

and AV 49% (245X). Figure 14.3(f) shows that, for 480 threads OP read, in the worst case,

the 6th-to-latest version. Cure the 18th and AV the 19th. Cure and AV frequently show

significantly stale versions, up to the sixth (≈ 2%) version is potentially observed by every

transaction. The oldest version returned by AV was the 19th to latest, and by Cure, the

18th to latest.

Multi-version overhead. We compute the multi-version overhead as the extra work required,

for each read operation, to find and store a version that respects a transaction’s required isolation

level, with respect to a protocol like CV, which incurs no overhead. For instance, under this

metric, a read that returns the second-to-latest version has an overhead of 2X over returning

the latest. Reading the third to latest has an overhead of 3X, etc. This metric is computed in

practice as the area over the lines of the CDFs. We compute, for each workload this metric as the

overall overhead observed during the entire execution. Figures 14.3(g), 14.3(h) and 14.3(i) show

the results under this workload.

The graphs exhibit a very similar trend to the freshness results, with the difference that

freshness result do not make any distinction on the degree at which values are stale. For all

workloads, OP shows a very low overhead, under 1.002X over an optimal protocol. CV presents

a maximum overhead of 1.03X, 1.35X, and 1.87X under 2, 10 and 100 updates per transaction,

respectively, while Cure 1.02X, 1.31X and 1.7X.

Conclusion. Under this workload, we have observed the effects of the three-way trade-off in

action. Strengthening the semantics from Committed to Order-Preserving visibility incurs a

negligible overhead in terms of latency and freshness. However, strengthening the semantics to

Atomic Visibility penalises freshness significantly. Both protocols we have experimented with

exhibited a high degradation in freshness. Cure exhibits better freshness than AV at a latency

cost, which increases with contention.

14.3.2 Facebook-like read-only transactions.

We perform the same analysis under the Facebook-like workload. Figures 14.4, 14.5 and 14.6 show

the results. Generally, results follow the same trend as those of single-shot read-only transactions.

91

CHAPTER 14. EVALUATION

((a)) throughput w:2 ((b)) throughput w:100 ((c)) throughput w:1000

((d)) latency w:2 ((e)) latency w:100 ((f)) latency w:1000

Figure 14.4: Facebook-like read-only transactions (1000 read ops/txn)

However, some effects get diminished while others get augmented. In what follows, we only refer

to the differences between results.

Throughput and Latency. Figure 14.4 shows the throughput and latency responses of all

protocols under this workload. These transactions exhibit significantly higher —around 10X—

latency than single-shot transactions, as they incur 10 rounds of 100 reads each. The latency-

throughput trend of all systems is very similar to that of single-shot transactions: CV outperforms

the remaining protocols, and the difference becomes larger as update rate augments. One

difference with respect to single-shot transactions is that OP exhibits slightly worst performance

than the other systems. This happens because of OP’s mechanism for enforcing causal order:

every time a transaction coordinator receives a read response, it must recompute the transaction’s

causal dependencies (Algorithm 13.1, Lines 11 and 12). Under this workload, each transaction

coordinator performs this computation 1000 times. Nevertheless, the protocol could be modified to

avoid this situation by performing such computation in parallel with subsequent read operations,

which we have not experimented with.

Cure’s Latency. Under this workload, where transactions execute for a long time, the blocking

cases of Cure are significantly reduced with respect to those of single-shot transactions. Figure
14.5(a) shows the percentage of read operations that blocked due to clock skew under Cure. As

we see, the effect practically disappears —below 6% of reads block— under all workloads. If we

92

14.3. EXPERIMENTS

((a)) Wait due to committing update ((b)) Wait due to clock skew

Figure 14.5: Cure blocking scenarios - Facebook-like read-only-transactions (100 read ops/txn)

consider that each read round takes approximately 10ms, rounds after the first one are very

unlikely to block due to clock skew, where most of waiting is expected to happen. The same occurs

with blocking due waiting for update transactions to commit, as shown in Figure 14.5(b). Under

maximum contention, under 1% of read operations block due to this effect.

Freshness and multi-version overhead. Figures 14.6(a), 14.6(b) and 14.6(c) show the fresh-

ness response as the number of client threads increases, for different update rates. Figures

14.6(d), 14.6(e) and 14.6(f) display a CDF showing how stale a read version is under 360 client

threads for each update rate.

The trend is similar to that of single-shot read-only transactions (Figure 14.3): OP outperforms

the remaining protocols under all configurations, and Cure and AV degrade freshness significantly

as contention is added to the system. For all protocols, the effect of staleness gets magnified with

respect to that of single-shot transactions. This occurs because transactions are long lived, which

renders interleaving with update transactions more frequent. The worst-case scenarios are 5% of

stale updates for OP, while 62% for AV, and 55% for Cure. In terms of oldest versions read under

contention (50% of updates and maximum client load), OP returned, at most, the 7th-to-latest

version, while Cure the 28th and AV the 31st. Figures 14.6(g), 14.6(h), and 14.6(i) show the

multi-version-overhead results under this workload. Graphs follow a similar-but-magnified trend

too as that of single-shot reads, where overhead peaks at 1.05X for OP, around 2.2X for Cure, and

2.4X for AV.

Conclusion. Under this workload, we have observed a different effect of the trade-off over these

protocols. First, as transactions live long time, all protocols exhibit similar latency, including

Cure, which is not latency optimal. In terms of freshness, we observe that protocols with atomic

visibility get highly penalised as contention increases.

93

((a)) freshness w:2 ((b)) freshness w:100 ((c)) freshness w:1000

((d)) freshness w:2 threads:320 ((e)) freshness w:100 threads:320 ((f)) freshness w:1000 threads:320

((g)) MV overhead w:2 ((h)) MV overhead w:100 ((i)) MV overhead w:1000

Figure 14.6: Freshness of Facebook-like read-only transactions

Chapter 15

Conclusion of Part II

Large-scale cloud services pose strict requirements on their storage. In particular, they require

low-latency reads, fact that has motivated designers to move away from transactional guaran-

tees. Under the requirement of no extra delays (with respect to a non-transactional system),

strengthening the guarantees of a distributed read algorithm affects the freshness of the data it

can read. We explore the three-way trade-off between a transactional read algorithm’s isolation

guarantees, its delays, and its freshness, and analyse a spectrum of possible points in the design

space. We consider three read guarantees. Committed Visibility, the weakest, disallows observing

uncommitted data. We identify the intermediate Order-Preserving Visibility, which further disal-

lows observing gaps, given order of updates. Finally, Atomic Visibility is the strongest. It further

guarantees a transaction does not read other transaction’s updates partially. In summary, we find

that minimal-delay reads ensuring Atomic Visibility penalise data freshness significantly, as they

force transactions to read updates committed in the past. Minimal-delay Order-Preserving reads

offer nearly-optimal freshness, as they allow reading concurrent updates. Moreover, to guarantee

reading the most up-to-date data ensuring Order-Preserving (or Atomic) Visibility is only possible

by implementing mutually-exclusive reads and updates, where one kind of operation might delay

the other indefinitely.

We have used these results to propose new isolation levels that leverage the latency/freshness

properties of Order-Preserving reads. TCC– results from degrading TCC’s Atomic reads to Order

Preserving. PSI– results from applying the same modification to Parallel Snapshot Isolation (PSI).

These models offer weaker guarantees than the stronger TCC and PSI. On the positive side, they

can attain significantly better freshness. In the case of PSI–, this can reduce an implementation’s

abort rate and, therefore, improve its throughput.

Our results have helped us design new protocols. We have modified Cure, which exhibits

blocking delays, to create three minimal-delay protocols: AV maintains its (Atomic) read guaran-

tees and achieves guarantees reading with minimal delays by degrading freshness. The other

two improve freshness in different degrees by degrading read guarantees. OP ensures TCC–. CV

ensures Read Committed Isolation, by further degrading Cure’s reads to Committed Visibility.

95

CHAPTER 15. CONCLUSION OF PART II

The evaluation of these three protocols supports the theoretical conclusions of the trade-off.

We expect the introduced results and algorithm designs will help the task of designing future

systems.

96

Part III

Related Work

97

Chapter 16

Causal Consistency for Cloud
Deployments

In this section, we analyse how existing cloud storage systems and protocols implement causal

consistency with respect to the notions introduced in Section 3.5.2.1 .

16.1 Causally-Consistent Systems

Recently, a number of causally-consistent, partitioned and geo-replicated data stores were pro-

posed. Table 16.1 summarises some of the details of how they achieve causal consistency. In

order to decide when remote updates can be made visible, COPS, Eiger, ChainReaction and Orbe

use mechanisms that rely on piggybacking causal dependency information with updates and

exchanging explicit dependency check messages among partitions at remote data centres. Even

when they employ various optimisations to reduce the size of dependencies and the number of

messages, in the best case, their metadata grows linearly with the number of partitions. Gen-

tleRain avoids such expensive checks. Instead, it uses a global stabilisation algorithm for making

updates visible at remote data centres. This algorithm achieves throughput close to eventually

consistent systems, at the cost of increased remote update visibility latency. Cure, AV, and OP

follow this design choice and achieve similar throughput while providing stronger semantics.

Furthermore, by using a vector clock sized with the number of replicas, our protocols are able to

reduce remote update visibility latency and increase resiliency to network partitions and data

centre failures (Explained in Section 5.3).

Previous systems offer a variety of limited but interesting transactional interfaces that aim at

easing the development of applications. COPS [60] introduced the concept of causally-consistent

read-only transactions, which other solutions, such as ChainReaction [18], Orbe [45] and Gen-

tleRain [47], adopted. Eiger [61], extended this transactional interface with causally-consistent

write-only transactions. Cure, AV, and OP provide programmers with general transactions, where

each transaction supports multiple rounds of causally-consistent reads, and atomic updates.

99

CHAPTER 16. CAUSAL CONSISTENCY FOR CLOUD DEPLOYMENTS

System / Property Metadata
Size

Visibility
Mechanism

Transactional
Interface

Convergence
Mechanism

COPS [60] O(objects)
Explicit dep.

checks
Read-Only LWW

Eiger [61] O(objects)
Explicit dep.

checks
Read-Only

Update-Only
LWW

ChainReaction [18] O(DCs)
Explicit dep.

checks
Read-Only LWW

Orbe [45]
O(DCs x

partitions)
Explicit dep.

checks
Read-Only LWW

GentleRain [47] O(1)
Update

stabilisation
Read-Only LWW

Cure O(DCs) Update sta-
bilisation General CRDTs

OP O(DCs) Update sta-
bilisation General CRDTs

AV O(DCs) Update sta-
bilisation General CRDTs

Table 16.1: Property comparison of causally-consistent systems

Previous systems achieve convergence using a last-writer-wins policy [85]. Our systems

further provide support for confluent data types (CRDTs), which were introduced in Section

3.5.2.4.

16.1.1 Single-machine Causal Consistency

A number of single-machine-per-replica systems have acknowledged the usefulness and applica-

bility of causal consistency. Early examples that had a profound impact in research are the ISIS

toolkit [53], Bayou [72], lazy replication [55], causal memory [14] and PRACTI [26].

Recently, SwiftCloud [89] addressed the problem of providing TCC in a fashion that tolerates

full-replica failures. Its design ensures that updates are made visible to readers when they

have applied at a number (k) of sites. Finally, Saturn [32] introduced the idea of dependency

dissemination trees. It exhibits the same progress properties as our introduced protocols, with

reduced metadata. This allows Saturn to provide better scalability under large number of replicas.

Saturn is not designed for cloud deployments, where a replica might be partitioned in a large

number of servers. In this setting, Saturn exhibits a bottleneck of sending and receiving updates

through a single process per replica.

16.2 Strongly-Consistent Systems Enforcing Causal
Consistency

Many systems that enforce strong transactional semantics include a mechanism to ensure causal

consistency. Table 16.2 summarises the discussion of this section. As these systems totally order

100

16.2. STRONGLY-CONSISTENT SYSTEMS ENFORCING CAUSAL CONSISTENCY

System / Property Criteria Metadata
Size

Visibility
Mechanism

Transactional
Interface

Jessy [75] NMSI O(partitions) Sync. Replication General
GMU [71] US O(partitions) Sync. Replication General

Walter [81] PSI O(partitions)
Local

Stabilisation
General

Occult [65] PSI O(partitions) No dep. checks General
Blotter [66] PSI O(partitions) Sync. Replication General

Table 16.2: Property comparison of strongly-consistent systems enforcing causal consistency

updates to each object, they do not allow concurrent conflicting updates and, therefore, they do not

require a convergence mechanism. Moreover, all considered systems offer a general transactional

interface. Jessy and GMU ensure causal consistency similarly: they use vector clocks sized with

the number of partitions to time stamp transactions following causal order, and they propagate

updates synchronously across replicas, making updates visible at all replicas simultaneously.

Walter and Occult use a similar dependency encoding. Walter’s architecture consists of preferred

and cache replicas. A preferred replica receives updates to its preferred objects, applies them

locally and sends it asynchronously to cache replicas. Walter makes updates visible stabilising

them locally, as each replica is not partitioned. Occult is designed with partitioning in mind.

This protocol uses no dependency checks, and delegates the task of checking reads are causally

consistent to the read protocol.

101

Chapter 17

Semantics, delay and freshness

103

17.1. IMPOSSIBILITY RESULTS

17.1 Impossibility results

The CAP theorem proves that, in a replicated system, it is impossible to guarantee strong

consistency (C), high availability (A), and partition tolerance (P) at the same time [50]. Under

partition between replicas, system designers must choose between guaranteed low latency

plus remaining available but weakly-consistent (AP), or remaining strongly-consistent but not

available (CP). Ensuring strong consistency requires, at the minimum, ensuring that single object

updates respect a total monotonic order, which under replication requires synchronous replication

of updates. This result has motivated designs that foster latency to eschew both strong consistency

and read isolation [15], which sometimes is mixed with consistency properties. This effect has

been exacerbated by the fact that all existing AP designs that enforce isolation exhibit delays

This work shows that the performance of read isolation is orthogonal to update semantics, and

that results hold independently update-order enforcement. Moreover, the presented algorithms

are available under partition and exhibit minimal delays.

The SNOW theorem shows that read-only distributed transactions cannot ensure both strict

serialisability and minimal delay [63]. This result is similar to our Proposition 5 (Chapter 11.2),

which this work proves in a more general way: it is not possible to both ensure latest freshness and

atomic visibility, which Strict Serialisability requires by definition, while guaranteeing minimal-

delay reads. This work further explores these three dimensions, proving which intermediate

combinations are possible.

17.2 Systems

In this section, we discuss the transactional properties of existing systems and research proto-

types, and relate them to the trade-off. Table 17.1 summarises the discussion.

17.2.1 Weakly-consistent systems

Systems that are designed for high-availability and low latency under replication are those

that do not require a per-object monotonic total order of updates, and thus avoid synchronous

replication.

Somewhat surprisingly, even when these systems are designed for low latency, minimal-delay

designs with read isolation are missing from the literature, as they all incur bounded delays.

No Isolation. LinkedIn’s Espresso [73], Facebook’s Tao [33], Yahoo’s PNUTS [39], Amazon’s

Dynamo [43], Twitter’s Rainbird [2], and Google’s BigTable [37] ensure optimal reads but no

atomic updates nor read isolation. Cassandra offers atomic updates and no isolation [42]. Reads

are only prevented from observing partial updates within a single row [42]. Its design targets

replication, under which it offers a wide spectrum of per-object (called row) consistency guaran-

tees. These range from no ordering whatsoever to monotonic total order, obtaining per-object

105

CHAPTER 17. SEMANTICS, DELAY AND FRESHNESS

System / Property Atomic
Upd.

Upd.
Order Model Delay Fresh.

Read
Isola-
tion

Sector

PNUTS [39] - - - Minimal Latest - -
Dynamo [43] - - - Minimal Latest - -
Rainbird [2] - - - Minimal Latest - -

BigTable [37] - - - Minimal Latest - -
Espresso [73] - - - Minimal Latest - -

Tao [33] - - - Minimal Latest - -
Cassandra [42] X - - Minimal Latest - -

MySQL Cluster [9] X - RC Bounded Latest CV 6
CV X - RC Minimal Latest CV 3

COPS [60] - Causal CC Bounded Conc. OP /5
COPS-SNOW [63] - Causal CC Minimal Conc. OP 2

OP X Causal TCC– Minimal Conc. OP 2
GentleRain [47] - Causal CC Bounded Conc. AV 5

Orbe [45] - Causal CC Bounded Conc. AV 5
ChainReaction [18] - Causal CC Bounded Conc. AV 5

Cure X Causal TCC Bounded Conc. AV 5
Eiger [61] X Causal TCC Bounded Conc. AV 5
RAMP [24] X Causal RA Bounded Conc. AV 5

AV X Causal TCC Minimal Stable AV 1
Jessy [75] X Causal NMSI Bounded Conc. AV 5

Walter [81] X Causal PSI Bounded Conc. AV 5
Occult [65] X Causal PSI Mutex R/W Conc. AV 5
Blotter [66] X Causal NMSI Bounded Conc. AV 5
GMU [71] X Causal US Bounded Conc. AV 5

Clock-SI [46] X Monotonic SI Bounded Conc. AV 5
CockroachDB-SI [38] X Monotonic SI Bounded Conc. AV 5
CockroachDB-S [38] X Monotonic S Bounded Conc. AV 5
Spanner ROTX [40] X Monotonic SS Minimal Stable AV 1

Spanner [40] X Monotonic S Mutex R/W Latest AV 9
Rococo [67] X Monotonic SS Mutex R/W Latest AV 9

Rococo-SNOW [63] X Monotonic SS Mutex R/W Latest AV 9

Table 17.1: Guarantees, delay and freshness for several published systems. The sector numbers
cross-reference to Figure A.1; /5 refers to the second plane of Sector 5.

linearisability when combined with strong reads. This system does not provide any across-object

update ordering [41].

Committed Visibility. MySQL cluster provides Committed Visibility by locking; reads some-

times block waiting for a transaction to commit [9]. This work introduces CV, a lightweight

protocol with atomic updates that implements Committed Visibility with optimal reads.

Order-Preserving Visibility. Two previous systems implement Order-Preserving Visibility

in the literature. COPS [60] incurs multiple read-rounds. COPS-SNOW [63] guarantees order-

preserving visibility with minimal delay and concurrent freshness. When compared to the

original COPS, it removes the second round of reads by rendering updates expensive —an update

106

17.2. SYSTEMS

operation must update data structures of all the objects it causally depends on. Both of these

systems rely on metadata sized with the number of objects in the system to causally-order

updates. None of them support atomic updates.

The introduced OP has the same read semantics without incurring such costs, and further-

more providing atomic updates.

Atomic Visibility. Many weakly consistent systems require blocking reads to achieve Atomic

Visibility. GentleRain [47], Orbe [45], ChainReaction [18], and Cure [16] block for a short time

to wait for concurrent transactions to commit. Moreover, Cure, Orbe and GentleRain also block

temporarily in the case of clock skew between servers. GentleRain, Orbe, and ChainReaction do

not support all-or-nothing updates. Interestingly, if they would, then their snapshot algorithm

would guarantee Atomic Visibility with no modification. The remaining considered systems

incur multiple rounds of reads. Examples include Eiger [61], and RAMP —which establishes

a per-object partial order of updates [24]. This work introduced AV, the first weakly-consistent

protocol that achieves minimal delays and Atomic Visibility. It implements Transactional Causal

Consistency.

17.2.2 Strongly-consistent systems

Atomic Visibility. With the exception of (per-object) strongly-consistent modes of Cassandra

—those that require performing updates synchronously across data centres [41]— which provides

no read isolation, all strongly consistent systems implement Atomic Visibility.

Walter, Occult, Blotter, Jessy and GMU partially order updates according to causal order and

enforce a monotonic total order of the updates of each object (avoiding conflicting writes). They

achieve concurrent freshness with bounded delays: Walter retries reads, Blotter, Jessy and GMU

read sequentially. In Occult reads speculatively attempt to read from an atomic snapshot from

sites that might be in an inconsistent state; it exhibits unbounded delays, as it aborts read-only

transactions when an inconsistent read is detected.

Clock-SI provides a total monotonic order of updates —which is required by Snapshot Isolation.

Its read algorithm is very similar to that of Cure and GentleRain; it exhibits bounded delays, as

it blocks in the case of clock skew or waiting for transactions to commit.

CockRoachDB offers Snapshot Isolation and Serialisability, both ensuring Atomic Visibil-

ity. Under Snapshot Isolation, reads might block waiting for a transaction to commit. Under

Serialisability, read-only transactions might abort when they detect a serialisation conflict.

Spanner features two kinds of transactions. Strictly serialisable transactions require latest

freshness and atomic visibility. This is enforced by locking, which ensures mutually-exclusive

reads and writes (by Proposition 9, this is unavoidable). Spanner’s serialisable read-only transac-

tions weaken freshness to stable, and achieve minimal delays.

Rococo guarantees Strict Serialisability, which requires latest freshness and Atomic Visibility.

Unavoidably, it resorts to mutually-exclusive reads and writes. Its read algorithm issues an

107

CHAPTER 17. SEMANTICS, DELAY AND FRESHNESS

unbounded number of rounds to ensure its desirable guarantees. Rococo-SNOW behaves similarly,

with the difference of issuing a bounded number of read rounds, and blocking updates when these

rounds do not attain Atomic Visibility and latest freshness. Once updates are stopped, this is

guaranteed.

108

Conclusions and Future Work

109

Chapter 18

Conclusion

Today’s internet-scale services pose strict requirements on cloud storage systems. These systems

must handle a large number of requests from users worldwide, offer fast response, remain

available in the presence of failures, and provide meaningful guarantees to programmers. High

latencies and downtimes directly affect revenues, as they determine the way users interact with a

service. The lack of meaningful guarantees complicates the task of programming the application

logic. In this thesis, we have studied the problem of building storage providing meaningful

guarantees that do not penalise response times and availability.

To reduce latencies, maximise availability and handle large load, cloud services exhibit a

widely distributed architecture consisting of multiple data centres. A data centre can handle

load beyond what a single machine can handle. A user can minimise latency by connecting to

his closest site. In the presence of network failures, he can be redirected to another data centre.

Storage systems replicate data at each data centre, where data is further scattered across servers.

These systems must, therefore, implement communication protocols to access data scattered

across servers in a data centre and keeping data centres up-to date.

A transaction is a powerful abstraction that allows to group multiple operations into an

atomic unit with well defined guarantees. In particular, strong isolation gives a programmer the

illusion of a sequential data store, where a transaction runs alone and does not interfere with

the operations of other transactions. The lack of strong isolation results in added more complex

application-logic development. As storage exposes anomalous behaviour, this may need to be

handled at the application level.

Ensuring strong isolation in a cloud architecture requires cross-data-centre coordination,

which affects latency in the normal case, and availability when data centres cannot communicate.

In this work, we have studied the design space of weak transactional isolation, which does not

require cross-site synchronous communication.

111

CHAPTER 18. CONCLUSION

18.1 Contributions

18.1.1 Part I

Our first contribution was the design and implementation of Cure. Cure is a transactional protocol

for multi-data centre deployments that provides (i) Transactional Causal Consistency (TCC):

causal+ consistency, ensuring that if one update happens before another, they will be observed in

the same order, (ii) support for operation-based replicated data types (CRDTs) such as counters,

sets, tables and sequences, with intuitive semantics and guaranteed convergence in the presence

of concurrent conflicting updates and partial failures, and (iii) general transactions, ensuring

that multiple keys (objects) are both read and written consistently. This combination equips Cure

with the strongest semantics ever provided by an always-available data store. Cure’s design is

based on a novel approach to support parallelism between servers within the data centre that

minimises the overhead of causal consistency in inter-DC traffic. It makes updates that are

known to be safe visible in batches. Cure encodes causal-order metadata as a single scalar per

DC —thus incurring small overhead— to improve freshness and resilience to network partitions

over previous work.

Our experimental evaluation shows that Cure outperforms state-of-art systems with similar

guarantees, and exhibits performance similar to a baseline system offering weak semantics.

18.1.2 Part II

The transactional read algorithms of systems like Cure exhibit latency overheads that have

impeded their adoption at scale. Our second contribution was to explore how to implement dis-

tributed isolation with no extra delays with respect to a non-transactional system. We formalised

the three-way tension between read guarantees, read delay (and hence latency), and freshness,

and showed the desirable points of the design space which are possible/impossible.

For the analysis, we have identified a read-isolation property called Order-Preserving Visi-

bility. Order-Preserving reads are weaker than Atomic reads, guaranteed by TCC and stronger

models (e.g., Snapshot Isolation and Serialisability). When compared to Atomic Visibility, they

do not forbid a concurrency anomaly called Read Skew, which allows observing the updates of

other transactions partially. On the positive side, (like Atomic reads) Order-Preserving Visibility

disallows reading uncommitted data and observing (e.g. causal) ordering anomalies.

The three-way trade-off between read isolation, delay (latency), and data freshness can be

summarised as follows: (i) To guarantee reading data that is the most fresh without delay

is possible only under a weakly-isolated mode, similar to that provided by the standard Read

Committed. (ii) Conversely, reads that enforce stronger isolation at minimal delay impose reading

data from the past (not fresh). (iii) Minimal-delay Atomic reads force transactions to read

updates that were committed and acknowledged in the past. (iv) On the contrary, minimal-delay

Order-Preserving reads can read the updates of concurrent transactions. (v) Order-Preserving

112

18.1. CONTRIBUTIONS

and Atomic reads at maximal freshness require mutually-exclusive read and write operations,

which may block reads or writes indefinitely. These results hold independently of other features,

such as update semantics (e.g., monotonically ordered or not) or data model (e.g., structured or

unstructured).

Motivated by these results, we have proposed two isolation properties: TCC– and PSI–. They

result from degrading the (Atomic) read guarantees of TCC and PSI to Order Preserving. Using

the results of the trade-off, we have used Cure, which’s read algorithm sometimes blocks, to create

three protocols with no delays. AV maintains Cure’s TCC guarantees by degrading freshness. The

other two improve freshness by weakening the isolation guarantees: OP provides TCC–, and CV

provides Read Committed Isolation, where reads enforce Committed Visibility.

Experimentally, as expected, the three protocols exhibited similar latency. CV always observed

the most recent data, whereas freshness degraded negligibly for OP, and the degradation was

severe under Cure and AV.

113

Chapter 19

Future Work

In this work, we have explored the design space of highly-available transactions.

Protocol design. We have presented the design of Cure and three protocols that result from

applying different modifications to it. Our algorithms ensuring causal consistency rely on a

stabilisation protocol that involves all the partitions of a data centre to make updates visible. If a

partition is down or unreachable, other partitions will cease to make remote updates visible. To

implement stabilisation protocols in production environments, future work should study fault

tolerance mechanisms for partitions, for instance, through replication.

Trade-off analysis. In Part II, we studied the trade-offs of building transactional read algo-

rithms. The algorithms we have compared show interesting points of the design space, but do

not explore it completely. We have evaluated the freshness and latency of Cure, which exhibits

delays sourced in blocking. It would be interesting to explore the behaviour of systems that rely

on retrying operations to ensure read isolation. We have seen that freshness-optimal isolation

requires mutually-exclusive reads and writes, which may delay operations indefinitely. It would

be interesting to see how freshness-optimal designs affect latency under different read-isolation

levels. Also, it would be interesting to explore the effects of the trade-off in strong consistency.

New Isolation Models. In Chapter 12, we have suggested new isolation properties that we

have not studied in depth. It would be interesting to analyse what kinds of applications would

benefit from these models. We have proposed a model called PSI–, which results from degrading

the read guarantees of Parallel Snapshot Isolation (PSI). It would be interesting to implement a

transactional algorithm that implements this model and evaluate them empirically.

Related research directions. This work is part of research that aims at simplifying the

development of applications over highly-parallel architectures. In particular, we have explored

the relationship between semantics and performance from an algorithmic perspective. Other

115

CHAPTER 19. FUTURE WORK

directions within this field include the development of programming models and tools to help

programmers decide and express what model suffices to ensure an application can run safely —

unaffected by its exposed anomalies— without sacrificing throughput, latency and data freshness

more than what is strictly required.

116

Part IV

Appendix

117

Appendix A

Résumée de la Thèse

Les services web grande échelle reposent sur des déploiements fortement distribués et hautement

parallèle, afin de supporter de fortes charges et des larges volumes de données. Par exemple, "

Amazon gère une plateforme de commerce en ligne responsable de dizaines de millions de clients

en heure de pointe, à travers de dizaines de milliers de serveurs situés dans de multiples data

centers dans le monde [43]", et Tao, la base de données qui stocke le graphe social de Facebook "

tourne sur des milliers de machines géo-distribuées, offrant l’accès à des petabytes de données, et

peut supporter un milliard de lectures et des millions d’écritures chaque seconde [33]".

Ces services doivent répondre aux requêtes avec célérité et offrir une expérience toujours

online. Les temps de réponse affectent directement les revenus [44, 76] et, comme reporté par

Amazon, "même la panne la plus anodine des services a des impacts significatifs sur les revenus

et la confiance des clients [43]". Afin de réduire les temps de réponse et tolérer les fautes, ils

emploient la géo-réplication: en déployant des répliques de la logique applicative et de son état

sur de multiples data centers dans le monde. Les utilisateurs peuvent minimiser la latence en se

connectant au réplica le plus proche et, en présence de fautes qui rendraient un data center hors

service, peuvent se connecter à un autre data center resté en ligne. Sur chaque data center (ou

réplica), l’application est déployée sur de multiples serveurs front-end, et l’état de l’application est

partitionné à travers une multitude de serveurs de stockage. Ainsi, chaque réplica peut servir un

volume de requêtes et stocker un quantité de données bien au delà de ce que pourrait supporter

une seule machine.

Il est bien connu que, dans ce genre de scénario, le design d’un système doit choisir entre la

simplicité du développement d’une application, ou sa disponibilité et réactivité:

• En présence de connexions longue distance et inter-continentales, les partitions (P) du

réseau sont inévitables.

Selon le théorème de CAP [50], un système géo-distribué doit faire le choix entre haute

disponibilité (A) ou cohérence forte (C); garantir ces deux propriétés simultanément est

impossible.

119

APPENDIX A. RÉSUMÉE DE LA THÈSE

Le choix d’une cohérence forte simplifie le développement de la logique applicative, car

il dissimule la complexité de la géo-réplication en gardant les data-centers synchronisés

continuellement. Néanmoins, il expose les utilisateurs à de fortes latences et aux pannes

des liens réseau étendu. Au contraire, un autre design choisirait de favoriser la réactivité

et la disponibilité en répondant aux requêtes utilisateur depuis le réplica le plus proche,

en évitant les inconvénients des communications entre data centers, et en synchronisant

ceux-ci de manière paresseuse [55], cependant ceci expose la concurrence, ce qui rend le

développement de la logique applicative plus complexe et sujette à erreur [25].

• Lire et modifier des données éparpillées sur de multiples machines de manière cohérente

demande d’implémenter des transactions distribuées qui respectent l’atomicité, la propriété

du tout ou rien des mises à jour, et l’isolation des lectures, qui garantit, par exemple,

que toutes les mises à jour créées atomiquement seront observées simultanément[24] et

l’absence d’incohérences liées à l’ordre des opérations [60] ainsi que d’autres anomalies

liées à la concurrence[19]. Les transactions distribuées peuvent dissimuler à la logique

applicative la complexité du caractère distribué de l’application, mais entraînent souvent

des surcharges de communication et des scénarios bloquants qui impactent directement la

latence. [15, 63].

Les architectes d’applications aux besoins dominés par la latence on été amenés, pour ces

raisons, à abandoner la cohérence et à adopter des opérations sans garanties transactionnelles

mais plus rapides, exposant ainsi les développeurs d’applications, et parfois les utilisateurs à des

anomalies liées à la distribution et la réplication. Par exemple Tao de Facebook[33], Espresso de

LinkedIn [73], PNUTS de Yahoo [39] et Dynamo d’Amazon[43].

Dans cette thèse, nous avons étudié la construction de bases de données distribuées et

géo-répliquées qui offrent des sémantiques transactionnelles tout en garantissant une disponi-

bilité et une réactivité similaire à celles de systèmes qui, comme vu ci-dessus, n’offrent aucune

garantie transactionnelle ou de cohérence. Nous commencerons par présenter Cure1, un pro-

tocole transactionnel qui offre une sémantique simple et qui reste compatible avec une haute

disponibilité et des latences faibles. Cure implémente la Cohérence Causale Transactionnelle

(TCC: Transactional Causal Consistency) et supporte des types de données répliquées sans

conflits (CRDTs: Conflict-free Replicated Data Types). Cure offre ces garanties tout en atteignant

des performances similaires à celles de sémantiques plus faibles. Dans un second temps, nous

analyserons comment construire des protocoles de transactions distribuées qui ne souffrent pas

de délais supplémentaires comparés à des systèmes non transactionnels. Nous démontrerons un

compromis entre l’isolation des lectures, les latences et la fraîcheur des données (l’âge des valeurs

lues par la transaction). Nous mettrons à profit les résultats pour modifier Cure, qui souffre de

1 Cure est le noyau transactionnel qui offre les garanties fondamentales de la base de données Antidote [4], un
projet destiné à fournir aux applications un stockage cohérent qui ne souffre que des synchronisations minimales pour
assurer leurs invariants. Durant cette thèse, j’ai été un collaborateur actif au développement d’Antidote.

120

A.1. PARTIE I - CURE: DES SÉMANTIQUES FORTES LIÉES À UNE HAUTE DISPONIBILITÉ
ET DES LATENCES FAIBLES

scénarios bloquants, afin d’en tirer de nouveaux niveaux d’isolation et des protocoles sans délais

supplémentaires.

A.1 Partie I - Cure: Des sémantiques fortes liées à une haute
disponibilité et des latences faibles

Afin de soulager le compromis entre la facilité du développement et les performances, des

travaux récents se sont concentrés sur l’amélioration des designs AP qui offrent des sémantiques

plus fortes [60, 61, 81]. Cure est notre contribution dans cette direction. Tout en offrant de la

disponibilité et des performances, Cure offre (i) de la Transactional Causal Consistency (TCC),

c-à-d la cohérence causale, garantissant que si une opération se produit avant une autre, elles

seront observées dans le même ordre, (ii) le support pour les types de données répliqués (CRDTs)

basés sur des opérations telles que: les compteurs, les ensembles, les tableaux et les suites,

avec des sémantiques intuitives, et une convergence garantie même en présence de mises à jour

concurrentes ou de pannes partielles, et (iii) des transactions générales, qui assurent que de

multiples clefs (objets) sont lues et écrites de manière cohérente.

La Cohérence Causale (CC) présente un juste équilibre dans le compromis entre la cohérence

et la disponibilité [14, 60]. Il s’agit du modèle de cohérence le plus fort qui soit compatible

avec la disponibilité pour des opérations sur des objets uniques[20]. Et puisqu’elle assure la

cohérence causale (présentée en section 3.5), elle facilite la réflexion pour les développeurs et

pour les utilisateurs. Considérons une utilisatrice qui poste une photo sur son profil, puis poste

un commentaire sur cette même photo. Sans la cohérence causale, un autre utilisateur pourrait

voir le commentaire mais ne pas pouvoir voir la photographie. Éviter ce type d’anomalie requiert

des efforts supplémentaires de programmation au niveau de la logique applicative.

Les CRTDs sont des types de données de haut niveau, dont l’utilisation est aisée pour les

développeurs et qui présentent une sémantique riche (Section 3.5.2.4). Les opérations sur des

CRDTs ne sont pas seulement des opérations équivalentes à l’usage de registres, mais des

méthodes correspondant au type de l’objet CRDT utilisé. Les CRDTs assurent la convergence

éventuelle de l’ensemble des réplicas, malgré des mises à jour simultanées et conflictuelles.

Des systèmes antérieurs en cohérence causale+ [18, 45, 47, 60, 61] offraient cette garantie de

convergence à travers un mécanisme de dernier écrivain gagne (LWW: Last Writer Wins), où

la mise à jour qui s’est produite le plus récemment prime et écrase les précédentes. Cure offre

le support pour des CRDTs basés sur les opérations. Par exemple, les développeurs de Bet365

rapportent qu’utiliser les CRDTs Set a changé leur vie, les libérant de détails de bas niveaux et

du besoin de corriger les anomalies de concurrence[64].

Opérer de multiples opérations dans une même transaction permets à l’application de main-

tenir des rapports entre de multiples objets. L’isolation AP rejette les propriétés traditionnelles de

l’isolation forte, pour lesquelles une synchronisation est nécessaire, en faveur de la disponibilité

121

APPENDIX A. RÉSUMÉE DE LA THÈSE

et de latences faibles [22, 35]. Des systèmes antèrieurs qui implémentent CC+ offrent soit une

lecture depuis un snapshot [18, 45, 47, 60, 61] soit l’atomicité des mises à jour [24, 61]; là où les

transactions de Cure offrent les deux.

Prises ensembles, ces propriétés offrent aux développeurs des sémantiques qui sont à la fois

claires et fortes. De fait, puisque Cure repose sur une combinaison de ces trois propriétés, il offre

les sémantiques les plus fortes qu’une base de données hautement disponible n’ait jamais offerte.

Le design de Cure se base sur une approche novatrice qui facilite le parallélisme entre

serveurs au sein d’un data center en minimisant les surcharges de communication liées à la

cohérence causale [47]. Contrairement à l’approche usuelle qui consiste à vérifier si une mise à

jour reçue satisfait les conditions de la causalité, ce qui demande d’attendre une réponse de la

part du serveur distant —que l’on appelle explicitement un message de contrôle de dépendance—

Cure s’appuie sur la stabilisation des dépendance, qui rend les mises à jour visibles par lots

parmi celles pour qui on a l’assurance que toutes leurs dépendances sont satisfaites. L’apport de

Cure comparé aux travaux qui le précèdent est l’encodage des méta données d’ordre causal au

sein d’un simple scalaire par data center — ce qui minimise les surcharges — afin d’améliorer la

fraîcheur et la résilience aux partitions du réseau comparé aux mécanismes présents dans l’état

de l’art (See Section 6.5).

En résumé, les contributions de cette partie de mes travaux sont les suivantes:

• Un nouveau modèle de programmation qui fournit des transactions interactives, causale-

ment cohérentes avec des types de données sans conflit de haut niveau (Chapter 5.1).

• Un protocole haute performance, qui supporte ce modèle de programmation pour des bases

de données géo-répliquées (Chapitre 6).

• Une évaluation exhaustive, qui compare notre approche à celles des bases de données de

l’état de l’art (Chapitre 7).

A.2 Partie II - Le compromis à trois niveaux pour des lectures
transactionnelles

Dans cette partie de la thèse, nous étudions les coûts de lecture de données dans une base de

donnée transactionnelle distribuée. En particulier, nous tentons de comprendre s’il est possible

d’offrir de fortes garanties sur les lectures tout en assurant leur rapidité et la fraîcheur de leur

résultats. Il est bien connu que de fortes garanties sont accompagnées par des coûts plus élevés:

les algorithmes fonctionnant sur les verrous, les tentatives multiples ou la lecture de données

anciennes afin d’isoler les transactions. Au contraire, certains systèmes rejettent complètement

cette isolation afin d’en éviter les coûts: un article récent de Facebook (dont la performance

est fortement liée aux lectures de données) déclare: “ des propriétés plus fortes ont le potentiel

d’améliorer l’expérience utilisateur et de simplifier le développement de la logique applicative [. . .

mais] reposent sur des communications supplémentaires et des mécanismes de gestion d’état plus

122

A.2. PARTIE II - LE COMPROMIS À TROIS NIVEAUX POUR DES LECTURES
TRANSACTIONNELLES

Committed
visibility

O-Preserving
Visibilityminimal

delay

bounded
delay

mutex reads/
writes

(unbounded)

stable
freshness

concurrent
freshness

latest
freshness

freshness

delay

read isolation

Atomic Visibility

(1)
(2)

(3)

(4) (5) (6)

(7) (8) (9)

Figure A.1: Le compromis à trois niveaux. Les aires présentent les combinaisons possibles de
garanties/délais de lectures/fraîcheur. On trouve les meilleures performances en haut à droite;
les garanties sont plus fortes au premier plan. Les numéros de secteurs sont référencés dans la
Table 17.1.

lourds, ce qui augmente les latences [. . .] Ce qui pourrait amener à un déclin de l’expérience

utilisateur, et potentiellement à un préjudice ” [15]. Cette méfiance est-elle justifiée, c-à-d, des

lectures rapides sont elles de manière inhérente impossibles à combiner avec de fortes garanties,

ou peut-on améliorer la situation à travers de meilleures isolations? Ces travaux offrent une

étude formelle et opérationnelle de ces coûts et des ces compromis. Nous formalisons la tension

entre les impératifs des garanties des lectures, des délais de lecture (et donc les latences), et de la

fraîcheur, et montrons les points bénéfiques de l’espace des solutions possibles ou impossibles.

Puisque les garanties non sérialisables (présentées en Section 3.3) peuvent améliorer les

performances et la disponibilité, dans ces travaux, nous ne partons pas du principe que les mises

à jour sont totalement ordonnées. 1 De plus, nous permettons un affaiblissement de l’isolation

des lectures: en addition à la visibilité atomique, la garantie la plus forte et qui est présupposée

par les modèle transactionnels classiques, nous identifions la visibilité conservatrice d’ordre

(Order-Preserving Visibility), elle assure l’absence d’anomalies d’ordres mais tolère les read skew

(Section 3.3.3) , et nous examinons Committed Visibility, qui offre des garanties de lectures

équivalentes à l’isolation Read Committed (Section 3.3.5.3). Finalement, nous considérons aussi

la dimension de la fraîcheur, car (comme nous le montrons) la diminution des délais de lecture

peut parfois nous obliger à lire une version des données qui n’est pas la plus récente.

Le schéma A.1 illustre le compromis à trois niveaux entre les garanties, les délais, et la

fraîcheur des lectures transactionnelles. Par exemple, sous les conditions de visibilité Order

Preserving ou Atomique, il est possible de lire sans délai additionnel (par rapport à un système non

transactionnel), mais dans ce cas les données les plus récentes ne sont pas accessibles. Cependant,

1 Dans un système répliqué, imposer un ordre total et monotone aux mises à jour permets une cohérence forte
(Strong Consistency) sous partition (CP) ; mais, à l’inverse, il est nécessaire d’accepter les mises à jour concurrentes
pour offrir la disponibilité sous partition (AP) [79].

123

APPENDIX A. RÉSUMÉE DE LA THÈSE

nous montrons que les lectures Order Preserving avec un niveau de latence minimale permettent

d’observer les mises a jour de transactions qui se sont achevées simultanément (Secteur 2).

Comme nous le verrons dans notre évaluation, ceci permets une amélioration significative de

la fraîcheur par rapport à la visibilité atomique, qui nous force à ne lire que des données qui

étaient stables (écrites et confirmées) avant le début de la transaction (Secteur 1). Si, par contre,

l’application requiert les données les plus récentes, une visibilité atomique ou Order Preserving

n’est possible qu’avec un protocole où les lectures et écritures sont mutuellement exclusives,

c-à-d qu’une lecture peut être retardée (bloquée ou dans une boucle de nouvelles tentatives)

infiniment par des lectures, ou vice-versa (Secteur 9). Finalement, Committed Visibility permets

aux transactions d’accéder aux données les plus fraîches sans délai supplémentaire (Secteur 3).

Ce document inclut les contributions suivantes:

1. Une étude formelle des compromis entes les garanties de lecture, les délais, et la fraîcheur

des lectures transactionnelles. Nous prouvons quelles combinaisons souhaitables sont

possibles, et lesquelles ne le sont pas.

2. Deux nouvelles propriétés d’isolation, TCC- et PSI-, qui résultent de la dépréciation des

garanties de lecture de TCC et de PSI, en allant de la visibilité atomique à la Préservation de

l’Ordre (causal), ce qui positionne ces modèles différemment par rapport à notre compromis.

3. Trois protocoles à latences minimales dérivés de Cure, qui garantissent la visibilité atom-

ique, la fraîcheur des lectures transactionnelles simultanées et la vivacité des scénarios

bloquants (Secteur 5), en nous inspirant des résultats de nos analyses: AV s’assure de

TCC dans le Secteur 1, OP s’assure de TCC- dans le Secteur 2, et CV s’assure de la Read

Committed Isolation dans le Secteur 3. Nous proposons des protocoles au design détaillé,

y-compris le pseudo-code. À notre connaissance, ces protocoles sont les premiers à offrir ces

garanties d’une manière qui assure des délais minimaux.

4. Une évaluation de ces protocoles pour valider nos résultats de manière empirique. Durant

nos expériences, nous comparons les protocoles présentés et nous les comparons à Cure. Nos

protocoles à délais minimaux manifestent des latences similaires. CV observe les données

les plus récentes là où la fraîcheur est dégradée de manière négligeable pour OP, et de

manière sévère pour AV.

Nous espérons que ces résultats aideront les architectes de systèmes distribués dans leur

prise de décision lorsqu’ils devront séléctionner ou construire des stockages transactionnels.

124

Bibliography

[1] Basho bench. http://github.com/SyncFree/basho_bench.

[2] Rainbird: Real-time analytics@ twitter. https://www.slideshare.net/kevinweil/

rainbird-realtime-analytics-at-twitter-strata-2011.

[3] Twitter, inc. https://twitter.com/.

[4] AntidoteDB. http://syncfree.github.io/antidote/, 2015.

[5] NTP: The network time protocol. https://www.ntp.org/, retrieved August 2015.

[6] ZeroMQ. http://http://zeromq.org/, 2015.

[7] NoSQL Engagement Database | Couchbase, 2018. URL https://www.couchbase.com/.

[8] The outrageous costs of data center downtime, 2018. URL https://html.com/blog/

data-center-downtime/#ixzz53aaj5PIt.

[9] MySQL :: MySQL NDB Cluster :: Limits Relating to Transaction Handling

in NDB Cluster. https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/

mysql-cluster-limitations-transactions.html, 2018.

[10] Couchbase, Run Your First N1QL Query, 2018. URL https://developer.couchbase.com/

documentation/server/5.0/getting-started/try-a-query.html.

[11] The new york times | stock traders find speed pays, in milliseconds, 2018. URL https:

//nyti.ms/2k2Kncl.

[12] Marcos K. Aguilera, Joshua B. Leners, and Michael Walfish. Yesquel: Scalable SQL Storage

for Web Applications. SOSP ’15, pages 245–262, New York, NY, USA, 2015. ACM. ISBN

978-1-4503-3834-9. doi: 10.1145/2815400.2815413. URL http://doi.acm.org/10.1145/

2815400.2815413.

[13] Mustaque Ahamad, James E. Burns, Phillip W. Hutto, and Gil Neiger. Causal memory. In

Proc. 5th Int. Workshop on Distributed Algorithms, pages 9–30, Delphi, Greece, October

1991.

125

http://github.com/SyncFree/basho_bench
https://www.slideshare.net/kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011
https://www.slideshare.net/kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011
https://twitter.com/
http://syncfree.github.io/antidote/
https://www.ntp.org/
http://http://zeromq.org/
https://www.couchbase.com/
https://html.com/blog/data-center-downtime/#ixzz53aaj5PIt
https://html.com/blog/data-center-downtime/#ixzz53aaj5PIt
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-limitations-transactions.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-limitations-transactions.html
https://developer.couchbase.com/documentation/server/5.0/getting-started/try-a-query.html
https://developer.couchbase.com/documentation/server/5.0/getting-started/try-a-query.html
https://nyti.ms/2k2Kncl
https://nyti.ms/2k2Kncl
http://doi.acm.org/10.1145/2815400.2815413
http://doi.acm.org/10.1145/2815400.2815413

BIBLIOGRAPHY

[14] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal

memory: definitions, implementation, and programming. Distributed Computing, 9(1):37–49,

March 1995. doi: 10.1007/BF01784241. URL http://dx.doi.org/10.1007/BF01784241.

[15] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik Veeraraghavan.

Challenges to Adopting Stronger Consistency at Scale. In HOTOS, pages 13–13, Berke-

ley, CA, USA, 2015. USENIX Association. URL http://dl.acm.org/citation.cfm?id=

2831090.2831103.

[16] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao Li, Tyler

Crain, Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. Cure: Strong seman-

tics meets high availability and low latency. In Int. Conf. on Distributed Comp. Sys.

(ICDCS), pages 405–414, Nara, Japan, June 2016. doi: 10.1109/ICDCS.2016.98. URL

http://doi.ieeecomputersociety.org/10.1109/ICDCS.2016.98.

[17] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-based CRDTs by

delta-mutation. In Int. Conf. on Networked Systems (NETYS), volume 9466 of Lecture

Notes in Comp. Sc., pages 62–76, Agadir, Morocco, May 2015. Springer-Verlag. doi: 10.1007/

978-3-319-26850-7_5. URL http://dx.doi.org/10.1007/978-3-319-26850-7_5.

[18] Sérgio Almeida, João Leitão, and Luís Rodrigues. ChainReaction: A causal+ consistent

datastore based on chain replication. In Euro. Conf. on Comp. Sys. (EuroSys), pages 85–98,

Prague, Czech Republic, 2013. doi: 10.1145/2465351.2465361. URL http://doi.acm.org/

10.1145/2465351.2465361.

[19] ANSI. X3. 135-1992, American National Standard for Information Systems-Database

Language-SQL, 1992.

[20] Hagit Attiya, Faith Ellen, and Adam Morrison. Limitations of highly-available eventually-

consistent data stores. IEEE Trans. on Parallel and Dist. Sys. (TPDS), 28(1):141–155,

January 2017. doi: 10.1109/TPDS.2016.2556669. URL https://doi.org/10.1109/TPDS.

2016.2556669.

[21] Peter Bailis and Kyle Kingsbury. The network is reliable: An informal survey of real-world

communications failures. ACM Queue, 2014.

[22] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.

Highly available transactions: Virtues and limitations. Proc. VLDB Endow., 7(3):181–192,

November 2013. doi: 10.14778/2732232.2732237. URL http://dx.doi.org/10.14778/

2732232.2732237.

[23] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Hat, not cap:

Towards highly available transactions. In Proceedings of the 14th USENIX Conference on

126

http://dx.doi.org/10.1007/BF01784241
http://dl.acm.org/citation.cfm?id=2831090.2831103
http://dl.acm.org/citation.cfm?id=2831090.2831103
http://doi.ieeecomputersociety.org/10.1109/ICDCS.2016.98
http://dx.doi.org/10.1007/978-3-319-26850-7_5
http://doi.acm.org/10.1145/2465351.2465361
http://doi.acm.org/10.1145/2465351.2465361
https://doi.org/10.1109/TPDS.2016.2556669
https://doi.org/10.1109/TPDS.2016.2556669
http://dx.doi.org/10.14778/2732232.2732237
http://dx.doi.org/10.14778/2732232.2732237

BIBLIOGRAPHY

Hot Topics in Operating Systems, HotOS’13, pages 24–24, Berkeley, CA, USA, 2013. USENIX

Association. URL http://dl.acm.org/citation.cfm?id=2490483.2490507.

[24] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion Stoica. Scalable

Atomic Visibility with RAMP Transactions. In SIGMOD, pages 27–38, New York, NY, USA,

2014. ACM. doi: 10.1145/2588555.2588562. URL http://doi.acm.org/10.1145/2588555.

2588562.

[25] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion

Stoica. Feral concurrency control: An empirical investigation of modern application integrity.

In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’15, pages 1327–1342, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2758-9.

doi: 10.1145/2723372.2737784. URL http://doi.acm.org/10.1145/2723372.2737784.

[26] N Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and

J. Zheng. PRACTI replication. In Networked Sys. Design and Implem. (NSDI), pages 59–72,

San Jose, CA, USA, May 2006. Usenix, Usenix. URL https://www.usenix.org/legacy/

event/nsdi06/tech/belaramani.html.

[27] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. A

critique of ANSI SQL isolation levels. SIGMOD Rec., 24(2):1–10, May 1995. ISSN 0163-5808.

doi: 10.1145/568271.223785. URL http://doi.acm.org/10.1145/568271.223785.

[28] Philip A. Bernstein and Nathan Goodman. Multiversion Concurrency Control; Theory and

Algorithms. ACM Trans. Database Syst., 8(4):465–483, December 1983. ISSN 0362-5915.

doi: 10.1145/319996.319998. URL http://doi.acm.org/10.1145/319996.319998.

[29] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1987. ISBN 0-201-10715-5.

[30] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero, Val-

ter Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. Rapport de

Recherche RR-8083, Institut National de la Recherche en Informatique et Automatique

(Inria), Rocquencourt, France, October 2012. URL http://hal.inria.fr/hal-00738680.

[31] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. Quality is in the eye of the beholder:

meeting users’ requirements for internet quality of service. In Proceedings of the SIGCHI

conference on Human Factors in Computing Systems, pages 297–304. ACM, 2000.

[32] Bravo, Manuel and Rodrigues, Luís and Van Roy, Peter. Saturn: A Distributed Metadata

Service for Causal Consistency. In Proceedings of the Twelfth European Conference on

Computer Systems, EuroSys ’17, pages 111–126, New York, NY, USA, 2017. ACM. ISBN

127

http://dl.acm.org/citation.cfm?id=2490483.2490507
http://doi.acm.org/10.1145/2588555.2588562
http://doi.acm.org/10.1145/2588555.2588562
http://doi.acm.org/10.1145/2723372.2737784
https://www.usenix.org/legacy/event/nsdi06/tech/belaramani.html
https://www.usenix.org/legacy/event/nsdi06/tech/belaramani.html
http://doi.acm.org/10.1145/568271.223785
http://doi.acm.org/10.1145/319996.319998
http://hal.inria.fr/hal-00738680

BIBLIOGRAPHY

978-1-4503-4938-3. doi: 10.1145/3064176.3064210. URL http://doi.acm.org/10.1145/

3064176.3064210.

[33] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding,

Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri

Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani. TAO: Facebook’s dis-

tributed data store for the social graph. In USENIX ATC, pages 49–60, San Jose, CA, 2013.

USENIX. ISBN 978-1-931971-01-0. URL https://www.usenix.org/conference/atc13/

technical-sessions/presentation/bronson.

[34] Protocol Buffers. Google’s data interchange format, 2011.

[35] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Mooly Sagiv. Eventually

consistent transactions. In Euro. Symp. on Programming (ESOP), Tallinn, Estonia, March

2012. doi: http://dx.doi.org/10.1007/978-3-642-28869-2_4.

[36] Irina Ceaparu, Jonathan Lazar, Katie Bessiere, John Robinson, and Ben Shneiderman.

Determining causes and severity of end-user frustration. International journal of human-

computer interaction, 17(3):333–356, 2004.

[37] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike

Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A Distributed

Storage System for Structured Data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

ISSN 0734-2071. doi: 10.1145/1365815.1365816. URL http://doi.acm.org/10.1145/

1365815.1365816.

[38] Cockroach Labs. Serializable, lockless, distributed: Isola-

tion in cockroachdb. https://www.cockroachlabs.com/blog/

serializable-lockless-distributed-isolation-cockroachdb/, 2018.

[39] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip

Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. PNUTS:

Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288, August 2008.

doi: 10.1145/1454159.1454167. URL http://dx.doi.org/10.1145/1454159.1454167.

[40] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Fur-

man, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson

Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-

nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi

Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Span-

ner: Google’s globally-distributed database. In Symp. on Op. Sys. Design and Imple-

mentation (OSDI), pages 251–264, Hollywood, CA, USA, October 2012. Usenix. URL

https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf.

128

http://doi.acm.org/10.1145/3064176.3064210
http://doi.acm.org/10.1145/3064176.3064210
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
http://doi.acm.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1365815.1365816
https://www.cockroachlabs.com/blog/serializable-lockless-distributed-isolation-cockroachdb/
https://www.cockroachlabs.com/blog/serializable-lockless-distributed-isolation-cockroachdb/
http://dx.doi.org/10.1145/1454159.1454167
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf

BIBLIOGRAPHY

[41] DATASTAX. Configuring data consistency in cassandra. http://docs.datastax.com/en/

archived/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html, 2018.

[42] DataStax. How are Cassandra transactions different from RDBMS transactions? https:

//docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlTransactionsDiffer.

html, 2018.

[43] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash

Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-

gels. Dynamo: Amazon’s highly available key-value store. In Symp. on Op. Sys. Principles

(SOSP), volume 41 of Operating Systems Review, pages 205–220, Stevenson, Washing-

ton, USA, October 2007. Assoc. for Computing Machinery. doi: http://doi.acm.org/10.1145/

1294261.1294281.

[44] Phil Dixon. Shopzilla site redesign: We get what we measure. In Velocity Conference Talk,

2009.

[45] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe: Scalable causal

consistency using dependency matrices and physical clocks. In Symp. on Cloud Computing,

pages 11:1–11:14, Santa Clara, CA, USA, October 2013. Assoc. for Computing Machinery.

doi: 10.1145/2523616.2523628. URL http://doi.acm.org/10.1145/2523616.2523628.

[46] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. Clock-SI: Snapshot isolation for

partitioned data stores using loosely synchronized clocks. In Symp. on Reliable Dist. Sys.

(SRDS), pages 173–184, Braga, Portugal, October 2013. IEEE Comp. Society. doi: 10.1109/

SRDS.2013.26. URL http://doi.ieeecomputersociety.org/10.1109/SRDS.2013.26.

[47] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. GentleRain: Cheap

and scalable causal consistency with physical clocks. In Symp. on Cloud Computing, pages

4:1–4:13, Seattle, WA, USA, November 2014. Assoc. for Computing Machinery. doi: 10.1145/

2670979.2670983. URL http://doi.acm.org/10.1145/2670979.2670983.

[48] Erlang. disk_log. http://erlang.org/doc/man/disk_log.html.

[49] B. J. Fogg, Jonathan Marshall, Othman Laraki, Alex Osipovich, Chris Varma, Nicholas

Fang, Jyoti Paul, Akshay Rangnekar, John Shon, Preeti Swani, and Marissa Treinen. What

makes web sites credible?: A report on a large quantitative study. CHI ’01, pages 61–68,

New York, NY, USA, 2001. ACM. ISBN 1-58113-327-8. doi: 10.1145/365024.365037. URL

http://doi.acm.org/10.1145/365024.365037.

[50] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, avail-

able, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. ISSN 0163-5700.

doi: http://doi.acm.org/10.1145/564585.564601.

129

http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlTransactionsDiffer.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlTransactionsDiffer.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlTransactionsDiffer.html
http://doi.acm.org/10.1145/2523616.2523628
http://doi.ieeecomputersociety.org/10.1109/SRDS.2013.26
http://doi.acm.org/10.1145/2670979.2670983
http://erlang.org/doc/man/disk_log.html
http://doi.acm.org/10.1145/365024.365037

BIBLIOGRAPHY

[51] Grid’5000. Grid’5000, a scientific instrument [. . .]. https://www.grid5000.fr/, retrieved

April 2013.

[52] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for

concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. ISSN

0164-0925. doi: 10.1145/78969.78972. URL http://doi.acm.org/10.1145/78969.78972.

[53] Isis Distributed Systems. The Isis Distributed Toolkit, Version 3.0, User Reference Manuel.,

1991.

[54] Paul R. Johnson and Robert H. Thomas. The maintenance of duplicate databases. Internet

Request for Comments RFC 677, Information Sciences Institute, January 1976. URL

http://www.rfc-editor.org/rfc.html.

[55] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high avail-

ability using lazy replication. Trans. on Computer Systems, 10(4):360–391, November 1992.

URL http://dx.doi.org/10.1145/138873.138877.

[56] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7):558–565, July 1978. URL http://doi.acm.org/10.1145/

359545.359563.

[57] Butler Lampson and Howard E. Sturgis. Crash recovery in a distributed data storage sys-

tem. January 1979. URL https://www.microsoft.com/en-us/research/publication/

crash-recovery-in-a-distributed-data-storage-system/.

[58] Kwei-Jay Lin. Consistency issues in real-time database systems. In Annual Hawaii Interna-

tional Conference on System Sciences, volume 2 of Volume II: Software Track, pages 654–661.

IEEE Comput. Soc. Press, 1989. URL http://ieeexplore.ieee.org/articleDetails.

jsp?arnumber=48069.

[59] Greg Linden. Marissa mayer at web 2.0. Online at: http://glinden. blogspot.

com/2006/11/marissa-mayer-atweb-20. html, 2006.

[60] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle

for eventual: scalable causal consistency for wide-area storage with COPS. In Symp. on

Op. Sys. Principles (SOSP), pages 401–416, Cascais, Portugal, October 2011. Assoc. for

Computing Machinery. doi: http://doi.acm.org/10.1145/2043556.2043593.

[61] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger

semantics for low-latency geo-replicated storage. In Networked Sys. Design and Implem.

(NSDI), pages 313–328, Lombard, IL, USA, April 2013. URL https://www.usenix.org/

system/files/conference/nsdi13/nsdi13-final149.pdf.

130

https://www.grid5000.fr/
http://doi.acm.org/10.1145/78969.78972
http://www.rfc-editor.org/rfc.html
http://dx.doi.org/10.1145/138873.138877
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=48069
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=48069
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final149.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final149.pdf

BIBLIOGRAPHY

[62] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song, Wendy

Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential consistency: Measuring and un-

derstanding consistency at facebook. In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP ’15, pages 295–310, New York, NY, USA, 2015. ACM. ISBN

978-1-4503-3834-9. doi: 10.1145/2815400.2815426. URL http://doi.acm.org/10.1145/

2815400.2815426.

[63] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt Lloyd. The SNOW

Theorem and Latency-optimal Read-only Transactions. In OSDI’16, pages 135–150, Berkeley,

CA, USA, 2016. USENIX Association. ISBN 978-1-931971-33-1. URL http://dl.acm.org/

citation.cfm?id=3026877.3026889.

[64] Dan Macklin. Can’t afford to gamble on your database infrastructure? why bet365 chose

Riak. http://basho.com/bet365/, November 2015.

[65] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi, Nathan Bronson, and

Wyatt Lloyd. I Can’t Believe It’s Not Causal! Scalable Causal Consistency with No

Slowdown Cascades. In NSDI, pages 453–468, Boston, MA, 2017. USENIX Associa-

tion. ISBN 978-1-931971-37-9. URL https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/mehdi.

[66] Moniz, Henrique and Leitão, João and Dias, Ricardo J. and Gehrke, Johannes and Preguiça,

Nuno and Rodrigues, Rodrigo. Blotter: Low Latency Transactions for Geo-Replicated Storage.

In Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pages

263–272, Republic and Canton of Geneva, Switzerland, 2017. International World Wide Web

Conferences Steering Committee. ISBN 978-1-4503-4913-0. doi: 10.1145/3038912.3052603.

URL https://doi.org/10.1145/3038912.3052603.

[67] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Extracting more concurrency

from distributed transactions. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation, OSDI’14, pages 479–494, Broomfield, CO, 2014.

[68] Fiona Fui-Hoon Nah. A study on tolerable waiting time: how long are web users willing to

wait? Behaviour & Information Technology, 23(3):153–163, 2004.

[69] Christos H. Papadimitriou. The serializability of concurrent database updates. JACM,

26(4):631–653, October 1979. URL http://portal.acm.org/citation.cfm?id=322154.

322158.

[70] Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. Score: A scalable one-copy

serializable partial replication protocol. In Proceedings of the 13th International Middleware

Conference, Middleware ’12, pages 456–475, New York, NY, USA, 2012. Springer-Verlag

131

http://doi.acm.org/10.1145/2815400.2815426
http://doi.acm.org/10.1145/2815400.2815426
http://dl.acm.org/citation.cfm?id=3026877.3026889
http://dl.acm.org/citation.cfm?id=3026877.3026889
http://basho.com/bet365/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://doi.org/10.1145/3038912.3052603
http://portal.acm.org/citation.cfm?id=322154.322158
http://portal.acm.org/citation.cfm?id=322154.322158

BIBLIOGRAPHY

New York, Inc. ISBN 978-3-642-35169-3. URL http://dl.acm.org/citation.cfm?id=

2442626.2442655.

[71] Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia, and Luis Rodrigues.

When Scalability Meets Consistency: Genuine Multiversion Update-Serializable Partial

Data Replication. ICDCS, pages 455–465, Washington, DC, USA, 2012. IEEE Computer

Society. ISBN 978-0-7695-4685-8. doi: 10.1109/ICDCS.2012.55. URL http://dx.doi.org/

10.1109/ICDCS.2012.55.

[72] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible update

propagation for weakly consistent replication. In Symp. on Op. Sys. Principles (SOSP), pages

288–301, Saint Malo, October 1997. ACM SIGOPS. URL http://doi.acm.org/10.1145/

268998.266711.

[73] Lin Qiao, Kapil Surlaker, Shirshanka Das, Tom Quiggle, Bob Schulman, Bhaskar Ghosh,

Antony Curtis, Oliver Seeliger, Zhen Zhang, Aditya Auradar, Chris Beaver, Gregory Brandt,

Mihir Gandhi, Kishore Gopalakrishna, Wai Ip, Swaroop Jgadish, Shi Lu, Alexander Pachev,

Aditya Ramesh, Abraham Sebastian, Rupa Shanbhag, Subbu Subramaniam, Yun Sun, Sajid

Topiwala, Cuong Tran, Jemiah Westerman, and David Zhang. On Brewing Fresh Espresso:

Linkedin’s Distributed Data Serving Platform. In SIGMOD, pages 1135–1146, New York,

NY, USA, 2013. ACM. ISBN 978-1-4503-2037-5. doi: 10.1145/2463676.2465298. URL

http://doi.acm.org/10.1145/2463676.2465298.

[74] Judith Ramsay, Alessandro Barbesi, and Jenny Preece. A psychological investigation of long

retrieval times on the world wide web. Interacting with computers, 10(1):77–86, 1998.

[75] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-Monotonic Snapshot

Isolation: scalable and strong consistency for geo-replicated transactional systems. In Symp.

on Reliable Dist. Sys. (SRDS), pages 163–172, Braga, Portugal, October 2013. IEEE Comp.

Society. doi: 10.1109/SRDS.2013.25. URL http://dx.doi.org/10.1109/SRDS.2013.25.

[76] Eric Schurman and Jake Brutlag. The user and business impact of server delays, additional

bytes, and http chunking in web search. In Velocity Web Performance and Operations

Conference, 2009.

[77] Daniele Sciascia, Fernando Pedone, and Flavio Junqueira. Scalable Deferred Update Repli-

cation. In DSN, pages 1–12, Washington, DC, USA, 2012. IEEE Computer Society. ISBN

978-1-4673-1624-8. URL http://dl.acm.org/citation.cfm?id=2354410.2355159.

[78] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free repli-

cated data types. In Int. Symp. on Stabilization, Safety, and Security of Dist. Sys. (SSS),

volume 6976 of Lecture Notes in Comp. Sc., pages 386–400, Grenoble, France, October 2011.

132

http://dl.acm.org/citation.cfm?id=2442626.2442655
http://dl.acm.org/citation.cfm?id=2442626.2442655
http://dx.doi.org/10.1109/ICDCS.2012.55
http://dx.doi.org/10.1109/ICDCS.2012.55
http://doi.acm.org/10.1145/268998.266711
http://doi.acm.org/10.1145/268998.266711
http://doi.acm.org/10.1145/2463676.2465298
http://dx.doi.org/10.1109/SRDS.2013.25
http://dl.acm.org/citation.cfm?id=2354410.2355159

BIBLIOGRAPHY

Springer-Verlag. doi: 10.1007/978-3-642-24550-3_29. URL http://www.springerlink.

com/content/3rg39l2287330370/.

[79] Marc Shapiro, Masoud Saeida Ardekani, and Gustavo Petri. Consistency in 3D. In

Josée Desharnais and Radha Jagadeesan, editors, Int. Conf. on Concurrency Theory

(CONCUR), volume 59 of Leibniz Int. Proc. in Informatics (LIPICS), pages 3:1–3:14,

Québec, Québec, Canada, August 2016. Schloss Dagstuhl – Leibniz-Zentrum für Infor-

matik, Dagstuhl Publishing, Germany. doi: 10.4230/LIPIcs.CONCUR.2016.3. URL http:

//drops.dagstuhl.de/opus/volltexte/2016/6188/pdf/LIPIcs-CONCUR-2016-3.pdf.

[80] Yongxia Xia Skadberg and James R Kimmel. Visitors’ flow experience while browsing a

web site: its measurement, contributing factors and consequences. Computers in human

behavior, 20(3):403–422, 2004.

[81] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for

geo-replicated systems. In Symp. on Op. Sys. Principles (SOSP), pages 385–400, Cascais,

Portugal, October 2011. Assoc. for Computing Machinery. doi: http://doi.acm.org/10.1145/

2043556.2043592.

[82] Basho Technologies. riak_core: Distributed systems infrastructure used by Riak. https:

//github.com/basho/riak_core, .

[83] Basho Technologies. riak_dt: Convergent replicated data types. https://github.com/

basho/riak_dt, .

[84] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and

Brent W. Welch. Session guarantees for weakly consistent replicated data. In Proceedings

of the Third International Conference on Parallel and Distributed Information Systems,

PDIS ’94, pages 140–149, Washington, DC, USA, 1994. IEEE Computer Society. ISBN

0-8186-6400-2. URL http://dl.acm.org/citation.cfm?id=645792.668302.

[85] Robert H. Thomas. A majority consensus approach to concurrency control for multiple copy

databases. Trans. on Computer Systems, 4(2):180–209, June 1979. doi: 10.1145/320071.

320076.

[86] Alejandro Z. Tomsic, Tyler Crain, and Marc Shapiro. An empirical perspective on causal

consistency. In Proceedings of the First Workshop on Principles and Practice of Consistency

for Distributed Data, PaPoC ’15, pages 2:1–2:3, New York, NY, USA, 2015. ACM. ISBN

978-1-4503-3537-9. doi: 10.1145/2745947.2745949. URL http://doi.acm.org/10.1145/

2745947.2745949.

[87] Alejandro Z. Tomsic, Tyler Crain, and Marc Shapiro. PhysiCS-NMSI: efficient consistent

snapshots for scalable snapshot isolation. In W. on Principles and Practice of Consistency for

133

http://www.springerlink.com/content/3rg39l2287330370/
http://www.springerlink.com/content/3rg39l2287330370/
http://drops.dagstuhl.de/opus/volltexte/2016/6188/pdf/LIPIcs-CONCUR-2016-3.pdf
http://drops.dagstuhl.de/opus/volltexte/2016/6188/pdf/LIPIcs-CONCUR-2016-3.pdf
https://github.com/basho/riak_core
https://github.com/basho/riak_core
https://github.com/basho/riak_dt
https://github.com/basho/riak_dt
http://dl.acm.org/citation.cfm?id=645792.668302
http://doi.acm.org/10.1145/2745947.2745949
http://doi.acm.org/10.1145/2745947.2745949

BIBLIOGRAPHY

Distributed Data (PaPoC), London, UK, April 2016. Euro. Conf. on Comp. Sys. (EuroSys),

Assoc. for Computing Machinery. doi: 10.1145/2911151.2911166. URL http://dx.doi.

org/10.1145/2911151.2911166.

[88] A.Z. Tomsic, T. Crain, and M. Shapiro. Scaling geo-replicated databases to the mec environ-

ment. In Reliable Distributed Systems Workshop (SRDSW), 2015 IEEE 34th Symposium on,

pages 74–79, Sept 2015. doi: 10.1109/SRDSW.2015.13.

[89] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Baquero, Marc

Shapiro, and Nuno Preguiça. SwiftCloud: Fault-tolerant geo-replication integrated all the

way to the client machine. Technical Report RR-8347, Institut National de la Recherche

en Informatique et Automatique (Inria), Rocquencourt, France, August 2013. URL http:

//hal.inria.fr/hal-00870225/.

134

http://dx.doi.org/10.1145/2911151.2911166
http://dx.doi.org/10.1145/2911151.2911166
http://hal.inria.fr/hal-00870225/
http://hal.inria.fr/hal-00870225/

	List of Tables
	List of Figures
	Introduction
	Contributions
	Part I - Cure: Strong semantics meets high availability and low-latency
	Part II - The three-way trade-off for transactional reads

	System Model
	Cloud Service Architecture
	Tight Latency and Availability requirements
	The effects of latency
	The effects of downtimes

	Geo-distribution and the CAP theorem
	CP designs
	AP designs

	Storage Semantics
	Transactions - ACID properties
	Moving away from, back to ACID

	Atomicity of Updates (or All-or-Nothing)
	Transactional Isolation Levels (Consistency Criteria)
	Notation
	Concurrency control
	Lock-based concurrency control
	Multi-version concurrency control (MVCC)
	Choosing a technique.
	Mixing them.

	Anomalies
	Dirty read.
	Non-repeatable read.
	Lost update.
	Write skew.
	Non-monotonic snapshots.
	Read Skew.
	Real-time violation.
	Order Violation.

	CP (Strong) Isolation
	Strict Serialisability (SS) - no anomalies
	Serialisability (S) - relaxing real-time ordering
	Snapshot Isolation (SI) - removing serialisability checks from read operations
	Update Serialisability (US) - non-monotonic snapshots
	Parallel Snapshot Isolation (PSI)

	AP (Weak) Isolation
	Transactional Causal Consistency (TCC)
	Read Atomic (RA)
	Read Committed (RC and RC+)
	No Isolation (NI)

	Summary of anomalies allowed/disallowed by Isolation levels

	Session guarantees
	Single-object Consistency and Isolation
	CP Consistency
	Linearisability

	AP Consistency
	Causal Consistency (CC)
	Eventual Consistency (EC)
	Causal+ Consistency (CC+)
	Ensuring Convergence

	Cure: strong semantics meets high availability and low latency
	Introduction to Part I
	Overview of Cure
	Transactional Programming Model
	Programming interface
	Design - causal consistency
	Updates applied in causal order for high availability.
	Dependency stabilisation for scalability.
	Vector clocks for serving fresh data.

	Protocol description
	Notation and definitions
	Transaction Execution
	Replication and stable snapshot computation
	Correctness
	Discussion
	Session Guarantees
	Efficient SS computation
	Garbage Collection
	Support for CRDTs

	Evaluation of Cure
	Setup
	Cure's scalability
	Comparison to other systems

	Conclusion of Part I

	The three-way trade-off: Read Isolation, Latency and Freshness
	Introduction to Part II
	Requirements
	Transactions
	Snapshot guarantees
	Committed Visibility
	Order-Preserving Visibility
	Atomic Visibility

	Delay
	Minimal Delay
	Bounded delay
	Mutex reads/writes (or unbounded delay)

	Freshness
	Latest Freshness
	Stable Freshness
	Concurrent Freshness

	Optimal reads

	The three-way trade-off
	Notation and Definitions
	Impossibility of optimal reads under ordered visibility
	What freshness is compatible with minimal delay?
	Optimal reads under Committed Visibility
	Order-Preserving visibility and concurrent freshness
	Minimal-delay Atomic Visibility requires stable freshness

	What is possible under latest freshness?
	Isolated reads with bounded delays and concurrent freshness.

	Unexplored Isolation Levels
	CV-US and OP-US
	TCC–
	PSI–

	Designing protocols for minimal delay
	A refresher on Cure
	Changes to Cure
	Transaction execution
	Transaction Coordinator Algorithm
	Partition Servers Algorithm

	Correctness
	Stabilisation protocol
	Causal consistency: session guarantees
	Read your writes
	Monotonic Reads

	Evaluation
	Implementation
	Setup
	Experiments
	Single-shot read-only transactions
	Facebook-like read-only transactions.

	Conclusion of Part II

	Related Work
	Causal Consistency for Cloud Deployments
	Causally-Consistent Systems
	Single-machine Causal Consistency

	Strongly-Consistent Systems Enforcing Causal Consistency

	Semantics, delay and freshness
	Impossibility results
	Systems
	Weakly-consistent systems
	Strongly-consistent systems

	Conclusion
	Contributions
	Part I
	Part II

	Future Work

	Appendix
	Résumée de la Thèse
	Partie I - Cure: Des sémantiques fortes liées à une haute disponibilité et des latences faibles
	Partie II - Le compromis à trois niveaux pour des lectures transactionnelles

	Bibliography

