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Abstract
The main topics addressed in this thesis are the use of active learning and deep
learning methods in the context of retrieval of multimodal document processing.
The contributions proposed in this thesis address both these topics. An active
learning framework was introduced for allowing for a more efficient annotation of
broadcast TV videos thanks to the propagation of labels, to the use of multimodal
data and to effective selection strategies. Several scenarios and experiments were
considered in the context of person identification in videos, taking into account
the use of different modalities (such as faces, speech segments and overlaid text)
and different selection strategies. The whole system was additionally validated
in a dry run test involving real human annotators.

A second major contribution was the investigation and use of deep learning
(in particular the convolutional neural network) for video information retrieval.
A comprehensive study was made using different neural network architectures
and different training techniques such as fine-tuning or more classical classifiers
like SVM. A comparison was made between learned features (the output of neural
networks) and engineered features. Despite the lower performance of the latter,
a fusion of these two types of features increases overall performance.

Finally, the use of convolutional neural network for speaker identification using
spectrograms is explored. The results have been compared to those obtained with
other state-of-the-art speaker identification systems. Different fusion approaches
were also tested. The proposed approach obtained results comparable to those of
some of the other tested approaches and offered an increase in performance when
fused with the output of the best system.





Résumé
Les thèmes principaux abordés dans cette thèse sont l’utilisation de méthodes
d’apprentissage actif et d’apprentissage profond dans le contexte du traitement de
documents multimodaux. Les contributions proposées dans cette thèse abordent
ces deux thèmes. Un système d’apprentissage actif a été introduit pour permettre
une annotation plus efficace des émissions de télévision grâce à la propagation des
étiquettes, à l’utilisation de données multimodales et à des stratégies de sélection
efficaces. Plusieurs scénarios et expériences ont été envisagés dans le cadre de
l’identification des personnes dans les vidéos, en prenant en compte l’utilisation
de différentes modalités (telles que les visages, les segments de la parole et le texte
superposé) et différentes stratégies de sélection. Le système complet a été validé
au cours d’un “test à blanc” impliquant des annotateurs humains réels.

Une deuxième contribution majeure a été l’étude et l’utilisation de l’appren-
tissage profond (en particulier les réseaux de neurones convolutifs) pour la recher-
che d’information dans les vidéos. Une étude exhaustive a été réalisée en utilisant
différentes architectures de réseaux neuronaux et différentes techniques d’appren-
tissage telles que le réglage fin (fine-tuning) ou des classificateurs plus classiques
comme les SVMs. Une comparaison a été faite entre les caractéristiques apprises
(la sortie des réseaux neuronaux) et les caractéristiques plus classiques (“engi-
neered features”). Malgré la performance inférieure des seconds, une fusion de
ces deux types de caractéristiques augmente la performance globale.

Enfin, l’utilisation d’un réseau neuronal convolutif pour l’identification des
locuteurs à l’aide de spectrogrammes a été explorée. Les résultats ont été com-
parés à ceux obtenus avec d’autres systèmes d’identification de locuteurs récents.
Différentes approches de fusion ont également été testées. L’approche proposée
a permis d’obtenir des résultats comparables à ceux certains des autres systèmes
testés et a offert une augmentation de la performance lorsqu’elle est fusionnée
avec la sortie du meilleur système.
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Chapter 1

Introduction

Over the last several years, more and more multimedia documents are avail-
able thanks to the growing presence and use of cameras, smartphones and other
recording devices. The use of the Internet and numerous social media enabled
easy access to an unprecedented amount of diverse data. Also, due to on-line
sharing and distribution the volume of this type of data is rapidly increasing.
With this swift growth comes the need to make the data more useful and acces-
sible to potential users. Annotation and indexing allows this multimedia content
to be searchable. However, manual annotation of such a quantity of data is pro-
hibitively expensive. In order to address this problem, many potential solutions
were created.

A possible solution would be by the means of automatic multimedia indexing.
This is done with the use of various machine learning methods. Such a system
would be able to assign labels corresponding to the semantic content of a given
multimedia document (be it an object that can be seen, a person or a speaker
identity of an audio track) without human intervention, thus making it identifiable
and traceable to a prospective user. To be able to construct such a system,
which would also have a satisfying level of accuracy, and successfully train it, a
large set of already annotated data is required. In most cases this data needs
to be annotated by hand by human annotators. However, this process is always
constrained by the costs in both time and resources. Because not all of the data
can be labeled, it is necessary to prioritize and select some of the data instances
over others. This can help in avoiding redundancies and lead to a potentially
more representative set of labeled instances, which in turn can increase the overall
performance of the machine learning model.

Active learning represents a set of algorithms designed to select appropriate
instances from an unlabeled pool of data given a certain criterion. There is a wide
range of potential criteria, which depend on the task at hand, but the main aim
is to predict the usefulness of a new instance to a given model. Other methods
can be used to increase the overall number of annotated samples thanks to label
propagation. Also, active learning may help avoid annotating redundant instance,
i.e. those that do not carry any new useful information.

As the amount of available annotated data increases, bigger and more complex
models can be trained. This leads to the possibility of using state-of-the-art
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classifiers such as deep learning. The most advanced models from this family of
algorithms require a vast amount of annotated data to achieve top performance.

In this thesis, some active learning strategies are proposed that help with la-
bel propagation, which can increase the amount of useful labeled data and by
consequence the overall performance of the trained models. Also, several differ-
ent experiments with deep learning were undertaken to explore the usefulness of
fine-tuning of networks, fusion and other aspects when applied to the treatment
of multimedia. Finally, an additional application of this class of algorithms to
speaker recognition is explored.

When it comes to the terminology used throughout this thesis, both annota-
tion and label denote a textual keyword used to describe a concept (be it a name
of an object or an identity of a person) that is present in a given data instance and
they are used interchangeably. The same goes to the following: learner, classifier
and model, all of which are considered synonymous. And lastly, the same applies
to feature and descriptor, both of which in the most general sense are the means
to describe and store information of a piece of data (be it an image, an audio file
or other).

1.1 Active learning for multimedia
Most of the applications involving multimedia documents benefit or even require
a certain amount of manual annotation. Given the complexity of some concepts
(be it a particular person or a specific object), human intervention is necessary.
With proper annotation, a lot of potential applications are made possible such
as training models for recognition or retrieval. However, the annotation process
(provided no prior source of labels is given) can be prohibitively expensive, which
becomes even more evident when dealing with multimedia documents such as
videos. In the case of the latter, often when giving a label some additional
actions are also required, e.g. providing the location of the object within a frame
of a video (by a simple box or a more complex shape) or adding a timestamp to
denote when a given concept is visible. Those additional steps only compound
the potential cost of each annotation.

Therefore, the use of active learning related methods can potentially be very
beneficial in this context. When having limited time and resources, the ability to
select the most informative segments of the data for annotation may be invaluable.
Also, any likely source of weak labels such as overlaid names that appear on the
screen or subtitles can greatly reduce the cost of annotation. By automatically
extracting probable labels and assigning them to the most likely instance, the
annotation process turns from identification into a verification task, which is
usually faster and easier to perform.

1.2 Deep learning
Deep learning emerged recently as a very promising and effective set of algorithms
that are able to tackle complex recognition problems given enough training data.
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In particular, the convolutional neural network is very well suited when dealing
with data composed of images or videos and it is capable to find high level
concepts that appear within the data.

Contrary to the traditional approach where features describing an image are
"hand-made", i.e. explicitly designed to extract certain characteristics from an
image such as color or texture, convolutional neural networks are able to learn
the most suitable features for a given dataset. This is by far the most impor-
tant element that contributes to the superior performance over more traditional
methods.

Due to significantly better overall performance in many vision-based tasks,
the convolutional neural network methods became the most widely used methods
when tackling problems such as image indexing and retrieval, image classification
and many more. Due to this potential, a significant part of this thesis is dedi-
cated to a further evaluation of its performance compared to the more traditional
paradigm used for image classification. Also, further exploration of potential ap-
plications of the convolutional neural network to other domains is investigated.

1.3 Problem description
In this section, a more detailed problem statement for each aspect of this thesis
is defined. This includes the central challenge and some of the main problems.
The latter will be more precisely defined in the subsequent chapters.

1.3.1 Active learning for multimedia
The main challenge is to create an active learning framework that would be able
to deal with a set of problems and constraints. In short, they can be defined as:

• Incorporating the data coming from different sources, i.e. the use of multi-
media data.

• Making use of weak labels, including a way to verify its accuracy.

• Highly imbalanced datasets, where the use of trained model may be limited
at least for some of the less frequent concepts.

• Potential use in practice, which puts constraints on the execution time of
any proposed solution.

1.3.2 Deep learning applications
The application of deep learning in the context of video indexing poses several
challenges. The main potential problems are:

• The highly imbalanced and noisy data, which makes it difficult to train the
model from scratch.
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• The presence of multiple concepts per frame, which would require a different
approach than the one used in most image classification methods.

• Handling the volume of video data.

1.4 Contributions
The following contributions were made throughout the work on this thesis. They
are related either to the application of deep learning in multimedia or to active
learning and label propagation for person identification.

• Amethod for efficient multimedia annotation using active learning and label
propagation. Several different sampling strategies are proposed. Addition-
ally, different sources of information (faces, audio, written names) are used.
Experiments have shown the usability of this approach for speaker model
training. Details are presented in Chapter 3.

• A comparison between engineered and deep learning based features was
made in Chapter 4. The use of deep learning models as feature extrac-
tors was tested as well as fine-tuning in the context of image indexing and
retrieval. Fusion between engineered and deep features was also explored.

• A method for speaker identification based on a convolutional neural network
trained on spectrograms is presented in Chapter 5. Several different fusion
techniques were also proposed involving the output of the CNN and other
state-of-the-art approaches for speaker identification.

1.5 Structure of this work
The remaining part of the manuscript is organized in the following way.

Chapter 2: Literature overview – This chapter provides the background and
context of this work. It gives the introduction to the "classical pipeline" used
for image classification and retrieval as well as to deep learning. Different
active learning scenarios and approaches are discussed in the second part
of this chapter.

Chapter 3: Active learning for multimedia – The chapter starts with a dis-
cussion of different limitations of active learning when used in practice. Af-
terwards, the problem of person annotation and label propagation in videos
broadcasts is introduced. An active learning based solution is proposed and
tested in a range of scenarios, including different modalities such as speech,
faces and overwritten names. The chapter ends with a short discussion
regarding a dry run where the proposed method was tested in a real-life
scenario.
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Chapter 4: Deep learning for multimedia – Here, the results of several deep
learning experiments in the context of video indexing are presented. Deep
learning models are used as feature extractors and as the basis for finetun-
ing. Fusion with classical features is also explored.

Chapter 5: Deep learning for speaker identification – This chapter presents
a deep convolutional neural network approach for speaker identification.
Experiments also include fusion with state-of-the-art speaker recognition
methods.

Chapter 6: Conclusions and perspectives – In this chapter, a general sum-
mary of the presented work and contributions is given. It also highlights
some possible perspectives and future directions of research based on this
thesis.
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Chapter 2

Literature overview

2.1 Introduction
In this chapter the literature related to this work is reviewed and principal con-
cepts are introduced. The overview starts with a presentation of classical ap-
proaches to image classification and retrieval, which focuses on popular descrip-
tors and classifier algorithms. What follows in the second major part of this
chapter is an introduction to deep learning, which methods recently produced
state-of-the-art performance when dealing with tasks related to this thesis. They
also made a lot of classical approaches obsolete in some tasks. The use of deep
learning in multimedia (including audio, speech, video and still images) will be ex-
plored in greater detail. Next, the recent research on active learning is presented.
This is followed by its application to multimedia documents such as videos and
its use in practice. Finally, the most important datasets used in this thesis are
described in greater detail. Some general conclusions are made at the end of this
chapter.

2.2 Engineered descriptors
This section gives a brief introduction to the classical engineered descriptors used
in computer vision. Even though most of them were recently surpassed in terms
of performance by the CNN-based approaches, they can still be very useful. This
type of descriptors, for example, are still considered as state-of-the-art for image
retrieval [LLH15]. Additionally as it is going to be shown in Chapter 4, the classi-
cal descriptors can be used to enhance the results when certain fusion approaches
are applied.

The name engineered descriptors emerged very recently as a way to distinguish
between descriptors based on classical, "hand-crafted" feature extraction methods
(such as SIFT) and automatically generated features based on deep learning. Fig-
ure 2.1 highlights this distinction. The engineered features are fixed and usually
designed with some particular property in mind (such as to distinguish images
having different colors or objects having different shapes). The advantage of this
approach is that such a feature extractor is understandable to human (both the
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motivation and the mechanism). In contrast, deep learning feature extractors can
be trained and they change depending on the dataset. The higher performance
obtained with this approach comes with a disadvantage of not knowing exactly
why they work.

Figure 2.1: Two pattern recognition pipelines. Upper row: the classical pipeline
made of fixed and crafted features followed by a trainable classifier. Bottom row:
an approach present in deep learning where both the feature extractor and the
classifier are trainable.

What follows in the rest of this section is a non-exhaustive overview of different
categories of engineered descriptors: global, local and feature aggregation.

2.2.1 Global descriptors

Global descriptors provide a single comprehensive description of an image. These
types of approaches are relatively fast to compute, which makes them useful when
dealing with vast datasets or with limited computational resources. On the other
hand, they are not very robust as a local change in an image (for example shift)
influences the final value of the whole descriptor. Global descriptors focus on 3
main sources of information: color, texture and shape.

Color

The use of color as a descriptor was a popular choice for many years when dealing
with object and scene recognition [VDSGS10b]. One of the key issues concerning
color descriptors is the choice of the color space. The RGB space is probably
the most popular. However, many other spaces exist, including HSV, HSL and
CIELAB. In most cases color information from an image is globally aggregated
in a form of a histogram. Color histograms indicate the global color distribution
in a given image. This can be a robust solution, which can successfully cope with
changes in perspective or rotation of an object. However, varying luminosity
conditions can pose a challenge.



Engineered descriptors 19

Texture

Another important source of information about an image are texture features.
The assumption is that an image is composed of a set of texture regions, which
can be used to retrieve or classify an image. Texture information can help when
dealing with characteristic object surfaces such as glass, stone, wood, skin, etc.
Gabor wavelet features are often used for this purpose [MM96]. This approach
focuses on capturing the frequencies and principal orientation of the image.

Shape

A final example of a global descriptor is the general shape present in an image.
In [OT01] an approach was proposed that enables the description of an image in
terms of the scene it represents and its spatial structure. Rather than considering
a scene as a configuration of separate objects, this method looks at a scene as a
single object with a unitary shape. This approach is very efficient, however it is
not robust to image transformations such as rotation.

2.2.2 Local descriptors
Due to some of the limitations of the global descriptors (such as the sensitiv-
ity to image transformation), local descriptors emerged as an alternative. These
features can be invariant to geometric transformations, such as translation, and
changes in illumination. By focusing on particular regions of an image and de-
scribing an image as a set of such regions, a more robust representation can be
achieved. Also, due to the importance of local characteristics of an image, this
type of features can potentially deal with partial occlusion.

Before a local descriptor can be extracted, an additional step to detect re-
gions of interest in an image is required. Points (or regions) of interest can be
considered as points in an image where the signal changes in two dimensions.
This includes different types of corners, regions of high contrast (black dots on
a white background) and any kind of texture. There are many approaches that
were developed (an evaluation of different detectors can be found in [SMB00]),
this includes contour based methods (extraction of junctions, line segments, ridge
detection, etc.), intensity based methods (e.g., difference of a grayvalue between
a given window and a shifted window, methods based on the auto-correlation
matrix, etc.) and parametric model based methods (by fitting a parametric in-
tensity model to a given signal). Once the appropriate regions are selected, a
local descriptor can then be extracted.

In what follows, some of the most popular types of local descriptors are pre-
sented.

SIFT

Scale Invariant Feature Transform (SIFT) was presented for the first time in
[Low04]. It is the most popular descriptor still in use for image and video indexing.
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It is invariant to image translation, scaling and rotation. Also to some degree, it
can handle changes in illumination.

Once the points of interest (or keypoints) are detected, this descriptor cal-
culates the gradient magnitude and orientations for a region around each such
point (as can be seen in Figure 2.2). Afterwards, a Gaussian window is used to
apply a weight to each sample in the region. Finally, the sample are accumulated
to create orientation histograms. Figure 2.2 shows an example where a 2 × 2
descriptor is generated based on a 8× 8 set of samples.

Figure 2.2: The stages of calculation of the SIFT descriptor. Image taken from
[Low04].

The procedure described above is repeated for several different scales. One of
the shortcomings of this descriptor in its basic form is its lack of color informa-
tion. However, this problem was investigated in, for example, [VdSGS08] where
different color extensions for the SIFT descriptor are proposed and compared.
This includes the OpponentSIFT, which as an addition to the basic SIFT uses
color histograms obtained in the opponent color space, the rgSIFT (using the nor-
malized RGB color model) and Transformed color SIFT (where the transformed
color histogram is used).

SURF

Speed Up Robust Features (SURF) [BTVG06] is a local descriptor that focuses
on enhancing the computation time, but at the same time trying to maintain a
competitive performance. It is also rotation and scale invariant. The detection
part of this method is based on the Hessian matrix applied to integral images
in order to reduce computation time. The feature itself (composed of only 64
dimensions) is a distribution of Haar-wavelet responses within the area around
the point of interest. Additionally, the color information in used neither at the
detection nor the descriptor stage.

HOG

The Histogram of Oriented Gradients (HOG) [DT05] were initially applied to
human silhouette recognition. These features resemble the SIFT descriptor, how-
ever they are computed on a dense grid of small spatial regions (or cells), which
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have the same distance from one another. Also, the overlapping local contrast
normalization is used as an additional way to enhance performance by making
it more invariant to changes in luminosity. Each cell is represented by a 1-D
histogram of gradient directions or orientations of the edges computed based on
the pixels within the cell. The histogram entries are then combined to create the
final descriptor. Figure 2.3 provides an example of the visualization of the HOG
features given an input image.

Figure 2.3: A given input image (left) and its corresponding HOG descriptor
(right). Image taken from [DT05].

LBP

Local Binary Pattern (LBP) was first introduced in [OPH96]. This approach
provides the description of texture patterns that occur in a given image. The
texture information is gathered in the 3 × 3 neighborhood of each pixel (Figure
2.4a) by applying a binary pattern. This pattern is created by taking the value of
the center pixel and using it as a threshold, i.e. other pixels in the neighborhood
with values below the threshold are set to 0 and those above are set to 1 (the
outcome can be seen in Figure 2.4b). The resulting pattern is then multiplied by
weights corresponding to the pixel position (Figure 2.4c) and the result (Figure
2.4d) is summed up together to give the final single value (169). These values
calculated for each pixel and then accumulated in the form of a histogram to give
the final descriptor.

The Orthogonal Combination of Local Binary Patterns (OC-LBP) was pre-
sented for the first time in [ZBC13] and can be considered as one of the more
recent extensions of the LBP descriptor. The main goal here was to reduce the
dimensionality of the original descriptor, which would greatly speed up the com-
putation process. This is achieved by splitting the original neighborhood of 8
pixels to two orthogonal sets of 4 neighbors each. One set consists of horizontal
and vertical neighbors while the other contains the diagonal pixels. This enables
the size reduction of the original 256-value vector to a vector of just 32 dimensions.
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Figure 2.4: The steps used to calculate the LBP descriptor. Image taken from
[OPH96].

STIP

Spatio-Temporal Interest Points [Lap05] (or STIP) is a local image descriptor
that not only represents spatial interest points (as is the case with every local
descriptor presented here thus far), but also extends them in time, which is crucial
when dealing with video data. The points of interest that are extracted with the
use of this method often correspond to certain events in the video (e.g., hands
clapping, water splash, etc.). In order to make it possible the Harris interest
point detector, which is designed to detect corners in images, is extended to
the 3D space by incorporating the time dimension. After the interest points are
detected, their subsequent representation is made using either the HOG descriptor
or the histogram of optical flow.

2.2.3 Feature aggregation
The number of local features that can be extracted from a given image may vary
greatly depending on the content of that image, such as the number of corners,
type of textures, etc. For very detailed images this may results in a enormous
amount of features that take a great amount of time to compute and apply. This
issue becomes even more pronounced when dealing with videos, to the point of
not being practically usable. To address this problem, aggregation of features can
be performed, which reduces the size of the descriptor and makes it more global.
Two of the most popular approaches to feature aggregation are Bag of Visual
Words and Fisher Kernel. Also, the VLAD algorithm is presented as well as its
extension, the VLAT algorithm, as an example of more recent developments in
the field.

Bag of Visual Words

The Bag of Visual Words (BoVW) method was introduced in [SZ03a] and was
inspired by the bag of words technique [Har54] used to create descriptors of
text documents based on frequency of every word appearing in that document.
The BoVW is probably the most widely used aggregation approach. In essence,
this method tries to represent an image by taking into account the frequency of
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appearance of each element (e.g. a local descriptor) present in that image.
After the extraction of local descriptors is complete, the generation of a vi-

sual dictionary takes place. The most common approach involves the use of the
k-means clustering algorithm, which is applied on all the local descriptors gen-
erated from a given set of images or video. Each resulting centroid is then used
as a visual word, i.e. is added to the visual dictionary. To generate the BoVW
representation for an image each local descriptor of that image is assigned to the
closest visual word (based on the shortest distance between the local descriptor
and the centorids). The final representation is created in a form of a histogram
of the frequency of visual words present in the image. This more global represen-
tation of an image is more robust to changes in perspective and deformations. It
can also handle partial occlusions.

Fisher Kernel

A potential alternative to the BoVW approach is the Fisher Kernel method. Its
use as a way to aggregate features was first proposed in [PD07]. Here, the Gaus-
sian Mixture Model is used to approximate the distribution of the local features
(or visual words) extracted from a given image to create the visual vocabular-
ies. Afterwards, the Fisher Kernels are applied to these vocabularies, which in
turn provides a natural similarity measure which can be used with a discrimina-
tive classifiers. This approach to feature aggregation seems to extend the BoVW
method by not only including the frequency of occurrence of each local descriptor,
but also takes into account their distribution.

VLAD

Vectors of Locally Aggregated Descriptors (VLAD) [JDSP10] is an aggregation
method reminiscent of the previously discussed Fisher Kernel approach and can
be considered as its simplification. Similarly, the local descriptors can be grouped
together using the Gaussian Mixture Model or K-means clustering to generate
the visual vocabulary. In the case of VLAD, however, the hard membership is
used, contrary to the soft one used in the Fisher Kernel method. Afterwards,
every local descriptor is assigned to the nearest visual word. The main novelty is
that the description of each visual word is made out of the accumulated difference
between each local feature assigned to that visual word and the visual word itself.
The result consists of the distribution of local features with respect to the center,
which in turn is used as the final descriptor.

VLAT

Vectors of Locally Aggregated Tensors (VLAT) [PG13] is a proposed extension
of the VLAD descriptor, which involves the use of the aggregation of the ten-
sor product of local descriptors. After the set of visual words is calculated by
using the K-means clustering algorithm, each visual word is described by a sig-
nature over local descriptors that are closest to that visual word. The signature
is composed of:
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• the difference between each local descriptor and the visual word (the same
as in VLAD),

• the sum of self tensor product of descriptors belonging to a given visual
word.

The signature is created by the concatenation of these two elements. For the
final image descriptor a vector is created, which includes the flattened signatures
for each visual word in the image.

Compact codes

One of the major obstacles when dealing with visual descriptors is speed. As
a lot of datasets contain tens of millions of images and each image needs to be
represented by a complex descriptor, often enough tasks like image retrieval may
be prohibitively expensive. One of the potential solutions is to have a more
compact representation of an image, usually as a final step after the feature
aggregation (using one of the methods mentioned above) is done.

In [JPD+12] a coding method is proposed, which goal is to encode the image
descriptor so that its representation consists of a specified number of bits and
a nearest neighbor of a given non-encoded query can be efficiently found in the
database of coded image descriptors. To achieve this, two steps have to be ap-
plied and optimized jointly. First is a proper dimensionality reduction (such as
principal component analysis), which is followed by a quantization step that is
used for indexing the vectors. To address the latter step, a variant of approxi-
mate nearest neighbor search method was used, namely the asymmetric distance
computation.

2.3 Classical classification methods
Because of their use throughout this work, some of the classical classification
algorithms are shortly introduced in this section. A very general description is
made here, while more specific information (such as particular parameter values
and so on) are provided in the relevant chapters.

k-NN

The k Nearest Neighbors algorithm is one of the most well known and frequently
used classification algorithm. This is due to its simplicity, intuitiveness and a
small amount of parameters that need to be tuned [CH67]. An additional advan-
tage is that it does not require a model to be learned in order to make predictions,
but rather the class of each new unidentified instance is decided based on the la-
bels of its immediate k neighbors. The decision is usually made by voting, often
weighted based on the distance from the instance.

There are several potential disadvantages of this approach (at least in the
case of the standard implementation), which often depend on the dataset at
hand. When dealing with bigger datasets (in terms of the number of features
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and instances), the prediction stage can be both time and memory consuming,
due to the need to store every training sample in memory and the calculation of
the distance for each of those samples. Also, the performance of the algorithm
can be reduced when presented with noisy features. Often, feature selection or
reduction is required to obtain satisfying results [WA95]. Finally, the overall
accuracy greatly depends on the value of k and the distance measure that is
used, which can be problematic.

SVM

The Support Vector Machine (SVM) algorithm was first presented in [CV95] and
it is one of the most popular classifiers, frequently used in many classification
tasks. The main idea is that, given a two class classification problem, the SVM
algorithm finds the optimal hyperplane that separates the data points belonging
to those two classes in such a way that the gap (or margin) between them is as
wide as possible. Figure 2.5 gives an example of a hyperplane H dividing a 2D
space; the margin (dotted lines) is also visible.

Figure 2.5: A linear separation of two classes in a 2D space produced by the SVM
algorithm. Points lying on the margin (dotted lines) are the support vectors.

However, real life data is usually not linearly separable. In order to deal with
this problem, the SVM algorithm can perform a mapping to a higher dimensional
space where the data may be separable. This can be achieved with the use of the
kernel trick described in [SS02], which bypasses the requirement of mapping the
data into the new feature space and instead computes only the inner product of
two data points in that feature space.

The basic version of the SVM algorithm can be defined in the following way.
When dealing with a two class problem, the training dataset of n points has the
following form : (x1, y1), ..., (xn, yn), where yi denotes the label of a given data
point with values either −1 or 1 and xi represents a vector of real values and
d dimensions. The classification hyperplane produced by the SVM can then be
defined as:

〈w,Φ(x)〉+ b = 0 (2.1)
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where Φ(·) can be considered as a mapping between Rd and a higher dimensional
Hilbert space, while 〈·, ·〉 is the dot product in that space. Also, w is the normal
vector to the hyperplane and b is the offset. Given the above, the decision function
f(x) can now be defined as follows:

f(x) = sign(〈w,Φ(x)〉+ b) (2.2)

In order to find the optimal hyperplane with the maximum margin between
2 classes, the following quadratic optimization problem needs to be solved:

minimize 1
n

n∑
i=1

ξi + λ‖w‖2 (2.3)

subject to yi(〈w,Φ(x)〉+ b) ≥ 1− ξi and ξi ≥ 0, for all i (2.4)

where λ is a parameter that defines the trade-off between the size of the margin
and that the vectors xi are lying on the proper side of the margin.

MSVM

Multi-learner SVM (MSVM) approach is an expansion of the SVM algorithm,
which makes use of under-sampling and ensemble learning approaches. It was
designed to deal with binary classification in highly imbalanced datasets and was
first presented in [SQ10]. To create an ensemble, the two class training set is
sub-sampled to create sets, which contain all of the minority class instances and
a random subset of the majority class. Afterwards, an SVM is trained on each of
the subsets. The actual proportion between minority and majority class as well
as the number of the sets is determined by setting appropriate parameters. It is
worth noting that in the case of a balanced dataset only a single SVM model is
used. The final decision is made through a fusion function over the prediction
scores from every SVM model in the ensemble. Many fusion methods are possible,
including the arithmetic mean, maximum, etc.

2.4 Fusion
The use of fusion has many potential advantages. Nowadays, a lot of data is
multimodal (for example videos) and the ability to combine information from
different sources can be very beneficial to the overall accuracy of the classification
system. Also in the case of a monomodal data, the fusion of different models
trained on the same data often leads to increased performance. In order to
enhance the classification results different fusion methods are possible. Fusion
can be applied at the descriptor level, before the classification model is trained,
namely early fusion. Late fusion consists of combining the outputs of classifiers.
Finally, kernel fusion is done during the classification step and it is performed on
the computed kernel. The rest of this section provides some more detail about
each of the fusion methods.



Fusion 27

2.4.1 Early fusion
Early fusion (or feature-level fusion) combines the descriptors before the learning
process takes place. This has the advantage of providing a single representation
of a multimodal dataset, which in turn requires only a single model to be trained.
Also, the correlation between different modalities (or descriptor types) can be
used at early stage, which in turn may be beneficial to the overall performance of
the system [AHESK10]. One of the potential difficulties is the need for a proper
format for every descriptor before fusion. Also, the concatenation of several
features may lead to very large descriptors. This may cause longer training time
and, potentially, an increased complexity of a model.

2.4.2 Late fusion
In late fusion, the final output is based on scores taken from individual models.
Each model may be trained on a different descriptor and the scores are later
fused together. In the case of multimedia documents (where different sources
of information are available such as images, audio, motion or text), each model
can be trained on a specific modality, which would be the most appropriate for it
[SWS05]. Another type of late fusion is used extensively in the classifier ensemble
algorithms where all the individual models are trained using the same modality.
For this approach to work, individual models need to be of a different type (like
in Stacking introduced in [Wol92]) or a same model type needs to have diverse
perspectives of the same data (e.g., different subset of the data like in Bagging
[Bre96] or different feature space like in Random Forest [Bre01]).

One of the main drawbacks of late fusion is the increased computational re-
quirements when compared to a single model. In most cases this can be resolved
through parallel processing (training all individual models at the same time), but
this is only an apt solution when proper hardware is available. Additionally, this
solution only applies to methods in which the training of an individual model is
not dependent on the output of the previous one (as is the case with the Boosting
algorithm [FS95]).

2.4.3 Kernel fusion
Finally, kernel fusion (being closely related to multiple kernel learning [BLJ04])
can be considered as intermediate approach in relation to the previous two de-
scribed earlier. In this case, the fusion takes place on computed kernels within
the classification step for the kernel-based methods such as SVMs. Among other
advantages, this approach enables the choice of an optimal kernel for each infor-
mation source and its descriptor.

This is by no means exhaustive; other fusion types also exist. They can be
considered as a combination or an extension of some of the above approaches
(including, for example, meta learning [VD02]).
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2.5 Deep learning

In recent years, neural networks got more and more attention from the research
community. It is mostly due to the deep neural networks that were able to achieve
outstanding performance on numerous high profile tasks. The best example is the
algorithm introduced in [KSH12], which won the ImageNet 2012 competition by
a large margin. This was followed by additional successes in many different fields
and applications ranging from face identification [TYRW14] and human action
recognition in videos [JXYY13] to language identification [LMGDP+14]. These
accomplishments happening in such a short time frame propelled them to become
a general baseline and a point of reference for a majority of tasks dealing with
signal processing.

The rise of interest in these methods can be attributed to a number of factors.
Even though most of the methods are not recent1, some recent advances have
been made which enabled the wider application of these methods. One of the
main factors was the use of graphics processing units (GPU) for faster model
training, which gave speedups ranging between 5 and 70-fold over a standard
CPU implementation depending on the model and application [RMN09]. Each
modern GPU contains hundreds (or even thousands) processing cores, which allow
for a very efficient parallelism of computation. This in turn goes well with most
neural network architectures, which can be easily parallelized (processing batches
of instances at a time, the convolution computation, etc.). The use of GPUs not
only helped to train models faster, but more importantly it made feasible the
construction of more complex and deeper architectures.

The second factor is the growing availability of bigger datasets. Especially in
the field of image recognition, the introduction of more complex and sizable sets
of annotated images opened up the possibility for use of more complex algorithms.
A prime example is the ImageNet challenge dataset [DDS+09], which provides
over 1 million labeled images of 1000 different concepts (for the whole database
the numbers are even bigger with over 14 million images and almost 22 thousand
categories). This dataset serves as the main evaluation set for most of the recently
developed convolutional neural network models (including [KSH12] and [SLJ+14]
among others).

The third element comes from the improvement in the neural network algo-
rithm itself. The introduction of the rectified linear unit (ReLU) in [GBB11]
helped made the training of deep neural networks faster. Also, before for very
deep networks it was necessary to pre-train one layer at a time [HOT06]. With
the use of ReLU this is no longer needed.

In this section a general overview of deep neural network is presented. This
includes their history. Their recent application to multimedia is also presented
in detail.

1E.g., one of the earlier works involving CNNs can be found in [LBBH98] and the first paper
on CNN trained with backpropagation here [LCDH+90].
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2.5.1 Multilayer perceptron
The artificial neural network is one of the most popular and recognized machine
learning algorithms. Its first iteration was introduced in 1958 and presented the
Perceptron [Ros58], a supervised binary classifier, which makes predictions based
on the weighted sum of its inputs, as follows:

f(x) =

 1 if
m∑
i=0

wixi + b > 0
0 otherwise

(2.5)

where w is the weight vector having the length equal to m, x is the feature or
input vector and b represents the bias.

The Perceptron is a linear classifier, which means that it is unable to classify
all of the instances correctly if they are not linearly separable. Its use is, therefore,
limited in practice as most of the real life classification problems share this char-
acteristic, especially for more sophisticated applications such as distinguishing
between two breeds of dogs. In order to deal with this problem, a more complex
model was proposed that would make use of several layers, each composed of a
number of individual perceptrons.

2.5.2 Backpropagation and gradient descent
The backpropagation algorithm was proposed in [RHW88] as a way to make
efficient supervised training of multilayer networks possible. This approach is
usually used alongside gradient descent as an optimization method. The back-
propagation is composed out of two stages: the forward pass or propagation and
the backward pass when the weights are updated. Figure 2.6 gives an example
of a multilayer perceptron, which is comprised out of four layers: input, output
and 2 hidden layers. The forward and backward passes are also denoted.

The forward pass propagates a given training vector from the input layer all
the way to the output where it is compared to the target and the loss is calculated.
Following the notation presented in Figure 2.6, the forward pass may be described
as:

zj = ∑
iεInput

wijxi zk = ∑
jεH1

wjkyj zl = ∑
kεH2

wklyk

yj = f(zj) yk = f(zk) yl = f(zl)

where xi is the initial input, z is the weighted sum of the inputs to a given neuron
(before the activation function is applied), y denotes the final output of a neuron,
f(·) is the activation function that is applied at the output of each neuron and w
corresponds to a weight between two neurons.

The backward pass is used to update the weights. The equations shown below
can be applied to calculate the backward pass using the notation introduced in
Figure 2.6.
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Figure 2.6: Forward and backward pass depicted in a neural network.
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Whether used for training of a fully connected network or a convolutional
neural network, the same backpropagation principal can be applied. The first
convolutional neural network trained with the backpropagation algorithm using
low resolution images of handwritten digits was presented in [LCDH+90].

2.5.3 Convolutional Neural Networks
One of the most popular neural network architectures is the convolutional neural
network (CNN), especially when dealing with data in a known, grid-like form,
such as images or videos. CNNs are neural network that use the convolution
operation at least once. Figure 2.7 shows an early example of such a structure.
These types of networks became more complex in recent years, both in terms of
the number of parameters and layers involved and because of the number and
variations of the basic components. However, most currently used CNNs rely on
the convolution layer that usually has the following stages (following [LKF10]):

• Convolutions

• Activation functions

• Normalization

• Pooling or subsampling
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In this section the above main building blocks of the convolution layer are
discussed in more detail, which also includes their role, main variations and recent
development in the field. At the end of this section some additional elements of
the network are briefly discussed.

Figure 2.7: An early example of a successful convolutional neural network, which
was used for handwritten digits recognition. Figure taken from [LBBH98].

Convolutions

The convolution operation is the key element of the CNN architecture. The basic
discrete form of convolution on two functions can be defined in the following way:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a) (2.6)

where x and w are two functions which are defined on integer t.
The CNN is mostly used on images or other 2-D matrices (even though 1-D

convolution for audio and 3-D convolution for video also are often used), which
means that the convolution operation can be two dimensional and be defined as
follows:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.7)

where (in the context of the convolutional network definitions) I denotes the
input (in this case a two-dimensional image or matrix), K the two-dimensional
kernel and the resulting output S the feature map.

Figure 2.8 shows an illustrative example of the convolution process when ap-
plied to two-dimensional arrays. This example shows the use of a 2 × 2 kernel
when applied to an 4 × 3 input array. Assuming that no image padding is used
(i.e. convolution is done only when the kernel is positioned totally within the
image) and that the kernel is moved by a single "pixel" after each operation, the
output presents a complete output of the 2-D convolution.

Activation functions

The activation function is one of the key elements in the neural network structure.
It is due to the nonlinear activation function that the network is able to adapt and
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Figure 2.8: A simple example of 2-D convolution. Figure taken from [GBC16].

solve nontrivial classification problems. The most widely used activation function
for neural networks is a sigmoid or a similar nonlinear function, the standard for
the multilayer perceptron. It usually takes the form of f(v) = (1 − e−v)−1 or
f(v) = tanh(v), where v = ∑m

i=0 wixi + b.
As an alternative, rectified linear unit (ReLU) was proposed in [NH10] and is

defined simply as f(x) = max(0, x). There are two main advantages of using the
ReLU function over the more traditional sigmoid. First, ReLU seems to be better
at propagating the gradient and avoiding the vanishing gradient problem, which
becomes more severe as the network gets deeper. Also, a faster supervised deep
neural network training when ReLU is used was shown in [GBB11]. An additional
point is that the unsupervised pre-training that was necessary when training deep
nets with sigmoid activation functions (which usually was applied to one layer at
a time like in [HOT06]) can now be avoided. This may be attributed to the lack
of saturation and the linear response. Second, because all negative values are set
to 0, the use of ReLU introduces a lot of sparsity, which can improve the learning
process and was shown to have a stronger theoretical foundation [SLJ+14].

However, a potential drawback is the "dying ReLU" problem [MHN13], which
is connected to the 0 output for all negative inputs. A large gradient may up-
date the weights in such a way that a neuron with ReLU may never activate
for any training data point. Because of the resulting zero gradient, this situa-
tion becomes irreversible. To address this shortcoming several alternatives were
proposed. Leaky ReLU proposed in [MHN13] introduces a small negative slope
to avoid these 0 values. The choice of the negative slope value may seem quite
arbitrary. An alternative is to choose it randomly from a predefined range as
it was proposed in [XWCL15], which introduces the Randomized Leaky ReLU
(RReLU). The visualization of the ReLU unit and its two variations can be seen
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in Figure 2.9.

Figure 2.9: Different variations of ReLU. Figure taken from [XWCL15].

Recently, some further developments and alternatives for ReLU were intro-
duced. The Parametric ReLU (PReLU) [HZRS15b] tries to eliminate the need
of setting the negative slope values by defining them as parameters that can be
learned at the training stage. Another alternative is the Exponential Linear Unit
(ELU) [CUH15] where the negative values are present, but they get saturated
contrary to PReLU and Leaky ReLU. The inclusion of negative values seems to
speed up the learning by reducing the mean unit activations (similar to batch
normalization) because of a reduced bias shift effect.

Finally, the Maxout method [GWFM+13] can be considered as an alternative
not directly related to ReLU. It consists of two learnable linear functions that can
approximate or imitate a range of possible activation functions (ReLU, absolute
value, quadratic activation, etc.). Maxout is more flexible than other functions
described here, however this comes with a higher computational cost due to the
presence of additional parameters.

A systematic and objective comparison between different activation functions
is often difficult, especially for bigger dataset due to computational costs. How-
ever, one such study addressing this issue was presented in [MSM16]. There,
the tests were made on the ImageNet dataset using a modified CaffeNet model
(similar to AlexNet, see Section 2.5.5 for details). The modifications were made
mainly to reduce the training time and include: a smaller input image (128 ×
128 pixels), the size of the fully connected layers is reduced by half, which results
in 2048 neurons per layer. Given this setup, different activation functions were
tested. The result for each method along with their respective formulas are given
in Table 2.1. More details concerning the training setup and preprocessing (which
is constant for each test) can be found in [MSM16].

Based on the results presented in Table 2.1, all the methods based and includ-
ing ReLU outperform the more standard tanh function. Surprisingly, the total
lack of a nonlinear activation function gives a satisfying results, not much worse
than the tanh function. Maxout gives the highest accuracy, but it is also the
most computationally complex method.

Normalization

Local Response Normalization is usually used as an additional step that can
help with generalization when the ReLU activation function is present, as it was
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Name Formula Score
Linear y = x 38.9
Tanh y = e2x−1

e2x+1 40.1
ReLU y = max(x, 0) 47.1
Very Leaky ReLU y = max(x, αx), α ∈ (0.1, 0.5) 46.9
RReLU y = max(x, αx), α = random(0.1, 0.5) 47.8
PReLU y = max(x, αx), α is learned 48.5
ELU y = x if x ≥ 0, else α(ex − 1) 48.8
Maxout y = max(W1x+ b1,W2x+ b2) 51.7

Table 2.1: Different popular activation functions and their score (top-1 accuracy)
obtained on the ImageNet dataset with the model and configuration presented in
[MSM16].

observed in [KSH12]. This normalization is applied after ReLU and consists of
normalizing the convolutional layer outputs across adjacent feature maps (even
though the order of the feature maps is arbitrary).

A more recent development is the introduction of the Batch Normalization
[IS15], which helps with avoiding bad network initialization. It is usually applied
after the fully connected (or convolutional) layer to each training mini-batch, but
before the activation function. It allows the use of higher learning rates, which
can speed up training considerably. By applying this normalization approach
after each layer (and not just at the very beginning as a part of the preprocessing
step) the gradual shift from the zero mean and unit variance (also known as the
internal covariate shift) in deep nets can be avoided.

Pooling or subsampling

There are two main reasons to use pooling or other forms of subsampling, like
striding. It helps to gain a level of invariance and also serves as a way to reduce the
feature map size. The pooling layer is usually applied right after the convolution.
The most popular pooling methods use either the average or the maximum value
as the output. Recently, however some additional pooling methods were proposed.
This includes the stochastic pooling [ZF13] and a pooling presented in [LGT16]
that is a sum of maximum and average response (max + average). Table 2.2
presents the formulas and accuracy scores for different pooling methods. The
experimental setup is the same as in Section 2.5.3 and more details (including
the values of different hyperparameters) can be found in [MSM16].

In that experiment the best pooling results were obtained by taking the max-
imum value or the combination of the maximum and the average value. The
alternative subsampling method, namely the stride, has a surprisingly good per-
formance, comparable to max pooling. In this case, the stride is applied during
convolution by skipping a certain number of pixels. Indeed, this approach was
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Name Formula Score
max y = maxh,wi,j=1 xi,j 47.1

average y = 1
hw

h∑
i=1

w∑
j=1

xi,j 43.5

max + average y = maxh,wi,j=1 xi,j + 1
hw

h∑
i=1

w∑
j=1

xi,j 48.3

stochastic y = xi,j with probability xi,j

h∑
i=1

w∑
j=1

xi,j

43.8

stride in convolution – 47.2

Table 2.2: Different subsampling methods and their score (top-1 accuracy) ob-
tained on the ImageNet dataset with the model and configuration presented in
[MSM16].

used in [SDBR14] where a CNN structure exclusively composed of convolutional
layers (no pooling after convolution and no fully connected layer) was presented
and can be considered as a push towards a more simplified architecture (compared
to AlexNet) while still maintaining the state-of-the-art performance.

Figure 2.10: The deep convolutional neural network architecture proposed in
[KSH12].

Other

This section presents some other elements and strategies that are often used to
enhance the overall performance or speed up convergence of a CNN.

• Dropout [SHK+14] – is a regularization technique that helps to avoid over-
fitting. It turns off random neurons and their connections during training,
which helps to prevent co-adaptation.

• Weight initialization – usually the weights and biases in a network are ini-
tialized with random values (often with Gaussian noise with zero mean and
0.01 standard deviation and bias equal to 1, as in [KSH12]). However, this
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approach was shown to be problematic when training very deep networks
[SZ14]. Some alternatives initialization schemes were proposed, which in-
clude:

– Xavier [GB10] – estimates the value of the standard deviation based
on the number of input and output channels in a layer, assuming no
non-linearity between layers.

– MSRA [HZRS15b] – extends the above method to include the ReLU
non-linearity as a valid assumption.

– LSUV [MM15] – starts with setting weights in each layer with or-
thonormal matrices and then normalizes the variance of their outputs
to be equal to 1.

2.5.4 Multi-label CNN and localization
Most CNN models are designed to give the most probable class for a given image.
In such cases, during training it is assumed that the concepts are somewhat
mutually exclusive. In order to be able to obtain multiple labels per image several
approaches were proposed. One of them is presented in [WXH+14]. Here, a
single label model is used as a shared network. The input image is divided into
subsegments containing potential concepts. Each segment is then passed through
the shared network. The outputs from all the segments are finally fused. The
structure of this approach can be seen in Figure 2.11.

Figure 2.11: The network architecture proposed in [WXH+14] for dealing with
multi-label images.

This method is very similar to a range of algorithms used for concept lo-
calization in images. There, the coordinates of a bounding box containing a
given concept are also given as output. The most prominent examples of this
type of approaches are the Region-based Convolutional Neural Network (RCNN)
[GDDM14] and its more recent improvements: Fast-RCNN presented in [Gir15]
and Faster-RCNN introduced in [RHGS15]. Figure 2.12 shows the overview of
the RCNN architecture. In it, the input image is divided into around 2000 pro-
posed sub-regions (or bounding boxes). Afterwards, each region is fed through
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the CNN to extract the features, which are then used to determine the concepts
present in the region with the help of linear SVMs.

Figure 2.12: The RCNN architecture as it was presented in [GDDM14].

One of the major setbacks of the RCNN approach is the need to generate can-
didate sub-regions from every image and then passing each one through the net-
work to generate the necessary features. When dealing with large image datasets
containing millions of images this approach can become too computationally ex-
pensive. Fast-RCNN is one of the attempts to address this problem, namely it
reduces the computation time and space that is required. Also it needs only one
stage of training. It takes as input the image and the region propositions and for
each region it outputs the concept and the refined position of the bounding box.

The Faster-RCNN is another improvement over the initial RCNN approach
and an extension of the Fast-RCNN method. Its major contribution is the in-
troduction of the Region Proposal Network, which is able to generate region
proposals while processing the image. This removes the need to generate re-
gion proposals beforehand (which often is the most time consuming step of the
approach) as was the case with both the RCNN and the Fast-RCNN methods.

2.5.5 State-of-the-art CNN architectures for vision
GoogLeNet [SLJ+14] is one of the currently leading architectures, when it comes
to CNN systems used for image classification. It was partially inspired by a more
theoretical work on sparse deep network presented in [ABGM13]. The main
conclusion in that is that, under very strict conditions, it is possible to construct
an optimal network topology in a layer by layer manner by taking the correlation
statistics of the previous layer activations and clustering neurons, which outputs
are correlated. This can only be achieved if the probability distribution of a
given dataset can be accurately represented by a large and sparse neural network.
This result seems to correspond to the Hebbian theory [Heb05] established in
neuroscience, which claims that "the neurons that fire together, wire together".
With this observation in mind, the proposed design sets out to find local clusters
of units, which would correspond to a local region in the input image. These
clusters can be more spread out, creating a need for varying filter sizes. The
result of this investigation is a structure shown in Figure 2.13, which is used
repeatedly as the building block of the final architecture.
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Figure 2.13: The Inception module – the main building block of the GoogLeNet
architecture. Figure taken from [SLJ+14].

Another very successful CNN architecture was presented in [SZ14] and it’s
popularly denoted as VGG net. This approach tries to improve the original
structure given in [KSH12] (which also can be seen in Figure 2.10) by exploring
one of the most important design aspects – its depth. The size of the convolution
filter (receptive field) was set to 3 × 3 and it was the same for every convolu-
tion layer. This significant reduction in size (compared to for example 7 × 7 in
GoogLeNet and 11 × 11 in Alex net) made it possible to add additional layers
while avoiding prohibitive training and execution times. Several different depths
are tested ranging from 11 to 19 weight layers (not including pooling layers).
Each architecture has 5 max pooling layers. The initial convolution layer has 64
outputs (channels) and this is doubled after every pooling layer up to the final
512.

The Residual Network (ResNet), introduced in [HZRS15a], is one of the most
recent advances when it comes to convolutional neural networks. This approach
tries to address one of the major issues of CNNs, namely the difficulty of training
deeper architectures. It seems that deeper networks suffer not only from the van-
ishing or exploding gradients (a problem that was already addressed to a degree,
see Section 2.5.3), but also from a degradation problem. As the network gets
deeper, the accuracy is getting saturated and can even degrade. Additionally,
this situation is not related to overfitting. Therefore, the problem may be con-
nected to the way the networks are optimized, i.e. the approach that successfully
trains shallow networks may not be the best at training deeper ones. The ResNet
algorithm tries to address this problem by using "shortcut" connections (as can
be seen in Figure 2.14). These connections usually skip several layers. In this
case, their output is added to the output of the stacked layers. The intuition be-
hind this approach is that it is easier to optimize just the residual mapping rather
than the complete desired mapping. This approach is inspired by certain classical
image descriptors that encode residual vectors in reference to a dictionary (for
example VLAD, see Section 2.2.2).

The ResNet approach enables successful training of networks with unprece-
dented number of layers with a substantial increase in accuracy. Several versions
of the ResNet architecture were presented, ranging from 50 to 152 parameter
layers.

All of the above architectures were trained and tested on the ImageNet dataset,



Deep learning 39

Figure 2.14: The residual learning module. Figure taken from [HZRS15a].

which established itself as one of the most representative and comprehensive
datasets available in computer vision. Table 2.3 presents the results of the recent
CNN architectures obtained on that dataset. The final and official score in the
challenge was the top-5 error rate, which also corresponds to the final column
in the table and was generated on the test set. All final CNN submissions were
based on ensembles. The top-1 for single and ensemble models (as well as top-5
for single) was obtained on the validation set and these particular results are not
available in every case.

method single ensemble
top1 top5 top1 top52

AlexNet 39.0 16.6 36.7 15.3
VGG 25.5 8.0 24.7 7.3
GoogLeNet - 7.9 - 6.7
ResNet 19.4 4.5 - 3.6

Table 2.3: Error rates (in %) obtained on ImageNet by state-of-the-art CNN
methods.

The results presented in the table show a rapid development of the CNN
architectures for vision in recent years. The error rate was reduced by a factor of
two in just two years, i.e. AlexNet (2012) and GoogLeNet (2014). And another
significant drop was achieved during the ILSVRC’15 challenge with ResNet.

2.5.6 CNN as a feature extractor
Aside from the principal use of CNNs as classifiers, which also requires training,
they can also be considered as a source of robust features, in the same manner as
the engineered feature algorithms described in Section 2.2. One study presented

2Results based on the test set, contrary to all other cases, which were obtained on the
validation set.
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in [RASC14a] uses a CNN (trained on the ImageNet dataset) called OverFeat
[SEZ+13], which is similar in its structure to AlexNet, as a feature extractor for
deep features. The features are extracted from the first fully connected layer
in that network. After a L2 normalization, the features are used together with
a linear SVM classifier to produce the final results. A second setup was also
proposed. In it some additional augmentation is made by adding cropped and
rotated images as well as applying the component-wise power transform.

The overview of the results can be seen in Figure 2.15. The non-CNN state-of-
the-art methods (this includes some well known methods such as VLAD descrip-
tors and fusion of other HOG, SIFT, etc.) are compared to the two approaches
described above and to a specialized CNN-based solution for a given task (when
applicable). These approaches were used on a varied range of different vision-
based tasks, some significantly different from the initial training set. All of which
are far smaller than the ImageNet dataset and have between around 1.5 to 6.5
thousand images. Despite this, the results indicate that even the simplest CNN
approach is comparable and often outperforms the classical state-of-the-art. The
augmented version is (with one exception) consistently better than the classical
methods.

Figure 2.15: The accuracy results comparing the CNN-based features with the
non-CNN state-of-the-art on a range of classification and retrieval problems. The
CNN augmentation is based on such simple techniques like rotating and crop-
ping. Specialized CNN refers to other work applying CNN-based methods to
that particular dataset. Figure taken from [RASC14a].

These results show the strength and robustness of the CNN-based features
when dealing with diverse vision tasks. Based on that, a question arises about
how general and transferable such features can be. A work presented in [YCBL14]
tries to give some insight into that issue. There, an approach is proposed to tell to
what degree the features extracted from a given layer are general or task specific.
Lower layers usually learn more general features that can be successfully applied
to a wide range of tasks. Figure 2.16 gives an example of the features that
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are learned in the first two layers of a convolutional network along with images
that give the highest response. The first layer features tend to resemble Gabor
filters (edge detectors) and color blobs. Based on that, the second layer learns
to recognize corners and more complex shapes. Each subsequent convolutional
layer in the network detects more and more advanced and specific features.

Figure 2.16: Feature visualization from the first two layers of a network. Images
taken from [ZF14].

Figure 2.17 presents the main findings from that study. The point at layer 0
is the baseline CNN network, which was trained to classify 500 random classes
from the ImageNet dataset. One of the major insights is the existence of co-
adaptation, which indicates that there are certain interactions and adaptations
between neighboring layers that are lost if the layers are trained separately (as can
be seen in curve 2). This co-adaptation seems to be most visible between higher
convolutional layers (layers 4 and 5) and between the last convolutional layer and
the first fully connected one (layers 5 and 6). Another major observation is the
performance drop attributed to the specificity of features from a given layer. It
seems that transferring the first 2 layers (and then training the rest) does not
affect performance. However, as more layers are transferred (and less trained)
the accuracy drops considerably.

In this thesis, some additional experiments are done to give further insight into
the transferability of pretrained layers and fine tuning (especially from ImageNet
to TRECVid). Additionally, based on the performance of the off-the-shelf CNN
models compared to the more classical state-of-the-art, different types of fusion
between the two are explored.

2.5.7 CNN application to audio
The application of the CNN algorithm is not limited to images or video. Its
growing use can also be observed in speech and audio. In that case there are two
main approach that are available. Either using a 1D convolution on a raw audio
signal or a 2D convolution on a 2 dimensional representation of sound, namely a
spectrogram, which represents the audio in terms of time and frequency.
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Figure 2.17: The main findings of the study [YCBL14].

In [PC+15] a speech recognition system is presented that uses raw speech
as input, which is then processed by a 1D convolutional layer. A lot of neural
networks (usually fully connected) used in speech recognition take as input a well
established set of features such as Mel-frequency cepstral coefficients (MFCC).
Here, however, the CNN is tasked to learn appropriate features from the raw
signal alone.

The use of CNN with spectrograms was also explored previously: in [DAHY13]
a system dealing with phonetic confusion is presented, however convolution is
done only along the frequency axis. In order to address the problem of phonetic
confusion in speech, a new pooling strategy is proposed where different pooling
sizes are used depending on the trade-off between invariance to frequency shift
and the phonetic confusion.

An interesting approach was presented in [LPLN09] where an unsupervised ap-
proach to feature learning is proposed. The algorithm is based on a convolutional
deep belief network, which is applied to a set of unlabeled audio data, including
speech and music. The extracted features seem to outperform the MFCC base-
line on a set of speech recognition related tasks such as speaker identification and
gender classification. This is also one of the first studies that applies deep learn-
ing in this context. Apart from that, Recurrent Neural Networks (RNN) can also
be successfully used with speech spectrograms, as it is suggested in [HCC+14] for
automatic speech recognition.

Some attempts were also made to use CNNs in noisy conditions. A recent
study [MLSF14] uses 1D convolutions on filter banks. Surrounding frames are
taken into account and serve as context to reduce noise impact as can be seen
in Figure 2.18 where the convolution operation in this network is shown. In
this study the CNN is used as an alternative to the more traditional universal
background model. The output of the CNN is used as a basis to create i-vector
models.

A study presented in [AV] investigate the problem of emotion recognition
by combination of audio and visual features. Spectrograms were used as input
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Figure 2.18: A 1D convolution taking into account the current and neighboring
frames (as context) applied to a speech signal. Figure taken from [MLSF14].

and 1D (convolution only over the time axis) and 2D (both time and frequency)
CNNs were evaluated. The final decision, about which emotion is present in a
video fragment, is made using a LSTM model.

Speaker and language recognition using neural networks was also presented
in [RRD15a]. Most deep neural network approaches used in this domain concen-
trate on the use of DNN as the source of bottleneck features. Alternatively, the
DNN posteriors can replace the GMM model and serve as the base for i-vector
extraction. Also, this paper is one of the few that explores how transferable are
the DNN models trained on a given task and applied to another (for example:
DNN trained on automatic speech recognition and used for language and speaker
recognition).

In [GHT+14], CNNs were used for the language identification task. This work
presents a good example of the use of the CNN combined with a fully connected
deep neural net as a source of bottleneck features. This is an alternative to the
work presented previously where only a fully connected network is used to extract
these features. These features are then used to extract i-vector models, which are
projected with a MLP and afterwards serve as a training set for language specific
SVMs with polynomial kernels.

An approach which tries to identify disguised voices is shown in [UW15]. A
CNN is trained using spectrograms in order to identify people imitating different
voices. This study considered a relatively small number of speakers with the
explicit goal of identifying fraudulent behavior. It also uses one of the well known
CNN architectures (AlexNet [KSH12]) to achieve this goal.

Chapter 5 presents an approach to speaker recognition based on a CNN and
spectrograms. Contrary to the studies presented in this section, this approach
uses the CNN both as a source of features and a classifier. Additionally, a set of
fusion methods with the non-DNN based state-of-the-art approaches for speaker
identification is tested.
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2.5.8 Recurrent neural networks

So far, the contents of this chapter concentrated on feedforward neural networks,
i.e. architectures where information travels in a single direction: from the in-
put nodes, through the hidden layers and up to the output layer. After the
resurgence of the CNN architecture, the Recurrent Neural Networks (RNN) also
became more popular and more widely used. Their structure enables the forma-
tion of direct cycles and allows for dynamic and temporal behavior. This is done
by taking into account past inputs (or the resulting internal states). Although
the RNN-based methods are usually used in such domains as machine translation
and language modeling, more recent advances also show great potential in com-
puter vision, which includes video classification [DAHG+15], image captioning
[VTBE15] and more.

One of the most interesting RNN architectures is the Long Short-Term Mem-
ory (LSTM) [HS97]. Its detailed structure can be seen in Figure 2.19. Compared
to the standard recurrent neural network, the LSTM is able to classify and pre-
dict time series with very long and unspecified periods between events. Due to
the presence of gates, the LSTM is able to remember certain input values over
the course of many time steps and forget them if needed.

Figure 2.19: The structure of a simple recurrent network compared to the LSTM
block. Image taken from [GSK+15].

The RNNs can be trained using gradient descent, in a similar manner as
the standard feedforward networks. In order to be able to train on sequences
of inputs, the backpropagation through time [Moz89] approach is used, which
unfolds the network in time so that the input and hidden layers are replicated for
every element of the input sequence. The standard RNN algorithm often suffers
from the vanishing gradient problem if time periods between events are too big.
The LSTM algorithm, on the other hand, can avoid this issue through the use of
the memory block and appropriate gates.
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2.6 Active learning
Active learning [Set09] is a subsection of machine learning and represents a fam-
ily of algorithms that can help train a machine learning model more efficiently.
The main assumption is that a lot of the data that could be potentially used
for training is redundant. Therefore, it is possible to train a model with a com-
parative or even better performance, but with the use of a significantly smaller
amount of data. This can be done by allowing the learning algorithm to choose
the data, which then will be used for its training. Another advantage and appli-
cation is when most of the data comes initially unlabeled and manual annotation
is required. Nowadays for most applications, there is an easy access to abundant
amounts of data. The Internet and the easy and cheap access to multimedia
recording devices such as cameras can serve as primary examples. The main
drawback is that most (if not all) of the data is not initially annotated, which
in turn makes its use for model training somewhat limited. Most of the time, in
order to be able to train accurate models, manual human annotation is required.
However, this is usually very expensive and time consuming. An active learning
algorithm can help to choose which data samples are the most useful.

Figure 2.20: Different scenarios involving active learning. Figure taken from
[Set09].

2.6.1 Active learning scenarios
Several scenarios involving active learning are usually considered. They usually
take into account different ways the data is presented to the learner. The three
main ones are depicted in Figure 2.20. They assume that all the queries consist
of unlabeled data, which is going to be labeled by the oracle once selected.

• Membership query synthesis was first introduced in [Ang88]. In this
scenario, the learner asks for the correct annotation of the unlabeled in-
stance for the input space, which in this case is not taken from an underly-
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ing natural distribution, but are generated by the learner itself. The main
drawback of this approach is that the newly generated instances may lack
any clear meaning and therefore be difficult to handle by the human anno-
tators. This issues was first pointed out in [BL92], where this approach was
applied to train a neural network to recognize handwritten characters.

• Stream-based selective sampling serves as an alternative to the arti-
ficially generated queries. This approach is based on selective sampling
[ACL90], which expects that providing unlabeled instances for annotation
is not expensive or even free. In that case, the instance is taken from the
distribution and then the learner can decide if this example needs to be
annotated or not. Another feature is that this approach goes through the
data sequentially and the decision is made for each single query separately.
This approach also assumes that the samples come from the underlining
distribution, which mitigates the problem of generated samples present in
the membership query synthesis scenario. Within this framework, different
techniques may be used for the selection process. Any given sample can be
evaluated based on how much new information it provides to the learner
[DE95]. It may also belong to a region of the sample space that is ambigu-
ous and problematic to the learner [CAL94] or a region that it still knows
not enough about [Mit82].

• Pool-based sampling is similar to the previous scenario. The main dif-
ference here is that a larger pool of unlabeled data is available from the
start and usually it is assumed that its size remains constant. Queries are
selected from this pool based on some measure of potential informativeness,
which is applied to all instances in the data. This scenario is by far the most
common in the literature. It was introduced in [LG94].

2.6.2 Query strategies
Throughout the years there was a growing number of different active learning
strategies to select the best samples for annotation. They depend on the criteria,
application, the data that needs to be annotated and so on. In this section an
overview of the main methods is presented as well as some more recent develop-
ments in the field.

Uncertainty sampling was first introduced in [LG94] and is one of the most
popular approaches used to this day. The idea is to label the instances that are
the least certain according to the active learner. One of the main advantages is the
ease of implementation in the case of probabilistic learners. When dealing with
a binary classification problem, choosing the instances with posterior probability
closest to 0.5 is the most preferable under this query strategy.

When dealing with a classification problem with more than 2 classes there are
three main variants of uncertainty sampling:

1. Least confident – takes into account only the class with the highest posterior
probability and chooses the instance with the lowest value. It can be defined
as:
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x∗LC = argmax
x

1− Pθ(ŷ|x), (2.8)

where ŷ = argmax
y

Pθ(y|x) is the class with the highest posterior probability
according the the learner θ. The drawback of this approach is that it only
takes into account the most likely label while ignoring all the rest.

2. Margin sampling – an alternative approach proposed in [SDW01], where
the probability of the two most likely classes is used. It is defined in the
following way:

x∗M = argmax
x

Pθ(ŷ1|x)− Pθ(ŷ2|x), (2.9)

where ŷ1 and ŷ2 are the two classes with the highest posterior probability.
The smaller the margin, the more uncertain a given instance is.

3. Entropy – this method uses the entropy as defined in [Sha01] to determine
the most uncertain sample:

x∗E = argmax
x
−

m∑
i=1

Pθ(yi|x) logPθ(yi|x), (2.10)

where m is the total number of classes. Entropy (based on its information
theory definition) is the expected value of the information contained in a
given data point. In general, if one instance has the posterior probability
lower than other, it becomes more informative.

Another classical and extensively used approach is Query-by-committee
(QBC) [SOS92]. This algorithm assumes that there is a group of models (i.e.
classifiers or learners), which are all trained on the available labeled set of data
L. At the same time, they should output different hypotheses.A level of diversity
should be present, in other words for every input not all models should produce
the same output. Each model in such a committee would be voting on how to
label a given input. The level of disagreement for such an instance can be used
to determine a potential candidate for annotation. The most informative queries
are the ones that produce the most disagreement.

Numerous ways for introducing diversity in the committee of classifiers were
proposed throughout the years. A significant portion of them are based on the
research done with classifier ensembles, and so boosting [FS+96] and bagging
[Bre96] algorithms were used to create query-by-boosting and query-by-bagging
(both introduced in [Mam98]), respectively. Also, a solution based on the par-
tition of the feature space was introduced in [MMK00] and resembles other well
known classifier ensemble methods such as Random Forest [Bre01]. There are
many ways to measure the level of disagreement between classifiers in a given
committee. An example of such a measure is vote entropy (introduced in [DE95]),
which can be calculated as follows:
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xV E = argmax
x
−

∑
i

V (yi)
C

log V (yi
C

, (2.11)

where yi represents all possible potential classes/labels, V (yi) is the number
of votes for a given label and C is the size of the committee.

Relevance sampling [TC01] is another popular approach to active learning.
This approach was extensively used for image retrieval. The main goal of this
approach is to effectively produce accurate classifiers. This is done by minimizing
the amount of labeled queries by selecting those that should be most beneficial
for the performance of the classifier. To that end, the relevance of a query is
taken into account. This approach relies on the properties of the support vector
machines (SVM) algorithm. Intuitively speaking, the SVM is a hyperplane that
separates the training data (in the simplest case with only two classes) by a
maximal margin. The instances from the training set that are closest to that
hyperplane are called support vectors. In the simplest form of the relevance
sampling, the queries (or unlabeled instances) that are closest to the hyperplane,
i.e. potential support vectors, are chosen for annotation.

An extension of the approaches presented above was introduced in [SQ12a].
Its main application is with highly imbalanced datasets, which frequently occur
when dealing with real-life data and applications such as multimedia indexing.
An imbalanced dataset is characterized by the presence of a significantly over-
represented majority class and a small minority class (in the case of the binary
classification). The minority class usually contains instances that are more in-
teresting to the potential user (for example a set of patients with a rare disease
as opposed to the set of healthy people). Image retrieval is another application
where taking dataset imbalance into account is important. Here, the user is usu-
ally interested in just a very small and specific subset of images chosen from
among thousands of other categories.

This method involves the use of multiple classifiers (SVMs as in the case of
relevance sampling). For every individual classifier, it randomly undersamples
the majority class so it has more or less the same sample size as the minority
class. This new subset is afterwards used for training. It is worth noting that
each SVM differs with respect to the samples from the majority class, while the
minority class is the same for each one. After the training, the output of each
classifier is fused to produce the final prediction. This approach works well with
both uncertainty and relevance active learning selection strategies.

2.6.3 Active learning and clustering
In order to increase the overall performance, many active learning algorithms try
to take into account the prior data distribution. This usually involves the use of
different clustering algorithms that are integrated into the active learning cycle.
The clustering is either used at the very beginning as initialization or the cluster
structure is constantly adjusted throughout the active learning process.

A good example of the above can be found in [NS04] where an active learning
approach is presented that integrates clustering, which helps to select the most
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representative samples and to avoid repeated labeling of the samples in the same
cluster. The method starts with the initial K -medoid clustering algorithm. This
is followed by the estimation of the class label model, which helps to determine
the cluster representatives. Afterwards, the selection step takes place where the
samples close to the classification boundary and cluster representative are chosen.
After the labeling of those data samples takes place, a adjustment of the clustering
is made as well as the retraining of the classification algorithm. The whole process
repeats for a predefined number of steps or until a certain criterion (like a low
enough error on the test set) is met.

Another example connecting active learning with clustering was presented in
[VLBM10]. Here, a semi-supervised clustering K -means algorithm is proposed
with active learning, which is used to select and label cluster seed to enhance
clustering quality. For the seed selection, a min-max approach is proposed, which
tries to choose samples that are furthest from the already labeled samples. This
ensures a good coverage of labels throughout the dataset.

2.6.4 Unsupervised active learning
So far the active learning approaches were based around a classifier (or a classifier
with clustering as it was described in the previous section), which would be
updated after every iteration. However, there are also methods which do not rely
on the presence of a trainable model.

In [DH08] hierarchical sampling for active learning is presented. The overview
of the algorithm can be found in Figure 2.21. The main idea is to start with the
initial clustering and, by labeling subsequent data points from these clusters,
iteratively refine the cluster structure by querying the most impure clusters. The
clusters were all labels belong to the same class are kept, while impure clusters
are divided to minimize the impurity (as it is shown in Figure 2.21(d)).

Figure 2.21: The hierarchical sampling algorithm. Figure taken from [Set12].

The use of unsupervised approaches can also help with the detection of anoma-
lies or rare classes in the data as it was shown in [PM04]. The algorithm tries
to identify useful anomalies (for example: data points belonging to a very rare
class) and at the same time disregard any outliers or noisy data points. This is
done using a Gaussian mixture model that is refined by consecutive annotations
provided by the human expert.
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2.6.5 Label propagation
In recent years, a growing number of work was published that involves the acquisi-
tion of supplementary annotation without the involvement of a human annotator.
Most of these approaches are based on some sort of label propagation and are
heavily dependent on the data, its source and any additional information that
can be extracted (such as speech transcription or a script of a TV program).
Contrary to the more classical active learning approaches (e.g. presented in the
previous section), most of the time there is no learner and the labeling is based
on proximity or overlap rather than probability from a learned model.

In [ESZ09] a method for automatic naming of characters in TV shows is
presented. It uses different sources of information to automatically generate a
time stamped character annotation. As the main source of data, faces appearing
in the video are used under the form of face tracks, which can be defined as
appearances of an individual character across frames of the video, usually confined
to a given shot. In order to get the necessary label to annotate the faces, both
the script of a given show is used and the available subtitles. While in a script
the dialog is divided among the characters, in the subtitles a given line of text
contains a time stamp. By aligning both sources the identity of a character can
be matched to its exact appearance on screen.

Another example of label propagation can be found in [BBE+04]. Here, the
experiments are done on a collection of news pictures and associated captions
taken from the online news service Yahoo News. The names (potential labels)
are extracted from the text that comes with the image and not the image itself.
The images serve as the basis for face extraction. Figure 2.22 gives the example
of the data source for this study. The aim of the paper is to produce good quality
clustering when only having access to inaccurate or ambiguous labels. Kernel
principal components analysis and linear discriminant analysis are applied to
reduce the dimensionality and to project the data into a more discriminative
space, respectively. Afterwards, k-means is used to assign ambiguous face to one
of the labels. The faces that are far from the mean are removed and the new
discriminant coordinates are calculated. Finally, the clusters are merged based
on the similarity between faces.

Figure 2.22: An example of a news image and associated caption used in
[BBE+04].

The images are preprocessed by using the kernel principal components analysis
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and linear discriminant analysis to reduce the dimensionality of the data and
project it to a more appropriate space for this task.

Another approach to label propagation was presented in [PMT10]. This work
proposes a method for naming faces in videos based on labeled and unlabeled
examples. In order to do this an iterative label propagation approach is used on
a graph of faces and face-name pairs. In this study the labels are generated from
video transcript. The faces are detected using the popular Viola-Jones approach
[VJS05]. The label propagation is done using random walk process approach.
To improve the performance, an anchor detection element is applied following an
approach introduced in [DMP+06].

An approach which also tries to recognize faces based on a set of weak labels
is presented in [KWRB11]. As in the study described above, the main source
of labels is either the transcript or subtitles (more easily available when dealing
with scripted TV series). As the proposed solution a semi-supervised multiple
instance learning algorithm is introduced. This enables the use of priors as labels
for the unlabeled instances.

A label propagation technique for naming speakers in TV broadcast videos
was presented in [PBL+12]. In this work three different propagation approaches
are proposed, as shown in Figure 2.23. Based on the notation in that figure
the following can be defined: a set of speech tracks T = {t1, . . . , tK} of size
K, a set of speaker clusters S = {s1, . . . , sL} of size L and a set of M names
N = {n1, . . . , nM}.

Figure 2.23: The name propagation methods proposed in [PBL+12].

The first method uses a one-to-one mapping between speaker clusters and the
names and tries to maximize the co-occurrence (in terms of duration) between
the two. It is based on the assumption that speaker diarization results in perfect
speaker clustering, i.e. every speech track is correctly assigned to a cluster. The
second approach (method 2) assumes that when a name is present on the screen,
it usually belongs to the person currently speaking. After labeling every speech
track which has a co-occurring name, the rest is treated with the first method.
Method 3 takes into account that the output of speaker diarization is not perfect,
i.e. the clusters may be over-segmented with more than one belonging to the same
speaker. The approach in method 2 is applied first. Afterwards, the remaining
speech tracks are labeled cluster-wise, which allows for naming several speaker
clusters.
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2.6.6 Active learning for multimedia
Throughout the years, AL saw more and more applications to domains such
as multimedia and especially videos. This is because video annotation can be
prohibitively expensive when applying the same techniques used when labeling
single images.

In [SQ12a] an active learning approach for multimedia annotation is proposed.
In this work the annotation takes place on the key frame level, i.e. a single image
is extracted from every shot. In the context of this work, active learning is used
here as a means to efficiently create an automatic indexing system, rather than to
annotate a corpus. The experiments are conducted on the TRECVid corpus (see
Section 2.8.3 for details) where each image can have multiple concepts at a time.
Also, the dataset is heavily imbalanced with most of the concepts appearing in less
than 1 % of the corpus. Several different classifiers were tested including SVM and
MSVM (both described in detail in Section 2.3) as well as 4 different descriptors
(including color histograms and SIFT BoVW). Finally, 4 active learning selection
strategies were selected, which includes random sampling, uncertainty sampling
and relevance sampling (the last two are described in detail in Section 2.6.2).

The work presented in [AQ08a] describes the collaborative annotation system
that was used to generate the annotations for TRECVid 2007 dataset. Contrary
to the work presented above, this approach uses active learning to reduce the
labeling effort and extract the most useful information from the limited amount
of annotation. Three different selection strategies were tested: relevance, un-
certainty and random sampling. In order to make the results comparable, a
simulated active learning scenario is used where a previously annotated dataset
has its labels hidden from the active learning algorithm. The label for a partic-
ular instance is revealed once the algorithm selects it. This is the most common
approach when evaluating active learning strategies and it is used for near to all
experiments in Chapter 3.

2.6.7 Practical application challenges
Even though active learning was for years and still remains an active area of
research, the number of published papers where it is used in practice is still
somewhat limited. One study [Set11] tries to investigate and highlight the addi-
tional difficulties and considerations that arise when active learning is applied to
real world applications. Six such challenges are mentioned and discussed:

1. Querying in batches as opposed to single queries – most active learning ap-
proaches usually select one query at the time. It’s not always feasible to do
it in practice, however. If a model needs to be retrained or updated after
every single new annotation and at the same time is quite complex (e.g.,
ensemble algorithms, other state-of-the-art methods), then there is a risk
that the annotator would be required to idly wait. By presenting several
queries to be labeled at once this issue can be avoided or at least minimized.
However, this pool-based active learning requires some additional consider-
ations like making sure that the set to be annotated is diverse enough (so
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that almost identical instances are not chosen) among others.

2. The presence of noisy oracles – one of the assumptions, especially when
dealing with a simulated active learning scenario, is that the labels received
from the annotators are always correct and noiseless. The issues like fa-
tigue or carelessness are usually not taken into account. A common source
of errors is the involvement of non-experts (local volunteers or through
Internet-based crowd sourcing), which requires a cleaning or a verification
mechanism to correct potential label mistakes.

3. Varying or unknown labeling costs – some concepts may be harder or take
longer to annotate. Others can have a varying cost that is hard to predict.
Because of that, the reduction of the total number of annotations required
(one of the main goals of active learning) may not lead to a reduction
in time, and therefore in overall cost. The labeling cost may also vary
depending on the annotator: people with domain knowledge versus laymen
may take a different amount of time to make a decision. In some cases when
the labeling cost is completely ignored, a given active learning strategy may
not perform significantly better than random selection [ANR09].

4. Alternative query types – the most common query type is the member-
ship query where one must decide which class a given instance belongs to.
However, other query types exist such as multiple-instance active learning
[SCR08] or feature querying. In the case of the latter (first introduced in
[RMJ06]), features are proposed to the annotators who in turn can judge
their usefulness.

5. Multi-task active learning – this is the case when a instance can be labeled
differently for multiple tasks. When selecting such labels, a measure of
informativeness across tasks should be considered. This could lead to trade-
offs between good performance for a particular task versus all the possible
tasks.

6. Shifting model classes – most active learning algorithms rely on a learner
to propose new instances for annotation. When a learner model is changed
(for example from a SVM to a neural network) will the already annotated
training data be appropriate for the new model (i.e. give better results than
the training data generated by random sampling)?

In this thesis the active learning framework was tested in practice. Therefore,
some of the above challenges were investigated. For the remaining part of this
section a short discussion is presented on how the above points relate to the work
done in this thesis. For the first point, the computational constraint (of having an
online annotation system) was addressed by introducing a batch of queries to the
annotator. Also, many approaches were tested to increase the diversity of each
batch, including: taking instances from different videos, querying the unlabeled
clusters or outliers and so on.
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The presence of noise in labels (point 2) was also considered. In this work
two sources of noise can be identified: the annotators and the label propagation.
A suggested approach would be to use one source of labels as verification for the
other. Additionally, each instance should be labeled twice (three times if there is
a conflict). Due to the nature of the annotations (identifying people in videos) the
cost of annotation was assumed to be constant across all classes. To some extent
this is because of the heavy imbalance between concepts (identities) with some
containing only one instance, which makes it complicated to have an accurate
cost estimation.

The multimodal corpus used in this thesis allows for multi-task active learning.
On the one hand, the same annotation can be used for many different tasks, e.g.
face recognition or speaker identification (often a speaking person is also visible).
On the other hand, because the people in the video need to be named, some
additional information can also be acquired, such as gender or role in the video
(guest, anchor, etc.).

2.7 Active and deep learning
Very recently there has been some research emerging, which tries to combine both
active and deep learning. In [YZS+15] an approach is proposed, which uses both
a deep neural network and a SVM classifier. During the active learning session
(this cycle is shown in Figure 2.24), which involves participation of the human
annotators, only the SVM model is updated and the CNN is used as a feature
extractor. The use of a CNN model directly in such context remains problematic
due to the retraining time.

After the image annotations are finished, the CNN is retrained with the com-
bination of both the initial data and the newly labeled one. Not surprisingly,
the newly obtained model has better performance than the one trained on the
original data.

2.8 Datasets
In this section, a short overview of the principal datasets used in this work is
presented. The aim here is to highlight their main features, scope and differences.
Most of the datasets have some form of multimodality, which includes images,
motion, audio and even text. More details will be provided in the subsequent
chapters were the particular datasets will be actually used.

2.8.1 Pascal VOC
The Pascal Visual Object Classes (VOC) [EEVG+15a] is a dataset containing
images and their annotations. Additionally, up to 2012 an annual competition was
organized using this set. The principal tasks include classification, localization
and segmentation. The size of the dataset was not fixed and changed every
year. On its final release in 2012, the training and validation set contain 11 530
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Figure 2.24: The active learning cycle presented in [YZS+15]. (1) Some random
images are chosen for annotation. (2) They are then labeled using the proposed
interface and the Amazon Mechanical Turk service. (3) A binary SVM classifier
is trained next, using the features extracted from the deep net. (4) Finally, the
classifier is used to process the unlabeled set of images. The most ambiguous
images are chosen for annotation in the next iteration.

annotated images with 27 450 regions of interest and almost 7 000 segmentations.
All of this was divided into 20 categories, including persons, different kind of
animals, vehicles and indoor objects. The ImageNet dataset may be considered
its successor.

2.8.2 ImageNet
The ImageNet dataset [DDS+09] is currently one of the most popular sets of data
that focuses on image classification. The training set used in the official challenge
consists of 1.2 million images divided into 1000 different categories. It represents
a diverse set of categories ranging from man-made objects (teapot, printer, etc.)
to different kinds of animals (bullfrog, goose), often very challenging like different
breeds of dogs. The images were obtained with either the use of Flickr or several
search engines and were annotated by hand. This dataset enables the evaluation
of both classification and localization tasks. Due to its scope, size and quality,
the ImageNet dataset has become the most popular benchmark for new image
classification algorithms, especially Deep Learning. It is also considered as one
of the main contributing factors in the resurgence of the Deep Learning based
methods in recent years.

2.8.3 TRECVid SIN
Semantic indexing is one of the tasks that is a part of the TREC Video Retrieval
Evaluation (or TRECVid) [OFS+14]. The goal of this task is to propose semantic
tags to various video segments in an automatic manner. The dataset consists of
800 000 videos with the total running time of around 400 hours. Overall, there are
500 different concepts, which were initially selected for this task. This includes a
whole variety of different objects (such as airplane, bus, dog) and more complex
scenes (demonstration, classroom, etc.). Out of that, 346 are chosen (because they
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have at least 4 annotated positive samples) for the full task. The final evaluation
is made on a subset of 60 concepts.

2.8.4 REPERE

The REPERE dataset [GMVS12] consists of a wide range of TV broadcast videos,
including talk-shows, news and parliamentary debates. The main goal is to iden-
tify different persons present in the videos. In this context, a person can be
described by the face, the voice or the written name that appears on the screen.
There are 7 different types of TV shows with varying duration (from 15 minutes
up to an hour). The dataset contains hundreds of unique faces and voices, and is
heavily unbalanced (news anchors being shown frequently while some interviewees
appearing only once for a few seconds).

2.9 Conclusion

In this chapter, an overview of the work related to the subject and contribution
of this thesis was presented. The two main topics of this thesis are connected to
deep learning and active learning. As such they will be addressed separately.

2.9.1 Deep learning

The chapter started with the introduction to the classical pipeline for image clas-
sification and retrieval, i.e. engineered features coupled with a trainable classifier.
This was than compared with the more recent development of deep learning where
the new pipeline learns both the features and the classifier at the same time. The
contrast between these two approaches is the source of one of the contributions
of this thesis, which is presented in Chapter 4. Even though the deep learning
approach outperform the classical approach on most datasets, the fusion between
the two was not investigated in detail in the literature.

After the introduction to the general neural network architecture, a more
specific convolutional neural network structure was presented along with the
overview of its key elements (convolution, activation function, etc.). For each
element, both the most commonly used and the state-of-the-art approaches were
presented. Afterwards, different CNN applications are showcased, including its
use as a feature extractor and its use for object localization. Different state-of-
the-art architectures for image classification are presented next. The use of those
architectures in the context of audio processing, in particular speaker recognition,
is the main subject of investigation in Chapter 5. The use of spectrograms with
CNNs for speaker recognition was not extensively explored in the literature. Nor
was the combination of the output of such a system with the outputs from other
state-of-the-art speaker recognition algorithms.
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2.9.2 Person identification
The second part of this chapter gives an overview of active learning. The most
common and classical approaches are first introduced, which includes relevance
sampling, query by committee and uncertainty sampling, as well as different sce-
narios were active learning could be applied. Afterwards, the focus is put on
the use of active learning, which usually involves the use of a trainable model,
with unsupervised approaches such as clustering. Later, some solution which are
only based on the unsupervised approaches are introduced. Label propagation
algorithms are presented next with emphasis on their application to person iden-
tification in videos. The connection between the two topics (active learning and
label propagation) is the main subject and contribution in Chapter 3.

Finally, some practical challenges concerning the use of active learning are
discussed. The particular issues that concern the research in this thesis are high-
lighted. Further consideration of possible issues and limitations of using active
learning in this context are presented at the beginning of Chapter 3.
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Chapter 3

Active learning for multimedia

3.1 Introduction
In this chapter an approach that aims at reducing human annotator involvement
is proposed, namely annotation propagation for multimodal data. In particular,
this method addresses the problem of how to effectively name numerous per-
sons within a video with the lowest degree of human annotation. The technique
presented could be considered as unsupervised active learning, as opposed to su-
pervised active learning, which can make use of a classifier’s output to determine
samples for annotation [SQ12b, TK02].

Recent years have brought an outstanding and constantly growing amount of
heterogeneous data. This immense quantity of videos, available thanks to the
widespread availability of TV and the Internet, can be a source of very useful
and important information. In order to handle such data and be able to utilize
it correctly, its indexing and annotation is required. However, because of the
complexity and multimodality of the data a human annotator is usually needed.
On the other hand, it is not possible to annotate such a large quantity of videos
due to the costs (taking into account both time and manpower) of manual in-
tervention. To address this problem there are techniques being developed that
can determine the most suitable instances of the dataset for annotation. Active
learning is a group of such methods that try to determine the most informative
and relevant samples for manual annotation [AQ07]. An overview and recent
developments in active learning are provided in Chapter 2.

In summary, the main contribution presented in this chapter is an efficient
strategy for cluster annotation when dealing with the task of multimodal person
identification. For this to be possible an unsupervised system for label propa-
gation was developed beforehand and it is shortly described here. However, the
application of this system to a simulated manual annotation scenario can be con-
sidered as a new insight. The results of this study clearly show the advantages of
the use of both the overlaid names (as the source of labels for the cold start) and
propagation of annotation within clusters. Additionally, the cross-modal effects
are visible when annotation addresses just a single modality. Additional experi-
ments are performed to test this framework, which includes speaker annotation
and speaker identification model training. The results for these experiments are

59



60 Active learning for multimedia

presented in subsequent sections.
The rest of the chapter is organized in the following way. Section 3.2 describes

the problem in more detail. What follows in Section 3.3 is some practical consid-
erations and limitations of this approach. Section 3.4 presents the data corpus
in more detail. In Section 3.5 the sources of the features are introduced and de-
scribed. Section 3.6 defines the main evaluation metric. This is followed by the
presentation of the results of the first experiment on multimodal propagation in
Section 3.7. Next, the speaker annotation experiments are shown and discussed
in Section 3.8. The final simulated experiment involving model training as well
as the description of a real-life dry run of the system are presented in Section
3.9 and Section 3.10, respectively. Finally, Section 3.11 gives the conclusions and
future work.

3.2 Problem overview
Dealing with complex multimedia documents such as videos can be problematic,
especially if no annotation is available. Contrary to, for example, image anno-
tation, labeling videos create a set of new and unique challenges. First of all,
the division of a video into an arbitrary group of segments, which are somehow
meaningful (e.g. individual scenes, shots, locations, etc.), can be problematic.
Second, the existence of multiple modalities makes the task dependent on the
final use of the annotated data. If the goal is to create a dataset that can be used
for training speaker models, the annotation process should concentrate on the
speech segmentation, which may differ from the structure of the data for other
tasks (e.g. face, object or scene annotation). The set of approaches proposed in
this chapter tries to address these problems to some extent.

In a typical scenario involving human annotators, the task is usually binary,
i.e. when given an image or a sound sample, one has to determine if a given
concept (chair, car, mountain, etc.) is present or not. Such an approach has the
advantage of being very efficient. On the other hand, when dealing with person
identification the annotator has to provide a specific name if a given person was
not seen before. This could be quite time consuming and prone to errors if a
way of writing of a name is not standardized. A significant portion of such tasks
can be reduced to name checking (or choosing the proper name from the list of
candidates) if automatic initial labels and an annotation propagation procedure
are used. In a real life scenario and when the proposed system is used, the human
annotator would be presented with a single image or a single speech track that
represents a corresponding cluster.

3.3 Practical considerations
Any potential solution to the problem presented in the previous section is limited
by additional constraints, which have a source in the specific data type that needs
to be annotated and in the assumptions of the project itself. The restrictions can
be boiled down to the following main points:
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1. Real time response. The main assumption is that the approach needs to
work with the human in the loop. Therefore, the system needs to provide
the human annotator with a continuous stream of instances for annotation.
This situation creates a restriction on the computation time of the algorithm
and may be a reason to exclude some of the established methods that are
present in the literature. The approaches based on optimal experimental
design (e.g. [ZCB+11] or [YBT06]) can be too complex in terms of required
computational resources and are usually limited to selecting one instance
per active learning cycle or have scaling issues. The use of a batch mode
may be limited in some cases as well. As far as the evaluation of different
active learning strategies goes, the computational time constraint is rarely
considered in the literature. There is also a very limited number of papers
that present the use of active learning in practice (see Chapter 2 for an
overview), which incorporates the real human annotator.

2. Type of concepts to be annotated. Another issue that is related to the
task of person identification is the potential number of concepts that can
be present. Here, the concept is equivalent to a given person’s identity.
Depending on the set of videos, the number of people with a identifiable
identity can range from just a few (in the case of a debate program with a
presenter and some invited guests) to a few hundred (news shows, celebrity
gossip, etc.). Additional challenge is that the number of people present
in a given video is not known beforehand. Therefore, new identities may
be discovered during the annotation process. This stands in contrast to an
annotation scenario [VG14] where a set of concepts that needs to be labeled
is established, constant and general (e.g. everyday objects or animals).

3. Concept imbalance. The imbalance between the number of instances avail-
able for concepts in the dataset can lead to a number of different challenges,
especially in relation to model training. For instance, the REPERE corpus
is based on real life TV broadcasts, and therefore the time a person is speak-
ing or appears on screen can vary depending on his role and the program
type. TV presenters (or anchors) and top level politicians (like the pres-
ident or the prime minister) are frequently present, while some guests or
eyewitnesses (in news programs) can appear only once for a very limited
time.

4. Model-based active learning. Most approaches used with active learning
(see Chapter 2) employ some kind of a learning model that tries to predict
to which concept a given instance belongs. After obtaining the prediction
scores (or probabilities) a selection method is applied to determine, which
instance will be annotated be the human oracle. This can be done, for
example, by selecting the most uncertain instance. Because of the reasons
discussed in the two previous points, this scenario may be difficult to apply
to the dataset used in this study. The potential of discovering new classes
means that both the set of models (in this case biometric models, which
try to identify a particular person) and the set of concepts should not be
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fixed. Additionally, the imbalance between classes makes the quality of the
potential models differ significantly. Also, in the case of some models (e.g.
for speaker identification) a certain amount of data is required in order to
obtain even the basic performance. This particular aspect will be explored
later in this chapter.

5. Automatic segmentation. In order to efficiently label a video , it needs to
be segmented into parts small enough that each represents (ideally) a single
concept (in this case the same face or the same voice), but also big enough
so that annotation is feasible. Annotating every single frame of a video
separately and manually is not economically possible and, on the other
hand, labeling only full shots or scenes can drastically reduce the future
utility of the data. To that end, the instances are usually presented in
the form of the face tracks (which contain the same face across subsequent
frames) or speech segments (the same voice over a short period of time).
Such segmentation is mostly done automatically, but can be refined with
the help of the annotators. However, in essence these are unsupervised
process and the resulting segmentation may contain some impurities (e.g.
two voices, not the whole face). On the other hand, there may also be false
positives, i.e. face tracks that do not contain a face and speech segments
with just noise or music.

6. Noise. Another problem is the quality of the dataset itself. For example, in
the REPERE corpus high level of noise is present for both speech and face.
For speech, there are several potential sources of disturbances. Varying
quality of the recorded voices can be problematic. This can range from
debates in TV studio environments to conversations carried out over the
telephone. Background noise and music can be present during speech. Also,
during some lively debates, more than one person can speak at the same
time. All of those aspects can have a significant influence on the quality of
the models trained with such data. When dealing with visual data such as
faces, the noise may results from, for example, obscured parts of the face,
the angle under which a given face appears and the size of the face itself,
which can make one face indistinguishable from the others. Some of those
problems are addressed in the preprocessing stage.

Due to the reasons mentioned above, some classical approach to active learning
may have problems when dealing with the data. This is also the reason why the
model-based approaches were avoided in the preliminary experiments. It was,
therefore, decided that unsupervised approaches could potentially be more suited
for this task.
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3.4 Dataset presentation
The REPERE challenge [GCM+12a] was designed to help evaluate person iden-
tification in videos1. When given a video of a TV show (either news broadcast or
a talk-show) the aim is to identify who is speaking at a given moment and who
can be seen at a particular time. This evaluation also provides the participants
with the data, which consists of a series of shows from the French TV channels
BFM TV and LCP. Not all frames of the video are annotated, but rather one
every 10 seconds. There are 7 different types of shows. The series differ in length
(from around 15 minutes to an hour) and therefore, also in number of annotation
available for each (from around 20 to more than 100). There are also significant
differences in terms of the number of participants (from a political debate with
3 persons, to dozens within a single video). Table 3.1 presents the names of the
TV programs present in the corpus, the name of the French TV channel on which
they appear and the approximate duration of each show.

Show Channel Duration (min)
BFM Story BFM 60
Planete Showbiz BFM 15
Ca vous regarde LCP 15
Entre les lignes LCP 15
Pile et Face LCP 15
LCP Info LCP 30
Top Questions LCP 30

Table 3.1: TV shows present in the dataset.

In Figure 3.1 a set of screenshots from different videos are presented. The
videos in the dataset were selected to represent a varied set of TV broadcasts.
There are significant differences when it comes to the camera movement and angle,
light conditions, head sizes and their orientations, prepared and spontaneous
speech, number of people visible in each frame and so on.

3.5 Feature sources and components
In order to propagate labels throughout the dataset, the method tries to find
the most promising cluster to annotate, rather than single tracks. As a source
of initial labels the optical character recognition (OCR) approach is used, which
utilizes the overlaid text visible in TV broadcasts (e.g. when a person is presented
for the first time his or her name is shown at the bottom of the screen).

In this section different elements of the proposed system are described in
detail. The system in question is composed of the following three modules:

• Text detection and recognition algorithms, which provide the initial labeling
in an unsupervised way.

1http://www.defi-repere.fr
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(a) BFMStory (b) Planète Showbiz

(c) Top Questions (d) Entre Les Lignes

Figure 3.1: Frames taken from different videos to illustrate the diversity of the
dataset: (a) news shows with invited guests, (b) interviews with celebrities, (c)
broadcasts from the national assembly and (d) TV debates.

• An agglomarative clustering algorithm, based on the multimodal distance
matrix between tracks (face vs face, speaker vs speaker and face vs speaker)
to form multimodal clusters. This step is described in detail in [Poi13].

• Selection strategy that chooses tracks for annotation in order to reduce
human annotator involvement.

Figure 3.2 gives a overview of the system used in this study. First, both
speaker and face tracks are extracted from the videos. In order to create multi-
modal cluster, the distance between tracks of different modalities are normalized,
so that they can be comparable. The output of a multilayer perceptron classi-
fier, based on lip activity and other temporal characteristics, is used to establish
the association between face and speaker tracks. Using the names obtained by
the OCR, the multimodal clusters are initially labeled. Next, the active learning
cycle is introduced. Here, based on the multimodal cluster structure and already
available annotation, a given selection strategy chooses a set of unlabeled samples
for human annotation. Once the new labels are obtained, cluster recalculation
and annotation propagation takes place. During this procedure some clusters
may be combined. This gives rise to a slightly modified cluster structure, which
is used for the next iteration of the active learning cycle.
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Figure 3.2: System overview.

3.5.1 OCR system

Optical character recognition (OCR) system is following the design proposed in
[PBQT12]. Its main purpose is to introduce alternative sources of information
for person identification apart from voice and appearance. Often, guests and
speakers, when introduced on a given television show to the viewer, are presented
alongside overlaid text containing their name. In the context of this work, the
OCR system is used to generate automatic initial annotation, which would be
later improved and expanded by human annotators.

This module is composed of two parts: text detection and text recognition.
For text detection a two step approach following [AGP10] is adopted. The coarse
detection is obtained through a Sobel filter and dilatation/erosion as in [WJC02].
Additionally, to overcome the shortcomings of binarization, several binarized im-
ages are extracted of the same text, but temporally shifted. This is done to filter
out false positive text boxes. For the text recognition part a publicly available
OCR system from Google called Tesseract2 was used.

3.5.2 Speech clustering

Speaker diarization is done in the following way. After splitting the signal into
acoustically homogeneous segments, the calculation of the similarity score matrix
between each pair of speech tracks is done with the use of the BIC criterion
[CG98] with single full-covariance Gaussians. Next, the distances are normalized
to have values between 0 and 1.

2http://code.google.com/p/tesseract-ocr/
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3.5.3 Face tracking
Face detection and tracking follows the particle-filter framework using detector-
based face tracker introduced in [BBF+10]. The initialization of the face tracks
is done by scanning the first and the fifth frame of every shot. Three detectors
are included: frontal, half-profile and profile, the goal of which is to prevent the
face detector to be dependent on the initial pose. Tracking is done on-line, i.e.
with the use of the information from the previous frame, the location and head
pose of the current frame are established.

Afterwards, a 9-point mesh is imposed on the image of the face (2 point per
eye, 3 for the nose and 2 for the lips). A confidence score helps to determine if
a given face can be successfully used [ESZ06]. If so, a HOG descriptor with 490
dimensions is calculated on that face image [DT05]. After such a descriptor is
made for every suitable image in the sequence, an average descriptor is then es-
tablished for the whole sequence. This is then projected to a reduced space of 200
dimensions thanks to the LDML approach [GMVS12]. Next, the Euclidean dis-
tance is computed between each track. Finally, the output is normalized (values
between 0 and 1).

3.5.4 Multimodal clusters
In order to make use of both modalities (face and speech) at the same time and to
connect the face tracks that co-occur with speech segments, additional features
are used, such as lip activity, head size, etc. A multilayer perceptron is then
trained on those features. The output of the model (with values in the range of
0 and 1) is then treated as the distance between speech and face tracks. This is
used to produce initial multimodal clusters, i.e. clusters constructed from both
the speech and face tracks.

When some labels are available (for example extracted from the overlaid names
seen on the screen), some constraints are set to forbid merging the clusters (de-
noted as c) with different names (i.e. n) associated to them (i.e. c(n)). Note that
clusters can contain more than one person name at this step. The agglomerative
clustering algorithm is used for this purpose. The full list of constraints is as
follows (based on [PBB+13]). The cases that allow two clusters c1 and c2 to be
merged are:

• c1(∅) ∪ c2(∅)⇒ c3(∅)

• c1(n1) ∪ c2(∅)⇒ cnew(n1)

• c1(n1, n2) ∪ c2(∅)⇒ cnew(n1, n2)

• c1(n1, n2) ∪ c2(n1)⇒ cnew(n1)

An example of a case where two clusters can not be merged is when they do
not share a common label, but do have at least one label assigned. This can be
presented as:
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• c1(n1, n3) ∪ c2(n2)⇒ ∅

Apart from that, there are also temporal constraints. For example, two dif-
ferent clusters with the same name assigned to them cannot have a co-occurring
face track, i.e. faces that appear at the same time in a video can not belong to
the same cluster.

3.6 Evaluation metric
In order to be able to compare the effectiveness of different approaches the F-
measure was adopted as evaluation criteria. It is calculated in the following way:

F = 2 · Precision ·Recall
Precision+Recall

(3.1)

When calculating the metric, faces with less than 2000 pixels are not con-
sidered. Also for the evaluation purpose, persons, which were not identified in
the corpus, are not included in the score. In other words, a given face may be
annotated correctly by the algorithm, but will not be counted as such due to the
lack of full reference in the corpus.

3.7 Multimodal propagation
In this problem the propagation approach is tested on the video set using dif-
ferent modalities. The interaction between these different types of data are also
explored.

3.7.1 Data corpus
The experiments are performed on the REPERE corpus. For this study, the test
set, with the running time of around 3 hours, is used for evaluation. For the test
set there are 1229 annotated frames in total.

3.7.2 Proposed solutions
In this section the proposed approaches are introduced.

Four different annotation selection strategies are explored and evaluated:

• Random – the basic baseline, which chooses random annotation for every
show. It does, however, sometimes yield decent performance, as in [HJZ10].

• Chronological – chooses the annotation according to its time of appearance
in a given show starting from the beginning. Due to the nature of some of
the shows (e.g. political debates with a limited number of people, which
are introduced by the presenter at the very beginning) this approach can
be quite effective.
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• Biggest cluster first – this strategy makes use of the multimodal cluster
structure of the tracks (both the face tracks and speaker tracks). Let nt
be the number of tracks within a given cluster and at be the number of
annotations already assigned to that cluster. The score Sc is calculated as:

Sc = at
nt

(3.2)

and the cluster with the minimum score is selected. Afterwards, a track for
manual annotation from the cluster is chosen in a chronological manner.

• Biggest cluster probability – a modification of the previous algorithm, which
rather than selecting the cluster with the lowest Sc score, assigns a proba-
bility to be chosen for annotation, which is proportional to the score at a
given step.

3.7.3 Simulated run results and discussion
Figure 3.3 presents the results of the active learning simulation. Four different
scenarios were tested. The main observations about the results are listed below:

• As an additional experiment the random selection strategy was launched
without the use of the annotation propagation after every step (called ’No
prop rand’ in the figures). This was done mainly to show the effectiveness
of the propagation mechanism, which use seems to be very beneficial to the
overall performance of the system. Also, when applying annotation from a
different modality the score of ’No prop rand’ does not change, due to the
lack of cross–modal effect.

• The chronological strategy seems to give the worst score, which is not sur-
prising given its simplicity. However, choosing samples at random is also
not much better.

• A more promising strategy is to pick the biggest clusters for annotation
first. It is very effective at the beginning, but the increase in performance
at the later steps is not quite satisfactory. When using head annotation for
the face error it tends to be at times significantly worst than random.

• Amongst the four tested strategies the BigProb tends to display the best
performance overall. It is also the most consistent. It is significantly better
than Random and Chronological strategies at the beginning of the simula-
tion, but also manages to keep this advantage in the following steps.

• One of the most interesting findings in this work is the increase of perfor-
mance observed on one modality when using the annotation from the other.
This is due to the use of multimodal clusters and the annotation propaga-
tion within them. In other words, while annotating speakers one can also
significantly increase the performance of face annotation. This could be
used in a practical active learning scenario, where annotation of different
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(a) (b)

(c) (d)

Figure 3.3: The results of runs using different modalities for annotations and
evaluation. (a) Face tracks used for both annotation and evaluation. (b) Face
tracks used for annotation and speech segments for evaluation. (c) Speech seg-
ments used for annotation and face tracks for evaluation. (d) Speech tracks used
for both annotation and evaluation.
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Figure 3.4: The F-measure score without the initialization done by the OCR
labels. Face score using the head annotation.

modalities has a different cost (time, difficulty for the human annotator)
associated with them. In this case some of the modalities may be preferable
for annotation, while the labeling of others can be reduced without a major
drop in performance.

• The selection strategies display similar relative performance independently
from the used annotation. There is, however, a difference in overall perfor-
mance achievable by each modality, which is what is to be expected. One of
the key differences between the speaker and the head modality is that, usu-
ally, in the case of the former just one voice is heard at any given moment,
i.e. two or more voices rarely occur simultaneously and for a significant
period of time. While, in the case of the later, several faces visible in a
single shot is often the case. This could help to explain the slightly erratic
behaviour observable in Fig. (b), which shows the speaker score using head
annotation.

• In a case where there is no prior labels available (from the OCR system or
otherwise) the behaviour of the strategies changes significantly. Figure 3.4
shows the result of the simulation using the head annotation without the
OCR initialization, the annotation is propagated with each step and the
score is calculated for the face. Without any additional prior knowledge
the multimodal clusters are constructed based on the distances alone. This
means that there is a higher probability that they will have lower purity,
i.e. containing tracks from different people, compared to their counterparts
with the OCR labels. When a given track is annotated and the label spreads
to the other tracks in the cluster, the tracks describing other people are also
annotated. Therefore, strategies that make use of the cluster structure of
the data and emphasize larger clusters (which probably have lower purity)
perform worse than those that ignore this information.
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3.8 Speaker annotation
Another set of experiments were done this time focusing on speaker annotation.
The goal was to generate enough labeled data to train individual speaker models.
This would have to be done with the least amount of human involvement possible.
Creating such a dataset can be challenging, given that a decent amount of speech
time is needed as well as the speech itself needs to be of a decent purity.

As was mentioned before, a typical active learning approach usually involves
a trained model to generate relevance or uncertainty scores. The drawback of this
approach is that when dealing with speaker identification, the list of classes (i.e.
individual speakers) is not known beforehand and new classes may appear during
the annotation process (see Section 3.3). This can be seen in the case of video
annotation where propagating the available labels can be as efficient as training
a model [PMT10].

3.8.1 Proposed method
In this section the proposed method to address the problem is presented in detail.
The assumption is to use an unsupervised approach to active learning, which is
based mostly on the data structure, i.e. the (monomodal or multimodal) clusters,
and the length of the speech tracks. Several strategies were tested. Including
benchmark approaches, which consist of random selection of speech tracks for
labeling from the still unlabeled pool of tracks. Also, a chronological selection of
tracks, i.e. according to their order of appearance in the video, was tested. The
best performing approach is presented in detail in Algorithm 1.

Data: A set of speech tracks S = {s1, . . . , sN}.
Result: A set of annotated speech tracks Ann = {a1, . . . , aM} ⊆ S,

M ≤ N .
Ann← ∅;
Initialise a set for propagated annotation: Annprop ← ∅;
while |S| 6= |Ann|+ |Annprop| do

stemp = max S \ (Ann ∪ Annprop);
Ann← Ann ∪ {stemp};
Annprop ← propagate(Ann);

end
return Ann;

Algorithm 1: Active learning cycle with longest track selection

3.8.2 Data corpus
As in the previous experiment, the REPERE corpus was used. However, the
number of videos were extended. For this study it consists of 205 videos, which
sums up to the total length of around 40 hours. As before, it contains recordings
of 7 different TV shows from the French TV channels BFM TV and LCP. In this
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Figure 3.5: Speaker track distribution based on duration and key statistical values
of the speech track corpus.

study the focus is on the speech modality, while the face tracks are not used.
Figure 3.5 shows some basic statistics about the speech segments as well as the
duration distribution.

3.8.3 Evaluation metrics and experimental settings

Contrary to other studies in this chapter where the F measure is used, here two
different metrics are used. First, the identification error rate (IER) evaluates
the overall performance increase at every step of the active learning simulation.
Additionally, for assessing the quality of the annotation for every speaker (in
order to train speaker biometric models as presented in Section 3.9), the purity
is calculated. Then, every set of speaker track with purity score above 90% and
above a given duration threshold is counted at each step of the experiment.

The experimental settings follow the ones introduced in Section 3.7. As before
the evaluation is done using a simulated active learning where all the labels
provided by human annotators are initially unknown and are revealed for a given
speech track when the selection method chooses it. At each step of the simulation
(consisting of 20 steps in total) a single track is selected for labeling for every show
as long as the new annotation is available. The whole experiment is repeated 10
times, at each time 80 % of the annotation per show is randomly selected, while
the rest is not used in any way. In addition for all subsequent plots in this section,
the shaded area around the curves (with a corresponding color) is the standard
deviation at each point.
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3.8.4 Results and discussion

In this work two tasks were taken into account. On the one hand the efficiency
of the annotation process is considered, in which the error reduction at each step
is measured. Additionally, the ability to produce speaker corpora, which can
later be used to train biometric models is also investigated. In the case of the
monomodal experiments, only the speech segments extracted from the videos are
used and, at the beginning of the simulation, no annotation is available.

Figure 3.6(c) presents the IER results for the monomodal speaker annota-
tion experiment. In addition to the strategies already mentioned, a strategy not
making use of the label propagation is presented for reference. In this case, the
selection of the tracks for annotation is done randomly.

Figures 3.6(a) and 3.6(b) show the number of obtained speaker corpora with
purity score above 90% and with total speech duration (the sum of all annotated
tracks for a given speaker) above 20 and 60 seconds, respectively. For the 20
second condition, the proposed strategy works better than random at every step.
Moreover, both approaches that make use of the annotation propagation are far
better than the standard, no propagation method. The gap is even bigger when
the 60 second condition is considered. Here the standard approach requires more
than 9 steps (9 annotations per video) to produce any annotated speaker data
meeting the criteria; and after 20 steps, it is still lower than when compared to
the best strategy after a single step.

Figure 3.6(d) presents the results of an experiment where the co-occurring
overlaid names were extracted from the video and used as an initial annotation
for speakers. Afterward the annotation was further refined with the use of active
learning. When compared to the monomodal scenario this approach seems to be
beneficial, also for the number of generated speaker corpora with the duration of
60 seconds or longer, which is equal to 315 after 10 steps for the longest track
strategy against 190 for the corresponding approach without overlaid names.

Finally, an additional experiment was done with the use of the head annota-
tion only. In this scenario the human annotator would be asked to label faces
rather then speech tracks. In this case, the speakers are annotated indirectly,
through the use of multimodal clusters, which contain both the speech and face
tracks. By labeling a face track, all the speech tracks in the cluster are also
annotated. Figures 3.6(e) and 3.6(f) show the identification error rate measured
on the speaker annotation exclusively with and without the overlaid names and
with the random selection strategy. The results of annotation with the use of
speaker tracks are provided in the corresponding plots for reference. The advan-
tage of such an approach is that usually the process of face annotation is faster
than speaker labeling. It is possible to present to the annotator a set of faces at
the same time, while speech terms need to be heard one by one. The proposed
approach makes it possible to produce annotations for two different modalities
by presenting to the annotator just a single annotation task.
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(a) (b)

(d)(c)

(e) (f)

Figure 3.6: Different simulation results. (a) Monomodal experiment showing the
number of speakers with annotated tracks longer than 20 seconds. (b) Similar,
but with the total duration of annotated track longer than 60 seconds. (c)
Monomodal experiment showing the IER scores. (d) As in (c), but with the
overlaid names as cold start. (e) Speaker annotation using face labels vs speaker
labels. (f) As in (e), but with overlaid text as an additional modality.
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3.9 Model training with propagation
The goal here is to investigate how much annotation is needed to produce an
accurate speaker models. This serves as an extension and verification of the
previous experiment presented in Section 3.8. Here, the effectiveness of the active
learning and annotation propagation methods is evaluated for a true speaker
identification task.

The comparison is made between models that were trained in an unsuper-
vised manner (with the only source of labels being the overlaid names present
in the video) and those that gradually use more human annotation, i.e. they
become more and more supervised. The quality of the generated speaker models
is evaluated through speaker identification tests on a separate set of unseen data.

3.9.1 Speaker identification system
In order to evaluate the active learning runs, a state-of-the-art speaker identifica-
tion system was chosen. To that end an automatic speaker identification system
based on front-end factor analysis [DKD+11], also known as Total Variability
Space (TVS), is chosen for this study. In this section a short overview of such a
speaker modeling system is presented.

Gaussian Mixture Models (GMM) are usually used as generative models for
the representation of the acoustic feature space in speaker recognition systems. A
general model based on the GMM is called Universal Background Model (UBM)
and is first trained on speech data from multiple speakers (to better represent
general, person independent feature characteristics present in the corpus) and
is speaker-independent. Afterwards, speaker-specific models are obtained using
Maximum a Posteriori (MAP) adaptation, which are also GMMs.

After the MAP adaptation, specific speaker models can be represented as
high-dimensional supervectors of means of distributions. Using factor analysis
on these supervectors, speaker models can be represented as a low-dimensional
identity vector (i-vector).

In this approach, an i-vector ws can be calculated by the equation Ms =
M0 + Tws, where Ms is the mean supervector of speaker model, M0 is the mean
supervector of the UBM, and T is the low-rank rectangular matrix representing
the variability space of the i-vectors learned in an unsupervised manner. In the
case of having multiple tracks for speaker modeling, i-vectors extracted from
each speech segment are averaged and the average i-vector is used as the new
speaker model. The averaging can be done in a weighted manner according to
the logarithm of the duration of the tracks. Length normalization is done prior
to generation of speaker models [GREW11].

Identification is done by extraction of an i-vector of a target track and calcu-
lation of the cosine similarity score of the extracted i-vector with all the speaker
models (each represented with its own i-vector). The speaker corresponding to
the model with the highest score is finally chosen.

The UBM consists of 1024 gaussians and is learned on the training data for
the GMM-UBM system. A UBM of the same size is used for training the T
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matrix. TVS is then learned using Expectation-Maximization (EM) algorithm
on the segmented training data. The dimension of the output i-vectors is set to
400 and weighted averaging is done for generation of speaker model i-vectors. A
modified version of MSR Identity Toolbox [SSH13] is used for experiments.

MFCC features

For feature extraction, Energy and Mel-Frequency Cepstral Coefficients (MFCCs)
of 13 dimensions are extracted every 10 ms with a window length of 20 ms. These
features along with their delta and delta-delta coefficients are concatenated. Fea-
ture warping [PS01] is done on these features and static energy feature is discarded
resulting a 41 dimensional feature vector per frame. Sound activity detection is
done using bi-gaussian distribution on frame log-energies. The segmentation is
done in a similar manner as described for speaker diarization. Segments with less
than 150 ms of voice activity are not used.

3.9.2 Data corpus and experimental protocol
As before, the REPERE corpus [GCM+12a] was used for evaluation of the an-
notation propagation methods. And just like in the previous experiments, this
corpus consists of seven types of shows from the French TV channels BFM-TV and
LCP, and is aimed for development of person identification methods on broadcast
data. The corpus division into train, validation and test sets follows the official
REPERE challenge guidelines. The train set consists of 58 videos and has a total
duration of approximately 28 hours. The development set and test set, with a
total annotated duration of ~8 hours and ~13 hours, containing 57 and 90 videos
respectively, are both used for evaluation. Only parts of the videos correspond-
ing to specific shows are annotated. Length of these series differ, ranging from 3
minutes to half an hour, and therefore, the number of annotations per video vary
widely from twenty to several hundreds.

In this study, simulated active learning is done on the training set, where all
the manual annotations are available initially, but considered initially as unknown
to the system. The labels are revealed to the system as the selection algorithm
selects them for annotation. Simulation is done in 20 cycles and on each cycle
only one annotation per show is selected. For each selection strategy, there are
10 replicas and randomly 20% of the data is completely left-out for each replica.

For every replica of each cycle and selection strategy, speaker models are
created based on the output annotations of the active learning system (only on
the training data). The speaker identification performance is evaluated on the
development and test sets separately using standard F-measure. However, due
to the fact that all the data is not annotated, the performance is only evaluated
on the annotated tracks. The numbers of annotated tracks used in this study are
3490 and 4779 for development and test, respectively.

Tests are done in an open-set manner, which means that there may be speakers
in the test set that do not appear in the train set, making them impossible to
predict correctly. Results with correct labels corresponding to the maximum
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possible F-measure that can be achieved as well as results with a fully supervised
system are reported for comparison. Tests with and without OCR cold start are
also reported.

3.9.3 Results and discussion
Figure 3.7(a) and 3.7(c) give the F-measure results with the standard deviation
starting with no available annotation. With a good enough selection strategy one
can get close to the fully supervised performance in just a few steps. Overall,
the best approach is to select the longest track first, which is not surprising given
that a long uninterrupted speech segment from a single speaker would lead, in
most cases, to a good speaker model.

The results with the overlaid names as a cold start can be seen in Figure
3.7(b) and 3.7(d) for the development and test set, respectively. This approach
gives an initial boost in performance, which can be further increased with just a
few additional annotations. Regardless of the use of the OCR, both approaches
are able to arrive at the same level of performance (especially in the case of
the longest strategy), even though the use of OCR makes it faster for every
selection approach. This would indicate that the approach presented here could
be successfully employed on different datasets where the OCR may not always
be available.

After around 6 steps (when using OCR) the performance increases only slightly.
Without OCR it takes around 9 steps for the best strategy to get to a compara-
ble level. It seems, therefore, that the use of such an active learning system can
greatly reduce the number of annotation needed to produce competitive speaker
models. Manual annotation is often expensive and time consuming. This ap-
proach can help to reduce this burden, especially when the final goal is to have
reliable speaker models.

3.10 Dry run of a real-life active learning task
To verify the usefulness of the proposed methods, a limited real life run with
human annotators participation was organized. The task consisted of annotat-
ing speech tracks extracted automatically following the approach presented in
[BZMG06]. Each participant was given a video fragment corresponding to the
time frame of a speech track and was asked to name the person speaking at the
moment. Due to the nature of the videos (TV news broadcasts), most people
were presented either by an overlaid text or by a spoken name.

3.10.1 Overview
9 users were involved in the dry run. The annotations were done simultaneously
and lasted for around 1.5 hours per user. In this run only the speaker annotation
scenario was tested (the faces of people present in the video were not annotated).
The corpus consisted of 62 videos from the REPERE dataset [GCM+12b], which
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(a) Development data (b) Development data with OCR

(c) Test data (d) Test data with OCR

Figure 3.7: Performance of the speaker identification system on the respective
sets of data with and without the inclusion of the OCR system in terms of F-
measure. The results with supervised speaker modeling as well as maximum
possible F-measure in the open-set setup are also reported for comparison.
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Figure 3.8: The graphical user interface used for the dry run.

included TV debates, news programs and parliamentary broadcasts among others.
The annotations were done using the Camomile project framework3 and using the
graphical user interface (GUI) developed within the same project. An example
of the interface used by the participants of the dry run can be seen in Figure 3.8.

During the run, a total of 716 speech tracks (with the total duration of 81 min-
utes) were annotated. Additionally, 654 tracks (total of 68 minutes) were marked
as skipped (tracks which do not contain speech, but music, external noises, si-
lence, etc.). The median annotation time is equal to 10.8 seconds. Additionally,
because of the clustering present in the system, the annotations were propagated
to the corresponding clusters. This produced a total number of 3504 labeled
tracks (including the 716 annotated manually) with the total time equal to 7.81
hours. Additionally, the use of the multimodal clusters during the dry run en-
abled to get face annotation (1973 head annotations, for a total duration of 5.47
hours).

Due to its limited scope, as well as duration, it is hard to draw any substantial
conclusions based on this dry run. Some attempts have been made however.
The number of discovered speakers was measured depending on the strategy
and can be seen in Figure 3.9. However, this result is limited, due to the fact
that during the actual annotation process there was no time to test additional
selection strategies and, therefore, only the best one was chosen (following the

3https://github.com/camomile-project/



80 Active learning for multimedia

results obtained in Section 3.8). So in order to have a baseline, the order of
the tracks was randomized several times and the resulting new curve is used for
comparison. It is true that the baseline strategy is not truly random as it is
applied on a preselected subset of tracks.

Figure 3.9: Speaker discovery during the dry run.

Overall, the real-life application of this framework showed its potential us-
ability and benefits. This is especially true when one considers the amount of
annotation obtained through automatic means of label propagation. It remains
clear, however, that a longer and more thorough evaluation under real-life con-
ditions would be required to fully evaluate the usefulness of such an approach.
This would include the use of different selection strategies and more controlled
human annotator participation.

3.11 Conclusion
In this chapter, a novel approach to the annotation of multimedia documents has
been proposed. An active learning framework was designed and developed in a
way that it can reduce the amount of work done by human annotators. To that
end, the application of clustering was used, which combined different modalities
present in a video document, such as faces and speech. This was connected with
a number of different selection strategies.

A series of experiments were made in order to evaluate the proposed frame-
work. These included studies involving both mono- and mulitmodal scenarios
and different objectives. The latter included efficiently preparing the data for
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training models for speaker identification. Among other things, the crossover ef-
fect of the use of different modalites was observed and investigated. Finally, the
whole framework was evaluated in a real-life scenario, which was a limited dry
run.
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Chapter 4

Deep learning for multimedia

4.1 Introduction
Deep Convolutional Neural Networks (DCNN) have recently made a significant
breakthrough in image classification [KSH12]. This has been made possible by
a conjunction of factors (some of which are discussed in Chapter 2 in detail)
including: findings about how to have deep networks effectively and efficiently
converge [OM98], the use of convolutional layers [Fuk80] [LBBH98], the availabil-
ity of very powerful parallel architectures (GPUs), findings about how exactly a
network should be organized for the task [KSH12], and the availability of huge
quantity of cleanly annotated data [DDS+09].

Not to minimize the importance of the hardware progress and of algorithmic
breakthroughs, the availability of a large number of image examples for a very
large number of concepts was crucial as DCNNs really need such amount of
training data for actually being efficient. Data augmentation (e.g. multiple crops
of training samples) can further help but only when a huge amount of data is
already available. Such amount of training data is currently available only with
ImageNet, which corresponds to a single type of application and only for still
images. In the case of video documents for instance, several annotated collections
exist but with much smaller number of concepts and/or much smaller number of
examples. Trying to train DCNNs on such data generally leads to results that are
less good than those obtained using “classical” engineered features (or descriptors)
combined with more traditional and well established machine learning methods
(typically SVMs), these being more suitable when small to moderate amounts of
training data are available.

Two strategies have been considered for making other domains benefit from
the success of the DCNN/ImageNet combination. The first one consists in pre-
training a DCNN using ImageNet data and annotations as a source collection and
then partly retrain or fine-tune it on a different destination collection [CSVZ14]
[YCBL14]. Generally, only the last layers are retrained, the exact number of
which, as well as the learning parameters, being experimentally determined by
cross-validation. Though this strategy can produce much better results than by
training the DCNN only on the destination data, it does not necessarily compete
with classical approaches and it could lead to gains that are much less important

83
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than in the ImageNet case.
The second strategy consists of employing a DCNN pre-trained on ImageNet

as a source collection, applying it to a different destination collection and then
using the final ImageNet concept detection scores or the output of the hidden
layers as features for training classifiers and making prediction on the destination
collection. In [RASC14a] a successful application of this strategy is presented
and applied to a number of test collections for both image indexing and image
retrieval.

In this chapter, these strategies are explored and their performance is evalu-
ated in the context of video indexing. Also, there is an additional investigation on
how they can be combined with classical methods based on engineered features
and how they can be combined with other video-specific improvement methods
like temporal re-scoring [SQ11]. Experiments have been carried out in the context
of the semantic indexing task at TRECVid [SOK06] [OAM+15]. Additionally, an
evaluation of the DCNN features / SVM classifiers combination is made on the
object classification task of VOC 2012 [EEVG+15b]. In this chapter, the following
contributions and observations are presented:

1. The results obtained for still images in the case of video shot indexing are
confirmed: features learned from other training data generally outperform
engineered features for concept recognition.

2. Directly training SVM classifiers using these features does better than par-
tially retraining the DCNN for adapting it to the new data.

3. Even though learned features outperform the engineered ones, fusing them
performs even better, indicating that engineered features are still useful, at
least in this case.

4. Temporal and conceptual re-scoring methods, as well as the use or multiple
key frames within video shots, also improve classification results obtained
with DCNN features.

5. The DCNN features / SVM classifiers combination is very efficient for still
images too and it was evaluated on the VOC 2012 object classification task.

The chapter is organized as follows: Section 4.2 describes related work; Sec-
tion 4.3 describes the features and methods used for conducting the experiments;
Section 4.4 presents comparative results on the TRECVid semantic indexing task;
Section 4.5 presents results obtained on the VOC 2012 object classification task;
and Section 4.6 concludes the chapter.

4.2 Related work
Semantic features are not restricted to DCNN and had already been used for mul-
timedia classification and retrieval. The work presented in [SNN03] introduced
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them as “model vectors”. These provide a semantic signature for multimedia
documents by capturing the detection of concepts across a lexicon using a set
of independent binary classifiers. Ayache et al. [AQG07] proposed to use local
detection scores of visual categories on regular grids or to use topic detection on
ASR transcriptions for video shot classification. Su et al. [SJ12] also proposed
to use semantic attributes obtained with supervised learning either as local or
global features for image classification.

In all of these works and many other similar ones, semantic features are learned
on source collections different from the destination one and generally for source
concepts or categories different from those searched for on the destination collec-
tion. Hamadi et al. [HMQ15] used the approach using the same collection and
the same concepts both for the semantic feature training and for their use in a
further classification step. In this variant, called “conceptual feedback”, a given
target concept is learned both directly from the “low-level” features and from the
detection scores of the other target concepts also learned from the same low-level
features (the training of the semantic features has to be done by cross-validation
within the training set so that it can be used for the second training step both
on the training and test sets).

Concerning the first DCNN transfer strategy (DCNN re-training), Yosinski et
al. [YCBL14] et al showed that the features corresponding to the output of the
hidden layers are well transferable from one collection to another and that re-
training only the last layers is very efficient both for comparable or for dissimilar
concept types. Their experiments were conducted only within the ImageNet
collection however. Similar results were obtained by Chatfield et al. [CSVZ14] on
different data.

Concerning the second DCNN transfer strategy (classical training with fea-
tures produced by DCNNs), Razavian et al. [RASC14b] showed that it works
very well too, for several test collection, some of which are close to ImageNet and
some of which are quite different both in terms of visual contents and in terms
of target concepts. They also showed that this type of semantic features can be
successfully used both for categorization tasks and for retrieval tasks. Finally,
they showed that in addition to the score values produced by the last layer, the
values corresponding to the output of all the hidden layers can be used as feature
vectors. The semantic level of the layers output values increases with the layer
number from low-level, close to classical engineered features for the first layers,
to fully semantic for the last layers. Their experiments showed that using the last
but one and last but two layers’ outputs generally gives the best results. This
is likely because the last layers contain more semantic information while the last
one has lost some useful information as it is tuned to different target concepts.
There is generally no equivalent to the output of the hidden layers in classical
learning methods (e.g. SVMs) and these can only produce the final detection
scores as semantic features.

Many variants of the “classical” approach exist. Most of them consist in a fea-
ture extraction step followed by a classification step. As several different features
can be extracted in parallel and different classification methods can also be used
in parallel, a step has to be considered. Fusion is called “early” when it is per-
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formed on extracted features, “late” when it is performed on classification scores
or “kernel” when it is performed on computed kernel within the classification step
(for kernel-based methods); many combinations can also be considered.

A very large variety of engineered features has been designed and used for mul-
timedia classification. Some of them are directly computed on the whole image
(e.g. color histograms), some of them are computed on image parts (e.g. SIFTs)
[Low04]. In the latter case, the locally extracted features need to be aggregated in
order to produce a single fixed-size global feature. Many methods can be used for
that, including the “bag of visual words“ (BoW) approach [SZ03b] [CBDF04] or
the Fisher Vector (FV) [SPMV13] and similar ones like Super Vectors (SV) and
Vectors of Locally Aggregated Descriptors (VLAD) [JPD+12] or Tensors (VLAT)
[PG13]. Some of them may reach their maximum efficiency only when they are
highly dimensional, typically the FV, VLAD and VLAT ones. Two different
strategies can be considered for dealing with them: either use linear classifiers
combined with compression techniques [SPMV13] or using dimensionality reduc-
tion techniques combined with non-linear classifiers [SDQ15]. In the case of video
indexing, engineered features have been proposed also for the representation of
audio and motion content.

The comparison of methods presented here has been conducted in the context
of the Semantic Indexing (SIN) task à TRECVid [SOK06][OAM+15]. It differs
from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [RDS+15a]
in many respects. Indeed, the indexed units are video shots instead of still im-
ages. The quality and resolution of the videos are quite low (512 and 64 kbit/s
for the image and audio streams respectively). The target concepts are different:
346 non-exclusive concepts with generic-specific relations. Many of them are very
infrequent in both the training and test data. The way the collection has been
built is also very different. In ImageNet, a given number of sample images have
been selected and checked for each target concept resulting in a high quality and
comparable example set size for all concepts. In TRECVid SIN, videos have been
randomly selected from the Internet Archive completely independently of the tar-
get concepts; the target concepts have been annotated a posteriori resulting in
very variable number of positive and negative examples for the different concepts.
Most of the concepts are very infrequent and also not very well visible. Compared
to ImageNet, the positive samples are much less typical, much less centered, of
smaller size and with a much lower image quality. The task is therefore much
more difficult than the ILSVRC one but it may also be more representative of
indexing and retrieval tasks “in the wild”. An active learning method was used
for driving the annotation process for trying to reduce the imbalance class effect
in the training data and also ensure a minimum number of positive samples for
each target concept [AQ08b]. The resulting annotation is sparse (about 15% in
average) and consists in 28,864,844 concept × shots judgments. All of these dif-
ferences probably explain why training DCNNs directly on TRECVid SIN data
gives much poorer results than on ImageNet data and why the two considered
adaptation strategies are needed (or perform much better) in this case.
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4.3 Methods
This section presents the various elements used for the evaluation: features (or
descriptors), classifiers and fusion methods, as well as several other processing
steps used for further improving the overall system performance: use of multiple
frames, feature optimization, temporal re-scoring and conceptual feedback.

4.3.1 Engineered features
For the engineered features, a series of features is used, which contains 13 different
feature types contributed and shared by the participants of the IRIM group of
the French GDR ISIS [BGP+15]. They vary significantly in terms of performance
but several of them were quite competitive and at the level of the state-of-the-art
before the availability of DCNN-based features. Here is a description of the six
best performing types:

CEALIST/bov_dsiftSC_[8192|21504] : bag of visual terms [SL12]. Dense
SIFT are extracted every 6 pixels. The codebook of size 1024 is built with
K-means. Bags are generated with soft coding and max pooling. The
final signatures result from a three-level spatial pyramid with two variants:
1024× (1 + 2× 2 + 1× 3) = 8192 and 1024× (1 + 2× 2 + 4× 4) = 21504
dimensions.

ETIS/global_<feature>[<type>]x<size> : (concatenated) histogram fea-
tures [GCPF08], where:

<feature> is chosen among lab (CIE Lab colors) and qw (quaternionic
wavelets with 3 scales and 3 orientations)

<type> can be m1x1 (histogram computed on the whole image), m1x3
(histogram for 3 horizontal parts) or m2x2 (histogram on 4 image
parts)

<size> is the dictionary size: 256, 512 or 1024.

For instance, with <type>=m1x3 and <size>=256, the final feature vector
has 3 × 256 = 768 dimensions.

ETIS/vlat_<desc type>_dict<dict size>_<size> : compact Vectors of
Locally Aggregated Tensors (VLAT [PG13]), where:

<desc type> is low-level descriptor type, for instance hog6s8 = dense
histograms of gradient every 6 pixels, 8×8 pixels cells.

<dict size> is the dictionary size.
<size> is the size of the feature for one frame: 4096 dimensions.

LIG/opp_sift_<method>[_unc]_1000 : Bag of Words, Opponent SIFT,
generated using Koen Van de Sande’s software [vdSGS10a]: 1000 dimen-
sions (384 dimensions per detected point before clustering; clustering on
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535117 points coming from 1000 randomly chosen images). <method>
method is related to the way by which SIFT points are selected: har corre-
sponds to a filtering via a Harris-Laplace detector and dense corresponds
to a dense sampling; the versions with _unc correspond to the same with
fuzziness introduced in the histogram computation.

LIRIS/OCLPB_DS_4096 : Dense sampling OCLBP [ZBC11] Bag of Words
descriptor with 4096 k-means clusters. The orthogonal combination of local
binary patterns (OCLBP) is extracted to reduce original LBP histogram
size and at the same time preserve information on all neighboring pixels.
Instead of encoding local patterns on 8 neighbors, encoding is performed
on two sets of 4 orthogonal neighbors, resulting in two independent codes.
Concatenating and accumulating two codes leads to a final 32 dimensional
LBP histogram, compared with original 256 dimensions. 4096-dimensional
bag-of-words descriptors are finally generated using a pre-trained dictionary.

LISTIC/SIFT_* : Bio-inspired retinal preprocessing strategies is applied be-
fore extracting Bag of Words of Opponent SIFT features (details in [SBL13])
using the retinal model from [BCDH10]. Features extracted on dense grids
on 8 scales (initial sampling=6 pixels, initial patch=16x16pixels), using a
linear scale factor 1.2. K-means clustering is used for producing dictionaries
of 1024 or 2048 visual words. The proposed descriptors are similar to those
from [SBL13] except that multi-scale dense grids are used. Despite showing
equivalent mean average performance, the various pre-filtering strategies
present different complementary behaviors that boost performances at the
fusion stage [SBL14b].

Early fusions of features of the same type were also taken into account.

4.3.2 Learned or semantic features
The following learned or semantic feature types were considered:

XEROX/ilsvrc2010: Attribute type descriptor constructed as a vector of clas-
sification scores obtained with classifiers trained on external data with one
vector component per trained concept classifier. For XEROX/ilsvrc2010,
1000 classifiers were trained using annotated data from the ILSVRC 2010
challenge. Classification was done using Fisher Vectors [SPMV13].

XEROX/imagenet10174: Attribute type descriptor similar to XEROX/ilsvrc2010
but with 10174 concepts trained using the ImageNet annotated data.

LIG/alexnet1000: The AlexNet model trained on the ImageNet data only
[KSH12] has been applied unchanged on the TRECVID key frames, both on
training and test data, providing detection scores for 1000 concepts. These
are accumulated into a 1000 dimension semantic feature vector.
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LIG/alexnet_fc<level>_<size> : This descriptor corresponds to the LIG/
alexnet1000 one and was also computed using the AlexNet model [KSH12]
but is made of the values of the output of the last three hidden layers (fully
connected fc5, fc6 and fc7). The vector size if of 4096 dimensions for fc6
and fc7 and of 43,264 for fc5.

LIG/googlenet_pool5b_1024 : This descriptor is obtained by extracting the
output of the penultimate layer (pool5) of the GoogLeNet model [SLJ+14]
with 1024 dimensions.

LIG/vgg_all_fc8 : This descriptor is obtained by extracting the output of the
last layer of the VGG19 model [CSVZ14][SZ14] before the last normalization
stage and also has 1000 dimensions.

The Xerox features are of semantic type by construction but they also belong
to the engineered type as the low-level features they rely upon (Fisher Vectors)
have been explicitly designed using human expertise rather than having been
built from learning like the DCNN-based features. Early fusions of features of
the same type were considered.

4.3.3 Use of multiple key frames
All features (except audio and motion ones) have been computed on the reference
key frames provided in the master shot segmentation. Additionally, some of them
have been computed on all the I-frames extracted from the video shots (typically
one every 12 video frames and about 13 per shot in average). Classification
scores are computed in the same way both for the regular key frames and all
the additional I-frames; a max pooling operation is then performed over all the
scored frames within a shot [SWG+05]. This max pooling operation is performed
right after the classification step and before any fusion operation (though it would
probably have been better to postpone it after).

4.3.4 Feature optimization
The feature (descriptor) optimization consists of a PCA-based dimensionality
reduction with pre- and post-power transformation [SDQ15]. Optionally, a L1
or L2 unit length normalization can also be performed before the PCA-based
dimensionality reduction. This method allows to simultaneously reduce the di-
mensionality of the feature vectors (by factors from 2 to 50) and significantly
improves the classification performance. It can also be used to transform feature
vectors not naturally suited for the use of Euclidean distance into feature vectors
suited for it, greatly simplifying (or speeding up) the classification process.

4.3.5 Classification
Two different classifiers have been used and their predictions were fused producing
a globally better result [SDH+14]:
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KNN: The first classifier is kNN-based. It is directly designed for simultane-
ously classifying multiple concepts with a single nearest neighbor search.
A score is computed for each concept and for each test sample as a linear
combination of 1’s for positive training samples and of 0’s for negative train-
ing samples (non-annotated or skipped samples are ignored) with weights
chosen as a decreasing function of the distance between the test sample and
the training sample. As the nearest neighbor search is done only once for all
concepts, this classifier is quite fast for the classification of a large number
of concepts. It is generally less good than the SVM-based method but it is
much faster.

MSVM: The second one is based on a multiple learner approach with SVMs.
The multiple learner approach is well suited for the imbalanced data set
problem [SQ10] [SQ15], which is the typical case in the TRECVid SIN task,
in which the ratio between the number of negative and positive training
samples is generally higher than 100:1.

FUSE: Fusion between the two above classifiers. The fusion is simply done
by a MAP weighted average of the scores produced by the two classifiers.
Their output is naturally (or by construction) normalized in the [0:1] range.
Even though the MSVM classifier is often significantly better than the KNN
one, the fusion is frequently even better, probably because they are very
different in terms of information type they capture. The MAP values used
for the weighting are obtained by a two-fold cross-validation within the
development set.

Classification scores are always produced both on the development set (by cross-
validation) and on the test set (by prediction) so that they can be used in the
higher levels of fusion.

4.3.6 Fusion
Several early and late fusions of features of the same type were also consid-
ered [SBL+14a]. Hierarchical late fusion was made successively on:

• variants of the same feature,

• variants of classifiers on results from the same features,

• different types of features,

• the selection of groups of features.

4.3.7 Temporal re-scoring and conceptual feedback
At the end, temporal re-scoring (re-ranking) and conceptual feedback are per-
formed. Temporal re-scoring consists of modifying the detection score of a given
video shot for a given concept according to the detection scores of adjacent video
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shots for the same concept [SQ11]. Conceptual feedback consists in modifying
the detection score of a given video shot for a given concept according to the
detection scores of other concepts for the same video shot [HMQ15]. This is done
by building an additional semantic feature constituted of the prediction scores
(by cross-validation within the development set) and adding it to the pool of
other engineered or learned features for inclusion in the global fusion process.

4.4 Evaluation on the TRECVid 2013-2015 se-
mantic indexing task

Experiments were conducted on the 2013, 2014 and 2015 issues of the TRECVid
semantic indexing task [OAM+15]. This task is defined as follows: “Given the test
collection, master shot reference, and concept definitions, return for each target
concept a list of at most 2000 shot IDs from the test collection ranked according
to their likelihood of containing the target”. In the 2013-2015 test collections
each include about 200 hours of video contents from the IACC collection; they
respectively include 112,677, 107,806 and 113,467 video shots which are the units
to be indexed. Participants are asked to provide results for a set of 60 concepts,
of which only a subset was actually evaluated (38, 30 and 30 respectively in
2013, 2014 and 2015). The Mean (Inferred) Average Precision (MAP) is used as
the official metric. The average of these measures over the three years was also
considered as it is expected to be more stable.

Additionally, a development set with the annotation of 346 concepts (including
the 60 ones for which results should be submitted) was provided to the partici-
pants for training their systems [AQ08b].

4.4.1 Engineered features versus semantic and learned fea-
tures

In this section, a comparison is presented of the performance of engineered fea-
tures and semantic and learned features. For the engineered features, a series of
features is used, which is composed of shared features by the participants of the
IRIM group of the French GDR ISIS [BGP+15]. As the IRIM participants did
not all provide prediction scores on the I-frame set, results are shown here only
for the key frames (only one per shot).

Table 4.1 shows the performance of several types of engineered features. Per-
formance is shown for the six best groups of feature types as well as the fusion
of the seven less good ones and the overall fusion. In several cases, the result is
shown for already a combination of variants of the same feature type, for instance
corresponding to a pyramidal image decomposition. Performance is given as the
Mean (Inferred) Average Precision on the 2013, 2014 and 2015 editions of the
TRECVid SIN task as well as their mean. The task was a bit harder in 2014
than in 2013 and a bit harder still in 2015 than in 2014. This is because the set of
evaluated concepts was different, including more complex and difficult ones. One
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Table 4.1: Performance of low-level engineered features
Feature type 2013 2014 2015 Mean
IRIM bottom seven fused 0.1890 0.1444 0.1311 0.1548
LIRIS OC-LBP 0.1156 0.0811 0.0773 0.0915
LIG BoW opponent SIFT 0.1423 0.1104 0.0981 0.1169
CEA-LIST pyramidal BoW dense SIFT 0.1605 0.1203 0.1107 0.1304
ETIS pyramidal BoW lab and qw 0.1563 0.1191 0.1171 0.1307
LISTIC BoW retina SIFT 0.1663 0.1255 0.1122 0.1346
ETIS VLAT 0.1801 0.1369 0.1201 0.1457
IRIM all engineered fused 0.2300 0.1786 0.1554 0.1879

can see that the fusion of all features does significantly better than the single best
one. Also, fusion of the seven least performing IRIM feature types does slightly
better that the best individual one.

Table 4.2: Performance engineered and learned features
Feature type 2013 2014 2015 Mean
IRIM all engineered fused 0.2300 0.1786 0.1554 0.1879
Xerox ILSVRC 1000 features 0.2190 0.1749 0.1539 0.1824
Xerox ImageNet 10174 features 0.2258 0.1839 0.1570 0.1886
Xerox semantic features 0.2291 0.1862 0.1613 0.1920
IRIM and Xerox fused 0.2573 0.2070 0.1793 0.2145
AlexNet fc5 0.2214 0.1781 0.1610 0.1868
AlexNet fc6 0.2330 0.2001 0.1751 0.2027
AlexNet fc7 0.2277 0.1968 0.1717 0.1985
AlexNet out 0.2114 0.1925 0.1703 0.1910
GoogLeNet pool5 0.2633 0.2234 0.2062 0.2309
VGG-19 out 0.2550 0.2283 0.2042 0.2291
Learned (DCNN) features fused 0.2995 0.2637 0.2350 0.2660
Engineered and DCNN fused 0.3190 0.2849 0.2553 0.2863

Table 4.2 shows the performance of engineered and learned features as well
as of their combinations. The first row reproduces the result of the fusion of
all the IRIM engineered features from Table 4.1. The next three rows show the
performance of the two Xerox semantic features as well as their fusion. Both
have a performance similar to the performance of the fusion of all IRIM features
and their fusion has an even higher performance. The Xerox semantic features
are very good thanks to their state-of-the-art use of Fisher Vector and to their
training on ImageNet data, which the other IRIM features did not benefit from.
The next row shows the performance of the fusion of IRIM and Xerox features,
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which is significantly higher than that of each of them taken separately. This
performance is the best that could be achieved using only engineered features (as
Xerox features also fall in this category even though they include some learning).

The next six rows of Table 4.2 show the performance obtained with the fea-
tures extracted from the AlexNet, GoogLeNet and VGG deep neural networks.
It is detailed for the four last layers in the case of AlexNet. The best DCNN fea-
ture for each of the three networks already has a performance comparable to the
IRIM/Xerox fusion or even higher. Again, this is due to the use of the ImageNet
data and to the very good effectiveness of DCNNs. The second to last row shows
the performance of the fusion of the best three DCNN features, which is signifi-
cantly higher than that of each of them taken separately. This indicates that the
three networks extract complementary information. Finally, the last row shows
the performance of the fusion of non-DCNN-based features and of DCNN-based
features. This performance is once again significantly higher than that of both of
them taken separately, even if the performance of non-DCNN-based features is
significantly lower than that of DCNN-based features, indicating that engineered
features are still useful, even with a lower overall performance.

4.4.2 Partial DCNN retraining versus use of DCNN layer
output as features

Several trials were made for retraining the last layers of the pre-trained AlexNet,
GoogLeNet and VGG-19 implementation using the Caffe framework. The fol-
lowing was tested: the retraining of the last one, last two or last three layers.
Much care was taken to try and select the optimal training parameters in each
case. Actually, due to the design of the inception module in the GoogLeNet
architecture, it was not easy to retrain only the last two or last three layers so,
alternatively, the two layers were retrained by adding another last fully connected
layer. A complete three layers retraining or any equivalent was not tested. The
best performance was obtained by cross-validation when retraining only the last
two layers for AlexNet and only the last layer for GoogLeNet and VGG-19.

For these features, the evaluation was done both using only one key frame
per shot and using additionally all the available I-frames within the shot. In
both cases, the training was done using only the key frames as the collaborative
annotation was done mostly only on them while the assessment for the evaluation
was done on the basis of the full shots [OAM+15].

Table 4.3 shows the performance obtained with the AlexNet, GoogLeNet and
VGG-19 implementations as well as for the fusion of their predictions. The first
(resp. second) half of the table shows results using only the key frames (resp.
using the key frames and the I-frames) for the prediction. Results are displayed
using the classical KNN/MSVM learning approach applied to the best extracted
features for each implementation and by retraining these implementations. It can
be observed that:

• the classical KNN/MSVM learning consistently perform better than the
retraining of the last layers. This may be because the last layers actually
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Table 4.3: Partial DCNN retraining versus use of DCNN layer outputs as features
2013 2014 2015 Mean

AlexNet fc6 + classifiers 0.2330 0.2001 0.1751 0.2027
GoogLeNet pool5 + classifiers 0.2633 0.2234 0.2062 0.2309
VGG-19 out + classifiers 0.2550 0.2283 0.2042 0.2291
Classifiers fused 0.2995 0.2637 0.2350 0.2660
AlexNet, 2 layers retrained 0.2172 0.1834 0.1647 0.1884
GoogLeNet, 1 layer retrained 0.2331 0.2016 0.1926 0.2090
VGG-19, 1 layer retrained 0.2230 0.1948 0.1778 0.1985
Retrained fused 0.2768 0.2406 0.2208 0.2460
AlexNet fc6 + classifiers with I-frames 0.2553 0.2631 0.2233 0.2472
GoogLeNet pool5 + classifiers with I-frames 0.2953 0.2911 0.2733 0.2865
VGG-19 out + classifiers with I-frames 0.2828 0.2958 0.2657 0.2814
Classifiers fused with I-frames 0.3213 0.3296 0.3004 0.3170
AlexNet, 2 layers retrained with I-frames 0.2534 0.2579 0.2216 0.2442
GoogLeNet, 1 layer retrained with I-frames 0.2721 0.2787 0.2594 0.2700
VGG-19, 1 layer retrained with I-frames 0.2608 0.2675 0.2433 0.2571
Retrained fused with I-frames 0.3107 0.3170 0.2895 0.3057

implement only a one or two-layer perceptron, because there is not enough
training data for a good neural network learning (while KNN and MSVM
are more robust to this) and/or because they have difficulties with highly
imbalanced training data (cost sensitive training was also tried but brought
no improvement);

• the differences between 2013, 2014 and 2015 collections and between using
or not I-frames are smaller in the case of retrained networks, indicating a
better generalization capability despite a lower global performance.

4.4.3 Combining with improvement methods
Considering the same features, classifiers and fusion methods, several methods
can be used to further improve the overall system performance. The three follow-
ing ones were evaluated: the temporal re-scoring method proposed by Safadi et
al. [SQ11], the conceptual feedback method proposed by Hamadi et al. [HMQ15],
and the use of multiple frames proposed by Snoek et al. [SWG+05].

As previously mentioned, only a few of the IRIM engineered features were
computed by the participants on the I-frame set; the Xerox features were not
available either on this set. It was therefore not possible to evaluate and compare
all the combinations and some fusions are only partial. Table 4.4 shows the effect
of the temporal re-scoring (TRS) and conceptual feedback (CF) methods for the
fusions of the engineered (IRIM and Xerox) features, the DCNN-based features
and their combinations (All). The effect of additionally using the I-frames is also
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Table 4.4: Effect of improvement methods: temporal re-scoring (TRS), concep-
tual feedback (CF) and use of multiple frames (I-frames)

2013 2014 2015 Mean
IRIM and Xerox fused 0.2573 0.2070 0.1793 0.2145
IRIM and Xerox with TRS 0.2691 0.2207 0.1822 0.2239
IRIM and Xerox with TRS and CF 0.2844 0.2474 0.2013 0.2443
DCNN features fused 0.2995 0.2637 0.2350 0.2660
DCNN features with TRS 0.3216 0.2903 0.2491 0.2869
DCNN features with TRS and CF 0.3288 0.3021 0.2533 0.2947
DCNN features with I-frames fused 0.3213 0.3296 0.3004 0.3170
DCNN features with I-frames with TRS 0.3293 0.3346 0.2974 0.3204
DCNN features with I-frames with TRS and CF 0.3421 0.3416 0.2935 0.3257
All features fused 0.3190 0.2849 0.2553 0.2863
All features with TRS 0.3343 0.3039 0.2625 0.3002
All features with TRS and CF 0.3407 0.3151 0.2670 0.3075
All features with I-frames fused 0.3408 0.3265 0.2917 0.3196
All features with I-frames with TRS 0.3473 0.3365 0.2938 0.3258
All features with I-frames with TRS and CF 0.3539 0.3460 0.2933 0.3310

shown, except in the case of the engineered features since not enough of them
were available for doing better that using the key frames alone. These were,
however, included in the “All” fusion when possible. It can be observed that:

• all three improvement methods are always effective, even when combined
though the “TRS” and “I-frames” ones do not accumulate well; this is prob-
ably because both search information in the neighborhood, either within the
current shot or within adjacent shots and such information may be redun-
dant;

• fusing engineered features and DCNN-based features always lead to an im-
provement, even if engineered ones are less good and even if less of them
were available in the I-frames case.

The five combinations with TRS and CF were the LIG (or Quaero) official submis-
sions with the respective identifiers: 2C_M_A_Quaero.13_1, 2C_M_D_LIG.15_4,
2C_M_D_LIG.15_2, 2C_M_D_LIG.15_3 and 2C_M_D_LIG.15_1. For the
2015 issue of the semantic indexing task, the best MAP was of 0.3624. However,
the participant who obtained this result used additional annotations that were
not shared with other TRECVid participants. The following participants, ranked
second, third and fourth, obtained best MAPs of 0.3086, 0.2987 and 0.2947. The
2C_M_D_LIG.15_1 submission ranked as fifth with a MAP of 0.2933. The
fourth participant was the IRIM group that used a submission very close to the
2C_M_D_LIG.15_1 one (differing only in the last level of late fusion).



96 Deep learning for multimedia

4.5 Evaluation on the VOC 2012 object classifi-
cation task

The DCNN features and KNN/MSVM combination were also tested on the VOC
2012 classification competition. The official deadline for this competition has
passed but the annotations on the test set were kept hidden and an evaluation
server is left permanently opened, allowing for new participation in conditions
similar to those of the original competition. The submission count is limited so
that no tuning on the test set is possible. The goal of the task is, for each of twenty
predefined classes, to predict the presence/absence of an example of that class
in the test image. More generally, a classification with a real value is expected,
allowing to sort the test samples according to their likeliness of containing an
example of the target class. The official metric is the average precision (AP)
by concept and the overall mean average precision (MAP) over the 20 target
classes [EEVG+15b].

A single submission was made with a single feature for the KNN/MSVM clas-
sification. This feature is an early fusion of the AlexNet fc6 layer output (last
but two layer, 4096 dimensions), the GoogLeNet pool5 output (last but one layer,
1024 dimensions), and the final output of the VGG-19 network (1000 dimensions).
These are the same as those used in the TRECVid semantic indexing task, and
the same feature optimization 4.3.4 parameters were used, reducing the dimen-
sionality of the DCNN features to 662, 660 and 609 respectively. Early fusion
is then performed by concatenating the three optimized and normalized features
resulting in a unique feature of 1931 dimensions. A second feature optimization
step is performed reducing it further to 294 dimensions. This is done again with
the same parameters as those computed for the TRECVid semantic indexing
task. No feature optimization was performed on the VOC 2012 data.

The KNN and MSVM classifiers were trained only using the development data
(“train” and “val” sets) and annotations. No other data and annotation was used
directly in the training. ImageNet data and annotations were used indirectly for
training the DCNN systems from which the features were extracted. TRECVid
SIN data and annotations were used indirectly for optimizing these features and
their early fusion. However, these data and annotations were not used directly
for training the classifiers on the VOC 2012 data. Therefore, the submission
was made in the “comp1” category as other teams did in similar conditions. This
submission obtained a MAP of 85.4% while the second best performance obtained
a MAP of 82.9%.

4.6 Conclusion
In this chapter, the comparison was made between the use of “traditional” engi-
neered features and learned features for content-based semantic indexing of video
documents. An extensive comparison was made of the performance of learned
features with traditional engineered ones as well as with combinations of them.
Comparison was made in the context of the TRECVid semantic indexing task.
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The results confirm those obtained for still images: features learned from other
training data generally outperform engineered features for concept recognition.
Additionally, it seems that directly training KNN and MSVM classifiers using
these features does better than partially retraining the DCNN for adapting it to
the new data. Even though the learned features performed better that the engi-
neered ones, the fusion of both of them still perform significantly better, indicating
that engineered features are still useful, at least in this case. Additionally, the
improvement methods based on temporal re-scoring, on conceptual feedback and
on the use of multiple frames per shot are effective on both types of features and
on their combination. Finally, the combination of DCNN features with KNN and
MSVM classifiers was applied to the VOC 2012 object classification task where
it currently obtains the best performance with a MAP of 85.4%.
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Chapter 5

Deep learning for speaker
identification

5.1 Introduction
In this chapter, a further application of deep neural networks is investigated,
namely the use of convolutional neural networks (CNN) for speaker identifica-
tion. Contrary to the classical approach of most speaker identification methods,
which are based on the MFCC features (or on a modified version of them), here
the CNN is used with raw spectrograms. This enables us to treat the speech signal
in its 2D representation, i.e. just like an image. This could create an opportunity
to have a more generalized CNN model, which could be applied to a wider range
of signal processing related tasks. Additionally, a challenging dataset was se-
lected, containing both noise and unbalanced amount of speaker data. This CNN
approach is compared to more commonly used methods. Despite the lower CNN
performance, the use of this deep complementary features in fusion improves on
the state-of-the-art.

In the past few years, Convolutional Neural Networks (CNN) became widely
used in image related domains providing state-of-the-art performance [SLJ+14].
At the same time Deep Neural Networks (DNN) were being applied more and
more to mono-dimensional signals for tasks like language recognition [MZN+14],
speech recognition [DLH+13] or speaker identification [RRD15b]. Lately, there
was an increasing number of studies trying to address some of the related tasks
(notably automatic speech recognition) with the use of CNN based systems with
only spectrograms as input [GHT+14, UW15]. However, such systems have not
yet been widely explored for speaker identification. The work done and presented
in this chapter tries to give additional insight into the efficient use of CNN for
this particular biometric task. The current limitations are also mentioned and
analyzed.

The structure of this chapter is as follows. Section 5.2 gives the overview of
the baseline methods for speaker identification while Section 5.3 describes the
structure of the neural networks used. This is followed by the presentation of the
experimental framework in Section 5.4. The results are presented in Section 5.5.
Section 5.6 contains the concluding remarks.

99
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5.2 Baseline speaker identification systems
Gaussian Mixture Model-Universal Background Model (GMM-UBM) [RQD00]
and Total Variability Space (TVS) [DKD+11] speaker recognition systems are
used in this study as baselines. The TVS setting and description follow the setup
used in Chapter 3. For convenience, the introduction to the algorithm as well as
the parameters used for these experiments are repeated here.

In the GMM-UBM approach, a Universal Background Model (UBM) is first
trained on speech features extracted from multiple speakers using the Expectation-
Maximization (EM) algorithm. Speaker-specific models are then obtained using
Maximum a Posteriori (MAP) mean adaptation. Similarity scoring is done by
calculation of log-likelihood ratio (LLR) on these models. Given a sequence of
feature vectors X extracted from a test segment, LLR is computed as Λ(X) =
log p(X|λhyp) − log p(X|λubm), where λhyp and λubm represent speaker-specific
GMM and UBM model respectively.

After adaptation, models can also be represented as high-dimensional super-
vectors of means of distributions. These supervectors can be represented as low-
dimensional identity vectors (i-vector) using factor analysis. In this approach,
mean supervectors Ms and M0 representing speaker-specific model and UBM re-
spectively are extracted, and an i-vector, ws, is calculated using Ms = M0 +Tws.
The low-rank rectangular matrix, T , representing the variability space of the i-
vectors, is learned in an unsupervised manner using Expectation-Maximization
(EM) algorithm. In case of having multiple tracks for speaker modeling, i-vectors
extracted from each speech track are typically averaged and the average i-vector
is used as the speaker model. Scoring can be done with cosine similarity metric,
while pre-processing i-vectors before scoring can result in better performance.

In this setup, speaker identification is done by scoring a test segment versus all
the speaker models. The speaker identity regarding the highest similarity score
is chosen as the result of the identification test.

A UBM consisting of 1024 gaussians is trained on the training data for both
systems. T matrix is then trained on the segmented training data. Segmentation
outputs of conventional BIC-criterion [DW00] are used. The dimension of output
i-vectors is set to 500. MSR Identity Toolbox [SSH13] is used for all experiments.
Similarity scoring is done by cosine similarity scoring between the test segment
and the i-vector representing target identity. Length normalization [GREW11] is
used for an increased performance.

5.3 Convolutional neural network structure

5.3.1 Initial approach and tests
In Figure 3.2 the general way in which the CNN algorithm is applied can be seen.
For any given speech segment (Fig. 3.2a) the spectrograms are first extracted.
Because they have a fixed size there are usually several overlapping spectrograms
representing each segment. Next (Fig. 3.2b) , each spectrogram is fed to the
convolutional neural network separately. This in turn produces an individual
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vector of potential speaker identities for every input (Fig 3.2c). Finally, to obtain
a single vector for the speech track, the individual vectors are averaged.

Several different architectures were tested in these experiments. Here, the
most promising initial setup is presented along with the justification for that
choice. Most commonly used CNN architectures (such as AlexNet [KSH12]) may
be too complex for the given task. First of all, the input images have a smaller
resolution and are grayscale. There is also far less diversity in terms of observable
patterns and textures than in datasets containing images of everyday object, ani-
mals, etc., such as ImageNet [RDS+15b]. Therefore, the setups used for ordinary
images may have too many redundant parameters, leading to unnecessarily long
training times and the risk of overfitting.

Initially, the input data size was wider with the spectrogram dimensions being
equal to 137× 129, which is equivalent to 0.685 seconds. However, this approach
caused an unnecessarily large overlap between neighboring spectrograms. Also,
the initial system was trained on a training set containing 375 speakers, around
800k spectrograms and close to 3200 speech segments. The final results were
obtained using an extended set, which details are described in Section 5.4.1.

The initial structure of the net can be seen in Table 5.1. The input to the net
is a central crop of the input spectrogram.

Name Type Patch size Output size
/Stride

input: 128× 128 grayscale image of a spectrogram
conv1 convolution 3× 3/1 126× 126× 64
pool1 ave pooling 2× 2/2 63× 63× 64
conv2 convolution 3× 3/1 61× 61× 128
pool2 ave pooling 2× 2/2 30× 30× 128
conv3 convolution 3× 3/1 28× 28× 256
conv4 convolution 3× 3/1 26× 26× 256
pool3 ave pooling 2× 2/2 13× 13× 256
conv5 convolution 3× 3/1 11× 11× 512
conv6 convolution 3× 3/1 9× 9× 512
pool4 ave pooling 2× 2/2 4× 4× 512
fc6 full connected 1× 1× 4096
fc7 full connected 1× 1× 4096
fc8 full connected 1× 1× 375

Table 5.1: The initial structure of the network tested on a smaller subset of the
data containing 375 individual speakers.

The test set in the initial evaluation was composed of around 400k individual
spectrograms, which were divided into roughly 1850 segments of varying lengths.
This was a closed set with 71 speakers appearing in both the train and the test
set.

This introductory setting helped to give insight into the training of a convo-
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lutional neural network for this particular task and served as a justification for
some of the design choices in the final approach.

Epochs 3 6 9 12 15 18 21 24 27 30
Spectrogram 61.5 61.0 64.0 63.8 64.2 64.3 64.3 64.3 64.3 64.3
Segment 70.7 69.0 71.7 70.8 71.1 71.0 71.1 71.4 71.2 71.2

Table 5.2: The performance of the initial CNN system after a particular number
of epochs. The accuracy is given for both individual spectrograms and the whole
segments. The latter value should be compared to the baseline systems trained
on MFCC features with GMM-UBM and i-vector systems having 73% and 74.4%
accuracy, respectively.

The initial model was tested after every 3 epochs1 and the results can be seen
in Table 5.2. The convergence seems to be achieved quite quickly. After around
9 epochs no significant change in performance seems to take place. Therefore for
the final evaluation and after accounting for an extended dataset, the training
lasting 12 epochs was chosen.

At this stage the accuracy results for the CNN approach are not far from
the baselines. This led to the belief that this system could benefit from addi-
tional training data. The final results on the full dataset can be found in Section
5.5. Even at this stage, however, the accuracy gain from fusion between i-vector
(74.4%) and CNN (71.7%) scores is visible. For the mean of normalized scores
from both these systems the accuracy is equal to 77.9% – well above the baseline
score.

These observations led to the design and execution of a new set of experiments
on a bigger and possibly more representative dataset. Additionally, some insight
into the features extracted by the CNN network could be made based on the
initial structure. They are presented in the following subsection.

5.3.2 Layer visualization
To better understand what is going on within the CNN structure it is possible
to visualize some of its components. There are many ways to achieve this. One
of the more insightful approaches is presented in [ZF14]. There it was made
possible to map back to an image the response of the net even for the layers
at the end of the net where the input vector was 1 dimensional. In the case of
spectrograms this seems to not be necessary, because they are not easily readable
to humans anyway (contrary to normal images containing everyday object for
example). Instead, the visualization of the outputs of the first two convolution
layers is presented. Their resolution is still high enough to see what the network
is looking for.

Figure 5.1(a) is an example of a grayscale spectrogram of human speech that
is used as an input to the CNN. Figure 5.1(b) presents the first convolution layer

1Where a epochs is a single pass through the whole training set.
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(a) (b)

Figure 5.1: (a) An example of a spectrogram used as input to the network. (b)
Visualization of the 64 filters from the first convolutional layer.

filters that are obtained through supervised training. The filters are small with
the resolution of just 3×3. Note that only first layer filters are shown. The number
of filters with each subsequent layer increases significantly and they become more
and more abstract and hard to interpret. The result of the convolution operation
between the input spectrogram and one of the filters can be seen in Figure 5.2,
which shows corresponding feature maps. It shows that most of the filters tend
towards some kind of an edge detector, be it horizontal, vertical or other. Some
examples of low pass (which result in the blurring of the image) and high pass
filters (making the detail more visible) are also present. Also, a lot of feature maps
are dark, suggesting a low response. On the other hand some may be redundant.

This finding is in line with what can be seen when a CNN is trained on color
images (see Chapter 2 for an example). With the exception that additionally
there are also color blobs that are detected, but for a monochrome image this is
not the case. Further results of the second convolution can be seen in Figure 5.3.
The size of the feature map is reduced due to the 2×2 max pooling layer between
the two convolution layers. As the input image passes through the network the
filters become more specialized to detect particular shapes and pattern in an
image. This can be seen in the output of the second convolution layer. Here,
most filters seem to focus on the detection of vertical lines.

5.3.3 Final architecture
The network used in this study is inspired by the general design proposed in
[SZ14] for image recognition. It was chosen as a starting point due to its relative
structure simplicity and state-of-the-art performance. However, several changes
were made in order to adapt it to this specific speaker identification task. The
detailed structure can be found in Table 5.3.

The network was trained from scratch on a set of grayscale spectrogram images
with non-square dimensions. The model was trained for around 12 epochs. Every
convolutional layer was followed by a rectified linear unit (ReLU), which serves
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Figure 5.2: The output of the first convolutional layer in the network. These are
the results of a convolution between the input spectrogram presented in Figure
5.1(a) and the respective filters seen in Figure 5.1(b).

as an activation function and is defined as f(x) = max(0, x). The first two fully
connected layers (fc6, fc7) are followed by ReLU and dropout with the rate of
0.5. The output of the last fully connected layer (fc8) is used with the softmax
function.

Different to the initial design for image recognition, the proposed structure
has fewer convolutional layers (from 8 down to 5), however the filter size for the
first two is expanded. Adding additional convolutional layers did not improve
performance. Average pooling layers were chosen instead of max pooling. The
input to the network is a 48×128 pixel grayscale image of a spectrogram. Due to
the overlap between the images, no random cropping or rotation is used during
training. Caffe framework [JSD+14] was used for training and testing the net.

The network gives predictions based on individual spectrograms. In order to
be able to fuse the output with the output of the TVS system (which assigns a
speaker identity for the whole speech segment), the spectrograms are mapped to
bigger speech segments. The mapping is done by averaging the scores of every
spectrogram contained within a given segment.

In Figure 5.5(a) an example of a spectrogram used for training is shown.
Figure 5.5(b) represents the saliency map, i.e. a heatmap representing the most
significant regions of the image used by the CNN to predict a given speaker. In
this case it represents speaker with the highest response from the top layer. Note
the heavy reliance on horizontal patterns, which stands in contrast to MFCC
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Figure 5.3: The output of a subset of filters after the second convolutional layer.
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Figure 5.4: The visualization of the CNN used in this study. A spectrogram is
taken as input and is convolved with 64 different filters (with the size of 7×7) at
the first layer with the stride equal to 1. The resulting 64 feature maps are then
passed through the ReLU function (not visible in the figure) and downsampled
using average pooling. A similar process continues up to the fully connected layers
(f6, which takes conv5 as input, and fc7) and the final output layer (corresponding
to the number of speakers in the train set).

based methods that take into account the whole frequency spectrum. This was
obtained by backpropagating the correct output from the last layer to the input
layer in a similar way as it was done in [ZF14]. To put it into perspective and
better understand the output Figure 5.6(a) shows a color image that may be
used to train a CNN system for image recognition. The output of the net shown
in Figure 5.6(b) is equivalent to Figure 5.5(b). In other words, it highlights



106 Deep learning for speaker identification

Name Type Patch size Output size
/Stride

Input: 48× 128 grayscale image of spectrogram
conv1 convolution 7× 7/1 40× 122× 64
pool1 ave pooling 2× 2/2 20× 61× 64
conv2 convolution 5× 5/1 18× 59× 128
pool2 ave pooling 2× 2/2 9× 30× 128
conv3 convolution 3× 3/1 9× 30× 256
conv4 convolution 3× 3/1 9× 30× 256
pool3 ave pooling 2× 2/2 5× 15× 256
conv5 convolution 3× 3/1 5× 15× 512
fc6 full connected 1× 1× 2048
fc7 full connected 1× 1× 2048
fc8 full connected 1× 1× 821

Table 5.3: The structure of the network.

the regions that help the network to determine that an image contains a given
concept, in this case a cat.

5.3.4 Fusion

Fusion is often used to enhance results for speaker recognition systems, for ex-
ample in [MLSF14]. Even if by itself a system gives inferior results, it still can
help to improve the baseline performance. In this article, several attempts were
made to fuse the CNN results with the output of the TVS system. Both early
and late fusions were considered.

5.3.4.1 Late fusion

A standard late fusion of normalized predictions taken from both systems was
proposed. A weighted sum of both outputs was also tested.

5.3.4.2 Duration-based fusion

This strategy was proposed to give the CNN scores higher weights for short
duration segments and lower ones for the long speech segments. CNN seems
to produce comparable results to the TVS system on short segments, while the
difference in performance grows with increasing duration. Fusion on the longer
segments also seems to be less beneficial. This is illustrated in the bottom plot
of Figure 5.8. In this case, fusion was calculated as s = (1− tanh(d))scnn + sivec ,
where s corresponds to the scores provided by each system and d is the segment
duration.
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(a) (b)

Figure 5.5: (a) An example of a spectrogram used in this study. (b) A saliency
map representing the networks response to this spectrogram.

(a) (b)

Figure 5.6: (a) A cat. (b) A saliency map representing the networks response to
the picture of a cat.
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5.3.4.3 Support Vector Machines

This strategy serves as early fusion, where a linear SVM is used for the final
classification decision based on a concatenated normalized outputs of CNN’s last
hidden layer and i-vectors. Principal component analysis is applied to the CNN
output in order to match the i-vector dimensionality (500 for each).

5.4 Experimental setup

5.4.1 Dataset
The REPERE corpus [GCM+12b] was used for evaluation. The dataset contains
a set of videos from two French television channels (LCP and BFM). There are 7
types of videos, ranging from news shows, debates to celebrity gossip and culture
programs. Only the audio track was used in the experiments.

The dataset is quite challenging. The recording takes place both inside a
studio setting and outside in public and noisy environments. Apart from this,
music if often played in the background during certain presentations or interviews.
Additionally, there is a significant imbalance between speakers, with anchors and
top politicians both being often over-represented in the dataset. Total amount of
speech per speaker for speakers present in both train / test sets helps to illustrate
this and it is shown in Figure 5.7. Normalized histogram of number of segments
for each duration bin is also shown in Figure 5.8 for training and test data. It is
important to mention that a big portion of speech segments fall below 2 seconds
of speech.

Experiments were done in a closed-set manner, where all the speakers in the
training data are used for training models, while performance is evaluated only on
test segments from speakers overlapping between training and test data. There
are 821 speakers available in the training data, from which only 113 are observed
in the test data.

Training data includes 9377 speech segments from 148 videos, while the test
data contains 2410 segments from 57 videos. Training data and test data contain
around 22 hours and around 6 hours of active speech respectively.

5.4.2 Features
Two types of features are used in this study. First of all, the classical MFCC
features, which are the most commonly used, when dealing with speech related
tasks. As an alternative spectrograms are used. Their use and extraction for
such tasks are not yet normalized, so the choice concerning the dimensions and
frequency are somewhat arbitrary.

5.4.2.1 Mel-Frequency Cepstral Coefficients (GMM-UBM, TVS)

Energy feature and Mel-Frequency Cepstral Coefficients (MFCCs) of 19 dimen-
sions are extracted every 10 ms with a window length of 20 ms. These features
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/ test sets of REPERE corpus. Speakers are sorted according to total speech
duration in training set.
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Figure 5.8: Normalized histogram of speech segments for different duration bins
for training and test data from REPERE corpus on top, and test set accuracy
of each system along with their late-fusion for corresponding duration bins in
bottom.

along with their delta and delta-delta coefficients are concatenated. Static energy
is used for silence removal using bi-gaussian distribution of frame log-energies. For
each frame, a 59 dimensional feature vector is then obtained after application of
feature warping [PS01] on remaining features.



110 Deep learning for speaker identification

5.4.2.2 Spectrograms (CNN)

Spectrograms were extracted on 240 ms duration with a frequency of 25 Hz.
This results an overlap of 200 ms (83%) between neighboring spectrograms. For
each spectrogram, first the corresponding audio segment was windowed every
5 ms with a window length of 20 ms. Then on each window, after applying
Hamming window of 256 samples, log-spectral amplitude values were extracted.
By discarding the symmetric part and the value corresponding to the highest
frequency, a 48 by 128 matrix of values was obtained, which was utilized for
input of the CNN as an image. Spectrograms containing speech from multiple
speakers were discarded along with the ones containing no speech in both training
and testing phases.

5.5 Results and discussion
Table 5.4 gives the accuracy for the baseline systems and the CNN. The segment
accuracy for the CNN is generated as explained in section 5.3. We see that CNN is
slightly lower in performance than baseline approaches for speaker identification.
In Table 5.5 the results of fusion are presented. The last two columns give partial
results for segments shorter and longer than 2 seconds, respectively. Apart from
the standard accuracy, a duration based accuracy is also given, i.e. the duration
of the data predicted correctly versus the total duration of the data.

Method Accuracy Trained on
CNN 67.41 Spectrorgams
PLDA 70.50 MFCC
GMM-UBM 71.16 MFCC
TVS 72.78 MFCC

Table 5.4: CNN and baseline accuracy (% on the test set) estimated at the speaker
segments level.

Method Stand. Dur. <= 2s > 2s
Acc. Acc. Acc. Acc.

CNN 67.41 76.00 40.93 76.32
TVS 72.78 83.74 48.99 81.58
SVM-CNN+TVS 69.05 75.27 51.63 75.41
CNN+TVS 75.89 83.61 58.45 82.27
durCNN+TVS 75.10 84.07 56.12 82.04

Table 5.5: Fusion results with standard accuracy and duration based accuracy
(on test set).
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The rather poor performance of the single CNN approach when compared to
TVS may be attributed to several different factors. First of all, the unbalanced
speaker dataset where some speakers (like high level politicians or news anchors
and presenters) are heavily over represented, while others may appear for just a
few seconds. The second factor could be connected to the nature of the corpus.
Live and mostly spontaneous (especially in the case of debates) TV broadcasts
usually come with significant noise (street noises, crowds, other voices) or back-
ground music. This may, in fact, disproportionally affect the raw spectrograms
over the MFCC features.

A relatively low performance was given also by the PLDA approach, even
though a grid search was done in order to choose the best hyper-parameters
possible. This can be explained by the dependency of PLDA performance on the
availability of a large training set (as discussed for example in [Aro14]). In the
training data used in this study, only 375 speakers out of 821 had more than
two segments, whereas thousands of multi session speakers are usually used for
successful estimation of the PLDA hyper-parameters.

The late fusion approaches represented by CNN+TVS and durCNN+TVS
seem to work much better than the early fusion based on the SVM. Both late
fusion approaches were able to be better than both the CNN and the TVS. Based
on the partial accuracy results, it seems that the main improvement of fusion is for
the shorter speech segments. The duration based accuracy revels the underlining
imbalance of the dataset, where the improvement of the number of segments
correctly classified does not necessarily imply a higher duration score.

5.6 Conclusions
In this chapter, an approach was proposed which uses the output of a CNN
network trained on spectrograms to improve the performance of a TVS system
based on MFCC features. The tests were carried out on a broadcast TV dataset,
which included such real-life issues like noisy environments and imbalance be-
tween speakers, with encouraging results.
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Chapter 6

Conclusions and perspectives

In this last chapter, a final overview of the work done during this thesis is sum-
marized with an emphasis on the proposed contributions. Also, at the end, some
general perspectives based on the presented research are given.

6.1 Conclusion
Overall, the main topics of this thesis were active learning and deep learning
applied in the context of multimedia documents. The emphasis was put on the
applications involving images, video and audio.

The related work chapter started with the introduction of the classical ap-
proach to concept detection in images, namely engineered features (including
low level descriptors and several aggregation methods) coupled with a classifier
which is trained using supervised learning. This formula is then compared to
the alternative deep learning approach. The basic building blocks of deep neu-
ral networks are then presented, focusing on the convolutional neural network
and its components. Further on, different applications of the CNN architecture
are explored (including feature extraction, multi-label prediction and localiza-
tion). Afterwards, the active learning framework was presented. This included
the most common methods and scenarios where this approach can be used. Sev-
eral methods that use active learning in combination with unsupervised approach
are also presented and discussed. An interesting approach and a potential source
of labels is through label propagation, which has the means to make active learn-
ing even more cost effective. The exploration of the intersection between active
learning and label propagation was one of the major points of this thesis.

6.1.1 Active learning
In terms of active learning and label propagation, the following contributions and
observations were made during this thesis:

• An active learning framework was developed that incorporates label prop-
agation to speed up the acquisition of labeled instances. This includes the
evaluation of several different modalities (including speech and faces) as
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well as the use of overwritten names as initial labels. Additionally, four
different selection strategies were evaluated. According to the experimen-
tal evaluation the best approach involves the selection of biggest clusters
with the probability corresponding to their size and using overlaid names
as initial annotation when available.

• One of the more interesting findings is the positive effect of the cross-modal
annotation. When annotating one modality, the annotation can be prop-
agated to another (from faces to voices for example), which results are an
additional rudimentary set of annotations.

• The proposed active learning framework was additionally tested in the con-
text of speaker identification model training. The experiments show that
satisfactory performance can be achieved with just a few active learning
steps and full annotation of the dataset is not necessary. After around 10
steps with the best selection strategy no significant gain in performance is
observed.

6.1.2 Deep learning for multimedia
Here, the main contribution and conclusions are made involving the use of deep
learning for video indexing (limited to Chapter 4):

• An experimental validation is given, which confirms the superiority of the
learned deep learning based features over the more classical engineered ones.
A relatively wide range of classical and learned features has been tested,
including fusion.

• Fusion between learned and engineered features seems to improve the overall
performance, which would indicate that the use of engineered features may
still be advantageous.

• Additional performance improvements (in the case of video indexing) can be
obtained through the use of multiple key frames or temporal and conceptual
re-scoring methods. Also, it seems that the use of an SVM combined with
the learned features may outperform the retraining of the last few layers of
the DCNN.

6.1.3 Deep learning for speaker recognition
Finally, the main contributions connected to the use of convolutional neural net-
works for speaker identification are summarized here:

• A proposed exploratory CNN architecture that takes as input raw spectro-
grams and outputs the speaker identity.

• Despite displaying a weaker performance than the state-of-the-art, the fu-
sion of the CNN output with the best performing method (in this case
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TVS) leads to a significant boost in performance. The improvement is even
more visible for short utterances (less than 2 seconds in duration), which
are usually more challenging to improve upon.

6.2 Perspectives
Some of the potential research perspectives based on the work done throughout
this thesis will be pointed out in this section. Apart from using more complex
deep learning models, there are many interesting areas of research when dealing
with multimodal data or trying to combine active and deep learning.

6.2.1 Active and deep learning
With the exception of the work presented in [YZS+15] (discussed in Chapter 2),
there is not much work that tries to combine the active learning framework with
deep learning. The long term goal in the deep learning community is to develop
an unsupervised approach to learning complex models. However, this is still
not the case and most approaches rely heavily on quality noise-free labeled data
to achieve high performance. An intermediate step towards that long term goal
could include the use of active learning. There are at least to potential challenges:
the scale that is required and a reasonable computation time so it can be used in
practice.

As for the scale, most deep learning algorithms requires thousands of anno-
tated instances to obtain a model with competitive performance. Most active
learning approaches assume that labeling is done one instance at a time, which
may turn out to be too inefficient or costly. One of the possible solutions would
be to limit the role of the annotator to verification, i.e. checking or cleaning the
labels proposed by the learning algorithm, which is usually faster than identifica-
tion. Another approach could involve label propagation or annotation of clusters
rather than single instances. To reduce the issue of the cold start problem, a pre-
trained model (ideally trained on a related dataset) could be used, which would
also require less annotated data to converge.

The second problem is the computation time. In the classical active learn-
ing approaches the learner is retrained every time new annotations are available.
This may not be feasible when dealing with deep learning models. The approach
in [YZS+15] suggests the use of a smaller model (e.g., SVM) which would inter-
act with the human annotators and then use the more complex deep learning
model once enough new data is acquired. A direct use of the DL model is still
problematic. Potential solutions may involve the use of smaller and more spe-
cialized models (concentrated on learning just the subset of classes). Otherwise,
fine-tuning (or retraining just the last few layers) may be a viable alternative.

6.2.2 Multimodal deep learning
Another potential research direction is a multimodal approach to deep learning.
Given a dataset with several modalities such as videos, some instances can be
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described by information coming from more than one source. This would allow
the learning algorithm to have more than one input. This approach, for example,
could potentially be used for person identification in videos where each person
can be defined by both their face and their voice.

This approach can potentially be used to identify people that speak and can
be seen at the same time or just based on one of the modalities. Additionally, it
may provide a more robust representation that can deal with partial occlusion of
the face or presence of noise in the speech track.

One of the potential difficulties is the synchronization between the two inputs.
Any design decisions have to take into account both the nature of the input (e.g.,
pure audio signal, MFCC or spectrogram) and its relative size and frequency (a
new input with every frame of the video, every second frame, etc.).
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Appendix B

Résumé en Français

B.1 Introduction
Au cours des dernières années, de plus en plus de documents multimédias sont
disponibles grâce à la présence croissante et l’utilisation de caméras, smartphones
et autres appareils d’enregistrement. L’utilisation d’Internet et de nombreux mé-
dias sociaux a permis d’accéder facilement à un nombre sans précédent de données
diverses. Par ailleurs, en raison du partage et de la distribution en ligne, le vol-
ume de ce type de données augmente rapidement. Avec cette croissance rapide
vient la nécessité de rendre les données plus utiles et accessibles aux utilisateurs
potentiels. L’annotation et l’indexation permettent de rechercher ce contenu mul-
timédia. Cependant, l’annotation manuelle d’une telle quantité de données est
prohibitivement coûteuse. Pour résoudre ce problème, de nombreuses solutions
potentielles ont été créées.

Une solution possible serait l’indexation multimédia automatique. Ceci est
fait avec l’utilisation de diverses méthodes d’apprentissage automatique. Un tel
système serait capable d’attribuer des étiquettes correspondant au contenu sé-
mantique d’un document multimédia donné (qu’il s’agisse d’un objet pouvant
être vu, d’une personne ou d’un locuteur d’une piste audio) sans intervention
humaine, ce qui le rend identifiable et traçable à un utilisateur potentiel. Pour
être en mesure de construire un tel système, qui aurait également un niveau sat-
isfaisant de précision, et de le former avec succès, un grand nombre de données
déjà annotées est nécessaire. Dans la plupart des cas, ces données doivent être
annotées à la main par des annotateurs humains. Cependant, ce processus est
toujours limité par les coûts en temps et en ressources. Comme toutes les données
ne peuvent pas être étiquetées, il est nécessaire de hiérarchiser et de sélectionner
certaines des instances de données par rapport à d’autres. Cela peut aider à
éviter les redondances et conduire à un ensemble potentiellement plus représen-
tatif d’instances marquées, ce qui peut à son tour augmenter la performance
globale du modèle d’apprentissage automatique.

L’apprentissage actif représente un ensemble d’algorithmes conçus pour sélec-
tionner des instances appropriées à partir d’un ensemble non marqué de don-
nées, compte tenu d’un certain critère. Il ya beaucoup de critères potentiels, qui
dépendent de la tâche à accomplir, mais le but principal est de prédire l’utilité
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d’une nouvelle instance pour un modèle donné. D’autres méthodes peuvent être
utilisées pour augmenter le nombre total d’échantillons annotés grâce à la propa-
gation d’étiquettes. En outre, l’apprentissage actif peut aider à éviter d’annoter
l’instance redondante, c’est-à-dire celles qui ne portent pas de nouvelles informa-
tions utiles.

À mesure que la quantité de données annotées disponibles augmente, des
modèles plus grands et plus complexes peuvent être formés. Cela conduit à la
possibilité d’utiliser de nouveaux classificateurs tels que l’apprentissage profond.
Les modèles les plus avancés de cette famille d’algorithmes nécessitent une grande
quantité de données annotées pour atteindre la meilleure performance.

Dans cette thèse, certaines stratégies d’apprentissage actif sont proposées qui
aident à la propagation de l’étiquette, ce qui peut augmenter la quantité de
données étiquetées utiles et par conséquent la performance globale des modèles
formés. En outre, plusieurs expériences différentes avec l’apprentissage profond
ont été entrepris pour explorer l’utilité de l’ajustement des réseaux, la fusion et
d’autres aspects lorsqu’il est appliqué au traitement du multimédia. Enfin, une
application supplémentaire de cette classe d’algorithmes à la reconnaissance des
locuteurs est explorée.

B.1.1 Apprentissage actif pour le multimédia

La plupart des applications utilisant des documents multimédias bénéficient ou
même nécessitent une certaine quantité d’annotations manuelles. Compte tenu
de la complexité de certains concepts (qu’il s’agisse d’une personne particulière
ou d’un objet spécifique), l’intervention humaine est nécessaire. Avec une annota-
tion appropriée, un grand nombre d’applications potentielles sont rendues possi-
bles, comme des modèles de formation pour la reconnaissance ou la récupération.
Cependant, le processus d’annotation (à condition qu’aucune source antérieure
d’étiquettes ne soit donnée) peut être prohibitif, ce qui devient encore plus évi-
dent lorsqu’il s’agit de documents multimédias tels que des vidéos. Dans le cas de
ce dernier, souvent en donnant une étiquette, certaines actions supplémentaires
sont également nécessaires, par ex. fournir l’emplacement de l’objet dans une
trame d’une vidéo (par une simple boîte ou une forme plus complexe) ou ajouter
un timestamp pour indiquer quand un concept donné est visible. Ces étapes
supplémentaires ne composent que le coût potentiel de chaque annotation.

Par conséquent, l’utilisation de méthodes actives liées à l’apprentissage peut
être très bénéfique dans ce contexte. Lorsque le temps et les ressources sont
limités, la possibilité de sélectionner les segments les plus informatifs des don-
nées pour l’annotation peut être inestimable. En outre, toute source probable
d’étiquettes faibles telles que les noms superposés qui apparaissent sur l’écran ou
sous-titres peut réduire considérablement le coût de l’annotation. En extrayant
automatiquement les étiquettes probables et en les affectant à l’instance la plus
probable, le processus d’annotation passe de l’identification à une tâche de véri-
fication, généralement plus rapide et plus facile à exécuter.
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B.1.2 Apprentissage profond
L’apprentissage profond a émergé récemment comme un ensemble très efficace
d’algorithmes qui sont capables de résoudre des problèmes de reconnaissance com-
plexes compte tenu de suffisamment de données d’entraînement. En particulier,
le réseau de neurones convolutif est très bien adapté lorsqu’il s’agit de données
composées d’images ou de vidéos et il est capable de trouver des concepts de haut
niveau qui apparaissent dans les données.

Contrairement à l’approche traditionnelle où les caractéristiques décrivant une
image sont "faites à la main", c’est-à-dire conçues explicitement pour extraire cer-
taines caractéristiques d’une image telle que la couleur ou la texture, les réseaux
neuronaux convolutifs sont capables d’apprendre les caractéristiques les plus ap-
propriées pour un ensemble de données. C’est de loin l’élément le plus important
qui contribue à la performance supérieure par rapport aux méthodes plus tradi-
tionnelles.

En raison d’une performance globale nettement meilleure dans de nombreuses
tâches basées sur la vision, les méthodes de réseaux neuronaux convolutifs sont
devenues les méthodes les plus utilisées pour résoudre des problèmes tels que
l’indexation et la récupération d’images, la classification d’images et bien plus
encore.

En raison de ce potentiel, une partie importante de cette thèse est consacrée
à une évaluation supplémentaire de ses performances par rapport au paradigme
plus traditionnel utilisé pour la classification des images. De plus, une exploration
plus poussée des applications potentielles du réseau neuronal convolutif à d’autres
domaines est étudiée.

B.2 Description du problématique
Dans cette section, une présentation plus détaillée du problème pour chaque as-
pect de cette thèse est définie. Cela inclut le défi central et certains des principaux
problèmes.

B.2.1 Apprentissage actif pour le multimédia
Le principal défi consiste à créer un cadre d’apprentissage actif capable de traiter
un ensemble de problèmes et de contraintes. En bref, ils peuvent être définis
comme suit:

• Incorporer les données provenant de différentes sources, c’est-à-dire l’utilisation
de données multimédia.

• Utiliser des étiquettes faibles, y compris un moyen de vérifier son exactitude.

• L’utilisation potentielle en pratique, qui impose des contraintes sur le temps
d’exécution de toute solution proposée.
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• Présence de séries de données fortement déséquilibrées, où l’utilisation d’un
modèle formé peut être limitée au moins pour certains des concepts les
moins fréquents.

B.2.2 L’apprentissage profond et ses applications
L’application de l’apprentissage profond dans le contexte de l’indexation vidéo
pose plusieurs défis. Les principaux problèmes potentiels sont:

• Les données très déséquilibrées et bruyantes, ce qui rend difficile de former
le modèle à partir de zéro.

• La présence de concepts multiples par cadre, ce qui nécessiterait une ap-
proche différente de celle utilisée dans la plupart des méthodes de classifi-
cation d’image.

• Gestion du volume des données vidéo.

B.3 Contributions
Les contributions suivantes ont été faites tout au long des travaux sur cette thèse.
Ils sont liés soit à l’application de l’apprentissage profond dans le multimédia ou
à l’apprentissage actif et la propagation des étiquettes pour l’identification de la
personne.

• Méthode d’annotation multimédia efficace utilisant l’apprentissage actif
et la propagation d’étiquettes. Plusieurs stratégies d’échantillonnage dif-
férentes sont proposées. En outre, différentes sources d’information (vis-
ages, audio, noms écrits) sont utilisées. Des expériences ont montré l’utilité
de cette approche pour la formation des modèles des locuteurs. Les détails
sont présentés au chapitre 3.

• Une comparaison entre les caractéristiques classiques (non apprises) et les
caractéristiques basées sur l’apprentissage profond a été faite au chapitre
4. L’utilisation des modèles d’apprentissage profond comme extracteurs
de caractéristiques a été testée ainsi que le réglage fin dans le contexte
de l’indexation et de la récupération d’images. La fusion entre les traits
classiques et profonds a également été explorée.

• Une approche pour l’identification d’un locuteur basée sur un réseau de
neurones convolutif formé sur des spectrogrammes est présentée au chapitre
5. Plusieurs techniques de fusion différentes ont également été proposées
impliquant la sortie de la CNN et d’autres approches à la fine pointe de
l’identification des locuteurs.
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B.4 Apprentissage actif pour le multimédia
Le traitement de documents multimédias complexes tels que des vidéos peut être
problématique, surtout si aucune annotation n’est disponible. Contrairement,
par exemple, à l’annotation d’images, les vidéos d’étiquetage créent un ensemble
de défis nouveaux et uniques. Tout d’abord, la division d’une vidéo en un groupe
arbitraire de segments, qui sont en quelque sorte significatifs (par exemple, des
scènes individuelles, des plans, des emplacements, etc.) peut être problématique.
Deuxièmement, l’existence de multiples modalités rend la tâche dépendante de
l’utilisation finale des données annotées. Si l’objectif est de créer un jeu de don-
nées pouvant être utilisé pour la formation de modèles d’enceintes, le processus
d’annotation devrait se concentrer sur la segmentation vocale, qui peut différer de
la structure des données pour d’autres tâches (par exemple, annotation de visage,
d’objet ou de scène). L’ensemble des approches proposées dans ce chapitre tente
d’aborder ces problèmes dans une certaine mesure.

Dans un scénario typique impliquant des annotateurs humains, la tâche est
généralement binaire, c’est-à-dire lorsqu’on lui donne une image ou un échantillon
sonore, on doit déterminer si un concept donné (chaise, voiture, montagne, etc.)
est présent ou non. Une telle approche présente l’avantage d’être très efficace.
D’autre part, lorsqu’il s’agit de l’identification de la personne, l’annotant doit
fournir un nom spécifique si une personne donnée n’a pas été vue auparavant.
Cela pourrait prendre beaucoup de temps et être sujet à des erreurs si un moyen
d’écrire un nom n’est pas standardisé. Une partie importante de ces tâches peut
être réduite à la vérification des noms (ou au choix du nom propre de la liste des
candidats) si des étiquettes initiales automatiques et une procédure de propaga-
tion d’annotation sont utilisées. Dans un scénario de la vie réelle et lorsque le
système proposé est utilisé, l’annotateur humain serait présenté avec une seule
image ou une seule piste de parole qui représente un cluster correspondant.

Un cadre d’apprentissage actif (comme le montre la figue B.1) a été développé
qui incorpore la propagation d’étiquettes pour accélérer l’acquisition d’instances
étiquetées. Cela inclut l’évaluation de plusieurs modalités différentes (y compris
la parole et les visages) ainsi que l’utilisation de noms écrasés comme étiquettes
initiales. De plus, quatre stratégies de sélection différentes ont été évaluées. Selon
l’évaluation expérimentale, la meilleure approche consiste à sélectionner les plus
grands groupes avec la probabilité correspondant à leur taille et à utiliser les noms
superposés comme annotation initiale lorsqu’ils sont disponibles.

L’un des résultats les plus intéressants est l’effet positif de l’annotation in-
termodale. En annotant une modalité, l’annotation peut être propagée à une
autre (des visages aux voix par exemple), ce qui donne un ensemble rudimentaire
supplémentaire d’annotations.

Le cadre d’apprentissage actif proposé a également été testé dans le con-
texte de la formation sur le modèle d’identification des locuteurs. Les expéri-
ences montrent que des performances satisfaisantes peuvent être obtenues avec
seulement quelques étapes d’apprentissage actives et que l’annotation complète
de l’ensemble de données n’est pas nécessaire. Après environ 10 étapes avec
la meilleure stratégie de sélection, aucun gain significatif de performance n’est
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Figure B.1: Présentation du système.

observé.

B.5 L’apprentissage profond et ses applications
La comparaison a été faite entre l’utilisation de caractéristiques «traditionnelles»
et des fonctions apprises pour l’indexation sémantique de contenu de documents
vidéo. Une comparaison étendue a été faite de la performance des caractéristiques
apprises avec ceux d’ingénierie traditionnels ainsi que des combinaisons d’entre
eux. La comparaison a été effectuée dans le contexte de la tâche d’indexation
sémantique TRECVid.

Les résultats confirment ceux obtenus pour les images fixes: les caractéris-
tiques apprises à partir d’autres données d’apprentissage surpassent générale-
ment les caractéristiques techniques pour la reconnaissance de concept. De plus,
il semble que la formation directe des classificateurs KNN et MSVM utilisant ces
fonctionnalités fait mieux que de recycler partiellement le DCNN pour l’adapter
aux nouvelles données. Même si les caractéristiques apprises ont mieux fonctionné
que les caractéristiques techniques, la fusion des deux a encore une meilleure per-
formance, ce qui indique que les caractéristiques techniques sont toujours utiles,
du moins dans ce cas.

De plus, les méthodes d’amélioration basées sur le re-scoring temporel, sur le
retour conceptuel et sur l’utilisation de plusieurs trames par coup sont efficaces sur
les deux types de caractéristiques et sur leur combinaison. Enfin, la combinaison
des fonctions DCNN avec les classificateurs KNN et MSVM a été appliquée à la
tâche de classification d’objets VOC 2012 où elle obtient actuellement la meilleure
performance avec un MAP de 85,4 %.

Une autre application des réseaux neuronaux profonds a été étudiée, à savoir
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l’utilisation de réseaux neuronaux convolutionnels (CNN) pour l’identification
des locuteurs. Contrairement à l’approche classique de la plupart des méthodes
d’identification des locuteurs, qui sont basées sur les caractéristiques MFCC (ou
sur une version modifiée de celles-ci), ici le CNN est utilisé avec des spectro-
grammes bruts. Ceci nous permet de traiter le signal vocal dans sa représenta-
tion 2D, c’est-à-dire juste comme une image. Cela pourrait créer une opportunité
d’avoir un modèle CNN plus généralisé, qui pourrait être appliqué à un plus large
éventail de tâches liées au traitement du signal. De plus, un jeu de données stim-
ulant a été sélectionné, contenant à la fois du bruit et une quantité déséquilibrée
de données de haut-parleurs. Cette approche CNN est comparée à des méthodes
plus couramment utilisées. Malgré les performances CNN inférieures, l’utilisation
de ces fonctionnalités complémentaires profondes dans la fusion améliore l’état
de l’art.
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