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CHAPTER 1. INTRODUCTION

This thesis is in the context of non-local methods for image processing

and its major application is the restoration of noisy optical images. Nat-

ural images have redundant structures that can be taken into advantage

for restoration purposes. A popular and convenient way to deal with this

self-similarity is to cut the image into small patches. Theses patches can

therefore be grouped, compared, or filtered together. This thesis proposes

tools and frameworks for patch-based image denoising. In this introduction,

we first define the image denoising problem in section 1.1, then we propose

a precise framework for patch-based methods together with an overview of

existing methods in section 1.2. Finally, section 1.3 raises some questions

and difficulties that are addressed in this thesis and which represent its main

contribution.

1.1 The denoising problem

Optical image denoising has been studied since digital photography came

out. Despite the significant progress that has been made during the last

decades, it remains an active research topic. In this section, the digital

photography process and the noise model are explained. Then a general

formulation of the denoising problem is presented. Finally, the interest of

studying such a problem is discussed.

1.1.1 General process of digital photography

From the viewpoint of photography history, the development of digital

photography is rather recent. It was born in 1969 with the creation of the

first charge-coupled device (CCD) sensor. Ever since, devices have contin-

ued to improve and have reached very high resolution and quality. In this

section, we propose a brief description of how CCD sensors work and how

a digital image is formed. Then we identify errors sources – called noise –

that occur during this acquisition process.
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CHAPTER 1. INTRODUCTION

What is a digital image?

The process of digital photography starts with an optical device. The

light from the scene goes through a succession of lenses and is projected

onto the CCD sensor. This sensor transforms the light information into

electric information (see figure 1.1). To do so, the sensor is composed of

an array of capacitors that accumulate electric charge proportionally to the

light intensity. The charge is then converted into a voltage which is then

converted into digital data in order to be stored.

Figure 1.1 – The process of digital photography.

Note that if this process only captured light intensity, it would provide

only greyscale images. In order to create color images, a Bayer filter is

usually put over the CCD sensor. Each group of four pixels has now two

green, one blue and one red pixels (see figure 1.2).

Between the raw digital output of this process and the final developed

image, there are several operations including demosaicing, denoising, color

Figure 1.2 – The Bayer filter. Illustration from Wikipedia under GPL li-
cence.
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CHAPTER 1. INTRODUCTION

balance, etc. These operations can be done either automatically or man-

ually and are part of a process called computational photography. Since

in this work we focus on the denoising part, we propose in the following a

description of the noise formation.

The noise formation model

During the acquisition process, there are two major sources of noise in

the camera: the first one, called shot noise is due to the particle nature of

light and the second one, called readout noise or reset noise appears during

the readout process and is due to thermal agitation. In this manuscript,

we focus only on these two sources of noise. For a more involved noise

formation model see [2, 24].

The shot noise is due to the discrete nature of light. The number of

photons reaching the photo-sensor at a given pixel i, during an exposure

time τ , is modeled with a Poisson distribution of expected value Ciτ , where

Ci is the radiance level of the scene at pixel i. In other words, the number

p of photons hitting the sensor during the time τ is modeled with a random

variable Pi with probability mass function given by

P(Pi = p) = (Ciτ)p exp(−Ciτ)
p! . (1.1)

The thermal noise is created during the charge to voltage conversion.

This noise can be modeled for each photo-sensor with a random variable Ni

following a Gaussian distribution N (µi, σ2
i ).

This leads to an acquisition model of the form

Vi = αPi +Ni, (1.2)

where α is the camera gain and where Vi models the observed value at the

i-th pixel and where the underlying clean pixel is given by ui = αE[Pi] =
αCiτ . This is the standard Poisson-Gaussian noise formation model. If

the luminosity is high enough, the shot noise part is well approximated

with the Gaussian distribution N (Ciτ, Ciτ). Then, the Poisson-Gaussian

4



CHAPTER 1. INTRODUCTION

noise model (1.2) can be approximated with a simpler fully Gaussian model.

However, this approximation is not always valid. An alternative approach

is to perform a variance stabilization transformation such as the Anscombe

transform. In the case of Poisson-Gaussian noise, the generalized Anscombe

transform is commonly used. It transforms the Poisson-Gaussian acquisition

model (1.2) into the Gaussian model

Vi = ui + Ei, (1.3)

where Ei ∼ N (0, σ2). Note that if we exclude the case of overexposed scenes

where blooming phenomenons may appear, all the noise sources from differ-

ent pixels are independent. So we can consider that the (Ei)i are independent

and identically distributed (i.i.d.).

Finally, the model (1.3) is quite simple and convenient to use. How-

ever, one needs to invert the generalized Anscombe transform in order to

recover the image after its restoration. This has been studied for example

in [44] where an optimal inversion of the generalized Anscombe transform

is proposed.

1.1.2 Formulation of the denoising problem

The problem we are interested in is to recover the noise-free image from

its noisy observation. For the sake of simplicity, we consider the more conve-

nient Gaussian white noise model (1.3). This model is realistic in the sense

that with a camera calibration (see for example [2]), all the parameters

from the noise formation can be estimated and then an accurate variance

stabilization can be performed. Here, we propose the two mathematical

formulations of the simplified denoising problem that we are considering in

this thesis.
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CHAPTER 1. INTRODUCTION

On the image

The general formulation of the denoising problem is to find the under-

lying clean image u ∈ Rn from the observed noisy image v such that

v = u+ ε, (1.4)

where ε is a realization of a random vector E = (Ei)i that models the

noise. Since we considered in the noise model (1.3) that E1, . . . , En were i.i.d.

following N (0, σ2), then E is a Gaussian vector that follows the distribution

N (0, σ2In). In this thesis, we always consider this additive white Gaussian

noise (AWGN) model.

A way of solving the problem (1.4) is to find an estimator û = f(v)
computed from the observed data that minimizes ‖û− u‖2 = ‖f(v)− u‖2.

Unfortunately, such an estimator would be u itself and is not reachable in

practice. Therefore, without any a priori information on the underlying

image u or on the form of the function f we cannot solve this problem

properly. Section 1.2 presents different ways of adding a priori information

in order to regularize the problem.

On the patches

In the last decade, patch-based methods have created a new paradigm in

image processing. This paradigm has led to very significant improvements

both for classical image restoration problems (denoising, inpainting, interpo-

lation) or for image synthesis and editing. These methods represent images

by a set of local neighborhoods called patches that can therefore be grouped,

compared and filtered together, making them collaborate regardless of their

spatial position in the image.

Classically, we propose to define the patches through linear operators

that extract them from the image. Let us introduce the operator Pi : Rn →
Rp=s×s which extracts the i-th patch of size s × s from an image for i ∈
{1, . . . , n} (Figure 1.3). The denoising problem (1.4) rewritten patch-wise

6



CHAPTER 1. INTRODUCTION

Figure 1.3 – Patch extraction and role of the operator Pi.

becomes

∀i ∈ {1, . . . , n} Piv = Piu+ Piε. (1.5)

In the case of additive white Gaussian noise (AWGN), Piε is a realization

of PiE ∼ N (0, Piσ2InP T
i ), that is PiE ∼ N (0, σ2Ip). In the following we

always use the notation yi
def= Piv, xi

def= Piu and ei
def= Piε and we consider

the AWGN case. The model for patches is now:

∀i ∈ {1, . . . , n} yi = xi + ei, (1.6)

where ei are realizations of random vectors Ei ∼ N (0, σ2Ip). Note that the

random vectors Ei are i.i.d if we consider only non-overlapping patches. On

the contrary, for two overlapping patches in position i and j, Ei and Ej are

not independent. In the literature, the Ei are usually still considered i.i.d.,

even if this hypothesis is completely false for overlapping patches. In this

manuscript, we also impose this independence hypothesis even if it causes

issues in practice, in particular during the aggregation process.

The advantage of this patch based formulation over the image formu-

lation within the statistical framework resides in the fact that putting a

model on the patches is generally more convenient and more relevant. This

question is discussed in section 1.2 through the presentation of the existing

denoising methods.

7



CHAPTER 1. INTRODUCTION

1.1.3 Is denoising dead?

The image denoising problem has been widely studied in the last forty

years. Nowadays, denoising algorithms are present in all photographic de-

vices. More recently, new denoising challenges have appeared, for instance

with the apparition of cameras in smartphones, or high resolution sensors

in satellites. Indeed, with the reduction of the optical chain or the minia-

turization of the sensors, the post-processing part has become crucial. In

the meantime, considerable progress has been made and people started to

study lower bounds on denoising methods and questions about the margin

for improvement appeared for instance in [40] and [13].

On the interest of noise reduction

While image denoising has undergone considerable progress in the last

fifteen years, it remains a real challenge in numerous situations such as

low-light or high ISO photography. Figure 1.4 illustrates that by showing

different images taken with a modern camera at different ISO settings.

Denoising methods are also useful for regularization purposes, for exam-

ple as a pre-processing step for another image processing problem such as

image segmentation, feature extraction, color or style transfer, etc. Denois-

ing is also the simplest inverse problem in imaging and many methods devel-

oped for denoising purposes can be extended to other inverse problems such

as deconvolution, missing pixels or super resolution, thanks, for instance

to plug-and-play frameworks [66, 69]. Indeed, a more general restoration

problem can be written

v = Φu+ ε, (1.7)

where Φ is a degradation operator, for example a blurring operator or a

mask of missing pixels. In the conclusion, we will discuss some extensions

of the denoising method proposed in this thesis.

8



CHAPTER 1. INTRODUCTION

Figure 1.4 – Real noise in images. The same scene shot at different ISO
settings but with constant exposure. From left to right and top to bottom
, 200 ISO, 800 ISO, 3200 ISO, 6400 ISO, 12800 ISO and 25600 ISO. Lower
ISOs are compensated by longer exposures to achieve an equivalent bright-
ness level. In practice larger ISOs are necessary in low light and/or highly
dynamic scenes which would result in motion blur with longer exposures.
Images credit Julie Delon.
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CHAPTER 1. INTRODUCTION

Can we perform better than existing methods?

Since we modeled the noise with a random vector E , the noisy image

can also be modeled with a random vector V . The clean image u is seen

as a parameter of the distribution of V , which has to be estimated. If we

denote by û an estimate of u, the natural tool for evaluating the restoration

quality is the mean square error (MSE), defined at pixel i as

MSE(ûi) = E
[
(ûi − ui)2

]
, (1.8)

which can be decomposed into the sum of the variance and the square of

the bias:

MSE(ûi) = var(ûi) + bias 2(ûi), (1.9)

where we define the variance of the estimator as

var(ûi) = E
[
(ûi − E(ûi))2

]
, (1.10)

and the bias of the estimator as

bias(ûi) = E(ûi)− ui. (1.11)

With this decomposition, and considering unbiased estimators, the Cramér-

Rao bound provides a lower bound for the MSE. Such lower bounds have

been studied for patch methods in [40, 13] suggesting a small margin for

improvement and that denoising might be a dead issue. However, these

bounds should not be viewed with pessimism. Indeed, the bound derived

in [40] relies on a dead-leaves model for the image and the bound depends

on the leaves’ size. We show in chapter 2 that global methods may break

this lower bound if a suitable statistical model for natural images can be

constructed. The discussions about these bounds also emphasize that for

flat regions, the use of bigger patches can strongly enhance the denoising

result whereas for complex structured areas this does not hold.

From another perspective, Talebi and Milanfar introduced in [63] a

denoising algorithm called global denoising and they proposed in [64] an

10



CHAPTER 1. INTRODUCTION

asymptotic study of this global denoising in the oracle case. They concluded

that the MSE of the global denoising estimator is decreasing towards zero

when the image size goes to infinity. This suggests that denoising is a re-

search topic that is still alive. Lastly, with the emergence of deep learning

in image processing, new denoising methods using neural networks seems to

outperform all the previous existing methods, in terms of PSNR.

1.2 Overview of denoising methods

As mentioned earlier, denoising has a long story and the literature is full

of methods introduced in different contexts and with different paradigms.

Here we propose an overview of selected popular methods through an unified

point of view. We do not propose an exhaustive overview of the denoising

methods but we try to establish links between some popular methods in

order to better understand the crucial points. Section 1.2.1 proposes a study

of the global approaches, then section 1.2.2 proposes different visions of the

Non-Local means method. Section 1.2.3 introduces the diagonal estimation

framework and finally, section 1.2.4 is devoted to the study of patch-based

methods.

1.2.1 The global approach

The natural framework that appears with the modeling of noise is statis-

tical. Indeed, the noise being modeled with a random vector E , the observed

image is thus modeled with a random vector V that follows a Gaussian dis-

tribution of mean the clean image u and covariance matrix σ2In. With no

other hypothesis, the Maximum Likelihood Estimate (MLE) of the under-

lying image seen as a parameter is given by

ûMLE = argmax
u

exp
(
− 1

2σ2‖u− v‖
2
2

)
= v. (1.12)

Therefore, adding a priori information is necessary. The following results

are from the Bayesian estimation theory. Let us assume that u is modeled

11



CHAPTER 1. INTRODUCTION

with a random vector U which has a prior distribution π. The Bayes theorem

yields the posterior distribution

fU |V (u|v) = P(U = u|V = v) = P(V = v|U = u)P(U = u)
P(V = v) . (1.13)

This posterior distribution contains the knowledge about U under the prior

π. This way, we can derive estimators for U . If we consider an estimator

Û(V ) of U and the quadratic loss function Q(Û , U) = ‖Û − U‖2, then the

Bayes risk is the Mean Squared Error defined as

E
[
‖Û − U‖2

]
. (1.14)

Using this risk, the Bayes estimate of U at u – which is the best estimate

for the risk defined above – is the conditional expectation, which is also the

mean of the posterior distribution :

ûBayes = E[U |V = v]. (1.15)

This estimator is called the Minimum Mean Square Error (MMSE) estimate.

In practice, computing this conditional expectation is often complex, and

it is classical to compute instead the linear function of Y minimizing the

quadratic risk, i.e. the linear estimator DV + α minimizing the quadratic

risk

E[‖DV + α− U‖2]. (1.16)

This provides the linear MMSE estimate, also called the Wiener estimate

ûWiener = D̂v + α̂. (1.17)

where (
D̂, α̂

)
= argmin

(D,α)
E[‖DV + α− U‖2]. (1.18)

12



CHAPTER 1. INTRODUCTION

The advantage of this estimator is that if the different moments of order 1

and 2 of the signal and noise exist, then

D̂ = ΣU,V Σ−1
V and α̂ = E[U ]− ΣU,V Σ−1

V E[V ], (1.19)

where

ΣU,V
def= E

[
(U − E[U ])(V − E[V ])T

]
(1.20)

ΣV
def= E

[
(V − E[V ])(V − E[V ])T

]
. (1.21)

In the considered AWGN case and because U and E are independent, the

quantities become ΣU,V = ΣU , E[V ] = E[U ] and ΣV = ΣU + σ2I where ΣU

is the covariance matrix of the random vector U . So the Wiener estimate

becomes

ûWiener = E[U ] + ΣU(ΣU + σ2I)−1(v − E[U ]). (1.22)

In the image processing literature, a popular way of reconstructing u is to

compute the maximum of the a posteriori distribution (MAP):

ûMAP = argmax
u

fU |V (u|v). (1.23)

This estimator is widely used for its convenience. Indeed, using the loga-

rithm function, the Bayes theorem and the noise model we can write

ûMAP = argmax
u

fU |V (u|v)

= argmin
u

− log
(
fV |U(v|u)π(u)

fV (v)

)

= argmin
u

− log
(
fV |U(v|u)

)
− log (π(u)) + log (fV (v))

= argmin
u

‖u− v‖2

σ2 − log (π(u)) .

Note that with π being the uniform distribution on the image range, we re-

cover the MLE estimator and this corresponds to not imposing an a priori

at all on the image. This MAP formulation can be also seen as a varia-
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CHAPTER 1. INTRODUCTION

tional method with a data fidelity term ‖u− v‖2
2 and a regularization term

log (π(u)).
The main challenge with this formulation, is to find a good prior for the

clean image u. In the majority of the cases, the prior is used more as a

regularization term. In the literature, many regularization terms have been

studied and the most popular one is the total variation (TV) [57]. Such

a prior tends to reduce the variance of the estimate but at the cost of an

increased bias. In [26], Geman and Geman use Markov random fields models

as image priors for several applications including image restoration. Prior

that performs better would take into account the local texture of the image

in order to reduce the bias. However, in this case the model parameters

would have to be inferred from the image. That is not realistic since we

have only one observation of the noisy image. A way of having multiple

observations is to consider the model on the patches instead of the image.

The following paragraph presents the non-local means algorithm that made

the use of patches so popular.

1.2.2 NL-mean as a global approach

A popular denoising approach that made the connection between the

global world and the patch world was the Non-Local means [10]. At its

time, this method marked a significant step in the history of denoising.

Since then, patch methods have become widespread and the study of the

structure of patch spaces has become an area of interest. The basic idea

behind the Non-Local Means is to average pixels that are similar in the

sense that they have a similar neighborhood represented by a patch. The

estimate for each pixel i is expressed as

ûiNLM =
∑n
j=1Kijvj∑n
j=1Kij

, (1.24)

with K being the exponential kernel defined as

Kij = exp
(
−1

2(Piv − Pjv)2
)
. (1.25)
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This algorithm can be seen from different points of view, in particular (1.24)

can be seen as the solution of the generalized least square problem [49]

ûiNLM = argmin
ui

n∑

j=1
(vj − ui)2Kij. (1.26)

The formulation (1.24) can also be rewritten as

ûNLM = Wv = D−1Kv, (1.27)

where D is a diagonal matrix with coefficients the sum of the columns of K.

This formulation leads to a graph interpretation: if we consider the pixels

to be vertices of a graph and Kij be the weight on the edge between pixel i

and pixel j, then the graph Laplacian L of this graph is related to W with

L =
√
D(W − I)

√
D−1.

Within the previous statistical framework, the NLM method can also be

seen as a non-parametric estimation. Indeed if we consider that the image

is a function of the spatial position zi and seen as a regression function as

∀i ∈ 1, . . . , n vi = u(zi) + εi, (1.28)

then, the Nadaraya-Watson kernel estimator [51, 72] for a given kernel K

with smoothing parameter h of the regression function is

ûNW (z) =
∑n
j=1K( z−zj

h
)vj

∑n
j=1 K( z−zj

h
)
. (1.29)

This last formulation includes the Gaussian filter, the Yaroslavsky filter [76]

and the NL-mean filter [11]. It has been studied in [61].

1.2.3 Diagonal estimation

Another popular method for signal denoising is the diagonal estimation.

The idea behind this is to project the image into a new basis – generally

considered orthogonal – and then to perform a filtering in this basis. In
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other words, if we consider an orthogonal basis V = (V1 · · ·Vn) and λi(v)
the filtering coefficient of the i-th value in the basis, then a diagonal estimate

of u is given by

ûdiag =
n∑

i=1
λi(v)〈v, Vi〉Vi = V Λ(u)V Tv, (1.30)

where we denote by 〈·, ·〉 the canonical scalar product on Rn and where

Λ(u) = diag(λi(u))i. Generally, the λi(u) are chosen with a thresholding

strategy. This kind of estimates has been widely used in signal denoising

with V being the Fourier or DCT basis or more recently with Wavelet bases

[21, 20].

1.2.4 Patch-wise approaches

As we mentioned earlier, considering a model on the patches instead of

the image allows us to perform statistical inference from a single image and

to deal with simpler prior models. Indeed, if we consider that the clean

patches x1, . . . , xn are samples from a random vector X with a probabil-

ity distribution π(x; θ), then we can infer the parameters θ from the data

x1, . . . , xn. Moreover, with fixed parameters θ, we can compute the statis-

tical estimates from the previous section patch-wise:

x̂Bayes = E[X|Y = y], (1.31)

x̂Wiener = D̂y + α̂, (1.32)

x̂MAP = argmin
x

‖x− y‖2

σ2 − log (π(x)) . (1.33)

For instance, if we consider a prior model on X that admits first and

second order moments µX and ΣX , then the Wiener estimate for the i-th

patch can be expressed as

x̂iWiener = µX + ΣX(ΣX + σ2Ip)−1(yi − µX). (1.34)

In this case, the random vector Y representing the observed data also has
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first and second order moments given by µY = µX and ΣY = ΣX + σ2Ip.
Since we have a set of observed data y1, . . . , yn, we can infer these moments

by maximum likelihood estimation:

(
µ̂Y , Σ̂Y

)
= θ̂ = argmax

θ

n∏

i=1
p (yi; θ) , (1.35)

that gives for µY and ΣY the sample mean and the sample covariance matrix.

This yields the estimates for the moments of X:

µ̂X = 1
n

n∑

i=1
yi and Σ̂X = 1

n

n∑

i=1
(yi − µ̂X)(yi − µ̂X)T − σ2Ip. (1.36)

The Wiener estimate of the i-th patch is then

x̂iWiener = µ̂X + Σ̂X(Σ̂X + σ2Ip)−1(yi − µ̂X). (1.37)

This strategy is for instance the one used in the NL-Bayes denoising method

[38]. This estimate can also be seen from the least squares point of view. In-

deed, we can search for a linear transformation that maps the observed noisy

patches (y1, . . . , yn) to the clean patches (x1, . . . , xn) in the least squares

sense. That is, finding A ∈Mp(R) and b ∈ Rp such that

n∑

i=1
‖xi − (Ayi + b)‖2

2 (1.38)

is minimal. A straightforward minimization of the previous convex quantity

yields the following relations for the estimates Â and b̂:

Â

(
n∑

i=1
(yi − ȳ)(yi − ȳ)T

)
=

n∑

i=1
(xi − x̄)(yi − ȳ)T , (1.39)

and

b̂ = x̄− Âȳ, (1.40)

where x̄ and ȳ are the sample means of {x1, . . . , xn} and {y1, . . . , yn}. If

there are enough samples for Σ̄Y
def= ∑n

i=1(yi − ȳ)(yi − ȳ)T to be invertible,
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and denoting Σ̄XY
def= ∑n

i=1(xi − x̄)(yi − ȳ)T then we obtain

x̂i = x̄+ Σ̄XY Σ̄−1
Y (yi − ȳ). (1.41)

Since the noise model permits to approach Σ̄XY with Σ̄Y − σ2I and x̄ with

ȳ, this formulation yields the same estimate as the Wiener estimate with

the model learned on the patches.

Many recent approaches in patch-based denoising rely on this Bayesian

formulation of the denoising problem, using local or global statistical priors

for the distribution of each patch. As an example, here is a non exhaustive

list of methods that use priors on patches for denoising.

— The Non-Local Bayes method [35] proposes to model locally the

patches with Gaussian priors and denoise them with a MAP, which

is actually the MMSE in this case, as we show in chapter 3.

— The PLE method introduced in [77] proposes to model the patches

with a Mixture of Gaussian and then propose an algorithm they call

map-EM to successively learn the model and denoise the patches.

— In [65], a Gaussian Mixture Model (GMM) is learned on the patchs

with an EM algorithm and the patches are denoised using the MMSE.

— The SURE-PLE method from [71] also learns a GMM on the patches,

but they propose a Gaussian Factor Mixture in order to reduce the

dimension of the covariance matrices.

— The EPLL method [79] also proposes to model patches with a GMM,

but in this case, the model is learned on an external database. The

denoising is formulated as a variational problem, but we show in

chapter 5 that it can be seen as a weighted aggregation of the MMSE

estimate for each patch.

— In [56], they define priors on the image as Markov random fields

where the clique of the Markov field are the patches.

— In order to regularize the model, [1] proposed the use of hyperpriors.

— More recently, [17] proposes to use Generalized Gaussian mixture

models for the patch priors.

Finally, many of the literature methods are very similar to each other,

18



CHAPTER 1. INTRODUCTION

and can be viewed through the same framework. In this thesis, we propose

in chapter 4 a patch-based denoising method that is also based on this

framework.

1.3 Raised issues and main contributions

Throughout this introduction, we have presented a statistical framework

that seems well suited to the problem we are trying to solve. Doing so, we

have raised some unanswered questions that we will address in this thesis.

In the following, we present the main contributions of this thesis.

1.3.1 Error bound: can denoising be optimal?

As we mentioned earlier, the natural tool for evaluating the restoration

quality is the mean square error (MSE). Lower bounds of this error have

been studied for patch methods, suggesting a small margin of improvement.

More recently, the paper [64] claimed that “Global denoising is asymptoti-

cally optimal” in the oracle case when the image size tends towards infinity.

Contribution 1: In chapter 2, global denoising is reformulated with the

classical formalism of diagonal estimation and its asymptotic behaviour is

studied in the oracle case. Precise conditions on both the image and the

global filter are introduced to ensure and quantify the convergence of the

MSE. A clear distinction between the two different levels of oracle used in

this framework is made in order to study the extension of these results to

the non-oracle case.

This work has been published in the Journal of Mathematical Imaging

and Vision under the title “Demystifying the asymptotic behavior of global

denoising” [31].

1.3.2 Gaussian prior

Th use of Gaussian or mixture of Gaussian priors have been widely used

on patches in the Bayesian framework described in section 1.2. Although
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they are primarily used for convenience of calculation, it is interesting to

understand what information we can expect to encode with them.

Contribution 2: Chapter 3 is dedicated to the study of Gaussian priors

for patch-based image denoising. Here, we propose to raise the following

questions:

— Why are Gaussian priors so widely used?

— What information do they encode about the image?

In a Bayesian framework, such priors on patches can be used for instance to

estimate a clean patch from its noisy version, via classical estimators such as

the conditional expectation or the maximum a posteriori. As we will recall,

in the case of Gaussian white noise, simply assuming Gaussian (or Mixture

of Gaussians) priors on patches leads to very simple closed-form expressions

for some of these estimators. Nevertheless, the convenience of such models

should not prevail over their relevance. For this reason, we also discuss how

these models represent patches and what kind of information they encode.

The end of the chapter focuses on the different ways in which these models

can be learned on real data. This stage is particularly challenging because of

the curse of dimensionality. Through these different questions, we compare

and connect several denoising methods using this framework.

This whole chapter will be published as a chapter in a book on denois-

ing [19].

1.3.3 High dimensional space estimation

As we generally want to use patches that are large enough, typically of

size 10×10, the patch-space is a high dimensional space. Therefore it suffers

from the curse of dimensionality. This implies problems for inferring model

parameters on patches. In the literature, this difficulty is often worked

around or omitted.

Contribution 3: In chapter 4, we propose to use a dimensionality reduc-

tion inside the statistical model to deal with this problem. We propose an
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unsupervised learning of a probabilistic high-dimensional mixture models

on the noisy patches. The model, named HDMI, proposes a full modeling

of the process that is supposed to have generated the noisy patches. To

overcome the potential estimation problems due to the high dimension of

the patches, the HDMI model adopts a parsimonious modeling which as-

sumes that the data live in group-specific subspaces of low dimensionalities.

This parsimonious modeling allows in turn to obtain a numerically stable

computation of the conditional expectation of the image that is applied to

denoise. The use of such a model also permits to rely on model selection

tools, such as BIC, to automatically determine the intrinsic dimensions of

the subspaces and the variance of the noise. This yields a blind denoising

algorithm that works well, both when the noise level is known and unknown.

This work has been submitted to a journal under the title “ High-

Dimensional Mixture Models for Unsupervised Image Denoising (HDMI)”

[33] and a short version in french has been published in the GRETSI con-

ference [32].

1.3.4 The aggregation issue

Most methods use all the overlapping patches in the image, so each

pixel belongs to several patches. Thus, several estimators are obtained

for each pixel. These estimators must therefore be aggregated. However,

the overlap implies that the patches are not independent. Consequently,

uniform aggregation does not guarantee a better estimator for each pixel.

Work in progress: The chapter 5 explores different ways of aggregating

the patches together. A framework that expresses the patch aggregation

under the form of a least squares problem is proposed and a link is made

with the EPLL method.
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Chapter 2

An asymptotic study of global

denoising

Abstract

In this chapter, we revisit the global denoising framework recently

introduced by Talebi and Milanfar. We analyze the asymptotic behavior of

its mean-squared error restoration performance in the oracle case when the

image size tends to infinity. We introduce precise conditions on both the

image and the global filter to ensure and quantify this convergence. We

also make a clear distinction between two different levels of oracle that are

used in that framework. By reformulating global denoising with the

classical formalism of diagonal estimation, we conclude that the

second-level oracle can be avoided by using Donoho and Johnstone’s

theorem, whereas the first-level oracle is mostly required in the sequel. We

also discuss open issues concerning the most challenging aspect, namely

the extension of these results to the case where neither oracle is required.

23



CHAPTER 2. AN ASYMPTOTIC STUDY OF GLOBAL DENOISING

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . 25

2.2 Global filtering revisited . . . . . . . . . . . . . . 27

2.2.1 Diagonal estimation : a short reminder . . . . . 27

2.2.2 Global filtering in this context . . . . . . . . . . 32

2.3 Asymptotic study . . . . . . . . . . . . . . . . . . 36

2.3.1 Upper bound on the optimal MSE . . . . . . . . 37

2.3.2 Proposed models . . . . . . . . . . . . . . . . . . 39

2.3.3 Conditions of convergence . . . . . . . . . . . . 43

2.3.4 Special cases . . . . . . . . . . . . . . . . . . . . 48

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . 50

2.4.1 Estimating model parameters (C, γ, α) . . . . . 52

2.4.2 Experimental results . . . . . . . . . . . . . . . . 53

2.4.3 Discussion about specific cases . . . . . . . . . . 63

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 66

24



CHAPTER 2. AN ASYMPTOTIC STUDY OF GLOBAL DENOISING

2.1 Introduction

As explained in the introduction of this manuscript, most leading meth-

ods in image denoising are patch-based [15, 35, 77, 55]. These extremely

popular approaches have been adopted in a huge range of applications.

Their underlying assumption being that similar patches can be seen as inde-

pendent realizations of the same distribution, the performance of a denoising

algorithm should increase when the number of realization increases. Theo-

retically, this should lead to a form of asymptotic optimality when the image

size tends toward infinity. Consistency results, under stationnarity hypothe-

ses, have been shown for instance for the DUDE algorithm [52, 73] and for

the Non Local Means [11]. Now, despite their non-local nature, most of

these algorithms limit the search area for similar patches to a medium-sized

neighborhood around each pixel. Doing otherwise would confront them to a

dilemma [22]. A larger search size means potentially more similar patches,

reducing the variance of the denoising estimator. However increasing the

search area in natural images also tends to increase the risk to consider

dissimilar patches as similar, thus increasing the bias of the denoising esti-

mator. Most authors found the best compromise in relatively small search

areas. As a consequence, increasing the image size does not necessarily im-

prove denoising performance. This observation was supported by extensive

experimentation in [41], who showed that even if an infinite database of nat-

ural image examples was available, non-local denoising performance would

attain an asymptotic performance that does not tend to infinite signal to

noise ratio. Non-local methods seemed to be doomed to fundamental limits

that could not be overcome.

In 2012, Talebi and Milanfar [63, 62] proposed a truly global denoising

approach where each pixel is used to denoise every other pixel. They claimed

in a subsequent paper [64] that this approach is asymptotically optimal, in

the sense that “the mean-squared error monotonically decays with increasing

image size”, regardless of image content, at least in an oracle scenario. In

this context, this chapter raises again the question: can denoising methods

be fixed in such a way that they attain infinite PSNR when given an infinite
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number of examples (or an image of infinite size) ? They opened the debate

by showing that given an oracle, such an asymptotic performance seems to

be possible. However two questions are still left open:

1. What conditions has to satisfy an infinite image for the asymptotic

result to hold?

2. Do these conclusions extend to the non-oracle case?

This chapter tries to give a precise answer to the first question, and some

elements of response to the second one. To do so, we revisit the theory of

diagonal estimation (refered to as Wiener filtering in Talebi’s paper) that

was first developed for wavelet bases. Considering images as vectors of RN ,

a diagonal estimator û = Wv is a non linear estimator of u that is diagonal

in a given orthonormal basis V = {Vi}i=1,...,N , which means that it can be

written

û = Wv = V ΛV Tv =
N∑

k=1
λk(v) · 〈v, Vk〉 · Vk, (2.1)

where Λ is a diagonal matrix whose kth coefficient λk(v) depends on the

observation v (otherwise, the resulting estimator would be linear). The

diagonal estimation framework is widely used in image processing: the basis

V is often chosen as a Fourier or a wavelet basis [21, 20, 45], or can for

instance be built up as an orthonormal dictionnary from the image itself [53].

The success of diagonal estimation stems partly from the fact that if the

image u is sparse in the orthonormal basis V , these “diagonal estimators

are nearly optimal among all non linear estimators”, as stated in [45]. The

global denoising formalism introduced by Talebi and Milanfar [63, 62] can

be reinterpreted in this context. Indeed, the idea of global denoising boils

down to build V as an orthonormal basis that diagonalizes a given denoising

filter (such as NLmeans [11]) computed on v. In the context of diagonal

estimation, we will derive a novel asymptotic study of global denoising.

Basically, we introduce precise conditions both on the image and the global

filter to ensure that the mean-squared error

MSE(û|u) def= 1
N

E(‖û− u‖2), (2.2)
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for global image denoising decays toward zero for increasing image size. We

will see that classical results of the diagonal estimation theory also permit to

envision possible answers to the question of the extension of global denoising

to the non oracle case.

The chapter is organized as follows. In Section 2.2 we provide a short

reminder on the theory of diagonal estimation in an orthonormal basis.

The first contribution of this chapter is to revisit this framework to present

the global denoising formalism and to put it into perspective relatively to

classical diagonal estimation results. The second and main contribution

is the novel asymptotic study of global denoising presented in Section 2.3.

Finally, in Section 2.4, we also discuss and show experiments on several

open issues, including the extension of these results to the non-oracle case.

2.2 Global filtering revisited

2.2.1 Diagonal estimation : a short reminder

We recall here the basic properties of a diagonal estimator in terms of

quadratic risk minimization, before revisiting the theory of global denoising

in this context.

Quadratic risk

Assume that W is deterministic, i.e. that the coefficients λk are inde-

pendent of the random noise ε and only rely on the unknown image u. In

this case, the mean quadratic risk or mean squared error (MSE) of the diag-

onal estimator given by Equation (2.1) can be easily derived. Let us denote

by b the projection of the unknown image u in the orthogonal basis V , that

is b = V Tu. The MSE between u and û can be written as a function of

the eigenvalues (λk) and the projection b, as a sum of a variance and bias

terms.
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Proposition 1 Let û = V ΛV Tv, with V ΛV T a deterministic filter. Then,

MSE(û|u) = 1
N

N∑

j=1

(
(1− λj)2b2

j + σ2λ2
j

)
. (2.3)

Proof 1 (Proof of Proposition 1)

N ·MSE(û|u) def= E(‖û− u‖2)
= E(‖V ΛV Tv − V ΛV Tu‖2)︸ ︷︷ ︸

variance term

+ E(‖V ΛV Tu− u‖2)︸ ︷︷ ︸
bias term

= E(‖V ΛV T ε‖2) + E(‖(Λ− IN)V Tu‖2)

= (
N∑

i=1
λ2
i )σ2 +

N∑

i=1
(λi − 1)2 E[(V Tu)2

i ].

Observe that the last equality holds only because the filter W = V ΛV T

does not depend on the noise ε.

Oracle quadratic risk minimization

Minimization of the MSE w.r.t. the {λi}’s For a fixed orthonormal

basis V , the previous MSE is a convex function of the eigenvalues λi, and

reaches its global minimum for

λ?i = b2
i

σ2 + b2
i

. (2.4)

The corresponding minimal value of the MSE is

MSE? := MSE(λ?) = σ2

N

N∑

j=1
λ?j = σ2

N

N∑

j=1

b2
i

σ2 + b2
i

. (2.5)

This formula shares similarities with Wiener filters, with the difference that

the coordinates {bi} are not expected values but actually depend on the

oracle image u, which is assumed to be deterministic. This oracle MSE

cannot be attained in practice but only represents a lower bound for the
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quadratic risk of diagonal estimators in the basis V . However, it can be

shown that some well chosen thresholding estimators have a risk which is

not too far from the oracle one [45].

Minimization w.r.t. the {bi}’s The previous oracle diagonal estimation

is done in a given basis V , which could for instance be chosen as a Discrete

Cosine Transform basis or a Wavelet basis. Obviously, the final estimation

strongly depends on this choice, and one might wonder in practice how to

optimize the selection of the basis V for a given image u. The quantity

MSE? from equation (2.5) depends only on b = V Tu, the projection of the

oracle image u on the basis V . The following Proposition describes the

form of the b minimizing (2.5). The matrix V T being orthonormal, the

minimization is constrained by ‖b‖2 = ‖u‖2.

Proposition 2 Minimizing b 7→ MSE?(b) under the constraint ‖b‖2 = ‖u‖2

provides the following 2N global minimums

b? = ±‖u‖2ei

where ei is the i-th vector of RN basis.

Proof 2 (Proof of Proposition 2) Let define the function Ψ by

Ψ(b, µ) = σ2

N

N∑

j=1

b2
i

σ2 + b2
i

− µ



N∑

i=j
b2
j − ‖u‖2

2


 ,

where µ is a Lagrange multiplier.

The derivation with respect to the bi yields

∂biψ(b, µ) = 2σ4

N

bi
(σ2 + b2

i )2 − 2µbi, (2.6)

and the derivation w.r.t. µ

∂µψ(b, µ) = ‖u‖2
2 −

N∑

j=1
b2
j . (2.7)
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Setting (2.7) to zero implies the existence of i0 such that bi0 6= 0 (otherwise

‖u‖2
2 would be zero). Then, setting (2.6) to zero yields for i0

µ = σ4

N

1
(σ2 + b2

i0)2 ,

and for each i 6= i0

bi
σ4

N

[
(σ2 + b2

i0)2 − (σ2 + b2
i )2

(σ2 + b2
i0)2(σ2 + b2

i )2

]
= 0, (2.8)

which implies bi = 0 or b2
i = b2

i0. Using (2.7) again gives the following

generic form for the critical points of Ψ

bi =





±
√
‖u‖2

2
#I if i ∈ I

0 otherwise,

where I ∈ P ({1, . . . , N}) \ ∅ is the support of b.

Let b be a critical point and I its support, we have

MSE ?(b) = σ2

N

‖u‖2
2

σ2 + ‖u‖2
2

#I

> σ2

N

‖u‖2
2

σ2 + ‖u‖2
2

where the equality occurs if and only if #I = 1. Thus, among all critical

points, the minimal ones are the b? = ±‖u‖2ei.
Finally, they are also global minima for Ψ as we have for all b

MSE ?(b) > σ2

N

∑
b2
j

σ2 + ‖u‖2
2

= σ2

N

‖u‖2
2

σ2 + ‖u‖2
2

= MSE ?(b?).

The previous Proposition means that an optimal basis V? should be such

that V T
? u = ‖u‖2ei, for a given i in {1, . . . , N}. It follows that V? should be

composed of the vector u
‖u‖2

and simply completed in an orthonormal basis.

The resulting oracle filter would be

(W?)ij = ui
uj

σ2 + ‖u‖2
2
. (2.9)
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(a) (b) (c) (d)

MSE = 167 MSE = 56

MSE = 90 MSE = 34

Figure 2.1 – (a) Original images u, (b) Noisy images v with σ = 15, (c)
Images v denoised by hard-thresholding in a DCT basis with a threshold
T = σ

√
2 lnN , (d) Images v denoised by diagonal estimation with the

oracle λ∗i in a DCT basis.

Again, even if this filter is not reachable since it depends on the unknown

oracle u, this results strongly support the intuitive idea that ideal bases

should provide a sparse representation of u. In practice, diagonal estimation

should be applied in a well-adapted basis for each image, typically a basis V

that provides a fast decrease of the {bj}. The principle of global filtering [63],

described in Section 2.2, is to rely on classical non linear filters from the

denoising literature to choose V .

Non-oracle case

The oracle u and its projection b = V Tu being unavailable, we need a

way to approximate the previous estimation from the knowledge of b̃ = V Tv.

A classical solution is to consider (hard or soft) thresholding estimators in

a given orthonormal basis V , in order to discard irrelevant components. As

illustrated by Figure 2.1, the result of hard thresholding is far from being
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as satisfying as the oracle estimation (2.4), at least on a Discrete Cosine

Basis. However, for a specific value of the threshold T , the mean squared

error obtained with a hard or soft thresholding can still be controlled by the

one of the oracle attenuation (2.4).

Theorem 1 (Donoho-Johnstone [45, 21]) Let T = σ
√

2 logN . The

MSE provided by the thresholded eigenvalues λth (with hard or soft thresh-

olding) satisfies for N ≥ 4

MSE(λth) 6 (2 lnN + 1)
(
σ2

N
+ 2 MSE(λ?)

)
.

Proofs of this theorem can be found in [21] or [45]. It helps to predict

what kind of images can be well denoised by hard thresholding in a given

basis. For a DCT basis for instance, we can expect a lower oracle MSE(λ?)
for smoother images, and the same property should hold for thresholding.

This is illustrated by Figure 2.1, which shows two noisy images and their

respective denoised versions by oracle attenuation and hard thresholding.

At the same noise level, the second image has a better oracle result (d) than

the first one, and this is also true for the hard thresholding result (c). We

can also conclude that a basis V nearly optimal for the oracle should also be

a good choice for the thresholding estimation. Observe that the threshold

T = σ
√

2 lnN is not really optimal in practice. A good way to fix T for soft

thresholding is to resort to the SURE estimator of the MSE [45].

2.2.2 Global filtering in this context

Global denoising [63, 62] draws on the concept of diagonal estimation

in order to improve current denoising filters. As described in the previous

section, a well chosen basis should provide a sparse representation of u and

a general basis obviously cannot fit well for all natural images. Global

denoising builds V as an orthonormal basis that diagonalizes a classical

non linear denoising filter (such as NLmeans [11]), computed on v. The

underlying assumption is that if the chosen denoising filter is well adapted
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to the image, the coefficients bj will decrease relatively quickly and the

diagonal estimate will be all the more efficient.

Principle of global denoising

Assuming the same image formation model (1.4), numerous classic de-

noising filters, such as Gaussian or bilateral filters as well as NL-means [11]

type filters, can be written under the form

û = Wv, (2.10)

where W = D−1K, with K the positive definite kernel from the filter and

D a diagonal matrix with entries Dii = ∑
jKij, i ∈ {1, . . . , N} 1. Starting

from a given denoising filter W , the idea of global denoising, made popular

by Milanfar in [50], [49], is to modify this filter W , in order to decrease the

mean square error between û and u. For instance, if we assume that W can

be diagonalized in an orthonormal basis V (this can be ensured by sym-

metrizing it, as described in the next section), the oracle attenuation (2.4)

of the eigenvalues can be applied to improve the filter.

Symmetrizing the filter W

To ensure the fact that W can be diagonalized in an orthonormal basis,

the authors of [63] propose to replace this filter by a symmetric doubly

stochastic version W s of W which minimizes the cross-entropy

∑

i,j

W s
ij log

W s
ij

Wij

. (2.11)

In practice, this minimization problem can be solved numerically with the

Sinkhorn algorithm, which consists in iteratively normalizing the rows and

the columns of W until convergence. Starting from a positive definite kernel

K, it can be shown that the resulting filterW s is positive definite, symmetric

1. For instance, for NL-means we would have Ki,j = e− ‖Pi−Pj‖2

2h2 , with Pi and Pj the
patches centered at i and j and h a parameter
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and doubly stochastic, and that its eigenvalues are very close to those of

W [50]. In practice, the denoising results obtained with this symmetrized

filter appear to be equivalent or slightly better than the ones obtained with

W [50, 12]. In the following, we always consider the filter W in its symmetric

and doubly stochastic version.

Deterministic filter

The mean-squared error formulation (2.3) is valid only if the filter W =
V ΛV T is deterministic. This assumption is sensible when V is fixed, as a

DCT or wavelet basis for instance. However when the filter W comes from

the noisy image v, this hypothesis does not hold. To illustrate this fact,

we compare, for different choices of the filter W , the theoretical MSEtheo

computed by formula (2.3) with the experimental mean-squared error

MSEeval = 1
N

N∑

j=1
|uj −Wvj|2.

Figure 2.2 shows the relative error

|MSEeval−MSEtheo |
MSEtheo

(2.12)

for the following filters W , computed on three different images:

1. a Non-Local Means filter [11] computed on the original image u

(called Oracle-NLM or O-NLM);

2. a Non-Local Means filter computed on the noisy image v (called

NLM);

3. a Non-Local Means filter computed on a version of v already denoised

by NL means (called pre-filtered NLM or P-NLM);

The first filter is independent from the noise present in v, so the relative error

is very small. On the contrary, the NL-means filter computed directly on the

noisy image strongly depends on the noise realization, and the relative error

between the theoretical and experimental MSE remains above 10% for all

three images. Finally, observe that if the NLM is computed on a version of
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v that has already been denoised in a first step (by a NLM kernel or another

denoising procedure), the resulting W seems to be partly decoupled from

the noise, at least enough for the theoretical MSEtheo to be a good predictor

of MSEeval.

(a) (b) (c)

images (a) (b) (c)

O-NLM 6.6 % (± 3.0) 0.3 % (± 1.9) 0.4 % (± 0.9)
NLM 34.2 % (± 3.0) 24.6 % (± 1.9) 11.2 % (± 0.9)
P-NLM 6.8 % (± 1.7) 2.7 % (± 0.3) 1.0 % (± 0.3)

Figure 2.2 – Relative error (2.12) between the theoretical MSE provided
by formula (2.3) and the experimental MSE, for three images and three
different filters W (NL-Means computed on the u, NL-Means computed on
the v, NL-Means computed on a prefiltered version of v. The mean and
standard deviation have been computed on 5 different realizations of noise
with σ = 15 for each image.

Two oracle levels

In the previous section we used the noiseless image u as an oracle to

compute the weights of the O-NLM filter W . Note that this use of the

oracle is different from the one introduced in equation (2.4) (section 2.2.1)

to compute the optimal eigenvalues λ?j . In general it will be clear from the

context which level of oracle we refer to. In ambiguous cases we shall refer

to the first one as W -oracle and to the second one as λ-oracle.
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Discussion

By producing a basis V that is well-adapted to the image we want to

denoise, global image denoising usually produces better results than a diag-

onal estimation on a DCT or wavelet basis. However, global denoising still

suffers from two major issues:

— first, the λ-oracle u is needed in order to optimize the eigenvalues;

— second, memory cost and computation time are untractable because

of the eigendecomposition of the filter W of size N ×N .

In order to bypass the first issue, we saw in section 2.2.1 that hard or soft

thresholding could provide MSE results controlled by the optimal MSE∗.
Another possibility would be to try multiple sets of eigenvalues and keep

the ones minimizing a SURE estimator of the MSE. This is the solution

proposed by the GLIDE algorithm [62]. The second issue can be solved by

computing only a small percentage of eigenvectors. In GLIDE, Talebi and

Milanfar make use of the Nyström extension in order to approximate the

filter W and its first eigenvalues.

2.3 Asymptotic study

In this part, we study the asymptotic behavior of the MSE given by

formula (2.3) when the image size increases. In [64], the authors claim that

global denoising is asymptotically optimal, in the sense that the MSE in

(2.2) tends to zero. Before going further, let us mention that this decay

of the global MSE may occur while some local areas of the image remain

poorly denoised even when the image size tends to infinity, as it is shown on

Figure 2.3. In order to explore the precise conditions of this convergence, we

define in Section 2.3.2 a reasonable model for an image whose size grows to

infinity. We also assume a parametric model for the decay of the coefficients

bj, and we derive in Section 2.3.3 different conditions of convergence for the

MSE and its corresponding decay rate. Finally, in Section 2.4.2, we discuss

and illustrate these different results and the realism of these models for

different choices of images and filters W .
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In the following, we always consider that the filter W is independent

from the noise ε.

2.3.1 Upper bound on the optimal MSE

We have seen in Section 2.2.1 that the oracle risk for diagonal estimation

was given by

MSE? = σ2

N

N∑

j=1

b2
j

σ2 + b2
j

,

with b = V Tu the projection of the oracle image u in the eigenbasis V . Now,

this MSE can be upper bounded by the l1-norm of b divided by N :

MSE? = σ2

N

N∑

j=1

b2
j

σ2 + b2
j

6 σ2

N

N∑

j=1

b2
j

2σ|bj|

= σ

2N ‖b‖1. (2.13)

The authors of [64] suggest that this upper bound might converge to-

wards 0 when N grows to infinity. In order to prove this convergence, they

assume that the sorted coefficients |bj| drop off at a given rate α > 0

|bj| 6
C

jα
.

We shall see below and in section 2.3.2 that this models requires C to depend

on N to make sense. Nevertheless for a fixed image size, this hypothesis

seems quite reasonable for different existing filters, as illustrated by Fig-

ure 2.4. When working with Fourier or space-frequency decompositions,

the value of α was shown to be related to the regularity of the image [45],

and values of α between 0.5 and 1 were shown to be in agreement to actual

image data [23]. Such models have also been used in asymptotic studies

where the image resolution tends to infinity, but here we are interested in

the asymptotic behavior when image size grows to infinity at constant res-
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N times

(a) 

(b) 

(c) 

(d) 
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Figure 2.3 – Example of denoising with a global MSE decaying
to zero when image size grows to infinity, while a local MSE in-
creases. (b) is an image constructed by repeating N times a pattern of a
constant image with a vertical line. (a) presents the behavior of the MSE
between the denoised image obtained by optimal diagonal estimation in a
DCT basis and the clean image. The MSE is shown in log10 scale, when the
pattern is repeated N times with N increasing. (c) presents a zoom on the
structured part of the image and the result of the denoising for N = Nmax.
The denoised image presents important ringing artifacts. Finally, (d) shows
the behavior of the local MSE on the part presented in (c) when N grows.
This shows that even with a global MSE converging to zero, the restoration
can remain locally bad and even get worse when the image size increases.
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Figure 2.4 – Decay rate of the coefficients bj for the image synthetic from
Figure 2.7, in a loglog scale graph. In blue: coefficients in a DCT basis. In
red: coefficients in a wavelet basis. In yellow: coefficients in the eigenbasis
of the oracle NLM filter.

olution. In this particular kind of asymptotic study, we cannot expect the

rate α and the constant C to remain constant when the image size grows

towards infinity. Put another way, there is no reason that we can bound

the bj coefficients independently of the image size N . To demonstrate this

claim, we propose a model for an image whose size grows to infinity. Under

this model we will show that the coefficients bNj actually depend on N. Then

we propose a more complete parametric model for the coefficients decay 2

2.3.2 Proposed models

Infinite image model Consider an image of infinite size

U : Z2 → {l, . . . , L},

taking values in a discrete set of gray levels {l, . . . , L} ⊆ N . For typical 8

bit images l = 0 and L = 255.

2. From now on, we will write bN
j instead of bj to remember that the behavior of these

coefficients strongly depends on the image size N .
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From this image we construct an infinite sequence of images of growing

size N

uN
def=

(
Uϕ(1), . . . , Uϕ(N)

)
,

by truncating the infinite image to size N , for all N ∈ N . The function

ϕ : N+ → Z2 sweeps the plane in spiral starting from the origin.

Since the image gray level values are bounded, the L2-norm of uN satis-

fies the following inequality

l
√
N 6 ‖uN‖2 6 L

√
N, (2.14)

which means that the energy of the growing image increases at most like

O(
√
N). This information on the L2-norm of uN is important because it

constrains the behavior of bN as ‖bN‖2 = ‖uN‖2.

Because generally the lowest value l is zero, the energy of the image may

not grow as fast as
√
N . However we show that if ‖uN‖2 = o(

√
N), the

image is becoming sparse with increasing size: because U is taking values

in a discrete finite set, by setting c = min {Ui 6= 0, i ∈ N} we have

c2 #{uNi 6= 0}
N

6 ‖u
N‖2

2
N

−→
N→∞

0. (2.15)

This shows that the ratio of non-zero pixels collapses when the image size

goes to infinity. This case will not be considered in the following. Indeed

if we consider an infinite image U such that ‖uN‖2 = o(
√
N) then, the

upper-bound (2.13) tends to zero when N goes to infinity:

‖bN‖1 6
√
N‖bN‖2 =

√
N‖uN‖2 = o(N),

which implies the convergence. We provide in Section 2.4 an experiment

with an image padded with zeros illustrating this case.

This leads us to define the widespread infinite image model as follows.

Hypothesis 1 (Widespread infinite image model) Let U be an infi-

nite image and denote uN its truncation of size N . Then U is said to be
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non sparse if there exists m > 0 and M > 0 such that

m
√
N 6 ‖uN‖2 6M

√
N. (2.16)

Domination decay model Now consider a sequence of orthogonal bases

V N (the eigenbases of symmetric filtering operators WN). Recall that we

denote by bN = V NuN the projection of the image of size N on the corre-

sponding eigenbasis. We need a realistic model on the asymptotic behaviour

of bNj when N, j go to infinity. In this part we design an upper bound for

|bNj | which is both

— simple and easy to manipulate to prove convergence results;

— adapted to the data, in the sense it has the same shape as the |bNj |.

Figure 2.5 – Behaviour of maxj(|bNj |) with increasing size N for three differ-
ent images from Figure 2.7 in loglog scale. Here bN is the image u projected
in the DCT basis.

In order to design it we start with the model from [62] namely

|bj| 6
C

jα
,
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with α > 0. If we consider such a model for all N with an image verifying

Hypothesis 1 then we have

m2N 6 ‖u‖2
2 = ‖b‖2

2 6 C2
N∑

j=1

1
j2α .

This implies the divergence of the sum in the right term, which is thus

equivalent to N1−2α when N goes to infinity. This yields m2 = O(N−2α)
and so α 6 0 which is a contradiction. As a consequence, the constant C

should depend on N . In the following, we consider the model

|bNj | 6
CN
jα
,

and we discuss how to simplify it based on information given by numerical

experiments. We need to define how the “constant” CN grows with the

image size N . Figure 2.5 shows that maxj
(
|bNj |

)
is increasing linearly with

N in loglog scale. That leads us to consider Nγ as a model for CN . Finally,

we consider the following decay model for bN :

Hypothesis 2 (Domination decay model) Let U be an infinite image

and denote by uN its truncation of size N . Let V = (V N)N be a family of

orthogonal bases of increasing size. Then the pair (U,V) is said to fit the

domination decay model with parameters C, α and γ > 0 if for all N, j ∈ N

|bNj | 6 C
Nγ

jα
. (2.17)

where bN = V NuN is the projection of uN on the basis V N .

A case where hypotheses 1 and 2 are trivially satisfied is the case of con-

stant images with a DCT filter. Indeed, the corresponding b is the optimal

one from Proposition 2. In the next section, we study the convergence of

the upper-bound of the MSE under these hypotheses.
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2.3.3 Conditions of convergence

In Section 2.2.1 we showed that the optimal diagonal estimator on a

given basis V N could be bounded in terms of the `1-norm of the coefficients

bN in that basis. In the following, we show that under Hypotheses 1 and 2,

this `1 norm can in turn be upper-bounded by a decreasing function of N ,

MSE(λ?) 6 σ

2N ‖b‖1 6 C ′
1
N r

, (2.18)

thus ensuring convergence of the optimal MSE at a rate r that depends on

the parameters α and γ of the decay model. When this rate is positive then

we can use this second upper bound to prove the asymptotic optimality of

diagonal estimation on that basis.

Theorem 2 (Asymptotic optimality) Consider

— an infinite image U that satisfies Hypothesis 1 ( i.e. non-sparsity)

and

— a sequence of orthogonal bases V such that the pair (U,V) satisfies

Hypothesis 2 ( i.e. (C, α, γ) decay rate of the image projection on that

basis).

If the decay rate is fast enough, i.e. if

1
2 6 γ < 1 and α > γ,

then the denoising provided by oracle optimization of diagonal estimation

on that basis is asymptotically optimal meaning that the MSE tends to 0

when the image size N goes to infinity.

The proof of this result is the combination of the two following Lemmas.

The first one shows that the hypothesis on image energy (2.16) constrains

the parameters α and γ of the domination criterion and the second one

further restricts the values of these parameters to ensure convergence of

the upper-bound of the MSE. Figure 2.6 illustrates the results provided by

Lemma 1 and lemma 2 on the parameters α and γ. The resulting parameters

for Theorem 2 are given by the intersection of the two domains.
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Figure 2.6 – Illustration of the domain of compatibility and the domain of
convergence provided by the two lemmas 1 and 2. The intersection in red
represent the set of parameters that provides the result in Theorem 2.
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Lemma 1 (Compatibility with image model) Assume that U satifies

Hypothesis 1. If the projection of U on V satisfies the decay model of

Hypothesis 2 with parameters (C, α, γ), then either

γ > 1
2 and α ≥ 1

2
or

γ > α and α <
1
2 .

This lemma emphasizes the fact that we actually cannot bound the |bNj |
independently of N as long as we have images that are not loosing energy

with increasing size. The only way to obtain γ = 0 (a bound independent

of N) is to impose α = 0 which leads to the pathological case b ∝ (1, . . . , 1).

Proof 3 (Proof of Lemma 1) Because ‖bN‖2 = ‖uN‖2, the model (2.16)

on the image energy gives

m2N 6 ‖bN‖2
2 6M2N.

Applying the decay criterion |bNj | 6 C
Nγ

jα
in the previous equation yields

m2N 6 C2N2γ
N∑

j=1

1
j2α .

The behavior when N goes to infinity of the sum in the right term differs

depending on α:

— if α < 1
2 the sum diverges and there exists a constant C ′ such that

N∑

j=1

1
j2α ∼

N→∞
C ′N1−2α

— if α = 1
2 the sum diverges and there exists a constant C ′ such that

N∑

j=1

1
j2α ∼

N→∞
C ′ lnN
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— if α > 1
2 the sum converges to a constant C ′ ∈ R

The first case leads to m2 = O (N2γ−2α) and so α 6 γ. The second and

the third cases lead to m2 = O (N2γ−1 lnN) and m2 = O (N2γ−1) respec-

tively and so γ > 1
2 . �

Lemma 2 (Condition of convergence) Considering the model (2.17) we

have convergence to zero of the bound (2.13) only if

α > 1 and γ < 1
or

α < 1 and α > γ.

This lemma shows that the convergence can actually occur with all α > 0
as long as γ is not too large. We also notice that the model proposed in [62]

in C
jα

satisfies the convergence hypothesis. However, we saw with that this

model is not compatible with Hypothesis 1.

Proof 4 (Proof of Lemma 2) We have |bNj | 6 C
Nγ

jα
so

σ

2N ‖b‖1 6
Cσ

2N

N∑

j=1

Nγ

jα
= Cσ

2 Nγ−1
N∑

j=1

1
jα
.

The behavior when N goes to infinity of the sum in the right term differs

depending on α:

— if α < 1 the sum diverge and there exists a constant C ′ such that

N∑

j=1

1
jα
∼

N→∞
C ′N1−α.

— if α = 1 the sum diverges and there exists a constant C ′ such that

N∑

j=1

1
jα
∼

N→∞
C ′ lnN.

— if α > 1 the sum converges to a constant C ′ ∈ R.
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The first case leads to

σ2

N
‖b‖1 = O

(
Nγ−α

)
,

and convergence occurs only if α > γ. The second and the third cases lead

respectively to
σ2

N
‖b‖1 = O

(
Nγ−1 lnN

)
,

and
σ2

N
‖b‖1 = O

(
Nγ−1

)
,

and convergence occurs only if γ < 1. �

The proof of Lemma 2 also provides a decay rate that we summarize in

the following corollary.

Corollary 1 (Decay rate) Under conditions of convergence in Theorem 2,

that is 1
2 6 γ < 1 and α > γ the MSE of optimal diagonal oracle estimation

satisfies

MSE(λ?) =
N→∞

O
( 1
N r

)

with r ∈]0, 1
2 ] defined by

— r = α− γ when γ < α < 1
— r = 1− γ when α > 1

The particular case α = 1 yields convergence in O
(

logN
N1−γ

)
.

This result shows that the decay is always slower than 1√
N

and it can

be really slow when r is close to zero. Thus, even though we can have

an asymptotic optimal filtering, the decay rate can be so small that we

cannot actually see it even if we work with huge images. Moreover, this

asymptotic study is performed on the oracle diagonal filter. This result

is by itself essentially theoretical. However, in combination with Donoho-

Johnstone Theorem 1, we might further use this result to prove, under

specific conditions on the infinite image, the asymptotic optimality of non-

oracle filtering.
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Corollary 2 (Decay rate of thresholding) Assume that the convergence

conditions of Theorem 2 are satisfied. From the Donoho-Johnstone Theorem

1, the MSE obtained by thresholding the coefficients bNj satisfies

MSE(λth) =
N→∞

O
(

logN
N r

)

with r ∈]0, 1
2 ] defined as in Corollary 1. The particular case α = 1 yields

convergence in O
(

(logN)2

N1−γ

)
.

Proof 5 (Proof of Corollary 2) Let consider the case α 6= 1. By Donoho-

Johnstone Theorem we have

MSE(λth) 6 (2 logN + 1)
(
σ2

N
+ 2 MSE(λ?)

)
.

Then by Corollary 1 there exists a constant C such that

MSE(λ?) 6 C

N r
,

with r ∈]0, 1
2 ]. It follows that

MSE(λth) 6 4C logN
N r

+ (2 logN + 1)σ
2

N
+ 2C
N r

.

The two last terms in the previous inequality are o
(

logN
N

)
when N goes to

infinity that yield the announced result. A similar proof can be done for the

case α = 1. �

2.3.4 Special cases

In the following two paragraphs we discuss some simple particular cases

in which the asymptotic behaviour of global denoising can be directly de-

duced.

In more realistic cases we need to experimentally fit our image model to

natural images for different bases in order to predict what would happen
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when the image size tends to infinity. This experimental study is deferred

to section 2.4.

Optimal basis with optimal eigenvalues

When an oracle is used both to choose the optimal basis V and the

optimal eigenvalues λ of the filter W = V ΛV T , we showed in Proposition 2

that the optimal MSE decays like σ2/N , so we have r = 1, a much faster

convergence than in the more realistic cases based on an image model. In

this case only b1 is non zero for all values of N , so computing α and γ does

not make any sense.

Gaussian textures on DCT basis

Another case of interest is the case when the image u is a Gaussian

texture, meaning that

u = h ∗m

is generated by convolving a known kernel h with a white noise image m
where mi ∼ N (0, τ 2) iid.

In this case when choosing V as a Fourier or DCT basis, a straightfor-

ward calculation shows that the MSE upper bound in equation (2.13) for

global filtering with optimal λj in that basis becomes

MSE∗bound = σ2

2N ‖b‖1

= 1
N2

σ

2
∑

k

|ĥN(k)||m̂N(k)| =: AN .

Thus asymptotically we have a strictly positive MSE bound

MSE∗bound = AN −−−→
N→∞

A∞ = στ‖ĥ‖1√
2π

> 0

for Gaussian textures when using the Fourier or DCT basis. Our exper-

iments (see Section 2.4.3) confirm this finding. Indeed, when choosing a

Fourier or DCT basis V = F , then MSE∗N remains constant when N →∞,
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in this case r ≈ 0. Nevertheless, when choosing an adaptive basis V from

the diagonalization of the non-local means filtering operator, then MSE∗N
does experimentally tend to 0 for Gaussian textures. This shows that the

NLM basis may better exploit the self-similarity in Gaussian textures.

Oracle vs. non oracle filters

Hypothesis 2 on the domination decay model assumes that the family of

orthogonal bases V is well adpated to the infinite image U. This happens

in particular when the chosen filters are oracle filters, which means that

they are computed in the image itself. Consider for instance the case of a

very simple oracle filter which consists in denoising ũ by averaging at pixel

i all values ũj such that |ui − uj| ≤ ε for a given threshold ε > 0. If the

infinite image U is bounded, for instance with values in [0, 1[. Then the

value MSE(ûN |uN) converges to a limit smaller than ε2 when the image size

increases. This result being satisfied for every ε > 0, the MSE of this oracle

filter is naturally asymptotically optimal.

The case of non oracle filters is of course far more ambiguous. Consider

for instance the case of a dead leaves infinite image model studied in [41].

The previous argument shows that a well chosen oracle filter would denoise

this image perfectly. However, because of the independence between the

leaves, it is clearly not possible to achieve a null asymptotic MSE for a non

oracle filter, since for a given leaf, the values observed outside of the leaf

are useless to denoise the pixels inside the leaf.

2.4 Experiments

In the previous section we introduced a decay model for the bNj coef-

ficients of natural image sequences decomposed on the orthonormal basis

given by a symmetric filtering algorithm.

We gave precise conditions on the (γ, α) parameters of this decay model.

These conditions may be used to determine whether optimal diagonal esti-

mation on this basis can yield asymptotically optimal denoising performance
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lena simpson

brick sparse

mixed synthetic

man

Figure 2.7 – The images used for the experiments. The sub-images sizes are
(a) 128× 128, (b) 128× 192, (c) 128× 256, (d) 128× 320, (e) 128× 384, (f)
128×448, (g) 128×512. Images credits: lena and man are standard images
used in image processing, simpson is from Julie Delon, brick, sparse
and mixed are Brodatz textures [9] and synthetic is a random generated
gaussian texture.
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when applied to a certain family of image sequences.

In practice, answering this question requires to estimate these coefficients

from a particular filter/basis based on a truncated image sequence. The

next Section 2.4.1 explains how these model parameters are estimated from

real data. Then in Section 2.4.2 we analyze the asymptotic performance of

several denoising algorithms based on the estimated parameters. Finally, in

Section 2.4.3 we provide a discussion about some specific cases that are of

particular interest to illustrate our analysis.

2.4.1 Estimating model parameters (C, γ, α)

Theorem 2 gave us a sufficient condition for asymptotic optimality of a

filter on an image sequence. This condition is based on the assumption that

the |bNj | coefficients follow a particular model, namely:

|bNj | ≈ C
Nγ

jα
. (2.19)

Observing different curves j 7→ |bNj | for various images, sizes N and or-

thonormal bases in loglog scale (see the first column of Figure 2.9 for an

example), we notice that the model (2.19) holds except for the first few

largest coefficients and for a significant proportion of the smallest coeffi-

cients. This behaviour can be expected, since we sorted the coefficients. It

appears even when the |bNj | coefficients are only white noise (as illustrated

in Figure 2.8). Thus we exclude the values of j < d = 5 and j > Np (for

p = 0.6) from the bilinear regression that allows to fit the values of C, α

and γ to the |bNj | coefficients.

Put another way we find α, γ and C that minimize

‖ log(|bNj |)− (γ log(N)− α log(j) + log(C)) ‖2,

with N from Nmin to Nmax and j from d to bNpc.
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Figure 2.8 – Decay of the coefficients |bj| for white noise in the DCT basis
(red) in loglog scale. The slope of the bound is αm ≈ 0.05 (blue).

2.4.2 Experimental results

Table 2.1 shows the estimated model parameters for the test images from

Figure 2.7 and for three orthonormal bases, namely:

DCT: The DCT basis which diagonalizes convolution filters;

Wavelet: The orthogonal Haar basis, implemented via the discrete

wavelet transform;

Oracle NLM: The orthogonal basis which diagonalizes the oracle (sym-

metrized) non-local means filter, i.e. with patch distances computed

on the oracle clean image.

Figures 2.9 through 2.14 show the detailed asymptotic convergence results

for the images in Figure 2.7 and Table 2.1.

In all cases the oracle NLM basis seems to satisfy the conditions of

Theorem 2 and to provide the fastest asymptotic convergence rate. On the

other hand, on these experiments, the DCT and wavelet bases sometimes

seem to not satisfy the conditions of Theorem 2, and when they do, the

asymptotic convergence rate is extremely slow (always smaller than r =
0.1) except for sparse images that do not verify Hypothesis 1 and trivially

converge in many common bases.

This means that if the oracle NLM basis was known for an arbitrarily

large noisy image, then we could use hard thresholding as in Corollary 2 to
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lena
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Figure 2.9 – Left column: the decay of the |bNj | for each size and the result
of the model fitting (dotted lines) for the image lena for the different bases
(from top to bottom) DCT, Wavelet, O-NLM and P-NLM. Right column:
the decay of the MSE? (blue), the upper bound from (2.13) (orange) and
the fitted bound (yellow).
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Figure 2.10 – Left column: the decay of the |bNj | for each size and the result
of the model fitting (dotted lines) for the image simpson for the different
bases (from top to bottom) DCT, Wavelet, and O-NLM. Right column: the
decay of the MSE? (blue), the upper bound from (2.13) (orange) and the
fitted bound (yellow).

55



CHAPTER 2. AN ASYMPTOTIC STUDY OF GLOBAL DENOISING

bricks

D
C

T
D

W
T

O
-N

L
M

Figure 2.11 – Left column: the decay of the |bNj | for each size and the result
of the model fitting (dotted lines) for the image bricks for the different
bases (from top to bottom) DCT, Wavelet, and O-NLM. Right column: the
decay of the MSE? (blue), the upper bound from (2.13) (orange) and the
fitted bound (yellow).
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Figure 2.12 – Left column: the decay of the |bNj | for each size and the result
of the model fitting (dotted lines) for the image sparse for the different
bases (from top to bottom) DCT, Wavelet, and O-NLM. Right column: the
decay of the MSE? (blue), the upper bound from (2.13) (orange) and the
fitted bound (yellow).
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Figure 2.13 – Left column: the decay of the |bNj | for each size and the result
of the model fitting (dotted lines) for the image synthetic for the different
bases (from top to bottom) DCT, Wavelet, and O-NLM. Right column: the
decay of the MSE? (blue), the upper bound from (2.13) (orange) and the
fitted bound (yellow).
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Figure 2.14 – Left column: the decay of the |bNj | for each size and the result
of the model fitting (dotted lines) for the image man for the different bases
(from top to bottom) DCT, Wavelet, and O-NLM. Right column: the decay
of the MSE? (blue), the upper bound from (2.13) (orange) and the fitted
bound (yellow).
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Table 2.1 – Fitted parameters α and γ for the different images of figure 2.7
in the three bases DCT, DWT and O-NLM. The parameter r is the decay
rate of corollary 1.

image basis fitted α fitted γ r

lena
DCT 0.827 0.767 0.060
DWT 0.858 0.752 0.10
O-NLM 0.806 0.570 0.236

simpson
DCT 0.941 0.741 0.201
DWT 1.106 0.753 0.247
O-NLM 1.025 0.572 0.428

bricks
DCT 0.796 0.755 0.041
DWT 0.913 0.877 0.035
O-NLM 0.902 0.688 0.213

sparse
DCT 0.842 0.375 0.467
DWT 0.909 0 0.909
O-NLM 1.099 0.021 0.979

synthetic
DCT 0.708 0.727 -
DWT 0.554 0.570 -
O-NLM 0.646 0.540 0.106

man
DCT 0.720 0.520 0.200
DWT 0.802 0.578 0.224
O-NLM 0.759 0.366 0.393
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obtain a denoised image with arbitrarily small MSE. Of course the same con-

clusion was known (since Donoho-Johnstone) for the non-adaptive wavelet

and DCT bases, but convergence does not hold for all natural images, and

when it does it may be too slow for the procedure to be practical. For oracle

NLM asymptotic convergence seems to be faster with respect to image size

but we are confronted to two difficulties:

1. the W -oracle is in principle unknown; and

2. diagonalizing an NLM filter is extremely expensive computationally

(O(N3) with respect to the number N of pixels).

In order to address the first difficulty we included in our tests the asymp-

totic performance of the prefiltered NLM. Directly computing the NLM filter

on the noisy image is not acceptable as explained in Section 2.2.2. However,

applying it to a pre-filtered version of the image helps both (a) to satisfy

the requirement of independence of the filter and noise, and (b) to make the

filter closer to the oracle one. We show in Table 2.2 the asymptotic conver-

gence rate we estimated for the pre-filtered NLM basis and for the image

lena. For these experiments we used the denoising algorithm NL-Bayes [35]

to obtain the pre-filtered image. Moreover, we tuned the parameters of NL-

Bayes in order to slightly over-denoise the image. This trick allows to ensure

that the filter is almost independent of the noise realization (at the expense

of the potential loss of some subtle image structures). The experiment shows

that for the P-NLM basis not only do we achieve asymptotic convergence,

but the convergence rate is surprisingly close to the convergence rate for the

oracle NLM basis. However, as it can be seen in Figure 2.9 the actual MSE

and the bound are always larger for Prefiltered NLM than for Oracle NLM.

Unfortunately this asymptotic behaviour in the non-oracle case cannot

be generalized to all natural images. Indeed under certain texture models a

lower bound has been established for all possible image denoising algorithms

as recalled in section 2.4.3.

However all these model estimates should be taken with a grain of salt,

for several reasons:

— The cubic computational cost of exactly computing the eigenbasis of
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Table 2.2 – Fitted parameters α and γ for lena image in the three bases
DCT, O-NLM and P-NLM. The parameter r is the decay rate of corollary
1.

image basis fitted α fitted γ r

lena
DCT 0.827 0.767 0.060
DWT 0.858 0.752 0.10
O-NLM 0.806 0.570 0.236
P-NLM 0.7822 0.54846 0.234

the NLM filters obliged us to limit our evaluation to relatively small

image sizes.

— Model (2.19) can not always be perfectly fit by all images and bases.

The model seems to hold for “stationary” images or for images that

contain a relatively small number of stationary components. Other-

wise the task of fitting this model is particularly difficult.

— Model (2.19) only gives a coarse upper bound for the actual MSE∗.
The second column in Figures 2.10 through 2.14 shows that even

though this upper bound is relatively coarse, the actual MSE∗ does

follow the same kind of decay with N as the upper bound. Neverthe-

less, when comparing the actual MSE∗ of all four bases (Figure 2.9)

we observe that the real performance of the prefiltered NLM is ac-

tually comparable to that of DCT or wavelet bases; even though the

convergence rate r estimated on this model (0.234 for P-NLM vs 0.06

for DCT, 0.10 for DWT and 0.236 for O-NLM) seemed to indicate

that the prefiltered NLM was much superior to DCT and rather close

to the oracle NLM performance.

Clearly more experiments on larger images are required to confirm or in-

firm the conclusions of this initial experimental study. Doing so will require

the use of more sophisticated and numerically efficient ways to compute the

eigenbasis of the NLM filter on medium to large-size images. This could

be achieved by means of randomized numerical linear algebra [30], but such

techniques do assume a low rank structure of the filtering matrix, so they

cannot be used to estimate the full spectrum of eigenvalues of W . Rather
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O-NLM

Figure 2.15 – Top: Image mixed with two different textures. Bottom: the
corresponding MSE for diagonal estimation using O-NLM basis when the
size grows from (a) to (g) in log10 log10 scale.

they should be used in conjunction with incremental schemes like in [8].

This shall be the subject of further research.

2.4.3 Discussion about specific cases

In the previous section, we mainly discuss about experiments for images

satisfying our main hypotheses. Now let’s analyze what happens in two

pathological cases:

Sparse Image

When the image is not widespread (like in the image sparse in Fig-

ure 2.7), it shows trivial internal redundancy that can be exploited by both

the DWT and the NLM bases. Hence the behavior of the MSE is dominated
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DCT O-NLM

Figure 2.16 – Top: Image synthetic. Bottom: the corresponding MSE for
diagonal estimation using DCT basis and O-NLM basis when the size grows
from (a) to (g) in log10 log10 scale.

by the black part of the image, and for this reason we obtain a very fast

decay of the MSE, hence almost matching the theoretical rate r = 1 that is

achieved when we use not only optimal eigenvalues λ but also an optimal

basis V .

Texture change

In the previous section, we saw experiments for images that do not

change drastically with increasing size. But we can wonder what happens

when the image suddenly changes with increasing size.

We show in Figure 2.15 an image composed of two textures and the

corresponding curve presenting the behavior of the MSE for the O-NLM

case. When we add the second texture, the MSE increases, but when the

first texture reappears the MSE starts to decay again. This behavior can

explain the fact that there is no need for a stationary hypothesis on the

image to obtain convergence. For a sufficiently good basis, able to capture

the self-similarity of images, such as NLM-O, we can hope for an asymp-
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totically optimal denoising. This relies on the fact that when the scene size

tends toward infinity, we can expect similar structures to reappear again

and again in the image.

Gaussian & dead-leaves texture models

To emphasize the importance of the basis we provide a numerical ex-

periment with a synthetic Gaussian texture in Figure 2.16. We proved in

Section 2.3.4 that for such a texture the convergence does not hold for a

DCT basis even if this texture presents a lot of self-similarity. The numeri-

cal experiment confirms that result and provides experimental evidence for

the asymptotic decay of the MSE in the Oracle-NLM basis.

Unfortunately, this positive result for the O-NLM case cannot possibly

be extended to the non-oracle case. Indeed Levin et al. [41] established

a strictly positive lower bound for any image denoising algorithm. This

result holds for infinite images that do not present long-distance statistical

dependencies. In that case the optimal denoiser for a given pixel x uses the

values of the noisy image in pixels y within a neighborhood of x which does

not exceed a certain maximal distance D. For y beyond that neighborhood,

u(x) and u(y) are independent, so the values of v(y) provide no useful

information to estimate u(x).

This is the case for Gaussian textures generated by a compactly sup-

ported kernel h, and for the dead-leaves model [3]. For images of this kind,

Levin’s positive lower bound implies that asymptotically zero MSE is impos-

sible to achieve by any non-oracle denoising algorithm. Our experimental

result on the Gaussian texture suggests asymptotic convergence of global

denoising towards zero MSE, only in the W -oracle case, as seen in sec-

tion 2.3.4 which explains this mechanism. But this result does not extend

to the case where global denoising does not use an oracle to define the filter

W .
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2.5 Conclusion

In this chapter, we analyzed the following question:

Can an image denoising algorithm attain asymptotically zero

estimation error when the image size tends to infinity?

This question was recently raised in [62, 63] in the context of oracle-optimized

non-local filtering schemes. That work suggests a positive answer but their

reasoning is based on conditions on the infinite image that we show incom-

patible with reasonable assumptions. We refine these conditions to better

account for natural images, and provide a more general theory of optimal

asymptotic denoising performance. In particular our theory explores how to

partially avoid the use of an oracle, it does not restrict itself to global image

denoising, and establishes links to the older diagonal estimation theory, as

well as with the optimality results of Donoho and Johnstone [20].

More specifically, our work highlights the central role played by the oracle

in the work of [62], and makes a clear distinction between two different ways

in which the oracle is used, namely: First a W -oracle is used to construct

the entries in the non-local filter W whose diagonalization provides a basis

V . Then a λ-oracle is used to find optimal weights {λ∗j} for a given basis

V . The link we established with diagonal estimation theory means that the

λ-oracle can be avoided using Donoho and Johnstone’s theorem, meaning

that we can study the convergence of a denoising algorithm that uses a λ-

oracle, in order to predict the asymptotic convergence (at a slower rate) of

an algorithm that does not use such a λ-oracle.

The W -oracle, however, is more difficult to avoid, since we do not have

a tool equivalent to Donoho and Johnstone’s theorem in this setting. Hence

non-oracle convergence properties need to be directly tested on a version of

the algorithm that does not use the W -oracle. And this is quite problematic

because, without an oracle, special care is required to ensure that the filter

W and the noise n are independent. And this independence is required

for our asymptotic analysis of the MSE to be valid. The quest for more

general ways to define non-local and non-oracle filters W , in a way that

their independence from image noise is ensured, is still an open subject for
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future research.

As a whole our generalized analysis of the asymptotic behaviour of global

image denoising provides less optimistic conclusions than those in [62] but

still leaves the door open for asymptotically zero denoising error. Our ex-

perimental study on small images seems to indicate that the oracle non-local

means filter can be optimized to attain asymptotically zero error, and that a

non-oracle version (i.e. without W -oracle) of that filter may have a similar

behaviour, even though at a much slower convergence rate and on a more

restricted number of examples. Clearly, more extensive experimentation on

a wider variety of larger-sized images is required to determine whether these

conclusions may have any practical interest. However, performing such an

experimental evaluation requires huge amounts of computation, and can

only be addressed if faster and more incremental matrix decomposition al-

gorithms are developed.

These conclusions and the prospect of asymptotically zero MSE may ap-

pear to be in contradiction with the strictly positive lower bounds for image

denoising established by Levin et al. [41]. A careful inspection reveals that

there is no such contradiction, rather different models and complementary

viewpoints that we shall try to clarify below:

The positive lower bound of Levin et al. is valid for certain statistical

image models such as Gaussian and dead-leaves textures. For images of this

kind, Levin’s positive lower bound implies that asymptotically zero MSE is

impossible to achieve by any non-oracle denoising algorithm. Our experi-

mental result on the Gaussian texture suggests asymptotic convergence of

global denoising towards zero MSE, only in the W -oracle case. But this

result does not extend to the case where global denoising does not use an

oracle to define the filter W .

For more decidedly self-similar images like lena or bricks our experi-

ments indicate that even the P −NLM filter that does not use a W -oracle

is compatible with asymptotically zero MSE. This shows that for this image

Levin’s assumption of absence of long-distance dependencies does not hold,

otherwise there would be a contradiction.

The quest for a statistical model for natural images that takes self-
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similarity into account in a realistic way is still a very active area of re-

search. Extending such a model for image sizes tending to infinity poses yet

an additional challenge. Future research in that direction would hopefully

allow to unify Levin’s and Talebi’s views on asymptotic behaviour of image

denoising.
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Chapter 3

Gaussian Priors

Abstract

This chapter is dedicated to the study of Gaussian priors for patch-based

image denoising. In the last twelve years, patch priors have been widely

used for image restoration. In a Bayesian framework, such priors on

patches can be used for instance to estimate a clean patch from its noisy

version, via classical estimators such as the conditional expectation or the

maximum a posteriori. As we will recall, in the case of Gaussian white

noise, simply assuming Gaussian (or Mixture of Gaussians) priors on

patches leads to very simple closed-form expressions for some of these

estimators. Nevertheless, the convenience of such models should not

prevail over their relevance. For this reason, we also discuss how these

models represent patches and what kind of information they encode. The

end of the chapter focuses on the different ways in which these models can

be learned on real data. This stage is particularly challenging because of

the curse of dimensionality. Through these different questions, we compare

and connect several denoising methods using this framework.
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3.1 Introduction

As we have recalled in the introduction of this manuscript, using a

Bayesian framework for image restoration yields standard estimators such

as the MMSE or the MAP. The most convenient prior for computing the

previous estimators is the Gaussian distribution. Indeed, on the one hand,

Gaussian priors are well suited to encode patch structures with some kind

of contrast invariance, as we will see in Section 3.2. On the other hand,

under a Gaussian prior, the conditional expectation, Wiener estimator and

MAP coincide, as we explain in section 3.3. For these reasons, these priors

are favored in most recent works on patch-based image denoising [15, 35, 1].

A slightly more involved prior used in the literature is the Gaussian Mix-

ture Model (GMM) [79, 65, 77, 71]. In this case, computing the conditional

expectation remains simply tractable as we show in section 3.3. All these

works differ among other things in the way they infer the parameters of

the Gaussian or GMM distributions. These distributions live in Rp and

estimation in such high-dimensional spaces is complex. We will see in Sec-

tion 3.5 the different possibilities to infer these parameters and how some

of these works tackle the curse of dimensionality. Figure 3.1 illustrates the

main steps common to all these patch based denoising methods, and each

of these steps is described in the following sections.

3.2 What is encoded in Gaussian and GMM

priors ?

Before going into the details of estimation under Gaussian priors, we

provide in this section a few insights on the actual structures they encode.

Assume a Gaussian model N (µ,Σ) for p = s × s patches (µ ∈ Rp and

Σ ∈Mp(R)). The diagonal coefficients of the covariance matrix Σ represent

the variance of each pixel in the patch, while the non-diagonal coefficients

represent the covariances between pixels. A positive covariance coefficient

means that the two pixels tend to be either both greater or smaller than their
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Figure 3.1 – The whole process of patch-based image denoising with Gaus-
sian prior models. First, patches are extracted from the noisy image. Next,
these noisy patches are grouped and modeled with local Gaussians or Gaus-
sian Mixture Models, whose parameters are inferred by maximum likelihood
(Section 3.5). Each patch is then denoised with an estimator derived from
the model (Section 3.3). Finally, the clean patches are aggregated to recover
the denoised image (Section 3.4).
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means, while a negative coefficient implies that they tend to be on opposite

sides of their means. Clearly, if Σ is purely diagonal, patches drawn from

the model N (µ,Σ) will only be noisy versions of the mean patch µ. In

this case, the only structure information is contained in µ. More interesting

models contain geometric information directly in the covariance matrix Σ.

Figure 3.2 – Left: a covariance matrix Σ with 1 (white) on the second
and third quarters, and 0 (black) on the first and fourth quarters. Right:
patches drawn from the Gaussian distribution N (µ,Σ) with µ a constant
patch equal to 0.5.

To illustrate this point, we propose to create models encoding different

patch structures. For instance, in order to model a vertical edge, we define

a Gaussian distribution with constant mean µ = (0.5, . . . , 0.5) and a covari-

ance matrix with coefficient 1 in the second and third quarter of Σ, and

coefficient 0 in the first and fourth quarters of Σ (see Figure 3.2). In this

simplistic example, the matrix Σ has rank two, with (non trivial) eigenvec-

tors (1, . . . , 1, 0, . . . , 0) and (0, . . . , 0, 1, . . . , 1), so all the patches drawn from

this distribution can be written 0.5 + (α, . . . , α, β, . . . , β) with α ∼ N (0, 1)
and β ∼ N (0, 1). These patches all contain a vertical edge in their middle,

with grey levels α and β on both sides of the edge. In this example, we

see that the model encodes a structure and authorizes different contrasts

on both sides of the structure. With the same mechanic, we can create a

covariance matrix encoding any desired shape, see for instance Figure 3.3.

Again, the samples from the corresponding distribution exhibit all possible
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Figure 3.3 – Left: a covariance matrix Σ composed of 1 (white) and 0
(black). Right: patches drawn from the Gaussian distribution N (µ,Σ) with
µ a constant patch equal to 0.5.

grey levels in the different regions defined by the covariance matrix, even if

all these grey levels are not all equally likely.

Now, although these models authorize contrast changes or contrast inver-

sions, they are not well suited to encode geometric invariances on patches.

For instance, if we try to learn a model encoding different vertical edges

with invariance to translation, we end up with an average model encoding

a vertical gradient image (see Figure 3.4).

3.3 How to derive estimators under Gaus-

sian and GMM priors

Now that we have seen more precisely what could be contained in Gaus-

sian priors, we will now see more precisely how they can be used to derive

estimators under the Bayesian model described in the introduction.

In the whole section, we assume that we work with the model (1.6)

Y = X +N,

with N ∼ N (0, σ2Ip) independent from X. We wish to estimate X knowing

Y .
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Figure 3.4 – Left: a covariance matrix Σ learned as the sample covariance
matric of a set of vertical edges at different spatial positions, and with also
different choices of grey levels on both sides of the edge. Right: patches
drawn from the corresponding Gaussian distribution N (µ,Σ) with µ a con-
stant patch equal to 0.5.

We first recall some classical results on the conditioning of Gaussian

vectors, and on the links between the conditional expectation, Wiener esti-

mator and MAP for Gaussian and GMM priors. These different estimators

will serve in the rest of the chapter as denoising strategies for image patches.

3.3.1 Estimation with Gaussian priors

We first assume that X follows a Gaussian distribution N (µX ,ΣX) and

that the noise N is independent from X. The classical properties of Gaus-

sian vectors make it possible to show that in this case the estimator E[X|Y ]
is an affine function of Y (thus equivalent in this case to the Wiener estima-

tor). Indeed, recall that if (T, V ) is a Gaussian vector, then the conditional

expectation E[T |V ] is the affine function of V

E[T |V ] = E[T ] + ΣT,V Σ−1
V (V − E[V ]), (3.1)

where ΣV is the covariance matrix of V and ΣT,V = E[(T−E[T ])(V −E[V ])t]
(if ΣV is not full rank, the result is still true by taking the Moore-Penrose

pseudo-inverse of ΣV ).
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Now, if X and N are independent Gaussian random vectors, the con-

catenated vector (X, Y ) = (X,X+N) is also Gaussian. We directly deduce

the following result.

Proposition 3 Assume that X and Y follow the model (1.6), with X ∼
N (µX ,ΣX) and N ∼ N (0, σ2Ip) independent, then the conditional expecta-

tion and Wiener estimator of X knowing Y coincide and can be written

E[X|Y ] = EWiener[X|Y ] = µX + ΣX(ΣX + σ2Ip)−1(Y − µX).

Proof 6 On the one hand, since (X, Y ) is a Gaussian vector, the condi-

tional expectation E[X|Y ] can be written

E[X|Y ] = E[X] + ΣX,Y Σ−1
Y (Y − E[Y ])

= E[X] + E[(X − E[X])(X +N − E[X +N ])t](ΣX + σ2Ip)−1(Y − E[Y ]).
= E[X] + ΣX(ΣX + σ2Ip)−1(Y − E[Y ]) = µX + ΣX(ΣX + σ2Ip)−1(Y − µX).

Under the same hypothesis, if we try to maximize the a posteriori prob-

ability on the patch X, we obtain

arg max
X

logP[X|Y ] = arg max
X

(logP[Y |X] + logP[X])

= arg min
X

(
(X − Y )t(X − Y )/σ2 + (X − E[X])tΣ−1

X (X − E[X])
)
.

We check easily that the solution of this minimization problem is also given

by

ψ(Y ) = µX + ΣX(ΣX + σ2Ip)−1(Y − µX).

Said otherwise, for a Gaussian prior, the MMSE, linear MMSE and

MAP all coincide and all these estimators only require linear operations.

This property makes Gaussian priors particularly convenient in practice

and explains their success in the restoration literature.

We can illustrate the interest of this estimator on the Gaussian model

N (µX ,ΣX) presented on Figure 3.2 and representing a vertical edge. If X is
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an (unknown) realization of this model and Y = X+N with N ∼ N (0, σ2Ip)
independent from X, then E[X|Y ] will also be a patch (α, . . . , α, β, . . . , β)
with α = 0.5 + 1

p/2+σ2
∑p/2
k=1(Yk − 0.5) and β = 0.5 + 1

p/2+σ2
∑p
k=p/2+1(Yk −

0.5)(assuming p is even for the sake of simplicity). Said otherwise, the

denoised patch E[X|Y ] represents the same vertical edge as X and its values

α and β on both sides of the edge are (if σ2 << p/2) the averages of Y on

these two half patches.

Figure 3.5 represents three denoising experiments with the previous esti-

mator. On the first line, a vertical edge is denoised with the Gaussian model

of Figure 3.2. On the second line, a ”duck” patch is denoised with the Gaus-

sian model of Figure 3.3. In both cases, using the conditional expectation

works extremely well because the Gaussian model used in the estimator fits

perfectly the image to be denoised. On the third line, the noisy edge is

denoised with the Gaussian model of Figure 3.4. In this case, the denoised

patch is constant on each column (since the model is learned from a set of

translated vertical edges). Although the model imposes a strong correlation

between columns of the first half of the patch on the one hand, and between

columns of the second half of the patch on the other hand, this is not enough

to restore the patch perfectly.

3.3.2 Estimation with Gaussian Mixture Models

The case of Gaussian Mixture Models is a bit more involved but remains

globally simple. Assume that X follows a Gaussian Mixture Model

X ∼
K∑

k=1
πkN (µk,Σk), (3.2)

with
∑K
k=1 πk = 1. There exists a latent random variable Z on {1, . . . , K}

such that P[Z = k] = πk and such that X|Z = k ∼ N(µk,Σk). In the

following, we note ψk(y) the Wiener estimator for the kth Gaussian, i.e.

ψk(y) = µk + Σk(Σk + σ2Ip)−1(y − µk).
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Figure 3.5 – For each line, from left to right, clean patch, noisy patch
(σ = 10%), denoised patch with the Wiener estimator. First line, the
edge Gaussian model of Figure 3.2 is used to denoise (PSNR = 37.17). Sec-
ond line, the duck Gaussian model of Figure 3.3 is used to denoise (PSNR
= 34.29). Third line, the gradient model of Figure 3.4 is used to denoise
(PSNR = 29.68). In this last case, the image to be denoised is not well
represented by the model and the result is less convincing.

Under this model, we have the following proposition.

Proposition 4 Assume that X and Y follow the model (1.6), with X ∼
∑K
k=1 πkN (µk,Σk) and N ∼ N (0, σ2Ip) independent, then the conditional

expectation of X knowing Y can be written

E[X|Y ] =
K∑

k=1
ψk(Y )P[Z = k|Y ]. (3.3)

Proof 7 To compute the conditional expectation, we can start by noting

that if Z = k, (X, Y ) is a Gaussian vector and the results of the previous
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section apply. We can now compute the conditional expectation

E[X | Y, Z] = ψZ(Y ) =
K∑

k=1
ψk(Y )1Z=k.

It follows that

E[X|Y ] = E[E[X | Y, Z] | Y ] because σ(Y ) ⊂ σ(Y, Z)

= E[ψZ(Y ) | Y ] =
K∑

k=1
E[ψk(Y )1Z=k | Y ]

=
K∑

k=1
ψk(Y )E[1Z=k | Y ] because ψk(Y ) is σ(Y )-measurable.

We deduce that

E[X|Y ] =
K∑

k=1
ψk(Y )E[1Z=k | Y ] =

K∑

k=1
ψk(Y )P[Z = k | Y ].

The conditional expectation E[X|Y ] can be seen as a linear combination

of affine functions of Y , with weight P[Z = k|Y ] representing the probability

that the patch belongs to the class k. However, the weights P[Z = k | Y ]
are not linear functions of Y .

The expression of the Wiener estimator EWiener[X|Y ] can be deduced

directly from Equation (1.34), by replacing E[X] by
∑K
k=1 πkµk and ΣX by

the complete covariance of the GMM.

Finally, computing the MAP arg maxX logP[X|Y ] under a GMM prior

on X is much less convenient and does not lead to a closed-form solution.

Indeed, it boils down to compute the maximum of the posterior distribution,

which is another Gaussian Mixture distribution.

In other words, the linear MMSE, MMSE and MAP do not coincide for

Gaussian Mixture priors. In practice, the conditional expectation is favored

since it is much simpler to compute than the MAP.
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3.3.3 Other estimation strategies

Estimation under Gaussian or GMM models has several links with other

estimation strategies found in the literature. For a noisy patch y, and a

Gaussian model N (µ,Σ), we have seen that the conditional expectation

strategy consists in computing the denoised patch

x̂(y) = µ+ Σ(Σ + σ2Ip)−1(y − µ).

Now, if we consider the eigendecomposition Σ = Q∆Qt with ∆ = diag(λ1, . . . , λp),
this can be rewritten

x̂(y) = µ+Qdiag

(
λ1

λ1 + σ2 , . . . ,
λp

λp + σ2

)
Qt(y − µ). (3.4)

More generally, denoting Q1, . . . , Qp the columns of Q representing the

eigenvectors, we can write

x̂(y) = µ+
p∑

k=1
ηk (〈Qk|y − µ〉)Qk, (3.5)

with ηk(z) = λk
λk+σ2 z. Although the previous Wiener estimator is used in

numerous recent patch-based denoising methods [35, 65, 71], other choices

are obviously possible for ηk, such as hard or soft thresholding [18], or all

estimators classically used in diagonal estimation.

Writing x̃ = Qt(x−µ), we can see that the conditional expectation x̂(y)
is also solution of the optimization problem

argmin
x̃
‖Qx̃− (y− µ)‖2 + σ2x̃t∆−1x̃ = argmin

x̃
‖Qx̃− (y− µ)‖2 + σ2

p∑

k=1

x̃2
j

λk
.

This permits to see the link between the previous approach and the dictionary-

based approaches, the dictionary here being given by Q and the second term

corresponding to a regularization of the solution x̃. Figure 3.6 represents

the denoising of a noisy patch with the same Gaussian model and two dif-

ferent denoising strategies: the conditional expectation (Wiener) and hard
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thresholding at 2.7σ (as recommended in [18]).

Figure 3.6 – Clean patch, noisy patch (10% noise), denoised patch with
gradient model (from Fig. 3.4) and Wiener estimator (PSNR = 29.68dB),
and denoised patch with gradient model and hard thresholding (PSNR =
31.12dB, th = 2.7σ)

3.4 From patches to images: aggregation pro-

cedures

In the previous sections, we have seen how to derive bayesian estimators

to perform denoising on each patch separately. In this framework, each

observed patch yi from a noisy image v is denoised into x̂i, which is an

estimate of the unknown patch xi. Each pixel of the image v is contained in

p patches, which provide p denoised versions for this pixel. Most aggregation

procedures consists in defining a reprojection function ψ : Rm×p → Rm

which reconstructs an image from the set of its denoised patches. Observe

that since denoised patches usually do not coincide on their overlap, this

operation is not invertible. Moreover, since the noise on overlapping patches

is not independent, the p denoised versions of the pixel carry this dependence

under the form of low-frequency noise. In the literature, we find three main

strategies for this reprojection step:

— Central pixel reprojection. The idea is to keep only the central

pixel of each denoised patch.

— Uniform reprojection. All the estimators coming from the differ-

ent patches containing the pixel are averaged with uniform weights.
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This strategy is the most commonly used in practice, and this is the

one we use in this chapter for the sake of simplicity.

— Weighted reprojection. All the estimators coming from the differ-

ent patches containing the pixel are averaged with weights represent-

ing the precision of the corresponding estimator. For some details

see [59, 54, 15].

A more involved strategy is explored in [79]. The authors propose to

reconstruct the denoised image u as the solution of

argmin
u

λ

2‖u− v‖
2
2 −

∑

j

log p(xj),

where the {xj} are the patches extracted from the unknown image u and p

is a GMM prior on the image patches. This formulation includes both the

denoising and aggregation step into a single variational problem.

3.5 Inference of Gaussian and GMM priors

Gaussian models and GMMs appear to be well suited for patch based

denoising. However, the quality of the restoration strongly depends on the

relevance of the model. Unfortunately, in real denoising problems the perfect

model is never known and the most challenging step is to find a good prior

for each patch. In the literature, we find essentially two strategies to learn

these models. The first one consists in learning the model on some external

set of patches that represent the diversity of natural images [79]. The second

one consists in learning the model directly on the noisy patches [65, 35]. In

this section, we discuss different approaches adopting the second strategy.

Before going further, we recall some basics about statistical inference.

Given a set of patches {y1, . . . , yn} ∈ Rp extracted from an image, we

consider them as independent realizations of a random variable Y with

density φ depending on some parameters θ. The parameters θ of the model

are inferred by maximizing the likelihood of the data w.r.t. θ, where the
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likelihood is defined as

`(y; θ) =
n∏

i=1
φ(yi; θ). (3.6)

Maximizing the likelihood is equivalent to minimize the negative log-likelihood

L(y; θ) = − log (`(y; θ)) = −
n∑

i=1
log (φ(yi; θ)) , (3.7)

which is usually more convenient for computation.

In the context of denoising, we put a prior model on the random vec-

tor X representing the clean patches. When X follows a Gaussian model

of parameters (µX ,ΣX), resp. a Gaussian mixture model of parameters

{πk, µk,Σk}k=1...K , then Y = X + N also follows a Gaussian model of pa-

rameters {µX ,ΣX + σ2I}k, resp. a GMM of parameters (πk, µk,Σk + σ2I).
Since ΣX (resp. Σk) is positive semi-definite and σ > 0, ΣX + σ2I (resp.

Σk + σ2I) is always positive definite. Thus, the random vector Y always

has a probability density function φ and the likelihood is always defined.

3.5.1 Gaussian models

In the case of a Gaussian prior X ∼ N (µX ,ΣX) on the clean patches,

the set of parameters on the noisy patches is given by θ = {µY ,ΣY } where

ΣY = ΣX +σ2I and µX = µY . The negative log-likelihood for a set of noisy

data {y1, . . . , yn} becomes

L(y; θ) = 1
2

n∑

i=1
(yi − µY )TΣY

−1(yi − µY ). (3.8)

The computation of the maximum likelihood estimators (MLE) of the pa-

rameters, i.e. argminθ L(x; θ), for µY and ΣY yields the sample mean

µ̂Y (n) = 1
n

n∑

i=1
yi, (3.9)
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and the sample covariance matrix

Σ̂Y (n) = 1
n

n∑

i=1
(yi − µ̂Y )T (yi − µ̂Y ). (3.10)

Theses estimators depend on the number n of samples and from the strong

law of large numbers

µ̂Y (n) a.s.−→
n→∞ µY and ΣY (n) a.s.−→

n→∞ ΣY . (3.11)

This gives us an estimator Σ̂X := Σ̂Y − σ2I for ΣX satisfying

Σ̂X(n) a.s.−→
n→∞ ΣX . (3.12)

In summary, for a given set of noisy patches {y1, . . . , yn} we can easily

compute the MLE of the parameters (µX ,ΣX) for the Gaussian model on the

underlying clean patches. Now, since we showed in Section 3.2 that Gaussian

models are representing really precise structures, the most challenging part

is to choose the set of noisy patches from which the model can be derived.

3.5.2 How to group patches to infer Gaussian priors?

In this section, we discuss how patches can be grouped in order to learn

the previous Gaussian models directly from a noisy image.

Global Gaussian prior

The first really basic idea is to model the set of all image patches with

a unique Gaussian prior. In this case, we are modeling the whole “patch-

space” by a unique Gaussian model of mean µ̂X and covariance Σ̂X . This

model poorly represents the complexity of the patch-space but still encodes

some proper image information. This modeling is adopted in [18] to per-

form a basic denoising by performing the eigendecomposition ΣX = Q∆Qt

and denoising the patches with an estimator of the form (3.5). Figure 3.7

illustrates the fact that the eigenvectors of the covariance matrix learned on

84



CHAPTER 3. GAUSSIAN PRIORS

the whole patch space encode some proper information about the image.

Figure 3.7 – Visualization of the first 16 eigenvectors of the sample covari-
ance matrix of the whole patch space for two different images. Left: original
images. Middle: the 16 first eigenvectors. Right: patches generated with
the low rank covariance matrix created from these eigenvectors.

In this case, since the Gaussian model is very broad, we do not ex-

pect the Wiener estimator to yield good results. But since the eigenbasis

seems to encode some proper information about the image patches, the hard

thresholding strategy manages surprisingly good denoising. The second line

of Figure 3.8 shows the denoising result for this global grouping with the

two denoising strategies and shows that in this case, the hard-thresholding

strategy is better than the Wiener one.

Spatially local Gaussian priors

To derive more precise prior models, it is necessary to group “similar”

patches and to restrict the inference to each of these groups. A first possibil-

ity is to group patches based on their spatial proximity in the image. This

makes sense in homogeneous regions, but the risk is high to group patches
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representing really different structures. The third line of Figure 3.8 shows

that the result of this strategy is not really better, PSNR-wise, than the

result of the global strategy. However, the Wiener strategy for this local

approach seems nicer than in the global approach, while the result of the

hard-thresholding strategy does not really change.

Local Gaussian priors in the space of patches

In order to learn more precise models, patches can be clustered directly

in the patch space and a Gaussian model can be inferred for each cluster.

All patches from the cluster can then be denoised using this model. This

clustering implies to use an appropriate similarity measure between patches.

The fourth line of Figure 3.8 shows such a denoising experiment with a K-

means clustering relying on the Euclidean distance, with K = 256 clusters

(Figure 3.9 shows the corresponding clustering). This usually yields a better

denoising than the global and the local grouping strategies.

This way of grouping patches in the patch space together with a Wiener

filtering is also one of the main ideas behind the two steps of the NL-

Bayes algorithm [35]. In this algorithm, each patch yi is associated with

the group of all its ε-close patches for the Euclidean norm. A Gaussian

model is inferred from this group and the whole group is denoised using this

model. The final estimator for each patch is the average of all its denoised

versions. The NL-Bayes algorithm uses this strategy twice: in the first

step, distances are computed directly between noisy patches in Rp; in the

second step, distances between patches are computed between the versions

which have denoised during the first step. Grouping ε-close patches presents

the advantage of putting together patches representing the same structures.

However, a straightforward one-step implementation (fifth row of Figure 3.8)

of this idea shows that it does not work as well as expected in practice. Two

major issues arise in this context:

— The high dimensionality of the patch space makes the estimation of

the covariance matrix difficult;

— The use of the Euclidean distance for grouping does not allow similar
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Figure 3.8 – First line: two images and their noisy versions (σ = 30).
Columns correspond to denoising strategies (Wiener or Hard thresholding).
Lines correspond to grouping strategies: 1. one Gaussian model for all
patches (PSNR, from left to right: 29.18dB, 31.22dB, 25.94dB, 26.85dB), 2.
K = 256 local Gaussian models in the image space, see Figure 3.9 (PSNR,
from left to right: 29.14dB, 30.72dB, 26.28dB, 26.88dB), 3. K = 256 local
Gaussian models from a k-means clustering, see Figure 3.9 (PSNR: 31.30dB,
31.09dB, 26.92dB, 27.08dB), 4. local Gaussian models for group of ε-close
patches (PSNR: 30.45dB, 29.65dB, 26.72dB, 25.95dB).
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Figure 3.9 – Left: the local grouping used in the local strategy. Middle
and Right: the grouping used in the K-means strategy for the two images
Simpson and Alley.

patches with different contrast to be in the same group, which is a

loss because we saw in Section 3.2 that a Gaussian model can encode

information up to contrast changes.

The first issue, discussed in Section 3.5.4, is crucial and related to the

curse of dimensionality. Unfortunately, it is hardly taken into account in

the image denoising literature.

To tackle the second issue, other norms were investigated in the literature

[16]. Another idea is to use the Gaussian models previously learned for

recalculating new clusters. Indeed, each covariance matrix of the different

Gaussian models provides a semi-norm that can be used to recompute the

ε-nearest patches of each group.

3.5.3 Inference for Gaussian Mixture Models

The inference in the case of a mixture model is slightly more challenging

since a direct maximization of the likelihood is not possible. The negative

log-likelihood of the noisy data {y1, . . . , yn} is given by

L(y; θ) =
n∑

i=1
log

(
K∑

k=1
πkφ(yi; θk)

)
(3.13)

and the minimization of this function w.r.t θ is a complex problem. How-

ever, if we know to which group each sample xi belongs, the log-likelihood
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becomes

L(y, z; θ) =
n∑

i=1

K∑

k=1
zik log (πkφ(yi; θk)) (3.14)

with zik = 1 if yi belongs to the group k and 0 otherwise. L(y, z; θ) is

the log-likelihood of the data completed with the latent random variable Z

that determines the group from which the observations come from, that is

Yi|(Zi = k) ∼ N (µk,Σk) and p(Zi = k) = πk.

The EM algorithm consists in iterating two steps ; the expectation (E)

step that calculates the expected value of (3.14) with respect to the condi-

tional distribution of Z given Y for the current value of the parameters θ.

And the maximization (M) step that consists in the update of the parame-

ters by minimizing the expectation of the complete log-likelihood from the

E-step:

E (L(y, z; θ)) =
n∑

i=1

K∑

k=1
E(zik|xi, θ) log (πkφ(yi; θk)) (3.15)

which leads to tractable expressions for the MLE of the parameters. It

can be shown (see for example [5]) that this algorithm converges to a local

minimum of the log-likelihood (3.13).

In the precise case of a Gaussian mixture model, the two steps of the

algorithm become

— E-step, computation of tik := E(zik|yi, θ)

tik = πkφ(yi; θk)∑K
l=1 πlφ(yi; θl)

(3.16)

— M-step, update of the parameters

π̂k = 1
n

n∑

i=1
tik, (3.17)

µ̂k =
∑n
i=1 tikyi∑n
i=1 tik

, (3.18)

Σ̂k =
∑n
i=1 tik(yi − µk)(yi − µk)T∑n

i=1 tik
. (3.19)

Observe that if we impose the tik to be 1 when the patch i belongs to
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the group k and 0 otherwise, the M-step consists in inferring the parameters

of the Gaussian models for the groups, while the E-step uses the knowledge

of the inferred model to update the groups themselves. This model pro-

vides a better clustering of the patches than a K-means clustering with the

Euclidean norm (which only produces isotropic clusters) and consequently

should yield better denoising results. This idea is used in [71, 75] and the

GMM model on patches is also used in [77]. A straightforward implementa-

tion of the denoising with a GMM model on the patches gives the result in

the first line of Figure 3.10. However, this inference of a GMM also strongly

suffers from the curse of the dimensionality and algorithms such S-PLE [71]

or the HDMI algorithm that is presented in chapter 4 propose to use Gaus-

sian Mixture models with intrinsic lower dimensions in order to reduce the

number of parameters to estimate, as detailed in the following section.

3.5.4 Inference in high dimension

The dimensions of the patch spaces are usually high, from p = 9 (for

3×3 patches) to p = 100 for 10×10 patches, or even higher. Estimating the

parameters of Gaussian models (or GMM) in such high dimensional spaces

is complex. When p is large, patches seen as points in Rp are essentially

isolated, the euclidean distance and the notion of nearest neighbor become

much less reliable than in low dimensional spaces [27]. These phenom-

ena, known as the curse of dimensionality, cause difficulties to decide which

patches should be grouped together in a common Gaussian model. Besides,

parametric models such as Gaussian Mixture Models in high-dimension are

usually over-parametrized: the covariance matrix of a Gaussian model in

dimension p = 100 contains 5050 different coefficients. They necessitate

huge quantities of data to be estimated correctly. Indeed, the convergence

of the sample covariance matrices to the true covariance matrix depends

on the ratio between the number n of samples and the dimension p. More

precisely, if n and p both tend toward infinity while n
p

tends toward a con-

stant c > 0, the eigenvalues of the sample covariance matrix Σ̂(n) do not

necessarily converge towards the eigenvalues of the model covariance ma-
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Figure 3.10 – First line: Denoising with a full GMM model (50 groups)
on all the patches. The clustering (left) is quite noisy and the denoising
result (right) is not very good (PSNR: 28.50dB). Second line: Denoising
with a GMM model (50 groups) with intrinsic dimension regularization as
we propose in chapter 4. The clustering (left) is smoother and the denoising
yields quite good results (PSNR: 31.23dB)

trix (Marc̆enko-Pastur Theorem [46] describes the limit law of the empirical

distribution of these eigenvalues).

A consequence of the curse of dimensionality is that clustering methods

such as K-means of GMM are often disappointing in high dimension, or do

not converge at all if p is too large. Solutions to circumvent these prob-

lems usually rely on dimension reduction, or regularization of the model

parameters. For instance, if the sample covariance matrix Σ is singular of

ill-conditioned, or is not definite positive, it is usual to add a small εIp to it.

This is the strategy followed by [35, 77]. In the case of Gaussian Mixture
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Models, another approach consists in assuming that the intrinsic dimension

of the Gaussian is lower than p. This is the idea adopted in [71], where the

groups intrinsic dimensions are heuristically fixed to 1 (flat regions), p
2 or

p− 1. A more involved method consists in inferring for each group its own

intrinsic dimension as we propose in chapter 4 (see Figure 3.10). The cor-

responding parsimonious model assumes that each Gaussian of the mixture

lives in its own specific subspace.

3.6 Discussion and conclusion

In this chapter, we have focused on patch priors for image denoising. As

we have seen, assuming Gaussian and GMM priors on image patches is now

quite common in the restoration literature. These approaches yield simple

image models, usually quite easy to interpret. We have tried to provide a

unified point of view for all of these methods, in order to underline their

similarities and differences. Table 3.1 summarizes the main features of the

methods mentioned in this chapter. We have also described some of their

limitations, such as the inference difficulties in high dimension or the absence

of invariance properties to geometric transformations.
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Method Grouping Modeling
Dimension
reduction

Remarks Denoising Aggregation

Global [18] all patches
Gaussian
models

no - Wiener/HT Uniform

Local [18]

local
grouping in
the image

space

Gaussian
models

no - Wiener/HT Uniform

K-means
k-means in
the patch

space

Gaussian
models

no - Wiener/HT Uniform

NL-bayes
[35]

nearest
neighbours

in the patch
space

Gaussian
models

no
flat areas

are treated
separately

Wiener Uniform

PLE [77] GMM no
MAP-EM
algorithm

Wiener at
each step of

the
MAP-EM
algorithm

Uniform

S-PLE [71] GMM yes
fixed

intrinsic
dimensions

MMLE Uniform

HDMI [33] GMM yes

estimation
of the

intrinsic
dimensions

MMLE Uniform

EPLL [79] - GMM no

GMM
parameters
infered on
an external

base

Variational formulation

Table 3.1 – This table summarizes the main features of the different meth-
ods mentioned in this chapter. Each line refers to a patch-based denoising
method and the reference paper where it has been introduced. The columns
correspond to the different steps we discussed in this chapter.
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Chapter 4

High Dimensional Mixture

Models for Image denoising

Abstract

This chapter addresses the problem of patch-based image denoising

through the unsupervised learning of a probabilistic high-dimensional

mixture models on the noisy patches. The model, named hereafter HDMI,

proposes a full modeling of the process that is supposed to have generated

the noisy patches. To overcome the potential estimation problems due to

the high dimension of the patches, the HDMI model adopts a

parsimonious modeling which assumes that the data live in group-specific

subspaces of low dimensionalities. This parsimonious modeling allows in

turn to get a numerically stable computation of the conditional

expectation of the image which is applied for denoising. The use of such a

model also permits to rely on model selection tools, such as BIC, to

automatically determine the intrinsic dimensions of the subspaces and the

variance of the noise. This yields a denoising algorithm that can be used

both when the noise level is known and unknown.
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4.1 Introduction

While the question of the appropriate statistical prior for the image

patches remains essentially open, the most simple and surprisingly effec-

tive models used to represent patches distributions are local Gaussian mod-

els [35] or mixtures of Gaussians [71, 77, 79], as we have seen in the previous

chapter. Under the latter models, the vector X is assumed to follow a dis-

tribution

p(x) =
K∑

k=1
πkN (x;µk,Φk), (4.1)

with µk and Φk the mean and covariance of the group k, and πk is the

probability that X has been drawn from the group k (with
∑K
k=1 πk = 1).

Assuming such a known prior on X, and because the noise is also Gaussian

and independent from X, we have seen in chapter 3 that it is quite easy to

derive the estimator minimizing the expected mean square error (MSE) to

the patch X. This estimator, given by the conditional expectation E[X|Y],
takes the form of a (non linear) combination of K linear filters:

E[X|Y] =
K∑

k=1
ψk(Y)τk(Y), (4.2)

where τk(Y) denotes the probability that, knowing Y, X comes from the

group k, and ψk the fixed filter

ψk(y) = µk + Φk(Φk + σ2Ip)−1(y − µk).

The mixture model being known, each image patch can be denoised by this

filter.

Estimating the parameters of this Gaussian mixture model (GMM) from

patches is a complex task in practice. Indeed, since the patch sizes are typ-

ically greater than 3× 3, the dimensions of the corresponding patch spaces

can be quite high and, as we have seen before, estimation in such high-

dimensional spaces is not trivial. In the denoising literature, such Gaussian

mixture models can be learned from the image itself or from a basis of nat-
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ural image patches and possibly adapted to each image [71, 77, 79]. This

learning stage is made more difficult when it is applied on the degraded

patches. Estimating the mixture model also presents other challenges, such

as the choice of the number K of mixture components, the choice of the rel-

evant learning bases, and of the inherent dimensions of each group. While

recent approaches [71, 77] of the denoising literature impose a fixed value

for K and use covariance matrices with pre-defined ranks, we explore in this

chapter ways to learn automatically these different parameters. To this aim,

we propose to explore recent model-based clustering approaches that have

been specifically developed for high-dimensional data. These approaches

have the great advantage of respecting the subspaces and the specific intrin-

sic dimension of each Gaussian in the mixture. In the following paragraphs,

we start by briefly reviewing some key-methods in model-based clustering

for high-dimensional data.

Model-based clustering for high-dimensional data Model-based clus-

tering [25, 47] with Gaussian mixtures is a popular approach which is

renowned for its probabilistic foundations and its flexibility. One of the

main advantages of this approach is the fact that the obtained partition

can be interpreted from a statistical point of view. For a data set of n

observations in Rp that one wants to cluster into K homogeneous groups,

model-based clustering assumes that the overall population is a realization

of a mixture of K Gaussian distributions. Unfortunately, model-based clus-

tering methods show a disappointing behavior in high-dimensional spaces

which is mainly due to the fact that they are significantly over-parametrized.

Since the dimension of observed data is usually higher than their intrinsic

dimension, it is theoretically possible to reduce the dimension of the original

space without loosing any information. For this reason, dimension reduc-

tion methods are frequently used in practice to reduce the dimension of the

data before the clustering step. Feature extraction methods, such as princi-

pal component analysis (PCA), or feature selection methods are very popu-

lar. However, dimension reduction techniques usually provide a sub-optimal

data representation for the clustering step since they imply an information
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loss which could have been discriminative. To avoid the drawbacks of di-

mension reduction, several recent approaches have been proposed to allow

model-based methods to efficiently cluster high-dimensional data. Subspace

clustering methods are searching to model the data in subspaces of much

lower dimension and, thereby, avoid numerical problems and boost cluster-

ing capability. The mixture of probabilistic principal component analyzers

(MPPCA, [67]) may be considered as the earliest and the most popular sub-

space clustering method. In a few words, MPPCA assumes that the data

live in group-specific subspaces with a common intrinsic dimensionality and

that the noise has an isotropic variance. This model has become popular in

the past decades due, in particular, to its links with PCA. It is worth notic-

ing that the recent denoising approach [71] make use of this model. The

authors of [71] however noticed that the fact that all groups must have the

same intrinsic dimension in MPPCA is a limiting factor for image denoising.

They consequently removed this constraint and arbitrally fixed the intrinsic

dimensions of the groups to be either 1, p/2 or p − 1. We refer to [6] for

a recent review of model-based clustering techniques for high-dimensional

data.

Model-based clustering for image denoising and contributions As

explained before, patch-based clustering [14, 15, 43] and more specifically

model-based clustering [79, 71, 65, 42, 17] have already been considered

many times in the image denoising literature. However, since Gaussian

models on patches are usually over-parameterized, their inference requires

huge quantities of samples. This estimation is possible on external patch

databases, as done in [79], but it becomes completely ill-posed if we just

rely on the patches extracted from an image to be restored. In this latter

case, regularization becomes essential. As we have seen in the previous

paragraph, a first possibility consists in imposing low rank constraints on

the groups. This not only makes the model easier to infer, but also reduces

the overall computational complexity. One of the first papers using this

approach is [71], but the authors impose fixed dimensions to the groups,

which makes little sense in practice. The low rank idea is also used in
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the very recent [17] to drastically accelerate the computation time of [79].

Another possible regularization approach consists in imposing an hyperprior

on the GMM parameters. This is the strategy investigated in [42], which

first estimates a full GMM on an external patch database (as in [79]) and

uses this full GMM as an hyperprior to estimate a GMM on the noisy image

data. In this chapter, we aim at a much simpler approach, relying only on

the noisy data.

Our contribution in this chapter is three-fold. First, we propose a prob-

abilistic Gaussian mixture model for image denoising, called HDMI (High

Dimensional Mixture models for Image denoising), inspired by the family of

models introduced in [7]. The HDMI model proposes a full modeling of the

process that is supposed to have generated the noisy patches and adopts a

parsimonious modeling to overcome the potential estimation problems due

to the high dimension of the data. The parsimony of the model comes from

the assumption that the patches live in group-specific subspaces of low di-

mensionalities. Conversely to the MPPCA model, the HDMI model allows

each subspace to have its own intrinsic dimensionality and, thus, proposes a

finer modeling of the clusters. Second, we exhibit an expression of the con-

ditional expectation E[X|Y] which is based on explicit inverses of the group

covariance matrices. This results in a numerically stable computation of

the denoising rule for a given image. Finally, the use a full probabilistic

model for the image denoising problem also permits to rely on the model

selection tools to determine in an automatic way the intrinsic dimensions

of the subspaces and the variance of the noise. This results in a blind im-

age denoising algorithm, that demonstrates excellent performances both in

situations where the level of noise is assumed to be known or not.

It should be noted that the recent paper [75] builds on the same ideas,

and proposes to incorporate low rank constraints in a GMM for compressed

sensing and denoising applications. However, in [75], the low-rank assump-

tion (including a noise term) is assumed on the actual (unknown) image

X, and inferred from the observation Y . This makes the whole estimation

process more complex than in our approach, since the authors maximize the

marginal likelihood with the actual signal marginalized out as a latent vari-
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able, while we maximize the classical log-likelihood for the observed signal.

In addition, the inference and denoising in their model require the inver-

sion of covariance matrices, while our model permits to infer and denoise

without matrix inversion. Finally, in HDMI, the intrinsic dimensions of the

different groups are inferred (in relation to noise variance) from the early

stages of the algorithm and these dimensions evolve during all the stages of

the algorithm, whereas in [75], these dimensions are estimated after several

iterations of the EM approach on a full GMM model.

Outline of the chapter The chapter is organized as follows. In section

4.2, we present the HDMI model that we introduce to model the genera-

tion process of the noisy patches and the associated image denoising rule.

Section 4.3 is devoted to the inference procedure and to model selection,

including the estimation of group intrinsic dimensionalities and noise vari-

ance. In section 4.4, we provide numerical experiments that highlight the

main features of our approach and demonstrate its effectiveness for image

denoising, along with comparisons with the state-of-the-art. Finally, section

4.6 provides some concluding remarks and tracks for further work.

4.2 Model-based clustering for image denois-

ing

In this section, we present a parsimonious and flexible statistical model

for image denoising. The links with existing models of the literature and

the associated denoising procedure are also discussed.

4.2.1 A parsimonious Gaussian model for image de-

noising

Let us consider a data set of n observed noisy patches extracted from an

image. These patches are all square sub-images of size p = s× s, extracted

from the noisy image and written as vectors {y1, . . . yn} ∈ Rp. We assume
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ak1, ..., akdk

Qk

π σ2

Figure 4.1 – Graphical summary of the HDMI model: the circled nodes
correspond to random variables whereas other nodes are model parameters;
the blue node denotes the observed variable; non-filled variables are latent.

that these patches are noisy versions of unknown patches {x1, . . . xn} ∈ Rp.

We consider the unknown patches {x1, . . . xn} as independent realizations

of a random vector X ∈ Rp following a Gaussian mixture model with K

groups. We model the unobserved group memberships as realizations of a

random variable Z ∈ {1, ..., K}. As pointed out in [71], it is reasonable to

assume that most groups in this model should not be full rank, and that

each group should have its own dimension. In order to take account of

the dimensionality of each group we assume that the random vector X is,

conditionally to Z = k, linked to a low-dimensional latent random vector

T ∈ Rdk , of dimensionality dk, through a linear transformation of the form:

X|Z=k = UkT + µk, (4.3)

where Uk is a p × dk orthonormal transformation matrix and µk ∈ Rp is

the mean vector of the kth group. The dimension dk of the latent vector is

such that dk < p, ∀k = 1, ..., K (the choice of the intrinsic dimensionalities

dk is discussed in section 4.3). Besides, the unobserved latent factor T
is assumed to be, conditionally on Z, distributed according to a Gaussian

density function such as:

T | Z = k ∼ N (0,Λk), (4.4)
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where Λk = diag(λk1, . . . , λkdk).

Under the degradation model (1.6) and assuming that the noise variable

N is Gaussian with a diagonal covariance matrix σ2Ip, not depending on the

groups:

N ∼ N (0, σ2Ip),

the conditional distribution of Y is also Gaussian:

Y | T,Z = k ∼ N (UkT + µk, σ
2Ip). (4.5)

The marginal distribution of Y is therefore a mixture of Gaussians:

p(y) =
K∑

k=1
πkN (y;µk,Σk)

where πk is the mixture proportion for the kth component and Σk has a

specific structure:

Σk = UkΛkU
t
k + σ2Ip. (4.6)

The specific structure of Σk can be exhibited by considering the projected

covariance matrix ∆k = Qt
kΣkQk, where Qk = [Uk, Rk] is the p × p matrix

made of Uk and an orthonormal complementary Rk. With these notations,

∆k has the following form:

∆k =




ak1 0
. . .

0 akd

0

0
σ2 0

. . .

0 σ2








dk





(p− dk)

where akj = λkj + σ2 and akj > σ2 , for k = 1, . . . , K and j = 1, ..., dk.
The model is therefore fully parametrized by the set of parameters θ =
{πk, µk, Qk, akj, σ

2, dk; k = 1, ..., K, j = 1, ..., dk} and will be referred to as
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Model
Number of
parameters

Asymptotic
order

Nb of prms K = 4,
d = 10, p = 100

HDDC ([akjbkQkdk]) ρ+ τ̄ + 2K +D Kpd 4231
HDMI ([akjσ2Qkdk]) ρ+ τ̄ +K +D + 1 Kpd 4228
MPPCA ([akjbkQkd]) ρ+K(τ + d+ 1) + 1 Kpd 4228
GMM full cov. ρ+Kp(p+ 1)/2 Kp2/2 20603
GMM common cov. ρ+ p(p+ 1)/2 p2/2 5453
GMM diagonal cov. ρ+Kp 2Kp 803

Table 4.1 – Properties of the HD-GMM models and some classical Gaussian
models: ρ = Kp + K − 1 is the number of parameters required for the
estimation of means and proportions, τ̄ = ∑K

k=1 dk[p − (dk + 1)/2] and
τ = d[p−(d+1)/2] are the number of parameters required for the estimation
of orientation matrices Qk, and D = ∑K

k=1 dk. For asymptotic orders, the
assumption that K � d� p is made.

the HDMI model hereafter. Figure 4.1 presents a graphical representation

associated with this model.

4.2.2 Links with existing models

First, it is worth to notice that the model presented above is a specializa-

tion of the classical Gaussian mixture model (GMM). Indeed, if dk = p for

k = 1, ..., K, then the HDMI model reduces to the usual GMM. Second, it

is possible to obtain less or more constrained models than the one presented

earlier, corresponding to weaker or stronger regularizations. In particular,

it is possible to relax the constraint that the noise variance is common be-

tween groups. In this case, the model corresponds to the one presented in

[7], and known as [akjbkQkdk]. From this general model, it is also possible

to constrain the dimensions dk to be common between the groups, which

exactly corresponds to the MPPCA model proposed by [67]. Notice that

the SPLE denoising approach [71] makes use of this latter model. However,

the authors noticed that the use of an unique dimension for the groups in

MPPCA is a limiting factor for image denoising. In this view, the model

that we presented in the previous paragraph should be more appropriate

for image restoration problems. Let us finally notice that a family of 28
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models was proposed in [4, 7] to accommodate with different practical situ-

ations, from the most complex to simple ones. Table 4.1 provides orders of

magnitude for the complexity (i.e. the number of parameters to estimate)

of the HDMI model as well as some of the models discussed above, in a

comparison purpose.

4.2.3 Denoising with the HDMI model

With the assumptions of the HDMI model, the best approximation of

the original vector X can be estimated by computing the conditional expec-

tation E[X|Y]. Due to the Gaussian mixture distributions, this conditional

expectation is a (non linear) combination of linear functions of Y, with

weights P[Z = k|Y]. These affine functions can be seen as Wiener filters,

and require to invert the group covariance matrices. The following propo-

sition gives both the (classical) closed form equation for this conditional

expectation, and a second formula which shows how to efficiently compute

these filters in the HDMI model case, avoiding numerically sensitive matrix

inversions.

Proposition 5 Assume that the random vector X follows the model (4.3)

and that Y is obtained by the degradation model (1.6). Then

E[X|Y] =
K∑

k=1
ψk(Y)τk(Y), (4.7)

with τk(Y) = P[Z = k|Y] and

ψk(y) = µk + (Σk − σ2Ip)Σ−1
k (y − µk),

where the covariance matrix Σk is defined as in Equation (4.6). Moreover,
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ψk(y) can also be written

ψk(y) = µk + UkΛk

(
Λk + σ2Idk

)−1
U t
k(y − µk) (4.8)

= µk + Ukdiag
(

λk1

λk1 + σ2 , . . . ,
λkdk

λkdk + σ2

)
U t
k(y − µk) (4.9)

= µk + Ukdiag
(

1− σ2

ak1
, . . . , 1− σ2

akdk

)
U t
k(y − µk), , (4.10)

where Uk and Λk are the matrices defined in Equations (4.3) and (4.4).

Proof 8 If Z = k is known, then (X|Z=k,N) is a Gaussian random vector

and so is (X|Z=k,Y|Z=k). The conditional expectation E[X | Y,Z = k] can

thus be written

E[X|Y,Z = k] = µk + (Σk − σ2Ip)Σ−1
k (Y − µk) = ψk(Y ),

since Σk is the covariance of Y | Z = k and Σk − σ2Ip the covariance of

(X|Z=k,Y|Z=k). Thus, we can write

E[X | Y,Z] = ψZ(Y) =
K∑

k=1
ψk(Y)1Z=k.

It follows that

E[X|Y] = E[E[X | Y,Z] | Y] because σ(Z) ⊂ σ(Z,Y)

= E[ψZ(Y) | Y] =
K∑

k=1
E[ψk(Y)1Z=k | Y]

=
K∑

k=1
ψk(Y)E[1Z=k | Y] since ψk(Y) is σ(Y)-measurable.

As a consequence,

E[X|Y] =
K∑

k=1
ψk(Y)E[1Z=k | Y] =

K∑

k=1
ψk(Y)P[Z = k|Y].

Now, writing Σk = Qk∆kQ
t
k, with ∆k and Qk = [Uk, Rk] defined in
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section 4.2.1, we have

ψk(Y) = µk + (Σk − σ2Ip)Σ−1
k (Y − µk) = µk +Qk(∆k − σ2Ip)Qt

kQk∆−1
k Qt

k(Y − µk)
= µk +Qk(∆k − σ2Ip)∆−1

k Qt
k(Y − µk).

Since

∆k − σ2Ip =

 Λk 0

0 0


 and ∆−1

k =

 (Λk + σ2Idk)−1 0

0 σ−2Ip−dk


 ,

the p × p product Qk(∆k − σ2Ip)∆−1
k Qt

k can also be written UkΛk(Λk +
σ2Idk)−1U t

k. Finally,

ψk(Y) = µk + UkΛk(Λk + σ2Idk)−1U t
k(Y − µk).

This allows to conclude.

At this point, it is interesting to notice that the computation of E[X|Y]
usually requires the inversion of the empirical covariances matrices Σk. In

recent denoising methods such as [35, 77], there is nothing ensuring that

these empirical covariances estimate are full rank. To overcome this limi-

tation, the authors of [77] use a standard regularization Σk + εIp to ensure

invertibility. For the HDMI model, Equation (4.8) uses explicit and sta-

ble inverses of the low-dimensional covariance matrices and consequently a

very efficient and numerically stable way of denoising the image, without

any further regularization.

4.3 Model inference and model selection

In this section, we discuss the inference procedure and model selection for

the HDMI model, including the estimation of the group intrinsic dimensions

and the noise variance.
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4.3.1 Model inference

The inference of the HDMI model cannot be done in a straightforward

manner by maximizing the likelihood, which is unfortunately intractable.

To overcome this problem, the expectation-maximization (EM) algorithm

iteratively maximizes the conditional expectation of the complete-data log-

likelihood:

E [`c (θ; y, z) |θ∗] =
K∑

k=1

n∑

i=1
tik log (πkp (yi; θk)) ,

where θ∗ is a given set of mixture parameters and

tik = P [Z = k|yi, θ∗] = π∗kp (yi; θ∗k)∑K
j=1 π

∗
jp (yi; θ∗j)

. (4.11)

From an initial solution θ(0), the EM algorithm alternates two steps: the

E-step and the M-step. First, the expectation step (E-step) computes the

expectation of the complete log-likelihood E
[
`c (θ; y, z) |θ(q)

]
conditionally

to the current value of the parameter set θ(q). This boils down to compute

the posterior probabilities P
[
Z = k|yi, θ(q)

]
for all classes k and observations

yi. Then, the maximization step (M-step) maximizes E
[
`c (θ; y, z) |θ(q)

]
over

θ to provide an update for the parameter set. This algorithm therefore forms

a sequence
(
θ(q)

)
q

which is guaranteed to converge toward a local optimum

of the likelihood [74]. The reader may refer to [48] for further details on the

EM algorithm. The two steps of the EM algorithm are iteratively applied

until a stopping criterion is satisfied. The stopping criterion may be simply

|`(θ(q); y)− `(θ(q−1); y)| < ε where ε is a positive value to provide. Once the

EM algorithm has converged, the partition {ẑ1, . . . , ẑK} of the data can be

deduced from the posterior probabilities tik = P(Z = k|yi, θ̂) by using the

maximum a posteriori (MAP) rule which assigns the observation yi to the

group with the highest posterior probability.

In the particular case of the HDMI model, the set of parameters is

composed of all the θk = (πk, µk, Qk, akj; j = 1, . . . , dk) for k ∈ {1, . . . , K}
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(the choice of the hyperparameters dk is discussed in section 4.3.3), and

p(y; θk) = 1
(2π)p/2(det ∆k)1/2 e

− 1
2 (y−µk)tQk∆−1

k
Qtk(y−µk). (4.12)

The following proposition describes the steps of the EM algorithm for the

HDMI model.

Proposition 6 For the HDMI model, the update formulas for the E and

M-steps of the EM algorithm are as follows:

— E-step. The posterior probabilities P(Z = k|yi, θ̂) are estimated as

t̂ik = 1
∑K
j=1 exp(1

2(φ(yi, θ̂k)− φ(yi, θ̂j)))
(4.13)

where

φ(y, θj) =− 2 log πjp(y; θj)

=− 2 log(πj) + p log(2π) + log(det ∆j) + 1
σ2‖y − µj‖

2

+ (y − µj)tUjdiag
(

1
aj1
− 1
σ2 , . . . ,

1
ajdj
− 1
σ2

)
U t
j (y − µj).

(4.14)

— M-step. The proportion πk and the the mean µk of the kth group

are respectively estimated by

π̂k = 1
n

n∑

i=1
t̂ik, µ̂k = 1

nπ̂k

n∑

i=1
t̂ikyi,

the dk first columns of the orientation matrix Qk are estimated by

the eigenvectors associated with the dk largest eigenvalues of the em-

pirical covariance matrix of the kth group

Sk = 1
nπ̂k

n∑

i=1
t̂ik(yi − µ̂k)(yi − µ̂k)t,

and the variance akj of the data along the jth axis of the subspace

of the kth group is estimated by the jth largest eigenvalues âkj of Sk,
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j = 1, ..., dk.

Proof 9 For the M-step, the proof of these results is straightforward from

the proof of Proposition 4.2.1 in [7]. For the E-step, observe that in the case

of the HDMI model,

−2 log p (y; θk) = p log(2π) + log(det ∆k) + (y − µk)tQk∆−1
k Qt

k(y − µk).

Using the decomposition Qk = Q̃k + Qk, where Q̃k = [Uk, 0] is made of the

dk first columns of Qk completed by p− dk zeros columns and Qk = [0, Rk]
is composed of dk zeros columns completed by Rk, we obtain

Qk∆−1
k Qt

k = Q̃k∆−1
k Q̃t

k +Qk∆−1
k Q

t
k + Q̃k∆−1

k Q
t
k +Qk∆−1

k Q̃t
k

= Q̃k∆−1
k Q̃t

k +Qk∆−1
k Q

t
k + 0 + 0

= Uk(Λk + σ2Idk)−1U t
k + 1

σ2RkR
t
k

= Uk(Λk + σ2Idk)−1U t
k + 1

σ2 (Ip − UkU t
k).

Thus

(y − µk)tQk∆−1
k Qt

k(y − µk) = (y − µk)tUk
(

(Λk + σ2Idk)−1 − 1
σ2 Idk

)
U t
k + 1

σ2‖y − µk‖
2.

In practice, the E-step is computationally more demanding than the M-

step. Note that equation (4.14) benefits from the low-dimensional modeling

of HDMI and permits to compute all the quantities φ(yi, θj) and thus the tik

without any matrix inversion and with only low dimensional matrix-vector

products.

It is also worth noticing that the update formulas of the M-step allow to

see the strong link between the HDMI model and the principal component

analysis (PCA) method. Indeed, since the dk first columns of the subspace

orientation matrices Qk are estimated by the eigenvalues of the associated

empirical covariance matrices, one can say that the method performs a sort

of fuzzy PCA per group, but without loosing any information.
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4.3.2 Model selection

The use of the EM algorithm for parameter estimation makes the method

almost automatic, except for the estimation of its hyper-parameters: the

number K of groups, the group intrinsic dimensionalities dk and, if un-

known, the noise variance σ2. Indeed, those parameters cannot be deter-

mined by maximizing the likelihood since they control the model complexity.

However, since the methodology presented here has a sound statistical back-

ground, it is possible to rely on model selection tools to select for instance

the most appropriate combination of the number K of groups and the di-

mensionalities dk. Classical tools for model selection includes the BIC [60]

criterion which asymptotically approximates the integrated likelihood. BIC

penalizes the log-likelihood `(θ̂) as follows, for model M:

BIC(M) = `(θ̂)− ξ(M)
2 log(n), (4.15)

where ξ(M) is the number of free parameters of the model and n is the

number of observations (here the patches). The value of ξ(M) is of course

specific to the model considered (cf. Table 4.1 which provides the com-

plexity of the HDMI model). Hence, BIC would allow the user to choose

between using the HDMI model in place of the MPPCA model, or using the

HDMI model with different intrinsic dimensions. To select the most appro-

priate configuration for the considered data, the EM algorithm is run for all

possible combinations of model parameters, and the one with the highest

BIC value is retained. Notice that, all configurations being independent, the

model selection can be done using parallel computing. Let us finally notice

that we do not expect that choosing the number K of groups with BIC,

in the specific context of image denoising, would yield the best denoising

performance. Indeed, BIC has a modeling objective and it is not aware of

the denoising goal: it only aims at selecting the most parsimonious model

which best fits the data. We discuss in subsection 4.4.1 the influence of K

on the denoising performance.
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Algorithm 1 Intrinsic dimension estimation for a given value of σ2.

Require: K sets of the p eigenvalues λk1, ..., λkp for each group
Ensure: the dimensions dk for each k

for k from 1 to K do
dk ← argmind |mean(λkd+1, . . . , λkp)− σ2|.

end for

4.3.3 Estimation of the intrinsic dimensions dk

Regarding the estimation of the intrinsic dimensions dk, it is unfortu-

nately impossible to test all the K-tuple of dimensions in order to keep

the better one in term of BIC. To avoid this drawback, Bouveyron et al.

proposed in [7] a strategy which avoids the exploration of all possible com-

binations of dimensions by relying on a unique threshold. The strategy is

based on the eigenvalues scree of the covariance matrices Σk of the groups.

The intrinsic dimension dk, k = 1, ..., K can be estimated by looking for a

break in the eigenvalues scree of Σk. For group k the selected dimension is

the one for which all subsequent eigenvalues differences are smaller than a

threshold τ . The threshold τ is common to all groups and is selected using

BIC. However, in the context of image restauration problems, it is expected

that some groups have very low intrinsic dimensionalities (uniform zones)

whereas other groups have quite large dimensionalities (highly structured

zones) and this heuristic can not cover such a range of dimensionalities. To

take into account this specific properties of image restauration problems,

we propose hereafter two alternatives for the situations where σ2 is known

or not.

Estimation of dk when σ2 is known In the specific context of image

denoising, it may be of interest to denoise the image at hand at a specific

level of noise. In this case, the variance of the noise is assumed to be

known and we propose the heuristic of algorithm 1 to determine the intrinsic

dimensions dk from the known value of σ2. The idea of this heuristic is, for

each group k = 1, ..., K, to search the dimensionality dk such that the mean

of the p − dk smallest eigenvalues of the empirical covariance matrix Sk of
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Algorithm 2 The HDMI inference algorithm

Require: the noisy patches {y1, . . . , yn}, the number K of groups, the noise
variance σ2.

Ensure: parameter estimates {µ̂k, Q̂k, âkj, d̂k; k = 1, ..., K, j = 1, ..., dk}
and BIC value for the HDMI model.
Initialization Run the k-means algorithm for K groups on {y1, . . . , yn}.
Set tik = 1 if yi is in group k and 0 otherwise.
Set lex← −∞, dl←∞.
while dl > ε do

M step Update the estimates for θ = {πk, µk, Qk, akj, dk; k =
1, ..., K, j = 1, ..., dk}.

π̂k = 1
n

∑

i

tik, µ̂k = 1
nπ̂k

n∑

i=1
tikyi, (Q̂k, âk) = eigendec(Sk).

where Sk = 1
nπ̂k

∑n
i=1 tik(yi − µ̂k)(yi − µ̂k)t.

Compute the intrinsic dimension d̂k thanks to algorithm 1.
Put the dk first columns of Q̂k in Ûk.
E step Compute the probabilities tik = P (Z = k|yi, θ̂) as follows

tik = π̂kp(yi; θk)∑K
`=1 π̂`p(yi; θ`)

.

Update the likelihood l = ∑n
i=1 log∑K

k=1 πkp(yi; θk) and compute the
relative error between the two successive likelihoods dl = |l − lex|/|l|.
lex← l.

end while
Compute the BIC ← 2l − m log(n), where m is the number of free pa-
rameters of the model.
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the kth group is as close as possible to σ2. The retained dimensionality d̂k

for the kth group is the solution of the following minimization problem:

d̂k = argmind

∥∥∥∥∥∥
1

p− d
p∑

j=d+1
λkj − σ2

∥∥∥∥∥∥
,

where λkj is the jth largest eigenvalue of the empirical covariance matrix

Sk of the kth group.

Estimation of dk when σ2 is unknown In the case where the variance

σ2 of the noise is unknown (unsupervised image denoising), we simply pro-

pose to run the above heuristic (algorithm 1) for a range of values for σ2 and

compute the value of BIC criterion for the associated model. The retained

noise variance σ̂2 will be the one which conduces to the highest BIC value.

4.3.4 Algorithm

Algorithm 2 summarizes the different steps of the inference procedure

for the HDMI model, for given values of K and σ. Algorithm 3 describes

the whole unsupervised denoising procedure using HDMI. Let us notice that

the for loop on σ in algorithm 3 can be parallelized since the inferences of

HDMI models with different values σ are independent. In the supervised

image denoising case (noise standard deviation σ is known), algorithm 3 has

to be run with σmin = σmax = σ.

4.4 Numerical experiments

In this section, we provide several numerical experiments to illustrate

the characteristics of the HDMI method and its ability to denoise images.

The HDMI model is also compared with recent state of the art denoising

approaches. Comparison results are provided both under the form of PSNR

tables and of visual experiments. For the sake of completeness, let us recall

that the PSNR is a way to measure the quality of a restored image û in

comparison to the original one u. For an image with values between 0 and
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Algorithm 3 The unsupervised HDMI image denoising algorithm.

Require: A noisy grey image u, a patch size s, a range [σmin, σmax] and
a discretization step σstep for the noise standard deviation, a number of
groups K.

Ensure: A denoised image û.
Patch Extraction Extract all s × s patches from u, to obtain
{y1, . . . , yn}.
Inference and model selection
for σ from σmin to σmax with step σstep do

Model inference Run algorithm 2 to obtain θ̂σ and the corresponding
BIC value.

end for
Select the model θ̂ = θ̂σ with the largest BIC.
Denoising
for i = 1 to n do

compute

ŷi = ∑K
k=1 π̂k

(
µ̂k + Ûkdiag

(
âk1−σ̂2

âk1+σ̂2 , . . . ,
âkdk−σ̂

2

âkdk

)
Û t
k(yi − µ̂k)

)
,

end for
Aggregate all patches ŷi to compute û.

K 3 5 10 15 20 30 40
PSNR 37.38 37.39 38.19 38.45 38.59 38.72 38.83

K 50 70 100 140 200 400 600
PSNR 38.91 38.97 39.05 39.07 39.06 39.01 38.96

Table 4.2 – Denoising performance (evaluated through the PSNR) according
to the number K of groups in HDMI on the Simpson image with σ = 10.

255, the PSNR is given by the formula

PSNR(u, û) = 10 log10
2552|Ω|

∑
x∈Ω(u(x)− û(x))2 ,

where |Ω| is the number of pixels in u. All the following experiments are run

with patches of size 10× 10 (the space dimension is consequently p = 100).
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Original Noisy (σ = 30) HDMI (K = 40) HDMI (K = 90)

Figure 4.2 – Influence of the number K of groups on the denoising with
HDMI of the Simpson image for σ = 30 (see text for details).

4.4.1 Influence of the number K of groups

Let us first focus on the influence of the number K of patch groups on

the denoising result. We first consider the denoising of a single 512 × 512
image, Simpson, with the HDMI model for different values of K and for a

noise level of σ = 10. Figure 4.2 shows the original Simpson image, the

noisy version with σ = 10 and two denoising results with HDMI at K = 40
and K = 90.

Table 4.2 presents the PSNR values for different values of K. First, it is

worth noticing that, even when using extremely few mixture components,

the denoising with HDMI is rather satisfying. Indeed, the difference in

PSNR between the best result (K = 140) and the one with K = 3 is

only 1.69 dB. This is an information that can be useful if one would be

interested in implementing a fast version of HDMI since the computing time

is almost linear in the number K of groups. Second, table 4.2 confirms the

expected behavior that using too much patch groups in HDMI deteriorates

the denoising performance. Indeed, even though a large number of groups

might better represents the diversity of patches in the image, this assertion

turns to be false when the number of groups become too large compared

with the data size. In this case, the model overfits the data. One can

see that for values of K larger than 200, the PSNR slowly decreases and

goes back under 39 dB for K = 600 groups. Finally, one can observe on

table 4.2 that, for a large range of K, the PSNR has a plateau. Indeed,

between K = 40 and K = 200 the observed PSNR values do not vary more
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than 0.25dB (38.83 – 39.07). This allows us to conclude that the number

K of mixture components for HDMI is not a sensitive parameter and that

K = 40 may be recommended since it realizes a good compromise between

efficiency and performance.

Observe that we did not used the BIC criterion to select K. Indeed, this

criterion aims at selecting the most parsimonious model which best fits the

data and does not take into account the denoising goal. As a summary of

these experiments, we simply recommend to use a number K of groups for

HDMI equal to 40 for good and fast results, and equal to 90 for optimum

results.

4.4.2 Role of the intrinsic dimensions dk

In this Section, we investigate both the relevance of the clustering pro-

vided by the mixture model and the choice of the intrinsic dimension dk for

each group.

The computed mixture model naturally provides a clustering of all image

patches. Indeed, once the EM algorithm has converged, each patch yi of the

original image can be associated to the group k with the highest posterior

probability tik. Figure 4.3 shows the resulting segmentation for several

images, degraded with i.i.d. Gaussian noise with σ = 20 and restored with

HDMI for K = 40. In this experiment, each color represents a group, and

we assign this color to the central pixel of each patch of the group. The

clustering is shown on the third column of the Figure, and the respective

group dimensions are shown on the fourth column. In these experiments,

flat regions seem to be associated with groups of smaller dimensions: the

wall in the Simpson image, the shoulder of Lena, the floor of Barbara. Edges

of similar orientations also seem to be grouped together and associated to

slightly larger group dimensions (see for instance the top of the wall in

Simpson). This is also the case for some very regular textures, as the one

present on the trousers in Barbara. Finally, highly textured regions are

usually grouped in groups of high dimensions. This is particularly visible

on Man and Alley, which both contain complex textures (the feathers in
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Figure 4.3 – From top to bottom, on the left column, the five images Simp-
son, Lena, Barbara, Man and Alley. On the second column, the same images
degraded with i.i.d. Gaussian noise with σ = 20. On the third column, the
corresponding image segmentation obtained with HDMI for K = 40. On
the last column, the corresponding maps of intrinsic dimensions for each
group.
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Man, the brick walls in Alley).

Note that the ability of the HDMI model to infer automatically the

dimension of each group is a real novelty when compared to classical al-

gorithms like NL-Bayes [35] or SURE-PLE [71], which use an unrestricted

Gaussian model (for NLBayes) or a MPPCA with predefined group dimen-

sions (for SURE-PLE), and are forced to detect and treat flat patches sep-

arately. Observe also that unlike traditional patch-based methods such as

NLmeans [10], which were shown to work better by limiting the search neigh-

borhood for similar patches, each patch is able to collaborate with patches

located everywhere in the image.

Figure 4.4 shows a selection of 4 different groups of various dimensions

for the images Barbara, Lena and Simpson. For each group, we also show 16

patches randomly sampled from the group Gaussian model. As expected,

the Gaussian model inferred from the top edge wall in Simpson generates

patches representing more or less horizontal edges. For the group of dimen-

sion 61 in Barbara, the model generates textured patches which look very

similar to the texture present on the trousers. The model of dimension 0 in

Simpson produces flat patches. Finally, we show a group of dimension 13 on

Lena which seems to group together flat patches and poorly contrasted but

slightly textured ones (from Lena’s hat for instance). Unfortunately, this

group results in a slightly textured model which is not perfectly adapted to

denoise flat regions. When this happens, small artifacts can be introduced

in the denoising results. This tends to happen when the chosen number of

groups K is too small.

At this point, let us stress out that the intrinsic dimensions dk act as a

regularization for the clustering. Indeed, we might wonder what happens

when the EM algorithm is run without dimension reduction, with the re-

duction applied afterward. In the HDMI model, the dimension reduction

is performed from the beginning of the EM algorithm and updated at each

iteration, and thus influences the underlying clustering from the E-step.

Figure 4.5 presents two clusterings of the same image, obtained with the

same initialization. The first one is obtained by applying a standard GMM

model to the patches, and the second one is obtained with the HDMI model.
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group of dimension 13 group of dimension 61

group of dimension 0 group of dimension 13

Figure 4.4 – Examples of different groups: for each image, we show on the
left the patches belonging to the same group k, and on the right 16 patches
randomly sampled from the underlying Gaussian model.

As one can observe on the top of Figure 4.5, the full GMM clustering turns

out to be quite fuzzy and the associated denoising result is not convincing

(PSNR: 28.92dB). Alternatively, as shown on the bottom of the figure, the

HDMI clustering is smoother and the denoising yields better results (PSNR:

29.28dB).

Figure 4.6 shows the evolution of the intrinsic dimensions during the EM

algorithm in HDMI. In this example, for the sake of simplicity, we use only

K = 10 on the Simpson image. There is a clear stabilization of the intrinsic

dimensions at some point in the algorithm. The regularization induced by

these smaller dimensions plays a crucial role in the final clustering result.

4.4.3 Selection of σ for unsupervised denoising

In this section, we study how the BIC criterion can be used in order to

select the unknown noise standard deviation σ. For unsupervised denoising,

we run the HDMI algorithm for different σi within a given range of values,

and we choose the model with the largest BIC criterion. Figure 4.7 illus-
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Figure 4.5 – First line: Denoising with a full GMM model (50 groups)
on all the patches and the HDMI dimension regularization done after the
EM algorithm. The clustering (left) is quite fuzzy and the denoising result
(middle) is not very good (PSNR: 28.92dB). Second line: Denoising with
the HDMI model (50 groups) with intrinsic dimension regularization during
the EM process. The clustering (left) is smoother and the denoising yields
better results (PSNR: 29.28dB). The noise variance is σ = 30 and a zoom
on the denoising results is proposed in the right column.
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Figure 4.6 – Evolution of the dimensions during the iterations of the EM
algorithm in HDMI, with a small number of classes (K = 10) and 100
iterations. Each group of 100 colored bars represents a class and the 100
bars in each group represent the iterations. The vertical axis represents the
dimension.
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Table 4.3 – Dimensions selection and noise estimation with BIC
Artificial noise std Estimated noise std

Lena Simpson Barbara
10 11 10.5 11
20 21 20.5 21.5
30 31 31.5 31.5

trates the evolutions of the BIC and PSNR when σi changes, for the two

images Lena and Simpson, for σ = 10 and 20. Observe that the form of the

BIC curve suggests that the optimal value might be estimated very fast in

practice, for instance by dichotomy. In these experiments, the PSNR ob-

tained with the selected model is in practice very close to the best denoising

performance (the difference is always smaller than 0.2 dB). Interestingly,

the standard deviation estimated by the BIC is always slightly larger than

the one used for the synthetic additive noise. This is also confirmed by

table 4.3, which provides the selected σi for three different images and three

different values of σ. This slight overestimation can be explained by the

mere fact that the original images also contain a small amount of intrinsic

noise, which seems to be taken into account in the model selection.

4.4.4 Effect of the subsampling on the computing time

Even though the inference can be parallelized over σ2 and K, the HDMI

algorithm, that we propose in this chapter, remains computationally inten-

sive in its unsupervised version (algorithm 3) for large images. Nevertheless,

the fact that the HDMI method relies on a sound statistical model allows us

to first infer model parameters from a small proportion of the data and to

classify afterward the remaining observations to the estimated groups. In-

deed, the mixture model fitted by the EM algorithm can be used to compute

the posterior probabilities P (Z = k|y; θ̂) for any new observation y.

In order to figure out the potential gain in computing time and the

quality of the denoising in a subsampling scenario, we denoise the Lena

image, degraded with a noise of standard deviation σ = 10, with the HDMI

model fitted from subsamples of the image patches: 1, 2, 5, 10, 20, 30, 50 and
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Figure 4.7 – Model selection for unsupervised denoising. We run
the HDMI algorithm for different σi within a given range of values. The
different curves show the evolution of the BIC and of the PSNR with σi.
Top: image Simpson. Bottom: image Lena. Left column: σ = 10. Right
column: σ = 20.
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Figure 4.8 – Effect of the subsampling on the computing time and the de-
noising performance with HDMI (K = 20) on Lena with σ = 10. Left:
Evolution of the PSNR versus the sampling size. Right: evolution of the
computation time versus the same sampling size. The dotted-lines corre-
spond to a subsampling of 20% of the image patches.

100% of the data. Figure 4.8 shows the evolution of the PSNR (left panel)

and of the computation time (right panel) according to the sampling ratio

for the HDMI model with K = 20 groups. First, the right panel shows that

the computing time of the HDMI algorithm is quasi-linear in the number of

observations, ranging from less than 10 seconds for 1% of the data to almost

12 minutes for the whole patches. Second, it is worth to notice that even

with 1% of the patches the denoising quality is surprisingly good: PSNR

of 35.1 dB with 1% whereas the denoising with all patches has a PNSR of

35.8 dB. Finally, as indicated by the vertical dashed lines on both panels of

figure 4.8, one can notice that there is a relative plateau of the PSNR curve

after a sampling ratio of 20%. The denoising result that we obtained with

20% of the patches turns out to be a good compromise between performance

and computing time: 0.04 dB less in PSNR than HDMI with 100% of the

patches, obtained in 2 minutes instead of 12 minutes for all patches. As

a summary, this experiment shows that we can safely run the algorithm

on only 20% of the patches to obtain a scalable algorithm on large images

without loosing much denoising performance.
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4.4.5 Influence of the initialization

As mentioned earlier, the EM algorithm only converges toward a local

maximum of the likelihood. This local maximum may therefore depends on

the choice of the initialization. In this section, we experiment four different

strategies for initializing the HDMI algorithm:

— Random: The patches are uniformly assigned to the K groups;

— Local : The patches are grouped locally in the image space;

— K-means : We run a K-means algorithm on the patches and use it as

initialization;

— K++: We use the initialization of the K-means++ algorithm.

The figure 4.9 presents the obtained denoising results for these four ini-

tialization strategies. As we can observe, although the final grouping is

different, it groups the same kind of structures and the denoising results

are quite similar, both visually and in terms of PSNR. As a summary, this

experiment shows that the choice of the initialization procedure is not dis-

criminant for the purpose of denoising with HDMI.

4.5 Benchmark and comparisons

We finally focus on the denoising performance of HDMI, and provide

a comparison with different denoising approaches. Section 4.5.1 and sec-

tion 4.5.2 are respectively devoted to grey-scale and color images. In sec-

tion 4.5.3, we propose a more precise discussion about the pros and cons of

HDMI.

4.5.1 Results for grey-scale images

Table 4.4 presents the PSNR results of HDMI for grey-scale images with

both known and unknown noise standard deviation σ, for two number of

groups K = 40 and K = 90, and for five images (Lena, Barbara, Simpson,

Alley, Man) which have been noised with σ = 10, 20, 30. In a comparison

purpose, table 4.4 provides for these scenarios the results of NLBayes [35],

with and without the “flat area trick”, and the results of SURE-PLE [71].
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Figure 4.9 – Influence of the initialization on the HDMI result. Each line
corresponds to a different initialization strategy, on the same noisy image.
The left column shows the clustering used to initialize the EM algorithm.
The middle column shows the final clustering obtained by the HDMI model.
The right column is the corresponding denoising result. Random: 27.36dB,
Local : 27.37dB, K-means : 27.35dB, K++: 27.37dB.
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Both of these approaches share similarities with HDMI, as explained in the

introduction. Table 4.4 also includes a comparison with BM3D [37] and

with the recent Weighted Nuclear Norm Minimization (WNNM) [29].

First, notice that HDMIsup (σ known) outperforms SPLE and NLBayes

without the “flat area trick” in almost all the scenarios. It is interesting to

notice that removing the constraints on the group intrinsic dimensions of

SPLE and estimating them through our proposal allows to clearly improve

the denoising. Second, HDMIsup turns out to also compare equally to NL-

bayes and BM3D. On the contrary, table 4.4 shows that the more recent

method WNNM outperforms HDMI in all cases (by 0.37dB in average). The

PSNR difference is more important for very simple images such as Simpson

than for complex images such as Alley, which suggests that the difference

might be reduced by a special treatment of flat areas or usual tricks of

the denoising cuisine (see Section 4.5.3) that we avoided in our approach

for the sake of simplicity. Let us finally observe that, even if HDMIunsup

is not aware of the actual noise level, it performs very close to NLBayes,

BM3D and HDMIsup, which are all supervised methods. This emphasizes

the efficiency of our approach for blind image denoising.

Figure 4.10 provides a visual comparison of some of these denoising

approaches on the four different images Alley, Barbara, Lena and Man when

σ = 30 (images should be seen at full resolution on the electronic version of

the manuscript). Although the PSNR values are very close, visual results

are quite different in practice. While constant regions are better handled

by the flat area trick of NL-Bayes and SURE-PLE, some fine geometrical

structures (for instance the wall and textures in the Alley image) are clearly

better preserved by HDMI and oversmoothed by the other methods.

4.5.2 Results on color images

Most recent denoising approaches, when applied to color images, first

convert RGB images to a different color space, and then denoise each chan-

nel independently. The space conversion is applied to avoid creating color

artifacts by applying the denoising independently on each channel. HDMI
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Table 4.4 – Comparison of HDMI, NL-Bayes [39], SURE-PLE [70], BM3D
[37] and WNNM [29] for grey-scale images.

Supervised denoising Unsupervised
Image σ NL-Bayes S-PLE BM3D WNNM HDMIsup HDMIunsup

original no flat K = 40 K = 90 K = 40 K = 90

Lena
10 35.85 35.57 35.34 35.91 35.99 35.78 35.83 35.59 35.23
20 32.90 32.40 32.34 33.00 33.10 32.82 32.90 32.75 32.87
30 31.20 30.49 30.46 31.16 31.44 30.99 31.04 30.94 30.93

Barbara
10 34.93 34.77 33.89 34.79 35.48 34.77 35.01 34.71 34.67
20 31.52 31.29 30.37 31.59 32.15 31.32 31.61 31.11 31.31
30 29.72 29.44 28.22 29.61 30.28 29.31 29.49 29.10 28.92

Simpson
10 38.76 37.59 38.16 38.98 39.56 38.80 38.98 38.89 39.07
20 34.74 33.72 34.08 35.05 35.43 34.74 34.91 34.81 34.79
30 32.53 31.54 31.53 32.72 33.14 32.33 32.50 32.19 32.40

Alley
10 32.53 32.50 32.05 32.46 32.62 32.40 32.47 31.95 31.94
20 29.10 29.07 28.67 29.15 29.27 29.03 29.07 28.89 28.96
30 27.43 27.37 26.92 27.51 27.65 27.31 27.39 27.19 27.17

Man
10 34.14 34.01 33.61 33.99 34.17 33.85 33.91 33.59 33.49
20 30.63 30.49 30.15 30.63 30.70 30.44 30.47 30.32 30.23
30 28.81 28.65 28.32 28.89 28.94 28.65 28.71 28.58 28.56

Average
10 35.24 34.89 34.61 35.23 35.56 35.12 35.24 34.95 34.88
20 31.78 31.39 31.12 31.88 32.13 31.67 31.79 31.58 31.63
30 29.94 29.50 29.09 29.98 30.29 29.72 29.83 29.60 29.60
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Figure 4.10 – Comparative results on the grey-scale images Alley, Barbara,
Lena and Man with σ = 30. For each column, from top to bottom: original
image, noisy image, NL-Bayes [35], SURE-PLE [71], HDMI. Images should
be seen at full resolution on the electronic version of the manuscript.
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can easily be applied directly on RGB images, by considering color patches

as points in a space of dimension 3 × p (p = s × s is the patch spatial

size). Figure 4.11 and table 4.5 show color denoising results for several im-

ages and for different denoising methods whose code is available for color

images. We provide results for BM3D [37], S-PLE [71], NL-Bayes [35] and

FFDNet [78] which is a very recent deep learning approach for denoising.

Table 4.6 shows average PSNR across all images. Unsurprisingly, the HDMI

algorithm works better for color images than for gray-scale images. Indeed,

RGB patches live in an higher dimensional space with more redundant in-

formation than grey-scale patches, and these data benefit all the more from

HDMI dimension reduction. Table 4.5 shows that the HDMI algorithm

outperforms the classical denoising methods NL-Bayes, S-PLE and BM3D.

The convolutional neural networks approach FFDNet outperforms HDMI

for σ = 20, 30 and 40 but not in the extremal cases σ = 10 and σ = 100.

Figure 4.11 provides a visual comparison of the different approaches on

four color images. Observe that the deep learning approach gives impressive

results in smooth or constant areas, but tends to oversmooth fine textures

(window shutters in Alley, trees in Traffic). This might come from the fact

that these specific textures are not well represented in the learning database.

In practice, on color images, HDMI results often better preserve visual de-

tails than concurrent methods. However, when the noise variance increases,

some low-frequency noise or slight residual textures seem to appear in flat

areas. We discuss this issue in the section 4.5.3.

4.5.3 Discussion

In this part, we discuss some of the advantages and limitations of our

approach. Figure 4.12 proposes closer views on the denoising results for the

color images Alley, Traffic and Dice. The first column of figure 4.12 is a

zoom on the wires in the top of Alley. This really thin structure is difficult to

reconstruct from a noisy image, especially when the noise is strong (in this

experiment, σ = 50). In the NL-bayes and S-PLE results, this structure has

almost completely vanished, whereas HDMI and FFDnet are able to recover

131



CHAPTER 4. HIGH DIMENSIONAL MIXTURE MODELS FOR
IMAGE DENOISING

Alley Traffic Dice Flowers

C
le

an
N

oi
sy

N
L

-b
ay

es
S

-P
L

E
B

M
3D

F
F

D
N

E
T

H
D

M
I

Figure 4.11 – Comparative results for the RGB images Alley, Traffic, Dice
and Flowers. The S-PLE, NL-bayes, BM3D and FFDNET methods are run
with default settings and the HDMI method uses K = 50 groups. The noise
variance is set to σ = 50. Images should be seen at full resolution on the
electronic version of the manuscript.
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Table 4.5 – Comparison of HDMIsup, HDMI, NL-Bayes [39], SURE-PLE
[70], BM3D [37] and FFDnet [78] for color images. The HDMI algorithm is
performed withK = 50 and the NL-Bayes, SURE-PLE, BM3D and FFDNet
algorithms are run from www.ipol.im with default settings. The PSNRs are
averaged on five noise realization and rounded at precision 10−2.

Image σ NL-bayes S-PLE BM3D HDMIsup FFDNet

Alley

10 34.83 34.36 34.82 34.85 35.04
20 31.17 30.71 31.18 31.22 31.56
30 29.14 28.84 29.30 29.37 29.74
40 27.75 27.61 28.04 28.16 28.52
50 27.14 26.74 27.10 27.25 27.63
100 24.30 24.04 24.06 24.43 24.76

Dice

10 43.20 42.51 43.11 43.69 43.59
20 40.17 39.73 39.98 40.89 41.06
30 37.95 37.95 38.01 39.10 39.36
40 36.14 36.51 36.52 37.58 38.01
50 36.50 35.30 35.19 36.47 36.72
100 33.01 30.94 30.42 32.50 31.32

Flower

10 39.57 39.19 39.49 40.33 40.39
20 36.14 35.44 35.89 36.87 37.19
30 33.82 33.29 33.74 34.81 35.18
40 32.16 31.78 32.13 33.40 33.73
50 31.89 30.57 30.94 32.25 32.51
100 28.08 27.00 26.96 28.73 28.22

Traffic

10 35.16 34.34 34.54 35.12 35.26
20 31.23 30.56 30.81 31.29 31.74
30 29.02 28.53 28.83 29.28 29.79
40 27.51 27.17 27.45 27.97 28.48
50 26.85 26.16 26.43 27.03 27.52
100 23.85 23.31 23.25 24.20 24.34

Lena

10 36.94 36.88 37.46 37.61 37.25
20 34.24 33.98 34.59 34.72 34.51
30 32.50 32.30 32.93 33.13 33.04
40 31.12 31.01 31.70 31.97 31.95
50 30.85 29.97 30.72 31.02 31.08
100 27.74 27.00 26.96 27.68 27.73
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σ NL-bayes S-PLE BM3D HDMIsup FFDNet
10 37.94 37.46 37.88 38.32 38.31
20 34.59 34.08 34.49 35.00 35.21
30 32.49 32.18 32.56 33.14 33.42
40 30.94 30.82 31.17 31.82 32.14
50 30.65 29.75 30.08 30.80 31.03
100 27.40 26.46 26.33 27.51 27.27

Table 4.6 – Comparison of HDMIsup, HDMI, NL-Bayes [39], SURE-PLE
[70], BM3D [37] and FFDnet [78]. This table presents the averaged PSNR
across all images from table 4.5 for each method.

the major part of these wires. A closer view on the house shutters in Alley

is shown on the second column of figure 4.12. The shutters present texture

patterns that are partially smoothed by NL-Bayes, S-PLE and FFDNet. In

contrast, HDMI seems to restore much more precisely this textured area.

Finally, the third column of figure 4.12 shows a closer view of the denoising

results in the tree area of Traffic. In this case, HDMI also appears to yield

a more precise restoration than NL-bayes, S-PLE and FFDNet. Now, one

could argue that this better structure preservation is done at the expense of

a good regularization in flat regions. Indeed, the last column of figure 4.12

shows a closer view on a flat part of the Dice image and shows that the NL-

bayes, S-PLE and FFNet methods produce nicer results in this region. In

the same vein, observe that HDMI can sometimes create undesired artifacts

in flat regions. For example, the first column of figure 4.13 presents a closer

view on the background of Barbara. In this case, concurrent methods tend

to perform better than HDMI which seems to add undesired structure to this

flat region. We discuss further this limitation in the following paragraphs.

The usual denoising cuisine Most really powerful image denoising meth-

ods use tricks or hacks to improve their performances (see [36] for a detailed

description of all of these tricks). A striking example is the special treat-

ment reserved to flats regions in NL-bayes and S-PLE. NL-bayes detects

flat patches by comparing their standard deviation to the noise standard

deviation (multiplied by a constant c close to 1). S-PLE defines a group of
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Figure 4.12 – Closer views on some details from the RGB images Alley,
Traffic and Dice. The S-PLE, NL-bayes and FFDNET methods are run
with default settings and the HDMI method uses K = 50 groups. The
noise variance is set to σ = 50.
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dimension 1 that will encode flat patches. In the case of HDMI, a group

of flat regions is sometimes merged with a group of weakly contrasted tex-

tures, especially when the noise is strong. This result in the introduction

of textured artifacts in smooth image areas. To avoid this behaviour, a flat

area trick can be easily added to HDMI by replacing patches detected as

flat (those patches whose standard deviation is smaller than σ) by a con-

stant patch whose value is the average value of the patch. The center of

figure 4.13 shows how this simple trick removes most of the annoying resid-

ual textures introduced by HDMI. Another explanation for the addition of

slight textures in the flat regions is the overestimation of the intrinsic di-

mensions in the case of the supervised version of HDMI. Indeed, the clean

images we use here do contain a small residual noise. The synthetic value σ

used for the dimension estimation is thus below the real image noise level.

As a consequence, residual noise is treated as structure and is matched with

some existing texture in the image. To illustrate this point, the third line

of figure 4.13 shows the result for HDMIunsup, where the noise variance, and

hence the dimensions, are estimated with the BIC criterion. In this case,

the slight residual noise is treated as noise and the residual texture issue

tends to disappear.

4.6 Conclusion

In this chapter, it is shown that a probabilistic high-dimensional Gaus-

sian mixture model can be learned efficiently on the patches of a noisy

image, and used to obtain a blind patch-based denoising. The resulting

model HDMI shows good denoising performances, both in the supervised

and unsupervised cases. Contrary to previous approaches, this model au-

tomatically detects the groups of low dimensionalities within the data. We

also provide a numerically stable computation of the conditional expecta-

tion for patch denoising, overcoming the traditional limitation encountered

in the denoising literature when inverting empirical covariance matrices.

We show how to use model selection to automatically estimate the intrinsic

dimension of the groups and the noise variance. This work opens several
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Figure 4.13 – Result of HDMI denoising with K = 40 groups for the im-
age Barbara with noise σ = 30. Left HDMI (PSNR = 29.35dB), middle
HDMI with the flat area trick (PSNR = 29.36dB), right unsupervised HDMI
(PSNR = 29.11dB).
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perspectives. The first one concerns the possibility to extend the previous

approach to several patch sizes in parallel. Another possible extension is the

generalization of the previous model to more general restoration problems.

In this case, a nice possibility would be to include hyperpriors in order to

stabilize the estimation procedure, as was recently shown in [1].
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Figure 5.1 – Each pixel i belongs to p patches. Image credit Julie Delon.

The majority of patch-based restoration methods work with all overlap-

ping patches extracted from the image to be restored. In this case, each

pixel belongs to p patches. So, by denoising each patch independently, we

obtain p estimators for each pixel as illustrated by figure 5.1. These estima-

tors need to be aggregated. However, because of the overlapping, patches

cannot be considered as independent. These estimators have different bi-

ases and variances. Therefore, the uniform aggregation is not guaranteed

to create a better estimate for each pixel. In this chapter, we propose an

overview of the existing aggregation methods in section 5.1, then we propose

a new framework for the aggregation that formulates the problem as a least

squares minimization in section 5.2 and we show the strong link between

this formulation and the EPLL [79] algorithm in section 5.3.

5.1 Existing methods

In the literature, the question of the patch aggregation has appeared with

the methods that denoise each patch separately. There exist different ways
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of considering this aggregation. The first one is to consider for each pixel the

estimate coming from the patch centered around it. We can see for instance

the pixel-wise Non Local Means method [11] as a patch-based denoising

with this simple aggregation. This approach does not mix estimators from

different models to avoid risk of blur. The drawback is a more marked

residual noise. Indeed, if the different estimates of the pixels are from the

same model, for instance in a constant area, we would like to average them

to reduce the noise once more. This is the second approach proposed in

the literature. For each pixel, the estimate is built by averaging the p

estimates with uniform weights. This aggregation is called Uniform Weights

Aggregation (UWA). This aggregation is used for instance in [35, 34]. The

most common issue with this approach is the formation of blur in edge

areas due to the averaging of estimators from different models. In order to

overcome this shortcoming, the adapted weight aggregation (AWA) proposes

to use different weights for each estimate. For instance, some methods take

into account the precision of each estimator in order to minimize the final

variance [15, 58]. The BM3D method [15] also uses weights taking into

account the variance of the stack of patches used to estimate the denoised

patch. Other weights have also been studied, for example in [68] where

the idea is to minimize the risk of the final estimator using SURE. Finally,

Zoran and Weiss introduced in [79] a global formulation for denoising with a

data fidelity term and a prior called expected patch log-likelihood (EPLL).

This formulation includes the aggregation process within the iterations of

the proposed algorithm. As we show in the next section, this algorithm can

be interpreted as a pure aggregation process when a covariance matrix is

known for each patch.

5.2 Aggregation as a least squares problem

In the following, we propose a novel formulation of the aggregation pro-

cess as a least squares problem. This formulation includes the different ag-

gregations presented above and provides a fresh look on the EPLL method.

Here we propose an interpretation of the aggregation as a least squares
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problem. The problem is to recover an image from the set of all its patches

that have been estimated independently. So each pixel has p = s × s esti-

mates. In many patch-based problems, these pixels are just averaged. This

can be expressed as a least squares problem as follows.

Let Pi : Rn → Rp be the linear operator that extracts the i-th patch

of size p from an image u ∈ Rn. With these n operators we can create

an operator P : Rn → Rnp that extract all the patches from an image by

concatenation of the Pi’s operators:

P =




P1
...

Pn


 . (5.1)

Knowing the set of denoised patches {x1, . . . , xn}, the reprojection problem

is now to find the image û that minimize w.r.t. u

‖Pu−X‖2
2, (5.2)

that is the least square estimate and û is given by

û = (P TP )−1P TX, (5.3)

where

X =




x1
...

xn


 ∈ Rnp. (5.4)

With the definition of P we have P TX = ∑n
i=1 P

T
i xi which is an image

constituted of the sum of all the overlapping patches and

P TP =
(
P T

1 , . . . , P
T
n

)



P1
...

Pn


 =

n∑

i=1
P T
i Pi. (5.5)

with P T
i Pi being a n × n diagonal matrix with p entries equal to 1 at the
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corresponding pixels of patch i and 0 everywhere else. So, we can write

P TP =




p
. . .

p


 , (5.6)

as each pixel belongs to p patches. Finally, we have

û = 1
p

n∑

i=1
P T
i yi (5.7)

which is exactly the uniform reprojection formula.

Now, if the patches are denoised with an algorithm that uses the Bayesian

framework presented in the previous chapters, we may be able to compute

a distribution for the posterior X|Y = yi for each patch i. And at least, if

we have the moments of order one and two mi and Si of this posterior, then

the previous least squares problem can be generalized into finding û that

minimizes w.r.t. u the following quantity

(M − Pu)T S−1 (M − Pu) , (5.8)

where

M =




m1
...

mn


 and S =




S1
. . .

Sn


 . (5.9)

This problem has a closed form solution which is

û = (P TS−1P )−1P TS−1M. (5.10)

This estimate is more complicated to compute directly, but it can be easily

approximated with a conjugate gradient algorithm. Indeed, denoting A =
(P TS−1P ) and b = P TS−1M , the generalized least squares problem (5.8)

rewrites into minimizing w.r.t. u

1
2u

TAu− bTu. (5.11)
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5.3 Gaussian prior case and link with EPLL

Let start with the simple case where we have a Gaussian model for each

patch Xi. We have for all patches i ∈ {1, . . . , n},

Yi = Xi +Ni, (5.12)

with Xi ∼ N (µi,Σi) and Ni ∼ N (0, σ2Ip). This is for example the case in

the NL-bayes algorithm or with a GMM model in which we only consider

the best group for each patch. Note that the (µi,Σi) can be the same for

different patches i. Here we also consider that for all i, Σi is positive definite,

so it is invertible. In this case we can easily compute the posterior distribu-

tion. Indeed, Xi and Ni being independent random Gaussian vectors, the

vector 
 Xi

Ni




made by concatenation is Gaussian and so the linear combination


 Xi

Yi


 =


 Xi

Xi +Ni




is also Gaussian and follows


 Xi

Yi


 ∼ N




 µX

µY


 ,


 ΣX ΣXY

ΣY X ΣY




 , (5.13)

where µX = µY = µi, ΣX = ΣXY = ΣY X = Σi and ΣY = Σi + σ2Ip because

Xi and Ni are independent. Then, the conditional distribution (Xi|Yi = yi)
is also Gaussian and finally

Xi|Yi = yi ∼ N (mi, Si) (5.14)

with

mi = µi + Σi

(
Σi + σ2Ip

)−1
(yi − µi), (5.15)
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and

Si = Σi − Σi

(
Σi + σ2Ip

)−1
Σi. (5.16)

Setting S = diag(S1, . . . , Sn) as in the previous section, since the Si are

invertible, S is also invertible and

S−1 =




S−1
1

. . .

S−1
n


 , (5.17)

and the aggregation seen as a Generalized least square problem (5.8) rewrites

as minimizing w.r.t u the quantity

n∑

i=1
(mi − Piu)TS−1

i (mi − Piu). (5.18)

With the matrix inversion lemma, (5.16) rewrites as

Si = Σi − Σi

(
Σ−1
i − Σ−1

i (Σ−1
i + 1

σ2 Ip)−1Σ−1
i

)
Σi =

(
Σ−1
i + σ−2Ip

)−1
.

(5.19)

Thus (5.18) can be split into

n∑

i=1
(mi − Piu)TS−1

i (mi − Piu) =
n∑

i=1
(mi − Piu)TΣ−1

i (mi − Piu) (5.20)

+
n∑

i=1
(mi − Piu)Tσ−2Ip(mi − Piu). (5.21)

Now, the quantity mi − Piu can be expressed in two different ways

mi − Piu = (µi − Piu) +
(
Ip − SiΣ−1

i

)
(yi − µi) (5.22)

= (yi − Piu)− SiΣ−1
i (yi − µi) , (5.23)

with the second term not depending on u for both cases. Therefore, by

injecting (5.22) and (5.23) in the two parts (5.20) and (5.21) and developing,
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the problem of minimization becomes: minimize w.r.t u

n∑

i=1
(µi−Piu)TΣ−1

i (µi−Piu)+
n∑

i=1
(yi−Piu)Tσ−2Ip(yi−Piu)−2Φ(u), (5.24)

with the cross terms Φ(u) that depends on u being

Φ(u) =
[
SiΣ−1

i (yi − µi)
]T
σ−2IpPiu−

[(
Ip − SiΣ−1

i

)
(yi − µi)

]T
Σ−1
i Piu

(5.25)

= (yi − µi)T
[
Σ−1
i Siσ

−2 − Σ−1
i + Σ−1

i SiΣ−1
i

]
Piu (5.26)

= (yi − µi)T
[
Σ−1
i Si

(
σ−2Ip − S−1

i + Σ−1
i

)]
Piu (5.27)

= 0. (5.28)

Finally, using the fact that yi = Piv, solving the least squares problem (5.8)

with this model is equivalent to minimizing w.r.t. u

n∑

i=1
(µi − Piu)TΣ−1

i (µi − Piu) + (v − u)TP Tσ−2IpP (v − u), (5.29)

and using the fact that P TP = pI, this rewrites into minimizing w.r.t. u

the quantity

n∑

i=1
(µi − Piu)TΣ−1

i (µi − Piu) + p

σ2‖v − u‖
2
2, (5.30)

which is exactly the quantity that is minimized in EPLL [79] if we consider

that we already know the best group of the GMM for each patch and only

the best group for each patch is used. The advantage of this formulation is

that it is a convex quadratic minimization that can be solved easily with a

conjugate gradient algorithm.

5.4 Conclusion and future work

In this chapter, we presented an ongoing work on a new framework for

aggregation and we have shown that this framework shares similarities with
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the EPLL methods. As further work, there remain several things to do.

— In order to use this new aggregation together with our HDMI method

presented in chaper 4, we need to incorporate the dimension con-

straint in the above calculus. But in this case, the Si matrices are no

longer invertible, which requires us to reformulate the least squares

problem with only the non-zero dimensions. This yields a minimiza-

tion of a quantity of the form

(M − Pu)TΓ(M − Pu), (5.31)

with Γ = diag(U1∆1U
T
1 , . . . , Un∆nU

T
n ) where Ui are projection ma-

trices into lower dimensional spaces. However, by doing this, we do

not impose anything on the rest of the dimensions for the different

patches. Therefore the numerical experiments yield results with a lot

of noise and high frequencies. In the other hand, adding a constraint

on the remaining dimensions seems to give interesting results. This

constraint takes the form

1
σ2‖R

TPu‖2, (5.32)

where R = diag(R1, . . . , Rn) and Ri being the complementary of the

orthogonal basis given by Ui.

— Another point to develop, is the use of this framework in order to

correct the bias of patch-based methods. The idea is to find the

image u and the bias vector B ∈ Rn – i.e. one bias value per patch

– that minimizes

‖Pu− (Y + ψB)‖2 (5.33)

where ψ is a linear operator from Rn to Rnp that projects a vec-

tor (b1, . . . , bn) to (b1, . . . , b1, . . . , bn, . . . , bn), where each bi appears p

times.
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In this manuscript, we have proposed various contributions concerning

patch-based denoising. We have proposed a study of the Bayesian frame-

work used for denoising. Throughout this study we have raised questions

and proposed answers for many of these. However, some issues and ques-

tions remain open. This last chapter proposes a summary of the work of this

thesis in section 6.1, then we propose some perspectives and future work in

6.2.

6.1 Synthesis

6.1.1 Patch point of view versus image point of view

In the introduction we have proposed two visions of the denoising meth-

ods, one from the image point of view and one from the patch point of

view. The image based methods such as variational methods and diago-

nal estimation methods require good image priors – the regularization term

for variational methods or the diagonalization basis for diagonal estima-

tions. Finding a good image prior is not an easy task and generally they are

taken independently of the image to denoise. The emergence of patch-based

methods allowed to create more involved filters and priors that depend on

the image geometry. With the patch-based formulation of the noise model

(1.6), various methods have emerged (NL-Bayes [35], BM3D [15], PLE [77],

Single-frame Image Denoising [65], and HDMI in chapter 4) that restore

each patch in the patch space. These methods have proved their strength

by showing good denoising results. But is it really a good idea to denoise

patch-wise? The work done in this thesis allows to better understand the

strengths and weaknesses of such an approach.

Asymptotical performances. In the first chapter, we proposed an asymp-

totic study of the performance of the diagonal estimation, which is a global

denoising approach. We have shown that with precise conditions on the im-

age and the filter, we can ensure the convergence towards zero of the MSE

when the image size tends to infinity. This is the case for instance for the
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toy image used in figure 2.3 constructed by repeating a pattern of a constant

image with a vertical line N times. Indeed, the DCT filtering with a λ-oracle

shows a decaying MSE towards zero, and therefore, the Donoho-Johnstone

Theorem 1 ensures the convergence for the hard-thresholding case. This

result is not surprising and other global approaches such as TV minimiza-

tion would probably lead to an asymptotically zero MSE for such an image.

However, this result may not hold for patch-wise denoising methods. Con-

sider, for instance, the NL-Bayes algorithm. Since it denoises each patch

by considering a stack of similar patches searched in a window, each patch

is denoised only with a finite number of realizations, and that number does

not increase as the image size tends to infinity since the search window is

fixed. We can show tha, there exists a lower bound that does not depend

on the image size N . To be more precise, we can consider the lower-bound

derived in the paper is denoising dead? [13]. Let consider a stack of m

similar patches from NL-Bayes that has a covariance matrix Σ, then from

equation (25) of [13], the square error between a patch from this stack x

and its estimate x̂, is bounded as follows

E[(x− x̂)2] > 1
m

m∑

i=1
Tr
[
(Ji + Σ−1)−1

]
, (6.1)

where Ji is the Fisher information matrix for the i-th patch. Here, since

each patch of the stack is denoised using the m patches of it, the Fisher

information matrix is given by Ji = (m/σ2)I, where σ2 is the noise variance.

So we obtain

E[(x− x̂)2] > Tr
[
(m
σ2 I + Σ−1)−1

]
, (6.2)

Then if we consider that Σ is diagonalizable with eigenvalues λ1, . . . , λp 6 1,

we can write

E[(x− x̂)2] > Tr(Σ)σ2

m+ σ2 . (6.3)

This leads to a lower bound for the MSE on the whole image. Let us

consider that the image is divided into K groups of mk similar patches,

then the squared error is the sum of the previous squared errors 1 and the

1. the patches are considered non-overlapping here.
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MSE is then bounded as follows

E[(u− û)2] > 1
N

K∑

k=1
mk

Tr(Σk)σ2

mk + σ2 , (6.4)

with
∑
kmk = N . Now, if we consider that all the covariance matrices

traces have an uniform lower bound c – which is the case for the toy image

considered, because the redundancy of the image implies a finite number of

covariance matrices – then we can write

E[(u− û)2] > cσ2

N

K∑

k=1

mk

mk + σ2 . (6.5)

Finally, in the NL-Bayes case, if we consider that for all k the number of

patches mk is upper-bounded by the window size m, we have

E[(u− û)2] > cσ2

N

K∑

k=1

mk

m+ σ2 (6.6)

= cσ2

N

N

m+ σ2 (6.7)

= cσ2

m+ σ2 independent of N. (6.8)

Another interesting point about this asymptotic study is the case of an

algorithm such as HDMI that uses a GMM on the patches. There are two

ways to encode geometric information of the patches for each group. Either

the major part of the information is stored in the mean of the model, in

that way, the mean is a good estimate for the patch we want to denoise, or

the major part of the information is in the covariance matrix. As we have

seen in chapter 3, the covariance matrices are able to encode a geometric

information up to some contrast change and GMM-based algorithms seem

to encode the geometric information in that way, as it has been remarked

in the EPLL paper [79]. Knowing this, and considering a fixed number

of groups K, as the image size N tends to infinity, we can consider 2 that

the models are almost independent of the noise realization. In that case,

2. as the number of sample grows
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patch denoising with MMSE provides a denoised version of a patch from

its noisy version and the model. Then we can consider that the estimate is

derived from only one sample. In this case, the Fisher information matrix

is Ji = (1/σ2)I and the lower bound of the squared error between a patch x

and its estimate x̂ denoised with a group that has a covariance matrix Σ is

bounded from below as follows

E[(x− x̂)2] > Tr
[
( 1
σ2 I + Σ−1)−1

]
. (6.9)

If we make the same assumptions on the covariance Σ as in the previous

case, denoting mk the number of patches in the k-th group, this leads to

the lower bound of the MSE on the whole image:

E[(u− û)2] > 1
N

K∑

k=1
mk

Tr(Σk)σ2

1 + σ2 , (6.10)

> cσ2

N(1 + σ2)

K∑

k=1
mk (6.11)

= cσ2

1 + σ2 independent of N. (6.12)

Finally, this study, while relying on strong hypotheses, shows that patch

based denoising methods are not always the best choice and there is still

some work to do to improve the way patches are used.

Overlapping patches issues. Another crucial step of patch-wise denois-

ing methods is the aggregation part. Indeed, in most of the cases patches

are considered to be independent, even if overlapping patches are consid-

ered. This could cause issues for the inference of the models, but as we have

seen in the chapter 3, the Gaussian models generally used in those cases

do not encode structures with translation invariance. Therefore, except for

constant areas, neighboring patches in the image are usually not in the same

group. The main issue of the overlapping patches is the aggregation part.

We have proposed a brief discussion of this subject in chapter 5 but the

solution proposed here or the solutions from the literature seem to not im-
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prove the denoising result greatly. The fact is that we can only expect an

improvement of a factor p (the number of pixels) for each patch, and the

bounds studied in the previous paragraph remain valid. A more involved

aggregation would make more pixels collaborate together, or try to make a

global formulation that allows that, in the view of EPLL.

6.1.2 How to use Gaussian models

Another point developed in this thesis is the study of Gaussian and GMM

priors for patch-based denoising methods. We pointed out that Gaussian

and GMM priors are convenient for Bayesian estimation because the MMSE

can be computed in a closed form. In chapter 3, we have described what

a Gaussian model can encode for patches. Here we propose a synthesis of

how these models can be used.

Mean versus covariance. As we have already mentioned in section 6.1.1,

the Gaussian models can encode information either in the mean or in the

covariance matrix. Here we illustrate this point and try to understand what

is the best representation. First of all, let us consider a Gaussian model

(µ,Σ) learned on a stack of patches that are ε-close for the 2-norm (as in the

NL-bayes method [35]). If the image contains sufficient samples of the same

structure, the major part of the information of the model is then contained

within the sample mean µ. On the other hand, the sample covariance Σ is

close to σ2I and represents little of the geometric information of the patch

(see figure 6.1). In this case, the MMSE of a patch denoised with this model

is nearly µ and we recover a kind of NL-means. Conversely, if we consider a

rare patch and the ε-close patches around it, the mean is not so informative

and the covariance matrix will have a more significant role in the MMSE

formula. In this last case, the importance of having a good model is crucial.

In the case of the NL-Bayes algorithm, the model is learned on a ε-close

patches’ stack. So, for a rare patch, the stack can be composed of patches

with various structures and that will result in a mediocre model. However,

in the case where other patches with a similar structure but a different
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Figure 6.1 – A patch and the model learned with the ε-close patches around
it. The mean µ is shown in the frame. Bottom left: 25 patches generated
with the learned model (µ,Σ). Bottom right: 25 patches generated with
the model (0,Σ).

contrast exist, they could be used for a better estimation of the covariance

matrix. This can be done with GMM, which are therefore able to learn

models that encode the structure of the data better. However, this has a

drawback, since as we mentioned in the previous section, the estimate of

each patch is now fundamentally computed with only one realization filtered

with the model and therefore may suffer from a strong bias.

High dimensional estimation. In chapter 4, we have proposed a model

that takes into account the high dimension of the patch space. This allows

to infer the parameters of the model without suffering of the curse of di-

mensionality. This also allows the use of large sized patches, which can
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improve the denoising results and are necessary for high variance noise.

Indeed, considering the HDMI method, we discussed in the previous para-

graphs that the weakness of this method is due to the fact that each patch

is denoised using only its noisy version (and the model). For instance, a

patch representing an edge will be denoised as the mean of all the pixels

from each side of the edge. Therefore, if the patch size is small, the bias of

such an estimate can be huge, and so bigger patches will enhance the final

result. Another point is that if we look at the NL-bayes algorithm, it uses

only small patches and cannot be run with really large patches like 15× 15.

This implies that the performance of this algorithm decrease significantly

for high variance noise. The advantage of the dimension reduction model

we propose in chapter 4 is that it can be extended and plugged into other

existing denoising methods. With this dimension reduction, the NL-bayes

algorithm can therefore be run with larger patches. We have also shown

that this dimension reduction acts as a regularization.

6.2 Perspectives

In this last section, we propose some subjects of interest that could lead

to potentially valuable results. Some are ideas that suggest directions of

research. Others are already planned as future work. We provide these

perspectives as a list.

6.2.1 How to improve patch methods like HDMI

In this subsection, we propose some key elements that could allow to

improve patch-based methods such as HDMI presented in chapter 4. We

have already shown that the dimensionality reduction introduced in HDMI

is crucial in order to estimate the model parameters correctly. Here, we

present here some directions to improve this kind of model.

Robust estimation The HDMI method proposed in the chapter 4 of

this thesis is based on the inference of a statistical model on the set of noisy
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patches of an image that are seen as points in a high-dimensional space.

Since natural images may contain rare structures, the data may therefore

contain outliers. Even if these outliers are few in number, they can strongly

disrupt simple indicators such as the mean or the covariance matrix. Thus,

we may consider the use of robust estimators, such as the geometric median,

which are less sensitive to outliers.

As a future work, we plan to study recent algorithms for robust esti-

mation in high-dimension introduced in [28], and derive from this a robust

model for the patches in order to solve image inverse problems.

Patch aggregation As briefly discussed in chapter 5 and in section 6.1,

a major issue of methods that denoise patches is the aggregation. We have

proposed a framework in chapter 5 that can yield weighted aggregation pro-

cedures that can potentially enhance the result. But a good idea would be

to incorporate the dependence for overlapping patches within the denoising

process. This can lead to a global model on the image derived from the

local patch models, in a similar fashion to EPLL.

A change of paradigm? As we discussed, denoising patch to patch may

not be the best idea. However, the model provided by HDMI on the image

patches seems to be adapted and robust to noise thanks to the dimension

reduction. Therefore, it could be a good idea to use the knowledge given by

the model but perform a denoising on the whole image or pixel-wise. For

instance, by using the model to find all the pixels that represent the same

color and averaging them all in order to perform denoising. Or by creating

an adapted basis for the image from the local models in order to perform

diagonal estimation as in chapter 2.

6.2.2 Extension to other image problems

In this subsection, we have regrouped the perspectives concerning the

extension of the use of Gaussian or GMM priors on patches to other image

problems.
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HDMI for randomly missing pixels Since the EM algorithm is well-

adapted for data with missing values, the HDMI model can be easily derived

for patches with missing values. This problem has already been studied, for

instance in [65] and [71]. A straightforward implementation of this idea

with the HDMI model provides interesting results (see figure 6.2). A more

in-depth study of this extension is planned as future work.

GMM as features for solving inverse problems Consider an image

u and P = {x1, . . . , xn ∈ Rp} the set of all its patches. If we have learned

a Gaussian mixture model of parameters Θ = {θk = (πk, µk,Σk)}Kk=1 on P ,

then, knowing this model and introducing the latent random variable Z for

the group memberships, we can compute the posterior probability

tik := P(Z = k|x = xi; Θ) = πkφ(x; θk)∑
l πlφ(x; θl)

, (6.13)

where

φ(x; θk) = 1√
|Σk|(2π)p

exp
(
−1

2(x− µk)TΣ−1
k (x− µk)

)
. (6.14)

For each patch xi, the vector (tik)k ∈ RK represents the proportions of how

the patch xi is encoded with each group model k.

An idea to explore is to use these vectors as features for the patches.

These features seem to very well encode the geometric information of the

image and may be used for texture generation or image inpainting. For

instance, these features may be smoother than the image and inpainting

could be easier on them.
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Figure 6.2 – Top: the traffic image with 70% missing pixels. Bottom: the
recovered image with HDMI for missing data.
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Titre : Quelques avancées dans le débruitage d’images par patchs

Mots clés : débruitage d’image, traitement d’image par patch, modèles gaussiens, modèles de mélanges de
gaussiennes, débruitage global, agrégation de patchs

Résumé : Cette thèse s’inscrit dans le contexte des
méthodes non locales pour le traitement d’images
et a pour application principale le debruitage. Les
images naturelles sont constituées de structures re-
dondantes qui peuvent être utilisées à des fins de
restauration. Une façon répandue de considérer cette
auto-similarité est de découper l’image en patchs. Ces
derniers peuvent ensuite être regroupés, comparés et
filtrés ensemble.
Dans le premier chapitre, le global denoising est re-
formulé avec le formalisme classique de l’estimation
diagonale et son comportement asymptotique est étu-
dié dans le cas oracle. Des conditions précises à la fois
sur l’image et sur le filtre global sont introduites pour
assurer et quantifier la convergence.
Le deuxième chapitre est consacré à l’étude des

a priori gaussiens pour le débruitage d’images par
patch. Ces a priori sont largement utilisés pour la
restauration d’image. Nous proposons ici quelques in-
dices pour répondre aux questions suivantes : Pour-
quoi les a priori gaussiens sont-ils si largement utili-
sés ? Quelles sont les informations qu’ils encodent sur
l’image ?
Le troisième chapitre propose un modèle probabiliste
de mélange pour les patchs bruités adapté à la grande
dimension. Il en résulte un algorithme de débruitage
qui atteint les performances de l’état-de-l’art.
Le dernier chapitre explore des pistes d’agrégation
différentes et une écriture de l’agrégation des patchs
sous la forme d’un problème de moindre carrés est
proposée.

Title: Some advances in patch-based image denoising

Keywords: Image denoising, Patch-based image processing, Gaussian models, Gaussian Mixtures Models,
Global denoising, Patch aggregation

Abstract: This thesis studies non-local methods for
image processing, and their application to various
tasks such as denoising. Natural images contain re-
dundant structures, and this property can be used for
restoration purposes. A common way to consider this
self-similarity is to separate the image into patches.
These patches can then be grouped, compared and
filtered together.
In the first chapter, global denoising is reframed in
the classical formalism of diagonal estimation and its
asymptotic behaviour is studied in the oracle case.
Precise conditions on both the image and the global
filter are introduced to ensure and quantify conver-
gence.
The second chapter is dedicated to the study of Gaus-

sian priors for patch-based image denoising. Such
priors are widely used for image restoration. We
propose some ideas to answer the following ques-
tions: Why are Gaussian priors so widely used?
What information do they encode about the im-
age? The third chapter proposes a probabilistic high-
dimensional mixture model on the noisy patches.
This model adopts a sparse modeling which assumes
that the data lie on group-specific subspaces of low
dimensionalities. This yields a denoising algorithm
that demonstrates state-of-the-art performance.
The last chapter explores different way of aggregat-
ing the patches together. A framework that expresses
the patch aggregation in the form of a least squares
problem is proposed.
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