
HAL Id: tel-01951975
https://hal.science/tel-01951975v2

Submitted on 26 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Failure Detectors in Dynamic Distributed Systems
Élise Jeanneau

To cite this version:
Élise Jeanneau. Failure Detectors in Dynamic Distributed Systems. Distributed, Parallel, and Cluster
Computing [cs.DC]. Sorbonne Université, 2018. English. �NNT : 2018SORUS207�. �tel-01951975v2�

https://hal.science/tel-01951975v2
https://hal.archives-ouvertes.fr

École doctorale EDITE de Paris

Failure Detectors in Dynamic

Distributed Systems

THÈSE

présentée et soutenue publiquement le 7 décembre 2018

pour l’obtention du

Doctorat de Sorbonne Université

(mention informatique)

par

Denis Jeanneau

Composition du jury

Rapporteurs : Carole Delporte

Roy Friedman

Examinateurs : Sébastien Tixeuil

Arnaud Casteigts

Encadrants : Luciana Arantes

Pierre Sens

Laboratoire d’Informatique de Paris 6 (LIP6)

i

Acknowledgements

I am first grateful to Lucana Arantes and Pierre Sens for their guidance, feedback and support
during the three years of this thesis.

I would like to thank Carole Delporte, Roy Friedman, Arnaud Casteigts and Sébastien Tixeuil
for accepting to be part of the jury for this thesis. Additionally, I want to thank Carole Delporte
and Roy Friedman for accepting to review this manuscript.

Of course, I want to thank my co-authors, Thibault Rieutord, Etienne Mauffret, Luiz A.
Rodrigues and Elias P. Duarte Jr., for their collaboration without which none of the publications
in this thesis could have happened.

I would also like to thank all the colleagues at LIP6, which is a great work environment, and
in particular the members of teams DELYS and Whisper for their friendship.

Finally, I want to thank my family for their moral support through this thesis and everything
else.

Résumé

Dans le problème du consensus, tous les processus corrects du système doivent se mettre d’accord
sur une unique valeur. Le problème du k-accord est une généralisation du consensus dans laque-
lle les processus peuvent se mettre d’accord sur au plus k valeurs. Le problème de l’exclusion
mutuelle nécessite de permettre aux processus l’accès à une section critique, tout en garantissant
qu’au plus un processus peut se trouver en section critique à tout moment. Ces problèmes fon-
damentaux de l’algorithmique distribuée ont été largement étudiés, mais la plupart des solutions
existantes s’appuient sur l’hypothèse implicite que le système n’est pas dynamique.

Traditionellement, l’algorithmique distribuée consiste à étudier des systèmes distribués dans
lesquels la liste des participants est statique et le graphe de communication est connecté, voire
complet. Mais afin de modéliser les réseaux modernes, tels que les réseaux pair-à-pair ou sans fil,
il est nécessaire de considérer une nouvelle sorte de systèmes distribués. Les systèmes dynamiques
sont des systèmes distribués dans lesquels (1) les processus peuvent rejoindre ou quitter le système
en cours d’exécution, et (2) le graphe de communication évolue au fil du temps.

L’abstraction des détecteurs de fautes a été introduite afin de contourner l’impossibilité de
résoudre le consensus dans les systèmes asynchrones sujets aux pannes franches. Un détecteur de
fautes est un oracle local fournissant aux processus des informations non fiables sur les pannes de
processus. Mais un détecteur de fautes qui est suffisant pour résoudre un problème donné dans
un système statique n’est pas nécessairement suffisant pour résoudre le même problème dans
un système dynamique. De plus, certains détecteurs de fautes ne peuvent pas être implémentés
dans un système dynamique. Par conséquent, il est nécessaire de redéfinir les détecteurs de fautes
existants et de concevoir de nouveaux algorithmes.

Dans cette thèse, nous fournissons une nouvelle définition d’un détecteur de fautes pour le k-
accord, et nous prouvons qu’il est suffisant pour résoudre le k-accord dans un système dynamique.
Nous définissons également un modèle de système dynamique, ainsi qu’un algorithme capable
d’implémenter ce nouveau détecteur de fautes dans notre modèle.

De plus, nous adaptons un détecteur existant pour l’exclusion mutuelle et nous prouvons que
même dans les systèmes dynamiques, il s’agit toujours du détecteur de fautes le plus faible pour
résoudre l’exclusion mutuelle. Cela signifie que ce détecteur est plus faible que tous les autres
détecteurs capables de résoudre l’exclusion mutuelle.

Mots-clés: systèmes distribués, détecteurs de fautes, systèmes dynamiques, k-accord, exclusion
mutuelle

Abstract

In the consensus problem, all correct processes in the system must agree on a same value.
The k-set agreement problem is a generalization of consensus where processes can agree on up
to k different values. The mutual exclusion problem requires processes to be able to access a
critical section, such that no two processes can be in the critical section at the same time. These
fundamental problems of distributed computing have been widely studied, but most existing
solutions assume that the system is not dynamic.

Traditionally, distributed computing considers distributed systems where the system mem-
bership is static and the communication graph is connected or fully connected. But in order
to model modern networks such as wireless or peer-to-peer networks, it is necessary to consider
another kind of distributed systems. Dynamic systems are distributed systems in which (1) pro-
cesses can join or leave the system during the run, and (2) the communication graph evolves over
time.

The failure detector abstraction was introduced as a way to circumvent the impossibility of
solving consensus in asynchronous systems prone to crash failures. A failure detector is a local
oracle that provides processes in the system with unreliable information on process failures. But
a failure detector that is sufficient to solve a given problem in a static system is not necessarily
sufficient to solve the same problem in a dynamic system. Additionally, some existing failure
detectors cannot be implemented in dynamic systems. Therefore, it is necessary to redefine
existing failure detectors and provide new algorithms.

In this thesis, we provide a new definition of a failure detector for k-set agreement, and prove
that it is sufficient to solve k-set agreement in dynamic systems. We also design a dynamic
system model and an algorithm that implements this new failure detector.

Additionally, we adapt an existing failure detector for mutual exclusion and prove that it
is still the weakest failure detector to solve mutual exclusion in dynamic systems, which means
that it is weaker than any other failure detector capable of solving mutual exclusion.

Keywords: distributed systems, failure detectors, dynamic systems, k-set agreement, mutual
exclusion

v

Je dédie cette thèse à Joséphine.

Contents

1 Introduction 1

1.1 Contributions . 3

1.1.1 A Failure Detector for k-Set Agreement in Unknown Dynamic Systems . . 4

1.1.2 A Failure Detector for Mutual Exclusion in Unknown Dynamic Systems . 4

1.1.3 An Asynchronous Reliable Broadcast Algorithm over a Hypercube Topology 4

1.2 Publications . 5

1.2.1 Papers in International Conferences . 5

1.2.2 Papers in International Journals . 5

1.3 Organization of the Manuscript . 6

2 A Background on Failure Detectors and Dynamic Systems 7

2.1 Distributed Systems . 8

2.1.1 Processes . 8

2.1.2 Communication Models . 8

2.1.3 Failure Models . 9

2.1.4 Timing Models . 9

2.1.5 Notations . 9

2.2 Distributed Problems . 9

2.2.1 Consensus and k-Set Agreement . 10

2.2.2 Fault-Tolerant Mutual Exclusion . 11

2.3 Failure Detectors . 11

2.3.1 The Failure Detector Hierarchy . 12

2.3.2 Failure Detectors for Consensus and k-Set Agreement in Message Passing

Systems . 12

2.3.3 Failure Detectors for Consensus and k-Set Agreement in Shared Memory

Systems . 18

2.3.4 Failure Detectors for Mutual Exclusion . 19

2.4 Dynamic Networks . 19

vii

viii Contents

2.4.1 Increasing and Decreasing Systems with a Static Communication Graph . 20

2.4.2 The Dynamic Graph Model . 21

2.4.3 Directed Dynamic Networks . 22

2.4.4 Evolving Graphs . 22

2.4.5 Time-Varying Graphs (TVG) . 23

2.4.6 Unknown Asynchronous Dynamic Networks 25

2.4.7 Summary of Failure Detector Results in Unknown and/or Dynamic Systems 27

2.5 Conclusion . 28

3 A Failure Detector for k-Set Agreement in Unknown Dynamic Systems 29

3.1 System Model . 30

3.1.1 Process Model . 30

3.1.2 Communication Model . 31

3.2 Failure Detectors for k-Set Agreement in Unknown Dynamic Systems 32

3.2.1 The Σ⊥,k Failure Detector . 32

3.2.2 The Family of Failure Detectors ΠΣ⊥,x,y 33

3.3 Assumptions . 35

3.3.1 Time-Varying Graph Classes . 35

3.3.2 Message Pattern Assumptions . 37

3.3.3 Summary of Assumptions . 40

3.3.4 Implementation of Message Pattern Assumptions 40

3.3.5 Comparable Assumptions in the Literature 41

3.4 Failure Detector Algorithms . 42

3.4.1 An Algorithm for Σ⊥,k . 42

3.4.2 An Algorithm for ΠΣ⊥,x . 46

3.4.3 An Algorithm for ΠΣ⊥,x,y . 50

3.5 A k-Set Agreement Algorithm . 50

3.5.1 The Alphax Sub Protocol . 50

3.5.2 Alphax Algorithm . 51

3.5.3 k-Set Agreement Algorithm . 53

3.6 Conclusion . 54

4 The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic

Systems 57

4.1 Model and Problem Definition . 58

4.1.1 System Model . 58

4.1.2 Failure Model . 59

ix

4.1.3 Connectivity Model . 59

4.1.4 Knowledge Model . 60

4.1.5 Problem Definition . 60

4.2 Failure Detectors for Mutual Exclusion in Unknown Dynamic Systems 61

4.2.1 The T Σl Failure Detector . 61

4.2.2 The T Σlr Failure Detector . 61

4.3 Sufficiency of T Σlr to solve Fault-Tolerant Mutual Exclusion 62

4.3.1 Algorithm Description . 62

4.3.2 Proof of Correctness . 65

4.4 Necessity of T Σlr to solve Fault-Tolerant Mutual Exclusion 70

5 Conclusion 77

5.1 Contributions . 78

5.1.1 A Failure Detector for k-Set Agreement in Unknown Dynamic Systems . . 78

5.1.2 A Failure Detector for Recoverable Mutual Exclusion in Unknown Dynamic

Systems . 78

5.2 Perspectives . 79

5.2.1 On the Necessity of Synchronous Processes in Dynamic Systems 79

5.2.2 The Weakest Failure Detector for k-Set Agreement 79

5.2.3 Defining the Mutual Exclusion Problem in Crash-Recovery Systems 79

A A Reliable Broadcast Protocol for Asynchronous Systems with a Hypercube

Topology 81

A.1 Introduction . 81

A.2 Related Work . 83

A.3 System Model . 85

A.4 The VCube . 85

A.5 Reliable Broadcast Algorithm for Asynchronous System 86

A.5.1 Message types and local variables . 87

A.5.2 Algorithm description . 88

A.5.3 Proof of correctness . 90

A.6 Performance Discussion . 92

A.7 Conclusion and Future Work . 93

Bibliography 95

Chapter 1

Introduction

Contents

1.1 Contributions . 3

1.1.1 A Failure Detector for k-Set Agreement in Unknown Dynamic Systems 4

1.1.2 A Failure Detector for Mutual Exclusion in Unknown Dynamic Systems 4

1.1.3 An Asynchronous Reliable Broadcast Algorithm over a Hypercube Topol-
ogy . 4

1.2 Publications . 5

1.2.1 Papers in International Conferences . 5

1.2.2 Papers in International Journals . 5

1.3 Organization of the Manuscript . 6

Distributed systems are made of processes that attempt to solve distributed problems by
cooperating. These processes can communicate with each other by using shared memory or
by exchanging messages. Distributed algorithms describe the steps taken by each process, in
particular the read/write operations (in the case of shared memory systems) or the send/receive
operations (in the case of message passing systems). The field of distributed computing consists
in designing algorithms that solve problems in distributed systems.

A process in a distributed system might fail during the run, and therefore stop following the
steps described in its algorithm. A process that fails is called a “faulty” process, while a process
that always behaves according to its algorithm is called a “correct” process. Different failure
models can be considered: in the crash failure model, a process that fails (crashes) simply stops
taking steps for the rest of the run. In the crash/recovery model, a process can crash but might
later resume its algorithm. Finally, in the Byzantine model [LSP82], faulty processes can exhibit
any arbitrary behaviour, and might even actively work against the algorithm.

A distributed algorithm that solves a problem despite process failures is said to be fault-
tolerant.

In message passing systems, some communication models assume that communication is
synchronous, which means that there is a bound on message transfer delays and processes are
aware of this bound. Other models consider communication to be partially synchronous, which

1

2 Chapter 1. Introduction

means that either processes are not aware of the bound on message transfer delays, or the bound
is only guaranteed to hold after some unknown time. Finally, some models make no assumption
on communication synchrony and consider that there is no bound on message transfer delays:
communication is therefore asynchronous.

There are many different models for distributed systems, each making different communi-
cation or failure assumptions. A distributed problem can only be solved in certain models.
Determining which system assumptions are necessary and/or sufficient to solve a given problem
is an important challenge of distributed computing.

A well-known distributed problem is the consensus. In the consensus problem, each process
proposes a value, and each correct process must decide a value such that no two different values
are decided, and every decided value is a proposed value. The consensus is a fundamental problem
in the field of distributed computing. It is used in distributed databases to replicate data while
maintaining consistency. A notorious solution to the consensus is the Paxos algorithm [Lam98],
which is used, for instance, by Google to maintain consistency between its duplicated indexes.

It was proved in [FLP85] that in the presence of even a single crash failure, it is impossible
to solve consensus deterministically in an asynchronous system.

Many articles in the literature have proposed ways to circumvent this impossibility. The
partial synchrony model [DLS88] was introduced as a way to detect crashes and solve consensus
without the costly assumption of full communication synchrony. The Paxos algorithm [Lam98]
tolerates asynchrony while solving a weaker version of consensus where termination is not guar-
anteed. Another approach is the failure detector abstraction [CT96].

A failure detector is a distributed oracle that provides each process in the system with in-
formation, that is not always reliable, on process failures. This information is unreliable in the
sense that some correct processes might be falsely suspected of being faulty, while some faulty
processes might be believed to be correct. Different classes of failure detectors provide different
guarantees on the reliability of the information provided.

A failure detector is said to be weaker than another one if it is possible to implement the first
by using the information provided by the second. A failure detector is said to be the weakest
to solve a given problem if (1) the information it provides is sufficient to solve the problem and
(2) it is weaker than every other detector that solves the problem. By identifying which failure
detector class is the weakest to solve a given distributed problem, it is possible to abstract the
minimum assumptions needed to solve the problem (such as communication synchrony, or a
limitation on the number of failures).

Although many papers in the literature have identified failure detectors sufficient and/or
necessary to solve various distributed problems, these results have mostly been confined to static
and known systems. However, networks such as wireless, peer-to-peer or ad-hoc networks are
inherently dynamic and cannot be modeled as static systems.

In dynamic systems, processes can join or leave the system during the run. Additionally, the
communication channels between processes might be intermittent, meaning that the connections
between processes can vary during the run, and therefore the communication graph will evolve
over time.

In unknown systems, processes do not know the number nor the identities of the participants
in the system at the start of the run. Indeed, in a dynamic system where processes might join

1.1. Contributions 3

the system later in the run, it is unreasonable to expect that every process would know the list
of processes from the start.

Unknown dynamic systems pose new challenges that existing algorithms in the literature
are not able to deal with. As a result, some existing failure detector definitions cannot be
implemented in these new systems, while other failure detectors are no longer sufficient to solve
some problems.

Traditionally, failure detectors are used in system models considering static and fully con-
nected communication graphs. These connectivity properties are usually presented as properties
of the system model rather than the failure detector augmenting it. When considering a much
weaker system model such as a dynamic network, solving any non-trivial problem still requires
the assumption of a certain degree of graph connectivity, as not much can be done in a sys-
tem where no communication link is ever active. Studying dynamic systems means considering
the level of temporal connectivity required to solve a specific problem, and using a generic and
strong connectivity assumption would defeat that purpose. Instead, the goal should be to use a
weak connectivity assumption that is still sufficient to solve the problem. Therefore, to solve a
given agreement problem, two things are necessary: (1) a failure detector and (2) connectivity
assumptions.

But if connectivity assumptions must be added to the system model in addition to the
failure detector, then an argument could be made that the failure detector is not sufficient to
solve the problem. For this reason, and because in a dynamic system the required level of
connectivity is as dependent on the problem as the required failure detector, it makes sense to
include connectivity properties in the failure detector definition. Adding these properties should
not be seen as strengthening the failure detector, they are still weaker than the assumption of a
fully connected, static communication graph.

Another approach is to keep the connectivity properties as part of the system model, separate
from the failure detector definition. The advantage of this solution is that the resulting failure
detector is only defined in terms of the information it provides on failures. It is therefore closer
and more easily comparable to the definitions of existing failure detectors in static systems.

1.1 Contributions

This thesis aims to extend some existing failure detector results, providing new definitions which
are more suitable to unknown dynamic systems. Additionally, it provides algorithms that use
these new versions of existing failure detectors to solve distributed problems in unknown dynamic
systems.

The main contributions of this thesis focus on failure detectors for unknown dynamic systems
related to two distributed problems: k-set agreement and mutual exclusion. The first contribu-
tion defines a failure detector for k-set agreement that includes connectivity properties, while the
second considers connectivity assumptions to be part of the model and defines a failure detector
for mutual exclusion strictly in terms of the information it provides on failures.

A third contribution concerns an asynchronous reliable broadcast over an hypercube overlay.

4 Chapter 1. Introduction

1.1.1 A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

The k-set agreement problem is a generalization of the consensus problem. Every process pro-
poses a value and every correct process must eventually decide a value, such that at most k
different values are decided, and every decided value is a proposed value. In static, known sys-
tems made of n processes, it has been proved that the ΠΣx,y failure detector [MRS12] is sufficient
to solve k-set agreement in the general case of 1 ≤ k < n provided that k ≥ xy, while being the
weakest failure detector for the cases of k = 1 [CHT96] and k = n− 1 [DFGT08].

This thesis provides a new definition of ΠΣx,y called ΠΣ⊥,x,y [JRAS17]. This new failure
detector includes connectivity properties to deal with the dynamics of the system, and uses
a default return value ⊥ to deal with the lack of initial information in an unknown system.
An algorithm implementing ΠΣ⊥,x,y in unknown dynamic systems, relying on message pattern
assumptions along with connectivity assumptions modeled using the Time-Varying Graph for-
malism [CFQS12], is presented. Finally, this thesis also provides an algorithm that solves the
k-set agreement problem using ΠΣ⊥,x,y, with k ≥ xy, thus proving that ΠΣ⊥,x,y is sufficient to
solve k-set agreement in unknown dynamic systems.

1.1.2 A Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

Mutual exclusion is an important distributed problem that is notably used to protect a shared
object from being concurrently accessed by multiple processes. In the mutual exclusion problem,
processes attempt to access a critical section of their code in such a way that (1) no two processes
can be in their critical section at the same time, and (2) whenever some correct process tries to
enter its critical section, some correct process must later succeed at entering its critical section.
In static, known systems, it has been proved that (T ,Σl) is the weakest failure to solve mutual
exclusion [DGFGK05, BCJ09].

This thesis provides a new definition of (T ,Σl) called T Σlr [MJAS19]. This new failure
detector is capable of dealing with the lack of information in an unknown system, along with
processes that leave the system and rejoin it later (this is modeled as crash/recovery failures).
The dynamics of the communication graph are abstracted with the use of connectivity properties
defined as part of the system model, and not the failure detector.

An algorithm solving mutual exclusion using T Σlr is proposed, along with a reduction algo-
rithm showing that any mutual exclusion algorithm can be transformed into T Σlr, thus proving
that it is the weakest failure detector to solve mutual exclusion in an unknown dynamic system
model.

1.1.3 An Asynchronous Reliable Broadcast Algorithm over a Hypercube
Topology

The reliable broadcast abstraction enables each process to reliably communicate information to
every other process while preventing situations where only some processes receive the information.

More formally, a reliable broadcast is a communication primitive allowing a process to send
a message to all other processes, such that (1) if a correct process broadcasts a message, then it
eventually delivers that message; (2) every correct process delivers a message at most once, and

1.2. Publications 5

only if that message was previously broadcast by some process; and (3) every correct process
delivers the same set of messages [HT93].

The VCube [DBR14] is a distributed overlay that organizes the processes in the system in a
virtual hypercube-like topology and includes a diagnosis layer that provides failure detection. A
reliable broadcast algorithm leveraging the VCube topology in order to ensure desirable logarith-
mic properties was provided in [RAJ14], but it requires the system to be synchronous. This thesis
introduces a reliable broadcast algorithm for asynchronous systems with a VCube [JRAJ16], that
also preserves logarithmic properties depending on the rate of false suspicions.

This work was done as part of the joint project CNRS - Fundação Araucária between the
LIP6 (Delys team), the Universidade Federal do Paraná (UFPR) and the Universidade Estadual
do Oeste do Paraná (UNIOESTE) in Brazil. Because this contribution does not concern dynamic
systems, it will only be presented in the appendix of this thesis.

1.2 Publications

The following articles were published during this thesis.

1.2.1 Papers in International Conferences

• [JRAS15] Denis Jeanneau, Thibault Rieutord, Luciana Arantes, and Pierre Sens. A failure
detector for k-set agreement in dynamic systems. In 14th IEEE International Symposium
on Network Computing and Applications, NCA 2015, Cambridge, MA, USA, September
28-30, 2015, pages 176–183, 2015.

• [JRAJ16] Denis Jeanneau, Luiz A. Rodrigues, Luciana Arantes, and Elias Procópio Duarte
Jr. An autonomic hierarchical reliable broadcast protocol for asynchronous distributed
systems with failure detector. In 2016 Seventh Latin-American Symposium on Dependable
Computing, LADC 2016, Cali, Colombia, October 19-21, 2016, pages 91–98, 2016.

• [MJAS19] Etienne Mauffret, Denis Jeanneau, Luciana Arantes, and Pierre Sens. The weak-
est failure detector to solve the mutual exclusion problem in an unknown dynamic environ-
ment. In Proceedings of the 20th International Conference on Distributed Computing and
Networking, ICDCN 2019, Bangalore, India, January 4-7, 2019 (to be published), 2019.

1.2.2 Papers in International Journals

• [JRAS17] Denis Jeanneau, Thibault Rieutord, Luciana Arantes, and Pierre Sens. Solving k-
set agreement using failure detectors in unknown dynamic networks. IEEE Trans. Parallel
Distrib. Syst., 28(5):1484–1499, 2017.

• [JRAJ17] Denis Jeanneau, Luiz A. Rodrigues, Luciana Arantes, and Elias Procópio Duarte
Jr. An autonomic hierarchical reliable broadcast protocol for asynchronous distributed
systems with failure detection. J. Braz. Comp. Soc., 23(1):15:1–15:14, 2017.

6 Chapter 1. Introduction

1.3 Organization of the Manuscript

The rest of this thesis is organized as follows.
Chapter 2 first provides definitions for some common terms, models and problems used

throughout this thesis, then summarizes the related work around failure detectors and dynamic
systems.

Chapter 3 presents a failure detector for k-set agreement in unknown dynamic systems. It
includes the definition of the ΠΣ⊥,x,y failure detector, along with an algorithm implementing the
failure detector in an unknown dynamic system and, finally, an algorithm solving k-set agreement
using ΠΣ⊥,x,y (provided that k ≤ xy).

Likewise, Chapter 4 presents a failure detector for mutual exclusion in unknown dynamic
systems. It includes the definition of the T Σlr failure detector, along with an algorithm that
solves mutual exclusion using T Σlr and a reduction algorithm proving that it is the weakest
failure detector to solve mutual exclusion in unknown dynamic systems.

Chapter 5 concludes this thesis and proposes some future research directions.
Finally, Appendix A presents an algorithm implementing an asynchronous reliable broadcast

over the VCube overlay.

Chapter 2

A Background on Failure Detectors and
Dynamic Systems

Contents

2.1 Distributed Systems . 8

2.1.1 Processes . 8

2.1.2 Communication Models . 8

2.1.3 Failure Models . 9

2.1.4 Timing Models . 9

2.1.5 Notations . 9

2.2 Distributed Problems . 9

2.2.1 Consensus and k-Set Agreement . 10

2.2.2 Fault-Tolerant Mutual Exclusion . 11

2.3 Failure Detectors . 11

2.3.1 The Failure Detector Hierarchy . 12

2.3.2 Failure Detectors for Consensus and k-Set Agreement in Message Pass-
ing Systems . 12

2.3.3 Failure Detectors for Consensus and k-Set Agreement in Shared Memory
Systems . 18

2.3.4 Failure Detectors for Mutual Exclusion 19

2.4 Dynamic Networks . 19

2.4.1 Increasing and Decreasing Systems with a Static Communication Graph 20
2.4.2 The Dynamic Graph Model . 21

2.4.3 Directed Dynamic Networks . 22
2.4.4 Evolving Graphs . 22

2.4.5 Time-Varying Graphs (TVG) . 23

2.4.6 Unknown Asynchronous Dynamic Networks 25

2.4.7 Summary of Failure Detector Results in Unknown and/or Dynamic Sys-
tems . 27

2.5 Conclusion . 28

7

8 Chapter 2. A Background on Failure Detectors and Dynamic Systems

This thesis focuses on failure detectors for unknown dynamic systems. Thus, it covers two
different fields of distributed computing: failure detectors and dynamic systems. In order to
provide context, this chapter first summarizes some common definitions used in distributed
systems (Section 2.1) along with the definitions of k-set agreement and fault-tolerant mutual
exclusion (Section 2.2). Section 2.3 provides a history of failure detectors used to solve consensus,
k-set agreement and fault-tolerant mutual exclusion. Finally, Section 2.4 lists different articles
attempting to model dynamic distributed systems.

2.1 Distributed Systems

This section describes some existing distributed system models for static and known systems.

2.1.1 Processes

A distributed system is made up of a set of n processes, denoted Π = {p1, ..., pn}. Unless specified
otherwise, each process knows its own identity, along with the value of n and the set Π.

Each process executes a sequence of steps described by its local algorithm. A step can be
the execution of an instruction that only affects the internal state of the process, the sending
or reception of a message, or a read/write operation on a shared variable. The set of all local
algorithms is called the distributed algorithm.

A run is a sequence of steps executed by the processes while respecting the order of local
operations as well as the causality of operations (each received message has been previously sent,
each value read in a shared variable has been previously written).

2.1.2 Communication Models

There are two main communication models. In the shared memory model, processes communi-
cate by reading and writing from/in shared variables. In the message passing model, processes
communicate by exchanging messages.

The solutions presented in this thesis are based on message passing models. However, because
the history of failure detectors in both models is closely intertwined, this chapter also presents
failure detectors for shared memory systems.

In a message passing system, processes are connected by communication links (or channels).
Links are often assumed to be bidirectional, although some works consider directed links. A
process can only send a message to another process if it is connected to that process by a
communication link.

The graph G = (V,E), where V = Π and E is the set of all links in the system, is called
the communication graph of the system. The majority of the works in the literature make the
assumption that the communication graph is connected or complete, meaning that every process
can communicate with every other process (through the use of message forwarding in the case
of a non-complete but connected graph).

2.2. Distributed Problems 9

2.1.3 Failure Models

Distributed systems are prone to failures. A process that fails in a run is said to be faulty in
that run. Conversely, a process that never fails during the run is said to be correct in that run.
C denotes the set of all correct processes, while F is the set of all faulty processes.

The maximum number of faulty processes in a run is denoted f . While the most generic
models consider f ≤ n− 1, some models further restrict the number of failures.

The literature considers different types of failures.
In the crash failure model, a process that fails stops taking steps for the rest of the run.
In the crash/recovery failure model, a process that fails stops taking steps but may recover

and resume taking steps later in the run. Processes might have lost part or all of their memory
after recovering from a crash: it is therefore important to distinguish between volatile memory
(which is lost after a crash) and stable memory (which is preserved even after a crash).

In the Byzantine failure model [LSP82], a process that fails may exhibit arbitrary behaviour,
and might even attempt to work against the algorithm.

Similarly to processes, communication links can be subject to failures: messages sent through
them can be lost, altered or created. Most papers make the assumptions that links are reliable
(there is no loss, alteration or creation of messages) or fair-lossy (if a same message is sent on a
channel infinitely often, the recipient will receive it infinitely often).

2.1.4 Timing Models

Processes can be synchronous (there is a bound on the relative speed of processes) or asyn-
chronous (there is no such bound).

Similarly, communication can be synchronous (there is a known bound on message transfer
delays) or asynchronous (there is no such bound). Additionally, communication can be partially
synchronous (the bound on message transfer delays is either unknown, or it only applies after
an unknown time) [DLS88].

The system is said to be asynchronous (or time-free) if both processes and communication
are asynchronous.

Even though model properties are often described with the use of a global clock, the processes
themselves do not have access to such a global clock and each process has its own notion of time.

2.1.5 Notations

In this chapter, the AMPn,f [A] notation is used to designate the asynchronous message passing
model comprised of n processes and prone to up to f failures, augmented with assumption A.
Similarly, ASMn,f [A] designates the asynchronous shared memory model. A = ∅ means that
there is no extra assumption. These notations were introduced by Raynal in [Ray10].

2.2 Distributed Problems

Although many distributed problems have been studied in the literature, this thesis focuses on
two of them: the k-set agreement problem and the mutual exclusion problem.

10 Chapter 2. A Background on Failure Detectors and Dynamic Systems

2.2.1 Consensus and k-Set Agreement

In the consensus problem, processes attempt to agree on a common value. Each process has access
to two functions: propose(value) and decide(value). Each process calls the propose(value) func-
tion once to submit a value to the agreement of the other processes. A process calls decide(value)
when it has finally chosen a value. In order to solve the problem, the following properties must
be verified:

• Integrity: A process decides at most once.

• Validity: Any decided value is a proposed value.

• Agreement: No two different values are decided.

• Termination: Every correct process eventually decides.

The consensus problem is one of the fundamental problems of distributed computing. In
many distributed applications, processes have to agree on the state of the application. Such an
agreement can be reached with consensus in the following manner: each process proposes its local
view of the system to a consensus instance, and the properties of consensus then ensure that all
the processes that are alive will eventually adopt the same, consistent view. As a result, consensus
is used to implement state machine replication, to provide an atomic broadcast abstraction, or
to consistently manage distributed databases.

Fischer, Lynch and Paterson proved in [FLP85] that it is impossible to solve consensus
deterministically in an asynchronous system prone to crash failures, even if a single crash failure
can occur.

Many solutions have been proposed in the literature to circumvent this impossibility. One
approach is to consider a partially synchronous system, which is more realistic than a fully
synchronous system while still allowing to solve consensus [DLS88]. Another approach consists
in abstracting the timing assumptions made (synchrony or partial synchrony) through the use
of failure detectors [CT96]. Finally, one last approach consists in considering a weaker version of
the problem: this is the solution chosen for the Paxos algorithm [Lam98], where the termination
property is not ensured.

A weaker problem than the consensus is the k-set agreement problem, introduced by Chaud-
huri in [Cha93]. It is a generalization of the consensus. Similarly to the consensus, each process
has access to the propose(value) and the decide(value) functions, and the following properties
must be verified:

• Integrity: A process decides at most once.

• Agreement: At most k different values are decided.

• Termination: Every correct process eventually decides.

• Validity: Any decided value is a proposed value.

2.2. Distributed Problems 11

Only the agreement property differs from the consensus. Note that 1-set agreement is equiv-
alent to consensus, and that the greater the value of k, the easier the problem. If the system is
made of n processes, then the greatest value of k to be considered is n−1, since n-set agreement
can be trivially solved without any communication.

A main feature of k-set agreement compared to consensus is that it can be solved in a system
composed of k partitions.

In a generalization of the [FLP85] result, it was shown in [BG93] that k-set agreement can
only be solved in asynchronous systems if f < k, where f is the maximum number of process
failures.

2.2.2 Fault-Tolerant Mutual Exclusion

The mutual exclusion problem was introduced by Dijkstra in [Dij65] and has since been widely
studied in the literature [Lam74, Lam86, Ray86]. Mutual exclusion algorithms are used by many
distributed applications that access shared resources. They must prevent a shared resource from
being concurrently accessed by multiple processes.

In the mutual exclusion problem, the code of each process is divided in four sections: remain-
der section, try section, critical section and exit section. The remainder and critical sections are
defined by the higher level application, while the try and exit sections are defined by the mutual
exclusion algorithm. A process is said to be well-formed if executes its sections of code in the
correct order.

Provided that all processes are well-formed, the fault-tolerant mutual exclusion (FTME)
problem is solved if the following properties are verified:

• Safety: Two distinct processes cannot be in their critical section at the same time.

• Liveness: If a correct process enters its try section, then at some time later some correct
process enters the critical section. Additionally, if a correct process is in its exit section, at
some time later it enters it remainder section.

The following additional fairness property is often considered along with FTME:

• Starvation Freedom: If no process stays forever in its critical section, then every correct
process that reaches its try section eventually enters its critical section.

It was proved in [DGFGK05] that, if a majority of processes are correct, then any algorithm
solving FTME can be transformed into an algorithm that also verifies the starvation freedom
property.

Several mutual exclusion algorithms that tolerate crash failures have been proposed in the
literature [NLM90, AEA91, SAS06]. Furthermore, mutual exclusion algorithms that tolerate
crash-recovery failures in the shared memory model were proposed in [GR16, GH17, JJ17], with
shared variables being stored in stable memory. One crash-recovery mutual exclusion algorithm
for message passing systems was proposed in [CSL90], relying on the assumption that failures
do not occur in adjacent connected processes.

12 Chapter 2. A Background on Failure Detectors and Dynamic Systems

2.3 Failure Detectors

The failure detector abstraction has been investigated as a way to circumvent the impossibility
result of [FLP85] and solve consensus in asynchronous systems prone to crash failures [CHT96].

Failure detectors [CT96] are distributed oracles that provide processes with information on
process failures, often either as a list of suspected process identities, or as a list of trusted ones.
This information is unreliable in the sense that the failure detector may erroneously consider a
correct process as faulty, or vice versa, but will attempt to correct these mistakes later. Each
failure detector class ensures some properties on the reliability of the failure information. A
failure detector is an abstraction of the system assumptions that are necessary and/or sufficient
to solve a given problem.

A process p is said to suspect another process q if p has detected q as faulty. Conversely, p is
said to trust q if p has not detected q as faulty.

In [CT96], Chandra and Toueg define failure detector classes using completeness and accuracy
properties:

• Strong Completeness: Eventually, every process that crashes is suspected by every
correct process.

• Weak Completeness: Eventually, every process that crashes is suspected by some correct
process.

• Strong Accuracy: No process is suspected before it crashes.

• Weak Accuracy: Some correct process is never suspected.

The accuracy properties can be declined into the eventually strong accuracy and eventually
weak accuracy, where the property only applies after some unknown time.

Using these properties, Chandra and Toueg defined eight classes of failure detectors: P, S,
�P, �S, Q, W, �Q and �W.

The notation Dp(t) is used to designate the output of failure detector D at time t on process
p.

2.3.1 The Failure Detector Hierarchy

Failure detectors can be partially ordered based on their “power”. A stronger failure detector can
be used to solve more difficult problems.

A failure detector D1 is said to be weaker than D2 if there exists a distributed algorithm
that can implement D1 using the information on failures provided by D2. Intuitively, this means
that the computing power provided to the system by D2 is stronger than the computing power
provided by D1. A failure detector that is sufficient to solve a given problem while being weaker
than every other failure detector that can solve it, is said to be the weakest failure detector
to solve that problem. It follows that the weakest failure detector to solve a problem can be
implemented in any system in which the problem can be solved.

2.3. Failure Detectors 13

2.3.2 Failure Detectors for Consensus and k-Set Agreement in Message Pass-
ing Systems

While the weakest failure detectors to solve consensus and set agreement have been identified,
the generic case of k-set agreement for 1 ≤ k ≤ n−1 in AMPn,f [∅] seems to be a harder problem,
as to this day the weakest failure detector to solve it has not yet been identified. Although most
of the results take the form of sufficient failure detectors, [BRS11] proved that the assumption
that k > n−1

n−f is necessary to solve k-set agreement in message passing systems.
Table 2.1 (along with Table 2.2 in the next section) is an updated extension of the table

presented by Raynal in [Ray11] and summarizes the failure detectors used to solve consensus
and k-set agreement in the literature.

The “Failure pattern” column in Table 2.1 indicates the additional assumption on the number
of failures necessary for the failure detector to ensure the property of column “Property”.

FD class Article Section Property Failure pattern
�S, Ω [CHT96] 2.3.2.1 Weakest for consensus f < n/2

(Ωk,Σk) [BR09] 2.3.2.2 Insufficient for k-set agreement f ≤ n− 1

Sx [MR99] 2.3.2.3 Solves k-set agreement f < k + x− 1

�Sx [MR99] 2.3.2.3 Solves k-set agreement See 2.3.2.3
Σ [DFG10] 2.3.2.4 Weakest for registers f ≤ n− 1

(Ω,Σ) [DFG10] 2.3.2.4 Weakest for consensus f ≤ n− 1

Σk [BR09] 2.3.2.5 Necessary for k-set agreement f ≤ n− 1

Πk (2009) [BR09] 2.3.2.5 Same power as (Ωk,Σk) f ≤ n− 1

L [DFGT08] 2.3.2.6 Weakest for (n− 1)-set agreement f ≤ n− 1

Lk [BRS09] 2.3.2.7 Solves k-set agreement with k ≥ n/2 f ≤ n− 1

ΠΣx,y [MRS12] 2.3.2.8 Solves k-set agreement,
weaker than (Ωx,Σy)

f ≤ n− 1

Πk(2007) [CZCL07] 2.3.2.9 Solves k-set agreement,
weaker than (Ωk,Σ)

f ≤ n− 1

Πs
k [CZCL07] 2.3.2.9 Solves k-set agreement,

weaker than Πk (2007)
f ≤ n− 1

(�Sbl,Σbl) [FMR05] 2.3.2.10 Same power as (Ω,Σ) f ≤ n− 1

Table 2.1: A global view of failure detectors solving agreement problems in message passing
systems

2.3.2.1 The �S Eventually Strong Failure Detector and the Ω Eventual Leader
Detector

�S was introduced by Chandra and Toueg in [CT96]. It provides processes with a list of processes
suspected of being faulty, such that:

• Strong completeness: ∀p ∈ F ,∃τ ∈ T , ∀t > τ, ∀q ∈ C : p ∈ �Sq(t)

• Eventual weak accuracy: ∃l ∈ C, ∃τ ∈ T , ∀t > τ, ∀p ∈ C : l /∈ �Sp(t)

14 Chapter 2. A Background on Failure Detectors and Dynamic Systems

Strong completeness means that eventually, all faulty processes are suspected by all correct
processes. Eventual weak accuracy means that there is at least one correct process which is
eventually not suspected by any correct process.

The eventual leader detector Ω provides each process with a process identity such that the
following property is ensured:

• Eventual leadership: ∃l ∈ C,∃τ ∈ T , ∀p ∈ C,∀t ≥ τ : Ωp(t) = l

Eventual leadership means that after a certain time τ , all processes will trust the same correct
process. The detector eventually provides the processes with a correct leader, but there is no
way to know τ .

Ω was proven in [CHT96] to be the weakest failure detector with which to enrichASMn,n−1[∅]
in order to solve consensus. Since Attiya et al. proved in [ABD95] that read/write registers can
be simulated in a message passing system if and only if f < n/2, it follows that Ω is also the
weakest failure detector to solve consensus in AMPn,f [f < n/2].

The Ω failure detector is equivalent to �S, provided that the membership of the system is
known [JAF06].

2.3.2.2 The Ωk Eventual Leader Detector Family

Although Ω is minimal for the case k = 1 in ASMn,n−1[∅] and AMPn,f [f < n/2], it is too strong
for k-set agreement with 1 < k ≤ n− 1. The eventual leader detector family Ωk was introduced
in [Nei95] as a generalization of Ω aimed to solve k-set agreement. It provides processes with a
set of process identities such that:

• Eventual leadership: ∃L ⊆ Π, |L| ≤ k, L ∩ C 6= ∅,∃τ ∈ T , ∀p ∈ C, ∀t ≥ τ : Ωkp(t) = L

The eventual leadership property implies that every correct process will ultimately trust the
same process group, in which there is at least one correct process. Note that Ω1 is equivalent
to Ω. In [RT06], the author conjectured that Ωk was the weakest failure detector to solve k-set
agreement in the shared memory model, but this conjecture was disproved in [CZCL07].

2.3.2.3 The Sx and �Sx Limited Scope Accuracy Failure Detectors

Failure detectors with limited scope accuracy were introduced in [MR99], denoted Sk and �Sk.
Since the k parameter is unrelated to the k-set agreement problem, in this chapter they will
be denoted Sx and �Sx. They are defined relatively to the Strong failure detector S and the
eventually Strong failure detector �S, respectively. Sx relies on the following properties:

• Strong completeness: ∀p ∈ F ,∃τ ∈ T , ∀t > τ, ∀q ∈ C : p ∈ Sx,q(t)

• x-Accuracy: ∃Q ⊆ Π, |Q| = x,Q ∩ C 6= ∅,∃p ∈ Q ∩ C : ∀q ∈ Q,∀t ∈ T : p /∈ Sx,q(t).

The strong completeness property is the same as the one of S and �S: eventually, all faulty
processes are suspected by all correct processes. The x-accuracy property means that there is
one correct process that is not suspected by a set of x processes (including itself). Sx ensures

2.3. Failure Detectors 15

the strong completeness and the x-accuracy properties. �Sx ensures the strong completeness and
eventually ensures the x-accuracy property.

[MR99] provides an algorithm extracting S from Sx and �S from �Sx, if f < x. It also
presents an algorithm solving consensus with �Sx, provided that f < min(x, n/2).

Algorithms for k-set agreement with this family of failure detectors can be found in [MR00]:
a first algorithm requires Sx and f < k+x−1. Another algorithm makes use of �Sx and requires
f < max(k,max1≤α≤k(min(n− αbn/(α+ 1)c, α+ x− 1))).

2.3.2.4 The Σ Quorum Detector

The quorum detector Σ, introduced in [DFG10] by Delporte-Gallet, Fauconnier and Guerraoui
provides each process pi with a quorum of process identities Σpi such that the following properties
hold:

• Intersection: ∀t1, t2 ∈ T , ∀p1, p2 ∈ Π : Σp1(t1) ∩ Σp2(t2) 6= ∅

• Completeness: ∃τ ∈ T ,∀p ∈ C,∀t ∈ T , t ≥ τ : Σp(t) ⊆ C

Intersection ensures that all the quorums formed by any two process at any two distinct times
intersect. Completeness guarantees that at some point in time, all the quorums will only contain
correct processes. [DFG10] proves that Σ is the weakest failure detector to implement read/write
registers in AMPn,n−1[∅]. Such a result also implies that the pair (Ω,Σ) is the weakest failure
detector to solve consensus in AMPn,n−1[∅]. Contrarily to Ω (or �S), it does not require a
majority of correct processes. It is, however, too strong for k-set agreement with k > 1.

2.3.2.5 The Σk Quorum Detector Family

The quorum detector family Σk was introduced by Bonnet and Raynal in [BR09]. Similarly to
Σ, it provides each process with a list of process identities such that the following properties are
satisfied:

• Intersection: ∀t1, ..., tk+1 ∈ T ,∀p1, ..., pk+1 ∈ Π, ∃i, j : 1 ≤ i 6= j ≤ k + 1 : Σkpi(ti) ∩
Σkpj (tj) 6= ∅

• Completeness: ∃τ ∈ T ,∀p ∈ C,∀t ∈ T , t ≥ τ : Σkp(t) ⊆ C

The intersection property ensures that out of any k + 1 quorums formed on any processes at
any time, at least two will intersect. The completeness ensures that eventually quorums contain
only correct processes. Intuitively, Σk prevents the network from partitioning into more than k
independent subsets.

[BR09] also proved that Σk is necessary for k-set agreement and introduced Πk (unrelated to
the Πk of [CZCL07]), a class of failure detectors proved to have the same computational power
as (Ωk,Σk).

Given that (Ω,Σ) is the weakest failure detector to solve consensus in AMPn,n−1[∅], (Ωk,Σk)

was conjectured in [BR09] to be the weakest failure detector to solve k-set agreement in the
message passing model, but it was proved that (Ωk,Σk) is not sufficient to solve it with 1 < k <

n−1 [BT10, BRS11]. More specifically, [BT10] proves that (Ωx,Σz) cannot solve k-set agreement
if k ≥ xz. Later, [MRS12] also proved that Ωk is not necessary for k-set with 1 < k < n− 1.

16 Chapter 2. A Background on Failure Detectors and Dynamic Systems

2.3.2.6 The L Loneliness Detector

As a first step to find tight bounds on generic k-set resolvability for 1 ≤ k ≤ n − 1, researchers
started by working on the other extreme case: (n− 1)-set agreement, also called set agreement.
Although Σ is not sufficient to solve consensus and was conjectured by Zielinski in [Zie08] to be
the weakest failure detector to solve set-agreement, it was proved in [DFG08] that it is too strong
for set agreement in message passing systems. Therefore, a weaker detector than Σ is required.

The loneliness detector L was first introduced in [DFGT08]. It is a very weak failure detector,
as it only provides processes with the information that they are alone. Intuitively, L detects the
situation where a process is the only remaining correct process in the system. More formally, L
provides each process with a boolean variable such that:

• Stability: ∃p ∈ Π,∀t ∈ T : Lp(t) = false

• Loneliness: ∀p ∈ Π, (C = {p})⇒ ∃τ ∈ T ,∀t ∈ T , t ≥ τ : Lp(t) = true

The stability property ensures that there is at least one process that never considers itself alone.
The loneliness property guarantees that if a correct process is alone, it will eventually know that
it is alone. [DFGT08] proved that L is the weakest failure detector to solve set agreement in
AMPn,n−1[∅].

2.3.2.7 The Lk Generalized Loneliness Detector

Lk is introduced in [BRS09, BRS14] as a generalization of the loneliness detector L (L is Ln−1)
to detect (n− k)-loneliness. Similarly to L, it outputs to each process a boolean value such that
the following properties hold:

• Stability: ∃Π0 ⊆ Π, |Π0| = n− k,∀p ∈ Π0, ∀t ∈ T : Lkp(t) = false

• Loneliness: (f ≥ k)⇒ ∃τ ∈ T ,∃p ∈ C, ∀t ≥ τ : Lkp(t) = true

The stability property imposes that there is a set of n− k processes that always know that they
are not alone. The loneliness property ensures that if there are fewer than n−k correct processes,
then at least one correct process returns true.
Lk solves k-set agreement but is not minimal. As shown in [MRS11], Lk is only realistic

(meaning it can be implemented in a synchronous system with f = n−1) if and only if k ≥ n/2.
The same paper introduced �Lk, the eventual loneliness detector, and showed that it is

equivalent to Ωk.

2.3.2.8 The ΠΣx,y Failure Detector

This failure detector was introduced by Mostéfaoui, Raynal and Stainer in [MRS12] and defined
incrementally. The paper starts by defining the intermediary failure detector ΠΣx, which provides
each process with a quorum following the properties of Σk, plus a variable leader providing the
following additional property:

• Eventual partial leadership:

∃l ∈ C,∀p ∈ C : (∀τ ∈ T , ∃τp, τl ≥ τ : ΠΣx,p(τp) ∩ΠΣx,l(τl) 6= ∅)

2.3. Failure Detectors 17

⇒ (∃τ ∈ T , ∀t ≥ τ : leaderp(t) = l)

The eventual partial leadership property means that there is a process l such that, for every
process p whose quorum intersects infinitely often with l’s quorum, eventually l is forever the
leader of p.

ΠΣx,y can be seen as a set of y detectors of class ΠΣx of which only one has to follow
the eventual leadership property. It is weaker than (Σx,Ωy) and solves k-set agreement in the
message passing model for k ≥ xy (which is a necessity proved in [BT10]).

The authors in [MRS12] provide an intuitive description of ΠΣx,y. ΠΣx,1 (1) prevents the
system from partitioning into more than x partitions with the properties of Σx and (2) guarantees
that the processes of at least one of these subsets agree on a common leader. ΠΣx,y can be seen
as y independent instances of ΠΣx in which the guarantee (2) has to be hold in only one of these
instances.

2.3.2.9 The Πk and Πs
k Partitioned Failure Detectors

The partitioned failure detectors are a set of failure detectors introduced in [CZCL07]. The goal
is to weaken existing failure detectors by separating their safety and liveness properties. While
it is necessary to always ensure the safety property for all processes, the liveness property is only
required to be ensured for one component of the graph. Based on this approach, the authors
deduce several new failure detectors and prove that they are weaker than the existing ones.

Πk is the partitioned variant of (Ωk,Σ). Πs
k is a weaker version of Πk using dynamic parti-

tioning during the run. An algorithm solving k-set agreement in AMPn,f [Πs
k] and inspired from

the Paxos algorithm of [Lam98] is provided in [CZCL07].

2.3.2.10 The �Sbl and Σbl Bounded Lifetime Failure Detectors

The bounded lifetime failure detectors were introduced by Friedman et al. in [FMR05]. These
failure detectors provide the upper layer application with a fd_end() primitive, which can be
invoked by the latter to inform the failure detector that it no longer requires the failure detector
output. As a result, some failure detector properties are not required to be verified all the time.
�Sbl is the bound lifetime variant of �S. Similarly to the original, it outputs a list of suspected

processes, and must verify the same strong completeness property. Additionally, the following
property must be verified:

• Bounded lifetime eventual weak accuracy: There is a time t and a time te such that
from t until te, there is a process that is alive at te and that is not suspected by all the
processes that have not crashed at time te.

te is the time at which fd_end() is invoked. After te, the accuracy property no longer applies.
In the article, the authors show that an existing �S-based consensus algorithm can be adapted
to use �Sbl. The algorithm is modified so that every process invokes fd_end() after it decides.
Such an algorithm still solves consensus, while allowing the failure detector to only ensure the
accuracy property for some time.

The Σbl failure detector is also introduced, in the same article, as the bounded lifetime variant
of Σ. The local output history of Σbl for each process is delimited in time intervals, such that

18 Chapter 2. A Background on Failure Detectors and Dynamic Systems

a new interval starts every time fd_end() is invoked. The intersection property only applies to
pairs of quorums that were formed during consecutive or concurrent time intervals.

The paper adapts an existing Σ based atomic register protocol for Σbl by invoking fd_end()

at the end of every read or write operation.

2.3.3 Failure Detectors for Consensus and k-Set Agreement in Shared Mem-
ory Systems

FD class Article Section Property
�S, Ω [CT96, CHT96] 2.3.2.1 Weakest for consensus

Ωk [Nei95] 2.3.2.2 Solves k-set agreement
�Lk [MRS11] 2.3.2.7 Equivalent to Ωk

ΠΩk [CZCL07] 2.3.3.1 Solves k-set agreement, weaker than Ωk

ΠΩΥk [CZCL07] 2.3.3.1 Solves (n− 1)-set agreement, weaker than Υ

Ω [Zie08] 2.3.3.2 Weakest for (n− 1)-set agreement
Υ [GHK+07] 2.3.3.2 Sufficient for (n− 1)-set agreement
Ωk [Ray07] 2.3.3.3 Weakest for k-set agreement

Table 2.2: A global view of failure detectors solving agreement problems in shared memory
systems

2.3.3.1 The ΠΩk and ΠΩΥk Partitioned Failure Detectors

ΠΩk and ΠΩΥk are two of the partitioned failure detectors presented in [CZCL07] (see Sec-
tion 2.3.2.9).

ΠΩk is the partitioned variant of Ωk. The article provides an algorithm solving k-set agree-
ment in ASMn,n−1[ΠΩk] and proves that it is weaker than Ωk, thus disproving the conjecture
in [RT06] that Ωk is the weakest failure detector to solve k-set agreement in shared memory
systems.

ΠΩΥk is a partitioned failure detector combining features of ΠΩk and Υ, while being weaker
than both of them. It solves (n− 1)-set agreement in the shared memory model.

2.3.3.2 The Ω Anti-Omega Failure Detector

Inspired by the Υ detector introduced in [GHK+07], Zielinski introduced in [Zie08] the Ω failure
detector that solves the set agreement problem in shared memory systems.

Υ provides each process with a non-empty set of process identities which is eventually ensured
to be the same for every process and different from C.

Ω is strictly weaker than Υ and provides each process with a process identity, with only the
guarantee that there is one correct process whose id will be output a finite number of times.
[Zie08] proves that Ω is the weakest failure detector to solve set agreement in ASMn,n−1[∅].

2.3. Failure Detectors 19

2.3.3.3 The Ωk Failure Detector

Ωk is a generalization of Ω such that Ω is Ωn−1 and Ω is Ω1. It was introduced in [Ray07] and
conjectured to be the weakest failure detector for k-set agreement in the shared memory model.
This conjecture was later proved to be true in [GK09]. Ωk provides each process with a list of
process identities such that:

• Validity: ∀p ∈ Π, ∀t ∈ T ,Ωkp(t) ⊆ Π : |Ωkp(t)| = k

• Weak eventual leadership: ∃τ ∈ T , ∃l ∈ C,∀t ∈ T , t ≥ τ,∀p ∈ Π : l ∈ Ωkp(t)

Weak eventual leadership implies that there is a correct process l that will ultimately be in the
set output by Ωk for every process. This characteristic makes Ωk slightly different from Ωk.

2.3.4 Failure Detectors for Mutual Exclusion

This section presents the failure detectors used to solve the FTME problem in message passing
systems.

2.3.4.1 The Trusting Failure Detector

In [DGFGK05], Delporte-Gallet et al. introduced the trusting failure detector T and proved
that it is the weakest failure detector with which to enrich AMPn,f [f < n/2] to solve FTME.
T provides each process p with a list of trusted processes. The following properties must be
verified.

• Eventually strong accuracy: Every correct process p is eventually trusted forever by
every correct process.

• Strong completeness: Every faulty process p is eventually suspected forever by every
correct process.

• Trusting accuracy: For any processes p and q, if there exist times t and t′ > t such that
p trusts q at time t and p suspects q at time t′, then q is faulty.

2.3.4.2 The Σl Failure Detector

Bhatt et al. introduce in [BCJ09] the Σl quorum failure detector. Σl is a variant of the Σ quorum
failure detector adapted for the FTME problem. It provides each process p with a quorum of
process identities. Σl verifies the following properties.

• Strong completeness: Every faulty process p is eventually suspected forever by every
correct process.

• Live pairs intersection: If two processes p and q are both alive at time t, then for any
couple of time instants t1 ≤ t and t2 ≤ t, Σl

p(t1) ∩ Σl
q(t2) 6= ∅.

Bhatt et al. show in [BCJ09] that T and Σl used together, denoted (T ,Σl), constitute the
weakest failure detector with which to enrich AMPn,n−1[∅] to solve FTME.

20 Chapter 2. A Background on Failure Detectors and Dynamic Systems

2.4 Dynamic Networks

All the articles discussed in the previous sections made the assumption that the distributed
system is composed of a finite set of processes, that the membership of the system only changes
due to failures, and that the communication graph is static during the run. These assumptions
do not apply to dynamic systems.

There is no consensual formal definition of a dynamic network. Some papers define a dynamic
system as a distributed system in which the communication graph evolves over time, while others
define it as a model where processes can join and leave the system during a run. Some articles
mix both of those proposals in the same model. A few articles have attempted to regroup
other authors’ proposals in order to formalize common models [BF03, Agu04, KLO10, CFQS12,
BRS12].

2.4.1 Increasing and Decreasing Systems with a Static Communication Graph

In increasing and decreasing systems, processes can join or leave the system during the run, but
the communication graph is static over time. This section regroups a number of papers which
consider such systems.

2.4.1.1 Infinitely Many Processes.

In [Agu04], Aguilera defines models where processes can join or leave the system during the run:

• In the finite arrival model, the system has infinitely many processes, but each run has
only finitely many. As a result, algorithms do not know the bound on the number of
processes.

• In the infinite arrival model, the system has infinitely many processes and each run can
have infinitely many processes, but in each finite time interval, only finitely many processes
take steps.

• In the infinite concurrency model, the system has infinitely many processes, each run
can have infinitely many processes and each finite time interval can have infinitely many
processes.

A number of papers have explored these models [MRT+05, CRTW07, BBRT07, AGSS13], some-
times combining them with a communication model addressing graph dynamics (e.g. TVG, see
section 2.4.5).

Mostéfaoui et al. make use in [MRT+05] of the query-response mechanism, in which processes
broadcast a query to their neighbours and wait for a certain number of responses. Each process
waits for α responses to its query, where α is the number of processes eventually guaranteed to
respond. With this mechanism, processes are not required to know the number of processes in
the system, which allows for a finite arrival model. The paper provides a Ω algorithm for an
asynchronous finite arrival model using query-response.

[CRTW07] uses a model composed of two sets of nodes: fixed support stations forming a
static complete graph, asynchronous but entirely known, and mobile hosts which follow the

2.4. Dynamic Networks 21

finite arrival model and attach themselves to support stations. Using this model, the paper
provides an algorithm for Ω using message pattern assumptions.

In [ADGF08], Abboud et al. consider that processes cannot crash, but can join the system
during the run and those that did not join the system yet at a given time are considered faulty
at that time. The paper shows that consensus cannot be solved in this model but can be solved
provided that the model is enriched with Σ. The authors remark that Σ can be implemented
with an estimation m of the number of processes such that bn/2c+ 1 ≤ m ≤ n.

2.4.1.2 The Dynamic Eventual Leader Failure Detector ∆Ω.

[LRAC12] introduces ∆Ω as an eventual leader definition adapted for dynamic networks. It is
defined by the following properties, where Π(t) is the system membership at time t ∈ T and
joini is the time at which process pi joined the system:

• Eventual Leadership in Non-Increasing systems:

[∃τ ∈ T : ∀τ1, τ2 ≥ τ : (τ1 ≥ τ2)⇒ (Π(τ1) ⊆ Π(τ2))]

⇒ [∃pl ∈
⋂
τ ′≥τ

Π(τ ′) : ∃τ1 ≥ τ : ∀τ2 ≥ τ1 : ∀pi ∈ Π(τ2) : Ωi(τ2) = l]

• Eventual Leadership in Non-Decreasing systems:

[∃τ ∈ T : ∀τ1, τ2 ≥ τ : (τ1 ≤ τ2)⇒ (Π(τ1) ⊆ Π(τ2))]⇒ [∃τ1 ≥ τ,∃pl ∈ Π(τ1) :

[∀τ2 ≥ τ1 : ∀pi ∈ Π(τ) : Ωi(τ2) = l]∧

[∀τ ′ ≥ τ : (pi ∈ Π(τ ′)\Π(τ))⇒ (∃τ0 ≥ joini : ∀τ ′′ ≥ τ0 : Ωi(τ
′′) = l)]]

Intuitively, the first property ensures that if after some time no new process joins the system
(finite arrival), then a leader is eventually elected. The second property ensures that if after
some time no process leaves the system, then a leader is eventually elected and new processes
eventually adopt it.

The paper provides two algorithms implementing ∆Ω: the first one assumes that processes
synchronize their local clocks with others when first entering the system, the second one assumes
reliable channels. An extension of ∆Ω accounting for an evolving communication graph is pre-
sented in [GLLR13]. It uses exclusively assumptions on “good periods”, and includes a survey
and comparison of different models and algorithms, mostly with partial synchrony assumptions.

2.4.2 The Dynamic Graph Model

Kuhn, Lynch and Oshman present in [KLO10] the Dynamic Graph Model that considers a
fixed set of nodes although the authors remark that this is not a fundamental characteristic
of the model, which could be extended for a dynamic set of participants. Algorithms in this
model work in synchronous rounds (i.e., communication links are synchronous) and make use
of broadcasts as a communication primitive. Nodes are assumed reliable (crash failures are not
considered). The dynamics of the system lie in the communication graph which changes in each

22 Chapter 2. A Background on Failure Detectors and Dynamic Systems

round. Connectivity assumptions are expressed around the concept of T -interval connectivity,
which imposes the existence of a stable connected subgraph for every T consecutive rounds. The
stable subgraph is not known to the nodes in advance. In every round the active communication
links are chosen by an adversary which abstracts above assumptions. Other than the model
itself, the paper presents solutions to several distributed problems such as counting and k-token
dissemination, but not consensus.

In [KMO11], the authors extend the model and propose algorithms for consensus, simultaneous
consensus (all the nodes decide in the same round) and ∆-coordinated consensus (all the correct
processes decide within ∆ rounds of each other).

[SS14] studies the problem of k-set agreement in the Dynamic Graph Model of [KLO10] while
considering p − partitioned networks (at each round, the communication graph consists of at
most p connected components). The paper proves the necessity of knowing at least an upper
bound on the number of processes if the graph is at least 2-partitioned, and provides an algorithm
solving k-set agreement under that condition.

2.4.3 Directed Dynamic Networks

In [BRS12], Biely, Robinson and Schmid present a dynamic model close but weaker than the
Dynamic Graph Model. This new model also revolves around synchronous rounds, but considers
directed communication graphs that do not need to be connected at every round (therefore
excluding the concept of T -interval connectivity) and uses the weaker assumption of vertex-
stable root components instead. In every round, there must be exactly one strongly connected
component that has only out-going links to some of the remaining processes and can reach every
process in the system. The paper presents an algorithm for consensus under this assumption.

An algorithm for binary consensus (consensus with binary values) is provided in [CG13] in
a similar model with directed communication graphs. The paper proposes an algorithm for
consensus with a connectivity assumption which is proven necessary: there exists a same process
that has a directed path towards all other processes for every round of the run.

In [BRS+18] Biely et al. introduce the concept of gracefully degrading consensus: instead of
solving k-set agreement for a preset value of k, the algorithm adapts to the network conditions
it encounters during the run and attempts to provide agreement with the lowest possible value
of k. To this end, the authors present both an algorithm and its proof using the same model
as [BRS12] with similar assumptions on vertex-stable root components. The article also gives
minimality results regarding temporal stability and information flow.

2.4.4 Evolving Graphs

The Evolving Graphs model was introduced by Bhadra and Ferreira in [BF03]. An evolving graph
is defined as a system G = (G,SG) where G(V,E) is a digraph and SG = G0, G1, ...Gτ , τ ∈ T is
an ordered sequence of its subgraphs Gi(Vi, Ei). This formalism enables nodes to join or leave
the system, as well as a dynamic communication graph.

If P is a path in G, then let F (P) be its source and L(P) its destination. A path in G is a
sequence PG(u, v) = Pt1 , Pt2 , ..., ptx with t1 < t2 < ... < tx, such that Pti is a defined path in Gti
and F (Pt1) = u, L(Ptx) = v, and ∀i < x : L(Pti) = F (Pti+1).

2.4. Dynamic Networks 23

This definition is extended in [BF03, BFJ03] with the concept of journey. Let ζ(e, t) be the
transfer delay of edge e at time t. A journey is similar to a path in G, except that it accounts
for link traversal times: a path PG is a journey only if the message transfer delays between
nodes ensures the traversal from u to v. More formally, a journey is a sequence of couples
J = {(e1, t1), ..., (ek, tk)} such that {e1, ..., ek} is a walk in G and ∀1 ≤ i < k, ei ∈ Eti ∧ ti+1 ≥
ti + ζ(ei, ti). t1 is denoted departure(J) and tk + ζ(ek, tk) is denoted arrival(J). Intuitively, a
journey is a path over time. As such, it has both a topological length (the length of the path in
G) and a temporal length (arrival(J)− departure(J)).

[BFJ03] also analyze the problem of least cost journeys, for different metrics:

• Foremost journey: the journey which arrives at the earliest possible time;

• Shortest journey: the journey with the the minimum topological length;

• Fastest journey: the journey with the minimum temporal length.

[CCF11] combines evolving graphs with the graph relabelings of [LMS01] in order to obtain
a dynamic model which can abstract the communication models such as the message passing
model or the shared memory model.

[FGA11] provides necessary and sufficient conditions for mutual exclusion and k-mutual ex-
clusion in evolving graphs.

2.4.5 Time-Varying Graphs (TVG)

Time-Varying Graphs are a communication model introduced by Casteigts et al. in [CFQS12]
with the goal of providing a very generic and modular model for dynamic networks, such that
previous models can be simulated in it. Using definitions from the Evolving Graphs of [BF03],
it defines a dynamic system as a TVG G = (V,E, T , ρ, ζ) where:

• V = Π is the set of nodes in the system;

• E ⊆ V × V is the set of edges (communication links);

• T = N is a time span;

• ρ : E × T → {0, 1} is the edge presence function, indicating whether an edge is active or
not at a given time;

• ζ : E × T → T is the latency function, indicating the time taken by a message to cross a
given edge if starting at a given time.

TVGs are used to model the communication graph of dynamic systems, including those presented
in Sections 2.4.2 and 2.4.3. Additionally, the model offers optional parameters:

• ψ : V × T → {0, 1} is the node presence function, indicating whether or not a node is
present in the system at a given time;

• ϕ : V × T → T is the node latency function, indicating the local processing time on a
given node at a given time.

24 Chapter 2. A Background on Failure Detectors and Dynamic Systems

ψ allows the representation of processes joining and leaving (or failing) the system, and is nec-
essary for the models defined in Sections 2.4.1 and 2.4.4.

The underlying graph G = (V,E) is the footprint of G, indicating which nodes have a
relation at some time in T . Most applications require G to be connected.

Figure 2.1: A simple TVG, with V = {a, b, c, d}. The intervals on each edge represent the periods
of time when it is available and constitute the edge presence function ρ. This representation of
the communication graph was initially introduced for evolving graphs in [BF03].

2.4.5.1 Journeys

The definition of a journey in [BF03] is adapted for the TVG model as follows: a journey
is a sequence of couples J = {(e1, t1), ..., (ek, tk)} such that {e1, ..., ek} is a walk in G and
∀1 ≤ i < k, ρ(ei, ti) = 1 ∧ ti+1 ≥ ti + ζ(ei, ti). If a journey exists between two nodes u and v, it
is said that u can reach v, which is denoted u v. The set of all journeys from node u to node
v is denoted J ∗u,v.

Additionally, a direct journey is a journey such that ∀1 ≤ i < k, ρ(ei+1, ti + ζ(ei, ti)) = 1,
meaning that it does not include any waiting time.

In [CFG+15], the expressivity of different variants of TVG is studied, in particular in regard
to direct or indirect journeys.

2.4.5.2 TVG Classes

Various TVG connectivity assumptions are classified according to the level of graph connectivity
they provide. A total of thirteen TVG classes are defined. Here are the definitions of some of
the most important classes:

• Class 1 ∃u ∈ V : ∀v ∈ V, u v.
There is a node that can reach all others.

• Class 2 ∃u ∈ V : ∀v ∈ V, v u.
There is a node that can be reached by all others.

• Class 3 (Connectivity over time): ∀u, v ∈ V, u v.
Every node can reach all others.

• Class 4 (Round connectivity): ∀u, v ∈ V,∃J1 ∈ J ∗(u,v),∃J2 ∈ J ∗(v,u) : arrival(J1) ≤
departure(J2).
Every node can reach all others and be reached back afterwards.

2.4. Dynamic Networks 25

• Class 5 (Recurrent connectivity): ∀u, v ∈ V,∀t ∈ T ,∃J ∈ J ∗(u,v) : departure(J) > t.
Every node can reach all others infinitely often.

Figure 2.2 presents the relative strength of the different TVG classes. An arrow from one class
to another indicates that the second class strictly includes the first one.

Figure 2.2: Relations of inclusion between TVG classes

The T -interval connectivity of [KLO10] (Section 2.4.2) is defined by class 10, whereas the
root components of [BRS12] (Section 2.4.3) are stronger than class 1 but strictly weaker than
class 3.

2.4.5.3 Timely Journeys

[GCLL15] adds to the TVG notions of ∆-journey, β-journey and (α, β)-journey. With ∆ ∈ T,
J is a ∆-journey at time t if and only if J is a journey and t+arrival(J)−departure(J) ≥ ∆.
A β-edge is an edge such that latency is bounded by ζmax and the edge is active for at least β
time, a β-journey at time t is a ∆-journey such that:

• ζmax < β ≥ ∆.

• ∀i ∈ [0, k), ei is a β-edge.

• ∀i ∈ [0, k), ti+1 ≥ ti + β (the times when edges are activated and their corresponding
latencies allow a bounded sequential traversal).

A (α, β)-journey is a β-journey such that:

• The appearance of e1 is bounded by t1 ≤ t+ α.

• ∀i ∈ [1, k), ti+1 ≤ ti + ζ(ei, ti) + α (the appearances of the subsequent edges are also
bounded by α).

These new definitions allow for the usage of partial synchrony assumptions in a TVG.

2.4.6 Unknown Asynchronous Dynamic Networks

This section regroups papers considering an asynchronous dynamic network, in the sense of an
evolving communication graph, with unknown membership, meaning that even if n is finite,
processes are not aware of its value and the identity of the participants.

[SAB+08] proposes a query-response-based implementation of failure detector �S in a model
where f is known from processes, along with the minimal cardinality d of the neighbourhood

26 Chapter 2. A Background on Failure Detectors and Dynamic Systems

of any node in the system. It does not use synchrony assumptions and requires behavioural
properties instead:

• Membership Property: Let rangei be the set of the neighbours of process pi in the
underlying static graph and Kt

i be the set of processes that received a query from pi at
time t ∈ T . pi satisfies the property if ∃t ≥ 0 ∈ T : |Kt

i | > f + 1.

• Responsiveness Property: Let rec_fromt
j the set of processes from which pj has re-

ceived responses from its query message that terminated at or before t. Process pi verifies
the property if ∃u ∈ T : ∀t > u,∀pj ∈ rangei, pi ∈ rec_fromt

j .

[AST+10] introduces and implements the perfect partition participant detector �PD which
detects the nodes participating in stable partitions in a unknown directed dynamic network.

In [FT09], Friedman and Tcharny propose a failure detection protocol that probabilistically
ensures completeness and accuracy properties in a mobile ad-hoc network. Each process can only
communicate with the processes that are currently in its wireless range. The failure detection
delay and the number of false suspicions depend on the network connectivity.

A model for unknown dynamic networks suited for implementations of failure detectors is
presented in [GAS11, GSAS11]. It combines the finite arrival model of [Agu04] with the TVG of
[CFQS12] (class 5, recurrent connectivity), and introduces the eventually strong failure detector
with unknown membership �SM . If Known is the set of processes known by any other process
at any point in time, Stable is the set of processes who never crash and Faulty is the set of
faulty processes, then �SM is defined by the following properties:

• Strong completeness:

∃t ∈ T ,∀t′ ≥ t,∀pi ∈ Known ∩ Faulty⇒ ∀pj ∈ Known ∩ Stable, pi ∈ �SMpj (t)

• Eventual weak accuracy:

∃t ∈ T ,∀t′ ≥ t,∃pi ∈ Known ∩ Stable⇒ ∀pj ∈ Known ∩ Stable, pi /∈ �SMpj (t)

The properties correspond to the original properties of �S, but only consider processes in
the Known set. [GSAS12] presents an implementation of �SM in the model of [GAS11] using
a query-response mechanism along with message pattern assumptions. It relies on the following
properties:

• Stable Termination Property (SatP): Let pi be a node which issues a query. Thus,
∃pj ∈ Stable, pj 6= pi, which receives that query.

• Stable Responsiveness Property (SRP): Let Xt
j be the set of processes from which

pj has received responses to its last query sent before t. stablet(pi)⇔ ∀t′ > t, ψ(pi, t
′) = 1.

SRPt(pi)
def
= stablet(pi)∧∀pj ∈ Π, (∃ei,j , ∃t′ ≥ t, ρ(ei,j , t

′) = 1)⇒ ∀t′′ ≥ t′+ ζ(ei,j , t
′), pi ∈

Xt′′
j .

2.5. Conclusion 27

SatP guarantees that every query is received by at least one stable process. SRP ensures
that eventually, all the neighbors of one stable process pi will receive its response to every one
of their query among the αi first responses.

[AGSS13] presents an algorithm for Ω in the same model. It uses a similar query-response
mechanism and depends on the SatP and SRP properties, along with a TVG of class 5
(recurrent connectivity).

An algorithm for �SM in the model of [GAS11] tolerating Byzantine failures is given in
[GdLAS12].

In [TI15], Taheri and Izadi propose a protocol solving Byzantine consensus in an asynchronous
dynamic system, using the necessary assumption that no more than bn−1

3 c processes are faulty.
Benchi et al. provided in [BLG15] an algorithm for consensus in asynchronous opportunistic

networks with assumptions on the failure pattern.
[RAS15] introduces the initial knowledge-free quorum failure detector Σ⊥ as a redefinition of

Σ suited to unknown networks, where the intersection property cannot possibly be fulfilled from
the beginning of the run. The quorums returned by Σ⊥ can also contain the special value ⊥,
which is used as a marker to indicate that the minimum knowledge about process identities has
not been reached yet and, therefore, the intersection property is not expected to hold yet. Σ⊥ is
defined by the following properties:

• ⊥-Limited intersection property:

∀t1, t2 ∈ T ,∀p1, p2,∈ Π,Σ⊥p1(t1) 6= ⊥,Σ⊥p2(t2) 6= ⊥ : Σ⊥p1(t1) ∩ Σ⊥p2(t2) 6= ∅

• ⊥-Extended completeness property:

∃τ ∈ T ,∀p ∈ C,∀t ∈ T , t ≥ τ : Σ⊥p(t) 6= ⊥ ∧ Σ⊥p(t) ⊆ C

Compared to the traditional properties of Σ, the intersection property only checks the in-
tersection of non-⊥ quorums, and the completeness property ensures that eventually, ⊥ is not
returned anymore. The paper also gives an implementation of Σ⊥ using message pattern as-
sumptions similar to the SRP property, but regarding the distant communications inside a set
of processes instead of the neighborhood of a single process.

2.4.7 Summary of Failure Detector Results in Unknown and/or Dynamic
Systems

Table 2.3 summarizes the article presented in this chapter that studied failure detectors in un-
known and/or dynamic systems. For each article, the table also specifies if the model used
considers a dynamic system membership, a dynamic communication graph, and whether the
system is unknown or not.

2.5 Conclusion

This chapter presented the failure detector results in the literature around the k-set agreement
and FTME problems.

28 Chapter 2. A Background on Failure Detectors and Dynamic Systems

FD class Article Section Dynamic membership Dynamic graph Unknown
Ω [MRT+05] 2.4.1.1 Yes No Yes
Ω [CRTW07] 2.4.1.1 Yes (Mobile Hosts),

No (Support Stations)
Yes (MH)
No (SS)

Yes (MH)
No (SS)

Σ [ADGF08] 2.4.1.1 Yes No Yes
∆Ω [LRAC12] 2.4.1.2 Yes No Yes
∆Ω [GLLR13] 2.4.1.2 Yes Yes Yes
�S [SAB+08] 2.4.6 No Yes Yes
�PD [AST+10] 2.4.6 Yes Yes Yes
�SM [GSAS11] 2.4.6 Yes Yes Yes

Ω [AGSS13] 2.4.6 Yes Yes Yes
Σ⊥ [RAS15] 2.4.6 No No Yes

Table 2.3: A global view of failure detectors studied in unknown and/or dynamic systems

The ΠΣx,y failure detector is sufficient to solve k-set agreement problem in static and known
message passing systems, provided that k ≤ xy. Under this condition, it is the weakest failure
detector to solve consensus and set agreement, and is weaker than other failure detectors for the
cases of 2 ≤ k < n − 1. Additionally, the (T ,Σl) failure detector of [DGFGK05, BCJ09] is the
weakest failure detector to solve FTME in static and known message passing systems.

Many dynamic system models have been proposed, but few failure detectors have been studied
in such models, as seen in Table 2.3. In particular, the results around ΠΣx,y and (T ,Σl) have
not been extended to dynamic systems: this is, therefore, the focus of this thesis.

Chapter 3

A Failure Detector for k-Set Agreement
in Unknown Dynamic Systems

Contents

3.1 System Model . 30

3.1.1 Process Model . 30

3.1.2 Communication Model . 31

3.2 Failure Detectors for k-Set Agreement in Unknown Dynamic Systems 32

3.2.1 The Σ⊥,k Failure Detector . 32

3.2.2 The Family of Failure Detectors ΠΣ⊥,x,y 33

3.3 Assumptions . 35

3.3.1 Time-Varying Graph Classes . 35

3.3.2 Message Pattern Assumptions . 37

3.3.3 Summary of Assumptions . 40

3.3.4 Implementation of Message Pattern Assumptions 40

3.3.5 Comparable Assumptions in the Literature 41

3.4 Failure Detector Algorithms . 42

3.4.1 An Algorithm for Σ⊥,k . 42

3.4.2 An Algorithm for ΠΣ⊥,x . 46

3.4.3 An Algorithm for ΠΣ⊥,x,y . 50

3.5 A k-Set Agreement Algorithm . 50

3.5.1 The Alphax Sub Protocol . 50

3.5.2 Alphax Algorithm . 51

3.5.3 k-Set Agreement Algorithm . 53

3.6 Conclusion . 54

This chapter focuses on the k-set agreement problem, which is a generalization of the consen-
sus problem such that 1-set agreement is consensus. In the k-set agreement problem, each process
proposes a value, and some processes eventually decide a value while respecting the properties

29

30 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

of validity (a decided value is a proposed value), termination (every correct process eventually
decides a value) and agreement (at most k values are decided).

As described in Section 2.4, protocols solving consensus or k-set agreement have been pro-
posed for dynamic systems, but they assume synchronous communications (as in [BRS12, BRS+18,
KMO11, SS14]) or make strong assumptions on the number of process failures [BLG15].

The ΠΣx,y failure detector (presented in Section 2.3.2.8) was introduced in [MRS12] and is
sufficient to solve k-set agreement in static networks (if and only if k ≥ xy) while being weaker
than other known failure detectors which solve the same problem. However, this failure detector
relies on information about the set of participants which is not available in unknown networks.
Additionally, traditional failure detectors rely on a full connectivity of the network graph, which
is not available in a dynamic network.

In this chapter, the definition of ΠΣx,y is extended in order to obtain the ΠΣ⊥,x,y failure
detector, which is capable of solving k-set agreement in unknown dynamic systems, and provide
implementations of this new detector. Additionally, this chapter provides an adaptation of the
k-set agreement algorithm of [BT10, MRS12] to solve k-set agreement using ΠΣ⊥,x,y.

The model assumptions proposed to implement ΠΣ⊥,x,y are generic and expressed in terms of
message pattern, which allows the model to be applied to a range of systems. Concrete examples
of partial synchrony and failure pattern properties which are sufficient to ensure the more generic
message pattern assumptions are also presented.

The system is modeled using the formalism of the Time-Varying Graph (TVG), as defined
in [CFQS12] (see Section 2.4.5).

This chapter thus brings the following main contributions:

1. The definition of the ΠΣ⊥,x,y failure detector as an adaptation of ΠΣx,y to solve k-set
agreement in unknown dynamic systems (Section 3.2).

2. An algorithm implementing ΠΣ⊥,x,y in unknown dynamic systems, with connectivity and
message pattern assumptions (Section 3.4).

3. An algorithm solving k-set agreement in unknown dynamic systems enriched with ΠΣ⊥,x,y
(Section 3.5).

3.1 System Model

3.1.1 Process Model

A finite set of n processes Π = {p1, ...pn} participate in the system. The processes are synchronous
(there is a bound on the relative speed of processes) and uniquely identified, although initially
they are only aware of their own identities. Processes are not required to know the value of n.

A run is a sequence of steps executed by the processes while respecting the causality of
operations (each received message has been previously sent). Processes can join and leave the
system during the run (Π is the set of all processes that participate in the system at some point
in time). Processes may also crash, and no difference is made between a process that crashes
permanently and a process that leaves the system permanently: in both cases the process is
considered faulty in that run. A process that is not faulty is called correct. Note that this

3.1. System Model 31

definition of faulty and correct processes is not exactly the traditional one. Indeed, correct
processes can crash or leave the system, as long as they recover or come back later. Only
processes that crash or leave permanently are considered faulty.

Correct processes can leave the system and come back infinitely often, but they can only
crash and recover a finite number of times. The critical difference is that a process that leaves
the system keeps its memory intact, whereas a crashed process does not.

The set of all correct processes is called C. There is a bound f < n on the number of faulty
processes in a run.

3.1.2 Communication Model

Processes communicate by sending and receiving messages. Communications are asynchronous:
there is no bound on message transfer delays. Therefore, even though processes are synchronous,
they do not cooperate in a synchronous way.

3.1.2.1 Time-Varying Graphs

The system is dynamic, which means that nodes and communication links can appear or dis-
appear during the run: therefore, the communication graph will change over time. The usual
notion of path in the graph is not sufficient to define reachability in such a dynamic graph. To
solve this issue, in this chapter, the Time-Varying Graph (TVG) formalism defined by Casteigts
et al. in [CFQS12] (Section 2.4.5) is used to model the communication graph.

Note that processes do not know the values of the ζ latency function, which is only introduced
for the simplicity of presentation. Since communications are asynchronous, the values of ζ are
finite but not necessarily bounded.

Consider the following example: a graph where E = V × V and every edge in the system
is active infinitely often (longer than the message transfer time), but no more than one edge is
ever active at a time. In such a system, there are journeys infinitely often between every node
and the connectivity is sufficient to solve complex problems such as consensus. However, at any
given instant, the graph is partitioned into at least n− 1 independent subsets. This shows that
similarly to paths, the usual notion of graph partitioning loses relevancy in TVGs, since the
number of partitions at a particular instant in the run is not a very useful parameter. Instead,
the number of partitions over time is relevant. In the rest of the chapter, the word partition
is used to refer to a subset of the network that is isolated from the rest of the network for an
arbitrarily long duration, and not just temporarily.

3.1.2.2 Communication Primitive

Processes communicate exclusively by sending messages with a very simple broadcast primitive.
When a process pi calls the broadcast primitive, the message is simply sent to the processes
that are currently in pi’s neighborhood, including pi. The broadcast is not required to provide
advanced features such as message forwarding, routing, message ordering or any guarantee of
delivery.

32 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

3.1.2.3 Channels

Channels are fair-lossy. Messages may be lost but, if the edge is active for the entire time of the
message transfer, a message sent infinitely often will be received infinitely often. Messages may
be duplicated, but a message may only be duplicated a finite number of times. No message can
be created or altered. No assumption is made on message ordering and channels are not required
to be FIFO.

3.2 Failure Detectors for k-Set Agreement in Unknown Dynamic
Systems

The goal of this chapter is to adapt existing failure detectors to solve k-set agreement in dynamic
systems.

In order to deal with the dynamics of the system, some connectivity properties are required
in addition to the information on failures provided by the failure detector.

Furthermore, the system model considers an unknown network where processes have no
information on system membership at the beginning of the run. A way to circumvent this issue
was proposed in [RAS15] in the form of the Σ⊥ failure detector (see Section 2.4.6).

The ΠΣx,y failure detector of [MRS12] (see Section 2.3.2.8) will be augmented with connec-
tivity properties and extended with the method of [RAS15] in order to obtain a failure detector
sufficient to solve the k-set agreement problem in unknown dynamic systems.

3.2.1 The Σ⊥,k Failure Detector

As explained in Sections 2.3.2.4 and 2.3.2.5, the intersection property of both Σ and Σk must hold
over time, which means that if a process queries its failure detector before any communication
has taken place, the returned quorum must intersect with the quorums formed by processes later
in the run. In known networks, implementations of Σ traditionally solve this issue by returning
Π as a quorum at the beginning of the run [DFG10]. This is not an option in unknown networks
where system membership knowledge is only established through communication.

The Σ⊥ failure detector ([RAS15]) is an adaptation of Σ for unknown networks. Instead of
returning a quorum, Σ⊥ can also output the default value ⊥ whenever the knowledge necessary
to form a quorum has not been gathered yet.

In order to solve k-set agreement in unknown dynamic networks, Σ⊥,k failure detector is
defined to combine the properties of Σk and Σ⊥. It also includes a connectivity property which
replaces (and is weaker than) the assumption of a static and complete network.

The Σ⊥,k failure detector provides each process pi with a quorum denoted qrτi (which is either
a set of process identities or the special value ⊥) at any time instant τ .

The following definition is introduced for the convenience of the presentation: definition:

Definition 3.1 (Recurrent neighborhood). The recurrent neighborhood of a correct process pi,
denoted Ri, is the set of all correct processes whose quorums intersect infinitely often with pi’s
quorums. ∀pi ∈ C, Ri = {pj ∈ C |∀τ , ∃τi, τj ≥ τ : qrτii 6= ⊥ ∧ qr

τj
j 6= ⊥ ∧ qr

τi
i ∩ qr

τj
j 6= ∅}.

3.2. Failure Detectors for k-Set Agreement in Unknown Dynamic Systems 33

Note that pj ∈ Ri is an equivalence relation between pi and pj . By definition, ∀pi ∈ C :

pi ∈ Ri, therefore Ri 6= ∅.
A correct process pi can reach another correct process pj if, provided that pi sends messages

infinitely often, pj receives them infinitely often.
Σ⊥,k is defined by the self-inclusion, quorum liveness, quorum intersection and quorum con-

nectivity properties.

• Self-inclusion: Every process includes itself in its non-⊥ quorums.

∀pi ∈ Π,∀τ : (qrτi 6= ⊥) =⇒ (pi ∈ qrτi) .

• Quorum liveness: Eventually, every correct process stops returning ⊥ and its quorums
only contain correct processes.

∃τ , ∀pi ∈ C, ∀τ ′ ≥ τ : qrτ
′
i 6= ⊥ ∧ qrτ

′
i ⊆ C .

• Quorum intersection: Out of any k + 1 non-⊥ quorums, at least two intersect.

∀τ1, ..., τk+1 ∈ T ,∀id1, ..., idk+1 ∈ Π,

∃i, j : 1 ≤ i 6= j ≤ k + 1 :

(qrτiidi 6= ⊥ ∧ qr
τj
idj
6= ⊥) =⇒ (qrτiidi ∩ qr

τj
idj
6= ∅) .

• Quorum connectivity: Every correct process pi can reach every process in Ri.

As presented in Sections 2.3.2.5 and 2.4.6, Σk and Σ⊥ were defined with only 2 properties
(liveness and intersection). Self-inclusion is a property added to Σx and ΠΣx by the authors
in [MRS12] for the sake of the simplicity of algorithm proofs, and it is trivially implemented by
the algorithms presented in this chapter. Quorum connectivity is the property added to deal
with network dynamics.

Intuitively, the quorum connectivity property means that processes belong to the same parti-
tion as their recurrent neighborhood. Note that ∀pi, pj ∈ C : pi ∈ Rj =⇒ pj ∈ Ri, thus quorum
connectivity enables two-way communication between pi and pj . This property is not very costly,
since most failure detector implementations already require some level of connectivity between
processes in a quorum in order to form the quorums themselves. This is the case for the Σ⊥,k al-
gorithm presented in Section 3.4, which does not require any additional assumption to implement
quorum connectivity.

3.2.2 The Family of Failure Detectors ΠΣ⊥,x,y

ΠΣ⊥,x,y is defined as an extension of ΠΣx,y that includes the properties of Σ⊥,x and is capable
of solving k-set agreement in unknown dynamic systems.

Similarly to [MRS12], ΠΣ⊥,x,y is defined incrementally: ΠΣ⊥,x is defined firstly.

34 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

3.2.2.1 The Failure Detector ΠΣ⊥,x

At any time instant τ , ΠΣ⊥,x provides each process pi with a quorum denoted qrτi (which is
either a set of process identities or the special value ⊥) and a leader denoted leaderτi (which is
a process identity).

ΠΣ⊥,x is defined by the following properties:

• Self-inclusion

• Quorum liveness

• Quorum intersection

• Quorum connectivity

• Eventual partial leadership

Σ⊥,x

First, an eventual partial leader is defined as follows:

Definition 3.2 (Eventual partial leader). An eventual partial leader pl is a correct process such
that every process in the recurrent neighborhood of pl eventually recognizes pl as its leader forever.
pl ∈ C ∧ ∀pi ∈ Rl,∃τ , ∀τ ′ ≥ τ : leaderτ

′
i = pl .

The set of all eventual partial leaders is denoted L.

• Eventual partial leadership: For every correct process pi, there is an eventual partial
leader pl that can reach pi.

The original eventual partial leadership property used in [MRS12] simply requires the ex-
istence of an eventual partial leader in the system. The new version of the property similarly
implies that L 6= ∅ (since C 6= ∅), but also implies that each correct process must be reachable
by one eventual partial leader (which, depending on the level of connectivity, may require more
than one leader). In a static and connected network, both properties are equivalent: a single
eventual partial leader is necessary and sufficient to fulfill the property, since the connected
communication graph enables this single leader to reach every correct process.

In a k-set agreement algorithm, the eventual partial leaders are those processes that eventually
decide. In order to ensure termination, the deciding leaders must, therefore, be able to inform
the rest of the system of their decision. However, in a dynamic network, the mere existence of an
eventual partial leader does not provide the latter with the necessary connectivity to guarantee
termination. This is why in dynamic networks, the new eventual partial leadership property is
stronger than the original one and imposes the required connectivity.

The eventual partial leadership property implies a trade-off between the number of eventual
partial leaders in the system and graph connectivity. On the one hand, if there is a single leader
in the system, then this leader must be able to reach every correct process in the system. On
the other hand, if the communication graph is partitioned, then there must be at least one local
leader per partition.

Such a trade-off implies that the eventual partial leadership property does not prevent the
system from being partitioned into up to n partitions over time, provided that every correct

3.3. Assumptions 35

process identifies itself as its own eventual partial leader. However in this scenario it would be
impossible to verify the quorum intersection and quorum connectivity properties.

3.2.2.2 The Failure Detector ΠΣ⊥,x,y

The definition of ΠΣ⊥,x,y is the same as ΠΣx,y in [MRS12], except that it uses ΠΣ⊥,x instead of
ΠΣx. ΠΣ⊥,x,y can be seen as y instances of ΠΣ⊥,x running concurrently.

ΠΣ⊥,x,y provides each process pi with an array FDi[1..y] such that for each j, 1 ≤ j ≤ y,
FDi[j] is a pair containing a quorum FDi[j].qr and a process index FDi[j].leader. The array
satisfies the following properties:

• Vector safety: ∀j ∈ [1..y] : FDi[j].qr satisfies the self-inclusion, liveness, intersection and
quorum connectivity properties of ΠΣ⊥,x.

• Vector liveness: ∃j ∈ [1..y] : FDi[j] satisfies the eventual partial leadership property of
ΠΣ⊥,x.

The idea is to reduce the cost of the system assumptions: the liveness property only needs
to be verified by one out of a set of y instances of the detector.

The authors in [MRS12] prove that for 1 ≤ y ≤ n− 1, ΠΣ1,y is as strong as 〈Σ1,Ωy〉. This
shows that the y parameter of ΠΣx,y (and ΠΣ⊥,x,y) is comparable to the y of Ωy.

ΠΣ⊥,x,y is sufficient to solve the k-set agreement problem in unknown dynamic systems if
k ≥ xy. This will be proved by providing a k-set agreement algorithm relying on ΠΣ⊥,x,y in
Section 3.5.

3.3 Assumptions

This section presents three system assumptions. The algorithms presented in Section 3.4 will
then list the assumptions from this section on which they rely.

3.3.1 Time-Varying Graph Classes

In addition to defining the formalism of the TVG, Casteigts et al. present in [CFQS12] a number
of TVG classes which provide different levels of connectivity assumptions. Class 5 is particularly
relevant to this chapter:

Definition 3.3 (Class 5: recurrent connectivity [CFQS12]). All processes can reach each other
infinitely often through journeys. ∀u, v ∈ Π,∀τ , ∃J ∈ J ∗(u,v) : departure(J) > τ .

This connectivity assumption does not exactly fit the requirements of the proposed algo-
rithms. On the one hand, it is too strong. It implies a global connectivity between any two
processes in the system, which is not necessary to solve k-set agreement, since the problem can
be solved in a system partitioned into k subsets. On the other hand, class 5 is too weak since
it relies on the notion of journey, which is insufficient to ensure the transmission of messages.
Even if a journey exists between pi and pj , there is no guarantee that a message sent by pi can
reach pj . In fact, even if the edge between pi and pj is active infinitely often and the message is

36 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

sent infinitely often, the message might always be sent in between two activation periods of the
edge, thus never crossing it. To solve this problem, Gómez-Calzado et al. defined in [GCLL15]
the notion of timely journeys for the case of synchronous systems. This solution can be extended
into γ-journeys for the case of asynchronous communications.

Definition 3.4 (γ-Journey). A γ-journey J (where γ > 0 is a time duration) is a journey such
that every node on the path can wait up to γ units of time after the next edge becomes active
before forwarding the message. Since the message may be sent at any time within the γ time
window and the channel latency may vary during that time, the edge must remain active long
enough for the worst case duration.
- ∀i, 1 ≤ i ≤ |J |, ei stays active from time ti until, at least, time ti+max0≤j≤γ{j + ζ(ei, ti + j)} .
- ∀i, 1 ≤ i < |J |, ti+1 ≥ ti +max0≤j≤γ{j + ζ(ei, ti + j)} .

With a γ-journey, processes are given an additional time window of γ units of time to send
the message. In [GCLL15], this time was used to detect the activation of the edge. This solution
is appropriate for point-to-point communications in a known network, since it allows the sender
of the message to resend the message to the receiver whenever the edge appears again. However,
this is not helpful in an unknown non-complete network where processes have to rely on blind
broadcasts and forwarding to propagate information.

Instead, the time window provided by γ-journeys is used as an upper bound on the time
between two transmissions of the message. This explains the need for synchronous processes:
each process should be able to repeatedly send every message at least once every γ units of time.

Provided that processes receive their own broadcasts within γ units of time and then re-
broadcast it, it is ensured that every message is sent at least once every γ units of time. If there
is infinitely often a γ-journey from pi to pj , then pi can reach pj .

The set of all the γ-journeys from u to v is called J γ(u,v).
Using class 5 as a starting point, TVGs of class 5-(α, γ) are defined as follows. γ is the time

duration parameter of γ-journeys, and α is a parameter defining the number of correct processes
that each correct process is ensured to communicate with.

Assumption 3.1 (Class 5-(α, γ): (α, γ)-recurrent connectivity). Every correct process can reach
and be reached through γ-journeys infinitely often by at least α correct processes.

∀pi ∈ C, ∃Pi ⊆ C, |Pi| ≥ α,∀t ∈ T ,∀pj ∈ Pi,
∃Ji ∈ J γ(pi,pj) : departure(Ji) ≥ t ∧

∃Jj ∈ J γ(pj ,pi) : departure(Jj) ≥ t .

This assumption is parametrized by the two values α and γ. A low γ value weakens the
connectivity assumption by allowing shorter time windows for the journeys, but implies that
processes must be able to send messages more often to ensure that a message is sent within
the shorter window. On the other hand, a high γ value reduces the number of journeys that
are qualified as γ-journeys, thus strengthening the connectivity assumption, but accepts slower
processes.

The α parameter also presents a trade-off: class 5-(α, γ) indirectly implies that there must
be at least α correct processes in the system. As a result, a high α value will result in a strong

3.3. Assumptions 37

assumption on the number of process failures which can be costly in a dynamic system. A low
α value would strengthen the message pattern assumptions presented in the next section.

Class 5-(α, γ) also implies that all correct processes must know a lower bound for α.
To summarize, the assumption of a TVG of class 5-(α, γ) means that correct processes are able

to communicate infinitely often with a subset of α correct processes. This property ensures that
correct processes will not wait for messages forever, which enables the failure detector algorithm
to ensure the quorum liveness property. Additionally, if the algorithm ensures that every correct
process pi eventually only forms quorum from the Pi set, then class 5-(α, γ) also ensures quorum
connectivity.

3.3.2 Message Pattern Assumptions

This section presents message pattern assumptions, as defined by Mostéfaoui et al. in [MMR03].
The message pattern model consists in assuming some properties on the relative order of message
deliveries. If processes periodically wait for a certain number of messages, the idea is to assume
that the message sent by some specific process will periodically be among the first ones to be
received.

In order to express the message pattern assumptions used to implement ΠΣ⊥,x,y, it is nec-
essary to assume that the distributed algorithm executed by processes uses a query-response
mechanism. Processes periodically issue query messages, to which other processes respond.

The principle of the failure detector algorithm revolves around processes repeatedly issuing
a query and then waiting for responses from α processes. The α parameter is therefore the
minimum size of quorums returned by the algorithm, which does not necessarily constitute an
assumption on the number of failures, since α might be equal to 1. Note that α is the same
parameter used to define TVGs of class 5-(α, γ) which ensures that correct processes will not
wait for messages infinitely.

The first α processes whose response to a given query from process pi are received by pi are
called a response set.

3.3.2.1 Assumption for Quorum Intersection

The assumption of a TVG of class 5-(α, γ) is not sufficient to ensure the quorum intersection
property. In [BT10], Bouzid and Travers proposed a method to implement quorums: if processes
repeatedly wait for messages from at least b n

k+1c+ 1 processes before outputting these processes
as their new quorum, then the size of quorums alone is sufficient to ensure intersection. This
method implies that there must be at least b n

k+1c+ 1 correct processes in the system, otherwise
processes would wait forever, thus preventing liveness.

In a dynamic system where processes are expected to join and leave the system, an assumption
on the number of process failures seems too costly. For this reason, the failure detector algorithms
presented in the next section rely on the message pattern approach.

The following assumption is sufficient for the ΠΣ⊥,x,y algorithm to implement quorum inter-
section. It was obtained by generalizing the assumption used for the case k = 1 in [RAS15].

38 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

Assumption 3.2 (Generalized winning quorums). ∃m ∈ [1, k] and ∃Qw1, ..., Qwm ⊆ Π (called
winning quorums). Each winning quorum Qwi is associated with a number wi ≥ 1 (called the
weight of Qwi) such that

∑m
i=1wi ≤ k. ∀p ∈ Π, every time p issues a new query, ∃i ∈ [1,m] such

that Qwi 6= ∅ and out of the first α processes from which p receives a response, at least b |Qwi|
wi+1c+ 1

of them are in Qwi.

Intuitively, Assumption 3.2 requires that there are m sets of processes, the winning quorums,
that answer faster than others, i.e., faster enough for subsets of these sets to be always included
in every response set. In addition, every time a correct process issues a query, connectivity must
allow for a subset of one of these winning quorums to receive and respond to the query. Note
that winning quorums do not necessarily correspond to quorums returned by the failure detector
at some point: instead they are sets of processes that have a tendency to be included in response
sets.

The weight wi of a winning quorum is a parameter which states which proportion of the
winning quorum must be included in response sets. A winning quorum of weight 1 must be
included in strict majority in a response set, whereas winning quorums of higher weights can be
included in smaller proportions. The sum of all winning quorum weights is limited by k.

It is interesting to consider some extreme instances of this assumption. The first extreme is
m = k. In this particular case, all winning quorums are necessarily of weight 1, and therefore
each response set must include a strict majority of one of the winning quorums. Since each
response set includes the strict majority of one out of k winning quorums, it is easy to see that
out of any k + 1 response sets, at least two will necessarily intersect.

Fig. 3.1 shows an example form = k = 3 in which winning quorums are represented by dashed
red circles. Each solid black circle represents a response set. Note that out of any 4 response
sets, at least 2 intersect.

Another extreme case is m = 1 and w1 = k. In this particular case, all response sets must
contain a small part of a single winning quorum.

Fig. 3.2 shows an example for m = 1 and k = 3. Similarly to Fig. 3.1, the winning quorum is
represented by a dashed red circle, and response sets are represented by solid black circles. Once
again, 2 out of any 4 response sets intersect.

The flexibility in the second example lies in which subset of the winning quorum will be
included in each response set, while the flexibility in the first example lies in which winning
quorum would be included in majority by each response set.

Assumption 3.2 implies that there is at least one winning quorum Qwi such that at least
b |Qwi|
wi+1c+ 1 of the processes in Qwi are correct. If α = b |Qwi|

wi+1c+ 1 = 1, there is no assumption
on the number of failures but |Qwi| < wi + 1, which leaves minimal flexibility on the processes
that must be included in every response set, thus strengthening the message pattern assumption.
On the other hand, if |Qwi| (and therefore α) is high, the number of failures is limited but each
response set must contain a subset of a larger set, which allows for more flexibility in the message
pattern.

3.3. Assumptions 39

3.3.2.2 Assumption for Eventual Partial Leadership

In order to ensure the eventual partial leadership property, processes need to identify a local
leader. Since the eventual partial leadership property is supposed to be implemented on top of
Σ⊥,x, the notion of quorum can be used to define this new assumption.

Additionally, the order of processes in quorums is used to single out the leader. For this
purpose, processes in a quorum are assumed to be totally ordered. Any specific ordering can
be used. A natural choice would be to use the order in which the processes were added to the
quorum. Another simple choice would be to order according to process identifiers. For a process
pi and a quorum qr, if pi ∈ qr, then pos(pi, qr) denotes the position of pi in qr according to the
chosen total order. If pi is the first process in qrτj , then pos(pi, qr

τ
j) = 1. In this particular case,

pi is said to be the candidate of pj at time τ .
Eventual partial leaders are defined as follows:

Definition 3.5 (Eventually winning process). A correct process pl is called an eventually win-
ning process if there is a time τ such that after τ,∀τ ′ ≥ τ , ∀pi ∈ Rl\{pl} :

1) pl is present in every quorum formed by pi. pl ∈ qrτ
′
i .

2) pl’s identity is always positioned in pi’s quorum before the identities of other processes in Ri.
∀pj ∈ Ri\{pl, pi} : pos(pl, qr

τ ′
i) < pos(pj , qr

τ ′
i) .

3) In every quorum formed by pi, there is another process that also belongs to Rl. ∃pj ∈ Rl\{pl, pi} :

pj ∈ qrτ
′
i .

Point (1) means that after some time, pl must be fast enough to ensure that its responses
arrive in time to take part in every local quorum.

The implication behind (2) depends on the chosen ordering method. If processes are ordered
by date of addition to the quorum, then (2) implies that after some time, pl must be faster than
the rest of the recurrent neighborhood of pi. If processes are ordered by process identities, pl
must have the smallest process identity in the recurrent neighborhood.

It is easy to see how (1) and (2) can be used: if pl belongs to every quorum and is singled
out by the quorum order, processes in Rl can reliably select their candidate as leader.

Note that (2) excludes the case pi = pj , since otherwise pl would have to be placed before
pi in pi’s quorums. If processes are ordered by date of addition to the quorum, this expectation
would be very unrealistic since receiving its own message is a local computation and should
therefore be faster than receiving pl’s message.

Point (3) requires that processes in Rl must not only communicate with pl but also with each
other to some extent, which enables them to share the information that pl is their candidate.
Note that (3) also requires the processes pl, pi and pj to be distinctly defined: therefore, in
order for an eventually winning process to exist, there must be at least 3 correct processes in the
system (f ≤ n− 3). Since pl, pi and pj must be included in the same quorums, α must also be
equal to 3 or greater.

The set of all eventually winning processes is called W .
The following assumption enables the failure detector algorithm to ensure the eventual partial

leadership property.

40 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

Assumption 3.3 (Eventually winning γ-sources). For every correct process pi, there is an
eventually winning process pl such that there is infinitely often a γ-journey from pl to pi.
∀pi ∈ C, ∃pl ∈W,∀τ : ∃J ∈ J γ(pl,pi) ∧ departure(J) > τ .

The ΠΣ⊥,x algorithm will ensure that eventually winning processes are eventual partial lead-
ers. As a result, this assumption will be sufficient to ensure the eventual partial leadership
property.

3.3.3 Summary of Assumptions

Table 3.1 summarizes the assumptions presented in this section and the failure detector properties
that rely on them for implementation.

Table 3.1: Assumptions for failure detector implementations
Assumption Failure detector property

Assumption 3.1 Σ⊥,k: quorum liveness

Σ⊥,k: quorum connectivity

Assumption 3.2 Σ⊥,k: quorum intersection

Assumption 3.3 ΠΣ⊥,x: eventual partial leadership

The self-inclusion property of Σ⊥,k is absent from this table because it does not require any
assumption and will simply be ensured through algorithmic properties.

3.3.4 Implementation of Message Pattern Assumptions

Assumptions 3.2 and 3.3 are very abstract and it can be difficult to judge at first glance how
likely they are of being verified in a real network. This is because the assumptions presented
in this section are meant to be as close as possible to the minimum model strength required to
ensure that the algorithm implements the ΠΣ⊥,x,y failure detector. The message pattern model
enables such an implementation while keeping the model generic and applicable to different
networks. In the following, examples of more traditional assumptions that are sufficient to
ensure Assumptions 3.2 and 3.3 are presented.

3.3.4.1 Implementation of Assumption 3.2

A simple and intuitive method is to assume that |C| ≥ b n
k+1c+ 1. In this case, Assumption 3.2

is trivially verified with m = 1, w1 = k and Qw1 = Π. This implies that α ≥ b n
k+1c+ 1, and,

thus, the minimal size of quorums is sufficient to ensure intersection. This particular case is the
method used to implement Σk in static networks in [BT10].

Another approach would be to use a partial synchrony assumption. For a given duration
∆, let us call ∆-journey a γ-journey J such that arrival(J)− departure(J) ≤ ∆. Π is then
separated into two subsets: slow processes and fast processes. A slow process pi is a process such
that there is never a ∆-journey from pi to any correct process pj ∈ C\{pi}. Fast processes are
all other processes and Q is the set of all correct fast processes. The assumption is that for any

3.3. Assumptions 41

correct process pi and at any time, there are ∆-journeys linking pi to at least b |Q|k+1c+ 1 processes
from Q. Assumption 3.2 is verified with m = 1, w1 = k and Qw1 = Q.

3.3.4.2 Implementation of Assumption 3.3

One way to ensure Assumption 3.3 is that there is a correct subset Q of the system that is
constantly connected and recognizes a leader pl ∈ Q, that can reach the entire system infinitely
often. The leader must be known from the other processes in Q from the start (it can simply
be the lowest process identifier in Q, for example). When a process in Q issues a query, the
communication layer for that process will then wait for a response from pl and a response from
another process in Q before delivering any other response. This is sufficient to ensure that pl is
the first process in every quorum formed in Q, and that processes in Q communicate with each
other to a sufficient extent.

3.3.4.3 Practical Issues

From a practical point of view, some types of networks are particularly adapted to ensure As-
sumptions 3.2 and 3.3. In wireless mesh networks ([AWW05]), the nodes move around a fixed
set of nodes and each mobile node eventually connects to a fixed node. Wireless sensor net-
works ([ASSC02]) can be organized in clusters; one node in each cluster is designated the cluster
head. Messages sent between clusters are routed through the cluster heads of the sending and
receiving clusters. An infra-structured mobile network ([CRTW07]) is composed of Mobile Hosts
(MH) and Mobile Support Stations (MSS). A MH is connected to a MSS if it is located in its
transmission range, and two MHs can communicate only through MSSs.

In each of these network models, there is a privileged subset of powerful nodes (fixed nodes,
cluster heads, MSSs) that can be used as a winning quorum to satisfy Assumption 3.2 or as the
neighborhood Rl of an eventual winning process pl for Assumption 3.3.

Both assumptions can also be ensured from a probabilistic perspective. If a subset Q of the
system is made of powerful nodes that respond to queries much faster than the rest of the nodes,
then there is a high probability that Assumption 3.2 will be verified. Similarly, Assumption 3.3
can be verified in a probabilistic way with a leader that is simply a powerful process benefiting
from very small communication delays with the processes around it.

3.3.5 Comparable Assumptions in the Literature

This section attempts to put the strength of Assumptions 3.2 and 3.3 into perspective by com-
paring them to some other existing models.

In [AG13], Afek and Gafni propose an implementation of read and write operations in a
dynamic synchronous message passing system. Although the underlying network is assumed to
be complete, in each synchronous round a subset of edges lose their messages. Therefore, such
a system can be modeled as a TVG where the edges that successfully deliver their message in
a round are considered active in that round. As a result, the message adversary that decides
which messages will go through can be compared to a connectivity assumption. The paper
defines the Traversal Path (TP) adversary as a model in which, for every synchronous round, the
directed graph defined by the successfully delivered messages in this round contains a directed

42 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

path passing through all the nodes. This connectivity assumption is weaker than a TVG of class
5, because traversal paths are directed paths, which implies that every process can not necessarily
communicate with every other. The comparison with class 5-(α, γ) is less straightforward. On the
one hand, class 5-(α, γ) implies two-way connectivity whereas a TP adversary only requires one-
way connectivity. On the other hand, class 5(α, γ) only requires connectivity between a limited
number of nodes (as defined by the α parameter) and allows network partitioning, whereas a TP
adversary connects the entire system.

In [BRS14], Biely et al. define and implement the generalized loneliness failure detector Lk in
a static and connected network. For this purpose, the authors use the Manti(x) message pattern
model, which is defined by the x-Anti-Source. An x-Anti-Source is a process which is ensured
to receive responses from x processes to every query it issues before it issues the next query.
This definition could be used in unknown dynamic systems: if every process in the system is an
x-Anti-Source for x ≥ b n

k+1c+1, then Assumption 3.2 (with α = x) and the quorum intersection
property are ensured. However, the Manti(x) model only requires x processes to be x-Anti-
Sources, which is only sufficient to implement quorums if x = n, since the intersection property
must apply to every process in the system.

In [AGSS13], Arantes et al. present an algorithm that implements the Ω failure detector
in an asynchronous TVG of class 5. To this end, the authors define the Stable Responsiveness
Property (SRP). A correct process p satisfies the SRP at time t if and only if, after t, all nodes
in p’s neighborhood receive a response from p to every one of their queries within the first α
responses.

The definition of the SRP can be compared to the definition of an eventually winning process.
Both properties enable a leader election mechanism by assuming that after some time, some
process is among the first to respond to the queries of its neighbors. However, SRP applies to
every process that shares a link with the leader after t, even for a moment, whereas the property
of an eventually winning process pl only applies to the processes of Rl, meaning those processes
that interact infinitely often with pl. Thus, a process can join the neighborhood of an eventually
winning leader and leave it later on, which is not possible with a process satisfying the SRP. But
while the properties of an eventually winning leader can apply to a smaller subset of processes,
those properties are stronger. Process pl is not only required to respond to every query from
its neighbors in time, it must also be the fastest to respond. Additionally, the processes within
Rl are expected to communicate with each other to some extent, which is not necessary in the
SRP.

3.4 Failure Detector Algorithms

In this section a Σ⊥,k algorithm is first presented, then extended into a PiΣ⊥,x,y algorithm.

3.4.1 An Algorithm for Σ⊥,k

Algorithm 1 implements the Σ⊥,k failure detector in unknown dynamic systems with asyn-
chronous communications. It uses a query/response mechanism with round numbers in order to
ensure quorum liveness.

3.4. Failure Detector Algorithms 43

3.4.1.1 Assumptions

Algorithm 1 implements Σ⊥,k in unknown dynamic systems, provided that the following assump-
tions hold:

1. The system is a Time-Varying Graph of class 5-(α, γ) where α is the minimal size of
a quorum and γ is the maximal time taken by a process to receive its own broadcasts
(Assumption 3.1).

2. The run follows a generalized winning quorums message pattern (Assumption 3.2).

Algorithm 1 Implementation of Σ⊥,k for process pi.
1: init
2: ri ← 0 //Local round number
3: qri ← ⊥ //The quorum returned by Σ⊥,k for pi
4: recv_fromi ← {pi} //Quorum buffer
5: last_knowni ← ∅ //Round numbers of known processes
6: bcast(pi, 0, ∅)

7: upon reception of (src, r_src, Q) from pj do
8: if src = pi and r_src = ri then //Response
9: recv_fromi ← recv_fromi ∪Q

10: if |recv_fromi| ≥ α then
11: qri ← recv_fromi

12: recv_fromi ← {pi}
13: ri ← ri + 1

14: bcast(pi, ri, ∅)
15: else if src 6= pi then //Query
16: if ∃last_r | 〈src, last_r〉 ∈ last_knowni
17: ∧ last_r ≤ r_src then
18: last_knowni ← last_knowni\{〈src, last_r〉}
19: last_knowni ← last_knowni ∪ {〈src, r_src〉}
20: bcast(src, r_src,Q ∪ {pi})
21: else if 〈src,−〉 /∈ last_knowni then
22: last_knowni ← last_knowni ∪ {〈src, r_src〉}
23: bcast(src, r_src,Q ∪ {pi})
24: else
25: do nothing

3.4.1.2 Notations

Each process pi uses the following local variables:
ri is the local round number of process pi.
qri is the quorum currently returned by the failure detector for process pi.
recv_fromi is the quorum buffer, containing all the identities of the processes whose response

has been received by pi since the time it last formed a new (complete) quorum. When the buffer
contains enough information (i.e., at least α process identities), it becomes the new quorum and
recv_fromi is reinitialized.

44 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

last_knowni is the knowledge pi has of other processes round numbers. This variable and
the associated mechanisms are not necessary for the correctness of the algorithm, they are simply
used to improve performance by limiting the number of useless transmitted messages.

Process pi calls the bcast(src, r_src,Q) primitive to broadcast a message to the processes
currently in its neighborhood. A message contains the following values:

src is the identity of the original sender of the query (which is not necessarily the immediate
sender of the message, since queries are forwarded multiple times).

r_src is the round number of src when this query was issued. Process src ignores responses
to previous rounds.

Q is the set of the identities of processes who responded to the current query. When the
query goes back to process src, it will add the content of this set to its quorum buffer.

3.4.1.3 Algorithm Description

The principle behind the algorithm is the following: every process pi keeps broadcasting queries
for round ri until it receives enough responses to form a quorum of size at least α, then it
increments ri and proceeds with the next round.

Contrarily to most query/response algorithms, Algorithm 1 only uses one type of messages.
A message is both a query and a response, depending on which process receives it. Every message
travels from process to process, until it goes back to the original message sender. If the test on
line 8 is true, the message is considered as a response to the current round query. If instead the
test on line 15 is true, the message is considered as a query from another process.

Every process identity received in a response for the current round is added to the recv_fromi

buffer (line 9), and when the buffer size gets superior or equal to α, then a new quorum is formed
by copying recv_fromi into qri and resetting the buffer (lines 10 – 13).

If a received message is a query from another process, pi updates its local knowledge and
then adds its own identity to the message and rebroadcasts it unless another query for a higher
round has been previously received from the same emitter (lines 15 – 25).

At first glance it might look like process pi only broadcasts its queries once (lines 6 and 14), but
keep in mind that processes receive their own broadcasts. Therefore, after initially broadcasting
a new query, pi will receive it at most γ instants later and broadcast it again (line 14).

The same rebroadcasting approach applies for queries from other processes. Once pi has
received a message from src for round r_src, it will keep rebroadcasting it (lines 20 and 23)
until it is informed that src moved on past round r_src (the test on lines 16 – 17).

Based on the assumption of generalized winning quorums, the only action necessary to ensure
quorum intersection is to make sure that quorums are formed from at least α process identities,
which is guaranteed by line 10.

Quorum liveness is ensured because (1) correct processes keep forming new quorums from
fresh information infinitely often thanks to class 5-(α, γ) and (2) the identities of crashed processes
are excluded from new quorums since the r_src in their responses are eventually outdated
(line 8).

3.4. Failure Detector Algorithms 45

3.4.1.4 Proof of Correctness

Lemma 3.1. In a TVG of class 5-(α, γ) where Assumption 3.2 holds, Algorithm 1 ensures the
quorum intersection property of Σ⊥,k.

Proof. Assumption 3.2 implies that
∑m

i=1wi ≤ k. For any number w ∈ [1, k], nw denotes the
number of winning quorums of weight w. It follows that

∑k
w=1w × nw ≤ k.

Additionally, Assumption 3.2 imposes that every response set includes responses from a
winning quorum Qwi of weight wi such that at least b |Qwi|

wi+1c+ 1 processes from Qwi are part
of that response set. It follows that, if wi + 1 response sets are formed from the same winning
quorum Qwi, at least two of these response sets intersect.

If no two response sets are to intersect, then at most wi response sets can be formed from
a given winning quorum Qwi. Therefore, for any number w ∈ [1, k], at most w × nw response
sets can be formed from the set of all winning quorums of weight w. It follows finally that at
most

∑k
w=1w × nw response sets can be formed from the set of all winning quorums without

any two of them intersecting. Since
∑k

w=1w × nw ≤ k, at least two out of any k + 1 response
sets intersect.

Lines 10 and 11 of Algorithm 1 ensure that quorums include the first α responses (response
set) to the current query. Therefore every quorum includes a response set, and the quorum
intersection property of Σ⊥,k is ensured.

Lemma 3.2. In a TVG of class 5-(α, γ), every correct process executing Algorithm 1 forms a
new quorum infinitely often.

Proof. Since it uses a query-response mechanism, Algorithm 1 requires every correct process to
reach and be reached back by α processes, which is ensured by a TVG of class 5-(α, γ) infinitely
often. Even if a journey includes waiting time during which the process holding the message is
isolated, the process keeps memory of the message by rebroadcasting it to itself, and transmits
it to other processes as soon as it it stops being isolated. As a result, every correct process will
receive responses from α processes infinitely often, and therefore pass the test on line 10 infinitely
often.

Lemma 3.3. In a TVG of class 5-(α, γ), Algorithm 1 ensures the quorum liveness property of
Σ⊥,k.

Proof. By definition, faulty processes will crash or leave the system forever in a finite time. Let
t ∈ T be the time at which the last faulty process crashes or leaves the system forever. Since
f < n, there are correct processes in the system. Lemma 3.2 ensures that each of these processes
forms a new quorum sometime after t. Let τ ∈ T be a time such that τ > t and every remaining
process has formed a quorum between t and τ . Therefore, every quorum being currently built at τ
has been started after t, which means no faulty process can possibly respond to the corresponding
query message. As a result, every new quorum formed after τ contains only correct processes.
It follows that Algorithm 1 ensures the quorum liveness property of Σ⊥,k.

Lemma 3.4. In a TVG of class 5-(α, γ), Algorithm 1 ensures the quorum connectivity property
of Σ⊥,k.

46 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

Proof. The properties of a TVG of class 5-(α, γ) ensure that every correct process will always
receive enough messages to pass the test on line 10 and keep forming new quorums infinitely
often. The test on line 8 ensures that processes only form quorums from messages from the
current round. It follows that eventually, every correct process pi only includes in its quorums
processes which receive its queries and respond to it infinitely often. Therefore, pi can send and
receive messages infinitely often to and from the processes that are infinitely often in its quorums.

Let pi ∈ C and pj ∈ Ri. By definition of Ri, pi and pj ’s quorums intersect infinitely often and
thus there must exist a correct process pm such that pm is infinitely often in pi’s quorums and pm
is infinitely often in pj ’s quorums. As a result, pm can receive messages from pi infinitely often
and pj can receive messages from pm infinitely often. Therefore if messages are routed through
pm, pj can receive messages from pi infinitely often.

Theorem 3.1. In a TVG of class 5-(α, γ) where Assumption 3.2 holds, Algorithm 1 implements
a Σ⊥,k failure detector.

Proof. It follows from Lemmas 3.1, 3.3 and 3.4 that the algorithm ensures the quorum intersec-
tion, quorum liveness and quorum connectivity properties respectively.

Self-inclusion is ensured by the fact that every quorum is formed from the buffer recv_fromi

(line 11), and the buffer is always initialized with pi (lines 4 and 12).

3.4.2 An Algorithm for ΠΣ⊥,x

Algorithm 2 is an extension of Algorithm 1 aiming at implementing ΠΣ⊥,x in unknown dynamic
systems. It adds an election mechanism to the original algorithm in order to identify an eventual
partial leader.

This leader election mechanism relies on the quorum order, as defined in Section 3.3.2.2.
Every time a process forms a new quorum, it selects the first process in the quorum as candidate
for the leader election. If a process is the candidate of every other process in its quorum, then it
selects itself as leader; otherwise it selects its candidate as leader.

3.4.2.1 Assumptions

Algorithm 2 implements ΠΣ⊥,x in unknown dynamic systems, provided that the following as-
sumptions hold:

1. The system is a Time-Varying Graph of class 5-(α, γ) where α is the minimal size of
a quorum and γ is the maximal time taken by a process to receive its own broadcasts
(Assumption 3.1).

2. The run follows a generalized winning quorums message pattern (Assumption 3.2).

3. The system verifies the eventually winning γ-sources assumption (Assumption 3.3).

3.4.2.2 Notations

Algorithm 2 uses the same notations as Algorithm 1. Additionally, each process pi uses the
following local variables:

3.4. Failure Detector Algorithms 47

leaderi is the leader returned by the failure detector for process pi. leaderi is initially pi, and
is later updated on lines 21 or 23.

Algorithm 2 Implementation of ΠΣ⊥,x for process pi.
1: init
2: ri ← 0 //Local round number
3: qri ← ⊥ //The quorum returned by ΠΣ⊥,x for pi
4: recv_fromi ← {pi} //Quorum buffer
5: last_knowni ← ∅ //Round numbers of known processes
6: leaderi ← pi //The leader returned by ΠΣ⊥,x for pi
7: candidatei ← ⊥ // pi’s current candidate for leadership
8: candidatesi ← ∅ //Candidates of processes in recv_fromi

9: bcast(pi, 0, ∅, ∅)

10: upon reception of (src, r_src, Q, cands) from pj do
11: if src = pi and r_src = ri then //Response
12: recv_fromi ← recv_fromi ∪Q
13: candidatesi ← candidatesi ∪ cands
14: if |recv_fromi| ≥ α then
15: qri ← recv_fromi

16: recv_fromi ← {pi}
17: ri ← ri + 1
18: candidatei ← pl | (pos(pl, qri) = 1 ∧ pl 6= pi)
19: ∨(pos(pi, qri) = 1 ∧ pos(pl, qri) = 2)
20: if candidatesi = {pi} or ∅ then
21: leaderi ← pi
22: else
23: leaderi ← candidatei
24: candidatesi ← ∅
25: bcast(pi, ri, ∅, ∅)
26: else if src 6= pi then //Query
27: if ∃last_r | 〈src, last_r〉 ∈ last_knowni

28: ∧ last_r ≤ r_src then
29: last_knowni ← last_knowni\{〈src, last_r〉}
30: last_knowni ← last_knowni ∪ {〈src, r_src〉}
31: bcast(src, r_src,Q ∪ {pi}, cands ∪ {candidatei})
32: else if 〈src,−〉 /∈ last_knowni then
33: last_knowni ← last_knowni ∪ {〈src, r_src〉}
34: bcast(src, r_src,Q ∪ {pi}, cands ∪ {candidatei})
35: else
36: do nothing

candidatei is the first process in pi’s most recent quorum (excluding pi itself). It is affected
in lines 18 – 19. candidatei is initialized to ⊥ and is added to sets (lines 31 and 34). As a
convention, ∅ ∪ {⊥} = ∅.

candidatesi is the set of the candidates of the processes in recv_fromi (except pi). pi will
only elect itself as leader (line 21) if candidatesi only contains pi (i.e., pi is the candidate of
every process in recv_fromi\{pi}) or if candidatesi is empty (i.e., pi considers itself alone).

In addition to the message parameters described for Algorithm 1, messages sent by processes
contain the cands parameter, which is the set of the candidates of the processes in Q, at the
time when they responded to the query. It carries the information necessary for process pi to

48 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

build its candidatesi set on line 13.

3.4.2.3 Algorithm Description

Algorithm 2 follows the same structure and uses the same mechanisms to build quorums as
Algorithm 1. Its additional code aims to select partial leaders according to the eventual partial
leadership property of ΠΣ⊥,x. The extension added to Algorithm 1 is composed of two parts:
candidate selection and leader selection.

Candidate selection revolves around the notion of quorum order presented in Section 3.3.2.2.
The first process in every quorum is selected as the candidate. Whenever a process pi completes
a new quorum (meaning it passes the test on line 14), it handles the end of the round similarly
to Algorithm 1 (lines 15 – 17). It then identifies the first process in the new quorum (excluding
itself) according to the chosen ordering method in lines 18 – 19 and selects it as its candidatei.
If it was possible for pi to be its own candidate, and if quorums were ordered by date of response,
then pi would always be its own candidate.

By virtue of Assumption 3.3, an eventually winning process pl will eventually be forever the
candidate of every process in Rl\{pl}. However, pl cannot be its own candidate. Therefore,
information about pl’s own quorum order is not sufficient for pl to select itself as the leader. It
must take into account the candidates of other processes.

This is the purpose of the candidatesi variable. Other processes inform pi of their respective
candidates by including it in their responses (lines 31 and 34), and pi gathers this information
in candidatesi in line 13. When pi completes a quorum, candidatesi contains the candidates of
the processes currently in qri\{pi}.

If every process in qri agrees on pi as the candidate (or if pi is the only process in qri), then
pi selects itself as the leader (line 21). Otherwise, pi selects candidatei (line 23).

Note that point (3) of Definition 3.5 prevents the problematic case where a process pi only
includes in its quorums an eventually winning process pl and processes in Π\Rl. In this scenario,
it would be possible for every process in Ri (including pl) to chose pi as its candidate, thus
misleading pi into selecting itself as the leader infinitely often.

3.4.2.4 Proof of Correctness

This proof will show that, if Assumptions 3.1, 3.2 and 3.3 hold, then Algorithm 2 ensures the 5
properties of ΠΣ⊥,x.

Lemma 3.5. In a TVG of class 5-(α, γ) where Assumption 3.2 holds, Algorithm 2 ensures
the self-inclusion, quorum intersection, quorum liveness and quorum connectivity properties of
ΠΣ⊥,x.

Proof. The added code from Algorithm 1 does not modify the way the qri variable is initialized
and updated. Therefore, the proof for Theorem 3.1 holds for Algorithm 2.

Lemma 3.6. Every eventually winning process pl is eventually forever the candidatei of ev-
ery process pi(6= pl) of its recurrent neighborhood. ∀pl ∈W,∀pi ∈ Rl\{pl} : ∃τ : ∀τ ′ ≥ τ :

candidatei = pl at time τ ′.

3.4. Failure Detector Algorithms 49

Proof. It follows from the properties of a TVG of class 5-(α, γ) that correct processes will keep
passing the test on line 14, and therefore form new quorums infinitely often.

By contradiction, assume the following:

∃pl ∈W,∃pi ∈ Rl\{pl},∃pm ∈ Π\{pl},∀τ : ∃τ ′ ≥ τ : candidatei = pm at time τ ′

There are, thus, two cases:
pm /∈ Ri. By definition of Ri, there is a time after which pi’s quorums never intersect with

pm’s quorum. By construction of the algorithm (lines 4 and 16), self-inclusion is ensured (every
process belongs to its own quorums). Thus, there is a time after which pm is never in pi’s
quorums, and therefore it can never be selected as candidatei on lines 18 – 19 after this time.

pm ∈ Ri. Since pl is an eventually winning process, there is a time after which (1) pl is
in every quorum formed by pi and (2) in every quorum formed by pi that includes pm, pl is
positioned before pm. As a result, pm can never be selected as candidatei on lines 18 – 19 after
this time.

W is the set of all eventually winning processes, and L is the set of all eventual partial leaders.

Lemma 3.7. Every eventually winning process is an eventual partial leader. W ⊆ L.

Proof. Let pl ∈W . pl is an eventual partial leader if and only if, for every pi ∈ Rl, eventually
leaderi = pl forever. There are two cases:

pi = pl. It follows from the definition of Rl and from self-inclusion that there is a time
after which every process that is not in Rl will stop appearing in the quorums formed by pl.
It follows that there is a time τ1 such that ∀τ ′1 > τ1, qr

τ ′1
l ⊆ Rl. If α = 1, then qrτ

′
1
l = {pl} and

therefore candidatesl = ∅ at time τ ′1 (by construction of candidatesl). If α > 1, since the defi-
nition of Rl is symmetrical, ∀τ ′1 > τ1,∀pj ∈ qr

τ ′1
l : pl ∈ Rj . It then follows from Lemma 3.6 that

∃τ2 ≥ τ1,∀τ ′2 > τ2,∀pj 6= pl ∈ qr
τ ′2
l : candidatej = pl at time τ ′2. Since pl will keep forming new

quorums with fresh information, ∃τ3 ≥ τ2 such that every time after τ3 that pl completes a round,
then candidatesl = {pl}. As a result, after time τ3, pl will always pass the test on line 20 and,
therefore, will forever identify itself as the leader.

pi 6= pl. According to point (3) of the eventually winning process definition, ∃τ1, ∀τ ′1 >

τ1, ∃pj ∈ Rl : pj ∈ qr
τ ′1
i . It follows from Lemma 3.6 that ∃τ2 ≥ τ1,∀τ ′2 > τ2, candidatej =

candidatei = pl at time τ ′2. Since pi will keep forming new quorums with fresh informa-
tion received from pj , ∃τ3 ≥ τ2 such that every time after τ3 that pl completes a round, then
pl ∈ candidatesi. As a result, after τ3, pi will always fail the test on line 20 and will forever
identify candidatei = pl as the leader.

In both cases, pi selects pl as leader forever, which makes pl an eventual partial leader.

Lemma 3.8. If the eventually winning γ-sources assumption (Assumption 3.3) holds, then Al-
gorithm 2 ensures the eventual partial leadership property of ΠΣ⊥,x.

Proof. It follows from Assumption 3.3 that ∀pi ∈ C, ∃pl ∈W,∀τ : ∃J ∈ J γ(pl,pi)∧departure(J) >

τ . It follows from Lemma 3.7 that pl ∈ L. Since fair-lossy channels are assumed, then if pl sends
messages infinitely often, then pi will receive messages from pl infinitely often.

50 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

Theorem 3.2. In a TVG of class 5-(α, γ) where Assumptions 3.2 and 3.3 hold, Algorithm 2
implements a ΠΣ⊥,x failure detector.

Proof. Follows directly from Lemmas 3.5 and 3.8.

3.4.3 An Algorithm for ΠΣ⊥,x,y

An algorithm for ΠΣ⊥,x,y simply consists in executing y instances of Algorithm 2 simultaneously.
This algorithm relies on Assumptions 3.1 , 3.2 and 3.3. However, Assumption 3.3 is only required
to apply for one out of the y instances of the algorithm.

3.5 A k-Set Agreement Algorithm

In [MRS12], the authors proposed an algorithm for k-set agreement using ΠΣx,y for static net-
works. The k-set algorithm itself is very simple. It only deals with the liveness property of k-set
agreement (termination) and encapsulates the safety properties (validity and agreement) into
the Alphax sub protocol. This section will adapt the Alphax and k-set agreement algorithms for
dynamic networks.

3.5.1 The Alphax Sub Protocol

Alpha was introduced in [GR07] as a way to exactly capture the safety properties of consensus
(that is, validity and agreement). It is thus complementary to the Ω failure detector, which is
necessary to ensure liveness (the termination property). Alpha was later generalized in [RT06]
into KA for the k-set agreement problem.

In [MRS12], Mostéfaoui, Raynal and Stainer define Alphax as an extended, weaker version of
the KA of [RT06]. Alphax is a distributed object used to store values proposed by processes. It
initially stores the default value ⊥. It provides processes with an operation Alpha.proposex(r, v)

that returns a value (possibly ⊥). The round number r is a logical time and v is a proposed value.
It is assumed that (a) each process will use increasing round numbers in successive invocations
of Alpha.proposex() and (b) distinct processes use different round numbers. An Alphax object
is defined by the following properties:

• Termination: Any invocation of Alpha.proposex() by a correct process terminates.

• Validity: If Alpha.proposex(r, v) returns v′ 6= ⊥, then Alpha.proposex(r′, v′) has been
invoked with r′ ≤ r.

• Quasi-agreement: At most x different non-⊥ values can be returned by different invoca-
tions of Alpha.proposex().

• Obligation: Let pl be a correct process and Q(l, τ) = {pi ∈ C|∀τi, τl ≥ τ : qrτii ∩ qr
τl
l = ∅}.

If, after time τ , (a) only pl and processes of Q(l, τ) invoke Alpha.proposex() and (b) pl
invokes Alpha.proposex() infinitely often, then at least one invocation issued by pl returns
a non-⊥ value.

3.5. A k-Set Agreement Algorithm 51

Note that the termination property of Alphax is not related to the termination property of
the k-set agreement.

In order to ensure the safety properties of k-set agreement, it is not necessary to make
use of the eventual partial leadership property of ΠΣ⊥,x and therefore, the Alphax algorithm
presented here does not make use of the leaderi variable. However, the k-set agreement algorithm
implements the termination property of k-set agreement by relying on the obligation property
of Alphax and the eventual partial leadership property of ΠΣ⊥,x.

The definitions in [BT10] and [MRS12], that propose k-set agreement algorithms for static
networks, use different obligation properties. The Alphax in this thesis is the one defined
in [MRS12], which is weaker than the one in [BT10] by being Σx-aware.

3.5.2 Alphax Algorithm

This section proposes an algorithm implementing Alphax for unknown dynamic systems model
enriched with ΠΣ⊥,x, adapted from the algorithm in [MRS12].

The algorithm gives each proposed value a priority. Each process pi keeps a value esti, which
is its current estimation of the value it will decide, and a pair (lrei, posi) which defines the
priority of value esti. lrei is the highest round seen by pi and posi is the position of value esti
within round lrei. The position is used to fix priority on proposed values.

The function g(ρ, δ) = 2δ(ρ− 1) + 1 where ρ is the position of value v on round r and
δ = r′ − r, with r′ ≥ r, is used to compute the position of v on round r′.

If value v has priority ρ at round r and value v′ has priority ρ′ at round r′ with r ≤ r′, v has
lower priority than v′ at round r′ if and only if g(ρ, r′ − r) < ρ′ or (g(ρ, r′ − r) = ρ′) ∧ (v < v′).

The Alpha.proposex() function is composed of two phases. In the read phase (lines 4 – 9),
the process attempts to gather knowledge on the values proposed by other processes in a quorum
(as defined by Σ⊥,x) by sending REQ_R messages and receiving RSP_R messages. If a process
in the quorum is already computing a higher round, pi returns ⊥ (line 7). Otherwise, it selects
the highest priority value it knows of (lines 8 – 8), and proceeds to the write phase.

In the write phase (lines 10 – 16), the process attempts to raise the priority of its current
estimated value by communicating it to other processes in a quorum with REQ_W messages
and receiving RSP_W messages. Once again, if any process in the quorum is computing a
higher round, pi returns ⊥ (line 15). If another process has a value of higher priority for the
current round, pi adopts it as its new estimated value (lines 16 – 16). pi then raises posi by 1
(line 11) and repeats the write phase until it manages to raise a value to position 2r (line 10) or
until it encounters a process in a higher round (line 15).

The following modifications were made to the original algorithm in [MRS12] in order for the
algorithm to ensure the properties of Alphax in dynamic networks:

The original algorithm assumed a complete, static communication graph with reliable chan-
nels and therefore every message was only sent once. In an unknown dynamic system, messages
need to be rebroadcast (lines 22, 23, 31 and 33). This mechanism ensures that (1) the emitting
process will rebroadcast its own message every γ units of time; and (2) the reception of the
message will not be restricted to the neighbors of the emitting process. The message will be
received by every process that can be reached through a γ-journey.

52 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

Since messages are rebroadcast, the direct emitter of a message is not necessarily the source
of the message. For this reason, the process identifier of the responding process was added in
message types RSP_R and RSP_W.

Algorithm 3 Implementation of Alphax using ΠΣ⊥,x in dynamic networks for process pi.
1: init
2: lrei ← 0; esti ← ⊥; posi ← 0

3: function Alpha.proposeX(r,vi)
4: repeat Qi ← qri; bcast REQ_R(r,Qi)
5: until Qi 6= ⊥ and ∀pj ∈ Qi : RSP_R(r, pj , 〈lrej , posj , valj〉) received
6: rcvi ← {〈lrej , posj , estj〉 : pj ∈ Qi∧ RSP_R(r, pj , 〈lrej , posj , estj〉) received}
7: if ∃〈lre,−,−〉 ∈ rcvi : lre > lrei then return(⊥)
8: posi ← max{pos | 〈r, pos, v〉 ∈ rcvi}; esti ← max{v | 〈r, posi, v〉 ∈ rcvi}
9: if esti = ⊥ then esti ← vi

10: while posi < 2r do
11: posi ← posi + 1; psti ← posi
12: repeat Qi ← qri; bcast REQ_W(r, psti, esti, Qi)
13: until Qi 6= ⊥ and ∀pj ∈ Qi : RSP_W(r, psti, pj , 〈lrej , posj , valj〉) received
14: rcvi = {〈lrej , posj , estj〉 : pj ∈ Qi∧ RSP_W(r, psti, pj , 〈lrej , posj , estj〉) received}
15: if ∃lre : 〈lre,−,−〉 ∈ rcvi : lre > lrei then return(⊥)
16: posi ← max{pos | 〈r, pos, v〉 ∈ rcvi}; esti ← max{v | 〈r, posi, v〉 ∈ rcvi}
17: return(esti)

18: upon reception of REQ_R(rd,Q) do
19: if pi ∈ Q then
20: if rd > lrei then posi ← g(posi, rd− lrei); lrei ← rd
21: bcast RSP_R(rd, pi, 〈lrei, posi, esti〉)
22: bcast REQ_R(rd,Q)

23: upon reception of RSP_R(rd, pj , 〈lrej , posj , estj〉) do bcast RSP_R(rd, pj , 〈lrej , posj , estj〉)

24: upon reception of REQ_W(rd, pos, est,Q) do
25: if pi ∈ Q then
26: if rd ≥ lrei then
27: posi ← g(posi, rd− lrei); lrei ← rd
28: if pos > posi then esti ← est; posi ← pos
29: else if pos = posi then esti ← max{esti, est}
30: bcast RSP_W(rd, pos, pi, 〈lrei, posi, esti〉)
31: bcast REQ_W(rd, pos, est,Q)

32: upon reception of RSP_W(rd, pos, pj , 〈lrej , posj , estj〉) do
33: bcast RSP_W(rd, pos, pj , 〈lrej , posj , estj〉)

The original algorithm uses a selective multicast for both the read and write phases, i.e.,
messages are sent only to the processes in a quorum Qi. This new algorithm uses broadcasts as
defined in Section 3.1 (lines 4 and 12) and transmits Qi with the message. All receiving processes
will rebroadcast the message, but only the processes within Qi will deliver it (lines 19 and 25).

Theorem 3.3. In unknown dynamic systems augmented with ΠΣ⊥,x, Algorithm 3 ensures the

3.5. A k-Set Agreement Algorithm 53

properties of Alphax.

Proof. The modifications added to the original algorithms from [BT10] and [MRS12] do not allow
the algorithm to add new values, therefore the proof for validity in the original papers holds.
Similarly, the proofs for obligation in [MRS12] and quasi-agreement in [BT10] do not rely on any
static connectivity assumption, and instead rely on algorithm behavioural properties which were
not altered in this new version. Therefore, the original proofs hold for Algorithm 3.

Concerning termination, the only possibility for an invocation not to terminate is that process
pi waits forever for a response message in one of the repeat loops (lines 4–5 and 12–13). Assume
by contradiction that pi waits forever for responses. The liveness property of ΠΣ⊥,x ensures
that eventually pi only sends queries to correct processes and waits for responses from correct
processes. Given that the set of correct processes is finite, the set of possible correct quorums
is finite too. It follows that there is a correct quorum Q such that infinitely often, qri = Q,
and therefore according to the quorum connectivity and self-inclusion properties of ΠΣ⊥,x, there
are recurrent journeys between any process in Q and pi. As a result, all the processes from Q

will eventually receive the queries from pi, and pi will eventually receive the responses from the
processes in Q, and, therefore, exit the repeat loop.

3.5.3 k-Set Agreement Algorithm

Given an Alphax object and a ΠΣ⊥,x,y failure detector, solving k-set agreement is simple. The
algorithm given here is an adaptation of the one given in [MRS12] for dynamic networks. x-Set
agreement is first solved with ΠΣ⊥,x (Algorithm 4), and then k-set agreement with ΠΣ⊥,x,y for
k ≥ xy.

Algorithm 4 x-Set agreement with Alphax using ΠΣ⊥,x in dynamic networks for process pi.
1: init
2: deci ← ⊥ //The value decided by pi (⊥ if pi has not decided)
3: primei ← the ith prime number //Constant
4: ri ← primei //The current round number

5: function propose(vi)
6: while deci = ⊥ do
7: if leaderi = pi then
8: deci ← Alpha.proposex(ri, vi)
9: ri ← ri × primei

10: decide(deci)
11: bcast DECISION(deci)

12: upon reception of DECISION(d) do
13: if deci = ⊥ then
14: deci ← d
15: decide(d)
16: bcast DECISION(d)

A well formed invocation of Alpha.proposex(r, v) is an invocation such that two processes
cannot use the same round number r, and successive round numbers for a given process are

54 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

increasing. To this end, each process pi initially computes primei, the ith prime number. pi
then uses primei as its first round number, and multiplies it by primei after every round. As
a result, the round number of pi increases and is always a power of primei, which ensures that
two distinct processes always use distinct round numbers.

Theorem 3.4. In unknown dynamic systems augmented with ΠΣ⊥,x and with an Alphax object,
Algorithm 4 solves the x-set agreement problem.

Proof. The test on line 6 ensures that the ⊥ value is never decided. From this point on, the
validity of the Alphax object is enough to ensure the validity of x-set agreement. Similarly,
the quasi-agreement property of Alphax is enough to ensure the agreement property of x-set
agreement.

The eventual partial leadership property of ΠΣ⊥,x ensures that if every leader in L decides,
then eventually every correct process will receive a DECISION message from a process in L. As
a result, the proof for the termination property provided in [MRS12] holds for Algorithm 4.

Similarly to [MRS12], a simple k-set algorithm can be obtained by running y instances of
Algorithm 4, the jth one (1 ≤ j ≤ y) relying on the component FDi[j] of failure detector ΠΣ⊥,x,y
for every process pi. A process decides the same value decided by the first of the y instances
that terminates. As there are y instances of the algorithm and each of them can decide x values
at most, it follows that at most xy values can be decided. Therefore, the algorithm solves k-set
agreement for k ≥ xy.

3.6 Conclusion

This chapter adapted the existing ΠΣx,y failure detector to unknown dynamic systems by using
the ⊥ default value to deal with missing information and by adding connectivity properties to
the failure detector definition. The result is the ΠΣ⊥,x,y failure detector, which is sufficient to
solve k-set agreement in unknown dynamic systems with k ≥ xy.

An algorithm implementing ΠΣ⊥,x,y in a Time-Varying Graph of class 5-(α, γ), relying on
connectivity and message pattern assumptions, was presented.

Finally, an existing algorithm to solve k-set agreement was adapted for unknown dynamic
systems augmented with ΠΣ⊥,x,y (k ≥ xy).

3.6. Conclusion 55

Figure 3.1: Example of multiple winning quorums (m = k = 3).

56 Chapter 3. A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

Figure 3.2: Example of a single winning quorum (m = 1, k = 3).

Chapter 4

The Weakest Failure Detector for
Mutual Exclusion in Unknown

Dynamic Systems

Contents

4.1 Model and Problem Definition . 58

4.1.1 System Model . 58

4.1.2 Failure Model . 59

4.1.3 Connectivity Model . 59

4.1.4 Knowledge Model . 60

4.1.5 Problem Definition . 60

4.2 Failure Detectors for Mutual Exclusion in Unknown Dynamic Systems 61

4.2.1 The T Σl Failure Detector . 61

4.2.2 The T Σlr Failure Detector . 61

4.3 Sufficiency of T Σlr to solve Fault-Tolerant Mutual Exclusion 62

4.3.1 Algorithm Description . 62

4.3.2 Proof of Correctness . 65

4.4 Necessity of T Σlr to solve Fault-Tolerant Mutual Exclusion 70

As discussed in Section 2.2.2, the majority of existing FTME algorithms consider static
and known distributed systems without recovery. Hence, the conception of mutual exclusion
in unknown dynamic distributed systems where crashed processes can recover presents great
challenges.

A definition of recoverable mutual exclusion (RME) for systems with crash-recovery was
presented in [GR16] and further studied in [GH17] and [JJ17]. A main change with regard to
previous definitions of fault-tolerant mutual exclusion is the critical section re-entry property,
which specifies that if a process p crashes while in the critical section and later recovers, then no

57

58Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

other process may enter the critical section until p re-enters it after its recovery. Intuitively, this
means that the lock on the critical section is not released in the case of a temporary crash.

This chapter considers RME on top of a message passing model, where each process has
access to a volatile memory of unbounded size, which is lost after a crash and recovery, and a
non-volatile memory (stable storage) of bounded size. This model is called the partial memory
loss model.

In [DGFGK05], the T failure detector was shown to be the weakest failure detector to solve
fault-tolerant mutual exclusion in message passing systems with a majority of correct processes
(see Section 2.3.4.1). Then, in [BCJ09], the (T ,Σl) failure detector was shown to be the weakest
failure detector to solve the same problem with no assumption on the number of process failures
(see Section 2.3.4.2).

Both of these results are restricted to known, static systems without recovery. This chapter
aims to extend these results to unknown dynamic systems where crashed processes can recover,
with partial memory loss.

(T ,Σl) is the sum of two failure detectors. It provides two outputs, one of which verifies the
properties of T , and another one which verifies the properties of Σl. Let T Σl be the detector
which provides a single output verifying the properties of both T and Σl.

The contributions of this chapter are as follows:

1. A proof that (T ,Σl) is equivalent to T Σl (Section 4.2);

2. The definition of the T Σlr failure detector, which is equivalent to T Σl in known, static
systems without recovery, and is the weakest failure detector to solve RME in unknown
dynamic systems (Section 4.2);

3. A RME algorithm that runs on top of the proposed model using the T Σlr failure detector
and which tolerates crashes and recovery of processes, thus proving that T Σlr is sufficient
to solve RME in unknown dynamic systems (Section 4.3);

4. A reduction algorithm proving the necessity of T Σlr to solve RME in unknown dynamic
systems (Section 4.4).

4.1 Model and Problem Definition

This section presents the distributed system model used throughout the rest of the chapter and
the definition of the Recoverable Mutual Exclusion (RME) problem.

4.1.1 System Model

The system is composed of a finite set of processes, denoted Π. Each process is uniquely identified.
Additionally, processes are asynchronous (there is no bound on the relative speed of processes).
They communicate by sending each other messages with a point-to-point send/receive primi-
tive.

Communications are asynchronous (there is no bound on message transfer delay).

4.1. Model and Problem Definition 59

4.1.2 Failure Model

A process can crash (stop executing) during the run, and may recover from the crash, or not. A
process can begin the run crashed, and start participating later in the run by recovering.

Each process has access to both a volatile memory and a stable storage of bounded size. After
a crash and recovery, the variables in volatile memory are reset to their initial default values. As
each process has access to stable storage, this model is called the partial memory loss model. In
the rest of the chapter, the names of variables in stable storage is underlined.

A process is said to be alive at time t if it never stopped executing before t or if it recovered
since the last time it stopped executing. A process which is not alive at time t is said to be
crashed at time t.

In the traditional crash failure model, processes are grouped into faulty processes, which
eventually crash, and correct processes, which never crash. However, in a crash-recovery model,
in any run, three types of processes are considered[ACT00]:

1. Eventually up processes, which stop crashing after some time and remain alive forever.
This type also includes processes that never crash (always up).

2. Eventually down processes, which eventually crash and never recover. This type also in-
cludes processes that crashed immediately at the start of the run and never recovered
(always down).

3. Unstable processes, which crash and recover infinitely often. It is assumed that, infinitely
often, each unstable process manages to stay alive long enough to at least send a message
to each other process of which it is aware.

4.1.3 Connectivity Model

The system is dynamic in the sense that the edges in the communication graph can appear and
disappear during the run. In other words, at any given time instant, each edge in the graph
might or might not be available. Without any further assumption, a system in which no edge is
ever available would fit this model. Since nothing can be computed in such a system, additional
assumptions are needed. Therefore, the following properties are assumed to be verified:

• Dynamic connectivity: Every message sent by a process that is not eventually down to
a process that is not eventually down is received at least once.

• Uniqueness of reception: Every message sent is received at most once.

• First in, first out: If process p sends a message m1 to q and then sends m2 to q, if q
receives m2 then it received m1 first.

These properties imply not only that channels are reliable, but also that each pair of processes
that are not eventually down is connected infinitely often by a path over time. This means that
when a process p sends a message to process q, then there is a path from p to q such that at
some point in the future, every edge on this path will be available in the correct order, and
sufficiently long for the message to cross the edge. Note that it is not necessary that all the

60Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

edges on the path to be available at the same time, and the path that a pair of processes uses to
communicate is not required to be the same every time. This connectivity assumption is referred
to as a Time-Varying Graph of class C5 in [CFQS12].

The algorithms presented in this chapter assume that the underlying send/receive imple-
mentation handles message forwarding and, therefore, behaves the same way that it would in a
complete communication graph with reliable channels.

4.1.4 Knowledge Model

The system is unknown, i.e., processes initially have no information on system membership or
the number of processes of the system, and are only aware of their own identity. The identities
of other processes can only be learned through exchanging messages. More practically, each
process p has access to a local variable knownp (in stable storage) that initially contains only
p. Eventually, knownp contains the set of all processes that are not eventually down. For
the sake of simplicity, the algorithms in this chapter do not attempt to define the knownp
variable and simply assume that an underlying discovery algorithm eventually fills it with the
necessary process identities. This is not a strong assumption, since the dynamic connectivity
property ensures that all processes will be able to communicate (and therefore learn of each
other’s existence) infinitely often.

4.1.5 Problem Definition

This chapter considers the Recoverable Mutual Exclusion (RME) problem, which is defined as
follows. At any point in time, a process is either in the remainder, try, critical, or exit section.
Every user is well-formed, that is that a user will go through the remainder, try, critical and
exit sections in the correct order. In case of a crash and recovery, a well-formed user will restart
in the critical section if it was in the critical section when it crashed, and will restart in the
remainder section, otherwise (the critical section re-entry property of [GH17]).

A RME algorithm must provide a try section and an exit section procedures such that
the following properties are satisfied:

• Safety: Two distinct alive processes p and q can not be in CS at the same time.

• Liveness: If an eventually up process p stopped crashing and is in the try section, then
at some time later some process that is not eventually down is in CS.

Additionally, the following fairness property is considered:

• Starvation Freedom: If no process stays in its critical section forever, then every even-
tually up process that stopped crashing and reaches its try section will eventually enter its
CS.

Note that stable storage is necessary to solve this problem. Indeed, if a process p is in the
critical section when all processes simultaneously crash, without stable storage there is no way
for p to re-enter critical section after recovery since no process in the system remembers that p
was in the critical section in the first place.

4.2. Failure Detectors for Mutual Exclusion in Unknown Dynamic Systems 61

4.2 Failure Detectors for Mutual Exclusion in Unknown Dynamic
Systems

4.2.1 The T Σl Failure Detector

(T ,Σl) provides two outputs, trp and qrp, with trp verifying the properties of T and qrp verifying
the properties of Σl. T Σl is the failure detector that provides a single output tqp verifying the
properties of both T and Σl.

Theorem 4.1. (T ,Σl) is equivalent to T Σl.

Proof. (T ,Σl) can be implemented using the output of T Σl: it suffices to always return the value
of tqp as both trp and qrp. Therefore, (T ,Σl) is weaker than T Σl.

(T ,Σl) is sufficient to solve mutual exclusion, as shown in [BCJ09]. Section 4.4 will prove
that it is possible to use RME to implement the T Σlr failure detector (defined in Section 4.2.2).
The same reasoning and algorithms that are used in Section 4.4 can be used to show that it is
possible to use FTME to implement T Σl. It follows that (T ,Σl) is sufficient to implement T Σl,
and as a result, T Σl is weaker than (T ,Σl).

4.2.2 The T Σlr Failure Detector

The existing definition of T Σl is for static, known networks, and therefore new definitions,
suitable for unknown dynamic networks, must be provided.

In an unknown system, the lack of initial information renders difficult the implementation of
some failure detector properties which must apply from the start of the run, in particular the
intersection property. To circumvent this problem, the ⊥ concept introduced in [RAS15] is used.

Additionally, the traditional properties of T Σl are expressed in terms of correct and faulty
processes. T Σlr was rewritten using the concepts of eventually up and eventually down processes
instead.

The T Σlr failure detector provides each process p with a set of trusted process identities,
denoted tqp, and a flag denoted rdyp. rdyp is initially set to ⊥ and changes to > once the
failure detector has gathered enough information to verify the live pairs intersection property.
tqtp denotes the value of tqp at time t, and rdytp the value of rdyp at time t. Process p is said to
trust process q at time t if q ∈ tqtp, p is said to suspect q at time t if q /∈ tqtp, and process p is
said to be ready at time t if rdytp = >. The following properties must be verified.

• Eventually strong accuracy: Every eventually up process p is eventually trusted forever
by every process that is not eventually down.

• Strong completeness: Every eventually down process p is eventually suspected forever
by every process that is not eventually down.

• Trusting accuracy: For any process p, if there exist times t and t′ > t such that q ∈ tqtp
and q /∈ tqt′p , then q is eventually down and will never be alive after t′.

• Quorum readiness: Every eventually up process is eventually ready forever.

62Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

• Live pairs intersection: If two processes p and q are both alive at time t, then for any
couple of time instants t1 ≤ t and t2 ≤ t, (rdyt1p = > ∧ rdyt2q = >) =⇒ tqt1p ∩ tqt2q 6= ∅.

The eventually strong accuracy, strong completeness and trusting accuracy properties are
the original properties of T , adapted for a crash-recovery model. These properties are referred
to as the trusting properties of T Σlr.

Similarly, the strong completeness and live pairs intersection properties are the original prop-
erties of Σl, adapted for unknown dynamic systems. The new quorum readiness property, along
with the rdyp output variable, was added to deal with the lack of initial information in an
unknown system. These properties are referred to as the quorum properties of T Σlr.

Note that the strong completeness is both a trusting property and a quorum property, since
both T and Σl make use of this same property.

Both trusting and quorum properties apply to the same set tqp, which is different from preex-
isting definitions in which T and Σl are two separate oracles with separate outputs. Section 4.4,
will prove that this combined version of the detector is necessary to solve RME.

Note that in a static, known system with reliable channels and prone to crash failures without
recovery, T Σlr is equivalent to T Σl, and therefore (T ,Σl).

4.3 Sufficiency of T Σlr to solve Fault-Tolerant Mutual Exclusion

This section introduces Algorithm 5 and proves that it solves the RME in any unknown dynamic
environment enriched with the T Σlr failure detector.

4.3.1 Algorithm Description

Let’s consider p the sender (source) of a message. The following types of messages are used by
Algorithm 5:

request: p has asked for permission to enter CS. The message contains the round number
of the sender.

grant: p has granted permission to a requesting process to enter CS.
done: notifies other processes that p has just exited its CS.
reject: warns that p has already given its permission to another process different from

itself, thus preventing deadlocks.
comeback: notifies processes that p has just recovered from a crash.
update: p gives information to a recently recovered process q about p’s requesting state,

previously given permissions that p granted to q and vice-versa, and q’s last round number of
which p is aware.

In Algorithm 5, each request to enter the CS, issued by p, is tagged by a sequence round
number.

Besides having access to the output, tqp and rdyp, of its local failure detector, process p also
keeps the following local variables, initialized with the indicated value:

critp ← false: a flag indicating that p is currently in CS. It is the only variable kept in stable
storage. Thus, critp is not reinitialized after a crash and recovery.

4.3. Sufficiency of T Σlr to solve Fault-Tolerant Mutual Exclusion 63

Algorithm 5 Solving RME with T Σlr: code for process p

1: procedure try section
2: wait for recoveringp = false
3: reqp ← true
4: roundp ← roundp + 1; grantsp ← {p}
5: for ∀q ∈ tqp do send(request, roundp, q)
6: requestsp ← requestsp ∪ {(roundp, p)}
7: check requests()
8: wait for gidp = p and rdyp = > and
tqp ⊆ grantsp

9: critp ← true; reqp ← false

10: procedure exit section
11: wait for recoveringp = false
12: critp ← false
13: for ∀q ∈ grantsp \ {p} do send(done, q)
14: grantsp ← {p}; requestsp ← requestsp \
{(∗, p)}

15: check requests()
16: procedure check requests
17: if (gidp = −1 or gidp = p) and

requestsp 6= ∅ and critp = false and
recoveringp = false then

18: (grndp, gidp)← highest(requestsp)
19: if gidp 6= p then send(grant, gidp)
20: for ∀q ∈ grantsp \ {p} do
21: grantsp ← grantsp \ {q}
22: send(reject, q)
23: procedure reconnection
24: recoveringp ← true
25: updatep ← tqp
26: for ∀q ∈ updatep do
27: send(comeback, critp, q)

28: wait for updatep = ∅
29: recoveringp ← false
30: check requests()
31: when q added to tqp
32: if reqp = true then send(request, roundp, q)
33: when q removed from tqp
34: grantsp ← grantsp \ {q}
35: requestsp ← requestsp \ {(∗, q)}
36: updatep ← updatep \ {q}
37: if gidp = q then

38: (gidp, grndp)← (−1,−1)
39: check requests()
40: upon reception of request (round) from

src do
41: requestsp ← requestsp ∪ {(round, src)}
42: last_roundp[src]← round
43: check requests()
44: upon reception of grant () from src do
45: if gidp 6= −1 and gidp 6= p then
46: send(reject, src)
47: else if recoveringp = false then
48: grantsp ← grantsp ∪ {src}
49: upon reception of done () from src do
50: requestsp ← requestsp \ {(∗, src)}
51: (gidp, grndp)← (−1,−1)
52: check requests()
53: upon reception of reject () from src do
54: (gidp, grndp)← (−1,−1)
55: check requests()
56: upon reception of comeback (crit_src)

from src do
57: requestsp ← requestsp \ {(∗, src)}
58: if crit_src = false and gidp = src then
59: (gidp, grndp)← (−1,−1)
60: check requests()
61: send(update, gidp = src, last_roundp[src], src ∈

grantsp, roundp, reqp, src)
62: upon reception of update (grant_p, last_rnd,

grant_src, round, req) from src do
63: last_roundp[src]← round
64: roundp ←max(roundp, last_rnd)
65: if grant_src = true then . p previously

granted src
66: (gidp, grndp)← (src, round)

67: if grant_p = true then . src previously
granted p

68: grantsp ← grantsp ∪ {src}
69: if req = true then . src is requesting
70: requestsp ← requestsp ∪ {(round, src)}
71: updatep ← updatep \ {src}

64Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

roundp ← 0: the local round number of p, which is used to number its requests. It is also
used to define the current priority of p to access the critical section.

last_roundp ← ∅: a table associating each known process identity with its last known round
number. It is used to restore the round number of other processes after they crash and recover.

reqp ← false: a flag indicating that p is currently in the try section.
requestsp ← ∅: the set of requests received by p which are pending. Each request is a couple

(round, pid).
gidp ← −1: the identity of the last process to which p granted its permission, or −1 if p did

not grant it. It indicates that p sent a grant message to gidp, and that this permission was not
canceled by the reception of a done or reject message yet.

grndp ← −1: the current round number of the process to which p granted its permission, or
−1 if p did not grant it.

grantsp ← {p}: the set of processes from which p received a grant message.
recoveringp ← false: a flag indicating that p is currently attempting to rebuild its volatile

memory after a crash. Calls to try section and exit section will be delayed while recoveringp =

false.
updatep ← ∅: the set of processes from which p waits for an update message. This variable

is only used during the recovery phase, i.e., while recoveringp = true.
All of these local variables, except for critp, are stored in volatile memory. This means that

after a crash and recovery, they are reinitialized to the above default value.
Requests are totally ordered by their priority, which is defined as follows: priority(roundp, p) >

priority(roundq, q) ⇔ roundp < roundq or [roundp = roundq and p < q]. The highest func-
tion takes a list of requests and returns the couple (round, id) of the request with the highest
priority among the trusted processes according to tqp.

The check requests procedure is extensively used in Algorithm 5. Provided that process
p did not already grant its permission to another process and is not in CS, check requests
compares the requests that p received so far by calling the highest function (line 18), and sends
a grant message to the process with the highest priority (line 19). In case p received grants
from other processes before granting its own permission, it will send reject messages to the
processes in grantsp in order to prevent a deadlock (lines 20 – 22).

Whenever process p wants to access the critical section, it executes the try section: p
increments its roundp, resets its grantsp set (line 4), and then broadcasts a request to every
process in tqp (line 5). If p gets knowledge of a new process while it is still in the try section,
the request will also be sent to this process (line 32). Process p adds its own request to its
requestsp before calling check requests (lines 6 – 7), and finally waits for permissions from
every process in tqp (and its own permission, line 8) before entering CS.

Upon reception of a request message from process q (lines 40 – 43), process p updates its
knowledge about q’s round number and adds the new request to its requestsp set. It then calls
check requests to decide if it should send a grant to the new requester.

When receiving a grant message from process q, if p already granted its permission to
some other process then it informs q by responding with a reject message to prevent deadlocks
(line 46). Otherwise, if p is not in the recovery phase, it accepts q’s permission by adding it to
its grantsp set.

4.3. Sufficiency of T Σlr to solve Fault-Tolerant Mutual Exclusion 65

Upon finishing the critical section and calling exit section, p sends to all trusted processes
a done message (line 13). Then, p resets its grantsp set and cancels its request (line 50) before
calling check requests to grant its permission to the next process.

If p receives a done or reject message from process gidp, it cancels the permission granted to
gidp (lines 51 and 54) and calls check requests. In the case of a done message, the request
from gidp is also deleted from requestsp (line 50), since gidp is not requesting CS anymore.
However, in the case of a reject, the request from gidp is still valid and must be kept, even if
it is not the highest priority request.

If p crashes and recovers, the reconnection procedure will be called first. This procedure
initiates the recovery phase (lines 24 – 29) by switching the recoveringp flag to true, which will
temporarily prevent the algorithm from going into the try or exit sections (lines 2 and 11) and
from sending or accepting a grant (lines 17 and 47). During the recovery phase, p attempts to
recover the information it lost during the crash by sending a comeback message to every process
in tqp. Other processes will send update messages in response, which enables p to restore its
last_roundp, roundp, gidp, grndp, and requestsp variables (lines 63 – 71). The recovery phase
ends when every process to which p sent a comeback has either responded with an update
message (line 71), or crashed (line 36). After recovering, p calls check requests in order to
choose a process to which it will grant its permission (line 30).

If p receives a comeback message from a process q, it cancels any request previously received
from q, since a process in recovery phase can only be in the remainder or critical section (by
definition of a well-formed process). If q is in its remainder section (critp = false), then p cancels
any permission it might have granted to q previously (lines 58 – 60). Finally, p sends an update
message to q.

Whenever p is informed by the failure detector that a process q is eventually down (lines 33 –
39), p deletes q from its requestsp, grantsp and updatep sets. If q was the process to which p
granted permission, then p cancels the permission (line 38) and calls check requests to grant
its permission to another process, if appropriate.

4.3.2 Proof of Correctness

This section will prove, through the following claims, that any run of Algorithm 5 solves the
RME problem.

Claim 4.1 (Safety). Two distinct alive processes p and q can not be in CS at the same time.

In order to prove Claim 4.1, the following lemmata are required.

Lemma 4.1 (Uniqueness of the permission). Let p, q1, q2 be three distinct alive processes. If
p ∈ grantsq1 at a time t then p cannot send a grant message to q2 at time t.

Proof. The only way that p can send a grant message to a process q is on line 19, after it
selected q as its gidp. Note that the definition of the highest function also implies that q ∈ tqp
at the time when the grant message is sent.

Suppose that p has sent a grant message at time tG to another process q1 (and therefore at
time tG, gidp = q1).

66Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

Assume that there is a time t > tG such that p ∈ grantsq1 . Then suppose that p sends a
grant message to another process q2 at time t.

In order to send a grant message to q2, p has to set gidp to −1 or to p at some time
t′ ∈ [tG, t] (otherwise p cannot pass the test on line 17). This affectation can only be done in one
of the following lines:

Line 38: then q1 /∈ tqt
′
p . Since q1 ∈ tqtGp , according to the trusting accuracy property of

T Σlr, q1 has crashed at some time before t′ and will never recover. It is therefore impossible
that p ∈ grantsq1 at time t.

By resetting gidp to −1 after a crash. If p crashed between tG and t′, then its gidp got
reset to −1. This also means that p entered the recovery phase (lines 24 – 29) at some time
t′′ ∈ [tG, t

′]. Since q1 ∈ tqtGp , then according to the trusting accuracy property of T Σlr, either q1

crashed before t′′ and will never recover (which is a contradiction), or q1 ∈ tqt
′′
p . p will therefore

send a comeback message to q1 on line 27, and q1 will respond with a update message with
the grant_src parameter set to true, which will cause p to set its gidp back to q1. Since p cannot
have sent a grant message while in the recovery phase (because of the test on line 17), then p
cannot send the grant to q2 at time t which is a contradiction.

Line 59: then p received a comeback message from q1 at some time t′′ ∈ [tG, t
′]. This

means that q1 crashed and went into the recovery phase. p will respond with an update message
to q1. Since q1 cannot leave the recovery phase until it receives p’s update and because of the first
in, first out property, then p’s grant message to q1 was received either (1) before q1 crashed,
in which case the grant was forgotten, or (2) during the recovery phase, in which case q1 will
ignore the grant because of the test on line 47. In both cases, p /∈ grantsq1 after t′′, which is a
contradiction.

Line 51 or 54: then p received a done or reject message from q1 at time t′. There are two
cases. If q1 sent the done or reject message after receiving the grant, then q1 removed p from
grantsq1 on line 14 (resp. line 21) and did not add it back in afterwards, which is a contradiction.
Otherwise, q1 sent the done or reject message before receiving p’s grant. Since q1 only sends
done or reject messages to processes from which it previously received a grant, then p sent
another grant message to q1 before tG. This means that p sent two consecutive grant messages
to q1 without receiving a done or reject message in between. The only way this could happen
is if p set its gidp to −1 or p between sending the two grant messages without receiving a done
or reject, which is a contradiction since this proof eliminated every other way of doing that.

Hence, p can not be grantsq1 while p sends a grant message to q2 at the same time, which
conclude the proof of Lemma 4.1 .

Lemma 4.2 (Self permission). Let p, q be two distinct alive processes. If p ∈ grantsq then p can
not enter CS.

Proof. If p ∈ grantsq, then p sent a grant message to q and therefore set its gidp to q. The
reasoning of the proof for Lemma 4.1 can be used to show that p cannot change the value of its
gidp until q has removed p from its grantsq.

Since p is required to have its gidp set to p in order to enter CS (line 8), then it is impossible
for p to enter CS until after q removed p from grantsq.

Claim 4.1 can now be proved by contradiction.

4.3. Sufficiency of T Σlr to solve Fault-Tolerant Mutual Exclusion 67

Proof. Let p1, p2 be two alive, distinct processes. Suppose that p1 enters CS at time t1, and p2

enters CS at time t2. Suppose that neither process leaves CS until after the other process has
entered it. According to the live pairs intersection property of T Σlr, there is a process q such
that q ∈ tqt1p1 ∩ tq

t2
p2 . It follows from the wait condition on line 8 that q ∈ grantsp1 at time t1 and

q ∈ grantsp2 at time t2. There are two cases:
First case: p1, p2 and q are all distinct. Therefore, q sent a grant message to p1 before t1

and a grant message to p2 before t2. Additionally, neither process removed q from their grants
set before entering CS. Without loss of generality, assume that q sent the grant message to p1

first. There could be a run in which p1 received the message immediately, and therefore added q
to grantsp1 before q sent the second grant to p2. In this run, q sends a grant message to p2

while q ∈ grantsp1 at the same time, which is in contradiction with Lemma 4.1.
Second case: q = p1 or q = p2. Without loss of generality, assume that q = p1. Since

q ∈ grantsp2 at time t2, q sent a grant message to p2 before t2. Since it is impossible for q to
send a grant message while in CS (because of the test on line 17), it follows that q sent the
grant before entering CS. There could be a run in which p2 received the grant immediately
after it was sent, therefore adding q to grantsp2 before q entered CS, which is in contradiction
with Lemma 4.2.

Claim 4.2 (Starvation freedom). If no process stays in its critical section forever, then every
eventually up process that stopped crashing and reaches its try section will eventually enter its
CS.

To prove the Claim 4.2, the following lemmata is required:

Lemma 4.3 (Deadlock-free). Assuming that no process stays in CS forever, if a process p, which
does not have the highest priority among the requesting processes, receives at least one grant
from another process q, p will eventually either crash forever or remove q from grantsp, and q
will eventually either crash forever or set gidq to −1.

Proof. Let p be a process in its try section at time t. There exists a distinct process ph which is
also in its try section at time t and has the highest priority among requesting processes.

Let q be a process distinct from p that sends a grant message that p receives at time t. It
follows that p sent a request message to q at some time tR < t.

One of the following cases applies:
1) p is eventually down, and q is not. Then according to the strong completeness property

of T Σlr, p will eventually be removed from tqq and q will set gidq to −1 on line 38.
2) q is eventually down, and p is not. Then according to the strong completeness property

of T Σlr, q will eventually be removed from tqp and p will remove q from grantsp on line 34.
3) At time t, gidp 6= −1 and gidp 6= p. Then when p receives q’s grant message, it will

never add q to grantsp and will send q a reject message instead (line 46). When q receives the
reject message, it will set gidq to −1 (line 54).

4) At time t, gidp = −1. When p calls check requests, it will pass the test one line 17
since requestsp contains at least p’s request, and critp and recoveringp cannot be true while in
CS. p will then set gidp to something different from −1 on line 18.

68Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

It follows from the cases above that the only way Lemma 4.3 could be false is if neither p
nor q are eventually down, and gidp = p at time t. Since p is not eventually down, then p will
eventually receive ph’s request at some time t′ > t. Then one of the following cases applies:

1) During [tR, t
′], p does not crash, receives grant messages from every process in tqp, and

rdyp is set to >. Then p will end the wait on line 8 and enter CS. When p leaves CS, it will
remove q from grantsp on line 14 and send a done message to q on line 13. When q receives the
done message, it will set gidq to −1 on line 51.

2) During [tR, t
′], p does not crash and does not receive enough grant messages to enter

CS (or rdyp stays equal to ⊥). Then at time t′ when p receives ph’s request, it will call check
requests on line 43. p will pass the test on line 17 and, since ph is the requesting process with
the highest priority, p will set gidp to ph. It will then remove q from grantsp on line 21 and send
a reject message to q on line 22. When q receives the reject message, it will set gidq to −1

on line 54.
3) During [tR, t

′], p crashes before receiving enough grant messages to enter CS. When p
recovers, its grantsp set is reinitialized and does not contain q. Since q was previously in tqp
and q is not eventually down, it follows from the trusting accuracy property of T Σlr that q is
still in tqp after p recovers. p will therefore send a comeback message to q on line 27 with the
crit_src parameter set to false. When q receives the comeback message, it will set gidq to
−1 on line 59. Note that because of the first in, first out property, q will necessarily receive p’s
request before the comeback message. Additionally, p will receive q’s grant message before
q’s update message, and will ignore the grant because of the test on line 47.

Lemma 4.4 (Decreasing priority). Assuming that no process stays in the CS forever, if an
unstable process p is in the try section infinitely often, then the value of roundp increases infinitely
often (and therefore, p’s priority decreases infinitely often).

Proof. Let p be an unstable process that is in the try section infinitely often. By definition, p
also crashes infinitely often. Let q be any eventually up process. According to the eventually
strong accuracy property of T Σlr, p will eventually trust q forever.

Let t0 be a time after which every eventually down process crashed permanently, every eventu-
ally up process stopped crashing, and p started trusting q. According to the strong completeness
property of T Σlr, there is a time t1 ≥ t0 such that ∀t > t1, tqtp does not contain any eventually
down process. Let t2 > t1 be the first time after t1 that p crashes, and let t3 > t2 be the first
time after t2 that p enters the try section.

Every request sent by p after t3 is sent only to processes that are not eventually down,
including q. According to the dynamic connectivity property, q will receive every request sent
by p after t3. Every time that p crashes after t3, p will send a comeback message to q. Because
of the first in, first out property, q will receive p’s last request before receiving the comeback
message, and therefore when q receives the comeback its last_roundq[p] will be up to date
with q’s latest roundp value from before the crash. q will then respond with an update message,
and p will update its roundp value on line 63 before leaving the recovery phase. As a result,
crashes after t3 do not reduce or reset p’s roundp value.

At any time t > t3, there are three possibilities:

4.3. Sufficiency of T Σlr to solve Fault-Tolerant Mutual Exclusion 69

1) p is in the exit or remainder section at time t. By assumption, p will eventually enter the
try section, and therefore increase its roundp value on line 4.

2) p is in the CS at time t. Since by assumption no process stays in the section forever, p
will eventually leave CS and the case above applies.

3) p is in the try section at time t. Eventually, p will either enter CS (and the case above
applies), or p will crash before entering the CS and therefore it will be in the remainder section
after recovery (and the first case applies).

In all cases, there is a time t′ > t such that roundp increases at time t′.

Lemma 4.5 (Highest priority starvation freedom). Let t be a time after all eventually up pro-
cesses stopped crashing. Assuming that no process stays in CS forever, if an eventually up process
p is in the try section and has the highest priority among requesting eventually up processes at
time t, then eventually p enters CS.

Proof. Let p be an eventually up process that is in the try section with the highest priority among
requesting eventually up processes at time t. By contradiction, assume that p never enters CS
after t. It follows that p will never leave the try section, since it will neither crash nor enter CS.
Therefore, p will never re-enter the try section and increase its roundp value on line 4. It follows
that p’s priority will never change after t.

Let q1 be any unstable process. According to Lemma 4.4, q1 will either eventually stop
entering the try section (in which case its priority becomes irrelevant), or q1’s priority will be
reduced infinitely often, in which case p’s priority will eventually be higher than q1’s. As a result,
there is a time t′ ≥ t after which p has the highest priority of all requesting processes in the
system.

If gidp = q2 with q2 distinct from q after t′, then according to Lemma 4.3, eventually p will
set its gidp to −1 and then call check requests. p will then set itself as gidp on line 18 and
will never change gidp again.

According to the dynamic connectivity property, eventually every process in tqp will have
received p’s request. Let q3 be any process that received p’s request. If gidq3 6= −1 and gidq3 6= q3,
then after t′, according to Lemma 4.3, q3 will eventually set gidq3 to −1. When gidq3 is equal to
−1 or q3 after t′, then q3 will set it to p on line 18 and send a grant message to p on line 19.
As a result, p will receive a grant message from every process in tqp.

Since p is eventually up, according to the quorum readiness property of T Σlr, the eventually
rdyp = >.

Finally, p will pass the wait condition on line 8 and enter CS, which is a contradiction.

Claim 4.2 can now be proved.

Proof. Let p be an eventually up process that stopped crashing and is in its try section at time t.
By contradiction, assume that p never enters CS after t. It follows that p will never leave the try
section, since it will neither crash nor enter CS. Therefore, p will never re-enter the try section
and increase its roundp value on line 4. It follows that p’s priority will never change after t, and
that every requesting unstable process will eventually have a lower priority than p.

Let Q be the set of all requesting eventually up processes with higher priority than p. Let q
be the process in Q with the highest priority. It follows from Lemma 4.5 that eventually, q will

70Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

enter CS. After q leaves CS, it will either (1) stop requesting forever (and therefore leave Q) or
(2) enter the try section again and therefore decrease its priority. By induction, q will eventually
not have the highest priority amongst requesting processes anymore, and another process in Q
will take its place. As a result, eventually Q will become empty since every process in it will
either stop requesting or increase its priority infinitely often.

Finally, p will become the requesting eventually up process with the highest priority, and
according to Lemma 4.5, will enter CS, which is a contradiction.

Claim 4.3 (Liveness). If an eventually up process p stopped crashing and is in the try section,
then at some time later some process that is not eventually down is in CS.

Proof. Let p be an eventually up process that stopped crashing and is in the try section. There
are two possibilities:

• Some process eventually stays in CS forever. In this case, liveness is ensured.

• Otherwise, according to Claim 4.2, p will eventually enter CS, thus ensuring liveness.

Theorem 4.2 follows From Claim 4.1 and Claim 4.3:

Theorem 4.2 (Correctness). The Algorithm 5 solves the RME using T Σlr in any unknown
dynamic environment.

Corollary 4.1 (Sufficiency). The T Σlr failure detector is sufficient to solve the RME in any
unknown dynamic environment with partial memory loss.

4.4 Necessity of T Σlr to solve Fault-Tolerant Mutual Exclusion

This section proves that the T Σlr failure detector is necessary to solve the RME problem in any
unknown dynamic system with partial memory loss. For this purpose, it can be assumed that
there is an unknown dynamic system modelMRME with partial memory loss, in which RME can
be solved with some algorithm ARME. The following proof will then show that the properties of
T Σlr can be implemented inMRME.

Although the purpose of this section is to show that T Σlr can be implemented with RME in
MRME, the same arguments and algorithms used here can also be used to show that T Σl can
be implemented with fault-tolerant mutual exclusion in a static, known system without recovery.
As a result, this section is also a part of the proof for Theorem 4.1.

The following proof is inspired by the proofs for the necessity of T and Σl in [DGFGK05]
and [BCJ09], respectively. The main additional challenge is to merge the two proofs, since both
trusting and quorum properties must apply for a same set tqp.

The proof uses two algorithms, both of which share the following local variables:
trustp ← {p} is the set of all processes that process p has heard of and that it does not

suspect. This variable is in stable storage.
startp ← false is a flag used to delay the start of the RME algorithm.

4.4. Necessity of T Σlr to solve Fault-Tolerant Mutual Exclusion 71

Algorithm 6 Modified send primitive for BRME

1: procedure BRME _send(msg, dest)
2: wait for startp = true
3: send(msg, trustp, dest)

4: upon reception of (msg, trust_src) from src do
5: wait for startp = true
6: trustp ← trustp ∪ trust_src
7: BRME _deliver(msg)

First, algorithm BRME is introduced. BRME has exactly the same code as ARME, except that
every call to the send primitive is replaced by a call to BRME _send, as defined in Algorithm 6.

Algorithm 6 serves two purposes: (1) by using trustp, it enables p to keep track of which
processes it heard of while trying to access CS; (2) by using startp, it enables p to delay the start
of the RME algorithm.

Lemma 4.6. Provided that each eventually up process p eventually sets startp to true, Algorithm
BRME solves the RME problem inMRME.

Proof. The only difference between ARME and BRME that could prevent BRME from solving
RME is the wait on lines 2 and 5. A process that never sets startp to true cannot participate in
the algorithm. By assumption, this is only a problem for processes that are not eventually up. If
a process never sets startp to true, then for the purpose of BRME, that process behaves exactly
as an always down process would behave in a run of ARME.

Algorithm 7 can now be introduced, which makes use of ARME and BRME to implement the
properties of T Σlr.

In addition to trustp and startp, Algorithm 7 uses following local variables:
knownp ← {p}: as discussed in Section 4.1, knownp represents the knowledge that p has of

other processes in the system. The algorithm does not show how knownp is kept up to date,
but simply expects that knownp will eventually contain the process identities of (at least) all
eventually up processes.

crashp ← ∅: the set of all processes that p is certain have crashed forever. Note that this
variable is in stable storage.

tqp ← ∅: the output of the T Σlr failure detector, which verifies the trusting and quorum
properties.

rdyp ← ⊥: the other output variable of T Σlr, which verifies the quorum properties.
waitlistp ← ∅: the set of processes to which p must grant permission for CS. This is used to

ensure starvation freedom. Note that this variable is in stable storage.
donelistp ← ∅: the set of processes to which p already granted permission for CS. It prevents

p from always being passed over for CS access.
Algorithm 7 initially starts two tasks in parallel: task 1 and task 2. Later on, whenever

process p gets knowledge of a process q, it starts a new task for q (denoted task 3 + q).
Each process p has its own CS, which is handled by algorithm ARME and accessed with

ARME.try(p). Additionally, there is a global CS which is handled by algorithm BRME and
accessed with BRME.try.

72Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

Algorithm 7 Reduction Algorithm TARME→T Σlr : code for process p
1: procedure task 1
2: ARME.try(p)
3: startp ← true
4: loop forever:
5: for q ∈ knownp do
6: send(alive, reqp, trustp, q)

7: procedure task 2
8: loop forever:
9: wait for waitlistp \ donelistp = ∅

10: donelistp ← ∅
11: reqp ← true
12: BRME.try
13: BRME.exit
14: reqp ← false
15: if trustp ∩ crashp = ∅ then
16: tqp ← trustp
17: rdyp ← >
18: for q ∈ knownp do
19: send(quorum, trustp, crashp, q)

20: else
21: trustp ← trustp \ crashp
22: procedure task 3 + q
23: knownp ← knownp ∪ {q}
24: ARME.try(q)
25: ARME.exit(q)
26: crashp ← crashp ∪ {q}
27: procedure reconnection
28: tqp ← trustp \ crashp
29: for q ∈ trustp do
30: Start task 3 + q

31: when q 6= p is added to trustp
32: Start task 3 + q

33: upon reception of alive (req, trust_src) from src do
34: trustp ← trustp ∪ trust_src
35: if req = true then waitlistp ← waitlistp ∪ {src}
36: else
37: waitlistp ← waitlistp \ {src}
38: donelistp ← donelistp ∪ {src}
39: upon reception of quorum (trust_src, crash_src) from src do
40: trustp ← trustp ∪ trust_src
41: crashp ← crashp ∪ crash_src
42: if rdyp = ⊥ then
43: tqp ← trustp \ crashp

4.4. Necessity of T Σlr to solve Fault-Tolerant Mutual Exclusion 73

In task 1, p enters its own CS and then never leaves it. Since in this case a well-formed
process restarts in the CS after a recovery, this means that a recovering process will restart task
1 directly after line 2 if it previously managed to enter its own CS. This enables other processes
to detect p’s failure if it crashes permanently (if another process manages to access p’s CS in
task 3 + p, it means that p crashed forever). In task 1, p also sends information to the rest of
the system about its own identity and whether or not p is trying to access the global CS. These
alive messages are used by other processes to keep trustp, waitlistp, and donelistp up to date.

In task 2, p tries infinitely often to access the global CS. The wait on line 9 helps to ensure
that the global CS starvation freedom property is satisfied. After entering and leaving the global
CS, if p entered it using only messages from processes that are not crashed (test on line 15),
then p updates its T Σlr output variables and informs other processes with quorum messages.
However, if p used information from crashed processes to enter CS, it removes them from its
trustp set.

task 3 + q is started by p when q is added to trustp, and is used to detect q’s permanent
crash.

When a process p receives a quorum message, it updates its local trustp and crashp infor-
mation and, if rdyp is currently ⊥ (and therefore p is not currently trying to verify the live pairs
intersection property), then p updates its tqp.

Lemma 4.7 (Starvation freedom). Every eventually up process passes the lines 12 – 13 infinitely
often.

Proof. By contradiction, assume that there is an eventually up process p which does not go
through CS infinitely often. There are two ways this could happen: p is either stuck in the wait
on line 9 forever, or p is stuck in try section on line 12 forever.

First assume that p is stuck in try section forever. Since the liveness property of RME is
verified, and since no process can stay in CS forever (since the CS has no code), it follows that
there is a process q that enters CS infinitely often.

Eventually, p ∈ knownq and q ∈ knownp. Since p set reqp to true on line 11, then eventually
q will receive an alive message from p with req set to true, and q will add p to waitlistq.
Because of the first in, first out property, q will eventually stop receiving any alive message
from p that has the req value set to false. Since q passes the line 10 infinitely often, eventually
p /∈ donelist. Since p ∈ waitlistq \ donelistq, then eventually q will wait forever on line 9, which
is a contradiction.

Now assume that p is stuck on line 9 forever. Let W be the set of processes that stay in
waitlistp \ donelistp for infinitely long. Note that a process q that is not stuck forever in the try
section on line 12 would have their req set to false and therefore would send an alive message
to p with req set to false, and would be removed from waitlistp \ donelistp as a result. It
follows that every q ∈W is stuck forever on line 12. If q is eventually down, it eventually crashes
forever and therefore cannot be in W . If q is eventually up, according to the previous paragraph
it eventually enters CS and therefore cannot be in W . If q is unstable, it eventually crashes and
resets its reqq to false, and therefore cannot be in W . As a result, W is empty and p eventually
ends the wait on line 9.

74Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

Lemma 4.8 (Crashed completeness). A process can only be added to crashp if it crashed forever.

Proof. A process can only be added to crashp on lines 26 and 41. In order for p to add a process
to crashp on line 41, some other process q must have added it to crashq on line 26 first.

In order for p to add a process q to crashp on line 26, p must first have started task 3 + q.
This can only happen if p added q to trustp. A process can be added to trustp on lines 34 and 40,
or by receiving information from q as part of algorithm BRME. If q sent a quorum message,
then it must have passed the CS on lines 12 – 13 and therefore sent or received information as
part of algorithm BRME, which means that startq was set to true. Whether q set startq to true
on line 3 or sent an alive message on line 6, it had to enter its own CS on line 2 first.

Since q entered its own CS before p started task 3 + q and will never leave it, the only way
that p can reach line 26 and add q to crashp is if q crashed forever.

Claim 4.4 (Strong completeness). Algorithm 7 ensures the strong completeness property of T Σlr

inMRME.

Proof. Let p be an eventually down process, and q be a process that is not eventually down.
Note that by construction, a process can never be added to tqq without being added to trustq
first. There are two cases:

p was never added to trustq. Then the property is immediately verified.
p was added to trustq. Let r be some eventually up process. Eventually, q will send an alive

message to r which contains trustq. Therefore, r will eventually add p to its trustr and will then
start task 3 + p. After p crashes forever, eventually r will reach line 26 and add p to crashr.

Let t1 be a time after which all eventually down processes have crashed. Let t2 ≥ t1 be a time
after which there are no more messages sent by eventually down processes in the system. After
t2, neither q nor r will ever add an eventually down process into their trust set again. According
to Lemma 4.7, r will then eventually remove all eventually down processes from trustr on line 21.
Since according to Lemma 4.8 only eventually down processes can be in crashr, after this time
r will always pass the test on line 15 and therefore r will send a quorum message to q infinitely
often.

If q goes through the loop in task 1 infinitely often, it will act like r and eventually never
have p in its tqq. If q is unstable and does not go through the loop in task 1 infinitely often,
then after it stops going through the loop it will crash and reset its rdyq to ⊥. Then, the next
time that q receives a quorum message from r, it will add p to crashq and remove it from tqq
on line 43

Claim 4.5 (Eventually strong accuracy). Algorithm 7 ensures the eventually strong accuracy
property of T Σlr inMRME.

Proof. Let p be an eventually up process, and q a process that is not eventually down. Eventually,
q ∈ knownp. According to the liveness property of RME, p will eventually enter its own CS and
send an alive message to q on line 6. When q receives the message, it will add p to its trustq
set on line 34. It follows from Lemma 4.8 that p will never be in crashq. According to the proof
for Claim 4.4, q will update its tqp infinitely often with trustq, either on line 16 or on line 43.
As a result, p ∈ tqq forever.

4.4. Necessity of T Σlr to solve Fault-Tolerant Mutual Exclusion 75

Claim 4.6 (Trusting accuracy). By construction, the only way that a process can be removed
from tqp is by being added to crashp. The proof then follows directly from Lemma 4.8.

Claim 4.7 (Quorum readiness). Algorithm 7 ensures the quorum readiness property of T Σlr in
MRME.

Proof. Let p be an eventually up process. According to the proof for Claim 4.4, p will pass the
test on line 15 infinitely often. After p stops crashing, the next time it reaches line 17, it will set
rdyp to > forever.

Lemma 4.9 (Message reception intersection). Let p1 and p2 be two processes that enter the CS
of BRME at time t1 (resp. t2). Let Q1 (resp. Q2) be the set of all processes from which p1 (resp.
p2) received information from (directly or through forwarding) since the last time it entered the
try section before t1 (resp. t2). Then either one of the process crashed permanently before the
other entered CS, or Q1 ∩Q2 6= ∅.

Proof. By contradiction, assume that Q1 ∩Q2 = ∅.
First assume that in BRME, a process r might send a message to a process s to authorize s

to enter CS before s has entered the try section. In this case, it is possible that every process
in the system would send such a message to s before s enters the try section. Now consider
a run in which a process s′ different from s later enters the try section. If BRME allows some
process to authorize s′, then all other processes might do the same thing. As a result, if s is
not permanently crashed, s and s′ might enter CS at the same time, thus violating the safety
property. If BRME does not allow any process to authorize s′, then s might never enter the try
section, thus violating the liveness property. It follows that in BRME, only messages received
after entering the try section can authorize a process to enter CS.

Now consider a run in which every message between Q1 and Q2 is delayed until after both p1

and p2 have left CS. This means that the system is partitioned, and therefore algorithm BRME

cannot possibly prevent a run in which both p1 and p2 enter CS at the same time, thus violating
the safety property of RME.

Claim 4.8 (Live pairs intersection). Algorithm 7 ensures the live pairs intersection property of
T Σlr inMRME.

Proof. The live pairs intersection property only applies when rdyp is set to >, and the only way
to set rdyp to > is on line 17. Since lines 28 and 43 can only be reached when rdyp is set to ⊥,
it follows that at any time rdyp is equal to >, the current value of tqp was set on line 16.

Note that tqp is set from trustp on line 16 after p recently went through the global try,
critical, and exit sections with BRME on lines 12 – 13. By construction, every process from
which p received information (even indirectly) in BRME since last entering the try section is in
trustp at that time. Observe also that the only way to remove a process identity from trustp is
on line 21, which cannot be reached between lines 12 and 16.

Let p1 and p2 be two processes, and let t be some time at which both are alive. Then for any
time t1 ≤ t when p2 reached line 16 and any time t2 ≤ t when p2 reached line 16, it follows from
Lemma 4.9 that trustp1 at time t1 and trustp2 at time t2 intersect.

From Claims 4.4 to 4.8, the following theorem can be deduced:

76Chapter 4. The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems

Theorem 4.3 (Correctness). The Algorithm 7 implements T Σlr inMRME.

Corollary 4.2 (Necessity). The T Σlr failure detector is necessary to solve the RME in any
unknown dynamic environment with partial memory loss.

Conclusion

This chapter adapted the (T ,Σl) failure detector into the T Σlr failure detector adapted to
unknown dynamic systems with partial memory loss and where faulty processes may recover.
T Σlr was proved to be both necessary and sufficient to solve the RME problem in such systems
and it is, therefore, the weakest failure detector to solve RME in unknown dynamic systems with
partial memory loss.

Additionally, this chapter showed that the properties of (T ,Σl) can apply to two separate
output variables or to a single one, without changing the strength of the failure detector.

Chapter 5

Conclusion

Contents

5.1 Contributions . 78

5.1.1 A Failure Detector for k-Set Agreement in Unknown Dynamic Systems 78

5.1.2 A Failure Detector for Recoverable Mutual Exclusion in Unknown Dy-
namic Systems . 78

5.2 Perspectives . 79

5.2.1 On the Necessity of Synchronous Processes in Dynamic Systems 79

5.2.2 The Weakest Failure Detector for k-Set Agreement 79

5.2.3 Defining the Mutual Exclusion Problem in Crash-Recovery Systems . . 79

Unknown dynamic systems pose new challenges to the field of distributed computing, and
failure detectors in particular. The lack of initial information in an unknown system, along
with the dynamics of the set of processes and the communication graph, prevent existing failure
detector results from being applied to these new systems. For instance, some detectors, such
as Σ and Σl, can not be implemented without initial information on the participants in the
system. Additionally, in order to be implemented, all failure detectors require a specific level of
temporal graph connectivity. Furthermore, even in a system enriched with a failure detector, no
problem can be solved without the assumption of some level of temporal graph connectivity that
is specific to the problem. In other words, if the processes in the upper layer application can not
communicate with each other, then no problem can be solved even with perfect information on
failures.

This thesis addressed these challenges by providing new definitions of previously existing
failure detectors that are suitable to unknown dynamic systems, and used them to solve two
fundamental problems of distributed computing: k-set agreement and RME. To circumvent the
lack of initial information, the ⊥ default value was added as a way to delay the failure detector
outputs. In Chapter 3, a failure detector implementation was proposed which makes use of the
TVG model of [CFQS12] to express the required level of temporal graph connectivity. Finally, the
necessity of temporal graph connectivity assumptions to solve problems was addressed differently
in Chapters 3 and 4.

77

78 Chapter 5. Conclusion

In Chapter 3, the connectivity assumptions used to solve k-set agreement were integrated into
the definition of the failure detector itself. This approach presents the advantage of preserving the
role of the failure detector as a complete abstraction layer: no other assumption than the failure
detector is used to solve the problem. Conversely, in Chapter 4, the connectivity assumptions
used to solve RME were presented as part of the base system model. While this approach limits
the applicability of the results to systems making the same connectivity assumptions, it presents
the advantage of making the new failure detector definition closer to its existing definition for
static and known systems. This allowed Chapter 4 to be a direct translation of the existing
results of [DGFGK05] and [BCJ09] for unknown dynamic systems.

5.1 Contributions

This section summarizes the contributions presented in this thesis.

5.1.1 A Failure Detector for k-Set Agreement in Unknown Dynamic Systems

Chapter 3 adapted the definition of the ΠΣx,y failure detector into the ΠΣ⊥,x,y failure detector.
This new detector differs from the original in two ways: it makes use of the ⊥ default value to
deal with the lack of initial information about the participants in the system, and it includes
two connectivity properties (one is the quorum connectivity property, and the other is integrated
into the eventual partial leadership property).

Using the TVG formalism enriched with message pattern assumptions to model an unknown
dynamic system, an implementation of ΠΣ⊥,x,y was then presented.

Additionally, an algorithm adapted from the k-set agreement algorithm of [BT10, MRS12]
was proposed. This algorithm solves the k-set agreement problem in any unknown dynamic
system enriched with ΠΣ⊥,x,y with k ≤ xy, thus proving that this failure detector is sufficient to
solve k-set agreement in unknown dynamic systems.

5.1.2 A Failure Detector for Recoverable Mutual Exclusion in Unknown Dy-
namic Systems

In Chapter 4, graph connectivity issues were abstracted into model assumptions. As a result,
this work focused on process mobility, which was modeled using the crash-recovery failure model.

The chapter first discussed the differences between (T ,Σl) and T Σl (which requires the
properties of T and Σl to apply to a same output set), and proved that both failure detectors
are equivalent.

Based on that result, T Σl was then extended into the T Σlr failure detector, which modifies
the former in two ways: it uses of the ⊥ default value (in the form of the rdyp variable) and
is defined in terms of eventually up, eventually down and unstable processes, instead of correct
and faulty processes.

An algorithm that solves RME using T Σlr was proposed, thus proving that it is sufficient
to solve RME in unknown dynamic systems. Finally, a reduction algorithm transforming any
failure detector sufficient to solve RME into T Σlr was also presented, thus proving that T Σlr is
the weakest failure detector to solve RME in unknown dynamic systems.

5.2. Perspectives 79

5.2 Perspectives

5.2.1 On the Necessity of Synchronous Processes in Dynamic Systems

Chapter 3 made the assumption that processes are synchronous. This assumption ensures that
processes send their messages often enough to take advantage of the communication link availabil-
ity windows. If this synchrony assumption is removed, even if a journey between two processes is
available infinitely often, there is no guarantee that processes will ever manage to take advantage
of this journey to get messages through.

Some papers in the literature have made a different assumption for the same purpose, like
in [GCLL15], where it is assumed that new edges appearing in the graph are detected fast
enough by processes to make use of the edge availability window. Such an assumption also
implies some common timing between processes, since the definition of “fast enough” must be
the same system-wide.

It would seems, therefore, that some sort of process synchrony assumption is necessary to
reliably exploit communication opportunities in dynamic systems, but no such result has been
proved so far.

5.2.2 The Weakest Failure Detector for k-Set Agreement

There is no proof that ΠΣx,y (in static and known systems) or ΠΣ⊥,x,y (in unknown dynamic
systems) is the weakest failure detector for k-set agreement in the general case of 1 ≤ k < n.

Although the weakest failure detectors for consensus (k = 1) and set agreement (k = n− 1)
have been identified, the weakest failure detector for 2 ≤ k < n − 1 has yet to be found. This
issue has been the object of many of the papers presented in Section 2.3, and is still an open
problem.

5.2.3 Defining the Mutual Exclusion Problem in Crash-Recovery Systems

Chapter 4 focused on a definition of RME that allows temporarily down processes to stay in
the critical section until they recover and finish it. On the other hand, a process that crashes
permanently must release the critical section in order to ensure liveness. This version of the
problem is difficult to solve, since it implies that processes must be able to detect whether the
crash of another process is temporary or permanent.

This version of RME is powerful because it ensures that process can always execute their
critical section without being interrupted by other processes which is important, for example, to
preserve the consistency of a shared resource. However, some applications might not require this
level of consistency.

Another, weaker version of RME could be defined in which a process that crashes always
leaves the critical section, whether the crash is temporary or permanent. This version of the
problem is easier to solve, and requires a weaker version of the trusting accuracy property, since
distinguishing a permanent crash from a temporary one would no longer be necessary.

Further research could aim to define the weakest failure detector for this weaker mutual
exclusion problem.

Appendix A

A Reliable Broadcast Protocol for
Asynchronous Systems with a

Hypercube Topology

The following is an article [JRAJ16] that was written with Luiz A. Rodrigues, Luciana Arantes
and Elias Procópio Duarte Jr. as part of the joint project CNRS - Fundação Araucária between
the LIP6 (Delys team), the Universidade Federal do Paraná (UFPR) and the Universidade
Estadual do Oeste do Paraná (UNIOESTE) in Brazil. Although it is a distributed computing
paper, it does not concern dynamic systems and it is therefore presented as an appendix to this
thesis.

Contents

A.1 Introduction . 81

A.2 Related Work . 83

A.3 System Model . 85

A.4 The VCube . 85

A.5 Reliable Broadcast Algorithm for Asynchronous System 86

A.5.1 Message types and local variables . 87

A.5.2 Algorithm description . 88

A.5.3 Proof of correctness . 90

A.6 Performance Discussion . 92

A.7 Conclusion and Future Work . 93

A.1 Introduction

Numerous distributed applications with information dissemination requirements rely on a broad-
cast communication primitive to send messages to all processes that compose the application

81

82Appendix A. A Reliable Broadcast Protocol for Asynchronous Systems with a Hypercube Topology

[BDPB13]. Formally, reliable broadcast is defined in terms of two primitives: broadcast(m),
which is defined by the broadcast algorithm and called by the application to disseminate m to
all processes, and deliver(m), which is defined by the application and called by the broadcast
algorithm when message m has been received. The broadcast algorithm that offers these primi-
tives must ensure that, if a correct1 process broadcasts a message, then it eventually delivers the
message (validity property). Furthermore, every correct process delivers a message at most once
and only if that message was previously broadcast by some process (integrity property).

From an implementation point of view, the broadcast primitive sends point-to-point messages
to each process of the system. However, if the sender fails during the execution of the broadcast
primitive, some processes might not receive the broadcast message. In order to circumvent this
problem, reliable broadcast ensures, besides the validity and integrity properties, that even if the
sender fails, every correct process delivers the same set of messages (agreement property) [HT93].

There exists a considerable amount of literature on reliable broadcast algorithms, such as the
one where all correct receivers retransmit all received messages guaranteeing then the delivery of
all broadcast messages by the other correct processes of the system [GR06]. We are particularly
interested in solutions that use failure detectors[CT96] which notify the broadcast algorithm
about processes failures. Upon receiving such an information, the algorithm reacts in accordance
to tolerate the failure. Another important feature of reliable broadcast algorithms concerns
performance, which is related to how broadcast messages are diffused to processes. Aiming at
scalability and message complexity efficiency, many reliable broadcasts organize processes on
logical spanning trees. Messages are then diffused over the constructed tree, therefore providing
logarithmic performance [SGS84], [FA96], [KMV10], [RS88], [RSCW14] (see Section A.2).

This work presents an autonomic reliable broadcast algorithm where messages are transmit-
ted over spanning trees dynamically built on top of a logical hierarchical hypercube-like topology.
Autonomic systems constantly monitor themselves and automatically adapt to changes [KC03].
The logical topology is maintained by the underlying VCube monitoring system which also de-
tects failures [DBR14] [DJN98]. VCube is a distributed diagnosis layer responsible for organizing
processes of the system in a virtual hypercube-like cluster-based topology which is dynamically
re-organized in case of process failure. When invoked, the VCube gives information about the
liveness of the processes that compose the system.

We assume a fully-connected asynchronous system in which processes can fail by crashing,
and crashes are permanent. Links are reliable. A process that invokes the reliable broadcast
primitive starts the construction of a spanning tree. This tree is built with information obtained
from the VCube, and is dynamically reconstructed upon detection of a node crash (process
failure).

In a previous work [RAJ14], we proposed an autonomic reliable broadcast algorithm on top
of the Hi-ADSD, a previous version of the VCube. The algorithm guarantees several logarithmic
properties, even when nodes fail, and allows transparent and efficient spanning tree reconstruc-
tions. However, for this solution, we considered a synchronous model for the system, i.e., there
exist known bounds on message transmission delays and processors’ speed and, consequently,
the VCube needs to provide perfect process failure detections. On the one hand, the advantage
of such synchronous assumption is that there was no false failure suspicions and, thus, if the

1A correct process is a process that does not fail during execution

A.2. Related Work 83

VCube notifies the broadcast algorithm that a given process is faulty, the algorithm is sure that
it can stop sending message to this faulty process and then removes it forever from the span-
ning tree constructions. On the other hand, the synchronous assumption considerably restrains
the distributed systems and applications that can use the broadcast protocol since many of the
current network environments are considered asynchronous (there exist no bounds on message
transmission delay or on processors’ speed).

Hence, considering the above constraints, we propose in this article a new autonomic re-
liable broadcast algorithm, using the VCube in an asynchronous model. We assume that the
failure detection service provided by the VCube is unreliable since it can make mistakes by er-
roneously suspecting a correct process (false suspicion) or by not suspecting a node that has
actually crashed. However, upon detection of its mistake, the VCube corrects it. Furthermore,
it also ensures that eventually all failures are detected (strong completeness property). Note that
such false suspicions render a broadcast algorithm much more complex than the previous one
since it can induce violation of the properties. For instance, the algorithm must ensure that a
falsely suspected process must receive and deliver, only once, all broadcast messages, otherwise
the agreement and integrity properties would be violated. In our solution, false suspicions are
tolerated by sending special messages to those processes suspected of having failed. We must
also emphasize that our aim is to provide a reliable broadcast algorithm which is efficient, i.e.,
that keeps, as much as possible, the logarithmic properties of the spanning tree diffusion over
the hypercube-like topology. Our algorithm tolerates up to n-1 node crashes.

The rest of this paper is organized as follows. Section A.2 discusses some related work. In
Section A.3 we describe the system model while Section A.4 briefly describes the VCube diagnosis
algorithm and the hypercube-like topology. In Section A.5, we present the autonomic reliable
broadcast algorithm for asynchronous systems while Section A.6 discuss some performance issue
of the algorithm. Finally, Section A.7 concludes the paper.

A.2 Related Work

Many reliable broadcast algorithms of the literature exploit spanning trees such as [SGS84, FA96,
KMV10, RS88, RSCW14].

Schneider et. al. introduced in[SGS84] a tree-based fault-tolerant broadcast algorithm whose
root is the process that starts the broadcast. Each node forwards the message to all its suc-
cessors in the tree. If one process p that belongs to the tree fails, another process assumes the
responsibility of retransmitting the messages that p should have transmitted if it were correct.
Like to our approach, processes can fail by crashing and the crash of any process is detected
after a finite but unbounded time interval by a failure detection module. However, the authors
do not explain how the algorithm rebuilds or reorganizes the tree after a process failure.

In [FA96], a reliable broadcast algorithm is provided by exploiting disjoint paths between pairs
of source and destination nodes. Multiple-path algorithms are particularly useful in systems that
cannot tolerate the time overhead for detecting faulty processors, but there is an overhead in the
number of duplicated messages. On a star network with n edges, the algorithm constructs n− 1

directed edge-disjoint spanning trees. Fault tolerance is achieved by retransmitting the same
messages through a number of edge-disjoint spanning trees. The algorithm tolerates up to n− 2

84Appendix A. A Reliable Broadcast Protocol for Asynchronous Systems with a Hypercube Topology

failure of nodes or edges and can be adjusted depending on the network reliability. Similarly, Kim
et al. propose in [KMV10] a tree-based solution to disseminate a message to a large number of
receivers using multiple data paths in a context of time-constrained dissemination of information.
Thus, arguing that reliable extensions using ack-based failure recovery protocols cannot support
reliable dissemination with time constraints, the authors exploit the use of multiple data paths
trees in order to conceive a fast and reliable multicast dissemination protocol. Basically the latter
is a forest-based (multiple parents-to-multiple children) tree structure where each participant
node has multiple parents as well as multiple children. A third work that exploits multi-paths
spanning trees is [RS88] where the authors present a reliable broadcast algorithm that runs on
a hypercube and uses disjoint spanning trees for sending a message through multiple paths.

Raynal et. al. proposed in [RSCW14] a reliable tree-based broadcast algorithm suited to
dynamic networks in which message transfer delays are bounded by a constant of δ unit of times.
Whenever a link appears, its lifetime is at least δ units of time. The broadcast is based on a
spanning-tree on top of which processes forward received messages to their respective neighbors.
However, as the system is dynamic, the set of current neighbors of a process p may consists of a
subset of all its neighbors and, therefore, p has to additionally execute specific statements when
a link re-appears, i.e., forwards the message on this link if it is not sure that the destination
process already has a copy of it.

Similarly to our approach, many existing reliable broadcast algorithms exploit spanning trees
constructed on hypercube-like topologies [RS88, Wu96, LB99]. In [Wu96], the authors present
a fault-tolerant broadcast algorithm for hypercubes based on binomial trees. The algorithm can
recursively regenerate a faulty subtree, induced by a faulty node, through one of the leaves of the
tree. On the other hand, unlike our approach, there is a special message for advertising that the
tree must be reconstructed and, in this case, broadcast messages are not treated by the nodes
until the tree is rebuilt. The HyperCast protocol proposed by [LB99] organizes the members of
a multicast group in a logical tree embedded in a hypercube. Labels are assigned to nodes and
the one with the highest label is considered to be the root of the tree. However, due to process
failures, multiple nodes may consider themselves to be the root and/or different nodes may have
different views of which node is the root.

Leitão et al. present in [LPR07] the HyParView, a hybrid broadcast solution that combines
a tree-based strategy with a gossip protocol. A broadcast tree is created embedded on a gossip-
based overlay. Broadcast is performed by using gossip on the tree branches. Later, some of
the authors proposed a second work [FLR10] where they introduced Thicket, a decentralized
algorithm to build and maintain multiple trees over a single unstructured P2P unstructured
overlay for information diffusion. The authors argue that multiple trees approach allow that
each node to be an internal node in just a few trees and a leaf node in the remaining of the trees
providing, thus, load distribution as well as redundant information for fault-tolerance.

In [RAJ14], we presented a reliable broadcast solution based on dynamic spanning trees on
top of the Hi-ADSD, a previous version of the VCube. Multiple trees are dynamically built,
including all correct nodes, where each tree root corresponds to the node that called a broadcast
primitive. Contrarily to the current work, this solution considers that the system model is
synchronous and that the VCube offers a perfect failure detection.

A.3. System Model 85

A.3 System Model

We consider a distributed system that consists of a finite set P of n > 1 processes. Each process
has a unique address. Processes {p0, .., pn−1} communicate only by message passing. Each single
process executes one task and runs on a single processor. Therefore, the terms node and process
are used interchangeably in this work.

The system is asynchronous, i.e., relative processor speeds and message transmission delay
are unbounded. Links are reliable, and, thus, messages exchanged between any two correct
processes are never lost, corrupted or duplicated. There is no network partitioning.

Processes communicate by sending and receiving messages. The network is fully connected:
each pair of processes is connected by a bidirectional point-to-point channel. Processes are
organized in a virtual hypercube-like topology, called VCube. In a d-dimensional hypercube (d-
cube) each process is identified by a binary address id−1, id−2, i0. Two processes are connected if
their addresses differ by only one bit. Processes can fail by crashing and, once a process crashes,
it does not recover. If a process never crashes during the run, it is considered correct or fault-free;
otherwise it is considered to be faulty. After any crash, the topology changes, but the logarithmic
properties of the hypercube are kept.

We consider that the primitives to send and receive a message are atomic, but the broadcast
primitives are not.

A.4 The VCube

Let n be the number of processes in the system P . VCube [DBR14] is a distributed diagnosis
algorithm that organizes the correct processes of the system P in a virtual hypercube-like topol-
ogy. In a hypercube of d dimensions, called d-VCube, there are 2d processes. A process i groups
the other n−1 processes in log2 n clusters, such that cluster number s has size 2s−1. The ordered
set of processes in each cluster s is denoted by ci,s as follows, in which ⊕ denotes the bitwise
exclusive or operator (xor).

ci,s = {i⊕ 2s−1, ci⊕2s−1,1, ..., ci⊕2s−1,s−1} (A.1)

A process i tests another process in the ci,s to check whether it is correct or faulty. It executes
a test procedure and waits for a reply. If the correct reply is received within an expected time
interval, the monitored process is considered to be alive. Otherwise, it is considered to be faulty.
We should point out that in an asynchronous model, which is the case in the current work,
VCube provides an ureliable failure detection since it can erroneously suspect a correct process
(false suspicion). If later it detects its mistake, it corrects it. On the other hand, according to the
properties proposed by Chandra and Toueg [CT96] for unreliable failure detectors, the VCube
ensures the strong completeness property: eventually every process that crashes is permanently
suspected by every correct process. Since there are false suspicions, the VCube does not provide
any accuracy property. A VCube providing both completeness and accuracy could not possibly be
implemented in a fully asynchronous system, according to Fischer, Lynch and Paterson [FLP85].

Timestamps are used to identify the latest state of the tested processes. Based on the replies
of the tests, process i connects itself to one fault-free process of each cluster s, if it exists. If

86Appendix A. A Reliable Broadcast Protocol for Asynchronous Systems with a Hypercube Topology

s c0,s c1,s c2,s c3,s c4,s c5,s c6,s c7,s

1 1 0 3 2 5 4 7 6

2 2 3 3 2 0 1 1 0 6 7 7 6 4 5 5 4

3 4 5 6 7 5 4 7 6 6 7 4 5 7 6 5 4 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

Figure A.1: VCube hierarchical organization.

there are no failures, a complete logical hypercube is created.
Fig. A.1 shows the hierarchical cluster-based logical organization of n = 8 processes connected

by a 3-VCube topology as well as a table which contains the composition of all ci,s of the 3-VCube.
Let’s consider process p0 and that there are no failures. The clusters of p0 are shown in the

same figure. Each cluster c0,1, c0,2, and c0,3 is tested once, i.e., p0 only performs tests on nodes
1, 2, 4 which will then inform p0 about the state of the other nodes of the respective cluster.

In order to avoid that several processes test the same processes in a given cluster, process i
executes a test on process j ∈ ci,s only if process i is the first faulty-free process in cj,s. Thus, any
process (faulty or fault-free) is tested at most once per round, and the latency, i.e., the number of
rounds required for all fault-free processes to identify that a process has become faulty is log2 n

in average and log2
2 n rounds in the worst case.

A.5 Reliable Broadcast Algorithm for Asynchronous System

A reliable broadcast algorithm ensures that the same set of messages is delivered by all correct
processes, even if the sender fails during the transmission. Reliable broadcast presents three
properties [GR06]:

• Validity : if a correct process broadcasts a message m, then it eventually delivers m.

• Integrity : every correct process delivers the same message at most once (no duplication)
and only if that message was previously broadcast by some process (no creation).

• Agreement : if a message m is delivered by some correct process pi, then m is eventually
delivered by every correct process pj . Note that the agreement property still holds if m is
not delivered by any process.

A.5. Reliable Broadcast Algorithm for Asynchronous System 87

Our reliable broadcast algorithm exploits the virtual topology maintained by VCube, when-
ever possible. Each process creates, thus, a spanning tree rooted at itself to broadcast a message.
The message is forwarded over the tree and, for every message that a node of the tree sends
to one of its correct neighbor, it waits for the corresponding acknowledge from this neighbor,
confirming the reception of the message. Algorithm 8 presents the pseudo-code of our proposal
reliable broadcast protocol for an asynchronous system with n=2d processes. The dimension of
the VCube is, therefore, d. A process gets information, not always reliable, about the liveness
of the other processes by invoking the VCube. Hence, the trees are dynamically built and au-
tonomically maintained using the hierarchical cluster structure and the knowledge about faulty
(or falsely faulty suspected) nodes. The algorithm tolerates up to n-1 failures.

Let i and j be two different processes of the system. The function clusteri(j) = s returns
the identifier s of the cluster of process i that contains process j, 1 ≤ s ≤ d. For instance, in the
3-cube as shown in Fig. A.1, cluster0(1) = 1, cluster0(2) = cluster0(3) = 2 and cluster0(4) =

cluster0(5) = cluster0(6) = cluster0(7) = 3.

A.5.1 Message types and local variables

Let m be the application message to be transmitted from a sender process, denoted source, to
all other processes in the system. We consider three types of messages:

• 〈TREE,m〉: message broadcast by the application that should be forwarded over the
VCube to all processes considered to be correct by the sender;

• 〈DELV,m〉: message sent to processes suspected of being faulty in order to avoid that
false suspicions induce the no delivery of the message by correct processes. The recipient
of the message should deliver it but not forward it;

• 〈ACK,m〉: used as an acknowledgement to confirm that a TREE message related to m
was received.

For the sake of simplicity, we use TREE, DELV, and ACK to denote these messages.
Every message m keeps two parameters: (1) the identifier of the process that broadcast m

and (2) a timestamp generated by the process local counter which uniquely identifies the m. The
first message broadcast by a process i has timestamp 0 and at every new broadcast, i increments
the timestamp by 1. The algorithm can extract these two parameters from m by respectively
calling the functions source(m) and ts(m).

Process i keeps the following local variables:

• correcti: the set of processes considered correct by process i;

• lasti[n]: an array of n elements to keep the last messages delivered by i (lasti[j] is the last
message broadcast by j that was delivered by i);

• ack_seti: a set with all pending acknowledgement messages of process i. For each message
〈TREE,m〉 received by i from process j and retransmitted to process k, an element 〈j, k,m〉
is added to this set; The symbol ⊥ represents a null element. The asterisk is used as a

88Appendix A. A Reliable Broadcast Protocol for Asynchronous Systems with a Hypercube Topology

(a) No failures (b) p4 suspected

Figure A.2: Reliable broadcast - process 0 (p0)

wildcard. For instance, 〈j, ∗,m〉 means all pending acks for a message m received from
process j and re-sent to any other process;

• pendingi: list of the messages received by i that where not delivered yet because they are
“out of order” with regard to their timestamp, i.e., ts(m) > ts(lasti(source(m)) + 1;

• historyi: the history of messages that were already broadcast by i. This set is used to
prevent sending the same message to the same cluster more than once. 〈j,m, h〉 ∈ historyi
indicates that the message m received from process j was already sent by i to the clusters
ci,s for all s ∈ [1, h].

A.5.2 Algorithm description

Process i broadcasts a message by calling the broadcast(m) function. Line 7 ensures that a
new broadcast starts only after the previous one has been completed, i.e., there is no pending acks
for the lasti[i] message. Note that some processes might not have received the previous message
yet because of false suspicions. Then, the received message m is locally delivered to i (line 9)
and, by calling the function broadcast_tree (line 10), i forwards m to its neighbors in the
VCube. To this end, it calls, for each cluster s ∈ [1, log2n], the function broadcast_cluster
that sends a TREE message to the first process k which is correct in the cluster (line 27). To
those processes that are not correct, i.e, suspected of being crashed, and placed before k in the
cluster, a DELV message (line 31) is sent to them. Notice that in both cases, the messages are
sent provided i has not already forwarded m, received from j, to k. For every sent TREE message
the corresponding ack is included in the list of pending acks (line 28).

Let’s consider the 3-VCube topology of Figure A.2. Figure A.2(a) shows a fault-free scenario
where process 0 (p0) broadcasts a message. After delivering the message to itself, p0 sends a
copy of the message to p1, p2, and p4, which are neighbors of p0 and the first correct process on
each of i’s clusters.

Upon reception of a message 〈TREE,m〉 from process j (line 45), process i calls the function
handle_message. In this function, m is added to the set of pending messages and then all
pending messages which were broadcast by the same process that broadcast m (source(m)) are

A.5. Reliable Broadcast Algorithm for Asynchronous System 89

Algorithm 8 Reliable broadcast - process i

1: lasti[n]← {⊥, ...,⊥}
2: ack_seti ← ∅
3: correcti ← {0, ..., n− 1}
4: pendingi ← ∅
5: historyi ← ∅

6: procedure broadcast(message m)
7: wait until ack_seti ∩ {〈⊥, ∗, lasti[i]〉} = ∅
8: lasti[i]← m
9: deliver(m)

10: broadcast_tree(⊥,m, log2n)

11: procedure broadcast_tree(process j,
message m, integer h)

12: start← 0
13: if ∃x : 〈j,m, x〉 ∈ historyi then
14: start← x
15: historyi ← historyi\{〈j,m, x〉}
16: historyi ← historyi∪{〈j,m,max(start, h)〉}
17: if start < h then
18: for all s ∈ [start+ 1, h] do
19: broadcast_cluster(j,m, s)

20: procedure broadcast_cluster(process j,
message m, integer s)

21: sent← false
22: for all k ∈ ci,s do
23: if sent = false then
24: if 〈j, k,m〉 ∈ ack_seti and k ∈

correcti then
25: sent← true
26: else if k ∈ correcti then
27: send(〈TREE,m〉) to pk
28: ack_seti ← ack_seti ∪
{〈j, k,m〉}

29: sent← true
30: else if 〈j, k,m〉 /∈ ack_seti then
31: send(〈DELV,m〉) to pk

32: procedure check_acks(process j, message
m)

33: if j 6= ⊥ and ack_seti ∩ {〈j, ∗,m〉} = ∅

then
34: send(〈ACK,m〉) to pj

35: procedure handle_message(process j, mes-
sage m)

36: pendingi ← pendingi ∪ {m}
37: while ∃l ∈ pendingi : source(l) =

source(m)
38: ∧(ts(l) = ts(lasti[source(l)]) + 1
39: or lasti[source(l)] = ⊥ ∧ ts(l) = 0) do
40: lasti[source(l)]← l
41: pendingi ← pendingi\{l}
42: deliver(l)
43: if source(m) /∈ correcti then
44: broadcast_tree(j, lasti[source(m)], log2n)

45: upon reception of TREE(m) from pj do
46: handle_message(m)
47: broadcast_tree(j,m, clusteri(j)− 1)
48: check_acks(j,m)

49: upon reception of DELV(m) from pj do
50: handle_message(m)

51: upon reception of ACK(m) from pj do
52: for all k = x : 〈x, j,m〉 ∈ ack_seti do
53: ack_seti ← ack_seti\{〈k, j,m〉}
54: check_acks(k,m)

55: when notifying crash(j)
56: correcti ← correcti\{ j}
57: for all p = x,m = y : 〈x, j, y〉 ∈ ack_seti ∩
{〈∗, j, ∗〉} do

58: broadcast_cluster(p,m, clusteri(j))
59: ack_seti ← ack_seti\{〈p, j,m〉}
60: check_acks(p,m)
61: if lasti[j] 6= ⊥ then
62: broadcast_tree(j, lasti[j], log2n)

63: when notifying up(j)
64: correcti ← correcti ∪ {j}

90Appendix A. A Reliable Broadcast Protocol for Asynchronous Systems with a Hypercube Topology

delivered in increasing order of timestamps, provided no message is missing in the sequence of
timestamps (lines 36 - 42). In the same handle_message function, if i suspects that source(m)

failed, it restarts the broadcast of lasti[source(m)] (line 44) to ensure that every correct process
receives the message even if source(m) crashed in the middle of the broadcast. Otherwise,
by calling the function broadcast_tree with parameter h = clusteri(j) − 1 (line 47), m is
forwarded to all neighbors of i in each sub-cluster of i that should receive m. Figure A.2(a)
shows the forwarding of m from p4 to p5.

If process i is a leaf in the spanning tree of the broadcast (clusteri(j) − 1 = 0) or if all
neighbors of i (i.e., children of i in the tree) that should receive the message are suspected of
being crashed, i sends an ACK message to the process which sent m to it, by calling function
check_acks (line 34).

If process i receives a 〈DELV,m〉 message from j (line 49), it means that j falsely suspects i
of being crashed and has decided to trust another process with the forwarding of the message to
the rest of the tree. Therefore i can simply call the handle_message function to deliver the
message and does not need to call broadcast_tree.

Whenever i receives a message 〈ACK,m〉, it removes the corresponding ack from set of
pending acks (line 53) and, by calling the function check_acks, if there are no more pending
acks for message m, i sends an ACK message to the process j which sent m to it (line 34). If
j = ⊥, the ACK message has reached the process that has broadcast m (source(m)) and the
ACK message does not need to be forwarded.

The detection of the failure of process j is notified to i (crash(j)). It is worth pointing out
that this detection might be a false suspicion. Three actions are taken by i upon receiving such
a notification: (1) update of the set of processes that it considers correct (line 56); (2) removal
from the set of pending acks of those acks whose related message m has been retransmitted to
j (line 59); (3) re-sending to k, the next neighbor of j in the cluster of j (if k exists), of those
messages previously sent to j. The re-sending of these messages triggers the propagation of
messages over a new spanning tree (line 58). For instance, in Figure A.2(b), after the notification
of the failure of p4, p0 sends message m to p5 since the latter is the next fault-free neighbor of p4

in c0,3 = {4, 5, 6, 7} (cluster s = 3) The message is then propagated to the other correct processes
of the cluster, i.e., processes p6 and p7. Notice that if p4 is considered faulty by p0 before the
start of the broadcast, p0 sends a DELV message to p4 in order to ensure the reception and
handle of m by p4. Finally, in case of crash of j, i has to re-broadcast the last message broadcast
by j (line 62). Notice that, in this case, the history variable is used in order to prevent i from
re-rebroadcasting the message to those clusters that i has already sent the same message.

If VCube detects that it had falsely suspected process j, it corrects its mistake and notifies
i which then includes j in its set of correct processes (line 64).

A.5.3 Proof of correctness

In this section we will prove that Algorithm 8 implements a reliable broadcast.

Lemma A.1. Algorithm 8 ensures the validity property of reliable broadcast.

Proof. If a process i broadcasts a message m, the only way that i would not deliver m is if i
waits forever on line 7. This wait is interrupted when the set ack_seti contains no more pending

A.5. Reliable Broadcast Algorithm for Asynchronous System 91

acknowledgements related to the message lasti[i] previously broadcast by i.
For any process j that i sent lasti[i] to, i added a pending ack in ack_seti (line 28). If

j is correct, then it will eventually answer with an ACK message (line 34) and i will remove
〈⊥, j, lasti[j]〉 from ack_seti on line 53. If j is faulty, then i will eventually detect the crash and
remove the pending ack on line 59.

As a result, all of the pending acks for lasti[i] will eventually be removed from ack_seti and
i will deliver m on line 9.

Line 9 then ensures that i will deliver the message before broadcasting it.

Lemma A.2. For any processes i and j, the value of ts(lasti[j]) only increases over time.

Proof. For the sake of simplicity, we take the convention that ts(⊥) = −1. The lasti array is
only modified on lines 8 and 40.

The first case can only happen when i broadcasts a new message m, and since timestamps of
new messages sent by a same processes have to be increasing, ts(m) > ts(lasti[i]). When i calls
the broadcast procedure with m, ts(lasti[i]) will therefore increase on line 8.

The other way for lasti to be modified is on line 40. lasti[source(l)] will then be updated with
message l if lasti[source(l)] = ⊥ and ts(l) = 0 (and therefore ts(lasti[source(l)]) = −1 < ts(l)),
or if ts(l) = ts(lasti[source(l)]) + 1. It follows that lasti[source(l) is only updated if the new
value of ts(lasti[source(l)]) would be superior to the old one.

Lemma A.3. Algorithm 8 ensures the integrity property of reliable broadcast.

Proof. Processes only deliver a message if they are broadcasting it themselves (line 9) or if the
message is in their pendingi set (line 42). Messages are only added to the pendingi set on line 36,
after they have been received from another process. Since the links are reliable and do not create
messages, it follows that a message is delivered only if it was previously broadcast (there is no
creation of messages).

To show that there is no duplication of messages, let us consider two cases:

• source(m) = i. Process i called the broadcast procedure with parameter m. As proved in
Lemma A.1, i will deliver m on line 9. Since the broadcast procedure is only called once
with a given message, the only way that i would deliver m a second time is on line 42.
Since lasti[i] was set to m on line 8, it follows from Lemma A.2 that m will never qualify
to pass the test on lines 37 – 39.

• source(m) 6= i. Process i is not the emitter of message m, and did not call the broadcast
procedure with m. Therefore the only way for i to deliver m is on line 42. Before i
delivers m for the first time, it sets lasti[source(m)] to m on line 40. It then follows from
Lemma A.2 that m will never again qualify to pass the test on lines 37 – 39, and therefore
i can deliver m at most once.

Lemma A.4. Algorithm 8 ensures the agreement property of reliable broadcast.

Proof. Let m be a message broadcast by a process i. We consider two cases:

92Appendix A. A Reliable Broadcast Protocol for Asynchronous Systems with a Hypercube Topology

• i is correct. It can be shown by induction that every correct process receives m.

As a basis of the induction, let us consider the case where n = 2 and P = {i, j}. It follows
that ci,1 = {j}. Therefore i will sendm to j on line 31 if i suspects j or on line 27 otherwise.
If j is correct, it will eventually receive m since the links are reliable, and will deliver m
on line 42. i will also deliver m, by virtue of the validity property.

We now have to prove that if every correct process receives m for n = 2k, it is also the case
for n = 2k+1. The system of size 2k+1 can be seen as two subsystems P1 = {i} ∪

⋃k
x=1 ci,x

and P2 = ci,k+1 such that |P1| = |P2| = 2k.

The broadcast_tree and broadcast_cluster procedures ensure that for every s ∈ [1, k+1],
i will send m to at least one process in ci,s. Let j be the first process in ci,k+1. If j is
correct, it will eventually receive m. If j is faulty and i detected the crash prior to the
broadcast, i will send the message to j anyway in case it is a false suspicion (line 31) but
it will also send it to another process in ci,k+1 as a precaution (line 27). i will keep doing
so until it has sent the TREE message to a non-suspected process in ci,k+1, or until it has
sent the message to all the processes in ci,k+1.

If j is faulty and i only detects the crash after the broadcast, the broadcast_cluster
procedure will be called again on line 58, which ensures once again that i will send the
message to a non-suspected process in ci,k+1. As a result, unless all the processes in ci,k+1

are faulty, at least one correct process in ci,k+1 will eventually receive m. This correct
process will then broadcast m to the rest of the P2 subsystem on line 47.

Since a correct process broadcasts m in both subsystems P1 and P2, and since both sub-
systems are of size 2k, it follows that every correct process in P will eventually receive m.

• i is faulty. If i crashes before sending m to any process, then no correct process delivers
m and the agreement property is verified. If i crashes after the broadcast is done, then
everything happens as if i was correct. If i crashes after sending m to some processes and
a correct process j receives m, then j will eventually detect the failure of i. If j detects the
crash before receiving m, when it receives m it will restart a full broadcast of m on line 44.
If j only detects the crash of i after receiving m, it will also restart a full broadcast of m
on line 62. Since j is correct, every correct process will eventually receive m.

Theorem A.1. Algorithm 8 implements a reliable broadcast.

Proof. The proof follows directly from Lemmas A.1, A.3, and A.4.

A.6 Performance Discussion

The goal of exploiting the VCube overlay in our solution is to provide an efficient broadcast
where each process sends at most log2n messages. However, this complexity cannot be ensured
at all times in an asynchronous system where false suspicions can arise. Algorithm 8 aims to

A.7. Conclusion and Future Work 93

take advantage of the VCube whenever possible while still ensuring the properties of a reliable
broadcast despite false suspicions.

In the best case scenario where no process is ever suspected of failure, each process will send
at most one message per cluster (line 27). Therefore n− 1 TREE messages will be sent in total
(since no process will be sent the same message twice) with no single process sending more than
log2n messages. This is the example presented in Figure A.2(a).

If a process other than the source of the broadcast is suspected before the broadcast, there
will be n− 2 TREE messages and one DELV message sent. A single process might send up to
log2n TREE messages plus one DELV message per suspected process. This is the example of
Figure A.2(b).

If the source of the broadcast suspects everyone else, then it will send n−1 DELV messages.
In this case, Algorithm 8 is equivalent to a one-to-all algorithm where one process sends the
message directly to all others, losing, thus, the advantages of tree topology properties, such as
scalability.

The main cost of suspicions lies in the fact that when a process is suspected, its last broadcast
must be resent. This is the purpose of lines 44 and 62. Such a re-broadcast is an unavoidable
consequence of the existence of false suspicions, necessary in order to ensure the agreement
property of reliable broadcast.

Note that the fact that the information about a node failure is false or true has no difference
in the impact on the performance of the broadcast algorithm in terms of message complexity.

A.7 Conclusion and Future Work

This article presented a reliable broadcast algorithm for message-passing distributed systems
prone to crash failures on asynchronous environments. It tolerates up to n-1 failures. For broad-
casting a message, the algorithm dynamically builds a spanning tree over a virtual hypercube
topology provided by the underlying monitor system VCube. In case of failure, the tree is dynam-
ically reconstructed. To this end, the VCube provides information about node failures. However,
as the system is asynchronous, it can make mistake falsely suspecting no faulty nodes. Such false
suspicions are tolerated by the algorithm by sending special messages to those processes sus-
pected of having failed. In summary, whenever possible, the algorithm exploits the hypercube
properties offered by the VCube while ensuring the properties of the reliable broadcast, even in
case of false suspicions.

As future work, we intend to implement our algorithm and conduct extensive simulation
experiments in order to compare its performance in terms of latency and number of messages in
different scenarios with and without failure of nodes as well as false suspicions.

Bibliography

[ABD95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing Memory Robustly in
Message-Passing Systems. J. ACM, 42(1):124–142, 1995.

[ACT00] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection and con-
sensus in the crash-recovery model. Distributed Computing, 13(2):99–125, 2000.

[ADGF08] Mohssen Abboud, Carole Delporte-Gallet, and Hugues Fauconnier. Agreement
Without Knowing Everybody: A First Step to Dynamicity. NOTERE ’08, pages
49:1–49:5. ACM, 2008.

[AEA91] Divyakant Agrawal and Amr El Abbadi. An efficient and fault-tolerant solution
for distributed mutual exclusion. ACM Trans. Comput. Syst., 9(1):1–20, February
1991.

[AG13] Yehuda Afek and Eli Gafni. Asynchrony from synchrony. In Distributed Comput-
ing and Networking, 14th International Conference, ICDCN 2013, Mumbai, India,
January 3-6, 2013. Proceedings, volume 7730 of Lecture Notes in Computer Science,
pages 225–239. Springer, 2013.

[AGSS13] Luciana Arantes, Fabíola Greve, Pierre Sens, and Véronique Simon. Eventual leader
election in evolving mobile networks. In Principles of Distributed Systems - 17th
International Conference, OPODIS 2013, Nice, France, December 16-18, 2013. Pro-
ceedings, volume 8304, pages 23–37, 2013.

[Agu04] Marcos Kawazoe Aguilera. A pleasant stroll through the land of infinitely many
creatures. SIGACT News, 35(2):36–59, 2004.

[ASSC02] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wire-
less sensor networks: a survey. Computer Networks, 38(4):393–422, 2002.

[AST+10] Luciana Arantes, Pierre Sens, Gaël Thomas, Denis Conan, and Léon Lim. Partition
participant detector with dynamic paths in mobile networks. In Proceedings of The
Ninth IEEE International Symposium on Networking Computing and Applications,
NCA 2010, July 15-17, 2010, Cambridge, Massachusetts, USA, pages 224–228,
2010.

[AWW05] Ian F. Akyildiz, Xudong Wang, and Weilin Wang. Wireless mesh networks: a
survey. Computer Networks, 47(4):445–487, 2005.

95

96 Bibliography

[BBRT07] Roberto Baldoni, Marin Bertier, Michel Raynal, and Sara Tucci Piergiovanni. Look-
ing for a definition of dynamic distributed systems. In Parallel Computing Technolo-
gies, 9th International Conference, PaCT 2007, Pereslavl-Zalessky, Russia, Septem-
ber 3-7, 2007, Proceedings, pages 1–14, 2007.

[BCJ09] Vibhor Bhatt, Nicholas Christman, and Prasad Jayanti. Extracting quorum fail-
ure detectors. In Proceedings of the 28th Annual ACM Symposium on Principles
of Distributed Computing, PODC 2009, Calgary, Alberta, Canada, August 10-12,
2009, pages 73–82, 2009.

[BDPB13] Silvia Bonomi, Antonella Del Pozzo, and Roberto Baldoni. Intrusion-tolerant reli-
able broadcast. Technical report, Sapienza Università di Roma„ 2013.

[BF03] Sandeep Bhadra and Afonso Ferreira. Complexity of connected components in
evolving graphs and the computation of multicast trees in dynamic networks. In Ad-
Hoc, Mobile, and Wireless Networks, Second International Conference, ADHOC-
NOW 2003 Montreal, Canada, October 8-10, 2003, Proceedings, pages 259–270,
2003.

[BFJ03] Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest,
fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci.,
14(2):267–285, 2003.

[BG93] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-
resilient asynchronous computations. In Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 91–100, 1993.

[BLG15] Abdulkader Benchi, Pascale Launay, and Frédéric Guidec. Solving consensus in
opportunistic networks. In Proceedings of the 2015 International Conference on
Distributed Computing and Networking, ICDCN 2015, Goa, India, January 4-7,
2015, pages 1:1–1:10, 2015.

[BR09] François Bonnet and Michel Raynal. Looking for the Weakest Failure Detector
for k-Set Agreement in Message-Passing Systems: Is Πk the End of the Road?
In Stabilization, Safety, and Security of Distributed Systems, 11th International
Symposium, SSS 2009, Lyon, France, November 3-6, 2009. Proceedings, volume
5873, pages 149–164, 2009.

[BRS09] Martin Biely, Peter Robinson, and Ulrich Schmid. Weak synchrony models and
failure detectors for message passing (k -)set agreement. In Principles of Distributed
Systems, 13th International Conference, OPODIS 2009, Nîmes, France, December
15-18, 2009. Proceedings, pages 285–299, 2009.

[BRS11] Martin Biely, Peter Robinson, and Ulrich Schmid. Easy impossibility proofs for
k-set agreement in message passing systems. In Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose,
CA, USA, June 6-8, 2011, pages 227–228, 2011.

97

[BRS12] Martin Biely, Peter Robinson, and Ulrich Schmid. Agreement in directed dynamic
networks. In Structural Information and Communication Complexity - 19th Inter-
national Colloquium, SIROCCO 2012, Reykjavik, Iceland, June 30-July 2, 2012,
Revised Selected Papers, volume 7355, pages 73–84, 2012.

[BRS14] Martin Biely, Peter Robinson, and Ulrich Schmid. The generalized loneliness de-
tector and weak system models for k-set agreement. IEEE Trans. Parallel Distrib.
Syst., 25(4):1078–1088, 2014.

[BRS+18] Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, and Kyrill Winkler.
Gracefully degrading consensus and k -set agreement in directed dynamic networks.
Theor. Comput. Sci., 726:41–77, 2018.

[BT10] Zohir Bouzid and Corentin Travers. (anti-Ωx × Σz)-Based k-Set Agreement Al-
gorithms. In Principles of Distributed Systems - 14th International Conference,
OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. Proceedings, volume 6490,
pages 189–204, 2010.

[CCF11] Arnaud Casteigts, Serge Chaumette, and Afonso Ferreira. On the Assumptions
about Network Dynamics in Distributed Computing. CoRR, abs/1102.5529, 2011.

[CFG+15] Arnaud Casteigts, Paola Flocchini, Emmanuel Godard, Nicola Santoro, and Masa-
fumi Yamashita. On the expressivity of time-varying graphs. Theor. Comput. Sci.,
590:27–37, 2015.

[CFQS12] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.
Time-varying graphs and dynamic networks. IJPEDS, 27(5):387–408, 2012.

[CG13] Étienne Coulouma and Emmanuel Godard. A characterization of dynamic net-
works where consensus is solvable. In Structural Information and Communication
Complexity - 20th International Colloquium, SIROCCO 2013, Ischia, Italy, July
1-3, 2013, Revised Selected Papers, pages 24–35, 2013.

[Cha93] Soma Chaudhuri. More Choices Allow More Faults: Set Consensus Problems in
Totally Asynchronous Systems. Inf. Comput., 105(1):132–158, 1993.

[CHT96] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The Weakest Failure
Detector for Solving Consensus. JACM, 43(4):685–722, 1996.

[CRTW07] Jiannong Cao, Michel Raynal, Corentin Travers, and Weigang Wu. The eventual
leadership in dynamic mobile networking environments. In 13th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC 2007), 17-19 Decem-
ber, 2007, Melbourne, Victoria, Australia, pages 123–130, 2007.

[CSL90] Ye-In Chang, Mukesh Singhal, and Ming T. Liu. A fault tolerant algorithm for
distributed mutual exclusion. In Ninth Symposium on Reliable Distributed Systems,
SRDS 1990, Huntsville, Alabama, USA, October 9-11, 1990, Proceedings, pages
146–154, 1990.

98 Bibliography

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable
Distributed Systems. JACM, 43(2):225–267, 1996.

[CZCL07] Wei Chen, Jialin Zhang, Yu Chen, and Xuezheng Liu. Weakening failure detectors
for k -set agreement via the partition approach. In Distributed Computing, 21st
International Symposium, DISC 2007, Lemesos, Cyprus, September 24-26, 2007,
Proceedings, pages 123–138, 2007.

[DBR14] Elias P. Duarte, Jr., Luis C. E. Bona, and Vinicius K. Ruoso. VCube: A provably
scalable distributed diagnosis algorithm. In 5th Work. on Latest Advances in Scal-
able Algorithms for Large-Scale Systems, ScalA’14, pages 17–22, Piscataway, USA,
2014. IEEE Press.

[DFG08] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Sharing is
harder than agreeing. In Proceedings of the Twenty-Seventh Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 2008, Toronto, Canada,
August 18-21, 2008, pages 85–94, 2008.

[DFG10] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Tight failure
detection bounds on atomic object implementations. JACM, 57(4), 2010.

[DFGT08] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tiel-
mann. The weakest failure detector for message passing set-agreement. In Dis-
tributed Computing, 22nd International Symposium, DISC 2008, Arcachon, France,
September 22-24, 2008. Proceedings, pages 109–120, 2008.

[DGFGK05] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Petr
Kouznetsov. Mutual exclusion in asynchronous systems with failure detectors. Jour-
nal of Parallel and Distributed Computing, 65(4):492–505, apr 2005.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control. Com-
munications of the ACM, 8(9):569, 1965.

[DJN98] E. P. Duarte Jr. and T. Nanya. A hierarchical adaptive distributed system-level
diagnosis algorithm. IEEE Trans. Comput., 47(1):34–45, January 1998.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[FA96] P. Fragopoulou and S.G. Akl. Edge-disjoint spanning trees on the star network with
applications to fault tolerance. IEEE Trans. Comput., 45(2):174 –185, February
1996.

[FGA11] Paulo Floriano, Alfredo Goldman, and Luciana Arantes. Formalization of the nec-
essary and sufficient connectivity conditions to the distributed mutual exclusion
problem in dynamic networks. In Proceedings of The Tenth IEEE International
Symposium on Networking Computing and Applications, NCA 2011, August 25-27,
2011, Cambridge, Massachusetts, USA, pages 203–210, 2011.

99

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of Dis-
tributed Consensus with One Faulty Process. JACM, 32(2):374–382, 1985.

[FLR10] Mário F. S. Ferreira, João Leitão, and Luís E. T. Rodrigues. Thicket: A protocol for
building and maintaining multiple trees in a P2P overlay. In 29th IEEE Symposium
on Reliable Distributed Systems (SRDS 2010), New Delhi, Punjab, India, October
31 - November 3, 2010, pages 293–302, 2010.

[FMR05] Roy Friedman, Achour Mostéfaoui, and Michel Raynal. Asynchronous bounded
lifetime failure detectors. Inf. Process. Lett., 94(2):85–91, 2005.

[FT09] Roy Friedman and Galya Tcharny. Evaluating failure detection in mobile ad-hoc
networks. Int. J. Pervasive Computing and Communications, 5(4):476–496, 2009.

[GAS11] Fabíola Greve, Luciana Arantes, and Pierre Sens. What model and what conditions
to implement unreliable failure detectors in dynamic networks? In Workshop on
Theoretical Aspects on Dynamic Distributed Systems, TADDS ’11, Rome, Italy,
September 19, 2011, pages 13–17, 2011.

[GCLL15] Carlos Gómez-Calzado, Arnaud Casteigts, Alberto Lafuente, and Mikel Larrea. A
connectivity model for agreement in dynamic systems. In Euro-Par 2015: Parallel
Processing - 21st International Conference on Parallel and Distributed Computing,
Vienna, Austria, August 24-28, 2015, Proceedings, pages 333–345, 2015.

[GdLAS12] Fabíola Greve, Murilo Santos de Lima, Luciana Arantes, and Pierre Sens. A time-
free byzantine failure detector for dynamic networks. In 2012 Ninth European
Dependable Computing Conference, Sibiu, Romania, May 8-11, 2012, pages 191–
202, 2012.

[GH17] Wojciech M. Golab and Danny Hendler. Recoverable mutual exclusion in sub-
logarithmic time. In Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages
211–220, 2017.

[GHK+07] Rachid Guerraoui, Maurice Herlihy, Petr Kouznetsov, Nancy A. Lynch, and
Calvin C. Newport. On the weakest failure detector ever. In Proceedings of the
Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2007, Portland, Oregon, USA, August 12-15, 2007, pages 235–243, 2007.

[GK09] Eli Gafni and Petr Kuznetsov. The weakest failure detector for solving k-set agree-
ment. In Proceedings of the 28th Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2009, Calgary, Alberta, Canada, August 10-12, 2009,
pages 83–91, 2009.

[GLLR13] Carlos Gómez-Calzado, Alberto Lafuente, Mikel Larrea, and Michel Raynal. Fault-
tolerant leader election in mobile dynamic distributed systems. In IEEE 19th Pacific
Rim International Symposium on Dependable Computing, PRDC 2013, Vancouver,
BC, Canada, December 2-4, 2013, pages 78–87, 2013.

100 Bibliography

[GR06] Rachid Guerraoui and Luís E. T. Rodrigues. Introduction to reliable distributed
programming. Springer, 2006.

[GR07] Rachid Guerraoui and Michel Raynal. The Alpha of Indulgent Consensus. Comput.
J., 50(1):53–67, 2007.

[GR16] Wojciech M. Golab and Aditya Ramaraju. Recoverable mutual exclusion: [extended
abstract]. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 65–74, 2016.

[GSAS11] Fabíola Greve, Pierre Sens, Luciana Arantes, and Véronique Simon. A failure de-
tector for wireless networks with unknown membership. In Euro-Par 2011 Parallel
Processing - 17th International Conference, Euro-Par 2011, Bordeaux, France, Au-
gust 29 - September 2, 2011, Proceedings, Part II, volume 6853 of Lecture Notes in
Computer Science, pages 27–38. Springer, 2011.

[GSAS12] Fabíola Greve, Pierre Sens, Luciana Arantes, and Véronique Simon. Eventually
Strong Failure Detector with Unknown Membership. Comput. J., 55(12):1507–
1524, 2012.

[HT93] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related problems.
chapter Distributed systems, pages 97–145. ACM Press, New York, NY, USA, 2
edition, 1993.

[JAF06] Ernesto Jiménez, Sergio Arévalo, and Antonio Fernández. Implementing unreliable
failure detectors with unknown membership. Inf. Process. Lett., 100(2):60–63, 2006.

[JJ17] Prasad Jayanti and Anup Joshi. Recoverable FCFS mutual exclusion with wait-free
recovery. In 31st International Symposium on Distributed Computing, DISC 2017,
October 16-20, 2017, Vienna, Austria, pages 30:1–30:15, 2017.

[JRAJ16] Denis Jeanneau, Luiz A. Rodrigues, Luciana Arantes, and Elias Procópio Duarte Jr.
An autonomic hierarchical reliable broadcast protocol for asynchronous distributed
systems with failure detector. In 2016 Seventh Latin-American Symposium on De-
pendable Computing, LADC 2016, Cali, Colombia, October 19-21, 2016, pages 91–
98, 2016.

[JRAJ17] Denis Jeanneau, Luiz A. Rodrigues, Luciana Arantes, and Elias Procópio Duarte Jr.
An autonomic hierarchical reliable broadcast protocol for asynchronous distributed
systems with failure detection. J. Braz. Comp. Soc., 23(1):15:1–15:14, 2017.

[JRAS15] Denis Jeanneau, Thibault Rieutord, Luciana Arantes, and Pierre Sens. A fail-
ure detector for k-set agreement in dynamic systems. In 14th IEEE International
Symposium on Network Computing and Applications, NCA 2015, Cambridge, MA,
USA, September 28-30, 2015, pages 176–183, 2015.

[JRAS17] Denis Jeanneau, Thibault Rieutord, Luciana Arantes, and Pierre Sens. Solving k-
set agreement using failure detectors in unknown dynamic networks. IEEE Trans.
Parallel Distrib. Syst., 28(5):1484–1499, 2017.

101

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003.

[KLO10] Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computation
in dynamic networks. In Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
513–522. ACM, 2010.

[KMO11] Fabian Kuhn, Yoram Moses, and Rotem Oshman. Coordinated consensus in dy-
namic networks. In Proceedings of the 30th Annual ACM Symposium on Principles
of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages
1–10, 2011.

[KMV10] Kyungbaek Kim, Sharad Mehrotra, and Nalini Venkatasubramanian. FaRe-
Cast: Fast, reliable application layer multicast for flash dissemination. In
ACM/IFIP/USENIX 11th International Conference on Middleware, Middle-
ware’10, pages 169–190, Berlin, Heidelberg, 2010. Springer-Verlag.

[Lam74] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem.
Commun. ACM, 17(8):453–455, 1974.

[Lam86] Leslie Lamport. The mutual exclusion problem: part I&II. J. ACM, 33(2):313–348,
1986.

[Lam98] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst., 16(2):133–
169, 1998.

[LB99] Jörg Liebeherr and Tyler K. Beam. Hypercast: A protocol for maintaining multicast
group members in a logical hypercube topology. In Networked Group Communi-
cation, First International COST264 Workshop, NGC’99, Pisa, Italy, November
17-20, 1999, Proceedings, pages 72–89. 1999.

[LMS01] Igor Litovsky, Yves Métivier, and Eric Sopena. Graph Relabelling Systems and
Distributed Algorithms. In Handbook of graph grammars and computing by graph
transformation, pages 1–56. World scientific, 2001.

[LPR07] João Leitão, José Pereira, and Luís E. T. Rodrigues. Hyparview: A membership
protocol for reliable gossip-based broadcast. In The 37th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN 2007, 25-28 June
2007, Edinburgh, UK, Proceedings, pages 419–429, 2007.

[LRAC12] Mikel Larrea, Michel Raynal, Iratxe Soraluze Arriola, and Roberto Cortiñas. Spec-
ifying and implementing an eventual leader service for dynamic systems. IJWGS,
8(3):204–224, 2012.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine Generals
Problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

102 Bibliography

[MJAS19] Etienne Mauffret, Denis Jeanneau, Luciana Arantes, and Pierre Sens. The weakest
failure detector to solve the mutual exclusion problem in an unknown dynamic
environment. In Proceedings of the 20th International Conference on Distributed
Computing and Networking, ICDCN 2019, Bangalore, India, January 4-7, 2019 (to
be published), 2019.

[MMR03] Achour Mostéfaoui, Eric Mourgaya, and Michel Raynal. Asynchronous implemen-
tation of failure detectors. In 2003 International Conference on Dependable Systems
and Networks (DSN 2003), 22-25 June 2003, San Francisco, CA, USA, Proceedings,
pages 351–360, 2003.

[MR99] Achour Mostéfaoui and Michel Raynal. Unreliable failure detectors with limited
scope accuracy and an application to consensus. In Foundations of Software Tech-
nology and Theoretical Computer Science, 19th Conference, Chennai, India, De-
cember 13-15, 1999, Proceedings, pages 329–340, 1999.

[MR00] Achour Mostéfaoui and Michel Raynal. k-set agreement with limited accuracy
failure detectors. In Proceedings of the Nineteenth Annual ACM Symposium on
Principles of Distributed Computing, July 16-19, 2000, Portland, Oregon, USA.,
pages 143–152, 2000.

[MRS11] Achour Mostéfaoui, Michel Raynal, and Julien Stainer. Relations linking failure de-
tectors associated with k-set agreement in message-passing systems. In Stabilization,
Safety, and Security of Distributed Systems - 13th International Symposium, SSS
2011, Grenoble, France, October 10-12, 2011. Proceedings, pages 341–355, 2011.

[MRS12] Achour Mostéfaoui, Michel Raynal, and Julien Stainer. Chasing the weakest failure
detector for k-set agreement in message-passing systems. In 11th IEEE Interna-
tional Symposium on Network Computing and Applications, NCA 2012, Cambridge,
MA, USA, August 23-25, 2012, pages 44–51, 2012.

[MRT+05] Achour Mostéfaoui, Michel Raynal, Corentin Travers, Stacy Patterson, Divyakant
Agrawal, and Amr El Abbadi. From static distributed systems to dynamic systems.
In 24th IEEE Symposium on Reliable Distributed Systems (SRDS 2005),26-28 Oc-
tober 2005, Orlando, FL, USA, pages 109–118, 2005.

[Nei95] Gil Neiger. Failure detectors and the wait-free hierarchy. In Proceedings of the Four-
teenth Annual ACM Symposium on Principles of Distributed Computing, Ottawa,
Ontario, Canada, August 20-23, 1995, pages 100–109, 1995.

[NLM90] Shojiro Nishio, Kin F. Li, and Eric G. Manning. A Resilient Mutual Exclusion
Algorithm for Computer Networks. IEEE Transactions on Parallel and Distributed
Systems, 1(3):344–355, 1990.

[RAJ14] Luiz A. Rodrigues, Luciana Arantes, and Elias Procópio Duarte Jr. An autonomic
implementation of reliable broadcast based on dynamic spanning trees. In 2014
Tenth European Dependable Computing Conference, Newcastle, United Kingdom,
May 13-16, 2014, pages 1–12, 2014.

103

[RAS15] Thibault Rieutord, Luciana Arantes, and Pierre Sens. Détecteur de défaillances
minimal pour le consensus adapté aux réseaux inconnus. In Algotel, 2015.

[Ray86] Michel Raynal. Algorithms for Mutual Exclusion. MIT Press, Cambridge, MA,
USA, 1986.

[Ray07] Michel Raynal. K-anti-omega. In Rump Session at 26th ACM Symposium on
Principles of Distributed Computing (PODC’07), 2007.

[Ray10] Michel Raynal. Communication and Agreement Abstractions for Fault-Tolerant
Asynchronous Distributed Systems. Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool Publishers, 2010.

[Ray11] Michel Raynal. Failure detectors to solve asynchronous k-set agreement: a glimpse
of recent results. Bulletin of the EATCS, 103:74–95, 2011.

[RS88] P. Ramanathan and K.G. Shin. Reliable broadcast in hypercube multicomputers.
IEEE Trans. Comput., 37(12):1654–1657, 1988.

[RSCW14] Michel Raynal, Julien Stainer, Jiannong Cao, and Weigang Wu. A simple broadcast
algorithm for recurrent dynamic systems. In 28th IEEE International Conference
on Advanced Information Networking and Applications, AINA 2014, Victoria, BC,
Canada, May 13-16, 2014, pages 933–939, 2014.

[RT06] Michel Raynal and Corentin Travers. In search of the holy grail: Looking for the
weakest failure detector for wait-free set agreement. In Principles of Distributed
Systems, 10th International Conference, OPODIS 2006, Bordeaux, France, Decem-
ber 12-15, 2006, Proceedings, volume 4305, pages 3–19, 2006.

[SAB+08] Pierre Sens, Luciana Arantes, Mathieu Bouillaguet, Véronique Simon, and Fabíola
Greve. An unreliable failure detector for unknown and mobile networks. In Princi-
ples of Distributed Systems, 12th International Conference, OPODIS 2008, Luxor,
Egypt, December 15-18, 2008. Proceedings, pages 555–559, 2008.

[SAS06] Julien Sopena, Luciana Bezerra Arantes, and Pierre Sens. Performance evaluation
of a fair fault-tolerant mutual exclusion algorithm. In 25th IEEE Symposium on
Reliable Distributed Systems (SRDS 2006),2-4 October 2006, Leeds, UK, pages 225–
234, 2006.

[SGS84] Fred B. Schneider, David Gries, and Richard D. Schlichting. Fault-tolerant broad-
casts. Sci. Comput. Program., 4(1):1–15, 1984.

[SS14] Adam Sealfon and Aikaterini A. Sotiraki. Agreement in partitioned dynamic net-
works. In Distributed Computing - 28th International Symposium, DISC 2014,
Austin, TX, USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes
in Computer Science, pages 555–556. Springer, 2014.

[TI15] Erfan Taheri and Mohammad Izadi. Byzantine consensus for unknown dynamic
networks. The Journal of Supercomputing, 71(4):1587–1603, 2015.

104 Bibliography

[Wu96] Jie Wu. Optimal broadcasting in hypercubes with link faults using limited global
information. J. Syst. Archit., 42(5):367–380, 1996.

[Zie08] Piotr Zielinski. Anti-omega: the weakest failure detector for set agreement. In
Proceedings of the Twenty-Seventh Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages
55–64, 2008.

	Couverture
	Acknowledgements
	Résumé
	Abstract
	Dédicace
	Contents
	Introduction
	Contributions
	A Failure Detector for k-Set Agreement in Unknown Dynamic Systems
	A Failure Detector for Mutual Exclusion in Unknown Dynamic Systems
	An Asynchronous Reliable Broadcast Algorithm over a Hypercube Topology

	Publications
	Papers in International Conferences
	Papers in International Journals

	Organization of the Manuscript

	A Background on Failure Detectors and Dynamic Systems
	Distributed Systems
	Processes
	Communication Models
	Failure Models
	Timing Models
	Notations

	Distributed Problems
	Consensus and k-Set Agreement
	Fault-Tolerant Mutual Exclusion

	Failure Detectors
	The Failure Detector Hierarchy
	Failure Detectors for Consensus and k-Set Agreement in Message Passing Systems
	Failure Detectors for Consensus and k-Set Agreement in Shared Memory Systems
	Failure Detectors for Mutual Exclusion

	Dynamic Networks
	Increasing and Decreasing Systems with a Static Communication Graph
	The Dynamic Graph Model
	Directed Dynamic Networks
	Evolving Graphs
	Time-Varying Graphs (TVG)
	Unknown Asynchronous Dynamic Networks
	Summary of Failure Detector Results in Unknown and/or Dynamic Systems

	Conclusion

	A Failure Detector for k-Set Agreement in Unknown Dynamic Systems
	System Model
	Process Model
	Communication Model

	Failure Detectors for k-Set Agreement in Unknown Dynamic Systems
	The ,k Failure Detector
	The Family of Failure Detectors ,x,y

	Assumptions
	Time-Varying Graph Classes
	Message Pattern Assumptions
	Summary of Assumptions
	Implementation of Message Pattern Assumptions
	Comparable Assumptions in the Literature

	Failure Detector Algorithms
	An Algorithm for ,k
	An Algorithm for ,x
	An Algorithm for ,x,y

	A k-Set Agreement Algorithm
	The Alphax Sub Protocol
	Alphax Algorithm
	k-Set Agreement Algorithm

	Conclusion

	The Weakest Failure Detector for Mutual Exclusion in Unknown Dynamic Systems
	Model and Problem Definition
	System Model
	Failure Model
	Connectivity Model
	Knowledge Model
	Problem Definition

	Failure Detectors for Mutual Exclusion in Unknown Dynamic Systems
	The Tl Failure Detector
	The Tlr Failure Detector

	Sufficiency of Tlr to solve Fault-Tolerant Mutual Exclusion
	Algorithm Description
	Proof of Correctness

	Necessity of Tlr to solve Fault-Tolerant Mutual Exclusion

	Conclusion
	Contributions
	A Failure Detector for k-Set Agreement in Unknown Dynamic Systems
	A Failure Detector for Recoverable Mutual Exclusion in Unknown Dynamic Systems

	Perspectives
	On the Necessity of Synchronous Processes in Dynamic Systems
	The Weakest Failure Detector for k-Set Agreement
	Defining the Mutual Exclusion Problem in Crash-Recovery Systems

	A Reliable Broadcast Protocol for Asynchronous Systems with a Hypercube Topology
	Introduction
	Related Work
	System Model
	The VCube
	Reliable Broadcast Algorithm for Asynchronous System
	Message types and local variables
	Algorithm description
	Proof of correctness

	Performance Discussion
	Conclusion and Future Work

	Bibliography

