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Résumé

Dans cette thèse, nous observons les preuves en logique modale à travers un “télescope” fo-
calisé. Plus précisément, nous utilisons le concept de règles d’inférence synthétiques obtenues
à partir d’un système de preuve focalisé de deux manières; d’un côté du “télescope”, la fo-
calisation nous permet d’analyser les mécanismes internes des règles d’inférence; de l’autre
côté, elle nous permet de nous en abstraire et de nous intéresser à un comportement plus
global. Cette thèse s’inscrit donc dans la récente ligne de travaux qui valorisent le concept
de focalisation, non plus seulement comme un outil améliorant l’efficacité de la recherche de
preuves, mais comme une véritable notion de théorie de la preuve permettant de définir des
systèmes déductifs et de démontrer leurs propriétés méta-théoriques de manière élégante.
Elle est organisée en trois parties, précédées d’un chapitre d’introduction.

Dans la première partie, nous passons en revue les systèmes de preuves existants pour la
logique modale en nous concentrant autour du calcul des séquents et ses extensions. Nous
mettons en valeur les problématiques qui animent le domaine de la théorie de la démonstra-
tion de la logique modale, notamment en déconstruisant la distinction usuelle entre systèmes
étiquetés et non-étiquetés. Nous présentons ces questions et concepts en parallèle dans les
chapitres 2 et 3 pour la logique modale classique et intuitionniste, respectivement. Nous
détaillons en particulier les calculs des séquents emboîtés et des séquents emboîtés indexés;
pour ce dernier nous démontrons un nouveau résultat de complétude via élimination des
coupures.

La deuxième partie introduit d’abord la notion de focalisation et de règles d’inférence
synthétiques dans le chapitre 4, puis présente deux contributions dans les chapitres 5 et 6.
Premièrement, nous démontrons comment émuler le calcul étiqueté pour la logique modale
intuitioniste de Simpson à l’aide du calcul focalisé pour la logique du premier ordre de Liang
et Miller, étendant ainsi les travaux de Miller et Volpe au cas intuitioniste. Chaque règle
d’inférence du calcul étiqueté est simulé par un bipôle (enchainement d’une règle synthé-
tique positive puis négative) en logique du premier ordre, et réciproquement, tout bipôle
d’une dérivation de la traduction en language du premier ordre d’une formule modale corre-
spond à une unique règle d’inférence du calcul étiqueté. Comme dans le cas classique, cette
correspondence peut également être étendue aux logiques modales définie par des axiomes
géométriques. Deuxièmement, nous proposons un encodage similaire mais pour le calcul
des séquents ordinaire (non-étiqueté) à l’aide d’une structure intermédiaire basée sur une
version focalisée du calcul des séquents étiquetés.

La troisième partie peut être résumée également à deux contributions, les preuves de
complétude de deux calculs de séquents emboîtés pour la logique modale, à la fois classique
et intuitionniste. Nous définissons d’abord une version focalisée du calcul des séquents
emboîtés, puis un système basé uniquement sur des règles d’inférence synthétiques; celles-ci
ne retiennent que les transitions entre étapes positives et négatives en rendant invisibles
la plupart des règles du calcul focalisé. Cela offre une présentation du système claire et
élégante et simplifie grandement les preuves d’élimination des coupures et de complétude.
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Introduction

When one looks through a telescope from one side, one can see remote objects bigger and
analyse them; but when one looks through the other side of the lens, the closer objects will
suddenly look distant. In this work, it is the proof theory of modal logic that we want to
observe through a focused telescope. Because proof theory for modal logic has proven quite
tricky throughout the second half of the 20th century, and even though we might say that it
is well handled practically now, it is still a wonderful playground for new proof-theoretical
ideas. So let us first introduce these concepts: (i) proof theory; (ii) modal logic; (iii)
focusing; and (iv) our telescope.

1.1 Proof theory

Mathematics is made of theorems and their proofs. Sometimes a theorem may have several
proofs and we want to understand what is different and what is common in them, and
maybe how to transform one into the other in some way. Proofs of different theorems may
also share common patterns, for example induction or reduction to the absurd, and we
want to understand in which contexts those particular forms of reasoning apply and how.
However, in order to communicate proofs, mathematicians usually use natural language
written in plain text (with some symbols). So the urge to answer these questions calls
for the formalisation of proofs (yes, every single word of them) in a purely mathematical
language, and for a whole discipline to study their properties: proof theory. Frege pioneered
this discipline suggesting that proofs be considered themselves as objects of mathematical
study in 1879 in his Begriffschrift [50]. Hilbert followed Frege’s ideas and proposed the
definition of a deductive system to formalise reasoning [64].

Proof theory is now established as one of the four pillars of mathematical logic along-
side model theory, set theory, and recursion theory. In designing various formalisms to
view proofs as formal mathematical objects, we may understand their properties via formal
mathematical methods. One direct application would be to develop computer programs
that can prove theorems automatically (or almost), or check mathematical proofs (auto-
matic theorem proving/checking). Another application could be to extract from a proof an
algorithm; for example if the theorem states the existence of an object, this object could
also be effectively constructed; or to extract from failed proof-search a counter-example to
that invalid theorem (proof mining). Some more abstract consequences are that we can try
to understand which axioms are required to prove which theorems (reverse mathematics),
as well as compare different proof methods and in particular the sizes of the proofs they
output (proof complexity).

Looking back to our first sentence, perhaps a better picture for anyone who has done a
little bit of mathematics would be: Mathematics is made of lots of lemmas, a few theorems
and their proofs. Indeed, the way it goes is that mathematicians rarely prove a theorem
from scratch, they build up its proof by proving intermediate statements that are called
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lemmas. In a deductive system à la Hilbert and Frege, such a reasoning step would be the
main inference rule combining axioms. That is, to prove a theorem T , it is possible to use
a given lemma L if one can prove L on the one hand and if one can infer T from L on
the other hand. This step of reasoning, which is of course not restricted to mathematics
but widespread in daily reasoning too, is called Modus Ponens. Obviously, the hard part
is usually to find the appropriate lemma L to use amongst the infinity of mathematical
statements.

Actually, a lot of the beauty of mathematics resides in lemmas, as they can appeal
to some very clever tricks such as using some topology to solve a numerical equation or
appealing to complex numbers to integrate a real function. However, for the applications
we mentioned, shifting to a different theory or a different language than that of the theorem
one is trying to prove can be a nightmare, and we often prefer a proof without lemmas, even
if it is likely to be much less clever and cluttered with a lot of repetitions. (Though not all
mathematical proofs can be made lemma-free.)

A lemma-free proof is usually said to be analytic. The designation comes from Bolzano,
who published in 1817 a second proof of his intermediate value theorem that he calls a Purely
analytic proof of the theorem that between any two values which give results of opposite sign,
there lies at least one real root of the equation [11]. His first proof of the intermediate value
theorem was indeed using geometrical intuitions of lines crossing each other at a given point.
The second proof, however, was completely free of geometrical or algebraic methods, but
used only concepts from analysis (which is why he called it analytic) and therefore stayed
fully in the language and in the theory of the theorem itself.

The term was then later reused by Gentzen who, in his Untersuchungen in 1934 [56, 57],
introduced fundamental proof-theoretic methods to prove results in mathematical logic.
In particular, he developed the sequent calculus, an alternative representation of proofs
promoting inference rules over axioms. The Hauptsatz then states that any proof in the
purely logical sequent calculus can be transformed into an analytic normal form. From
this follows the subformula property, that every formula appearing in the premiss(es) of an
inference rule is a subformula of its conclusion, which ensures that a proof is internal to the
language of what it proves. To prove the Hauptsatz one needs to show that a rule called
the cut, reformulating Modus Ponens in the sequent calculus, is redundant in the system by
an inductive elimination procedure transforming a given proof into another one with cuts of
smaller induction measure.

Another crucial contribution of Gentzen’s work was the parallel treatment of classical and
intuitionistic logics. Intuitionistic logic was conceived (starting in 1907 with Brouwer [14])
as a formalisation of constructive reasoning, rejecting in particular the principle of Excluded
Middle, that a statement has to be either true or false. In classical logic, this principle is
accepted, while in intuitionistic logic, on the contrary, there might be an uncertainty whether
a proposition holds or not. Gentzen observed that, in the sequent calculus, classical and
intuitionistic reasoning could be formally dissociated, as the intuitionistic calculus can be
obtained as a simple syntactical restriction of the classical one. If one considers a sequent as
a list of formulas that are annotated as either input or output, i.e. hypothesis or conclusion,
then a classical sequent can have zero to many outputs, while an intuitionistic sequent must
have exactly one output, and hence the inference rules of the system must preserve the
uniqueness of the output formula. This trick actually has widespread applications in the
constructive foundations of mathematics as well as in computer science. For instance, the
connection between proofs in intuitionistic logic and computational behaviours stimulated
the development of type theories for programming languages [65].

Finally, one goal of structural proof theory is to extend Gentzen’s results to other math-
ematical theories, usually given in terms of axioms which, if added as such to the sequent
calculus, break the cut-elimination proof [58]. It is usually a tedious task for proof theorists
to find a cut-free deductive system in a sequent(-like) calculus corresponding to a given
axiomatisation. The best solution would be to automate this process, and to find general
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criteria for determining when a set of axioms can be transformed into an equivalent set of
inference rules such that cut-elimination is preserved. This has been achieved for instance
for geometric theories in classical first-order logic [104] and for some algebraic theories in
sub-structural and intermediate logics [30]. In the next section we consider more specifically
these questions of extending sequent systems in the context of modal logics.

1.2 Modal logic and its proof theory

The study of modal logic, going back to Aristotle, comes from the desire to analyse certain
philosophical arguments, and thus qualify finely the truth of a proposition: for example a
proposition may be false now but true later, or on the contrary true and necessarily so, and
so on. What is now called modal logic describes the behaviour of the abstract modalities ◻
and ◇, but covers a wide range of ‘real’ modalities in linguistic expressions: time, necessity,
possibility, obligation, knowledge, belief...

The most well-studied modal logics are based on classical reasoning (which is why we
will call them classical modal logics, and not following the convention of [27]). The interest
in intuitionistic versions of modal logics has come much later and from two different sources:
on the one hand, logicians had a theoretical interest in obtaining intuitionistically relevant
versions of modal logics, and on the other hand, certain applications in computer science
naturally gave rise to some modal logics with a constructive flavour. For example, as we
have said that intuitionistic logic allows us to capture some aspects of computation via type
theories, the idea to add modal operators on top of type theories to capture further aspects
of computation seems quite natural [98, 110, 8]. As we shall see, the purely logical and the
type-theoretical approaches do not give rise to the same logics.

Classical, as well as intuitionistic, modal logics used to be studied as systems of axioms
that describe the conditions regulating each modal operator depending on the context of
application. Structural proof theory on the other hand was considered a difficult topic for
modal logics, as ordinary sequents did not provide a satisfactory answer, that is, a way to
systematically build analytic proof systems translating modal axioms into inference rules.
Proof systems based on Gentzen’s (ordinary) sequents that exist for specific modal logics
cannot be easily extended to encompass more axioms. On the other hand, some combinations
of axioms have so far escaped all efforts towards a corresponding sequent system at all. In
general, each proposal was built independently and in an ad hoc fashion. One reason to
explain this phenomenon is that there was no uniform semantical framework to guide the
authors attempting these constructions.

Finally in the 1960s, a semantics was given by Kripke [69] (among others) in terms of
relational structures for a large subset of the classical modal logics previously studied, now
called the normal modal logics. It allows one to see modal logic as a language for graphs,
which also uncovered new applications to describe phenomena in computer science, as graphs
are very common structures to model concepts in the domain.

The consequence of this new perspective in terms of proof theory was the possibility to
build semantic tableaux proof procedures for a wide range of modal logics. The formalism
of tableaux was the most studied for proofs in modal logics, and probably still is the most
developed and used (see [122] for a variety of tools, most of which use tableaux). However,
whereas tableaux are arguably well-suited for automated deduction and decision procedures,
that is, to find proofs, sequent-like systems are usually more appropriate when trying to
distinguish proof shapes and to study proof transformations, in particular cut-elimination.

In the last two decades, some extensions of ordinary sequents were successfully proposed
to handle modalities. Two approaches are commonly distinguished: systems that incorpo-
rate explicitly relational semantics in the formalism itself, called labelled deductive systems
(e.g. semantic tableaux [45] and labelled sequents [101]), and systems that use syntactical
devices to recover the modal language that we will regroup under the counter-relief term un-
labelled deductive systems (e.g. display calculi [68], hypersequents [6], nested sequents [15]).
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So proof theorists interested in modal logic now have a wide range of different proof for-
malisms to choose from, each of them presenting its own features and drawbacks. Several
results concerning correspondences and connections between the different formalisms are
also known [47, 61, 75]. In the most general way, we would like to understand which modal
logics can be given a proof system in which formalism (and if not, why). The different
formalisms that exist for studying the proof theory of modal logic should not be seen as a
doxa; they rather bring different angles, and complementary tools in order to explore the
subject. The work of this thesis is an illustration of the variety of points of view since it
uses labelled as well as unlabelled systems to analyse modal proofs. In the next section, we
introduce the main tools we will use to organise proofs in these systems.

1.3 Focusing and synthetic rules

One major application of proof systems is proof search: given a mathematical statement,
can we construct a proof of it from a set of other statements, which are accepted as valid
hypotheses, in order to consider it a valid theorem? One way proof search can be conducted
in a sequent calculus is backward proof search. The idea is to consider all the inference rules
that could be applied in order to obtain the desired conclusion, collect all the premisses that
would be obtained from applying these rules, and recursively apply this process to these
premisses until either we have reached one of our valid hypotheses or no more rules can be
applied.

The search of a proof is necessarily a non-deterministic process as it typically requires
some choices to be made in a certain order to terminate. That is, even when starting from
a valid conclusion, not every possible succession of backward inference steps will lead to a
correct proof and sometimes a deadlock may be reached which forces the search to backtrack.
However, one can make a simple observation: not every step in the proof search procedure
does introduce non-determinism. For some inference rules, called invertible, each of the
premisses can actually be deduced from the conclusion, so for a valid conclusion, these rules
cannot bring the proof search to a deadlock. Other rules, however, require some choice or
some interaction with different elements in the sequent, so if we make the wrong choice or
we are not in the appropriate context, we might not be able to find the correct proof and
thus need to backtrack to that critical step.

Focusing is a general technique that was designed to improve proof search by reducing
the number of non-deterministic choices [95, 3], and indeed it led to concrete optimisations
of standard proof search procedures [26, 90]. The essential idea of focusing is to identify
and merge the non-deterministic choices in a proof: the normal form of a focused proof is
given by an alternation of inversion phases, where invertible rules are applied (bottom-up)
eagerly, and focus phases, where applications of the other rules are confined and controlled.
It is a rather strict way to build a proof, but it remains complete, which means that every
provable statement actually has a focused proof.

The first proof one could think of for such completeness result would be by permutations
of rules, that is, one would need to show that invertible rules can be permuted down and the
other rules can be regrouped as needed in a focus phase. This is a quite long and tedious
proof [3]. Another one is by defining a subsystem of the original system, following the
invertibility discipline of connectives, that is constrained in a way that it can only produce
focused proofs; and then prove that this forms a complete subset of all the proofs, i.e. that
this subsystem is equivalent to the original one. One proof of the equivalence pioneered by
Laurent [74] goes in two steps: first the simulation of all the rules from the original system
by the rules in the new “focused” subsystem, and then, as this simulation makes intensive
use of the cut rule, show that this rule is admissible in the focused system, namely that
eliminating the cut rule from a focused proof still preserves the alternation of inversion and
focusing phases. So in the general case, the focused subsystem is provably complete. In some
particular cases, the subsystem is even canonical; which means that it produces a unique
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representative element of each family of proofs that are equivalent up to permutations, in
the same way as proof nets or expansion trees can do it for respectively MALL or classical
first-order logic [24, 21].

The theory of focusing was originally developed for the sequent calculus for linear logic,
but it has since been extended to a variety of logics [83, 117] and proof systems [20, 13].
This generality suggests that the ability to transform a proof system into a focused form
is a good indication of its syntactic quality, in a similar manner to how cut-admissibility
shows that a proof system is syntactically well-designed. So focusing is not only an efficient
proof search strategy, it has also strong representational benefits. In particular, it gives us a
systematic notion of grouping together inference rules into meaningful entities: we can just
ignore the internal structure of the phases and the details of the focused logical rules and
only remember the sequents at a transition between two phases to see each phase as one
rigid synthetic rule [139, 24].

We want to illustrate in this thesis two properties of such synthetic rules, in the context
of modal logic. On the one hand, a focused proof system can be used to provide ade-
quate encodings of other non-focused systems. We show in particular how to use focusing
mechanisms to build a general framework emulating existing systems for modal logics. The
adequacy of the emulation amounts to the fact that each inference step in the unfocused
system corresponds to a specific chain of synthetic rules. On the other hand, designing a
proof system using synthetic rules provides a simplification of both the proof system and its
associated meta-theory. In particular, the proof of completeness of focusing becomes more
manageable in a synthetic formulation. Such a simplification has been observed for ordinary
intuitionistic logic by Zeilberger [139] but when we add more features to a logic (and in our
case modalities), the effect of this simplification becomes more noticeable.

1.4 The use of a focused telescope

In this thesis, we are going to look at modal proofs through a focused ‘telescope’. More
precisely, the way we use the concept of synthetic rules obtained in a focused system is
twofold; from one side of the telescope, we see details of the internal mechanisms of inference
rules; from the other side, we abstract from them and observe more global behaviour.

Unfolding: analysing the machinery behind a proof system

Considerable progress has been made in extending Gentzen’s purely logical results to more
expressive mathematical theories, as already mentioned [100, 38, 30, 33, 77, 76]. We now
need to look back and see if we can understand why the proposed systems work and how
the different methods used to obtain them relate to each other.

Through focusing, we dissect the operational semantics of the inference rules that are
induced by these methods, i.e. the way they operate on some sequents to produce new ones.
This gives us a better understanding of why they work, how they can be extended, and as a
by-product how to verify proofs they form through a universal proof checker. With Miller
and Volpe, following their first successful attempt in [96], we wanted to understand this
line of work in a uniform and systematic manner from the point of view of focusing. This
is an ongoing effort and in this thesis we present some of our first results. Their interest
lies in understanding the machinery behind the general construction of inference rules for
axiomatic theories in a structured way.

This research line is part of the ERC project ProofCert [94] led by Miller, which is
concerned with providing a uniform format for proofs across many types of proof systems.
The end goal would be that theorem provers come equipped with the semantics of the kind
of proofs they issue, and then a universal proof checker could take as input not only the proof
to be checked, but a proof certificate containing such semantical information alongside. The
basis chosen for this checker is a focused sequent system for classical or intuitionistic logic
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which can be augmented with suitable proof certificatesand some devices able to extract
and organise the information it contains [29].

We were interested in how to use these mechanisms to emulate proof systems for modal
logics. We present first an encoding of unfocused labelled sequent calculi for modal logics
into the focused sequent calculus for first-order logic, and then an encoding of unfocused
sequent calculus for modal logic into focused labelled sequent calculus for modal logic. This
second encoding is an illustrative example of a more general framework [86] that acts as an
interface between any modal system and focused first-order logic.

By analysing the case of ordinary sequents, we observed that a modal rule usually corre-
sponds to the application of a distinctive chain of synthetic rules in our focused framework
and vice versa. The (focused labelled) framework, when properly instantiated, can emulate
modal proof systems with good precision. Thus, implementations of that framework can
be used to provide a proof checker for the emulated proof systems [84], contributing to the
mechanisation of proof checking.

Folding: simplifying a proof system and its meta-theory
When one adds features to a proof system, one generally expects that the meta-theory will
become more complicated. Indeed, at the start, a sequent calculus for classical propositional
logic can have just as many logical rules as connectives and two additional structural rules of
identity and cut (not exactly Gentzen’s original system, but the one refined successively by
Ketonen and Kleene does). Eliminating cuts from this system is relatively straightforward:
there is a single cut-rule and a simple lexicographic induction. Extending the system with the
modal operators ◻ and◇ and modal axioms adds new forms of cuts and further complications
to the measure, or even requires us to generalise the very notion of a sequent, as already
mentioned, and so the entire cut-elimination procedure needs to be re-examined. Finally,
moving to a two-sided sequent calculus, which is essential for intuitionistic versions of these
calculi, doubles the number of inference rules, and hence doubles the number of cases to
address in the cut-elimination argument.

However, it appears that re-designing a proof system to enforce focused normal forms
can reduce its syntactic and meta-theoretic complexity. This is what we observed in the case
study of focused and synthetic proof systems for modal logics based on nested sequents in
a joint work with Chaudhuri and Straßburger [22, 23]. We started by studying a standard
family of classical modal logics between the basic logic K and the well-known S5; we could
already observe the effects of the simplification both on the system design and on the meta-
theoretical proofs. Then we applied the method to intuitionistic modal logics, as it contains
all the complications mentioned above, and the simplification is even more striking. We were
surprised to discover that: (i) the input/output annotations of intuitionistic sequents turn
out to be redundant, as they can always be uniquely inferred in the focused system; and
(ii) the synthetic version of the intuitionistic system has fewer rules than the non-focused
version, and the same number of structural rules as the classical system, which we did not
expect would be the case.

The soundness of focused and synthetic systems is usually straightforward. Our contri-
bution is a proof of completeness of the focused systems with respect to the non-focused
systems by showing that the rules of the non-focused systems can be simulated by deriva-
tions in the focused systems using cuts, and then proving a cut-elimination result internal
to the focused nested calculus, and similarly for the completeness of the synthetic systems.

Outline
This thesis is structured as follows:

Chapter 2 introduces classical modal logic, its syntax, its relational semantics, and
different proof formalisms, separated into labelled systems and unlabelled systems. We
mention many different forms that both classes can take, but we concentrate our attention
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on variations of the sequent framework, from ordinary sequents to labelled sequents, via
hypersequents, nested sequents, and indexed nested sequents.

Chapter 3 parallels the structure of Chapter 2 to introduce intuitionistic modal logic,
its syntax, its bi-relational semantics, and its proof theory, whether labelled or unlabelled.
We highlight the particular challenges that the addition of the intuitionistic dimension to
modal logic has brought, compared to the classical case.

Chapter 4 reviews formally the focused proof systems for classical and intuitionistic
first-order logic [83] and how to build synthetic rules from them.

Chapter 5 presents the encoding of the labelled sequent system for intuitionistic modal
logic into focused first-order intuitionistic logic. This is an adaptation of the work of [96],
which only considered classical modal logic, to the intuitionistic case.

Chapter 6 presents the encoding of ordinary sequent systems for classical modal logic
into a focused labelled framework for classical modal logic [86].

Chapter 7 presents focused nested sequent systems for classical and intuitionistic modal
logics, the main results being their completeness, obtained via a cut-elimination argument.

Chapter 8 presents synthetic nested sequent systems for classical and intuitionistic
modal logics, which allows us to give an alternative and simpler proof of completeness for
the focused systems. These two chapters are based on [22] for the classical systems and
on [23] for the intuitionistic systems.

Chapter 9 concludes this thesis with some perspectives and ideas for future work.
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I « Il est possible à tout métaphysicien
d’être danseur »

We present the Milky Way of proof systems for modal logics. In Chapter 1, we set foot on
the questions and the methods we will explore. In Chapter 2 and 3, we introduce in parallel
the universes of classical and intuitionistic modal proof theory respectively. It is possible
not to be a metaphysicist to understand the many approaches that have been developed in
order to capture modal logics through proof theoretic methods. However, we will see that it
is certainly necessary to be a dancer to cross the bridges between the labelled and unlabelled
hemispheres.





2

Classical modal logic

In this chapter we introduce the concepts and notations that will be used in this thesis for
classical modal logic, the modal extension of classical propositional logic. (Note, however,
that the term classical modal logic is sometimes used by other authors, following ??, to de-
note a weaker modal logic that does not satisfy necessitation and distributivity.) For a more
detailed presentation we refer to the surveys by Fitting [46], Negri [102], and Wansing [136],
on which this chapter is partly based. We start by introducing Hilbert-style axiomatisations
in Section 2.1 and Gentzen-style sequent systems in Section 2.2 for standard modal logics,
and then by giving their relational semantics in Section 2.3. Building on the semantic in-
terpretation of the logics, we can introduce the labelled approach to the proof theory of
classical modal logic in Section 2.4 and by contrast the unlabelled approach in Section 2.5.
Finally in Section 2.6, we describe some ways to build bridges between the two approaches,
and in particular the formalism of indexed nested sequents that we studied in [88].

2.1 Hilbert axiomatisations

Modal logicians were at first interested in producing specialised axiomatic systems to de-
scribe intuitively modal-flavoured behaviours like strict implication, belief or knowledge [81].
The way we usually see classical modal logic nowadays is, as proposed first in [79], as an
extension of classical propositional logic.

The language of classical modal logic is obtained from the one of classical propositional
logic by adding the modal connectives ◻ and ◇, standing for example for necessity and
possibility. Starting with a set of atomic propositions denoted a and their duals ā, modal
formulas are constructed from the following grammar:

A ::= a | ā | A ∧A | ⊺ | A ∨A | � | ◻A | ◇A
In a classical setting, we always assume that formulas are in negation normal form, that
is, negation is restricted to atoms. When we write ¬A in this case, we mean the result of
computing the de Morgan dual of connectives and atomic propositions within A, i.e. ¬¬A ≡
A, ¬(A ∧B) ≡ ¬A ∨ ¬B and ¬◻A ≡ ◇¬A, where ≡ denotes syntactic equality. Implication
can be defined from this set of connectives by A ⊃B := ¬A ∨B. ⊺ and � are the usual units
of the binary connectives ∧ and ∨ respectively.

The classical modal logic K is then obtained from classical propositional logic by adding
to any standard formulation of the latter, such as its Hilbert axiomatisation,

• the necessitation rule: if A is a theorem of K then ◻A is too; and

• the axiom of distributivity, commonly written k := ◻(A ⊃ B) ⊃ (◻A ⊃ ◻B).

It is important to mention that what we are calling an axiom here is in fact, as is standard
in Hilbert-style axiomatisations, an axiom schema, in order to avoid explicit mention of
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Figure 2.1: The classical S5 cube

the substitution rule. A derivation is then constructed as a list of formulas that are either
instances of some given axiom schemes or deductions from previous formulas combined
using an inference rule. Moreover, because we are accepting the k axiom schema in our base
system, all the logics we consider fall into the family of normal modal logics.

Stronger modal logics can be obtained by adding to K other axioms mentioning the
modal connectives. One remarkable class of modal axioms has been exhibited by Lemmon
and Scott in [80]. The Scott-Lemmon axioms are defined schematically for a given 4-tuple
of natural numbers 〈h, i, j, k〉 as:

ghijk := ◇h◻ia ⊃ ◻j◇ka (2.1)

where ◻i denotes i ocurrences of ◻ and ◇k denotes k occurences of ◇. Note that in the
classical case ghijk and gjkhi are de Morgan equivalent.

In this part, we will also be considering a particular subclass of these axioms, that we call
path Scott-Lemmon axioms after [60], which corresponds to the case where i + k is exactly
equal to 1. In the classical case, this gives the axiom:

gh1j0 := ◇h◻a ⊃ ◻ja (2.2)

Some specific occurences of the Scott-Lemmon axiom scheme have been studied under
different names. For example,

g0001 corresponds to the well-known t := a ⊃◇a
g0011 “ b := a ⊃ ◻◇a
g0101 “ d := ◻a ⊃◇a
g1002 “ 4 := ◇◇a ⊃◇a
g1011 “ 5 := ◇a ⊃ ◻◇a
g1111 “ 2 := ◇◻a ⊃ ◻◇a

Note that t, b, 4, and 5 are path Scott-Lemmon axioms, but d and 2 are not.
We will often consider the most common five axioms t, b, d, 4 and 5. Picking subsets

of these axioms a priori lets us define thirty-two modal logics, but some of them coincide.
For example, the sets {b, 4} and {t, 5} both yield the modal logic known as S5. The result
is fifteen distinct modal logics that extend each other from K to S5 and can be represented
on a “cube” , as shown on Figure 2.1; this is sometimes called the S5 cube [55].

2.2 Sequent and hypersequent calculi

Even if the notion of proofs given by an axiomatic system à la Hilbert is nice and clear,
finding the proof of a specific theorem can be very hard. We might therefore lean towards
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Figure 2.2: Sequent system and extensions for k, 4, 5, d and t

Gentzen’s formalism of sequent calculus [56, 57], as it represents a more intuitive way of
searching for a proof.

In the classical setting, we will define a sequent Γ := A1, . . . , An as a multiset of formulas,
as usual omitting set-brackets and simply using the comma to denote the multiset union.
It is interpreted as the formula fmo(Γ) := A1 ∨ . . . ∨ An. A sequent inference rule is an
expression

Γ1 . . . Γm
Γ

for n ≥ 0 such that the bottom sequent Γ, the conclusion, can be deduced from the top
one(s) Γ1, . . . ,Γm, the premiss(es) (or none if m = 0), in the logic at hand.

A derivation, denoted D, is then constructed according to these rules; it will have the
structure of a tree, where each edge is a sequent and each internal node is a rule. A derivation
is a proof of the sequent at the root, if each leaf is a rule with no premisses. The height of
a derivation D, denoted by ht(D), is the height of D when seen as a tree, i.e., the length of
the longest path in the tree from its root to one of its leaves.

Designing a sound and complete sequent system for a given logic means defining the
right set of sequent rules such that each theorem of the logic at hand has a proof in the
sequent system (completeness) and that any proof that can be built in the sequent system
derives a theorem of the logic (soundness).

We say that a rule r is admissible for a system S if, whenever its premisses are provable in
S there is a proof of its conclusion in S. We say it is derivable if there exist a derivation in S
from its premisses to its conclusion, possibly using premisses multiple times. As mentioned
in the introduction, one important rule to show admissible in a deductive system is the
cut-rule, which can be written as:

Γ, C Γ,¬C
cut

Γ

for some formula C and its de Morgan dual ¬C. The rank of an instance of cut is the
depth of the formula C introduced by the cut (read bottom-up). The depth of a formula A,
denoted by dp(A), being inductively given as:

dp(a) = dp(ā) = dp(�) = dp(⊺) = 1
dp(◇A) = dp(◻A) = dp(A) + 1

dp(A1 ∧A2) = max(dp(A1),dp(A2)) + 1
dp(A1 ∨A2) = max(dp(A1),dp(A2)) + 1

We also write cutr to denote an instance of cut with rank at most r. The cut-rank of a
derivation D, denoted by rk(D), is the maximal rank of a cut in D.

Proving that this rule is admissible in a given proof system somewhat ensures that it
is well-designed for backward proof-search. Such a result was first proven by Gentzen as
the Hauptsatz [56] for classical and intuitionistic (non modal) logic. The standard proof
proceeds by a double-induction on the cut-rank and on the height of a derivation.

The first sequent systems for modal logics seem to have been defined for logics K, T,
S4 and S5 by Ohnishi and Matsumoto in [105]. However, as they announced in a follow-up
note [106], the cut-rule is not admissible in their proposed system for S5. Since then, cut-free
sequent systems have been proposed for other extensions of K with the axiom d [59], with
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the axiom 4 [120], and with the axioms 4 and 5 [125], but to our knowledge no cut-free
system based on ordinary sequents has been found for the modal logic S5 (or for K5, D5 and
KB5).

Figure 2.2 sums up the rules of these systems. We use here a common abuse of notation
for sets of modal formulas: ◻Γ := {◻A | A ∈ Γ} and ◇Γ := {◇A | A ∈ Γ}. The systems oK,
oK4, and oK45 are obtained by adding to the rules in the first line of Figure 2.2 the rule
◻o

k, ◻o
k4, or ◻o

k45 respectively. This is enough for getting sound and complete systems for the
logics K, K4, and K45. They can then be extended modularly by adding either the rule ◇o

d
or the rule ◇o

t to get combinations of these logics with axiom d or t respectively.

2.2.1 Theorem ([105, 59, 120, 125]) Let X = ∅ or {d} or {t}. For any formula A,
the following are equivalent.

1. A is a theorem of K + X or K4 + X or K45 + X.

2. A is provable in the sequent calculus oK+◇o
X+cut or oK4+◇o

X+cut or oK45+◇o
X+cut.

3. A is provable in the sequent calculus oK +◇o
X or oK4 +◇o

X or oK45 +◇o
X respectively.

This theorem can be proved for any of these systems in three steps. The proof follows
the standard pattern found for example in [133]. First, 2 → 3 is the admissibility of the
cut-rule in the sequent calculus, that is usually obtained, as already mentioned, by induction
on derivation cut-rank and height. Then, 3 → 1 is the soundness of the sequent calculus
with respect to the Hilbert system, for which it is enough to show for every sequent rule
that if the premisses are provable in the Hilbert system, so is the conclusion. Finally, 1 → 2
is the completeness of the sequent calculus (with cut) with respect to the Hilbert system, for
which it suffices to show that the axioms of the Hilbert system are provable and the rules
of the Hilbert system admissible in the sequent system. We do not prove these statements
(and all the other similar results of this chapter) formally, but we give one detailed proof of
cut admissibility in Section 2.6 to illustrate how the others would proceed.

A list of criticisms is usually addressed to these sequent systems, namely that they (or
at least some of them) lack (i) locality; (ii) modularity; (iii) generality; and (iv) analyticity.

(i) These systems do not have local rules for modalities and do not separate rules for
a connective and its dual. The modal rules do not only introduce one connective in the
conclusion, some of them introduce at the same time ◻ and ◇, and some of them involve
restriction on the context of application, e.g. require a context to be exclusively composed
by modal formulas.

(ii) These systems are not fully modular. A modular system would be one where each
rule can be freely mixed with others as required by the logic to be defined, and not one
where the rule corresponding to the axiom k varies depending on whether other axioms like
4 or 5 are also present.

(iii) These systems are not general enough. Already in the S5 cube, the logics K5,
D5, KB5 and S5 could not be given a complete sequent system so far, and that is without
considering logics beyond the cube, in particular those axiomatised by the Scott-Lemmon
axioms, defined in the previous section.

(iv) We could obtain a system for S5 by adding to the classical sequent calculus the rules
◻o

k45 and ◇o
t , but the resulting system would not be analytic. Indeed, the formula ā ∨ ◻◇a

which is a theorem of S5, is provable in oK + ◻o
k45 +◇o

t + cut as follows

ido

ā,◻◇a, a
◇

o
t
ā,◻◇a,◇a

ido
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◻
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k
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Figure 2.3: System hS4 and extensions for 5 and 2

but the cut-rule is impossible to remove without breaking provability. Indeed, the only rules
that can be applied in a cut-free derivation ending in ā,◻◇a are w and c possibly followed
by ◻o

k45. Hence, such a derivation can only contain sequents of the form: ām, ◻◇an or
◇ak, a`,◻◇aj , for some arbitrary j, k, `,m, n ≥ 0, which do not include an identity sequent,
so the derivation cannot be closed [77].

Many solutions for the analyticity issue of S5 in the context of ordinary sequents have
been explored, but they usually involve breaking some other properties of proof-theory or-
thodoxy like the subformula property or the locality constraint [97, 121, 12]. One alternative
treatment has been via the formalism of hypersequents. It was apparently independently
developed by Mints [97], Pottinger [113], and Avron [6].

A hypersequent H := Γ1 | . . . | Γn is a finite collection of sequents separated by vertical
bars, and each Γi for 1 ≤ i ≤ n is called a hypersequent component. In the context of modal
logic, it can be interpreted as the modal logic formula fmh(H) := ◻fmo(Γ1)∨ . . .∨◻fmo(Γn).
Intuitively it allows us to consider several streams of proofs in parallel that can communicate
through structural rules; structural in the sense that they interact only with a structural
element, here the vertical bar.

On Figure 2.3 we present, in the first part, rules of a basic hypersequent system hS4
corresponding to the logic S4, the extension of K with axioms t and 4. Note that the first
two lines are almost identical to the sequent rules for S4 on Figure 2.2, namely the rules
for the propositional connectives, the rules ◻o

k4 and ◇o
t , and the (internal) structural rules

c and w. The only difference is the presence of a hypersequent context in every rule, but
the latter does not play a significant role in these rules. Two structural rules need to be
added to handle the management of this context, the external contraction ec and external
weakening ew.

Finally, in the second part of Figure 2.3, the rules �h
5 [6] and �h

2 [71] can be added to
the basic system to obtain a sound and complete system for the logics S5, the extension of
S4 by the axiom 5, and S4.2, the extension of S4 by the axiom 2.

2.2.2 Theorem (Avron [6], Kurokawa [71]) Let x be the axiom 5 or 2. For any formula
A, the following are equivalent.

1. A is a theorem of S5 if x = 5 or S4.2 if x = 2.

2. A is provable in hS4 + �h
x + cut where cut is the rule

H | Γ, C H | Γ,¬C
cut

H | Γ
3. A is provable in the hypersequent calculus hS4 + �h

x.

These sequent and hypersequent systems were all developed ad hoc for a specific logic
in a specific context, very probably by “trial and error”. However, we can observe patterns
in the way each system relates to its corresponding logic. Lellmann and Pattinson [77, 76],
inspired by a successful line of work by Ciabattoni et al. on intermediate and substructural
logics [30, 33], have explored this idea fully and explained a way to generalise these patterns
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in order to understand which modal logics can be given a sequent system based on sequents
with context restrictions, and which ones cannot and require hypersequents with context
restrictions. They show in particular that S5 falls into this second category; it does not
prove that S5 cannot be given a sequent system at all, but that its system would have to be
quite special.

There is a noticeable difference between rules in the sequent and in the hypersequent
calculi. In the sequent calculi, some modal operators are introduced in the conclusion of the
rules, similarly to what we are used to for propositional connectives. In the hypersequent
rules corresponding to 5 and 2 on the other hand, the modal operators are only shifted
from one hypersequent component to another one, being already present in the premisses,
and there is furthermore an interaction with the structural element in the context. This
point will be relevant in the other proof systems for modal logic that we will introduce in
Section 2.4 and 2.5.

2.3 Possible-world semantics

Probably the most crucial result of the 20th century for modal logic has been the definition
of possible-worlds semantics. It is commonly attributed to Kripke (and even alternatively
called Kripke semantics), as he gave its first systematic treatment [69], though we know now
that this concept was “in the air” around that time (see the history in [35]). The idea is
to use graphs, relational structures, to give a meaning to modal formulas, or the other way
around, to use the modal language to describe properties of graphs. A standard reference
for this section is for instance [10].

We start with a graph: a frame F is a pair 〈W,R〉 of a non-empty set W of possible
worlds and a binary relation R ⊆ W ×W , called the accessibility relation. Then we add a
mechanism to evaluate formulas: a model M is a frame together with a valuation function
V : W → 2A, which assigns to each world w a subset of propositional variables that are
“true” in w. The truth of a modal formula at a world w in a relational structure is the
smallest relation  satisfying:

w  a iff a ∈ V (w)
w  ā iff a 6∈ V (w)
w  A ∧B iff w  A and w  B
w  A ∨B iff w  A or w  B
w  ◻A iff for all v ∈W such that (w, v) ∈ R one has v  A
w  ◇A iff there exists v ∈W such that (w, v) ∈ R and v  A

Notice the correspondence between ◻ and universal quantification ∀, as well as ◇ and ex-
istential quantification ∃. This allows us to identify classical modal logic as a fragment of
first-order classical logic.

We say that a formula A is satisfied in a model M = 〈W,R, V 〉, denoted by M |= A, if
for every w ∈W , w  A. We say that a formula A is valid in a frame F = 〈W,R〉, denoted
by F |= A, if for every valuation V , 〈W,R, V 〉 |= A.

The syntax presented in Section 2.1 and this possible-world semantics are then linked by
the fact that the logic K is sound and complete with respect to these general frames.

2.3.1 Theorem (Kripke [70]) A formula A is derivable in the Hilbert system K if and
only if A is valid in every frame.

Furthermore, the power of this construction is that this link is not restricted to K: some
classes of modal formulas correspond to specific properties of frames. An alternative way,
then, to obtain modal logics stronger than K is by restricting the class of frames we want
to consider, by imposing some constraints on the accessibility relation. For example, for a
given 4-tuple of natural numbers 〈h, i, j, k〉, it is possible to recover the logic axiomatised
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by the Scott-Lemmon axiom ghijk by considering the formulas that are valid in all frames
satisfying the following confluence condition:

for all w, u, v ∈W with wRhu and wRjv there is a z ∈W s.t. uRiz and vRkz. (2.3)

u
Ri

  
w

Rh
>>

Rj
  

z

v
Rk

??

where we define as usual Rn to be R composed n times with itself, that is, R0 is the diagonal
of W and Rn+1 = {(w, v) | ∃u. (w, u) ∈ R and (u, v) ∈ Rn}.

The Hilbert system K + G actually completely axiomatises classical models of this type.

2.3.2 Theorem (Lemmon and Scott [80]) Let G ⊆ N4 and let G be the corresponding
set of Scott-Lemmon axioms. A formula is provable in K + G if and only if it is valid in all
frames satisfying (2.3) for each 〈h, i, j, k〉 ∈ G.

The following table recapitulates the modal axioms constituent of the S5-cube, and in
parallel their corresponding first-order counterpart and the frame property it entails.

Axiom Frame property First-order correspondence
t : A ⊃◇A Reflexivity ∀x.xRx

b : A ⊃ ◻◇A Symmetry ∀x, y.xRy ⊃ xRy
d : ◻A ⊃◇A Seriality ∀x∃y.xRy

4 : ◇◇A ⊃◇A Transitivity ∀x, y, z.(xRy ∧ yRz) ⊃ xRz
5 : ◇A ⊃ ◻◇A Euclideaness ∀x, y, z.(xRy ∧ xRz) ⊃ yRz

2 : ◇◻A ⊃ ◻◇A Confluence ∀x, y, z.(xRy ∧ xRz) ⊃ ∃u.(yRu ∧ zRu)

The possible-worlds semantics has rejuvenated the field of modal logics since graphs are
ubiquitous in modelling, and possessing a language to describe their properties is highly
useful. More surprisingly perhaps, this idea not only allowed the model theory of modal
logic to grow, but also gave a new perspective on its proof theory as it offered another view
on the way proof systems could work, along semantical lines.

2.4 Labelled deduction

Once possible-world semantics was established as a solid base to define modal logics, the idea
of incorporating these notions into the proof theory of modal logics emerged. Fitch seems to
have been the first one to formalise it, directly including symbols representing worlds into
the language of his proofs in natural deduction [43].

The concept was popularised when Fitting described a tableau proof system for the logics
of the S5-cube called prefixed tableaux where each formula is prefixed by a label, referring
to a world in a relational structure [44]. Modal operators can only be introduced while
changing the prefix of the formula, which corresponds to the fact that the semantics of ◻A
and ◇A uses the semantics given to A in every/some accessible worlds. Fitting also remarked
that the correspondence between modalities of propositional modal logic and quantifiers of
first-order logic observed at the semantical level, namely between ◻ and ∀, and between ◇
and ∃, is also noticeable in the similarity of the proof rules, and even in the meta-theory.
His systems were later refined and given a modular treatment by Massacci [89].

Labelled deduction has been more generally proposed by Gabbay in the 80’s as a unifying
framework throughout proof theory in order to provide proof systems for a wide range
of logics [52]. For modal logics it can also take the form of labelled natural deduction
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and labelled sequent systems as used, for example, by Simpson [127], Viganò [134], and
Negri [101]. These formalisms make explicit use not only of labels, but also of relational
atoms. We will continue with our choice of the sequent presentation; we present the calculus
of Negri [101] for classical modal logic in this section and come back to Simpson’s system
for intuitionistic modal logic [127] in the next chapter.

Geometric theories
The approach here is not to obtain a proof system for a logic by converting modal axioms
into inference rules as before, but to consider the logic as defined by a given class of frames.
The most general frame properties which have been considered in this setting are based on
geometric theories. They generalise, in particular, the Scott-Lemmon frame properties that
we introduced in (2.3).

Interest in the study of geometric theories arises from different areas of logic and mathe-
matics, such as topology and category theory. The proof-theoretical analysis of systems for
first-order classical logic extended by such theories was investigated in detail by Negri and
von Plato [104]. Here we recall some basic definitions and results, adapted mainly from this
reference.

A geometric formula is a first-order formula of the form:

∀z(A ⊃ B)

where A and B contain neither ⊃ nor ∀, and z is a vector of variables z1, . . . , zn.
It has been observed (e.g. [127] and for a detailed proof see [130]) that geometric impli-

cations can be expressed in the following canonical form.

2.4.1 Proposition For each geometric formula, there exists an equivalent formula-
tion as a conjunction of geometric clauses of the form:

∀z((a1 ∧ . . . ∧ an) ⊃ (∃x1A1 ∨ . . . ∨ ∃xmAm))

where each ai for 1 ≤ i ≤ n is an atomic formula, each Aj for 1 ≤ j ≤ m is a conjunction
of atomic formulas bj1, . . . , bjkj

, and none of the variables in the vectors xj are free in any
ai.

If one tries to add axioms from a Hilbert-style system as hypotheses of a sequent system
it will in general break the cut-admissibility property [58]. However, for certain classes of
axioms, in particular the geometric ones just defined, it is possible to overcome this issue
by converting the axioms into inference rules. The idea is to incorporate implicitly some of
the logical content of the axioms into the ‘meta-language’ of premisses and conclusions of a
sequent rule. A general rule scheme has been proposed for geometric axioms [100], and we
will present its modal version.

Labelled sequents
Labelled sequents are formed from by labelled formulas of the form x : A and relational or
equality atoms of the form xRy or x = y respectively, where x, y range over a set of variables
(called labels) and A is a modal formula. A (one-sided) labelled sequent is then of the form
G ⇒ R where G denotes a set of relational or equality atoms, and R a multiset of labelled
formulas. A simple proof system (shown on Figure 2.4) for classical modal logic K can be
obtained in this formalism.

This can be extended to a wide class of modal logics by applying the general ideas
described in the previous section. In the previous paragraph, we remained purposefully
vague about the context of application as these rule schemes can occur in different contexts
and different calculi, with a little bit of adaptation. The context that interests us here is
when it is applied to modal logics, more precisely when modal logics are defined in terms
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idlab

G ⇒ R, x : a, x : ā
⊺

lab

G ⇒ R, x : ⊺

G ⇒ R, x : A G ⇒ R, x : B∧lab

G ⇒ R, x : A ∧B
G ⇒ R, x : A, x : B∨lab

G ⇒ R, x : A ∨B
G, xRy ⇒R, y : A

◻
lab y is fresh
G ⇒ R, x : ◻A

G, xRy ⇒R, x : ◇A, y : A
◇

lab

G, xRy ⇒R, x : ◇A

Figure 2.4: System labK

of the frames they characterise. Let us consider a modal logic that characterises a class
of frames satisfying a set of geometric properties. Note that in this case the only atomic
propositions we can refer to are relational or equality atoms. Therefore a geometric frame
property will be of the form:

∀u∀v((a1 ∧ . . . ∧ an) ⊃ (∃x1A1 ∨ . . . ∨ ∃xmAm)) (2.4)

where each ai for 1 ≤ i ≤ n is a relational or an equality atom, uiRvi or ui = vi, for
1 ≤ j ≤ m each Aj = bj1 ∧ . . . ∧ bjkj

is also a conjunction of relational or equality atoms,
and the variables in xj do not appear among u or v.

The corresponding geometric rule scheme is obtained from the generic shape of [100] as:

A1(y1/x1), a1, . . . , an,G ⇒ R . . . Am(ym/xm), a1, . . . , an,G ⇒ R
�lab

grs a1, . . . , an,G ⇒ R
(2.5)

where G is a set of relational or equality atoms, R is a multiset of labelled modal formulas,
each ai for 1 ≤ i ≤ n is a relational or an equality atom, each Aj for 1 ≤ j ≤ m denotes
the set of relational or equality atoms present in Aj , and y1, . . . ,ym are vectors of fresh
eigenvariables, i.e. they do not occur in the conclusion.

2.4.2 Theorem (Negri [101]) Let C be a set of geometric frame properties as in (2.4)
and �lab

C be the corresponding set of rules following schema (2.5). For any formula A, the
following are equivalent.

1. A is provable in labK + �lab
C + cut where cut is

G ⇒ R, z : C G ⇒ R, z : ¬C
cut

G ⇒ R
2. A is provable in labK + �lab

C

3. A is valid in all frames satisfying the properties in C.

As examples, we sum up in this table the rules that are obtained via this process for the
most common axioms we reviewed in previous sections.

Axiom Geometric rule scheme

t : A ⊃◇A G, xRx⇒ R
�lab

t x appears in R
G ⇒ R

b : A ⊃ ◻◇A G, xRy, yRx⇒ R
�lab

b G, xRy ⇒ R

d : ◻A ⊃◇A G, xRy ⇒ R
�lab

d x appears in R but y is fresh
G ⇒ R

4 : ◇◇A ⊃◇A G, xRy, yRz, xRz ⇒ R
�lab

4 G, xRy, yRz ⇒ R

5 : ◇A ⊃ ◻◇A G, xRy, xRz, yRz ⇒ R
�lab

5 G, xRy, xRz ⇒ R

2 : ◇◻A ⊃ ◻◇A G, xRy, xRz, yRu, zRu⇒ R
�lab

2 u is fresh
G, xRy, xRz ⇒ R
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Let us re-examine the points that we faltered upon in the case of sequents and hy-
persequents: (i) locality; (ii) modularity; (iii) generality; and (iv) analyticity. The rules
introducing modalities in the labelled sequent calculus are local; they separate the rule for
◻ from the rule for ◇ and they do not assume any restriction on the form of the context.
The labelled sequent calculus allows for a modular treatment of modal logics defined by
(geometric) frame properties, namely for any set of geometric formulas, one can add the
corresponding set of rules to a basic system and obtain a complete system for the given
logic. Furthermore, it is the most general system we know of as a lot of the most common
modal logics axiomatise frames satisfying geometric axioms, including the ones defined by
Scott-Lemmon axioms. Finally, it is possible to prove a general cut-elimination that applies
for the basic system and all its extensions by geometric rules.

2.5 Unlabelled deduction

We have already presented instances of unlabelled deduction systems for modal logics in
the form of sequent and hypersequent calculi. We have also seen their drawbacks, and how
labelled systems offer a smart solution, bringing back expressivity and modularity. However,
some proof-theorists are not satisfied with the idea of labels in proofs that would be seen
as ‘semantical pollution’ because some ingredients of a labelled formalism resemble model-
theoretic objects [116]. They advocate then for ‘label-free’ alternatives that would have the
same qualities as labelled systems, but with no labelling, arguably more in line with original
sequents or hypersequents.

Display calculus is a proof formalism which does not use labelling and provides a sys-
tematic way to obtain structural rules for every Scott-Lemmon (SL) axiom via Kracht’s
algorithm in [68], unfortunately only in the context of tense logic, an extension of modal
logic with an adjoint for each connective. To our knowledge, the modal case, i.e. how to
get display rules corresponding to the purely modal SL axioms, is still open (and perhaps
impossible).

A generalisation of tableaux for modal logics without labels was proposed in [17]. Instead
of using labelling, Castilho et al propose to write tableaux rules as graphical rewrite rules.
Moreover, whereas prefixed tableaux are usually built in a tree structure, these label-free
tableaux use rooted directed acyclic graphs as their basis of construction. This allowed them
to express many more modal logics than Fitting’s [45] or Massacci’s [89] systems.

Nested sequents
Another way to tackle the proof theory of modal logics without labelling is offered by the
formalism of nested sequents. Nested sequents are a generalisation of sequents from a multiset
of formulas to a tree of multisets of formulas. They were first defined by Kashima [66] for
tense logic and by Cerrato [18] for modal logic (under the name tree-sequents), and then
independently rediscovered by Poggiolesi [112] (who called them tree-hypersequents) and
Brünnler [15].

In nested sequent notation, brackets are used to indicate the parent-child relation in the
tree, and can be interpreted as the modal ◻ (similarly to how the comma is interpreted as
∨). In other words, nested sequents are defined according to the following grammar:

Γ ::= ∅ | A,Γ | Γ1, [Γ2] (2.6)

For any nested sequent Γ, a corresponding formula, written fmn(Γ), gives the meaning of
Γ as a modal logic formula. It is defined as: fmn(∅) := �, fmn(A,Γ) := A ∨ fmn(Γ), and
fmn(Γ1, [Γ2]) := fmn(Γ1) ∨ ◻fmn(Γ2). Note that the sequent [∅] is different from ∅.

2.5.1 Example The nested sequent Γ = A,B,C, [D, [B]], [D, [C], [E]] is the term
used to describe the following tree:
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idn

Γ{a, ā}
Γ{A} Γ{B}∧n

Γ{A ∧B} ⊺
n

Γ{⊺}
Γ{A,B}∨n

Γ{A ∨B}
Γ{[A]}

◻
n

Γ{◻A}
Γ1{◇A, [A,Γ2]}

◇
n
k Γ1{◇A, [Γ2]}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Γ{◇A,A}

◇
n
t Γ{◇A}

Γ1{[Γ2,◇A], A}
◇

n
b Γ1{[Γ2,◇A]}

Γ{◇A, [A]}
◇

n
d Γ{◇A}

Γ1{◇A, [◇A,Γ2]}
◇

n
4 Γ1{◇A, [Γ2]}

Γ1{[◇A,Γ2]}{◇A}
◇

n
5 Γ1{[◇A,Γ2]}{∅}

Figure 2.5: System nK and extensions for t, b, d, 4, and 5

tree(Γ) =

A,B,C

D

B

D

C E

It can be interpreted as the modal formula: fmn(Γ) = A∨B∨C∨◻(D ∨ ◻B)∨◻(D ∨ ◻C ∨ ◻E).

The inference rules for nested sequents operate on sub-trees of such sequents. To identify
the sub-trees, we use the notions of context and substitution. An n-ary context Γ

{1 } · · ·{n }
is like a nested sequent, but contains n pairwise distinct numbered holes { } in place of for-
mulas (and never inside a formula). We can assume by default that holes are independently
numbered in left-to-right order and so, unless there is any ambiguity, we will omit the hole
index for better readability. Note that a 0-ary context is the same as a sequent.

Given such a context Γ{ } · · · { } and n nested sequents as arguments Γ1, . . . ,Γn, we write
Γ{Γ1} · · · {Γn} to stand for the substitution nested sequent where for 1 ≤ i ≤ n the i-th hole
in the context has been replaced by Γi, with the understanding that if Γi is empty then the
hole is simply removed.

The depth of Γ{ }, written dp(Γ{ }), is given inductively by: dp({ }) = 0, dp(Γ1,Γ2{ }) =
dp(Γ2{ }), and dp([Γ{ }]) = dp(Γ{ }) + 1.

2.5.2 Example Let Γ{ }{ } = A, [B, { }, [{ }], C]. For the sequents Γ1 = D and
Γ2 = A, [C], we get: Γ{Γ1}{Γ2} = A, [B,D, [A, [C]], C] and Γ{∅}{Γ2} = A, [B, [A, [C]], C].
We also have that dp(Γ{ }{∅}) = 1 and dp(Γ{∅}) = 2.

The basic modal logic K is captured using nested sequents as the cut-free proof system
nK shown in the first line of Figure 2.5. The rules idn, ∧n, ⊺n, and ∨n are basically identical to
the corresponding ones in the ordinary sequent system on Figure 2.2. They do not interact
with the bracketing structure, but they can occur at any node in the context Γ{ }. The rules
◻n and ◇n can also occur at any depth in Γ{ }; however, they justify the need of generalising
sequents to nested sequents as ◻n transforms a bracketed formula into a ◻-formula and ◇n

shifts a formula from the inside of a bracket to the outside by prefixing it with a ◇. The two
modal rules implement the same idea as the ones in the labelled calculus on Figure 2.4: the
parent-child relation in the bracketing tree of a nested sequent replaces here the relational
notation xRy.

2.5.3 Example In nK there are two possible derivations of the sequent ◇(a∧b̄),◇ā, [b]
(which is equivalent to axiom k):
idn

◇(a ∧ b̄),◇ā, [a, ā, b] idn

◇(a ∧ b̄),◇ā, [b̄, ā, b]∧n

◇(a ∧ b̄),◇ā, [a ∧ b̄, ā, b]
◇

n
k

◇(a ∧ b̄),◇ā, [ā, b]
◇

n
k
◇(a ∧ b̄),◇ā, [b]

idn

◇(a ∧ b̄),◇ā, [ā, a, b]
◇

n
k
◇(a ∧ b̄),◇ā, [a, b] idn

◇(a ∧ b),◇ā, [b̄, b]∧n

◇(a ∧ b̄),◇ā, [a ∧ b̄, b]
◇

n
k

◇(a ∧ b̄),◇ā, [b]
We now want to extend this system modularly into cut-free systems for axiomatic exten-

sions of K. In their tableaux systems, Castilho et al [17] distinguish two classes of axioms
that correspond to two kinds of rules: propagation rules and structural rules. The first
one allows them to rewrite the content of one of the nodes in the graph and more precisely
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corresponds to a step of the form “if in some node of such a given pattern there is some
formula A, then propagate the formula B (which can be A or another one)”; while the other
one allows them to directly change the structure of the graph itself, which implements a
step of the form “if there is such a given pattern then add some new node(s) and edge(s)”.
We will investigate these two types of rules in the formalism of nested sequents.

Propagation rules.
Brünnler and Poggiolesi obtained nested sequents systems for all the logics in the S5-cube,
without giving a sytematic algorithm to transform axioms into rules. Following the ideas
of Goré, Postniece and Tiu in [60] but adapting the presentation slightly, we present an
algorithm to define nested sequent systems for the logic K extended with any subset of the
Scott-Lemmon path axioms, defined in (2.2). Note that the authors worked in the context of
tense logic so they also had adjoint modalities in their language. Here, we keep our language
purely modal and use the alphabet ◇ and ◆, with no intended logical meaning.

For any Scott-Lemmon (SL) path axiom p := ◇h◻A ⊃ ◇jA, we define its reflections as
the two following pairs of a sequence (denoted · if empty) and an element of {◇, ◆}:

p◇ := (◆h◇j , ◇) p◆ := (◇h◆j , ◆)
where ◆h denotes h occurrences of ◆ and ◇h denotes h occurrences of ◇.

Let s = (js1o · · · jsmo, js0o) and t = (jt1o · · · jtno, jt0o) be pairs of a sequence and one
item of {◇,◆}, i.e. for 0 ≤ i ≤ m and for 0 ≤ k ≤ n, jsio, jtko ∈ {◇, ◆}. s is composable
with t at position k if js0o = jtko. Then, the composition of s with t at position k is the
pair: s ▷k t := (jt1o · · · jtk−1ojs1o · · · jsmojtk+1o · · · jtno, jt0o). Finally, for a set of SL path
axioms P, the completion of P is the smallest set that (i) contains the two reflections p◇ and
p◆ for any p ∈ P, as well as the two identity pairs (◇, ◇) and (◆, ◆), and (ii) is closed under
composition (at any position).

Let Γ be a nested sequent. The propagation graph of Γ is a directed graph defined on
the set of nodes of tree(Γ) such that for any nodes n1 and n2, if n2 is a child of n1 in
tree(Γ), then in the propagation graph there is an edge (n1, n2) labelled ◇ and there is an
edge (n2, n1) labelled ◆. If π is a path n1jl1on2jl2o . . . jlk−1onk in the propagation graph of
Γ where each edge-label jlio ∈ {◇, ◆} for 1 ≤ i ≤ k − 1, then we denote by jπo the sequence
of labels jl1ojl2o . . . jlk−1o along that path.

2.5.4 Example Consider again the nested sequent Γ = A,B,C, [D, [B]], [D, [C], [E]],
its propagation graph is:

a

b

c

d

e f

◇
◆

◇ ◆

◇◆

◇◆ ◇ ◆

The sequence jπo = ◆ ◆ ◇ ◇ corresponds to a path going for example from the node e to the
node f .

For a set P of SL path axioms, the set ◇n
P of propagation rules for P contains any rule

Γ
{u◇A}{vA}◇n

π Γ
{u◇A}{v∅}

if there is a path π from u to v in the propagation graph of Γ
{u∅}{v∅} such that (jπo, ◇)

appears in the completion of P. Note that since the identity pairs are always present in the
completion of P, the rule ◇n

k necessarily appears in the set of propagation rules.

2.5.5 Theorem (Goré, Postniece and Tiu [60]) Let P be a set of Scott-Lemmon path
axioms and ◇n

P be the corresponding set of propagation rules. For any formula A, the
following are equivalent.
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1. A is a theorem of K + P.

2. A is provable in the nested sequent calculus nK +◇n
P

This is not an ideal definition of a deductive system because, even if the set of nodes in
tree(Γ) and the set P are finite, (i) the completion of P can be infinite, and (ii) there might
be an infinite number of (looping) paths between any two nodes u and v in the propagation
graph of Γ. However, Goré, Postniece and Tiu proved, using automaton theoretic intuitions,
that the decision problem whether a propagation rule can be applied to two nodes of a nested
sequents actually is decidable. Their idea is to see path axioms as a context-free grammar
and the propagation graph of a nested sequent as a finite-state automaton, and then to
reduce their decision problem to emptiness of the intersection of a context-free grammar
and the regular language associated to an automaton, that we know to be a decidable
problem.

They moreover show that some specific axioms can be described by simple regular ex-
pression which allow them to redefine the set of propagation rules for these axioms and
in particular to recover some already known rules as previously defined by Brünnler or
Poggiolesi. (We omit the rule ◇n

k in the set of propagation rules of t and b.)

Axiom Completion Set of propagation rules

t : A ⊃◇A (·, ◇), (·, ◆), (◇, ◇), (◆, ◆) Γ{◇A,A}◇n
t Γ{◇A}

b : A ⊃ ◻◇A (◇, ◆), (◆, ◇), (◇, ◇), (◆, ◆) Γ1{[Γ2,◇A], A}◇n
b Γ1{[Γ2,◇A]}

4 : ◇◇A ⊃◇A (◇n, ◇), (◆n, ◆) Γ{◇A, [Γ1[· · · [Γn, A] · · ·]]}◇n
4+k Γ{◇A, [Γ1, [· · · [Γn] · · ·]]}

for n ∈ N, n ≥ 1 for n ∈ N, n ≥ 1

5 : ◇A ⊃ ◻◇A (◆jl1o . . . jlno◇, jl0o), (◇, ◇), (◆, ◆)
Γ1{[◇A,Γ2]}{[A,Γ3]}◇n

5+k Γ1{[◇A,Γ2]}{[Γ3]}
n ∈ N and jlio ∈ {◇, ◆}, 0 ≤ i ≤ n

Actually the rules introduced by Brünnler and Poggiolesi allow the propagation of ◇
without introducing it. It does not affect t and b, but it gives a simpler notation of the rules
for 4 and 5 (though a trickier proof of cut-elimination).

Γ1{◇A, [◇A,Γ2]}◇n
4 Γ1{◇A, [Γ2]}

Γ1{[◇A,Γ2]}{◇A}◇n
5 Γ1{[◇A,Γ2]}{∅}

Furthermore, Brünnler and Poggiolesi define a rule corresponding to the axiom d, which
is not an SL path axiom, as follows:

Γ{◇A, [A]}◇n
d Γ{◇A} (2.7)

This allows them to give cut-free complete systems for nK extended to any logic of the
S5-cube. A nice property of the logics in the S5 cube, already observed in [17], is that
even though completion sets might become complex when combining axioms, in the case
of these fifteen logics we can consider for each of them a specific axiomatisation for which
we only need to combine the rules corresponding to each chosen axiom in order to obtain
a complete nested sequent system for the whole logic. We say that this set of axioms is
axiomatically complete: if a logic in the S5 cube has a unique axiomatisation, then it is
necessarily axiomatically complete; otherwise, for KB5 and S5 that can be axiomatised by
several distinct set of axioms, {b, 4, 5} and {t, 4, 5} respectively are axiomatically complete
sets to define them.
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Γ1{[Γ2]}
�n

t Γ1{Γ2}
Γ1{[Γ2, [Γ3]]]}

�n
b Γ1{[Γ2],Γ3}

Γ{[∅]}
�n

d Γ{∅}
Γ1{[Γ2], [Γ3]}

�n
4 Γ1{[[Γ2],Γ3]}

Γ1{[Γ2, [Γ3]]}{∅}
�n

5 Γ1{[Γ2]}{[Γ3]}

Figure 2.6: Nested structural rules for t, b, d, 4, and 5

2.5.6 Theorem (Brünnler [15]) Let X ⊆ {t, b, d, 4, 5} be axiomatically complete. For
any formula A, the following are equivalent.

1. A is a theorem of K + X.

2. A is provable in nK +◇n
X + cut where cut is the rule

Γ{C} Γ{¬C}
cut

Γ{∅}
3. A is provable in nK +◇n

X.

The proof follows the chain 1 → 2 → 3 → 1. The fact that X is axiomatically complete
is used in the cut-elimination proof 2→ 3 only.

Structural rules.
Another cut-free completeness result can be formulated which allows us to drop the require-
ment that X be axiomatically complete. This means that not only every logic of the S5 cube,
but even every single axiomatisation of them can be given a corresponding nested sequent
system in this way. The idea, described in details in [87], is to add another form of rules to
the mix, namely structural rules, one for each axiom in {t, b, d, 4, 5} as shown on Figure 2.6.
(These very rules were already defined by Brünnler and Poggiolesi as they are needed in
the course of the cut-elimination proof, but get eliminated at the end.) They are called
structural as they do not introduce any new connective, but only modify the structure of
the nested sequent (bracketing) tree.

2.5.7 Theorem (Marin and Straßburger [87]) Let X be any subset of {t, b, d, 4, 5}.
For a formula A, the following are equivalent.

1. A is a theorem of K + X.

2. A is provable in nK +◇n
X + �n

X.

One idea that was suggested by Brünnler and Straßburger in [16] was that perhaps
having only the structural rules corresponding to each axiom would be enough to give cut-
free systems for the S5 cube. Unfortunately, their argument had a flaw: it is true for logics
of the front face of the cube, that is, axiomatised with a subset of {t, b, d}, but not for logics
using axioms 4 or 5. For example, the formula ◇◻q ∨◻(◇p̄ ∨◇◇p) is provable in K + 4, but
not in nK + �n

4. Details can be found in [87].
However, a direction that has not yet been explored to our knowledge is to consider

structural rules defined using the algorithm described before for building propagation rules.
For a set P of SL path axioms, the set �n

P of structural rules for P would contain any rule

Γ1
{u[Γ2]

}{v∅}
�n
π Γ1

{u∅}{vΓ2
} (2.8)

if there is a path π from u to v in the propagation graph of Γ
{u∅}{v∅} such that (jπo, ◇)

appears in the completion of P. This would give us the same structural rules for t and b,
but different rules for 4 and 5, which is advantageous compared to �n

4 and �n
5.

2.5.8 Open question Is the system nK+�n
P sound and complete for the logic K+P?

If not, is there still some utility in this set of rules, e.g. in alleviating the need for strong
completion similarly to Theorem 2.5.7?
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In any case, we conjecture that these structural rules should play a role in the cut-
elimination procedure similar to the structural rules for {t, b, d, 4, 5} in the proof of Theo-
rem 2.5.6. The reduction step for the rules in ◇n

P should proceed as follows: a cut between
◇A and ◻¬A is replaced by a cut on the same formula but on proofs of smaller height and
a cut on the smaller formulas A and ¬A (modulo weakening).

Γ
{u
◇A
}{v

A
}

◇
n
π Γ
{u
◇A
}{v∅} Γ

{u[¬A]
}{v∅}

◻

Γ
{u
◻¬A

}{v∅}
cut

Γ
{u∅}{v∅}  

Γ
{u
◇A
}{v

A
}

Γ
{u
◻¬A

}{v
A
}

cut
Γ
{u∅}{vA} Γ

{u[¬A]
}{v∅}

�n
π Γ

{u∅}{v¬A}
cut

Γ
{u∅}{v∅}

2.6 Bridges

Following the proliferation of the extensions of sequents mentioned so far, proof-theorists
have worked to understand how these different formalisms could relate. For example, hyper-
sequents can be understood in a formalism that restricts the nested sequent tree to a single
branch called linear nested sequents [75]; they can also be translated into the display calcu-
lus [135]. Display calculus, on the other hand, can be embedded in labelled sequents [118].
Similarly, prefixed tableaux turned out to be the same as nested sequents [47] which can
be embedded in labelled sequents as a subclass called labelled tree sequents [61]. Of course
each formalism has its strengths and weaknesses, and the choice between one or the other is
usually led by the application that one has in mind. Nevertheless, it seems from this quick
summary that labelled sequents are general enough to encompass most existing formalisms,
and we will develop this aspect in detail in Part II.

However, as we already mentioned, labelled systems have been accused of incorporating
semantics into the syntax, viz. model theory into proof theory. Although we do not agree
with this statement on philosophical grounds, as clearly semantical intuitions are always at
hand when building a logical proof system even if it is less obvious in the case of propositional
classical logic, we do share the concerns that Restall underlines in [118].

(i) There is a multiplicity issue, i.e. the same labelled sequent can be written in infinitely
many ways by swapping labels. Restall recalls the straightforward solution of having a
canonical way of labelling a sequent, for example both xRy ⇒ x : ◇A, y : A and uRv ⇒
u : ◇A, v : A would be, for example, written as x0Rx1 ⇒ x0 : ◇A, x1 : A following the order
of introduction of labels.

(ii) There is a more fundamental issue with the subformula property. This property
applies to an inference rule if it satisfies that any formula appearing in its premiss(es)
is a subformula of its conclusion. Of course, the introduction rule for ◻ in the labelled
system shown on Figure 2.4 does not validate this property since its premiss contains the
relational atom xRy that is not present in any formula in the conclusion. To handle this,
Restall suggests that we return to a more geometrical representation of a labelled sequent,
reminiscent for example of tree-proofs [18] or rdag-tableaux [17], by forgetting the labelling
and only keeping the graphical links between nodes. In our opinion, this is not an ideal
solution as it is quite inconvenient to write already on paper, and hides the fact that some
sort of encoding would still be needed in order to formalise this representation properly.

Recently, Fitting has introduced the formalism of indexed nested sequents. They are an
extension of nested sequents from a tree structure to a graph structure. The embedding
of nested sequents into labelled sequents can be adapted to embed indexed nested sequents
into labelled sequents as the subclass of labelled tree sequents with equality [115].

Therefore they are merely a new way of representing a labelled sequent, but apparently
a powerful one as they seem to escape the two criticisms addressed to labelled deductive
systems reviewed above. The multiplicity issue is indeed handled by using a canonical
enumeration of indices and then having an explicit structural rule of index substitution on
the one hand. On the other hand, indexed nested sequents provide a convenient notation
for the graph structure of labelled sequents, not an abstract geometrical one, which indeed
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helps to recover the subformula property in full and allows us to combine easily ideas from
labelled and unlabelled deductive systems.

Indexed nested sequents.
An indexed nested sequent, as defined in [48], is a nested sequent where each sequent node
(either the root or any interior node) carries an index taken from a countable set, so we
write an indexed sequent by extending (2.6) in the following way

Γ ::= ∅ | A,Γ | Γ1,
[xΓ2

]
where Γ is now an indexed sequent, but the index of the root is not explicitly shown (e.g.,
we can assume that it is x0).

Intuitively, once indexed, nested sequents are no longer trees; by identifying nodes car-
rying the same index we obtain any kind of rooted directed graphs. (A rooted graph is a
graph where one node is distinguished as the root and every node is reachable from it, i.e.,
the whole graph can be obtained as the minimal upward closure of this root by the edge
relation.) Indeed the structure of a rooted directed graph is equivalent to that of a tree
where certain nodes are identified, as used in [115] to represent the structure of indexed
nested sequents.

The definition of contexts is also extended to indexed nested sequents. We still write
Γ
{x1 } · · ·{xn

}
for an n-ary context but, in this case, the indices xk (1 ≤ k ≤ n) attributed

to the hole are not only abstract pointers, they correspond to the index of the sequent node
that contains this hole, in the order of their appearance in the sequent. This means that
some holes might carry the same index even though they appear in different places of the
context. We might still omit the index on context-braces if this information is clear or not
relevant.

2.6.1 Example A,
[x1B,

[x2C, { }
]]
,
[x3D,

[x1{ }, A
]]
,
[x2D, { }

]
is a ternary context

that we can write as Γ
{x2 }{x1 }{x2 } as the first and the third holes appear in brackets

indexed by x2 and the second one in a bracket indexed by x3.
If we substitute the sequents Γ1 = D,

[x4E
]
; Γ2 = F ; and Γ3 =

[x5G
]
into the holes, we get:

Γ
{x2Γ1

}{x1Γ2
}{x2Γ3

}
= A,

[x1B,
[x2C,D,

[x4E
]]]
,
[x3D,

[x1F,A
]]
,
[x2D,

[x5G
]]

For an indexed nested sequent Γ, we write graph(Γ) to denote the underlying graph of Γ
similarly to the underlying tree of a nested sequent. It consists of IΓ , the set of indices
occurring in Γ, and RΓ the accessibility relation induced by Γ, that is, the binary relation
RΓ ⊆ IΓ × IΓ defined as: (w, v) ∈ RΓ iff Γ = Γ1

{w[vΓ2
]}

for some context Γ1{ } and some
indexed nested sequent Γ2, i.e. v is the index of a child of w.

2.6.2 Example If we consider the sequent that we obtained above:
Γ = A,

[x1B,
[x2C,D,

[x4E
]]]
,
[x3D,

[x1F,A
]]
,
[x2D,

[x5G
]]
, then

IΓ = {x0, x1, x2, x3, x4, x5} with x0 being the index of the root, and
RΓ = {(x0, x1), (x0, x2), (x0, x3), (x1, x2), (x2, x4), (x2, x5), (x3, x1)}.

In Figure 2.7, the classical system that we call inK is an adaptation of the system de-
scribed by Fitting in [48] to our notations and to the one-sided setting. It can also be seen
as Brünnler’s system [15] extended with indices.

What is different from the pure nested sequent system is the addition of the two structural
rules tp and bc, called teleportation and bracket-copy respectively, which are variants of
the formula-contraction FC and the sequent-contraction SC of [48]. Note that we need two
versions of bc to take care of every possible context where the rule may be applied. They are
needed to adapt the system to indexed sequents, namely to maintain the intended semantics
by allowing two brackets with the same index to be identified. Another peculiarity is that in
the rules for ◻ we demand that the index of the new bracket in the premiss does not occur
in the conclusion.
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idin

Γ{a, ā}
Γ{A,B}∨in

Γ{A ∨B}
Γ{A} Γ{B}∧in

Γ{A ∧B} ⊺
in

Γ{⊺}

Γ1
{
◇A,

[u
A,Γ2

]}
◇

in

Γ1
{
◇A,

[uΓ2
]} Γ

{[v
A
]}

◻
in v is fresh

Γ{◻A}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ
{w∅}{wA}

tpin

Γ
{w
A
}{w∅} Γ1

{w[uΓ2
]}{[u∅]}

bcin
1 Γ1

{w[uΓ2
]}{w∅} Γ1

{w[uΓ2
{w[u∅]}]}

bcin
2 Γ1

{w[uΓ2
{w∅}]}

Figure 2.7: System inK

Fitting describes in [48] a way to obtain structural rules using indexed nested sequents for
any subset of the Scott-Lemmon axioms, defined in (2.1). For a 4-tuple of natural numbers
〈h, i, j, k〉 with i+ k 6= 0, the rule �in

ghijk
is defined as:

Γ
{u0[u1∆1, . . .

[uh∆k,
[v1 . . .

[vi
]
. . .
]]
. . .
]
,
[w1Σ1, . . .

[wj Σm,
[x1 . . .

[xk
]
. . .
]]
. . .
]}

�in
ghijk Γ

{u0[u1∆1, . . .
[uh∆h

]
. . .
]
,
[w1Σ1, . . .

[wj Σj
]
. . .
]} (2.9)

It must satisfy that v1 . . . vi and x1 . . . xk are fresh indices which are pairwise different, except
for the confluence condition: we always have vi = xk. When one or more elements of the
tuple 〈h, i, j, k〉 are equal to 0, there are special cases:

• if h = 0 (or j = 0) then u1 to uh (resp. w1 to wj) all collapse to u0.

• if i = 0 then w1 to wi all collapse to uh, and similarly, if k = 0 then x1 to xk all
collapse to vj . In particular, if h = 0 and i = 0, we must have xk = u0, and similarly,
if j = 0 and k = 0, we demand that vi = u0.

The case where i = 0 and k = 0 was not handled by Fitting in [48]; we give the following
corresponding rule:

σΓ
{
u0
[
u1∆1, . . .

[
σ(uh)∆h

]
, . . .

]
,
[
w1Σ1, . . .

[
σ(wj)Σj

]
, . . .

]}
�in

gh0j0 Γ
{u0[u1∆1, . . .

[uh∆h

]
, . . .

]
,
[w1Σ1, . . .

[wj Σj
]
, . . .

]} (2.10)

In that case, not only do we identify uh and wj , but it is also necessary to apply a substitution
σ : IΓ → IΓ to the indices in the context Γ

{u0 }, giving the new context σΓ
{u0 }, such that

σ(uh) = σ(wj) in the whole sequent, but σ(y) = y for any other y ∈ IΓ . For a given set
of SL axioms G, we write �in

G to be the set of rules corresponding to G according to these
definitions. As usual, we write inK + �in

G for the system obtained from inK by adding the
rules in �in

G .
System inK + �in

G is sound and complete wrt. the logic K + G.

2.6.3 Theorem (Fitting [48], Marin and Straßburger [88]) Let G be a set of SL axioms
and let �in

G be the corresponding set of rules. For any formula A, the following are equivalent.

1. A is a theorem of K + G.

2. A is provable in inK + �in
G .

Soundness is proven by Fitting (for i+ k 6= 0) wrt. relational frames, and completeness
via a translation to another equivalent formalism he calls set-prefixed tableaux for which in
turn he gives a semantic completeness proof [48]. In the sequel, we give an alternative proof
of completeness via a cut-elimination procedure (that covers also the case i+ k = 0).
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Cut-elimination
We present a cut-elimination proof for the indexed nested sequent system defined above. Of
course, the admissibility of cut, the fact that the system is complete without the cut-rule, is
implied by Theorem 2.6.3, the proof of which appeals to semantical tools. A syntactic proof
of cut-admissibility has also been given in [115] via the embedding into labelled tree sequents
with equality which are known to satisfy cut-admissibility. However, proof-theorists prefer
to have an explicit syntactical procedure to eliminate cut from proofs, that works internally
to the system at hand. The proof we present turns out to be nevertheless the same in
structure as the one for labelled sequents with the difference that we use an explicit index
substitution rule. In any case, this (more general) argument can serve as a model for the
proofs of the various cut-admissibility results only stated throughout this chapter.

2.6.4 Theorem (Marin and Straßburger [88]) Let G be a set of Scott-Lemmon axioms.
For any formula A, the following are equivalent.

1. A is a theorem of K + G.

2. A is provable in inK + �in
G + cut where cut is the rule

Γ{C} Γ{¬C}
cut

Γ{∅}
3. A is provable in inK + �in

G .

This result will follow from Lemma 2.6.5 and Lemma 2.6.8. The proof relies on a standard
nested induction, the main one being on the number of cuts of maximal rank, and the nested
one on the multiset of the ranks of a given cut and the height of the derivation above a cut.

To facilitate the overall argument, we consider a variant of system inK, that we call
system ı̈nK, that is obtained from inK by removing the teleportation rule tp (but keeping
the bc-rules), and by replacing the rules idin and ◇in by

ı̈d
Γ
{u
a
}{u

ā
} and

Γ1
{u◇A}{u[A,Γ2]

}
◇̈

Γ1
{u◇A}{u[Γ2]

}
respectively. The reason behind this is that inK and ı̈nK are equivalent (with and without
cut), but the tp-rule is admissible in the new system, and it is helpful that we do not need to
consider it in the cut-elimination argument. Therefore we will actually prove the following.

2.6.5 Lemma Let G be a set of SL axioms and let �in
G be the corresponding set of

rules. If a sequent Γ is derivable in ı̈nK + �in
G + cut, then it is also derivable in ı̈nK + �in

G .

The idea is to show that if there exists a proof D of Γ in ı̈nK + �in
G + cut then Γ is also

derivable in ı̈nK + �in
G , by an induction on the cut rank of D. The induction step also uses

an induction on the number of occurrences of cut with the maximal rank as well as the main
Reduction Lemma 2.6.9 to eliminate the topmost occurrence in the proof.

To complete this proof we will need some additional structural rules called weakening,
contraction, necessitation, and index substitution respectively:

Γ1{∅}w
Γ1{Γ2}

Γ1{Γ2,Γ2}c
Γ1{Γ2}

Γ
nec

[Γ]
Γ

isub
σΓ

The rules for weakening and contraction are similar to the standard sequent ones except
that they can apply deeply inside a context and to a whole nested structure. The rules nec
and isub on the other hand cannot be applied deep inside a context; they always work on
the whole sequent. In isub, the sequent σΓ is obtained from Γ by applying the substitution
σ : IΓ → IΓ on the indices occurring in Γ, here σ can be an arbitrary renaming. We will
show that these structural rules are admissible in the proof system.

For a given system S, a rule r /∈ S with n premisses (n ≥ 1) is height (or cut-rank)
preserving admissible in S, if for each proof D1, . . . ,Dn of its premisses in S, there is a proof
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D′ of its conclusion in S, such that ht(D′) ≤ ht(Di) (resp. rk(D′) ≤ rk(Di)) for 1 ≤ i ≤ n.
Similarly, a rule r is height (or cut-rank) preserving invertible in a system S, if for every
derivation of the conclusion of r there are derivations for each of its premisses with at most
the same height (resp. at most the same cut-rank).

2.6.6 Lemma Let G be a set of SL axioms and let �in
G be the corresponding set of

rules.

1. The rules nec, w, isub and c are cut-rank and height preserving admissible for ı̈nK+�in
G .

2. All rules of ı̈nK + �in
G (except for ı̈d) are cut-rank and height-preserving invertible.

Proof. This proof is by induction on the height of the derivation above an instance of the
rule, analogously to that for the pure nested sequent systems in [15]. For bc and �in

gklmn
, note

that their inverses are just application of the weakening rule. ,

2.6.7 Lemma Let G be a set of SL axioms and let �in
G be the corresponding set of

rules. The rule tp is admissible for ı̈nK + �in
G (and for ı̈nK + �in

G + cut).

Proof. The proof uses an induction on the number of instances of tp in a proof, eliminating
topmost instances first, by an induction on the height of the proof above it and a case
analysis of the rule r applied just before tp. The only non-trivial case is when r = ◻in:

Γ
{u[v

A
]}{u }

◻
in

Γ
{u
◻A
}{u }

tp
Γ
{u }{u

◻A
}  

Γ
{u[v

A
]}{u }

w .......................................
Γ
{u[v

A
]}{u[v ]}

tp
Γ
{u[v ]}{u[v

A
]}

bc
Γ
{u }{u[v

A
]}

◻
in

Γ
{u }{u

◻A
}

after this transformation, we use the admissibility of weakening (Lemma 2.6.6) and the
induction hypothesis to conclude. ,

2.6.8 Lemma Let G be a set of SL axioms and let �in
G be the corresponding set of

rules. A sequent Γ is provable in inK +�in
G (or in inK +�in

G + cut) if and only if it is provable
in ı̈nK + �in

G (resp. in ı̈nK + �in
G + cut).

Proof. Given a proof of Γ in inK + �in
G , we can observe that the rules idin and ◇in are just

special cases of the rules ı̈d and ◇̈, respectively. Thus, we obtain a proof of Γ in ı̈nK + �in
G

from admissibility of tp (Lemma 2.6.7).
Conversely, if we have a proof of Γ in ı̈nK +�in

G , we can obtain a proof of Γ in inK +�in
G

by replacing every instance of ı̈d and ◇̈ by the following derivations:

id
Γ
{u∅}{ua, ā}

tp
Γ
{u
a
}{u

ā
} and

Γ1
{u
◇A
}{u[A,Γ2]

}
tp

Γ1
{u∅}{u◇A, [A,Γ2]

}
◇

Γ1
{u∅}{u◇A, [Γ2]

}
tp

Γ1
{u
◇A
}{u[Γ2]

}
respectively. The same proof goes for the system with cut. ,

Finally we can prove the main lemma of this section which corresponds to the induction
step of the cut-elimination proof.

2.6.9 Lemma If there is a proof D of shape

D1

Γ{A}
D2

Γ{¬A}
cutr+1 Γ{∅}
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in ı̈nK + �in
G + cut such that rk(D1) ≤ r and rk(D2) ≤ r, then there is proof D′ of Γ{∅} in

ı̈nK + �in
G + cut such that rk(D′) ≤ r.

Proof. We proceed by induction on ht(D1) + ht(D2), making a case analysis on the bottom-
most rules in D1 and D2.

1. If D1 is just ı̈d, there are two sub-cases:

• If the cut-formula A is one of the atoms in the identity, then

ı̈d
Γ
{u
a
}{u

ā
} D2

Γ
{u
ā
}{u

ā
}

cut1
Γ
{u∅}{uā}  

D2

Γ
{u
ā
}{u

ā
}

tp ................................
Γ
{u∅}{uā, ā}

c ................................
Γ
{u∅}{uā}

where we apply the admissibility of tp (Lemma 2.6.7) and c (Lemma 2.6.6).
• If the cut-formula A is not one of the atoms in the identity then we can apply

the ı̈d-rule directly to Γ
{u∅}{uā}.

2. If the bottommost rule r of D1 is bc or �in
ghijk

then we have

D′1

Γ1{A}r
Γ{A}

D2

Γ{¬A}
cutr+1 Γ{∅}

 

D′1

Γ1{A}

D2

Γ{¬A}
w + isub .................

Γ1{¬A}cutr+1 Γ1{∅}r
Γ{∅}

and we proceed by induction hypothesis and height-preserving admissibility of weak-
ening, and, in the special case of �in

gh0j0
, of index substitution (Lemma 2.6.6).

3. If the bottommost rule r of D1 is one of ∧, ∨, ◻, or ◇̈, such that the principal formula
of r is not the cut-formula A, then we proceed as in the previous case; we apply the
height-preserving invertibility (Lemma 2.6.6) of the rules ∧, ∨, ◻, or ◇̈ (and apply it
twice in the case of the ∧-rule as illustrated below), denoting the admissible inverse of
r by r−1, and proceed by induction hypothesis.

D′1

Γ{A}{C}
D′′1

Γ{B}{C}∧
Γ{A ∧B}{C}

D2

Γ{A ∧B}{¬C}
cutr+1 Γ{A ∧B}{∅}  

D′1

Γ{A}{C}

D2

Γ{A ∧B}{¬C}∧−1 .................................
Γ{A}{¬C}

cutr+1 Γ{A}{∅}

D′′1

Γ{B}{C}

D2

Γ{A ∧B}{¬C}∧−1 .................................
Γ{B}{¬C}

cutr+1 Γ{B}{∅}∧
Γ{A ∧B}{∅}

Cases 1-3 are repeated for the bottommost rule of D2. Let us now consider the key cases:

4. If the bottommost rules r1 of D1 and r2 of D2 are among ∧, ∨, ◻, or ◇̈, and for both
the cut-formula is principal, we have the following cases:

• A = B ∨ C:
D′1

Γ{B,C}∨
Γ{B ∨ C}

D′2

Γ{¬B}
D′′2

Γ{¬C}∧
Γ{¬B ∧ ¬C}

cutr+1 Γ{∅}
 

D′1

Γ{B,C}

D′2

Γ{¬B}
w .....................

Γ{¬B,C}
cutr Γ{C}

D′′2

Γ{¬C}
cutr Γ{∅}
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where we apply the height-preserving admissibility of weakening (Lemma 2.6.6).
• A = B ∧ C: Likewise.
• A = ◇B:

D′1

Γ1
{w
◇B
}{w[u

B,Γ2
]}

◇̈

Γ1
{w
◇B
}{w[uΓ2

]}
D′2

Γ1
{w[v¬B]}{w[uΓ2

]}
◻

Γ1
{w
◻¬B

}{w[uΓ2
]}

cutr+1
Γ1
{w∅}{w[uΓ2

]}  

D′1

Γ1
{w
◇B
}{w[u

B,Γ2
]}

D′2

Γ1
{w[v¬B]}{w[uΓ2

]}
w ........................................................

Γ1
{w[v¬B]}{w[uB,Γ2

]}
◻

Γ1
{w
◻¬B

}{w[u
B,Γ2

]}
cutr+1

Γ1
{w∅}{w[uB,Γ2

]}

D′2

Γ1
{w[v¬B]}{w[uΓ2

]}
isub ...................................................

Γ1
{w[u¬B]}{w[uΓ2

]}
tp ......................................................

Γ1
{w[u ]}{w[u¬B,Γ2

]}
bc

Γ1
{w∅}{w[u¬B,Γ2

]}
cutr

Γ1
{w∅}{w[uΓ2

]}
where on the left branch we use height-preserving admissibility of weakening and
proceed by induction hypothesis, and on the right branch we use admissibility of
the rules isub and tp (Lemmas 2.6.6 and 2.6.7).

• A = ◻B: Likewise. ,
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3

Intuitionistic modal logic

In this chapter we introduce the concepts and notations that will be used throughout this the-
sis for intuitionistic modal logic. For a more detailed presentation we refer to the Ph.D. thesis
of Simpson [127] which still is the most comprehensive survey of everything intuitionistic
modal logic related. We proceed in the same order as in Chapter 2 even though it does
not fully reflect the chronological order in the case of intuitionistic modal logic. We review
HiIbert-style axiomatisations and Gentzen-style sequent systems for intuitionistic modal log-
ics in Section 3.1 and Section 3.2, then present the appropriate bi-relational semantics in
Section 3.3. We then introduce the labelled and unlabelled deductive systems that exist for
intuitionistic modal logic, in Section 3.4 and Section 3.5. Finally in Section 3.6, we explain
why bridges are even more difficult to build in the intuitionistic setting, and we close on a
presentation of our work on the intuitionistic variant of indexed nested sequents [88].

3.1 Hilbert axiomatisations

In the intuitionistic case, we work with a different set of connectives. Starting with a set of
atomic propositions still denoted a, formulas are constructed from the following grammar:

A ::= a | A ∧A | ⊺ | A ∨A | � | A ⊃ A | ◻A | ◇A
When we write ¬A, we mean A ⊃ �.

Obtaining the intuitionistic variant of K is more involved than the classical variant.
Lacking De Morgan duality, there are several variants of k that are classically but not intu-
itionistically equivalent. Five axioms have been considered as primitives in the literature. An
intuitionistic variant of the modal logic K can then be obtained from ordinary intuitionistic
propositional logic IPL by

• adding the necessitation rule: ◻A is a theorem if A is a theorem; and

• adding a subset of the following five variants of the k axiom.

k1 : ◻(A ⊃ B) ⊃ (◻A ⊃ ◻B)
k2 : ◻(A ⊃ B) ⊃ (◇A ⊃◇B)

k3 : ◇(A ∨B) ⊃ (◇A ∨◇B)
k4 : (◇A ⊃ ◻B) ⊃ ◻(A ⊃ B)

k5 : ◇� ⊃ � (3.1)

The idea is that intuitionistic propositional logic does not allow the principle of Excluded
Middle, so the modalities ◻ and ◇ are not de Morgan duals any more, but one can choose
to design the axiomatisation in order to relate them in different ways. The most basic
intuitionistic modal system one can think of would be to consider only the ◻ modality as
regulated by the k axiom (or as called here, k1), which gives the system IPL + nec + k1.
However this would give strictly no information on the behaviour of the ◇ modality.

It seems that Fitch [42] was the first one to propose a way to treat ◇ in an intuitionistic
system by considering the system IPL + nec + k1 + k2, which is now sometimes called CK for
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constructive modal logic. Wijekesera [137] also considered the axiom k5, which states that
◇ distributes over 0-ary disjunctions, but did not assume that it would always distribute
over binary disjunctions; the system he proposed was therefore IPL + nec + k1 + k2 + k5.
These systems are well-designed for some applications, for example to analyse some type
systems [7] or to reason about states of a machine under partial information [138]. However,
they cannot satisfy the logicians as the addition of the Excluded Middle principle to it does
not yield classical modal logic K, that is, it is not possible to retrieve the De Morgan duality
of ◻ and ◇ in this case.

The axiomatisation that is now generally accepted as intuitionistic modal logic denoted
by IK was given by Plotkin and Stirling [111] and is equivalent to the one proposed by
Fischer-Servi [124], and by Ewald [39] in the case of intuitionistic tense logic. It is taken to
be IPL + nec + k1 + k2 + k3 + k4 + k5. It then was investigated in detail in [127], in which
strong arguments are given in favour of this axiomatic definition: it allows for adapting to
intuitionistic logic the standard embedding of modal logic into first-order logic, and also
provides an extension of the standard Kripke semantics for classical modal logic to the
intuitionistic case (see Section 3.3). Although CK and IK are the most studied constructive
versions of modal logic K, we would advocate that it might still be interesting to consider
the intermediate axiomatisations between CK and IK in the future.

We can consider extensions of those basic intuitionistic modal logics with axioms for the
modalities as we did in the classical case, for example by the class of Scott-Lemmon axioms
defined in (2.1). However, over an intuitionistic basis, and if h 6= j or i 6= k, the axiom
◇h◻ia ⊃ ◻j◇ka is no longer equivalent to the axiom ◇j◻ka ⊃ ◻h◇ia. So one can consider
extensions with either one of these two axioms [111], or with both in conjunction in an
attempt to recover the intuitionistic version of the corresponding classical Scott-Lemmon
logic [127]. In particular, we will study the intuitionistic variants of the logics in the S5
cube, for which we always mean the conjunction of the two versions of each axioms, that is,
in an intuitionistic context:

t := (a ⊃◇a) ∧ (◻a ⊃ a)

b := (a ⊃ ◻◇a) ∧ (◇◻a ⊃ a)

d := ◻a ⊃◇a
4 := (◇◇a ⊃◇a) ∧ (◻a ⊃ ◻◻a)

5 := (◇a ⊃ ◻◇a) ∧ (◇◻a ⊃ ◻a)

2 := ◇◻a ⊃ ◻◇a

Extensions of other versions of constructive modal logics and for instance of the logic CK
are however, to our knowledge, quite less understood. In particular, we lack an understand-
ing of the power of such extensions as it has been observed for example that the axiom b
already entails axioms k3 and k5 [4].

3.2 Sequent and hypersequent calculi

Following Gentzen [56], a first attempt at a sequent calculus for the intuitionistic modal logic
IK would be to consider a two-sided version of the classical sequent calculus for K with the
restriction that only one formula can occur on the right-hand side. A intuitionistic sequent
is a multiset of formulas with one formula occurrence specifically distinguished, it is written
Λ ⇒ C, where Λ is a multiset of formulas and ⇒ is the delimiter. This would give the
following rules:

Λ, A⇒ B◇o
k ◻Λ,◇A⇒ ◇B

Λ ⇒ A◻o
k ◻Λ ⇒ ◻A
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as proposed for example in [34]. However, adding these rules to a sequent calculus for
intuitionistic propositional logic does not result in a complete calculus for intuitionistic
modal logic IK, but rather for the logic called CK. Indeed, the axioms k3, k4 and k5 are not
derivable via these rules.

Although this is seen as a strong drawback for logicians, this calculus and extensions built
in a similar fashion from the rules in Figure 2.2 have been exploited in modal type theories
(in particular the extension with the rules corresponding to the axioms t and 4, known as
CS4). These correspond to the calculi studied proof-theoretically in [114, 9, 62, 92]; which
originated from the analysis of logics comparing divergent processes in AI [129], reasoning
about hardware circuits [40], or defining a programming language with explicit binding time
constructors [109].

Another attempt was proposed by Amati and Pirri in [2]. They expose a uniform method
to give tableau and (multi-conclusion) sequent systems for all the intuitionistic versions of
the logics in the S5 cube. For example, they generalise the rules ◻o

k and ◇o
k above, as follows:

Λ, A⇒ Π◇o
k ◻Λ,◇A⇒ ◻Π

{Γ1,Γ2,◇Λi ⇒ ◻Πi}1≤i≤p {Γ2,Λi ⇒ Πi}p+1≤i≤n◻o
k Γ1,◻Γ2 ⇒ ◻A

if there exists a derivationD containing only structural and logical rules:
{Γ2,Λi ⇒ Πi}1≤i≤n

D

Γ2 ⇒ A

As far as hypersequents go, in [54] Galmiche and Salhi provide a proof system for in-
tuitionistic modal logic IS5 based on what they call multi-conclusion sequents, that can be
seen as the intuitionistic version of hypersequents. This is the only hypersequent calculus
of which we are aware for intuitionistic versions of modal logics.

Investigating further hypersequents calculi for modal logics in a constructive setting
would be an interesting avenue of future research. The formalism has been employed suc-
cessfully to treat intermediate logics [30], and the situation we are facing with intuitionistic
modal logic is similar to the intermediate case. Indeed, we can see the various logics be-
tween the ◻-only fragment IPL + k1 + nec and full intuitionistic IK as intermediate logics, as
suggested by de Medeiros in [37] who studied in detail IPL+k1+k2+k3+k5. Furthermore,
in [54], Galmiche and Salhi actually also provide a proof system for an intermediate logic
between IS5 and S5 called IM5 defined in [49], and the links between intuitionistic modal
logics and intermediate predicate logics have already started to be explored by Ono and
Suzuki in [107, 108, 132], so we hope to continue in this direction in the future.

3.3 Possible-world semantics

The Kripke semantics for IK was first defined by Fischer-Servi in [124]. It combines the
Kripke semantics for intuitionistic propositional logic and the one for classical modal logic,
using two distinct relations on the set of worlds. Indeed, a bi-relational frame F is a triple
〈W,≤, R〉 of a non-empty set of worlds W with two binary relations: R ⊆W ×W and ≤ a
pre-order on W (i.e. a reflexive and transitive relation) satisfying the conditions:

(F1) For all worlds u, v, v′, if uRv and v ≤ v′, there exists a u′ such that u ≤ u′ and u′Rv′:

u′
R
// v′

u

≤

OO

R
// v

≤

OO
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(F2) For all worlds u′, u, v, if u ≤ u′ and uRv, there exists a v′ such that u′Rv′ and v ≤ v′:

u′
R // v′

u

≤

OO

R // v

≤

OO

A bi-relational model M is a quadruple 〈W,≤, R, V 〉 with 〈W,≤, R〉 a frame and V a
monotone valuation function V : W → 2A which is a function that maps each world w to
the subset of propositional atoms that are true in w, subject to:

w ≤ w′ ⇒ V (w) ⊆ V (w′)

As in the classical case, we write w  a if a ∈ V (w) and we extend this relation to all
formulas by induction, following the rules for both intuitionistic and modal Kripke models:

w 1 �
w  A ∧B iff w  A and w  B

w  A ∨B iff w  A or w  B

w  A ⊃ B iff for all w′ with w ≤ w′, if w′  A then also w′  B

w  ◻A iff for all w′ and u with w ≤ w′ and w′Ru, we have u  A

w  ◇A iff there is a u ∈W such that wRu and u  A

We write w 1 A if it is not the case that w  A, but contrarily to the classical case, we do
not have w  ¬A iff w 1 A (since ¬A is defined as A ⊃ �).

From the monotonicity of the valuation function V , we get a monotonicity property for
the relation .

3.3.1 Proposition (Monotonicity) For any formula A and for w,w′ ∈ W , if w ≤ w′

and w  A, then w′  A.

We say that a formula A is satisfied in a model M = 〈W,R,≤, V 〉, if for all w ∈ W we
have w  A. A formula A is valid in a frame 〈W,R,≤〉, if for all valuations V , A is valid in
〈W,R,≤, V 〉

3.3.2 Theorem (Fischer-Servi [124], Plotkin and Stirling [111]) A formula A is deriv-
able in the Hilbert system IK if and only if A is valid in every bi-relational frame.

Now, we would like to consider special restrictions on these bi-relational frames, similarly
to what we did in the classical case. For example, we would be interested in having a corre-
spondence between the logic IK extended with some variants of SL axioms and bi-relational
frames satisfying the corresponding condition defined in (2.3) similarly to Theorem 2.3.2.

In the intuitionistic case, the correspondence theory is much more tedious, and a lot of
questions are still open. For the general form of intuitionistic SL logic, which would be IK
extended with a set of axioms of the form:

(◇h◻ia ⊃ ◻j◇ka) ∧ (◇j◻ka ⊃ ◻h◇ia)

it is not clear that the class of frames satisfying condition (2.3) is even complete (see [127]
for a detailed analysis). However, Theorems 6.2.1 and 8.1.4 of [127] entail a completeness
result for bi-relational models with respect to the restricted family of intuitionistic SL path
axioms.
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3.3.3 Theorem (Fischer-Servi [124], Simpson [127]) Let P be a set of axiom schemes
of the form:

(◇h◻a ⊃ ◻ja) ∧ (◇ja ⊃ ◻h◇a)

A is a theorem of IK + P if and only if A is satisfied in every bi-relational model
〈W,R,≤, V 〉 that satisfies:

for all w, u, v ∈W if wRhu and wRjv then uRv.

The completeness of IK, IKT, IKTB, IS4 and IS5 with respect to their corresponding
bi-relational models already appeared in [124]. However this completeness result is not a
correspondence result: the axioms do not characterise the considered class of frames. Plotkin
and Stirling give proper correspondence results, but they must distinguish the two dual parts
of each axiom and appeal to both relations of the frames, R and ≤.

3.3.4 Theorem (Plotkin and Stirling [111]) An intuitionistic modal frame 〈W,R,≤〉
validates ghijk if and only if the frame satisfies:

if wRhu and wRjv then there exists u′ and x such that u ≤ u′, u′Rix, and vRkx

u′

Ri

��

u

≤

OO

w

Rh
==

Rj
!!

x

v
Rk

>>

The semantics of other versions of intuitionistic modal logics, for example of CK or
CS4, has also been studied [137, 41, 1, 91, 67]. However we are not aware of any general
correspondence or even completeness results for extensions of the basic logic with wider
families of axioms or frames properties. We do not give more details here as we will focus
on IK and its extensions in this thesis.

3.4 Labelled deduction.

Echoing to the definition of bi-relational structures, the straightforward extension of labelled
deduction to the intuitionistic setting would be to use two sorts of relational atoms, one
for the modal relation R and another one for the intuitionistic relation ≤. This is the
approach developed by Maffezioli, Naibo and Negri in [85]. To our knowledge this has not yet
been investigated much further, but could be a fruitful perspective; it would be interesting
for example to integrate Plotkin and Stirling’s completeness result (Theorem 3.3.4) into
this framework, or to combine the advances on labelled systems based on neighbourhood
semantics for non-normal modal logics with the semantics for CK proposed in [67].

However, another approach was taken by Simpson [127] even earlier than Maffezioli et
al’s work. Simpson followed the lines of Gentzen in a labelled context, namely, he developed
a labelled natural deduction framework for modal logics and then converted it into sequent
systems with the consequent restriction to one formula on the right-hand side of each sequent.
This worked as well in the labelled setting as in the ordinary sequent case; we will present
Simpson’s sequent system labIK and its extensions in the rest of this section.

Intuitionistic labelled sequents are written G,L ⇒ z : C for some multiset of labelled
formulas L, some formula C, some label z and a set of relational atoms G. The rules of labIK
(Figure 3.1) are very similar to the one of labK (Figure 2.4) with the standard restrictions
for intuitionistic version of the right-rules ∨lab

R1 and ∨lab
R2 and the left-rule ⊃lab

L . It is possible to
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idlab

G,L, x : a⇒ x : a
�

lab
L G,L, x : �⇒ z : A

⊺
lab
R G,L ⇒ x : ⊺

G,L, x : A ∧B, x : A, x : B ⇒ z : C∧lab
L G,L, x : A ∧B ⇒ z : C

G,L ⇒ x : A L ⇒ x : B∧lab
R G,L ⇒ x : A ∧B

G,L, x : A ∨B, x : A⇒ z : C G,L, x : A ∨B, x : B ⇒ z : C∨lab
L G,L, x : A ∨B ⇒ z : C

G,L ⇒ x : A∨lab
R1 G,L ⇒ x : A ∨B

G,L ⇒ x : B∨lab
R2 G,L ⇒ x : A ∨B

G,L, x : A ⊃ B ⇒ x : A G,L, x : A ⊃ B, x : B ⇒ z : C
⊃lab

L G,L, x : A ⊃ B ⇒ z : C
G,L, x : A⇒ x : B

⊃lab
R G,L ⇒ x : A ⊃ B

G, xRy,L, x : ◻A, y : A⇒ z : B
◻

lab
L G, xRy,L, x : ◻A⇒ z : B

G, xRy,L ⇒ y : A
◻

lab
R y is fresh
G,L ⇒ x : ◻A

G, xRy,L, x : ◇A, y : A⇒ z : B
◇

lab
L y is fresh

G,L, x : ◇A⇒ z : B
G, xRy,L ⇒ y : A

◇
lab
R G, xRy,L ⇒ x : ◇A

Figure 3.1: System labIK

extend this basic calculus with the geometric rule scheme in the same way as we presented
in Section 2.4, adapted to the intuitionistic setting. Namely, for every geometric frame
property ∀u∀v((a1 ∧ . . .∧an) ⊃ (∃x1A1 ∨ . . .∨∃xmAm)) we can construct the schematic rule:

A1(y1/x1), a1, . . . , an,G,L ⇒ z : C . . . Am(ym/xm), a1, . . . , an,G,L ⇒ z : C
�lab

grs a1, . . . , an,G,L ⇒ z : C
(3.2)

where again G is a set of relational or equality atoms, L is a multiset of labelled modal
formulas, z : C is a given labelled formula, each ai for 1 ≤ i ≤ n is a relational or an
equality atom, each Aj for 1 ≤ j ≤ m denotes the set of relational or equality atoms present
in Aj , and y1, . . . ,ym are vectors of fresh eigenvariables, i.e. do not occur in the conclusion.

Simpson also considers a particular subclass of geometric formulas: a Horn clause is a
first-order formula of the form:

∀z((a1 ∧ . . . ∧ an) ⊃ b)

where b and all the ai for 1 ≤ i ≤ n are atomic formulas, so in our case relational or equality
atoms. When the geometric frame condition actually is a Horn clause, Simpson observes
that the structural rule can be replaced by the following two propagation rules:

G,L, y : A⇒ z : C◻lab
L∗ xRy ∈ G∗
G,L, x : ◻A⇒ z : C

G,L ⇒ y : A◇lab
R∗ xRy ∈ G∗
G,L ⇒ x : ◇A (3.3)

where G∗ is the closure of the relational set G with respect to the considered Horn clause.
Completeness of the system labIK extended with the general geometric rule scheme is non-

trivial. However, in the restricted case of intuitionistic SL paths axioms, we can observe a
correspondence with the Hilbert axiomatisation of both the system extended with structural
rules and the one with propagation rules. Indeed, SL paths axioms correspond to frame
properties which are Horn clauses, as we have seen in Theorem 3.3.3.

3.4.1 Theorem (Simpson [127]) Let P be a set of intuitionistic Scott-Lemmon path
axioms. Let �lab

P be the corresponding set of structural geometric rules (3.2) and ◻lab
LP +◇lab

RP
be the corresponding set of labelled propagation rules (3.3). For any formula A, the following
are equivalent.

40



1. A is provable in the labelled system labIK + �lab
P

2. A is provable in the labelled system labIK + ◻lab
LP +◇lab

RP

3. A is provable in the Hilbert system K + P.

As discussed by Simpson, the reason why this theorem holds is that in a derivation of a
theorem of a logic based on SL path axioms, the steps referring to non-tree graphs G can be
eliminated via appealing to the closure G∗ of the accessibility relation. This result still holds
when the axiom d : ◻A ⊃ ◇A is added to the set P (even though it is not a path axiom), if
using the corresponding geometric rule:

G, xRy,L ⇒ z : C
�lab

d G,L ⇒ z : C

where x appears in L or x = z, but y is fresh in the premiss.

3.5 Unlabelled deduction

Outside the calculi that we already mentioned in Section 3.2, we do not know of many
directions which have been explored to give proof systems uniformly and modularly for in-
tuitionistic versions of modal logics. In particular, in the formalisms we mentioned earlier
such as display calculi and unlabelled tableaux nobody seems to have investigated intu-
itionistic versions. One line of work that has been successfully explored is nested sequents
for intuitionistic modal logic with the independent work of Galmiche and Salhi [53] and of
Straßburger [131, 87].

The way we defined nested sequents and their meaning in the classical case is purely
symmetric: at each node, the interpretation of each child sub-tree is boxed and considered
to be disjunctively related to that of the other child sub-trees and to the formulas at the node.
Following Gentzen’s idea, to move from classical to intuitionistic consists in introducing an
asymmetry between input (i.e., the left) formulas, which constitute the hypotheses and a
single output (or the right) formula, which constitutes the conclusion. Exactly one of the
formulas in the sequent will therefore be annotated with a special mark, a superscript ◦,
to signify that it is the output, all other formulas being then interpreted as inputs; it is
crucial to note that we mark one formula in the whole sequent tree, and not every bracket
separately [53, 131].

Intuitionistic nested sequents are defined in terms of a grammar of input sequents (written
Λ) where the output formula does not occur, and full sequents (written Π) where the output
formula does occur. (When the distinction between input and full sequents is not essential
or cannot be made explicit, we will use ∆ to stand for either case.)

Λ ::= ∅ | A,Λ | [Λ1],Λ2 Π ::= Λ, A◦ | Λ, [Π] ∆ ::= Λ | Π

Every full sequent Π therefore has the shape Λ1, [Λ2, · · · [Λn, A◦] · · ·] for some integer n,
and removing the output formula from a full sequent yields an input sequent. As in the
classical case, the corresponding formula fmn(Π) gives the meaning of an intuitionistic nested
sequent in the modal language. It is defined as: fmn(∅) := ⊺, fmn(A,Λ) := A ∧ fmn(Λ),
fmn([Λ1],Λ2) := ◇fmn(Λ1) ∧ fmn(Λ2), fmn(Λ, A◦) := fmn(Λ) ⊃ A, fmn(Λ, [Π]) := fmn(Λ) ⊃

◻fmn(Π). where all occurrences of A ∧ ⊺ and ⊺ ⊃ A are simplified to A.

3.5.1 Example The full sequent Π = A,B, [C◦, [B]], [D,A, [C]] is the term used to
describe the following tree:

tree(Π) =

A,B

C◦

B

D,A

C

It can be interpreted in the modal language as: fmn(Π) = (A∧B∧◇(D∧A∧◇C))⊃◻(◇B⊃C).
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idn

Λ{a, a◦}
Λ{A◦} Λ{B◦}∧n

R Λ{A ∧B◦} ⊺
n
R Λ{⊺◦}

Π{A,B}∧n
L Π{A ∧B}

Π{∅}
⊺

n
L Π{⊺}

Λ{A◦}∨n
R1 Λ{A ∨B◦}

Λ{B◦}∨n
R2 Λ{A ∨B◦}

Π{A} Π{B}∨n
L Π{A ∨B} �

n
L Π{�}

Λ{A,B◦}
⊃n

R Λ{A ⊃ B◦}
Π∗{A ⊃ B,A◦} Π{B}

⊃n
L Π{A ⊃ B}

Λ1{[Λ2, A
◦]}

◇
n
Rk Λ1{[Λ2],◇A◦}

Π{[A]}
◇

n
L Π{◇A}

Λ{[A◦]}
◻

n
R Λ{◻A◦}

∆1{◻A, [A,∆2]}
◻

n
Lk ∆1{◻A, [∆2]}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Λ{A◦}

◇
n
Rt Λ{◇A◦}

Λ1{[Λ2], A◦}
◇

n
Rb Λ1{[Λ2,◇A

◦]}
Λ1{[Λ2,◇A

◦]}
◇

n
R4 Λ1{[Λ2],◇A◦}

Λ1{[Λ2]}{◇A◦}
◇

n
R5 Λ1{[Λ2,◇A

◦]}{∅}

Π{◻A,A}
◻

n
Lt Π{◻A}

∆1{[◻A,∆2], A}
◻

n
Lb ∆1{[◻A,∆2]}

∆1{◻A, [◻A,∆2]}
◻

n
L4 ∆1{◻A, [∆2]}

∆1{[∆2,◻A]}{◻A}
◻

n
L5 ∆1{[∆2,◻A]}{∅}

Figure 3.2: System nIK and extensions for t, b, 4, and 5

Similarly to the classical case, an n-ary context ∆
{1 } · · ·{n } is like a sequent but

contains n pairwise distinct numbered holes { } wherever a formula may otherwise occur.
A full context is a context of the form Π

{1 } · · ·{n }, where there is an output formula in
Π
{1∅

}
· · ·
{n∅}. Thus, all the arguments passed to this context must be input sequents.

On the other hand, an input context is of the form Λ
{1 } · · ·{n } and contains only input

formulas, so when it is used to build a sequent exactly one of its arguments will itself be a
full sequent.

Given a context that contains no output formulas, e.g., of the form Λ{ }, it is possible
to replace the hole with a full sequent Π, in which case the substitution Λ{Π} is also a full
sequent. If the context contains an output formula, however, then this formula must be
removed before such a substitution is syntactically well-formed. We write ∆∗

{1 } · · ·{n }
for the result of deleting any output formula from an n-holed context ∆

{1 } · · ·{n }.
3.5.2 Example Consider the input context Λ{ } = [[B,C], { }], C; the full context

Π1{ } = C, [{ }, [B,C◦]]; and the full sequent Π2 = A, [B◦]. Then, Λ{∅} = [[B,C]], C is an
input sequent; while Λ{Π2} = C, [[B,C], A, [B◦]] and Π1{Λ{∅}} = C, [[[B,C]], C, [B,C◦]]
are full sequents. Π1{Π2} on the other hand is not well-formed because it would contain
both C◦ and B◦, but Π∗1{Π2} = C, [[B], A, [B◦]] is a full sequent.

In Figure 3.2 we display the rules of system nIK and some extensions from [131]. The
rules are similar to the classical ones (Figure 2.5) except that they present a right and a left
version in the intuitionistic case, which apply respectively to an output or an input formula
respectively.

3.5.3 Example We give as an example the proof of k4 : (◇a ⊃ ◻b) ⊃ ◻(a ⊃ b) in nIK.
Observe how b◦ is deleted from the first premiss of ⊃n

L.
idn
◇a ⊃ ◻b, [a◦, a]

◇
n
R
◇a ⊃ ◻b,◇a◦, [a]

idn

◻b, [a, b, b◦]
◻

n
L
◻b, [a, b◦]

⊃n
L

◇a ⊃ ◻b, [a, b◦]
⊃n

R
◇a ⊃ ◻b, [a ⊃ b◦]

◻
n
R
◇a ⊃ ◻b,◻(a ⊃ b)◦

⊃n
R (◇a ⊃ ◻b) ⊃ ◻(a ⊃ b)◦
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The basic system nIK in the first part of Figure 3.2 can be extended modularly by the
left and right rules ◻n

Lx +◇n
Rx corresponding to each axiom x among {t, b, 4, 5} in the second

part.

3.5.4 Theorem (Straßburger [131]) Let X be an axiomatically complete subset of
{t, b, 4, 5}. For any formula A, the following are equivalent.

1. A is a theorem of IK + X.

2. A is provable in nIK + ◻n
LX +◇n

RX + cut where cut is the rule
Π∗{C◦} Π{C}

cut
Π{∅}

3. A is provable in nIK + ◻n
LX +◇n

RX.

Note the particular form of the cut-rule; in the left premiss the output formula of Π has
to be pruned in order to maintain the output uniqueness when A◦ is added to the sequent.
In the proof of this theorem, as for Theorem 2.5.6, axiomatic completeness is only needed
for cut-elimination and cut-free completeness, not for soundness and completeness with cut.

3.5.5 Conjecture We would expect that this result can be extended to any logic ob-
tained by adding to IK a set P of intuitionistic path SL axioms such as p : (◇h◻a ⊃ ◻ja) ∧
(◇ja ⊃ ◻h◇a), by using rules (for each p ∈ P) derived from the classical case described in
Section 2.5 of the form:

Π
{u◻A}{vA}◻n

Lp Π
{u◻A}{v∅} Λ

{u∅}{vA◦}◇n
Rp Λ

{u◇A◦}{v∅}
if there is a path π from u to v in the propagation graph of ∆

{u∅}{v∅} such that (jπo, ◇)
appears in the completion of P. Indeed, this would correspond to Theorem 3.4.1 in the
formalism of nested sequents.

Note that, as we already mentioned, d is not a path axiom. In [131] Straßburger claimed
to have built rules corresponding to axiom d from the classical rule in (2.7), in a similar
fashion, which gives:

Π{◻A, [A]}◻n
Ld Π{◻A}

Λ{[A◦]}◇n
Rd Λ{◇A◦}

These rules, once added to the system nIK, give a sound and complete system (for the
logic ID = IK + d), but the combination of these rules with the ones of Figure 3.2 do
not necessarily give a sound and complete system for the respective extensions of ID. For
example, the system nIK + ◻n

Ld + ◇n
Rd + ◻n

L4 + ◇n
R4 is not cut-free complete for the logic

IK + d + 4. As an illustration, we can see that IK + 4 + d ` (◇◇a ⊃ �) ⊃ ◇(a ⊃ b), but
nIK +◻n

Ld +◇n
Rd +◻n

L4 +◇n
R4 6` (◇◇a ⊃ �) ⊃◇(a ⊃ b). This formula is only derivable with the

aid of a cut-rule:

idn

[[a◦, a]]
◇

n
Rk
◇◇a◦, [[a]]

�
n
L
�, [[a, b◦]]

⊃n
L

◇◇a ⊃ �, [[a, b◦]]
⊃n

R
◇◇a ⊃ �, [[a ⊃ b◦]]

◇
n
Rd
◇◇a ⊃ �, [◇(a ⊃ b)◦]

◻
n
R
◇◇a ⊃ �,◻◇(a ⊃ b)◦

idn
◇◇a ⊃ �, [[a, a◦]]

idn
◇◇a ⊃ �, [[b, a, b◦]]

⊃n
L

◇◇a ⊃ �, [[a ⊃ b, a, b◦]]
⊃n

R
◇◇a ⊃ �, [[a ⊃ b, a ⊃ b◦]]

◇
n
Rk
◇◇a ⊃ �, [[a ⊃ b],◇(a ⊃ b)◦]

◇
n
L
◇◇a ⊃ �, [◇(a ⊃ b),◇(a ⊃ b)◦]

◇
n
R4
◇◇a ⊃ �, [◇(a ⊃ b)],◇(a ⊃ b)◦

◻
n
Ld
◇◇a ⊃ �,◻◇(a ⊃ b),◇(a ⊃ b)◦

cut
◇◇a ⊃ �,◇(a ⊃ b)◦

⊃n
R (◇◇a ⊃ �) ⊃◇(a ⊃ b)◦
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If we follow the procedure proposed in [131] to eliminate this cut, we will end up with a
proof that contains an occurrence of the structural rule �n

d which cannot be eliminated:
idn

[[a, a◦]]
◇

n
Rk
◇◇a◦, [[a]]

�
n
L
�, [[a, b◦]]

⊃n
L

◇◇a ⊃ �, [[a, b◦]]
⊃n

R
◇◇a ⊃ �, [[a ⊃ b◦]]

◇
n
Rd
◇◇a ⊃ �, [◇(a ⊃ b)◦]

◇
n
R4
◇◇a ⊃ �,◇(a ⊃ b)◦, [ ]

�n
d
◇◇a ⊃ �,◇(a ⊃ b)◦

⊃n
R (◇◇a ⊃ �) ⊃◇(a ⊃ b)◦

It therefore seems that, contrarily to the classical case, the axiom d cannot be handled via
a propagation rule in the intuitionistic case (which is consistent with Theorem 3.4.1.

Finally, in [87] we also worked towards eliminating the axiomatic completeness condition
from the assumptions of this theorem. It is possible to do so by using exactly the same
structural rules as in the classical case (presented on Figure 2.6). Because here structural
rules are needed anyway, it is not a problem to handle d in this case. As before, this result
should extend to any set P containing intuitionistic SL path axioms and the axiom d using
the structural rule that we defined in (2.8).

3.5.6 Theorem (Marin and Straßburger [87]) Let X be any subset of {t, b, d, 4, 5}.
For a formula A, the following are equivalent.

1. A is a theorem of IK + X.

2. A is provable in nIK + ◻n
LX +◇n

RX + �n
X.

A theory of nested sequent systems for extensions of constructive modal logic CK has
been conducted in [4]. We do not present it here as we will not be using this logic in the
rest of our exposition, but it would be interesting to understand how the two approaches
relate to each other and to the different approaches using labelled sequents.

3.6 Bridges

We do not know of many attempts to build bridges between the different approaches at
hand for intuitionistic modal logics. Some students tried to start the groundwork in their
Master’s theses such as Murawska [99] or Hein [63], and probably others that we have not
heard of. However, because in the intuitionistic case the different formalisms give rise to
distinct logics (including axioms k3, k4, and k5, or not), the task of relating the various
systems is subtler than in the classical case.

We have already argued in Section 2.6 for the formalism of indexed nested sequent as a
potential candidate to close some technical debates on proof formalisms for modal logics.
In this section we will review our results on extending this formalism to the intuitionistic
setting [88].

We define intuitionistic indexed nested sequents according to a similar grammar as in-
tuitionistic nested sequents:

Λ ::= ∅ | A,Λ |
[yΛ1

]
,Λ2 Π ::= Λ, A◦ | Λ,

[xΠ
]

∆ ::= Λ | Π

The intuitionistic indexed nested system inIK is shown in Figure 3.3. Observe that the
structural rules in the bottom line are identical to system inK. It is also the case that each
system can be extended with the rules presented in (2.9) and (2.10). This system can be
seen, similarly to the classical case, as a compact way to rewrite the labelled system labIK,
but unlike the classical case, its relation to the Hilbert axiomatisation and its semantical
interpretation is not straightforward.
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idin

Λ{a, a◦}
Λ{A◦} Λ{B◦}∧in

R Λ{A ∧B◦} ⊺
in
R Λ{⊺◦}

Π{A,B}∧in
L Π{A ∧B}

Π{∅}
⊺

in
L Π{⊺}

Λ{A◦}∨in
R1 Λ{A ∨B◦}

Λ{B◦}∨in
R2 Λ{A ∨B◦}

Π{A} Π{B}∨in
L Π{A ∨B} �

in
L Π{�}

Λ{A,B◦}
⊃in

R Λ{A ⊃ B◦}
Π∗{A ⊃ B,A◦} Π{B}

⊃in
L Π{A ⊃ B}

∆1
{
◻A,

[w
A,∆2

]}
◻

in
L ∆1

{
◻A,

[w∆2
]} Λ

{[v
A◦
]}

◻
in
R Λ{◻A◦}

Π
{[v

A
]}

◇
in
L Π{◇A}

Λ1
{[w

A◦,Λ2
]}

◇
in
R Λ1

{
◇A◦,

[wΛ
]
[2]
}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Π
{w∅}{wA}

tpin
1 Π
{w
A
}{w∅} Λ

{w∅}{wA◦}
tpin

2 Λ
{w
A◦
}{w∅} ∆1

{w[u∆2
]}{[u∅]}

bcin
1 ∆1

{w[u∆2
]}{w∅} ∆1

{w[u∆2
{w[u∅]}]}

bcin
2 ∆1

{w[u∆2
{w∅}]}

Figure 3.3: System inIK

Completeness

Completeness of inIK +�in
G with respect to IK + G is proved in a standard manner. As a first

step, the cut-elimination proof conducted in inK can be reproduced in a similar fashion in
the intuitionistic systems.

3.6.1 Theorem (Marin and Straßburger [88]) Let G be a set of intuitionistic Scott-
Lemmon axioms. For any formula A, the following are equivalent.

1. A is provable in inK + �in
G + cut where cut is the rule

∆∗{A◦} ∆{A}
cut

∆{∅}
2. A is provable in inK + �in

G

Proof sketch. The proof works similarly to the one of Theorem 2.6.4. We need to transform
the system in a similar fashion as we did with ı̈nK, removing the tp-rule and changing the
rules id, ◻in

L , ◇in
R for respectively

ı̈d
∆
{u
a◦
}{u

a
} ∆1

{u
◻A
}
{[A,∆2]}

◻̈
in
L ∆1

{u
◻A
}{u[∆2]

} ∆1
{u∅}{u[A◦,∆2]

}
◇̈

in
R ∆1

{u
◇A◦

}
{[∆2]}

Then, we can easily extend Lemma 2.6.6 and 2.6.7 to the intuitionistic setting. And so, we
can prove a reduction lemma like Lemma 2.6.9 for the intuitionistic system. The proof is
almost identical, except that the reduction cases now occur between the left and the right
rule for each connective, and that there are some additional cases for ⊃. Finally, we can
prove a result similar to Lemma 2.6.8 in the intuitionistic setting to complete the proof. ,

We deduce then that every theorem of IK + G is a theorem of inIK + �in
G using the cut-

elimination result. Note that, in the classical case, a similar proof can be conducted, and it
provides an alternative to Fitting’s proof of cut-free completeness [48].

3.6.2 Theorem (Marin and Straßburger [88]) Let G be a set of intuitionistic SL ax-
ioms and �in

G be the corresponding set of rules. If a formula A is provable in the Hilbert system
IK + G, then the sequent A◦ is provable in the indexed nested sequent system inIK + �in

G .

Proof. The axioms of intuitionistic propositional logic as well as the axioms k1-k5 can be
derived in inIK, in the same way as in the usual nested sequent system presented in [131].
The necessitation rule of the Hilbert system can be simulated by the structural rule nec,
which is admissible in inIK (by a similar result as Lemma 2.6.6), and Modus Ponens can
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be simulated by the cut-rule, which is also admissible (Theorem 3.6.1). Thus, it remains to
show that any gklmn axiom can be derived, using the corresponding rule �in

gklmn
:

id [u1 . . .
[uk
◻
la,
[v1
◻
l−1a, . . .

[vl−1
◻a,
[vl
]]
. . .
]]
. . .
]
,[w1 . . .

[wm
[x1 . . .

[xn−1
[xna, a◦

]]
. . .
]]
. . .
]

tp cl = dn[u1 . . .
[uk
◻
la,
[v1
◻
l−1a, . . .

[vl−1
◻a,
[vla

]]
. . .
]]
. . .
]
,[w1 . . .

[wm
[x1 . . .

[xn−1
[xna◦

]]
. . .
]]
. . .
]

l·◻in
L , n·◇in

R [u1 . . .
[uk
◻
la,
[v1 . . .

[vl
]
. . .
]]
. . .
]
,
[w1 . . .

[wm
◇
na◦,

[x1 . . .
[xn
]
. . .
]]
. . .
]

�in
gklmn

[u1 . . .
[uk
◻
la
]
. . .
]
,
[w1 . . .

[wm
◇
na◦
]
. . .
]

k·◇in
L ,m·◻in

R
◇
k
◻
la,◻m◇na◦

⊃in
R
◇
k
◻
la ⊃ ◻m◇na◦ ,

However, there are examples of theorems of inIK+�in
G that are not theorems of IK+G, that

is, the indexed nested sequent system is not sound with respect to the Hilbert axiomatisation
using what we gave above as the intuitionistic alternative to Scott-Lemmon axioms. There
is already a simple counter-example when G consists of the sole axiom g1111 : ◇◻A ⊃ ◻◇A.
The formula

F = (◇(◻(a ∨ b) ∧◇a) ∧◇(◻(a ∨ b) ∧◇b)) ⊃◇(◇a ∧◇b) (3.4)

is derivable in inIK + �n
g1111

, but is not a theorem of IK + �n
g1111

(as mentioned in [127]).
Thus, for some set of SL axioms G, the logic given by the Hilbert axiomatisation IK +�n

G
and the one given by the indexed nested sequent system inIK + �in

G actually differ in the
intuitionistic case.

Soundness
In the classical case, the indexed nested sequent system is not only equivalent to the Hilbert
axiomatisation using Scott-Lemmon axioms, it is actually sound and complete wrt. the
corresponding Kripke semantics. In this section, we investigate the behaviour of system inIK
and its extensions, regarding the Kripke semantics for intuitionistic modal logics.

For proving the soundness of our system, we must also define what is the validity of a
sequent in a model. For this, we adapt here the method of Fitting [48] to the intuitionistic
setting. The first step is to put intuitionistic indexed nested sequent in correspondence with
intuitionistic models.

Let ∆ be an indexed nested sequent and let M = 〈W,R,≤, V 〉 be an intuitionistic
Kripke model. A homomorphism h : ∆ →M is a mapping h : I∆ →W , such that R∆(w, v)
implies R(h(w), h(v)) for all w, v ∈ I∆ . A pre-order relation between homomorphisms
can be obtained from the pre-order in an intuitionistic model: For h, h′ : ∆ → M two
homomorphisms, we write h ≤ h′ if h(w) ≤ h′(w) inM for all w ∈ I∆ .

The notion of validity can then be defined by induction on the sub-sequents of a given
sequent. However, the correspondence between indices in a sequent and worlds in a model
brings us to consider the particular class of exhaustive sub-sequents. Let ∆ and ∆w be
indexed nested sequents, and w ∈ I∆ . We say that 〈∆w, w〉 is an exhaustive subsequent of
∆ if either ∆w = ∆ and w = 0, or ∆ = ∆0

{[w∆w

]}
for some context ∆0{ }. Note that for

a given index w of ∆, there might be more than one ∆w such that 〈∆w, w〉 is an exhaustive
subsequent of ∆, simply because w can occur more than once in ∆. For this reason we will
write ẇ to denote a particular occurrence of w in ∆ and ∆|ẇ for the subsequent of ∆ rooted
at the node ẇ. Then 〈∆|ẇ, w〉 stands for a uniquely defined exhaustive subsequent of ∆.

Let h : ∆ →M be a homomorphism from a sequent ∆ to a modelM. Let w ∈ I∆ and
let 〈∆w, w〉 be an exhaustive subsequent of ∆. Then ∆w has one of the following forms:

(i) either ∆w = B1, . . . , Bl,
[v1Λ1

]
, . . . ,

[vnΛn
]
. Then we define 〈h,w〉 i ∆w as h(w) 1 Bi

for some i ≤ l or 〈h, vj〉 i Λj for some j ≤ n;
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(ii) or ∆w = B1, . . . , Bl,
[v1Λ1

]
, . . . ,

[vnΛn
]
, A◦. Then we define 〈h,w〉 i ∆w as either

h(w) 1 Bi for some i ≤ l or 〈h, vj〉 i Λj for some j ≤ n or h(w)  A;

(iii) or ∆w = B1, . . . , Bl,
[v1Λ1

]
, . . . ,

[vnΛn
]
,
[uΠ

]
. Then we define 〈h,w〉 i ∆w as either

h(w) 1 Bi for some i ≤ l or 〈h, vj〉 i Λj for some j ≤ n or for all homomorphisms
h′ ≥ h, we have that 〈h′, u〉 i Π.

If, for all h′ ≥ h, we have 〈h′, w〉 i ∆w, then we say that 〈∆w, w〉 is satisfied in M under
h. Then, a sequent ∆ is satisfied in a model M, if 〈∆, 0〉 is satisfied in M under every
h : ∆ →M.

Informally, an indexed nested sequent is satisfied in a modalM if it contains somewhere
in the sequent tree an output formula that is satisfied in M or an input formula that is not.
The following lemma formalises this idea.

3.6.3 Lemma Let ∆ be an indexed nested sequent. Let 〈∆v, v〉 be an exhaustive
subsequent of ∆. Suppose ∆v = ∆0

{w
A
}
for some context ∆0

{w } and some formula A.
LetM be a bi-relational model and h : ∆ →M a homomorphism.

• If A = A◦ and h(w)  A, then 〈h, v〉 i ∆v.

• If A = A and h(w) 1 A, then 〈h, v〉 i ∆v.

Proof sketch. By a straightforward induction on the height of the tree rooted at the consid-
ered occurrence of v. The base case occurs when A◦ (or A) is at the root of that tree. ,

We now make explicit the class of model that we are going to consider in order to
interpret system inIK+�in

G . We need to appeal to the notion of graph-consistency introduced
by Simpson [127]. A bi-relational modelM is called graph-consistent if for any sequent Γ,
given any homomorphism h : Γ 7→ M, any w ∈ IΓ, and any w′ ≥ h(w), there exists h′ ≥ h
such that h′(w) = w′.

3.6.4 Theorem (Marin and Straßburger [88]) Let G be a set of intuitionistic SL ax-
ioms and �in

G be the corresponding set of rules. If a sequent ∆ is provable in inIK + �in
G

then it is satisfied in every graph-consistent bi-relational modelM = 〈W,R,≤, V 〉 that obeys
condition (2.3), i.e. for each 〈k, l,m, n〉 with gklmn ∈ G:

for all w, u, v ∈W with wRku and wRmv there is a z ∈W such that uRlz and vRnz.

The proof proceeds by induction on the height of the derivation, i.e., the length of the
longest path in the tree from its root to one of its leaves, and crucially relies on Lemma 3.6.5,
which states that each rule of inIK +�in

G is sound when interpreted in these graph-consistent
models that obey condition (2.3).

3.6.5 Lemma Let G be a set of intuitionistic SL axioms and �in
G be the corresponding

set of rules. Let
∆1 · · · ∆nr

∆
be an instance of an inference rule in inIK+�in

G for n = 0, 1, 2.

If all of ∆1, . . . , ∆n are satisfied in every graph-consistent model that satisfies (2.3), then
so is ∆.

Proof. First, assume that r is
Φ

�n
gklmn Ψ

, for some k, l,m, n > 0.

By way of contradiction, suppose that Φ is satisfied in every graph-consistent model that
satisfies (2.3) and that there exist a model M = 〈W,R,≤, V 〉 that satisfies (2.3), and a
homomorphism h : Ψ → M such that 〈Ψ, 0〉 is not satisfied in M under h. Recall that Ψ
has the form:

Ψ = Γ
{u0[u1∆1, . . .

[uk ∆k

]
. . .
]
,
[w1Σ1, . . .

[wmΣm
]
. . .
]}
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Therefore, there exist u0, uk, wm in W such that u0 = h(u0), uk = h(uk), wm = h(wm), and
u0R

kuk, and u0R
mwm. Hence, as M is in particular satisfies (2.3), for 〈k, l,m, n〉, there

exists y ∈ W with ukRly and wmRny. Namely, there are worlds v1, . . . , vl, x1, . . . , xn in W
such that ukRv1 . . . vl−1Rvl, wmRx1 . . . xn−1Rxn, and vl = y = xn.

By noting that

Φ = Γ
{u0[u1∆1, ...

[uk ∆k,
[v1 ...

[vl
]
...
]]
...
]
,
[w1Σ1, ...

[wmΣm,
[x1 ...

[xn
]
...
]]
...
]}

we can define a homomorphism h′ : Φ→M with h′(z) = h(z) for all z ∈ IΨ, h′(vi) = vi for
1 ≤ i ≤ l and h′(xj) = xj for 1 ≤ j ≤ n.

We are now going to show that for every h : Ψ→M, and every occurrence ż of an index
z ∈ IΨ, we have 〈h, z〉 i Ψ|ż iff 〈h′, z〉 i Φ|ż. We proceed by induction on the height of the
tree rooted at ż. There are four cases:

1. The node of ż is a leaf node of Ψ, and z 6= uk and z 6= wm. Then we have Ψ|ż = Φ|ż
and the claim holds trivially.

2. The node of ż is an inner node of Ψ, and z 6= uk and z 6= wm. By the induction
hypothesis, for every t ∈ IΨ with zRΨt, every occurrence ṫ of t in Ψ|ż, and every
h : Ψ → M, 〈h, t〉 i Ψ|ṫ iff 〈h′, t〉 i Φ|ṫ. The statement follows then by unravelling
the definition of the intuitionistic satisfiedity.

3. z = uk. For any occurrence ż in the context Γ
{z0 }, the proof is similar to one of

the previous cases. Otherwise, we know that Ψ|ż = ∆k and Φ|ż = ∆k,
[v1 ...

[vl
]
...
]
.

Furthermore, for all i ≤ l and h′′ ≥ h we have 〈h′′, vi〉 1i
[vi+1 ...

[vl
]
...
]
, and therefore

〈h, z〉 i Ψ|ż iff 〈h′, z〉 i Φ|ż.

4. v = wm. This case is similar to the previous one.

Since we assumed that 〈Ψ, 0〉 is not satisfied inM under h, we can conclude that 〈Φ, 0〉 is
not satisfied inM under h′, contradicting the satisfiedity of Φ.

The proofs for bc, tp, and the other cases of �n
gklmn

when one of the parameters is 0,
are similar. For the logical rules, we will consider in details the case for ◻in

R , the others are
similar or simpler (the cases for ⊃in

R also makes use of the graph-consistency property).
Suppose that Φ = Γ

{w[v
A◦
]}

is satisfied in every graph-consistent model that satis-
fies (2.3). For Ψ = Γ

{w◻A◦}, suppose that there exists a graph-consistent model M =
〈W,R,≤, V 〉 obeying (2.3), and a homomorphism h : Ψ 7→ M such that 〈Ψ, 0〉 is not satis-
fied in M under h. Therefore, there exists h′ ≥ h such that 〈h′, 0〉 1i Ψ, in particular by
Lemma 3.6.3, h′(w) 1 ◻A. So there exist w and v such that wRv, h′(w) ≤ w and v 1 A.
AsM is graph-consistent, there exists h′′ such that w = h′′(w). Thus, we can extend h′′ by
setting h′′(v) = v to obtain a homomorphism h′′ : Φ 7→ M, indeed Φ and Ψ have the same
set of indices related by the same underlying structure, but for the fresh index v that does
not appear in Ψ. Finally, as h′′(v) 1 A, we have by Lemma 3.6.3 that 〈Φ, 0〉 is not satisfied
inM under h′′, which contradicts the assumption of satisfiedity of Φ. ,

In the classical case, for a given set of SL axioms G, the logic given by inK + �in
G corre-

sponds exactly to the logic axiomatised by the extension of the Hilbert system K with the
corresponding Scott-Lemmon axioms G. We could construct the proof as follows. First, ev-
ery theorem of K+G is a theorem of inK+�in

G (as a corollary of cut-elimination in inK+�in
G).

Then, every theorem of inK +�in
G is satisfied in any classical model that satisfies (2.3). And

in the end, the cornerstone that would allow one to conclude that inK +�in
G is indeed sound

and complete wrt. K+G, is Theorem 2.3.2 that states that the Hilbert system K+G actually
completely axiomatises classical models that obey condition (2.3).

In the intuitionistic case, we do have Theorem 3.6.2 giving that every theorem of IK + G
is a theorem of inIK + �in

G , and Theorem 3.6.4 giving that every theorem of inIK + �in
G is
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satisfied in graph-consistent models that obey (2.3), but there is no proper equivalent of
Theorem 2.3.2 to “link” the two theorems into a actual soundness and completeness result
for inIK + �in

G . As we have seen, the first inclusion is strict, since the formula in (3.4) is
provable in inIK + �in

G , but not in IK + G. However, the strictness of the second inclusion is
open.

3.6.6 Open question Is there a certain set G ⊆ N4 such that there exists a formula
that is satisfied in every directed graph-consistent model that obeys (2.3), but that is not a
theorem of inIK + �in

G?

To conclude, we can say that the accurate definition of intuitionistic modal logics might
actually come from structural proof-theoretical studies rather than Hilbert axiomatisations
or semantical considerations. For Simpson [127] there are two different (but equivalent)
ways to define intuitionistic modal logics, either the natural deduction systems he proposes,
or the extension of the standard translation for intuitionistic modal logics into first-order
intuitionistic logic. Equivalence between the natural deduction systems and the Hilbert
axiomatisations, or direct interpretation of the natural deduction systems in intuitionistic
(bi-relational) structures are just side-results. He therefore sees their failure for the majority
of logics not as a problem, but rather as another justification of the validity of the proof-
theoretic approach.
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II « Unfolding »

We will observe through our focused telescope some of the systems presented in the
previous part in order to get closer to their core composition. The course of this part
will allow us to unfold inference rules in unlabelled calculus by stripping away layers of
abstraction. Taking an unlabelled inference step, we can understand its behaviour in terms
of a synthetic rule in the world of labelled sequents, and so any labelled rule can itself be
interpreted as a synthetic rule in the world of focused first-order logic. In Chapter 4, we
will introduce the base system for first-order logic and see how it can build synthetic rules.
In Chapter 5, we will unfold labelled rules into this system for first-order logic. And finally,
in Chapter 6, we will unfold rules from unlabelled calculi into the labelled framework.





4

Focusing for first-order logic

To analyse the proof theory of modal logic, it is useful to have some tools that are a bit
stronger which can be applied not just to propositional logic, but to the wider first-order
world. First-order logic is an extension of propositional logic (whether classical or intuition-
istic) to include predicates in the language. Those predicates can apply to some terms that
are built from term variables, constants and functions. Two binding operators are added
to the language in order to introduce the possibility to quantify over these terms. That is,
if A is a given first-order formula, so are ∃x.A and ∀x.A, where the variable x that could
appear freely in formula A is now bound. The intended semantics is that there exists a term
t such that the formula (x/t)A, obtained by substituting t for the variable x everywhere in
A, holds and respectively that for all term t, (x/t)A holds.

The standard sequent systems introduced by Gentzen for (classical or intuitionistic) first-
order logic are respectively called LK and LJ, extending the propositional sequent calculi
with rules for the quantifiers [56]. We do not give the standard unfocused version of these
rules, but we start by recalling their focused version in Section 4.1. For this thesis, we give
a different presentation of the focused systems LKF and LJF than the original in [83]; in
particular, we will be using an explicitly polarised syntax which considerably alleviates the
notations. We end this chapter by explaining in Section 4.2 how to build macro synthetic
rules from micro focused rules [139].

4.1 The ABC of focusing

Classical system

The way we will present the notion of focusing relies heavily on a certain polarisation of
connectives. That is, we classify formulas into negative formulas whose rules are invertible,
and positive formulas, whose rules require either some form of choice or some interaction
between the main formula and the rest of the sequent. For instance, existential formulas are
positive, as in the sequent they tend to remain as side formulas until it is possible to instan-
tiate them with the adequate term; but universal formulas never need to be preserved and
so can be decomposed eagerly as the rule introducing the universal quantifier is invertible,
and as such they are classified as negative.

For simplicity we use an explicitly polarised syntax [73] consisting of the classes of positive
and negative formulas, with a pair of shift connectives which allows for formulas to embed
the classes into each other. Outside of the quantifiers which, as we saw, have fixed polarity,
the rest of the connectives have ambiguous polarities, in the sense that it is possible to
design inference rules for them that give them a positive or a negative interpretation. In
the classical case, we will introduce polarised versions of ∨, ∧, �, and ⊺, that have the
same truth tables as the original unpolarised ones, but different inference rules in a sequent
system. We can also play around with the polarity of the atomic predicates: we can say
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Inversion phase
Σ, N,M−∨
Σ, N −∨M

Σ−�
Σ, −�

Σ, N Σ,M−∧
Σ, N −∧M

−⊺
Σ, −⊺

Σ, (y/x)N∀ y is a fresh variable
Σ,∀x.N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Neutral → Focus

Γ, ↑P, 〈P 〉
↑

Γ, ↑P
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Focus phase
Γ, 〈P 〉+∨1 Γ, 〈P +∨Q〉

Γ, 〈Q〉+∨2 Γ, 〈P +∨Q〉
Γ, 〈P 〉 Γ, 〈Q〉+∧

Γ, 〈P +∧Q〉
+⊺

Γ, 〈+⊺〉
Γ, 〈(t/x)P 〉∃ t is a term
Γ, 〈∃x.P 〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Identity Focus → Inversion

id+
p̄,Γ, 〈p〉

id−
n,Γ, 〈n̄〉

Γ, N
↓

Γ, 〈↓N〉

Figure 4.1: Focused system LKF

that they are all positive, or all negative, or a mix of both, as long as each atom is assigned
exactly one polarity. In the classical case, the dual of a negative atom is positive, and
vice-versa. The different polarisations do not change provability but can radically influence
the structure of proofs (distinguishing for example what is known as backward vs. forward
chaining of implications [25]). The polarity of a formula is given by the polarity of its
top-level connective according to the following grammar:

P ::= p | n̄ | P +∧ P | +⊺ | P +∨ P | +� | ∃x.P | ↓N L ::= p | n̄ | ↓N

N ::= p̄ | n | N −∨N | −� | N −∧ N | −⊺ | ∀x.N | ↑P R ::= p̄ | n | ↑P

We use the notation p and n to vary over positive and negative atomic predicates respectively,
but note that they can contain free first-order variables. As we are in a classical setting,
each column in the grammar above defines a pair of de Morgan duals; note that the negation
of a positive formula is a negative formula, and vice versa. Every polarised formula P or N
is related to an unpolarised formula by a depolarisation map ∂(·) which simply erases the
shifts ↑ and ↓, collapses +∧ and −∧ into ∧, as well as +∨ and −∨ into ∨.

A formula is said to be neutral if its main connective is one of the shifts, or if it is an atom
or a negated atom. More precisely, we can distinguish negative neutral formulas, denoted
R above, and positive neutral formulas, denoted L above.

A polarised sequent is the same as in the non-focused setting, with the difference that all
formulas are polarised. The class of invertible sequents, written Σ, is a subclass of polarised
sequents consisting only of negative formulas. An invertible sequent is neutral if it is built
from only negative neutral formulas, according to the grammar:

Γ ::= ∅ | Γ, n | Γ, p̄ | Γ, ↑P

A focused sequent is of the form Γ, 〈P 〉 , that is, it is a neutral sequent Γ with an
additional highlighted positive formula P which is called its focus.

As we have said in Chapter 1, during backward proof search, it is possible to apply all
invertible rules at any time, and therefore in particular as first rules. What Andreoli [3]
observed is a parallel behaviour of non-invertible rules, namely that it is also fine to apply
them in sequences, to a formula and all its sub-formulas, as long as their main connectives
are of the same non-invertible kind. A focused proof is morally a proof where the decision to
apply a non-invertible rule to a neutral formula must be explicitly taken, and this decision
commits the proof to retaining focus on its sub-formulas until there is a polarity change.
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This drastically reduces the search space, and the main theorem of focusing is that this
strategy is complete, i.e., every theorem that has a proof in LK has a focused proof.

The easiest way to prove this result is to design, from LK the standard system for first-
order classical logic, a sort of subsystem, called LKF, that formally implements this idea,
i.e. it is constrained in order to build only proofs of the focused form. Then, showing that
this system is complete, that is, that every provable formula in LK also has a proof in this
restricted system LKF, is equivalent to show that any provable formula has a proof that is
focused.

4.1.1 Theorem (Liang and Miller [83]) The system LKF is sound and complete with
respect to LK, i.e. a negative neutral formula R is provable in LKF if and only if ∂(R) is
provable in LK.

We are going to explain how the focused system LKF, presented in Figure 4.1, can only
build focused proofs. A proof in LKF begins—reading from conclusion upwards—with a
neutral end-sequent, to which only the rule ↑ may be applied (sometimes called in the
literature the decide rule). In each case one shifted positive formula is selected in the
conclusion and a copy of it (the rule implicitly contains an instance of contraction) is put
under focus in the premiss, at which point the proof enters the focus phase, where non-
invertible rules can be applied to the formula in focus until the focus becomes neutral again
(but positive neutral this time). At this point, the proof either finishes with id if the focus is
atomic, or it enters the inversion phase using the rule ↓ (sometimes called in the literature
the release rule) that drops the focus on a shifted formula. In the inversion phase, negative
formulas are decomposed, in an arbitrary order, using invertible rules, until eventually the
sequent becomes neutral again.

Note however, that our system does not include an equivalent of the rule called store.
In fact, it is unnecessary at the theoretical level and is mainly used in the literature for
implementation purposes. Removing the store rule makes the decision and release rules of
the system correspond exactly to the introduction rules for the two shift connectives ↓ and ↑,
respectively, that inject each polarised class into the other. This simplification is completely
independent of the classical or intuitionistic flavour of the logic.

Intuitionistic system
In the previous chapter, input and output formulas were differentiated in an intuitionistic
sequent using some sort of structural marking like ◦-annotations or a sequent delimiter
⇒, but without any particular restrictions on which kinds of formulas may receive which
annotations or be placed on which side of the arrow. It turns out that the polarity of
connectives actually make them naturally belong to one or the other annotation/side. The
use of the polarised syntax will therefore make the input/output annotations unnecessary.

In the intuitionistic case, the polarised syntax separates the classes of positive formu-
las, whose right-rules are non-invertible and negative formulas, whose left-rules are non-
invertible. The classification is almost canonically determined; in particular, contrarily to
the classical case, ∨ and � can only be positive and ⊃ is negative. The exceptions are the
atomic predicates which will be separated again into the positive ones p and the negative
ones denoted n, as well as the ∧ and ⊺ connectives which we divide into their polarised
versions +∧ and −∧, and +⊺ and −⊺. Formulas are therefore divided into the positive and negative
classes according to the following grammar:

P ::= L | P +∧ P | +⊺ | P ∨ P | � | ∃x.P L ::= p | ↓N

N ::= R | N −∧ N | −⊺ | P ⊃ N | ∀x.N R ::= n | ↑P

As before, we write L for particular positive formulas that we call left-neutral formulas, and
R for particular negative formulas that we call right-neutral formulas. They can be atoms
or built from the polarity shifts ↓ and ↑, which are used to move between the two polarised
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Inversion phase
P,Ω, N

⊃R Ω, P ⊃ N

Ω, N Ω,M−∧R Ω, N −∧M
−⊺R Ω, −⊺

Ω, (y/x)N∀R y is a fresh variable
Ω,∀x.N

P,Q,Ξ+∧L
P

+∧Q,Ξ
Ξ+⊺L +⊺,Ξ

P,Ξ Q,Ξ∨L
P ∨Q,Ξ �L

�,Ξ
(y/x)P,Ξ∃L y is a fresh variable∃x.P,Ξ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Neutral → Focus

Λ, ↑P, 〈P 〉
↑R Λ, ↑P

〈N〉 , ↓N,Π
↓L ↓N,Π

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Focus phase

Π, 〈P 〉∨R1 Π, 〈P ∨Q〉
Π, 〈Q〉∨R2 Π, 〈P ∨Q〉

Π, 〈P 〉 Π, 〈Q〉+∧R Π, 〈P +∧Q〉
+⊺R Π, 〈+⊺〉

Π, 〈(t/x)P 〉∃R t is a term
Π, 〈∃x.P 〉

〈N〉 ,Π−∧L1 〈N −∧M〉 ,Π
〈M〉 ,Π−∧L2 〈N −∧M〉 ,Π

Π, 〈P 〉 〈N〉 ,Π
⊃L 〈P ⊃ N〉 ,Π

〈(t/x)N〉 ,Π∀L t is a term
〈∀x.N〉 ,Π

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Identity Focus → Inversion

idR
p,Π, 〈p〉

idL 〈n〉 ,Λ, n
Λ, N

↓R Λ, R, 〈↓N〉
P,Π

↑L 〈↑P 〉 ,Π

Figure 4.2: Focused system LJF

classes. We can define a depolarisation map in the intuitionistic case too, to remove the
decorations.

Intuitionistically meaningful polarised sequents are exactly those sequents with a single
negative formula interpreted as the output. We can define invertible sequents as a specific
type of polarised sequents. We denote by Ω left invertible sequents, which are composed
only of positive formulas, and by Ξ full invertible sequents, which contain additionally one
single instance of a negative formula. We write Θ when the distinction is unnecessary or
impossible.

Ω ::= ∅ | P,Ω Ξ ::= Ω, N Θ ::= Ω | Ξ

Then, neutral sequents are specific types of invertible sequents. A neutral left sequent Λ
contains only left-neutral formulas, and if one instance of a right-neutral formula is added,
it becomes a neutral (full) sequent Π. When we do not need to distinguish between left and
full sequents, we write ∆.

Λ ::= ∅ | ↓N,Λ | p,Λ Π ::= Λ, ↑P | Λ, n ∆ ::= Λ | Π

Focused sequents are neutral sequents with an occurrence of 〈P 〉 or 〈N〉 . We can relate
these notations to the usual concepts in the literature, and see a sequent Π, 〈P 〉 with a
positive focus as focused “on the right”, and a sequent 〈N〉 ,Π with a negative focus as
focused “on the left”.

A focused intuitionistic proof follows a similar discipline to a focused classical proof.
Starting from a neutral end-sequent, one neutral formula is chosen as a focus by one of ↑R
or ↓L, then non-invertible rules can be applied to it and to its sub-formulas during a focus
phase until the focus becomes neutral again. At this point either the proof ends with an
identity, or the focus is released by one of ↓R or ↑L. The proof then enters an inversion
phase to decompose any negative formula until the whole sequent is back to neutral. Note
that, because the ↓R rule introduces a negative formula to the premiss sequent, any negative
formula appearing in the conclusion must be deleted in the premiss. However, this is the
only place where a negative formula has to be removed; the polarised syntax and focused
system allow us otherwise to keep the output formula until the end of the focused phase.
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This restricted way of building proofs is again sound and complete with the standard
proof system LJ for first-order intuitionistic logic.

4.1.2 Theorem (Liang and Miller [83]) The system LJF is sound and complete with
respect to LJ, i.e. a right-neutral formula R is provable in LJF if and only if ⇒ ∂(R) is
provable in LJ.

4.2 From focused to synthetic reasoning

Once we have imposed the focused structure on proofs, we gain a new perspective on proofs
and may distinguish between what could be called micro rules, the ordinary sequent calculus
rules, and macro rules, that contain an entire phase of a focused proof, and as such can be
seen as rules introducing a synthetic connective, called synthetic rules [36]. Indeed, we can
observe what a focus phase would actually look like. Bottom-up, we start with a neutral
sequent, and focus on a positive formula, which gets decomposed into sub-formulas until we
reach sub-formulas that are again neutral. This piece of a derivation should look as follows
in the classical case:{

Γ, ↑P, 〈↓Ni〉
}

1≤i≤k

{
p̄i ∈ Γ

id+ Γ, ↑P, 〈pi〉

}
1≤i≤kp

{
ni ∈ Γ

id− Γ, ↑P, 〈n̄i〉

}
1≤i≤kn

{
+⊺

Γ, ↑P, 〈+⊺〉

}
pos

Γ, ↑P, 〈P 〉
↑

Γ, ↑P

where the braces enclose multi-sets of premisses, the index i ranges over their arbitrary size.
The leftmost set of premisses is open and ends on a neutral sequent containing an occurrence
of a neutral focus, and the last three sets are closed premisses, either by an identity rule id+

or id−, or by a rule introducing +⊺.
A synthetic rule corresponding to this whole phase would only record the open premisses,

but the closed premisses constrain the shape of the context as some atoms have to be present
to be able to close the branches:{

Γ, p̄1, . . . , ¯pkp
, n1, . . . , nkn

, ↑P, 〈↓Ni〉
}

1≤i≤kpos
Γ, p̄1, . . . , ¯pkp , n1, . . . , nkn , ↑P

Note however that the +∨ rule introduces a choice in the sub-formulas of P that are
retained as premisses. For example, if P = (↓N1

+∧ ↓N2) +∨ (↓N3
+∧ ↓N4), we can extract the two

following distinct rules for the synthetic connective (· +∧ ·) +∨ (· +∧ ·):

〈↓N1〉 〈↓N2〉(· +∧ ·) +∨ (· +∧ ·)1 ↑(↓N1
+∧ ↓N2) +∨ (↓N3

+∧ ↓N4)
〈↓N3〉 〈↓N4〉(· +∧ ·) +∨ (· +∧ ·)2 ↑(↓N1

+∧ ↓N2) +∨ (↓N3
+∧ ↓N4)

Similarly we can observe how an inversion phase looks like in general. Starting, still
bottom-up, with a neutral sequent that contains a focus on a shifted negative formula, the
focus is released and the negative formula is decomposed into sub-formulas that are again
neutral. This piece of a derivation should look as follows in the classical case:{

Γ, ↑Pi1, . . . , ↑Pini

}
1≤i≤j

{
−⊺

Γ,Σi,
−⊺

}
neg

Γ, N
↓

Γ, 〈↓N〉
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where again the brackets indicate sets of premisses, the first one being the open premisses,
the second one the premisses that are closed by a −⊺ rule. Here there is no choice involved,
all the positive sub-formulas of N are present in the premisses. Furthermore, the context is
not constrained by the presence or not of atomic formulas. This gives the following abstract
rule for a synthetic negative connective:

{Γ, ↑Pi1, . . . , ↑Pini}1≤i≤jneg
Γ, 〈↓N〉

For example if N = (↑P1
−∧ ↑P2) −∨ (↑P3

−∧ P4), there can be only one synthetic rule for the
synthetic connective (· −∧ ·) −∨ (· −∧ ·):

↑P1, ↑P3 ↑P1, ↑P4 ↑P2, ↑P3 ↑P2, ↑P4(· −∧ ·) −∨ (· −∧ ·)
↓(↑P1

−∧ ↑P2) −∨ (↑P3
−∧ ↑P4)

Now, we can moreover see that it would be possible to plug in one of the neg synthetic
rule on top of each premiss of the synthetic rule pos. Following Andreoli [3], such a pair of a
focus phase and an inversion phase is called a bipole, with the bottom phase corresponding
to the application of a pos synthetic rule, and the top phase to the adequate set of neg
synthetic rules. For example starting with the formula P = (↑P1

−∧ ↑P2) +∨(↓↑P3
+∧↓(↑P4

−∨↑P5)),
we can obtain one of the two following bipoles:

↑P0, ↑P1 ↑P2neg
〈↓((↑P0

−∨ ↑P1) −∧ ↑P2)〉
pos
↓((↑P0

−∨ ↑P1) −∧ ↑P2) +∨ (↓↑P3
+∧ ↓(↑P4

−∨ ↑P5))

↑P3neg
〈↓↑P3〉

↑P4, ↑P5neg
〈↓(↑P4

−∧ ↑P5)〉
pos
↓(↑P1

−∧ ↑P2) +∨ (↓↑P3
+∧ ↓(↑P4

−∨ ↑P5))

A bipole is therefore a derivation D such that, its root is a neutral sequent that is the
conclusion of a ↑ rule application; its leaves are either closed by an identity rule, a +⊺ or a −⊺
rule, or open on neutral sequents with no focus; and all the non-invertible rule applications
occur below any invertible rule application.

Zeilberger [139] has proposed a way to describe formally synthetic rules and has designed
a synthetic proof system (for intuitionistic propositional logic) that can only build proofs
from these macro rules. This might certainly not be ideal in terms of complexity. The
number of rules in the positive case and the number of premisses in the negative case would
in fact grow exponentially as a function of the number of ∧/∨ alternations in a given synthetic
connective (as we could see on our examples). However, the applications we are going to
explore in the rest of this thesis take place at a more abstract proof-theoretical level: we
will use the notion of synthetic rules in two different ways.

In the rest of this part, we consider the rules of the modal proof systems introduced in
Part I (namely labelled sequent and ordinary sequent rules), and unfold their behaviour as
synthetic rules. This means that we can see some standard rules of modal proof systems as
macro-rules over a more fine grained system (namely LKF or LJF) and this informs us about
some of the internal mechanics of these rules. In Part III, on the other hand, we will take
the rules from modal proof systems of Part I (namely nested sequent rules) and, considering
them as micro rules this time, fold them together in bunch in order to extend the systems
of [139] to modal logics. This allows for a simplification of the design of the nested sequent
systems, as well as of the study of their meta-theoretical properties.
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5

Unfolding labelled deduction via first-order logic

In [96], Miller and Volpe show how to emulate the classical labelled sequent system labK [101]
using the focused calculus for first-order classical logic LKF [83]. They propose an encoding
of classical modal formulas into polarised first-order formulas that allows them to obtain
a precise correspondence between each rule of labK, along with any of its extension by
geometric axioms, and a bipole in LKF.

In this chapter, we extend the results of [96] to the intuitionistic case; that is, we show
that we can emulate the intuitionistic labelled calculus labIK of [127] via the focused calculus
for first-order intuitionistic logic LJF [83]. We extend the polarisation proposed in [96] to
the intuitionistic syntax and the two-sided calculus. Our notations differ as we are using an
explicitly polarised syntax, but the proofs are basically identical, sometimes even simpler
thanks to this choice. As in the classical case, the most interesting cases are the ones for
modalities, the only point where the use of first-order logic is important. We furthermore
consider extensions of intuitionistic modal logic IK with geometric frame conditions, and
show that in the intuitionistic case as well they can be polarised such as to correspond to a
bipole.

5.1 From labelled modal to focused first-order

The idea of unfolding the labelled system for modal logic into the focused system for first-
order logic is to see each rule of labK or labIK as a macro rule composed of micro focused
rules in LKF or LJF respectively. It relies heavily on the fact that modal logic can actually
be expressed as a fragment of first-order logic via what is called as the standard translation
(see e.g., [10]). The key point is the way the modalities are interpreted, following the
semantics presented in Section 2.3, ◻ corresponding to a universal quantification ∀ and ◇
to an existential ∃.

We recall the result of [96] for the classical case. It makes use of polarised version of
the standard translation to interpret every classical labelled sequent S := G ⇒ R as a LKF
sequent, and then to transform each proof in labK as a proof in LKF.

5.1.1 Theorem (Miller and Volpe [96]) There exists a proof D in the labelled system
labK of a sequent S if and only if there is a proof D′ in LKF of the polarised translation of
S with an exact correspondence of each rule application in D and each bipole in D′.

We are now going to adapt this result and its proof to the intuitionistic case. We first
present a translation from the language of labIK into the language of LJF, which is based
on the standard translation for modal formulas, but polarised for our purposes. Given a
world x, we define respectively a left translation b·cx and a right translation d·ex from modal
formulas into polarised neutral first-order formulas as follows, where for each propositional
atom a, we pick a positive predicate pa(x) to correspond to a and r(x, y) is a positive
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predicate that is only used to correspond to relational atoms:

bacx = pa(x) daex = ↑pa(x)

b⊺cx = ↓↑+⊺ d⊺ex = ↑+⊺

b�cx = ↓↑� d�ex = ↑�
b◻Acx = ↓∀y.(r(x, y) ⊃ ↑bAcy) d◻Aex = ↑↓∀y.(r(x, y) ⊃ dAey)

bA ∧Bcx = ↓↑(bAcx +∧ bBcx) dA ∧Bex = ↑(↓dAex +∧ ↓dBex)

b◇Acx = ↓↑∃y.(r(x, y) +∧ bAcy) d◇Aex = ↑∃y.(r(x, y) +∧ ↓dAey)

bA ∨Bcx = ↓↑(bAcx ∨ bBcx) dA ∨Bex = ↑(↓dAex ∨ ↓dBex)

bA ⊃ Bcx = ↓(↓dAex ⊃ ↑bBcx) dA ⊃ Bex = ↑↓(bAcx ⊃ dBex)

We extend this translation from formulas to labelled sequents. As seen in Section 3.4,
an intuitionistic labelled sequent is of the shape G,L ⇒ z : B, where G is a set of relational
atoms e.g. xRy for some labels x and y, L is a multiset of labelled formulas x : A with x a
label and A a modal formula, and finally z : B is a distinguished labelled formula, separated
from the others by the ⇒ symbol to give an intuitionistic reading to the sequent. We write:

bGc for {r(x, y) | xRy ∈ G}
bLc for {bAcx | x : A ∈ L}

Then, we can translate the labelled sequent S := G,L ⇒ z : B into the LJF neutral sequent
bGc, bLc, dBez that we denote dSe.

The first direction of the encoding, from labIK to LJF, can then be formulated as the
following theorem.

5.1.2 Theorem Let D be a proof in the labelled system labIK of a sequent S. There
exists a proof D′ in LJF of the polarised neutral sequent dSe such that each rule application
in D corresponds to a bipole in D′.

Proof. The idea of the proof is to transform the labIK derivation bottom-up, by swapping

each rule
{Si}i≤nr

S
of labIK (with n ≤ 2) for a derivation

{dSie}i≤n

dSe
which is a bipole in LJF.

At each step, we get LJF sequents as leaves that are the translations of the premisses of the
labIK rule, so we can continue up to the identity leaves of the proof.

For each rule of labIK, the corresponding bipole in LJF is obtained as follows:

• For r = idlab
G,L, x : a⇒ x : a

idR bGc, bLc, pa(x), daex, 〈pa(x)〉
↑R bGc, bLc, bacx, daex

• For r = �lab
L G,L, x : �⇒ z : A

�L bGc, bLc, b�cx, �, dAez
↑L bGc, bLc, b�cx, 〈↑�〉 , dAez
↓L bGc, bLc, b�cx, dAez
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• For r = ⊺lab
R G,L ⇒ x : ⊺

+⊺
bGc, bLc, d⊺ex, 〈

+⊺〉
↑
bGc, bLc, d⊺ex

• For r =
G,L, x : A ∧B, x : A, x : B ⇒ z : C∧lab

L G,L, x : A ∧B ⇒ z : C

bGc, bLc, bA ∧Bcx, bAcx, bBcx, dCez+∧L bGc, bLc, bA ∧Bcx, bAcx +∧ bBcx, dCez
↑L bGc, bLc, bA ∧Bcx, 〈↑(bAcx +∧ bBcx)〉 , dCez
↓L bGc, bLc, bA ∧Bcx, dCez

• For r =
G,L ⇒ x : A G,L ⇒ x : B∧lab

R G,L ⇒ x : A ∧B
bGc, bLc, dAex

↓R bGc, bLc, dA ∧Bex, 〈↓dAex〉
bGc, bLc, dBex

↓R bGc, bLc, dA ∧Bex, 〈↓dBex〉+∧R bGc, bLc, dA ∧Bex, 〈↓dAex +∧ ↓dBex〉
↑R bGc, bLc, dA ∧Bex

• For r =
G,L, x : A ∨B, x : A⇒ z : C G,L, x : A ∨B, x : B ⇒ z : C∨lab

L G,L, x : A ∨B ⇒ z : C

bGc, bLc, bA ∨Bcx, bAcx, dCez bGc, bLc, bA ∨Bcx, bBcx, dCez∨L bGc, bLc, bA ∨Bcx, bAcx ∨ bBcx, dCez
↑L bGc, bLc, bA ∨Bcx, 〈↑(bAcx ∨ bBcx)〉 , dCez
↓L bGc, bLc, bA ∨Bcx, dCez

• For r =
G,L ⇒ x : A∨lab

R1 G,L ⇒ x : A ∨B
bGc, bLc, dAex

↓R bGc, bLc, dA ∨Bex, 〈↓dAex〉∨R bGc, bLc, dA ∨Bex, 〈↓dAex ∨ ↓dBex〉
↑R bGc, bLc, dA ∨Bex

• For r =
G,L ⇒ x : B∨lab

R2 G,L ⇒ x : A ∨B
bGc, bLc, dBex

↓R bGc, bLc, dA ∨Bex, 〈↓dBex〉∨R bGc, bLc, dA ∨Bex, 〈↓dAex ∨ ↓dBex〉
↑R bGc, bLc, dA ∨Bex

• For r =
G,L, x : A ⊃ B ⇒ x : A G,L, x : A ⊃ B, x : B ⇒ z : C

⊃lab
L G,L, x : A ⊃ B ⇒ z : C

bGc, bLc, bA ⊃ Bcx, dAex
↓R bGc, bLc, bA ⊃ Bcx, 〈↓dAex〉 , dCez

bGc, bLc, bA ⊃ Bcx, bBcx, dCez
↑L bGc, bLc, bA ⊃ Bcx, 〈↑bBcx〉 , dCez

⊃L bGc, bLc, bA ⊃ Bcx, 〈↓dAex ⊃ ↑bBcx〉 , dCez
↓L bGc, bLc, bA ⊃ Bcx, dCez
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• For r =
G,L, x : A⇒ x : B

⊃lab
R G,L ⇒ x : A ⊃ B

bGc, bLc, bAcx, dBex
⊃R bGc, bLc, bAcx ⊃ dBex

↓R bGc, bLc, dA ⊃ Bex, 〈↓(bAcx ⊃ dBex)〉
↑R bGc, bLc, dA ⊃ Bex

• For r =
G, xRy,L, x : ◻A, y : A⇒ z : B◻lab

L G, xRy,L, x : ◻A⇒ z : B

idL bGc, r(x, y), bLc, b◻Acx, 〈r(x, y)〉 , dBez
bGc, r(x, y), bLc, b◻Acx, bAcy, dBez

↑L bGc, r(x, y), bLc, b◻Acx, 〈↑bAcy〉 , dBez
⊃L bGc, r(x, y), bLc, b◻Acx, 〈r(x, y) ⊃ ↑bAcy〉 , dBez∀L bGc, r(x, y), bLc, b◻Acx, 〈∀y.(r(x, y) ⊃ ↑bAcy)〉 , dBez

↓L bGc, r(x, y), bLc, b◻Acx, dBez

• For r =
G, xRy,L ⇒ y : A◻lab

R y is fresh
G,L ⇒ x : ◻A

bGc, bLc, r(x, y), dAey
⊃R bGc, bLc, r(x, y) ⊃ dAey∀R y is fresh
bGc, bLc,∀y.(r(x, y) ⊃ dAey)

↓R bGc, bLc, d◻Aex, 〈↓∀y.(r(x, y) ⊃ dAey)〉
↑R bGc, bLc, d◻Aex

• For r =
G, xRy,L, x : ◇A, y : A⇒ z : B◇lab

L y is fresh
G,L, x : ◇A⇒ z : B

bGc, bLc, b◇Acx, r(x, y), bAcy, dBez+∧L bGc, bLc, b◇Acx, r(x, y) +∧ bAcy, dBez∃L y is fresh
bGc, bLc, b◇Acx,∃y.(r(x, y) +∧ bAcy), dBez

↑L bGc, bLc, b◇Acx, 〈↑∃y.(r(x, y) +∧ bAcy)〉 , dBez
↓L bGc, bLc, b◇Acx, dBez

• For r =
G, xRy,L ⇒ y : A◇lab

R G, xRy,L ⇒ x : ◇A

idR bGc, r(x, y), bLc, d◇Aex, 〈r(x, y)〉
bGc, r(x, y), bLc, dAey

↓R bGc, r(x, y), bLc, d◇Aex, 〈↓dAey〉+∧R bGc, r(x, y), bLc, d◇Aex, 〈r(x, y) +∧ ↓dAey〉∃R bGc, r(x, y), bLc, d◇Aex, 〈∃y.(r(x, y) +∧ ↓dAey)〉
↑R bGc, r(x, y), bLc, d◇Aex ,

So we see here how each single rule from labIK unfolds into a derivation of LJF. Such
a derivation however is always a bipole, which suggests to inspect the adequacy to this
unfolding. In the next section, we show that indeed any bipole proof of a first-order
polarised formula which is the translation of a labelled modal formula actually corresponds
to the application of a rule of labIK. That is, the encoding of labIK into LJ is adequate at
the level of proofs.
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5.2 From focused first-order to labelled modal

The second side of the encoding, from LJF to labIK can then be stated as follows.

5.2.1 Theorem Let D′ be a proof of an LJF sequent that is the translation dSe of
some intuitionistic labelled sequent S. There exists a proof D of S in labIK such that each
bipole in D′ corresponds to a single rule application in D.

We transform the LJF proof into a labIK proof by mapping each bipole that composes it
to a corresponding rule in labIK. The proof D′ has to start, looking bottom-up, by a decision
on some formula which is either bCcx or dCex for some given x and C. Depending on which
formula is chosen as focus, the proof will then be forced to unfold according to one of the
bipoles we described in the proof of Theorem 5.1.2.

For instance, if the decision is on a formula of the form b◇Acx, then the bottom of D′
will have to look like:

bGc, bLc, b◇Acx, r(x, y), bAcy, dBez+∧L bGc, bLc, b◇Acx, r(x, y) +∧ bAcy, dBez∃L y is fresh
bGc, bLc, b◇Acx,∃y.(r(x, y) +∧ bAcy), dBez

↑L bGc, bLc, b◇Acx, 〈↑∃y.(r(x, y) +∧ bAcy)〉 , dBez
↓L bGc, bLc, b◇Acx, dBez

which can be replaced by the rule
xRy,G,L, x : ◇A, y : A⇒ z : B◇lab

L where y is fresh
G,L, x : ◇A⇒ z : B

.

Similarly, if the decision is on a formula of the form d◇Aex, then the bottom of D′ will
have to look like:

bGc, bLc, d◇Aex, 〈r(x, y)〉
bGc, bLc, dAey

↓R bGc, bLc, d◇Aex, 〈↓dAey〉+∧R bGc, bLc, d◇Aex, 〈r(x, y) +∧ ↓dAey〉∃R bGc, bLc, d◇Aex, 〈∃y.(r(x, y) +∧ ↓dAey)〉
↑R bGc, bLc, d◇Aex

However, for this derivation to be a valid bipole, the left premiss has to be closed by an
application of idR as the sequent contains a focus on the positive atom r(x, y). Hence, as we
started with D′ which is indeed a valid proof, we know that r(x, y) has to appear in bGc.

Therefore, this bipole can be matched to the rule
xRy,G,L ⇒ y : A◇lab

R xRy,G,L ⇒ x : ◇A.
There is one such case for each possible modal formula B, just by reverting the unfolding

we described in the proof of Theorem 5.1.2, which ensures that the encoding is adequate.

5.3 Extensions

In this section, we want to investigate the same question of encoding labelled systems for
modal logic into focused systems for first-order logic, but for modal logics beyond IK, namely
the ones that are defined by geometric frame conditions. We recall from Section 3.4 that a
geometric frame property is of the following form:

∀u∀v((a1 ∧ . . . ∧ an) ⊃ (∃x1(b11 ∧ . . . ∧ b1k1) ∨ . . . ∨ ∃xm(bm1 ∧ . . . ∧ bmkm)))

where each ai for 1 ≤ i ≤ n and each bjl for 1 ≤ j ≤ m, 1 ≤ l ≤ kj , is a relational or an
equality atom, uiRvi or ui = vi, and the variables in xj do not appear among u or v; the
corresponding geometric rule scheme is:

A1(y1/x1), a1, . . . , an,G,L ⇒ z : C . . . An(yn/xn), a1, . . . , an,G,L ⇒ z : C
�lab

grs a1, . . . , an,G,L ⇒ z : C
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where G is a set of relational or equality atoms, L is a multiset of labelled modal formulas,
each ai for 1 ≤ i ≤ n is a relational or an equality atom, each Aj for 1 ≤ j ≤ m denotes
the set of relational or equality atoms

{
bj1, . . . , bjkj

}
, and the eigenvariables y1, . . . , yn are

fresh, i.e. do not occur in the conclusion.
We propose the following polarisation for connectives and atoms of such a geometric

frame property:

↓∀u∀v((a1
+∧ . . . +∧ an) ⊃ (∃x1(b11

+∧ . . . +∧ b1k1) ∨ . . . ∨ ∃xm(bm1
+∧ . . . +∧ bmkm

))) (5.1)

with all the relational and equality atoms ai and bjl considered positive.
Via this polarisation, we show that each application of a rule �lab

grs corresponds to a single
bipole in LJF. This fact ensures that the statements of Theorems 5.1.2 and 5.2.1 hold also for
any geometric extension of IK with a set of geometric frame properties and its corresponding
system labIK + �lab

grs.

5.3.1 Theorem Let C be a set of neutral polarised geometric frame conditions and
�lab
C be the corresponding set of geometric rule schemes as in (3.2). There exists a proof

in labIK + �lab
C of the sequent G,L ⇒ z : A if and only if there exists a proof in LJF of

the sequent C, bGc, bLc, dAez, with a strict correspondence between each rule of the proof in
labIK + �lab

C and each bipole in the proof in LJF.

Consider one element of the set C, for instance ↓∀y.((a1
+∧. . .+∧an)⊃↑∨mj=1∃xj .(bj1+∧. . .+∧bjkj )).

When this formula is chosen as the focus, it is processed along a single bipole and gives rise
to a macro rule that matches exactly the application of the corresponding geometric rule
scheme.

{
ai ∈ bGcidR C, 〈ai〉 , bGc, bLc, dAez

}
1≤i≤n+∧R C, 〈a1

+∧ . . . +∧ an〉 , bGc, bLc, dAez


C, (zj/xj)bj1, . . . , (zj/xj)bjkj , bGc, bLc, dAez+∧L C, (zj/xj)(bj1

+∧ . . . +∧ bjkj ), bGc, bLc, dAez∃L C,∃xj .(bj1 +∧ . . . +∧ bjkj ), bGc, bLc, dAez


1≤j≤m∨L C,∨mj=1∃xj .(bj1 +∧ . . . +∧ bjkj ), bGc, bLc, dAez

↑L C, 〈↑ ∨mj=1 ∃xj .(bj1 +∧ . . . +∧ bjkj )〉 , bGc, bLc, dAez
⊃L C, 〈(a1

+∧ . . . +∧ an) ⊃ ↑ ∨mj=1 ∃xj .(bj1 +∧ . . . +∧ bjkj )〉 , bGc, bLc, dAez∀L C, 〈∀y.((a1
+∧ . . . +∧ an) ⊃ ↑ ∨mj=1 ∃xj .(bj1 +∧ . . . +∧ bjkj ))〉 , bGc, bLc, dAez

↓L C, bGc, bLc, dAez
The results in this chapter can be seen as part of the ProofCert project [93, 94]. One

of the products of this project is a general proof checker [28], based on LKF for its classical
version and on LJF for its intuitionistic version. Its aim is to check formal proofs that are
obtained from proof search tools based in many different formalisms. To achieve this, the
basic focused systems have to be augmented with a proof certificate [29], which describes
the proof evidence to be checked and the operational semantics of the proof formalism
that was used to output it, which consists in a translation of the output language into the
language of focused first-order logic and the notions of expert and clerk. Experts appear in
the focus phase to extract information from the certificate and conduct the proof checking,
while clerks appear in the inversion phase to perform simple procedures on the sequents
without interacting with the certificate. Volpe and Libal have started implementing such
certificates for some classical modal proof systems [84]; the results in this chapter allow
labIK derivations to be described as first-order focused derivations, and therefore could be
the basis for an extension of their work to the intuitionistic case in order to check proofs
from the intuitionistic labelled calculus labIK within the augmented LJF.
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6

Unfolding unlabelled deduction via labelling

In this chapter we present our joint work with Miller and Volpe [86]; it is another follow-up
on their paper [96]. With a little bit of magic, we can extend the results from the previous
chapter to unfold unlabelled systems as well. Indeed, we saw that rules in the labelled
systems, in particular geometric rule schemes, can be seen as synthetic inference rules that
correspond to bipoles. So we unfold unlabelled systems into a focused labelled framework
that can be used as a “springboard” to reach the base system LKF. In Section 6.1 we present
a framework that will be general enough to emulate various unlabelled proof systems. In
Section 6.2 we illustrate the way to use the framework on the example of sequent systems.

6.1 A focused labelled framework

In this section, we present the general framework LMF∗. It can be seen as a focused version
of the labelled system labK [101] presented in Section 2.4, further augmented with some
elements that help control the structure of proofs and, in particular, emulate the behaviour
of existing modal proof systems.

In [96], Miller and Volpe derive a focused labelled system LMF for classical modal logics
from the focused system for classical first-order logic. We can formulate it using an explicit
polarised syntax; namely, in the classical setting, polarised modal formulas are build from
the following grammar:

P ::= p | ↓N | P +∧ P | +⊺ | P +∨ P | +� | ◇P
N ::= p̄ | ↑P | N −∨N | −� | N −∧ N | −⊺ | ◻N

Observe that ◇ is a positive connective like the existential quantifier ∃ and ◻ is a negative
connective like the universal quantifier ∀. We assume that all atoms are polarised positively.
The depolarisation map is straightforwardly extended to modal formulas by ∂(◻N) = ◻∂(N)
and ∂(◇P ) = ◇∂(P ).

LMF∗ on Figure 6.1 is a reformulation of LMF with some additional features that do not
affect the soundness of the system but allow us to constrain proofs to some specific shapes
if we want.

1. When rule applications do not interfere with each other, they can, in fact, be applied
in parallel. This justifies what is called multi-focusing, a variant of focusing where one
can focus on several positive formulas at the same time [24, 21]. In this way, we can
group several positive rules within a single phase.

2. In the focus phase, we use a generalisation of labels; each formula, instead of being
labelled by a single label like in labK, is labelled by a sequence of labels that we write
xσ (with x a label and σ a possibly empty sequence of labels), more similar to the
prefixed tableaux approach [45]. We say that x is the present of the formula and σ is
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Inversion phase
T ;G ⇒ S, x : N, x : M−∨∗ T ;G ⇒ S, x : N −∨M

T ;G ⇒ S, x : N G ⇒ S, x : M−∧∗ T ;G ⇒ S, x : N −∧M

−⊺∗ T ;G ⇒ S, x : −⊺
T ;xRy,G ⇒ S, y : N

◻∗ y is fresh
T ;G ⇒ S, x : ◻N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Neutral → Focus

T2;G ⇒ R, x1 : ↑P1, . . . , xn : ↑Pn, 〈x1σ1 : P1〉 , . . . , 〈xnσn : Pn〉
↑∗ T1;G ⇒ R, x1 : ↑P1, . . . , xn : ↑Pn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Focus phase

T ;G ⇒ P, 〈xσ : P 〉+∨1∗ T ;G ⇒ P, 〈xσ : P +∨Q〉
T ;G ⇒ P, 〈xσ : Q〉+∨2∗ T ;G ⇒ P, 〈xσ : P +∨Q〉

T ;G ⇒ R,P1, 〈xσ : P 〉 T ;G ⇒ R,P2, 〈xσ : Q〉+∧∗ T ;G ⇒ R,P1,P2 〈xσ : P +∧Q〉
+⊺∗ T ;G ⇒ P, 〈xσ : +⊺〉

T ;xRy,G ⇒ P, 〈yσ : P 〉
◇∗ T ;xRy,G ⇒ P, 〈xyσ : ◇P 〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Identity Focus → Inversion

id∗ T ;G ⇒ x : p̄,R, 〈x : p〉
T ;G ⇒ R, x1 : N1, . . . , xp : Np

↓∗ T ;G ⇒ R, 〈x1σ1 : ↓N1〉 , . . . , 〈xpσp : ↓Np〉

T ;G, yRy ⇒R
t∗ y appears in R

T ;G ⇒ R
T ;G, xRy, yRx⇒R

b∗ T ;G, xRy ⇒R

T ;G, yRz ⇒R
d∗ y appears in R, but z is fresh

T ;G ⇒ R

T ;G, xRy, yRz, xRz ⇒R
4∗ T ;G, xRy, yRz ⇒R

T ;G, xRy, xRz, yRz ⇒R
5∗ T ;G, xRy, xRz ⇒R

Figure 6.1: Framework LMF∗

its future. We note that for the emulation of the calculi presented in this chapter, a
future consisting of a singleton is enough, but we want to keep this framework general
to allow for capturing also other behaviours.

3. In each sequent, we have to keep track of what we call the time context denoted T . In
this chapter we will consider this context to be a pair (x,F) of a label x, the present
of the sequent, and a set of labels F , the forbidden futures, but it could however be
generalised for further applications.

4. When applying ↑∗, if T1 = (x,F) for some F , we can either (i) (multi)focus on non-
◇-formulas labelled with x, that is, the foci are of the form xσ : P , where P is not a
◇-formula; or (ii) “move” to a y reachable from x (by (multi)focusing on ◇-formulas)
if y is not in the set F of forbidden futures for x, that is, the foci are of the form
zyσ : ◇P , while xRy and zRy ∈ G, but y /∈ F .

5. The time changes from T1 to T2 at an application of ↑∗ (red in Figure 6.1) when a
decision is taken to focus on some formulas. In this general formulation, the set T2
that we get in the premiss of the rule can be defined in an arbitrary way; a specific
way of defining it will be proposed in next section, but again it can be designed in
order to obtain particular behaviours in proofs.
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An LMF∗ sequent has the form T ;G ⇒ S where S is a multiset of labelled negative
formulas, G is a set of relational atoms, and T is the time of the sequent. As the framework
is focused, we can consider the restricted class of neutral sequents of the shape T ;G ⇒ R
where R is composed of neutral formulas, namely:

R ::= ∅ | R, x : ↑P | R, x : p̄

A focused sequent contains furthermore (potentially several) occurrences of foci, so is of the
shape T ;G ⇒ P with:

P ::= R | P, 〈xσ : P 〉

The rules of the framework are mostly simple adaptations of the ones in LMF, which are
focused versions of the rules of labK. The important differences are that: in ↑∗, we assign
a future σ to the formulas x : A in the context, so that we actually focus on xσ : A; when
we apply the rule ◇∗ with respect to a formula xyσ : ◇A, it is predetermined that we get
yσ : A in the premiss; and finally since futures of formulas are only relevant during the focus
phase, applications of ↓∗ remove all such futures.

The parameter X is a subset of {t, b, d, 4, 5}, specifying which modal logic we are consid-
ering. The system LMF∅

∗ is a system for the logic K and is obtained by including only the
first table of rules of Figure 6.1. Any other system LMFX

∗ is obtained by adding to LMF∗
the set of relational rules x∗, for each x ∈ X, in the second table of Figure 6.1.

6.1.1 Proposition Let X be a subset of {t, b, d, 4, 5} and N be a neutral modal for-
mula. There is a proof of N in LMFX

∗ if and only if ∂(N) is a theorem of K + X.

Proof (Sketch). The system LMF∗ is a multi-focused version of the system LMF presented
in [96], augmented with some devices for controlling the application of rules. Soundness
follows from the fact that such devices can only introduce restrictions to the application of
rules and multi-focusing can be simulated in LMF by several rule applications. Completeness
is also a direct consequence of that of LMF, since in the liberal version presented here all
new devices (including multi-focusing) can just be ignored, or used in a trivial way, such
that each proof in the previous system is also a valid proof in LMF∗. ,

The idea behind this framework is that we can obtain different concrete proof systems
by properly specifying the behaviour of the new devices introduced in LMF∗. These will be
defined by specialising the rule ↑∗, i.e., in particular, by tuning the following parameters:
the class of formulas on which multi-focusing can be applied in the conclusion, the future σ
of foci, and the set T2 in the premiss.

6.2 Emulation of sequent proof systems

In this section we illustrate the usage of LMF∗ by specialising its various parameters to
emulate the modal proof systems based on ordinary sequents, presented in Figure 2.2.

Intuitively, one can see modal inference rules such as ◻o
k in the ordinary sequent calculus

(reading from conclusion to premiss) as moving from one world to another reachable world
in a suitable Kripke structure. Such a change of world becomes apparent when we consider
the corresponding deduction steps in a labelled system, as in this case, modal rules will
explicitly change the label of the formula under consideration. In order to properly mimic
the behaviour of the ordinary sequent rules in the labelled system, we need to be able to
force all the formulas involved in one rule to move to the same new world. This is where
having labelled formulas with a sequence of labels comes in handy, since the rule ◇∗ exactly
passes formulas to the future world indicated in the label.

In a labelled sequent system like labK, when constructing a proof tree, it is possible to
switch freely from one label to another in the deduction process. On the contrary, in ordinary
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sequent calculus rules, only formulas having a modal operator as the main connective can
be “promoted” to a different world. This amounts to considering a single world at a time,
in such a way that when moving to a new one, formulas standing at previously encountered
worlds are no longer accessible. So the set T that keeps track of the time of the sequent,
specifies which world is currently under consideration and which worlds are enabled, with
the intended meaning that we can decide on a formula only if its label is available, and we
cannot return back to the future (that is, to the forbidden ones).

A particularly challenging aspect of the emulation of modal rules such as the ◻o
k rule is

that many introductions of connectives must be performed at once, which means that a single
inference rule can correspond to more than one bipole in our emulation. We capture part of
the parallel applications of inference rules using multi-focusing. This allows us to capture a
modal rule via two synthetic inference rules: one of that performs the ◻-introduction (which
corresponds to creating a new reachable world) and one that performs the ◇-introduction
(which correspond to moving all the ◇-formulas to this newly created world).

We also specialise the rule ↑∗ in order to emulate the behaviour of the ordinary sequent
system oK and its extensions. In addition to the general conditions we gave earlier, we have
that:

• if there exists y s.t. xRy ∈ G then we can focus on a multiset of formulas of the form
zy : ◇P s.t. zRy ∈ G, z ∈ F , and if x 6= y then T2 = (y,F ∪ {x}) 6= T1, but if x = y
then T2 = (x,F) = T1;

T2;xRy, z1Ry, . . . , znRy,G ⇒ R, z1 : ↑◇P1, . . . , zn : ↑◇Pn, 〈z1y : ◇P1〉 , . . . , 〈zny : ◇Pn〉
↑o (x,F);xRy, z1Ry, . . . , znRy,G ⇒ R, z1 : ↑◇P1, . . . , zn : ↑◇Pn
• otherwise, we can choose a single focus, such that P is not a ◇-formula:

(x,F);G ⇒ R, x : ↑P , 〈x : P 〉
↑o (x,F);G ⇒ R, x : ↑P

Concretely, the specialisation with respect to the general framework consists in: restrict-
ing the use of multi-focusing to ◇-formulas, forcing such ◇-formulas to be labelled with
the same future, and when moving to a new label, adding the current label to the set of
forbidden futures. The structure of the proofs obtained by using these restrictions can be
described as a sequence of ‘blocks’, each of which is related to a specific world/label. For
each block, we first apply a number of ∧, ∨, and ◻-introductions in the current world (and
some relational rules, if we are considering extensions of K) and then move to a new world
by means of a ◇-phase. The mechanism that we use, in ↑o, for updating the time T of the
sequent ensures that we never go back to an already encountered world. We call LMFo the
system obtained from LMF∗ by replacing the rule ↑∗ with the rule ↑o.

As we have seen in the previous chapter, the key to embed an unpolarised system into
a focused system is the way we translate and polarise the formulas of the former in order
to generate bipoles in the latter. So, we present a polarisation that allows us to enforce the
behaviour of the ordinary sequent inference rules in our focused labelled framework:

daeo := ↑pa dāeo := p̄a

dA ∧Beo := ↑↓(dAeo −∧ dBeo) dA ∨Beo := ↑↓(dAeo −∨ dBeo)

d◻Aeo := ↑↓◻dAeo d◇Aeo := ↑◇↓dAeo
where we associate a positively polarised atom pa to any unpolarised atom a.

Modal logics without the 4 axiom
In an LMF∗ proof, we can encounter neutral sequents that do not correspond adequately to
any sequent of a proof in ordinary sequent calculi for modal logic. We will thus base our
correspondence results on an interpretation that takes this fact into account.
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Let X = ∅ or {d} or {t}. Formally, we define the interpretation IK+X(·) of neutral
labelled sequents as multisets of modal formulas as follows:

IK+X((x,F);G ⇒ R) = {∂(N) | x : N ∈ R} ∪ {◻∂(N) | y : N ∈ R, xRy ∈ G∗, y /∈ F}
where ∂() is the depolarisation map defined in Section 4.1 and G∗ denotes the closure of G
taking into account the property of reflexivity or seriality that might be indicated by X.

6.2.1 Theorem (Marin, Miller and Volpe [86]) Let X = ∅ or {d} or {t}. Let D be
an oK + ◇o

X proof of a formula A. There exists an LMFX
o proof D′ of (x,∅);∅ ⇒ x : dAeo

for some label x such that each rule application in D corresponds to one or two bipoles in
D′.

This theorem is proved in a similar fashion to Theorem 5.1.2. For simplicity, we assume
that in D the rule c is only applied to a given formula immediately below a rule that
introduces an occurrence of such a formula. An LMFo derivation tends to keep information
that is lost in the corresponding oK+◇o

X derivation. We define a notion of sequent extension
that will help compare the two systems. A neutral sequent T ;G ⇒ R1 extends Γ if there
exists R2 ⊇ R1 such that IK+X(T ;G ⇒ R2) = Γ with R1 and R2 containing only formulas
of the form x : dAeo. We proceed bottom-up by starting from the root of D and build D′
by repeatedly applying the next lemma. At each step, we get as leaves sequents that are
extensions of the ones in D, so that the lemma can be applied again until we reach the initial
sequent rules.

6.2.2 Lemma Let X = ∅ or {d} or {t}. Let
{Γi}i≤nr

Γ
be an application of a non-

structural rule in oK + ◇o
X (with n ≤ 2). For any neutral sequent T1;G1 ⇒ R that extends

Γ, there exists a derivation
{T2;G2 ⇒ Ri}i≤n

T1;G1 ⇒ R
in LMFX

o , such that each T2;G2 ⇒ Ri extends

Γi.

Proof. The proof proceeds by considering all the non-structural rules of oK + ◇o
X. The

cases for the axiom and the introduction of classical connectives are similar to the proof of
Theorem 5.1.2.

Let us consider an application of the rule
Γ, A◻o

k ◇Γ,◻A.
Take a neutral sequent (x,F);G ⇒ R that extends ◇Γ,◻A. It follows that x : d◇Γeo ⊆ R
and that either (a) x : d◻Aeo ∈ R; or (b) y : dAeo ∈ R and xRy ∈ G∗. Then the LMFo
derivation corresponding to this rule application consists in the following steps (reading the
derivation bottom-up):

1. if we are in case (a), decide on x : d◻Aeo, which has the consequence of adding xRy
to the left-hand side:

(x,F);xRy,G ⇒ x : d◇Γeo, y : dAeo
◻∗ (x,F);G ⇒ x : d◇Γeo, x : ◻dAeo
↓∗ (x,F);G ⇒ x : d◇Γeo, 〈x : ↓◻dAeo〉
↑o (x,F);G ⇒ x : d◇Γeo, x : d◻Aeo

or if we are in case (b), apply a series of relational rules (second table of Figure 6.1)
in order to make xRy appear in the relational context too;

2. then, multifocus on x : d◇Γeo choosing y as the future:

(y, {x} ∪ F);xRy,G ⇒ y : dΓeo, y : dAeo
↓∗ (y, {x} ∪ F);xRy,G ⇒ 〈y : ↓dΓeo〉 , y : dAeo

◇∗ (y, {x} ∪ F);xRy,G ⇒ 〈xy : ◇↓dΓeo〉 , y : dAeo
↑o (x,F);xRy,G ⇒ x : d◇Γeo, y : dAeo
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Let us consider an application of the rule
Γ, A◇o

t Γ,◇A
Take a neutral sequent (x,F);G ⇒ R that extends Γ,◇A. We have that x : d◇Aeo ∈ R.
The LMFo derivation corresponding to this rule application consists in the following bipole:

(x,F);xRx,G ⇒ R, x : dAeo
↓∗ (x,F);xRx,G ⇒ R, 〈x : ↓dAeo〉

◇∗ (x,F);xRx,G ⇒ R, 〈xx : ◇↓dAeo〉
↑o (x,F);xRx,G ⇒ R, x : d◇Aeot∗ (x,F);G ⇒ R, x : d◇Aeo

Let us consider an application of the rule
Γ◇o

d ◇Γ
Take a neutral sequent T ;G ⇒ R that extends ◇Γ, which means that x : d◇Γeo ⊆ R. The
LMFo derivation corresponding to this rule application consists in the following bipole:

(y, {x} ∪ F);xRy,G ⇒ R, y : dΓeo
↓∗ (y, {x} ∪ F);xRy,G ⇒ R, 〈y : ↓dΓeo〉

◇∗ (y, {x} ∪ F);xRy,G ⇒ R, 〈xy : ◇↓dΓeo〉
↑o (x,F);xRy,G ⇒ R, x : d◇Γeod∗ y is fresh

(x,F);G ⇒ R ,

Modal logics with the 4 axiom
In the case of logics whose frames enjoy transitivity, our interpretation will also have to
consider that in the rule ◻o

k4 and ◻o
k45, ◇-formulas stay in the sequent when going from

conclusion to premiss, and such a behaviour can only be captured in LMFo by applying
more than one step. The interpretation of neutral sequents has to be modified in this
context, so we define for X ⊆ {d, t, 5}:

IK4+X((x,F);G ⇒ R) ={A | x : dAeo ∈ R} ∪ {◻B | y : dBeo ∈ R, xRy ∈ G∗, y /∈ F}
∪ {◇C | z : d◇Ceo ∈ R, zRx ∈ G∗, z ∈ F}

where G∗ denotes the closure of G taking into account the property of euclideaness, reflexivity
or seriality that might be indicated by X.

6.2.3 Theorem (Marin, Miller and Volpe [86]) Let X = ∅ or {d} or {t}. Let D be a
proof of a formula A in oK4 + ◇o

X or oK45 + ◇o
X. There exists a proof D′ in LMF4+X

o or in
LMF4+5+X

o respectively of (x,∅);∅⇒ x : dAeo for some label x.

This theorem is proved in exactly the same way as Theorem 6.2.1. We just have to
adapt the notion of sequent extension to the new interpretation, namely a neutral sequent
T ;G ⇒ R1 extends Γ if there exists R2 ⊇ R1 such that IK4+X(T ;G ⇒ R2) = Γ with R1 and
R2 containing only formulas of the form x : dAeo. Then, we need to adapt Lemma 6.2.2
to this context with 4.

6.2.4 Lemma Let X = ∅ or {d} or {t}. Let
{Γi}i≤nr

Γ
be an application of a non-

structural rule in oK4+◇o
X or in oK45+◇o

X (with n ≤ 2). For any neutral sequent T1;G1 ⇒ R

that extends Γ, there exists a derivation
{T2;G2 ⇒ Ri}i≤n

T1;G1 ⇒ R
in LMF4+X

o or in LMF4+5+X
o , such

that each T2;G2 ⇒ Ri extends Γi.

Proof. The only cases that are affected by the presence of 4 are the modal rules.

Let us consider an application of the rule
◇Γ,Γ, A◻o

k4 ◇Γ,◻A .
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Take (x,F);G ⇒ R that extends ◇Γ,◻A. As in the previous proof, we can have either (a)
x : d◻Aeo ∈ R; or (b) y : dAeo ∈ R and xRy ∈ G∗. Moreover, here for each B ∈ Γ, either
(c) x : d◇Beo ∈ R; or (d) z : d◇Beo ∈ R and zRx ∈ G∗ for some z. The LMFo derivation
corresponding to this rule application consists in the following bipoles:

1. if we are in case (a), decide on x : d◻Aeo, which adds xRy to the left-hand side:

(x,F);xRy,G ⇒ R, y : dAeo
◻∗ (x,F);G ⇒ R, x : ◻dAeo
↓∗ (x,F);G ⇒ R, 〈x : ↓◻dAeo〉
↑o (x,F);G ⇒ R, x : d◻Aeo

and if we are in case (b), apply some relational rules leading to a sequent containing
xRy.

2. for the Bi ∈ Γ such that case (d) holds, apply some relational rules that lead to a
sequent containing the corresponding ziRx; then apply 4∗ to each ziRx and xRy such
that ziRy is added to the relational set; finally multifocus on all the w : d◇Beo such
that wRy is in the relation set and B ∈ Γ, choosing y as the future:

y, {x} ∪ F); ziRx, xRy, ziRy,G ⇒ R, y : dΓ0eo, {y : dBieo}
↓∗ (y, {x} ∪ F); ziRx, xRy, ziRy,G ⇒ R, 〈y : ↓dΓ0eo〉 ,

{
〈y : ↓dBieo〉

}
◇∗ (y, {x} ∪ F); ziRx, xRy, ziRy,G ⇒ R, 〈x : ◇↓dΓ0eo〉 ,

{
〈zi : ◇↓dBieo〉

}
↑o (x,F); ziRx, xRy, ziRy,G ⇒ R, x : d◇Γ0eo, {zi : d◇Bieo}4∗ (x,F); ziRx, xRy,G ⇒ R, x : d◇Γ0eo, {zi : d◇Bieo}

Let us consider an application of the rule
◇Γ1,Γ1,◻Γ2, A◻o

k45 ◇Γ1,◻Γ2,◻A
.

Take a sequent T ,G ⇒ R that extends ◇Γ1,◻Γ2,◻A. We focus on the treatment of the
formulas in Γ2, which is the difference with respect to the case for ◻o

k4. For B ∈ Γ2, either
(a) x : d◻Beo ∈ R; or (b) y : dBeo ∈ R and xRy ∈ G∗. For the formulas for which case (a)
holds, the following derivation needs to be inserted between step 1 and step 2 of ◻o

k4;
(x,F);xRy, xRu, yRu,G ⇒ R, u : dBeo5∗ (x,F);xRy, xRu,G ⇒ R, u : dBeo
◻∗ (x,F);xRy,G ⇒ R, x : ◻dBeo
↓∗ (x,F);xRy,G ⇒ R, 〈x : ↓◻dBeo〉
↑o (x,F);xRy,G ⇒ R, x : d◻Beo

otherwise, in case (b) holds, then a series of relational rules (including 5∗) to obtain xRy in
the relational set, suffices.

Let us consider an application of the rule
Γ, A◇o

t Γ,◇A.
Take (x,F);G ⇒ R that extends Γ,◇A. We have that either (a) x : d◇Aeo ∈ R; or (b)
z : d◇Aeo ∈ R and zRx ∈ G∗. Case (a) is identical to the previous proof for ◇o

t without 4
so we focus on case (b). After possible applications of relational rules leading to a sequent
whose relational set contains zRx, the LMFo derivation corresponding to this rule application
consists in the following bipole:

(x,F); zRx,G ⇒ R, x : dAeo
↓∗ (x,F); zRx,G ⇒ R, 〈x : ↓dAeo〉

◇∗ (x,F); zRx,G ⇒ R, 〈zx : ◇↓dAeo〉
↑o (x,F); zRx,G ⇒ R, z : d◇Aeo

Let us consider an application of the rule
Γ◇o

d ◇Γ
.
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Take (x,F);G ⇒ R that extends ◇Γ. For each B ∈ Γ, one of the following two cases holds:
either (a) x : d◇Beo ∈ R or (b) z : d◇Beo ∈ R and zRx ∈ G∗. The LMFo derivation
corresponding to this application consists in the following bipole:

1. apply the rule d∗ in order to add xRy to G for some fresh y;

(x,F);xRy,G ⇒ R
d∗ y is fresh

(x,F);G ⇒ R

2. for those B ∈ Γ such that case (b) holds, apply a series of relational rules leading to
a sequent whose relational set contains zRx and then the rule 4∗ to zRx and xRy,
which adds zRy to the relation set;

(x,F); zRx, xRy, zRy,G ⇒ R
4∗ (x,F); zRx, xRy,G ⇒ R

3. finally multifocus on all the w : d◇Beo such that wRy is in the relation set and B ∈ Γ,
choosing y as the future.

(x,F);wRy,G ⇒ R, y : dBeo
↓∗ (x,F);wRy,G ⇒ R, 〈y : ↓dBeo〉

◇∗ (x,F);wRy,G ⇒ R, 〈wy : ◇↓dBeo〉
↑o (x,F);wRy,G ⇒ R, w : d◇Beo ,

The second direction of the encoding can be stated as follows (encompassing both cases
when 4 is or is not part of the considered logic).

6.2.5 Theorem (Marin, Miller and Volpe [86]) Let Y = {k} or {k, 4} or {k, 4, 5}. Let
X = ∅ or {d} or {t}. Let D′ be a proof in LMFX+Y

o of a sequent (x,∅);∅ ⇒ x : dAeo for
some x. There exists a proof D of A in the ordinary sequent calculus built from ◻o

Y +◇o
X, such

that each bipole in D′ corresponds to one rule application in Π, plus possible applications of
the contraction rule c.

Proof (Sketch). This proof is similar to the one of Theorem 5.2.1. We proceed bottom-up to
transform D′, bipole by bipole, into D. At the root of each bipole, one or several formulas
are chosen as foci, and we can distinguish cases according to the main connective of the
formula(s) on which we decide.

The cases of classical connectives are straightforward. The case of a formula with ◻ as
the main connective is also simple as the interpretation of the conclusion and the premiss
of the following bipole under IK+X(·) or IK4+X(·) are identical:

(x,F);G, xRy ⇒R, y : dAeo
◻∗ (x,F);G ⇒ R, x : ◻dAeo
↓∗ (x,F);G ⇒ R, 〈x : ↓◻dAeo〉
↑o (x,F);G ⇒ R, x : d◻Aeo

Relational rules x∗ for x ∈ {t, b, d, 4, 5} do not change interpretation of the sequent from
conclusion to premiss either. Finally, if we consider an application of ↑o on a multiset of ◇-
formulas, one can see, by inspecting the cases arising from the first condition in the definition
of ↑o, that the bipole corresponds, bottom-up, to an application of c followed by ◻o

k, ◻o
k4,

◻o
k45, ◇o

t or ◇o
d, depending on the logic considered and the label chosen as the next one. ,

The results of this chapter seem to require heavy notations, even though our the explicit
polarised syntax already considerably lightened the presentation. We would like, in the
future, to simplify the results and maybe come up with a more elegant framework, but for
the moment this one is functional, and every one of its devices is necessary. We will illustrate
on an example one of them, namely the importance of the concept of forbidden futures.
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If we did not have a way to prevent the proof search to go back to forbidden futures, we
could for example build in LMFt+4+5

o a cut-free proof of ∅⇒ x : p̄a, x : ↑↓◻↑◇↓↑pa:

id∗
xRy, xRx, yRx⇒ x : p̄a, 〈x : pa〉

↑o
xRy, xRx, yRx⇒ x : p̄a, x : ↑pa

↓∗
xRy, xRx, yRx⇒ x : p̄a, 〈x : ↓↑pa〉

◇∗
xRy, xRx, yRx⇒ x : p̄a, 〈yx : ◇↓↑pa〉

↑o (∗)
xRy, xRx, yRx⇒ x : p̄a, y : ↑◇↓↑pat∗, 5∗

xRy ⇒ x : p̄a, y : ↑◇↓↑pa
◻∗ ∅⇒ x : p̄a, x : ◻↑◇↓↑pa
↓∗ ∅⇒ x : p̄a, 〈x : ↓◻↑◇↓↑pa〉
↑o ∅⇒ x : p̄a, x : ↑↓◻↑◇↓↑pa

Yet, this sequent is interpreted in our framework as ā,◻◇a, and we have seen in Part I that
it does not have a cut-free proof in oK45 + ◇o

t . However, once we do consider the time of
each sequent, the rule ↑o cannot be applied to y : ↑◇↓↑pa at (∗). Indeed, the time (x,∅)
in the conclusion would need to be updated to (y, {x}) in the premiss, which prevents the
focus to be 〈yx : ◇↓↑pa〉 , since x would then be a forbidden future.

As a result, the proof system LMFo can emulate modal sequent systems with adequate
precision: individual modal inference rules correspond to certain distinctive chains of bipoles
in LMFo and vice versa. The case of ordinary sequents is interesting, because such calculi
have a natural complexity-optimal proof search procedure. Using the additional gadgets of
our framework that specify which world we are currently working on and which worlds are
no longer reachable, we are able to reproduce the mechanism that constrains proof search in
such calculi. We remark that a similar result is obtained by Lellmann and Pimentel in [78],
by using a different technique (but also based on the idea of focusing). it might be good to
compare in more detail.)

As for the previous chapter, this work is part of the ProofCert project [93, 94]. Implemen-
tations of the LMF∗ framework can therefore provide a proof checker for the modal sequent
systems considered, given checkers for first-order logic (such as those described in [29]) that
do not have any special knowledge of modal operators and Kripke frames. The framework
is also general enough to capture modal proof systems defined in other formalisms, such
as prefixed tableaux [45] and nested sequents [15]; Libal and Volpe have already started
implementing these extensions [84]. We are currently working on extending the application
of the framework to hypersequents [6].
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III « Folding »

We will take our same telescope, but look through the opposite side of the lense. Instead
of seeing existing rules unfold as synthetic rules in another more basic system, we will actually
consider folding those existing rules themselves into synthetic entities. Our main technical
contribution is the proof of completeness of a focused nested sequent calculus by means
of an internal cut-elimination proof. More precisely two such proofs; the second one, in
the synthetic system, is considerably shorter and simpler, using a more standard induction
measure, than the first one in the non-synthetic system. In Chapter 7 we introduce the
focused version of nested sequents systems for both classical and intuitionistic modal logics
and give a first proof of cut-free completeness. In Chapter 8 we present the simplified
synthetic version of these systems, whose cut-elimination result gives us a second proof of
completeness for the focused systems. In Chapter 9 we present some concluding remarks
and perspectives.





7

Folding nested sequents: focused systems

In this chapter, we present focused nested sequent systems. After the design of the systems,
the main contributions are: (i) a proof of cut-elimination for the focused nested calculus,
given in terms of a traditional rewriting procedure to eliminate cuts; and (ii) a proof of
completeness of the focused system with respect to the non-focused system by showing that
the focused system admits the rules of the non-focused system. It generalises similar proofs
of cut-elimination and focusing completeness for (non-nested) sequent calculi [74, 83].

7.1 Focused nested sequents

We build a focused variant of the nested sequent systems introduced in Section 2.5 and 3.5
for all modal logics of the classical S5 cube and a large subset of the intuitionistic S5 cube.

Classical system
In the classical setting, polarised formulas are built from the following grammar:

P ::= p | n̄ | ↓N | P +∧ P | +⊺ | P +∨ P | +� | ◇P L ::= p | n̄ | ↓N

N ::= p̄ | n | ↑P | N −∨N | −� | N −∧ N | −⊺ | ◻N R ::= p̄ | n | ↑P

We recall that a formula is said to be neutral in the classical case if it is a shifted formula,
an atom, or a negated atom, which can be a positive neutral formula L or a negative neutral
formula R.

A polarised nested sequent is the same as a nested sequent in the non-focused setting,
with the difference that all formulas are polarised. An invertible nested sequent, written Σ,
is a polarised nested sequent that contains only negative formulas, according to the following
grammar:

Σ ::= ∅ | Σ, N | Σ1, [Σ2]

Themeaning of a polarised nested sequent Σ, written fmn(Σ), is a corresponding negative
formula obeying: fmn(∅) ≡ −�; fmn(Σ, N) ≡ fmn(Σ) −∨N ; fmn(Σ1, [Σ2]) ≡ fmn(Σ1) −∨◻fmn(Σ2);

In building the focused proof system, we will largely confine ourselves to neutral nested
sequents, witten Γ, which are invertible nested sequents only built from neutral formulas
and bracketed neutral nested sequents:

Γ ::= ∅ | Γ, ↑P | Γ,¬p | Γ, n | Γ1, [Γ2]

A context Σ{ } · · · { } is invertible if Σ{∅} · · · {∅} is invertible. Likewise, a context
Γ{ } · · · { } is neutral if Γ{∅} · · · {∅} is neutral.

A focused sequent is like a neutral sequent but contains an additional single occurrence
of 〈P 〉 wherever a negative formula may otherwise occur , called its focus. We depict such
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Inversion phase
Σ{N,M}−∨fn

Σ{N −∨M}
Σ{N} Σ{M}−∧fn

Σ{N −∧M}
−⊺fn

Σ{−⊺}
Σ{[A]}

◻
fn

Σ{◻A}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neutral → Focus
Γ
{
↑P, 〈P 〉

}
↑fn

Γ{↑P}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Focus phase
Γ
{
〈P 〉
}

+∨fn
1 Γ
{
〈P +∨Q〉

} Γ
{
〈Q〉
}

+∨fn
2 Γ
{
〈P +∨Q〉

} Γ
{
〈P 〉
}

Γ
{
〈Q〉
}

+∧fn

Γ
{
〈P +∧Q〉

} +⊺fn

Γ
{
〈+⊺〉
} Γ

{[
〈A〉 ,∆

]}
◇

fn
k Γ
{
〈◇A〉 , [∆]

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Identity Focus → Inversion

idfn
+ Γ
{
p̄, 〈p〉

} idfn
− Γ
{
n, 〈n̄〉

} Γ{N}
↓fn

Γ
{
〈↓N〉

}
Γ
{
〈A〉
}

◇
fn
t Γ
{
〈◇A〉

} Γ1
{

[Γ2], 〈A〉
}

◇
fn
b Γ1
{[

Γ2, 〈◇A〉
]} Γ

{[
〈A〉
]}

◇
fn
d Γ
{
〈◇A〉

} Γ1
{[
〈◇A〉 ,Γ2

]}
◇

fn
4 Γ1

{
〈◇A〉 , [Γ2]

} Γ{[Γ2]}
{
〈◇A〉

}
◇

fn
5 Γ1
{[

Γ2, 〈◇A〉
]}
{∅}

Figure 7.1: System fnK and extensions for t, b, d, 4, and 5

sequents as Γ
{
〈P 〉

}
where Γ{ } is a neutral context and P is a positive formula. The meaning

of a focused sequent is written by extending fmn( ), so that fmn(Γ{〈P 〉}) ≡ fmn(Γ{↑P}).
The classical focused nested system fnK for the logic K, and its extensions with rules ◇fn

x
for any axiom x in {t, b, d, 4, 5}, is shown in Figure 7.1. Observe that the rules for negative
formulas are exactly the same as in the unfocused system (Figure 2.5), while the rules for
positive formulas can only be applied if the principal formula is in focus. Similarly, the
modal rules in the focused system, i.e. the rule ◇fn

k and the rules ◇fn
x shown on the last line

of the figure, are similar to the ones in the non-focused system. However, they can only be
applied if the focus is on the principal ◇-formula. Note also that they do not internalise
contraction; this is not needed because of the explicit contraction appearing in the rule ↑fn.

7.1.1 Example As examples of derivations in fnK we present the focused versions of
the nK derivations we gave in Example 2.5.3.
↑◇(p +∧ n̄), ↑◇↓p̄, [n] is one possible polarisation of ◇(a ∧ b̄),◇ā, [b] as a neutral sequent.

Once this polarisation is fixed, it constrains the shape of the proof as follows:

idfn

↑◇(p +∧ n̄), ↑◇↓p̄,
[
〈p〉 , p̄, n

] idfn

↑◇(p +∧ n̄), ↑◇↓p̄,
[
〈n̄〉 , p̄, n

]
+∧fn

↑◇(p +∧ n̄), ↑◇↓p̄,
[
〈p +∧ n̄〉 , p̄, n

]
◇

fn
k ↑◇(p +∧ n̄), 〈◇(p +∧ n̄)〉 , ↑◇↓p̄, [p̄, n]
↑fn

↑◇(p +∧ n̄), ↑◇↓p̄, [p̄, n]
↓fn

↑◇(p +∧ n̄), ↑◇↓p̄,
[
〈↓p̄〉 , n

]
◇

fn
k ↑◇(p +∧ n̄), ↑◇↓p̄, 〈◇↓p̄〉 , [n]
↑fn

↑◇(p +∧ n̄), ↑◇↓p̄, [n]

↑◇↓(n −∧ ↑p), ↑◇n̄, [p̄] is a second possible polarisation of ◇(a ∧ b̄),◇ā, [b] as a neutral
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sequent, which constrains the shape of the proof as follows:

idfn

↑◇↓(n −∧ ↑p), ↑◇n̄,
[
〈n̄〉 , n, p̄

]
◇

fn
k ↑◇↓(n −∧ ↑p), ↑◇n̄, 〈◇n̄〉 , [n, p̄]
↑fn

↑◇↓(n −∧ ↑p), ↑◇n̄, [n, p̄]

idfn

↑◇↓(n −∧ ↑p), ↑◇n̄,
[
↑p, 〈p〉 , p̄

]
↑fn

↑◇↓(n −∧ ↑p), ↑◇n̄, [↑p, p̄]−∧fn

↑◇↓(n −∧ ↑p), ↑◇n̄, [n −∧ ↑p, p̄]
↓fn

↑◇↓(n −∧ ↑p), ↑◇n̄,
[
〈↓(n −∧ ↑p)〉 , p̄

]
◇

fn
k ↑◇↓(n −∧ ↑p), 〈◇↓(n −∧ ↑p)〉 , ↑◇n̄, [p̄]
↑fn

↑◇↓(n −∧ ↑p), ↑◇n̄, [p̄]
An interesting point is that, even though for any polarisation of the sequent as neutral

there still exists a proof in the focused system, the two proofs that existed in the unfo-
cused system are no longer necessarily both available for each possible polarisation. This is
similar to the ability of focusing to distinguish between forward and backward chaining of
implications, that is a well-known phenomenon [26].

The most important result of this chapter is that the restriction of the nested sequent
systems nK +◇n

X to the system fnK +◇fn
X that produces only focused proofs is still complete

with respect to the corresponding logics.

7.1.2 Theorem (Chaudhuri, Marin, and Straßburger [22]) Let X ⊆ {t, b, d, 4, 5} be
axiomatically complete. For any negative neutral formula N , the following are equivalent.

1. ∂(N) is a theorem of K + X.

2. N is provable in fnK +◇fn
X .

We dedicate Section 7.2 to proving this result. The proof uses Theorem 2.5.6 stating that
for any X ⊆ {t, b, d, 4, 5}, nK +◇n

X is sound and complete with respect to K + X. Therefore,
it will be sufficient to prove that the focused system fnK + ◇fn

X is sound and complete with
respect to the unfocused system nK +◇n

X.

Intuitionistic system.
In the intuitionistic setting, polarised formulas are built from the following grammar:

P ::= L | P +∧ P | +⊺ | P ∨ P | � | ◇P L ::= p | ↓N

N ::= R | N −∧ N | −⊺ | P ⊃ N | ◻N R ::= n | ↑P

We distinguish the classes of right-neutral formulas denoted R and left-neutral formulas de-
noted L. Here again, the use of the polarised syntax will make the intuitionistic input/output
annotations unnecessary. Intuitionistically meaningful polarised sequents are exactly those
sequents with a single negative formula interpreted as the output.

Polarised invertible sequents are similar to nIK sequents, but instead of using annotations,
we force input formulas to be positive and output formulas to be negative. The resulting
grammar for polarised input sequents (written Ω) and polarised full sequents (written Ξ) is:

Ω ::= ∅ | P,Ω | [Ω1],Ω2 Ξ ::= Ω, N | Ω, [Ξ] Θ ::= Ω | Ξ

Observe that in any polarised full sequent there is always exactly one negative formula.
As before, we define neutral input sequents (written Λ) and neutral full sequents (written

Π), which are those subclasses of polarised input sequents and polarised full sequents that
are built up of (left- or right-) neutral formulas:

Λ ::= ∅ | L,Λ | [Λ1],Λ2 Π ::= Λ, R | Λ, [Π] ∆ ::= Λ | Π
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Inversion phase
Ξ{P,Q}+∧fn

L Ξ{P +∧Q}
Ξ{P} Ξ{Q}∨fn

L Ξ{P ∨Q} �
fn
L Ξ{�}

Ξ{[P ]}
◇

fn
L Ξ{◇P}

Ω{M} Ω{N}−∧fn
R Ω{M −∧ N}

−⊺fn
R Ω{−⊺}

Ω{P,N}
⊃fn

R Ω{P ⊃ N}
Ω{[N ]}

◻
fn
R Ω{◻N}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Neutral → Focus

Λ
{
↑P, 〈P 〉

}
↑fn

R Λ{↑P}
Π
{
↓N, 〈N〉

}
↓fn

L Π{↓N}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Focus phase
Π
{
〈P 〉
}

Π
{
〈Q〉
}

+∧fn
R Π

{
〈P +∧Q〉

} +⊺fn
R Π
{
〈+⊺〉
} Π

{
〈P 〉
}

∨fn
R1 Π

{
〈P ∨Q〉} Π

{
〈Q〉
}

∨fn
R2 Π

{
〈P ∨Q〉} ∆1

{[
∆2, 〈P 〉

]}
◇

fn
Rk ∆1

{
[∆2], 〈◇P 〉

}
Π
{
〈M〉

}
−∧fn

L1 Π
{
〈M −∧ N〉

} Π
{
〈N〉

}
−∧fn

L2 Π
{
〈M −∧ N〉

} Π
{
〈P 〉
}

Π
{
〈N〉

}
⊃fn

L Π
{
〈P ⊃ N〉

} ∆1
{[

∆2, 〈N〉
]}

◻
fn
Lk ∆1

{
[∆2], 〈◻N〉

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Identity Focus → Inversion

idfn
R Π
{
p, 〈p〉

} idfn
L Λ
{
〈n〉 , n

} Π{P}
↑fn

L Π
{
〈↑P 〉

} Π∗{N}
↓fn

R Π
{
〈↓N〉

}
Π
{
〈P 〉
}

◇
fn
Rt Π

{
〈◇P 〉

} ∆1
{

[∆2], 〈P 〉
}

◇
fn
Rb ∆1

{[
∆2, 〈◇P 〉

]} ∆1
{[

∆2, 〈◇P 〉
]}

◇
fn
R4 ∆1

{
[∆2], 〈◇P 〉

} Π{[∆2]}
{
〈◇P 〉

}
◇

fn
R5 ∆1

{[
∆2, 〈◇P 〉

]}
{∅}

Π
{
〈N〉

}
◻

fn
Lt Π

{
〈◻N〉

} ∆1
{

[∆2], 〈N〉
}

◻
fn
Lb ∆1

{[
∆2, 〈◻N〉

]} ∆1
{[

∆2, 〈◻N〉
]}

◻
fn
L4 ∆1

{
[∆2], 〈◻N〉

} Π{[∆2]}
{
〈◻N〉

}
◻

fn
L5 ∆1

{[
∆2, 〈◻N〉

]}
{∅}

Figure 7.2: System fnIK and extensions for t, b, 4, and 5

The meaning of a polarised sequent Θ, written fmn(Θ), is a polarised formula obeying:
fmn(∅) ≡ +⊺; fmn(P,Ω) ≡ P

+∧ fmn(Ω); fmn([Ω1],Ω2) ≡ ◇fmn(Ω1) +∧ fmn(Ω2); fmn(Ω, N) ≡
fmn(Ω) ⊃ N ; and fmn(Ω, [Ξ]) ≡ fmn(Ω) ⊃ ◻fmn(Ξ)

We write Σ∗{ } · · · { } for the context formed by deleting any negative formula from
Σ{ } · · · { }. We reuse the right-deletion notation from Section 3.5 in the polarised case since
the concepts are similar, replacing “output formula” with“negative (right-neutral) formula”.

A focused sequent is a neutral sequent with an occurrence of a focus 〈P 〉 or 〈N〉 in the
place where a positive formula may otherwise occur, that is, Π

{
〈P 〉

}
or Π

{
〈N〉

}
where Π{ }

is a neutral context. The notion of corresponding formula is extended with fmn(Π{〈P 〉}) =
fmn(Π∗{↑P}) and fmn(Π{〈N〉}) = fmn(Π{↓N}).

The inference rules of the intuitionistic focused nested sequent systems are given in
Figure 7.2. They are the polarised and focused versions of the nIK rules; note however, that
similarly to LJF, the left-rule for ⊃ does not need to make use of the right-deletion operation
in the first premiss. The only place where a formula needs to be deleted from the context
is in the rule ↓fnR , as in the premiss a new negative formula needs to appear. Like with fnK
above, for any X ⊆ {t, b, 4, 5}, we can extend the system fnIK, consisting of the rules in the
upper section of the figure, with the rules ◻f

Lxand ◇f
Rx (for each x ∈ X) in the lower section

of the figure.

7.1.3 Theorem (Chaudhuri, Marin, and Straßburger [23]) Let X ⊆ {t, b, 4, 5} be ax-
iomatically complete. For any polarised right-neutral formula R, the following are equivalent.

1. ∂(R) is a theorem of IK + X.

2. R is provable in fnIK + ◻fn
LX +◇fn

RX.
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7.1.4 Example As an example, we give a focused version of the derivation in Ex-
ample 3.5.3 below. Namely, the derivation in fnIK of R = ↑↓(↓(◇p ⊃ ◻n) ⊃ ◻(p ⊃ n)), which
is a right-neutral polarised form of k4 with a minimal number of shifts. Contrary to the
unfocused derivation, when ⊃fn

L is applied, n can remain in the left branch all the way up to
the application of idfn

R . Observe also that the instance of ↓fnL cannot be applied any lower in
the derivation, since its conclusion would not then be neutral.

idfn
R ↓(◇p ⊃ ◻n),

[
〈p〉 , p, n

]
◇

fn
Rk ↓(◇p ⊃ ◻n), 〈◇p〉 , [p, n]

idfn
L ↓(◇p ⊃ ◻n),

[
〈n〉 , p, n

]
◻

fn
Lk ↓(◇p ⊃ ◻n), 〈◻n〉 , [p, n]

⊃fn
L ↓(◇p ⊃ ◻n), 〈◇p ⊃ ◻n〉 , [p, n]

↓fn
L ↓(◇p ⊃ ◻n), [p, n]

⊃fn
R ↓(◇p ⊃ ◻n), [p ⊃ n]

◻
fn
R ↓(◇p ⊃ ◻n),◻(p ⊃ n)

⊃fn
R ↓(◇p ⊃ ◻n) ⊃ ◻(p ⊃ n)

↓fn
R
R, 〈↓(↓(◇p ⊃ ◻n) ⊃ ◻(p ⊃ n))〉

↑fn
R

R

7.2 Focused meta-theory

We will present the meta-theory of the system fnK, namely its soundness and completeness
wrt. the unfocused system nK, via a cut-elimination result, a technique pioneered by Laurent
for linear logic [74]. Parallel results are available for system fnIK wrt. nIK, and obtained by
almost the same proofs, with twice as many cases as the system contains twice as many
rules.

Soundness
7.2.1 Theorem Let X ⊆ {t, b, d, 4, 5}. Let R be a negative neutral formula. If R is
provable in fnK +◇fn

X , then ∂(R) is provable in nK +◇n
X.

Proof. By forgetting the polarity information, every fnK + ◇fn
X proof of N is transformed

into a nK +◇n
X proof of ∂(N). The proof makes use of the following two inference rules

Γ1{∅}w
Γ1{Γ2}

and
Γ1{Γ2,Γ2}c

Γ1{Γ2}

defined on polarised sequents, and the fact that they are admissible for fnK+◇fn
X by induction,

similarly to the unfocused case [15].
Any polarised sequent Σ can be transformed into an unpolarised sequent ∂(Σ) with the

same meaning by replacing every formula N in Σ by ∂(N), and similarly for contexts Σ{ }.
Moreover we can define ∂(Σ

{
〈P 〉

}
) = ∂(Σ){∂(P )}. It follows that every rule in fnK + ◇fn

X
either becomes trivial or can be simulated by a derivation consisting of an instance of a rule
in nK + ◇n

X and an instance of w, except for ↑n which becomes an instance of c. Thus, a
proof of A in fnK +◇fn

X is transformed into a proof of ∂(A) in nK +◇n
X + w + c. The theorem

finally follows from admissibility of w and c for nK +◇n
X. ,

Completeness

We want to show completeness of the focused systems fnK + ◇fn
X with respect to nK + ◇n

X,
that is, every formula which can be proved within the unfocused system, also has a focused
proof.

7.2.2 Theorem Let X ⊆ {t, b, d, 4, 5} be axiomatically complete. Let R be a negative
neutral formula. If ∂(R) is provable in nK +◇n

X, then R is provable in fnK +◇fn
X .
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Invertible rules
Σ{N,M}−∨wn

Σ{N −∨M}
Σ{∅}−�wn

Σ{−�}
Σ{N} Σ{M}−∧wn

Σ{N −∧M}
−⊺wn

Σ{−⊺}
Σ{[A]}

◻
wn

Σ{◻A}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inversion → Focus
Σ
{
↑P, 〈P 〉

}
↑wn

Σ{↑P}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Focused rules
Σ
{
〈P 〉
}

+∨wn
1 Σ

{
〈P +∨Q〉

} Σ
{
〈Q〉
}

+∨wn
2 Σ

{
〈P +∨Q〉

} Σ
{
〈P 〉
}

Σ
{
〈Q〉
}

+∧wn

Σ
{
〈P +∧Q〉

} +⊺wn

Σ
{
〈+⊺〉
} Σ

{[
〈A〉 ,∆

]}
◇

wn
k Σ

{
〈◇A〉 , [∆]

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Identity Focus → Inversion

idwn
+ Σ

{
p̄, 〈p〉

} idwn
− Σ

{
n, 〈n̄〉

} Σ{N}
↓wn

Σ
{
〈↓N〉

}
Σ
{
〈A〉
}

◇
wn
t Σ
{
〈◇A〉

} Σ1
{

[Σ2], 〈A〉
}

◇
wn
b Σ1

{[
Σ2, 〈◇A〉

]} Σ
{[
〈A〉
]}

◇
wn
d Σ
{
〈◇A〉

} Σ1
{[
〈◇A〉 ,Σ2

]}
◇

wn
4 Σ1

{
〈◇A〉 , [Σ2]

} Σ1{[Σ2]}
{
〈◇A〉

}
◇

wn
5 Σ1

{[
Σ2, 〈◇A〉

]}
{∅}

Figure 7.3: System wnK and extensions for t, b, d, 4, and 5

The proof that we present in this section requires an intermediate step. In the next
chapter, we will present an alternative proof which is much simpler and shorter, based on
synthetic rules.

We consider the system called wnK for weakly focused which is a variant fnK with a
weaker focusing discipline: the rule ↑fn can be applied in a context that contains also negative
formulas, and the invertible rules can occur anywhere, even in a focus phase. This system
is given in Figure 7.3; it relies on weakly focused sequents which are invertible sequents with
an occurrence of a focus, i.e. of the form Σ

{
〈P 〉

}
. Furthermore, we abuse the notation Σ

to encompass sequents that can contain a (unique) occurrence of a focus 〈P 〉 ; indeed, the
invertible rules can occur even when the context contains a focus elsewhere, but not the
focused rules. We can show directly that any proof within wnK can be transformed into one
in fnK and vice-versa.

7.2.3 Lemma Let X ⊆ {t, b, d, 4, 5}. A negative neutral formula R is provable in
fnK +◇fn

X if and only if it is provable in wnK +◇wn
X .

Proof. A derivation in fnK+◇fn
X is by definition also a derivation in wnK+◇wn

X . Conversely, to
convert a derivation in wnK+◇wn

X into one in fnK+◇fn
X , we first have to replace all instances

of idwn with a sequence of applications of
{−∨fn,

−∧fn,◻fn} followed (reading from conclusion
upwards) by idfn, to ensure that the conclusion of the idfn rule is neutral. Then, any negative
rules from

{−∨fn,
−∧fn,◻fn}, in particular the ones that we just added, can be permuted down

by straightforward rule permutations, such that ↑fn is only applied to neutral sequents and
therefore no negative rule occurs within a focus phase. ,

We are now going to simulate nK+◇n
X within wnK+◇wn

X . The simulation crucially relies
on the use of a cut-rule of the form

Σ{↑P} Σ{¬P}
cut

Σ{∅}

which is admissible in wnK + ◇wn
X , as we will show in the next section. But first, we need

another technical property of wnK, called identity reduction.
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The depth of a polarised formula P or N , denoted by dp(P ) or dp(N), is computed in the
same inductive way as for a non-polarised formula: dp(p) = dp(n) = 1; dp(↑P ) = dp(◇P ) =
dp(P )+1; dp(↓N) = dp(◻N) = dp(N)+1; dp(P +∧Q) = dp(P +∨Q) = max(dp(P ),dp(Q))+
1; and dp(M −∧ N) = dp(N −∨M) = max(dp(M),dp(N)) + 1.

7.2.4 Lemma The following generalised identity rule is derivable in wnK:
gidwn

Σ
{
〈P 〉 ,¬P

}
Proof. We proceed by induction on the depth of the formula P . The base case is when P is
an atom or a negated atom, where we replace the instance of gidwn by an actual idwn:

gidwn

Σ
{
〈p〉 , p̄

}  idwn
+ Σ

{
〈p〉 , p̄

}
gidwn

Σ
{
〈n̄〉 , n

}  idwn
− Σ

{
〈n̄〉 , n

}
Otherwise, we replace gidwn by a derivation which contains instances of gidwn applied to
formulas of smaller depth:

gidwn

Σ
{
〈P1

+∧ P2〉 ,¬P1
−∨ ¬P2

}  

gidwn

Σ
{
〈P1〉 ,¬P1,¬P2

}
−∨wn

Σ
{
〈P1〉 ,¬P1

−∨ ¬P2
} gidwn

Σ
{
〈P2〉 ,¬P1,¬P2

}
−∨wn

Σ
{
〈P2〉 ,¬P1

−∨ ¬P2
}

+∧wn

Σ
{
〈P1

+∧ P2〉 ,¬P1
−∨ ¬P2

}

gidwn

Σ
{
〈P1

+∨ P2〉 ,¬P1
−∧ ¬P2

}  

gidwn

Σ
{
〈P1〉 ,¬P1

}
+∨wn

Σ
{
〈P1

+∨ P2〉 ,¬P1
}

−∧wn

Σ
{
〈P1

+∨ P2〉 ,¬P1
−∧ ¬P2

}

gidwn

Σ
{
〈◇Q〉 ,◻¬Q

}  

gidwn

Σ
{[
〈Q〉 ,¬Q

]}
◇

wn
k Σ

{
〈◇Q〉 , [¬Q]

}
◻

wn

Σ
{
〈◇Q〉 ,◻¬Q

}

gidwn

Σ
{
〈↓N〉 , ↑¬N

}  

gidwn

Σ
{
N,¬N, 〈¬N〉

}
↑wn

Σ{N, ↑¬N}
↓wn

Σ
{
〈↓N〉 , ↑¬N

}
Note that we have to apply some invertible rules even within a focus phase, so it is important
that we reason in wnK and not in fnK. ,

7.2.5 Lemma Let X ⊆ {t, b, d, 4, 5}. Let N be a negative formula. If ∂(N) is provable
in nK +◇n

X, then N is provable in wnK +◇wn
X + cut.

Proof. First, any unpolarised nK sequent can be transformed into an invertible polarised
sequent with the same meaning. The connectives are turned into their polarised variant,
that is, in particular, a polarity is arbitrarily chosen for every atom, every ∨, and every ∧;
then shifts are added as needed to produce well-formed polarised formulas. If the obtained
formula is positive, an extra shift ↓ needs to be prenexed.

Then, we show that each rule in nK +◇n
X is derivable in wnK +◇wn

X + cut, and the lemma
follows by induction on the height of the proof of A: replacing in the proof the bottom
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most rule r by an equivalent in wnK +◇wn
X , appealing to the admissibility of weakening w in

nK [15] and of the generalised identity gidwn in wnK (Lemma 7.2.4), and continuing for the
rest of the proof which is of smaller height.

idn

Γ{a, ā}
becomes

idwn
+ Σ

{
↑p, 〈p〉 , p̄

}
↑wn

Σ{↑p, p̄}
or

idwn
− Σ

{
n, ↑n̄, 〈n̄〉

}
↑wn

Σ{n, ↑n̄}
Γ{A,B}∨n

Γ{A ∨B} becomes
Σ{N,M}−∨wn

Σ{N −∨M}
or

Σ{↑P, ↑Q}
w ...........................................

Σ{↑(P +∨Q), ↑P, ↑Q}

gidwn

Σ
{
↑(P +∨Q), 〈Q〉 , ↑P,¬Q

}
+∨wn

Σ
{
↑(P +∨Q), 〈P +∨Q〉 , ↑P,¬Q

}
↑wn

Σ{↑(P +∨Q), ↑P,¬Q}
cut

Σ{↑(P +∨Q), ↑P}

gidwn

Σ
{
↑(P +∨Q), 〈P 〉 ,¬P

}
+∨wn

Σ
{
↑(P +∨Q), 〈P +∨Q〉 ,¬P

}
↑wn

Σ{↑(P +∨Q),¬P}
cut

Σ{↑(P +∨Q)}

Γ{A} Γ{B}∧n

Γ{A ∧B} becomes
Σ{N} Σ{M}−∧wn

Σ{N −∧M}
or

Σ{↑P}
w ...................................

Σ{↑P, ↑(P +∧Q)}

Σ{↑Q}
w ............................................

Σ{¬P, ↑(P +∧Q), ↑Q}

gidwn

Σ
{
¬P,¬Q, ↑(P +∧Q), 〈P 〉

} ...+∧wn

Σ
{
¬P,¬Q, ↑(P +∧Q), 〈P +∧Q〉

}
↑wn

Σ{¬P, ↑(P +∧Q),¬Q}
cut

Σ{¬P, ↑(P +∧Q)}
cut

Σ{↑(P +∧Q)}

(where the omitted third premiss derivation is the similar branch for 〈Q〉)

Γ{[A]}
◻

n

Γ{◻A}
becomes

Σ{[N ]}
◻

wn

Σ{◻N}

Γ1{◇A, [A,Γ2]}
◇

n
k Γ1{◇A, [Γ2]}

becomes
Σ1{↑◇P, [↑P,Σ2]}

gidwn

Σ1
{
↑◇P,

[
〈P 〉 ,¬P,Σ2

]}
◇

wn
k Σ1

{
↑◇P, 〈◇P 〉 , [¬P,Σ2]

}
↑wn

Σ2{↑◇P, [¬P,Σ2]}
cut

Σ1{↑◇P, [Σ2]}

Γ{◇A,A}
◇

n
t Γ{◇A}

becomes
Σ{↑◇P, ↑P}

gidwn

Σ
{
↑◇P, 〈P 〉 ,¬P

}
◇

wn
t Σ

{
↑◇P, 〈◇P 〉 ,¬P

}
↑wn

Σ{↑◇P,¬P}
cut

Σ{↑◇P}

Γ1{[Γ2,◇A], A}
◇

n
b Γ1{[Γ2,◇A]}

becomes
Σ1{[Σ2, ↑◇P ], ↑P}

gidwn

Σ1
{

[Σ2, ↑◇P ], 〈P 〉 ,¬P
}

◇
wn
b Σ1

{[
Σ2, ↑◇P, 〈◇P 〉 ,¬P

]}
↑wn

Σ1{[Σ2, ↑◇P ],¬P}
cut

Σ1{[Σ2, ↑◇P ]}
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Γ{◇A, [A]}
◇

n
d Γ{◇A}

becomes

gidwn

Σ
{
↑◇P,

[
〈P 〉 ,¬P

]
, ↑◇↓¬P

}
◇

wn
k Σ

{
↑◇P, 〈◇P 〉 , [¬P ], ↑◇↓¬P

}
↑wn

Σ{↑◇P, [¬P ], ↑◇↓¬P}
↓wn

Σ
{
↑◇P,

[
〈↓¬P 〉

]
, ↑◇↓¬P

}
◇

wn
d Σ

{
↑◇P, 〈◇↓¬P 〉 , ↑◇↓¬P

}
↑wn

Σ{↑◇P, ↑◇↓¬P}
Σ{↑◇P, [↑P ]}

◻
wn

Σ{↑◇P,◻↑P}
cut

Σ{↑◇P}

Γ1{◇A, [◇A,Γ2]}
◇

n
4 Γ1{◇A, [Γ2]}

becomes
Σ1{↑◇P, [↑◇P,Σ2]}

gidwn

Σ1
{
↑◇P,

[
〈◇P 〉 ,◻¬P,Σ2

]}
◇

wn
4 Σ1

{
↑◇P, 〈◇P 〉 , [◻¬P,Σ2]

}
↑wn

Σ1{↑◇P, [◻¬P,Σ2]}
cut

Σ1{↑◇P, [Σ2]}

Γ1{[◇A,Γ2]}{◇A}
◇

n
5 Γ1{[◇A,Γ2]}{∅}

becomes
Σ1{[Σ2, ↑◇P ]}{↑◇P}

gidwn

Σ1{[Σ2, ↑◇P ]}
{
〈◇P 〉 ,◻¬P

}
◇

wn
5 Σ1

{[
Σ2, ↑◇P, 〈◇P 〉

]}
{◻¬P}

↑wn

Σ1{[Σ2, ↑◇P ]}{◻¬P}
cut

Σ1{[Σ2, ↑◇P ]}{∅} ,

At this point, we have almost completed the proof of completeness. Indeed, suppose that
we have a proof of ∂(R) in nK + ◇n

X for some negative neutral formula R. In particular, R
is negative, so by Lemma 7.2.5, there is a proof of R in wnK +◇wn

X + cut. And we know by
Lemma 7.2.3 that, if we manage to get a proof of R in wnK +◇wn

X , we can transform it into
a proof in fnK +◇fn

X , which is what we are after. So the last step we are missing is a way to
eliminate this cut.

Cut Elimination
In this section we will show that the cut-rule we have been using is admissible for wnK+◇wn

X .
However, as is common in inductive proofs, we have to slightly generalise the statement in
order to prove it.

As before, we extend our notation of polarised (invertible or neutral) sequents to contain
an occurrence of a focus 〈P 〉 (at most one). For a sequent Σ, we write Σ 6〈〉 to delete its focus
if there is one, i.e. if Σ = Σ1

{
〈P 〉

}
for some polarised context Σ1{ }, then Σ 6〈〉 = Σ1{∅};

otherwise Σ 6〈〉 = Σ. This definition extends straightforwardly to contexts Σ{ }.
The cut-rules that we will show admissible in wnK +◇wn

X can then be written as follows:

Σ{↑P} Σ 6〈〉{¬P}
cut1 Σ{∅}

Σ
{
〈P 〉

}
Σ{¬P}

cut2 Σ{∅}

The rank of an instance of one of the cut rules is the depth of its cut formula P .
The theorem we want to prove is the following. However, the actual elimination proce-

dure will happen in the weaker system wnK.

7.2.6 Theorem Let X ⊆ {t, b, d, 4, 5} be axiomatically complete. If a sequent Σ is
provable in fnK +◇fn

X + {cut1, cut2}, then it is also provable in fnK + Xfn.

In order to show the admissibility of the cut rules, it will be useful, as we have already
seen in Section 2.5, to appeal to a collection of other admissible and invertible rules, in
particular:

Σ{∅}
w

Σ{N}
Σ{p̄, p̄}

c+ Σ{p̄}
Σ{n, n}

c− Σ{n}
Σ1{[Σ2], [Σ3]}

�n
k Σ1{[Σ2,Σ3]}
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Note that here we use contraction only on negative atoms because that is all that is needed
in the cut-elimination proof below. One can indeed show that the general contraction rule
on arbitrary sequents (and not just formulas) is admissible, but this requires a more involved
argument for focused sequents.

7.2.7 Lemma Let X ⊆ {t, b, d, 4, 5}. The rules w, c+, c−, and �n
k are height-

preserving admissible for wnK + ◇wn
X , and the rules ◻wn, −∧wn, and −∨wn are invertible for

wnK + ◇wn
X . Moreover, if X is axiomatically complete, for every x ∈ X, the rule �n

x (shown
in Figure 2.6) is admissible in wnK +◇wn

X .

Proof. The first part is by induction on the height of the derivation, similarly to Lemma 2.6.6
and the original proof [15]. The second part is less straightforward, but also by induction
on the height of the derivation, following [15]. We carry out a case analysis on the last rule
r which appears above �n

x in the derivation If r = id then the occurence of �n
x can just be

removed, while in the other cases, we use the induction hypothesis to conclude. We show
here the critical cases that require the axiomatic completeness condition, translated into our
setting.

• For �n
x = �n

t and r = ◇wn
5 : the only non-trivial cases appear when the focus is situated

at the root of the sequent. We are then in one of the following cases:

[Σ1],Σ2
{
〈◇P 〉

}
◇

wn
5 [

Σ1, 〈◇P 〉
]
,Σ2{∅}

�n
t Σ1, 〈◇P 〉 ,Σ2{∅}

 

[Σ1],Σ2
{
〈◇P 〉

}
�n

t Σ1,Σ2
{
〈◇P 〉

}
◇

wn
4

Σ1, 〈◇P 〉 ,Σ2{∅}

Σ1,
[
Σ2
{
〈◇P 〉

}]
◇

wn
5 Σ1,

[
〈◇P 〉 ,Σ2{∅}

]
�n

t Σ1, 〈◇P 〉 ,Σ2{∅}
 

Σ1,
[
Σ2
{
〈◇P 〉

}]
�n

t Σ1,Σ2
{
〈◇P 〉

}
◇

wn
4

Σ1, 〈◇P 〉 ,Σ2{∅}

By axiomatic completeness, ◇wn
4 is in ◇wn

X when {t, 5} ⊆ X.

• For �n
x = �n

b and r = ◇wn
4 :

Σ1
{[

Σ2,
[
〈◇P 〉 ,Σ3

]]}
◇

wn
4 Σ1

{[
Σ2, 〈◇P 〉 , [Σ3]

]}
�n

b Σ1
{[

Σ2, 〈◇P 〉
]
,Σ3
}  

Σ1
{[

Σ2,
[
〈◇P 〉 ,Σ3

]]}
�n

b Σ1
{

[Σ2], 〈◇P 〉 ,Σ3
}

◇
wn
5 Σ1

{[
Σ2, 〈◇P 〉

]
,Σ3
}

By axiomatic completeness, ◇wn
5 is in ◇wn

X when {b, 4} ⊆ X.

• For �n
x = �n

b and r = ◇wn
5 : similarly, the non-trivial case appears when the focus is at

the root level of the sequent.
[Σ1, [Σ2]],Σ3

{
〈◇P 〉

}
◇

wn
5 [

Σ1,
[
〈◇P 〉 ,Σ2

]]
,Σ3{∅}

�n
b 〈◇P 〉 , [Σ1],Σ2,Σ3{∅}

 

[Σ1, [Σ2]],Σ3
{
〈◇P 〉

}
�n

b [Σ1],Σ2,Σ3
{
〈◇P 〉

}
◇

wn
4

[Σ1],Σ2, 〈◇P 〉 ,Σ3{∅}
By axiomatic completeness, ◇wn

4 is in ◇wn
X when {b, 5} ⊆ X.

• For �n
x = �n

4 and r = ◇wn
b :

Σ1
{
〈P 〉 , [Σ2], [Σ3]

}
◇

wn
b Σ1

{[
Σ2, 〈◇P 〉

]
, [Σ3]

}
�n

4 Σ1
{[[

Σ2, 〈◇P 〉
]
,Σ3
]}  

Σ1
{
〈P 〉 , [Σ2], [Σ3]

}
�n

4 Σ1
{
〈P 〉 , [[Σ2],Σ3]

}
◇

wn
b Σ1

{[
〈◇P 〉 , [Σ2],Σ3

]}
wn
5 Σ1

{[[
Σ2, 〈◇P 〉

]
,Σ3
]}

By axiomatic completeness, ◇wn
5 is in ◇wn

X when {b, 4} ⊆ X.
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These cases illustrate why axiomatic completeness is required, and also show that the height
of the proof can increase for the admissibility of the �n

x rules. ,

We are now ready to prove the admissibility of cuts. Specifically, we show both cut1 and
cut2 simultaneously admissible. Note that this collection of cuts is just sufficiently large to
make the standard cut admissible.

7.2.8 Lemma Let X ⊆ {t, b, d, 4, 5} be axiomatically complete.

For every derivation

D1

Σ1

D2

Σ2cuti Σ where i ∈ {1, 2} and D1 and D2 in wnK + ◇wn
X are

cut-free, there is a cut-free derivation of Σ in wnK +◇wn
X .

Proof. Let D1 always stand for the derivation with the positive cut formula. We proceed by
lexicographic induction: the induction hypothesis may be applied whenever (i) the rank of
the cut decreases, or (ii) the rank stays the same and a cut1 is replaced by a cut2, or (iii) the
rank stays the same and the height of D1 decreases. The height of D2 does not matter for
the induction, which is an important difference with the proof of Lemma 2.6.9. The proof
is then given in terms of a terminating rewrite sequence, written with  , that reduces the
topmost instances of cuti.

We start with the cases of cut1, which are mostly commutative cases. There are two
main possibilities to consider: First, three cases where the last rule r in D1 applies to a
negative formula in the context;

• The first case is the ordinary commutative case, where r is a negative rule.

D′1

Σ1{↑P}r
Σ{↑P}

D2

Σ6〈〉{¬P}
cut1 Σ{∅}

 

D′1

Σ1{↑P}

D2

Σ 6〈〉{¬P}
r−1 ...................

Σ 6〈〉1 {¬P}cut1 Σ1{∅}r
Σ{∅}

Here r is invertible (Lemma 7.2.7) and we denote again by r−1 its admissible inverse.
We can appeal to the inductive hypothesis because the height is reduced. If r is a
binary rule the situation is similar:

D′1

Σ{N}{↑P}
D′′1

Σ{M}{↑P}−∧wn

Σ{N −∧M}{↑P}
D2

Σ 6〈〉{N −∧M}{¬P}
cut1 Σ{N −∧M}{∅}

 

D′1

Σ{N}{↑P}

D2

Σ6〈〉{N −∧M}{¬P}
(−∧wn)−1 ......................................

Σ6〈〉{N}{¬P}
cut1 Σ{N}{∅}

D′′1

Σ{M}{↑P}

D2

Σ 6〈〉{N −∧M}{¬P}
(−∧wn)−1 ......................................

Σ 6〈〉{M}{¬P}
cut1 Σ{M}{∅}−∧wn

Σ{N −∧M}{∅}

• The second case is similar; it occurs when a decision on a positive formula is taken in
the context.

D′1

Σ
{
↑Q, 〈Q〉

}
{↑P}

↑wn

Σ{↑Q}{↑P}
D2

Σ6〈〉{↑Q}{¬P}
cut1 Σ{↑Q}{∅}

 

D′1

Σ
{
↑Q, 〈Q〉 , ↑P

} D2

Σ6〈〉{Q}{↑¬P}
cut1

Σ
{
↑Q, 〈Q〉

}
{∅}

↑wn

Σ{↑Q}{∅}
We can appeal to the inductive hypothesis because the height is reduced.
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• The last case occurs when the decision is on the cut formula. (Here, Σ cannot contain
a focus.)

D′1

Σ
{
↑P, 〈P 〉

}
↑wn

Σ{↑P}
D2

Σ{¬P}
cut1 Σ{∅}

 

D′1

Σ
{
↑P, 〈P 〉

} D2

Σ{¬P}
cut1

Σ
{
〈P 〉
} D2

Σ{¬P}
cut2 Σ{∅}

We first appeal to the inductive hypothesis for the upper cut, which is possible because
the height is reduced. Then we appeal to the inductive hypothesis for the lower cut,
which is allowed because a cut1 is replaced by a cut2.

And second, the following three cases, where the last rule r in D1 operates on the formula
with the focus and can simply be permuted under the cut:

• If r is an identity:

idwn
+ Σ

{
p̄, 〈p〉

}
{P}

D2

Σ{p̄}{¬P}
cut1

Σ
{
p̄, 〈p〉

}
{∅}

 idwn
+ Σ

{
p̄, 〈p〉

}
{∅}

idwn
− Σ

{
〈n̄〉 , n

}
{P}

D2

Σ{n}{¬P}
cut1

Σ
{
〈a〉
}
{∅}

 idwn
− Σ

{
〈n̄〉 , n

}
{∅}

• If the rule keeps the focus we proceed as follows:

D′1

Σ1
{
〈Q1〉

}
{↑P}

r
Σ
{
〈Q〉
}
{↑P}

D2

Σ{∅}{¬P}
cut1

Σ
{
〈Q〉
}
{∅}

 

D′1

Σ1
{
〈Q1〉

}
{↑P}

D2

Σ{∅}{¬P}
cut1

Σ1
{
〈Q1〉

}
{∅}

r
Σ
{
〈Q〉
}
{∅}

and similarly if r is a binary rule (with two copies of D2). We can appeal to the
inductive hypothesis because the height is reduced.

• If the focus is released, we proceed in a similar fashion and use the admissibility of w
(Lemma 7.2.7):

D′1

Σ{N}{↑P}
↓wn

Σ
{
〈↓N〉

}
{↑P}

D2

Σ{∅}{¬P}
cut1

Σ
{
〈↓N〉

}
{∅}

 

D′1

Σ{N}{P}

D2

Σ{∅}{¬P}
w .........................

Σ{N}{¬P}
cut1 Σ{N}{∅}

↓wn

Σ
{
〈↓N〉

}
{∅}

It is important to note that the formula we are weakening is negative which can only
occur as we are reasoning in the weakly focused wnK and not in the strongly focused
fnK.

Finally, we consider the cases for cut2, which correspond to the key cases (because the
bottom-most rule in D1 must work on the cut formula which has the focus):

• In the axiom case we use admissibility of contraction (Lemma 7.2.7):

idwn
+ Σ

{
p̄, 〈p〉

} D2

Σ{p̄, p̄}
cut2 Σ{p̄}

 

D2

Σ{p̄, p̄}
c+ ...............

Σ{p̄}

idwn
− Σ

{
n, 〈n̄〉

} D2

Σ{n, n}
cut2 Σ{n}

 

D2

Σ{n, n}
c− ................

Σ{n}
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• If we release the focus we have:

D′1

Σ{N}
↓wn

Σ
{
〈↓N〉

} D2

Σ{↑¬N}
cut2 Σ{∅}

 

D2

Σ{↑¬N}
D′1

Σ{N}
cut1 Σ{∅}

We can appeal to the inductive hypothesis because the cut-rank is reduced. Note that
we do not need to appeal to the height of D2.

• The cases of the binary connectives are standard and use the admissibility of w and
invertibility of the negative rules (Lemma 7.2.7):

D′1

Σ
{
〈P 〉
} D′′1

Σ
{
〈Q〉
}

+∧wn

Σ
{
〈P +∧Q〉

} D2

Σ{¬P −∨ ¬Q}
cut2 Σ{∅}

 

D′1

Σ
{
〈P 〉
}

D′′1

Σ
{
〈Q〉
}

w ...........................
Σ
{
¬P, 〈Q〉

}
D2

Σ{¬P −∨ ¬Q}
(−∨wn)−1 ...........................

Σ{¬P,¬Q}
cut2 Σ{¬P}

cut2 Σ{∅}

and

D′1

Σ
{
〈P 〉
}

+∨wn
1 Σ

{
〈P +∨Q〉

} D2

Σ{¬P −∧ ¬Q}
cut2 Σ{∅}

 

D′1

Σ
{
〈P 〉
}

D2

Σ{¬P −∧ ¬Q}
(−∧wn)−1 ............................

Σ{¬P}
cut2 Σ{∅}

and similarly for +∨wn
2 . We can appeal to the inductive hypothesis because the cut-rank

is reduced.

• If the cut formula is a ◇-formula, there are six cases:

D′1

Σ1
{[
〈P 〉 ,Σ2

]}
◇

wn
k Σ1

{
〈◇P 〉 , [Σ2]

} D2

Σ1{◻¬P , [Σ2]}
cut2 Σ1{[Σ2]}

 

D′1

Σ1
{[
〈P 〉 ,Σ2

]}
D2

Σ1{◻¬P , [Σ2]}
(◻wn)−1 ...............................

Σ1{[¬P ], [Σ2]}
�n

k ...............................Σ1{[¬P,Σ2]}
cut2 Σ1{[Σ2]}

D′1

Σ
{
〈P 〉
}

◇
wn
t Σ

{
〈◇P 〉

} D2

Σ{◻¬P}
cut2 Σ{∅}

 

D′1

Σ
{
〈P 〉
}

D2

Σ{◻¬P}
(◻wn)−1 ...................

Σ{[¬P ]}
�n

t ..................Σ{¬P}
cut2 Σ{∅}

D′1

Σ1
{
〈P 〉 , [Σ2]

}
◇

wn
b Σ1

{[
〈◇P 〉 ,Σ2

]} D2

Σ1{[◻¬P ,Σ2]}
cut2 Σ1{[Σ2]}

 

D′1

Σ1
{
〈P 〉 , [Σ2]

}
D2

Σ{[◻¬P ,∆]}
(◻wn)−1 ...............................

Σ1{[[¬P ],Σ2]}
�n

b ...............................Σ1{¬P, [Σ2]}
cut2 Σ1{[Σ2]}

D′1

Σ
{[
〈P 〉
]}

◇
wn
d Σ

{
〈◇P 〉

} D2

Σ{◻¬P}
cut2 Σ{∅}

 

D′1

Σ
{[
〈P 〉
]}

D2

Σ{◻¬P}
(◻wn)−1 ...................

Σ{[¬P ]}
cut2 Σ{[ ]}

�n
d .............Σ{∅}
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D′1

Σ1
{[
〈◇P 〉 ,Σ2

]}
◇

wn
4 Σ1

{
〈◇P 〉 , [Σ2]

} D2

Σ1{◻¬P , [Σ2]}
cut2 Σ1{[Σ2]}

 

D′1

Σ1
{[
〈◇P 〉 ,Σ2

]}

D2

Σ1{◻¬P , [Σ2]}
(◻wn)−1

Σ1{[¬P ], [Σ2]}
�n

4 Σ1{[[¬P ],Σ2]}
◻

wn

Σ1{[◻¬P ,Σ2]}
cut2 Σ1{[Σ2]}

D′1

Σ{[Σ2]}
{
〈◇P 〉

}
◇

wn
5 Σ

{[
Σ2, 〈◇P 〉

]}
{∅}

D2

Σ{[Σ2,◻¬P ]}{∅}
cut2 Σ1{[Σ2]}{∅}

 
D′1

Σ1{[Σ2]}
{
〈◇P 〉

}

D2

Σ1{[Σ2,◻¬P ]}{∅}
(◻wn)−1 ........................................

Σ1{[Σ2, [¬P ]]}{∅}
�n

5 ........................................Σ1{[Σ2]}{[¬P ]}
◻

wn

Σ1{[Σ2]}{◻¬P}
cut2 Σ1{[Σ2]}{∅}

In all six cases we use the admissibility of the structural rules, which is where we need
the axiomatic completeness condition, and the invertibility of the ◻ rule (Lemma 7.2.7).
In the first four cases we can apply the inductive hypothesis because the cut-rank is
reduced. In the last two cases we can proceed by appealing to the inductive hypothesis
because of a smaller height. ,

By applying this lemma to all cut instances in the derivation, starting with a topmost
one, we can transform a proof in wnK+◇wn

X +{cut1, cut2} into a cut-free proof in wnK+◇wn
X ,

from which we get a cut-free proof in fnK +◇fn
X using Lemma 7.2.3. This finalises the proof

of the cut-elimination theorem (Theorem 7.2.6), and therefore of the completeness theorem
(Theorem 7.2.2).

Although we were ultimately interested in strongly focused proofs, the cut-elimination
theorem (Theorem 7.2.6) was proved in the weakly focused system and made essential use
of the admissibility of weakening by arbitrary formulas, including negative ones, and of
the possibility of applying invertible rules even within a focus phase. Of course, thanks to
Lemma 7.2.3, we also have a cut-elimination proof for fnK + ◇fn

X , but this is not entirely
satisfactory: it is not an internal proof, i.e., a sequence of cut reductions for that stays inside
this system.

One possible response to this issue might be to try to redo the cut-elimination using
just fnK +◇fn

X , but this quickly gets rather complicated because we no longer have access to
the weakening rules in the case where the weakened structure contains negative formulas.
Indeed, similar attempts to re-prove this meta-theory (for the sequent calculus) usually
solve this problem by adding a larger collection of cuts leading to a lengthy and intricate
argument [26, 82, 126]. To avoid this complexity, it is better to consider the focused proof
system in a synthetic form where the logical inference rules for the various connectives are
composed as much as possible, as we shall see in the next chapter.
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8

Folding nested sequents: synthetic systems

In this chapter, we present synthetic nested sequent systems. After the design of the systems,
the main contributions are: (i) a proof of cut-elimination for the synthetic nested calculus,
which this time is fully internal, that is, the reductions steps stay inside the system itself; and
(ii) a proof of completeness of the focused system with respect to the non-focused system
by completeness of the synthetic system. These proofs might seem a little redundant once
spelt out, but they witness a quite different type of reasoning than in the previous focused
system. Synthetic rules are a compact notation of the focused rules that somehow gives us
access to a slightly more global behaviour while still being able to reason meta-theoretically
by local transformations on proofs.

8.1 Synthetic nested sequents

In this section we are going to introduce synthetic systems for the same logics as in the
previous chapter: for the whole S5 cube in the classical case, and for a subset of it in the
intuitionistic case. As we have seen in Chapter 4, since the boundary rules between phases
(the rules for the shift operators, ↓ and ↑) in a focused proof are limited to conclusions
that are either neutral or focused, we can see any focused derivation as progressing in large
synthetic steps where the rest of the rules in between the shifts rules are ignored. Therefore,
we can design a system that basically only contains the shift rules [139, 19].

The basis of the design for these synthetic systems is to generalise the subformula relation
into a substructure relation, written ∈∈, that determines, for a given focus, which formulas
would be present as the beginning and the end of a focused phase that would start by deciding
on this formula. Since only neutral formulas occur at the boundaries, these substructures
would consist of neutral formulas.

Classical system
We recall that a neutral sequent is a polarised sequent consisting only of neutral formulas
and therefore built according to the grammar:

Γ ::= ∅ | Γ, n | Γ, p̄ | Γ, ↑P | Γ1, [Γ2]

For any negative formula, there is a collection of corresponding neutral nested sequents that
represents one of the possible branches taken in a sequence of negative rules applied to the
formula. The nested sequent Γ matches the negative formula N , written Γ ∈∈ N , if it is
derivable from the rules in the first line of Figure 8.1.

We introduce a new type of sequents called matching sequents, that we can see as the
complement of neutral sequents, and that are built according to the grammar:

Λ ::= ∅ | p,Λ | n̄,Λ | ↓N,Λ | Λ1, [Λ2]
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Substructure matching

n ∈∈ n p̄ ∈∈ p̄ ↑P ∈∈ ↑P
Γ1 ∈∈M Γ2 ∈∈N
Γ1,Γ2 ∈∈M

−∨N ∅ ∈∈ −�
Γ ∈∈M

Γ ∈∈M −∧ N
Γ ∈∈N

Γ ∈∈M −∧ N
Γ ∈∈N

[Γ] ∈∈ ◻N

p ∈∈ p n̄ ∈∈ n̄ ↓N ∈∈ ↓N
Λ ∈∈ P

Λ ∈∈ P +∨Q
Λ ∈∈Q

Λ ∈∈ P +∨Q
Λ1 ∈∈ P Λ2 ∈∈Q
Λ1,Λ2 ∈∈ P

+∧Q ∅ ∈∈ +⊺
Λ ∈∈ P

[Λ] ∈∈◇P
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neutral → Focus
Λ ∈∈ P Γ

{
↑P, 〈Λ〉

}
↑sn

Γ{↑P}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Focus phase
Γ
{
〈Λ1〉

}
Γ
{
〈Λ2〉

}
splsn #Λ1 >0, #Λ2 >0

Γ
{
〈Λ1,Λ2〉

} finsn

Γ
{
〈∅〉
} Γ1

{[
Γ2, 〈Λ〉

]}
|

sn
k Γ1

{
[Γ2], 〈[Λ]〉

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Identity Focus → Neutral

idsn
+ Γ
{
p̄, 〈p〉

} idsn
− Γ
{
n, 〈n̄〉

} {
Γ1{Γ2} : Γ2 ∈∈N

}
↓sn

Γ1
{
〈↓N〉

}
Γ
{
〈Λ〉
}

|
sn
t Γ
{
〈[Λ]〉

} Γ1
{

[Γ2], 〈Λ〉
}

|
sn
b Γ1

{[
Γ2, 〈[Λ]〉

]} Γ
{[
〈Λ〉
]}

|
sn
d Γ
{
〈[Λ]〉

} Γ1
{[

Γ2, 〈Λ〉
]}

|
sn
4 Γ1

{
[Γ2], 〈[Λ]〉

} Γ1{[Γ2]}
{
〈[Λ]〉

}
|

sn
5 Γ1

{[
Γ2, 〈[Λ]〉

]}
{∅}

Figure 8.1: System snK and extensions for t, b, d, 4, and 5

For any positive formula, there is a collection of corresponding matching nested sequents
that represents one of the possible choices if a sequence of positive rules are applied to the
formula. The nested sequent Λ matches the positive formula P , written Λ ∈∈ P , if it is
derivable from the rules in the second line of Figure 8.1.

Finally, a contextualising sequent is of the form Γ
{
〈Λ〉

}
where Γ{ } is a neutral se-

quent context and Λ is a matching sequent. The meaning is again extended to obey
fmn(Γ{〈Λ〉}) ≡ fmn(Γ{↑fmn(Λ)}).

The synthetic system is built using neutral and contextualising sequents. The rules
of snK + |sn

X (for any X ⊆ {t, b, d, 4, 5}) are shown in Figure 8.1. As before, we define
snK + |sn

X to be snK extended with |sn
x for every x ∈ X. The rule ↑sn is similar to the

rule ↑fn from fnK, except that, instead of focusing on the formula N itself, it selects one
of its substructures for contextualisation. The contextualisation rules consist of the rules
{splsn, finsn,|sn

k ,|sn
t ,|sn

4 ,|sn
d ,|sn

b ,|sn
5 } that divide up or move the focus among the pre-

misses of the rule. The rule splsn has a side condition that neither of the foci in the premisses
is empty, otherwise it could be applied infinitely often; the finsn rule handles the case of an
empty focus instead. The modal rules require the focus in the conclusion to be bracketed.

Once the focus has been reduced to a single formula by the other rules, it must be neutral
again, namely either atomic or a shifted formula. If it is an atom, we apply one of the idsn

rules. If it is a shifted formula, we use ↓sn which produces one premiss per substructure of
the principal formula.

The duality between the synthetic rules ↓sn and ↑sn can be seen as meta-quantification
over substructures: the positive rule ↑sn quantifies existentially over the substructures of P
and pick one such Λ as a focus in the unique premiss, while the negative rule quantifies
universally, and so the rule actually consists of one premiss for each way in which to prove
Γ∈∈N . For example, if N is ā−∧◻(b̄−∨↑P ), we know that ā∈∈N and

[
b̄, P

]
∈∈N , so the instance
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of ↓sn in this case is:
Γ{ā} Γ

{[
b̄, P

]}
↓sn

Γ
{
〈↓(ā −∧ ◻(b̄ −∨ ↑P ))〉

}
It is instructive to compare snK +|sn

X with fnK +◇fn
X for a given X ⊆ {t, b, d, 4, 5}. In the

latter system, the focus 〈◇P 〉 is used to drive the modal rules
{◇fn

k ,◇fn
t ,◇fn

b ,◇fn
d ,◇fn

4 ,◇fn
5
}
.

Such modal rules can be applied only a fixed number of times before 〈◇P 〉 needs to be
reduced to 〈P 〉 , and some logical or identity rules need to be used; this is necessary to finish
the proof since foci can never be weakened. Thus, the analysis of P is forced to be interleaved
with the modal rules for ◇P , as shown by the alternation of ◇fn

k and +∨fn in the derivation
on the left below. In snK + |sn

X , in contrast, the ↑sn rule itself performs the analysis of P
up front to produce a synthetic substructure; the modal rules {|sn

k ,|sn
t ,|sn

b ,|sn
4 ,|sn

d ,|sn
5 }

then work entirely at the level of focused substructures, as in the derivation on the right
below.

id ◇(p +∨◇p),
[[
〈p〉 , p̄

]]
◇fn

k ◇(p +∨◇p),
[
〈◇p〉 , [p̄]

]
+∨ ◇(p +∨◇p),

[
〈p +∨◇p〉 , [p̄]

]
◇fn

k ↑◇(p +∨◇p), 〈◇(p +∨◇p)〉 , [[p̄]]
↑fn

↑◇(p +∨◇p), [[p̄]]
[[p̄]] ∈∈◇(p +∨◇p)

id ◇(p +∨◇p),
[[
〈p̄〉 , p̄

]]
|sn

k ◇(p +∨◇p),
[
〈[p̄]〉 , [p̄]

]
|sn

k ◇(p +∨◇p), 〈[[p̄]]〉 , [[p̄]]
↑sn ◇(p +∨◇p), [[p̄]]

Thus, the modal rules of snK + |sn
X are some sort of hybrids between structural rules and

logical propagation rules.

8.1.1 Theorem (Chaudhuri, Marin, and Straßburger [22]) Let X ⊆ {t, b, d, 4, 5} be
axiomatically complete. Let R be a negative neutral formula, the following are equivalent.

1. ∂(R) is a theorem of K + X.

2. R is provable in snK +|sn
X .

Intuitionistic system
As before, we recall the definition of neutral input sequents (written Λ) and neutral full
sequents (written Π):

Λ ::= ∅ | L,Λ | [Λ1],Λ2 Π ::= Λ, R | Λ, [Π] ∆ ::= Λ | Π

In the intuitionistic case, a contextualising sequent is then a neutral full sequent that
contains an occurrence of a focus that can be either an input or a full neutral sequent
∆, i.e. Π

{
〈∆〉

}
where Π{ } is a neutral context. The meaning of a focused sequent is

written using fmn( ) and obeys: fmn(Π{〈Λ〉}) = fmn(Π∗{↑fmn(Λ)}) and fmn(Π1
{
〈Π2〉

})
=

fmn(Π1{↓fmn(Π2)}).
The synthetic system snIK + |sn

X is then built in a similar manner as snK, as shown
in Figure 8.2. Remarkably, the intuitionistic synthetic system has far fewer rules than the
focused one fnIK + Xfn. In particular, there is exactly one modal rule for every modal axiom,
unlike fnIK + Xfn that needed both left ◻fn

L and right ◇fn
R versions. Nevertheless, this system

will be sound and complete with respect to both nIK +◇n
X and fnIK + Xfn, and therefore to

IK + X as well. Note that as in the rule ↑fnR in the focused system, we need to remove the
right-neutral formula from the surrounding context in the ↑snR rule.

8.1.2 Theorem (Chaudhuri, Marin, and Straßburger [23]) Let X ⊆ {t, b, 4, 5} be ax-
iomatically complete. Let R be a right-neutral formula, the following are equivalent.

1. ∂(R) is a theorem of IK + X.
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Substructure matching

n ∈∈ n ↑P ∈∈ ↑P
Λ ∈∈ P Π ∈∈N
Λ,Π ∈∈ P ⊃ N

Π ∈∈M
Π ∈∈M −∧ N

Π ∈∈N
Π ∈∈M −∧ N

Π ∈∈N
[Π] ∈∈ ◻N

p ∈∈ p ↓N ∈∈ ↓N
Λ ∈∈ P

Λ ∈∈ P ∨Q
Λ ∈∈Q

Λ ∈∈ P ∨Q
Λ1 ∈∈ P Λ2 ∈∈Q
Λ1,Λ2 ∈∈ P

+∧Q ∅ ∈∈ +⊺
Λ ∈∈ P

[Λ] ∈∈◇P
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neutral → Focus
Λ2 ∈∈ P Λ1

{
↑P, 〈Λ2〉

}
↑sn

R Λ1{↑P}
Π2 ∈∈N Π1

{
↓N, 〈Π2〉

}
↓sn

L Π1{↓N}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Focus phase
Π
{
〈∆〉

}
Π
{
〈Λ〉
}

splsn #∆ >0, #Λ >0
Π
{
〈∆,Λ〉

} finsn

Π
{
〈∅〉
} ∆1

{[
∆2, 〈∆3〉

]}
|

sn
k ∆1

{
[∆2], 〈[∆3]〉

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Identity Focus → Neutral

idsn
R Π

{
p, 〈p〉

} idsn
L Λ
{
〈n〉 , n

} {
Π∗1{Π2} : Π2 ∈∈N

}
↓sn

R Π1
{
〈↓N〉

} {
Π{Λ} : Λ ∈∈ P

}
↑sn

L Π
{
〈↑P 〉

}
∆1
{
〈∆2〉

}
|

sn
t ∆1

{
〈[∆2]〉

} ∆1
{

[∆2], 〈∆3〉
}

|
sn
b ∆1

{[
∆2, 〈[∆3]〉

]} ∆1
{[

∆2, 〈[∆3]〉
]}

|
sn
4 ∆1

{
[∆2], 〈[∆3]〉

} Γ
{[

∆2, 〈[∆3]〉
]}
{∅}

|
sn
5 ∆1{[∆2]}

{
〈[∆3]〉

}
Figure 8.2: System snIK and extensions for t, b, 4, and 5

2. R is provable in snIK +|sn
X .

8.1.3 Example As an example we give the synthetic version of the derivation in
Example 3.5.3:

idsn

↓(◇p ⊃ ◻n),
[
〈p〉 , p, n

]
|

sn
k ↓(◇p ⊃ ◻n), 〈[p]〉 , [p, n]

idsn

↓(◇p ⊃ ◻n),
[
〈n〉 , p, n

]
|

sn
k ↓(◇p ⊃ ◻n), 〈[n]〉 , [p, n]

splsn
↓(◇p ⊃ ◻n), 〈[p], [n]〉 , [p, n]

↓sn
L ↓(◇p ⊃ ◻n), [p, n]

↓sn
R
R, 〈↓(↓(◇p ⊃ ◻n) ⊃ ◻(p ⊃ n))〉

↑sn
R

R

together with the corresponding substructures derivations for applying the rules ↑snR and ↓snL :

↓(◇p ⊃ ◻n) ∈∈ ↓(◇p ⊃ ◻n)

p ∈∈ p n ∈∈ n
p, n ∈∈ p ⊃ n

[p, n] ∈∈ ◻(p ⊃ n)
↓(◇p ⊃ ◻n), [p, n] ∈∈ ↓(◇p ⊃ ◻n) ⊃ ◻(p ⊃ n)

p ∈∈ p
[p] ∈∈◇p

n ∈∈ n
[n] ∈∈ ◻n

[p], [n] ∈∈◇p ⊃ ◻n

8.2 Synthetic meta-theory

In this section, we study the meta-theory, soundness, cut-elimination, and completeness,
of these synthetic systems. Contrary to the last chapter, the synthetic meta-theory is as
simple in the intuitionistic setting as in the classical one. As evidence of this phenomenon,
we will make the opposite choice from last chapter and present all the results for the intu-
itionistic version. (Of course they are translatable to the classical system with minor usual
adjustments.) Besides, the completeness of the synthetic systems gives an alternative, re-
fined proof of completeness of the focused systems, not requiring us to appeal to the weakly
focused systems.
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Soundness
In this section we show that the synthetic system is sound wrt. the unfocused system.

8.2.1 Theorem Let X ⊆ {t, b, 4, 5}. Let R be a right-neutral formula. If R is provable
in snIK +|sn

X , then ∂(R)◦ is provable in nIK + ◻n
LX +◇n

RX.

This theorem is easier to prove in two steps, by showing first that if R is provable in
snIK + |sn

X then it is provable in fnIK + ◇fn
X (below), and then by stating a parallel result

to Theorem 7.2.1 for the intuitionistic systems, namely that if R is provable in fnIK + ◇fn
X ,

then it is also provable in nIK + ◻n
LX +◇n

RX.

8.2.2 Lemma Let Y ⊆ {t, b, 4, 5} and let Π be a neutral full sequent. If Π is provable
in snIK +|sn

X , then it is also provable in fnIK + ◻fn
LX +◇fn

RX.

Proof (Sketch). The essential idea is to interpret any snIK focused sequent Π
{
〈∆〉

}
as the

fnIK focused sequent Π
{
〈fmn(∆)〉

}
. The rules of snIK can be simulated by fnIK because

∆ ∈∈ fmn(∆). Examples 7.1.4 and 8.1.3 illustrates this interpretation. The whole proof then
works by induction on the given snIK + |sn

X derivation. The decision ↑snR and ↓snL rules are
simulated by repeating the derivation of the substructure in the fnIK sequent rather than
as a side premiss, in particular we use a matching derivation to determine how to choose
between the two ∨ rules. The ↓snL and ↑snR rules are easily simulated since the active rules of
fnIK are precisely matched by the ∈∈ inferences. The |sn

X rules are simulated by ◇fn
RX or ◻fn

LX
rules, depending on whether the focus contains a negative formula or not. Finally, splsn and
finsn are simulated by +∧fn

R and +⊺fn
R respectively. ,

Cut-elimination
In this section, we will show that the cut rule is admissible in snIK + |sn

X . To formulate
the cut rule with a minimum of redundancy, we will need to slightly extend the pruning
operations that we have already seen. As before, we allow the notation for neutral sequents
to stand for sequents that contain at most one occurrence of a focus 〈∆〉 . For such a sequent
∆, we write ∆6〈〉 to prune its focus if there is one (i.e., if ∆ = ∆1

{
〈∆2〉

}
for some ∆1{ },

then ∆ 6〈〉 = ∆1{∅}; otherwise ∆ 6〈〉 = ∆). As before, this definition extends to contexts ∆{ }.
For a context ∆1{ }, we now write ∆∗1{∆2} to mean ∆1{∆2} if ∆2 is an input sequent, and
∆∗1{∆2} if ∆2 is a full sequent.

The synthetic cut rule for snIK +|sn
X can then be written concisely as follows:

Π?{∆} Π 6〈〉
{
〈∆〉

}
cut

Π{∅}

The rank of this cut is defined as the multiset of the depths of the formulas in ∆.
Before we can show that cut is admissible, we need to show the admissibility of the usual

structural rules though in a synthetic setting. Note that the weakening rule w can only
be applied to input contexts, and that we only need the instance of the contraction rule c
applied to positive atoms.

8.2.3 Lemma Let Y ⊆ {t, b, 4, 5}. The rules w, c, and �n
k restricted to neutral and

extended sequents (as appropriate) are height-preserving admissible in snIK +|sn
X , and if Y

is axiomatically complete, then for every x ∈ Y, the rule �n
x (Figure 2.6) is admissible in

snIK +|sn
X .

This can be proved exactly in the same way as Lemma 7.2.7, i.e. by induction on the
height of the derivation, only translating each derivation into the synthetic setting. Note
that we do not allow, e.g., weakening ∆1

{
〈∆2〉

}
{∅} to ∆1

{
〈∆2〉

}
{N} top-down; the latter

is, in fact, not even a well-formed focused sequent.
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8.2.4 Lemma Let Y ⊆ {t, b, 4, 5} be axiomatically complete. Given a proof of the
form:

D1

Π?{∆}
D2

Π 6〈〉
{
〈∆〉

}
cut

Π{∅}

where D1 and D2 are in snIK +|sn
X , there is a proof of Π{∅} in snIK +|sn

X .

Proof. By lexicographic induction on the tuple 〈rk(∆),ht(D2),ht(D1)〉, splitting cases on
the last rule instances in D1 and D2. Note that the last rule in D2 always applies to the
focus 〈∆〉 . We will rewrite the derivation, written using  , by moving the instance of
cut to a position of strictly lower measure or eliminating it entirely.

• First, let us consider the cases where D2 ends with a structural rule:

D1

Π?{∆,Λ}

D′2

Π6〈〉
{
〈∆〉

} D′′2

Π6〈〉
{
〈Λ〉
}

splsn
Π6〈〉
{
〈∆,Λ〉

}
cut

Π{∅}
 

D1

Π?{∆,Λ}

D′2

Π6〈〉
{
〈∆〉

}
w

Π6〈〉
{
〈∆〉 ,Λ

}
cut

Π{Λ}
D′′2

Π6〈〉
{
〈Λ〉
}

cut
Π{∅}

D1

∆?
1{[∆?

2], [∆3]}

D′2

∆ 6〈〉1
{[

∆ 6〈〉2 , 〈∆3〉
]}

|
sn
k ∆ 6〈〉1

{[
∆ 6〈〉2
]
, 〈[∆3]〉

}
cut

∆1{[∆2]}
 

D1

∆?
1{[∆?

2], [∆3]}
�n

k ∆?
1{[∆?

2,∆3]}
D′2

∆ 6〈〉1
{[

∆ 6〈〉2 , 〈∆3〉
]}

cut
∆1{[∆2]}

D1

Π?{[∆]}

D′2

Π6〈〉
{[
〈∆〉

]}
|

sn
d Π6〈〉

{
〈[∆]〉

}
cut

Π{∅}
 

D1

Π?{[∆]}
D′2

Π6〈〉
{[
〈∆〉

]}
cut

Π{[∅]}
�n

d Π{∅}

D1

Π?{[∆]}

D′2

Π6〈〉
{
〈∆〉

}
|

sn
t Π6〈〉

{
〈[∆]〉

}
cut

Π{∅}
 

D1

Π?{[∆]}
�n

t Π?{∆}
D′2

Π6〈〉
{
〈∆〉

}
cut

Π{∅}

D1

∆?
1{[∆?

2, [∆3]]}

D′2

∆ 6〈〉1
{[

∆ 6〈〉2
]
, 〈∆3〉

}
|

sn
b ∆ 6〈〉1

{[
∆ 6〈〉2 , 〈[∆3]〉

]}
cut

∆1{[∆2]}
 

D1

∆?
1{[∆?

2, [∆3]]}
�n

b ∆?
1{[∆?

2],∆3}
D′2

∆ 6〈〉1
{[

∆ 6〈〉2
]
, 〈∆3〉

}
cut

∆1{[∆2]}

D1

∆?
1{[∆?

2], [∆3]}

D′2

∆ 6〈〉1
{[

∆ 6〈〉2 , 〈[∆3]〉
]}

|
sn
4 ∆ 6〈〉1

{[
∆ 6〈〉2
]
, 〈[∆3]〉

}
cut

∆1{[∆2]}
 

D1

∆?
1{[∆?

2], [∆3]}
�n

4 ∆?
1{[∆?

2, [∆3]]}
D′2

∆ 6〈〉1
{[

∆ 6〈〉2 , 〈[∆3]〉
]}

cut
∆1{[∆2]}

D1

Π?{[∆]}{∅}

D′2

Π6〈〉{∅}
{
〈[∆]〉

}
|

sn
5 Π6〈〉

{
〈[∆]〉

}
{∅}

cut
Π{∅}{∅}

 

D1

Π?{[∆]}{∅}
�n

5 Π?{∅}{[∆]}
D′2

Π6〈〉{∅}
{
〈[∆]〉

}
cut

Π{∅}{∅}

In the first case we can apply the induction hypothesis (twice) because rk(∆), rk(Λ) <
rk(∆,Λ) and in the other cases because ht(D′2) < ht(D2) as the rank stays the
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same. We abuse the pruning notation in the cases for |sn
k , |sn

b and |sn
4 by writ-

ing ∆?
1{[∆?

2], { }} or ∆?
1{[∆?

2, { }]} to denote the pruned context ∆?{ } when ∆{ } =
∆1{[∆2], { }} or ∆{ } = ∆1{[∆2, { }]} respectively. Note the use of Lemma 8.2.3.

• If the last rule in D2 is an axiom, we have one of the following three cases:

D1

Π{∅}
finsn

Π6〈〉
{
〈∅〉
}

cut
Π{∅}

 

D1

Π{∅}

D1

Λ{n}
idsn

Λ6〈〉
{
n, 〈n〉

}
cut

Λ{n}
 

D1

Λ{n}

D1

Π{p, p}
idsn

Π6〈〉
{
p, 〈p〉

}
cut

Π{p}
 

D1

Π{p, p}
c

Π{p}

For the third case we use the admissibility of atomic contraction.

• Finally, the last rule in D2 can be ↓snL or ↑snR , and if at the same time the last rule
in D1 is the corresponding ↓snR or ↑snL on the cut formula (the cut sequent has to be a
singleton in that case), we have one of the two principal cases:

Π2 ∈∈N
D′1

Π1
{
↓N, 〈Π2〉

}
↓sn

L Π1{↓N}

{
DΠ2

Π∗1{Π2}

}
Π2∈∈N↓sn

R Π1
{
〈↓N〉

}
cut

Π1{∅}
 

D′1

Π1
{
↓N, 〈Π2〉

} D2

Π1
{
〈↓N〉

}
cut

Π1
{
〈Π2〉

} DΠ2

Π∗1{Π2}
cut

Π1{∅}

Λ ∈∈ P
D′1

Π∗
{
↑P, 〈Λ〉

}
↑sn

R Π∗{↑P}

{
DΛ

Π{Λ}

}
Λ∈∈P↑sn

L Π
{
〈↑P 〉

}
cut

Π{f}
 

D′1

Π∗
{
↑P, 〈Λ〉

} D2

Π
{
〈↑P 〉

}
cut

Π
{
〈Λ〉
} DΛ

Π{Λ}
cut

Π{∅}

In both cases we have to apply the induction hypothesis twice: first to the upper cut
because ht(D′1) < ht(D1), and then to the lower cut because rk(Π2) < rk(↓N) and
rk(Λ) < rk(↑P ). After the reduction step the focus is not in the same branch any
more, so the branch considered to be D1 or D2 may change, but since the rank has
decreased strictly this proceeds along the same inductive argument.

• Of course, when the last rule in D2 is ↓snL or ↑snR , the last rule in D1 does not need to
be the corresponding ↓snR or ↑snL rule. In that case we have a commutative case, that is,
the last rule in D1 is permuted under the cut:

D′1

Π?
1{∆}r

Π?{∆}
D2

Π6〈〉
{
〈∆〉

}
cut

Π{∅}
 

D′1

Π?
1{∆}

D2

Π6〈〉1
{
〈∆〉

}
cut

Π1{∅}r
Π{∅}

The situation above applies if r is |sn
k or any of the |sn

x rules, because then there is a
focus in Π{ } which is moved by r, and we have Π 6〈〉1 { } = Π6〈〉{ }. It also applies if r is
one of ↑snL or ↓snR because then Π{ } contains no focus and therefore Π 6〈〉1 { } = Π6〈〉{ }. If
the last rule in D1 is splsn the situation is similar, and if it is one of idsn or finsn, then
the cut disappears trivially. Note that the last rule in D1 is not applying to ∆ (which
is a singleton) because otherwise it would be a principal case.
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The only non-trivial commutative cases are when the focus in Π{ } is released by the
last rule in D1 which can be either a ↑snL or a ↓snR . In the ↑snL -case, we can reduce as
follows:

{
DΛ

Π?{Λ}{∆}

}
Λ∈∈P↑sn

L Π?
{
〈↑P 〉

}
{∆}

D2

Π{∅}
{
〈∆〉

}
cut

Π
{
〈↑P 〉

}
{∅}

 


DΛ

Π?{Λ}{∆}

D2

Π{∅}
{
〈∆〉

}
w

Π{Λ}
{
〈∆〉

}
cut

Π{Λ}{∅}


Λ∈∈P↑sn

L Π
{
〈↑P 〉

}
{∅}

and we only need height-preserving admissibility of weakening in order to apply the
induction hypothesis, using ht(DΛ) < ht(D1).
In the ↓snR -case we need to distinguish whether ∆ is of the form ↑P or ↓N . In the first
case the cut disappears:{

DΠ2

Π∗1{Π2}{∅}

}
Π2∈∈N↓sn

R Π∗1
{
〈↓N〉

}
{↑P}

D2

Π1{∅}
{
〈↑P 〉

}
cut

Π1
{
〈↓N〉

}
{∅}

 

{
DΠ2

Π∗1{Π2}{∅}

}
Π2∈∈N↓sn

R Π1
{
〈↓N〉

}
{∅}

and in the second we again use height-preserving admissibility of weakening in order
to apply the induction hypothesis, as ht(DΠ2) < ht(D1):{

DΠ2

Π∗1{Π2}{↓M}

}
Π2∈∈N↓sn

R Π1
{
〈↓N〉

}
{↓M}

{
DΠ3

Π∗1{∅}{Π3}

}
Π3∈∈M↓sn

R Π1{∅}
{
〈↓M〉

}
cut

Π1
{
〈↓N〉

}
{∅}

 


DΠ2

Π∗1{Π2}{↓M}


DΠ3

Π∗1{∅}{Π3}w
Π∗1{Π∗2}{Π3}


Π3∈∈M↓sn

R Π∗1{Π2}
{
〈↓M〉

}
cut

Π∗1{Π2}{∅}


Π2∈∈N↓sn

R Π1
{
〈↓N〉

}
{∅} ,

8.2.5 Theorem Let Y ⊆ {t, b, 4, 5} be axiomatically complete. If a sequent Π is
provable in snIK +|sn

X + cut, then it is also provable in snIK +|sn
X .

This is as Theorem 7.2.6 proved by induction on the number of cuts in the proof, by
repeatedly applying the previous lemma, always starting with a topmost cut.

Completeness
In this section we will show that snIK+|sn

X extended with the cut rule can simulate nIK+◻n
LX+

◇n
RX derivations under a certain interpretation of the annotations, Thus, the cut-elimination

theorem will allow us to conclude that nIK + ◻n
LX +◇n

RX rules under that interpretation are
admissible in snIK +|sn

X , i.e., snIK +|sn
X is complete with respect to nIK + ◻n

LX +◇n
RX.

8.2.6 Theorem Let Y ⊆ {t, b, 4, 5} be axiomatically complete. For any right-neutral
formula R, if ∂(R)◦ is provable in nIK + ◻n

LX +◇n
RX, then R is provable in snIK +|sn

X .

First, we can obtain a similarly synthetic version of identity reduction (Lemma 7.2.4).
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8.2.7 Lemma The following rule is derivable in snIK.

gidsn
∆1
{
〈∆2〉 ,∆2

}
Proof. By induction on the structure of the focus. We present it in the form of an expan-
sionary rewrite.

gidsn

Π
{
〈∅〉
}  finsn

Π
{
〈∅〉
}

gidsn

Λ
{
〈n〉 , n

}  idsn
L Λ
{
〈n〉 , n

}
gidsn

Π
{
〈p〉 , p

}  idsn
R Π

{
〈p〉 , p

}

idsn

Λ1
{
〈↑P 〉 , ↑P

}  

 Λ2 ∈∈ ↑P
gidsn

Λ1
{

Λ2, ↑P, 〈Λ2〉
}

↑sn
R Λ1{Λ2, ↑P}


Λ2∈∈↑P↑sn

L Λ1
{
〈↑P 〉 , ↑P

}

idsn

Π1
{
〈↓N〉 , ↓N

}  

 Π2 ∈∈ ↓N
gidsn

Π∗1
{

Π2, ↓N, 〈Π2〉
}

↓sn
R Π∗1{Π2, ↓N}


Π2∈∈↓N↓sn

R Π1
{
〈↓N〉 , ↓N

}

gidsn

∆1
{
〈∆2,Λ〉 ,∆2,Λ

}  

gidsn

∆1
{
〈∆2〉 ,∆2,Λ

} gidsn

∆1
{
〈Λ〉 ,∆2,Λ

}
splsn

∆1
{
〈∆2,Λ〉 ,∆2,Λ

}

gidsn

∆1
{
〈[∆2]〉 , [∆2]

}  

gidsn

∆1
{[
〈∆2〉 ,∆2

]}
|

sn
k ∆1

{
〈[∆2]〉 , [∆2]

} ,

This allows us to simulate derivations from nIK sequents in the synthetic system.

8.2.8 Lemma Let Y ⊆ {t, b, 4, 5}. Let R be a right-neutral formula. If ∂(R)◦ is
provable in nIK + ◻n

LX +◇n
RX, then R is provable in snIK +|sn

X + cut.

Proof. First, any nIK sequent can be transformed into a neutral polarised sequent with the
same meaning. The connectives are turned into their polarised variant and in particular,
a polarity is arbitrarily chosen for every atom, every ⊺, and every ∧; then shifts are added
as needed to produce well-formed polarised formulas. Once the formulas are polarised, one
can obtain neutrality, and remove the ◦-annotation, by adding extra shifts in front of each
formula in the sequent as follows: if P is a positive formula, P 7→ ↓↑P and P ◦ 7→ ↑P , and
if N is a negative formula, N 7→ ↓N and N◦ 7→ ↑↓N . Each rule of nIK + ◻n

LX + ◇n
RXcan

therefore be considered as a rule between neutral polarised sequents. As such, it can be
shown to be derivable in snIK +|sn

X . We show the cases for the rules id, ∧n
L and ◇n

Rd. The
other cases are similar.

id
Λ{a, a◦}

becomes
idsn

Λ
{
↓↑p, 〈↑p〉 , ↑p

}
↑sn

L Λ{↓↑p, ↑p}
or

idsn

Λ
{
↓n, ↑↓n, 〈↓n〉

}
↓sn

R Λ{↓n, ↑↓n}
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Π{A,B}∧n
L Π{A ∧B} becomes

Π{↓↑P, ↓↑Q}
w

Π{↓↑(P +∧Q), ↓↑P, ↓↑Q}

idsn

Π∗
{
↓↑(P +∧Q),∆P ,∆Q, ↑Q, 〈∆Q〉

}
↑sn

R Π∗{↓↑(P +∧Q),∆P ,∆Q, ↑Q}


∆P∈∈P,∆Q∈∈Q↑sn

L Π∗
{
↓↑(P +∧Q), 〈↑(P +∧Q)〉 , ↑Q

}
↓sn

L Π∗{↓↑(P +∧Q), ↑Q}
↓sn

R Π
{
↓↑(P +∧Q), 〈↓↑Q〉

} ...
splsn

Π
{
↓↑(P +∧Q), 〈↓↑P, ↓↑Q〉

}
cut

Π{↓↑(P +∧Q)}

(where the omitted third premiss derivation is the similar branch for 〈↓↑P 〉), or it becomes

Π{↓N, ↓M}
w

Π{↓(N −∧M), ↓N, ↓M}

idsn

Π∗
{
↓(N −∧M), 〈∆N 〉 ,∆N

}
↓sn

L Π∗{↓(N −∧M),∆N}


∆N∈∈N↓sn

R Π
{
↓(N −∧M), 〈↓N〉

} ...
splsn

Π
{
↓(N −∧M), 〈↓N, ↓M〉

}
cut

Π{↓(N −∧M)}

(where the omitted third premiss derivation is the similar branch for 〈↓M〉). Finally,

Λ{[A◦]}
◇

n
Rd Λ{◇A◦}

becomes
Λ{[↑P ]}


idsn

Λ
{
↑◇P,

[
〈∆P 〉 ,∆P

]}
|

sn
k Λ
{
↑◇P, 〈[∆P ]〉 , [∆P ]

}
↓sn

R Λ{↑◇P, [∆P ]}
↓sn

L Λ
{
↑◇P,

[
〈↑P 〉

]}


∆P∈∈P

|
sn
d Λ

{
↑◇P, 〈[↑P ]〉

}
cut

Λ{↑◇P}

The lemma then follows by replacing in the proof of P ◦ (or N◦) in nIK + ◻n
LX + ◇n

RX each
instance of a rule by the corresponding derivation in snIK +|sn

X + cut, which builds a proof
of ↑P (or ↑↓N resp.) in snIK +|sn

X + cut. ,

This chapter illustrated another usage of synthetic rules. Indeed, grouping inferences
together, folding proofs into synthetic forms, allowed for a simplified presentation of the
systems and lightened the study of their meta-theoretical properties. Although the cut-
elimination argument is quite similar in structure to the one presented in the previous chap-
ter, the synthetic reasoning provided an alternative proof of completeness of the focused
systems that is shorter, and most notably so, in the intuitionistic case. In particular, the
cut-elimination proof did not have to mention any logical connectives, and was instead able
to factorise all logical reasoning in terms of the matching. This also means that the match-
ing judgement can be modified at will without affecting the nature of the cut-elimination
argument, as long as it leaves the structure of nested sequents untouched. Provisionally,
this allows this proof to be extended modularly to other logics and other connectives.
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9

Conclusion

We have presented various contributions to the proof theory of classical and intuitionistic
modal logics. In this chapter, we sum up the content of each part of this thesis and uncover
some directions for future investigations.

In Part I, we established an inventory of various systems that have been proposed to
handle modal logics proof theoretically so far, whether in labelled or unlabelled formalisms.
It led to our joint work with Straßburger on nested sequents [87] and on indexed nested
sequents [88] for both classical and intuitionistic modal logics.

We observed that the distinction between labelled and unlabelled deduction is rather
superficial and even cosmetic. Indeed, labelling, bracketing, etc. are merely alternative
representations of the underlying structure that could even be made explicit graphically (as
in some tableau formalisms for instance). It is the case that some formalisms can be naturally
interpreted in the language of modal formulas, but it is not the choice of representation
that is the cause. A formula is, by definition, a tree, so if the underlying structure of the
lines of a proof system is restricted to a tree, it can be translated as a formula; if it is a
more generic graph in general it cannot.

Maybe a better distinction between the formalisms is their use of structural or propaga-
tion rules, rather than their labelled/unlabelled nature. In any case, we can say that it is
still crucial to study the different formalisms at hand as they give us different insights on
the proof shapes.

• We do not yet fully understand which modal logics can be given which types of proof
system. The ideal result would be in the form of a necessary and sufficient condition for
a modal logic to be a system with propagation/structural rules, similarly to Lellmann’s
one in the case of sequents and hypersequents with context-restriction [77, 76].
We would like to understand why the axiom d : ◻A ⊃◇A, which is not a path axiom,
stands as an exception by having a seemingly simple proof theory. On the other hand,
pseudo-transitive modal logics, obtained by extending K with axioms of the form
◇A ⊃ ◇nA which are also not path axioms, seem to be definitely beyond the scope
of propagation rules; having a terminating proof search procedure for them would be
very interesting since their decidability is an open problem.
Stewart and Stouppa [128] had conjectured that the frontier between modal axioms
that could and could not be given propagation rules was what they called 3/4 SL
axioms, namely the class of axioms of the form: ghij0 := ◇h◻ia⊃◻ja which is situated
in between SL paths axioms and general SL axioms. We did not confirm or reject this
conjecture, but it seems that we now might have the right tools to re-examine it.

• There are also possible directions to stretch further the limits of our current knowledge:
(i) study proof systems for modal logics that are not characterisable by first-order
frame properties, for example extensions of K with axiom ◻◇A ⊃ ◇◻A; (ii) study
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proof systems for non-normal modal logics, i.e. logics that do not assume the k-axiom,
as it is clear that all systems we presented are structurally forced to derive it (there is
some progress in this direction [51, 78, 103]); (iii) study proof systems for extensions
of constructive and intuitionistic modal logics with one-sided SL axioms, as we already
mentioned in Chapter 3, and investigate their relationships with intermediate logic.

• Two applications of cut-free sequent calculi that can be seen as complementary are in
the fields of justification logic and type theory. In justification logic, the goal is to give
an explicit provability interpretation to a modal formula ◻A as there exists a proof of
A. With Kuznets and Straßburger, we worked on an extension of justification logic to
the constructive setting [72] in order to give a justification logic equivalent to the ◇
modality as well. For this first step we only considered the case of constructive modal
logic CK as it can easily be given a sequent calculus, but we would like to extend our
results to IK, perhaps by using a nested sequent system instead.
On the other hand, we have said that modal type theories usually also restrict their
expressivity to the CK fragment. It would be interesting to expand their reach to IK
too, by proposing a term language for nested sequents; to this end there is work in
progress by Chaudhuri, based on the natural deduction system in [53].
However, both these topics underline an important question: does ◇ make any sense
at all in such applications of intuitionistic modal logic? There might be a fundamental
reason why justification logic and type theory have a weak treatment of ◇ or do not
consider it at all, namely ◻ as a negative connective is more well-suited for constructive
theories.

In Part II, we started by presenting the concepts of focused and synthetic proofs,
which have been influential in many respects in proof theory, from the initial concrete
application to proof search and logic programming, to the more structural issues of proof
representation. With Miller and Volpe we are investigating the various techniques in the
proof-theory literature to transform axiomatic theories to inference rules in the sequent
calculus. We are seeking to gain a uniform understanding of what seems quite different
techniques as simply different ways to build synthetic macro rules from micro focused rules.
This has practical applications as a continuation of Miller’s ProofCert project which aims
at designing a universal format to describe the operational semantics of any piece of s proof
built in any proof formalism.

We presented in Chapter 5 the first results of this investigation, namely a study of
the rules from labelled sequent systems for modal logics extended with geometric frame
properties, which was conducted by Miller and Volpe [96] in the classical setting and that
we extended to the intuitionistic setting in this thesis. In this case, we indeed have shown
that each rule can be expressed as a bipole, i.e. a pair of a positive and a negative synthetic
rules, in LKF or in LJF respectively, under an appropriate translation of formulas.

Once labelled sequent calculi are embeddable in the basic focused systems, we suggested
using this embedding as a ‘plug-in’ to encode further systems. In Chapter 6, we presented
a framework that extends LKF with labels in order to be suitable for modal logics. We
illustrated how it can emulate unlabelled systems for modal logics with the example of
certain sequent calculi.

One could object that, since any of the systems we described could provisionally be
emulated by a labelled framework, we have a contradiction with our previous point that
there is a lot of value in the variety of proof systems for modal logics. We would like to
anticipate this criticism and answer it by hijacking a quote of Dana Scott [123]: « There is
no weight to the claim that the original system must therefore be replaced by the new one.
What is essential is to single out important concepts and to investigate their properties.»

• We presented technical details for the first steps of this line of work, namely for the
labelled sequent systems, but we expect that all similar methods to build inference

106



rules from axiomatic theories can be seen as synthetic rules in a focused system, as for
example the ones for sequents and hypersequents in [30, 33], for display calculi in [32]
and for systems of rules in [103]. Studying this last example, in particular, could
give an alternative view on the relationship between hypersequents and the restriction
called two-level system of rules in [31].

• One direction we have already started to investigate is the emulation of other unlabelled
proof systems in our framework LMF∗. For nested sequents, it seems quite simple: it is
necessary to have a set of labels present, but it needs to be restricted to a tree-structure
at all times (which is possible following [61]). Hypersequents, in contrast, are a sort
of hybrid between ordinary sequents and nested sequents, and less straightforward to
encode. One key-point is that the formula interpretation of a hypersequent is not
uniformly given over the different logics, contrary to nested sequents.

• Another route that needs to be explored is, of course, the emulation of intuitionistic
systems in an intuitionistic version of the framework. However, as the labelled sequent
system labIK implements extensions of IK while ordinary sequent systems implement
extensions of CK, it will probably be much more difficult to find the right framework
design in the intuitionistic case.

In Part III, we presented our joint work with Chaudhuri and Straßburger on focused
and synthetic nested sequent systems for both classical [22] and intuitionistic [23] modal
logics. It highlights another use of the synthetic formulation of rules; it allows us to give
an elegant presentation of the nested sequent systems and to simplify the proofs of their
meta-theoretical properties, namely the admissibility of the cut-rule and the completeness
of focusing.

• A first extension of this work would be to define focused and synthetic variants of
the propagation rules for path axioms discussed in Section 2.5. It would probably not
address the quest of Goré et al [60] for an efficient proof search strategy in this system as
termination would remain an issue, but it would still uncover some interesting features
of this system. In general, expanding this work towards other proof formalisms would
be worth considering; for labelled sequent calculi it seems straightforward, but for
hypersequents it would be more involved for similar reasons as evoked above.

• Another extension would be relaxing the restriction that there can be at most one focus
in a fnK proof, which would take us from ordinary focusing to multi-focusing. Certain
well chosen multi-focusing systems can yield syntactically canonical representatives
of equivalence classes of sequent proofs [24, 21]. To our knowledge, there are only a
few results in the field of canonical proofs for modal logics, e.g. in the form of proof-
nets [119], so this constitutes an exciting fresh research program.

• In this thesis, we crucially interpret ◇ as positive and ◻ as negative, which differs from
the polarities that would be assigned to these connectives if they were interpreted in
terms of ? and !, respectively, from linear logic [109]. With Chaudhuri and Straßburger,
we wondered to which extent this choice was canonical and if this difference came from
the fact that we were considering nested sequents instead of sequents. So we tried to
transform the focused proof system for classical modal logic defined in Chapter 7 into
a proof system for linear logic with a positive ? and a negative !.
We found a counter-example that nullified this program, which makes us believe now
that, at least from a polarisation point of view, exponentials do not behave like modali-
ties. The problem actually does not seem to come from the depth of the nested sequent
formalism, but from the interaction between the exponentials and the multiplicative
connectives of linear logic. We would be interested in understanding more precisely
which forces are at play, and if the polarities of the exponentials can be twisted if we
consider other fragments of linear logic for example.
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To conclude, we would say that exploring the applications of the focusing tool-kit to
the proof theory of modal logics gave us, in general, a better understanding of the internal
machinery of the variety of proof systems that existed in the literature and of the mecha-
nisms at hand when considering their different properties. This thesis has been a study of
modal proofs, but moreover we have conducted this study under some of the most recent
developments in structural proof theory; as such, this work could be a useful template for
other logics and other proof systems in the future.
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Titre : Voir la théorie de la démonstration de la logique modale à travers un télescope focalisé
Mots clefs : théorie de la démonstration, focalisation, logique modale
Résumé : Dans cette thèse, nous utilisons de deux
manières le concept de règles d’inférence synthétiques
pouvant être obtenues à partir d’un système de preuve
focalisé; d’un côté du “télescope”, la focalisation nous
permet d’analyser les mécanismes internes des règles
d’inférence; de l’autre côté, elle nous permet de nous
intéresser à leur comportement plus global.
Dans la première partie, nous passons en revue les sys-
tèmes de preuves existants pour la logique modale en
nous concentrant autour du calcul des séquents et ses
extensions. Nous mettons en valeur les problématiques
qui animent le domaine de la théorie de la démonstra-
tion de la logique modale, notamment en déconstruisant
la distinction usuelle entre systèmes étiquetés et non-
étiquetés. Nous présentons ces questions et concepts en
parallèle dans les chapitres 2 et 3 pour la logique modale
classique et intuitionniste respectivement. Nous détail-
lons en particulier le calcul des séquents emboîtés indexés
de Fitting pour lequel nous avons démontré un nouveau
résultat de complétude via élimination des coupures.
La deuxième partie rappelle d’abord les notions de fo-
calisation et de règles d’inférence synthétiques dans le

chapitre 4, puis présente deux contributions dans les
chapitres 5 et 6. Premièrement, nous démontrons com-
ment émuler le calcul étiqueté pour la logique modale
intuitionniste de Simpson à l’aide du calcul focalisé pour
la logique du premier ordre de Liang et Miller, étendant
ainsi les travaux de Miller et Volpe au cas intuitionniste.
Deuxièmement, nous proposons un encodage similaire
mais pour le calcul des séquents ordinaire (non-étiqueté)
à l’aide d’une structure intermédiaire basée sur une ver-
sion focalisée du calcul des séquents étiquetés de Negri.
La troisième partie rapporte deux autres de nos con-
tributions: les preuves de complétude de deux calculs
de séquents emboîtés pour la logique modale (classique
et intuitionniste), d’abord une version focalisée dans le
chapitre 7, puis un système basé uniquement sur des
règles d’inférence synthétiques dans le chapitre 8. Ces
règles ne retiennent que les transitions principales du
raisonnement et rendent invisibles la plupart des règles
du calcul focalisé, ce qui rend la présentation du système
claire et élégante et simplifie grandement les preuves
d’élimination des coupures et de complétude.

Title : Modal proof theory through a focused telescope
Keywords : proof theory, focusing, modal logic
Abstract : In this thesis, we use in two ways the concept
of synthetic inference rules that can be obtained from a
focused proof system; from one side of the “telescope”,
focusing allows us to analyse the internal machinery of
inference rules; on the other side, it allows us to consider
more global behaviours.
In the first part, we review existing proof systems for
modal logic, concentrating our efforts around the se-
quent calculus and its extensions. We underline the is-
sues that drive the modal proof theory community, such
as the usual distinction between labelled and unlabelled
systems that we aim at deconstructing. We present these
questions and concepts in parallel for classical and in-
tuitionistic modal logic in chapter 2 and 3 respectively.
We in particular go through Fitting’s indexed nested se-
quents, for which we demonstrated a new completeness
result via cut-elimination.
The second part recalls first the notion of focusing and of
synthetic inference rules in chapter 4, then presents two

of our contributions in chapter 5 and 6. Firstly, we show
how to emulate Simpson’s labelled sequent calculus for
intuitionistic modal logic with Liang and Miller’s focused
sequent calculus for first-order logic, therefore extend-
ing the result of Miller and Volpe. Secondly, we propose
a similar encoding though for ordinary (unlabelled) se-
quent calculus via an intermediate focused framework
based on Negri’s labelled sequent calculus.
The third part reports on two other contributions,
namely the completeness proofs of two nested sequent
calculi for both classical and intuitionistic modal logic,
first a focused version in chapter 7, and then a system
merely based on synthetic inference rules in chapter 8.
These rules only retain the transitions between big steps
of reasoning forgetting most of the focused rules, which
renders the system presentation clear and elegant while
also simplifying the cut-elimination and completeness
proofs.
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