Résumé

Dans cette thèse, nous observons les preuves en logique modale à travers un "télescope" focalisé. Plus précisément, nous utilisons le concept de règles d'inférence synthétiques obtenues à partir d'un système de preuve focalisé de deux manières; d'un côté du "télescope", la focalisation nous permet d'analyser les mécanismes internes des règles d'inférence; de l'autre côté, elle nous permet de nous en abstraire et de nous intéresser à un comportement plus global. Cette thèse s'inscrit donc dans la récente ligne de travaux qui valorisent le concept de focalisation, non plus seulement comme un outil améliorant l'efficacité de la recherche de preuves, mais comme une véritable notion de théorie de la preuve permettant de définir des systèmes déductifs et de démontrer leurs propriétés méta-théoriques de manière élégante. Elle est organisée en trois parties, précédées d'un chapitre d'introduction.

Dans la première partie, nous passons en revue les systèmes de preuves existants pour la logique modale en nous concentrant autour du calcul des séquents et ses extensions. Nous mettons en valeur les problématiques qui animent le domaine de la théorie de la démonstration de la logique modale, notamment en déconstruisant la distinction usuelle entre systèmes étiquetés et non-étiquetés. Nous présentons ces questions et concepts en parallèle dans les chapitres 2 et 3 pour la logique modale classique et intuitionniste, respectivement. Nous détaillons en particulier les calculs des séquents emboîtés et des séquents emboîtés indexés; pour ce dernier nous démontrons un nouveau résultat de complétude via élimination des coupures.

La deuxième partie introduit d'abord la notion de focalisation et de règles d'inférence synthétiques dans le chapitre 4, puis présente deux contributions dans les chapitres 5 et 6. Premièrement, nous démontrons comment émuler le calcul étiqueté pour la logique modale intuitioniste de Simpson à l'aide du calcul focalisé pour la logique du premier ordre de Liang et Miller, étendant ainsi les travaux de Miller et Volpe au cas intuitioniste. Chaque règle d'inférence du calcul étiqueté est simulé par un bipôle (enchainement d'une règle synthétique positive puis négative) en logique du premier ordre, et réciproquement, tout bipôle d'une dérivation de la traduction en language du premier ordre d'une formule modale correspond à une unique règle d'inférence du calcul étiqueté. Comme dans le cas classique, cette correspondence peut également être étendue aux logiques modales définie par des axiomes géométriques. Deuxièmement, nous proposons un encodage similaire mais pour le calcul des séquents ordinaire (non-étiqueté) à l'aide d'une structure intermédiaire basée sur une version focalisée du calcul des séquents étiquetés.

La troisième partie peut être résumée également à deux contributions, les preuves de complétude de deux calculs de séquents emboîtés pour la logique modale, à la fois classique et intuitionniste. Nous définissons d'abord une version focalisée du calcul des séquents emboîtés, puis un système basé uniquement sur des règles d'inférence synthétiques; celles-ci ne retiennent que les transitions entre étapes positives et négatives en rendant invisibles la plupart des règles du calcul focalisé. Cela offre une présentation du système claire et élégante et simplifie grandement les preuves d'élimination des coupures et de complétude. i

Table of Contents

Résumé i

Table of Contents iii

List of Figures v

Introduction

When one looks through a telescope from one side, one can see remote objects bigger and analyse them; but when one looks through the other side of the lens, the closer objects will suddenly look distant. In this work, it is the proof theory of modal logic that we want to observe through a focused telescope. Because proof theory for modal logic has proven quite tricky throughout the second half of the 20th century, and even though we might say that it is well handled practically now, it is still a wonderful playground for new proof-theoretical ideas. So let us first introduce these concepts: (i) proof theory; (ii) modal logic; (iii) focusing; and (iv) our telescope.

Proof theory

Mathematics is made of theorems and their proofs. Sometimes a theorem may have several proofs and we want to understand what is different and what is common in them, and maybe how to transform one into the other in some way. Proofs of different theorems may also share common patterns, for example induction or reduction to the absurd, and we want to understand in which contexts those particular forms of reasoning apply and how. However, in order to communicate proofs, mathematicians usually use natural language written in plain text (with some symbols). So the urge to answer these questions calls for the formalisation of proofs (yes, every single word of them) in a purely mathematical language, and for a whole discipline to study their properties: proof theory. Frege pioneered this discipline suggesting that proofs be considered themselves as objects of mathematical study in 1879 in his Begriffschrift [START_REF] Frege | Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens[END_REF]. Hilbert followed Frege's ideas and proposed the definition of a deductive system to formalise reasoning [START_REF] Hilbert | The foundations of mathematics[END_REF].

Proof theory is now established as one of the four pillars of mathematical logic alongside model theory, set theory, and recursion theory. In designing various formalisms to view proofs as formal mathematical objects, we may understand their properties via formal mathematical methods. One direct application would be to develop computer programs that can prove theorems automatically (or almost), or check mathematical proofs (automatic theorem proving/checking). Another application could be to extract from a proof an algorithm; for example if the theorem states the existence of an object, this object could also be effectively constructed; or to extract from failed proof-search a counter-example to that invalid theorem (proof mining). Some more abstract consequences are that we can try to understand which axioms are required to prove which theorems (reverse mathematics), as well as compare different proof methods and in particular the sizes of the proofs they output (proof complexity).

Looking back to our first sentence, perhaps a better picture for anyone who has done a little bit of mathematics would be: Mathematics is made of lots of lemmas, a few theorems and their proofs. Indeed, the way it goes is that mathematicians rarely prove a theorem from scratch, they build up its proof by proving intermediate statements that are called 1 lemmas. In a deductive system à la Hilbert and Frege, such a reasoning step would be the main inference rule combining axioms. That is, to prove a theorem T , it is possible to use a given lemma L if one can prove L on the one hand and if one can infer T from L on the other hand. This step of reasoning, which is of course not restricted to mathematics but widespread in daily reasoning too, is called Modus Ponens. Obviously, the hard part is usually to find the appropriate lemma L to use amongst the infinity of mathematical statements.

Actually, a lot of the beauty of mathematics resides in lemmas, as they can appeal to some very clever tricks such as using some topology to solve a numerical equation or appealing to complex numbers to integrate a real function. However, for the applications we mentioned, shifting to a different theory or a different language than that of the theorem one is trying to prove can be a nightmare, and we often prefer a proof without lemmas, even if it is likely to be much less clever and cluttered with a lot of repetitions. (Though not all mathematical proofs can be made lemma-free.)

A lemma-free proof is usually said to be analytic. The designation comes from Bolzano, who published in 1817 a second proof of his intermediate value theorem that he calls a Purely analytic proof of the theorem that between any two values which give results of opposite sign, there lies at least one real root of the equation [START_REF] Bolzano | Purely analytic proof of the theorem that between any two values which give results of opposite sign, there lies at least one real root of the equation[END_REF]. His first proof of the intermediate value theorem was indeed using geometrical intuitions of lines crossing each other at a given point. The second proof, however, was completely free of geometrical or algebraic methods, but used only concepts from analysis (which is why he called it analytic) and therefore stayed fully in the language and in the theory of the theorem itself.

The term was then later reused by Gentzen who, in his Untersuchungen in 1934 [START_REF] Gentzen | Untersuchungen über das logische Schließen[END_REF][START_REF] Gentzen | Untersuchungen über das logische Schließen[END_REF], introduced fundamental proof-theoretic methods to prove results in mathematical logic. In particular, he developed the sequent calculus, an alternative representation of proofs promoting inference rules over axioms. The Hauptsatz then states that any proof in the purely logical sequent calculus can be transformed into an analytic normal form. From this follows the subformula property, that every formula appearing in the premiss(es) of an inference rule is a subformula of its conclusion, which ensures that a proof is internal to the language of what it proves. To prove the Hauptsatz one needs to show that a rule called the cut, reformulating Modus Ponens in the sequent calculus, is redundant in the system by an inductive elimination procedure transforming a given proof into another one with cuts of smaller induction measure.

Another crucial contribution of Gentzen's work was the parallel treatment of classical and intuitionistic logics. Intuitionistic logic was conceived (starting in 1907 with Brouwer [START_REF] Egbertus | Intuitionism and formalism[END_REF]) as a formalisation of constructive reasoning, rejecting in particular the principle of Excluded Middle, that a statement has to be either true or false. In classical logic, this principle is accepted, while in intuitionistic logic, on the contrary, there might be an uncertainty whether a proposition holds or not. Gentzen observed that, in the sequent calculus, classical and intuitionistic reasoning could be formally dissociated, as the intuitionistic calculus can be obtained as a simple syntactical restriction of the classical one. If one considers a sequent as a list of formulas that are annotated as either input or output, i.e. hypothesis or conclusion, then a classical sequent can have zero to many outputs, while an intuitionistic sequent must have exactly one output, and hence the inference rules of the system must preserve the uniqueness of the output formula. This trick actually has widespread applications in the constructive foundations of mathematics as well as in computer science. For instance, the connection between proofs in intuitionistic logic and computational behaviours stimulated the development of type theories for programming languages [START_REF] Howard | The formulae-as-types notion of construction[END_REF].

Finally, one goal of structural proof theory is to extend Gentzen's results to other mathematical theories, usually given in terms of axioms which, if added as such to the sequent calculus, break the cut-elimination proof [START_REF] Girard | Proof theory and logical complexity[END_REF]. It is usually a tedious task for proof theorists to find a cut-free deductive system in a sequent(-like) calculus corresponding to a given axiomatisation. The best solution would be to automate this process, and to find general criteria for determining when a set of axioms can be transformed into an equivalent set of inference rules such that cut-elimination is preserved. This has been achieved for instance for geometric theories in classical first-order logic [START_REF] Negri | Structural proof theory[END_REF] and for some algebraic theories in sub-structural and intermediate logics [START_REF] Ciabattoni | From axioms to analytic rules in nonclassical logics[END_REF]. In the next section we consider more specifically these questions of extending sequent systems in the context of modal logics.

Modal logic and its proof theory

The study of modal logic, going back to Aristotle, comes from the desire to analyse certain philosophical arguments, and thus qualify finely the truth of a proposition: for example a proposition may be false now but true later, or on the contrary true and necessarily so, and so on. What is now called modal logic describes the behaviour of the abstract modalities ◻ and , but covers a wide range of 'real' modalities in linguistic expressions: time, necessity, possibility, obligation, knowledge, belief... The most well-studied modal logics are based on classical reasoning (which is why we will call them classical modal logics, and not following the convention of [START_REF] Chellas | Modal logic: an introduction[END_REF]). The interest in intuitionistic versions of modal logics has come much later and from two different sources: on the one hand, logicians had a theoretical interest in obtaining intuitionistically relevant versions of modal logics, and on the other hand, certain applications in computer science naturally gave rise to some modal logics with a constructive flavour. For example, as we have said that intuitionistic logic allows us to capture some aspects of computation via type theories, the idea to add modal operators on top of type theories to capture further aspects of computation seems quite natural [START_REF] Moggi | Notions of computation and monads[END_REF][START_REF] Pfenning | On a modal lambda calculus for S4[END_REF][START_REF] Bierman | Intuitionistic necessity revisited[END_REF]. As we shall see, the purely logical and the type-theoretical approaches do not give rise to the same logics.

Classical, as well as intuitionistic, modal logics used to be studied as systems of axioms that describe the conditions regulating each modal operator depending on the context of application. Structural proof theory on the other hand was considered a difficult topic for modal logics, as ordinary sequents did not provide a satisfactory answer, that is, a way to systematically build analytic proof systems translating modal axioms into inference rules. Proof systems based on Gentzen's (ordinary) sequents that exist for specific modal logics cannot be easily extended to encompass more axioms. On the other hand, some combinations of axioms have so far escaped all efforts towards a corresponding sequent system at all. In general, each proposal was built independently and in an ad hoc fashion. One reason to explain this phenomenon is that there was no uniform semantical framework to guide the authors attempting these constructions.

Finally in the 1960s, a semantics was given by Kripke [START_REF] Kripke | A completeness theorem in modal logic[END_REF] (among others) in terms of relational structures for a large subset of the classical modal logics previously studied, now called the normal modal logics. It allows one to see modal logic as a language for graphs, which also uncovered new applications to describe phenomena in computer science, as graphs are very common structures to model concepts in the domain.

The consequence of this new perspective in terms of proof theory was the possibility to build semantic tableaux proof procedures for a wide range of modal logics. The formalism of tableaux was the most studied for proofs in modal logics, and probably still is the most developed and used (see [START_REF] Schmidt | Aiml tools[END_REF] for a variety of tools, most of which use tableaux). However, whereas tableaux are arguably well-suited for automated deduction and decision procedures, that is, to find proofs, sequent-like systems are usually more appropriate when trying to distinguish proof shapes and to study proof transformations, in particular cut-elimination.

In the last two decades, some extensions of ordinary sequents were successfully proposed to handle modalities. Two approaches are commonly distinguished: systems that incorporate explicitly relational semantics in the formalism itself, called labelled deductive systems (e.g. semantic tableaux [START_REF] Fitting | Proof Methods for Modal and Intuitionistic Logics[END_REF] and labelled sequents [START_REF] Negri | Proof analysis in modal logics[END_REF]), and systems that use syntactical devices to recover the modal language that we will regroup under the counter-relief term unlabelled deductive systems (e.g. display calculi [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF], hypersequents [START_REF] Arnon Avron | The method of hypersequents in the proof theory of propositional nonclassical logics[END_REF], nested sequents [START_REF] Brünnler | Deep sequent systems for modal logic[END_REF]).

So proof theorists interested in modal logic now have a wide range of different proof formalisms to choose from, each of them presenting its own features and drawbacks. Several results concerning correspondences and connections between the different formalisms are also known [START_REF] Fitting | Prefixed tableaus and nested sequents[END_REF][START_REF] Goré | Labelled tree sequents, tree hypersequents and nested (deep) sequents[END_REF][START_REF] Lellmann | Linear nested sequents, 2-sequents and hypersequents[END_REF]. In the most general way, we would like to understand which modal logics can be given a proof system in which formalism (and if not, why). The different formalisms that exist for studying the proof theory of modal logic should not be seen as a doxa; they rather bring different angles, and complementary tools in order to explore the subject. The work of this thesis is an illustration of the variety of points of view since it uses labelled as well as unlabelled systems to analyse modal proofs. In the next section, we introduce the main tools we will use to organise proofs in these systems.

Focusing and synthetic rules

One major application of proof systems is proof search: given a mathematical statement, can we construct a proof of it from a set of other statements, which are accepted as valid hypotheses, in order to consider it a valid theorem? One way proof search can be conducted in a sequent calculus is backward proof search. The idea is to consider all the inference rules that could be applied in order to obtain the desired conclusion, collect all the premisses that would be obtained from applying these rules, and recursively apply this process to these premisses until either we have reached one of our valid hypotheses or no more rules can be applied.

The search of a proof is necessarily a non-deterministic process as it typically requires some choices to be made in a certain order to terminate. That is, even when starting from a valid conclusion, not every possible succession of backward inference steps will lead to a correct proof and sometimes a deadlock may be reached which forces the search to backtrack. However, one can make a simple observation: not every step in the proof search procedure does introduce non-determinism. For some inference rules, called invertible, each of the premisses can actually be deduced from the conclusion, so for a valid conclusion, these rules cannot bring the proof search to a deadlock. Other rules, however, require some choice or some interaction with different elements in the sequent, so if we make the wrong choice or we are not in the appropriate context, we might not be able to find the correct proof and thus need to backtrack to that critical step.

Focusing is a general technique that was designed to improve proof search by reducing the number of non-deterministic choices [START_REF] Miller | Uniform proofs as a foundation for logic programming[END_REF][START_REF] Andreoli | Logic programming with focusing proofs in linear logic[END_REF], and indeed it led to concrete optimisations of standard proof search procedures [START_REF] Chaudhuri | A logical characterization of forward and backward chaining in the inverse method[END_REF][START_REF] Mclaughlin | Imogen: Focusing the polarized focused inverse method for intuitionistic propositional logic[END_REF]. The essential idea of focusing is to identify and merge the non-deterministic choices in a proof: the normal form of a focused proof is given by an alternation of inversion phases, where invertible rules are applied (bottom-up) eagerly, and focus phases, where applications of the other rules are confined and controlled. It is a rather strict way to build a proof, but it remains complete, which means that every provable statement actually has a focused proof.

The first proof one could think of for such completeness result would be by permutations of rules, that is, one would need to show that invertible rules can be permuted down and the other rules can be regrouped as needed in a focus phase. This is a quite long and tedious proof [START_REF] Andreoli | Logic programming with focusing proofs in linear logic[END_REF]. Another one is by defining a subsystem of the original system, following the invertibility discipline of connectives, that is constrained in a way that it can only produce focused proofs; and then prove that this forms a complete subset of all the proofs, i.e. that this subsystem is equivalent to the original one. One proof of the equivalence pioneered by Laurent [START_REF] Laurent | A proof of the focalization property in linear logic[END_REF] goes in two steps: first the simulation of all the rules from the original system by the rules in the new "focused" subsystem, and then, as this simulation makes intensive use of the cut rule, show that this rule is admissible in the focused system, namely that eliminating the cut rule from a focused proof still preserves the alternation of inversion and focusing phases. So in the general case, the focused subsystem is provably complete. In some particular cases, the subsystem is even canonical; which means that it produces a unique representative element of each family of proofs that are equivalent up to permutations, in the same way as proof nets or expansion trees can do it for respectively MALL or classical first-order logic [START_REF] Chaudhuri | Canonical sequent proofs via multi-focusing[END_REF][START_REF] Chaudhuri | A multi-focused proof system isomorphic to expansion proofs[END_REF].

The theory of focusing was originally developed for the sequent calculus for linear logic, but it has since been extended to a variety of logics [START_REF] Liang | Focusing and polarization in linear, intuitionistic,and classical logics[END_REF][START_REF] Reed | Focus-preserving embeddings of substructural logics in intuitionistic logic[END_REF] and proof systems [START_REF] Chaudhuri | The focused calculus of structures[END_REF][START_REF] Brock | Focused natural deduction[END_REF]. This generality suggests that the ability to transform a proof system into a focused form is a good indication of its syntactic quality, in a similar manner to how cut-admissibility shows that a proof system is syntactically well-designed. So focusing is not only an efficient proof search strategy, it has also strong representational benefits. In particular, it gives us a systematic notion of grouping together inference rules into meaningful entities: we can just ignore the internal structure of the phases and the details of the focused logical rules and only remember the sequents at a transition between two phases to see each phase as one rigid synthetic rule [START_REF] Zeilberger | Focusing and higher-order abstract syntax[END_REF][START_REF] Chaudhuri | Canonical sequent proofs via multi-focusing[END_REF].

We want to illustrate in this thesis two properties of such synthetic rules, in the context of modal logic. On the one hand, a focused proof system can be used to provide adequate encodings of other non-focused systems. We show in particular how to use focusing mechanisms to build a general framework emulating existing systems for modal logics. The adequacy of the emulation amounts to the fact that each inference step in the unfocused system corresponds to a specific chain of synthetic rules. On the other hand, designing a proof system using synthetic rules provides a simplification of both the proof system and its associated meta-theory. In particular, the proof of completeness of focusing becomes more manageable in a synthetic formulation. Such a simplification has been observed for ordinary intuitionistic logic by Zeilberger [START_REF] Zeilberger | Focusing and higher-order abstract syntax[END_REF] but when we add more features to a logic (and in our case modalities), the effect of this simplification becomes more noticeable.

The use of a focused telescope

In this thesis, we are going to look at modal proofs through a focused 'telescope'. More precisely, the way we use the concept of synthetic rules obtained in a focused system is twofold; from one side of the telescope, we see details of the internal mechanisms of inference rules; from the other side, we abstract from them and observe more global behaviour.

Unfolding: analysing the machinery behind a proof system

Considerable progress has been made in extending Gentzen's purely logical results to more expressive mathematical theories, as already mentioned [START_REF] Negri | Contraction-free sequent calculi for geometric theories with an application to Barr's theorem[END_REF][START_REF] Dyckhoff | Proof analysis in intermediate logics[END_REF][START_REF] Ciabattoni | From axioms to analytic rules in nonclassical logics[END_REF][START_REF] Ciabattoni | Expanding the realm of systematic proof theory[END_REF][START_REF] Lellmann | Constructing cut free sequent systems with context restrictions based on classical or intuitionistic logic[END_REF][START_REF] Lellmann | Hypersequent rules with restricted contexts for propositional modal logics[END_REF]. We now need to look back and see if we can understand why the proposed systems work and how the different methods used to obtain them relate to each other.

Through focusing, we dissect the operational semantics of the inference rules that are induced by these methods, i.e. the way they operate on some sequents to produce new ones. This gives us a better understanding of why they work, how they can be extended, and as a by-product how to verify proofs they form through a universal proof checker. With Miller and Volpe, following their first successful attempt in [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF], we wanted to understand this line of work in a uniform and systematic manner from the point of view of focusing. This is an ongoing effort and in this thesis we present some of our first results. Their interest lies in understanding the machinery behind the general construction of inference rules for axiomatic theories in a structured way.

This research line is part of the ERC project ProofCert [START_REF] Miller | Proofcert: Broad spectrum proof certificates[END_REF] led by Miller, which is concerned with providing a uniform format for proofs across many types of proof systems. The end goal would be that theorem provers come equipped with the semantics of the kind of proofs they issue, and then a universal proof checker could take as input not only the proof to be checked, but a proof certificate containing such semantical information alongside. The basis chosen for this checker is a focused sequent system for classical or intuitionistic logic which can be augmented with suitable proof certificatesand some devices able to extract and organise the information it contains [START_REF] Chihani | Foundational proof certificates in first-order logic[END_REF].

We were interested in how to use these mechanisms to emulate proof systems for modal logics. We present first an encoding of unfocused labelled sequent calculi for modal logics into the focused sequent calculus for first-order logic, and then an encoding of unfocused sequent calculus for modal logic into focused labelled sequent calculus for modal logic. This second encoding is an illustrative example of a more general framework [START_REF] Marin | A focused framework for emulating modal proof systems[END_REF] that acts as an interface between any modal system and focused first-order logic.

By analysing the case of ordinary sequents, we observed that a modal rule usually corresponds to the application of a distinctive chain of synthetic rules in our focused framework and vice versa. The (focused labelled) framework, when properly instantiated, can emulate modal proof systems with good precision. Thus, implementations of that framework can be used to provide a proof checker for the emulated proof systems [START_REF] Libal | Certification of prefixed tableau proofs for modal logic[END_REF], contributing to the mechanisation of proof checking.

Folding: simplifying a proof system and its meta-theory

When one adds features to a proof system, one generally expects that the meta-theory will become more complicated. Indeed, at the start, a sequent calculus for classical propositional logic can have just as many logical rules as connectives and two additional structural rules of identity and cut (not exactly Gentzen's original system, but the one refined successively by Ketonen and Kleene does). Eliminating cuts from this system is relatively straightforward: there is a single cut-rule and a simple lexicographic induction. Extending the system with the modal operators ◻ and and modal axioms adds new forms of cuts and further complications to the measure, or even requires us to generalise the very notion of a sequent, as already mentioned, and so the entire cut-elimination procedure needs to be re-examined. Finally, moving to a two-sided sequent calculus, which is essential for intuitionistic versions of these calculi, doubles the number of inference rules, and hence doubles the number of cases to address in the cut-elimination argument.

However, it appears that re-designing a proof system to enforce focused normal forms can reduce its syntactic and meta-theoretic complexity. This is what we observed in the case study of focused and synthetic proof systems for modal logics based on nested sequents in a joint work with Chaudhuri and Straßburger [START_REF] Chaudhuri | Focused and synthetic nested sequents[END_REF][START_REF] Chaudhuri | Modular Focused Proof Systems for Intuitionistic Modal Logics[END_REF]. We started by studying a standard family of classical modal logics between the basic logic K and the well-known S5; we could already observe the effects of the simplification both on the system design and on the metatheoretical proofs. Then we applied the method to intuitionistic modal logics, as it contains all the complications mentioned above, and the simplification is even more striking. We were surprised to discover that: (i) the input/output annotations of intuitionistic sequents turn out to be redundant, as they can always be uniquely inferred in the focused system; and (ii) the synthetic version of the intuitionistic system has fewer rules than the non-focused version, and the same number of structural rules as the classical system, which we did not expect would be the case.

The soundness of focused and synthetic systems is usually straightforward. Our contribution is a proof of completeness of the focused systems with respect to the non-focused systems by showing that the rules of the non-focused systems can be simulated by derivations in the focused systems using cuts, and then proving a cut-elimination result internal to the focused nested calculus, and similarly for the completeness of the synthetic systems.

Outline

This thesis is structured as follows:

Chapter 2 introduces classical modal logic, its syntax, its relational semantics, and different proof formalisms, separated into labelled systems and unlabelled systems. We mention many different forms that both classes can take, but we concentrate our attention on variations of the sequent framework, from ordinary sequents to labelled sequents, via hypersequents, nested sequents, and indexed nested sequents.

Chapter 3 parallels the structure of Chapter 2 to introduce intuitionistic modal logic, its syntax, its bi-relational semantics, and its proof theory, whether labelled or unlabelled. We highlight the particular challenges that the addition of the intuitionistic dimension to modal logic has brought, compared to the classical case.

Chapter 4 reviews formally the focused proof systems for classical and intuitionistic first-order logic [START_REF] Liang | Focusing and polarization in linear, intuitionistic,and classical logics[END_REF] and how to build synthetic rules from them.

Chapter 5 presents the encoding of the labelled sequent system for intuitionistic modal logic into focused first-order intuitionistic logic. This is an adaptation of the work of [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF], which only considered classical modal logic, to the intuitionistic case.

Chapter 6 presents the encoding of ordinary sequent systems for classical modal logic into a focused labelled framework for classical modal logic [START_REF] Marin | A focused framework for emulating modal proof systems[END_REF].

Chapter 7 presents focused nested sequent systems for classical and intuitionistic modal logics, the main results being their completeness, obtained via a cut-elimination argument.

Chapter 8 presents synthetic nested sequent systems for classical and intuitionistic modal logics, which allows us to give an alternative and simpler proof of completeness for the focused systems. These two chapters are based on [START_REF] Chaudhuri | Focused and synthetic nested sequents[END_REF] for the classical systems and on [START_REF] Chaudhuri | Modular Focused Proof Systems for Intuitionistic Modal Logics[END_REF] for the intuitionistic systems.

Chapter 9 concludes this thesis with some perspectives and ideas for future work. We present the Milky Way of proof systems for modal logics. In Chapter 1, we set foot on the questions and the methods we will explore. In Chapter 2 and 3, we introduce in parallel the universes of classical and intuitionistic modal proof theory respectively. It is possible not to be a metaphysicist to understand the many approaches that have been developed in order to capture modal logics through proof theoretic methods. However, we will see that it is certainly necessary to be a dancer to cross the bridges between the labelled and unlabelled hemispheres.

Il

Classical modal logic

In this chapter we introduce the concepts and notations that will be used in this thesis for classical modal logic, the modal extension of classical propositional logic. (Note, however, that the term classical modal logic is sometimes used by other authors, following ??, to denote a weaker modal logic that does not satisfy necessitation and distributivity.) For a more detailed presentation we refer to the surveys by Fitting [START_REF] Fitting | Modal proof theory[END_REF], Negri [START_REF] Negri | Proof theory for modal logic[END_REF], and Wansing [START_REF] Wansing | Sequent systems for modal logics[END_REF], on which this chapter is partly based. We start by introducing Hilbert-style axiomatisations in Section 2.1 and Gentzen-style sequent systems in Section 2.2 for standard modal logics, and then by giving their relational semantics in Section 2.3. Building on the semantic interpretation of the logics, we can introduce the labelled approach to the proof theory of classical modal logic in Section 2.4 and by contrast the unlabelled approach in Section 2.5. Finally in Section 2.6, we describe some ways to build bridges between the two approaches, and in particular the formalism of indexed nested sequents that we studied in [START_REF] Marin | Proof theory for indexed nested sequents[END_REF].

Hilbert axiomatisations

Modal logicians were at first interested in producing specialised axiomatic systems to describe intuitively modal-flavoured behaviours like strict implication, belief or knowledge [START_REF] Lewis | Symbolic Logic[END_REF]. The way we usually see classical modal logic nowadays is, as proposed first in [START_REF] Lemmon | New foundations for Lewis modal systems[END_REF], as an extension of classical propositional logic.

The language of classical modal logic is obtained from the one of classical propositional logic by adding the modal connectives ◻ and , standing for example for necessity and possibility. Starting with a set of atomic propositions denoted a and their duals ā, modal formulas are constructed from the following grammar:

A ::= a | ā | A ∧ A | ⊺ | A ∨ A | | ◻A | A
In a classical setting, we always assume that formulas are in negation normal form, that is, negation is restricted to atoms. When we write ¬A in this case, we mean the result of computing the de Morgan dual of connectives and atomic propositions within A, i.e. ¬¬A ≡ A, ¬(A ∧ B) ≡ ¬A ∨ ¬B and ¬◻A ≡ ¬A, where ≡ denotes syntactic equality. Implication can be defined from this set of connectives by A ⊃ B := ¬A ∨ B. ⊺ and are the usual units of the binary connectives ∧ and ∨ respectively.

The classical modal logic K is then obtained from classical propositional logic by adding to any standard formulation of the latter, such as its Hilbert axiomatisation,

• the necessitation rule: if A is a theorem of K then ◻A is too; and

• the axiom of distributivity, commonly written k := ◻(A ⊃ B) ⊃ (◻A ⊃ ◻B).

It is important to mention that what we are calling an axiom here is in fact, as is standard in Hilbert-style axiomatisations, an axiom schema, in order to avoid explicit mention of A derivation is then constructed as a list of formulas that are either instances of some given axiom schemes or deductions from previous formulas combined using an inference rule. Moreover, because we are accepting the k axiom schema in our base system, all the logics we consider fall into the family of normal modal logics.

Stronger modal logics can be obtained by adding to K other axioms mentioning the modal connectives. One remarkable class of modal axioms has been exhibited by Lemmon and Scott in [START_REF] Lemmon | An Introduction to Modal Logic[END_REF]. The Scott-Lemmon axioms are defined schematically for a given 4-tuple of natural numbers h, i, j, k as:

g hijk := h ◻ i a ⊃ ◻ j k a (2.1)
where ◻ i denotes i ocurrences of ◻ and k denotes k occurences of . Note that in the classical case g hijk and g jkhi are de Morgan equivalent.

In this part, we will also be considering a particular subclass of these axioms, that we call path Scott-Lemmon axioms after [START_REF] Goré | On the correspondence between display postulates and deep inference in nested sequent calculi for tense logics[END_REF], which corresponds to the case where i + k is exactly equal to 1. In the classical case, this gives the axiom:

g h1j0 := h ◻a ⊃ ◻ j a (2.2)
Some specific occurences of the Scott-Lemmon axiom scheme have been studied under different names. For example, g 0001 corresponds to the well-known

t := a ⊃ a g 0011 " b := a ⊃ ◻ a g 0101 " d := ◻a ⊃ a g 1002 " 4 := a ⊃ a g 1011 " 5 := a ⊃ ◻ a g 1111 " 2 := ◻a ⊃ ◻ a
Note that t, b, 4, and 5 are path Scott-Lemmon axioms, but d and 2 are not. We will often consider the most common five axioms t, b, d, 4 and 5. Picking subsets of these axioms a priori lets us define thirty-two modal logics, but some of them coincide. For example, the sets {b, 4} and {t, 5} both yield the modal logic known as S5. The result is fifteen distinct modal logics that extend each other from K to S5 and can be represented on a "cube" , as shown on Figure 2.1; this is sometimes called the S5 cube [START_REF] Garson | Modal logic[END_REF].

Sequent and hypersequent calculi

Even if the notion of proofs given by an axiomatic system à la Hilbert is nice and clear, finding the proof of a specific theorem can be very hard. We might therefore lean towards Gentzen's formalism of sequent calculus [START_REF] Gentzen | Untersuchungen über das logische Schließen[END_REF][START_REF] Gentzen | Untersuchungen über das logische Schließen[END_REF], as it represents a more intuitive way of searching for a proof.
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In the classical setting, we will define a sequent Γ := A 1 , . . . , A n as a multiset of formulas, as usual omitting set-brackets and simply using the comma to denote the multiset union. It is interpreted as the formula fm o (Γ

) := A 1 ∨ . . . ∨ A n . A sequent inference rule is an expression Γ 1 . . . Γ m Γ
for n ≥ 0 such that the bottom sequent Γ, the conclusion, can be deduced from the top one(s) Γ 1 , . . . , Γ m , the premiss(es) (or none if m = 0), in the logic at hand. A derivation, denoted D, is then constructed according to these rules; it will have the structure of a tree, where each edge is a sequent and each internal node is a rule. A derivation is a proof of the sequent at the root, if each leaf is a rule with no premisses. The height of a derivation D, denoted by ht(D), is the height of D when seen as a tree, i.e., the length of the longest path in the tree from its root to one of its leaves.

Designing a sound and complete sequent system for a given logic means defining the right set of sequent rules such that each theorem of the logic at hand has a proof in the sequent system (completeness) and that any proof that can be built in the sequent system derives a theorem of the logic (soundness).

We say that a rule r is admissible for a system S if, whenever its premisses are provable in S there is a proof of its conclusion in S. We say it is derivable if there exist a derivation in S from its premisses to its conclusion, possibly using premisses multiple times. As mentioned in the introduction, one important rule to show admissible in a deductive system is the cut-rule, which can be written as: Γ, C Γ, ¬C cut Γ for some formula C and its de Morgan dual ¬C. The rank of an instance of cut is the depth of the formula C introduced by the cut (read bottom-up). The depth of a formula A, denoted by dp(A), being inductively given as:

dp(a) = dp(ā) = dp( ) = dp(⊺) = 1 dp( A) = dp(◻A) = dp(A) + 1 dp(A 1 ∧ A 2 ) = max(dp(A 1 ), dp(A 2 )) + 1 dp(A 1 ∨ A 2 ) = max(dp(A 1 ), dp(A 2 )) + 1
We also write cut r to denote an instance of cut with rank at most r. The cut-rank of a derivation D, denoted by rk(D), is the maximal rank of a cut in D.

Proving that this rule is admissible in a given proof system somewhat ensures that it is well-designed for backward proof-search. Such a result was first proven by Gentzen as the Hauptsatz [START_REF] Gentzen | Untersuchungen über das logische Schließen[END_REF] for classical and intuitionistic (non modal) logic. The standard proof proceeds by a double-induction on the cut-rank and on the height of a derivation.

The first sequent systems for modal logics seem to have been defined for logics K, T, S4 and S5 by Ohnishi and Matsumoto in [START_REF] Ohnishi | Gentzen method in modal calculi[END_REF]. However, as they announced in a follow-up note [START_REF] Ohnishi | Gentzen method in modal calculi II[END_REF], the cut-rule is not admissible in their proposed system for S5. Since then, cut-free sequent systems have been proposed for other extensions of K with the axiom d [START_REF] Louis | Gentzen systems for modal logic[END_REF], with the axiom 4 [START_REF] Sambin | The modal logic of provability. The sequential approach[END_REF], and with the axioms 4 and 5 [START_REF] Grigori | Gentzen style systems for K45 and K45[END_REF], but to our knowledge no cut-free system based on ordinary sequents has been found for the modal logic S5 (or for K5, D5 and KB5). respectively. This is enough for getting sound and complete systems for the logics K, K4, and K45. They can then be extended modularly by adding either the rule o d or the rule o t to get combinations of these logics with axiom d or t respectively. ([105, 59, 120, 125]) Let X = ∅ or {d} or {t}. For any formula A, the following are equivalent.

Theorem

1. A is a theorem of K + X or K4 + X or K45 + X. 2. A is provable in the sequent calculus oK+ o X +cut or oK4+ o X +cut or oK45+ o X +cut. 3. A is provable in the sequent calculus oK + o X or oK4 + o X or oK45 + o X respectively.
This theorem can be proved for any of these systems in three steps. The proof follows the standard pattern found for example in [START_REF] Sjerp | Basic proof theory[END_REF]. First, 2 → 3 is the admissibility of the cut-rule in the sequent calculus, that is usually obtained, as already mentioned, by induction on derivation cut-rank and height. Then, 3 → 1 is the soundness of the sequent calculus with respect to the Hilbert system, for which it is enough to show for every sequent rule that if the premisses are provable in the Hilbert system, so is the conclusion. Finally, 1 → 2 is the completeness of the sequent calculus (with cut) with respect to the Hilbert system, for which it suffices to show that the axioms of the Hilbert system are provable and the rules of the Hilbert system admissible in the sequent system. We do not prove these statements (and all the other similar results of this chapter) formally, but we give one detailed proof of cut admissibility in Section 2.6 to illustrate how the others would proceed.

A list of criticisms is usually addressed to these sequent systems, namely that they (or at least some of them) lack (i) locality; (ii) modularity; (iii) generality; and (iv) analyticity.

(i) These systems do not have local rules for modalities and do not separate rules for a connective and its dual. The modal rules do not only introduce one connective in the conclusion, some of them introduce at the same time ◻ and , and some of them involve restriction on the context of application, e.g. require a context to be exclusively composed by modal formulas.

(ii) These systems are not fully modular. A modular system would be one where each rule can be freely mixed with others as required by the logic to be defined, and not one where the rule corresponding to the axiom k varies depending on whether other axioms like 4 or 5 are also present.

(iii) These systems are not general enough. Already in the S5 cube, the logics K5, D5, KB5 and S5 could not be given a complete sequent system so far, and that is without considering logics beyond the cube, in particular those axiomatised by the Scott-Lemmon axioms, defined in the previous section.

(iv) We could obtain a system for S5 by adding to the classical sequent calculus the rules ◻ o k45 and o t , but the resulting system would not be analytic. Indeed, the formula ā ∨ ◻ a which is a theorem of S5, is provable in oK + ◻ o k45 + o t + cut as follows but the cut-rule is impossible to remove without breaking provability. Indeed, the only rules that can be applied in a cut-free derivation ending in ā, ◻ a are w and c possibly followed by ◻ o k45 . Hence, such a derivation can only contain sequents of the form: ām , ◻ a n or a k , a , ◻ a j , for some arbitrary j, k, , m, n ≥ 0, which do not include an identity sequent, so the derivation cannot be closed [START_REF] Lellmann | Constructing cut free sequent systems with context restrictions based on classical or intuitionistic logic[END_REF].
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Many solutions for the analyticity issue of S5 in the context of ordinary sequents have been explored, but they usually involve breaking some other properties of proof-theory orthodoxy like the subformula property or the locality constraint [START_REF] Mints | Some calculi of modal logic[END_REF][START_REF] Sato | A cut-free Gentzen-type system for the modal logic S5[END_REF][START_REF] Braüner | A cut-free Gentzen formulation of the modal logic S5[END_REF]. One alternative treatment has been via the formalism of hypersequents. It was apparently independently developed by Mints [START_REF] Mints | Some calculi of modal logic[END_REF], Pottinger [START_REF] Pottinger | Uniform cut-free formulations of T, S4 and S5 (abstract)[END_REF], and Avron [START_REF] Arnon Avron | The method of hypersequents in the proof theory of propositional nonclassical logics[END_REF].

A hypersequent H := Γ 1 | . . . | Γ n is a finite collection of sequents separated by vertical bars, and each Γ i for 1 ≤ i ≤ n is called a hypersequent component. In the context of modal logic, it can be interpreted as the modal logic formula fm h (H) :

= ◻fm o (Γ 1 ) ∨ . . . ∨ ◻fm o (Γ n ).
Intuitively it allows us to consider several streams of proofs in parallel that can communicate through structural rules; structural in the sense that they interact only with a structural element, here the vertical bar.

On Figure 2.3 we present, in the first part, rules of a basic hypersequent system hS4 corresponding to the logic S4, the extension of K with axioms t and 4. Note that the first two lines are almost identical to the sequent rules for S4 on Figure 2.2, namely the rules for the propositional connectives, the rules ◻ o k4 and o t , and the (internal) structural rules c and w. The only difference is the presence of a hypersequent context in every rule, but the latter does not play a significant role in these rules. Two structural rules need to be added to handle the management of this context, the external contraction ec and external weakening ew.

Finally, in the second part of Figure 2.3, the rules h 5 [6] and h 2 [START_REF] Kurokawa | Hypersequent calculi for modal logics extending S4[END_REF] can be added to the basic system to obtain a sound and complete system for the logics S5, the extension of S4 by the axiom 5, and S4.2, the extension of S4 by the axiom 2. [START_REF] Arnon Avron | The method of hypersequents in the proof theory of propositional nonclassical logics[END_REF], Kurokawa [START_REF] Kurokawa | Hypersequent calculi for modal logics extending S4[END_REF]) Let x be the axiom 5 or 2. For any formula A, the following are equivalent.

Theorem (Avron

1. A is a theorem of S5 if x = 5 or S4.2 if x = 2.

A is provable in hS4 + h

x + cut where cut is the rule

H | Γ, C H | Γ, ¬C cut H | Γ 3. A is provable in the hypersequent calculus hS4 + h x .
These sequent and hypersequent systems were all developed ad hoc for a specific logic in a specific context, very probably by "trial and error". However, we can observe patterns in the way each system relates to its corresponding logic. Lellmann and Pattinson [START_REF] Lellmann | Constructing cut free sequent systems with context restrictions based on classical or intuitionistic logic[END_REF][START_REF] Lellmann | Hypersequent rules with restricted contexts for propositional modal logics[END_REF], inspired by a successful line of work by Ciabattoni et al. on intermediate and substructural logics [START_REF] Ciabattoni | From axioms to analytic rules in nonclassical logics[END_REF][START_REF] Ciabattoni | Expanding the realm of systematic proof theory[END_REF], have explored this idea fully and explained a way to generalise these patterns in order to understand which modal logics can be given a sequent system based on sequents with context restrictions, and which ones cannot and require hypersequents with context restrictions. They show in particular that S5 falls into this second category; it does not prove that S5 cannot be given a sequent system at all, but that its system would have to be quite special.

There is a noticeable difference between rules in the sequent and in the hypersequent calculi. In the sequent calculi, some modal operators are introduced in the conclusion of the rules, similarly to what we are used to for propositional connectives. In the hypersequent rules corresponding to 5 and 2 on the other hand, the modal operators are only shifted from one hypersequent component to another one, being already present in the premisses, and there is furthermore an interaction with the structural element in the context. This point will be relevant in the other proof systems for modal logic that we will introduce in Section 2.4 and 2.5.

Possible-world semantics

Probably the most crucial result of the 20th century for modal logic has been the definition of possible-worlds semantics. It is commonly attributed to Kripke (and even alternatively called Kripke semantics), as he gave its first systematic treatment [START_REF] Kripke | A completeness theorem in modal logic[END_REF], though we know now that this concept was "in the air" around that time (see the history in [START_REF] Copeland | The genesis of possible worlds semantics[END_REF]). The idea is to use graphs, relational structures, to give a meaning to modal formulas, or the other way around, to use the modal language to describe properties of graphs. A standard reference for this section is for instance [START_REF] Blackburn | Modal logic: a semantic perspective[END_REF].

We start with a graph: a frame F is a pair W, R of a non-empty set W of possible worlds and a binary relation R ⊆ W × W , called the accessibility relation. Then we add a mechanism to evaluate formulas: a model M is a frame together with a valuation function V : W → 2 A , which assigns to each world w a subset of propositional variables that are "true" in w. The truth of a modal formula at a world w in a relational structure is the smallest relation satisfying:

w a iff a ∈ V (w) w ā iff a ∈ V (w) w A ∧ B iff w A and w B w A ∨ B iff w A or w B w ◻A iff for all v ∈ W such that (w, v) ∈ R one has v A w A iff there exists v ∈ W such that (w, v) ∈ R and v A
Notice the correspondence between ◻ and universal quantification ∀, as well as and existential quantification ∃. This allows us to identify classical modal logic as a fragment of first-order classical logic. We say that a formula A is satisfied in a model M = W, R, V , denoted by M |= A, if for every w ∈ W , w A. We say that a formula A is valid in a frame

F = W, R , denoted by F |= A, if for every valuation V , W, R, V |= A.
The syntax presented in Section 2.1 and this possible-world semantics are then linked by the fact that the logic K is sound and complete with respect to these general frames. (Kripke [70]) A formula A is derivable in the Hilbert system K if and only if A is valid in every frame.

Theorem

Furthermore, the power of this construction is that this link is not restricted to K: some classes of modal formulas correspond to specific properties of frames. An alternative way, then, to obtain modal logics stronger than K is by restricting the class of frames we want to consider, by imposing some constraints on the accessibility relation. For example, for a given 4-tuple of natural numbers h, i, j, k , it is possible to recover the logic axiomatised by the Scott-Lemmon axiom g hijk by considering the formulas that are valid in all frames satisfying the following confluence condition: for all w, u, v ∈ W with wR h u and wR j v there is a z ∈ W s.t. uR i z and vR k z.

(2.3)

u R i w R h > > R j z v R k ? ?
where we define as usual R n to be R composed n times with itself, that is, R 0 is the diagonal of W and

R n+1 = {(w, v) | ∃u. (w, u) ∈ R and (u, v) ∈ R n }.
The Hilbert system K + G actually completely axiomatises classical models of this type. The possible-worlds semantics has rejuvenated the field of modal logics since graphs are ubiquitous in modelling, and possessing a language to describe their properties is highly useful. More surprisingly perhaps, this idea not only allowed the model theory of modal logic to grow, but also gave a new perspective on its proof theory as it offered another view on the way proof systems could work, along semantical lines.

Labelled deduction

Once possible-world semantics was established as a solid base to define modal logics, the idea of incorporating these notions into the proof theory of modal logics emerged. Fitch seems to have been the first one to formalise it, directly including symbols representing worlds into the language of his proofs in natural deduction [START_REF] Fitch | Tree proofs in modal logic[END_REF].

The concept was popularised when Fitting described a tableau proof system for the logics of the S5-cube called prefixed tableaux where each formula is prefixed by a label, referring to a world in a relational structure [START_REF] Fitting | Tableau methods of proof for modal logics[END_REF]. Modal operators can only be introduced while changing the prefix of the formula, which corresponds to the fact that the semantics of ◻A and A uses the semantics given to A in every/some accessible worlds. Fitting also remarked that the correspondence between modalities of propositional modal logic and quantifiers of first-order logic observed at the semantical level, namely between ◻ and ∀, and between and ∃, is also noticeable in the similarity of the proof rules, and even in the meta-theory. His systems were later refined and given a modular treatment by Massacci [START_REF] Massacci | Strongly analytic tableaux for normal modal logics[END_REF].

Labelled deduction has been more generally proposed by Gabbay in the 80's as a unifying framework throughout proof theory in order to provide proof systems for a wide range of logics [START_REF] Gabbay | Labelled Deductive Systems[END_REF]. For modal logics it can also take the form of labelled natural deduction and labelled sequent systems as used, for example, by Simpson [127], Viganò [START_REF] Viganò | Labelled Non-Classical Logic[END_REF], and Negri [START_REF] Negri | Proof analysis in modal logics[END_REF]. These formalisms make explicit use not only of labels, but also of relational atoms. We will continue with our choice of the sequent presentation; we present the calculus of Negri [START_REF] Negri | Proof analysis in modal logics[END_REF] for classical modal logic in this section and come back to Simpson's system for intuitionistic modal logic [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF] in the next chapter.

Geometric theories

The approach here is not to obtain a proof system for a logic by converting modal axioms into inference rules as before, but to consider the logic as defined by a given class of frames. The most general frame properties which have been considered in this setting are based on geometric theories. They generalise, in particular, the Scott-Lemmon frame properties that we introduced in (2.3).

Interest in the study of geometric theories arises from different areas of logic and mathematics, such as topology and category theory. The proof-theoretical analysis of systems for first-order classical logic extended by such theories was investigated in detail by Negri and von Plato [START_REF] Negri | Structural proof theory[END_REF]. Here we recall some basic definitions and results, adapted mainly from this reference.

A geometric formula is a first-order formula of the form:

∀z(A ⊃ B)
where A and B contain neither ⊃ nor ∀, and z is a vector of variables z 1 , . . . , z n . It has been observed (e.g. [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF] and for a detailed proof see [START_REF] Stouppa | The design of modal proof theories: the case of S5[END_REF]) that geometric implications can be expressed in the following canonical form.

Proposition

For each geometric formula, there exists an equivalent formulation as a conjunction of geometric clauses of the form:

∀z((a 1 ∧ . . . ∧ a n ) ⊃ (∃x 1 A 1 ∨ . . . ∨ ∃x m A m ))
where each a i for 1 ≤ i ≤ n is an atomic formula, each A j for 1 ≤ j ≤ m is a conjunction of atomic formulas b j1 , . . . , b jkj , and none of the variables in the vectors x j are free in any a i .

If one tries to add axioms from a Hilbert-style system as hypotheses of a sequent system it will in general break the cut-admissibility property [START_REF] Girard | Proof theory and logical complexity[END_REF]. However, for certain classes of axioms, in particular the geometric ones just defined, it is possible to overcome this issue by converting the axioms into inference rules. The idea is to incorporate implicitly some of the logical content of the axioms into the 'meta-language' of premisses and conclusions of a sequent rule. A general rule scheme has been proposed for geometric axioms [START_REF] Negri | Contraction-free sequent calculi for geometric theories with an application to Barr's theorem[END_REF], and we will present its modal version.

Labelled sequents

Labelled sequents are formed from by labelled formulas of the form x : A and relational or equality atoms of the form xRy or x = y respectively, where x, y range over a set of variables (called labels) and A is a modal formula. A (one-sided) labelled sequent is then of the form G ⇒ R where G denotes a set of relational or equality atoms, and R a multiset of labelled formulas. A simple proof system (shown on Figure 2.4) for classical modal logic K can be obtained in this formalism.

This can be extended to a wide class of modal logics by applying the general ideas described in the previous section. In the previous paragraph, we remained purposefully vague about the context of application as these rule schemes can occur in different contexts and different calculi, with a little bit of adaptation. The context that interests us here is when it is applied to modal logics, more precisely when modal logics are defined in terms

id lab G ⇒ R, x : a, x : ā ⊺ lab G ⇒ R, x : ⊺ G ⇒ R, x : A G ⇒ R, x : B ∧ lab G ⇒ R, x : A ∧ B G ⇒ R, x : A, x : B ∨ lab G ⇒ R, x : A ∨ B G, xRy ⇒ R, y : A ◻ lab y is fresh G ⇒ R, x : ◻A G, xRy ⇒ R, x : A, y : A lab G, xRy ⇒ R, x : A Figure 2.4: System labK
of the frames they characterise. Let us consider a modal logic that characterises a class of frames satisfying a set of geometric properties. Note that in this case the only atomic propositions we can refer to are relational or equality atoms. Therefore a geometric frame property will be of the form:

∀u∀v((a 1 ∧ . . . ∧ a n ) ⊃ (∃x 1 A 1 ∨ . . . ∨ ∃x m A m )) (2.4)
where each a i for 1 ≤ i ≤ n is a relational or an equality atom,

u i Rv i or u i = v i , for 1 ≤ j ≤ m each A j = b j1 ∧ . . . ∧ b jkj
is also a conjunction of relational or equality atoms, and the variables in x j do not appear among u or v. The corresponding geometric rule scheme is obtained from the generic shape of [START_REF] Negri | Contraction-free sequent calculi for geometric theories with an application to Barr's theorem[END_REF] as:

A 1 (y 1 /x 1 ), a 1 , . . . , a n , G ⇒ R . . . A m (y m /x m ), a 1 , . . . , a n , G ⇒ R lab grs a 1 , . . . , a n , G ⇒ R (2.5)
where G is a set of relational or equality atoms, R is a multiset of labelled modal formulas, each a i for 1 ≤ i ≤ n is a relational or an equality atom, each A j for 1 ≤ j ≤ m denotes the set of relational or equality atoms present in A j , and y 1 , . . . , y m are vectors of fresh eigenvariables, i.e. they do not occur in the conclusion. [START_REF] Negri | Proof analysis in modal logics[END_REF]) Let C be a set of geometric frame properties as in (2.4) and lab C be the corresponding set of rules following schema (2.5). For any formula A, the following are equivalent.

Theorem (Negri

1. A is provable in labK + lab C + cut where cut is G ⇒ R, z : C G ⇒ R, z : ¬C cut G ⇒ R 2. A is provable in labK + lab C 3. A is valid in all frames satisfying the properties in C.
As examples, we sum up in this table the rules that are obtained via this process for the most common axioms we reviewed in previous sections.

Axiom

Geometric rule scheme

t : A ⊃ A G, xRx ⇒ R lab t x appears in R G ⇒ R b : A ⊃ ◻ A G, xRy, yRx ⇒ R lab b G, xRy ⇒ R d : ◻A ⊃ A G, xRy ⇒ R lab d x appears in R but y is fresh G ⇒ R 4 : A ⊃ A G, xRy, yRz, xRz ⇒ R lab 4 G, xRy, yRz ⇒ R 5 : A ⊃ ◻ A G, xRy, xRz, yRz ⇒ R lab 5 G, xRy, xRz ⇒ R 2 : ◻A ⊃ ◻ A G, xRy, xRz, yRu, zRu ⇒ R lab 2 u is fresh G, xRy, xRz ⇒ R
Let us re-examine the points that we faltered upon in the case of sequents and hypersequents: (i) locality; (ii) modularity; (iii) generality; and (iv) analyticity. The rules introducing modalities in the labelled sequent calculus are local; they separate the rule for ◻ from the rule for and they do not assume any restriction on the form of the context. The labelled sequent calculus allows for a modular treatment of modal logics defined by (geometric) frame properties, namely for any set of geometric formulas, one can add the corresponding set of rules to a basic system and obtain a complete system for the given logic. Furthermore, it is the most general system we know of as a lot of the most common modal logics axiomatise frames satisfying geometric axioms, including the ones defined by Scott-Lemmon axioms. Finally, it is possible to prove a general cut-elimination that applies for the basic system and all its extensions by geometric rules.

Unlabelled deduction

We have already presented instances of unlabelled deduction systems for modal logics in the form of sequent and hypersequent calculi. We have also seen their drawbacks, and how labelled systems offer a smart solution, bringing back expressivity and modularity. However, some proof-theorists are not satisfied with the idea of labels in proofs that would be seen as 'semantical pollution' because some ingredients of a labelled formalism resemble modeltheoretic objects [START_REF] Read | Semantic pollution and syntactic purity[END_REF]. They advocate then for 'label-free' alternatives that would have the same qualities as labelled systems, but with no labelling, arguably more in line with original sequents or hypersequents.

Display calculus is a proof formalism which does not use labelling and provides a systematic way to obtain structural rules for every Scott-Lemmon (SL) axiom via Kracht's algorithm in [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF], unfortunately only in the context of tense logic, an extension of modal logic with an adjoint for each connective. To our knowledge, the modal case, i.e. how to get display rules corresponding to the purely modal SL axioms, is still open (and perhaps impossible).

A generalisation of tableaux for modal logics without labels was proposed in [START_REF] Castilho | Modal tableaux with propagation rules and structural rules[END_REF]. Instead of using labelling, Castilho et al propose to write tableaux rules as graphical rewrite rules. Moreover, whereas prefixed tableaux are usually built in a tree structure, these label-free tableaux use rooted directed acyclic graphs as their basis of construction. This allowed them to express many more modal logics than Fitting's [START_REF] Fitting | Proof Methods for Modal and Intuitionistic Logics[END_REF] or Massacci's [START_REF] Massacci | Strongly analytic tableaux for normal modal logics[END_REF] systems.

Nested sequents

Another way to tackle the proof theory of modal logics without labelling is offered by the formalism of nested sequents. Nested sequents are a generalisation of sequents from a multiset of formulas to a tree of multisets of formulas. They were first defined by Kashima [START_REF] Kashima | Cut-free sequent calculi for some tense logics[END_REF] for tense logic and by Cerrato [START_REF] Cerrato | Modal sequents[END_REF] for modal logic (under the name tree-sequents), and then independently rediscovered by Poggiolesi [START_REF] Poggiolesi | The method of tree-hypersequents for modal propositional logic[END_REF] (who called them tree-hypersequents) and Brünnler [START_REF] Brünnler | Deep sequent systems for modal logic[END_REF].

In nested sequent notation, brackets are used to indicate the parent-child relation in the tree, and can be interpreted as the modal ◻ (similarly to how the comma is interpreted as ∨). In other words, nested sequents are defined according to the following grammar:

Γ ::= ∅ | A, Γ | Γ 1 , [Γ 2 ]
(2.6)

For any nested sequent Γ, a corresponding formula, written fm n (Γ), gives the meaning of Γ as a modal logic formula. It is defined as: fm n (∅) := , fm n (A, Γ) := A ∨ fm n (Γ), and fm n (Γ 1 , [Γ 2 ]) := fm n (Γ 1 ) ∨ ◻fm n (Γ 2 ). Note that the sequent [∅] is different from ∅.

Example

The nested sequent

Γ = A, B, C, [D, [B]], [D, [C], [E]
] is the term used to describe the following tree: The inference rules for nested sequents operate on sub-trees of such sequents. To identify the sub-trees, we use the notions of context and substitution. An n-ary context Γ 1

id n Γ{a, ā} Γ{A} Γ{B} ∧ n Γ{A ∧ B} ⊺ n Γ{⊺} Γ{A, B} ∨ n Γ{A ∨ B} Γ{[A]} ◻ n Γ{◻A} Γ1{ A, [A, Γ2]} n k Γ1{ A,
n t Γ{ A} Γ1{[Γ2, A], A} n b Γ1{[Γ2, A]} Γ{ A, [A]} n d Γ{ A} Γ1{ A, [ A, Γ2]} n 4 Γ1{ A, [Γ2]} Γ1{[ A, Γ2]}{ A} n 5 Γ1{[ A, Γ2]}{∅}

• • •

n is like a nested sequent, but contains n pairwise distinct numbered holes { } in place of formulas (and never inside a formula). We can assume by default that holes are independently numbered in left-to-right order and so, unless there is any ambiguity, we will omit the hole index for better readability. Note that a 0-ary context is the same as a sequent.

Given such a context Γ{ } • • • { } and n nested sequents as arguments Γ 1 , . . . , Γ n , we write Γ{Γ 1 } • • • {Γ n } to stand for the substitution nested sequent where for 1 ≤ i ≤ n the i-th hole in the context has been replaced by Γ i , with the understanding that if Γ i is empty then the hole is simply removed.

The depth of Γ{ }, written dp(Γ{ }), is given inductively by: dp

({ }) = 0, dp(Γ 1 , Γ 2 { }) = dp(Γ 2 { }), and dp([Γ{ }]) = dp(Γ{ }) + 1.

Example

Let Γ{

}{ } = A, [B, { }, [{ }], C]. For the sequents Γ 1 = D and Γ 2 = A, [C], we get: Γ{Γ 1 }{Γ 2 } = A, [B, D, [A, [C]], C] and Γ{∅}{Γ 2 } = A, [B, [A, [C]], C].
We also have that dp(Γ{ }{∅}) = 1 and dp(Γ{∅}) = 2.

The basic modal logic K is captured using nested sequents as the cut-free proof system nK shown in the first line of Figure 2.5. The rules id n , ∧ n , ⊺ n , and ∨ n are basically identical to the corresponding ones in the ordinary sequent system on Figure 2.2. They do not interact with the bracketing structure, but they can occur at any node in the context Γ{ }. The rules ◻ n and n can also occur at any depth in Γ{ }; however, they justify the need of generalising sequents to nested sequents as ◻ n transforms a bracketed formula into a ◻-formula and n shifts a formula from the inside of a bracket to the outside by prefixing it with a . The two modal rules implement the same idea as the ones in the labelled calculus on Figure 2.4: the parent-child relation in the bracketing tree of a nested sequent replaces here the relational notation xRy.

Example

In nK there are two possible derivations of the sequent (a∧ b), ā, [b] (which is equivalent to axiom k):

id n (a ∧ b), ā, [a, ā, b] id n (a ∧ b), ā, b, ā, b ∧ n (a ∧ b), ā, a ∧ b, ā, b n k (a ∧ b), ā, [ā, b] n k (a ∧ b), ā, [b] id n (a ∧ b), ā, [ā, a, b] n k (a ∧ b), ā, [a, b] id n (a ∧ b), ā, b, b ∧ n (a ∧ b), ā, a ∧ b, b n k (a ∧ b), ā, [b]
We now want to extend this system modularly into cut-free systems for axiomatic extensions of K. In their tableaux systems, Castilho et al [START_REF] Castilho | Modal tableaux with propagation rules and structural rules[END_REF] distinguish two classes of axioms that correspond to two kinds of rules: propagation rules and structural rules. The first one allows them to rewrite the content of one of the nodes in the graph and more precisely corresponds to a step of the form "if in some node of such a given pattern there is some formula A, then propagate the formula B (which can be A or another one)"; while the other one allows them to directly change the structure of the graph itself, which implements a step of the form "if there is such a given pattern then add some new node(s) and edge(s)". We will investigate these two types of rules in the formalism of nested sequents.

Propagation rules.

Brünnler and Poggiolesi obtained nested sequents systems for all the logics in the S5-cube, without giving a sytematic algorithm to transform axioms into rules. Following the ideas of Goré, Postniece and Tiu in [START_REF] Goré | On the correspondence between display postulates and deep inference in nested sequent calculi for tense logics[END_REF] but adapting the presentation slightly, we present an algorithm to define nested sequent systems for the logic K extended with any subset of the Scott-Lemmon path axioms, defined in (2.2). Note that the authors worked in the context of tense logic so they also had adjoint modalities in their language. Here, we keep our language purely modal and use the alphabet ◇ and ◆, with no intended logical meaning.

For any Scott-Lemmon (SL) path axiom p := h ◻A ⊃ j A, we define its reflections as the two following pairs of a sequence (denoted • if empty) and an element of {◇, ◆}:

p ◇ := (◆ h ◇ j , ◇) p ◆ := (◇ h ◆ j , ◆)
where ◆ h denotes h occurrences of ◆ and ◇ h denotes h occurrences of ◇.

Let s = ( s 1 • • • s m , s 0 ) and t = ( t 1 • • • t n , t 0
) be pairs of a sequence and one item of {◇, ◆}, i.e. for 0 ≤ i ≤ m and for 0

≤ k ≤ n, s i , t k ∈ {◇, ◆}. s is composable with t at position k if s 0 = t k . Then, the composition of s with t at position k is the pair: s ▷ k t := ( t 1 • • • t k-1 s 1 • • • s m t k+1 • • • t n , t 0 )
. Finally, for a set of SL path axioms P, the completion of P is the smallest set that (i) contains the two reflections p ◇ and p ◆ for any p ∈ P, as well as the two identity pairs (◇, ◇) and (◆, ◆), and (ii) is closed under composition (at any position).

Let Γ be a nested sequent. The propagation graph of Γ is a directed graph defined on the set of nodes of tree(Γ) such that for any nodes n 1 and n 2 , if n 2 is a child of n 1 in tree(Γ), then in the propagation graph there is an edge (n 1 , n 2 ) labelled ◇ and there is an edge (n 2 , n 1 ) labelled ◆. If π is a path n 1 l 1 n 2 l 2 . . . l k-1 n k in the propagation graph of Γ where each edge-label l i ∈ {◇, ◆} for 1 ≤ i ≤ k -1, then we denote by π the sequence of labels l 1 l 2 . . . l k-1 along that path.

Example

Consider again the nested sequent

Γ = A, B, C, [D, [B]], [D, [C], [E]], its propagation graph is: a b c d e f ◇ ◆ ◇ ◆ ◇ ◆ ◇ ◆ ◇ ◆
The sequence π = ◆ ◆ ◇ ◇ corresponds to a path going for example from the node e to the node f .

For a set P of SL path axioms, the set n P of propagation rules for P contains any rule

Γ u A v A n π Γ u A v ∅ if there is a path π from u to v in the propagation graph of Γ u ∅ v
∅ such that ( π , ◇) appears in the completion of P. Note that since the identity pairs are always present in the completion of P, the rule n k necessarily appears in the set of propagation rules. 2.5.5 Theorem (Goré, Postniece and Tiu [START_REF] Goré | On the correspondence between display postulates and deep inference in nested sequent calculi for tense logics[END_REF]) Let P be a set of Scott-Lemmon path axioms and n P be the corresponding set of propagation rules. For any formula A, the following are equivalent.

1.

A is a theorem of K + P.

2.

A is provable in the nested sequent calculus nK + n P This is not an ideal definition of a deductive system because, even if the set of nodes in tree(Γ) and the set P are finite, (i) the completion of P can be infinite, and (ii) there might be an infinite number of (looping) paths between any two nodes u and v in the propagation graph of Γ. However, Goré, Postniece and Tiu proved, using automaton theoretic intuitions, that the decision problem whether a propagation rule can be applied to two nodes of a nested sequents actually is decidable. Their idea is to see path axioms as a context-free grammar and the propagation graph of a nested sequent as a finite-state automaton, and then to reduce their decision problem to emptiness of the intersection of a context-free grammar and the regular language associated to an automaton, that we know to be a decidable problem.

They moreover show that some specific axioms can be described by simple regular expression which allow them to redefine the set of propagation rules for these axioms and in particular to recover some already known rules as previously defined by Brünnler or Poggiolesi. (We omit the rule n k in the set of propagation rules of t and b.)

Axiom Completion

Set of propagation rules

t : A ⊃ A (•, ◇), (•, ◆), (◇, ◇), (◆, ◆) Γ{ A, A} n t Γ{ A} b : A ⊃ ◻ A (◇, ◆), (◆, ◇), (◇, ◇), (◆, ◆) Γ 1 {[Γ 2 , A], A} n b Γ 1 {[Γ 2 , A]} 4 : A ⊃ A (◇ n , ◇), (◆ n , ◆) Γ{ A, [Γ 1 [• • • [Γ n , A] • • •]]} Γ 1 { A, [Γ 2 ]} Γ 1 {[ A, Γ 2 ]}{ A} n 5 Γ 1 {[ A, Γ 2 ]}{∅}
Furthermore, Brünnler and Poggiolesi define a rule corresponding to the axiom d, which is not an SL path axiom, as follows:

Γ{ A, [A]} n d Γ{ A} (2.7)
This allows them to give cut-free complete systems for nK extended to any logic of the S5-cube. A nice property of the logics in the S5 cube, already observed in [START_REF] Castilho | Modal tableaux with propagation rules and structural rules[END_REF], is that even though completion sets might become complex when combining axioms, in the case of these fifteen logics we can consider for each of them a specific axiomatisation for which we only need to combine the rules corresponding to each chosen axiom in order to obtain a complete nested sequent system for the whole logic. We say that this set of axioms is axiomatically complete: if a logic in the S5 cube has a unique axiomatisation, then it is necessarily axiomatically complete; otherwise, for KB5 and S5 that can be axiomatised by several distinct set of axioms, {b, 4, 5} and {t, 4, 5} respectively are axiomatically complete sets to define them. (Brünnler [15]) Let X ⊆ {t, b, d, 4, 5} be axiomatically complete. For any formula A, the following are equivalent.

Γ1{[Γ2]} n t Γ1{Γ2} Γ1{[Γ2, [Γ3]]]} n b Γ1{[Γ2], Γ3} Γ{[∅]} n d Γ{∅} Γ1{[Γ2], [Γ3]} n 4 Γ1{[[Γ2], Γ3]} Γ1{[Γ2, [Γ3]]}{∅} n 5 Γ1{[Γ2]}{[Γ3]}
1. A is a theorem of K + X. 2. A is provable in nK + n X + cut where cut is the rule Γ{C} Γ{¬C} cut Γ{∅} 3. A is provable in nK + n X .
The proof follows the chain 1

→ 2 → 3 → 1.
The fact that X is axiomatically complete is used in the cut-elimination proof 2 → 3 only.

Structural rules.

Another cut-free completeness result can be formulated which allows us to drop the requirement that X be axiomatically complete. This means that not only every logic of the S5 cube, but even every single axiomatisation of them can be given a corresponding nested sequent system in this way. The idea, described in details in [START_REF] Marin | Label-free modular systems for classical and intuitionistic modal logics[END_REF], is to add another form of rules to the mix, namely structural rules, one for each axiom in {t, b, d, 4, 5} as shown on Figure 2.6. (These very rules were already defined by Brünnler and Poggiolesi as they are needed in the course of the cut-elimination proof, but get eliminated at the end.) They are called structural as they do not introduce any new connective, but only modify the structure of the nested sequent (bracketing) tree. [START_REF] Marin | Label-free modular systems for classical and intuitionistic modal logics[END_REF]) Let X be any subset of {t, b, d, 4, 5}. For a formula A, the following are equivalent.

Theorem (Marin and Straßburger

1. A is a theorem of K + X. 2. A is provable in nK + n X + n X .
One idea that was suggested by Brünnler and Straßburger in [START_REF] Brünnler | Modular sequent systems for modal logic[END_REF] was that perhaps having only the structural rules corresponding to each axiom would be enough to give cutfree systems for the S5 cube. Unfortunately, their argument had a flaw: it is true for logics of the front face of the cube, that is, axiomatised with a subset of {t, b, d}, but not for logics using axioms 4 or 5. For example, the formula ◻q ∨ ◻( p ∨ p) is provable in K + 4, but not in nK + n 4 . Details can be found in [START_REF] Marin | Label-free modular systems for classical and intuitionistic modal logics[END_REF]. However, a direction that has not yet been explored to our knowledge is to consider structural rules defined using the algorithm described before for building propagation rules. For a set P of SL path axioms, the set n P of structural rules for P would contain any rule

Γ 1 u [Γ 2 ] v ∅ n π Γ 1 u ∅ v Γ 2 (2.8) if there is a path π from u to v in the propagation graph of Γ u ∅ v
∅ such that ( π , ◇) appears in the completion of P. This would give us the same structural rules for t and b, but different rules for 4 and 5, which is advantageous compared to n 4 and n 5 .

Open question

Is the system nK + n P sound and complete for the logic K + P? If not, is there still some utility in this set of rules, e.g. in alleviating the need for strong completion similarly to Theorem 2.5.7?

In any case, we conjecture that these structural rules should play a role in the cutelimination procedure similar to the structural rules for {t, b, d, 4, 5} in the proof of Theorem 2.5.6. The reduction step for the rules in n P should proceed as follows: a cut between A and ◻¬A is replaced by a cut on the same formula but on proofs of smaller height and a cut on the smaller formulas A and ¬A (modulo weakening).

Γ u A v A n π Γ u A v ∅ Γ u [¬A] v ∅ ◻ Γ u ◻¬A v ∅ cut Γ u ∅ v ∅ Γ u A v A Γ u ◻¬A v A cut Γ u ∅ v A Γ u [¬A] v ∅ n π Γ u ∅ v ¬A cut Γ u ∅ v ∅

Bridges

Following the proliferation of the extensions of sequents mentioned so far, proof-theorists have worked to understand how these different formalisms could relate. For example, hypersequents can be understood in a formalism that restricts the nested sequent tree to a single branch called linear nested sequents [START_REF] Lellmann | Linear nested sequents, 2-sequents and hypersequents[END_REF]; they can also be translated into the display calculus [START_REF] Wansing | Translation of hypersequents into display sequents[END_REF]. Display calculus, on the other hand, can be embedded in labelled sequents [START_REF] Restall | Comparing modal sequent systems[END_REF].

Similarly, prefixed tableaux turned out to be the same as nested sequents [START_REF] Fitting | Prefixed tableaus and nested sequents[END_REF] which can be embedded in labelled sequents as a subclass called labelled tree sequents [START_REF] Goré | Labelled tree sequents, tree hypersequents and nested (deep) sequents[END_REF]. Of course each formalism has its strengths and weaknesses, and the choice between one or the other is usually led by the application that one has in mind. Nevertheless, it seems from this quick summary that labelled sequents are general enough to encompass most existing formalisms, and we will develop this aspect in detail in Part II. However, as we already mentioned, labelled systems have been accused of incorporating semantics into the syntax, viz. model theory into proof theory. Although we do not agree with this statement on philosophical grounds, as clearly semantical intuitions are always at hand when building a logical proof system even if it is less obvious in the case of propositional classical logic, we do share the concerns that Restall underlines in [START_REF] Restall | Comparing modal sequent systems[END_REF].

(i) There is a multiplicity issue, i.e. the same labelled sequent can be written in infinitely many ways by swapping labels. Restall recalls the straightforward solution of having a canonical way of labelling a sequent, for example both xRy ⇒ x : A, y : A and uRv ⇒ u : A, v : A would be, for example, written as x 0 Rx 1 ⇒ x 0 : A, x 1 : A following the order of introduction of labels.

(ii) There is a more fundamental issue with the subformula property. This property applies to an inference rule if it satisfies that any formula appearing in its premiss(es) is a subformula of its conclusion. Of course, the introduction rule for ◻ in the labelled system shown on Figure 2.4 does not validate this property since its premiss contains the relational atom xRy that is not present in any formula in the conclusion. To handle this, Restall suggests that we return to a more geometrical representation of a labelled sequent, reminiscent for example of tree-proofs [START_REF] Cerrato | Modal sequents[END_REF] or rdag-tableaux [START_REF] Castilho | Modal tableaux with propagation rules and structural rules[END_REF], by forgetting the labelling and only keeping the graphical links between nodes. In our opinion, this is not an ideal solution as it is quite inconvenient to write already on paper, and hides the fact that some sort of encoding would still be needed in order to formalise this representation properly.

Recently, Fitting has introduced the formalism of indexed nested sequents. They are an extension of nested sequents from a tree structure to a graph structure. The embedding of nested sequents into labelled sequents can be adapted to embed indexed nested sequents into labelled sequents as the subclass of labelled tree sequents with equality [START_REF] Ramanayake | Inducing syntactic cut-elimination for indexed nested sequents[END_REF].

Therefore they are merely a new way of representing a labelled sequent, but apparently a powerful one as they seem to escape the two criticisms addressed to labelled deductive systems reviewed above. The multiplicity issue is indeed handled by using a canonical enumeration of indices and then having an explicit structural rule of index substitution on the one hand. On the other hand, indexed nested sequents provide a convenient notation for the graph structure of labelled sequents, not an abstract geometrical one, which indeed helps to recover the subformula property in full and allows us to combine easily ideas from labelled and unlabelled deductive systems.

Indexed nested sequents.

An indexed nested sequent, as defined in [START_REF] Fitting | Cut-free proof systems for Geach formulas[END_REF], is a nested sequent where each sequent node (either the root or any interior node) carries an index taken from a countable set, so we write an indexed sequent by extending (2.6) in the following way

Γ ::= ∅ | A, Γ | Γ 1 , x Γ 2
where Γ is now an indexed sequent, but the index of the root is not explicitly shown (e.g., we can assume that it is x 0 ). Intuitively, once indexed, nested sequents are no longer trees; by identifying nodes carrying the same index we obtain any kind of rooted directed graphs. (A rooted graph is a graph where one node is distinguished as the root and every node is reachable from it, i.e., the whole graph can be obtained as the minimal upward closure of this root by the edge relation.) Indeed the structure of a rooted directed graph is equivalent to that of a tree where certain nodes are identified, as used in [START_REF] Ramanayake | Inducing syntactic cut-elimination for indexed nested sequents[END_REF] to represent the structure of indexed nested sequents.

The definition of contexts is also extended to indexed nested sequents. We still write

Γ x1 • • •
xn for an n-ary context but, in this case, the indices x k (1 ≤ k ≤ n) attributed to the hole are not only abstract pointers, they correspond to the index of the sequent node that contains this hole, in the order of their appearance in the sequent. This means that some holes might carry the same index even though they appear in different places of the context. We might still omit the index on context-braces if this information is clear or not relevant.

Example

A, x1 B, x2 C, { } , x3 D, x1 { }, A , x2 D, { } is a ternary context that we can write as Γ x2 x1 x2
as the first and the third holes appear in brackets indexed by x 2 and the second one in a bracket indexed by x 3 . If we substitute the sequents Γ 1 = D, x4 E ; Γ 2 = F ; and Γ 3 = x5 G into the holes, we get:

Γ x2 Γ 1 x1 Γ 2 x2 Γ 3 = A, x1 B, x2 C, D, x4 E , x3 D, x1 F, A , x2 D, x5 G
For an indexed nested sequent Γ, we write graph(Γ) to denote the underlying graph of Γ similarly to the underlying tree of a nested sequent. It consists of I Γ , the set of indices occurring in Γ, and R Γ the accessibility relation induced by Γ, that is, the binary relation

R Γ ⊆ I Γ × I Γ defined as: (w, v) ∈ R Γ iff Γ = Γ 1
w v Γ 2 for some context Γ 1 { } and some indexed nested sequent Γ 2 , i.e. v is the index of a child of w.

Example

If we consider the sequent that we obtained above:

Γ = A, x1 B, x2 C, D, x4 E , x3 D, x1 F, A , x2 D, x5 G , then I Γ = {x 0 , x 1 , x 2 , x 3 , x 4 , x 5
} with x 0 being the index of the root, and

R Γ = {(x 0 , x 1 ), (x 0 , x 2 ), (x 0 , x 3 ), (x 1 , x 2 ), (x 2 , x 4 ), (x 2 , x 5 ), (x 3 , x 1 )}.
In Figure 2.7, the classical system that we call inK is an adaptation of the system described by Fitting in [START_REF] Fitting | Cut-free proof systems for Geach formulas[END_REF] to our notations and to the one-sided setting. It can also be seen as Brünnler's system [START_REF] Brünnler | Deep sequent systems for modal logic[END_REF] extended with indices.

What is different from the pure nested sequent system is the addition of the two structural rules tp and bc, called teleportation and bracket-copy respectively, which are variants of the formula-contraction FC and the sequent-contraction SC of [START_REF] Fitting | Cut-free proof systems for Geach formulas[END_REF]. Note that we need two versions of bc to take care of every possible context where the rule may be applied. They are needed to adapt the system to indexed sequents, namely to maintain the intended semantics by allowing two brackets with the same index to be identified. Another peculiarity is that in the rules for ◻ we demand that the index of the new bracket in the premiss does not occur in the conclusion. 

id in Γ{a, ā} Γ{A, B} ∨ in Γ{A ∨ B} Γ{A} Γ{B} ∧ in Γ{A ∧ B} ⊺ in Γ{⊺} Γ1 A, u A, Γ2 in Γ1 A, u Γ2 Γ v A ◻ in v is fresh
∅ w A tp in Γ w A w ∅ Γ1 w u Γ2 u ∅ bc in 1 Γ1 w u Γ2 w ∅ Γ1 w u Γ2 w u ∅ bc in 2 Γ1 w u Γ2 w ∅ Figure 2.7: System inK
Fitting describes in [START_REF] Fitting | Cut-free proof systems for Geach formulas[END_REF] a way to obtain structural rules using indexed nested sequents for any subset of the Scott-Lemmon axioms, defined in (2.1). For a 4-tuple of natural numbers h, i, j, k with i + k = 0, the rule in g hijk is defined as:

Γ u0 u1 ∆ 1 , . . . u h ∆ k , v1 . . . vi . . . . . . , w1 Σ 1 , . . . wj Σ m , x1 . . . x k . . . . . . in g hijk Γ u0 u1 ∆ 1 , . . . u h ∆ h . . . , w1 Σ 1 , . . . wj Σ j . . . (2.9)
It must satisfy that v 1 . . . v i and x 1 . . . x k are fresh indices which are pairwise different, except for the confluence condition: we always have v i = x k . When one or more elements of the tuple h, i, j, k are equal to 0, there are special cases:

• if h = 0 (or j = 0) then u 1 to u h (resp. w 1 to w j ) all collapse to u 0 .

• if i = 0 then w 1 to w i all collapse to u h , and similarly, if k = 0 then x 1 to x k all collapse to v j . In particular, if h = 0 and i = 0, we must have x k = u 0 , and similarly, if j = 0 and k = 0, we demand that v i = u 0 .

The case where i = 0 and k = 0 was not handled by Fitting in [START_REF] Fitting | Cut-free proof systems for Geach formulas[END_REF]; we give the following corresponding rule:

σΓ u0 u1 ∆ 1 , . . . σ(u h ) ∆ h , . . . , w1 Σ 1 , . . . σ(wj ) Σ j , . . . in g h0j0 Γ u0 u1 ∆ 1 , . . . u h ∆ h , . . . , w1 Σ 1 , . . . wj Σ j , . . . (2.10)
In that case, not only do we identify u h and w j , but it is also necessary to apply a substitution σ : I Γ → I Γ to the indices in the context Γ u0 , giving the new context σΓ u0 , such that σ(u h ) = σ(w j ) in the whole sequent, but σ(y) = y for any other y ∈ I Γ . For a given set of SL axioms G, we write in G to be the set of rules corresponding to G according to these definitions. As usual, we write inK + in G for the system obtained from inK by adding the rules in in G . System inK + in G is sound and complete wrt. the logic K + G. [START_REF] Fitting | Cut-free proof systems for Geach formulas[END_REF], Marin and Straßburger [START_REF] Marin | Proof theory for indexed nested sequents[END_REF]) Let G be a set of SL axioms and let in G be the corresponding set of rules. For any formula A, the following are equivalent.

Theorem (Fitting

1. A is a theorem of K + G. 2. A is provable in inK + in G .
Soundness is proven by Fitting (for i + k = 0) wrt. relational frames, and completeness via a translation to another equivalent formalism he calls set-prefixed tableaux for which in turn he gives a semantic completeness proof [START_REF] Fitting | Cut-free proof systems for Geach formulas[END_REF]. In the sequel, we give an alternative proof of completeness via a cut-elimination procedure (that covers also the case i + k = 0).

Cut-elimination

We present a cut-elimination proof for the indexed nested sequent system defined above. Of course, the admissibility of cut, the fact that the system is complete without the cut-rule, is implied by Theorem 2.6.3, the proof of which appeals to semantical tools. A syntactic proof of cut-admissibility has also been given in [START_REF] Ramanayake | Inducing syntactic cut-elimination for indexed nested sequents[END_REF] via the embedding into labelled tree sequents with equality which are known to satisfy cut-admissibility. However, proof-theorists prefer to have an explicit syntactical procedure to eliminate cut from proofs, that works internally to the system at hand. The proof we present turns out to be nevertheless the same in structure as the one for labelled sequents with the difference that we use an explicit index substitution rule. In any case, this (more general) argument can serve as a model for the proofs of the various cut-admissibility results only stated throughout this chapter. [START_REF] Marin | Proof theory for indexed nested sequents[END_REF]) Let G be a set of Scott-Lemmon axioms. For any formula A, the following are equivalent.

Theorem (Marin and Straßburger

1. A is a theorem of K + G. 2. A is provable in inK + in G + cut where cut is the rule Γ{C} Γ{¬C} cut Γ{∅} 3. A is provable in inK + in G .
This result will follow from Lemma 2.6.5 and Lemma 2.6.8. The proof relies on a standard nested induction, the main one being on the number of cuts of maximal rank, and the nested one on the multiset of the ranks of a given cut and the height of the derivation above a cut.

To facilitate the overall argument, we consider a variant of system inK, that we call system ïnK, that is obtained from inK by removing the teleportation rule tp (but keeping the bc-rules), and by replacing the rules id in and in by ïd

Γ u a u ā and Γ 1 u A u [A, Γ 2 ] ¨ Γ 1 u A u [Γ 2 ]
respectively. The reason behind this is that inK and ïnK are equivalent (with and without cut), but the tp-rule is admissible in the new system, and it is helpful that we do not need to consider it in the cut-elimination argument. Therefore we will actually prove the following.

Lemma

Let G be a set of SL axioms and let in G be the corresponding set of rules. If

a sequent Γ is derivable in ïnK + in G + cut, then it is also derivable in ïnK + in G . Γ nec [Γ] Γ isub σΓ
The rules for weakening and contraction are similar to the standard sequent ones except that they can apply deeply inside a context and to a whole nested structure. The rules nec and isub on the other hand cannot be applied deep inside a context; they always work on the whole sequent. In isub, the sequent σΓ is obtained from Γ by applying the substitution σ : I Γ → I Γ on the indices occurring in Γ, here σ can be an arbitrary renaming. We will show that these structural rules are admissible in the proof system. For a given system S, a rule r / ∈ S with n premisses (n ≥ 1) is height (or cut-rank) preserving admissible in S, if for each proof D 1 , . . . , D n of its premisses in S, there is a proof

D of its conclusion in S, such that ht(D ) ≤ ht(D i ) (resp. rk(D ) ≤ rk(D i )) for 1 ≤ i ≤ n.
Similarly, a rule r is height (or cut-rank) preserving invertible in a system S, if for every derivation of the conclusion of r there are derivations for each of its premisses with at most the same height (resp. at most the same cut-rank).

Lemma

Let G be a set of SL axioms and let in G be the corresponding set of rules.

1. The rules nec, w, isub and c are cut-rank and height preserving admissible for ïnK+ in G .

2. All rules of ïnK + in G (except for ïd) are cut-rank and height-preserving invertible.

Proof. This proof is by induction on the height of the derivation above an instance of the rule, analogously to that for the pure nested sequent systems in [START_REF] Brünnler | Deep sequent systems for modal logic[END_REF]. For bc and in g klmn , note that their inverses are just application of the weakening rule.

Lemma

Let G be a set of SL axioms and let in G be the corresponding set of rules. The rule tp is admissible for ïnK + in G (and for ïnK + in G + cut).

Proof. The proof uses an induction on the number of instances of tp in a proof, eliminating topmost instances first, by an induction on the height of the proof above it and a case analysis of the rule r applied just before tp. The only non-trivial case is when r = ◻ in :

Γ u v A u ◻ in Γ u ◻A u tp Γ u u ◻A Γ u v A u w ....................................... Γ u v A u v tp Γ u v u v A bc Γ u u v A ◻ in Γ u u

◻A

after this transformation, we use the admissibility of weakening (Lemma 2.6.6) and the induction hypothesis to conclude.

Lemma

Let G be a set of SL axioms and let in G be the corresponding set of rules.

A sequent Γ is provable in inK + in G (or in inK + in G + cut) if and only if it is provable in ïnK + in G (resp. in ïnK + in G + cut).
Proof. Given a proof of Γ in inK + in G , we can observe that the rules id in and in are just special cases of the rules ïd and ¨ , respectively. Thus, we obtain a proof of Γ in ïnK + in G from admissibility of tp (Lemma 2.6.7).

Conversely, if we have a proof of Γ in ïnK + in G , we can obtain a proof of Γ in inK + in G by replacing every instance of ïd and ¨ by the following derivations:

id Γ u ∅ u a, ā tp Γ u a u ā and Γ1 u A u [A, Γ2] tp Γ1 u ∅ u A, [A, Γ2] Γ1 u ∅ u A, [Γ2] tp Γ1 u A u [Γ2]
respectively. The same proof goes for the system with cut.

Finally we can prove the main lemma of this section which corresponds to the induction step of the cut-elimination proof.

Lemma

If there is a proof D of shape

D1 Γ{A} D2 Γ{¬A} cut r+1 Γ{∅} in ïnK + in G + cut such that rk(D 1 ) ≤ r and rk(D 2 ) ≤ r, then there is proof D of Γ{∅} in ïnK + in G + cut such that rk(D ) ≤ r. Proof.
We proceed by induction on ht(D 1 ) + ht(D 2 ), making a case analysis on the bottommost rules in D 1 and D 2 .

1. If D 1 is just ïd, there are two sub-cases:

• If the cut-formula A is one of the atoms in the identity, then where we apply the admissibility of tp (Lemma 2.6.7) and c (Lemma 2.6.6). • If the cut-formula A is not one of the atoms in the identity then we can apply the ïd-rule directly to Γ u ∅ u ā .

ïd Γ u a u ā D 2 Γ u ā u ā cut1 Γ u ∅ u ā D 2 Γ u ā u ā tp ....
2. If the bottommost rule r of D 1 is bc or in g hijk then we have

D 1 Γ1{A} r Γ{A} D 2 Γ{¬A} cutr+1 Γ{∅} D 1 Γ1{A} D 2 Γ{¬A} w + isub ................. Γ1{¬A} cutr+1 Γ1{∅} r Γ{∅}
and we proceed by induction hypothesis and height-preserving admissibility of weakening, and, in the special case of in g h0j0 , of index substitution (Lemma 2.6.6).

3. If the bottommost rule r of D 1 is one of ∧, ∨, ◻, or ¨ , such that the principal formula of r is not the cut-formula A, then we proceed as in the previous case; we apply the height-preserving invertibility (Lemma 2.6.6) of the rules ∧, ∨, ◻, or ¨ (and apply it twice in the case of the ∧-rule as illustrated below), denoting the admissible inverse of r by r -1 , and proceed by induction hypothesis.

D 1 Γ{A}{C} D 1 Γ{B}{C} ∧ Γ{A ∧ B}{C} D 2 Γ{A ∧ B}{¬C} cutr+1 Γ{A ∧ B}{∅} D 1 Γ{A}{C} D 2 Γ{A ∧ B}{¬C} ∧ -1 ................................. Γ{A}{¬C} cutr+1 Γ{A}{∅} D 1 Γ{B}{C} D 2 Γ{A ∧ B}{¬C} ∧ -1 ................................. Γ{B}{¬C} cutr+1 Γ{B}{∅} ∧ Γ{A ∧ B}{∅}
Cases 1-3 are repeated for the bottommost rule of D 2 . Let us now consider the key cases:

4. If the bottommost rules r 1 of D 1 and r 2 of D 2 are among ∧, ∨, ◻, or ¨ , and for both the cut-formula is principal, we have the following cases: where we apply the height-preserving admissibility of weakening (Lemma 2.6.6).

• A = B ∨ C: D 1 Γ{B, C} ∨ Γ{B ∨ C} D 2 Γ{¬B} D 2 Γ{¬C} ∧ Γ{¬B ∧ ¬C} cutr+1 Γ{∅} D 1

Γ{B, C}

• A = B ∧ C: Likewise.

• A = B: where on the left branch we use height-preserving admissibility of weakening and proceed by induction hypothesis, and on the right branch we use admissibility of the rules isub and tp (Lemmas 2.6.6 and 2.6.7).

D 1 Γ1 w B w u B, Γ2 ¨ Γ1 w B w u Γ2 D 2 Γ1 w v ¬B w u Γ2 ◻ Γ1 w ◻¬B w u Γ2 cutr+1 Γ1 w ∅ w u Γ2 D 1 Γ1 w B w u B, Γ2 D 2 Γ1 w v ¬B w u Γ2 w ....
• A = ◻B: Likewise.

Intuitionistic modal logic

In this chapter we introduce the concepts and notations that will be used throughout this thesis for intuitionistic modal logic. For a more detailed presentation we refer to the Ph.D. thesis of Simpson [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF] which still is the most comprehensive survey of everything intuitionistic modal logic related. We proceed in the same order as in Chapter 2 even though it does not fully reflect the chronological order in the case of intuitionistic modal logic. We review HiIbert-style axiomatisations and Gentzen-style sequent systems for intuitionistic modal logics in Section 3.1 and Section 3.2, then present the appropriate bi-relational semantics in Section 3.3. We then introduce the labelled and unlabelled deductive systems that exist for intuitionistic modal logic, in Section 3.4 and Section 3.5. Finally in Section 3.6, we explain why bridges are even more difficult to build in the intuitionistic setting, and we close on a presentation of our work on the intuitionistic variant of indexed nested sequents [START_REF] Marin | Proof theory for indexed nested sequents[END_REF].

Hilbert axiomatisations

In the intuitionistic case, we work with a different set of connectives. Starting with a set of atomic propositions still denoted a, formulas are constructed from the following grammar:

A ::= a | A ∧ A | ⊺ | A ∨ A | | A ⊃ A | ◻A | A
When we write ¬A, we mean A ⊃ . Obtaining the intuitionistic variant of K is more involved than the classical variant. Lacking De Morgan duality, there are several variants of k that are classically but not intuitionistically equivalent. Five axioms have been considered as primitives in the literature. An intuitionistic variant of the modal logic K can then be obtained from ordinary intuitionistic propositional logic IPL by

• adding the necessitation rule: ◻A is a theorem if A is a theorem; and

• adding a subset of the following five variants of the k axiom.

k 1 : ◻(A ⊃ B) ⊃ (◻A ⊃ ◻B) k 2 : ◻(A ⊃ B) ⊃ ( A ⊃ B) k 3 : (A ∨ B) ⊃ ( A ∨ B) k 4 : ( A ⊃ ◻B) ⊃ ◻(A ⊃ B) k 5 : ⊃ (3.1)
The idea is that intuitionistic propositional logic does not allow the principle of Excluded Middle, so the modalities ◻ and are not de Morgan duals any more, but one can choose to design the axiomatisation in order to relate them in different ways. The most basic intuitionistic modal system one can think of would be to consider only the ◻ modality as regulated by the k axiom (or as called here, k 1 ), which gives the system IPL + nec + k 1 . However this would give strictly no information on the behaviour of the modality.

It seems that Fitch [START_REF] Fitch | Intuitionistic modal logic with quantifiers[END_REF] was the first one to propose a way to treat in an intuitionistic system by considering the system IPL + nec + k 1 + k 2 , which is now sometimes called CK for constructive modal logic. Wijekesera [START_REF] Wijesekera | Constructive modal logics I[END_REF] also considered the axiom k 5 , which states that distributes over 0-ary disjunctions, but did not assume that it would always distribute over binary disjunctions; the system he proposed was therefore IPL + nec + k 1 + k 2 + k 5 . These systems are well-designed for some applications, for example to analyse some type systems [START_REF] Benton | Computational types from a logical perspective[END_REF] or to reason about states of a machine under partial information [START_REF] Wijesekera | Tableaux for constructive concurrent dynamic logic[END_REF]. However, they cannot satisfy the logicians as the addition of the Excluded Middle principle to it does not yield classical modal logic K, that is, it is not possible to retrieve the De Morgan duality of ◻ and in this case.

The axiomatisation that is now generally accepted as intuitionistic modal logic denoted by IK was given by Plotkin and Stirling [START_REF] Plotkin | A framework for intuitionistic modal logic[END_REF] and is equivalent to the one proposed by Fischer-Servi [START_REF] Fischer | Axiomatizations for some intuitionistic modal logics[END_REF], and by Ewald [START_REF] Ewald | Intuitionistic tense and modal logic[END_REF] in the case of intuitionistic tense logic. It is taken to be IPL

+ nec + k 1 + k 2 + k 3 + k 4 + k 5 .
It then was investigated in detail in [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF], in which strong arguments are given in favour of this axiomatic definition: it allows for adapting to intuitionistic logic the standard embedding of modal logic into first-order logic, and also provides an extension of the standard Kripke semantics for classical modal logic to the intuitionistic case (see Section 3.3). Although CK and IK are the most studied constructive versions of modal logic K, we would advocate that it might still be interesting to consider the intermediate axiomatisations between CK and IK in the future.

We can consider extensions of those basic intuitionistic modal logics with axioms for the modalities as we did in the classical case, for example by the class of Scott-Lemmon axioms defined in (2.1). However, over an intuitionistic basis, and if h = j or i = k, the axiom h ◻ i a ⊃ ◻ j k a is no longer equivalent to the axiom j ◻ k a ⊃ ◻ h i a. So one can consider extensions with either one of these two axioms [START_REF] Plotkin | A framework for intuitionistic modal logic[END_REF], or with both in conjunction in an attempt to recover the intuitionistic version of the corresponding classical Scott-Lemmon logic [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF]. In particular, we will study the intuitionistic variants of the logics in the S5 cube, for which we always mean the conjunction of the two versions of each axioms, that is, in an intuitionistic context:

t := (a ⊃ a) ∧ (◻a ⊃ a) b := (a ⊃ ◻ a) ∧ ( ◻a ⊃ a) d := ◻a ⊃ a 4 := ( a ⊃ a) ∧ (◻a ⊃ ◻◻a) 5 := ( a ⊃ ◻ a) ∧ ( ◻a ⊃ ◻a) 2 := ◻a ⊃ ◻ a
Extensions of other versions of constructive modal logics and for instance of the logic CK are however, to our knowledge, quite less understood. In particular, we lack an understanding of the power of such extensions as it has been observed for example that the axiom b already entails axioms k 3 and k 5 [START_REF] Arisaka | On nested sequents for constructive modal logic[END_REF].

Sequent and hypersequent calculi

Following Gentzen [START_REF] Gentzen | Untersuchungen über das logische Schließen[END_REF], a first attempt at a sequent calculus for the intuitionistic modal logic IK would be to consider a two-sided version of the classical sequent calculus for K with the restriction that only one formula can occur on the right-hand side. A intuitionistic sequent is a multiset of formulas with one formula occurrence specifically distinguished, it is written Λ ⇒ C, where Λ is a multiset of formulas and ⇒ is the delimiter. This would give the following rules:

Λ, A ⇒ B o k ◻Λ, A ⇒ B Λ ⇒ A ◻ o k ◻Λ ⇒ ◻A
as proposed for example in [START_REF] Collinson | Semantics and proof theory of an intuitionistic modal sequent calculus[END_REF]. However, adding these rules to a sequent calculus for intuitionistic propositional logic does not result in a complete calculus for intuitionistic modal logic IK, but rather for the logic called CK. Indeed, the axioms k 3 , k 4 and k 5 are not derivable via these rules. Although this is seen as a strong drawback for logicians, this calculus and extensions built in a similar fashion from the rules in Figure 2.2 have been exploited in modal type theories (in particular the extension with the rules corresponding to the axioms t and 4, known as CS4). These correspond to the calculi studied proof-theoretically in [START_REF] Prawitz | Natural Deduction, A Proof-Theoretical Study[END_REF][START_REF] Bierman | On an intuitionistic modal logic[END_REF][START_REF] Heilala | Bidirectional decision procedures for the intuitionistic propositional modal logic IS4[END_REF][START_REF] Mendler | Cut-free Gentzen calculus for multimodal CK[END_REF]; which originated from the analysis of logics comparing divergent processes in AI [START_REF] Stirling | Modal logics for communicating systems[END_REF], reasoning about hardware circuits [START_REF] Fairtlough | An intuitionistic modal logic with applications to the formal verification of hardware[END_REF], or defining a programming language with explicit binding time constructors [START_REF] Pfenning | A judgmental reconstruction of modal logic[END_REF].

Another attempt was proposed by Amati and Pirri in [START_REF] Amati | A uniform tableau method for intuitionistic modal logics I[END_REF]. They expose a uniform method to give tableau and (multi-conclusion) sequent systems for all the intuitionistic versions of the logics in the S5 cube. For example, they generalise the rules ◻ o k and o k above, as follows:

Λ, A ⇒ Π o k ◻Λ, A ⇒ ◻Π {Γ 1 , Γ 2 , Λ i ⇒ ◻Π i } 1≤i≤p {Γ 2 , Λ i ⇒ Π i } p+1≤i≤n ◻ o k Γ 1 , ◻Γ 2 ⇒ ◻A
if there exists a derivation D containing only structural and logical rules:

{Γ 2 , Λ i ⇒ Π i } 1≤i≤n D Γ 2 ⇒ A
As far as hypersequents go, in [START_REF] Galmiche | Label-free proof systems for intuitionistic modal logic IS5[END_REF] Galmiche and Salhi provide a proof system for intuitionistic modal logic IS5 based on what they call multi-conclusion sequents, that can be seen as the intuitionistic version of hypersequents. This is the only hypersequent calculus of which we are aware for intuitionistic versions of modal logics.

Investigating further hypersequents calculi for modal logics in a constructive setting would be an interesting avenue of future research. The formalism has been employed successfully to treat intermediate logics [START_REF] Ciabattoni | From axioms to analytic rules in nonclassical logics[END_REF], and the situation we are facing with intuitionistic modal logic is similar to the intermediate case. Indeed, we can see the various logics between the ◻-only fragment IPL + k1 + nec and full intuitionistic IK as intermediate logics, as suggested by de Medeiros in [START_REF] Da | Investigações acerca de uma versão modal para lógica intermediária dos domínios constantes[END_REF] who studied in detail IPL + k1 + k2 + k3 + k5. Furthermore, in [START_REF] Galmiche | Label-free proof systems for intuitionistic modal logic IS5[END_REF], Galmiche and Salhi actually also provide a proof system for an intermediate logic between IS5 and S5 called IM5 defined in [START_REF] Josep | Modality and possibility in some intuitionistic modal logics[END_REF], and the links between intuitionistic modal logics and intermediate predicate logics have already started to be explored by Ono and Suzuki in [START_REF] Ono | On some intuitionistic modal logics[END_REF][START_REF] Ono | Relations between intuitionistic modal logics and intermediate predicate logics[END_REF][START_REF] Suzuki | An algebraic approach to intuitionistic modal logics in connection with intermediate predicate logics[END_REF], so we hope to continue in this direction in the future.

Possible-world semantics

The Kripke semantics for IK was first defined by Fischer-Servi in [START_REF] Fischer | Axiomatizations for some intuitionistic modal logics[END_REF]. It combines the Kripke semantics for intuitionistic propositional logic and the one for classical modal logic, using two distinct relations on the set of worlds. Indeed, a bi-relational frame F is a triple W, ≤, R of a non-empty set of worlds W with two binary relations: R ⊆ W × W and ≤ a pre-order on W (i.e. a reflexive and transitive relation) satisfying the conditions: (F1) For all worlds u, v, v , if uRv and v ≤ v , there exists a u such that u ≤ u and u Rv :

u R / / v u ≤ O O R / / v ≤ O O (F2
) For all worlds u , u, v, if u ≤ u and uRv, there exists a v such that u Rv and v ≤ v :

u R / / v u ≤ O O R / / v ≤ O O A bi-relational model M is a quadruple W, ≤, R, V with W, ≤, R a frame and V a monotone valuation function V : W → 2 A
which is a function that maps each world w to the subset of propositional atoms that are true in w, subject to:

w ≤ w ⇒ V (w) ⊆ V (w )
As in the classical case, we write w a if a ∈ V (w) and we extend this relation to all formulas by induction, following the rules for both intuitionistic and modal Kripke models:

w w A ∧ B iff w A and w B w A ∨ B iff w A or w B w A ⊃ B iff for all w with w ≤ w , if w
A then also w B w ◻A iff for all w and u with w ≤ w and w Ru, we have u A w A iff there is a u ∈ W such that wRu and u A

We write w A if it is not the case that w A, but contrarily to the classical case, we do not have w ¬A iff w A (since ¬A is defined as A ⊃ ).

From the monotonicity of the valuation function V , we get a monotonicity property for the relation .

Proposition (Monotonicity) For any formula A and for w, w ∈ W , if w ≤ w and w A, then w

A.

We say that a formula A is satisfied in a model , Plotkin and Stirling [START_REF] Plotkin | A framework for intuitionistic modal logic[END_REF]) A formula A is derivable in the Hilbert system IK if and only if A is valid in every bi-relational frame. Now, we would like to consider special restrictions on these bi-relational frames, similarly to what we did in the classical case. For example, we would be interested in having a correspondence between the logic IK extended with some variants of SL axioms and bi-relational frames satisfying the corresponding condition defined in (2.3) similarly to Theorem 2.3.2.

M = W, R, ≤, V , if for all w ∈ W we have w A. A formula A is valid in a frame W, R, ≤ , if for all valuations V , A is valid in W, R, ≤, V 3.3.2 Theorem
In the intuitionistic case, the correspondence theory is much more tedious, and a lot of questions are still open. For the general form of intuitionistic SL logic, which would be IK extended with a set of axioms of the form:

( h ◻ i a ⊃ ◻ j k a) ∧ ( j ◻ k a ⊃ ◻ h i a)
it is not clear that the class of frames satisfying condition (2.3) is even complete (see [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF] for a detailed analysis). However, Theorems 6.2.1 and 8.1.4 of [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF] entail a completeness result for bi-relational models with respect to the restricted family of intuitionistic SL path axioms. , Simpson [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF]) Let P be a set of axiom schemes of the form:

Theorem

( h ◻a ⊃ ◻ j a) ∧ ( j a ⊃ ◻ h a)
A is a theorem of IK + P if and only if A is satisfied in every bi-relational model W, R, ≤, V that satisfies: for all w, u, v ∈ W if wR h u and wR j v then uRv.

The completeness of IK, IKT, IKTB, IS4 and IS5 with respect to their corresponding bi-relational models already appeared in [START_REF] Fischer | Axiomatizations for some intuitionistic modal logics[END_REF]. However this completeness result is not a correspondence result: the axioms do not characterise the considered class of frames. Plotkin and Stirling give proper correspondence results, but they must distinguish the two dual parts of each axiom and appeal to both relations of the frames, R and ≤. [START_REF] Plotkin | A framework for intuitionistic modal logic[END_REF]) An intuitionistic modal frame W, R, ≤ validates g hijk if and only if the frame satisfies: if wR h u and wR j v then there exists u and x such that u ≤ u , u R i x, and

Theorem (Plotkin and Stirling

vR k x u R i u ≤ O O w R h = = R j ! ! x v R k > >
The semantics of other versions of intuitionistic modal logics, for example of CK or CS4, has also been studied [START_REF] Wijesekera | Constructive modal logics I[END_REF][START_REF] Fairtlough | Propositional lax logic[END_REF][START_REF] Alechina | Categorical and Kripke semantics for constructive S4 modal logic[END_REF][START_REF] Mendler | Constructive CK for contexts[END_REF][START_REF] Kojima | Relational and neighborhood semantics for intuitionistic modal logic[END_REF]]. However we are not aware of any general correspondence or even completeness results for extensions of the basic logic with wider families of axioms or frames properties. We do not give more details here as we will focus on IK and its extensions in this thesis.

Labelled deduction.

Echoing to the definition of bi-relational structures, the straightforward extension of labelled deduction to the intuitionistic setting would be to use two sorts of relational atoms, one for the modal relation R and another one for the intuitionistic relation ≤. This is the approach developed by Maffezioli, Naibo and Negri in [START_REF] Maffezioli | The Church-Fitch knowability paradox in the light of structural proof theory[END_REF]. To our knowledge this has not yet been investigated much further, but could be a fruitful perspective; it would be interesting for example to integrate Plotkin and Stirling's completeness result (Theorem 3.3.4) into this framework, or to combine the advances on labelled systems based on neighbourhood semantics for non-normal modal logics with the semantics for CK proposed in [START_REF] Kojima | Relational and neighborhood semantics for intuitionistic modal logic[END_REF].

However, another approach was taken by Simpson [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF] even earlier than Maffezioli et al's work. Simpson followed the lines of Gentzen in a labelled context, namely, he developed a labelled natural deduction framework for modal logics and then converted it into sequent systems with the consequent restriction to one formula on the right-hand side of each sequent. This worked as well in the labelled setting as in the ordinary sequent case; we will present Simpson's sequent system labIK and its extensions in the rest of this section.

Intuitionistic labelled sequents are written G, L ⇒ z : C for some multiset of labelled formulas L, some formula C, some label z and a set of relational atoms G. The rules of labIK (Figure 3.1) are very similar to the one of labK (Figure 2.4) with the standard restrictions for intuitionistic version of the right-rules ∨ lab R1 and ∨ lab R2 and the left-rule ⊃ lab L . It is possible to 

id lab G, L, x : a ⇒ x : a lab L G, L, x : ⇒ z : A ⊺ lab R G, L ⇒ x : ⊺ G, L, x : A ∧ B, x : A, x : B ⇒ z : C ∧ lab L G, L, x : A ∧ B ⇒ z : C G, L ⇒ x : A L ⇒ x : B ∧ lab R G, L ⇒ x : A ∧ B G, L, x : A ∨ B, x : A ⇒ z : C G, L, x : A ∨ B, x : B ⇒ z : C ∨ lab L G, L, x : A ∨ B ⇒ z : C G, L ⇒ x : A ∨ lab R1 G, L ⇒ x : A ∨ B G, L ⇒ x : B ∨ lab R2 G, L ⇒ x : A ∨ B G, L, x : A ⊃ B ⇒ x : A G, L, x : A ⊃ B, x : B ⇒ z : C ⊃ lab L G, L, x : A ⊃ B ⇒ z : C G, L, x : A ⇒ x : B ⊃ lab R G, L ⇒ x : A ⊃ B G, xRy, L, x : ◻A, y : A ⇒ z : B ◻ lab L G, xRy, L, x : ◻A ⇒ z : B G, xRy, L ⇒ y : A ◻ lab R y is fresh G, L ⇒ x : ◻A G, xRy, L, x : A, y : A ⇒ z : B lab L y is fresh G, L, x : A ⇒ z : B G, xRy, L ⇒ y : A lab R G, xRy, L ⇒ x : A
∧ . . . ∧ a n ) ⊃ (∃x 1 A 1 ∨ . . . ∨ ∃x m A m ))
we can construct the schematic rule:

A 1 (y 1 /x 1 ), a 1 , . . . , a n , G, L ⇒ z : C . . . A m (y m /x m ), a 1 , . . . , a n , G, L ⇒ z : C lab grs a 1 , . . . , a n , G, L ⇒ z : C (3.
2) where again G is a set of relational or equality atoms, L is a multiset of labelled modal formulas, z : C is a given labelled formula, each a i for 1 ≤ i ≤ n is a relational or an equality atom, each A j for 1 ≤ j ≤ m denotes the set of relational or equality atoms present in A j , and y 1 , . . . , y m are vectors of fresh eigenvariables, i.e. do not occur in the conclusion.

Simpson also considers a particular subclass of geometric formulas: a Horn clause is a first-order formula of the form:

∀z((a 1 ∧ . . . ∧ a n ) ⊃ b)
where b and all the a i for 1 ≤ i ≤ n are atomic formulas, so in our case relational or equality atoms. When the geometric frame condition actually is a Horn clause, Simpson observes that the structural rule can be replaced by the following two propagation rules:

G, L, y : A ⇒ z : C ◻ lab L * xRy ∈ G * G, L, x : ◻A ⇒ z : C G, L ⇒ y : A lab R * xRy ∈ G * G, L ⇒ x : A (3.3)
where G * is the closure of the relational set G with respect to the considered Horn clause. Completeness of the system labIK extended with the general geometric rule scheme is nontrivial. However, in the restricted case of intuitionistic SL paths axioms, we can observe a correspondence with the Hilbert axiomatisation of both the system extended with structural rules and the one with propagation rules. Indeed, SL paths axioms correspond to frame properties which are Horn clauses, as we have seen in Theorem 3.3.3. [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF]) Let P be a set of intuitionistic Scott 

Theorem (Simpson

3.

A is provable in the Hilbert system K + P.

As discussed by Simpson, the reason why this theorem holds is that in a derivation of a theorem of a logic based on SL path axioms, the steps referring to non-tree graphs G can be eliminated via appealing to the closure G * of the accessibility relation. This result still holds when the axiom d : ◻A ⊃ A is added to the set P (even though it is not a path axiom), if using the corresponding geometric rule:

G, xRy, L ⇒ z : C lab d G, L ⇒ z : C
where x appears in L or x = z, but y is fresh in the premiss.

Unlabelled deduction

Outside the calculi that we already mentioned in Section 3.2, we do not know of many directions which have been explored to give proof systems uniformly and modularly for intuitionistic versions of modal logics. In particular, in the formalisms we mentioned earlier such as display calculi and unlabelled tableaux nobody seems to have investigated intuitionistic versions. One line of work that has been successfully explored is nested sequents for intuitionistic modal logic with the independent work of Galmiche and Salhi [START_REF] Galmiche | Label-free natural deduction systems for intuitionistic and classical modal logics[END_REF] and of Straßburger [START_REF] Straßburger | Cut elimination in nested sequents for intuitionistic modal logics[END_REF][START_REF] Marin | Label-free modular systems for classical and intuitionistic modal logics[END_REF].

The way we defined nested sequents and their meaning in the classical case is purely symmetric: at each node, the interpretation of each child sub-tree is boxed and considered to be disjunctively related to that of the other child sub-trees and to the formulas at the node. Following Gentzen's idea, to move from classical to intuitionistic consists in introducing an asymmetry between input (i.e., the left) formulas, which constitute the hypotheses and a single output (or the right) formula, which constitutes the conclusion. Exactly one of the formulas in the sequent will therefore be annotated with a special mark, a superscript • , to signify that it is the output, all other formulas being then interpreted as inputs; it is crucial to note that we mark one formula in the whole sequent tree, and not every bracket separately [START_REF] Galmiche | Label-free natural deduction systems for intuitionistic and classical modal logics[END_REF][START_REF] Straßburger | Cut elimination in nested sequents for intuitionistic modal logics[END_REF].

Intuitionistic nested sequents are defined in terms of a grammar of input sequents (written Λ) where the output formula does not occur, and full sequents (written Π) where the output formula does occur. (When the distinction between input and full sequents is not essential or cannot be made explicit, we will use ∆ to stand for either case.)

Λ ::= ∅ | A, Λ | [Λ 1 ], Λ 2 Π ::= Λ, A • | Λ, [Π] ∆ ::= Λ | Π Every full sequent Π therefore has the shape Λ 1 , [Λ 2 , • • • [Λ n , A • ] • • •]
for some integer n, and removing the output formula from a full sequent yields an input sequent. As in the classical case, the corresponding formula fm n (Π) gives the meaning of an intuitionistic nested sequent in the modal language. It is defined as

: fm n (∅) := ⊺, fm n (A, Λ) := A ∧ fm n (Λ), fm n ([Λ 1 ], Λ 2 ) := fm n (Λ 1 ) ∧ fm n (Λ 2 ), fm n (Λ, A • ) := fm n (Λ) ⊃ A, fm n (Λ, [Π]) := fm n (Λ) ⊃ ◻fm n (Π)
. where all occurrences of A ∧ ⊺ and ⊺ ⊃ A are simplified to A.

Example

The full sequent

Π = A, B, [C • , [B]], [D, A, [C]
] is the term used to describe the following tree:

tree(Π) = A, B C • B D, A C
It can be interpreted in the modal language as: fm and contains only input formulas, so when it is used to build a sequent exactly one of its arguments will itself be a full sequent.

n (Π) = (A∧B∧ (D∧A∧ C)) ⊃ ◻( B ⊃ C). id n Λ{a, a • } Λ{A • } Λ{B • } ∧ n R Λ{A ∧ B • } ⊺ n R Λ{⊺ • } Π{A, B} ∧ n L Π{A ∧ B} Π{∅} ⊺ n L Π{⊺} Λ{A • } ∨ n R1 Λ{A ∨ B • } Λ{B • } ∨ n R2 Λ{A ∨ B • } Π{A} Π{B} ∨ n L Π{A ∨ B} n L Π{ } Λ{A, B • } ⊃ n R Λ{A ⊃ B • } Π * {A ⊃ B, A • } Π{B} ⊃ n L Π{A ⊃ B} Λ1{[Λ2, A • ]} n Rk Λ1{[Λ2], A • } Π{[A]} n L Π{ A} Λ{[A • ]} ◻ n R Λ{◻A • } ∆1{◻A, [A, ∆2]} ◻ n Lk ∆1{◻A
Λ{A • } n Rt Λ{ A • } Λ1{[Λ2], A • } n Rb Λ1{[Λ2, A • ]} Λ1{[Λ2, A • ]} n R4 Λ1{[Λ2], A • } Λ1{[Λ2]}{ A • } n R5 Λ1{[Λ2, A • ]}{∅} Π{◻A, A} ◻ n Lt Π{◻A} ∆1{[◻A, ∆2], A} ◻ n Lb ∆1{[◻A, ∆2]} ∆1{◻A, [◻A, ∆2]} ◻ n L4 ∆1{◻A, [∆2]} ∆1{[∆2, ◻A]}{◻A} ◻ n L5 ∆1{[∆2, ◻A]}{∅}
Given a context that contains no output formulas, e.g., of the form Λ{ }, it is possible to replace the hole with a full sequent Π, in which case the substitution Λ{Π} is also a full sequent. If the context contains an output formula, however, then this formula must be removed before such a substitution is syntactically well-formed. We write ∆ * 1 • • • n for the result of deleting any output formula from an n-holed context ∆

1 • • • n .

Example

Consider the input context Λ{ } = [[B, C], { }], C; the full context Π 1 { } = C, [{ }, [B, C • ]]; and the full sequent Π 2 = A, [B • ]. Then, Λ{∅} = [[B, C]], C is an input sequent; while Λ{Π 2 } = C, [[B, C], A, [B • ]] and Π 1 {Λ{∅}} = C, [[[B, C]], C, [B, C • ]] are full sequents. Π 1 {Π 2 } on the other hand is not well-formed because it would contain both C • and B • , but Π * 1 {Π 2 } = C, [[B], A, [B • ]] is a full sequent.
In Figure 3.2 we display the rules of system nIK and some extensions from [START_REF] Straßburger | Cut elimination in nested sequents for intuitionistic modal logics[END_REF]. The rules are similar to the classical ones (Figure 2.5) except that they present a right and a left version in the intuitionistic case, which apply respectively to an output or an input formula respectively.

Example

We give as an example the proof of k 4 : (

a ⊃ ◻b) ⊃ ◻(a ⊃ b) in nIK. Observe how b • is deleted from the first premiss of ⊃ n L . id n a ⊃ ◻b, [a • , a] n R a ⊃ ◻b, a • , [a] id n ◻b, [a, b, b • ] ◻ n L ◻b, [a, b • ] ⊃ n L a ⊃ ◻b, [a, b • ] ⊃ n R a ⊃ ◻b, [a ⊃ b • ] ◻ n R a ⊃ ◻b, ◻(a ⊃ b) • ⊃ n R ( a ⊃ ◻b) ⊃ ◻(a ⊃ b) •
The basic system nIK in the first part of Figure 3.2 can be extended modularly by the left and right rules ◻ n Lx + n Rx corresponding to each axiom x among {t, b, 4, 5} in the second part. (Straßburger [131]) Let X be an axiomatically complete subset of {t, b, 4, 5}. For any formula A, the following are equivalent.

Theorem

1.

A is a theorem of IK + X.

2.

A is provable in nIK + ◻ n LX + n RX + cut where cut is the rule

Π * {C • } Π{C} cut Π{∅} 3. A is provable in nIK + ◻ n LX + n RX .
Note the particular form of the cut-rule; in the left premiss the output formula of Π has to be pruned in order to maintain the output uniqueness when A • is added to the sequent. In the proof of this theorem, as for Theorem 2.5.6, axiomatic completeness is only needed for cut-elimination and cut-free completeness, not for soundness and completeness with cut.

Conjecture

We would expect that this result can be extended to any logic obtained by adding to IK a set P of intuitionistic path SL axioms such as p : ( h ◻a ⊃ ◻ j a) ∧ ( j a ⊃ ◻ h a), by using rules (for each p ∈ P) derived from the classical case described in Section 2.5 of the form:

Π u ◻A v A ◻ n Lp Π u ◻A v ∅ Λ u ∅ v A • n Rp Λ u A • v ∅ if there is a path π from u to v in the propagation graph of ∆ u ∅ v
∅ such that ( π , ◇) appears in the completion of P. Indeed, this would correspond to Theorem 3.4.1 in the formalism of nested sequents.

Note that, as we already mentioned, d is not a path axiom. In [START_REF] Straßburger | Cut elimination in nested sequents for intuitionistic modal logics[END_REF] Straßburger claimed to have built rules corresponding to axiom d from the classical rule in (2.7), in a similar fashion, which gives:

Π{◻A, [A]} ◻ n Ld Π{◻A} Λ{[A • ]} n Rd Λ{ A • }
These rules, once added to the system nIK, give a sound and complete system (for the logic ID = IK + d), but the combination of these rules with the ones of Figure 3.2 do not necessarily give a sound and complete system for the respective extensions of ID. For example, the system nIK + ◻ n Ld + n Rd + ◻ n L4 + n R4 is not cut-free complete for the logic IK + d + 4. As an illustration, we can see that

IK + 4 + d ( a ⊃ ) ⊃ (a ⊃ b), but nIK + ◻ n Ld + n Rd + ◻ n L4 + n R4 ( a ⊃ ) ⊃ (a ⊃ b).
This formula is only derivable with the aid of a cut-rule:

id n [[a • , a]] n Rk a • , [[a]] n L , [[a, b • ]] ⊃ n L a ⊃ , [[a, b • ]] ⊃ n R a ⊃ , [[a ⊃ b • ]] n Rd a ⊃ , [ (a ⊃ b) • ] ◻ n R a ⊃ , ◻ (a ⊃ b) • id n a ⊃ , [[a, a • ]] id n a ⊃ , [[b, a, b • ]] ⊃ n L a ⊃ , [[a ⊃ b, a, b • ]] ⊃ n R a ⊃ , [[a ⊃ b, a ⊃ b • ]] n Rk a ⊃ , [[a ⊃ b], (a ⊃ b) • ] n L a ⊃ , [ (a ⊃ b), (a ⊃ b) • ] n R4 a ⊃ , [ (a ⊃ b)], (a ⊃ b) • ◻ n Ld a ⊃ , ◻ (a ⊃ b), (a ⊃ b) • cut a ⊃ , (a ⊃ b) • ⊃ n R ( a ⊃ ) ⊃ (a ⊃ b) •
If we follow the procedure proposed in [START_REF] Straßburger | Cut elimination in nested sequents for intuitionistic modal logics[END_REF] to eliminate this cut, we will end up with a proof that contains an occurrence of the structural rule n d which cannot be eliminated:

id n [[a, a • ]] n Rk a • , [[a]] n L , [[a, b • ]] ⊃ n L a ⊃ , [[a, b • ]] ⊃ n R a ⊃ , [[a ⊃ b • ]] n Rd a ⊃ , [ (a ⊃ b) • ] n R4 a ⊃ , (a ⊃ b) • , [ ] n d a ⊃ , (a ⊃ b) • ⊃ n R ( a ⊃ ) ⊃ (a ⊃ b) •
It therefore seems that, contrarily to the classical case, the axiom d cannot be handled via a propagation rule in the intuitionistic case (which is consistent with Theorem 3.4.1. Finally, in [START_REF] Marin | Label-free modular systems for classical and intuitionistic modal logics[END_REF] we also worked towards eliminating the axiomatic completeness condition from the assumptions of this theorem. It is possible to do so by using exactly the same structural rules as in the classical case (presented on Figure 2.6). Because here structural rules are needed anyway, it is not a problem to handle d in this case. As before, this result should extend to any set P containing intuitionistic SL path axioms and the axiom d using the structural rule that we defined in (2.8). [START_REF] Marin | Label-free modular systems for classical and intuitionistic modal logics[END_REF]) Let X be any subset of {t, b, d, 4, 5}. For a formula A, the following are equivalent.

Theorem (Marin and Straßburger

1. A is a theorem of IK + X. 2. A is provable in nIK + ◻ n LX + n RX + n X .
A theory of nested sequent systems for extensions of constructive modal logic CK has been conducted in [START_REF] Arisaka | On nested sequents for constructive modal logic[END_REF]. We do not present it here as we will not be using this logic in the rest of our exposition, but it would be interesting to understand how the two approaches relate to each other and to the different approaches using labelled sequents.

Bridges

We do not know of many attempts to build bridges between the different approaches at hand for intuitionistic modal logics. Some students tried to start the groundwork in their Master's theses such as Murawska [START_REF] Murawska | Intuitionistic modal logic IS5: Formalizations, interpretation, analysis[END_REF] or Hein [START_REF] Hein | Geometric theories and modal logic in the calculus of structures[END_REF], and probably others that we have not heard of. However, because in the intuitionistic case the different formalisms give rise to distinct logics (including axioms k 3 , k 4 , and k 5 , or not), the task of relating the various systems is subtler than in the classical case.

We have already argued in Section 2.6 for the formalism of indexed nested sequent as a potential candidate to close some technical debates on proof formalisms for modal logics. In this section we will review our results on extending this formalism to the intuitionistic setting [START_REF] Marin | Proof theory for indexed nested sequents[END_REF].

We define intuitionistic indexed nested sequents according to a similar grammar as intuitionistic nested sequents:

Λ ::= ∅ | A, Λ | y Λ 1 , Λ 2 Π ::= Λ, A • | Λ, x Π ∆ ::= Λ | Π
The intuitionistic indexed nested system inIK is shown in Figure 3.3. Observe that the structural rules in the bottom line are identical to system inK. It is also the case that each system can be extended with the rules presented in (2.9) and (2.10). This system can be seen, similarly to the classical case, as a compact way to rewrite the labelled system labIK, but unlike the classical case, its relation to the Hilbert axiomatisation and its semantical interpretation is not straightforward. 

id in Λ{a, a • } Λ{A • } Λ{B • } ∧ in R Λ{A ∧ B • } ⊺ in R Λ{⊺ • } Π{A, B} ∧ in L Π{A ∧ B} Π{∅} ⊺ in L Π{⊺} Λ{A • } ∨ in R1 Λ{A ∨ B • } Λ{B • } ∨ in R2 Λ{A ∨ B • } Π{A} Π{B} ∨ in L Π{A ∨ B} in L Π{ } Λ{A, B • } ⊃ in R Λ{A ⊃ B • } Π * {A ⊃ B, A • } Π{B} ⊃ in L Π{A ⊃ B} ∆1 ◻A, w A, ∆2 ◻ in L ∆1 ◻A, w ∆2 Λ v A • ◻ in R Λ{◻A • } Π v A in L Π{ A} Λ1 w A • , Λ2 in R Λ1 A • , w Λ [
∅ w A tp in 1 Π w A w ∅ Λ w ∅ w A • tp in 2 Λ w A • w ∅ ∆1 w u ∆2 u ∅ bc in 1 ∆1 w u ∆2 w ∅ ∆1 w u ∆2 w u ∅ bc in 2 ∆1 w u ∆2 w ∅ Figure 3.3: System inIK

Completeness

Completeness of inIK + in G with respect to IK + G is proved in a standard manner. As a first step, the cut-elimination proof conducted in inK can be reproduced in a similar fashion in the intuitionistic systems. [START_REF] Marin | Proof theory for indexed nested sequents[END_REF]) Let G be a set of intuitionistic Scott-Lemmon axioms. For any formula A, the following are equivalent.

Theorem (Marin and Straßburger

1. A is provable in inK + in G + cut where cut is the rule ∆ * {A • } ∆{A} cut ∆{∅} 2. A is provable in inK + in G
Proof sketch. The proof works similarly to the one of Theorem 2.6.4. We need to transform the system in a similar fashion as we did with ïnK, removing the tp-rule and changing the rules id, ◻ in L , in R for respectively

ïd ∆ u a • u a ∆1 u ◻A {[A, ∆2]} ◻in L ∆1 u ◻A u [∆2] ∆1 u ∅ u [A • , ∆2] ¨ in R ∆1 u A • {[∆2]}
Then, we can easily extend Lemma 2.6.6 and 2.6.7 to the intuitionistic setting. And so, we can prove a reduction lemma like Lemma 2.6.9 for the intuitionistic system. The proof is almost identical, except that the reduction cases now occur between the left and the right rule for each connective, and that there are some additional cases for ⊃ . Finally, we can prove a result similar to Lemma 2.6.8 in the intuitionistic setting to complete the proof.

We deduce then that every theorem of IK + G is a theorem of inIK + in G using the cutelimination result. Note that, in the classical case, a similar proof can be conducted, and it provides an alternative to Fitting's proof of cut-free completeness [START_REF] Fitting | Cut-free proof systems for Geach formulas[END_REF]. [START_REF] Marin | Proof theory for indexed nested sequents[END_REF]) Let G be a set of intuitionistic SL axioms and in G be the corresponding set of rules. If a formula A is provable in the Hilbert system IK + G, then the sequent A • is provable in the indexed nested sequent system inIK + in G .

Theorem (Marin and Straßburger

Proof. The axioms of intuitionistic propositional logic as well as the axioms k 1 -k 5 can be derived in inIK, in the same way as in the usual nested sequent system presented in [START_REF] Straßburger | Cut elimination in nested sequents for intuitionistic modal logics[END_REF].

The necessitation rule of the Hilbert system can be simulated by the structural rule nec, which is admissible in inIK (by a similar result as Lemma 2.6.6), and Modus Ponens can be simulated by the cut-rule, which is also admissible (Theorem 3.6.1). Thus, it remains to show that any g klmn axiom can be derived, using the corresponding rule in g klmn :

id u 1 . . . u k ◻ l a, v 1 ◻ l-1 a, . . . v l-1 ◻a, v l . . . . . . , w 1 . . . wm x 1 . . . x n-1 xn a, a • . . . . . . tp c l = dn u 1 . . . u k ◻ l a, v 1 ◻ l-1 a, . . . v l-1 ◻a, v l a . . . . . . , w 1 . . . wm x 1 . . . x n-1 xn a • . . . . . . l•◻ in L , n• in R u 1 . . . u k ◻ l a, v 1 . . . v l . . . . . . , w 1 . . . wm n a • , x 1 . . . xn . . . . . . in g klmn u 1 . . . u k ◻ l a . . . , w 1 . . . wm n a • . . . k• in L , m•◻ in R k ◻ l a, ◻ m n a • ⊃ in R k ◻ l a ⊃ ◻ m n a •
However, there are examples of theorems of inIK+ in G that are not theorems of IK+G, that is, the indexed nested sequent system is not sound with respect to the Hilbert axiomatisation using what we gave above as the intuitionistic alternative to Scott-Lemmon axioms. There is already a simple counter-example when G consists of the sole axiom g 1111 : ◻A ⊃ ◻ A. The formula

F = ( (◻(a ∨ b) ∧ a) ∧ (◻(a ∨ b) ∧ b)) ⊃ ( a ∧ b) (3.4)
is derivable in inIK + n g1111 , but is not a theorem of IK + n g1111 (as mentioned in [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF]). Thus, for some set of SL axioms G, the logic given by the Hilbert axiomatisation IK + n G and the one given by the indexed nested sequent system inIK + in G actually differ in the intuitionistic case.

Soundness

In the classical case, the indexed nested sequent system is not only equivalent to the Hilbert axiomatisation using Scott-Lemmon axioms, it is actually sound and complete wrt. the corresponding Kripke semantics. In this section, we investigate the behaviour of system inIK and its extensions, regarding the Kripke semantics for intuitionistic modal logics.

For proving the soundness of our system, we must also define what is the validity of a sequent in a model. For this, we adapt here the method of Fitting [START_REF] Fitting | Cut-free proof systems for Geach formulas[END_REF] to the intuitionistic setting. The first step is to put intuitionistic indexed nested sequent in correspondence with intuitionistic models.

Let ∆ be an indexed nested sequent and let M = W, R, ≤, V be an intuitionistic Kripke model. A homomorphism h : ∆ → M is a mapping h : I ∆ → W , such that R ∆ (w, v) implies R(h(w), h(v)) for all w, v ∈ I ∆ . A pre-order relation between homomorphisms can be obtained from the pre-order in an intuitionistic model: For h, h : ∆ → M two homomorphisms, we write h ≤ h if h(w) ≤ h (w) in M for all w ∈ I ∆ .

The notion of validity can then be defined by induction on the sub-sequents of a given sequent. However, the correspondence between indices in a sequent and worlds in a model brings us to consider the particular class of exhaustive sub-sequents. Let ∆ and ∆ w be indexed nested sequents, and w ∈ I ∆ . We say that ∆ w , w is an exhaustive subsequent of ∆ if either ∆ w = ∆ and w = 0, or ∆ = ∆ 0 w ∆ w for some context ∆ 0 { }. Note that for a given index w of ∆, there might be more than one ∆ w such that ∆ w , w is an exhaustive subsequent of ∆, simply because w can occur more than once in ∆. For this reason we will write ẇ to denote a particular occurrence of w in ∆ and ∆| ẇ for the subsequent of ∆ rooted at the node ẇ. Then ∆| ẇ, w stands for a uniquely defined exhaustive subsequent of ∆. Let h : ∆ → M be a homomorphism from a sequent ∆ to a model M. Let w ∈ I ∆ and let ∆ w , w be an exhaustive subsequent of ∆. Then ∆ w has one of the following forms: (i) either ∆ w = B 1 , . . . , B l , v1 Λ 1 , . . . , vn Λ n . Then we define h, w i ∆ w as h(w) B i for some i ≤ l or h, v j i Λ j for some j ≤ n;

(ii) or ∆ w = B 1 , . . . , B l , v1 Λ 1 , . . . , vn Λ n , A • . Then we define h, w i ∆ w as either h(w) B i for some i ≤ l or h, v j i Λ j for some j ≤ n or h(w) A;

(iii) or ∆ w = B 1 , . . . , B l , v1 Λ 1 , . . . , vn Λ n , u Π . Then we define h, w i ∆ w as either h(w) B i for some i ≤ l or h, v j i Λ j for some j ≤ n or for all homomorphisms h ≥ h, we have that h , u i Π.

If, for all h ≥ h, we have h , w i ∆ w , then we say that ∆ w , w is satisfied in M under h. Then, a sequent ∆ is satisfied in a model M, if ∆, 0 is satisfied in M under every h : ∆ → M.

Informally, an indexed nested sequent is satisfied in a modal M if it contains somewhere in the sequent tree an output formula that is satisfied in M or an input formula that is not. The following lemma formalises this idea.

Lemma

Let ∆ be an indexed nested sequent. Let ∆ v , v be an exhaustive subsequent of ∆. Suppose ∆ v = ∆ 0 w A for some context ∆ 0 w and some formula A. Let M be a bi-relational model and h : ∆ → M a homomorphism.

• If A = A • and h(w) A, then h, v i ∆ v . • If A = A and h(w) A, then h, v i ∆ v .
Proof sketch. By a straightforward induction on the height of the tree rooted at the considered occurrence of v. The base case occurs when A • (or A) is at the root of that tree.

We now make explicit the class of model that we are going to consider in order to interpret system inIK+ in G . We need to appeal to the notion of graph-consistency introduced by Simpson [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF]. A bi-relational model M is called graph-consistent if for any sequent Γ, given any homomorphism h : Γ → M, any w ∈ I Γ , and any w ≥ h(w), there exists h ≥ h such that h (w) = w . [START_REF] Marin | Proof theory for indexed nested sequents[END_REF]) Let G be a set of intuitionistic SL axioms and in G be the corresponding set of rules. If a sequent ∆ is provable in inIK + in G then it is satisfied in every graph-consistent bi-relational model M = W, R, ≤, V that obeys condition (2.3), i.e. for each k, l, m, n with g klmn ∈ G:

Theorem (Marin and Straßburger

for all w, u, v ∈ W with wR k u and wR m v there is a z ∈ W such that uR l z and vR n z.

The proof proceeds by induction on the height of the derivation, i.e., the length of the longest path in the tree from its root to one of its leaves, and crucially relies on Lemma 3.6.5, which states that each rule of inIK + in G is sound when interpreted in these graph-consistent models that obey condition (2.3).

Lemma

Let G be a set of intuitionistic SL axioms and in G be the corresponding set of rules. Let

∆1 • • • ∆n r ∆
be an instance of an inference rule in inIK+ in G for n = 0, 1, 2. If all of ∆ 1 , . . . , ∆ n are satisfied in every graph-consistent model that satisfies (2.3), then so is ∆.

Proof. First, assume that r is

Φ n g klmn Ψ
, for some k, l, m, n > 0.

By way of contradiction, suppose that Φ is satisfied in every graph-consistent model that satisfies (2.3) and that there exist a model M = W, R, ≤, V that satisfies (2.3), and a homomorphism h : Ψ → M such that Ψ, 0 is not satisfied in M under h. Recall that Ψ has the form: 

Ψ = Γ u0 u1 ∆ 1 , . . . u k ∆ k . . . , w1 Σ 1 , . . . wm Σ m . . . Therefore, there exist u 0 , u k , w m in W such that u 0 = h(u 0 ), u k = h(u k ), w m = h(w m ),
(z) = h(z) for all z ∈ I Ψ , h (v i ) = v i for 1 ≤ i ≤ l and h (x j ) = x j for 1 ≤ j ≤ n.
We are now going to show that for every h : Ψ → M, and every occurrence ż of an index z ∈ I Ψ , we have h, z i Ψ| ż iff h , z i Φ| ż . We proceed by induction on the height of the tree rooted at ż. There are four cases:

1. The node of ż is a leaf node of Ψ, and z = u k and z = w m . Then we have Ψ| ż = Φ| ż and the claim holds trivially. 4. v = w m . This case is similar to the previous one.

Since we assumed that Ψ, 0 is not satisfied in M under h, we can conclude that Φ, 0 is not satisfied in M under h , contradicting the satisfiedity of Φ. The proofs for bc, tp, and the other cases of n g klmn when one of the parameters is 0, are similar. For the logical rules, we will consider in details the case for ◻ in R , the others are similar or simpler (the cases for ⊃ in R also makes use of the graph-consistency property). Suppose that Φ = Γ w v A • is satisfied in every graph-consistent model that satisfies (2.3). For Ψ = Γ w ◻A • , suppose that there exists a graph-consistent model M = W, R, ≤, V obeying (2.3), and a homomorphism h : Ψ → M such that Ψ, 0 is not satisfied in M under h. Therefore, there exists h ≥ h such that h , 0 i Ψ, in particular by Lemma 3.6.3, h (w) ◻A. So there exist w and v such that wRv, h (w) ≤ w and v A.

As M is graph-consistent, there exists h such that w = h (w). Thus, we can extend h by setting h (v) = v to obtain a homomorphism h : Φ → M, indeed Φ and Ψ have the same set of indices related by the same underlying structure, but for the fresh index v that does not appear in Ψ. Finally, as h (v) A, we have by Lemma 3.6.3 that Φ, 0 is not satisfied in M under h , which contradicts the assumption of satisfiedity of Φ.

In the classical case, for a given set of SL axioms G, the logic given by inK + in G corresponds exactly to the logic axiomatised by the extension of the Hilbert system K with the corresponding Scott-Lemmon axioms G. We could construct the proof as follows. First, every theorem of K + G is a theorem of inK + in G (as a corollary of cut-elimination in inK + in G ). Then, every theorem of inK + in G is satisfied in any classical model that satisfies (2.3). And in the end, the cornerstone that would allow one to conclude that inK + in G is indeed sound and complete wrt. K + G, is Theorem 2.3.2 that states that the Hilbert system K + G actually completely axiomatises classical models that obey condition (2.3).

In the intuitionistic case, we do have Theorem 3.6.2 giving that every theorem of IK + G is a theorem of inIK + in G , and Theorem 3.6.4 giving that every theorem of inIK + in G is satisfied in graph-consistent models that obey (2.3), but there is no proper equivalent of Theorem 2.3.2 to "link" the two theorems into a actual soundness and completeness result for inIK + in G . As we have seen, the first inclusion is strict, since the formula in (3.4) is provable in inIK + in G , but not in IK + G. However, the strictness of the second inclusion is open.

Open question

Is there a certain set G ⊆ N 4 such that there exists a formula that is satisfied in every directed graph-consistent model that obeys (2.3), but that is not a theorem of inIK + in G ?

To conclude, we can say that the accurate definition of intuitionistic modal logics might actually come from structural proof-theoretical studies rather than Hilbert axiomatisations or semantical considerations. For Simpson [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF] there are two different (but equivalent) ways to define intuitionistic modal logics, either the natural deduction systems he proposes, or the extension of the standard translation for intuitionistic modal logics into first-order intuitionistic logic. Equivalence between the natural deduction systems and the Hilbert axiomatisations, or direct interpretation of the natural deduction systems in intuitionistic (bi-relational) structures are just side-results. He therefore sees their failure for the majority of logics not as a problem, but rather as another justification of the validity of the prooftheoretic approach. 

II « Unfolding »

We will observe through our focused telescope some of the systems presented in the previous part in order to get closer to their core composition. The course of this part will allow us to unfold inference rules in unlabelled calculus by stripping away layers of abstraction. Taking an unlabelled inference step, we can understand its behaviour in terms of a synthetic rule in the world of labelled sequents, and so any labelled rule can itself be interpreted as a synthetic rule in the world of focused first-order logic. In Chapter 4, we will introduce the base system for first-order logic and see how it can build synthetic rules. In Chapter 5, we will unfold labelled rules into this system for first-order logic. And finally, in Chapter 6, we will unfold rules from unlabelled calculi into the labelled framework.

Focusing for first-order logic

To analyse the proof theory of modal logic, it is useful to have some tools that are a bit stronger which can be applied not just to propositional logic, but to the wider first-order world. First-order logic is an extension of propositional logic (whether classical or intuitionistic) to include predicates in the language. Those predicates can apply to some terms that are built from term variables, constants and functions. Two binding operators are added to the language in order to introduce the possibility to quantify over these terms. That is, if A is a given first-order formula, so are ∃x.A and ∀x.A, where the variable x that could appear freely in formula A is now bound. The intended semantics is that there exists a term t such that the formula (x/t)A, obtained by substituting t for the variable x everywhere in A, holds and respectively that for all term t, (x/t)A holds.

The standard sequent systems introduced by Gentzen for (classical or intuitionistic) firstorder logic are respectively called LK and LJ, extending the propositional sequent calculi with rules for the quantifiers [START_REF] Gentzen | Untersuchungen über das logische Schließen[END_REF]. We do not give the standard unfocused version of these rules, but we start by recalling their focused version in Section 4.1. For this thesis, we give a different presentation of the focused systems LKF and LJF than the original in [START_REF] Liang | Focusing and polarization in linear, intuitionistic,and classical logics[END_REF]; in particular, we will be using an explicitly polarised syntax which considerably alleviates the notations. We end this chapter by explaining in Section 4.2 how to build macro synthetic rules from micro focused rules [START_REF] Zeilberger | Focusing and higher-order abstract syntax[END_REF].

The ABC of focusing

Classical system

The way we will present the notion of focusing relies heavily on a certain polarisation of connectives. That is, we classify formulas into negative formulas whose rules are invertible, and positive formulas, whose rules require either some form of choice or some interaction between the main formula and the rest of the sequent. For instance, existential formulas are positive, as in the sequent they tend to remain as side formulas until it is possible to instantiate them with the adequate term; but universal formulas never need to be preserved and so can be decomposed eagerly as the rule introducing the universal quantifier is invertible, and as such they are classified as negative.

For simplicity we use an explicitly polarised syntax [START_REF] Laurent | Étude de la Polarisation en Logique[END_REF] consisting of the classes of positive and negative formulas, with a pair of shift connectives which allows for formulas to embed the classes into each other. Outside of the quantifiers which, as we saw, have fixed polarity, the rest of the connectives have ambiguous polarities, in the sense that it is possible to design inference rules for them that give them a positive or a negative interpretation. In the classical case, we will introduce polarised versions of ∨, ∧, , and ⊺, that have the same truth tables as the original unpolarised ones, but different inference rules in a sequent system. We can also play around with the polarity of the atomic predicates: we can say Γ, P that they are all positive, or all negative, or a mix of both, as long as each atom is assigned exactly one polarity. In the classical case, the dual of a negative atom is positive, and vice-versa. The different polarisations do not change provability but can radically influence the structure of proofs (distinguishing for example what is known as backward vs. forward chaining of implications [START_REF] Chaudhuri | A logical characterization of forward and backward chaining in the inverse method[END_REF]). The polarity of a formula is given by the polarity of its top-level connective according to the following grammar:

+ ∨ Q Γ, Q + ∨2 Γ, P + ∨ Q Γ, P Γ, Q + ∧ Γ, P + ∧ Q + ⊺ Γ, + ⊺ Γ, (t/
P ::= p | n | P + ∧ P | + ⊺ | P + ∨ P | + | ∃x.P | ↓N L ::= p | n | ↓N N ::= p | n | N - ∨ N | -| N - ∧ N | - ⊺ | ∀x.N | ↑P R ::= p | n | ↑P
We use the notation p and n to vary over positive and negative atomic predicates respectively, but note that they can contain free first-order variables. As we are in a classical setting, each column in the grammar above defines a pair of de Morgan duals; note that the negation of a positive formula is a negative formula, and vice versa. Every polarised formula P or N is related to an unpolarised formula by a depolarisation map ∂(•) which simply erases the shifts ↑ and ↓, collapses + ∧ and -∧ into ∧, as well as + ∨ and -∨ into ∨. A formula is said to be neutral if its main connective is one of the shifts, or if it is an atom or a negated atom. More precisely, we can distinguish negative neutral formulas, denoted R above, and positive neutral formulas, denoted L above.

A polarised sequent is the same as in the non-focused setting, with the difference that all formulas are polarised. The class of invertible sequents, written Σ, is a subclass of polarised sequents consisting only of negative formulas. An invertible sequent is neutral if it is built from only negative neutral formulas, according to the grammar:

Γ ::= ∅ | Γ, n | Γ, p | Γ, ↑P
A focused sequent is of the form Γ, P , that is, it is a neutral sequent Γ with an additional highlighted positive formula P which is called its focus.

As we have said in Chapter 1, during backward proof search, it is possible to apply all invertible rules at any time, and therefore in particular as first rules. What Andreoli [START_REF] Andreoli | Logic programming with focusing proofs in linear logic[END_REF] observed is a parallel behaviour of non-invertible rules, namely that it is also fine to apply them in sequences, to a formula and all its sub-formulas, as long as their main connectives are of the same non-invertible kind. A focused proof is morally a proof where the decision to apply a non-invertible rule to a neutral formula must be explicitly taken, and this decision commits the proof to retaining focus on its sub-formulas until there is a polarity change.

This drastically reduces the search space, and the main theorem of focusing is that this strategy is complete, i.e., every theorem that has a proof in LK has a focused proof.

The easiest way to prove this result is to design, from LK the standard system for firstorder classical logic, a sort of subsystem, called LKF, that formally implements this idea, i.e. it is constrained in order to build only proofs of the focused form. Then, showing that this system is complete, that is, that every provable formula in LK also has a proof in this restricted system LKF, is equivalent to show that any provable formula has a proof that is focused. (Liang and Miller [83]) The system LKF is sound and complete with respect to LK, i.e. a negative neutral formula R is provable in LKF if and only if ∂(R) is provable in LK.

Theorem

We are going to explain how the focused system LKF, presented in Figure 4.1, can only build focused proofs. A proof in LKF begins-reading from conclusion upwards-with a neutral end-sequent, to which only the rule ↑ may be applied (sometimes called in the literature the decide rule). In each case one shifted positive formula is selected in the conclusion and a copy of it (the rule implicitly contains an instance of contraction) is put under focus in the premiss, at which point the proof enters the focus phase, where noninvertible rules can be applied to the formula in focus until the focus becomes neutral again (but positive neutral this time). At this point, the proof either finishes with id if the focus is atomic, or it enters the inversion phase using the rule ↓ (sometimes called in the literature the release rule) that drops the focus on a shifted formula. In the inversion phase, negative formulas are decomposed, in an arbitrary order, using invertible rules, until eventually the sequent becomes neutral again.

Note however, that our system does not include an equivalent of the rule called store. In fact, it is unnecessary at the theoretical level and is mainly used in the literature for implementation purposes. Removing the store rule makes the decision and release rules of the system correspond exactly to the introduction rules for the two shift connectives ↓ and ↑, respectively, that inject each polarised class into the other. This simplification is completely independent of the classical or intuitionistic flavour of the logic.

Intuitionistic system

In the previous chapter, input and output formulas were differentiated in an intuitionistic sequent using some sort of structural marking like • -annotations or a sequent delimiter ⇒, but without any particular restrictions on which kinds of formulas may receive which annotations or be placed on which side of the arrow. It turns out that the polarity of connectives actually make them naturally belong to one or the other annotation/side. The use of the polarised syntax will therefore make the input/output annotations unnecessary.

In the intuitionistic case, the polarised syntax separates the classes of positive formulas, whose right-rules are non-invertible and negative formulas, whose left-rules are noninvertible. The classification is almost canonically determined; in particular, contrarily to the classical case, ∨ and can only be positive and ⊃ is negative. The exceptions are the atomic predicates which will be separated again into the positive ones p and the negative ones denoted n, as well as the ∧ and ⊺ connectives which we divide into their polarised versions 

::= R | N - ∧ N | - ⊺ | P ⊃ N | ∀x.N R ::= n | ↑P
As before, we write L for particular positive formulas that we call left-neutral formulas, and R for particular negative formulas that we call right-neutral formulas. They can be atoms or built from the polarity shifts ↓ and ↑, which are used to move between the two polarised Intuitionistically meaningful polarised sequents are exactly those sequents with a single negative formula interpreted as the output. We can define invertible sequents as a specific type of polarised sequents. We denote by Ω left invertible sequents, which are composed only of positive formulas, and by Ξ full invertible sequents, which contain additionally one single instance of a negative formula. We write Θ when the distinction is unnecessary or impossible. Focused sequents are neutral sequents with an occurrence of P or N . We can relate these notations to the usual concepts in the literature, and see a sequent Π, P with a positive focus as focused "on the right", and a sequent N , Π with a negative focus as focused "on the left". A focused intuitionistic proof follows a similar discipline to a focused classical proof. Starting from a neutral end-sequent, one neutral formula is chosen as a focus by one of ↑ R or ↓ L , then non-invertible rules can be applied to it and to its sub-formulas during a focus phase until the focus becomes neutral again. At this point either the proof ends with an identity, or the focus is released by one of ↓ R or ↑ L . The proof then enters an inversion phase to decompose any negative formula until the whole sequent is back to neutral. Note that, because the ↓ R rule introduces a negative formula to the premiss sequent, any negative formula appearing in the conclusion must be deleted in the premiss. However, this is the only place where a negative formula has to be removed; the polarised syntax and focused system allow us otherwise to keep the output formula until the end of the focused phase. This restricted way of building proofs is again sound and complete with the standard proof system LJ for first-order intuitionistic logic. (Liang and Miller [83]) The system LJF is sound and complete with respect to LJ, i.e. a right-neutral formula R is provable in LJF if and only if ⇒ ∂(R) is provable in LJ.

Inversion phase P, Ω, N ⊃ R Ω, P ⊃ N Ω, N Ω, M - ∧ R Ω, N - ∧ M - ⊺ R Ω, - ⊺ Ω, (y/x)N ∀ R y is a fresh variable Ω, ∀x.N P, Q, Ξ + ∧ L P + ∧ Q, Ξ Ξ + ⊺ L + ⊺, Ξ P, Ξ Q, Ξ ∨ L P ∨ Q, Ξ L ,
∨ R1 Π, P ∨ Q Π, Q ∨ R2 Π, P ∨ Q Π, P Π, Q + ∧ R Π, P + ∧ Q + ⊺ R Π, + ⊺ Π, (t/x)P ∃ R t is a term Π, ∃x.P N , Π - ∧ L1 N - ∧ M , Π M , Π - ∧ L2 N - ∧ M , Π Π, P N , Π ⊃ L P ⊃ N , Π (t/x)N , Π ∀ L t is
id R p, Π, p id L n , Λ, n Λ, N ↓ R Λ, R, ↓N P, Π ↑ L ↑P , Π

Theorem

From focused to synthetic reasoning

Once we have imposed the focused structure on proofs, we gain a new perspective on proofs and may distinguish between what could be called micro rules, the ordinary sequent calculus rules, and macro rules, that contain an entire phase of a focused proof, and as such can be seen as rules introducing a synthetic connective, called synthetic rules [START_REF] Curien | Introduction to linear logic and ludics, part I[END_REF]. Indeed, we can observe what a focus phase would actually look like. Bottom-up, we start with a neutral sequent, and focus on a positive formula, which gets decomposed into sub-formulas until we reach sub-formulas that are again neutral. This piece of a derivation should look as follows in the classical case:

Γ, ↑P, ↓Ni 1≤i≤k pi ∈ Γ id+ Γ, ↑P, pi 1≤i≤kp ni ∈ Γ id- Γ, ↑P, ni 1≤i≤kn + ⊺ Γ, ↑P, + ⊺ pos Γ, ↑P, P ↑ Γ, ↑P
where the braces enclose multi-sets of premisses, the index i ranges over their arbitrary size. The leftmost set of premisses is open and ends on a neutral sequent containing an occurrence of a neutral focus, and the last three sets are closed premisses, either by an identity rule id + or id -, or by a rule introducing

+ ⊺.
A synthetic rule corresponding to this whole phase would only record the open premisses, but the closed premisses constrain the shape of the context as some atoms have to be present to be able to close the branches: Γ, p1 , . . . , p kp , n 1 , . . . , n kn , ↑P, ↓N i 1≤i≤k pos Γ, p1 , . . . , p kp , n 1 , . . . , n kn , ↑P Note however that the + ∨ rule introduces a choice in the sub-formulas of P that are retained as premisses. For example, if P = (↓N 1

+ ∧ ↓N 2 ) + ∨ (↓N 3 + ∧ ↓N 4 )
, we can extract the two following distinct rules for the synthetic connective (•

+ ∧ •) + ∨ (• + ∧ •): ↓N 1 ↓N 2 (• + ∧ •) + ∨ (• + ∧ •) 1 ↑(↓N 1 + ∧ ↓N 2 ) + ∨ (↓N 3 + ∧ ↓N 4 ) ↓N 3 ↓N 4 (• + ∧ •) + ∨ (• + ∧ •) 2 ↑(↓N 1 + ∧ ↓N 2 ) + ∨ (↓N 3 + ∧ ↓N 4 )
Similarly we can observe how an inversion phase looks like in general. Starting, still bottom-up, with a neutral sequent that contains a focus on a shifted negative formula, the focus is released and the negative formula is decomposed into sub-formulas that are again neutral. This piece of a derivation should look as follows in the classical case:

Γ, ↑Pi1, . . . , ↑Pin i 1≤i≤j - ⊺ Γ, Σi, - ⊺ neg Γ, N ↓ Γ, ↓N
where again the brackets indicate sets of premisses, the first one being the open premisses, the second one the premisses that are closed by a -⊺ rule. Here there is no choice involved, all the positive sub-formulas of N are present in the premisses. Furthermore, the context is not constrained by the presence or not of atomic formulas. This gives the following abstract rule for a synthetic negative connective:

{Γ, ↑P i1 , . . . , ↑P ini } 1≤i≤j neg Γ, ↓N For example if N = (↑P 1 - ∧ ↑P 2 ) - ∨ (↑P 3 - ∧ P 4
), there can be only one synthetic rule for the synthetic connective (•

- ∧ •) - ∨ (• - ∧ •): ↑P 1 , ↑P 3 ↑P 1 , ↑P 4 ↑P 2 , ↑P 3 ↑P 2 , ↑P 4 (• - ∧ •) - ∨ (• - ∧ •) ↓(↑P 1 - ∧ ↑P 2 ) - ∨ (↑P 3 - ∧ ↑P 4 )
Now, we can moreover see that it would be possible to plug in one of the neg synthetic rule on top of each premiss of the synthetic rule pos. Following Andreoli [START_REF] Andreoli | Logic programming with focusing proofs in linear logic[END_REF], such a pair of a focus phase and an inversion phase is called a bipole, with the bottom phase corresponding to the application of a pos synthetic rule, and the top phase to the adequate set of neg synthetic rules. For example starting with the formula P = (↑P

1 - ∧ ↑P 2 ) + ∨ (↓↑P 3 + ∧ ↓(↑P 4 - ∨ ↑P 5 )),
we can obtain one of the two following bipoles:

↑P 0 , ↑P 1 ↑P 2 neg ↓((↑P 0 - ∨ ↑P 1 ) - ∧ ↑P 2 ) pos ↓((↑P 0 - ∨ ↑P 1 ) - ∧ ↑P 2 ) + ∨ (↓↑P 3 + ∧ ↓(↑P 4 - ∨ ↑P 5 )) ↑P 3 neg ↓↑P 3 ↑P 4 , ↑P 5 neg ↓(↑P 4 - ∧ ↑P 5 ) pos ↓(↑P 1 - ∧ ↑P 2 ) + ∨ (↓↑P 3 + ∧ ↓(↑P 4 - ∨ ↑P 5 ))
A bipole is therefore a derivation D such that, its root is a neutral sequent that is the conclusion of a ↑ rule application; its leaves are either closed by an identity rule, a

+ ⊺ or a - ⊺
rule, or open on neutral sequents with no focus; and all the non-invertible rule applications occur below any invertible rule application.

Zeilberger [START_REF] Zeilberger | Focusing and higher-order abstract syntax[END_REF] has proposed a way to describe formally synthetic rules and has designed a synthetic proof system (for intuitionistic propositional logic) that can only build proofs from these macro rules. This might certainly not be ideal in terms of complexity. The number of rules in the positive case and the number of premisses in the negative case would in fact grow exponentially as a function of the number of ∧/∨ alternations in a given synthetic connective (as we could see on our examples). However, the applications we are going to explore in the rest of this thesis take place at a more abstract proof-theoretical level: we will use the notion of synthetic rules in two different ways.

In the rest of this part, we consider the rules of the modal proof systems introduced in Part I (namely labelled sequent and ordinary sequent rules), and unfold their behaviour as synthetic rules. This means that we can see some standard rules of modal proof systems as macro-rules over a more fine grained system (namely LKF or LJF) and this informs us about some of the internal mechanics of these rules. In Part III, on the other hand, we will take the rules from modal proof systems of Part I (namely nested sequent rules) and, considering them as micro rules this time, fold them together in bunch in order to extend the systems of [START_REF] Zeilberger | Focusing and higher-order abstract syntax[END_REF] to modal logics. This allows for a simplification of the design of the nested sequent systems, as well as of the study of their meta-theoretical properties.

Unfolding labelled deduction via first-order logic

In [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF], Miller and Volpe show how to emulate the classical labelled sequent system labK [START_REF] Negri | Proof analysis in modal logics[END_REF] using the focused calculus for first-order classical logic LKF [START_REF] Liang | Focusing and polarization in linear, intuitionistic,and classical logics[END_REF]. They propose an encoding of classical modal formulas into polarised first-order formulas that allows them to obtain a precise correspondence between each rule of labK, along with any of its extension by geometric axioms, and a bipole in LKF.

In this chapter, we extend the results of [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF] to the intuitionistic case; that is, we show that we can emulate the intuitionistic labelled calculus labIK of [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF] via the focused calculus for first-order intuitionistic logic LJF [START_REF] Liang | Focusing and polarization in linear, intuitionistic,and classical logics[END_REF]. We extend the polarisation proposed in [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF] to the intuitionistic syntax and the two-sided calculus. Our notations differ as we are using an explicitly polarised syntax, but the proofs are basically identical, sometimes even simpler thanks to this choice. As in the classical case, the most interesting cases are the ones for modalities, the only point where the use of first-order logic is important. We furthermore consider extensions of intuitionistic modal logic IK with geometric frame conditions, and show that in the intuitionistic case as well they can be polarised such as to correspond to a bipole.

From labelled modal to focused first-order

The idea of unfolding the labelled system for modal logic into the focused system for firstorder logic is to see each rule of labK or labIK as a macro rule composed of micro focused rules in LKF or LJF respectively. It relies heavily on the fact that modal logic can actually be expressed as a fragment of first-order logic via what is called as the standard translation (see e.g., [START_REF] Blackburn | Modal logic: a semantic perspective[END_REF]). The key point is the way the modalities are interpreted, following the semantics presented in Section 2.3, ◻ corresponding to a universal quantification ∀ and to an existential ∃.

We recall the result of [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF] for the classical case. It makes use of polarised version of the standard translation to interpret every classical labelled sequent S := G ⇒ R as a LKF sequent, and then to transform each proof in labK as a proof in LKF. [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF]) There exists a proof D in the labelled system labK of a sequent S if and only if there is a proof D in LKF of the polarised translation of S with an exact correspondence of each rule application in D and each bipole in D .

Theorem (Miller and Volpe

We are now going to adapt this result and its proof to the intuitionistic case. We first present a translation from the language of labIK into the language of LJF, which is based on the standard translation for modal formulas, but polarised for our purposes. Given a world x, we define respectively a left translation • x and a right translation • x from modal formulas into polarised neutral first-order formulas as follows, where for each propositional atom a, we pick a positive predicate p a (x) to correspond to a and r(x, y) is a positive predicate that is only used to correspond to relational atoms:

a x = p a (x) a x = ↑p a (x) ⊺ x = ↓↑ + ⊺ ⊺ x = ↑ + ⊺ x = ↓↑ x = ↑ ◻A x = ↓∀y.(r(x, y) ⊃ ↑ A y ) ◻A x = ↑↓∀y.(r(x, y) ⊃ A y ) A ∧ B x = ↓↑( A x + ∧ B x ) A ∧ B x = ↑(↓ A x + ∧ ↓ B x ) A x = ↓↑∃y.(r(x, y) + ∧ A y ) A x = ↑∃y.(r(x, y) + ∧ ↓ A y ) A ∨ B x = ↓↑( A x ∨ B x ) A ∨ B x = ↑(↓ A x ∨ ↓ B x ) A ⊃ B x = ↓(↓ A x ⊃ ↑ B x ) A ⊃ B x = ↑↓( A x ⊃ B x )
We extend this translation from formulas to labelled sequents. As seen in Section 3.4, an intuitionistic labelled sequent is of the shape G, L ⇒ z : B, where G is a set of relational atoms e.g. xRy for some labels x and y, L is a multiset of labelled formulas x : A with x a label and A a modal formula, and finally z : B is a distinguished labelled formula, separated from the others by the ⇒ symbol to give an intuitionistic reading to the sequent. We write:

G for {r(x, y) | xRy ∈ G} L for { A x | x : A ∈ L}
Then, we can translate the labelled sequent S := G, L ⇒ z : B into the LJF neutral sequent G , L , B z that we denote S .

The first direction of the encoding, from labIK to LJF, can then be formulated as the following theorem.

Theorem

Let D be a proof in the labelled system labIK of a sequent S. There exists a proof D in LJF of the polarised neutral sequent S such that each rule application in D corresponds to a bipole in D .

Proof. The idea of the proof is to transform the labIK derivation bottom-up, by swapping each rule {S i } i≤n r S of labIK (with n ≤ 2) for a derivation

{ S i } i≤n S
which is a bipole in LJF.

At each step, we get LJF sequents as leaves that are the translations of the premisses of the labIK rule, so we can continue up to the identity leaves of the proof.

For each rule of labIK, the corresponding bipole in LJF is obtained as follows: r(x,y),L ,A x,r(x,y)

• For r = id lab G, L, x : a ⇒ x : a id R G , L , pa(x), a x, pa(x) ↑ R G , L , a x, a x • For r = lab L G, L, x : ⇒ z : A L G , L , x, , A z ↑ L G , L , x, ↑ , A z ↓ L G , L , x, A z • For r = ⊺ lab R G, L ⇒ x : ⊺ + ⊺ G , L , ⊺ x, + ⊺ ↑ G , L , ⊺ x • For r = G, L, x : A ∧ B, x : A, x : B ⇒ z : C ∧ lab L G, L, x : A ∧ B ⇒ z : C G , L , A ∧ B x, A x, B x, C z + ∧ L G , L , A ∧ B x, A x + ∧ B x, C z ↑ L G , L , A ∧ B x, ↑( A x + ∧ B x) , C z ↓ L G , L , A ∧ B x, C z • For r = G, L ⇒ x : A G, L ⇒ x : B ∧ lab R G, L ⇒ x : A ∧ B G , L , A x ↓ R G , L , A ∧ B x, ↓ A x G , L , B x ↓ R G , L , A ∧ B x, ↓ B x + ∧ R G , L , A ∧ B x, ↓ A x + ∧ ↓ B x ↑ R G , L , A ∧ B x • For r = G, L, x : A ∨ B, x : A ⇒ z : C G, L, x : A ∨ B, x : B ⇒ z : C ∨ lab L G, L, x : A ∨ B ⇒ z : C G , L , A ∨ B x, A x, C z G , L , A ∨ B x, B x, C z ∨ L G , L , A ∨ B x, A x ∨ B x, C z ↑ L G , L , A ∨ B x, ↑( A x ∨ B x) , C z ↓ L G , L , A ∨ B x, C z • For r = G, L ⇒ x : A ∨ lab R1 G, L ⇒ x : A ∨ B G , L , A x ↓ R G , L , A ∨ B x, ↓ A x ∨ R G , L , A ∨ B x, ↓ A x ∨ ↓ B x ↑ R G , L , A ∨ B x • For r = G, L ⇒ x : B ∨ lab R2 G, L ⇒ x : A ∨ B G , L , B x ↓ R G , L , A ∨ B x, ↓ B x ∨ R G , L , A ∨ B x, ↓ A x ∨ ↓ B x ↑ R G , L , A ∨ B x • For r = G, L, x : A ⊃ B ⇒ x : A G, L, x : A ⊃ B, x : B ⇒ z : C ⊃ lab L G, L, x : A ⊃ B ⇒ z : C • For r = G, L, x : A ⇒ x : B ⊃ lab R G, L ⇒ x : A ⊃ B G , L , A x, B x ⊃ R G , L , A x ⊃ B x ↓ R G , L , A ⊃ B x, ↓( A x ⊃ B x) ↑ R G , L , A ⊃ B x • For r = G, xRy, L, x : ◻A, y : A ⇒ z : B ◻ lab L G, xRy, L, x : ◻A ⇒ z : B id L G , r(x, y), L , ◻A x, r(x, y) , B z G , r(x, y), L , ◻A x, A y , B z ↑ L G , r(x, y), L , ◻A x, ↑ A y , B z ⊃ L G , r(x, y), L , ◻A x, r(x, y) ⊃ ↑ A y , B z ∀ L G , r(x, y), L , ◻A x, ∀y.(r(x, y) ⊃ ↑ A y ) , B z ↓ L G , r(x, y), L , ◻A x, B z • For r = G, xRy, L ⇒ y : A ◻ lab R y is fresh G, L ⇒ x : ◻A G , L , r(x, y), A y ⊃ R G , L , r(x, y) ⊃ A y ∀ R y is fresh G , L , ∀y.(r(x, y) ⊃ A y ) ↓ R G , L , ◻A x, ↓∀y.(r(x, y) ⊃ A y ) ↑ R G , L , ◻A x • For r = G, xRy, L, x : A, y : A ⇒ z : B lab L y is fresh G, L, x : A ⇒ z : B G , L , A x, r(x, y), A y , B z + ∧ L G , L , A x, r(x, y) + ∧ A y , B z ∃ L y is fresh G , L , A x, ∃y.(r(x, y) + ∧ A y ), B z ↑ L G , L , A x, ↑∃y.(r(x, y) + ∧ A y ) , B z ↓ L G , L , A x, B z • For r = G, xRy, L ⇒ y : A lab R G, xRy, L ⇒ x : A id R G , r(x, y), L , A x, r(x, y) G , r(x, y), L , A y ↓ R G , r(x, y), L , A x, ↓ A y + ∧ R G ,
+ ∧ ↓ A y ∃ R G , r(x, y), L , A x, ∃y.(r(x, y) + ∧ ↓ A y ) ↑ R G , r(x, y), L , A x
So we see here how each single rule from labIK unfolds into a derivation of LJF. Such a derivation however is always a bipole, which suggests to inspect the adequacy to this unfolding.

In the next section, we show that indeed any bipole proof of a first-order polarised formula which is the translation of a labelled modal formula actually corresponds to the application of a rule of labIK. That is, the encoding of labIK into LJ is adequate at the level of proofs.

From focused first-order to labelled modal

The second side of the encoding, from LJF to labIK can then be stated as follows.

Theorem

Let D be a proof of an LJF sequent that is the translation S of some intuitionistic labelled sequent S. There exists a proof D of S in labIK such that each bipole in D corresponds to a single rule application in D.

We transform the LJF proof into a labIK proof by mapping each bipole that composes it to a corresponding rule in labIK. The proof D has to start, looking bottom-up, by a decision on some formula which is either C x or C x for some given x and C. Depending on which formula is chosen as focus, the proof will then be forced to unfold according to one of the bipoles we described in the proof of Theorem 5.1.2.

For instance, if the decision is on a formula of the form A x , then the bottom of D will have to look like:

G , L , A x, r(x, y), A y , B z + ∧ L G , L , A x, r(x, y) + ∧ A y , B z ∃ L y is fresh G , L , A x, ∃y.(r(x, y) + ∧ A y ), B z ↑ L G , L , A x, ↑∃y.(r(x, y) + ∧ A y ) , B z ↓ L G , L , A x, B z
which can be replaced by the rule xRy, G, L, x : A, y :

A ⇒ z : B lab L
where y is fresh G, L, x : A ⇒ z : B .

Similarly, if the decision is on a formula of the form A x , then the bottom of D will have to look like:

G , L , A x, r(x, y) G , L , A y ↓ R G , L , A x, ↓ A y + ∧ R G , L , A x, r(x, y) + ∧ ↓ A y ∃ R G , L , A x, ∃y.(r(x, y) + ∧ ↓ A y ) ↑ R G , L , A x
However, for this derivation to be a valid bipole, the left premiss has to be closed by an application of id R as the sequent contains a focus on the positive atom r(x, y). Hence, as we started with D which is indeed a valid proof, we know that r(x, y) has to appear in G .

Therefore, this bipole can be matched to the rule xRy, G, L ⇒ y :

A lab R xRy, G, L ⇒ x : A .
There is one such case for each possible modal formula B, just by reverting the unfolding we described in the proof of Theorem 5.1.2, which ensures that the encoding is adequate.

Extensions

In this section, we want to investigate the same question of encoding labelled systems for modal logic into focused systems for first-order logic, but for modal logics beyond IK, namely the ones that are defined by geometric frame conditions. We recall from Section 3.4 that a geometric frame property is of the following form:

∀u∀v((a 1 ∧ . . . ∧ a n ) ⊃ (∃x 1 (b 11 ∧ . . . ∧ b 1k1 ) ∨ . . . ∨ ∃x m (b m1 ∧ . . . ∧ b mkm )))
where each a i for 1 ≤ i ≤ n and each b jl for 1 ≤ j ≤ m, 1 ≤ l ≤ k j , is a relational or an equality atom, u i Rv i or u i = v i , and the variables in x j do not appear among u or v; the corresponding geometric rule scheme is:

A 1 (y 1 /x 1 ), a 1 , . . . , a n , G, L ⇒ z : C . . . A n (y n /x n ), a 1 , . . . , a n , G, L ⇒ z : C lab grs a 1 , . . . , a n , G, L ⇒ z : C
where G is a set of relational or equality atoms, L is a multiset of labelled modal formulas, each a i for 1 ≤ i ≤ n is a relational or an equality atom, each A j for 1 ≤ j ≤ m denotes the set of relational or equality atoms b j1 , . . . , b jkj , and the eigenvariables y 1 , . . . , y n are fresh, i.e. do not occur in the conclusion.

We propose the following polarisation for connectives and atoms of such a geometric frame property:

↓∀u∀v((a 1 + ∧ . . . + ∧ a n ) ⊃ (∃x 1 (b 11 + ∧ . . . + ∧ b 1k1 ) ∨ . . . ∨ ∃x m (b m1 + ∧ . . . + ∧ b mkm ))) (5.1)
with all the relational and equality atoms a i and b jl considered positive. Via this polarisation, we show that each application of a rule lab grs corresponds to a single bipole in LJF. This fact ensures that the statements of Theorems 5.1.2 and 5.2.1 hold also for any geometric extension of IK with a set of geometric frame properties and its corresponding system labIK + lab grs .

Theorem

Let C be a set of neutral polarised geometric frame conditions and lab C be the corresponding set of geometric rule schemes as in (3.2). There exists a proof in labIK + lab C of the sequent G, L ⇒ z : A if and only if there exists a proof in LJF of the sequent C, G , L , A z , with a strict correspondence between each rule of the proof in labIK + lab C and each bipole in the proof in LJF.

Consider one element of the set C, for instance ↓∀y.((a 1 + ∧. . .

+ ∧a n ) ⊃ ↑∨ m j=1 ∃x j .(b j1 + ∧. . . + ∧b jkj ))
. When this formula is chosen as the focus, it is processed along a single bipole and gives rise to a macro rule that matches exactly the application of the corresponding geometric rule scheme.

ai ∈ G id R C, ai , G , L , A z 1≤i≤n + ∧ R C, a1 + ∧ . . . + ∧ an , G , L , A z    C, (zj/xj)bj1, . . . , (zj/xj)b jk j , G , L , A z + ∧ L C, (zj/xj)(bj1 + ∧ . . . + ∧ b jk j ), G , L , A z ∃ L C, ∃xj.(bj1 + ∧ . . . + ∧ b jk j ), G , L , A z    1≤j≤m ∨ L C, ∨ m j=1 ∃xj.(bj1 + ∧ . . . + ∧ b jk j ), G , L , A z ↑ L C, ↑ ∨ m j=1 ∃xj.(bj1 + ∧ . . . + ∧ b jk j ) , G , L , A z ⊃ L C, (a1 + ∧ . . . + ∧ an) ⊃ ↑ ∨ m j=1 ∃xj.(bj1 + ∧ . . . + ∧ b jk j ) , G , L , A z ∀ L C, ∀y.((a1 + ∧ . . . + ∧ an) ⊃ ↑ ∨ m j=1 ∃xj.(bj1 + ∧ . . . + ∧ b jk j )) , G , L , A z ↓ L C, G , L , A z
The results in this chapter can be seen as part of the ProofCert project [START_REF] Miller | A proposal for broad spectrum proof certificates[END_REF][START_REF] Miller | Proofcert: Broad spectrum proof certificates[END_REF]. One of the products of this project is a general proof checker [START_REF] Chihani | The proof certifier checkers[END_REF], based on LKF for its classical version and on LJF for its intuitionistic version. Its aim is to check formal proofs that are obtained from proof search tools based in many different formalisms. To achieve this, the basic focused systems have to be augmented with a proof certificate [START_REF] Chihani | Foundational proof certificates in first-order logic[END_REF], which describes the proof evidence to be checked and the operational semantics of the proof formalism that was used to output it, which consists in a translation of the output language into the language of focused first-order logic and the notions of expert and clerk. Experts appear in the focus phase to extract information from the certificate and conduct the proof checking, while clerks appear in the inversion phase to perform simple procedures on the sequents without interacting with the certificate. Volpe and Libal have started implementing such certificates for some classical modal proof systems [START_REF] Libal | Certification of prefixed tableau proofs for modal logic[END_REF]; the results in this chapter allow labIK derivations to be described as first-order focused derivations, and therefore could be the basis for an extension of their work to the intuitionistic case in order to check proofs from the intuitionistic labelled calculus labIK within the augmented LJF.

Unfolding unlabelled deduction via labelling

In this chapter we present our joint work with Miller and Volpe [START_REF] Marin | A focused framework for emulating modal proof systems[END_REF]; it is another follow-up on their paper [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF]. With a little bit of magic, we can extend the results from the previous chapter to unfold unlabelled systems as well. Indeed, we saw that rules in the labelled systems, in particular geometric rule schemes, can be seen as synthetic inference rules that correspond to bipoles. So we unfold unlabelled systems into a focused labelled framework that can be used as a "springboard" to reach the base system LKF. In Section 6.1 we present a framework that will be general enough to emulate various unlabelled proof systems. In Section 6.2 we illustrate the way to use the framework on the example of sequent systems.

A focused labelled framework

In this section, we present the general framework LMF * . It can be seen as a focused version of the labelled system labK [START_REF] Negri | Proof analysis in modal logics[END_REF] presented in Section 2.4, further augmented with some elements that help control the structure of proofs and, in particular, emulate the behaviour of existing modal proof systems.

In [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF], Miller and Volpe derive a focused labelled system LMF for classical modal logics from the focused system for classical first-order logic. We can formulate it using an explicit polarised syntax; namely, in the classical setting, polarised modal formulas are build from the following grammar:

P ::= p | ↓N | P + ∧ P | + ⊺ | P + ∨ P | + | P N ::= p | ↑P | N - ∨ N | -| N - ∧ N | - ⊺ | ◻N
Observe that is a positive connective like the existential quantifier ∃ and ◻ is a negative connective like the universal quantifier ∀. We assume that all atoms are polarised positively. The depolarisation map is straightforwardly extended to modal formulas by ∂(◻N ) = ◻∂(N ) and ∂( P ) = ∂(P ). LMF * on Figure 6.1 is a reformulation of LMF with some additional features that do not affect the soundness of the system but allow us to constrain proofs to some specific shapes if we want.

1. When rule applications do not interfere with each other, they can, in fact, be applied in parallel. This justifies what is called multi-focusing, a variant of focusing where one can focus on several positive formulas at the same time [START_REF] Chaudhuri | Canonical sequent proofs via multi-focusing[END_REF][START_REF] Chaudhuri | A multi-focused proof system isomorphic to expansion proofs[END_REF]. In this way, we can group several positive rules within a single phase.

2. In the focus phase, we use a generalisation of labels; each formula, instead of being labelled by a single label like in labK, is labelled by a sequence of labels that we write xσ (with x a label and σ a possibly empty sequence of labels), more similar to the prefixed tableaux approach [START_REF] Fitting | Proof Methods for Modal and Intuitionistic Logics[END_REF]. We say that x is the present of the formula and σ is its future. We note that for the emulation of the calculi presented in this chapter, a future consisting of a singleton is enough, but we want to keep this framework general to allow for capturing also other behaviours.

T ; G ⇒ R, x1 : N1, . . . , xp : Np ↓ * T ; G ⇒ R, x1σ1 : ↓N1 , . . . , xpσp : ↓Np T ; G, yRy ⇒ R t * y appears in R T ; G ⇒ R T ; G, xRy, yRx ⇒ R b * T ; G, xRy ⇒ R T ; G, yRz ⇒ R d * y appears in R, but z is fresh T ; G ⇒ R T ; G,
3. In each sequent, we have to keep track of what we call the time context denoted T . In this chapter we will consider this context to be a pair (x, F) of a label x, the present of the sequent, and a set of labels F, the forbidden futures, but it could however be generalised for further applications.

4. When applying ↑ * , if T 1 = (x, F) for some F, we can either (i) (multi)focus on non--formulas labelled with x, that is, the foci are of the form xσ : P , where P is not a -formula; or (ii) "move" to a y reachable from x (by (multi)focusing on -formulas) if y is not in the set F of forbidden futures for x, that is, the foci are of the form zyσ : P , while xRy and zRy ∈ G, but y / ∈ F.

5.

The time changes from T 1 to T 2 at an application of ↑ * (red in Figure 6.1) when a decision is taken to focus on some formulas. In this general formulation, the set T 2 that we get in the premiss of the rule can be defined in an arbitrary way; a specific way of defining it will be proposed in next section, but again it can be designed in order to obtain particular behaviours in proofs.

sequent calculus rules, only formulas having a modal operator as the main connective can be "promoted" to a different world. This amounts to considering a single world at a time, in such a way that when moving to a new one, formulas standing at previously encountered worlds are no longer accessible. So the set T that keeps track of the time of the sequent, specifies which world is currently under consideration and which worlds are enabled, with the intended meaning that we can decide on a formula only if its label is available, and we cannot return back to the future (that is, to the forbidden ones).

A particularly challenging aspect of the emulation of modal rules such as the ◻ o k rule is that many introductions of connectives must be performed at once, which means that a single inference rule can correspond to more than one bipole in our emulation. We capture part of the parallel applications of inference rules using multi-focusing. This allows us to capture a modal rule via two synthetic inference rules: one of that performs the ◻-introduction (which corresponds to creating a new reachable world) and one that performs the -introduction (which correspond to moving all the -formulas to this newly created world).

We also specialise the rule ↑ * in order to emulate the behaviour of the ordinary sequent system oK and its extensions. In addition to the general conditions we gave earlier, we have that:

• if there exists y s.t. xRy ∈ G then we can focus on a multiset of formulas of the form zy : P s.t. zRy ∈ G, z ∈ F, and if x = y then T 2 = (y,

F ∪ {x}) = T 1 , but if x = y then T 2 = (x, F) = T 1 ; T 2 ; xRy, z 1 Ry, . . . , z n Ry, G ⇒ R, z 1 : ↑ P 1 , . . . , z n : ↑ P n , z 1 y : P 1 , . . . , z n y : P n ↑ o (x, F); xRy, z 1 Ry, . . . , z n Ry, G ⇒ R, z 1 : ↑ P 1 , . . . , z n : ↑ P n
• otherwise, we can choose a single focus, such that P is not a -formula:

(x, F); G ⇒ R, x : ↑P , x : P ↑ o (x, F); G ⇒ R, x : ↑P
Concretely, the specialisation with respect to the general framework consists in: restricting the use of multi-focusing to -formulas, forcing such -formulas to be labelled with the same future, and when moving to a new label, adding the current label to the set of forbidden futures. The structure of the proofs obtained by using these restrictions can be described as a sequence of 'blocks', each of which is related to a specific world/label. For each block, we first apply a number of ∧, ∨, and ◻-introductions in the current world (and some relational rules, if we are considering extensions of K) and then move to a new world by means of a -phase. The mechanism that we use, in ↑ o , for updating the time T of the sequent ensures that we never go back to an already encountered world. We call LMF o the system obtained from LMF * by replacing the rule ↑ * with the rule ↑ o .

As we have seen in the previous chapter, the key to embed an unpolarised system into a focused system is the way we translate and polarise the formulas of the former in order to generate bipoles in the latter. So, we present a polarisation that allows us to enforce the behaviour of the ordinary sequent inference rules in our focused labelled framework:

a o := ↑p a ā o := pa A ∧ B o := ↑↓( A o - ∧ B o ) A ∨ B o := ↑↓( A o - ∨ B o ) ◻A o := ↑↓◻ A o A o := ↑ ↓ A o
where we associate a positively polarised atom p a to any unpolarised atom a.

Modal logics without the 4 axiom

In an LMF * proof, we can encounter neutral sequents that do not correspond adequately to any sequent of a proof in ordinary sequent calculi for modal logic. We will thus base our correspondence results on an interpretation that takes this fact into account.

Let X = ∅ or {d} or {t}. Formally, we define the interpretation I K+X (•) of neutral labelled sequents as multisets of modal formulas as follows:

I K+X ((x, F); G ⇒ R) = {∂(N ) | x : N ∈ R} ∪ {◻∂(N ) | y : N ∈ R, xRy ∈ G * , y / ∈ F}
where ∂() is the depolarisation map defined in Section 4.1 and G * denotes the closure of G taking into account the property of reflexivity or seriality that might be indicated by X. (Marin,Miller and Volpe [86]) Let X = ∅ or {d} or {t}. Let D be an oK + o X proof of a formula A. There exists an LMF X o proof D of (x, ∅); ∅ ⇒ x : A o for some label x such that each rule application in D corresponds to one or two bipoles in D .

Theorem

This theorem is proved in a similar fashion to Theorem 5.1.2. For simplicity, we assume that in D the rule c is only applied to a given formula immediately below a rule that introduces an occurrence of such a formula. An LMF o derivation tends to keep information that is lost in the corresponding oK + o X derivation. We define a notion of sequent extension that will help compare the two systems. A neutral sequent T ; G ⇒ R 1 extends Γ if there exists R 2 ⊇ R 1 such that I K+X (T ; G ⇒ R 2 ) = Γ with R 1 and R 2 containing only formulas of the form x : A o . We proceed bottom-up by starting from the root of D and build D by repeatedly applying the next lemma. At each step, we get as leaves sequents that are extensions of the ones in D, so that the lemma can be applied again until we reach the initial sequent rules.

Lemma

Let X = ∅ or {d} or {t}. Let {Γ i } i≤n r Γ be an application of a nonstructural rule in oK + o X (with n ≤ 2). For any neutral sequent T 1 ; G 1 ⇒ R that extends Γ, there exists a derivation

{T 2 ; G 2 ⇒ R i } i≤n T 1 ; G 1 ⇒ R in LMF X o , such that each T 2 ; G 2 ⇒ R i extends Γ i .
Proof. The proof proceeds by considering all the non-structural rules of oK + o X . The cases for the axiom and the introduction of classical connectives are similar to the proof of Theorem 5.1.2.

Let us consider an application of the rule

Γ, A ◻ o k Γ, ◻A .
Take a neutral sequent (x, F); G ⇒ R that extends Γ, ◻A. It follows that x : Γ o ⊆ R and that either (a) x : ◻A o ∈ R; or (b) y : A o ∈ R and xRy ∈ G * . Then the LMF o derivation corresponding to this rule application consists in the following steps (reading the derivation bottom-up):

Let us consider an application of the rule Γ, A o t Γ, A Take a neutral sequent (x, F); G ⇒ R that extends Γ, A. We have that x :

A o ∈ R. The LMF o derivation corresponding to this rule application consists in the following bipole:

(x, F); xRx, G ⇒ R, x : A o ↓ * (x, F); xRx, G ⇒ R, x : ↓ A o * (x, F); xRx, G ⇒ R, xx : ↓ A o ↑ o (x, F); xRx, G ⇒ R, x : A o t * (x, F); G ⇒ R, x : A o
Let us consider an application of the rule Γ o d Γ Take a neutral sequent T ; G ⇒ R that extends Γ, which means that x :

Γ o ⊆ R. The LMF o derivation corresponding to this rule application consists in the following bipole:

(y, {x} ∪ F); xRy, G ⇒ R, y : Γ o ↓ * (y, {x} ∪ F); xRy, G ⇒ R, y : ↓ Γ o * (y, {x} ∪ F); xRy, G ⇒ R, xy : ↓ Γ o ↑ o (x, F); xRy, G ⇒ R, x : Γ o d * y is fresh (x, F); G ⇒ R

Modal logics with the 4 axiom

In the case of logics whose frames enjoy transitivity, our interpretation will also have to consider that in the rule ◻ o k4 and ◻ o k45 , -formulas stay in the sequent when going from conclusion to premiss, and such a behaviour can only be captured in LMF o by applying more than one step. The interpretation of neutral sequents has to be modified in this context, so we define for X ⊆ {d, t, 5}:

I K4+X ((x, F); G ⇒ R) ={A | x : A o ∈ R} ∪ {◻B | y : B o ∈ R, xRy ∈ G * , y / ∈ F} ∪ { C | z : C o ∈ R, zRx ∈ G * , z ∈ F}
where G * denotes the closure of G taking into account the property of euclideaness, reflexivity or seriality that might be indicated by X. (Marin,Miller and Volpe [86])

Theorem

Let X = ∅ or {d} or {t}. Let D be a proof of a formula A in oK4 + o X or oK45 + o X . There exists a proof D in LMF 4+X o or in LMF 4+5+X o respectively of (x, ∅); ∅ ⇒ x : A o for some label x.
This theorem is proved in exactly the same way as Theorem 6.2.1. We just have to adapt the notion of sequent extension to the new interpretation, namely a neutral sequent

T ; G ⇒ R 1 extends Γ if there exists R 2 ⊇ R 1 such that I K4+X (T ; G ⇒ R 2 ) = Γ with R 1 and R 2 containing
only formulas of the form x : A o . Then, we need to adapt Lemma 6.2.2 to this context with 4.

Lemma

Let X = ∅ or {d} or {t}. Let {Γ i } i≤n r Γ be an application of a nonstructural rule in oK4+ o X or in oK45+ o X (with n ≤ 2). For any neutral sequent T 1 ; G 1 ⇒ R that extends Γ, there exists a derivation

{T 2 ; G 2 ⇒ R i } i≤n T 1 ; G 1 ⇒ R in LMF 4+X o or in LMF 4+5+X o , such that each T 2 ; G 2 ⇒ R i extends Γ i .
Proof. The only cases that are affected by the presence of 4 are the modal rules. 1. if we are in case (a), decide on x : ◻A o , which adds xRy to the left-hand side: A o ∈ R and zRx ∈ G * . Case (a) is identical to the previous proof for o t without 4 so we focus on case (b). After possible applications of relational rules leading to a sequent whose relational set contains zRx, the LMF o derivation corresponding to this rule application consists in the following bipole:

(x, F); xRy, G ⇒ R, y : A o ◻ * (x, F); G ⇒ R, x : ◻ A o ↓ * (x, F); G ⇒ R, x : ↓◻ A o ↑ o (x, F); G ⇒ R
(x, F); zRx, G ⇒ R, x : A o ↓ * (x, F); zRx, G ⇒ R, x : ↓ A o * (x, F); zRx, G ⇒ R, zx : ↓ A o ↑ o (x, F); zRx, G ⇒ R, z : A o
Let us consider an application of the rule Γ The second direction of the encoding can be stated as follows (encompassing both cases when 4 is or is not part of the considered logic). (Marin,Miller and Volpe [86]) Let Y = {k} or {k, 4} or {k, 4, 5}. Let X = ∅ or {d} or {t}. Let D be a proof in LMF X+Y o of a sequent (x, ∅); ∅ ⇒ x : A o for some x. There exists a proof D of A in the ordinary sequent calculus built from ◻ o Y + o X , such that each bipole in D corresponds to one rule application in Π, plus possible applications of the contraction rule c.

Theorem

Proof (Sketch). This proof is similar to the one of Theorem 5.2.1. We proceed bottom-up to transform D , bipole by bipole, into D. At the root of each bipole, one or several formulas are chosen as foci, and we can distinguish cases according to the main connective of the formula(s) on which we decide.

The cases of classical connectives are straightforward. The case of a formula with ◻ as the main connective is also simple as the interpretation of the conclusion and the premiss of the following bipole under I K+X (•) or I K4+X (•) are identical: The results of this chapter seem to require heavy notations, even though our the explicit polarised syntax already considerably lightened the presentation. We would like, in the future, to simplify the results and maybe come up with a more elegant framework, but for the moment this one is functional, and every one of its devices is necessary. We will illustrate on an example one of them, namely the importance of the concept of forbidden futures. Yet, this sequent is interpreted in our framework as ā, ◻ a, and we have seen in Part I that it does not have a cut-free proof in oK45 + o t . However, once we do consider the time of each sequent, the rule ↑ o cannot be applied to y : ↑ ↓↑p a at ( * ). Indeed, the time (x, ∅) in the conclusion would need to be updated to (y, {x}) in the premiss, which prevents the focus to be yx : ↓↑p a , since x would then be a forbidden future.

(x, F); G, xRy ⇒ R, y : A o ◻ * (x, F); G ⇒ R, x : ◻ A o ↓ * (x, F); G ⇒ R, x : ↓◻ A o ↑ o (x, F); G ⇒ R
As a result, the proof system LMF o can emulate modal sequent systems with adequate precision: individual modal inference rules correspond to certain distinctive chains of bipoles in LMF o and vice versa. The case of ordinary sequents is interesting, because such calculi have a natural complexity-optimal proof search procedure. Using the additional gadgets of our framework that specify which world we are currently working on and which worlds are no longer reachable, we are able to reproduce the mechanism that constrains proof search in such calculi. We remark that a similar result is obtained by Lellmann and Pimentel in [START_REF] Lellmann | Proof search in nested sequent calculi[END_REF], by using a different technique (but also based on the idea of focusing). it might be good to compare in more detail.)

As for the previous chapter, this work is part of the ProofCert project [START_REF] Miller | A proposal for broad spectrum proof certificates[END_REF][START_REF] Miller | Proofcert: Broad spectrum proof certificates[END_REF]. Implementations of the LMF * framework can therefore provide a proof checker for the modal sequent systems considered, given checkers for first-order logic (such as those described in [START_REF] Chihani | Foundational proof certificates in first-order logic[END_REF]) that do not have any special knowledge of modal operators and Kripke frames. The framework is also general enough to capture modal proof systems defined in other formalisms, such as prefixed tableaux [START_REF] Fitting | Proof Methods for Modal and Intuitionistic Logics[END_REF] and nested sequents [START_REF] Brünnler | Deep sequent systems for modal logic[END_REF]; Libal and Volpe have already started implementing these extensions [START_REF] Libal | Certification of prefixed tableau proofs for modal logic[END_REF]. We are currently working on extending the application of the framework to hypersequents [START_REF] Arnon Avron | The method of hypersequents in the proof theory of propositional nonclassical logics[END_REF].

III « Folding »

We will take our same telescope, but look through the opposite side of the lense. Instead of seeing existing rules unfold as synthetic rules in another more basic system, we will actually consider folding those existing rules themselves into synthetic entities. Our main technical contribution is the proof of completeness of a focused nested sequent calculus by means of an internal cut-elimination proof. More precisely two such proofs; the second one, in the synthetic system, is considerably shorter and simpler, using a more standard induction measure, than the first one in the non-synthetic system. In Chapter 7 we introduce the focused version of nested sequents systems for both classical and intuitionistic modal logics and give a first proof of cut-free completeness. In Chapter 8 we present the simplified synthetic version of these systems, whose cut-elimination result gives us a second proof of completeness for the focused systems. In Chapter 9 we present some concluding remarks and perspectives. sequents as Γ P where Γ{ } is a neutral context and P is a positive formula. The meaning of a focused sequent is written by extending fm n ( ), so that fm n Γ P ≡ fm n (Γ{↑P }).

Γ P + ∨ Q Γ Q + ∨ fn 2 Γ P + ∨ Q Γ P Γ Q + ∧ fn Γ P + ∧ Q + ⊺ fn Γ + ⊺ Γ A , ∆
id fn + Γ p, p id fn -Γ n, n Γ{N } ↓ fn Γ ↓N Γ A fn t Γ A Γ1 [Γ2], A fn b Γ1 Γ2, A Γ A fn d Γ A Γ1 A , Γ2 fn 4 Γ1 A , [Γ2] Γ{[Γ2]} A fn 5 Γ1 Γ2, A {∅}
The classical focused nested system fnK for the logic K, and its extensions with rules fn x for any axiom x in {t, b, d, 4, 5}, is shown in Figure 7.1. Observe that the rules for negative formulas are exactly the same as in the unfocused system (Figure 2.5), while the rules for positive formulas can only be applied if the principal formula is in focus. Similarly, the modal rules in the focused system, i.e. the rule fn k and the rules fn x shown on the last line of the figure, are similar to the ones in the non-focused system. However, they can only be applied if the focus is on the principal -formula. Note also that they do not internalise contraction; this is not needed because of the explicit contraction appearing in the rule ↑ fn .

Example

As examples of derivations in fnK we present the focused versions of the nK derivations we gave in Example 2.5.3.

↑ (p + ∧ n), ↑ ↓p, [n] is one possible polarisation of (a ∧ b), ā, [b] as a neutral sequent.
Once this polarisation is fixed, it constrains the shape of the proof as follows: We write Σ * { } • • • { } for the context formed by deleting any negative formula from Σ{ } • • • { }. We reuse the right-deletion notation from Section 3.5 in the polarised case since the concepts are similar, replacing "output formula" with"negative (right-neutral) formula".

id fn ↑ (p + ∧ n), ↑ ↓p, p , p, n id fn ↑ (p + ∧ n), ↑ ↓p, n , p, n + ∧ fn ↑ (p + ∧ n), ↑ ↓p, p + ∧ n , p, n fn k ↑ (p + ∧ n), (p + ∧ n) , ↑ ↓p, [p, n] ↑ fn ↑ (p + ∧ n), ↑ ↓p, [p, n] ↓ fn ↑ (p + ∧ n), ↑ ↓p, ↓p , n fn k ↑ (p + ∧ n), ↑ ↓p, ↓p , [n] ↑ fn ↑ (p + ∧ n), ↑ ↓p, [n] ↑ ↓(n - ∧ ↑p), ↑ n, [p] is
Π P Π Q + ∧ fn R Π P + ∧ Q + ⊺ fn R Π + ⊺ Π P ∨ fn R1 Π P ∨ Q Π Q ∨ fn R2 Π P ∨ Q ∆1 ∆2, P fn Rk ∆1 [∆2], P Π M - ∧ fn L1 Π M - ∧ N Π N - ∧ fn L2 Π M - ∧ N Π P Π N ⊃ fn L Π P ⊃ N ∆1 ∆2, N ◻ fn Lk ∆1 [∆2],
A focused sequent is a neutral sequent with an occurrence of a focus P or N in the place where a positive formula may otherwise occur, that is, Π P or Π N where Π{ } is a neutral context. The notion of corresponding formula is extended with fm n Π P = fm n (Π * {↑P }) and fm n Π N = fm n (Π{↓N }). The inference rules of the intuitionistic focused nested sequent systems are given in Figure 7.2. They are the polarised and focused versions of the nIK rules; note however, that similarly to LJF, the left-rule for ⊃ does not need to make use of the right-deletion operation in the first premiss. The only place where a formula needs to be deleted from the context is in the rule ↓ fn R , as in the premiss a new negative formula needs to appear. Like with fnK above, for any X ⊆ {t, b, 4, 5}, we can extend the system fnIK, consisting of the rules in the upper section of the figure, with the rules ◻ f Lx and f Rx (for each x ∈ X) in the lower section of the figure. (Chaudhuri,Marin,and Straßburger [23]) Let X ⊆ {t, b, 4, 5} be axiomatically complete. For any polarised right-neutral formula R, the following are equivalent.

Theorem

1. ∂(R) is a theorem of IK + X.
2. R is provable in fnIK + ◻ fn LX + fn RX .

Example

As an example, we give a focused version of the derivation in Example 3.5.3 below. Namely, the derivation in fnIK of R = ↑↓(↓( p ⊃ ◻n) ⊃ ◻(p ⊃ n)), which is a right-neutral polarised form of k 4 with a minimal number of shifts. Contrary to the unfocused derivation, when ⊃ fn L is applied, n can remain in the left branch all the way up to the application of id fn R . Observe also that the instance of ↓ fn L cannot be applied any lower in the derivation, since its conclusion would not then be neutral. 

⊃ fn L ↓( p ⊃ ◻n), p ⊃ ◻n , [p, n] ↓ fn L ↓( p ⊃ ◻n), [p, n] ⊃ fn R ↓( p ⊃ ◻n), [p ⊃ n] ◻ fn R ↓( p ⊃ ◻n), ◻(p ⊃ n) ⊃ fn R ↓( p ⊃ ◻n) ⊃ ◻(p ⊃ n) ↓ fn R R, ↓(↓( p ⊃ ◻n) ⊃ ◻(p ⊃ n)) ↑ fn R R

Focused meta-theory

We will present the meta-theory of the system fnK, namely its soundness and completeness wrt. the unfocused system nK, via a cut-elimination result, a technique pioneered by Laurent for linear logic [START_REF] Laurent | A proof of the focalization property in linear logic[END_REF]. Parallel results are available for system fnIK wrt. nIK, and obtained by almost the same proofs, with twice as many cases as the system contains twice as many rules. The proof that we present in this section requires an intermediate step. In the next chapter, we will present an alternative proof which is much simpler and shorter, based on synthetic rules. We consider the system called wnK for weakly focused which is a variant fnK with a weaker focusing discipline: the rule ↑ fn can be applied in a context that contains also negative formulas, and the invertible rules can occur anywhere, even in a focus phase. This system is given in Figure 7.3; it relies on weakly focused sequents which are invertible sequents with an occurrence of a focus, i.e. of the form Σ P . Furthermore, we abuse the notation Σ to encompass sequents that can contain a (unique) occurrence of a focus P ; indeed, the invertible rules can occur even when the context contains a focus elsewhere, but not the focused rules. We can show directly that any proof within wnK can be transformed into one in fnK and vice-versa.

Σ P + ∨ Q Σ Q + ∨ wn 2 Σ P + ∨ Q Σ P Σ Q + ∧ wn Σ P + ∧ Q + ⊺ wn Σ + ⊺ Σ A , ∆

Lemma

Let X ⊆ {t, b, d, 4, 5}. A negative neutral formula R is provable in fnK + fn X if and only if it is provable in wnK + wn X .

Proof. A derivation in fnK+ fn X is by definition also a derivation in wnK+ wn X . Conversely, to convert a derivation in wnK + wn X into one in fnK + fn X , we first have to replace all instances of id wn with a sequence of applications of -∨ fn , -∧ fn , ◻ fn followed (reading from conclusion upwards) by id fn , to ensure that the conclusion of the id fn rule is neutral. Then, any negative rules from -∨ fn , -∧ fn , ◻ fn , in particular the ones that we just added, can be permuted down by straightforward rule permutations, such that ↑ fn is only applied to neutral sequents and therefore no negative rule occurs within a focus phase.

We are now going to simulate nK + n X within wnK + wn X . The simulation crucially relies on the use of a cut-rule of the form Σ{↑P } Σ{¬P } cut Σ{∅} which is admissible in wnK + wn X , as we will show in the next section. But first, we need another technical property of wnK, called identity reduction.

The depth of a polarised formula P or N , denoted by dp(P ) or dp(N ), is computed in the same inductive way as for a non-polarised formula: dp(p) = dp(n) = 1; dp(↑P ) = dp( P ) = dp(P ) + 1; dp(↓N ) = dp(◻N ) = dp(N ) + 1; dp(P

+ ∧ Q) = dp(P + ∨ Q) = max(dp(P ), dp(Q)) + 1; and dp(M - ∧ N ) = dp(N - ∨ M ) = max(dp(M ), dp(N )) + 1.

Lemma

The following generalised identity rule is derivable in wnK:

gid wn Σ P , ¬P Proof. We proceed by induction on the depth of the formula P . The base case is when P is an atom or a negated atom, where we replace the instance of gid wn by an actual id wn :

gid wn Σ p , p id wn + Σ p , p gid wn Σ n , n id wn -Σ n , n
Otherwise, we replace gid wn by a derivation which contains instances of gid wn applied to formulas of smaller depth:

gid wn Σ P1 + ∧ P2 , ¬P1 - ∨ ¬P2 gid wn Σ P1 , ¬P1, ¬P2 - ∨ wn Σ P1 , ¬P1 - ∨ ¬P2 gid wn Σ P2 , ¬P1, ¬P2 - ∨ wn Σ P2 , ¬P1 - ∨ ¬P2 + ∧ wn Σ P1 + ∧ P2 , ¬P1 - ∨ ¬P2 gid wn Σ P1 + ∨ P2 , ¬P1 - ∧ ¬P2 gid wn Σ P1 , ¬P1 + ∨ wn Σ P1 + ∨ P2 , ¬P1 - ∧ wn Σ P1 + ∨ P2 , ¬P1 - ∧ ¬P2 gid wn Σ Q , ◻¬Q gid wn Σ Q , ¬Q wn k Σ Q , [¬Q] ◻ wn Σ Q , ◻¬Q gid wn Σ ↓N , ↑¬N gid wn Σ N, ¬N, ¬N ↑ wn Σ{N, ↑¬N } ↓ wn Σ ↓N , ↑¬N
Note that we have to apply some invertible rules even within a focus phase, so it is important that we reason in wnK and not in fnK.

Lemma

Let X ⊆ {t, b, d, 4, 5}. Let N be a negative formula. If ∂(N ) is provable in nK + n X , then N is provable in wnK + wn X + cut.
Proof. First, any unpolarised nK sequent can be transformed into an invertible polarised sequent with the same meaning. The connectives are turned into their polarised variant, that is, in particular, a polarity is arbitrarily chosen for every atom, every ∨, and every ∧; then shifts are added as needed to produce well-formed polarised formulas. If the obtained formula is positive, an extra shift ↓ needs to be prenexed. Then, we show that each rule in nK + n X is derivable in wnK + wn X + cut, and the lemma follows by induction on the height of the proof of A: replacing in the proof the bottom most rule r by an equivalent in wnK + wn X , appealing to the admissibility of weakening w in nK [START_REF] Brünnler | Deep sequent systems for modal logic[END_REF] and of the generalised identity gid wn in wnK (Lemma 7.2.4), and continuing for the rest of the proof which is of smaller height. 

∨ Q), Q , ↑P, ¬Q + ∨ wn Σ ↑(P + ∨ Q), P + ∨ Q , ↑P, ¬Q ↑ wn Σ{↑(P + ∨ Q), ↑P, ¬Q} cut Σ{↑(P + ∨ Q), ↑P } gid wn Σ ↑(P + ∨ Q), P , ¬P + ∨ wn Σ ↑(P + ∨ Q), P + ∨ Q , ¬P ↑ wn Σ{↑(P + ∨ Q), ¬P } cut Σ{↑(P + ∨ Q)} Γ{A} Γ{B} ∧ n Γ{A ∧ B} becomes Σ{N } Σ{M } - ∧ wn Σ{N - ∧ M } or Σ{↑P } w ....
+ ∧ Q), P + ∧ Q ↑ wn Σ{¬P, ↑(P + ∧ Q), ¬Q} cut Σ{¬P, ↑(P + ∧ Q)} cut Σ{↑(P + ∧ Q)}
(where the omitted third premiss derivation is the similar branch for Q ) These cases illustrate why axiomatic completeness is required, and also show that the height of the proof can increase for the admissibility of the n x rules.

Γ{[A]} ◻ n Γ{◻A} becomes Σ{[N ]} ◻ wn Σ{◻N } Γ1{ A, [A, Γ2]} n k Γ1{ A, [Γ2]}
We are now ready to prove the admissibility of cuts. Specifically, we show both cut 1 and cut 2 simultaneously admissible. Note that this collection of cuts is just sufficiently large to make the standard cut admissible.

Lemma

Let X ⊆ {t, b, d, 4, 5} be axiomatically complete.

For every derivation

D1 Σ 1 D2 Σ 2 cut i
Σ where i ∈ {1, 2} and D 1 and D 2 in wnK + wn X are cut-free, there is a cut-free derivation of Σ in wnK + wn X . Proof. Let D 1 always stand for the derivation with the positive cut formula. We proceed by lexicographic induction: the induction hypothesis may be applied whenever (i) the rank of the cut decreases, or (ii) the rank stays the same and a cut 1 is replaced by a cut 2 , or (iii) the rank stays the same and the height of D 1 decreases. The height of D 2 does not matter for the induction, which is an important difference with the proof of Lemma 2.6.9. The proof is then given in terms of a terminating rewrite sequence, written with , that reduces the topmost instances of cut i .

We start with the cases of cut 1 , which are mostly commutative cases. There are two main possibilities to consider: First, three cases where the last rule r in D 1 applies to a negative formula in the context;

• The first case is the ordinary commutative case, where r is a negative rule.

D 1 Σ1{↑P } r Σ{↑P } D 2 Σ {¬P } cut1 Σ{∅} D 1 Σ1{↑P } D 2 Σ {¬P } r -1 ................... Σ 1 {¬P } cut1 Σ1{∅} r Σ{∅}
Here r is invertible (Lemma 7.2.7) and we denote again by r -1 its admissible inverse. We can appeal to the inductive hypothesis because the height is reduced. If r is a binary rule the situation is similar:

D 1 Σ{N }{↑P } D 1 Σ{M }{↑P } - ∧ wn Σ{N - ∧ M }{↑P } D 2 Σ {N - ∧ M }{¬P } cut1 Σ{N - ∧ M }{∅} D 1 Σ{N }{↑P } D 2 Σ {N - ∧ M }{¬P } ( - ∧ wn ) -1 ...................................... Σ {N }{¬P } cut1 Σ{N }{∅} D 1 Σ{M }{↑P } D 2 Σ {N - ∧ M }{¬P } ( - ∧ wn ) -1 ...................................... Σ {M }{¬P } cut1 Σ{M }{∅} - ∧ wn Σ{N - ∧ M }{∅}
• The second case is similar; it occurs when a decision on a positive formula is taken in the context.

D 1 Σ ↑Q, Q {↑P } ↑ wn Σ{↑Q}{↑P } D 2 Σ {↑Q}{¬P } cut1 Σ{↑Q}{∅} D 1 Σ ↑Q, Q , ↑P D 2 Σ {Q}{↑¬P } cut1 Σ ↑Q, Q {∅} ↑ wn Σ{↑Q}{∅}
We can appeal to the inductive hypothesis because the height is reduced.

• The last case occurs when the decision is on the cut formula. (Here, Σ cannot contain a focus.)

D 1 Σ ↑P, P ↑ wn Σ{↑P } D 2 Σ{¬P } cut1 Σ{∅} D 1 Σ ↑P, P D 2 Σ{¬P } cut1 Σ P D 2 Σ{¬P } cut2 Σ{∅}
We first appeal to the inductive hypothesis for the upper cut, which is possible because the height is reduced. Then we appeal to the inductive hypothesis for the lower cut, which is allowed because a cut 1 is replaced by a cut 2 .

And second, the following three cases, where the last rule r in D 1 operates on the formula with the focus and can simply be permuted under the cut:

• If r is an identity:

id wn + Σ p, p {P } D 2 Σ{p}{¬P } cut1 Σ p, p {∅} id wn + Σ p, p {∅} id wn -Σ n , n {P } D 2 Σ{n}{¬P } cut1 Σ a {∅} id wn -Σ n , n {∅}
• If the rule keeps the focus we proceed as follows:

D 1 Σ1 Q1 {↑P } r Σ Q {↑P } D 2 Σ{∅}{¬P } cut1 Σ Q {∅} D 1 Σ1 Q1 {↑P } D 2 Σ{∅}{¬P } cut1 Σ1 Q1 {∅} r Σ Q {∅}
and similarly if r is a binary rule (with two copies of D 2 ). We can appeal to the inductive hypothesis because the height is reduced.

• If the focus is released, we proceed in a similar fashion and use the admissibility of w (Lemma 7.2.7):

D 1 Σ{N }{↑P } ↓ wn Σ ↓N {↑P } D 2 Σ{∅}{¬P } cut1 Σ ↓N {∅} D 1 Σ{N }{P } D 2 Σ{∅}{¬P } w ......................... Σ{N }{¬P } cut1 Σ{N }{∅} ↓ wn Σ ↓N {∅}
It is important to note that the formula we are weakening is negative which can only occur as we are reasoning in the weakly focused wnK and not in the strongly focused fnK.

Finally, we consider the cases for cut 2 , which correspond to the key cases (because the bottom-most rule in D 1 must work on the cut formula which has the focus): • If we release the focus we have:

D 1 Σ{N } ↓ wn Σ ↓N D 2 Σ{↑¬N } cut2 Σ{∅} D 2 Σ{↑¬N } D 1 Σ{N } cut1 Σ{∅}
We can appeal to the inductive hypothesis because the cut-rank is reduced. Note that we do not need to appeal to the height of D 2 .

• The cases of the binary connectives are standard and use the admissibility of w and invertibility of the negative rules (Lemma 7.2.7): 

D 1 Σ P D 1 Σ Q + ∧ wn Σ P + ∧ Q D 2 Σ{¬P - ∨ ¬Q} cut2 Σ{∅} D 1 Σ P D 1 Σ Q w ....
Σ P + ∨ Q D 2 Σ{¬P - ∧ ¬Q} cut2 Σ{∅} D 1 Σ P D 2 Σ{¬P - ∧ ¬Q} ( - ∧ wn ) -1 ............................ Σ{¬P } cut2 Σ{∅}
and similarly for + ∨ wn 2 . We can appeal to the inductive hypothesis because the cut-rank is reduced.

• If the cut formula is a -formula, there are six cases: For any positive formula, there is a collection of corresponding matching nested sequents that represents one of the possible choices if a sequence of positive rules are applied to the formula. The nested sequent Λ matches the positive formula P , written Λ ∈ ∈ P , if it is derivable from the rules in the second line of Figure 8.1.

D 1 Σ1 P , Σ2 wn k Σ1 P , [Σ2] D 2 Σ1{◻¬P , [Σ2]} cut2 Σ1{[Σ2]} D 1 Σ1 P , Σ2 D 2 Σ1{◻¬P , [Σ2]} (◻ wn ) -
∈ ∈ n p ∈ ∈ p ↑P ∈ ∈ ↑P Γ1 ∈ ∈ M Γ2 ∈ ∈ N Γ1, Γ2 ∈ ∈ M - ∨ N ∅ ∈ ∈ - Γ ∈ ∈ M Γ ∈ ∈ M - ∧ N Γ ∈ ∈ N Γ ∈ ∈ M - ∧ N Γ ∈ ∈ N [Γ] ∈ ∈ ◻N p ∈ ∈ p n ∈ ∈ n ↓N ∈ ∈ ↓N Λ ∈ ∈ P Λ ∈ ∈ P + ∨ Q Λ ∈ ∈ Q Λ ∈ ∈ P + ∨ Q Λ1 ∈ ∈ P Λ2 ∈ ∈ Q Λ1, Λ2 ∈ ∈ P + ∧ Q ∅ ∈ ∈ + ⊺ Λ ∈ ∈ P [Λ]
id sn + Γ p, p id sn -Γ n, n Γ1{Γ2} : Γ2 ∈ ∈ N ↓ sn Γ1 ↓N Γ Λ sn t Γ [Λ] Γ1 [Γ2], Λ sn b Γ1 Γ2, [Λ] Γ Λ sn d Γ [Λ] Γ1 Γ2, Λ sn 4 Γ1 [Γ2], [Λ] Γ1{[Γ2]} [Λ]
Finally, a contextualising sequent is of the form Γ Λ where Γ{ } is a neutral sequent context and Λ is a matching sequent. The meaning is again extended to obey fm n Γ Λ ≡ fm n (Γ{↑fm n (Λ)}).

The synthetic system is built using neutral and contextualising sequents. The rules of snK + sn X (for any X ⊆ {t, b, d, 4, 5}) are shown in Figure 8.1. As before, we define snK + sn X to be snK extended with sn x for every x ∈ X. The rule ↑ sn is similar to the rule ↑ fn from fnK, except that, instead of focusing on the formula N itself, it selects one of its substructures for contextualisation. The contextualisation rules consist of the rules {spl sn , fin sn , sn k , sn t , sn 4 , sn d , sn b , sn 5 } that divide up or move the focus among the premisses of the rule. The rule spl sn has a side condition that neither of the foci in the premisses is empty, otherwise it could be applied infinitely often; the fin sn rule handles the case of an empty focus instead. The modal rules require the focus in the conclusion to be bracketed.

Once the focus has been reduced to a single formula by the other rules, it must be neutral again, namely either atomic or a shifted formula. If it is an atom, we apply one of the id sn rules. If it is a shifted formula, we use ↓ sn which produces one premiss per substructure of the principal formula.

The duality between the synthetic rules ↓ sn and ↑ sn can be seen as meta-quantification over substructures: the positive rule ↑ sn quantifies existentially over the substructures of P and pick one such Λ as a focus in the unique premiss, while the negative rule quantifies universally, and so the rule actually consists of one premiss for each way in which to prove Γ ∈ ∈ N . For example, if N is ā -∧ ◻( b -∨ ↑P ), we know that ā ∈ ∈ N and b, P ∈ ∈ N , so the instance 2. R is provable in snIK + sn X .

n ∈ ∈ n ↑P ∈ ∈ ↑P Λ ∈ ∈ P Π ∈ ∈ N Λ, Π ∈ ∈ P ⊃ N Π ∈ ∈ M Π ∈ ∈ M - ∧ N Π ∈ ∈ N Π ∈ ∈ M - ∧ N Π ∈ ∈ N [Π] ∈ ∈ ◻N p ∈ ∈ p ↓N ∈ ∈ ↓N Λ ∈ ∈ P Λ ∈ ∈ P ∨ Q Λ ∈ ∈ Q Λ ∈ ∈ P ∨ Q Λ1 ∈ ∈ P Λ2 ∈ ∈ Q Λ1, Λ2 ∈ ∈ P + ∧ Q ∅ ∈ ∈ + ⊺ Λ ∈ ∈ P [Λ]
id sn R Π p, p id sn L Λ n , n Π * 1 {Π2} : Π2 ∈ ∈ N ↓ sn R Π1 ↓N Π{Λ} : Λ ∈ ∈ P ↑ sn L Π ↑P ∆1 ∆2 sn t ∆1 [∆2] ∆1 [∆2], ∆3 sn b ∆1 ∆2, [∆3] ∆1 ∆2, [∆3] sn 4 ∆1 [∆2], [∆3] Γ ∆2, [∆3] {∅} sn 5 ∆1{[∆2]} [∆3]

Example

As an example we give the synthetic version of the derivation in Example 3.5.3:

id sn ↓( p ⊃ ◻n), p , p, n sn k ↓( p ⊃ ◻n), [p] , [p, n] id sn ↓( p ⊃ ◻n), n , p, n sn k ↓( p ⊃ ◻n), [n] , [p, n] spl sn ↓( p ⊃ ◻n), [p], [n] , [p, n] ↓ sn L ↓( p ⊃ ◻n), [p, n] ↓ sn R R, ↓(↓( p ⊃ ◻n) ⊃ ◻(p ⊃ n)) ↑ sn R R
together with the corresponding substructures derivations for applying the rules ↑ sn R and ↓ sn L :

↓( p ⊃ ◻n) ∈ ∈ ↓( p ⊃ ◻n) p ∈ ∈ p n ∈ ∈ n p, n ∈ ∈ p ⊃ n [p, n] ∈ ∈ ◻(p ⊃ n) ↓( p ⊃ ◻n), [p, n] ∈ ∈ ↓( p ⊃ ◻n) ⊃ ◻(p ⊃ n) p ∈ ∈ p [p] ∈ ∈ p n ∈ ∈ n [n] ∈ ∈ ◻n [p], [n] ∈ ∈ p ⊃ ◻n

Synthetic meta-theory

In this section, we study the meta-theory, soundness, cut-elimination, and completeness, of these synthetic systems. Contrary to the last chapter, the synthetic meta-theory is as simple in the intuitionistic setting as in the classical one. As evidence of this phenomenon, we will make the opposite choice from last chapter and present all the results for the intuitionistic version. (Of course they are translatable to the classical system with minor usual adjustments.) Besides, the completeness of the synthetic systems gives an alternative, refined proof of completeness of the focused systems, not requiring us to appeal to the weakly focused systems.

Lemma

Let Y ⊆ {t, b, 4, 5} be axiomatically complete. Given a proof of the form:

D1 Π {∆} D2 Π ∆ cut Π{∅}
where D 1 and D 2 are in snIK + sn X , there is a proof of Π{∅} in snIK + sn X .

Proof. By lexicographic induction on the tuple rk(∆), ht(D 2 ), ht(D 1 ) , splitting cases on the last rule instances in D 1 and D 2 . Note that the last rule in D 2 always applies to the focus ∆ . We will rewrite the derivation, written using , by moving the instance of cut to a position of strictly lower measure or eliminating it entirely.

• First, let us consider the cases where D 2 ends with a structural rule:

D 1 Π {∆, Λ} D 2 Π ∆ D 2 Π Λ spl sn Π ∆, Λ cut Π{∅} D 1 Π {∆, Λ} D 2 Π ∆ w Π ∆ , Λ cut Π{Λ} D 2 Π Λ cut Π{∅} D 1 ∆ 1 {[∆ 2 ], [∆3]} D 2 ∆ 1 ∆ 2 , ∆3 sn k ∆ 1 ∆ 2 , [∆3] cut ∆1{[∆2]} D 1 ∆ 1 {[∆ 2 ], [∆3]} n k ∆ 1 {[∆ 2 , ∆3]} D 2 ∆ 1 ∆ 2 , ∆3 cut ∆1{[∆2]} D 1 Π {[∆]} D 2 Π ∆ sn d Π [∆] cut Π{∅} D 1 Π {[∆]} D 2 Π ∆ cut Π{[∅]} n d Π{∅} D 1 Π {[∆]} D 2 Π ∆ sn t Π [∆] cut Π{∅} D 1 Π {[∆]} n t Π {∆} D 2 Π ∆ cut Π{∅} D 1 ∆ 1 {[∆ 2 , [∆3]]} D 2 ∆ 1 ∆ 2 , ∆3 sn b ∆ 1 ∆ 2 , [∆3] cut ∆1{[∆2]} D 1 ∆ 1 {[∆ 2 , [∆3]]} n b ∆ 1 {[∆ 2 ], ∆3} D 2 ∆ 1 ∆ 2 , ∆3 cut ∆1{[∆2]} D 1 ∆ 1 {[∆ 2 ], [∆3]} D 2 ∆ 1 ∆ 2 , [∆3] sn 4 ∆ 1 ∆ 2 , [∆3] cut ∆1{[∆2]} D 1 ∆ 1 {[∆ 2 ], [∆3]} n 4 ∆ 1 {[∆ 2 , [∆3]]} D 2 ∆ 1 ∆ 2 , [∆3] cut ∆1{[∆2]} D 1 Π {[∆]}{∅} D 2 Π {∅} [∆] sn 5 Π [∆] {∅} cut Π{∅}{∅} D 1 Π {[∆]}{∅} n 5 Π {∅}{[∆]} D 2 Π {∅} [∆] cut Π{∅}{∅}
In the first case we can apply the induction hypothesis (twice) because rk(∆), rk(Λ) < rk(∆, Λ) and in the other cases because ht(D 2 ) < ht(D 2 ) as the rank stays the same. We abuse the pruning notation in the cases for sn k , sn b and sn 4 by writing

∆ 1 {[∆ 2 ], { }} or ∆ 1 {[∆ 2 , { }]} to denote the pruned context ∆ { } when ∆{ } = ∆ 1 {[∆ 2 ], { }} or ∆{ } = ∆ 1 {[∆ 2 , { }]
} respectively. Note the use of Lemma 8.2.3.

• If the last rule in D 2 is an axiom, we have one of the following three cases:

D 1 Π{∅} fin sn Π ∅ cut Π{∅} D 1 Π{∅} D 1 Λ{n} id sn Λ n, n cut Λ{n} D 1 Λ{n} D 1 Π{p, p} id sn Π p, p cut Π{p} D 1 Π{p, p} c Π{p}
For the third case we use the admissibility of atomic contraction.

• Finally, the last rule in D 2 can be ↓ sn L or ↑ sn R , and if at the same time the last rule in D 1 is the corresponding ↓ sn R or ↑ sn L on the cut formula (the cut sequent has to be a singleton in that case), we have one of the two principal cases:

Π2 ∈ ∈ N D 1 Π1 ↓N, Π2 ↓ sn L Π1{↓N } D Π 2 Π * 1 {Π2} Π 2 ∈ ∈N ↓ sn R Π1 ↓N cut Π1{∅} D 1 Π1 ↓N, Π2 D 2 Π1 ↓N cut Π1 Π2 D Π 2 Π * 1 {Π2} cut Π1{∅} Λ ∈ ∈ P D 1 Π * ↑P, Λ ↑ sn R Π * {↑P } D Λ Π{Λ} Λ∈ ∈P ↑ sn L Π ↑P cut Π{f } D 1 Π * ↑P, Λ D 2 Π ↑P cut Π Λ D Λ Π{Λ} cut Π{∅}
In both cases we have to apply the induction hypothesis twice: first to the upper cut because ht(D 1 ) < ht(D 1 ), and then to the lower cut because rk(Π 2 ) < rk(↓N ) and rk(Λ) < rk(↑P ). After the reduction step the focus is not in the same branch any more, so the branch considered to be D 1 or D 2 may change, but since the rank has decreased strictly this proceeds along the same inductive argument.

• Of course, when the last rule in D 2 is ↓ sn L or ↑ sn R , the last rule in D 1 does not need to be the corresponding ↓ sn R or ↑ sn L rule. In that case we have a commutative case, that is, the last rule in D 1 is permuted under the cut:

D 1 Π 1 {∆} r Π {∆} D 2 Π ∆ cut Π{∅} D 1 Π 1 {∆} D 2 Π 1 ∆ cut Π1{∅} r Π{∅}
The situation above applies if r is sn k or any of the sn x rules, because then there is a focus in Π{ } which is moved by r, and we have Π 1 { } = Π { }. It also applies if r is one of ↑ sn L or ↓ sn R because then Π{ } contains no focus and therefore Π 1 { } = Π { }. If the last rule in D 1 is spl sn the situation is similar, and if it is one of id sn or fin sn , then the cut disappears trivially. Note that the last rule in D 1 is not applying to ∆ (which is a singleton) because otherwise it would be a principal case.

The only non-trivial commutative cases are when the focus in Π{ } is released by the last rule in D 1 which can be either a ↑ sn L or a ↓ sn R . In the ↑ sn L -case, we can reduce as follows:

D Λ Π {Λ}{∆} Λ∈ ∈P ↑ sn L Π ↑P {∆} D 2 Π{∅} ∆ cut Π ↑P {∅}            D Λ Π {Λ}{∆} D 2 Π{∅} ∆ w Π{Λ} ∆ cut Π{Λ}{∅}            Λ∈ ∈P ↑ sn L Π ↑P {∅}
and we only need height-preserving admissibility of weakening in order to apply the induction hypothesis, using ht(D Λ ) < ht(D 1 ).

In the ↓ sn R -case we need to distinguish whether ∆ is of the form ↑P or ↓N . In the first case the cut disappears:

D Π 2 Π * 1 {Π2}{∅} Π 2 ∈ ∈N ↓ sn R Π * 1 ↓N {↑P } D 2 Π1{∅} ↑P cut Π1 ↓N {∅} D Π 2 Π * 1 {Π2}{∅} Π 2 ∈ ∈N ↓ sn R Π1 ↓N {∅}
and in the second we again use height-preserving admissibility of weakening in order to apply the induction hypothesis, as ht(D Π2 ) < ht(D 1 ):

D Π 2 Π * 1 {Π2}{↓M } Π 2 ∈ ∈N ↓ sn R Π1 ↓N {↓M } D Π 3 Π * 1 {∅}{Π3} Π 3 ∈ ∈M ↓ sn R Π1{∅} ↓M cut Π1 ↓N {∅}                D Π 2 Π * 1 {Π2}{↓M }      D Π 3 Π * 1 {∅}{Π3} w Π * 1 {Π * 2 }{Π3}      Π 3 ∈ ∈M ↓ sn R Π * 1 {Π2} ↓M cut Π * 1 {Π2}{∅}                Π 2 ∈ ∈N ↓ sn R Π1 ↓N {∅}

Theorem

Let Y ⊆ {t, b, 4, 5} be axiomatically complete. If a sequent Π is provable in snIK + sn X + cut, then it is also provable in snIK + sn X . This is as Theorem 7.2.6 proved by induction on the number of cuts in the proof, by repeatedly applying the previous lemma, always starting with a topmost cut.

Completeness

In this section we will show that snIK+ sn X extended with the cut rule can simulate nIK+◻ n LX + n RX derivations under a certain interpretation of the annotations, Thus, the cut-elimination theorem will allow us to conclude that nIK + ◻ n LX + n RX rules under that interpretation are admissible in snIK + sn X , i.e., snIK + sn X is complete with respect to nIK + ◻ n LX + n RX .

Theorem

Let Y ⊆ {t, b, 4, 5} be axiomatically complete. For any right-neutral formula R, if ∂(R) • is provable in nIK + ◻ n LX + n RX , then R is provable in snIK + sn X . First, we can obtain a similarly synthetic version of identity reduction (Lemma 7.2.4).

Lemma

The following rule is derivable in snIK.

gid sn ∆ 1 ∆ 2 , ∆ 2
Proof. By induction on the structure of the focus. We present it in the form of an expansionary rewrite. This allows us to simulate derivations from nIK sequents in the synthetic system.

Lemma

Let Y ⊆ {t, b, 4, 5}. Let R be a right-neutral formula. If ∂(R) • is provable in nIK + ◻ n LX + n RX , then R is provable in snIK + sn X + cut.

Proof. First, any nIK sequent can be transformed into a neutral polarised sequent with the same meaning. The connectives are turned into their polarised variant and in particular, a polarity is arbitrarily chosen for every atom, every ⊺, and every ∧; then shifts are added as needed to produce well-formed polarised formulas. Once the formulas are polarised, one can obtain neutrality, and remove the • -annotation, by adding extra shifts in front of each formula in the sequent as follows: if P is a positive formula, P → ↓↑P and P • → ↑P , and if N is a negative formula, N → ↓N and N • → ↑↓N . Each rule of nIK + ◻ n LX + n RX can therefore be considered as a rule between neutral polarised sequents. As such, it can be shown to be derivable in snIK + sn X . We show the cases for the rules id, ∧ n L and n Rd . The other cases are similar. The lemma then follows by replacing in the proof of P • (or N • ) in nIK + ◻ n LX + n RX each instance of a rule by the corresponding derivation in snIK + sn X + cut, which builds a proof of ↑P (or ↑↓N resp.) in snIK + sn X + cut.

This chapter illustrated another usage of synthetic rules. Indeed, grouping inferences together, folding proofs into synthetic forms, allowed for a simplified presentation of the systems and lightened the study of their meta-theoretical properties. Although the cutelimination argument is quite similar in structure to the one presented in the previous chapter, the synthetic reasoning provided an alternative proof of completeness of the focused systems that is shorter, and most notably so, in the intuitionistic case. In particular, the cut-elimination proof did not have to mention any logical connectives, and was instead able to factorise all logical reasoning in terms of the matching. This also means that the matching judgement can be modified at will without affecting the nature of the cut-elimination argument, as long as it leaves the structure of nested sequents untouched. Provisionally, this allows this proof to be extended modularly to other logics and other connectives.
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Conclusion

We have presented various contributions to the proof theory of classical and intuitionistic modal logics. In this chapter, we sum up the content of each part of this thesis and uncover some directions for future investigations.

In Part I, we established an inventory of various systems that have been proposed to handle modal logics proof theoretically so far, whether in labelled or unlabelled formalisms. It led to our joint work with Straßburger on nested sequents [START_REF] Marin | Label-free modular systems for classical and intuitionistic modal logics[END_REF] and on indexed nested sequents [START_REF] Marin | Proof theory for indexed nested sequents[END_REF] for both classical and intuitionistic modal logics.

We observed that the distinction between labelled and unlabelled deduction is rather superficial and even cosmetic. Indeed, labelling, bracketing, etc. are merely alternative representations of the underlying structure that could even be made explicit graphically (as in some tableau formalisms for instance). It is the case that some formalisms can be naturally interpreted in the language of modal formulas, but it is not the choice of representation that is the cause. A formula is, by definition, a tree, so if the underlying structure of the lines of a proof system is restricted to a tree, it can be translated as a formula; if it is a more generic graph in general it cannot.

Maybe a better distinction between the formalisms is their use of structural or propagation rules, rather than their labelled/unlabelled nature. In any case, we can say that it is still crucial to study the different formalisms at hand as they give us different insights on the proof shapes.

• We do not yet fully understand which modal logics can be given which types of proof system. The ideal result would be in the form of a necessary and sufficient condition for a modal logic to be a system with propagation/structural rules, similarly to Lellmann's one in the case of sequents and hypersequents with context-restriction [START_REF] Lellmann | Constructing cut free sequent systems with context restrictions based on classical or intuitionistic logic[END_REF][START_REF] Lellmann | Hypersequent rules with restricted contexts for propositional modal logics[END_REF].

We would like to understand why the axiom d : ◻A ⊃ A, which is not a path axiom, stands as an exception by having a seemingly simple proof theory. On the other hand, pseudo-transitive modal logics, obtained by extending K with axioms of the form A ⊃ n A which are also not path axioms, seem to be definitely beyond the scope of propagation rules; having a terminating proof search procedure for them would be very interesting since their decidability is an open problem.

Stewart and Stouppa [START_REF] Stewart | A systematic proof theory for several modal logics[END_REF] had conjectured that the frontier between modal axioms that could and could not be given propagation rules was what they called 3/4 SL axioms, namely the class of axioms of the form: g hij0 := h ◻ i a ⊃ ◻ j a which is situated in between SL paths axioms and general SL axioms. We did not confirm or reject this conjecture, but it seems that we now might have the right tools to re-examine it.

• There are also possible directions to stretch further the limits of our current knowledge:

(i) study proof systems for modal logics that are not characterisable by first-order frame properties, for example extensions of K with axiom ◻ A ⊃ ◻A; (ii) study proof systems for non-normal modal logics, i.e. logics that do not assume the k-axiom, as it is clear that all systems we presented are structurally forced to derive it (there is some progress in this direction [START_REF] Frittella | Monotone Modal Logic and Friends[END_REF][START_REF] Lellmann | Proof search in nested sequent calculi[END_REF][START_REF] Negri | Proof theory for non-normal modal logics: The neighbourhood formalism and basic results[END_REF]); (iii) study proof systems for extensions of constructive and intuitionistic modal logics with one-sided SL axioms, as we already mentioned in Chapter 3, and investigate their relationships with intermediate logic.

• Two applications of cut-free sequent calculi that can be seen as complementary are in the fields of justification logic and type theory. In justification logic, the goal is to give an explicit provability interpretation to a modal formula ◻A as there exists a proof of A. With Kuznets and Straßburger, we worked on an extension of justification logic to the constructive setting [START_REF] Kuznets | Justification logic for constructive modal logic[END_REF] in order to give a justification logic equivalent to the modality as well. For this first step we only considered the case of constructive modal logic CK as it can easily be given a sequent calculus, but we would like to extend our results to IK, perhaps by using a nested sequent system instead.

On the other hand, we have said that modal type theories usually also restrict their expressivity to the CK fragment. It would be interesting to expand their reach to IK too, by proposing a term language for nested sequents; to this end there is work in progress by Chaudhuri, based on the natural deduction system in [START_REF] Galmiche | Label-free natural deduction systems for intuitionistic and classical modal logics[END_REF].

However, both these topics underline an important question: does make any sense at all in such applications of intuitionistic modal logic? There might be a fundamental reason why justification logic and type theory have a weak treatment of or do not consider it at all, namely ◻ as a negative connective is more well-suited for constructive theories.

In Part II, we started by presenting the concepts of focused and synthetic proofs, which have been influential in many respects in proof theory, from the initial concrete application to proof search and logic programming, to the more structural issues of proof representation. With Miller and Volpe we are investigating the various techniques in the proof-theory literature to transform axiomatic theories to inference rules in the sequent calculus. We are seeking to gain a uniform understanding of what seems quite different techniques as simply different ways to build synthetic macro rules from micro focused rules. This has practical applications as a continuation of Miller's ProofCert project which aims at designing a universal format to describe the operational semantics of any piece of s proof built in any proof formalism.

We presented in Chapter 5 the first results of this investigation, namely a study of the rules from labelled sequent systems for modal logics extended with geometric frame properties, which was conducted by Miller and Volpe [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF] in the classical setting and that we extended to the intuitionistic setting in this thesis. In this case, we indeed have shown that each rule can be expressed as a bipole, i.e. a pair of a positive and a negative synthetic rules, in LKF or in LJF respectively, under an appropriate translation of formulas.

Once labelled sequent calculi are embeddable in the basic focused systems, we suggested using this embedding as a 'plug-in' to encode further systems. In Chapter 6, we presented a framework that extends LKF with labels in order to be suitable for modal logics. We illustrated how it can emulate unlabelled systems for modal logics with the example of certain sequent calculi.

One could object that, since any of the systems we described could provisionally be emulated by a labelled framework, we have a contradiction with our previous point that there is a lot of value in the variety of proof systems for modal logics. We would like to anticipate this criticism and answer it by hijacking a quote of Dana Scott [START_REF] Scott | Advice on modal logic[END_REF]: « There is no weight to the claim that the original system must therefore be replaced by the new one. What is essential is to single out important concepts and to investigate their properties.»

• We presented technical details for the first steps of this line of work, namely for the labelled sequent systems, but we expect that all similar methods to build inference 106 rules from axiomatic theories can be seen as synthetic rules in a focused system, as for example the ones for sequents and hypersequents in [START_REF] Ciabattoni | From axioms to analytic rules in nonclassical logics[END_REF][START_REF] Ciabattoni | Expanding the realm of systematic proof theory[END_REF], for display calculi in [START_REF] Ciabattoni | Structural extensions of display calculi: A general recipe[END_REF] and for systems of rules in [START_REF] Negri | Proof theory for non-normal modal logics: The neighbourhood formalism and basic results[END_REF]. Studying this last example, in particular, could give an alternative view on the relationship between hypersequents and the restriction called two-level system of rules in [START_REF] Ciabattoni | Embedding formalisms: hypersequents and two-level systems of rule[END_REF].

• One direction we have already started to investigate is the emulation of other unlabelled proof systems in our framework LMF * . For nested sequents, it seems quite simple: it is necessary to have a set of labels present, but it needs to be restricted to a tree-structure at all times (which is possible following [START_REF] Goré | Labelled tree sequents, tree hypersequents and nested (deep) sequents[END_REF]). Hypersequents, in contrast, are a sort of hybrid between ordinary sequents and nested sequents, and less straightforward to encode. One key-point is that the formula interpretation of a hypersequent is not uniformly given over the different logics, contrary to nested sequents.

• Another route that needs to be explored is, of course, the emulation of intuitionistic systems in an intuitionistic version of the framework. However, as the labelled sequent system labIK implements extensions of IK while ordinary sequent systems implement extensions of CK, it will probably be much more difficult to find the right framework design in the intuitionistic case.

In Part III, we presented our joint work with Chaudhuri and Straßburger on focused and synthetic nested sequent systems for both classical [START_REF] Chaudhuri | Focused and synthetic nested sequents[END_REF] and intuitionistic [START_REF] Chaudhuri | Modular Focused Proof Systems for Intuitionistic Modal Logics[END_REF] modal logics. It highlights another use of the synthetic formulation of rules; it allows us to give an elegant presentation of the nested sequent systems and to simplify the proofs of their meta-theoretical properties, namely the admissibility of the cut-rule and the completeness of focusing.

• A first extension of this work would be to define focused and synthetic variants of the propagation rules for path axioms discussed in Section 2.5. It would probably not address the quest of Goré et al [START_REF] Goré | On the correspondence between display postulates and deep inference in nested sequent calculi for tense logics[END_REF] for an efficient proof search strategy in this system as termination would remain an issue, but it would still uncover some interesting features of this system. In general, expanding this work towards other proof formalisms would be worth considering; for labelled sequent calculi it seems straightforward, but for hypersequents it would be more involved for similar reasons as evoked above.

• Another extension would be relaxing the restriction that there can be at most one focus in a fnK proof, which would take us from ordinary focusing to multi-focusing. Certain well chosen multi-focusing systems can yield syntactically canonical representatives of equivalence classes of sequent proofs [START_REF] Chaudhuri | Canonical sequent proofs via multi-focusing[END_REF][START_REF] Chaudhuri | A multi-focused proof system isomorphic to expansion proofs[END_REF]. To our knowledge, there are only a few results in the field of canonical proofs for modal logics, e.g. in the form of proofnets [START_REF] Restall | Proofnets for S5: sequents and circuits for modal logic[END_REF], so this constitutes an exciting fresh research program.

• In this thesis, we crucially interpret as positive and ◻ as negative, which differs from the polarities that would be assigned to these connectives if they were interpreted in terms of ? and !, respectively, from linear logic [START_REF] Pfenning | A judgmental reconstruction of modal logic[END_REF]. With Chaudhuri and Straßburger, we wondered to which extent this choice was canonical and if this difference came from the fact that we were considering nested sequents instead of sequents. So we tried to transform the focused proof system for classical modal logic defined in Chapter 7 into a proof system for linear logic with a positive ? and a negative !.

We found a counter-example that nullified this program, which makes us believe now that, at least from a polarisation point of view, exponentials do not behave like modalities. The problem actually does not seem to come from the depth of the nested sequent formalism, but from the interaction between the exponentials and the multiplicative connectives of linear logic. We would be interested in understanding more precisely which forces are at play, and if the polarities of the exponentials can be twisted if we consider other fragments of linear logic for example. 

Title : Modal proof theory through a focused telescope

Keywords : proof theory, focusing, modal logic Abstract : In this thesis, we use in two ways the concept of synthetic inference rules that can be obtained from a focused proof system; from one side of the "telescope", focusing allows us to analyse the internal machinery of inference rules; on the other side, it allows us to consider more global behaviours.

In the first part, we review existing proof systems for modal logic, concentrating our efforts around the sequent calculus and its extensions. We underline the issues that drive the modal proof theory community, such as the usual distinction between labelled and unlabelled systems that we aim at deconstructing. We present these questions and concepts in parallel for classical and intuitionistic modal logic in chapter 2 and 3 respectively. We in particular go through 
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 22 Figure 2.2: Sequent system and extensions for k, 4, 5, d and t

Figure 2 .

 2 2 sums up the rules of these systems. We use here a common abuse of notation for sets of modal formulas: ◻Γ := {◻A | A ∈ Γ} and Γ := { A | A ∈ Γ}. The systems oK, oK4, and oK45 are obtained by adding to the rules in the first line of Figure 2.2 the rule ◻ o k , ◻ o k4 , or ◻ o k45
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 23 Figure 2.3: System hS4 and extensions for 5 and 2
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 255 Figure 2.5: System nK and extensions for t, b, d, 4, and 5
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 26556 Figure 2.6: Nested structural rules for t, b, d, 4, and 5

  Γ{◻A} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ w

D 2 Γ{¬B}

 2 w ..................... Γ{¬B, C} cutr Γ{C} D 2 Γ{¬C} cutr Γ{∅}
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 31 Figure 3.1: System labIK
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 321 Figure 3.2: System nIK and extensions for t, b, 4, and 5
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  is a fresh variable Σ, ∀x.N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Neutral → Focus Γ, ↑P, P ↑ Γ, ↑P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 41 Figure 4.1: Focused system LKF

  Formulas are therefore divided into the positive and negative classes according to the following grammar: P ::= L | P + ∧ P | + ⊺ | P ∨ P | | ∃x.P L ::= p | ↓N N

Figure 4 . 2 :

 42 Figure 4.2: Focused system LJF

  Ω ::= ∅ | P, Ω Ξ ::= Ω, N Θ ::= Ω | Ξ Then, neutral sequents are specific types of invertible sequents. A neutral left sequent Λ contains only left-neutral formulas, and if one instance of a right-neutral formula is added, it becomes a neutral (full) sequent Π. When we do not need to distinguish between left and full sequents, we write ∆. Λ ::= ∅ | ↓N, Λ | p, Λ Π ::= Λ, ↑P | Λ, n ∆ ::= Λ | Π

TTTT

  ; G ⇒ S, x : N, x : M -; G ⇒ S, x : N G ⇒ S, x : M -; xRy, G ⇒ S, y : N ◻ * y is fresh T ; G ⇒ S, x : ◻N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Neutral → Focus T2; G ⇒ R, x1 : ↑P1, . . . , xn : ↑Pn, x1σ1 : P1 , . . . , xnσn : Pn ↑ * T1; G ⇒ R, x1 : ↑P1, . . . , xn : ↑Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Focus phase T ; G ⇒ P, xσ : P + ∨1 * T ; G ⇒ P, xσ : P + ∨ Q T ; G ⇒ P, xσ : Q + ∨2 * T ; G ⇒ P, xσ : P + ∨ Q T ; G ⇒ R, P1, xσ : P T ; G ⇒ R, P2, xσ : Q + ∧ * T ; G ⇒ R, P1, P2 xσ : P ; G ⇒ P, xσ : + ⊺ T ; xRy, G ⇒ P, yσ : P * T ; xRy, G ⇒ P, xyσ : P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identity Focus → Inversion id * T ; G ⇒ x : p, R, x : p
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 61 Figure 6.1: Framework LMF *

  Let us consider an application of the rule Γ, Γ, A ◻ o k4 Γ, ◻A . Take (x, F); G ⇒ R that extends Γ, ◻A. As in the previous proof, we can have either (a) x : ◻A o ∈ R; or (b) y : A o ∈ R and xRy ∈ G * . Moreover, here for each B ∈ Γ, either (c) x : B o ∈ R; or (d) z : B o ∈ R and zRx ∈ G * for some z. The LMF o derivation corresponding to this rule application consists in the following bipoles:

  Take a sequent T , G ⇒ R that extends Γ 1 , ◻Γ 2 , ◻A. We focus on the treatment of the formulas in Γ 2 , which is the difference with respect to the case for ◻ o k4 . For B ∈ Γ 2 , either (a) x : ◻B o ∈ R; or (b) y : B o ∈ R and xRy ∈ G * . For the formulas for which case (a) holds, the following derivation needs to be inserted between step 1 and step 2 of ◻ o k4 ; (x, F); xRy, xRu, yRu, G ⇒ R, u : B o 5 * (x, F); xRy, xRu, G ⇒ R, u : B o ◻ * (x, F); xRy, G ⇒ R, x : ◻ B o ↓ * (x, F); xRy, G ⇒ R, x : ↓◻ B o ↑ o (x, F); xRy, G ⇒ R, x : ◻B o otherwise, in case (b) holds, then a series of relational rules (including 5 * ) to obtain xRy in the relational set, suffices. Let us consider an application of the rule Γ, A o t Γ, A . Take (x, F); G ⇒ R that extends Γ, A. We have that either (a) x : A o ∈ R; or (b) z :

  , F); G ⇒ R that extends Γ. For each B ∈ Γ, one of the following two cases holds: either (a) x :B o ∈ R or (b) z : B o ∈ R and zRx ∈ G * .The LMF o derivation corresponding to this application consists in the following bipole:1. apply the rule d * in order to add xRy to G for some fresh y;(x, F); xRy, G ⇒ R d * y is fresh (x, F); G ⇒ R2. for those B ∈ Γ such that case (b) holds, apply a series of relational rules leading to a sequent whose relational set contains zRx and then the rule 4 * to zRx and xRy, which adds zRy to the relation set; (x, F); zRx, xRy, zRy, G ⇒ R 4 * (x, F); zRx, xRy, G ⇒ R 3. finally multifocus on all the w : B o such that wRy is in the relation set and B ∈ Γ, choosing y as the future. (x, F); wRy, G ⇒ R, y : B o ↓ * (x, F); wRy, G ⇒ R, y : ↓ B o * (x, F); wRy, G ⇒ R, wy : ↓ B o ↑ o (x, F); wRy, G ⇒ R, w : B o

  , x : ◻A o Relational rules x * for x ∈ {t, b, d, 4, 5} do not change interpretation of the sequent from conclusion to premiss either. Finally, if we consider an application of ↑ o on a multiset offormulas, one can see, by inspecting the cases arising from the first condition in the definition of ↑ o , that the bipole corresponds, bottom-up, to an application of c followed by ◻ o k , ◻ o k4 , ◻ o k45 , o t or o d , depending on the logic considered and the label chosen as the next one.
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 71 Figure 7.1: System fnK and extensions for t, b, d, 4, and 5

R

  a second possible polarisation of (a ∧ b), ā, [b] as a neutral Ω{P ⊃ N } Ω{[N ]} ◻ fn R Ω{◻N } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Neutral → Focus Λ ↑P, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Focus phase
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 72 Figure 7.2: System fnIK and extensions for t, b, 4, and 5

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inversion → Focus Σ ↑P, P ↑ wn Σ{↑P } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 73 Figure 7.3: System wnK and extensions for t, b, d, 4, and 5

  ∈ ∈ P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Neutral → Focus Λ ∈ ∈ P Γ ↑P, Λ ↑ sn Γ{↑P } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ2], [Λ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identity Focus → Neutral
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 81 Figure 8.1: System snK and extensions for t, b, d, 4, and 5

  ∈ ∈ P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Neutral → Focus Λ2 ∈ ∈ P Λ1 ↑P, Λ2 ↑ sn R Λ1{↑P } Π2 ∈ ∈ N Π1 ↓N, Π2 ↓ sn L Π1{↓N } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∆2], [∆3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identity Focus → Neutral
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 82 Figure 8.2: System snIK and extensions for t, b, 4, and 5

idΛ

  Λ{a, a • } becomes id sn Λ ↓↑p, ↑p , ↑p ↑ sn L Λ{↓↑p, ↑p} or id sn Λ ↓n, ↑↓n, ↓n ↓ sn R omitted third premiss derivation is the similar branch for ↓↑P ), or it becomes Π{↓N, ↓M } w omitted third premiss derivation is the similar branch for ↓M ). Finally, Λ{[A • ]} n Rd Λ{ A • } becomes Λ{[↑P ]} sn Λ ↑ P, ∆P , ∆P sn k Λ ↑ P, [∆P ] , [∆P ] ↑ P, [↑P ] cut Λ{↑ P }

Titre:

  Voir la théorie de la démonstration de la logique modale à travers un télescope focalisé Mots clefs : théorie de la démonstration, focalisation, logique modale Résumé : Dans cette thèse, nous utilisons de deux manières le concept de règles d'inférence synthétiques pouvant être obtenues à partir d'un système de preuve focalisé; d'un côté du "télescope", la focalisation nous permet d'analyser les mécanismes internes des règles d'inférence; de l'autre côté, elle nous permet de nous intéresser à leur comportement plus global. Dans la première partie, nous passons en revue les systèmes de preuves existants pour la logique modale en nous concentrant autour du calcul des séquents et ses extensions. Nous mettons en valeur les problématiques qui animent le domaine de la théorie de la démonstration de la logique modale, notamment en déconstruisant la distinction usuelle entre systèmes étiquetés et nonétiquetés. Nous présentons ces questions et concepts en parallèle dans les chapitres 2 et 3 pour la logique modale classique et intuitionniste respectivement. Nous détaillons en particulier le calcul des séquents emboîtés indexés de Fitting pour lequel nous avons démontré un nouveau résultat de complétude via élimination des coupures. La deuxième partie rappelle d'abord les notions de focalisation et de règles d'inférence synthétiques dans le chapitre 4, puis présente deux contributions dans les chapitres 5 et 6. Premièrement, nous démontrons comment émuler le calcul étiqueté pour la logique modale intuitionniste de Simpson à l'aide du calcul focalisé pour la logique du premier ordre de Liang et Miller, étendant ainsi les travaux de Miller et Volpe au cas intuitionniste. Deuxièmement, nous proposons un encodage similaire mais pour le calcul des séquents ordinaire (non-étiqueté) à l'aide d'une structure intermédiaire basée sur une version focalisée du calcul des séquents étiquetés de Negri. La troisième partie rapporte deux autres de nos contributions: les preuves de complétude de deux calculs de séquents emboîtés pour la logique modale (classique et intuitionniste), d'abord une version focalisée dans le chapitre 7, puis un système basé uniquement sur des règles d'inférence synthétiques dans le chapitre 8. Ces règles ne retiennent que les transitions principales du raisonnement et rendent invisibles la plupart des règles du calcul focalisé, ce qui rend la présentation du système claire et élégante et simplifie grandement les preuves d'élimination des coupures et de complétude.

  Fitting's indexed nested sequents, for which we demonstrated a new completeness result via cut-elimination. The second part recalls first the notion of focusing and of synthetic inference rules in chapter 4, then presents two of our contributions in chapter 5 and 6. Firstly, we show how to emulate Simpson's labelled sequent calculus for intuitionistic modal logic with Liang and Miller's focused sequent calculus for first-order logic, therefore extending the result of Miller and Volpe. Secondly, we propose a similar encoding though for ordinary (unlabelled) sequent calculus via an intermediate focused framework based on Negri's labelled sequent calculus.The third part reports on two other contributions, namely the completeness proofs of two nested sequent calculi for both classical and intuitionistic modal logic, first a focused version in chapter 7, and then a system merely based on synthetic inference rules in chapter 8. These rules only retain the transitions between big steps of reasoning forgetting most of the focused rules, which renders the system presentation clear and elegant while also simplifying the cut-elimination and completeness proofs.Université Paris-SaclayEspace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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	h	H | Γ1, Γ2, ◻Γ3	h	H | Γ1, Γ2
	5 H | Γ1 | Γ2, ◻Γ3	2 H | Γ1 | Γ2

2.3.2 Theorem (

  Lemmon and Scott [80]) Let G ⊆ N 4 and let G be the corresponding set of Scott-Lemmon axioms. A formula is provable in K + G if and only if it is valid in all frames satisfying (2.3) for each h, i, j, k ∈ G.The following table recapitulates the modal axioms constituent of the S5-cube, and in parallel their corresponding first-order counterpart and the frame property it entails.

		Axiom	Frame property	First-order correspondence
	t : A ⊃ A	Reflexivity	∀x.xRx
	b : A ⊃ ◻ A	Symmetry	∀x, y.xRy ⊃ xRy
	d : ◻A ⊃ A	Seriality	∀x∃y.xRy
	4 :	A ⊃ A	Transitivity	∀x, y, z.(xRy ∧ yRz) ⊃ xRz
	5 : A ⊃ ◻ A	Euclideaness	∀x, y, z.(xRy ∧ xRz) ⊃ yRz
	2 : ◻A ⊃ ◻ A	Confluence	∀x, y, z.(xRy ∧ xRz) ⊃ ∃u.(yRu ∧ zRu)

  [Γ2]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ{ A, A}

  ............................ Γ ā, ā c ................................ Γ

u ∅ u u ∅ u ā

  .................................................... Γ2 isub ................................................... Γ1 w u ¬B w u Γ2 tp ......................................................

									D 2
	cutr+1	cutr	Γ1	w	∅	Γ1 Γ1 w u B, Γ2 w v ¬B ◻ w ◻¬B	w u B, Γ2 w u B, Γ2 Γ1	bc	Γ1 w u Γ1 w v ¬B w u w u ¬B, Γ2 Γ1 w ∅ w u ¬B, Γ2

w ∅ w u Γ2

  and u 0 R k u k , and u 0 R m w m . Hence, as M is in particular satisfies (2.3), for k, l, m, n , there exists y ∈ W with u k R l y and w m R n y. Namely, there are worlds v 1 , . . . , v l , x 1 , . . . , x n in W such that u k Rv 1 . . . v l-1 Rv l , w m Rx 1 . . . x n-1 Rx n , and v l = y = x n .

	By noting that
	Φ = Γ	u0 u1 ∆ 1 , ...

u k ∆ k , v1 ... v l ... ... , w1 Σ 1 , ... wm Σ m , x1 ... xn ... ... we can define a homomorphism h : Φ → M with h

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

						∃	x)P Γ, ∃x.P	t is a term
		Identity		Focus → Inversion
	id+	p, Γ, p	id-	n, Γ, n	↓	Γ, N Γ, ↓N

.

  Ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	Ξ ∃x.P, Neutral → Focus (y/x)P, Ξ ∃ L	y is a fresh variable
	Λ, ↑P, P ↑ R Λ, ↑P ↓N, Focus phase N , ↓N, Π ↓ L	
	Π, P	

  , x : ◻A o and if we are in case (b), apply some relational rules leading to a sequent containing xRy. 2. for the B i ∈ Γ such that case (d) holds, apply some relational rules that lead to a sequent containing the corresponding z i Rx; then apply 4 * to each z i Rx and xRy such that z i Ry is added to the relational set; finally multifocus on all the w : B o such that wRy is in the relation set and B ∈ Γ, choosing y as the future: y, {x} ∪ F); ziRx, xRy, ziRy, G ⇒ R, y : Γ0 o, {y : Bi o} ↓ * (y, {x} ∪ F); ziRx, xRy, ziRy, G ⇒ R, y : ↓ Γ0 o , y : ↓ Bi o * (y, {x} ∪ F); ziRx, xRy, ziRy, G ⇒ R, x : ↓ Γ0 o , zi : ↓ Bi o

	↑ o	4 *	(x, F); ziRx, xRy, ziRy, G ⇒ R, x : (x, F); ziRx, xRy, G ⇒ R, x :	Γ0 o, {zi : Γ0 o, {zi :	Bi o} Bi o}
	Let us consider an application of the rule	◻ o k45	Γ 1 , Γ 1 , ◻Γ 2 , A Γ 1 , ◻Γ 2 , ◻A .

  If we did not have a way to prevent the proof search to go back to forbidden futures, we could for example build in LMF t+4+5 o a cut-free proof of ∅ ⇒ x : pa , x : ↑↓◻↑ ↓↑p a :

	id * ↑ o xRy, xRx, yRx ⇒ x : pa, x : ↑pa xRy, xRx, yRx ⇒ x : pa, x : pa ↓ * xRy, xRx, yRx ⇒ x : pa, x : ↓↑pa	
	* xRy, xRx, yRx ⇒ x : pa, yx : ↓↑pa ↑ o xRy, xRx, yRx ⇒ x : pa, y : ↑ ↓↑pa t * , 5 * xRy ⇒ x : pa, y : ↑ ↓↑pa	( * )
	◻ * ↓ * ∅ ⇒ x : pa, x : ↓◻↑ ↓↑pa ∅ ⇒ x : pa, x : ◻↑ ↓↑pa ↑ o ∅ ⇒ x : pa, x : ↑↓◻↑ ↓↑pa	

  ◻N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

				Identity		Focus → Inversion
			id fn R Π p, p	id fn L Λ n , n		Π{P } L Π ↑P ↑ fn		Π * {N } R Π ↓N ↓ fn
	fn	Π P	fn	∆1 [∆2], P	fn	∆1 ∆2, P	fn	Π{[∆2]}	P
	Rt Π	P	Rb ∆1 ∆2, P	R4 ∆1 [∆2], P	R5 ∆1 ∆2, P	{∅}
	Π N Lt Π ◻N ◻ fn	∆1 [∆2], N Lb ∆1 ∆2, ◻N ◻ fn	∆1 ∆2, ◻N L4 ∆1 [∆2], ◻N ◻ fn	Π{[∆2]} ◻N L5 ∆1 ∆2, ◻N ◻ fn	{∅}
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n 4+k Γ{ A, [Γ 1 , [• • • [Γ n ] • • •]]} for n ∈ N, n ≥ 1 for n ∈ N, n ≥ 1 5 : A ⊃ ◻ A (◆ l 1 . . . l n ◇, l 0 ), (◇, ◇), (◆, ◆) Γ 1 {[ A, Γ 2 ]}{[A, Γ 3 ]} n 5+k Γ 1 {[ A, Γ 2 ]}{[Γ 3 ]} n ∈ N and l i ∈ {◇, ◆}, 0 ≤ i ≤ nActually the rules introduced by Brünnler and Poggiolesi allow the propagation of without introducing it. It does not affect t and b, but it gives a simpler notation of the rules for 4 and 5 (though a trickier proof of cut-elimination).Γ 1 { A, [ A, Γ 2 ]} n 4

The idea is to show that if there exists a proof D of Γ in ïnK + in G + cut then Γ is also derivable in ïnK + in G , by an induction on the cut rank of D. The induction step also uses an induction on the number of occurrences of cut with the maximal rank as well as the main Reduction Lemma 2.6.9 to eliminate the topmost occurrence in the proof.To complete this proof we will need some additional structural rules called weakening, contraction, necessitation, and index substitution respectively:Γ 1 {∅} w Γ 1 {Γ 2 } Γ 1 {Γ 2 , Γ 2 } c Γ 1 {Γ 2 }

if we are in case (a), decide on x : ◻A o , which has the consequence of adding xRy to the left-hand side:(x, F); xRy, G ⇒ x : Γ o, y : A o ◻ * (x, F); G ⇒ x : Γ o, x : ◻ A o ↓ * (x, F); G ⇒ x : Γ o, x : ↓◻ A o ↑ o (x, F); G ⇒ x : Γ o, x : ◻A oor if we are in case (b), apply a series of relational rules (second table of Figure6.1) in order to make xRy appear in the relational context too;

then, multifocus on x : Γ o choosing y as the future: (y, {x} ∪ F); xRy, G ⇒ y : Γ o, y : A o ↓ * (y, {x} ∪ F); xRy, G ⇒ y : ↓ Γ o , y : A o * (y, {x} ∪ F); xRy, G ⇒ xy : ↓ Γ o , y : A o ↑ o (x, F); xRy, G ⇒ x : Γ o, y : A o

An LMF * sequent has the form T ; G ⇒ S where S is a multiset of labelled negative formulas, G is a set of relational atoms, and T is the time of the sequent. As the framework is focused, we can consider the restricted class of neutral sequents of the shape T ; G ⇒ R where R is composed of neutral formulas, namely: R ::= ∅ | R, x : ↑P | R, x : p A focused sequent contains furthermore (potentially several) occurrences of foci, so is of the shape T ; G ⇒ P with:

P ::= R | P, xσ : P

The rules of the framework are mostly simple adaptations of the ones in LMF, which are focused versions of the rules of labK. The important differences are that: in ↑ * , we assign a future σ to the formulas x : A in the context, so that we actually focus on xσ : A; when we apply the rule * with respect to a formula xyσ : A, it is predetermined that we get yσ : A in the premiss; and finally since futures of formulas are only relevant during the focus phase, applications of ↓ * remove all such futures.

The parameter X is a subset of {t, b, d, 4, 5}, specifying which modal logic we are considering. The system LMF ∅ * is a system for the logic K and is obtained by including only the first table of rules of Figure 6.1. Any other system LMF X * is obtained by adding to LMF * the set of relational rules x * , for each x ∈ X, in the second table of Figure 6.1.

Proposition

Let X be a subset of {t, b, d, 4, 5} and N be a neutral modal formula. There is a proof of N in LMF X * if and only if ∂(N ) is a theorem of K + X.

Proof (Sketch). The system LMF * is a multi-focused version of the system LMF presented in [START_REF] Miller | Focused labeled proof systems for modal logic[END_REF], augmented with some devices for controlling the application of rules. Soundness follows from the fact that such devices can only introduce restrictions to the application of rules and multi-focusing can be simulated in LMF by several rule applications. Completeness is also a direct consequence of that of LMF, since in the liberal version presented here all new devices (including multi-focusing) can just be ignored, or used in a trivial way, such that each proof in the previous system is also a valid proof in LMF * .

The idea behind this framework is that we can obtain different concrete proof systems by properly specifying the behaviour of the new devices introduced in LMF * . These will be defined by specialising the rule ↑ * , i.e., in particular, by tuning the following parameters: the class of formulas on which multi-focusing can be applied in the conclusion, the future σ of foci, and the set T 2 in the premiss.

Emulation of sequent proof systems

In this section we illustrate the usage of LMF * by specialising its various parameters to emulate the modal proof systems based on ordinary sequents, presented in Figure 2.2.

Intuitively, one can see modal inference rules such as ◻ o k in the ordinary sequent calculus (reading from conclusion to premiss) as moving from one world to another reachable world in a suitable Kripke structure. Such a change of world becomes apparent when we consider the corresponding deduction steps in a labelled system, as in this case, modal rules will explicitly change the label of the formula under consideration. In order to properly mimic the behaviour of the ordinary sequent rules in the labelled system, we need to be able to force all the formulas involved in one rule to move to the same new world. This is where having labelled formulas with a sequence of labels comes in handy, since the rule * exactly passes formulas to the future world indicated in the label.

In a labelled sequent system like labK, when constructing a proof tree, it is possible to switch freely from one label to another in the deduction process. On the contrary, in ordinary

Folding nested sequents: focused systems

In this chapter, we present focused nested sequent systems. After the design of the systems, the main contributions are: (i) a proof of cut-elimination for the focused nested calculus, given in terms of a traditional rewriting procedure to eliminate cuts; and (ii) a proof of completeness of the focused system with respect to the non-focused system by showing that the focused system admits the rules of the non-focused system. It generalises similar proofs of cut-elimination and focusing completeness for (non-nested) sequent calculi [START_REF] Laurent | A proof of the focalization property in linear logic[END_REF][START_REF] Liang | Focusing and polarization in linear, intuitionistic,and classical logics[END_REF].

Focused nested sequents

We build a focused variant of the nested sequent systems introduced in Section 2.5 and 3.5 for all modal logics of the classical S5 cube and a large subset of the intuitionistic S5 cube.

Classical system

In the classical setting, polarised formulas are built from the following grammar:

We recall that a formula is said to be neutral in the classical case if it is a shifted formula, an atom, or a negated atom, which can be a positive neutral formula L or a negative neutral formula R.

A polarised nested sequent is the same as a nested sequent in the non-focused setting, with the difference that all formulas are polarised. An invertible nested sequent, written Σ, is a polarised nested sequent that contains only negative formulas, according to the following grammar:

The meaning of a polarised nested sequent Σ, written fm n (Σ), is a corresponding negative formula obeying: fm n (∅) ≡

); In building the focused proof system, we will largely confine ourselves to neutral nested sequents, witten Γ, which are invertible nested sequents only built from neutral formulas and bracketed neutral nested sequents:

A focused sequent is like a neutral sequent but contains an additional single occurrence of P wherever a negative formula may otherwise occur , called its focus. We depict such sequent, which constrains the shape of the proof as follows:

An interesting point is that, even though for any polarisation of the sequent as neutral there still exists a proof in the focused system, the two proofs that existed in the unfocused system are no longer necessarily both available for each possible polarisation. This is similar to the ability of focusing to distinguish between forward and backward chaining of implications, that is a well-known phenomenon [START_REF] Chaudhuri | A logical characterization of forward and backward chaining in the inverse method[END_REF].

The most important result of this chapter is that the restriction of the nested sequent systems nK + n X to the system fnK + fn X that produces only focused proofs is still complete with respect to the corresponding logics. (Chaudhuri,Marin,and Straßburger [22]) Let X ⊆ {t, b, d, 4, 5} be axiomatically complete. For any negative neutral formula N , the following are equivalent.

Theorem

We dedicate Section 7.2 to proving this result. The proof uses Theorem 2.5.6 stating that for any X ⊆ {t, b, d, 4, 5}, nK + n X is sound and complete with respect to K + X. Therefore, it will be sufficient to prove that the focused system fnK + fn X is sound and complete with respect to the unfocused system nK + n X .

Intuitionistic system.

In the intuitionistic setting, polarised formulas are built from the following grammar:

We distinguish the classes of right-neutral formulas denoted R and left-neutral formulas denoted L. Here again, the use of the polarised syntax will make the intuitionistic input/output annotations unnecessary. Intuitionistically meaningful polarised sequents are exactly those sequents with a single negative formula interpreted as the output.

Polarised invertible sequents are similar to nIK sequents, but instead of using annotations, we force input formulas to be positive and output formulas to be negative. The resulting grammar for polarised input sequents (written Ω) and polarised full sequents (written Ξ) is:

Observe that in any polarised full sequent there is always exactly one negative formula.

As before, we define neutral input sequents (written Λ) and neutral full sequents (written Π), which are those subclasses of polarised input sequents and polarised full sequents that are built up of (left-or right-) neutral formulas:

Proof. By forgetting the polarity information, every fnK + fn X proof of N is transformed into a nK + n X proof of ∂(N ). The proof makes use of the following two inference rules

defined on polarised sequents, and the fact that they are admissible for fnK+ fn X by induction, similarly to the unfocused case [START_REF] Brünnler | Deep sequent systems for modal logic[END_REF].

Any polarised sequent Σ can be transformed into an unpolarised sequent ∂(Σ) with the same meaning by replacing every formula N in Σ by ∂(N ), and similarly for contexts Σ{ }. Moreover we can define ∂(Σ P ) = ∂(Σ){∂(P )}. It follows that every rule in fnK + fn X either becomes trivial or can be simulated by a derivation consisting of an instance of a rule in nK + n X and an instance of w, except for ↑ n which becomes an instance of c. Thus, a proof of A in fnK + fn X is transformed into a proof of ∂(A) in nK + n X + w + c. The theorem finally follows from admissibility of w and c for nK + n X .

Completeness

We want to show completeness of the focused systems fnK + fn X with respect to nK + n X , that is, every formula which can be proved within the unfocused system, also has a focused proof.

Theorem

Let X ⊆ {t, b, d, 4, 5} be axiomatically complete. Let R be a negative 

Cut Elimination

In this section we will show that the cut-rule we have been using is admissible for wnK+ wn X . However, as is common in inductive proofs, we have to slightly generalise the statement in order to prove it.

As before, we extend our notation of polarised (invertible or neutral) sequents to contain an occurrence of a focus P (at most one). For a sequent Σ, we write Σ to delete its focus if there is one, i.e. if Σ = Σ 1 P for some polarised context Σ 1 { }, then Σ = Σ 1 {∅}; otherwise Σ = Σ. This definition extends straightforwardly to contexts Σ{ }.

The cut-rules that we will show admissible in wnK + wn X can then be written as follows:

The rank of an instance of one of the cut rules is the depth of its cut formula P . The theorem we want to prove is the following. However, the actual elimination procedure will happen in the weaker system wnK.

Theorem

Let X ⊆ {t, b, d, 4, 5} be axiomatically complete. If a sequent Σ is provable in fnK + fn X + {cut 1 , cut 2 }, then it is also provable in fnK + X fn . In order to show the admissibility of the cut rules, it will be useful, as we have already seen in Section 2.5, to appeal to a collection of other admissible and invertible rules, in particular:

Note that here we use contraction only on negative atoms because that is all that is needed in the cut-elimination proof below. One can indeed show that the general contraction rule on arbitrary sequents (and not just formulas) is admissible, but this requires a more involved argument for focused sequents.

Lemma

Let X ⊆ {t, b, d, 4, 5}. The rules w, c + , c -, and n k are heightpreserving admissible for wnK + wn X , and the rules ◻ wn , -∧ wn , and -∨ wn are invertible for wnK + wn X . Moreover, if X is axiomatically complete, for every x ∈ X, the rule n x (shown in Figure 2.6) is admissible in wnK + wn X . Proof. The first part is by induction on the height of the derivation, similarly to Lemma 2.6.6 and the original proof [START_REF] Brünnler | Deep sequent systems for modal logic[END_REF]. The second part is less straightforward, but also by induction on the height of the derivation, following [START_REF] Brünnler | Deep sequent systems for modal logic[END_REF]. We carry out a case analysis on the last rule r which appears above n

x in the derivation If r = id then the occurence of n x can just be removed, while in the other cases, we use the induction hypothesis to conclude. We show here the critical cases that require the axiomatic completeness condition, translated into our setting.

• For n x = n t and r = wn 5 : the only non-trivial cases appear when the focus is situated at the root of the sequent. We are then in one of the following cases: By axiomatic completeness, wn 5 is in wn X when {b, 4} ⊆ X. • For n x = n b and r = wn 5 : similarly, the non-trivial case appears when the focus is at the root level of the sequent. By axiomatic completeness, wn 5 is in wn X when {b, 4} ⊆ X. In all six cases we use the admissibility of the structural rules, which is where we need the axiomatic completeness condition, and the invertibility of the ◻ rule (Lemma 7.2.7).

In the first four cases we can apply the inductive hypothesis because the cut-rank is reduced. In the last two cases we can proceed by appealing to the inductive hypothesis because of a smaller height.

By applying this lemma to all cut instances in the derivation, starting with a topmost one, we can transform a proof in wnK + wn X + {cut 1 , cut 2 } into a cut-free proof in wnK + wn X , from which we get a cut-free proof in fnK + fn X using Lemma 7.2.3. This finalises the proof of the cut-elimination theorem (Theorem 7.2.6), and therefore of the completeness theorem (Theorem 7.2.2).

Although we were ultimately interested in strongly focused proofs, the cut-elimination theorem (Theorem 7.2.6) was proved in the weakly focused system and made essential use of the admissibility of weakening by arbitrary formulas, including negative ones, and of the possibility of applying invertible rules even within a focus phase. Of course, thanks to Lemma 7.2.3, we also have a cut-elimination proof for fnK + fn X , but this is not entirely satisfactory: it is not an internal proof, i.e., a sequence of cut reductions for that stays inside this system.

One possible response to this issue might be to try to redo the cut-elimination using just fnK + fn X , but this quickly gets rather complicated because we no longer have access to the weakening rules in the case where the weakened structure contains negative formulas. Indeed, similar attempts to re-prove this meta-theory (for the sequent calculus) usually solve this problem by adding a larger collection of cuts leading to a lengthy and intricate argument [START_REF] Chaudhuri | A logical characterization of forward and backward chaining in the inverse method[END_REF][START_REF] Liang | Focusing and polarization in intuitionistic logic[END_REF][START_REF] Simmons | Structural focalization[END_REF]. To avoid this complexity, it is better to consider the focused proof system in a synthetic form where the logical inference rules for the various connectives are composed as much as possible, as we shall see in the next chapter.

Folding nested sequents: synthetic systems

In this chapter, we present synthetic nested sequent systems. After the design of the systems, the main contributions are: (i) a proof of cut-elimination for the synthetic nested calculus, which this time is fully internal, that is, the reductions steps stay inside the system itself; and (ii) a proof of completeness of the focused system with respect to the non-focused system by completeness of the synthetic system. These proofs might seem a little redundant once spelt out, but they witness a quite different type of reasoning than in the previous focused system. Synthetic rules are a compact notation of the focused rules that somehow gives us access to a slightly more global behaviour while still being able to reason meta-theoretically by local transformations on proofs.

Synthetic nested sequents

In this section we are going to introduce synthetic systems for the same logics as in the previous chapter: for the whole S5 cube in the classical case, and for a subset of it in the intuitionistic case. As we have seen in Chapter 4, since the boundary rules between phases (the rules for the shift operators, ↓ and ↑) in a focused proof are limited to conclusions that are either neutral or focused, we can see any focused derivation as progressing in large synthetic steps where the rest of the rules in between the shifts rules are ignored. Therefore, we can design a system that basically only contains the shift rules [START_REF] Zeilberger | Focusing and higher-order abstract syntax[END_REF][START_REF] Chaudhuri | Focusing strategies in the sequent calculus of synthetic connectives[END_REF].

The basis of the design for these synthetic systems is to generalise the subformula relation into a substructure relation, written ∈ ∈, that determines, for a given focus, which formulas would be present as the beginning and the end of a focused phase that would start by deciding on this formula. Since only neutral formulas occur at the boundaries, these substructures would consist of neutral formulas.

Classical system

We recall that a neutral sequent is a polarised sequent consisting only of neutral formulas and therefore built according to the grammar:

For any negative formula, there is a collection of corresponding neutral nested sequents that represents one of the possible branches taken in a sequence of negative rules applied to the formula. The nested sequent Γ matches the negative formula N , written Γ ∈ ∈ N , if it is derivable from the rules in the first line of Figure 8.1.

We introduce a new type of sequents called matching sequents, that we can see as the complement of neutral sequents, and that are built according to the grammar:

It is instructive to compare snK + sn X with fnK + fn X for a given X ⊆ {t, b, d, 4, 5}. In the latter system, the focus P is used to drive the modal rules fn k , fn t , fn b , fn d , fn 4 , fn 5 . Such modal rules can be applied only a fixed number of times before P needs to be reduced to P , and some logical or identity rules need to be used; this is necessary to finish the proof since foci can never be weakened. Thus, the analysis of P is forced to be interleaved with the modal rules for P , as shown by the alternation of 

Thus, the modal rules of snK + sn X are some sort of hybrids between structural rules and logical propagation rules. (Chaudhuri,Marin,and Straßburger [22]) Let X ⊆ {t, b, d, 4, 5} be axiomatically complete. Let R be a negative neutral formula, the following are equivalent.

Theorem

2. R is provable in snK + sn X .

Intuitionistic system

As before, we recall the definition of neutral input sequents (written Λ) and neutral full sequents (written Π):

In the intuitionistic case, a contextualising sequent is then a neutral full sequent that contains an occurrence of a focus that can be either an input or a full neutral sequent ∆, i.e. Π ∆ where Π{ } is a neutral context. The meaning of a focused sequent is written using fm n ( ) and obeys:

The synthetic system snIK + sn X is then built in a similar manner as snK, as shown in Figure 8.2. Remarkably, the intuitionistic synthetic system has far fewer rules than the focused one fnIK + X fn . In particular, there is exactly one modal rule for every modal axiom, unlike fnIK + X fn that needed both left ◻ fn L and right fn R versions. Nevertheless, this system will be sound and complete with respect to both nIK + n X and fnIK + X fn , and therefore to IK + X as well. Note that as in the rule ↑ fn R in the focused system, we need to remove the right-neutral formula from the surrounding context in the ↑ sn R rule. 8.1.2 Theorem (Chaudhuri, Marin, and Straßburger [START_REF] Chaudhuri | Modular Focused Proof Systems for Intuitionistic Modal Logics[END_REF]) Let X ⊆ {t, b, 4, 5} be axiomatically complete. Let R be a right-neutral formula, the following are equivalent.

Soundness

In this section we show that the synthetic system is sound wrt. the unfocused system.

Theorem

This theorem is easier to prove in two steps, by showing first that if R is provable in snIK + sn X then it is provable in fnIK + fn X (below), and then by stating a parallel result to Theorem 7.2.1 for the intuitionistic systems, namely that if R is provable in fnIK + fn X , then it is also provable in nIK + ◻ n LX + n RX . 

Lemma

Cut-elimination

In this section, we will show that the cut rule is admissible in snIK + sn X . To formulate the cut rule with a minimum of redundancy, we will need to slightly extend the pruning operations that we have already seen. As before, we allow the notation for neutral sequents to stand for sequents that contain at most one occurrence of a focus ∆ . For such a sequent ∆, we write ∆ to prune its focus if there is one (i.e., if ∆ = ∆ 1 ∆ 2 for some ∆ 1 { }, then ∆ = ∆ 1 {∅}; otherwise ∆ = ∆). As before, this definition extends to contexts ∆{ }. For a context ∆ 1 { }, we now write ∆ * 1 {∆ 2 } to mean ∆ 1 {∆ 2 } if ∆ 2 is an input sequent, and ∆ * 1 {∆ 2 } if ∆ 2 is a full sequent. The synthetic cut rule for snIK + sn X can then be written concisely as follows:

The rank of this cut is defined as the multiset of the depths of the formulas in ∆.

Before we can show that cut is admissible, we need to show the admissibility of the usual structural rules though in a synthetic setting. Note that the weakening rule w can only be applied to input contexts, and that we only need the instance of the contraction rule c applied to positive atoms.

Lemma

Let Y ⊆ {t, b, 4, 5}. The rules w, c, and n k restricted to neutral and extended sequents (as appropriate) are height-preserving admissible in snIK + sn X , and if Y is axiomatically complete, then for every x ∈ Y, the rule n x (Figure 2.6) is admissible in snIK + sn X .

This can be proved exactly in the same way as Lemma 7.2.7, i.e. by induction on the height of the derivation, only translating each derivation into the synthetic setting. Note that we do not allow, e.g., weakening ∆ 1 ∆ 2 {∅} to ∆ 1 ∆ 2 {N } top-down; the latter is, in fact, not even a well-formed focused sequent.

To conclude, we would say that exploring the applications of the focusing tool-kit to the proof theory of modal logics gave us, in general, a better understanding of the internal machinery of the variety of proof systems that existed in the literature and of the mechanisms at hand when considering their different properties. This thesis has been a study of modal proofs, but moreover we have conducted this study under some of the most recent developments in structural proof theory; as such, this work could be a useful template for other logics and other proof systems in the future.